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Abstract 

Wettability is the ability of a liquid to maintain contact with a solid surface, and it is controlled 

by the balance between the intermolecular interactions of the adhesive type (liquid to the 

surface) and cohesive type (liquid to liquid). As an interfacial phenomenon, wettability has 

been identified as one of the most critical factors that affect reservoir performance. 

Conventionally, the wettability is determined on rock core samples by measuring contact angle, 

imbibition (Amott method), or capillary pressure against saturation during centrifugal 

imbibition and drainage (USBM method). However, these methods can only provide the 

wettability of the core sample rather than in‐situ formation wettability. Therefore, some limited 

indirect methods to estimate the in‐situ wettability, such as using NMR and electrical logging 

data, have been developed. The use of elastic wave, which is sensitive to the elastic properties 

of the media, has been widely applied in geophysical exploration and oil field development. 

Previous studies have demonstrated that the lithology, type of pore fluids, and petrophysical 

parameters, such as porosity and permeability, significantly influence elastic wave dispersion 

and attenuation. However, the effect of wettability on the elastic wave has been little studied.  

The porous and permeable sedimentary rock provides space for geo-fluid (water and 

hydrocarbon) accumulation in the underground reservoirs. The vast interface area of the pore 

network and its wettability properties have enormous impacts on the fluid-flow hydrodynamics 

and spatial distribution of the pore-filling fluids, in which the slip boundary condition (SBC) 

prevails. In this thesis, the wettability effect on wave propagation is characterized as slippage 

in the wave-induced-fluid-flow (WIFF), where two different models (virtually enlarged model 

and apparent slip model) are created to bring the slip length as a wettability indicator to study 

the wettability effect on the wave propagation in the fluid-saturated porous media. The results 

show that increasing hydrophobicity yields a higher phase velocity and attenuation peak in the 

intermediate to high-frequency range. Significantly, the velocity predicted by the theoretical 

models in the hydrophobic porous media saturated by the non-wetting fluid is more sensitive 

to the frequency change than the case of hydrophilic porous media. Based on the discovery of 

the wettability effect on wave propagation, I achieve the primary objective of this research and 

develop a practical method to estimate the wettability by measuring the dispersion of the wave 

velocities, which has been validated by experimental tests. 

In addition, the dynamic permeability, wave velocities, and attenuation are studied by 

incorporating the vorticity diffusion (slow S-wave) and slip boundary condition into the pore-
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scale oscillatory forced flow model concerning the broadband pore size distribution. In the pore 

size distribution plot, there are often several peaks recognized as the characteristic pore sizes, 

which correspond to the sub-characteristic frequencies in the dynamic permeability. The 

wettability effect has also been studied experimentally in granular porous media, where the 

results can be interpreted by the wettability-dependent fluid spatial distribution. Only if the 

pore-filling fluid (e.g. water) wets to the solid grains or pore walls can it occupy the relatively 

small size pore such as grain contacts or cracks. The wetting fluid inside the small pores 

increases the stiffness of the media and enlarges the characteristic length of the force chains, 

therefore the wave velocities and scattering are influenced by the wettability.  
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Chapter 1. Introduction 

1.1. Overview of the Research 

The wettability refers to the phenomenon that one fluid spread on and adhere to the solid 

surface in the presence of immiscible other fluid(s). The wettability of reservoir rock has been 

well studied in the enhancement of oil recovery and reservoir engineering, which is mainly 

referring to the phenomena associated with water flooding, chemical sweep efficiency, fluid 

spreading on the solid in the environment of another immiscible fluid, or the capillary effect in 

the pore network in a porous medium.  

The elastic wave as a non-intrusive method is used in sonic well-logging, exploration 

geophysics, seismology, and rock physics experiments of the oil and gas industry. However, it 

has not reached its full potential in detecting some of the petrophysical parameters, such as 

wettability. The wettability and the elastic wave have been individually developing in their 

regime for a long time. Although some researchers have noticed that the wettability may affect 

the elastic wave velocity and attenuation (Shakouri et al., 2019; Wang et al., 2015), a thorough 

study on the mechanism is still insufficient. This research attempts to study the wettability 

effect on elastic wave measurements. The technique may also be used as a monitor method for 

dynamic water flooding and wettability alteration processes. Moreover, this study will explore 

the insight into the mechanism of how wettability influences acoustics measurements, which 

has not been extensively studied before. 

The interested frequency of the elastic wave for most geophysicists is the seismic frequency 

(10-1000Hz). In contrast, the wettability effect on elastic wave propagation in most fluid-

saturated reservoir rocks is only on sonic or ultrasonic frequency (>100kHz) based on this study.  

Thus, ignoring the impact of the wettability may only raise a minor error on the geophysical 

interpretations of seismic data such as AVO (Amplitude Variations with Offset) and FWI (Full-

Waveform Inversion).  A reservoir rock containing the solid matrix frame and the pore-filling 

fluid is a damper for the elastic wave where most of the attenuation is from the viscous 

dissipation (Mavko et al., 2009) in which the wettability of the rock plays a role. The elastic 

wave causes the wave-induced-flow in both micro-scale and macro-scale, wherein the former 

is known as local flow, and the latter is known as global flow. In some heterogeneous reservoirs 

(i.e., dual-porosity and dual-permeability), the wave-induced-flow can also occur in the 

mesoscopic scale (Ba et al., 2011; Pride et al., 2004). In the fluid-saturated porous medium, the 
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vast pore-fluid interface has an essential impact on the wave-induced-flow in all aspects. So, 

as long as there is relative movement between the fluids and the solid frame, the hydrodynamics 

of the pore-filling fluid is under the influence of wettability. The frequency is a crucial factor 

to determine the extent of the wettability impact by controlling the fluid relaxation and the time 

of the pressure equilibrium.  

The impact of the wettability on the elastic wave in fluid-saturated rock is on two significant 

aspects. The fluid slippage controlled by wettability may occur on the hydrophobic pore wall 

during the wave-induced-flow. The slippage is proportional to the degree of hydrophobicity of 

the solid matrix, marked by the contact angle, Amott index, or USBM index. Meanwhile, the 

impact of slippage varies on rocks with different inhomogeneous features at micro-scale, such 

as pore size distribution.   Another mechanism is that the fluid locations and spatial distribution 

determined by wettability can also affect the elastic wave behavior. The wetting fluid always 

tends to occupy the small pores such as grain contact, slit, aperture, cracks, or a small corner 

of the irregular shape pore where such pore space recognized as compliant pore has a dominant 

contribution on the wave dispersion and attenuation through wave-induced-local-flow 

comparing to the equant pore such as relative bigger size intergranular pore (Mavko and Jizba, 

1994). The wave dispersion here refers to the phenomenon that its velocity varies on different 

frequency ranges. Nevertheless, in such relatively small size pores (often < 108 m), the wave-

induced-flow, if there is any, should still obey the law of Poiseuille flow with no-slip boundary 

condition (Murphy III et al., 1986). Under the high overburden and confining pressure reservoir 

condition, the compliant pores are significantly compressed and even closed, the local flow 

effect may become minimal (Gurevich et al., 2010; Mavko and Jizba, 1994).  

Our study finds that the wettability could be identified by two indicators for Bentheimer 

sandstone and Indiana limestone. 

 The S wave velocity (or shear modulus) of non-wetting fluid saturated rock is higher than 

that of wetting fluid saturated rock. 

 The P wave velocity dispersion (Vp (high-frequency)- Vp (low-frequency)) of non-wetting 

fluid saturated rock is higher than that in the wetting fluid saturated rock. 

However, there are more fundamental controlling factors for wave dispersion and attenuation 

over the wettability in reservoir rocks such as the clay content which brings in the viscoelastic 

effect and distort the wettability effect. For instance, the two indicators fail on Berea sandstones 

to distinguish their wettability. Moreover, the two indicators are insensitive to complicated 
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wettability conditions such as fractional wettability wherein the wettability is unevenly 

distributed inside the porous media.  

1.2. Objectives  

Understanding the mechanism of the interaction between the wettability and the elastic wave, 

which is fundamental to develop the engineering technique of probing the reservoir wettability 

by the elastic wave method. This study serves the goal to explore the feasibility of prediction 

of the reservoir wettability by the elastic wave, including laboratory experiments and 

theoretical modeling.  The primary objectives of this thesis are: 

 Find out the connection between the velocities (including dispersion) and attenuation of 

P- wave and S- wave in saturated rocks and their wettability in the laboratory 

measurements. 

 Explore the mechanism of micro-fluid slippage in pore-scale under the wave excitation. 

 Develop the rock physics model to capture the wettability effect on the wave velocities 

dispersion and attenuation. 

 Provide a feasible methodology to predict the wettability by using the elastic wave 

measurement.  

1.3. Thesis Structure  

This thesis includes eight (8) chapters to address the objectives described above. Chapter 1 

gives the introduction of the research project, research objectives, and publication outlines. 

Chapter 2 includes the literature review of the relevant research. Chapter 3 to Chapter 7 

exhibits the theoretical models and experimental results with the corresponding discussion 

based on published papers. Chapter 8 concludes and summarises the entire Ph.D. research 

project. 

A summary of Chapter 3 to Chapter 7 is provided in the following. 

Chapter 3. Wettability Effect on Wave Propagation in Saturated Porous Medium 

Chapter 3 investigates the wettability effect on wave propagation in saturated porous media. 

Micro-fluid mechanics studies have revealed that fluid slip on the boundary of a flow channel 

is a pretty common phenomenon. In the context of a fluid-saturated porous medium, this 
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implies that the fluid slippage is proportional to the hydrophobicity, which is the non-wetting 

degree. Previous studies find that the wettability of the pore surface is strongly related to the 

slippage, which is characterized by slip length. To accurately predict the elastic properties of a 

fluid-saturated porous medium for different wettability conditions, the slippage of the wave-

induced flow has to be considered. Chapter 3 introduces the slip length as a proxy for 

wettability to calculate the viscous correction factor, dynamic permeability, and dynamic 

tortuosity of Biot theory for elastic waves in a porous medium. It demonstrates that, under 

different wettability conditions, elastic waves in a saturated porous medium have different 

phase velocities and attenuations. Specifically, it finds that increasing hydrophobicity yields a 

higher phase velocity and attenuation peak in a high-frequency range. 

Chapter 4. Elastic Waves in Porous Media Saturated with Non-Wetting Fluid 

For waves in porous media, it is popular to use Biot theory, which incorporates the wave-

induced global flow, accounting for frictional attenuation. The Biot theory assumes that the 

fluid is wetting to the solid matrix. However, the fluid is not always wetting the rock in real 

reservoirs. It was previously revealed that a non-wetting fluid parcel tends to slip on the solid 

wall pore boundary where the intermolecular potential between the fluid and solid wall is 

weaker than in wetting fluid conditions(Huang et al., 2008). This particular slippage feature 

means that the coupling relationship between the fluid and solid frame and frictional dissipation 

is likely to be very different between non-wetting and wetting fluid situations. In Chapter 4, 

this wave-induced slippage is characterized by using an apparent viscosity for the non-wetting 

fluid within the thin viscous boundary layer. This apparent viscosity is smaller than the 

viscosity of the bulk fluid. It demonstrates that the slip correction affects the dynamic 

permeability and dynamic tortuosity and results in slippage/wettability dependent on phase 

velocities and attenuation of the fully fluid-saturated rock. 

