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Synopsis 
  

In this thesis I will explore the application of a number of well-known enhanced sampling methods for 

the prediction of free energy changes in complex biological systems. These methods are usually 

devised and tested on small systems, such as the Ala-Ala dipeptide in vacuum, but the computation 

of the free energy in a biological system is much more sporadically attempted. Therefore, in this 

research I sought to assess the effectiveness of the most widely used enhanced sampling methods, 

namely umbrella sampling (US), replica exchange (RE) and metadynamics (MetaD). In particular, the 

aim was to use the US approach and enhance every simulation umbrella window with an additional 

enhanced sampling method. In Chapter 1 I will introduce the biological context of the problem, as well 

as the concepts of a molecular dynamics simulation, free energy calculations and the specific 

knowledge needed to understand this work. 

The systems chosen for investigation were small drug-like molecules and peptides interacting with 

model biological membranes. Biological membranes allow the compartmentalisation and regulation 

of every living cell. They mediate the intake of nutrients, the permeation of drugs and a vast array of 

cellular recognition processes. Despite their far-reaching biological roles, a robust computational 

molecular simulation approach capable of predicting the interaction between different types of 

molecules with these lipid membranes remains to be developed. This is due partly due to the 

complexity of the composition of lipid membranes, partly because of the lack of optimally 

parameterized force fields that can describe their structure and interactions, and partly because of 

their plasticity, which exponentially multiplies the number of possible modes of interaction with 

peptides and small molecules.  

Peptides themselves can be very flexible and, depending on their size, it can be difficult to predict 

their conformational ensembles in aqueous solution. To avoid this problem, a peptide was chosen 

such that it is stable to thermochemical changes and has a well-defined, ordered and rigid structure: 

Protx-1, a toxin found in the venom of red-back spiders as well as various other arthropod and cone 

snails species. Protx-1 is part of a family of peptides that contains an inhibitor cystein knot (ICK) motif, 

formed by three disulfide bonds that link the backbone together, giving them the exceptional 

aforementioned thermochemical stability. Conventional US simulations of the interaction of this 

peptide with a lipid bilayer were performed and it was found that the sampled orientations of the 

peptide with respect to the membrane strongly depended on the initial conformation of first approach 
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of the peptide to the membrane. After the peptide and membrane meet, the peptide spends the rest 

of the simulation (hundreds of nanoseconds) in the same orientation. Since a complete exploration of 

the available orientational space is required for an accurate calculation of the free energy, it was 

decided to enhance the sampling of each umbrella window using enhanced sampling methods. The 

first approach investigated was a purpose-designed replica exchange method, whereby replicas with 

reduced forces between the membrane and the peptide and the membrane and water were used to 

increase the free rotation of the peptide at the membrane surface. To my knowledge, there is no other 

method capable of specifically tuning the interactions of the membrane with the protein without also 

influencing other parts of the system Hamiltonian. Consequently I developed an in-house method 

called replica exchange with solute tempering 3 (REST3) to address this problem. To validate the 

method, a set of small molecules for which experimental partition free energy data is available. The 

molecules chosen were limonene, perillaldehyde and perillic acid, three terpenoid compounds with 

increasing polarity that have been thoroughly studied in recent years. The predicted free energy of 

partition of these three molecules was observed to match experimental data well and the trend in 

binding free energies is thus well predicted. When applied to Protx-1 though, this method failed to 

reproduce the correct binding free energy. The protein was found to experience an unexpected 

increase in its self-interaction energy, making it fall into deep energy minima which are difficult to 

escape and which change its average interaction with water molecules. This is probably due to the 

non-inclusion of the protein-protein self-interaction terms in the replica exchange probability. This 

technique will require future additional development to integrate these energy terms before it can be 

used with proteins. 

In the light of these results, the performance of MetaD was tested for enhancing the orientational 

sampling of Protx-1 in combination with US as the underlying main method to obtain the binding free 

energy. The interaction of a US potential with a MetaD potential is all but obvious, so to develop a 

correct protocol to unbias these simulations a test system was used and composed of a static xenon 

surface (emulating the presence of a membrane) and a CO2 particle immersed in argon gas (emulating 

the protein immersed in water). With this test system the appropriate reweighting schemes that 

would be used with Protx-1 simulations were defined. The results shows that this reweighting protocol 

can correctly reproduce the underlying free energy landscape of the system.   

Once the reweighting protocol was developed, the influence of the use of various collective variables 

(CVs) on the orientational sampling of Protx-1 was tested. The obvious approach of choosing three 

angles as CVs defined on some atoms of the protein (reminiscent of for the approach used with the 

terpenes and CO2) revealed an unexpected problem. The distribution of orientational angles appeared 

to be enhanced substantially by MetaD, but the orientation of the protein did not in fact change at all. 
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This was found to be due to the size of the protein and its inertia, which makes it easier for an applied 

biasing potential to cause the local, abnormal displacement of the two atoms that define an 

orientation vector rather than rotate the entire protein structure. For this reason, I developed a new 

type of angles that are defined on the entire protein structure rather than on an arbitrary number of 

atoms. This was based notionally on quaternion-defined rotations but through the development of an 

Euler angle-based method that could work with the current implementation of PLUMED, which does 

not support quaternion operations. To test these new angular orientation CVs, a range of variations 

of conventional and fast-converging MetaD methods were used, including well-tempered MetaD (WT-

MetaD), bias exchange MetaD (BE-MetaD) and parallel bias MetaD (PB-Metad). After comparing the 

performance of these methods for enhancing the orientational sampling of ProTx-I, the PB-MetaD 

approach was chosen due to its lower computational effort and shorter convergence time. Use of 

these simulation approaches confirmed that the Euler angle CVs developed are suitable for enhancing 

the orientational space exploration of semi-rigid molecules. 

Finally, the reweighting approach developed with the above described CO2 system in combination 

with the new Euler angle CVs was used predict the free energy of binding of ProTx-I to a POPC 

membrane. US-WT-MetaD and PB-MetaD approaches were used. The interaction of the US potential 

with the WT-MetaD potential was found to induce a deformation of the protein when it reaches the 

membrane. In contrast, the PB-MetaD approach was observed to avoid this problem, providing a more 

promising method to predict free energies of binding of proteins with lipid membranes. 
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1 Chapter 1- Literature review 
 

1.1 Introduction 
 

1.1.1 Umbrella sampling  
Umbrella sampling (US) is one of the most common enhanced sampling methods to characterise small 

molecule-membrane interactions (SMMIs) and obtain related free energy profiles. This approach has 

been vastly used in literature in many different contexts, cementing the robustness of its theoretical 

approach and protocols of application. In US simulations of SMMI sampling along the reaction 

coordinate (RC) is enhanced by applying an additional energy term (the biasing potential) that 

restrains the location of the small molecule at a given point along a RC of choice. The typical approach 

to US consists in setting up a number of simulations (referred to as ‘windows’), each window will 

sample states of the system in the vicinity of the discrete value of RC on which the biasing potential is 

centred (Figure 1). The restraining potential forces the window to explore values close to the centre 

of the umbrella, energetically disfavouring values that are further apart. From these umbrella windows 

a series of N partially overlapping histograms of the collective variable can be extracted, where N is 

the number of windows. Each histogram provides a biased probability distribution of the RC. An 

alternative is to keep the biasing potential constant and slowly vary the value of the RC, in a protocol 

referred to as steered MD or pulling simulations 1.  

 

Figure 1. On the left, schematic representation of an umbrella sampling simulation of the interaction 

of a small peptide with a lipid bilayer. The reaction coordinate is the centre-of-mass distance between 

the molecule in solution (state A) and the molecule at the membrane (state B).  On the right, sample 
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plot of the free energy profile, also known as potential of mean force (PMF) for the binding of the 

peptide to the membrane, providing an estimate of the change in free energy between states A and 

B. 

 

To obtain the free energy, Ai(ξ), where ξ is the reaction coordinate, the unbiased probability distribution 

of the system, 𝑃 ( ), is calculated as 1 

 𝑃 ( ) =
∫ 𝑒 ( )  𝛿[𝜉 ( )−𝜉] 𝑑 𝑟 

∫ 𝑒 ( ) 𝑑 𝑟
 (1) 

Where E(r) is the energy of the system with coordinates r, β=1/kT and δ[ξ’(r)- ξ] is the number of states 

in the simulation that have a value of ξ’. Assuming ergodicity in the system, the biased probability 

distribution, 𝑃 ( ), obtained from the simulation will be equal to 

 𝑃 ( ) =
∫ 𝑒

( ) 
( )

 
𝛿[𝜉

( )
−𝜉] 𝑑 𝑟 

∫ 𝑒
( ) 

( ) 𝑑 𝑟
 (2) 

With ωi(ξ’(r)) being the biasing potential applied on the system. Since integration of the numerator is 

performed over all degrees of freedom except for ξ and the bias depends only on ξ, using Eq. 1 and 

Eq. 2 we can derive 

 𝑃 ( ) = 𝑃 ( )𝑒 ( ) < 𝑒 ( ) > (3) 

A more thorough derivation of Eq. 3 can be found in the in-depth review of US by Kästner 1. This 

derivation is analytical and only assumes that enough sampling is provided for every value of ξ. As 

𝑃 ( ) is obtained from the US simulation and the biasing potential is given analytically, the free energy, 

Ai(ξ) can be derived as 

 𝐴 ( )
 =  −

1

𝛽
ln 𝑃 ( ) − 𝜔 ( ) + 𝐹  (4) 

Here Fi is a constant that can be estimated by approaches such as the weighted histogram analysis 

method (WHAM) 2 when combining results from different windows. However, WHAM requires the 

windows to have sufficient overlap in their distributions 3. An alternative to WHAM is umbrella 

integration, which instead relies on the calculation of the derivative  ∂ln𝑃 ( ) / ∂ξ and does not require 

an overlap in the energy distributions 4. 

The most common RC used in simulations of SMMIs is the COM distance between the molecule of 

interest and the membrane, as illustrated in Figure 1. This focuses the sampling effort to only one RC 

and thus simplifies the N-dimensional landscape to one dimension. However, use of this RC will fail to 
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capture the effects of relevant degrees of freedom (DOFs) if these have slower relaxation times than 

the time dedicated to sample each window. The lack of sampling of these DOFs could affect the 

accuracy of the free energy calculation, especially if they are responsible for configurational transitions 

of the small molecule or the reorganisation of the lipids around it 5. These slow-varying variables are 

usually referred to as ‘hidden variables’ that govern the exploration of the configurational landscape 
6. In any case, if the configurational ensemble is incomplete, i.e. it is insufficiently sampled, then the 

calculation of the free energy will be inaccurate.  

1.1.2 Biological Membranes and their interactions with small molecules 
 

Biological membranes are semi-permeable structures present in all living organisms. Membranes 

protect the cell from the external environment, compartmentalise cells and their organelles and 

control the selective transport of molecules in and out of these compartments. Biological membranes, 

and cell membranes in particular, are commonly described using the fluid mosaic model where the 

membrane consists of a lipid bilayer into which membrane proteins are embedded (Figure 2). 

Biological membranes fulfil a wide range of functions and are highly complex structures 7. A typical 

bacterial or mammalian membrane can consist of several hundreds of different types of lipids and 

include hundreds of different proteins 8,9. 

 

Figure 2. Schematic representation of a cell membrane composed of a lipid bilayer with embedded 

membrane proteins. Reprinted from 10, Copyright 2017 with permission from Elsevier. 

 

The lipid bilayer of cell membranes is primarily made up of glycerophospholipids, sphingolipids and 

sterols, varying in proportion depending on the type of cell or the specific function of the membrane 
9. The lipid bilayer has two main functions. Firstly, lipids are critical for the function and structural 

stability of membrane proteins, which make up nearly a third of the human cell membrane proteome  

and account for approximately 60% of known drug targets 11–13. Secondly, the bilayer controls the 

permeation of small molecules across the membrane and thus controls what enters the cell or cell 

organelles. In addition, the membrane mediates the lateral diffusion of small molecules bound to the 
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membrane and can thus affect the mechanism of action of molecules that act as ligands for membrane 

proteins. It is thus not surprising that the interaction of small molecules with membranes affects the 

pharmacokinetics, bio-availability and mechanism of action of endogenous substances such as 

neurotransmitters as well as drugs. 14–16. The permeation of small molecules is also critical for assessing 

the toxicity of exogenous particles such as diesel soot or silica dust 17, the use of nanoparticles for 

imaging, biosensing and therapeutic applications 18 and the use of organic molecules in the 

cryopreservation of plant germplasm 19,20. Consequently, understanding small molecule-membrane 

interactions (SMMIs) and, in particular, the ability to predict the binding affinity and permeation 

coefficients of small molecules is an active area of research and aids our understanding of 

physiological processes and facilitates pharmaceutical development and a diverse range of 

biotechnological applications. 

SMMIs can be classified mainly into surface binding (or adsorption) and permeation across the 

membrane. Surface binding describes the interactions of the small molecule at the water-lipid 

interface and the binding affinity associated with the molecule moving from a fully solvated state to a 

membrane-bound state. In contrast, permeation describes the flux of molecules from a solution 

environment on one side of the membrane, through the hydrophobic core to the other side of the 

membrane. Both surface binding and permeation are initiated by the diffusion of the small molecule 

from the bulk solvent to the membrane surface. This process can be driven by electrostatic and/or 

hydrophobic interactions. The specific mechanism of interaction depends on the size, shape and 

physico-chemical properties of the small molecule, the composition of the membrane and 

environmental factors such as temperature, pH and ionic strengths. In this thesis the focus will be 

mainly set on surface binding and partition of the small molecules, rather than on their permeation 

capabilities. Seelig has described in detail the driving forces that govern the adsorption and insertion 

of peptides to membranes 21. This theoretical framework can be used to model the adsorption of small 

molecules that do not penetrate membrane. For neutral molecules, adsorption is described using 

‘hydrophobic partitioning’, where the concentration of a molecule in the bulk and at the membrane 

is considered to be at equilibrium, and the binding affinity is obtained from a simple partitioning 

principle.  

 

1.1.3 Model membrane systems 
Due to the high complexity of biological membranes, their interactions with other molecules are 

commonly studied using model membranes. They are usually composed one or more of the most 

abundant lipids found in the membrane of interest such that they reproduce the physico-chemical 

properties critical the process one aims to study (e.g. fluidity or surface charge). Besides reducing the 
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complexity, model membranes provide the ability to systematically investigate the effect of different 

environmental factors on SMMIs (e.g. lipid composition, pH, ionic strength, level of hydration or 

temperature). By controlling lipid composition and environmental factors, model membranes also 

enable a more direct comparison of the surface binding or permeation of a set of small molecules with 

varying physicochemical properties. The most commonly used model membrane systems include 

micelles, liposomes, supported monolayers and bilayers (Figure 3) 22,23. The choice of model system 

and its composition depends on the set of relevant physicochemical properties that are to be 

reproduced, the process that is under study (binding or permeation) and the experimental 

technique(s) used to monitor the progress of said process 7,23–25.  

 

 

Figure 3. Schematic representation of various types of model membrane systems. Supported bilayers 

and monolayers can have different kinds of linkers (polymeric, charged, and covalent) connecting the 

support with the actual bilayer. Licensed under a Creative Commons Attribution (CC BY) license. 

 

For plasma membranes, the most commonly used lipids are neutral (zwitterionic) phospholipids like 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 25. To add surface charge, 

lipids like 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS, mainly used in mammalian 

membranes) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, mainly used in 

bacterial membranes) 24,26 are added. Other lipids commonly added to mimic the plasma membrane 

include sphingolipids, phosphatidylinositol or cholesterol.  
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Figure 4. Structures of common lipids used to build model membranes to mimic the mammalian 

plasma cell membrane. 

 

The thermophysical phase of the lipid bilayer used as a model system is also of importance. Lipid 

bilayers can be found in a variety of phases including sub-gel, gel, rippled and liquid crystalline (also 

called fluid phase). Phase transitions represent rearrangements in membrane structure leading to 

changes in the stability of bilayers (Figure 5). Each phase has a characteristic molecular arrangement 

described best with a set of structural properties like the area per lipid (APL), membrane thickness 

and lipid tail order parameter (S). For example, in the fluid phase lipid tails have high mobility and low 

lipid tail order. In contrast, in the gel phase lipid tail mobility is lower and is accompanied by an 

increase in lipid tail order. Phase transitions can be induced by changes in environmental conditions 

such as temperature, pH, ionic strength and hydration. In model membranes, transition from the fluid 

to the gel phase can be induced with either a reduction in temperature (thermotropic phase 

transition), an increase in pressure (barotropic phase transition), a reduction in hydration or a 

decrease in pH 24,27,28. 

The interaction of small molecules with membranes can both induce phase transitions in model 

membranes as well as shift in the fluid-to-gel transition (Tmelt). For example, in the context of 

cryobiology, a reduction in the Tmelt reflects stabilisation of the liquid crystalline phase of plasma 

membranes and the retention of their biological function at lower temperatures. A reduction in 

hydration upon desiccation leads to the opposite effect: an increase in the Tmelt and the stabilisation 

of the gel phase. During cryopreservation, where both desiccation and liquid-nitrogen temperatures 
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lead to severe membrane damage, addition of sugars and other non-penetrating cryoprotective 

agents is aimed at stabilising the fluid phase of cell membranes 20. 

 

Figure 5. Lipid phase transition from gel (Lβ’) to fluid phase (Lα) induced by an increase in temperature. 

The gel state is characterised by a smaller area per lipid, larger bilayer thickness and higher lipid tail 

order compared to the fluid phase. Adapted from 29. Copyright 2005, American Chemical Society. 

 

Various experimental techniques are used for characterising SMMIs. These techniques provide 

information about the changes in structure, dynamics and stability of membranes upon their 

interaction with small molecules, as well the orientation and location of the molecule. In addition, 

these techniques are used to investigate the thermodynamics and kinetics of SMMIs.  

One of the most commonly used methods to characterise the structural and dynamical properties of 

lipid bilayers 10,30 is Nuclear magnetic resonance (NMR) spectroscopy. Solid-state NMR (ssNMR) can 

be used to study the dynamics of lipids in the fluid-phase over a wide range of time scales, providing 

information about the conformation and orientation of individual lipids and their diffusion, as well as 

collective motions such as membrane deformations. By comparing these data in the absence and 

presence of a membrane-active molecule, ssNMR can be used to describe the effect of SSMIs on 

structure or dynamics of lipids and membranes. NMR can also provide information to construct phase 

transition diagrams of model cell membranes 31, which can subsequently be used to study the effect 

of SMMIs on phase transition temperatures 32. NMR has also been used to determine the preferred 

position and orientation of drug-like molecules, water, ethanol and flavonoids in lipid bilayers 33–35 or 

to determine the high-resolution, 3D structure of small molecule-lipid complexes 36.  

Other spectroscopy techniques used to study membranes and SMMIs include Förster resonance 

energy transfer (FRET), electron paramagnetic resonance (EPR), fluorescence correlation spectroscopy 

(FCS) and Fourier transform infrared (FTIR) spectroscopy. FRET is particularly useful to monitor the 

spatial organisation and distribution of lipids including the formation of micro domains in membranes 
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37, and to detect the intercalation of small molecules into lipid bilayers. Whilst FCS and EPR are less 

commonly used to directly study SSMIs, both techniques provide information on lipid dynamics and 

can thus be used to study effect of SMMIs on the membrane. For example, FCS can be used to 

characterise diffusion processes in membranes by ‘tracking’ individual lipids both in ‘simple’ model 

membranes as well as complex lipid mixtures or membranes with high heterogeneity 38. EPR is used 

to determine the mobility and order of lipids and thus provides a measure of membrane fluidity, or to 

provide information on the water accessibly of the membrane as a function of membrane depth 39,40.  

In addition to spectroscopy techniques, popular techniques use to study membrane systems are 

neutron and x-ray scattering methods. These methods provide dispersion patterns that can 

differentiate the lateral packing arrangement of lipids characteristic to a specific phase, determine 

bilayer thickness 41,42, lipid tilt angles and diffusion. Scattering methods can also be used to determine 

the position of sugars, alcohols and drug molecules in membranes  26,43–49.  

Besides the structural information, characterising of the thermodynamics and kinetics of SMMIs is 

critical to understand surface binding or permeation phenomena. These properties have been studied 

using a range of techniques including differential scanning calorimetry, isothermal titration 

calorimetry (ITC) and surface plasmon resonance (SPR). Differential scanning calorimetry is commonly 

used to determine the phase transition temperatures of membranes and associated activation 

energies of model membranes including any changes to these properties upon interaction with small 

molecules 26,27,40,50. ITC can be used to measure the amount of thermal energy absorbed or released 

as a result of small molecules binding to membranes, thus allowing the determination of binding 

constants (free energy of binding), enthalpies and stoichiometry of SMMIs 50–52. SPR is used to 

determine the kinetics of binding and unbinding of small molecules to lipid bilayers, yielding 

corresponding association and dissociation rate constants, as well as the overall binding affinity 

constant 53–55.  

1.1.3.1 SPR methodology 
SPR is a technique which measures electron oscillations that forms at the interface between a thin 

layer of a conductive material and a dieletric medium. These electron oscillation are referred to as 

Surface Plasmons , and they can be induced shining a laser on the thin layer of metal with a particular 

angle56. If the angle is the distinct angle of incidence required for the setup, a drop in the reflectivity 

of incident light can be observed, and the optical energy is dissipated into a guided electromagnetic 

wave along the metal-dielectric interface. The extent of this energy transfer is sensitive to the mass 

deposited on the metal layer, as well as the local index of refraction near the metal-dieletctric 

interface. Changes in any of these parameters will change the angle of reflectivity, which can be 

measured by the SPR instrument57. The film is usually a very thin gold films, in virtue of the malleability 
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of gold and the strength of the SPR signal generated by a gold surface. The usefulness of SPR is limited 

to materials that can form high quality uniform films in the nanoscale size (<100 nm) on the metal 

layer. Many materials like ceramics and polymers can be not suitable , but biological membrane can 

be made according to this parameters. To determine the free energy of absorption with SPR   a 

sensorgram is obtained, which is presented in resonance units or response units (RU, 1RU=1 pg/mm2) 

against time. The data are then used to to generate an isotherm curve, by plotting the SPR signal as a 

function of the concentration 58.Various problems must be addressed when using SPR to measure a 

free energy of binding. Firstly, because SPR measures the refractive index change of the medium in 

the 300 nm around the metal surface it is sensitive to the amount of molecules adsorbed on the 

surface as well as the amount of molecules dissolved in the medium in the 300 nm around the surface. 

This is commonly referred as the bulk-shift contribution and must be accounted for subtracting it from 

the raw SPR signal 59 .Secondly, analyte-analyte interactions can greatly affect the shape of the 

adsorption isotherm, leading to erroneous calculation of the free energy of adsorption. For this reason 

it is preferred to run SPR experiments at very low analyte concentration, to avoid analyte-analyte 

interactions. A solution commonly applied is to use only the initial slope of the isotherm, where the 

concentration of the analyte in bulk is negligible, in the assumption that in this regime analyte-analyte 

interactions are minimized.  In this case the free energy of adsorption can be calculated as: 

𝛥𝐺 = −𝑅𝑇𝑙𝑛
𝐶

𝐶
= −𝑅𝑇𝑙𝑛(

𝑄𝐾

𝛿𝐶
+ 1) (5) 

Where Cs is the concentration of the analyte solution, Cb is the bulk concentration, which has to be 

close to zero, Q and K are two fitted parameters, δ is the thickness of the layer and C0 is the 

concentration of the analyte solution in standard state.  

1.1.3.2 ITC methodology 
ITC is a technique that measures the exchange of heat associated with the formation of a complex 

between a ligand and an analyte, or any phenomena that can lead to a change of heat. At its base an 

ITC instrument consists in a reference cell and a sample cell enclosed in an adiabatic shield jacket. The 

reference cell contains the same solvent of the sample cell and some dissolved analyte, but no ligand. 

To the sample cell, a solution of ligand dissolved the solvent is injected through a very precise 

automated pipette. Differences in temperature between the sample cell and the reference are 

monitored using a sensitive thermocouple, and the temperature of the cell is kept the same providing 

or subtracting heat from the sample cell. Depending on the exothermic or endothermic nature of the 

reaction taking place the instrument will have to add or subtract heat to keep the cell at the same 

temperature. The power required to returned the sample cell to thermal equilibrium is then 

integrated over time. This integral is proportional to the amount of interaction that is occurring in the 
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sample cell 60.After the sample cell becomes saturated, the only changes to the heat are due to the 

dilution of the sample cell contents.  The heat signal (or power provided) can be then described as an 

apparent ΔH of the reaction happening in the cell. The term apparent is used because the total ΔH is 

due to the sum of many phenomena such as electrostatic, hydrophobic, Van der Waals interactions, 

hydrogen bonding, protonation/deprotonations, conformational changes and many more. The 

equilibrium constant K can be measured from the precise knowledge of the concentration of the free 

and the bound ligand. ITC can measure K very precisely between milli molar and picomolar range. The 

free energy of adsorption then might be calculated from the relation: 

 ∆𝐺 = ∆𝐻 − 𝑇𝑆 = −𝑅𝑇 ln 𝐾 (6) 

The high sensitivity of the technique combined with the fact that the sample doesn’t have to be 

immobilized or artificially labelled (through radioactive compounds for example) makes it a very 

powerful technique. The usage of ITC with membranes involves some theoretical problems though. 

Firstly, as previously stated, to calculate the K and therefore the ΔG requires precise information of 

the initial concentration of the peptide and of the binding sites of the membranes. However clearly 

quantifying the binding site for a surface and specifically for a biological membrane is a very 

challenging task that has no clear solution to date. In second instance when dealing with bulky 

molecules as peptides might be, the possibility of a non-negligible fraction of the heat exchange being 

due to solvation entropy, structural changes of the peptide and peptide-peptide binding cannot be 

ignored 61.  

 

1.1.4 Challenges in understanding SMMIs Molecular dynamics  
Despite the vast array of techniques available, obtaining a complete picture of the structure, kinetics 

and thermodynamics of a process involving SMMIs is still a very challenging task. Most of these 

techniques provide a single information on the system in very specific experimental conditions, which 

can differ from the physiological conditions at the process of interest occurs. With a few exceptions, 

these studies provide an averaged signal over conformations or time, which usually lacks the 

resolution to make mechanistic deduction on the process under study.  

Molecular dynamics (MD) is a computational method that can help rationalising and complementing 

experiments by providing both atomistic level detail and high temporal resolution. MD simulations 

have been used extensively to study SMMIs, both for rationalising experimental data and for 

predicting changes to membrane properties such as APL, membrane thickness, order parameters and 

lipid lateral diffusion coefficients. Simulations have also provided insight into the effect of lipid 

composition on these properties 62–66, particularly when the properties of interest are inaccessible (or 



23 
 

difficult to access) using other techniques 67. In MD simulations, a molecular model of the system of 

interest is built representing atoms as a particle and subject to a carefully built potential energy 

function that represents the bonded and non-bonded interactions between all particles. The initial 

position and velocities of the particles are given and Newtonian equations of motion are solved and 

propagated in time according to the potential energy function under specified temperature and 

pressure conditions. At every point in time the energy of the system is then dependent of the position 

of every atom, i.e. its state at time t. The result is a trajectory, time series of frames containing position 

and velocities for every atom in the system at every time, from which all manner of thermodynamic, 

structural and dynamic information can be in principle obtained. The use of MD simulations to study 

detailed models able to describe specific lipid–protein interactions is an established method that can 

be employed to rationalize and guide experiments 68–76.  

1.1.5 Force fields  
The accuracy of the prediction coming from a molecular dynamic simulation is first and foremost 

dependent on the representation of the potential energy functions. In a molecular dynamics system  

the atoms are represented by spheres bound by springs.  The springs represent the bonded forces, 

like the direct covalent bonds between atoms, or additional angular and dihedral contributions that 

shape a molecule in its characteristic conformation. Additionally, non-bonded interactions like 

electrostatic and Van der Waals interactions are modelled respectively through the standard 

electrostatic potential and the Lennard-Jones (LJ) function. The resulting Hamiltonian for the potential 

energy of a conformation of atoms usually takes the form of : 

𝐻(𝑥) = 𝑘 𝑟(𝑥) − 𝑟 + 𝑘 𝜃(𝑥) − 𝑟 +  
𝑘

2
[1 + 𝑐𝑜𝑠(𝜂𝜙(𝑥) − 𝛾)] 

 

+
𝐴 ,

𝑟 , (𝑥)
−

𝐵 ,

𝑟 , (𝑥)
,

+
𝑞 𝑞

𝜀 𝜀 𝑟 , (𝑥)
 

 

(7) 

The collection of these functions and parameters used to  is generally called a force field (FF). A FF is 

a collection of functions to describe the interactions between atoms and their parameters used to 

describe these functions. Usually, these parameters are obtained from quanto-mechanical 

calculations and experimental data fitting, parametrized to reproduce the behaviour of the molecule. 