Chapter 5. Pore Size Distribution Controls Dynamic Permeability 

The dynamic permeability plays a key role in the wave-induced global flow, which is also 

under the influence of the pore size distribution and wettability. In Chapter 5, a dynamic 

permeability model depending on the pore size distribution and wettability is developed. 

Existing theoretical models for dynamic permeability assume that the frequency dependence is 

primarily controlled by a single characteristic length scale of the pore space. However, the fact 

that in most natural porous media, there exists a distinct range of pore sizes is ignored. To 

overcome this limitation, a dynamic permeability model is developed that explicitly 
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incorporates the pore size distribution and wettability effect. It shows that the pore size 

distribution has a first-order impact on the dynamic permeability. Since the pore size 

distribution can be deduced from techniques such as nuclear magnetic resonance, our results 

indicate the possibility to jointly use remote-sensing technologies for improved permeability 

determination and cross-fertilization of laboratory and in-field techniques. 

Chapter 6. Vorticity Dissipation and Slip Boundary Condition on Biot Mechanism in the 

Porous Media with Broadband Pore Size Distribution 

Chapter 6 explores the vorticity dissipation and slip boundary (wettability) effect on the 

viscous friction flow velocity due to the wave propagation, by which the vorticity diffusion and 

wettability impact on the Biot Mechanism (wave velocity and attenuation) in the saturated 

porous media with broadband pore size distribution. The viscous friction is proportional to the 

interface magnitude of vortices at the pore wall and is affected by the slip boundary condition 

of the micro-fluid flow, which is related to the wettability of the porous media. The pore size 

distribution data measured by nuclear magnetic resonance or mercury injection experiments 

are combined with vorticity diffusion and slip boundary effect to calculate the average friction 

force and the flow velocity from which an effective viscosity is obtained to account for the 

combined effect of the vorticity dissipation and the slip boundary. It works similarly to the 

viscosity correction factor that Biot (1956b) adopts for the high-frequency poroelasticity 

dynamics but reveals crucial insight on the impact of the vorticity diffusion, slip boundary, and 

pore size distribution on the wave dispersion and attenuation. The result shows that the vorticity 

diffusion increases both velocity and attenuation in the high frequencies when the vortices 

prevail; however, the slip boundary assists counteraction to decrease the attenuation through 

the friction reduction. The velocity and attention in intermediated frequencies are higher in the 

rock with more large pores compared to the result of the rock with more small size pores. The 

model prediction qualitatively agrees with the experimental results in which the dispersions of 

P- wave and S- wave velocity for non-wetting fluid saturated sandstones are higher than the 

exact measurements of wetting fluid saturated ones. 

Chapter 7. Wettability-dependent Wave Velocities and Attenuation in Granular Porous 

Media 

The presence of more than one fluid phase and different wettability conditions present 

additional complexities. While it is well known that wave propagation in dry granular porous 

media is dominated by the presence of force chains (Owens and Daniels, 2011), the influence 



20 

 

of the force chain network in (partially) saturated granular porous media with different 

wettability conditions remains largely unexplored. In Chapter 7 the laboratory experiments 

are designed by combining core flooding and ultrasonic measurement in glass bead packings 

that were chemically treated to alternate the wettability. The P- and S- wave velocity-

saturation-relation and attenuation-saturation-relation are obtained from the waveforms for 

both water-wetting and gas-wetting cases. The results show that there is a transition from a 

stable P-wave pulse at low and moderate saturations to a set of incoherently scattered waves at 

high saturation. The incoherent scattering in the gas-wetting case is negligibly small, whereas 

it is more pronounced in the water-wetting case. This transition is qualitatively interpreted 

through a wettability-dependent alteration of the force chains during the injection of the water. 

It concludes that only if water wets the grains can the liquid enter the grain contacts. These 

liquid bridges are thought to locally reinforce the force chains and increase their characteristic 

length scale. This leads to an increase in P-wave velocity and promotes incoherent scattering 

since the ratio of dominant wavelength to characteristic length scale decreases. In the gas 

wetting case, however, the presence of gas prevents the water from direct contact with the glass 

beads and therefore stops the formation and growth of the liquid bridges within the force chain 

network. 

1.4. Publication Outlines 

The thesis is hybrid organized based on the outcome of 3 peer-reviewed journal publications, 

1 submitted journal paper, and two conference papers listed below, which accordingly 

correspond to separate chapters. Also, one chapter (Chapter 6) includes non-published 

content. 

Chapter 3.  

Li, J. X., Rezaee, R., & Müller, T. M. (2020). Wettability effect on wave propagation in 
saturated porous medium. The Journal of the Acoustical Society of America, 147(2), 911-
920.  

Chapter 4.  

Li, J. X., Rezaee, R., Müller, T. M., & Sarmadivaleh, M. (2020). Elastic waves in porous media 
saturated with non-wetting fluid. The APPEA Journal, 60(1), 315-325. 

Chapter 5.  

Li, J. X., Rezaee, R., Müller, T. M., & Sarmadivaleh, M. (2020). Pore Size Distribution 
Controls Dynamic Permeability. Geophysical Research Letters, e2020GL090558.  
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Chapter 7.  

Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., Ma, R., & Sarmadivaleh, M. (2021). 
Wettability-dependent Wave Velocities and Attenuation in Granular Porous Media. Submitted 
to Geophysics. 

Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., & Sarmadivaleh, M. (2020). Wettability 
dependent P-wave scattering and velocity saturation relation in granular medium. SEG 
Technical Program Expanded Abstracts 2020. 

Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., Ma, R., & Sarmadivaleh, M. (2021). Path 
dispersion of elastic waves in granular matter. Paper presented at the SEG/SPWLA 2020 
Workshop: 7th Workshop on Porous Media: Structure, Flow and Dynamics, Virtual, 2–3 
December 2020. 
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Chapter 2. Literature Review – Wettability Measurement and Wave 

Propagation in Porous Media 

Wettability as an interfacial phenomenon has a significant influence on the water flooding 

performance; therefore, it has raised significant research interesting in petroleum engineering, 

especially the enhanced oil recovery and reservoir engineering. Multiple wettability 

measurement methods have been developed in the past decades. On the other hand, the study 

of wave propagation in porous media has been a key element of rock physics and geophysics 

research. There have been excellent research outcomes in each domain; however, minor 

research studies how the wettability of the rock impacts the wave propagation. This chapter 

provides a literature review of wettability measurement and wave propagation in porous media 

with related experimental works and proposed theoretical models. 

2.1. Method of Wettability Measurement 

2.1.1. Laboratory Method of Wettability Measurement 

The wettability of the porous media has a significant influence on the fluid distribution, 

capillary pressure, water flooding, residual saturation, etc. A complete literature review about 

wettability has been given by Anderson (Anderson, 1986a; Anderson, 1986b; Anderson, 

1986c; Anderson, 1986d; Anderson, 1986e; Anderson, 1986f).  

The most common laboratory techniques to measure the wettability are: 

• Contact Angle Method 

• Amott Method 

• USBM Method 

Contact Angle Method 

When a droplet of fluid adheres to the solid surface in the environment of another immiscible 

fluid, the contact angle is defined as the angle between the solid surface and the tangential line 

of the fluids interface, which varies depending on the wettability. For instance, in a water, oil 

and rock system, as illustrated in Figure 2. 1 Wettability system of water, oil, and rock system 

(Raza et al., 1968).Figure 2. 1 (Raza et al., 1968), if the water wets the rock, the contact angle 

is below 90°; however, if the water does not wet the rock, the contact angle is higher than 90°. 
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Figure 2.1 

Figure 2. 1 Wettability system of water, oil, and rock system (Raza et al., 1968). 

The interfacial tension balance along the contact line is well described by Young’s equation 

(Chow, 1998). 

𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑤𝑤𝑤𝑤 − 𝜎𝜎𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐 = 0                                                 (2.1) 

where 

𝜎𝜎𝑜𝑜𝑜𝑜 = interfacial tension between oil and solid 

𝜎𝜎𝑤𝑤𝑤𝑤 = interfacial tension between water and solid 

𝜎𝜎𝑜𝑜𝑜𝑜 = interfacial tension between oil and water 

𝜃𝜃𝑐𝑐 = contact angle. 

The contact angle method is accurate and often gives a quantitative value. However, the contact 

angle is usually affected by the roughness and limited to the small surface area where the testing 

fluid adheres, making the result unrepresented for the entire porous media.   

Amott Method 

Different from the contact angle method to measure the wettability of the surface, the Amott 

method involves the spontaneous and forced imbibition/displacement process, which is more 

suitable for the porous media wettability determination (Amott, 1959).  

Four quantities are required for the Amott method to calculate the wettability index: 

𝑉𝑉𝑤𝑤𝑤𝑤 = volume of water spontaneously imbibed 

𝑉𝑉𝑤𝑤𝑤𝑤 = volume of water forcibly imbibed 

𝑉𝑉𝑜𝑜𝑜𝑜 = volume of oil spontaneously imbibed 
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𝑉𝑉𝑜𝑜𝑜𝑜 = volume of oil forcibly imbibed. 

The modification of the Amott method often used is Amott-Harvey wettability index (WI) for 

better accuracy. 

WI(Amott) = 𝑉𝑉𝑤𝑤𝑤𝑤
𝑉𝑉𝑤𝑤𝑤𝑤+𝑉𝑉𝑤𝑤𝑤𝑤

− 𝑉𝑉𝑜𝑜𝑜𝑜
𝑉𝑉𝑜𝑜𝑜𝑜+𝑉𝑉𝑜𝑜𝑜𝑜

                                                   (2.2) 

The positive value of WI indicates the water-wet condition, while the negative value of WI 

indicates the oil-wet condition.  

USBM Method 

 The USBM method uses the areas under the capillary-saturation plots for the wettability 

measurement. Typically the capillary pressure curve of the rock core sample is obtained by the 

centrifuging operation (Figure 2. 2).  

The USBM wettability index is calculated by (Donaldson et al., 1969), 

WI(USBM) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴1
𝐴𝐴2

                                                 (2.3) 

where 

𝐴𝐴1 = area under the capillary pressure curve for oil displacing water  

𝐴𝐴2 = area under the capillary pressure curve for water displacing oil 

When 𝐴𝐴1 > 𝐴𝐴2, the rock is water wet, otherwise the rock is oil wet. In the case of 𝐴𝐴1 = 𝐴𝐴2, the 

rock is neutrally wet sample. 
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Figure 2. 2 Capillary pressure curves for oil-water displacement in the rock core sample 
(Anderson, 1986d). 

More other approaches include the displacement technique, relative permeability method, 

capillary rise method, and various modified Amott and USBM methods (Causin and Bona, 

1994; Dixit et al., 1998; Ghedan and Canbaz, 2014; Owens and Archer, 1971; Ramakrishnan 

and Cappiello, 1991; Sharma and Wunderlich, 1987). 

2.1.2. Well Logging Approaches to Probe the Reservoir Wettability 

Besides the classic methods to obtain quantitative wettability, there have been other approaches 

introduced by several researchers during the past half-century.  