The FF is then generally validated against some experimental data sets that ensures that the set of 

parameters used can reproduce some measured experimental values. As an example, for membrane 

systems the set of parameters obtained to describe a phospholipid molecule would then be validated 

against experimental values of membrane thickness, area per lipid, lipid order and more 77. If the FF is 
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successful, simulation of a membrane of the given phospholipid will reproduce the experimentally 

measured APL for the membrane. A set of parameters that well describes a phospholipid molecule 

won’t necessarily describe the interaction of that lipid molecule with a different species. In fact if 

during the development phase of the FF the data hasn’t been expressly parametrized to reproduce 

protein interactions (or any other small molecule interactions) it is very unlikely that the FF will be 

able to correctly reproduce them. In the case of this work a force field that can not only reproduce 

protein-membrane interactions, but also small drug-like molecules interaction is needed. 

There are several protein FFs with available parameters for a variety of lipids, among the most used 

ones we can find AMBER LIPID 1478, GROMOS 54A779, CHARMM3680 and SLIPIDS81. Each of these FF 

presents its advantages and disadvantages. A first distinction to make is between all atoms FFs and 

united atoms FFs. All atom FFs describe every single atoms in the system as a sphere with its own 

parameters, comprising all of the hydrogen atoms. Being the atoms with the smallest mass, hydrogens 

are the fastest oscillating atoms in the systems and furthermore they are usually among the most 

numerous atom components of organic molecules. The dynamics of these atoms are not always that 

interesting though, especially in the case of aliphatic hydrogens. For this reason some FF are 

developed to be united atoms. United atoms FF like GROMOS 54A7 apply a light degree of coarse 

graining to the system to reduce the number of atoms to simulate, trying to minimize the loss in 

accuracy. The aliphatic hydrogen and the carbon they are bound to are parametrized as a single bead, 

reducing considerably the number of particles in the system and allowing longer simulation time steps 

to be used. 

 Several works in literature  that compare the performances of these FFs and outline their abilities to 

reproduce experimental data can be found 71–73 . From this comparison it is difficult to pick a clear best 

choice among all the FF for general small molecule-membrane interactions. On one hand all of the 

force fields manage to describe the properties of the phospholipid to a satisfying extent 84,85, on the 

other hand there is not much data assessing the interaction between a membranes and small 

molecules, particularly on non-peptide small molecules. GROMOS 54a7 provides access to less 

computationally intensive simulations due to its united atoms nature in exchange for some resolution. 

In the light of its increased computational performances arising from its united atom nature, its 

extensive use in literature and to be consistent with previous work in the group we chose GROMOS 

54a7 to be our FF of choice. This FFs has been shown to  reproduce the APL, thickness and lipid order 

parameters of DMPC and POPC bilayers suitably 85 , is protein compatible and comes with an easy 

method of obtaining general small molecule parameters in the Automatic Topology Builder suite 86. 

GROMOS 54A7 general force field was parametrized against the density, and Enthalpy of vaporization 

and Solvation Enthalpy in water and cyclohexane of 28 small molecules. The parameters for the lipids 
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instead has been parametrized to reproduce APL, Lipid order parameters and Gel-Liquid transition 

temperature. Due to the nature of this study being fundamentally similar to the measurement of a 

partition coefficient between a polar environment (water) and an apolar environment (membrane), 

this parametrization strategy, especially in the Enthalpy of solvation in a polar and apolar solvent 

seemed fitting. Despite the overall good performances in simulating the lipid dynamics, GROMOS 54a7 

comes with a known overestimation of the interaction of proteins with the charged heads of the lipids 
83,87.  Recently a new correction for the lipid heads parameters accounting for this effect has been 

published by Marzuoli et al 87 . In this work the partial charges and Lennard Jones parameters for the 

choline, the phosphate and the glycerol moieties of the lipids were tweaked to better reflect the real 

interactions that a protein would have with a model bilayer. For the relevant protein – membrane 

simulations then, this corrected version of the FF called GROMOS 54a8 was used instead of its previous 

version. 

 

1.2 Free energy  Calculations 
By linking ensemble averages of molecular properties to bulk thermodynamic properties, MD 

simulations can be used to calculate binding constants, as well as many other physical quantities. 

Changes in free energy are the most important thermodynamical quantity that can be extracted from 

a simulation. This is because the difference in free energy between two states determines the 

direction and the speed of any chemical reaction. From the knowledge of the free energy it is possible 

to extract every other thermodynamic quantity from a simulation in a statistically correct way. 

However, obtaining these properties from MD simulations relies on sampling representative 

molecular configurations to calculate free energy differences. The free energy F of a system is related 

to its partition function Z by: 

 
𝐹(𝑁, 𝑉, 𝑇) = −𝛽 ln [ℎ 𝑒 ( , ) 𝑑𝑝 𝑑𝑟 ] 

 
(8) 

 𝐹 =
1

𝛽
ln 𝑍 (9) 

Here β = 1/kBT, kB is the Boltzmann constant, T is the absolute temperature, h is the Plank constant, 

H(p,r) is the energy of the system in configuration r with momentums p, and N is the number of 

degrees of freedom of the system. The integral in Eq 1 is over all the possible configurations r and all 

possible momentums p. This means that theoretically, the MD simulation used to calculate the free 

energy should sample all combinations of configurations and momentums available to the system in 

the given macroscopical state. As the degrees of freedom in a molecular system scales to the power 
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of 3N, sampling all possible configurations is only feasible for systems of a few dozens of particles. For 

biological systems composed of thousands of particles this is no longer feasible and only a subset of 

all configurations can be sampled. The challenge then becomes sampling all configurations relevant 

to the changes in free energy associated with the process of interest. 

In simulations of SMMI, one is usually interested in the difference in the free energy between two well 

defined states. For small molecules binding to the surface of a membrane, this usually corresponds to 

the free energy difference between the small molecule in solution (unbound state) and the small 

molecule bound to the water-lipid interface. Calculating free energies differences instead of absolute 

free energies means that the contribution of all the numerous degrees of freedom that are very 

slightly perturbed or unperturbed at all by the process of going from one state to another cancels out. 

e.g. it makes it very little difference in terms of absolute free energy of the system if the molecule is 

bound or unbound to the membrane, as the biggest contribution to the absolute free energy will be 

given by the vast number of atoms of solvent and of the membrane involved. The free energy 

contribution from all these atoms though is roughly equal in the unbound state and in the bound state, 

so the difference between the two states, only will account for the change of free energy resulting 

from the binding of the molecule, giving us therefore a quantity of interest.  

Usually, to simplify the description of a process of binding, or any other process, we resort to the 

choice of one or more parameters on which we can project the free energy multidimensional surface 

(the free energy depending from all the possible degrees of freedom of the system). These parameters 

are usually referred to as a reaction coordinates (RCs) or a collective variables (CVs) and are usually 

indicated as ξ. The change in free energy as function of a ξ is called a free energy surface (FES).   

Along the FES minima, maxima and other sorts of critical points can be found. Critical points are points 

with first derivative equal to zero. Minima are considered stable points, and they are defined as critical 

points with all second partial derivatives that are positive. Maxima on the other hand are critical points 

with all second partial derivatives that are negative. Saddle points are instead critical points where not 

all the second derivatives have the same signs. In particular a saddle point is defined as the point of 

highest energy (relative maximum) along the reaction path and is also the point of lowest energy in 

the direction perpendicular to the reaction path. 

For small molecules binding to membranes, the energy barriers and minima along the path that 

connects the unbound to the bound state are usually not known a priori. This means that the 

simulations from which the FES is calculate have to sample all possible configurations accessible to 

the system on that path. In SMMIs, the CV or ξ is usually the centre-of-mass (COM) distance between 

the membrane and the interacting molecule, eventually supported by additional CVs like orientational 
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descriptors or system specific CVs to better describe the process. The probability distribution along ξ 

integrated over every degree of freedom except ξ is given as 1: 

 𝑍(ξ) =
∫ 𝑒 ( ) 𝛿(ξ(r) − ξ) 𝑑 𝑟

∫ 𝑒 ( ) 
 (10) 

Substituting equation 10 in 9 expressed as a function of the reaction coordinate ξ enables the 

calculation of F(ξ), which is also commonly referred to as the potential of mean force (PMF), or the 

FES along the degree of freedom of choice. Once the free energy is known, the binding constant (and 

thus binding affinity) can be obtained upon integration on a arbitrarily chosen interval of  ξ of the PMF 

using the relation: 

 𝐾(ξ) =  −𝑅𝑇 𝑙𝑛 𝐹(ξ) (11) 

 

1.3 Sampling of SMMIs in MD simulations  
Obtaining a correct thermodynamical ensemble from which to extract a correct FES from an MD 

simulation is not trivial, requiring the user a prudent choice of parameters and an extensive knowledge 

of the challenges involved. The  description of many of the common problems of MD simulations has 

been extensively covered in other works  88 and will not be discussed in detail in this present document 

. In this document I will tackle one specific problem that affects MD simulations of complex systems. 

This is what it is commonly referred to as the sampling problem, namely the inability of a MD 

simulation to sample all the relevant molecular configurations effectively in a finite amount of time 88. 

This problem affects any ensemble averages extracted from the simulation, such as thermodynamical 

quantities, structural properties and indeed the free energy. In the case of SMMIs, the energy barriers 

associated with the roto-translational motion of the solute molecules on the surface or within the 

membrane can limit effective sampling. The energy associated with the rearrangement of lipid 

molecules in the membrane as a result of the interaction with the solute molecules necessary for the 

solute tumbling usually exceeds thermal (kT) energy. This can result in the system being kinetically 

trapped in a local energy minimum for a long period of time, leading to a state of quasi-ergodicity in 

the simulation, which does impair the accuracy of the physical properties that can be obtained from 

the simulation 89.  

Adequate sampling of the configurational space in small molecule - membrane systems remains a 

significant challenge, which can only be achieved using enhanced sampling methods90. A large number 

of enhanced sampling methods have been developed for biomolecular simulations. These methods 

mostly fall in two categories: the first category of methods enhance non-specifically the exploration 

of all degrees of freedoms (DOFs )91,92 , while the second one, including methods like umbrella 
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sampling (US) or metadynamics (MetaD) only enhance the sampling along one or more RC or CV. The 

appeal of the former type of methods, like temperature replica exchange MD (T-REMD) and other 

REMD-based methods, is that they can be used without any a priori knowledge of the system 91,93. 

However, for efficient sampling the number of required replicas scales as DOF1/2 and, as the number 

of DOFs is related to the number of particles in a system, REMD-based methods are less suitable to 

study large systems such as membranes 89. The latter type of methods instead requires the a priori 

selection of RCs or CVs  that can provide an adequate projection of the multi-dimensional FES of the 

transition between an initial and a final state, e.g one must choose the CVs that can best approximate 

the real binding process of the molecule to the membrane 1,94.  In the following sections, the most 

commonly used enhanced sampling methods are described.  

1.3.1 Replica Exchange methods 
Replica exchange MD (REMD) is an enhanced sampling 95 method that consists of simulating several 

copies (replicas) of the same system in different perturbed conditions.  A replica where the system is 

unperturbed acts as the reference system from which the properties of interest are calculated. The 

conditions in the reference replica are usually the biologically or chemically relevant ones. The 

perturbed conditions are chosen such that each replica can explore a larger volume of phase space 

than the unpertubed ones. During the simulations, neighbouring replicas are allowed to swap their 

configurations in a manner that satisfies the detailed balance condition. The probability of exchange 

between replica m and a replica n is given by: 

 

 𝑝 (𝑋 )𝑝 (𝑋 ) 𝑝(𝑋 → 𝑋 ) = 𝑝 (𝑋 )𝑝 (𝑋 )𝑝(𝑋 → 𝑋 ) (12) 

 

Here 𝑝  (𝑋 ) is the probability of finding a state with coordinates 𝑋  in replica m, and 𝑝(𝑋 → 𝑋 ) 

is the transition probability. The most common approach is to allow the system to exchange 

configurations with a certain probability according to the classic Metropolis criterion, such that ∆ =

(𝛽 − 𝛽 )(𝐸 − 𝐸 ) with βm = 1/kBTm and Em being the energy of the system m at the moment of 

exchange 96 with probabilities 

 𝑝(𝑋 → 𝑋 ) =
1            𝑖𝑓 ∆ < 0

𝑒 (∆)      𝑖𝑓 ∆ > 0
 (13) 

 

In this way configurations derived from regions of phase space usually not accessible by unbiased MD 

simulations can gradually make their way to the reference replica. The exploration of high-energy 

configurational states is usually achieved in one of two ways: i) by simulating each replica at 
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increasingly higher temperatures, in which case the method is referred to as ‘parallel tempering’ or 

temperature-REMD (T-REMD); or ii) the Hamiltonian of the system is perturbed in a similar 

incremental fashion, a class of techniques generally known as ‘Hamiltonian tempering’. 

   

1.3.1.1 Parallel tempering 
In parallel tempering the variable used to perturb the system is the temperature. Low temperature 

replicas allow for fine sampling of an energy minima at physically relevant condition but may become 

kinetically trapped in such minima during the timescale of a typical simulation 96. Higher temperature 

replicas have higher kinetic and potential energies and can thus sample larger volumes of phase space 

more sparsely. The main drawback of parallel tempering lies in its high computational cost due to the 

large number of replicas needed. The large number of replicas are required because of the exchange 

acceptance ratio described in Eq. 13. In parallel tempering the probability of exchange is exponentially 

related to the difference in the total energy of the system (including solvent molecules).  For this 

probability of exchange to be acceptable (i.e. not too small) the two replicas need to exhibit a non-

zero overlap in their potential energy distributions 96. Small molecule – membrane systems have a 

large number of solvent (water) molecules, which usually translates into a very narrow potential 

energy distribution. Consequently, many replicas are required to sample a large span of temperatures. 

As a result, parallel tempering has seen little application in SMMI simulations. In addition to the high 

computational cost, the range of temperatures used is limited in SMMI simulations as membranes are 

generally sensitive to thermal disruption. This means that high temperatures would threaten a 

disruption of the structure of the membrane to an extent where the configurational ensemble of the 

higher replicas would be sampling unwanted areas of the configurational space.  

 

1.3.1.2 Hamiltonian tempering 
Hamiltonian tempering simulations constitute a general class of enhanced sampling methods that 

include a variety of different techniques, each differing in the way the Hamiltonian of the system is 

perturbed 92,97–102. The general principle of these methods is that each replica uses a perturbed 

Hamiltonian, which is usually a linear combination of the starting Hamiltonian HA and the target 

Hamiltonian HB. The aim of the Hamiltonian perturbation is the same as the scaling of the temperature 

in parallel tempering: to explore higher energy regions and thus sample larger volumes of phase space. 

HB is usually chosen to flatten energy barriers on some or all degrees of freedom, allowing thermal 

fluctuations at the given simulation temperature to overcome the energy barriers that impede the 

sampling of phase space. Exchange between replicas is essentially the same as in eq 13, but with some 
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important differences that make Hamiltonian tempering more resource efficient than parallel 

tempering. The first one is that directly modifying the Hamiltonian of the system allows the selective 

perturbation of subsets of atoms or molecules in the system, such as solutes or a part of a protein, 

giving the user more control on which part of the system he wants to perturb (e.g. the user can choose 

to not perturb the thermosensitive membrane). The second advantage is that the exchange 

probability between neighbouring replicas can be modified such that it is based only on the difference 

in energy between the relevant portions of the system 92.  This means for example, that in replica 

exchange with solute tempering (REST), leaving out the energy terms for the solvent from the 

functional form of the exchange probability reduces the computational effort by an order of 

magnitude and decreasing the number of replicas needed. This happens because the potential energy 

of the solvent is very narrowly distributed and predominant on the energy of the solutes or the 

membrane itself, so that cutting out of the exchange probability calculation this terms allows for more 

overlap between potential energy curve and therefore higher exchange probabilities. As a result REST 

can be used for simulations of much larger systems compared to parallel tempering 98. Figure 6 

schematically illustrates the differences in the potential energy distribution across replicas between 

classical parallel tempering and REST. The efficiency of this class of methods in regard to SMMIs has 

not been fully explored, probably due to the lack of easily accessible and flexible implementations in 

MD simulation packages. A new implementation of REST that we called REST3 along with a more in 

depth discussion about the original REST paper can be found in Chapter 3 of this thesis. 
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Figure 6. Schematic representation of the potential energy distribution in classical parallel tempering 

and solute tempering. Top panel: Hamiltonian tempering can achieve a wider distribution of the 

energy, such that a good overlap is obtained with a smaller number of replicas. The distribution is 

larger because the solvent-solvent term, which has a very narrow distribution around its mean value 

due to the large number of molecules, is cancelled out. Bottom panel: In parallel tempering, because 

of the narrow distribution of the solvent-solvent energy, the distributions of all replicas are much 

narrower because of the solvent-solvent term; therefore, a greater number of replicas is required to 

achieve a relatively small overlap in the energy distributions. 

1.3.2 Metadynamics 
Besides US, metadynamics (MetaD) is one of the most used enhanced sampling method for 

biomolecular simulations including simulations to describe SMMI. In MetaD, a history-dependent 

potential along one or more CVs is used to prevent the system from re-sampling previously visited 

configurations. The bias usually takes the form of a sum of repulsive Gaussian energy functions. Like 

for RCs, the CVs are assumed to describe the largest degrees of freedom of the process of interest 

such that all significant energy barriers in the FES can be sampled. The biasing potential 𝑉  as a 

function of the CVs is defined as 
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 𝑉 𝑆( ), 𝑡 = 𝑤 𝑒

( ( ) )

 
       

, ,..

 (14) 

Here 𝑆( ) describes the CV as a function of the coordinates of the system, 𝑠( ) = 𝑆( ( )) is the value of 

the CV at time t, 𝑤 is the Gaussian height, 𝛿𝑠 is the Gaussian width and 𝜏𝐺 is the frequency with which 

Gaussian functions are added. For sufficiently long simulation times, the biasing potentials added 

enable the system to exit every energy minima and sample neighbouring ones, leading eventually to 

the free diffusion of the system in configurational space (Figure 7).  From the resulting biasing 

potential 𝑉  the underlying, unbiased free energy surface can be obtained as F(S)= -VG(S) + C, where 

C is an arbitrary additive constant 103. 

 

 

Figure 7. Schematic representation of metadynamics. From left to right repulsive Gaussian energy 

functions are gradually deposited on previously explored configurations, gradually filling energy wells 

and enabling exploration of other neighbouring energy wells. A) In the beginning the system is 

unbiased and the transition between the two wells is difficult because of the barriers. B) Gaussian 

potential functions start to be accumulated on the free energy surface. C) In the end, the resulting 

energy landscape is flat and sampling in the system becomes random in the collective variable space. 

 

There are two main limitations to this technique. The first problem concerns the convergence of the 

FES. In a single MetaD simulation, the FES does not converge to specific values, but rather fluctuates 

around the real values, leading to a statistical error proportional to the square root of the Gaussian 

deposition rate 104. Because of this, it can be difficult to decide when to end a simulation. On the other 

hand, if the simulation is run for too long, the continued addition of the biasing potential can push the 

system into exploring non-relevant parts of the FES. This issue is mostly circumvented by using well-

tempered metadynamics (WT-MetaD). Here, the biasing potential is modified such that the height of 

the repulsive Gaussian functions is decreased over time in a manner that is proportional to the overall 
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biasing potential present on the current value of the system CV 104.  The equation for the derivative of 

the potential then becomes: 

 �̇� 𝑆( ), 𝑡 = 𝑤 𝑒
( , )

 𝑒

( ( ) )

 

 
(15) 

 

 

Where ΔT has the value of a temperature and it’s a parameter that can be used to tune the behaviour 

of the metadynamics from a normal MD (ΔT=0 ) to a standard metadynamics ( ΔT= ∞). This means 

practically that using a finite non-zero ΔT, the more gaussians are deposited on one point of the CV 

space, the smaller the gaussian gets, until it gets so small that one can approximate that even for big 

number of additional gaussians, that value of potential will not change. At this point the free energy 

corresponds to  the inverse of the potential rescaled by a factor104 : 

 
𝐹(𝑠, 𝑡) =  − 

𝑇 + ∆𝑇

∆𝑇
 𝑉(𝑠, 𝑡) 

 
(16) 

 

We call the factor preceding the potential γ or bias factor. This factor regulates the virtual maximum 

amount of potential that can be added during a WT-MetaD simulation, which also correspond to the 

highest value of free energy barrier along the CV that can be crossed . It follows that a WT-MetaD is 

considered converged when the gaussian heights along all of the CV values are close to zero.  

The second problem of MetaD lies in the choice of the CVs and is similar to the problem of choosing 

the RC in US simulations. All the relevant, slow-varying CVs should be considered in a MetaD 

simulation. Failure to do so can lead to non-physical dynamics because of the possible presence of 

hidden energy barriers on other slow-varying degrees of freedom, thus resulting in a FES that is not 

representative of the process of interest. An extra constraint on this problem is that the 

aforementioned requirement has to be satisfied whilst keeping the number of CV small enough (a rule 

of thumb is number of CVs<4) because the time required to converge an N-dimensional space of CVs  

scales exponentially with the number of CVs. To solve this problem, we decided to use a Parallel Bias 

MetaD (PBMetaD) 105, a method capable of applying multiple mono-dimensional potential 

simultaneously, which are therefore easier to converge.  This method which will be more extensively 

discussed in Chapter 3, basically allows multiple mono dimensional WT-MetaD potentials to deposited 
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simultaneously, each with a certain conditional weight  that depends on the value of the potential 

along that CV at time t.  

 

1.4 Test systems 
As mentioned in the synopsis the test system that we chose to analyse is Protx-1, a protein responsible 

for the inhibition of Nav channels, a type of membrane proteins with ion transportation properties 

and involved in the pain signalling network. This protein is part of a wide family of peptides called 

Inhibitor Cystein Knot peptides, which members have been found to have inhibition activity toward 

some selected Voltage gated ionic channels.  In this section I will try to provide the biological context 

in which these peptide work while exploring the current state of the art knowledge for Protx-1.  

 

1.4.1 Voltage gated ionic channels  
Voltage gated ionic channels (VGICs) are a class of membrane proteins responsible for the voltage-

dependent and selective transport of ions across cell membranes 106–109. VGICs are involved in a wide 

range of physiological processes in mammals including muscle and nerve relaxation, regulation of 

blood pressure, and sensory transduction 110–113. More than 60 diseases caused by the malfunction of 

ion channels (channelopathies), have been reported. This makes VGICs an important target for the 

development of  drugs to treat a range of conditions, including neuropathic and inflammatory pain, 

epilepsy, multiple sclerosis and prevention of migraine 109,114.  

The majority of VGICs share a common architecture that consists of a large central pore domain, 

through which the ions flow across the membrane, and four voltage-sensing domains (VSDs) that 

control the gating of the channel by detecting changes in membrane electric potential. The pore 

domain contains a selectivity filter that determines which metal ion can permeate through the pore.  

Depending on their ion selectivity VGICs are divided into potassium (KV), sodium (NaV), calcium (CaV) 

and chlorine channels (ClC) 109. The pore domain is highly conserved among types of channels and 

through different species. In contrast, the VSDs are more specific to each channel and show variations 

even among closely related subtypes of VGIC115.  
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Figure 8 A: General structure of a VGIC., 4 voltage sensing domains typical of one specific ion channel 

surrounds the pore domain. The pore allows for the passage of ions through the hydrophobic 

membrane. B: A close up of the structure of the pore domain.   

Influencing the channel response to an electrostatic potential would therefore likely require 

reengineering of the channel itself and thus not be a feasible drug designing approach. Studying the 

response of the channels to an inhibitor is much easier and has been the mainstream approach to 

modulate the activity of these channel until now.  There are two main ways an inhibitor can act on 

VGICs; as a pore blocker (PB) or as a gating modifier (GM). In general, the mechanism of action is 

better characterised for PBs compared to GMs 116. PBs act on the channel by binding to the top part 

of the channel, close to the selectivity filter, thus occluding the pore and preventing ions to flow 

through 117–119. From a drug design point of view, PBs present the problem that the pore  domain is 

very conserved among subtypes of ion channels. A drug that belong to this class of inhibitors would 

therefore be not selective enough to target one subclass of ion channels. These would turn out to be 

a considerable problem considering that some of these ion channels are responsible for cardiac 

activity and other essential physiological processes such as muscle contraction. GMs bind to the VSDs 

of the VGIC instead, altering the kinetics of gating 120. As VSDs are more specific to each channel, GMs 

can thus be very selective for a specific subtype of channel. In contrast with PBs, much less is known 

about the interactions between GMs and VSDs,121 . 

1.4.2 ICK peptides 
Spiders, scorpions, cone-snails and other venomous animals rely on venom as their primary threat 

mechanism. Their venom needs to immobilize or to kill the prey and it needs to do so rapidly to 

prevent retaliation or the escape of the prey. It is unsurprising then that many of these animals 
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developed toxins able to inhibit VGICs action in in a highly specific and highly effective way. Some of 

the most potent inhibitors of VGICs are Inhibitory Cystein knot (ICK) peptides 106,107. ICK peptides are 

mostly found in the venoms of spiders, scorpion and marine molluscs, but can also  be found in snakes 

as well as plants and fungi 122. The ICK is a structural motif in which an embedded ring formed by two 

disulphide bonds and their connecting backbone segments is threaded by a third disulphide bond 123 

(Figure 9). These knotted disulphide bonds provides them with high structural stability 124. ICK peptides 

behave like structured mini-proteins and present exceptional thermochemical stability 108. ICKs are 

able to withstand high temperatures, extreme pH, organic solvents and proteases 123,124. These 

characteristics combined with their ability to inhibit ion channels or receptors with high specificity and 

selectivity makes them valuable lead molecules for the development of pharmacological tools and 

drugs to treat neurological disorders 106,107,120,125.  

 

 

Figure 9 A) Schematic 2D representation of ICK peptide and their secondary structure. In green, the 2 

of the disulfide bonds that form the ring, in red the threading one. B) 3D representation of the previous 

structure. 

Some ICKS are known to inhibit VGICs with high potency and sub-type selectivity. For example, the 

conotoxin MVIIA isolated from marine cone snails inhibits calcium channel activity with high potency 

and was found to have analgesic activity, leading to its clinical development as a drug 126.  It has been 

suggested by various studies that for a peptide to act as a GM it must be able to interact with the cell 

membrane 127,128. While membrane binding is not a perquisite for the inhibition of VGIC via a gating-

modifying mechanism128, for some GMs the mechanism of action is directly related to their ability to 

bind to membranes. For example, studies by Henriques et al showed that increasing the membrane 

binding of the ICK peptides ProTxII and HwTx-IV also increases their potency for inhibiting the Nav1.7, 

a target for the treatment of neuropathic pain53,129. Similarly, the membrane binding of the ICK peptide 

Pn3a correlates with its potency to inhibit Nav1.4. It is likely that for these peptides the initial step in 

inhibition of the channel is  driven by a membrane activation mechanism, such that the peptide first 

binds to the membrane and subsequently to the VSD of the channel 130.   
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This mechanism ensures enhanced kinetics of the process, as it increases the local concentration of 

the peptide at the surface and also reduces the dimensionality of the diffusion from 3D to pseudo 2D 

(along the surface of the membrane), making it more likely for a peptide to find its target 131  (Figure 

10) 

 

Figure 10 Illustration of the membrane accumulation mechanism. In the first phase the peptide goes 

from the solution on the membrane, shifting from a 3D diffusion to a 2D diffusion. Once on the 

membrane it can reorient in the proper direction and bind to the channel at an enhanced rate. 

Our ability to predict the membrane binding properties of a generic ICK peptide is, however, limited 

and so is our understanding of the mechanisms that drives these interactions. Various attempts have 

been made to find some physical descriptors which could predict the binding affinity of ICKs with PC 

membranes, among them presence of a hydrophobic cluster, residual dipole of the molecule, surface 

exposed cationic and anionic areas and hydrophobic to hydrophilic area ratio. Still experiment shows 

that despite being very similar in these descriptors, molecules like Hd1a and Protx-1 show vastly 

different membrane binding properties 128,132.  

Modulating the membrane binding potential of a peptide that binds to the channel through a first 

membrane binding step would provide extra space for design, especially on amino acids that are not 

crucial to the primary biological activity. This is a very precious feature in drug design, and therefore 

membrane binding ICK peptide were chosen to be investigated in this study. We will now restrict this 

dissertation only to peptides that has been shown to bind PC membranes and contextualize why Protx-

1 among all of them was chosen to be the subject to this work. 
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1.4.3 Choice of Protx-1 as a model system 
 

The ability to bind zwitterionic membranes is we discussed a characteristic of high importance in the 

study of ICKs. Despite the considerable number of independent studies on ICK toxins, the free energies 

of partition and/or binding to biological membranes are still unknown for many of these peptides. 

Nevertheless, the ICK peptide selected for this study should fulfil the criteria for selection as a good 

model system. In first place its NMR or crystallographic structure must be available and well resolved, 

without disordered zones and possibly rigid and stable in time. This is to avoid the problem of 

conformational sampling, which would multiply the difficulty in the study by adding a conformational 

sampling part to the already difficult orientational sampling required. In second place the ideal peptide 

must show strong binding for both neutral and negatively charged membranes. A successful 

simulation protocol should in fact be able to reproduce the binding affinity with different membranes 

and different amount of charged lipid heads. Another desirable feature for the ideal peptide is that 

the mechanism of binding to the membrane has to be simple, like a superficial binding rather than 

involving more complex permeation mechanism, like carpeting effects or pore formation. This last 

feature is ideal in the first phase of the development of the protocol, as all of these more complex 

mechanisms are only the subsequent steps of a first membrane binding phase and can be modelled 

in successive steps of higher order protocols. More complex mechanisms will be left to investigate for 

those future protocols that can build upon the information that this one will provide.  

Among the many possible peptides we chose to study Protx-1. ProTx-I is a 35-residue peptide with 

sequence ECRYWLGGCSAGQTCCKHLVCSRRHGWCVWDGTFS, isolated from Thrixopelma pruriens, 

responsible for the inhibition of all NaV subtype channels 133–135. The three disulfide bonds that 

constitute the ICK motif located between residues C2-C16, C9-C21 and C15-C28 provide the 

aforementioned structural rigidity which will allow us to partially discount the intramolecular 

conformational sampling. The peptide was first characterized by solution NMR using a 0.5 mM 

concentration of peptide in a 90% H2O, 10% D2O at 298 K and pH 5 135. SPR measurements showed 

that ProTx-I binds to both neutral (POPC only) and anionic (POPC/POPS 4:1) lipid membranes with an 

increased affinity for negatively charged ones 128. These experiments were conducted using a Bioacore 

3000 with a L1 biosensor chip in a HEPES buffer with a peptide concentration that ranged from 1 to 

64 µM. These experiment do not provide a fitting for the data to extrapolate a value of ka and kd for 

the peptides that they measure, but it is shown in the paper that in the same condition, on the same 

instrument with the same chip, Protx-1 yield an RU response much higher than other known 

membrane binding peptide such as Protx-2 and Hd1a. Trp fluorescence quenching experiments 
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showed no significant change in the signal of the Trp, suggesting that the peptide does not penetrate 

deeply into the lipid membrane but only binds to the membrane on the surface 128. This, combined 

with the absence of quenching of the signal by the addition of aqueous acrylamide quencher indicate 

a superficial binding of the Trp into the membrane with no permeation128. A study by Gui et al  135 

measuring two electrode voltage-clamp currents in oocyte expressing Nav 1.2 also provides 

information on the protein active residues through alanine scanning. This tests measure the current 

carried by Na ions from outside the oocyte to inside the oocyte. This current is abolished by the action 

of Protx-1 on the channel, which causes the channel to close and exclude the ions from passing the 

oocyte membrane. This study reports that replacing residues W5, W27 and W30 with alanine 

abolishes the peptide’s ability to inhibit Nav 1.2. suggesting that these three residues might be 

involved in the biological activity of the protein. Another more recent voltage clamp study 136 provides 

insight on the activity of Protx-1 and its mutants on various sub-types of NaV channels, including NaV 

1.2, 1.5, 1.6 and 1.7. The study confirmed the importance of the Trp residues in previously noted, with 

some of these residues being vital to the interactions with some specific channels but not others. 

Interestingly for the current study some residues are found to non-specifically reduce the binding 

affinity to every channel, which could suggest their role to be involved in the membrane association 

part rather than in the actual interaction with the channel. For example, the mutant Protx-1 K17E 

shows reduced inhibition activity toward all tested NaV subspecies.  

There is evidence that upon titration with POPC micelles the only residue exhibiting an NMR shift are 

superficial hydrophobic residues like W5 and W27, with the rest of the peptide showing no significant 

shift, which implies the overall structure of the peptides does not change substantially upon binding 
128. This is consistent with the same behaviour observed for other ICK peptides such as omega-agatoxin 

IVA and Purotoxin-2, for which the ICK structures part of the peptides exhibit very little NMR shifts 

upon contact with membranes 137. This fact will be an assumption that underlies the way that the data 

coming from the simulation are interpreted. 

Given all of this characteristic Protx-1 was chosen as a model peptide to test out our enhanced 

sampling method on membrane system with big molecules. 
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2  Chapter 2 – Conventional US of Protx-1 binding to a POPC 
membrane 

 

2.1 Introduction  
As discussed in Chapter 1 MD simulations have been found to be effective in studying the dynamics 

of peptides on flat surfaces and even on membranes 100,138. We also saw in Chapter 1 that in ergodic 

systems the ensemble average can be approximated by its average over time. In the case that the 

system is ergodic, given enough time it will explore every possible available state. Once we obtain a 

long enough trajectory and therefore a big enough statistical sample we then can assume that we can 

obtain the average property of a quantity A(r) simply measuring the average over all frames of A(r). 

Even more interestingly we can obtain the relative probability of our system to be found in a state 

where A assumes an arbitrary value, which may be of biological or physical interest. The latter is an 

assumption that in general has to be demonstrated, especially for systems that include big energy 

barriers separating their stable energy minima. Let’s take for example a protein-membrane system 

with a large energy barrier that separates state a state with coordinates r1 from another state with 

coordinate r2, both accessible at room temperature and of similar free energy. Let’s say that for the 

first N steps the system oscillate around the conformation r1 with a property A(r1), not managing to 

cross the barrier. If the ensemble average is taken at the end of these N steps all the states will show  

A=A(r1), and everything on the other side of the barrier will be ignored.  If we had given the system 

another few steps it would have explored state A(r2), changing the value of the average. The average 

extracted will therefore be inaccurate, and it will be inaccurate until r1 and r2 are visited with a 

probability of  𝑒
( )

, where F is the free energy. For complex systems N can be very high, in the order 

of hundreds of nanoseconds. This is generally called the sampling problem. The free energy of the 

system is therefore the most important quantity that can be extracted from a simulation, as once the 

probability that every frame of a simulation carries any property can then be extracted as a weighted 

ensemble average. Free energies can be a function of the atomic coordinates r, or functions of 

functions of atomic coordinates, like distances d(r) or more complex collective variables CV(r). The 

most used CVs to describe the binding of small molecules and proteins to biological membranes is 

generally the centre of mass (COM) distance between the molecule and the membrane. Free energies 

for SMMIs are usually provided along the COM distance and they are called either Potential of Mean 

Force curves (PMF). To calculate the free energy accurately though, as we mentioned, the protein 

must be able to cross all the relevant energy barriers that limit the available conformational space at 

every COM distance from the membrane. Generally speaking, these barriers can be of many kinds, 

ranging from rotational barriers when near the membrane, to dihedral barriers that regulates the 
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opening of a beta hairpin, to desolvation barriers and many more. In this work I will particularly focus 

on rotational barriers because, as stated in Chapter 1, inhibitor cystein knot (ICK) peptides are very 

rigid structures in virtue of the ICK knot motif and are less subject to the lack of internal conformational 

sampling. As described in Chapter 1, Protx-1 was chosen as a model system to calculate binding affinity 

to phospholipid bilayers. The reproduction of a configurational ensemble with an appropriate 

exploration of the orientational states which yields a free energy of interaction consistent with 

experiment will be the aim of this work and that described in subsequent chapters. To generate this 

kind of ensemble we test and compare a number of enhanced sampling techniques. The first method 

chosen is conventional Umbrella Sampling (US), the most commonly used technique in the field. This 

method is not expected to overcome the sampling difficulties intrinsic to this kind of system, but will 

lay the foundation for more complex method and provide a base line comparison for subsequent 

chapters. A “branched US” approach was also used, which consisted of using four different starting 

structures with differing orientation with respect to the membrane to assess the influence of the 

starting relative orientation of the protein on the shape of the potential of mean force (PMF). 

 

2.2 Methods 
2.2.1 Umbrella sampling 
The system (Figure 11) was assembled using GROMACS tools (GROMACS 4.6.8 version) , and consisted 

of a rectangular box of 6.0 x 6.0 x 11.0 nm containing one ProTx-1 peptide (PDB structure 2MNL.pdb139 

) and a pre-equilibrated (250 ns of simulation at 303 K) POPC bilayer containing 128 lipid molecules 

(64 per layer). The pre-equilibrated membrane structure was downloaded from the Automated 

Topology Builder (ATB, molecule ID 3186 ). The membrane centre of mass (COM) was situated around 

3 nm from the edge of the simulation cell whereas the COM of the protein was situated at 8.4 nm, 

which gives a distance between the two COMs of 5.4 nm.  
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Figure 11. Snapshot of the simulation cell prior to solvation. 

This system, represented in Figure 11, was then solvated with 9850 SPC waters 140, 30 sodium ions and 

34 chlorine ions. The ion concentration was chosen to emulate a physiological concentration of 0.1 M 

of NaCl, with the additional four chlorines used to neutralize the charge of the protein in the system. 

The topology for the system was generated using the GROMOS54a7 FF141 and GROMACS 4.6.8. 

An energy minimization was run using a steepest descents algorithm until a maximum force of less 

than 250 kJ/mol-1nm-1 was achieved. The system was equilibrated for 5.0 ns in an NPT ensemble at 

298 K and 1 bar with a timestep of 2 fs, using the Berendsen thermostat with τ=0.1 ps and a Berendsen 

semi-isotropic barostat with τ=1 ps 142. The electrostatic interactions were treated using a Reaction-

Field approach with rcoul=1.4 nm and an ε=62 F/m. These parameters were used to be consistent with 

the parametrization of the force field in use.  The US simulation was then constructed with 18 

umbrellas spaced 0.2 nm apart between 2.0 and and 5.4 nm of protein-membrane COM distance, the 

spacing was chosen so that the overlap betwee the histograms of the z-coordinate was adequate for 

the wham procedure to yield an accurate PMF. 

To produce starting configurations for the US windows, a pull simulation was used. For this, the 

peptide was moved using a shifting umbrella potential with a force constant of k = 500 kJ/mole and a 

pull rate of 0.01 nm/ps over 400 ps. From the resulting trajectory, 5 frames were extracted with Protx-
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1-POPC membrane COM distances of 2.0, 2.8, 3.6, 4.4 and 5.2 nm. For each window, a 200-ns NPT 

equilibration simulation was carried out using the same conditions as the previous NPT equilibration. 

The peptide-membrane COM distance was restrained using a harmonic potential with a force constant 

of k = 500 kJ/mole. This additional equilibration ensures that any distortion to the membrane cause 

by the pulling can re-equilibrate.  

 

The remaining neighbouring windows were generated from these 5 windows. The initial frames for 

the “offspring” windows were extracted from the equilibrated frames of the “originating” windows 

when the distance at which the potential for the offspring window would be centred occurred 

naturally in the originating window. Once the windows were generated, they were equilibrated for 

other 200 ns in the same conditions as the originating ones. This was done to allow the system to 

diffuse in roto-translational space to avoid correlations in neighbouring windows. The next generation 

of windows was then generated from the previous one. 

2.2.2 Branched umbrella sampling 
The final structure derived from the trajectory of the umbrella window centred around 4.0 nm was 

used as a starting point for three other simulations. This distance was chosen because this is the 

distance that was later found as the zero of the PMF. The water molecules were removed, and the 

protein was manually rotated around the x-axis to generate three different starting structures. In 

structure A the protein was rotated by 90°, in structure B by 180°, and in structure C by 270°. These 

systems were then solvated again, adding respectively 9936, 9955 and 10015 water molecules and 28 

Na and 32 Cl ions. The systems where equilibrated for 10 ns using the same parameters as described 

in section 2.1.  

From each of the equilibrated structures a pulling simulation was performed to rapidly bring the 

protein to the POPC membrane, with the same parameters described in section 2.1.  The rapid process 

of pulling preserved the starting orientation of Protx-1 with respect to the membrane. These was done 

to obtain all the intermediate states between bulk and protein membrane given the initial 

conformation. From these simulations, conformations with a COM distance of 4.0, 2.8 and 1.8 nm 

were restrained with a harmonic potential, equilibrated in an NVT ensemble and simulated for 200 ns 

in an NPT ensemble, in the same manner as described in section 2.1. The remainder of the windows 

were then generated as previously described, until three separate “umbrella branches” were filled 

with equi-spaced 0.2 nm umbrella windows, as shown in Figure 12. 
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Figure 12 Setup of the branched umbrella sampling simulation. At 4.0 nm the main branch diverges 

from the top most simulation (described in section 2.1) and three new simulations with different 

orientations of ProTx-1 with respect to the membrane were performed. 

 

2.2.3 Definition of orientation angles of Protx-1 
To quantify the relative orientation of Protx-1 with respect to the membrane surface, two angles were 

used  (ψ and θ). These angles were defined by choosing two orthogonal vectors on the protein, and 

measuring their angle with a vector that runs along the z-axis of the system (normal to the membrane 

surface) (Fig 3). To define the orthogonal vectors along the protein, three atoms were chosen within 

the structure of the protein. To aid in the choice of atoms, the root mean square fluctuation (RMSF) 

of Protx-1 backbone atoms extracted from the window centred at 4.0 nm (in bulk water) of the original 

US branch was measured. The atoms needed to define the vectors were chosen to be the least 

fluctuating among the protein atoms, so that their movement is the most correlated with the rigid 

rotation of the protein. The atoms chosen were SG17, CA97 and SG99, which unsurprisingly belong to 

the ICK motif, which showed particularly small fluctuations. Two vectors were then defined: vector v 

connecting the first two and vector u connecting the second two. The cross product between v and u 

was then taken and called vector k. u and k angles with the z-normal to the membrane then become 

ψ  and θ.  
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Figure 13 Vectors that define θ and ψ. Vector u in red, vector v in purple and vector k in green 

 

2.2.4 Orientation angle heat maps 
The angles ψ and θ were then measured for each configuration of the protein molecule sampled 

during the simulations and plotted as a heatmap. The probability of each pair of angles was calculated, 

collected into a matrix and reweighted to account for the non-uniform distribution of the angles in 3D 

(described in section 2.2.5). In the reweighted distributions, a perfectly uniform probability 

distribution of angles would appear evenly coloured on a heat map. Any deviation from this 

distribution reflects an increased probability of sampling a particular set of angles more often than 

others. A Gaussian 2D filter of 0th order with σ = 2 obtained from the standard scientific Python library 

ndimage 143 was then applied to smooth the resulting matrices to yield heat maps that are less rugged, 

due to the finite amount of simulation trajectory frames at our disposal.  

 

2.2.5 Correction for angle probability heat maps  
To account for the non-uniform distribution of the angles in 3D, the probablity heat maps needed to 

be re-weighted. This implies that the real probability that we measure when constructing the matrix 

as described in the previous section has to be weighted by a factor F(ψ,θ) to account for the non-

uniform distribution of angles that a couple of orthogonal vector forms in 3D.  
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Let us consider the COM of a molecule as fixed in space and the reference axis for θ and ψ as freely 

rotating. In other words, let us treat the angles θ and ψ as the angles that two fixed orthogonal vectors 

form with a uniformly random direction. Let the fixed x and y axes point along the two orthogonal 

vectors. A uniformly random unit direction vector has independent uniform distributions of z over [−1, 

1] and of ϕ (the angle about the z axis) over [0, 2π]. Here the z axis is not the random reference axis, 

but the fixed coordinate axis orthogonal to the x and y axes. The transformation from z,ϕ to x,y is 

𝒙 = 𝟏 − 𝒛𝟐 𝒄𝒐𝒔 ϕ 

𝒚 = 𝟏 − 𝒛𝟐 𝒔𝒊𝒏 ϕ 

Thus, taking the Jacobian of the transformation 

𝜕(𝑥, 𝑦)

𝜕(𝑧,ϕ)
=

𝜕𝑥

𝜕𝑧
  

𝜕𝑥

𝜕ϕ
𝜕𝑦

𝜕𝑧
  

𝜕𝑦

𝜕ϕ

= 1 − 𝑥 − 𝑦  

 

The further transform according to x = θ and y = ψ has the Jacobian 

𝜕(𝑥, 𝑦)

𝜕(𝑧,ϕ)
= sin 𝜃 sin ψ 

So overall we have  

𝜕(𝑥, 𝑦)

𝜕(𝑧,ϕ)
=

sin 𝜃 sin ψ

1 − cos 𝜃 − cos ψ
= 1/𝐹(ψ, θ) 

This is the factor that is needed to be divided by to normalise the angle distribution, since the density 

for z and ϕ is flat (as these variables are independently uniformly distributed). 

 

2.2.6 Calculation of the potential of mean force (PMF) 
The PMF along the reaction coordinate (i.e. the z coordinate) was reconstructed using the WHAM 

algorithm 3,144 implemented in the GROMACS g_wham tool 3 on the full length of the simulation.  The 

error was calculated using a Bayesian bootstrapping analysis. In this technique, the complete 

histograms of the collective variable are taken as independent points. Every histogram is composed 

by N samples (e.g. the reading of the collective variable) with mean mk. Then a random probability is 

assigned to every sample k belonging to the initial histogram, and the mean is recalculated. This 
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procedure is repeated n_boostraps number of times. The n_bootstrap means constitute a new set of 

samples that is used to obtain an improved standard deviation and mean.  

The Bayesian bootstrapping for the calculation of errors in this work was performed using 

n_bootstraps = 200.  

 

2.2.7 Calculation of the area per lipid (APL)  
The APL was calculated using the equation 

𝐴𝑃𝐿 =
(𝑥 ∗ 𝑦)

𝑁
 

where x and y are the respective dimensions of the box, and N is the number of lipids per leaflet (in 

this case 64). This will yield the approximate area per lipid for each lipid. 

2.3 Results 
The aim of this work was to investigate the fitness of classical US simulation to obtain a representative 

PMF in a protein-membrane system. In an ideal case the simulation should be able to comprehensively 

explore all the available degrees of freedom to a given macroscopic state and not spend overly lengthy 

amount of time stuck in local energy minima. This has to happen while conserving the structural 

features of Protx-1, which is known not to undergo major secondary structure rearrangements. As the 

structure of the protein is pretty stable in time, in this work a particular interest is given to the 

orientational sampling of the protein in reference to the bilayer surface. If the orientation of the 

molecule are exhaustively sampled, conversion between different states are observed and the 

structure of the protein is constant in time we can expect a PMF that is representative and therefore 

a good estimation of the free energy of binding to a POPC bilayer. 

In this work we used the difference between the free energy of the protein in bulk and the free energy 

of the protein at the minimum of its interaction well to estimate the free energy of binding. This 

methods does not map exactly to an binding free energy, but it provides a useful and quick proxy for 

it, especially when the PMF is monotonically decreasing from bulk to the membrane surface.  

Figure 14 shows the RMSD values for Protx-1 as function of time for a window far from the membrane 

(at a COM distance of 5.0 nm) and a window close to the membrane (at a COM distance of 2.4 nm) 

using the initial frame as a reference structure. The window at 5.0 nm can be considered converged 

since the beginning, whereas the window at 2.4 nm has a slow drift that stabilises at around 120 ns. 

The predicted PMF for the interaction of ProTx-1 with a POPC bilayer is shown in Figure 15. 
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Figure 14. Time evolution of the protein RMSD during the US simulations using the initial frame as a 

reference structure. The values of RMSD are on average well under 0.2 nm2, indicating that a stable 

structure of the protein was achieved after the NPT equilibration. A: RMSD  for window at 5.0 nm. B: 

RMSD for window at 2.4 nm. The predicted PMF for the interaction of ProTx-1 with a POPC bilayer is 

shown in Figure 15. 
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Figure 15. Predicted PMF along the centre of mass z distance for the interaction of Protx-1 with a POPC 

bilayer.  

 

The PMF shows the overall shape expected for a membrane surface binding peptide. Far away from 

the membrane, at COM-distances >4.0 nm, the PMF is flat, indicating that the protein does not interact 

with the membrane. At COM distances < 4.0 nm, the interaction between the peptide and the 

membrane becomes more favourable, which is reflected in a drop in free energy. The minimum in the 

PMF is situated around 2.7 nm, with a relative free energy of -35 ± 2 kJ/mole, after which the free 

energy rises rapidly, reaching positive values at 2.0 nm. This is consistent with Trp fluorescence 

experiments, which suggest that Protx-1 does not penetrate the membrane but binds only 

superficially 128. As noted in Chapter 1, the binding affinity of ProTx-1 is not experimentally available, 

but it is known from SPR experiments that Protx-1 binds to POPC membranes stronger than Protx-2 

does, whose binding affinity is in the micromolar range 128.This corresponds to a binding affinity of <-

32kj/mol. If Protx-1 is to be a stronger binder it should be expected to exhibit a free energy of binding 

that is more negative than the aforementioned. The predicted value therefore falls in the expected 

range for this peptide. 

Upon visual inspection of the simulation trajectory, it became obvious that once the protein 

encounters the POPC – water interface it “locks in” its relative orientation state at the time of first 

contact, i.e. it does not sample any other relative orientations, even transiently. To better quantify 

this lack of orientational sampling the orientation angle probability heat maps were computed. The 

orientation angle heat maps for every window of the simulation were obtained. Figure 16 reports the 

angle heat maps for the last 50 ns of windows for z COM distances of 2.6 nm (i.e. at the membrane-

water interface) and 5.0 nm (in the bulk solution). 
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Figure 16 Orientation angle heat maps for Protx-1 for  windows centred at 2.4 nm and at 5.0 nm 

 

The orientational space sample is distributed in a diamond shape with the corners touching 90° on the 

four sides of the blue squares. This reflects the fact that a pair of fixed orthogonal vectors in 2D cannot 

explore every possible point in space because part of the orientational angle space is precluded to 

them. The distribution in the angle map for the window at 5.0 nm indicates that far from the 

membrane the protein is free to rotate and explore most of the orientational space available. In 

contrast, when the protein is near the surface (i.e. at a distance of 2.4 nm), a lack of sampling is 

indicated by the explored region on the angle heat map being limited to a narrow region around θ = 

145°, ψ = 115°. For a free energy estimate to be accurate the system must be able to explore all the 

relevant configurational space accessible to the system at the given macroscopic state, including high-

energy configurations. Figure 16 suggests instead that the protein becomes locked in one relative 

energy minimum which is never left during the entire 200 ns simulation of this umbrella window in 

this particular example.  

The configuration explored in this particular simulation might have been the result of the initial 

conditions used to build the system despite the effort to create umbrella windows incrementally. To 

assess if this was the case, a branched US simulation with 3 more branches was set up as described in 

the Methods section. These simulations were set up to exacerbate the initial condition bias in every 

branch, such  that the initial orientations of the protein for each of the umbrella windows were taken 

from the respective pull simulation. Figure 17 shows the resulting predicted PMFs. 
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Figure 17. Predicted PMFs along the centre of mass z distance for the interaction of Protx-1 with a 

POPC bilayer for the four branched US simulations. 

 

Comparison of the predicted PMFs from the four US branched simulations shows that they are all 

different in shape and differ in the location of the energy minimum along the COM-distance, as well 

as the value of the relative free energy of binding. The location of the free energy minimum range 

from 2.5 nm to 3.0 nm in the COM distance. This is due in part to the plasticity of the membrane, 

whose thickness and APL oscillate locally significantly during the course of the simulation, as shown in 

Figure 18, and in part because of the different orientation of the peptide in different windows.  



52 
 

 

Figure 18. Time evolution of the thickness and APL of a POPC membrane during the simulation of a 

pure POPC bilayer in water. 

The predicted relative free energy of binding values for the minimum are -35 ± 2.2 kJ/mol for the 

original branch, -60 ± 4 kJ/mol for system A,  -36 ± 1.4 kJ/mol for system B and -44 ± 2.8 kJ/mol for 

system C. To determine if the protein explored new energy minima in its orientational space or fell 

back to the same minimum as observed in the original simulation, the orientational angle heat maps 

for windows at COM distances of 2.4, 2.6 and 2.8 nm for each branch of the umbrella branches were 

extracted. These distances correspond to the approximate location in which the free energy minimum 

can be found across the different branches of the umbrella. The joined angle maps are reported in 

Figure 19. The original branch samples 3 different minima with (θ,ψ) values of (125,60)(130,110)and 

(120,110). System A samples 2 minima at (120,50) and (120,145). System B explores 2 minima at 

(75,35) and (150,110). System C explores one deep minimum at (78,30) and 2 smaller minima at 

(78,45) and (105,42).  From Figure 19 is then clear that although there are no clear correlations 

between the starting structure from where the initial conformations were dragged onto the 

membrane, the orientational space explored by the three simulation branches is substantially 

different. This suggests that that the orientation of the peptide with respect to the membrane plays a 

critical role in determining the magnitude of its interaction with the membrane and the distance at 

which the optimum interaction occurs. This also suggests that it is very likely that there are other 
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binding poses with different orientations of the peptide that were not sampled in these four 

simulations.  

 

 

 

Figure 19 Orientational angle heat maps for the four different US branched simulations calculated at 

COM distances 2.4 < dz < 2.8 

 

If this is the case, the free energy estimates cannot be accurate because the system did not access all 

the available orientational space at each distance dz.  

This suggests that classical one-dimensional US simulations are not suitable to obtain accurate 

predictions of binding affinity for small proteins such as Protx-1 interacting with a membrane. Given 

that this is a small and rigid peptide that only shows surface binding to a mono component membrane, 

making it likely that for larger, more flexible peptides/proteins and more complex membranes the 

sampling problem might be more severe.  

The simplicity and robustness of US as an enhanced sampling approach is nonetheless still desirable. 

In the next chapters we describe a new approach aimed at solving this problem by combining US with 

a different enhanced sampling approach to enhance the sampling across umbrella windows. The 
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influence of improved orientational sampling provided by these enhanced sampling methods will be 

tested against the predictions made by the branched US approach described in this Chapter. 
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3  Chapter 3 - Selective replica-exchange with solute tempering 
(REST3) for the prediction of the interactions of small molecules 
with lipid bilayers 

  

3.1 Introduction 
Despite their ubiquitous presence and importance, characterizing small molecule-membrane 

interactions (SMMIs) remains challenging. This is because the diversity in lipid composition and fluidity 

of biological membranes gives rise to complex and dynamic supra-molecular structures 9,145–147. 

Biological membranes also feature diversity in their lateral and lamellar arrangement, as well as 

asymmetry between the inner and outer leaflet. The interaction of small molecules with membranes 

adds an extra layer of complexity and poses its own unique challenges. These interactions can range 

from simple surface binding to permeation or passive diffusion to more complex mechanisms such as 

membrane destabilization involving pore formation or carpeting effects. To reduce the complexity of 

the system, biomolecular simulation and biophysical characterization of SMMIs often use simple lipid 

bilayer systems to mimic the complexity of biological membranes. 

Molecular dynamics (MD) simulations have been used extensively to predict structural, dynamical and 

morphological properties of lipid membrane systems 62–66. This technique is particularly useful when 

the properties of interest are inaccessible or difficult to access by experimental techniques 67. MD 

simulations are also used to calculate the free energy of binding, diffusion and permeation of small 

molecules across lipid membranes, as outlined in several recent reviews 7,90,148–151.  Insufficient 

sampling affects the accuracy of dynamical and thermodynamic properties including the free energy. 

For SMMIs, the energy barriers associated with the roto-translational motion of solute molecules at 

the surface or within the membrane can limit sampling. Another problem is the energy associated 

with the rearrangement of membrane structure upon the interaction with solute molecules, which 

usually exceeds thermal (kT) energy. As a result, systems can be kinetically trapped in a local energy 

minimum for long periods of time, leading to a state of quasi-ergodicity, thus affecting the accuracy 

of the calculations 92.  

In most simulation systems, sufficient sampling of configurations can only be achieved using enhanced 

sampling methods 90,152. Replica exchange with solute tempering (REST) is one such method that is 

suitable for simulations of SMMIs. REST is a Hamiltonian exchange technique where the scaling of the 

Hamiltonian of the system is done for the solute interactions while keeping the solvent self-

interactions unscaled 98. The reasoning behind REST resides in defining and enhancing sampling of a 

portion of the phase space that includes all of the degrees of freedom (DOFs) with a relevant weight 
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on the free energy. Typically, enhancing the sampling of all the DOFs associated with a solute will 

improve the calculation of the free energy such that it is closer to the actual free energy of the entire 

system. REST is thus significantly more computationally efficient than other replica exchange methods 

that increase the sampling of all DOFs.  

REST2 is a variant of REST where changes to the scaling factors further increase the efficiency of the 

method 92. Initially, REST2 was developed for simulations of protein folding, where the main sampling 

difficulties arise from the energy barriers associated with the rotation of the dihedral angles in the 

protein backbone. Scaling of the self-interaction terms of the protein (the solute) increases the 

sampling of the relevant portion of phase space at a small computational cost 98. In practice, this 

consists of altering the dihedral angles, LJ and charge parameters of the atoms of the protein only 
98,153. In this way, the protein self-interactions are scaled, while the interactions with the other 

components in the simulation box are only indirectly affected to a much-reduced extent 92. This 

method works well for simulations involving binary systems involving one “solute” group and one 

“solvent” group. 