Well logging has been a widely used method to evaluate the geologic formation in the borehole. 

Various logging techniques, either wireline logging or logging while drilling, have been 

developd (Zinszner and Pellerin, 2007). Several candidates of well logging approaches could 

be used to evaluate reservoir wettability, such as nuclear magnetic resonance (NMR), electrical 

and dielectric logging.  

The first attempt to measure the fractional wettability by nuclear magnetic resonance method 

was developed in the 1950s (Brown and Fatt, 1956) in which the relaxation rate of oil wetting 

samples as discovered was lower than that of water wetting samples. Graham (1958) used the 

differential resistivity of original and surfactant injected formation to evaluate rock wettability. 
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Pirson and Fraser (1960) developed an oil-wet theory from the quantitative interpretation of 

electric logs (Pirson and Fraser, 1960). Also, Spinler (1996) and Spinler (1997) developed the 

concepts of Spontaneous Imbibition Index (SII) and apparent wettability based on which he 

proposed a method to evaluate carbonate reservoir wettability using neural networks. However, 

Howard (1998) suggested that wettability is related to surface relaxivity, which quantifies the 

ability of the grain surface to enhance relaxation. He employed the standard Amott method to 

test the wettability of core samples and the nuclear magnetic resonance method to predict 

wettability: 

𝑇𝑇𝑛𝑛 = 𝐶𝐶 ∗ 𝑆𝑆𝑤𝑤𝑏𝑏 ,                                                           (2.4) 

where 𝑇𝑇𝑛𝑛  is the normalized relaxation time between partially and fully water-saturated 

reservoirs; 𝑆𝑆𝑤𝑤 is the water saturation; b is an indicator correlated with wettability; C is the 

constant. 

Guan et al. (2002) analyzed the Amott-Harvey index with the differences and ratios in the 

relaxation time distributions (for both longitudinal magnetizations build up time T1 and 

transverse magnetization decay time T2). Relaxation time differences were defined as ΔT1 = 

(T1at Sor) - (T1 at Swi), ΔT2 = (T2 at Sor) - T2 at Swi). And relaxation time ratio was defined as 

(T1 at Swi)/(T1 at Sor), (T2 at Swi)/(T2 at Sor), where Swi is irreducible water saturation, and Sor is 

residual oil saturation. They found the relaxation time differences and ratio had a good linear 

relationship with the Amott-Harvey wettability index. The relaxation time difference decreases 

linearly as the samples are more water-wet and the relaxation time ratio increases linearly when 

the samples are more water-wet. 

Looyestijn and Hofman (2006) also studied several core samples under nuclear magnetic 

resonance experiments and found the wettability was a function of total wetting and non-

wetting surface. Cheng et al. (2016) synthesized two capillary pressure curves from both typical 

logging data and nuclear magnetic resonance data. They established a forecasting model based 

on the correlation between the wettability and the ratio of median pore radius derived from the 

two capillary pressure curves.  

Overall, the previous researches described above have extended the knowledge of the 

relationship between NMR well logging data and wettability. However, the relationship 

between wettability as a whole with sonic logging data (elastic wave) has not yet been studied. 

This thesis will examine both theoretical and practical methods to obtain a reliable wettability 

estimation correlation quantitatively by the elastic wave measurement.  
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2.2. Theory of Wave Propagation in Saturated Porous Medium 

The propagation of the elastic wave in the fluid saturated porous medium, especially its velocity 

dispersion and attenuation, has drawn significant attention from scientists and engineers. In the 

domain of the exploration geophysics, it is very common to observe the wave dispersion and 

attenuation where the dispersion refers to the phenomenon that wave velocities vary with 

different frequencies in the same rock, and the attenuation means the wave energy loss during 

the wave transmission.  These two features are the most commonly applied in the interpretation 

of seismic and sonic logging data to obtain geological and geophysical signatures and reservoir 

properties. 

In the past decades, there have been various researches on geophysics and rock physics (Mavko 

et al., 2009); especially, the studies on the dispersion and attenuation due to the wave-induced 

flow of pore-filling fluid during the wave propagation have developed several theoretical 

models (Biot, 1956a; Biot, 1962; Johnson et al., 1987; Mavko and Nur, 1979; Müller et al., 

2010) and multiple experimental methodologies (Bacri and Salin, 1986; Cadoret et al., 1995; 

Cadoret et al., 1998; Gregory, 1976; Lebedev and Lopes, 2013; Lebedev et al., 2009; Murphy 

III, 1984; Wyllie et al., 1956). The viscous frictional attenuation because of the wave-induced-

fluid-flow (WIFF) is related to the multiple scale (pore-scale, mesoscopic and macroscopic) 

heterogeneities (Figure 2. 3). Seismic transmission has been a key element for these studies 

where the elastic properties of the rock composite and even the fluid properties can be predicted 

by the arrival time and the amplitude of receiving waves.  

 



28 

 

 

Figure 2. 3 Multiple scale heterogeneity related to the elastic wave attenuation (Müller et al., 
2010). 

2.2.1. Gassmann Equations of the Application in the Multiple Fluids Saturated Rock 

The early study on the wave propagation problem in the porous medium began in the 1940s 

(Beranek, 1947; Biot, 1941). Gassmann (1951) developed a theory of fluid substitution, which 

is the so-called Gassmann equations bringing in the porosity effect. Gassmann equations are 

the fundamental theoretical basis established for the inversion of wave velocities and the elastic 

moduli.  In the application of the seismic wave in the oil reservoir surveillance, one of the 

important questions is how to predict the velocity of one fluid saturated rock by a given velocity 

of the same rock but saturated by another fluid. It is actually required to establish a relationship 

between the wave velocity of dry rock (solid frame) and the velocity of the saturated rock, 

which is known as the fluid substitution problem. The essential part of the fluid substitution is 

to predict the wave velocity from the reservoir condition petrophysical parameters such as 

temperature, pressure, porosity, mineralogy of the rock, etc. The velocities can be calculated 

by the density, bulk and shear modulus, or any two of the major elastic moduli: compressional 

wave modulus, Young’s modulus, Poison’s ratio, and Lame’s parameter.  
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For an isotropic reservoir rock, the bulk modulus of the saturated rock 𝐾𝐾𝐺𝐺 calculated by the 

Gassmann equation is (Mavko et al., 2009): 

𝐾𝐾𝐺𝐺 = 𝐾𝐾𝑑𝑑 +
�1−

𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
�
2

𝜙𝜙
𝐾𝐾f
+1−𝜙𝜙𝐾𝐾𝑠𝑠

−
𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
2
.                                               (2.5) 

The shear modulus of the saturated rock 𝜇𝜇𝐺𝐺 in Gassmanna's equations is assumed the same as 

the dry rock based on the assumption that the shear modulus of the fluid is zero.  

𝜇𝜇𝐺𝐺 = 𝜇𝜇𝑑𝑑.                                                      (2.6) 

𝐾𝐾𝑑𝑑  and 𝜇𝜇𝑑𝑑  are the bulk and shear modulus of the dry frame, respectively; 𝐾𝐾𝑠𝑠  is the bulk 

modulus of the solid matrix; 𝐾𝐾𝑓𝑓 is the bulk modulus of the pore-filling fluid; 𝜙𝜙 is the porosity 

(volume ratio of the pore void).  

The 𝐾𝐾𝑑𝑑 and 𝜇𝜇𝑑𝑑 can be determined by the measurements of the P and S wave velocities on the 

dry rock. 

𝐾𝐾𝑑𝑑 = 𝜌𝜌𝑑𝑑 �𝑉𝑉𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑
2 − 4

3
𝑉𝑉𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑
2 �,                                       (2.7) 

𝜇𝜇𝑑𝑑 = 𝜌𝜌𝑑𝑑𝑉𝑉𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑
2 .                                                    (2.8) 

The density of the dry rock can be simplified as 𝜌𝜌𝑑𝑑 = (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠 because the density of the 

pore filling air is negligible small comparing to the density of the mineral solid 𝜌𝜌𝑠𝑠. 

More than often in the natural reservoir rock, the solid matrix is a composite consisting of 

several minerals; in this case, the bulk modulus of solid  𝐾𝐾𝑠𝑠 can be obtained by the Voigt-

Reuss-Hill (VRH) average method (Berryman and Thigpen, 1985; Domenico, 1976; Zuo et al., 

1992). It is a combined algorithm of Voigt average and Reuss average of the n type minerals’ 

bulk moduli 𝐾𝐾𝑠𝑠𝑠𝑠, where the volume ratio of each ingredient is 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 1,2, …𝑛𝑛) : 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹1
𝐾𝐾𝑠𝑠1

+ 𝐹𝐹2
𝐾𝐾𝑠𝑠2

+ ⋯+ 𝐹𝐹𝑛𝑛
𝐾𝐾𝑠𝑠𝑠𝑠

,                               (2.9) 

𝐾𝐾𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐾𝐾𝑠𝑠1𝐹𝐹1 + 𝐾𝐾𝑠𝑠2𝐹𝐹2 + ⋯+ 𝐾𝐾𝑠𝑠𝑠𝑠𝐹𝐹𝑛𝑛,                      (2.10) 

𝐾𝐾𝑠𝑠 = 1
2
�𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐾𝐾𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�.                                (2.11) 

The density of the saturated rock is, 

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑠𝑠(1 − 𝜙𝜙) + 𝜌𝜌f𝜙𝜙.                                                   (2.12) 
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Once the bulk and shear moduli are obtained according to equation (2.5) and (2.6), the 

velocities of P and S wave can be precited as, 

𝑉𝑉𝑝𝑝 = �𝐾𝐾𝐺𝐺+
4
3𝜇𝜇𝐺𝐺

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠
,                                            (2.13) 

𝑉𝑉𝑠𝑠 = �
𝜇𝜇𝐺𝐺
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠

.                                                (2.14) 

In summary, the velocities can be predicted by Gassmann equations for the given fluid 

saturated reservoir rock with a known solid frame and fluid parameters. On the other hand, the 

Gassmann equations can be used for fluid substitution. If the velocities of saturated rock are 

known, the bulk and shear moduli of the solid frame can also be calculated. Then, one can also 

predict the velocities of the rock saturated with another fluid. For example, the bulk modulus 

of reservoir rock saturated by the 2nd fluid 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠2 can be calculated if the bulk moduli of the 

rock saturated by the original fluid 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1 (Mavko et al., 2009): 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝐾𝐾𝑠𝑠
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1

𝐾𝐾𝑠𝑠−𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1
−

𝐾𝐾f1
𝜙𝜙�𝐾𝐾𝑠𝑠−𝐾𝐾f1�

+
𝐾𝐾f2

𝜙𝜙�𝐾𝐾𝑠𝑠−𝐾𝐾f2�

1+ 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1
𝐾𝐾𝑠𝑠−𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1

−
𝐾𝐾f1

𝜙𝜙�𝐾𝐾𝑠𝑠−𝐾𝐾f1�
+

𝐾𝐾f2
𝜙𝜙�𝐾𝐾𝑠𝑠−𝐾𝐾f2�

.                          (2.15) 

𝐾𝐾f1 and 𝐾𝐾f2 are the bulk moduli of the original and the 2nd fluids, respectively. 