In contrast, in an SMMI system, at least three components in the simulation system need to be 

considered separately: the solvent (usually water and any ions present), the lipids making up the 

membrane, and the small molecule (the solute). The long-lived, favourable interactions between the 

solute and the solvent and/or the membrane can affect the sampling of the roto-translational space 

of the solute. As described above, scaling only the solute terms (dihedrals, LJ parameters and charges) 

would have a marginal effect on the sampling of the interactions between the solute and other system 

components. Furthermore, for peptides with a well-defined secondary structure, which do not 

undergo conformational changes during their interactions with a lipid bilayer, it is not desirable to 

scale their self-interaction terms in the Hamiltonian. Consequently, scaling solute terms is unlikely to 

be suitable for increasing the sampling of SMMIs. 

Sampling efforts are thus required to be focused on the interactions between the solute and the 

membrane. However, separate scaling of the solute-solvent and solute-bilayer interactions is not 

possible within the REST2 formulation. To address this, we have developed a modified formulation of 

REST2 that enables the selective scaling of the non-bonded terms in the Hamiltonian (electrostatic 

and van der Waals interactions). Specifically, these modifications allow scaling of the interactions for 

specific pairs of components while leaving the Hamiltonian terms of the other pairs of components 

unperturbed. This approach is henceforth referred to as selective REST (REST3).  

We tested REST3 using a set of three terpene molecules binding to a phospholipid bilayer. The three 

terpenes are limonene (LIM), perillaldehyde (PALD) and deprotonated perillic acid (DPAC).  
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3.1.1 Theoretical derivation  
In REST2, the potential energy (E) of a replica is divided into three distinct contributions, each scaled 

by a separate scaling factor 92,98 defined by 

 𝐸(𝑋) =
𝛽

𝛽
𝐸 (𝑋) +

𝛽

𝛽
𝐸 (𝑋) + 𝐸 (𝑋)             (17) 

where X indicates the position coordinates of the system, 𝐸  is the small molecule self-interaction 

energy, Ems is the small molecule-solvent intermolecular interaction energy, 𝐸  is the solvent-solvent 

intermolecular interaction energy and βi is 1/kbTi , where i refers to the replica number. For the ground 

(unscaled) replica i = 0 and all other replicas, the scaling factor for each term is related to the virtual 

temperature (βi) of replica i. Using the extended detailed balance condition154 given by  

 𝑝 (𝑋 )𝑝 𝑋 𝑝 𝑋 → 𝑋 = 𝑝 𝑋 𝑝 (𝑋 )𝑝 𝑋 → 𝑋 . (18) 

Considering that the probability of finding the system with Hamiltonian i and coordinates Xi is given 

by 

𝑝 (𝑋 ) = 𝑒 ( ) (19) 

equations 19 and 17 can be substituted into equation 18 to obtain the transition probability ratio 

 
𝑝 𝑋 → 𝑋

𝑝 𝑋 → 𝑋
=  𝑒 ∆   (20) 

where 

∆ = 𝛽 − 𝛽 [ 𝐸 𝑋 − 𝐸 (𝑋 ) +
𝛽

𝛽 + 𝛽
(𝐸 𝑋 − 𝐸 (𝑋 ))] (21) 

In REST3, the solvent term can be divided into multiple components as required (e.g., membrane, 

water, ions, etc.), with each cross-term scaled independently. Furthermore, each of the energy terms 

in equation 17 is further divided into its underlying energy contributions (bonded, electrostatic and 

vdW). This allows controlling the strength of the different types of interactions. For example, 

membrane-membrane and membrane-solvent interactions can be left unperturbed, while 

electrostatic interactions of the molecule-membrane component may be selectively scaled. In 

membrane-molecule systems such control is critical because a small change in membrane-membrane 

interactions may become amplified by the large magnitude of these interactions, leading to 

destabilization of the entire membrane. At the same time, full membrane-peptide interactions cannot 

be retained in classical REST2 implementation without reducing peptide-peptide interactions to 

almost zero. It is then crucial to decouple the scaling of these two contributions flexibly. 
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Let us take one of the terms of the Hamiltonian in the case of a small molecule-solvent system, the 

intermolecular interaction energy Ems, which is defined as: 

𝐸 = 𝜆 , 𝐸 , + 𝜆 , 𝐸 , + 𝜆 , 𝐸 ,  (22) 

where each λi = βi/β0 is the associated scaling factor for the corresponding energy contribution. It 

follows that the Δij for REST3 does not depend on the terms that are left unscaled in the equation. For 

example, if all of the λ parameters are set to 1 except for the small molecule-solvent intermolecular 

terms, the resulting Δij simply reduces to: 

∆ = 𝛽 − 𝛽 [𝐸 − 𝐸 ( )] (23) 

As a result, the terms of the equation that are to be ignored by the replica-exchange method (in this case, 

all terms except the small molecule-solvent terms) are left unscaled with λ = 1, enhancing the exchange 

probability between two replicas several-fold in the case of systems where the energy is dominated by the 

solvent. An outline of the algorithmic and practical implementation of this method in GROMACS 4.6.7 can 

be found in Section 1 of the Supporting Information (SI). 

 

 

3.2 Methods 
All conventional umbrella sampling (US) simulations were performed using GROMACS 4.6.7 155, 

whereas all the US-REST3 simulations were performed using an in-house version of GROMACS 4.6.7. 

For the US-REST3 simulations, the exchange attempt frequency was chosen to be 0.1 ps, in line with 

the findings by Sindhikara et al. 156. Several different exchange attempt intervals, ranging 

from 0.1 ps to 500 ps. The replica exchange probabilities slightly changed for the worst with higher 

exchange attempt times, but overall, there was no significant difference in the final ground replica 

ensembles. The GROMOS 54A7 compatible lipid parameters 85,157 and the SPC model of water 158 were 

used. All simulations were performed using rectangular periodic boundary conditions and a time step 

of 2 fs, removing the COM motion of the system at every step. The LINCS algorithm 159 was used to 

constrain the lengths of all bonds. Non-bonded interactions were evaluated using a single-range cut-

off scheme, whereby interactions within a 1.4 nm cut-off were calculated at every step, and the pair 

list was updated every five steps. To account for electrostatic interactions beyond the cut-off, a 

reaction field 160 was applied with a relative dielectric constant (εr) of 62. Note that both GROMOS 

54a7 parameters and the GROMOS-compatible lipid FF were developed with this scheme and have 

been shown to reproduce the structure and dynamics of a wide range of phospholipid bilayers 84,85. 

Trajectories were visualized using VMD 1.9.2 161 and analysed using standard GROMACS tools 162 and 

custom Python scripts based on MDAnalysis tools 163. 
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3.2.1 Interaction of terpenes with a DMPC bilayer 
Topologies for the three terpenes were obtained from the ATB 86 (LIM Molid: 100030, PALD Molid: 

87548, DPAC Molid: 229709). For each simulation system, a single terpene molecule was added ~3.6 

nm away from a pre-equilibrated DMPC bilayer consisting of 128 lipid molecules. The DMPC bilayer, 

equilibrated for 235 ns at 303 K was obtained from the ATB  (taken from the ATB Molecule box ID 2986 

). The systems were solvated with 9841 SPC water molecules. For the DMPC-DPAC system, the net 

charge was neutralized by adding a single Na+ ion. Each system was equilibrated in the NVT ensemble 

for 10 ns at 298 K using the Berendsen thermostat 164 with τt = 0.1 ps, followed by another 10 ns 

simulation in the NPT ensemble at 1 bar using the Berendsen barostat 164 with τp = 0.5 ps. 

  

Figure 20. A) Chemical structures of the terpenes: limonene (LIM), peril aldehyde (PALD) and perillic 

acid (DPAC). B) The angle φ and θ are defined between the two continuous line vectors (blue 

continuous vector along the principal axis of the terpene molecule and green continuous vector 

perpendicular to the plane of the terpene ring) and the z-axis corresponding to the normal vector to 

the membrane. 

3.2.2 Umbrella sampling  
The z-axis component of the distance between the centers of mass (COM) of the bilayer and the 

terpenes was used as the reaction coordinate (RC) for the US simulations. The bilayer was situated 

along the x-y plane of the simulation cell, while the terpene molecule was positioned on the z-axis 

that passes through the center of the x-y plane at a specific distance for each umbrella window. US 

windows were spaced 0.2 nm from the membrane COM (0.0 nm) to the bulk solution (3.6 nm for PALD 

and LIM, 4.2 nm for DPAC). For PALD and LIM, a total of 18 windows were used. Since DPAC is a 

charged molecule, the influence of the proximity of the membrane on the interaction energies 

remained significant at larger distances, so three additional windows were used for a total of 21 

windows. Each window was equilibrated for 40 ns at 298 K and 1 bar using the Nosé-Hoover 

thermostat 165 with τt = 0.5 ps and the semi-isotropic Parrinello-Rahman barostat 166 with τp = 1.0 ps 
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and compressibility of 4.6 x 10-5 bar-1. The position of each one of the terpene molecules along the RC 

was restrained using a harmonic potential with a force constant k = 500 kJ mol-1 nm-2. The coordinates 

of the system were saved every 10 ps. After equilibration, each window was simulated until 

convergence was reached using the same simulation parameters described above. The convergence 

of simulations was assessed by plotting the PMF vs time and splitting the data in increments of 10 ns 

until consecutive PMFs were determined to be within a standard deviation. The combined simulation 

time for all the windows was 11 μs for LIM, 22 μs for PALD and 23.8 μs for DPAC (the total simulation 

time for each window is reported in Table S1 in the SI).  

3.2.3 US-REST3  
The final configurations obtained from the trajectories of each window in the US simulations were 

used as the starting point for the US-REST3 simulations. Every window of the US simulation is 

replicated 11 times and run at a different value of λ. The upper end (most scaled) values of λms,elec (λe) 

and λms,vdW (λv) were chosen so that all the angles defined by the orientation vectors are adequately 

sampled (see section 3.1.5 for details of the orientation angle maps). This ensured that every possible 

relative configuration would be sampled in the highest virtual temperature replica, while the replica-

exchange routine ensured that these configurations “trickled down” to the ground replica. The λ 

values used were λe = λv = 0.2 (corresponding to a virtual temperature of 1490 K). For each window, 

the number of replicas needed to interpolate between λ = 1 and λ = 0.2 was empirically determined 

running a short (1 ns) test simulation, starting with an equally spaced replica regime and with λe = λv. 

The values of λ chosen to interpolate between the unperturbed Hamiltonian and λ = 0.2 were 0.2, 

0.27, 0.35, 0.4, 0.5, 0.6, 0.7, 0.77, 0.84, 0.92 and 1.0. This values were chosen arbitrarily to obtain an  

exchange probability between replicas i and j higher than 15%, . In the case of DPAC, 11 replicas were 

required to reach the threshold of >15%, whereas for PALD and LIM, only four replicas were required. 

Nevertheless, as this was the first test of the method and for consistency, 11 replicas were used for all 

three terpene molecules to allow a direct comparison between systems. To test the performance of 

the method, a simulation of LIM using only four replicas per window (λ= 0.2, 0.4, 0.6 and 1.0) was also 

performed. The convergence of simulations was assessed by plotting the PMF vs time and splitting the 

data in increments of 10 ns until consecutive PMFs were determined to be within a standard deviation. 

The combined simulation time for all windows was 20.6 μs  for LIM, 18.4 μs  for PALD and 11 μs  for 

DPAC (the total simulation time per window is reported in Table S2 in the SI).  

3.2.4 Potential of mean force calculations 
The potential of mean force (PMF) along the RC was reconstructed using the WHAM algorithm 3,144 

implemented in the GROMACS g_wham tool 3. Bayesian bootstrapping for the calculation of errors 

was performed with n_bootstraps = 200. In this work we used the difference between the free energy 
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of the protein in bulk and the free energy of the protein at the minimum of its interaction well to 

estimate the free energy of binding. This methods does not map exactly to an binding free energy, but 

it provides a useful and quick proxy for it, especially when the PMF is monotonically decreasing from 

bulk to the membrane surface.  

 

3.2.5 Water-terpene interactions  
The interactions of terpenes with water were determined by analyzing the minimum distance 

between the water molecule atoms and the terpene atoms using the g_mindist and g_hbond tools in 

GROMACS 4.6.7.  

 

3.3 Results and discussion 
 

This section is divided into two subsections. In the first part, we compare the predicted binding 

affinities to experimental values, followed by a comparative presentation of the PMFs of the three 

terpene molecules predicted using the conventional US and US-REST3 simulations. In the second part, 

an analysis of roto-translational sampling as the molecules move from the bulk solution to the 

membrane interior is presented. The section concludes with a discussion of insights gained into the 

mechanism of binding of terpenes to lipid bilayers.  

3.3.1 Free energies of binding 
Table 1 lists ΔGb values predicted by the conventional US (ΔGb-US) and US-REST3 simulations (ΔGb-US-

REST3), as well as the binding affinity of the three terpenes for DMPC bilayers measured by isothermal 

titration calorimetry (ITC), ΔGb-ITC
167 . For DPAC, only a very small amount was observed to partition 

into DMPC vesicles.  The partition coefficient for DPAC (≤ 5 M-1) was thus much smaller than for LIM 

(10,870 M-1) and PALD (305 M-1). Consequently, for DPAC the ΔGb-ITC could be reliably determined. This 

suggests that DPAC exhibits very weak or no binding. Overall, comparison of ΔGb-ITC and ΔGb calculated 

by both conventional US and US-REST3 simulations reveals that the values predicted by US-REST3 are 

in better agreement with experiment. For LIM, ΔGb-ITC is -34.17 kJ/mol. ΔGb-US is -24.0 ± 0.64 kJ/mol, 

giving a difference of +10.17 kJ/mol. ΔGb-US-REST3 is instead -29.7 kJ/mol, with a smaller deviation from 

experiment of +4.47 kJ/mol. PALD ΔGb-ITC is -26.01 kJ/mol and ΔGb-US is -21.4 ± 0.6 kJ/mol, giving a 

difference of +4.61 kJ/mol. ΔGb-US-REST3 is -28.3 ± 0.8, differing by only -2.28 kJ/mol from the 

experimental value. Finally, for DPAC ΔGb-US and ΔGbUS-REST3 are -3.4 ± 0.4 kJ/mol and +1.3 ± 0.4 kJ/mol, 

respectively, which are values consistent with binding below reliable ITC detection. Experimentally, 

these terpenes are predicted to have relative binding affinities for DMPC bilayers that decrease as LIM 



62 
 

> PALD >> DPAC. The rankings obtained by conventional US simulations and by US-REST3 simulations 

are in agreement with experiment. The ΔGb-ITC values of the two terpenes differ by 8.2 kJ/mol, while 

the ΔGb-US-REST3 values differ by only 1.4 kJ/mol.  In the next section, we discuss how enhanced sampling 

in REST3 alters the PMF profiles and explains the improved predictions by REST3 compared to US.  

Table 1. Predicted and experimental free energies of binding of terpenes to DMPC bilayers.  

 ΔGb-US (kJ/mol) ΔGb-US-REST3 (kJ/mol) ΔGb-ITC (kJ/mol) 

LIM -24.0 ± 0.6 -29.7 ± 0.6 -34.17 

PALD -21.6 ± 0.6 -28.3 ± 0.8 -26.01 

DPAC -3.4 ± 0.4 +1.3 ± 0.4 - 

 

3.3.2 Potential of mean force profiles 
 

Figure 21A shows the PMFs for the three terpene molecules obtained from the conventional US. The 

main difference between the PMFs of LIM and PALD, compared with DPAC, is the location of the global 

minima. Once again in this chapter I refer to the binding energy of a terpene as the difference between 

the bulk value of the free energy with the absolute minimum of the PMF. This quantity does not map 

exactly to the experimental partition free energy, but it Is a useful proxy to make comparisons 

between the two, especially when the PMF is monotonically decreasing from bulk to the minimum. 

For LIM and PALD, the global minima are at COM distances < 1.0 nm, corresponding to the membrane 

interior. In contrast, for DPAC, there is a broad global minimum around a COM distance 2.8 nm, which 

corresponds to a location outside of the membrane. This indicates that for LIM and PALD, the 

preferred location is inside the membrane, while for DPAC, the preferred location is in the bulk 

solution. This suggests that LIM and PALD exhibit much stronger binding to DMPC than DPAC, which 

is consistent with experiment, as discussed in more detail further below. Overall, the shapes of the 

PMF for all the terpenes using the two methods are very similar.  
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Figure 21. PMF for the interaction of the three terpenes PALD (orange), LIM (blue) and DPAC (green) 

with a DMPC bilayer obtained from conventional US simulations (panel A) and US-REST3 simulations 

(panel B). The regions of the simulation cell are indicated starting from the bulk solution (d), the 

membrane surface extending from 1.6 to 1.9 nm (c), the high-density hydrophobic tail region 

extending from 1.6 nm to 0.25 nm (b) and the low density tail region extending to 0.25 nm in the 

center of the membrane (a).  

 

The shape of both PMFs for LIM reveal that the global minimum is broad and flat, extending out from 

the center of the bilayer (COM distance = 0) to about 1 nm. This indicates that LIM experiences 

favorable interactions within the hydrophobic core of the bilayer and suggests that it can penetrate 

deep into the membrane and eventually into the other leaflet. The large basin of this minimum is in 

agreement with the predictions of Witzke et al.167, who observed that the majority of the terpene 

molecules are found situated in the high-density tail region. 
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For PALD, the global free energy minimum is situated at a COM distance of 0.8 nm, which corresponds 

to a location where its carbonyl moiety sits directly below the lipid head groups at the top of the 

hydrophobic core. This is consistent with predictions from MD simulations reported by Witzke et al. 
167, which showed that the electron density profile of PALD in the membrane has a maximum at COM 

distances between 0.8 and 1.0 nm. This minimum is not flat as in LIM, and it shifts towards the center 

of the membrane (region ‘a ’in Figure 21), where the free energy rises to less negative values. 

Consequently, compared to LIM, PALD is less likely to penetrate through region ‘a’ and into the other 

leaflet, which is consistent with the more hydrophilic nature of PALD. 

As noted above, the PMF for DPAC exhibits a global minimum that is very broad, extending from a 

COM distance of 2.0 to 4.0 nm from the center of the bilayer. The lowest point is at a COM distance 

of ~2.8 nm, which corresponds to the molecule being in solution. The well depth for this minimum is 

-6.4±0.3 kJ/mol. Another local minimum is located inside the membrane at a COM distance of 1.2 nm. 

The well depth for this minimum is -4.4 ± 0.5 kJ/mol and is thus less energetically favourable than the 

main, broad minimum. There is a small free energy barrier separating these two minima. The mass 

density profile extracted from an independent simulation of a full hydrated DPMC bilayer (Figure 22) 

reveals that the position of this barrier corresponds to the COM distance where the choline moiety of 

the lipid head groups is situated (region c). For COM distances < 1.0 nm, the free energy increases 

sharply, indicating that penetration of DPAC into the hydrophobic core of the bilayer is highly 

unfavourable.   

 

Figure 22. Mass density profile from a 200 ns simulation of a fully hydrated DMPC bilayer without 

terpenes. The thickness d of the bilayer (3.54 nm) was calculated as the distance between the peaks 
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of the nitrogen atoms of the DMPC molecules. The surface of the membrane is centered at around 

d/2 (1.77 nm) from the center of the bilayer. The choline group can extend up to 1.0 nm away from 

this surface. 

The time required to reach convergence in each window can be found in Table S1 of the SI.  

We now compare the conventional US PMFs with those obtained with US-REST3. Figure 21B shows 

the PMFs for the three terpenes calculated using US-REST3 simulations. Overall, the shape of each 

PMF is very similar to the ones predicted by the conventional US simulations. In the case of LIM and 

PALD, the location of the global minimum remains mostly unchanged, but the predicted ΔGb differs 

by several energy units. In the case of LIM, the ΔGb is -29.7 ± 0.6 kJ/mol (compared to -24.0 ± 0.6 

kJ/mol with conventional US), while in the case of PALD the predicted ΔGb is -28.3 ± 0.8 kJ/mol 

(compared to -21.4 ± 0.6 kJ/mol). In the case of DPAC, the PMF predicted by the US-REST3 simulations 

exhibits the same broad global minimum located at around a COM distance of 2.8 nm, as is also 

predicted by the conventional US simulations. The lowest free energy for this broad minimum is -6.3 

± 0.2 kJ/mol with US-REST3 compared to -6.4 ± 0.3 kJ/mol with conventional US. However, compared 

to the PMF predicted by conventional US, in the PMF predicted by US-REST3, the small local minimum 

around a COM distance of 1.2 nm shifts from a favourable value of -3.4 ± 0.4 kJ/mol to an unfavourable 

value of +1.0 kJ/mol. Consequently, the PMF for DPAC shows an almost consistent increase in value 

from COM distances of around 3.0 nm toward the center of the bilayer. Consequently, US-REST3 

predicts the penetration of DPAC into the bilayer as being more unfavourable than that predicted by 

conventional US simulations.  

3.3.3 Angle maps of the orientation of terpenes  
Data from the various windows of both the US and US-REST3 simulations were also used to analyse 

the extent of orientational sampling for the terpenes as they approach and penetrate the bilayer. The 

orientation of the terpene molecules was defined by two angles (θ and φ) subtended by each of 

perpendicular vectors running along with the terpene molecules and the vector normal to the 

membrane surface (x-y plane), as illustrated in Figure 20 and described in the Methods section. 

Orientation angle maps showing the 2D probability distribution plots of the θ and φ angles were 

constructed for each window. These angle maps thus capture the extent of sampling of the 

orientations of the terpenes at the membrane surface. By comparing angle maps for a given terpene 

molecule across different windows, the presence of preferred configurations (orientations) along the 

RC was determined. This allowed assessing whether the terpene molecules preferentially interact 

through their polar group (in the case of PALD and DPAC) or their non-polar isopropenyl tail. 
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Analyses of these orientation angle maps are organized as follows. First, angle maps for the 

conventional US simulations are presented. For each terpene molecule, analyzes of three different 

windows are presented, representing key stages in the binding to the DMPC bilayer as revealed by the 

predicted PMFs: i) the terpene molecule in the bulk solution (a COM-distance of 3.6 nm for LIM and 

PALD, and 4.0 nm for DPAC); ii) the terpene molecule at the interface interacting with the lipid head 

groups (a COM-distance of 1.8 nm for all terpenes was chosen); and iii) the terpene molecule at the 

free energy minimum inside the membrane (a COM-distance of 0.6 nm was chosen for LIM, 0.8 nm 

for PALD, and 1.4 nm for DPAC). Where relevant, other interesting regions in the PMF for a given 

terpene molecule were also analyzed. In the second part of this section, orientation angle maps 

computed from the US-REST3 simulations are shown in the same order and compared with the 

corresponding angle maps computed from the conventional US simulations.  

It is also worth to discuss the difference in PMFs predicted by WHAM in the light of the data that will 

be presented. The differences in the PMF between classical and REST3 simulations might be due to 

differences in the tails of the histograms of the COM distance. Inspection of the COM distance 

histograms (Figure S6 in the SI) overlaps between US and US-REST3 windows, suggests that these 

differences might be due to differences in statistical sampling of the number of frames with values 

that fall far from the umbrella center, e.g. √(x-x)̅2  >0.1 nm. The stability of these states is influenced 

by the local environment that the terpenes experience, which in turns depend on the correspondent 

thickness and APL of the membrane. These quantities are known to fluctuate slowly, usually in the 

range of hundreds of nanoseconds for a fluid state membrane. With the shorter nature of each 

window in US-REST3 simulations, the amount of time that the system spends in fringe values of APL 

and thickness is intrinsically smaller than in an equivalent conventional US simulation. The statistical 

sampling of these fringe states may therefore be slightly different from that in US simulations just by 

virtue of the given fluctuations of the membrane sampled. Nevertheless, as it will be seen in this 

section, the orientations of the terpenes converge very rapidly to the same orientation maps that long 

classical US simulations converge to. Conventional US simulations take time ranges ranging from 200 

to 600 ns to converge to their final orientation distributions and which US-REST3 converges to. 

Figure 23 and Figure 24 show the orientation angle maps for the above three representative COM-

distances for each of the terpene molecules, respectively, in the conventional US and US-REST3 

simulations. Both methods provide similar results for the orientation of the terpenes. For all three 

terpenes, it is clear that all possible orientations are uniformly sampled in the bulk solution. This is 

expected since all three terpene molecules can rotate freely when they are located far from the 

membrane surface. Once the terpene molecules reach the membrane surface, the interactions with 

the lipid head groups hinder this free rotation, and, as a result, certain orientations are sampled more 
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than others. This is evident at a COM-distance of 1.8 nm for LIM, where θ angles around 175° show a 

higher probability. A θ angle of around 90° corresponds to an orientation where the LIM molecule lies 

sideways with both its methyl and isopropenyl groups interacting with the head groups. This 

orientation is sampled in the first 160 ns of the simulation (see Fig S1a in the SI). A θ angle closer to 0° 

or 180° instead corresponds to an orientation where the main axis along the molecule is parallel to 

the z-direction (normal of the membrane). The sideways orientation is unexpected because the angle 

maps computed from all other windows where the LIM molecule can interact with the lipids (window 

< 2.0 nm) show that the most likely θ angle is either around 15° or ~175°. These angles correspond to 

an orientation whereby the axis of the molecule aligns with the bilayer normal, exposing to the solvent 

either the isopropenyl or the methyl moieties. 

Interestingly, for the first 200 ns of the US simulation, the orientations around θ = 15° and θ = 175° 

seem to be almost equiprobable, whereas extending the simulation to 500 ns results in a net 

preference for the orientation at θ = 175°. This behavior is conversely immediately captured by the 

US-REST3 simulation, suggesting that tempering the terpene-membrane interaction in a region of 

space where rotation is sterically impeded can help the interconversion between different 

orientations. In summary, the behavior of LIM on the surface of the membrane preferentially orients 

the methyl group toward the center of the membrane.  

PALD exhibits strong orientational preferences at the membrane surface, with a clear preference for 

θ angle values around 10º. This corresponds to an orientation whereby the polar aldehyde (CH=O) 

group points towards the bulk solution, and the isopropenyl group points towards the membrane. 

This is expected because the aldehyde group is polar and preferentially solvated by water, while the 

isopropenyl group can form hydrophobic interactions with the hydrophobic phospholipid tails of the 

membrane.  

DPAC shows similar behavior to PALD close to the membrane surface, exhibiting a broad distribution 

that peaks at θ values of around 10°. This angle corresponds to an orientation where the charged 

carboxyl group is exposed to water, and the isopropenyl group is oriented towards the membrane. 

However, in contrast to PALD, for DPAC, the distribution of θ values is much broader, ranging from 0° 

to 100°, rapidly collapsing to a narrower peaked distribution when the COM distance reduces from 

1.8 to 1.6 nm, as shown in the angle map for this shorter COM distance (Figure S1f in the SI). This 

suggests that when DPAC reaches the surface of the membrane, where it can still interact with water, 

its orientation is less constrained. When DPAC inserts into the membrane and crosses a small free 

energy barrier, the molecule aligns such that the molecular axis is perpendicular to the membrane 
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normal. In this orientation, the charged carboxylate group is exposed to water, and the isopropenyl 

group and ring on DPAC interact with the phospholipid tails. 

Once inside the membrane, the orientation angle maps at the specified COM distances correspond to 

a minimum in the PMF for the given terpene molecule. For LIM, this corresponds to the global free 

energy minimum at a COM distance < 0.8 nm, in which it is located in the hydrophobic region of the 

membrane. The orientation angle map shows a bimodal distribution for θ at around 20° and 160°, 

indicating that the principal axis of the molecule prefers to stay aligned with the lipid tails to minimize 

lipid dislocation. Similarly, for PALD, the global free energy minimum is at a COM distance of 0.8 nm 

in the hydrophobic core of the membrane. The orientation angle map shows a narrow distribution for 

angle θ centered around 20°, indicative of the principal axis of the terpene molecule in alignment with 

the normal of the membrane. Compared to the angle map of LIM at the membrane surface, the peak 

is broader. In the case of DPAC, the orientation angle map inside the membrane was computed at a 

COM-distance of 1.4 nm, corresponding to a local free energy minimum in the PMF (the global 

minimum is outside of the membrane). A narrow peak for angle θ at 10°, similar to PALD, reveals that 

the principal axis of the terpene is aligned with the normal of the membrane because its charged 

carboxylate group remains solvated by water molecules that infiltrate the membrane. 
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Figure 23. Orientation angle heat maps of the terpene molecules in conventional US simulations. 

Orientation angle maps are 2D probability plots of the θ and φ angles that define the orientation of 

the terpene molecules with respect to the vector normal to the membrane surface. Angle θ is reported 

on the y-axes and angle φ on the x-axis, as represented in the bottom right panel. These angle maps 

were used to assess the sampling of orientations visited by the terpene molecule in representative 

windows at three different COM distances to the bilayer. Orientation angle maps are shown for the 

inner minimum (left), the membrane surface (middle) and the bulk solution (right). The COM distance 

to the membrane surface was assumed to be around 1.8 nm for all the three terpene molecules, 

whereas the COM distance to the inner minimum is different for each terpene (0.6 nm for LIM, 0.6 nm 

for PALD and 1.4 nm for DPAC). The terpene molecules in the bulk solution all exhibited very similar 

orientation angle maps (SI Figure S1), so only the angle map for LIM at a distance of 3.6 nm is shown. 