In the verification of the Gassmann equations for fluid substitution, it is found that the measured 

bulk modulus of the dry rock (i.e., vacuum oven-dried) is higher than the predictions (Mavko 

et al., 2009). A tiny portion of the fluid/moisture is required to be added to the dry frame to 

make the measurement and theory prediction match each other. It means that the “dry frame” 

in the Gassmann equations for fluid substitution is actually a slightly humid solid frame.  One 

of the assumptions of Gassmann equations is that the fluid has no chemical interaction with the 

solid frame. However, this assumption may be invalid for some natural sedimentary rocks as 

the pore-filling fluid inevitably interacts with the solid interface so as to change the strain of 

interfaces. For example, the bulk modulus and shear modulus of the solid frame for heavy oil 

saturated unconsolidated rock is higher than the prediction (Guo and Han, 2016).  The moduli 

of the water-saturated laminated sandstone is softened due to the clay swelling effect after 

water absorption (Nie et al., 2008). In addition, the bulk modulus of the “dry frame” in the 

Gassmann equations is not the same as that of the gas saturated porous medium but a parameter 

associated with volume change under the external stress in the condition of constant pore 

pressure. It may be approximated by the bulk modulus of the air saturated rock in the standard 
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temperature and pressure. However, in the high-pressure-high-temperature (HPHT) reservoir 

condition, the moduli of the gas in the pores cannot be ignored and such gas-saturated rock 

should not be treated as a “dry frame”. 

Other assumptions of Gassmann equations include 1. The bulk modulus of the solid 𝐾𝐾𝑠𝑠 

maintains the same everywhere, which requires the composite of the minerals are 

homogenously mixed; 2. The pore space is statistically isotropic which means that the 

wavelength should be much larger than the individual pore or grain size. Although the 

frequency of the transiting signals and the condition of most rock specimen meet the 

requirements of these assumptions in the laboratory, the Gassmann equations simplifies the 

pore geometry and ignores the tortuous feature of the pore network, which make the theory 

hardly being used to study fluid dynamics on the micro-scale and corresponding energy 

dissipation thereby.  

For a typical reservoir rock with a heterogeneous pore network (therefore uneven fluid 

distribution) and saturated by multiple fluids, it can be softened or stiffened depending on the 

signal frequencies (Cadoret et al., 1995; Carcione et al., 2003; Ruiz and Azizov, 2011). In the 

low-frequency range, the equivalent bulk modulus of the fluid can be calculated by the Wood 

equation, which is the Reuss average value for the fluids’ bulk moduli (Smith et al., 2003): 

𝐾𝐾f = � 𝑆𝑆1
𝐾𝐾f1

+ 𝑆𝑆2
𝐾𝐾f2

+ ⋯+ 𝑆𝑆𝑛𝑛
𝐾𝐾f𝑛𝑛
�
−1

,                               (2.16) 

𝑆𝑆𝑖𝑖 and 𝐾𝐾f𝑖𝑖(𝑖𝑖 = 1,2, …𝑛𝑛) are the saturation and the bulk modulus of the individual saturating 

fluid, respectively.  

Substitute it into the Gassmann equations, and one can calculate the bulk modulus of the rock 

saturated by multiple fluids, and the shear modulus remains unchanged. Together, it is called 

Biot-Gassmann-Wood (BGW) model (Toms et al., 2007), which requires  

1. all pores are interconnected;  

2. pore pressure maintains equilibrium at all the time and  

3. the mix-fluids spatial distribution is homogenous.   

Therefore, BGW model describes the condition of extreme relaxation between the fluids and 

the saturated rock as “soften”; the bulk modulus of a rock saturated by multiple fluids in BGM 

model is the lowest limit in the whole frequency range.   
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In fact, in the real reservoir, such relaxation conditions between different fluid phases almost 

never happen due to the capillary effect. The wetting fluid always covers the solid surface and 

occupies the small pores, which can be considered as a background fluid phase. In contrast, the 

non-wetting fluid conceived as embedded phase (i.e., patchy-saturation) is forced to stay in the 

relatively large pores and might be snapped off in discrete segments by the wetting fluids. For 

a neutral and fractional wettability condition, the distribution of the different immiscible fluids 

could be even more complicated. When a high-frequency incoming wave passes through rock 

with mix-saturation, the non-wetting and wetting fluids cannot balance the pressure differential 

in such a short expansion-retraction wave-cycle; therefore, the pressure equilibrium is broken, 

rendering the entire rock in a “stiffen” status. Müller and Gurevich (2004) and Toms et al. 

(2006) find that the high limit of the bulk modulus of such “stiffen” saturated rock could be 

predicted by the Biot-Gassmann-Hill (BGH) model, which incorporates the Hill average (Hill, 

1963) into the Gassmann equations. The bulk modulus of the mix-saturated rock 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 

calculated by BGH model is, 

1
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠+

4
3𝜇𝜇𝐺𝐺

= 𝑆𝑆1
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠1+

4
3𝜇𝜇𝐺𝐺

+ 𝑆𝑆2
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠2+

4
3𝜇𝜇𝐺𝐺

+ ⋯ 𝑆𝑆𝑛𝑛
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+

4
3𝜇𝜇𝐺𝐺

                       (2.17) 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖 = 1,2, …𝑛𝑛)  is the bulk modulus of the rock saturated by individual single fluid 

calculated by the Gassmann equations. 

The equivalent fluid density 𝜌𝜌f is calculated by the volume average method from the individual 

fluid density 𝜌𝜌f𝑖𝑖, 

𝜌𝜌f  = 𝜌𝜌f1 𝑆𝑆1 + 𝜌𝜌f1 𝑆𝑆2 + ⋯+ 𝜌𝜌f1 𝑆𝑆𝑛𝑛.                                    (2.18) 

Thus, by using the BGW and BGH model combined with equation (2.16-2.18), one can 

calculate the velocities of the rock saturated by multiple fluids in either the low frequency or 

the high-frequency range. 

Toms et al. (2006) recognize the P wave velocity calculated by BGH model represents the 

highest limit of the elastic wave in the high-frequency limit. In such a case, the local flow is 

unlikely to happen, and the rock is in the “hardest” status. However, the principle of Hill 

average is based on the static mechanics of solid mixture/compound. Therefore, one hidden 

assumption of equation (2.17) is that the wetting and non-wetting fluids are required to have a 

tight bond with the solid, and the pressure differential between fluids is only equilibrated by 

the solid, which is almost impossible for the non-wetting fluid.  
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Domenico (1976) and Nie et al. (2012) use Voigt average to calculate the equivalent bulk 

modulus of the mix-fluids, 

𝐾𝐾f = 𝑆𝑆1𝐾𝐾f1 + 𝑆𝑆2𝐾𝐾f2 + ⋯+ 𝑆𝑆𝑛𝑛𝐾𝐾f𝑛𝑛.                                    (2.19) 

Substitute equation (2.19) into the Gassmann equations, one obtains the Biot-Gassmann-Voigt 

(BGV) model, which describes the condition of the inhomogeneous mix of the immiscible 

fluids where in the low-moderate permeability formation there exists the patchy saturation of 

non-wetting fluid (Mavko and Nolen-Hoeksema, 1994). The strain of each fluid phase is 

assumed to be the same, but the pressure is imbalanced so that the mix-fluids are in the most 

unrelaxed condition and the equivalent bulk modulus reaches the highest value. In sum, there 

is relation 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵𝐵𝐵) >  𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵𝐵𝐵) >  𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵𝐵𝐵). 

2.2.2. Biot Theory of Poroelasticity 

Following Gassmann’s work, Wyllie et al. (1956) further create a model to assume the solid 

and fluid interlayered structure to calculate the velocity. Although the Gassmann equation and 

Wyllie model are simple and efficient in the calculation but it is far from enough to cover the 

complicated acoustic signatures for the fluid effect in the porous medium. It has been widely 

known now that wave dispersion and attenuation are mainly raised by the flow of the pore-

filling fluids. When a wave passes through the saturated porous medium, the relative fluid flow 

with respect to the solid occurs due to the pressure gradient generated by the out-of-phase 

motion between the solid and fluid phases and the microscopic inhomogeneity of fluid 

distribution. Such the wave-induced-flow further results in frictional dissipation until the 

pressure equilibrium is restored. According to the characteristic size of the pressure gradience 

causing the fluid flow, the wave-induced-flow is categorized into three types: macroscopic 

flow, microscopic flow, and mesoscopic flow.  

The macroscopic flow, also called global flow, is the fundamental form of wave-induced-flow. 

When the frequency is high, the fluid pressure gradient is created by the peak and trough of the 

wave; therefore, the relative motion of fluid with respect to the solid occurs; at this time, the 

assumption of Gassmann's theory is no longer valid. To tackle this problem, Biot (1956a) 

constructs the dynamic poroelasticity theory for isotropic porous medium saturated by fluid 

based on Darcy law and the Poiseuille flow model. Carcione (2015) and Qi (2015) have 

respectively made a detailed description of the derivation process of the equations of motion 
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for Biot theory by the Lagrangian principal and provided the solutions for velocities and 

attenuation of P and S waves. The equations of motion (Biot, 1956a; Biot, 1956b) are: 

𝑁𝑁𝛻𝛻2𝑢𝑢 + (𝐴𝐴 + 𝑁𝑁)𝛻𝛻(𝛻𝛻 ∙ 𝑢𝑢) + 𝑄𝑄𝑄𝑄(𝛻𝛻 ∙ 𝑈𝑈) = 𝜌𝜌11𝑢̈𝑢 + 𝜌𝜌12𝑈̈𝑈 −
𝐹𝐹𝜇𝜇f∅2

𝜅𝜅0
�𝑈̇𝑈 − 𝑢̇𝑢�,           (2.20a) 

𝑄𝑄𝑄𝑄(𝛻𝛻 ∙ 𝑢𝑢) + 𝑅𝑅𝑅𝑅(𝛻𝛻 ∙ 𝑈𝑈) = 𝜌𝜌12𝑢̈𝑢 + 𝜌𝜌22𝑈̈𝑈 + 𝐹𝐹𝜇𝜇f∅2

𝜅𝜅0
�𝑈̇𝑈 − 𝑢̇𝑢�.                          (2.20b) 

𝑢𝑢 and 𝑈𝑈are the average displacements of the solid and fluid, respectively; the single dot and 

the double dot above them represent first-order and second-order time derivatives, respectively; 

𝛻𝛻 is the Laplace operator; 𝜇𝜇f is the shear viscosity of the pore-filling fluid; 𝐹𝐹 is the viscosity 

correction factor, which equals to 1 (𝐹𝐹 = 1) in the low-frequency Biot theory; 𝜅𝜅0  is the 

permeability of the porous medium. 