The maximum probabilities are of the same order of magnitude but are slightly different for each heat 

map.  
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Figure 24. Orientation angle heat maps of the terpene molecules in US-REST3 simulations. Orientation 

angle maps are 2D probability plots of the θ and φ angles that define the orientation of the terpene 

molecules with respect to the vector normal to the membrane surface. Angle θ is reported on the y-

axes and angle φ on the x-axes, as represented in the bottom right panel. These angle maps were used 

to assess the sampling of orientations visited by the terpene molecule in representative windows at 

three different COM distances to the bilayer. Orientation angle maps are shown for the inner 

minimum (left), the membrane surface (middle) and the bulk solution (right). The COM distance to 

the membrane surface was assumed to be around 1.8 nm for all three terpene molecules. In contrast, 

the COM distance to the inner minimum is different for each terpene (0.6 nm for LIM, 0.8 nm for PALD 

and 1.4 nm for DPAC). In the bulk solution, all three terpene molecules exhibited similar orientation 

angle maps (Figure S1 in the SI), so only the angle map for LIM at a distance of 3.6 nm is shown. The 

maximum probabilities are of the same order of magnitude but are slightly different for each heat 

map. 
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3.3.4 Mechanism of binding of terpenes to phospholipid membranes  
The PMF and orientation angle maps obtained from US-REST3 simulations help to understand the 

mechanism of binding to the membrane of the three terpene molecules. We now consider only the 

US-REST3 simulations for subsequent analyzis because of the better agreement with experiment of 

the predicted ΔGb.  

For LIM, the orientation angle maps for windows near the membrane surface reveal that LIM prefers 

to penetrate the membrane with its methyl group pointing toward the center of the membrane (θ = 

160°) isopropenyl group interacting with water. Once LIM is located entirely below the membrane 

surface (at a COM-distance < 0.8 nm), the molecule no longer shows a preference for the methyl group 

to point toward the center of the membrane. Instead, the molecule can also exhibit an inverted 

orientation such that the methyl group can now point toward the bulk solution (θ = 20°). This reflects 

that once the isopropenyl group can no longer interact with interfacial water molecules and choline 

groups, both orientations become equally probable. Once LIM reaches the center of the membrane, 

it has complete rotational freedom, and the orientation angle map reverts to resembling the one in 

bulk solution (Figures S1b and S1c in the SI). The penetration of LIM into the membrane does not 

appear to drag any water molecules with it. This is reflected in the measured terpene-water minimum 

distance, which steadily increases from 0.22 ± 0.02 nm in the bulk solution to 0.88 ± 0.2 nm in the 

center of the membrane (at a COM distance of 0) (Figure 25). This mechanism is consistent with the 

strongly non-polar (hydrophobic) character of this molecule. 

 

Figure 25. Changes in the minimum distance between the terpene molecules and water (blue) and 

number (N) of hydrogen bonds (red) between terpene and water as a function of terpene-membrane 

COM distance in the US-REST3 simulations for each terpene. The vertical bars represent standard 

deviations. The hbonds were defined using g_hbond using a cutoff radius of 0.35 nm and a cutoff angle 

of 30 degrees. 
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For PALD, analysis of the orientation angle maps for windows near the membrane surface reveals that 

this molecule prefers to penetrate the membrane with the isopropenyl group pointing toward the 

center of the membrane and the polar aldehyde group oriented toward the aqueous environment. 

Due to the hydrogen bonding ability of its polar group, PALD is expected to have a stronger interaction 

with water than LIM. The polar aldehyde group enables water molecules to be dragged along with the 

PALD molecule when it enters the membrane. This is reflected in the terpene-water minimum distance 

inside the membrane (Figure 25), which steadily increases from 0.18 ± 0.014 nm in the bulk solution 

(at COM distances > 2.8 nm) to 0.37 ± 0.2 nm in the center of the membrane (at a COM distance of 0). 

The latter value is significantly lower than for LIM, whose minimum terpene-water distance was 

computed to be 0.88 nm at the same COM distance to the membrane. The hydrogen bond analyzis 

reported in Figure 25 for PALD shows that in solution, PALD forms an average of 1.71 ± 0.64 H-bonds, 

whereas it forms only 0.4 ± 0.6 H-bonds in the membrane core, substantially reducing but not losing 

all interactions with water. This suggests that PALD has a soft solvation shell, meaning that the 

aldehyde group interacts with water as best as possible as the molecule penetrates the membrane, 

partially dragging water molecules with it. Combined with the information provided by the orientation 

angle maps, this suggests that as PALD loses interactions with water upon insertion into the 

membrane, it becomes orientationally restrained. In this preferred orientation, the polar aldehyde 

group is directed away from the center of the membrane and is thus more exposed to water. By 

contrast, once PALD reaches the central region of the membrane (at a COM-distance < 0.2 nm), it can 

freely change orientation but remaining aligned along the normal of the membrane (Figures S1d and 

S1e in the SI).  This is facilitated by the local symmetry in the water density of the bilayer.  

DPAC enters the membrane in the same way as PALD, with its isopropenyl group oriented toward the 

center of the membrane. Due to the charged nature of DPAC, its solvation shell is expected to be 

substantially stronger than that of PALD. This is confirmed by the terpene-water minimum distances 

reported in Figure 25, which show that DPAC exhibits no significant changes as it penetrates the 

bilayer, with an average distance of 0.17 ± 0.007 nm even at the center of the bilayer. The hydrogen 

bond analysis reported in Figure 25 shows that the carbonyl group of DPAC forms 6.5 ± 0.93 H-bonds 

in the bulk solution, whereas this figure reduces to 5.3 ± 1.0 upon insertion into the center of the 

membrane. This suggests that DPAC has a tight solvation shell that is not lost when it buries itself into 

the membrane, dragging it into the hydrophobic core of the bilayer. This is the likely reason for the 

large free energy barrier to the permeation of DPAC. It is interesting to note that when the COM-

distance reaches values < 0.6 nm, the charged carboxylate group of DPAC can find and interact with 

water molecules that have permeated from the other side of the membrane, allowing it to invert its 

orientation to interact with them (Figures S1f and S1g in the SI).  
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3.3.5 Assessing the efficiency of US-REST3 simulations  
As noted in the methods section, a larger number of replicas than actually needed was used for LIM 

and PALD to keep the simulation setup consistent for all of the three terpenes. Nevertheless, 

simulations with LIM and PALD only required four replica per windows to obtain an exchange rate 

>20%. To ensure that using a different number of replicas did not affect the final configurational 

ensemble obtained for the ground replica, a simulation for LIM was run using λ = 0.2, 0.4, 0.6 and 1.0 

for 80 ns per replica. These simulations were started from the same configurations as used in the 

simulations with eleven replicas. 

 

Figure 26. US-REST3 simulation of LIM with four and eleven replicas. A) Comparison of the predicted 

PMF using four (blue) and eleven replicas (red), showing convergence to the same free energy of 

binding. B) Angle maps for the window at a COM distance of 1.8 nm (surface) for the simulations with 

four (left) and eleven replicas (right). C) Angle maps for the window at a COM distance of 0.6 nm 

(internal minimum) for the simulations with four (left) and eleven replicas (right). 

Comparison of the PMFs predicted with the simulations using four and eleven replicas (Figure 26A) 

shows that the shape of the PMF is very similar and that the predicted values of the ΔGb are statistically 

indistinguishable between the simulation using four replicas (-29.4 ± 0.6 kJ/mol) the one using eleven 

replicas (-29.7 ± 0.6 kJ/mol). Comparison of the orientation angle maps for the surface region (Figure 
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26B) reveals almost no differences between the simulations using four and 11 replicas, with the 

preferred orientation of LIM being one with the methyl group pointing toward the membrane. In the 

case of the membrane-internal minimum, there is only a small difference in the relative intensity of 

the preferred orientation peaks and the two orientation angle distributions. Nonetheless, the overall 

shape of the bimodal distribution of orientations is maintained, and the two orientations of the LIM 

aligned with the normal of the membrane are both visited in the simulation using four replicas. This 

suggests that a simulation with a smaller number of replicas converges to similar results, reducing 

computation time. In the next test case of the US-REST3 method, different scaling schemes were 

indeed used for replicas at different COM distances from the center of the membrane. 

3.4 Summary and conclusions  
We have validated the efficacy of the use of selective scaling in REST3 in the context of small molecule-

membrane interactions (SMMIs). REST3 was developed to overcome long-lived interactions that 

hamper sampling for free energy calculations of SMMIs. This was achieved by scaling down van der 

Waals and electrostatic interactions between a small molecule and its surroundings (i.e. solvent and 

lipid membrane). The effectiveness of REST3 was investigated in terms of its ability to: i) accurately 

predict the binding affinity (ΔGb) of three terpene molecules to a DMPC bilayer.  

In the case of the terpenes, US-REST3 was observed to allow the system to rapidly lose the memory 

of its initial configuration and to rapidly converge the shape of the PMF, resulting in accurate 

predictions of ΔGb.  

In spite of the increased computational cost of running US-REST3, the replica-exchange scheme could 

be optimized to balance fast convergence of the PMF with efficient replica-exchange rates for a given 

small molecule at particular COM distances. This was achieved, for example, by reducing the number 

of replicas to almost a third (as discussed in section 4.1.5) without significantly affecting the final PMF 

in the case of LIM. With these replica schemes, it was thus possible to gain confidence in the estimates 

from US-REST3 with a significantly reduced computational effort. 

These findings demonstrate that REST3 is a viable method to study SMMIs when the Hamiltonian of 

the system is well understood. The enhancement of sampling achieved by REST3 can substantially 

improve predictions made using conventional US simulations of typical time scales. REST3 is thus an 

effective method for the study of SMMIs in explicit solvation conditions.   

 

3.5 Supporting Information 
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1. Implementation of REST3 in GROMACS 4.6.7  

Several GROMACS modules were modified, including non-bonded routines specific 

to SSE 4.2 and AVX 256 architectures, user definitions and distributed communication. 

Routines specific to replica exchange were modified to include specification of scaling 

coefficients related to pair-wise interactions, energy rules that may lead to a successful 

replica exchange, and modules that update the calculation of scaled electrostatics and 

van der Waals interactions. The current implementation only supports the reaction field 

method for non-bonded interactions. The input requires the user to specify the lower 

triangular matrix of possible interaction λ for both electrostatic and van der Waals 

energies. These matrices are broadcast to all nodes participating in the simulation. 

Below is a sample specification of related user input:  

; Compound #mols 
Protein_X  1 
POPC   128 
SOL   9955 
NA   28 
CL   32 
 
[ scale_vdw ] 
; Specify this section after 'molecules' section` 
1.0 
0.8 1.0 
1.0 1.0 0.2 
1.0 1.0 1.0 0.0 
1.0 1.0 1.0 1.0 1.0 
 
[ scale_q ] 
; Lower triangular matrix includes the diagonal 
1.0 
0.8 0.2 
0.2 0.0 1.0 
1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 1.0 

GROMACS involves a master-slave communication protocol, wherein decisions 

related to exchange criterion and broadcasting replica exchange coordinates rest with 

the master. Before the exchange, GROMACS follows an odd-even check between 

replicas and designates all possible replica pairs that fall in the criterion for exchange. 

Owing to costs involved in the gathering of the energy of each replica at the end of 

each time step, the routine only computes and exchanges replicas at every exchange 
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attempt (Nreplex). Routines that are involved in the calculation of non-bonded 

interactions update both the scaled forces as well as the energies. With respect to the 

calculation of non-bonded electrostatics, due to possible complications that could arise 

due to charge imbalance, only energies and forces were modified with scaled 

electrostatic interactions. A full version of the modified GROMACS source is available 

at https://github.com/curtinic/gromacs 

 

2. Total simulation time for terpenes 

Table S1. Conventional US simulations 

COM dist (nm) LIM (ps) PALD (ps) DPAC (ps) 
0.0 550000 1100000 850000 
0.2 550000 1100000 850000 
0.4 550000 1100000 850000 
0.6 550000 1100000 850000 
0.8 550000 1100000 850000 
1.0 550000 1100000 850000 
1.2 550000 1100000 850000 
1.4 550000 1100000 850000 
1.6 550000 1100000 850000 
1.8 550000 1100000 850000 
2.0 550000 1100000 850000 
2.2 550000 1100000 850000 
2.4 550000 1100000 850000 
2.6 550000 1100000 850000 
2.8 550000 1100000 850000 

3.0+ 550000 1100000 850000 
 

Table S2. US-REST3 simulations 

COMdist (nm) LIM (ps) PALD (ps) DPAC (ps) 
0.0 120000 80000 50000 
0.2 120000 80000 50000 
0.4 120000 80000 50000 
0.6 120000 120000 50000 
0.8 120000 120000 50000 
1.0 120000 120000 50000 
1.2 120000 120000 50000 
1.4 80000 80000 50000 
1.6 80000 80000 50000 
1.8 80000 120000 50000 
2.0 80000 120000 50000 
2.2 80000 120000 50000 
2.4 80000 120000 50000 
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2.6 80000 80000 50000 
2.8 80000 80000 50000 

3.0+ 80000 40000 50000 

 

Figure S1: Convergence of the PMFs for each terpene. 

 

PMF vs Time for LIM using US  

 

 

PMF vs Time for LIM using US-REST3 
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PMF vs Time for PALD using US

 

PMF vs Time for PALD using US-REST3

 

PMF vs Time for DPAC using US 
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PMF vs Time for DPAC using US-REST3 
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Figure S2: Angle maps for all the simulations of terpenes 

 
a. LIM US, window 1.8 nm, angle map for the first 160 ns. 

 

b. LIM US 

 

c. LIM US-REST3 
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d. PALD US 

 

 

 

e. PALD US-REST3 
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f. DPAC US 

 

 

g. DPAC US-REST3 
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Figure S3: Histograms of COM distance for every window for LIM 
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4 Chapter 4 – Application of US-REST3 to the Protx-1 – POPC 
membrane system 

 

4.1 Introduction 
After validating the newly developed US-REST3 methodology with small molecule – membrane 

interactions (Chapter 3), the subsequent aim was to test the method on larger and more complex 

systems. The objective is to enhance umbrella sampling (US) simulations with improved orientational 

sampling such as is described in Chapter 2, Section 2.1, by applying the REST3 method to each one of 

the umbrella windows. As described in Chapter 2, US simulations of the interaction of Protx-1 with a 

POPC bilayer exhibited potentially inadequate sampling of orientational configurations of the peptide 

with respect to the membrane surface. While the peptide shows free rotation in solution, upon 

binding to the membrane surface the peptide tends to remain “locked” in a specific orientation and 

reaches a deep energy minimum from which it does not escape for hundreds of nanoseconds. This 

lack of orientational sampling impedes obtaining an accurate PMF, which is necessary for estimating 

the membrane binding affinity of the peptide.  

The work described in this chapter aimed to determine the enhancement of orientational sampling of 

the peptide on a membrane surface without the need for a collective variable. As discussed in Chapter 

3, Section 2, REST3 increases orientational sampling by scaling down peptide-membrane interactions 

whilst leaving the membrane-membrane, peptide-membrane, membrane-water and water-water 

parts of the Hamiltonian unchanged. This alteration of specific interactions retains the properties of 

the membrane even in highly tempered replicas, thus overcoming the problem encountered in other 

replica exchange methods like parallel tempering. To apply REST3 to a peptide-membrane system, the 

same approach as described in Chapter 3 was used. The water-peptide and membrane-peptide 

interactions were scaled down in tempered replicas to decrease the energy barriers between different 

orientational configurations, thus enhancing the exploration of orientational states in the ground 

replica. It was observed that the scaling used in REST3 causes the peptide to fall into highly self-

interacting conformations, which are then difficult for the system to escape from. These self-

interacting conformations lead to considerable conformational distortion in the peptide and reduced 

interactions with the surrounding water and the membrane. As a result, the peptide was observed to 

experience an unfavourable energy landscape in the proximity of the membrane-water surface. The 

result is a PMF that does not resemble the expected profile for the binding of a medium or strong 

binder to a lipid membrane. As outlined in this chapter, the same issues were encountered in 

simulations of ProTx1 binding to a POPC membrane.  
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4.2 Methods 
 

4.2.1 REST3 enhanced umbrella sampling simulation of Protx-1 
The setup for the simulation of Protx-1 is similar to that described in Chapter 2, Section 2.2. 

Specifically, US simulations with 20 equally-spaced windows from dz = 2.0 nm to 4.0 nm were used, 

where dz is the distance between the centre of mass (COM) of the peptide and the COM of the lipid 

membrane. In each window a harmonic potential with a force constant k of 500 kJ/mol was used. The 

difference with respect to the US simulations described in Chapter 2 is that the sampling in each 

window in US-REST3 is further enhanced with the REST3 method described in Chapter 3, Section 3.1.2. 

In each window 11 replicas with different scaling factors ranging from λ = 0.2 to λ = 1.0 were used 

(Figure 27). 

 

Figure 27. Diagram of the simulation setup of the REST3-enhanced umbrella sampling method. For 

every window at a distance dz, 11 replicas spaced from λ = 0.2 to λ = 1.0 were conducted in parallel 

and allowing exchange of configurations every 50 steps. 

To generate the simulation system for each replica, the last frame of the original branch of the classical 

US simulation described in Chapter 2, Section 2.1 was used. A Nosé-Hoover thermostat with τt = 0.5 

ps was used to keep the temperature of the system at 298 K and a semi-isotropic Parrinello-Rahman 

barostat with τp = 0.2 ps was used to enforce a pressure of 1 bar. All other simulation parameters were 

the same as those reported in Chapter 2.  

Concerning the REST3 part of the simulations, both the van der Waals and electrostatic interactions 

in the peptide-membrane, peptide-water and peptide-ions terms were equally tempered in replicas 

with perturbed Hamiltonians. For simplicity, when referring to peptide-water interactions, the 

peptide-water and peptide-ion interactions are also included unless differently stated. The replica 
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scaling factors chosen to interpolate between the unperturbed Hamiltonian and the Hamiltonian with 

λ = 0.2 are 0.2, 0.27, 0.35, 0.4, 0.5, 0.6, 0.7, 0.77, 0.84, 0.92, 1.0. Testing in previous studies 168 showed 

that this scaling scheme yielded a consistent exchange probability between 13 and 25% across all the 

replicas and windows. All simulations were run for 40 ns per replica, giving a total simulation time of 

440 ns per window and a total of 4.84 μs for the entire simulation. At this point analysis of the 

simulations indicated the problems that will be illustrated and the simulations were stopped. 

All analyses were performed on the ground replica (λ = 1.0), where the Hamiltonian was left 

untempered. 

4.2.2 Potential of mean force calculations 
The potential of mean force (PMF) along the dz reaction coordinate was reconstructed using the 

WHAM methods 3,144 as implemented in the GROMACS g_wham module 3. Bayesian bootstrapping for 

error calculation was performed with n_bootstraps = 200. All the PMF calculations were performed 

on the ground replica using the last 20 ns of the simulation in each window. 

4.2.3 Radius of gyration 
The radius of gyration of the peptide was obtained with the g_gyrate module in GROMACS using the 

Cα in the protein backbone. 

4.2.4 Hydrogen bond analysis 
The hydrogen bonds (H-bonds) between the various species in the simulation were identified using 

the g_hbond module in GROMACS with a cutoff of 0.35 nm for the H-bond distance and 30˚ for the 

donor-hydrogen-acceptor angle. 

4.2.5 Water layer analysis 
 

Near the surface of the membrane the peptide can interact with three species, the membrane, the 

solvent and itself. An equilibrium within this three types of interaction is to be expected at 

physiological condition. If REST3 induces an imbalance of these three contributions, changes in the 

relative amount of these interactions will show in the relative amount of interactions that the protein 

experience. To quantify the extent of the imbalance in interactions that occurs between the peptide 

and the lipid membrane at given COM distance, the amount of water that accumulates between the 

two at a given dz was quantified. 

The number of water molecules was  estimated using the MDAnalysis Python library 163. First, the 

bottom half of the peptide relative to the membrane was selected excluding all the atoms with a z-

coordinate higher than the z-coordinate of centre of geometry of the peptide. Then all the water 

molecules within 10 Å of this atom selection were identified. Of these water molecules, only the ones 
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within a rectangular region delimited by the minimum and maximum x and y coordinate of the 

previously selected bottom half of the peptide were retained as shown in Figure 28. This selection was 

carried out for each frame in the last 40 ns of the ground replica simulation, and then averaged over 

time. 

 

Figure 28 Illustration of the water layer selections 

 

4.3 Results 
As noted in Chapter 2, a simulation would ideally yield sufficient orientational sampling such that the 

various orientations of the peptide on the membrane surface are sampled and the peptide can 

interchange between different energy minima in the orientational space. At the same time, as stated 

in Chapter 1 ICK  peptides are rigid, so it is expected that Protx-1 should overall retain its secondary 

and tertiary structure without huge variations. If these conditions are met, one would expect to 

compute a PMF that accurately determines the free energy of the binding of the peptide to a lipid 

membrane. The resulting PMF reconstructed from the US-REST3 simulations using the WHAM method 

is shown in Figure 29.  
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Figure 29. Potential of mean force of the binding of Protx-1 to a POPC bilayer predicted using 

conventional US and US-REST3 simulations. 

 

As it can be seen, the shape of the two PMFs is very different. The expected minimum around 2.7 nm, 

previously predicted with conventional US simulations, is no longer predicted by the US-REST3 

simulations. Instead, the PMF monotonically increases from bulk water to the centre of the 

membrane, indicating that the interaction between the peptide and the membrane is predicted to be 

always unfavourable. Previously discussed SPR experiments have shown that ProTx1 has a binding 

affinity in the sub-micromolar range for POPC membranes 128, and that the peptide likely resides at 

the membrane surface and does not penetrate into the membrane centre. This should be reflected in 

the PMF by an energy minimum at dz 2.4 to 3.0, followed by an increase in free energy for distances 

dz < 2.4 . The PMF predicted with US-REST3 is thus not consistent with these experimental 

observations.  

To assess whether distortions in the peptide structure could be the cause of this incorrect PMF, the 

radius of gyration of the peptide in both the US and US-REST3 simulation was compared. If the peptide 

undergoes significant structural changes, this would likely be reflected in the radius of gyration. The 

distributions of Rg values sampled in the two simulations, at three different COM-distances, are 

reported in Figure 30. These distances represent the protein on the membrane surface (2.6 nm), in 

the vicinity of the membrane (3.0 nm) and out in bulk solution (4.0 nm). Analysis at other COM 

distances resulted in similar behaviour.  
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Figure 30. Radius of gyration measured at three different peptide-membrane COM distances (2.6, 3.0 

and 4.0 nm) obtained from the conventional US simulation of the interaction of ProTx-1 with a POPC 

bilayer and the corresponding windows from the ground replica in the US-REST3 simulation. 

 

The Rg distributions computed in the US-REST3 simulation show significantly lower values than the 

corresponding distributions in the US simulation.  The average Rg for the US-REST3 simulations are 

0.87 ± 0.012 nm at a COM distance of 2.6 nm, 0.88 ± 0.017 nm at a COM distance of 3.0 nm and 0.87 

± 0.016 nm at a COM distance of 4.0 nm.  In the same windows the classical US simulation gave, 

respectively, average Rg values of 0.906 ± 0.007, 0.922 ± 0.008 nm, and 0.90 ± 0.01 nm. On average, 

the radii of gyration are lower in all three windows in the US-REST3 simulation compared to the 

corresponding US simulation, indicating a consistent compaction of the peptide structure.  

To investigate the reason for this structural change, the average number of H-bonds that the peptide 

formed with itself was computed. The number of these intra-molecular H-bonds gives an indication of 

the extent of the self-interactions that the peptide experiences in a given replica with a certain 

interaction scaling. Since this effect is likely to arise from scaling the Hamiltonian, it is expected that 

the effect would be more pronounced in replicas with a high scaling factor λ. To understand the trend 

of intramolecular H-bonds as a function of the scaling factor λ, the distribution of the number of H-

bonds of three of the windows belonging to the US-REST3 simulation with respective λ values of 0.2 

(very tempered), 0.5 (middle tempered), and 1.0 (no tempering) was analysed. Figure 31  shows these 
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intra-peptide H-bonds for the above three classical US windows compared to the equivalent windows 

in the US-REST3 simulation.  

 

Figure 31. Number of hydrogen bonds in replicas with λ = 0.2 (most tempered), 0.5 (middle) and 1.0 

(untempered) for the US-REST3 simulation as well as the conventional US simulation at three different 

peptide-membrane COM distances (2.6, 3.0 and 4.0 nm). 

 

The average number of H-bonds found in the ground (untempered) replica in the US-REST3 simulation 

is 24.8 ± 3.1 for a COM distance of 2.6 nm, 24.3.2 ± 3.2 for a COM distance of 3.0 nm and 25.5 ± 3.0 

for a COM distance of 4.0 nm. The average number of H-bonds for the corresponding conventional US 

simulations at the same COM distances are 22.2 ± 1.9, 19.8 ± 2.2 and 21.2 ± 2.5. It is evident that in 

the ground replica of the US-REST3 simulation the peptide exhibits 3 to 4 intra-molecular H-bonds 

more than in the respective conventional US windows. With higher tempered replicas, the difference 

in H-bonds is even larger, with average values reaching 34.1 ± 3.0 H-bonds in the case of the replica 

with λ = 0.2 at a COM distance of 2.6 nm, which is 12 H-bonds more than in the corresponding 

conventional US window. This increased number of intra-molecular H-bonds is probably caused by the 

reduced interactions that the peptide has with water and, therefore, it behaves as if it were in a quasi-

vacuum. The effect of this quasi-vacuum appears to force the peptide to increase the number of self-

interactions to minimise its potential energy to counteract the loss of interactions with the solvent. 
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The energy minima that the peptide reaches due to these increased self-interactions might be difficult 

to escape from, as the original distribution of H-bonds is never fully recovered, even in the 

untempered replica (λ = 1.0). To further reinforce this hypothesis, Figure 32A shows the number of 

intramolecular H-bonds computed from a conventional MD simulation of ProTx-1 in vacuum. The 

average number of intramolecular H-bonds of the peptide in vacuum is 39.5 ± 2.1, which corresponds 

to only 5 H-bonds more than the value obtained for replica λ = 0.2 at a peptide-membrane COM 

distance of 2.6 nm in the US-REST3 simulation. This confirms that the scaling down of the interactions 

of the peptide with its surrounding environment has an effect that is similar to the peptide being in a 

vacuum. This would not necessarily be a problem if the structural deformation that the peptide 

undergoes in these regimes were to be rapidly eliminated in the ground replica. To assess the extent 

of the persistence of these interactions, the final configuration of windows at a COM distance of 2.6 

nm in the US-REST3 simulation was taken and simulated using conventional US for 100 ns. Figure 32B 

shows a plot of the RMSD of the peptide vs time for this simulation. Two RMSDs are reported, the first 

one computed with respect to the starting structure of this conventional US extension (in blue). The 

second is the RMSD computed with respect to a structure taken from the window centred at 2.6 nm 

of the conventional US simulation.  
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Figure 32. A: Number of intramolecular hydrogen bonds in ProTx-1 in a vacuum simulation conducted 

over 40 ns. B: Plot of RMSD vs time obtained from the last structure at a peptide-membrane COM 

distance of 2.6 nm in the US-REST3 simulation and extended using classical MD. The RMSD of ProTx-1 

with respect to its initial structure in the extended simulation in shown in blue, and the RMSD with 

respect to a structure obtained in the conventional US is shown in red, (original branch described in 

Chapter 2, section 2.3).   

 

The RMSD of the peptide computed with respect to the initial structure fluctuates around a value of 

0.1 nm for the first 45 ns before increasing to a stable state with a value of 0.34 nm. On the other 

hand, the RMSD of the peptide computed with respect to a structure taken from the conventional US 

simulation has an initial value of 0.3 nm and settles to values around 0.2 nm after 50 ns. These plots 

reveal that the deformed structure observed in the US-REST simulation slowly returns to a structure 
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similar to the one observed in the conventional US simulation over the course of 50 ns. This is much 

longer than any reasonable replica exchange attempt frequency that would allow efficient sampling. 

As the relaxation of the structure of the peptide cannot be completed rapidly enough, the direct result 

of this effect is the effective compaction of the peptide previously discussed. The effects of the 

increase in intramolecular H-bonds and the compaction of the peptide also affect its ability to interact 

with the membrane.  

The increased self interaction of the protein has also found to be correlated with an accumulation of 

water molecules between the peptide and the membrane. Taking the data from a conventional US 

with the data from a US-REST3 simulation on a per window base, the amount of water found in 

between the protein and the membrane can be compared. Figure 33A reports the average number of 

water molecules found between the peptide and the POPC membrane during the last 40 ns of the US 

and US-REST3 simulations. It can be seen that there is a higher number of water molecules consistently 

across all windows in the US-REST simulation, leading to reduced interactions between the peptide 

and membrane (Figure 33B). These observations agree with previous findings in the simulation of the 

interaction of the peptide Gomesin with a POPC membrane using the US-REST3 method 168. It is 

evident that the tempering of the interaction of the peptide with its surrounding environment, in the 

same manner as was done successfully with terpenes (Chapter 3), is not applicable to larger molecules 

such as peptides/proteins. Systems like proteins with extensive intramolecular van der Waals and 

electrostatic interactions can exhibit unphysical conformations that do not represent normal solvated 

conformations. These abnormal conformations can persist for several tenths of nanoseconds, which 

would therefore require a similar amount of time between exchanges in REST3 to yield a realistic 

ensemble of conformations. Such long times between exchanges would make the replica exchange 

approach very inefficient and, therefore, not feasible for large systems.   
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Figure 33 A: Average number of water molecules located between the peptide and the POPC 

membrane at different peptide-membrane COM distance in both the US and US-REST3 simulations. 

B: Average number of hbonds between Protx-1 and the POPC membrane vs time. 

 

4.3.1 Other scaling regimes 
Other scaling regimes were attempted previously  168 to try to address the problem outlined in the 

previous section. These simulations were carried out with another membrane-binding peptide, 

Gomesin (Gm), a 18-residue peptide of sequence QCRRLCYKQRCVTYCRGRX, originally isolated from 

the immune cells of the tarantula Acanthoscurria gomesiana169. This peptide is characterised by a rigid 

elongated, β-hairpin-like fold stabilized by two disulfide bonds 170. Simulations of Gomesin  on a POPC 

bilayer exhibited the same problems in the exploration of its orientational space as those observed 

here in simulations of Protx-1. The main findings of these tests are summarised below.  
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If the exchange with tempered ensembles when the protein is in a vacuum-like conformation is the 

reason for the above described problems, a possible solution could be to temper the peptide-

membrane interactions only, without tempering the peptide-water interactions. This might reduce 

the likelihood of abnormal conformations of the peptide from appearing. Simulations were attempted 

by only tempering the Gomesin-POPC interactions and leaving all the other interactions untempered. 

The ability of the water molecules and ions to interact with the membrane as well as the peptide 

resulted in these molecules accumulating between the peptide and the membrane surface. The water 

molecules and ions remained between the peptide and the membrane “bridging” the interaction 

between the two, with very long residence times in the case of ions. This accumulation of ions at the 

peptide-membrane contact surface also induced local deformations of the membrane structure, in 

some cases leading to the extraction of lipids from the membrane in highly tempered replicas168. This 

approach was deemed unfit to enhance the sampling of the peptide-membrane system. 

Another solution attempted was to partially temper the non-bonded (LJ and electrostatic) peptide-

peptide interactions to counteract the formation of the intra-molecular H-bonds. In these simulations, 

peptide-peptide interactions were tempered concurrently with peptide-water and peptide-

membrane interactions. The average number of H-bonds was found to be lower than in the equivalent 

US-REST3 simulation with the peptide-peptide interaction untempered. This shift in the number of H-

bonds to values closer to those observed in classical US simulation was accompanied, however, by a 

considerable loss of secondary structure of the peptide.  

Gomesin was observed to become deformed and α-helical segments replaced βsheets. This solution 

was thus also deemed unfit for ProTx-1. Other solutions that were attempted included upscaling the 

peptide-membrane interactions and various ad hoc choices of the values of λ 168, but none of them 

yielded an ensemble that was physically representative of the expected stable conformation of the 

protein. 

4.4 Conclusions 
The US-REST3 methodology developed and tested for small terpenoid molecules was here tested in 

the context of a protein-membrane interaction using ProTx-I interacting with a pure POPC membrane.  

The results suggest that in  bigger systems like this one, unphysical conformations accompanied by a 

higher number of water molecules and ions intercalating between the membrane and the protein  can 

occur even in lower tempered replicas. These abnormal conformations with significant loss of 

secondary structure can persist for several tenths of nanoseconds, which would therefore require a 

similar amount of time between exchanges in REST3 to yield a realistic ensemble of conformations. 

Such long times between exchanges would make the replica exchange approach very inefficient and, 
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therefore, not feasible for large systems. The inability to replicate a physically representative 

ensemble for Protx-1, in conjunction with data previously obtained for Gomesin, suggests that in the 

current state REST3 is a method that cannot be used effectively with highly self-interacting systems 

like proteins to simulate their interaction with membranes. The method remains, however, a valid 

approach to study small molecules where the intramolecular network of interactions is not as 

extensive. 
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5 Chapter 5 - Development of a US-Metadynamics protocol with a 
small test system 

 

5.1 Introduction 
Molecular dynamics (MD) simulations of molecules interacting with membranes, as already stated in 

Chapter 1, are affected by the sampling problem. In particular one has to extensively sample all the 

possible relative orientations of a molecule in respect to the membrane  for a given macroscopic state 

in order to obtain an accurate free energy of binding estimate. Rotational diffusion in these kind of 

system is generally very slow, either due to an overestimation of the rotational barriers by the FF, 

because of the capacity of the membrane to partially envelop the molecule under study or just due to 

the sheer size of the solutes. To overcome this problem a good idea is to enhance the rotational 

motion by the use of an enhanced sampling method. There are generally two main ways to approach 

this problem, the first one is to enhance the exploration of every degree of freedom of the system, or 

of one subset of the system. This is the approach that was attempted in the previous Chapter through 

the use of REST3. 

Chapter 4 assessed the artefacts in REST3 enhanced simulations of proteins, showing that tempering 

the interaction of the protein with the surrounding of big molecules with extensive self-interactions 

can lead the system into highly self-interacting conformation which are difficult to escape.  The second 

approach is instead to target specifically only a couple of arbitrary chosen CV, so that the general 

Hamiltonian of the system have less possibilities for misbehaviour. The CV chosen in this way have to 

be the chosen so that they are descriptive of the process under study and also the slowest relaxing 

CVs of the system. For this reason in an attempt to enhance only the rotational motion of the protein 

without perturbing its structure, we decided to target the rotational motion of the protein through a 

selection of a limited number of collective variables (CVs). One option would be to use metadynamics 

(MetaD) to accelerate the sampling of the rotational motion of the protein by applying a potential 

energy function along a set of angles defined between the protein and the normal vector to the 

membrane. In this case it is generally advisable to use WT-MetaD as this allows for better estimates 

of the free energy surface (FES) than standard MetaD 104. The previously defined angles could be used 

to define an orientation, so that MetaD would deposit a history-dependent potential to disfavour 

previously explored orientations. An additional CV could be chosen to sample the COM distance in the 

z-dimension, perpendicular to the membrane. However, WT-MetaD scales poorly with the number of 

CVs and it is thus not recommended to use more than two CVs in a system with slow diffusion in CV 

space, such as protein-membrane interactions 171. This is due to the increase in volume of the phase 

space that the Gaussians have to fill with the increase in the number of CVs (see Chapter 1, section 



98 
 

1.9). Based on these factors, it is probably best to instead delegate the exploration of the CV along the 

z-direction of the centre-of-mass (COM) distance between the molecule and the membrane to US. 

Ideally the aim would be to apply a MetaD history-dependent bias on the system to cross the barriers 

that impede the system to explore all its relevant conformations, leading to the removal of the effect 

of the bias to retrieve the underlying unbiased free energy. The last part of this procedure is called 

reweighting and can serve to recover the unbiased distribution of quantities even if the simulation 

was run under the effect of a biasing potential 104. This approach involves some unknowns, for example 

the kind of interactions that can occur between a static US potential with a history-dependent MetaD 

potential, potentially producing artefacts or unexpected behaviours. 

As the underlying free energy of a complex system like the interaction of a protein with a lipid bilayer 

is unknown, we first need to characterise a system for which the analytical solution of the free energy 

is known. Once this system is available all the relevant biased and unbiased ensemble averages can 

be obtained and, therefore, the actual effectiveness of the bias applied can be assessed. We can first 

consider the simple case of a system consisting of two atoms in vacuum. A LJ interaction potential is 

used to describe the interaction between the atoms within a simulation where a MetaD potential is 

applied on the distance between the atoms. During the reweighting phase the underlying free energy 

of interaction will of course correspond to a LJ potential energy if the reweighting algorithm used is 

correct. 

Following this reasoning, a simple model system composed of a stationary surface of Xe atoms 

interacting with a CO2 molecule was constructed. CO2 was used because it is a small, linear molecule 

and it has a centre of symmetry located on the carbon atom. Xe was used just for simplicity, because 

the interaction of Xe with other species can be represented as a LJ function. In such a simple system 

it is possible to easily isolate the effect of all the possible variables of the system (e.g. temperature, 

pressure, COM distance, height of gaussians, etc.) and facilitate the reproduction of the expected 

shape of the PMF. 

Three systems were setup with increasing potential energy complexity to test the reweighting 

procedures described by Bussi et al. 172. The first system, A, has the simplest potential energy surface, 

featuring only a harmonic potential on the COM distance between the CO2 and the Xenon surface 

(referred to as the COM-distance). In the second system, B, a harmonic potential on the angle α 

defined between the surface normal and the CO2 molecular vector is added. In the third system, C, a 

a MetaD potential is applied to the angle α. For each system, the distributions of the COM-distance 

and of angle α are calculated. Once the distributions of the angle α and COM-distance (dz) are 

obtained and, if they fit the analytical solution that is expected for every system, the aforementioned 
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reweighting scheme will be applied to systems B and C to replicate the results obtained from system 

A. 

 

5.2 Methods 
 

5.2.1 WTMetad 
Well-tempered Metadynamics is a variant of classical Metadynamics in which the hill height decreases 

with time as a function of the bias potential previously deposited on a given value of collective 

variable. The expression for the bias potential becomes94: 

𝑉(𝑆, 𝑡) = 𝑘 ∆𝑇𝑙𝑛(1 +
𝜔𝑁(𝑠, 𝑡)

𝑘 ∆𝑇
) 

 

(24) 

�̇�(𝑆, 𝑡) = 𝜔𝑒
( , )
∆ 𝛿 , ( ) 

 
(25) 

Where kB is the Boltzman constant, T is the temperature, ΔT is an input parameter with the dimension 

of a temperature, ω is the deposition rate and N(s,t) is the histogram as a function of time and 

collective variable s. V is the time derivative and δS,S(t) is the kernel function. ΔT is an important 

parameter that regulates the virtual temperature of your CV and therefore the amount of final bias 

that will be deposited along it. We define the bias factor as γ=T+ΔT/T as a functional way to quantify 

how “hotter” the CV of choice will be compared to the rest of the system. In practice these set of 

equations is smoothly implemented in the metadynamics algorithm by rescaling the Gaussian height 

with: 

𝑊 = 𝜔𝜏 𝑒
( , )
∆  

 
(26) 

Where τG is the deposition stride. By doing so the potential deposited will converge to : 

𝑉 (𝑆, 𝑡 → ∞) = −
∆𝑇

𝑇 + ∆𝑇
𝐹(𝑆) + 𝐶 

  
(27) 

Where C is an immaterial constant. The bias converges so to a limiting value that is depending of the 

bias factor used. This method avoids the possible overfilling that can happen with conventional 

metadynamics and converges to its final value with a lower error103.  
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5.2.2 Systems setup 
In system A, a surface comprising 200 Xe atoms arranged in a hexagonal close packed square grid of 

50x 50 A, which formed the base for the rectangular box of 50 x 50 x 70 Å. For these atoms, which 

comprise a surface, the equations of motion were not integrated so that they do not move. A total of 

518 Ar atoms were then added to the box to act as background gas to facilitate the thermostating of 

the system with the target CO2 molecule. Periodic boundary conditions where applied on the x and y 

axis, but not on the z axis, to avoid long range interactions between periodic images of the surface. 

Umbrella windows were then generated by placing a CO2 molecule at increments of 1.0 Å away from 

the Xe surface, starting at a COM distance of 8.0 Å from the surface and finishing at 32.0 Å. In each 

umbrella window, the CO2 – surface COM distance dz was restrained by a harmonic potential (VUS) 

with a force constant k = 10 kJ/mole acting on the carbon atom.  A LJ potential (VLJ) was defined 

starting from a plane parallel to the Xe surface and situated 1.0 Å away from it. This potential only acts 

on the carbon atom of the CO2 molecule and was used to avoid complex multi-body convolutions of 

the potentials (resulting from the sum of the LJ potential at every point in space on the three atoms). 

The VLJ was defined with ε = 28.95 kJ/mole, σ = 10.0 Å, rcut-off = 50.0 Å, with ε being the depth of the 

energy well and σ being the zero-energy crossing point. Finally, a harmonic repulsive potential with a 

k=190 kJ/mol , starting at zero with  a cut off at 4 A in the z direction was applied to every atom of the 

system, to keep the Ar atoms from crossing the periodic boundaries. A representation of the system 

and its components is depicted in Figure 34 . 
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Figure 34. Representation of the simulation system. Xe atoms (pink) constitute the surface, Arg atoms 

(transparent blue) are used as background gas, and a single CO2 molecule (light blue and red) that 

interacts with the atomic surface. 

 

.  

In system B, an additional restraining potential Vα (with a force constant k = 5 kJ/mole, x0 = 0°) was 

placed on the angle α, defined as the angle between the normal vector to the Xe surface and the 

vector defined by the two oxygen atoms of the CO2 molecule. In system C, a well-tempered MetaD 

potential was applied on the angle α, VG(α,t). VG(α,t) consists of gaussians of height 1 kJ/mole, a width 

of 0.03 and with a bias factor of 5.0, deposited every 100 steps on the system. The choice of the width 

of the Gaussian was made to make the width of a size comparable to the average fluctuation of the 

system in 500 steps. The choice for the height was arbitrary to obtain a rapid filling of the FES for the 

expected size of the energy barrier (which by design was known). 

All simulations were performed using LAMMPS 29 Oct 2020 173patched with PLUMED 2.6.1 174in a NVT 

ensemble at a temperature of 298 K controlled using thea CSVR thermostat with a relaxation time of 

0.1 ps . A short equilibration simulation was run for 1.0 ns, followed by a production run  of 40.0 ns. 

Equlibration of the simulations of systems A and B was assessed by monitoring the temperature of the 

system. Being small systems and under the effect of a static potential they can be considered to be 

converged for the entirety of the 40.0 ns production runs. System C is instead under the influence of 

a history-dependent MetaD potential and hence convergence was assessed by monitoring the 

decrease in hill height over time. The simulation was considered to have converged when the hill 

height was lower than 0.01 kJ/mole for each α value. The simulation reached convergence in the first 

20.0 ns, so only the last 20.0 ns of simulation C were used for the analysis. The potential energy in this 

part of the simulation was considered to be quasi-stationary for reweighting purposes. 

5.2.3 Removal of thermostat outliers 
These systems are very small and, therefore, are very sensitive to fluctuations in energy and forces 

due to random collision events. In such a small system, the background gas (Ar) density is far lower 

than the real density of gaseous Ar (1.784 g/L). Approximately 4800 atoms of Ar would be required in 

the simulation cell for the density to be close to the real density. Consequently, due to the much lower 

density of the system, collisions are much less frequent than they should be. As a result, the CO2 

molecule occasionally collides with a particularly energetic Ar atom (belonging to the tail-end of the 

kinetic energy distribution) and is knocked into a ballistic trajectory, not experiencing a second 

collision for a few time steps. If the energy of the collision is high enough the displacement over dz in 
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the following few time steps can be very high, which causes an artificially disproportionate weight on 

the ensemble for the corresponding frames. To address this problem, we assumed a normal 

distribution around the mean value μdz of each umbrella and discarded every frame that had a 

displacement μdz+3σ or < μdz-3σ. Following this criterion, more than 99.5% of the simulation trajectory 

frames were retained in all systems and the outlying frames were discarded. This has resulted in the 

removal of 180 of 40000 frames of the simulation, which was considered a number low enough not 

to be of concern for the accuracy. 

5.2.4 Reweighting of the simulations 
The probability of a microstate with some position q and velocities p, under the effect of no bias, is 

 𝑃(𝑞, 𝑝) ∝ 𝑒  
( , )

 (28) 

where H(q,p) is the Hamiltonian of the system. If the system is under the influence of a static or quasi-

stationary potential V(q), its biased probability P’(q) becomes instead 

 𝑃′(𝑞, 𝑝) ∝ 𝑒  
( , )

𝑒  
( )

 (29) 

Substituting 4 into 5 and rearranging we obtain 

 𝑃(𝑞, 𝑝) ∝ 𝑃′(𝑞, 𝑝)𝑒
( )

 (30) 

These equations are equally valid when taking into account the probabilities in CV space, such that 

 𝑃(𝑠) ∝ 𝑃′(𝑠)𝑒
( )

 (31) 

Equation 5 links the unbiased probability of a system with its biased probability weighted by the bias 

applied to that conformation. Using the ergodicity theorem we can approximate the probability P(q,p) 

as the histogram H (s) gathered from the simulation when the bias is quasi-stationary and, therefore, 

obtain the free energy as  

 𝐹(𝑠) = −𝐾𝑇 ln 𝑃(𝑠) = −𝐾𝑇 ln 𝐻(𝑠) = −𝐾𝑇 ln 𝐻′(𝑠) 𝑒
( )

 (32) 

 

Since the free energy is obtained as the natural logarithm of H(s) multiplied by KT and the natural 

logarithm is a monotonic function, the shape of the two are the same, so only the latter is reported 

rather than converting it to a FES. 

 

5.2.5 Histogram calculation 
The free energy surface along dz was calculated using a similar method to the aforementioned free 

energy calculation in α. In particular the joint information from all the umbrellas windows is desired 
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to reconstruct the FES along dz. This means that the weight that a given simulation trajectory frame 

of the entire “concatenated” umbrella sampling trajectory has is calculated accounting for all the 

harmonic potential in that given frame. To obtain these weights first all the singular umbrella 

trajectories were concatenated into a single macro trajectory. The bias exerted by every external 

potential applied on the system, when the bias is static or quasi-stationary, was then obtained. This 

operation is repeated for the potential of every window at every point in time along the concatenated 

simulation. That is achieved using the PLUMED driver on the concatenated trajectory for every 

umbrella window and combining all the external potentials acting on that window. This yields a N x k 

matrix where N is the number of umbrellas and k is the number of frames of the concatenated 

trajectory. Using these potentials WHAM was used to obtain the weights for every trajectory frame, 

which in turn can be used to recalculate unbiased distributions of any property in the system. A 

thorough description of the mathematical derivation of this reweighting algorithm has been provided 

by Bonomi et al.172 

It’s worth noting the in the case of system C, only the last 20.0 ns of the trajectory had to be used to 

perform this calculation, as this theoretical framework works only when the potential can be 

considered quasi-stationary. 

 

5.3 Results and discussion 
The simulation described in system A is used to obtain the target distributions of the angle α and of 

dz. These values are reported in Figure 35A and Figure 35B and should be considered to be the 

expected values of the reweighted distribution for systems B and C.  The distribution of the cosine of 

the angles is expected to be flat because in the absence of any directional potential the molecule 

should experience free rotation. Figure 35A reports the distribution for cos(α), showing that it 

oscillates steadily around 0.5 as expected by the absence of biasing potentials on the angle α. The 

distributions of dz are each peaked around the value at which the harmonic potential is centred 

around, with a slight displacement in windows near the minimum of the LJ potential. This is to be 

expected because at small values of displacement from the centre of the harmonic potential the LJ 

potential manages to overcome the harmonic potential, such that the resulting potential will be 

slightly off-centred. 
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Figure 35   Distribution of quantities of interest for system A. A: Biased distribution of cos(α). B: Biased 

distribution of dz. C: Reweighted distribution of cos(α). D: Reweighted distribution of dz. 

The reweighting protocol was first tested on system A to reweight the distributions of cos(α) over the 

US potential that was applied along dz. Figure 35C and D report the distributions after reweighting. As 

expected the distributions for cos(α) remain largely unchanged due to the absence of a potential that 

acts on α. The reweighted distribution of dz instead indicates nearly flat curves for far away windows 

and tilted distributions following the slope of the underlying LJ free energy well for windows closer to 

the surface. From these data it appears that the reweighting protocol can correctly unbias static 

potentials in this test system. 

In system B the restraint around 0° is arbitrarily chosen to mimic a specific orientation restriction that 

a surface could impose on a molecule when they come close enough to interact. In these conditions 

we expect the angle α to sample preferentially angles around 0°, but the shape of the free energy 

along z should still resemble a LJ potential.  Figure 36 reports the biased and reweighted distributions 

for dz and cos(α) for system B. 

It can be seen that the dz plots remain unchanged compared to system A, which should be expected 

since no extra potential was applied on dz. The biased distribution of cos(α) shown in Figure 36A has 
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the shape of the negative of the harmonic potential applied on it, with a peak around 0° which 

corresponds to the umbrella centre.  Figure 36C instead shows that after reweighting using both VLJ 

and VUS the distribution of cos(α) returns flat. This means that the reweighting algorithm can remove 

effectively the influence of two static biases acting on this system. 

 

Figure 36 Distribution of quantities of interest for system B. A: Biased distribution of cos(α). B: Biased 

distribution of  dz. C: Reweighted distribution of cos(α). D: Reweighted distribution of dz. 

Finally, in system C MetaD was used on the angle α to overcome the restraining effect of the potential 

Vα. The idea behind this system is to determine if MetaD can overcome the conformational restriction 

that the restraint on the angle α imposes on the system and return the correct distribution of the 

angle probability using standard reweighting techniques 175 the underlying free energy on cos(α) and 

on dz. Once again the distributions after the reweighting should be expected to be similar to the ones 

obtained in system A, even if a history-dependent potential is applied to the angle α. Figure 37 shows 

the distribution before and after reweighting of. 

As it can be seen from Figure 37A, the shape of the biased distribution resembles the one in Figure 

36A, but the depth of the well has been filled by the WT-MetaD potential. After reweighting the 

probability appears flat, as expected, indicating that the reweighting method is working as intended 
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for the two static potentials in conjunction with a quasi-stationary WT-MetaD potential. WT-MetaD 

can overcome the orientational restraint given by the harmonic potential and, after reweighting, the 

simulation yields the correct free energy surface.  

 

Figure 37 Distribution of quantity of interest for system C. A: Biased distribution of cos(α). B: Biased 

distribution of  dz. C: Reweighted distribution of cos(α). D: Reweighted distribution of dz. 

Figure 38 shows the FES along dz obtained for the three reweighted ensembles using the WHAM 

protocol described in the Methods section.  As it can be seen from the plot the three PMF, despite 

having different potential energy functions match perfectly after the reweighting.  It can be concluded 

that metadynamics can be used to overcome orientational restraint in an umbrella sampling 

simulation and that the reweighting protocol here described is able to correctly remove the effect of 

the bias on the system. 
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Figure 38 FES of the three system along dz calculated using the wham method. 

5.4 Conclusion 
In this chapter a protocol to use a combined US-MetaD was developed and validated. The underlying 

LJ free energy curve that was expected by construction of the system was reproduce correctly through 

reweighting of the simulation A,B and C independently of the bias deposited on the system. The results 

presented suggest that this approach could be suitable in principle for more complex systems, such as 

those involving proteins and lipid membranes. This would be true if the protocol uses an orientation 

angle as CV and as long as the potential acting on that angle is quasi-stationary.   
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6 Chapter 6 – Development of a CV for semi-rigid objects rotation 
 

6.1 Introduction 
Assessing sampling of the rotational motion of a peptide or small molecule on a membrane surface 

requires the definition of angles to describe its relative orientation with respect to the membrane. In 

the previous chapter we used the angle α between a vector and the z axis to measure the relative 

orientation of the CO2 molecule in respect to a Xe surface.  CO2 is a small, linear molecule with internal 

symmetry and its orientation in space can be approximated by a single vector passing through its two 

apical oxygen atoms. Furthermore, applying a potential on the angle α means applying a force to two 

out of the three atoms in the CO2molecule. This angle can thus be used to bias the rotation of the CO2 

molecule on the surface without distorting the shape of the molecule itself. In the case of proteins, 

which are much larger and more flexible than small drug-like molecules, the definition of an 

orientation and the application of a potential to bias its rotation on the surface is more difficult. In the 

absence of any geometric symmetries, a 3D rigid object requires at least three angles to represent its 

orientation completely. In addition, if the protein is flexible, the time-dependent fluctuation of its 

protein means that the physical meaning of an orientation can get lost or change concurrently. As an 

example, if a vector were to be defined between two atoms on an elongated protein hairpin it could 

easily lose its meaning if the hairpin opens up or changes conformation substantially during the 

simulation.  In the case of ProTx-1, the rigid structure of the ICK motif means that the secondary and 

tertiary structure of the protein will remain mostly unchanged even during a long simulation, even if 

atoms rearrange locally. As a result, the protein can be defined as a 3D semi-rigid object and its 

orientation on the membrane surface can be defined by three vectors. This property is an important 

prerequisite for the method described in this Chapter. 

Even if the orientation of a protein can be defined by three vectors, the definition of these vectors by 

two atoms can cause problems when a force is applied in MetaD. To illustrate this, let us consider the 

example of a protein rotating on a membrane surface. The system is set up so that the membrane is 

parallel to the xy plane of the simulation cell, and its surface orientation can be conveniently defined 

by the unit vector along the z axis (normal to the x-y plane). The orientation of the protein in space 

can be defined by a vector connecting any two atoms at opposite ends of the protein. The CV, θ, is 

then defined as the angle formed by this vector in the protein and the z axis normal to the plane of 

the membrane.  

Applying an external biasing potential on θ in MetaD means applying a force on these two atoms to 

disfavour any previously visited orientations. In a small and rigid molecule like CO2, where the vector 

involves the majority of atoms in the molecule, this force will enhance the rotation of the entire 
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molecule since its flexibility is limited. The same is not true for larger and more flexible molecules. For 

proteins, it usually the case that the energy barriers for the movement of two atoms that define the 

vector to locally shift their positions to obtain a change in θ are substantially lower than the energy 

barriers for the rotation of the whole protein to rotate. In a plot of θ vs time it would appear that the 

orientation of the protein is changing, whereas only the respective positions of the two atoms are 

actually changing, leaving the orientation of the protein on the membrane surface almost 

unperturbed. In Figure 39 two distributions of θ, one from an unbiased distribution (blue) and one 

from a MetaD enhanced distribution (red) are shown. The MetaD distribution is much wider than the 

unbiased one, but the protein does not rotate its orientation with respect to the membrane at all. For 

this reason, some CVs that depends on the positions of all of the atoms of the protein rather than on 

a finite set is preferable. For such a CV, the force exerted by the MetaD potential will be applied to all 

atoms, causing a collective rotation of the entire protein.  

Various approaches are possible to address this problem 176. One very efficient solution would be to 

consider the protein as a rigid body and use quaternions177 to define a absolute orientation and make 

rotations to it. The problem with this solution is that to deposit a biasing potential on an orientation 

defined by quaternions the MD engine has to be able to use quaternion algebra. Most MD engines 

currently lack this capacity and, therefore, implementation of quaternions-based orientation routines 

becomes a laborious task. A second, less sophisticated approach but more easy to implement is to use 

Euler angles to define the orientation of a molecule 178. Euler angles are a set of three angles used to 

represent the orientation of a rigid body with respect to a fixed reference coordinate system. This 

representation has been widely used to represent rotations in many other fields, such as mechanical 

engineering, aviation and computer games. In this chapter a new CV based on Euler angles to define 

and bias the orientation of a semi-rigid macromolecule is presented. This set of Euler angles will be 

used to define the orientation of the protein on the membrane surface using all atoms in the protein. 

In practice, MetaD simulations using Euler angles to define an orientation CVs are easily achieved using 

GROMACS 5.1.4 patched with PLUMED 2.4.4 through the use of the PLUMED routine 

FIT_TO_TEMPLATE. This new Euler angle CV was tested to enhance the rotational sampling of ProTx-

1 on a POPC membrane surface. The aim was not to compute a free energy profile (PMF), but to define 

a set of appropriate CVs to enhance the orientational space sampled by the protein without artificially 

creating local distortions to the protein structure. Conventional and WT-MetaD is renowned to be 

slow converging for simulations with more than two CVs. Therefore, a MetaD variant that could make 

use of multiple CVs and quickly converge despite the number of CVs was used. The method used was 

parallel bias MetaD, by virtue of its ability to handle multiple uni-dimensional potentials and, 

therefore, converge much faster than a regular multi-dimensional MetaD simulation. In this method 
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the information given by the singular uni-dimensional potentials can be then combined into a multi-

dimensional potential that approximate the corresponding potential that would be obtained using a 

multi-dimensional Gaussian. 

 

Figure 39. Two angle distributions with very different widths leading to the same overall 

conformational ensemble when considering the protein. In blue: conventional distribution of an angle 

between an atoms defined vector and the z axis. In red: Enhanced distribution of the same angle using 

MetaD. 

 

6.2 Methods 
 

6.2.1 Definition of Euler angles 
The concept behind the definition of these three angles is to define a reference structure that includes 

only selected atoms of the molecule whose rotational diffusion needs to be enhanced. A set of axes 

defining its simulation cell is associated with this structure. A structure at a successive point in time t 

will have the same set of simulation cell axes but a different orientation of the molecule. To determine 

the angle of rotation, the FIT_TO_TEMPLATE routine in PLUMED is used to perform rigid roto-

translation of the structure at time t onto the reference structure. The FIT_TO_TEMPLATE routine 

makes use of an implementation of the Kabsch algorithm 179 to find the optimal rotation to 
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superimpose two sets of vectors. The Euler angles are then defined between the reference set of axes 

and the rotated ones, so that they depend on all of the atoms of the initial selection.  