The elastic parameters are, 

𝑁𝑁 = 𝜇𝜇𝑑𝑑,                                                            (2.21a) 

𝐴𝐴 =
(1−𝜙𝜙)�1−𝜙𝜙−

𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
�𝐾𝐾𝑠𝑠+𝜙𝜙�

𝐾𝐾𝑠𝑠
𝐾𝐾f
�𝐾𝐾𝑑𝑑

1−𝜙𝜙−
𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
+𝜙𝜙(𝐾𝐾𝑠𝑠𝐾𝐾f

)
− 2

3
𝑁𝑁,                                  (2.21b) 

𝑄𝑄 =
(1−𝜙𝜙−

𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠

)𝜙𝜙𝐾𝐾𝑠𝑠

1−𝜙𝜙−
𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
+𝜙𝜙𝐾𝐾𝑠𝑠𝐾𝐾f

,                                                       (2.21c) 

𝑅𝑅 = 𝜙𝜙2𝐾𝐾𝑠𝑠
1−𝜙𝜙−

𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠
+𝜙𝜙𝐾𝐾𝑠𝑠𝐾𝐾f

,                                                     (2.21d) 

and the density parameters are, 

𝜌𝜌11 = (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠 + [𝑇𝑇 − 1]𝜙𝜙𝜌𝜌f,                                         (2.21e) 

𝜌𝜌12 = [1 − 𝑇𝑇]𝜙𝜙𝜌𝜌f,                                                   (2.21f) 

𝜌𝜌22 = 𝜙𝜙𝜌𝜌f + [𝑇𝑇 − 1]𝜙𝜙𝜌𝜌f.                                             (2.21g) 

The parameter 𝑇𝑇 is the tortuosity. 

A pair of equivalent equations of motion for Biot theory is also derived by Biot (1962). These 

two sets of equations are fully equivalent to each other. The highlight is that, in the later ones, 

the relative displacement of fluid 𝑤𝑤 = 𝜙𝜙(𝑈𝑈 − 𝑢𝑢)  is used instead of the absolute fluid 

displacement 𝑢𝑢. 
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The predictions of the Vp and Vs by the Biot theory agree with Gassmann's theory in the low 

frequency but appear as a step shape and reach higher velocities in the high frequencies. The 

characteristic frequency 𝜔𝜔𝐵𝐵 = 𝜇𝜇f𝜙𝜙
𝑇𝑇𝜅𝜅0𝜌𝜌f

, also called Biot frequency represents the highest 

attenuation peak and separates the viscous-dominated low-frequency range and the inertia-

dominated high-frequency range. 

Biot theory assumes, during the wave excitation, the pore-filling fluid conducts Poiseuille 

laminated flow inside the pore network. When the frequency is beyond the crossover frequency, 

the Poiseuille flow is no longer valid so that Biot (1956b) further works out a correction model 

for the high-frequency range based on the analysis of the average velocity and the viscous 

friction force on the simple cylindrical and slit shape pores. The result is using a corrected 

viscosity 𝐹𝐹𝜇𝜇f to replace the original viscosity 𝜇𝜇f  in equation (2.20-2.21) so that the equations 

of motion are suitable for the whole frequency range. The viscosity correction factor 𝐹𝐹 is an 

indicator of the deviation of the global flow from the Poiseuille flow.  

In the original paper, (Biot, 1956b) use Fourier convention exp(iωt). Here, the viscosity 

correction factor 𝐹𝐹 for two types of pores under exp(−iωt) are written as, 

𝐹𝐹(𝑘𝑘) = −1
4
𝑘𝑘𝑘𝑘𝐽𝐽1(𝑘𝑘𝑘𝑘)
𝐽𝐽2(𝑘𝑘𝑘𝑘) , Cylindrical shape pore                         (2.22a) 

𝐹𝐹1(𝑘𝑘) = 1
3

i𝑘𝑘𝑟𝑟1𝑡𝑡𝑡𝑡𝑡𝑡ℎ(i𝑘𝑘𝑟𝑟1)

1− 1
i𝑘𝑘𝑟𝑟1

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(i𝑘𝑘𝑟𝑟1)
, Slit shape pore                           (2.22b) 

where 𝑟𝑟 is the radius of the cylindrical pore and 𝑟𝑟1 is half of the opening of the slit pore; i is 

the unit of the imaginary part of complex values; 𝐽𝐽𝑛𝑛(𝑛𝑛 = 0,1) is Bessel function of 𝑛𝑛 order.  

The oscillating viscous flow in the pores is a process of viscous diffusive wave generated on 

the solid boundary and propagate towards the interior bulk fluid (Li et al., 2020a). The 

parameter 𝑘𝑘 = �i𝜔𝜔
𝐷𝐷𝜈𝜈

 is the wavenumber of the viscous diffusive wave with its diffusivity 𝐷𝐷𝜈𝜈 =

𝜇𝜇f 𝜌𝜌f⁄ . 

By the analysis of the asymptotic values of 𝐹𝐹 and 𝐹𝐹1, Biot (1956b) find that 𝐹𝐹(𝑘𝑘) ≅  𝐹𝐹1(𝑘𝑘) 

when  

𝑟𝑟1
3

= 𝑟𝑟
4
.                                                           (2.23) 

Alternatively,  
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𝐹𝐹(𝑘𝑘) ≅  𝐹𝐹1 �
3
4
𝑘𝑘� ,                                       (2.24a) 

𝐹𝐹1(𝑘𝑘) ≅ 𝐹𝐹(4
3
𝑘𝑘).                                        (2.24b) 

Therefore, the viscous corrector factor can be unified to be one model by using a “structure 

factor” ξ. For example, 

𝐹𝐹(𝜔𝜔) = 1
3

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ(𝑖𝑖𝑖𝑖𝑖𝑖)

1− 1
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑖𝑖𝑖𝑖𝑖𝑖)

,                                          (2.25a) 

𝑘𝑘 = −𝑖𝑖ξ�𝑖𝑖𝑖𝑖𝜇𝜇f
𝜌𝜌f

.                                                       (2.25b) 

When ξ = 1 corresponds to slit pore shape model; ξ = 3
4
 corresponds to the cylindrical model 

and 3
4

< ξ < 1 represents a combined pore shape model.  

By the analysis of the potential flow and the boundary layer viscous flow under the oscillating 

pressure gradient, Johnson et al. (1987) develop the theory of dynamic permeability and 

tortuosity for porous medium. When the Biot model is corrected by the viscosity correction 

factor, a similar dynamic permeability model can also be derived.  

The low-frequency kinetic equation for the fluid in Biot theory can be written as (Biot, 1962; 

Carcione, 2007), 

−∇𝑝𝑝f = 𝜌𝜌f𝑢̈𝑢 + 𝑚𝑚𝑤̈𝑤 + 𝜇𝜇f
𝜅𝜅0
𝑤̇𝑤,                                       (2.26) 

where 𝑝𝑝f is the fluid pressure; 𝑚𝑚 = 𝜌𝜌f𝑇𝑇 𝜙𝜙⁄ . 

By considering the high-frequency correction on viscosity, equation (2.26) changes to, 

−∇𝑝𝑝f = 𝜌𝜌f𝑢̈𝑢 + 𝑚𝑚𝑤̈𝑤 + 𝐹𝐹𝜇𝜇f
𝜅𝜅0
𝑤̇𝑤.                                        (2.27) 

If we consider a plane-wave solution in the x-axis direction, varying as harmonic excitation 

𝑒𝑒i𝜔𝜔𝜔𝜔, we can re-write the equation (2.27) in the frequency domain as, 

−∇𝑝𝑝f = −𝜔𝜔2𝜌𝜌f𝑢𝑢 − 𝜔𝜔2𝑚𝑚𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑖𝑖 𝐹𝐹𝜇𝜇f
𝜅𝜅0

.                                 (2.28) 

It can be further recast as, 

iω𝑤𝑤 = 𝑘𝑘0
𝐹𝐹+𝑖𝑖𝑖𝑖𝜅𝜅0𝜔𝜔

𝜇𝜇f

�−∇𝑝𝑝𝑓𝑓 + 𝜌𝜌f𝜔𝜔2𝑢𝑢� 1
𝜇𝜇f

.                                  (2.29) 
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Therefore, the term 𝜅𝜅0
𝐹𝐹𝐵𝐵+

i𝑚𝑚𝜅𝜅0𝜔𝜔
𝜇𝜇f

 in this equation acts as dynamic permeability,  

𝜅𝜅𝐵𝐵(𝜔𝜔) = 𝜅𝜅0
𝐹𝐹𝐵𝐵+

i𝜔𝜔𝜔𝜔𝜅𝜅0𝜌𝜌f
𝜇𝜇f∅

.                                                     (2.30) 

We should notice that equation (2.30) is different from the definition of Biot estimation of 

dynamic permeability in the reference (equation (85) in (Pride et al., 1993)) which is based on 

drag force analysis. 

Equation (2.30) is the relation of the frequency depend on tortuosity and permeability under 

harmonic excitement 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 by analogy with the case using the opposite convention for the sign 

of Fourier transform in reference (Johnson et al., 1987).  

𝑇𝑇𝐵𝐵(ω) = − 𝑖𝑖𝜇𝜇f𝜙𝜙
𝜅𝜅𝐵𝐵(𝜔𝜔)𝜔𝜔𝜌𝜌f

.                                                  (2.31) 

Substituting equation (2.30) into equation (2.31), one obtains the dynamic tortuosity of high-

frequency Biot theory version as, 

𝑇𝑇𝐵𝐵(ω) = T − 𝑖𝑖𝜇𝜇f𝜙𝜙𝜙𝜙
𝜔𝜔𝜅𝜅0𝜌𝜌f

.                                                 (2.32) 

One of the prominent features of Biot theory is that it predicts there is a slow P- wave in the 

fluid saturated porous medium, which is a pressure diffusion process (citation). Slow P- wave 

is experimentally detected by Plona (1980). Berryman (1980) applies the Biot theory to the 

experimental result of  Plona (1980) successfully, which proves the feasibility of the theory. 

Later on, the slow P wave is also detected in the water-saturated sandstone in the ultrasonic 

frequency range (Kelder and Smeulders, 1997).   

Moreover, the partial differential equations in the Biot theory enable the numerical simulation 

of the elastic wavefield in the porous medium. For the past decades, researchers have developed 

several numerical methods for the wavefield, including finite difference method (FDM) 

(Wenzlau and Müller, 2009), pseudo-spectral method (PSM) (Furumura et al., 1998), finite 

element method (FEM) (Ichimura et al., 2007), spectral element method (SEM) (Komatitsch 

and Tromp, 1999), and etc. 

Although Biot theory has been widely used in the study of wave dispersion and attenuation in 

the saturated porous medium, it is still challenging to explain the actual observation data 

especially in the low-frequency (i.e., seismic) range (Buckingham, 2000; Gist, 1994; Johnston 

et al., 1979; Jones, 1986; Winkler, 1985). For the majority of the natural reservoir rock with 
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complicated pore networks and low permeability, the dispersion and attenuation mechanism 

may be mainly caused by the micro-scale fluid frictional dissipation.  

2.2.3. Squirt Flow Models 

The global flow described by the Biot theory is a macroscopic wave-induced-fluid-flow where 

the direction of the flow is mainly along with the wave propagation. However, the micro-fluid 

flow field in the small dimension geometry in the pore network has been ignored, which may 

cause the underestimation of the energy dissipation and the corresponding wave dispersion and 

attention.   