As an example, to enhance the rotation of a solvated protein interacting with a surface, the reference 

structure is stripped of all the atoms that do not belong to the protein. Let us call this reference 

structure R0 defined by the position [x, y, z] of every atom of the protein at time 0 and the vectors 

defining the axes of the simulation cell are x0, y0 and z0 (noted in bold as they are vectors). At any given 

time t, the system will be in a different orientation Rt, with its simulation cell axes unchanged. We will 

call these axes x0’, y0’ and z0’ to distinguish them from x0, y0 and z0. We now perform an alignment of 

Rt onto R0, which can be done via the FIT_TO_TEMPLATE function but generally it can be done by 

finding the optimal roto-translation that minimises the RMSD, using standard alignment methods 180.  

 

Figure 40. Graphical representation of the procedure to obtain the rotated set of axis (xt,yt,zt) 

 

Note that this rotation is calculated using all atoms of the protein but no other atoms in the system. 

For a protein-membrane system, this alignment therefore does not involve the membrane. As a result 

of this alignment operation, the axes x0’, y0’ and z0’ will be rotated to a new set of axes that we call xt, 

yt and zt as presented in Figure 40. Following this rotation, the three Euler angles between x0, y0, z0 

and xt, yt, zt are calculated. This is done by first calculating the vector perpendicular to z and zt : 
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 𝑵 = 𝒛 × 𝒛  (33) 

The three angles α, β and γ are then calculated: 

 cos 𝛼 =
𝒙𝟎  ∙ 𝑵

‖𝒙𝟎‖ ∙ ‖𝑵‖
 (34) 

 cos 𝛽 =
𝒛𝟎  ∙ 𝒛𝒕

‖𝒛𝟎‖ ∙ ‖𝒛𝒕‖
 (35) 

 cos 𝛾 =  
𝑵 ∙ 𝒙𝒕

‖𝑵‖ ∙ ‖𝒙𝒕‖
 (36) 

 

As these angles are continuous and differentiable functions of all the atoms in the protein, they can 

be used in conjunction with MetaD to enhance the rotation of the protein on the membrane surface.  

Note that this process requires an alignment obtained through the optimal roto-translation that 

minimises the RMSD, so this process is applicable as long as the protein does not undergo major 

structural changes during the simulation, i.e. a protein whose structure can be approximated by a 

semi-rigid body. If it is the case that some domains of the protein undergo structural changes, while 

others retain their structure, the same alignment procedure can be applied only to those domains that 

retain their structure. In this case, a selection of atoms from the domain that retains its structure 

during the simulation can be made (e.g. the main chain of the domain of interest) and the vectors of 

the simulation cell and their rotation is then defined only on this selection. 

 

6.2.2 Parallel bias metadynamics (PBMetad) 
Classical MetaD is a well-established method to enhance sampling in MD simulations. It makes use of 

a history-dependent potential in the form of Gaussian potential deposited on a collective variable (CV) 

of choice to move the system away from previously visited states 94. Use of a Gaussian potential of 

fixed height (magnitude), though, results in an estimation error of the calculated free energy. This 

problem is addressed by using well-tempered MetaD (WTMetaD), a variant of classical MetaD in which 

the Gaussian potential decreases in height as a function of simulation time 104.  

Another limitation of classical MetaD is that using multi-dimensional Gaussian potentials to enhance 

the exploration of more than one CV makes it much more difficult for the simulation to converge 

because of the growth in size of phase space that needs to be explored 181. As a result, WTMetaD with 

a N-dimensional Gaussian where N>3 becomes computationally prohibitive for most simulation 

systems. To address this issue several approaches have been developed 89,90,176. A commonly used 

approach is parallel bias MetaD (PBMetaD), a variation of classical MetaD in which multiple, one-
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dimensional bias potentials are applied in parallel simulations instead of a single multi-dimensional 

one 171. These one-dimensional bias potentials are much easier to converge than a multidimensional 

one. During post-processing, the uni-dimensional potentials are then recombined with standard 

reweighting techniques into an approximate, multi-dimensional free energy surface 182.  

In WTMetaD the potential is expressed as: 

 
𝑉 (𝑆, 𝑡) = 𝑘 ∆𝑇 log[ 1 +

𝜔𝑁(𝑆, 𝑡)

𝑘 ∆𝑇
] 

 

(37) 

Where kB is the Boltzmann constant and ω and ΔT are input parameters with dimensions of  energy 

rate and a temperature, respectively. At the same time, VG(S,t) can be read as a sum of Gaussian 

potentials as expressed in the original MetaD method: 

 
𝑉 (𝑆, 𝑡) = 𝜔(𝑡′) exp (−

(𝑆 (𝑅) − 𝑆 (𝑅(𝑡′)))

2𝜎
) 

 

(38) 

with 

 𝜔(𝑡) =  𝜔 exp (−
𝑉 (𝑆, 𝑡)

𝑘 ∆𝑇
) (39) 

  

Here σi is the width of the Gaussian potential on the i-th CV, ω(t) is the deposition rate and Si(R(t’)) is 

the value of the i-th CV, Si, at time t’. If one wants to deposit multiple, uni-dimensional potentials in 

parallel, each with its own ωi, the fact that CVs are generally correlated has to be considered. The 

correlation of CVs can lead to each of the potentials to converge to the wrong free energy. For 

example, for two CVs, the biasing potential of CV1 can be “felt” by the biasing potential on CV2.  

To solve this issue a weight P(η|R) is introduced, with η being a discrete variable with two possible 

values: (0,1) and (1,0). Every time biasing potentials are updated during the simulation, these variables 

are used to decide which potential should be updated; (1,0) for VG1 or (0,1) for VG2. A more extensive 

discussion of η and the derivation of P(η|R) is available in the original paper on PBMetaD by 

Pfaendtner et al 171. This weight P(η|R) is applied to eq. 39 for both of the CVs, so that the deposition 

rates now take the form of 

 
𝜔 (𝑡) = 𝜔 exp −

𝑉 (𝑆 , 𝑡)

𝑘 ∆𝑇
𝑃(η = (1,0)|R) 

 

(40) 
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𝜔 (𝑡) = 𝜔 exp −

𝑉 (𝑆 , 𝑡)

𝑘 ∆𝑇
𝑃(η = (0,1)|R) 

 

(41) 

with  

 
𝑃(η = (1,0)|R) =

exp[−𝑉 (𝑆 , 𝑡)]

exp[−𝑉 (𝑆 , 𝑡)] + exp[−𝑉 (𝑆 , 𝑡)]
 

 

(42) 

 𝑃(η = (0,1)|R) =
exp[−𝑉 (𝑆 , 𝑡)]

exp[−𝑉 (𝑆 , 𝑡)] + exp[−𝑉 (𝑆 , 𝑡)]
 (43) 

 

In practice at every step some amount of biasing potential is deposited on all the CVs, but P(η|R) 

assigns more weight to the potential deposited on the CVs with lower value of the bias potential. 

Doing so it can be shown that the two biases converge to the exact potentials in the same way that 

conventional WTMetaD does 171. As a note, the biasing potential used can be a conventional Gaussian 

potential or a WTMetaD potential with the height of the Gaussian decreasing in time. In this work we 

opted for the second option, to avoid problems of overfilling of the FES. 

 

6.2.3 PBMetaD Simulations  
The Euler angle CVs were tested using two simulation systems: i) ProTx-1 in solution and ii) ProTx-1 on 

the surface of a POPC membrane. The first system is composed of a single Protx-1 protein in a 6.4 x 

6.4 x 5.5 nm simulation cells and solvated with 7329 SPC water molecules. A total of 14 Na+ ions and 

18 Cl- ions add were added to neutralize the +4 charge of the protein and set the concentration of 

NaCl at 0.1 M. The FF chosen was Gromos 54A8, a newly refined version of the classic Gromos 54a7 

FF with special treatment for the lipid head groups, which were previously known to overestimate 

lipid-protein interactions 87. A reaction field with ε = 62 was used for the electrostatic interaction 

treatment and a straight cut-off of 1.4 nm was used for vdW forces, following the original 

parametrization of Gromos 54a7 parameters 183. The system was then equilibrated in an NVT 

ensemble at 298 K using the Berendsen thermostat with τt = 0.1 ps for 10 ns and a time step of 2 fs. 

After that a further simulation for 10 ns in the NPT ensemble at a pressure of 1 bar with was conducted 

using the Berendsen barostat with τp = 0.5 ps. The final configuration from this equilibration was used 

to run a PBMetaD simulation using the same parameters as before, and using angles α and β as CVs 

for 100 ns with a deposition rate of 500 steps and a Gaussian potential height of 2.0 kJ/mol.  

As this work studied the interaction of Protx-1 with a POPC bilayer and a lipid bilayer is symmetrical 

to rotations around the z-axis, it was only necessary to enhance the sampling along two of the angles 
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with respect to the bilayer surface. The use of γ as CV was therefore not necessary. The Gaussian 

potential height h(s) decreased over time and this was used as the criterion to determine if the bias 

potential had converged when h(s) fell under 0.05 kJ/mol for each of α and β values. This threshold 

was chosen as indicating an arbitrarily small change in the height of the Gaussian after which the 

difference in the long run for that point of the CV would have been negligible. This was observed to 

occur after 10 ns in the simulation; therefore, the first 10 ns were discarded and the analysis 

performed on the last 90 ns. 

The second system is composed of a lipid bilayer containing 128 POPC molecules, with a molecule of 

ProTx-1 initially located at a centre-of-mass (COM) distance of 2.6 nm in the z axis from the COM of 

the bilayer. This configuration was extracted from the converged region of the umbrella window at a 

COM distance of 2.6 nm described in Chapter 2, section 2.2. This position approximately corresponds 

to the molecule lying on the bilayer surface, which in previous simulations yielded the narrowest peaks 

in the orientation angle probability heat maps. In this configuration, with the same parameters 

described above, a WT MetaD simulation was performed for 100 ns using angles α and β as CVs with 

a deposition rate of 500 steps and a Gaussian potential height of 2.0 kJ/mol. A harmonic potential was 

applied with a force constant k = 500 kJ/mol centred at a COM-distance of 2.6 nm in the z-axis between 

the protein. The simulation was not run until convergence, but was used to assess the equivalent 

orientational space explored by a WTMetaD simulation using the Euler angles as CVs compared to 100 

ns of a conventional US simulation with no MetaD.  

All the simulations were performed in GROMACS 5.1.4 162 patched with PLUMED 2.1.4 184,185  and the 

analysis was carried out using standard GROMACS tools in conjunction with MDAnalysis 163. 

6.3 Results and discussion 
To validate the use of Euler angles as CVs, we need to first assess if they can reproduce the free 

rotation of the protein in the absence of the membrane without artificially inducing preferential 

conformations. For this, two simulation of Protx-1 in water were carried out. In the first simulation no 

bias was applied. In the second simulation PB-MetaD was used with two Euler angle CVs: α and β. To 

compare the sampling in the two simulations, the cosine of the angle β was measured in both of the 

simulations and the probability of cos(β) was calculated (Figure 3). The angle β was chosen because it 

represents the angle in the z axis between the reference conformation and the conformation at time 

t (as reported in eq. 3) and, therefore, is the most significant rotation. As seen in Chapter 5 the choice 

of measuring the cosine of the angle was done because for an ensemble of random 3D vectors, if the 

vectors are equally distributed on the surface of a sphere, the distribution of the cosine of their angles 

with another fixed vector will be approximately flat. After 100 ns of simulation, the distribution of 
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cos(β) shows that the orientational space sampled is qualitatively the same and there seems to be no 

particular preference for specific protein orientations. This means that both of the simulations exhibit 

a freely rotating protein molecule and, therefore, the new CVs do not induce artifical energy minima 

in the orientational space. 

 

 

 

Figure 41 Cosine of angle β as defined in section 2.1 for a classical MD simulation of Protx1 in water 

and a PBMetaD enhanced simulation using α and β as CVs. In blue: distribution obtained from the 

conventional MD. In orange: Distribution from the MetaD simulation. Dark red is the overlap between 

the two distributions. 

The next test was to determine if the biasing potential of the Euler angle CVs induces any local 

deformation in the structure of the protein. This needs to be avoided as inducing structural 

deformations while biasing protein rotation would likely compromise the validity of simulations aimed 

calculating the binding affinity of protein-membrane systems. Radius of gyration (Rg) and root mean 

square displacement (RMSD) of the alpha carbons with respect to the starting structure were 

computed for the protein in water with and without the use of PBMetaD. 
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Figure 42. A: Radius of gyration (Rg) of the main chain protein structure in water. B: RMSD of the alpha 

carbon of the protein structure in water. 

As it can be seen in Figure 42 the fluctuations of Rg and alpha carbon RMSD reflect expected 

fluctuations and do not exhibit any significant change in time. The average Rgs  are 0.92 ± 0.01 nm for 

the classical MD simulation and 0.91 ± 0.01 nm for the PBMetaD simulation. The average alpha carbon  

RMSD the values are respectively 0.14 ± 0.03 nm and 0.12 ± 0.02 nm. These values are statistically 

indistinguishable, indicating minimal changes in the overall structure of the protein. This, in 

conjunction with the previous analysis that confirmed the absence of induced angular preferences, 

suggests that the Euler angle CVs can be safely used to enhance orientational sampling in a simulation 

of a protein in solution with PBMetaD without creating artefacts.  

The second simulation system was used to to assess the effectiveness of these orientation angle CVs 

in a protein-membrane system. For this a simulation of ProTx-1 with a POPC bilayer was carried out, 

using a starting configuration extracted from the converged region of an orientationally locked 
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simulation previously described in Chapter 2, Section 2.3 . The protein was restrained at a peptide-

membrane COM distance of 2.6 nm with a harmonic potential and its orientational sampling is 

enhanced using PBMetaD  to enhance sampling along α and β. As a comparison, a US simulation 

without PBMetaD was carried using the same starting configuration.  

 

 

Figure 43 A: Comparison of the cos(β) distribution of simulations restrained at a protein-membrane 

COM distance of 2.6 nm using US and US with PBMetaD-US . B: RMSD of the protein Cα from 100 ns 

of US-PBMetad simulation. 

 

Figure 43 compares the distribution of cos(β) for the conventional US simulation and the PBMetaD-

US simulation. It can be seen that the distribution sampled during a 90-ns PBMetaD simulation is much 

wider than the equivalent distribution observed in a conventional US simulation.  
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6.4 Conclusions 
In this chapter, an Euler angle based collective variable have been developed to describe relative 

rotation of semi-rigid objects. The protein ProTx-I and its rotation in respect to a lipid POPC membrane 

was used to validate the CV.  The RMSD data in conjunction with the Rg data suggests that in a 

PBMetaD simulation using Euler angles as CVs the protein explores a wider range of orientations than 

in a conventional MD simulation without significantly perturbing its internal conformation. This makes 

these set of CVs fit to be used for analysis and biasing of Protx-1 simulations, which are described in 

the next chapter of this thesis. 
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7 Chapter 7 – Application of US-WT-MetaD and PB-MetaD protocols 
to the interaction of ProTx-I with a POPC membrane 

 

7.1 Introduction 
As discussed in the previous chapters, sufficiently sampling the rotational motion of a protein on a 

membrane surface is a problem with no known trivial solution. The surface binding event and 

subsequent roto-translational motion of a protein on a membrane surface is a complex process that 

involves the desolvation of specific membrane-interacting residues and concurrent resolvation of 

residues on other parts of the protein surface. The residues that govern membrane binding are, 

however, not known a priori. At the same time, the process also involves the desolvation and 

structural response of the membrane, with accompanying local rearrangement of lipids. The research 

discussed in Chapter 2 showed that a conventional umbrella sampling (US) approach is not an effective 

solution for this sampling problem, yielding free energy profiles that are dependent on the initial 

conditions of the system, thus indicating a lack of convergence. In Chapter 4, the same free energy 

profiles (PMF) were calculated using a hybrid US - replica exchange approach utilizing an in-house 

developed REST3 algorithm to enhance the configurational sampling of every umbrella window. This 

method proved to be effective for enhancing the sampling of the roto-translational motion of the 

protein a the membrane surface, but introduced artefacts in the structural ensemble of the protein 

that invalidated the physical meaning of the simulation. In the research described in this chapter the 

aim was to test an approach where the roto-translational motion of the protein on the membrane 

surface is treated as a semi-rigid tumbling motion of an object on a surface. To achieve this, 

metadynamics in conjunction with the Euler collective variables (CVs) developed and described in 

Chapter 6 were used to enhance the roto-translational sampling of ProTx-1 on a POPC membrane. 

Two different metadynamics approaches were tested. In the first approach, well-tempered 

metadynamics (WT-MetaD) in conjunction with US was used (referred to as US-WT-MetaD). The WT-

MetaD approached involved using a two-dimensional potential with Euler angle CVs to enhance the 

sampling of the roto-translational motion of the protein while US was used to restrain the protein at 

specific distances from the membrane surface along a reaction coordinate running perpendicular to 

the membrane surface. The free energy was then reconstructed using the reweighting protocol 

validated with the CO2 system described in Chapter 5. The rationale of this first approach was to use 

US to explore the centre-of-mass (COM) distance between the protein and the membrane, whilst the 

Euler angle CVs enhance the rotational motion of the protein on the membrane surface. This ideally 

would yield a more complete configurational ensemble from which a more accurate and reliable 

potential of mean force (PMF) can be extracted. This approach, whilst allowing for extensive sampling 
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of the z-coordinate around the centres of restraining harmonic potentials centre, does not allow for 

free translation of the protein along the z-coordinate. Because the harmonic potential causes the 

potential energy to increase quadratically with the distance from the centre of the umbrella, it very 

quickly becomes impossible for the protein to explore distances far from the umbrella centre. It is 

possible that this lack of translation in the z-coordinate prevents the protein from changing orientation 

on the membrane surface. To investigate if this affects the resulting PMF, in the second approach 

sampling was enhanced using three, mono-dimensional CVs. These CVs are the COM distance 

between the protein and the membrane and two Euler angles for the rotational motion. Parallel bias 

metadynamics (PB-MetaD) was used for this purpose as this method provides much faster 

convergence for three CVs than WT-MetaD.  

7.2 Methods 
 

7.2.1 WT-MetaD 
WT-MetaD was described in detail in Chapter 5, section 2.1. Briefly, WT-MetaD is a variant of classical 

metadynamics in which the Gaussian hill height decreases with time as a function of the bias potential 

previously deposited at a given value of a CV. The Gaussian height is rescaled according to equation 
94: 

𝑊 = 𝜔𝜏 𝑒
( , )
∆  

 
(44) 

By doing so the potential deposited will converge to 

𝑉 (𝑆, 𝑡 → ∞) = −
∆𝑇

𝑇 + ∆𝑇
𝐹(𝑆) + 𝐶 

  
(45) 

where C is an arbitrary constant. The bias converges to a limiting value that is dependent of the bias 

factor γ used, where: 

𝛾 =
𝑇 + ∆𝑇

∆𝑇
 

 
(46) 

WT-MetaD avoids the possible overfilling of the PMF that can occur with conventional metadynamics 

and converges to its final value with a lower error 103. 

7.2.2 PB-MetaD 
PB-MetaD was described in detail in Chapter 6, section 2.2. Briefly, PB-MetaD is a variation of the 

conventional metadynamics algorithm that makes uses of multiple, mono-dimensional biasing 
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potentials to explore, and later reconstruct, a multi-dimensional PMF 171. This method circumvents 

the problems with convergence seen in conventional metadynamics, where multiple CVs are sampled 

using a single, multi-dimensional biasing potential. As a consequence, it is not recommended to use 

more than a two-dimensional Gaussian potential in conventional metadynamics as the amount of time 

to reach convergence becomes prohibitive. PB-MetaD thus offers a trade-off in the accuracy of the 

resulting N-dimensional PMF obtained from combining one dimensional PMFs, with the possibility of 

handling efficiently an arbitrary number of CVs. 

7.2.3 Metadynamics with walkers 
To increase the efficiency of a metadynamics simulations, an algorithm making use of ‘walkers’ has 

been developed such that the simulation can be parallelized on multiple nodes 186. A single, long 

metadynamics simulation is split into N simulations and each one of these simulations is called a 

walker, and all walkers share and simultaneously sample the same PMF. The free energy F(s, t) is given 

at any moment by the sum of the Gaussian potentials deposited by all the walkers. While all walkers 

sample the same PMF, they do not interact in any other way, therefore minimizing the communication 

required between nodes. This approach is particularly effective if the starting structures for each 

walker can be selected to be situated at different points in the PMF. Rather than allowing the system 

to diffuse naturally to all the available regions of the PMF, the simulation has many starting points 

that can diffuse simultaneously. In our protein-membrane systems, the starting structures of the 10 

walkers were spaced along the z direction. 

7.2.4 Euler angles 
The collective variables used to enhance the rotational motion of ProTx-1 on the membrane surface 

were chosen to be the Euler angles α and β, as defined in Chapter 6, section 2.1. As before, the angle 

γ was not used, as the membrane surface is symmetric to rotation along the z axis of the peptide. 

7.2.5 US-WT-MetaD simulations  
Two replicas of this simulation setup were constructed in order to assess any starting condition bias 

after using WT-MetaD to enhance every window. The windows from 2.4 to 4.0 nm of the conventional 

US simulation described in Chapter 2, section 2.3, where used as starting points. Two sets of different 

starting structures were chosen from the original branch simulation and run until convergence of the 

MetaD potential. The starting structures for run 1 were chosen from the end of the simulation (t = 200 

ns) and the ones for run 2 were chosen from t = 130 ns. The windows after 4.0 nm were taken directly 

from the conventional US windows described in Chapter 2, section 2.3, since for COM-distances > 4.0 

the protein experiences free rotation in solution and no enhanced sampling is required.  

The position of the protein in each window was restrained to its reference value with a force constant 

k = 500 kJ/mol.  A WT-MetaD potential was deposited over two Euler angles α and β (as defined in 
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Chapter 6, section 2.1).  The WT-MetaD potential was deposited every 1 ps steps with a Gaussian 

potential height of 2.0 kJ/mol, with a width of 0.03 and a bias factor of 10.  The rate of decrease in hill 

height over time was used as a criterion for the convergence of the bias potential, which was 

considered to have been reached when h(s) was less than 0.05 kJ/mol for α and β, after which h(s) 

was considered quasi-stationary. All the analyses were carried out using the part of the simulation 

with a quasi-stationary potential.   

Consistently with how GROMOS54A8 force field was parametrized 87 electrostatic interactions were 

treated using a reaction-field approach with a cut-off rcoul = 1.4 nm and ε = 62 F/m. The temperature 

and pressure of the system were kept constant using the Nosé-Hoover thermostat 165 with τT = 0.5 ps, 

and a semi-isotropic Parrinello-Rahman barostat 166 with τp = 1.0 ps and compressibility of 4.6 x 10-5 

bar-1. 

The total time of simulation for every window, along with the time needed to reach convergence are 

reported in Table 2. 

Table 2 SImulation times for every window of the US-WT-MetaD simulations  

Window centre 

(nm) 

Total time  

US-WT-Metad run1 

(ns) 

Time to convergence 

US-WT-MetaD run1 

 (ns) 

Total time  

US-WT-Metad run2 

(ns) 

Time to convergence 

US-WT-MetaD run2 

 (ns) 

2.4 1165 1000 966 800 

2.6 1094 820 822 700 

2.8 1042 700 986 700 

3.0 1004 750 867 750 

3.2 1019 700 908 600 

3.4 1168 700 929 500 

3.6 808 400 667 500 

3.8 824 450 692 500 

4.0 931 400 704 300 

4.2 539 250 471 300 

4.4 536 200 748 300 
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7.2.6 PB-MetaD simulation 
A PB-MetaD simulation using 10 parallel walkers was performed using three CVs: the ProTx-1 – POPC 

membrane COM distance along the z-axis (dz), and the Euler angles α and β. The starting structures 

for the 10 walkers were obtained by extracting frames with varying dz values from the conventional 

US simulation described in Chapter 2, section 2.3. The 10 starting structures had dz values of 2.4, 2.6, 

2.8, 3.0, 3.2, 3.4, 3.8, 4.0 and 4.6 nm. For each CV, a PB-MetaD potential was deposited every 1 ps 

with an initial Gaussian potential height of 2.0 kJ/mol, with a width of 0.03 and a bias factor of 15.  The 

rate of decrease in the hill height over time was used as criterion for the convergence of the bias 

potential, which was considered to have been reached when h(s) was less than 0.01 kJ/mol for each 

CV, after which the potential was considered quasi-stationary. All the analyses were carried over the 

part of the simulation with a quasi-stationary potential.   

The electrostatic interactions, temperature and pressure were treated the same way described in 

paragraph 2.5.  

7.2.7 Reconstruction of the PMF  
The PMF in the US-WT-MetaD simulations was obtained through the reweighting process described 

in detail in Chapter 5, section 2.3, which makes use of WHAM to reweigh the combined trajectories 

from all windows. The weight of every frame in the ensemble was obtained using the quasi-stationary 

bias of every US-WT-MetaD window on the combined trajectory. The full PMF was then calculated 

from the histograms of dz, reweighted with the appropriate weight for every frame, using the relation 

F(s) = -kbT ln H(s). The calculation was performed in two sections because the implementation of 

WHAM used to obtain the weight from every frame could not handle the exponential of the bias of 

windows too far from each other. First, the free energy from the windows starting from 2.4 to 3.8 nm 

(MetaD enhanced) was calculated using the combined trajectory. Second, windows from 4.0 to 4.4 

nm from the conventional US original branch described in Chapter 2, section 2.3, were concatenated 

and the free energy was calculated in the same way. As the PMFs obtained from WHAM are offset by 

an energy constant Fi 
2, the two sections of the PMF were aligned visually in the region that they 

overlap.  

In the case of the PB-MetaD simulations, the PMF was obtained through simple summation of the 

Gaussian hills using the standard sum_hills tool available in the PLUMED package185. 

 

7.2.8 Rotational Autocorrelation Functions 
Rotational autocorrelation functions were calculated as the autocorrelation function of the cross 

product of two ij and jk vectors, where j and k are atoms (or group of atoms) in the molecule, as 
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implemented in the GROMACS tool gmx rotafc. The atoms S17,Cα97 and S99 of ProTx-I where used 

to define the vectors ij and jk. 

  

7.3 Results and Discussion 
 

The aim of this part of the research was to test if the roto-translational motion of the peptide on a 

membrane surface could be described by a tumbling semi-rigid object. Two different approaches were 

tested: the first one combined US and WT-MetaD (US-WT-MetaD) and the second one used PB-

MetaD. The results from the US-WT-MetaD are presented first, followed by the PB-MetaD results, and 

a discussion of the overall findings from these two approaches. 

7.3.1 Rotational sampling in US-WT-MetaD 
To assess the effect of the metadynamics potential on the rotational sampling of ProTx-1 on the 

membrane surface, the trajectories from the different windows were combined. The protein was 

considered to be in close proximity to the membrane surface at dz < 3.0 and, thus, all corresponding 

frames were extracted from the combined trajectory. As seen in Chapter 6, the Euler angle β is the 

most difficult one to sample, being the angle defined between the z-axis of the current frame and the 

reference frame z-axis. The distribution of the Euler angle β was thus calculated for all of the frames 

of the combined trajectory (Fig 1). As a comparison, the data from the conventional US simulations 

are also shown.  A flat distribution of cos β means that every angle is sampled with equal probability. 

Therefore, a flat distribution of cos β would indicate that all possible angles are sampled and the 

rotational motion of the protein on the surface is uniformly sampled. Figure 44 shows that in the 

conventional US the protein exhibits three different preferred orientations, with cos β values of -0.35, 

0.4 and 0.75. Other orientations are not sampled or sampled very poorly. In contrast, in the US-WT-

MetaD the protein samples all available orientations, as indicated by an almost flat distribution of cos 

β in the case of US-WT-MetaD run1 and close to a flat distribution for US-WT-MetaD run2.  
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Figure 44. Distribution of the Euler angle β for all the close proximity (dz < 3.0 nm) trajectory frames 
for the US and US-WT-MetaD simulations.  

 

As a second, independent assessment of rotational sampling, the rotational correlation 

autocorrelation function (RACF) was calculated for every window in the conventional US simulations 

and the corresponding windows in the two US-WT-MetaD simulations (Figure 45).  It can be seen that 

in the classical US simulations, in most windows from dz = 2.4 to 3.8 nm, with the exception of 

windows dz = 3.2 and 3.6 nm, the RACF has values higher than 0.8 for the entire duration of the 

simulation. Such a high value and the complete lack of decay in the RACFs indicate the presence of a 

strong autocorrelation, such that the orientation at the end of the simulation is strongly correlated to 

the starting configuration of the protein in the simulation, suggesting that the protein does not diffuse 

rotationally at all. For windows dz = 3.2 and 3.6 nm there is some decay in the RACF but it takes more 

than 70 ns to reach a value of 0. This is much longer than for windows far from the membrane (dz ≥ 

4.0 nm), where the RACF decays to zero in approximately 5 ns. A decay time of less than 5 ns is 

consistent with the decorrelation time measured in a 200 ns simulation of the protein in fully hydrated 

in water.  
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Figure 45. Rotational auto correlation functions (RACFs) for every umbrella window of the simulations. 
A: Conventional US, original branch described in Chapter 2, section 2.3. B: US-WT-MetaD run1. C: US-
WT-MetaD run2. 
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In contrast to the conventional US simulation, the RACF in the US-WT-MetaD simulations indicate the 

presence of a higher degree of rotational freedom, consistent with the distribution of the Euler angles. 