Mavko and Nur (1975) proposed the first version of the squirt flow model, which identifies a 

squirt flow mechanism for the fluid flow in the tiny fracture-like pores occurring in the 

direction perpendicular to the wave propagation. The squirt flow only occurs in the local area 

with a much smaller characteristic length than the macroscopic global flow, which is an 

important part of the wave energy dissipation. The prediction of the attenuation of the squirt 

flow model significantly exceeds that of Biot theory (Mavko and Nur, 1979). Meanwhile, the 

experiments show, if there are fracture-like pores in the pore network, the attenuation in the 

partially saturated (water and air) rock will increase significantly even if a very small portion 

of water is added into the pores, which may be explained by the squirt flow model (Mavko and 

Nur, 1979). 

The squirt flow model accounting for the local flow mechanism has been widely used to explain 

the “non-Biot” dissipation (Mavko and Nur, 1979; O'Connell and Budiansky, 1974; O'Connell 

and Budiansky, 1977; Winkler, 1985; Winkler, 1986). The local flow account for the “non-

Biot” dissipation occurs in the pore-scale have been further studied theoretically (Gurevich et 

al., 2010; Mavko and Jizba, 1991; Mavko and Nur, 1979; O'Connell and Budiansky, 1974; 

O'Connell and Budiansky, 1977) and experimentally (Han et al., 2018; Mavko and Jizba, 1994; 

Murphy III, 1984; Wang and Nur, 1988; Wulff and Burkhardt, 1997). 

One of the assumptions for squirt flow is that the pores are categorized into two kinds: the 

compliant (soft) pores with a small aspect ratio (height/length), and equant (stiff) pores with a 

large aspect ratio. The process of the squirt flow is that during the excitation of the external 

acoustic perturbation, the pore-filling fluid inside the compliant pore squirt into the neighboring 

equant pore in the local area while squirt flow in the macro-scale is still statistically zero; 

however, the energy dissipation thereby is nontrivial.  



39 

 

  Dvorkin and Nur (1993) apply the squirt flow model into the Biot theory and create a new 

model called the BISQ model. In the BISQ model, the reprehensive equivalent volume (REV) 

is considered as a cylindrical sponge within which squirt flow, and global flow occur at the 

same time during wave propagation (Figure 2. 4).  

 

 

Figure 2. 4 The BISQ model. (a) Biot flow and squirt flow in a rock due to seismic 
excitation; (b) A cylindrical representative volume of a rock. 

In the original Biot Theory (Biot, 1956a), the dynamical equations for the fluid saturated porous 

medium are, 

(1 − 𝜙𝜙)𝜌𝜌𝑠𝑠𝑢̈𝑢 + 𝜙𝜙𝜌𝜌f𝑈̈𝑈 = 𝑀𝑀𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

− 𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,                            (2.33a) 

−𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜙𝜙𝜌𝜌f𝑈̈𝑈 − 𝑚𝑚�𝑢̈𝑢 − 𝑈̈𝑈� − 𝜇𝜇f𝜙𝜙2

𝜅𝜅0
�𝑢̇𝑢 − 𝑈̇𝑈�.                      (2.33b) 

The pressure rate is, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐹𝐹𝑠𝑠𝑠𝑠(𝜕𝜕𝑈̇𝑈
𝜕𝜕𝜕𝜕

+ 𝛼𝛼−𝜙𝜙
𝜙𝜙

𝜕𝜕𝑢̇𝑢
𝜕𝜕𝜕𝜕

),                                     (2.34a) 

𝐹𝐹𝑠𝑠𝑠𝑠 = � 1
𝜌𝜌𝑓𝑓𝑐𝑐02

+ 1
𝜙𝜙𝜙𝜙
�
−1

.                                       (2.34b) 

where the elastic parameters are, 

𝛼𝛼 = 1 − 𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠

,                                                 (2.35a) 
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𝑀𝑀 = �𝛼𝛼−𝜙𝜙
𝐾𝐾𝑠𝑠

+ 𝜙𝜙
𝐾𝐾f
�
−1

.                                        (2.35b) 

𝑐𝑐0 is the velocity of elastic wave in the fluid, and the elastic parameter 𝑄𝑄 can be determined by 

equation (2.21c).  

In fact, equation (2.33) describes one-dimension (x-direction) movement where u and U 

represent the displacement of solid and fluid on the x-direction. For the same reason, equation 

(2.34) can also only describes one-dimension deformation. However, the fluid inside the 

cylinder REV may conduct the flow in the radial direction, which is normal to the wave 

propagation direction.  Dvorkin and Nur (1993) add the fluid flow term in the radical direction 

for equation (2.30), and the new formula is, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐹𝐹𝑠𝑠𝑠𝑠(𝜕𝜕𝑈̇𝑈
𝜕𝜕𝜕𝜕

+ 𝛼𝛼−𝜙𝜙
𝜙𝜙

𝜕𝜕𝑢̇𝑢
𝜕𝜕𝜕𝜕

+ 𝜕𝜕v̇
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟

v̇),                             (2.36) 

v is the displacement of fluid in the radial direction. This equation is a constitute equation for 

the fluid strain and stress in a 3D cylinder space. At the same time, the kinetic equation for the 

radical fluid flow following equation (2.33b) is, 

−𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜙𝜙𝜌𝜌f + 𝑚𝑚)v̈ + 𝜇𝜇f𝜙𝜙2

𝜅𝜅0
v̇.                                     (2.37) 

By solving the partial differential equation (2.36-2.37) and introducing the squirt characteristic 

length R (radius of the cylinder REV), the new pressure rate is obtained, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐹𝐹𝑠𝑠𝑠𝑠1 �
𝜕𝜕𝑈̇𝑈
𝜕𝜕𝜕𝜕

+ 𝛼𝛼−𝜙𝜙
𝜙𝜙

𝜕𝜕𝑢̇𝑢
𝜕𝜕𝜕𝜕
�,                                       (2.38a) 

The new coefficient for squirt flow 𝐹𝐹𝑠𝑠𝑠𝑠1is, 

𝐹𝐹𝑠𝑠𝑠𝑠1 = 𝐹𝐹𝑠𝑠𝑠𝑠 �1 −
2𝐽𝐽1(𝜆𝜆𝜆𝜆)
𝜆𝜆𝜆𝜆𝐽𝐽0(𝜆𝜆𝜆𝜆)�,                                             (2.38b) 

𝜆𝜆 = �𝜌𝜌f𝜔𝜔
2

𝐹𝐹
�𝜙𝜙+𝑚𝑚/𝜌𝜌f

𝜙𝜙
+ 𝑖𝑖 𝜇𝜇f𝜙𝜙

𝜅𝜅0𝜌𝜌f𝜔𝜔
��

1
2.                                   (2.38c) 

The BISQ model is a unified model incorporating the squirt flow into the Biot mechanism, 

which is big progress for people to understand the wave energy dissipation at the microscopic 

level. However, the geometry model is still too simple to represent the complicated pore 

morphology. The new parameter R as the characteristic length is also an unclear concept in 

rock physics. From the perspective of fluid mechanics, the weakness of BISQ is in equation 

(2.37) in which the wave propagation in the x-direction results in the fluid flow in the radial 
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direction. However, the wave-induced-flow should mainly occur in the direction of the pressure 

gradient, x-direction, rather than other directions. Therefore, the pressure in equation (2.37) 

promotes the Biot flow and radical squirt flow at the same time, whereby the pressure might 

be overused. 

In addition to the BISQ model, Mavko and Jizba (1991) provide a solution for the grain-scale 

local flow effect on the velocity dispersion and attenuation in the high frequency. It assumes 

the frame of fluid saturated rock is actually an unrelaxed wet frame whose compressibility is 

approximated by that of the dry frame in high confining pressure. A concept of a modified 

frame is created where only compliant/soft pores are saturated by fluid to describe the 

unrelaxed solid frame. The bulk and shear moduli of the pressure-dependent modified frame 

are, 

1
𝐾𝐾𝑢𝑢𝑢𝑢(𝑃𝑃)

≈ 1
𝐾𝐾ℎ

+ � 1
𝐾𝐾𝑓𝑓
− 1

𝐾𝐾𝑠𝑠
�𝜙𝜙𝑐𝑐(𝑃𝑃),                                  (2.39a) 

1
𝜇𝜇𝑢𝑢𝑢𝑢(𝑃𝑃)

≈ 1
𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃) −

4
15
� 1
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃) −

1
𝐾𝐾𝑢𝑢𝑢𝑢(𝑃𝑃)�.                             (2.39b) 

𝐾𝐾ℎis the bulk modulus of the dry frame under very high pressure when most of the compliant 

pores are closed. 𝜙𝜙𝑐𝑐 is the porosity of the compliant pores, which occupy 0.1% or even less of 

the rock volume. 

By substituting these moduli of the modified frame into the Gassmann equations (equation 2.5-

2.6), one can obtain the moduli of the fluid saturated rock. 

Following the Mavko-Jizba squirt theory, Gurevich et al. (2010) developed a simple squirt flow 

modal for the sandstone in the ultrasonic frequency in which the geometry of compliant-stiff 

pore model proposed by Murphy III et al. (1986) is considered (Figure 2. 5). 

 

Figure 2. 5 Sketch of the model configuration (Murphy III et al., 1986). Soft pore forms a 
disc-shaped gap between two grains, and its edge opens into a toroidal stiff pore. 
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In this simple squirt flow model, the shear modulus keeps constant as it in the Mavko-Jizba 

squirt flow model, but the bulk modulus of the modified frame is, 

1
𝐾𝐾𝑢𝑢𝑢𝑢

= 1
𝐾𝐾ℎ

+ �� 1
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑

− 1
𝐾𝐾ℎ
�
−1

+ � 1
𝐾𝐾𝑓𝑓
∗ −

1
𝐾𝐾𝑠𝑠
�
−1
𝜙𝜙𝑐𝑐−1�

−1

,                  (2.40)         

 The key factor in this model is the effective bulk modulus of the fluid-filled inside the 

compliant pores: 

       𝐾𝐾𝑓𝑓∗ = 𝑖𝑖𝑖𝑖𝜂𝜂∗,                                       (2.41a) 

   𝜂𝜂∗ = 3
2
�𝑎𝑎
ℎ
�
2
𝜂𝜂,                                      (2.41b) 

where a and h are the radius and thickness of the compliant pore, respectively, the aspect ratio 

is ℎ/𝑎𝑎 ≪ 1. 

We can see that the simple squirt flow model is based on the same promise of the binary pore 

structure as other squirt flow models: compliant pores and stiff pore as other squirt flow models 

where the former is responsible for the squirt flow related poroelastic dynamic moduli due to 

pressure change. Carcione and Gurevich (2011) incorporate the simple squirt flow model into 

the Biot theory to construct a hybrid Biot-Squirt flow modal based on which he performs the 

wavefield simulation. One limit of this model is that the fluid inside the compliant pore must 

be liquid; otherwise, the squirt flow model is no longer valid. 

2.2.4. Mesoscopic Flow Models 

The Biot-Gassmann and squirt flow models are mainly used for the single fluid saturated 

condition. For the multiple fluids saturated condition, the equivalent medium theories extended 

from Gassmann equations (i.e. BGW, BGH, and BGV) are commonly used. However, the 

multiple immiscible fluids inside the consolidated or low permeable porous rock are often in a 

patchy-saturation condition which may cause mesoscopic flow during the wave propagation 

(Ba et al., 2011; Cadoret et al., 1998; Carcione et al., 2003; Dutta and Odé, 1979; Gist, 1994; 

Johnson, 2001; Murphy III, 1984; Pride et al., 2004; Qi et al., 2014; Sun et al., 2015; Toms et 

al., 2006; White, 1975). The characteristic length of the mesoscopic flow is far larger than the 

typical pore size but still much smaller than the wavelength. 

Compared to the single fluid saturation, the multiple fluid saturation has a much higher wave-

induced pressure gradient across the fluids because of the compressibility difference between 
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the fluids. White (1975) first brings in the mesoscopic flow concept to solve the dispersion and 

attenuation problem in a water-air mix saturated sandstone. It considers a spherical air bubble 

in a periodically spatial arrangement to simulate the heterogeneous distribution of the fluids.  

 

Figure 2. 6 The inclusion and patch geometry in the White model for partially saturated rock. 

The original White model defines the pore space consists of a partial saturation cubic unit 

with a length of the side 𝑅𝑅𝑐𝑐 and each such unit contains a spherical gas bubble with a radius 

𝑅𝑅 (Figure 2. 6). For the convenience of calculation, the cubic unit is simplified to concentric 

sphere structure with outer radius is 𝑅𝑅𝑝𝑝 which represents the patch radius. It means that each 

cubic unit in the medium contains a sphere inclusion in the center. The cubic unit is treated as 

an outer sphere with the same volume. The ratio of (R/Rp)3 gives saturation. It is noticeable 

that the max radius of the gas pocket/bubble is 𝑅𝑅𝑐𝑐 which means the max gas saturation is 

π/6.  

The bulk modulus of a mixture of the water-gas saturated rock in the White model is 

calculated by the pressure 𝑃𝑃∗ and the corresponding volume changed 𝑉𝑉∗: 

𝐾𝐾∗ = 𝑃𝑃∗ 
𝑉𝑉∗ 

= 𝐾𝐾0
1−𝐾𝐾0𝑊𝑊

                                            (2.42a) 

W = 3𝑅𝑅2(𝑅𝑅1−𝑅𝑅2)(𝑄𝑄2−𝑄𝑄1)
𝑖𝑖𝑅𝑅𝑝𝑝3𝜔𝜔(𝑍𝑍1+𝑍𝑍2)                                       (2.42b) 

The R and 𝑅𝑅𝑝𝑝 are the radii of the concentric gas sphere and the liquid shell, respectively. 𝐾𝐾0 is 

the bulk modulus of the mixture without the fluid flow. 𝑅𝑅1,𝑅𝑅2,𝑄𝑄1,𝑄𝑄2,𝑍𝑍1,𝑍𝑍2 are coefficients 

associated with the petrophysical parameters, which can be found in the literature for the details 
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(Sun et al., 2015). The shear modulus is unchanged by the mix saturation in the White model. 

Take advantage of equation (2.42), and one can calculate the P wave velocity and attenuation. 
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Chapter 3. Wettability Effect on Wave Propagation in Saturated Porous 

Medium 

This chapter is a published peer-reviewed journal paper in The Journal of the Acoustical 
Society of America:  

Li, J. X., Rezaee, R., & Müller, T. M. (2020). Wettability effect on wave propagation in 
saturated porous medium. The Journal of the Acoustical Society of America, 147(2), 911-
920.  

3.1. Introduction 

In dynamic poroelasticity, the relative fluid-solid motion induced by a passing wave has been 

extensively studied (Müller et al., 2010). However, most of the research on either macroscopic 

or microscopic level only considers the no-slip boundary, where the pore-scale flow velocity 

at the pore wall is zero. Hereafter we denote this as the no-slip boundary condition (or no-slip 

BC). For instance, in an attempt to account for the viscous boundary layer flow, Biot considered 

the velocity of the wave-excited flow (global flow) at the pore wall to be zero (𝑣𝑣𝑠𝑠 = 0) (Biot, 

1956b).  In general, however, the flow velocity at the solid boundary is not necessarily zero. 

Then a so-called slippage boundary condition (𝑣𝑣𝑠𝑠 ≠ 0)  characterized by a slip length is 

common in micro-fluid mechanics (Vinogradova and Belyaev, 2011). The slip length b is 

defined as an extrapolated distance relative to the pore wall, where the tangential fluid velocity 

component vanishes at the wall of a virtually enlarged pore (VEP) as shown in Figure 3. 

1(Cottin-Bizonne et al., 2003; Ortiz-Young et al., 2013; Priezjev et al., 2005). The flow velocity 

at the solid boundary (interface of the real pore wall) is the slip velocity 𝑣𝑣𝑠𝑠.   

 

Figure 3. 1 The slip boundary condition (BC) with slip length b for oscillatory forced flow in 
a duct pore with radius r = a. The tangential velocity profile vanishes at the wall of a virtually 

enlarged pore (VEP) with radius r = a + b. 
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Literature has reported that the ratio of slip length to system size increase when the system size 

decrease. Generally, the proportion of slip length can reach 15% - 25% of the system size (pore 

size) in a nano-meter level system to 3.3%-3.8% of that in a millimetre level system (Lauga 

and Stone, 2003). Notably, the wettability or the degree of hydrophobicity of the flow channel 

can profoundly affect the degree of the flow slippage at the solid boundary. This has been 

proved in several experiments and molecular dynamics (MD) simulations (Barrat, 1999; 

Cottin-Bizonne et al., 2005; Huang et al., 2008; Ramos-Alvarado et al., 2016; Thompson and 

Robbins, 1990). These studies all point out that slippage will increase when the degree of 

wetting decreases (i.e. for increasing hydrophobicity).  

From a MD simulation perspective, the increasing hydrophobicity leads to the decrease of the 

intermolecular potential energy between fluid and solid with a different fluid molecular 

organization near the solid, which causes the slippage (Cieplak et al., 2001; Lauga et al., 2007). 

When the contact angle, which quantifies the wettability, increase, the flow boundary condition 

can dramatically differ from the no-slip BC (Barrat, 1999). For instance, the hydrophobic 

surface gained by patterned nanoscale roughness significantly increases the slippage and 

reduces the friction of the flow at the wall of the boundary interface (Cottin-Bizonne et al., 

2003).  

Because of the complicated nature of the interaction during the interfacial flow, there is not a 

specific formula to quantify the slip length with its control factors. However, a quasi-universal 

relationship at a microscopic level between slip length and one of its most crucial control 

factors, the static contact angle, has been suggested by   MD simulations (Huang et al., 2008),  

𝑏𝑏 ∝ (1 + cos 𝜃𝜃𝑐𝑐)−2                                                   (3.1) 

It relates the slip length b to the static contact angle of a liquid 𝜃𝜃𝑐𝑐, i.e.  where a liquid-vapor 

interface meets the solid surface. This relation is supported by laboratory observation (Ortiz-

Young et al., 2013). Therefore, we take the term (1 + cos𝜃𝜃𝑐𝑐)−2 is a kind of dimensionless slip 

length from which the relationship between slip length and wettability can be assessed. 

In the small, middle and large contact angle limits, we have: lim
𝜃𝜃𝑐𝑐→0

(1 + cos 𝜃𝜃𝑐𝑐)−2 = 0.25 , 

lim
𝜃𝜃𝑐𝑐→90

(1 + cos 𝜃𝜃𝑐𝑐)−2 = 1 , and lim
𝜃𝜃𝑐𝑐→180

(1 + cos 𝜃𝜃𝑐𝑐)−2 = +∞ . Figure 3. 2 shows that the 

dimensionless slip length increases dramatically along with increasing contact angle in the 
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range of 40˚ - 140˚. Meanwhile, the other controlling factors of the slip length could also be 

related to the wettability or intermolecular energy. For instance, the surface roughness may 

induce the de-wetting or hydrophobic property which enhances the slippage (Lauga et al., 

2007). In this chapter, we use the slip length as a proxy for the wettability given all the other 

control factors remaining the same. 

 

Figure 3. 2 The dimensionless slip length increases significantly during the transition of the 
flow surface from hydrophilic θc < 90° to hydrophobic θc > 90°. 

There are several models reported that account for the slip effect on the elastic wave in gas-

saturated (Liu et al., 2018; Markov, 2007; Markov and Markov, 2018; Umnova et al., 2009) 

and in liquid-saturated porous media (Tsiklauri, 2002). The no-slip BC is violated if the 

characteristic size of pore or grain becomes comparable to the molecular mean free path, 

which approximates to the slip length for gas flow (Umnova et al., 2009). As a consequence 

for elastic waves in porous media, it is found that the slip BC leads to lower attenuation and 

higher phase velocity compared to the results of the no-slip BC (Liu et al., 2018; Markov and 

Markov, 2018). 

The above pieces of evidence have revealed that the wettability expressed by the slip BC affects 

the wave dissipation, which may become substantial with escalating hydrophobicity. In this 

paper, we use a linear slip flow model with constant slip length to capture the wettability effect 

on wave propagation for a fully saturated isotropic porous medium. The slip length b is the 

only new parameter introduced in this study to account for the wettability effect. The structure 

of the paper is as follows.  In section 3.2, the viscosity correction factor of the virtually enlarged 

pore (VEP) model with slip BC is derived. It leads to a frequency- and wettability (slip length)-

dependent value for a given porous medium. In section 3.3 the dynamic permeability and 

tortuosity for the VEP model is worked out in analytical form and is compared with the high-
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frequency Biot correction (Biot, 1956b). The low- and high-frequency limits of the results are 

discussed. In section 3.4, the phase velocities and attenuation factors are solved explicitly for 

the slip boundary VEP model. Moreover, the phase difference and amplitude ratio of the fluid 

and solid phases are analysed.  Section 3.5 discusses the assumption of the model and its 

difference from the previous similar model. Last, section 3.6 summarizes the main findings.  

3.2. Virtually Enlarged Pore (VEP) Model 

3.2.1. The Velocity of the Oscillatory Forced Flow with Slip BC 

Following Biot's analysis, we consider an oscillatory forced non-wetting fluid flow in a duct 

pore with radius 𝑎𝑎 representing the characteristic pore size.  The pressure gradient is in the 

axial direction and neglected in the direction normal to the boundary (Figure 3. 1). The 

displacement is assumed to only occur in the axial direction. Under sinusoidal loading 𝑒𝑒i𝜔𝜔𝜔𝜔, 

the flow velocity with respect to the solid wall is a function of the distance to the centre 𝑟𝑟 and 

its expressions are developed by (Biot, 1956b) as 

𝑣𝑣 = 𝐶𝐶𝐽𝐽0(𝑅𝑅) + 𝑋𝑋
i𝜔𝜔

 ,                                               (3.2a) 

𝑅𝑅 = i𝑟𝑟�𝑖𝑖𝑖𝑖𝑖𝑖
𝐷𝐷𝜈𝜈

 .                                                    (3.2b) 

where 𝐶𝐶 is arbitrary constant, 𝐽𝐽0() is zero-order Bessel function, 𝑋𝑋 is the body force 𝜌𝜌f𝑋𝑋 =

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜌𝜌f𝑢̈𝑢,  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the pressure gradient, 𝑢̈𝑢 is the accelerating term of solid, i is the imaginary 

unit for the complex number, 𝜔𝜔 is the angular frequency of the incident wave, 𝑟𝑟 is the 

distance to the central axis. The square root part in equation (3.2b) is the diffusion wave 

number of the viscous wave,  𝑘𝑘 = �i𝜔𝜔𝜔𝜔
𝐷𝐷𝜈𝜈

  (Müller and Sahay, 2011a; Müller and Sahay, 

2011b; Müller and Sahay, 2011c), S is the sinuosity to represent the general condition of the 

canted pore, which is not parallel to the direction of the pressure gradient (Biot, 1956b), 𝐷𝐷𝜈𝜈 =

𝜇𝜇f 𝜌𝜌f⁄  is the kinematic viscosity, 𝜇𝜇f and 𝜌𝜌f are the dynamic viscosity and density of the fluid, 

respectively. 