Although window dz = 2.4 nm remains strongly correlated (RACF = 0.75 for run 1 and RACF = 0.65 for 

run 2), the RACF for other windows exhibits faster decay compared to their counterparts in the 

conventional US simulations.  

For run 1, over 100 ns  window dz = 2.6 nm decay to a value of RACF < 0.6, whereas windows with dz 

> 2.6 nm all drop to RACFs values < 0.4 and further decay with time, with the exception of window dz 

= 3.0 nm, which appears to have a slight deviation from the trend. For run 2, windows dz = 2.6 and 2.8 

nm decay to values of RACF < 0.6 by 100 ns. Nevertheless, in both runs windows with dz ≥ 3.0 nm 

become completely decorrelated or are close to (RACF ≈ 0) by 100 ns, with the exception of the 

aforementioned window dz = 3.0 in run 1, which  keeps oscillating around a value of 0.4.  

The combined results from the distribution of Euler angles (Figure 44) and the RACF (Figure 45) 

suggests that Euler angle CVs are effective at enhancing the rotational sampling of ProTx-1 close to 

the membrane surface. 

7.3.2 PMFs from US-WT-MetaD 
As discussed in Chapter 1, a simulation with improved rotational sampling is expected to yield a more 

accurate estimate of the PMF. Figure 46 shows the PMFs obtained from US-WT-Metad run 1 and US-

WT-Metad run 2 compared with the PMF obtained from the conventional US simulation. The PMFs 

from run 1 and run 2 agree on the overall shape, being flat far from the membrane (> 4.0 nm), 

gradually decreasing to a minimum (~ 3.2 nm), encountering a barrier with a maximum (~ 2.6 nm) and 

another minimum closer to the membrane interior (~ 2.3 nm). Beyond this minimum the protein 

seems to be unable to push further into the membrane, as revealed by a rapidly increasing free energy. 

Despite agreement on the position of the minima and the maxima of the PMF, the PMFs from run1 

and run2 exhibit different relative values of the minima and the magnitude of the barrier that separate 

them. Both the PMFs differ in shape from the ones obtained through conventional US, as seen in 

Chapter 2, section 3. In the latter there is always only one minimum, which can vary in location from 

2.5 to 3 nm, which correspond to the protein being in contact with the membrane surface and more 

or less pushing into the membrane.  
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 Figure 46. PMFs obtained by the two US-WT-MetaD simulations through the WHAM procedure 

compared with the FES obtained using conventional US described in Chapter 2, section 2.3. 

 

The barrier seen in US-WT-MetaD PMFs around 2.6 nm has not been previously observed in any of 

the simulations described in previous chapters, and its origin is therefore unclear. Upon visual 

inspection of window dz = 2.6 nm of both run 1 and run 2 it is evident that the protein exhibits 

conformational changes that deform its structure. To quantify these structural changes in window dz 

= 2.6 nm and other windows, the change in RMSD over time was calculated for the two US-WT-MetaD 

runs. Figure 47 shows plots of the RMSD as a function of time calculated using the Cα atoms in the 

protein and the initial structure of the protein (at t = 0 ns) as a reference. It can be seen that for 

windows dz = 2.4, 2.6 and 2.8 in US-WT-MetaD run1 and windows dz = 2.6 and 2.8 nm in US-WT-

MetaD run 2, the protein RMSD increases to values above 0.3 nm. The most significant change is 

shown in window dz = 2.6 nm, which exhibits an RMSD value of 0.6 nm in run 1 and 0.47 nm in run 2. 

Figure 47C compares the distribution of RMSDs values in the original branch of conventional US, run 

1 and run 2. As it can be seen the fraction of frames with a value or RMSD > 0.3 nm is not negligible 

for either run 1 or run 2. This means that the protein undergoes substantial changes in structure during 

the simulation. Upon visual inspection this appears evident, especially around the free terminal 

regions not involved in the ICK motif.  

Due to the above conformational changes in the protein, the distribution of Euler β angle values 

appears wider than it actually is. Furthermore, the meaning of the Euler α and β angles in these 
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conditions is partially lost, as the optimal roto-translation that superimposes the two structures as 

defined for the two CVs no longer superimpose two quasi-identical structures.  

 

 

Figure 47. RMSDs for windows with dz < 3.0 nm. All the remaining windows had RMSD values falling 
below 0.2 nm, and were consequently deemed to be conformationally stable and, therefore, not 
reported. A: US-WT-MetaD run1. B: US-WT-MetaD run2. C: RMSD distribution in the conventional MD 
(top panel), US-WT-MetaD run1 (middle panel) and US-WT-MetaD run2 (bottom panel) simulations. 

 

The reason for this behaviour, which manifests only in windows near the membrane surface, is likely 

to be due to the interplay between the US harmonic potential, the WT-MetaD biasing potential, and 

the shape of the underlying PMF. The US harmonic potential restrains the protein to specific distances 

from the membrane with a force constant of 500 kJ/mol. At the same time, the WT-MetaD biasing 

potential deposited in the Euler angle space disfavours previously visited rotational states. If the 

barriers for rotation of the protein at a certain distance dz from the membrane are high enough due 

to steric hindrance or electrostatic attractions with the membrane, it then becomes energetically 

favourable for the MetaD algorithm to perturb the structure of the protein itself, rather than forcing 

the protein to rotate. 

The question therefore remains if the barrier that appears at 2.6 nm is a real barrier or is an artefact 

induced by the deformation of the protein because of the biasing potential deposited by WT-MetaD. 
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A possible solution to avoid this deformation in the protein is to use a softer US harmonic potential, 

allowing the protein the freedom to translate in dz, rather than enforce the rotation at every distance 

to the membrane. This might open up lower free energy pathways that would not have been 

accessible using a harmonic potential with a relatively high force constant. A PB-MetaD using Euler 

α,β and dz as mono dimensional CVs was conducted to assess this. If there are no or lower physical 

barriers on dz, the protein should be able to follow its preferred path of rotational motion across the 

different CVs. Figure 48 reports the RMSDs for all of the 10 walkers in the PB-MetaD simulations. 

 

Figure 48. Time evolution of the RMSD of the protein for every walker in the PB-MetaD simulation. 

It can be seen that most of the RMSD values fall under 0.2 nm, indicating that the protein exhibits a 

stable structure with no major changes in its overall conformation.  This further suggests that forcing 

the system to remain at a given dz while concurrently applying a biasing potential to the rotation of 

the protein is likely to cause the above described deformation of the structure of the protein in the 

US-WT-MetaD simulations.  

7.3.3 Free energy surface from PB-MetaD 
To assess the convergence of the PMF, their computed values were plotted as a function of the 

number of Gaussians deposited (Figure 49A). Using blocks of 20,000 Gaussians each to calculate the 

PMF, we can see that during the addition of the last 100,000 Gaussians the shape of the PMF remains 

substantially unchanged and can be considered to be converged. Figure 49B is instead manually picked 

using bigger block size for the Gaussians, still toward the end of the simulation. As it can be seen 

despite the overall shape not changing substantially, over time the position of the minimum closer to 

the membrane interface shifts from 2.9 nm to 2.7 nm. This shift in the minimum over long times likely 

depends on local fluctuations in the thickness of the membrane, which leave the COM distance 
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between the protein and the membrane unchanged, but change the local environment that the 

protein experiences. These fluctuations occur over hundreds of nanoseconds (as pointed out in 

Chapter 1, section 3) and are, therefore, a limiting factor in the convergence of a simulation. 

 

Figure 49. A: Change in the predicted FES  using the last 100,000 Gaussians in increments of 20,000. 
B: Change in the predicted PMF during the simulation for larger strides of Gaussians. 

Upon convergence of the PMF, if the selected CVs include all the slowest relaxing relevant fluctuations 

in the system, and the bias factor selected is appropriate, the energy barriers along the CVs should be 

easily overcome. This implies that the system should be able to freely diffuse from the membrane 

surface to the bulk and back along dz, similarly to the behaviour of a protein in pure water. In 

particular, every walker simulation should be capable of doing so.  To assess this, the dz coordinate of 

the protein in every walker simulation as a function of time was plotted in Figure 50. As it can be seen 

that no walker diffuses along the entire dz space. Figure 50B reveals that walkers 3, 4 and 6 can diffuse 

far from their initial positions, whereas the rest of the walkers either fluctuate around their initial 

position or slowly drift away.  
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.  

Figure 50. Time evolution of the protein-membrane COM distance. A: All the walkers B: Walkers 1, 4 
and 6 have significant transitions in the COM distance, indicating some degree of translational 
freedom. 

This signifies one of two things. Either the energy barriers on dz require a higher bias factor to be 

overcome, or that an important, slow-relaxing CV has not been included in the metadynamics 

simulation. If the latter is true, this would mean that the energy barriers are substantially higher than 

the current bias factor of 15 allows to explore. The effect of the bias factor γ on the energy barriers of 

the system is to reduce them by a factor of γ. Assuming that a barrier of 2 kT is expected to be 

overcome in an MD simulation, then the barrier that the system experiences on dz should be 

substantially higher than 2 kT after being affected by the MetaD potential. This would mean that the 

original height of the energy barrier would be substantially higher than γ*2*kT (i.e. 15 x 2 x 2.479 

kJ/mol= 74.37 kJ/mol), which is an unlikely high order of magnitude for the energy barriers of a 

biological system, such as the one under investigation. The omission of an important CV is thus more 

likely to be the problem. In my opinion this missing CV is related to the slow membrane dynamics, 

which is not currently included in the MetaD. This missing CV could be, for example, local fluctuations 

in the APL in the proximity of the protein, or the rapid exposure of one or more phosphate groups in 

the vicinity of one of the protein amino acids and/or the desolvation of residues in the protein and 

some lipid headgroups. 
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To assess if the method still manages to enhance the orientational sampling of the protein, the 

distribution of all the values of cos β for frames with dz < 3.0 was measured and is reported in Figure 

51. 

 

Figure 51. Distribution of Euler angle β of all the frames in close proximity to the membrane (dz < 3.0 
nm) for the US and PB-WT-MetaD simulations.  

The distribution of cos β appears somewhat flatter in the maximum values (0.006 for conventional US 

and 0.004 for PB-MetaD). Nevertheless, the enhancement of sampling is relatively minor and, despite 

the method not perturbing the structure of the protein, more research is required to determine a 

collection of CVs that allows the system to semi-freely diffuse along dz. 

This approach is therefore promising because it does not seem to induce the same artefacts that were 

found in US-WT-MetaD, but it requires further investigation to identify the missing relevant CVs that 

can correctly describe the membrane dynamics. 
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8 Conclusions  
The aim of the research described in this thesis was to develop new molecular dynamics simulation 

methods to obtain an estimate of the free energy of binding of small drug-like molecules and peptides 

to model biological membranes. To this end a number of enhanced sampling approaches were tested, 

including umbrella sampling (US), replica exchange with solute tempering (REST) and metadynamics 

(MetaD). In this chapter I summarise the achievements of this research and discuss the problems that 

are yet to be addressed in future work. 

8.1 Summary of methods implemented and tested 
 

8.1.1 Replica exchange with solute tempering for peptide-membrane systems 
REST was originally developed as a technique to enhance the sample of dihedral angles of solvated 

peptides. This meant that the focus of the technique was on intramolecular interactions. The scaling 

of intermolecular interactions was only an indirect effect of the modification of the Hamiltonian 

parameters necessary to temper the intramolecular interactions. Furthermore, the technique was 

developed for systems with only two tempering groups: the solute and the solvent. The system 

component (or components) chosen as the solute would have all the intramolecular interactions 

tempered by the tempering factor λ, while the intermolecular interactions with the solvent would be 

tempered by √λ. The component (or components) chosen as the solvent would have instead their self-

interactions left untempered. Being a stable and rigid structure ProTx-I is not expected to undergo 

conformational changes upon binding to a POPC membrane. The application of REST in its basic 

implementation is not ideal to enhance the sampling of this system, since to apply a scaling of √λ to 

the intermolecular interactions, a scaling of λ is needed on the intramolecular interactions, which are 

known not to vary in a significant way. 

In this research an alternative approach has been developed and implemented in a convenient and 

flexible way in GROMACS 4.6.7. This alternative allows the use of multiple tempering schemes for 

Lennard-Jones (LJ) and coulombic (coul) interactions. Different inter-molecular terms for the 

interaction between species i and j can be tempered each according to its own λ coul(i,j ) and λ LJ(i,j). 

The method was validated on three terpenoid molecules interacting with a DMPC bilayer and on an 

Ala-Trp dipeptide (described in the PhD thesis of Lanie Ruiz-Perez) penetrating through a model of the 

stratum corneum. The free energies of interaction and permeation of these test systems were 

consistent with previously reported experimental values. 
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8.1.2 Metadynamics for semi-rigid molecules 
There are limited examples of the use of MetaD to enhance the sampling of small molecules-

membrane interactions, especially in the field of protein-membrane interactions. Even fewer studies 

combine US with MetaD. In the few studies that have been reported, usually the molecule under 

investigation is a small drug-like molecule, and the collective variables (CVs) used are simple angles 

between vectors defined on atom positions and the z-axis or centre-ofmass (COM) distances between 

the membrane and the molecule. This can, however, cause local deformations in the protein or other 

artefacts, as discussed in Chapter 6.  These issues are further discussed in section 2.1.2 of this chapter.   

In Chapter 5 of this thesis, I describe the development of a protocol to perform WTMetaD-enhanced 

US simulations of small molecules interacting with a surface, including a reweighting protocol to 

extract the unbiased ensemble of any quantity of interest from a US-WTMetaD trajectory. As a test 

system, the free energy of interaction of a CO2 molecule with a LJ surface was predicted using this 

protocol. The predicted free energy of interaction matched well the theoretically predicted one, 

meaning that the simulation protocol is can reproduce the underlying free energy landscape.  

Next, in Chapter 6, I discussed the development of a new CV based on Euler angles to describe the 

rotation of a semi-rigid molecule on a membrane surface that would avoid the aforementioned local 

deformation problems. This was applied to ProTx-I in water and on its interaction with a model POPC 

membrane. The use of PB-MetaD with these Euler angle CVs showed an increase in sampling of the 

orientational space without deformation of the protein at various COM-distances. In Chapter 7, I 

described the simulations conducted for the interaction of Protx-1 with a POPC bilayer using the US-

WTMetaD and PB-MetaD approaches developed to obtain the free energy profile of the system.  

Simulations conducted with the US-WTMetaD approach suggest that using a high force constant for 

the US potential in conjunction with a history-dependent WTMetaD biasing potential can lead to 

structure deformation of the protein when it is in close proximity to the membrane. Nevertheless, in 

windows where the COM protein-membrane distance is larger than 2.8 nm, the protein retains its 

structure and there is enhanced sampling of its rotational motion with respect to the membrane 

surface. Future research into this approach could include the investigation of smaller force constants 

for the US potential or the use of replica exchange umbrella sampling (REUS) 99 instead of US to 

enhance the sampling of the COM distance CV.  

Simulations conducted with the PB-MetaD approach suggest that using a soft potential can avoid the 

aforementioned problems of structural deformations in the protein when it is near the membrane 

surface. This method can be used with an arbitrary number of CVs due to the mono-dimensional 

nature of the Gaussian potentials applied. There is, however, a trade-off in accuracy in favour of the 
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number of CVs that can be biased switching from N-dimensional to mono-dimensional Gaussian 

functions, but this trade-off can be worthwhile, especially if all the relevant, slow-relaxing CVs 

associated with the process under study can be included. At present the method manages to partially 

enhance the orientational sampling of the protein near the surface of a membrane, but the diffusion 

of the system along the CV is not as free as it would be expected in a converged MetaD simulation. 

Future work could involve a thorough correlation analysis of membrane properties with the proximity 

of the protein, to find the possible hidden CVs that are currently missing in the MetaD simulations.  

Furthermore, the current simulation approach could be extended under a converged static potential 

for a long enough amount of time such that adequate statistics for all the possible relevant 

configurational states of the membrane can be sampled. Once this is achieved, the ensemble from all 

the walker simulations could be combined and reweighted to remove the biasing potential effect so 

that the free energy profile can be calculated with the same protocol developed for US-WT-MetaD. 

 

8.2 Challenges  
 

The research described in this thesis assessed a range of enhanced sampling methods to address the 

problem of sampling the rotational motion of a peptide on a membrane surface. The original rationale 

behind this was that established enhanced sampling methods that have been tested extensively and 

applied to small molecules in the vacuum or in aqueous solution could extended to larger and more 

complex systems, such as protein-membrane systems. As the findings discussed in the previous 

chapters demonstrated, this premise did to not hold true to a sufficient extent.  

In the following sections, I summarise the main unresolved challenges that were encountered. I will 

start with a general discussion on dimensionality reduction which is, in my opinion, a problem of the 

utmost importance. Any efforts aimed at improving the sampling of small molecule-membrane 

interactions should be based on a thorough understanding and awareness of this challenge. I then 

discuss the main challenges that were encountered with the specific enhanced sampling methods 

developed and used in this thesis, and I suggest some possible solutions. 

  

8.2.1 Dimensionality reduction in membrane systems 
The larger the number of non-solvent atoms (N) in a system, the more complex its free energy 

landscape will tend to be. Also, the larger the value of N, the more complex and multi-dimensional the 

paths from a state A to another state B will be on this landscape. Consequently, for 3N-dimensional 

free energy landscapes, dimensionality reduction becomes essential. In a small system one can 
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discount many of its degrees of freedom (DOFs). For example, a Ala-Ala dipeptide in vacuum is a 

routinely used test system in which the sampling of the free energy landscape can be reduced to the 

sampling of its dihedral angles ψ and φ.   

The Ala-Ala dipeptide system contains only 23 atoms and reducing its dimensionality is relatively 

trivial. However, reducing the dimensionality of a system with several thousands of atoms is a much 

more challenging task. Consider, for example, a typical peptide-membrane system composed of a 

small protein 35 residues long and a bilayer with 128 lipids represented using a united atom force 

field. Discounting the solvent atoms, the membrane will have approximately 7000 atoms, interacting 

with approximately 375 atoms in the protein. The conformational space that these 7350 atoms can 

explore is extremely large, and no conformational parameter used to reduce its dimensionality can 

yield a full description of all the processes occurring at any given time in the system.  

A possible approach to reduce this problem is to reduce the number of particles in the system using 

coarse graining70,187. Coarse graining techniques describe groups of atoms as single beads 

reparametrized to match experimental data.  By coarse graining you can reduce the number of 

particles of the system by a factor of between 3 to 8187.  This technique obviously reduces the 

dimensionality of the system and allows to run longer simulations that can be then back mapped to 

atomistic precision.  

Nevertheless, even if using coarse graining techniques it is generally necessary to apply some kind of 

dimensionality reduction to assess convergence and interpret the trajectory of a complex system. A 

first obvious division of the system into the membrane and the protein is usually made. Some 

parameters are then used to describe each of the components, such as area per lipid (APL), membrane 

thickness or lipid tail order parameters in the case of the lipid bilayer to assess convergence to a stable 

state. Parameters like root mean square deviation (RMSD), radius of gyration (Rg) or secondary 

structure content (e.g. the percentage of β-sheet in the protein) are measures used to assess the 

convergence of the structure of a protein. These parameters are then also used to assess the effect of 

binding to the membrane surface on the structure of the membrane or the protein. 

To illustrate the complex interplay that the parameters chosen to describe a system have between 

each other in protein-membrane systems, let us divide the system into protein and membrane and 

use typical parameters used to describe both of them as single components.  APL and membrane 

thickness can be used to monitor the membrane and RMSD and Rg can be used to monitor the 

structure of the protein. We then want to use these parameters to measure the effect of the 

interaction between the membrane and the protein. This is a specific example, but the same kind of 

argument can be made for nearly any set of parameters chosen. All of these quantities undergo 
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characteristic, system-dependent fluctuations which, in the case of peptide-membrane systems, can 

take place over hundreds of nanoseconds. If all of these parameters were to be independent of each 

other as they are in a membrane in water or protein in water system, the convergence of the system 

can be assessed by monitoring the time-dependent evolution of these parameters. Instead all of these 

quantities are interdependent. For example, the APL of the membrane depends on how much the 

protein pushes into the membrane, which in turn depends on the instantaneous shape of the protein 

or the particular part of the protein that is exposed to the membrane surface.  The instantaneous 

shape of the protein is described by the Rg and the RMSD, which again start to change when the 

protein interacts with the membrane. This interdependence make it difficult to separate or quantify 

the contribution that a change in APL has on protein structure or vice versa. Furthermore, assuming 

that all of these parameters will converge to some stationary value, the will do so in a system-

dependent time frame, which is not guaranteed to be the same for every parameter. Assessing the 

overall state of convergence of a simulation then becomes strictly dependent on the set of parameters 

used to monitor the simulation. It is easy to underestimate these problems, which in my opinion are 

central to peptide-membrane simulations.  

Before commencing the enhanced sampling simulation of a protein-membrane system, it is thus 

advisable that a substantial amount of effort is dedicated to gathering accurate and extensive statistics 

on the separate components of the systems, e.g. the phospholipid bilayer in water and the protein in 

water. For each of these separate components, multiple replicas of long, conventional MD simulations 

should be carried out to collect statistics on long-term fluctuations. Once this information has been 

gathered, a careful statistical analysis of the properties that will be monitored in the protein-

membrane system should be conducted. Characterising the time-dependent fluctuations of 

parameters such as the diffusion coefficient or rotational autocorrelation functions of the protein in 

pure water, can help to rationalise any changes in these parameters obtained in simulations of 

protein-membrane systems.  

 

8.2.2 Replica exchange with solute tempering simulations of membrane systems 
 

Although the REST approach has many advantages, the scaling of the Hamiltonian in a complex system 

such as a protein-membrane system can easily lead to unexpected problems. Every time a new scaling 

regime is used, one needs to carefully test the system for the presence of any artefacts. For example, 

if the protein-membrane interaction is tempered down, but the protein-ion interaction is left 

untempered, one might expect to see abnormal behaviour of the ions with a lower interaction with 
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the membrane. This was indeed observed in the systems described in this thesis, where because the 

ions can still interact with the membrane and the protein with the same strength, the ions were 

observed to “bridge” the interactions between the protein and the water. These clearly anomalous 

behaviours can have substantial effects on the accuracy of a simulation. 

In the light of the results from MetaD with Protx-1 and the associated difficulty in finding all the 

relevant CVs, the REST3 approach still seems the most suitable approach to enhance the sampling of 

the rotational motion of a protein at a membrane surface. REST3 can be used to enhance all of the 

degrees of freedom (DOFs) associated with the protein-membrane interactions simultaneously. Tests 

on Protx-1 and Gomesin 168 showed that the method falls short when describing proteins with an 

extensive amount of self-interactions. This appears to be due to the presence of long-lived, self-

interacting conformations that appear in higher tempered replicas. After “trickling” down to the 

ground replica, these conformations require times of the order of tens of nanoseconds to relax to a 

stable conformation. Initially it was assumed that the rigidity of the ICK motif in the protein would 

keep its secondary and tertiary structure stable if the intramolecular Hamiltonian was kept 

unchanged. It was not expected that the structure of the protein in the tempered replicas would 

undergo extensive deformations nor that the relaxation times of these deformed structures would fall 

in a computationally prohibitive time range for a replica exchange simulation. These long relaxation 

times are not practical for a replica exchange simulation, so currently REST3 is not a method that can 

be suggested for use with proteins. A solution to this problem might involve the inclusion of the 

protein-protein dihedral and non-bonded terms in the replica exchange probability between adjacent 

replicas, without tempering the two terms. In the current implementation of REST3 these terms cancel 

out by design and, therefore, do not penalize deformed protein structure exchange attempts. This 

allows the trickling of deformed protein structures down the ladder of replicas as long as the protein-

membrane + protein-water contributions are of a similar magnitude. This effect is not significant in 

the case of small molecules like terpenes because the self-interaction contribution is almost 

inexistent, but it clearly becomes a problem with the increasing size of the solute. 

Unfortunately, due to time and resource constraints it was not possible to implement and test the 

inclusion of these terms in the Hamiltonian exchange routine, but future work should explore this 

possibility to hopefully extend the applicability of the REST3 method to highly self-interacting systems. 

 

8.2.3 Metadynamics simulations of protein-membrane systems 
MetaD is a very effective and powerful method to enhance the sampling along predefined  

DOFs. However, the application of a biasing potential on the system requires a thorough 
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understanding of the dynamics of the process and of the mathematical features of MetaD. The 

experience gained in the research described in this thesis suggests that altering the Hamiltonian of the 

system, even in slight and apparently intuitive ways, can lead to unexpected results. This is the case 

even for small systems such as the test system composed of CO2 and a LJ surface, described in Chapter 

5. The slightest mistake in the application of a potential can lead to large deviations from the expected 

behaviour. For example, when applying a LJ potential to increase the rotation of the CO2 molecule it 

matters to which atom the potential is applied to. If it is applied to one of the oxygen atoms, rather 

than the central carbon atom, it can lead to a torque acting on the molecule that forces it to adopt a 

specific conformation rather than rotate freely. For larger system with thousands of DOFs, it is 

important to remember that applying a Gaussian biasing potential on a CV means applying a force on 

the system through the derivative of the mathematical equation that defines the CV. This is important 

because the Gaussian function that is deposited on the potential energy surface only depends on the 

CVs used, which in turn are represented by mathematical functions defined on some atoms a1, a2, … 

aN. When the Gaussian function is deposited on the system an extra force is applied to all atoms 

involved in the definition of the CV. In my experience, for large systems the step where the force is 

applied to this subset of atoms can occur in a counterintuitive way.  

In the first attempts to bias the rotation of the protein at the membrane surface, the rationale was to 

use as CVs the angle between the z-axis of the simulation system and a vector defined based on the 

coordinates of two atoms belonging to the protein. This approach not only seemed intuitive but was 

also extensively used in previously reported studies to define the orientation of a protein (or molecule) 

on a surface. A logical step is then to enhance the rotational motion of the protein on the membrane 

surface using a CV that is based on the angle formed by the protein vector and the z-axis. When this 

CV was used in MetaD simulations, rather than the protein reorienting itself, only the two atoms 

involved in defining the vector moved. The displacement of the two atoms defining the vector turned 

out to be more energetically favoured than the displacement of the large number of water molecules 

necessary to reorient the protein. A useful exercise when designing a simulation that modifies the 

Hamiltonian could then be to try to imagine all of the possible ways in which the simulation might 

yield unphysical results because of the mathematical definition of the CV. Once the limiting behaviour 

of the CV has been identified, extensive tests should be conducted to check for anomalous behaviours. 

Another relevant problem is that for large systems the slowest relevant DOF is usually not known, and 

even if it is known conceptually it is usually difficult to design a CV to describe it effectively. The 

findings reported in this thesis show that in peptide-membrane systems the membrane thickness and 

APL fluctuation cycles are usually among the slowest DOFs in the system, with fluctuations taking over 

hundreds of nanoseconds. In this research, the focus was primarily on enhancing the sampling of the 
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rotational motion of the protein. This choice was made under the assumption that the orientation of 

a protein is easier to define in a CV than the complex equilibrium processes involved in the integrity 

of a membrane and its fluctuations. Furthermore, if one is interested in enhancing the sampling of the 

structural fluctuations of the membrane, there is, to the best of my knowledge, no prior studies that 

report use of a CV that can enhance the sampling of fluctuations in membrane thickness or APL. 

Nevertheless, without enhancing the sampling of these membrane fluctuations, long, continuous 

simulations are likely needed to attain the proper computation of the free energy landscape. This is 

because the effect of changes in membrane thickness and APL have to be averaged out over a 

statistically relevant sample of membrane fluctuations.  

When performing any type of MD simulation using MetaD with a new CV or if using any non-standard 

reweighting technique, it is important to test the simulation conditions of the final system with a 

smaller system for which the theoretical solution is known or can be accurately approximated. This is 

analogous to what I have done with the CO2 test system to validate the protocol that would have 

successively been used with Protx-1. Once the protocol can reproduce the theoretical solution, it is 

possible to proceed to apply it to larger, more complex systems. 

Finally, when using MetaD with membranes systems, it is advisable not to fully rely on the free energy 

that can be computed from the summation of the Gaussian biasing potential functions. Instead, after 

the MetaD potential has converged, the simulation should be further extended for a few hundreds of 

nanoseconds using the converged potential as static. Later this same potential can be used to reweight 

the ensemble obtained from this extended simulation. The free energy can then be obtained from the 

reweighted histograms of any quantity of interest, if the simulation is long enough, the slow 

orthogonal DOFs can be averaged out. 
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