Different from the no-slip BC, where the flow velocity becomes zero at the pore wall, the slip 

BC is characterized by the slip length b with b > 0. It has non-zero flow velocity at the pore 

wall (𝑣𝑣𝑠𝑠 > 0) and only at the mirror side of the pore wall the flow velocity extension line 

reaches zero,  
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𝑣𝑣|𝑟𝑟=𝑎𝑎+𝑏𝑏 = 0.                                                           (3.3) 

We notice that this zero-velocity only occurs when r = a + b, which is not the boundary in a 

real pore but in a virtually enlarged pore (VEP) as shown in Figure 3.1. For the moment, we 

assume a linear slippage with constant slip length b (Vinogradova, 1995). From equation(3.2a) 

and (3.2b) with the BC equation (3.3), we obtain the constant C  

𝐶𝐶 = −𝑋𝑋 i𝜔𝜔⁄
𝐽𝐽0(𝐴𝐴+𝐵𝐵)

                                                        (3.4)                                             

Therefore, the flow velocity in the VEP slip boundary model is obtained as, 

𝑣𝑣 = 𝑋𝑋
𝑖𝑖𝑖𝑖
�1 − 𝐽𝐽0(R)

𝐽𝐽0(𝐴𝐴+𝐵𝐵)
�                                                           (3.5a) 

𝐴𝐴 = 𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖𝑖𝑖
𝛽𝛽

                                                              (3.5b) 

𝐵𝐵 = 𝑖𝑖b�𝑖𝑖𝑖𝑖𝑖𝑖
𝛽𝛽

                                                              (3.5c) 

The HF Biot model adopts the no-slip boundary condition. It represents the condition for which 

the fluid is wetting the porous medium (Biot, 1956b; Murphy III et al., 1984). In contrast, the 

VEP model describes the condition of the non-wetting fluid saturated hydrophobic porous 

medium, where flow slippage occurs at the pore wall. This slippage is embodied in 

equation(5.5c). Essentially, it adds a viscous wave in the virtually extended boundary layer to 

the already existing viscous wave in the real pore channel. 

The flow velocity field can be decomposed into two parts: one is the potential flow dominated 

by the pressure gradient, the other is the viscous flow in the boundary layer dominated by the 

kinematic viscosity and the pore surface properties (Johnson et al., 1987; Müller and Sahay, 

2011c). The latter is a dimensionless item which can be deemed as normalized flow velocity 

which accounts for the dissipation.  

For a duct pore with 10 μm radius saturated with water, the normalized velocities of the 

oscillatory forced flow in VEP model (b = a/20) is frequency dependent and plotted in Figure 

3. 3a, which is based on equation (5.5a) regardless of the pressure gradient term 𝑋𝑋/i𝜔𝜔. At any 

given frequency, the velocity profile on the cross section of the pore is axisymmetric (Figure 

3. 3b) 
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Figure 3. 3 Normalized velocity profile of flow in a capillary duct pore with 10 μm radius in 
VEP model at a frequency range of: (a) 1k Hz – 3M Hz, and (b)100k Hz. 

Meanwhile, the slip velocity 𝑣𝑣𝑠𝑠 increases with the increasing frequency. The velocity profile 

changes from parabolic shape to saddle shape during the transition from low frequency to high 

frequency. This feature is related to the crossover from a viscous dominated regime at low 

frequency to the inertial dominated regime at high frequency. At high frequency, inertia 

prevents viscous fluid flow through the pore (Müller and Sahay, 2011c) but the fluid close to 

the solid interface (viscous boundary layer) is influenced by the drag force of the solid motion 

(Pride et al., 1993). It, therefore, renders higher velocity in the vicinity of the pore wall than 

that of the bulk fluid (potential flow field), which is under the control of inertial acceleration 

(Charlaix et al., 1988). We will show in section 3.4 that the out-of-phase motion between the 

fluid and solid becomes intensified in the inertial dominated high-frequency range and that it 

deviates from the parabolic velocity profile.  

The average pore-scale flow velocity 𝑣̅𝑣 can be calculated from the equal transient volumetric 

flow rate principle, 

∫ 𝑣𝑣 ∙ 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑎𝑎
0 = π𝑎𝑎2𝑣̅𝑣  .                                                 (3.6) 

Substituting equation(3.5a) into (3.6), we obtain the average flow velocity for the VEP model 

𝑣̅𝑣 = 2
𝑎𝑎2 ∫ 𝑣𝑣 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎

0 = 𝑋𝑋
𝑖𝑖𝑖𝑖
�1 − 2𝐽𝐽1(A) 

𝐴𝐴𝐽𝐽0(𝐴𝐴+𝐵𝐵)
�                                      (3.7) 

In the derivation of equation (3.7), the following identity for the Bessel function has been used 

∫𝑥𝑥𝐽𝐽0(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑥𝑥𝐽𝐽1(𝑥𝑥)                                                            (8) 

𝐽𝐽𝑛𝑛(𝑥𝑥) is Bessel function of n order with n = 0, 1. 
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3.2.2. Viscosity Correction Factor in VEP Model 

From equation(3.5a), we obtain the viscous friction stress of the flow in the VEP model, 

𝜏𝜏 = −𝜇𝜇f �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑟𝑟=𝑎𝑎

,                                                (3.9) 

and the corresponding total friction force, 

ℎ𝑉𝑉𝑉𝑉𝑉𝑉 = 2𝜋𝜋𝜋𝜋τ = −� 𝑋𝑋
𝑖𝑖𝑖𝑖
� 2𝜋𝜋𝜇𝜇f𝐴𝐴𝐽𝐽1(A) 

𝐽𝐽0(𝐴𝐴+𝐵𝐵)
      ,                                    (3.10) 

For comparison, the total friction force and the average flow velocity of the HF Biot theory are, 

ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −� 𝑋𝑋
𝑖𝑖𝑖𝑖
� 2𝜋𝜋𝜇𝜇f𝐴𝐴𝐽𝐽1(A) 

𝐽𝐽0(𝐴𝐴)
  ,                                               (3.11) 

𝑣̅𝑣𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑋𝑋
𝑖𝑖𝑖𝑖
�1 − 2𝐽𝐽1(A) 

𝐴𝐴𝐽𝐽0(𝐴𝐴)
� .                                                  (3.12) 

The frequency dependent viscosity correction factor 𝐹𝐹𝐵𝐵(𝜔𝜔), which quantifies the deviation 

from Poiseuille flow, is derived from the ratio of the total friction and the average flow velocity 

(Biot, 1956b), 

𝑓𝑓𝐵𝐵
𝑣𝑣�𝐵𝐵

= 8𝜋𝜋𝜇𝜇f𝐹𝐹𝐵𝐵(𝜔𝜔)      .                                           (3.13) 

Now we can use equations (3.7), (3.10), (3.11) and (3.12) to calculate the ratio of the average 

flow velocities and the ratio of the friction force of the VEP model and the Biot model. It yields 

to 

𝜃𝜃𝑣𝑣 = 𝑣𝑣�
𝑣𝑣�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

=
1− 2𝐽𝐽1(A) 

𝐴𝐴𝐽𝐽0(𝐴𝐴+𝐵𝐵)

1−2𝐽𝐽1(A) 
𝐴𝐴𝐽𝐽0(𝐴𝐴)

  ,                                                  (3.14) 

𝜃𝜃𝑓𝑓 = ℎ𝑉𝑉𝑉𝑉𝑉𝑉
ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

= 𝐽𝐽0(𝐴𝐴) 
𝐽𝐽0(𝐴𝐴+𝐵𝐵)

   .                                                   (3.15) 
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Figure 3. 4 The ratio of the average velocities and ratio of the friction force (real part) for 
VEP model and HF Biot model in the frequency domain for a 10 μm duct pore saturated by 

water. 

Figure 3. 4 shows that the VEP model leads to higher average flow velocity and notably lower 

friction force than the HF Biot model, especially at the high-frequency range. 

Substituting equation (3.14) and (3.15) into (3.13), we derive the viscosity correction factor for 

the VEP model, 

𝐹𝐹(𝜔𝜔) = 𝜃𝜃𝑓𝑓
𝜃𝜃𝑣𝑣
𝐹𝐹𝐵𝐵(𝜔𝜔) .                                                       (3.16) 

We notice that at low-frequency limit lim
𝜔𝜔→0

𝐹𝐹𝐵𝐵(𝜔𝜔) → 1, and lim
𝜔𝜔→0

𝐹𝐹(𝜔𝜔) → 𝜃𝜃𝑓𝑓
𝜃𝜃𝑣𝑣

< 1, which agrees 

with the higher average flow velocity (flow rate) observation in the static flow with slip 

boundary than the results with no-slip boundary (Cheng and Giordano, 2002; Lauga and Stone, 

2003). When the slip length 𝑏𝑏 = 0, there are lim
𝜔𝜔→0

𝐹𝐹(𝜔𝜔) → 𝜃𝜃𝑓𝑓
𝜃𝜃𝑣𝑣

= 1 and the VEP model reduce 

to the HF Biot model, as expected. 

3.3.  Dynamic Permeability and Tortuosity of the VEP Model 

3.3.1. Relationship Between the Viscosity Correction Factor and the Dynamic Permeability 

and Tortuosity 

The attenuation of the mechanical wave in a porous medium is mainly caused by the viscous 

dissipation which is due to the relative motion between the pore-filling fluid and the solid frame 

(Biot, 1956b). The viscosity adjusted by the correction factor becomes the frequency dependent 
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dynamic viscosity. Alternatively, this is expressed in terms of dynamic permeability and 

tortuosity (Berryman, 2003; Johnson et al., 1987).  

The dynamic permeability and tortuosity for HF Biot model under harmonic loading  𝑒𝑒i𝜔𝜔𝜔𝜔 (Hu 

and Wang, 2001) are expressed through, 

𝜅𝜅𝐵𝐵(𝜔𝜔) = 𝜅𝜅0
𝐹𝐹𝐵𝐵(𝜔𝜔)+

i𝑇𝑇∞ 𝜅𝜅0𝜌𝜌f𝜔𝜔
𝜇𝜇f∅

                                                        (3.17) 

𝑇𝑇𝐵𝐵(ω) = 𝑇𝑇∞  − i𝜇𝜇f𝜙𝜙
𝜔𝜔𝜅𝜅0𝜌𝜌f

𝐹𝐹𝐵𝐵(𝜔𝜔)                                                      (3.18) 

where 𝜅𝜅0 is the static permeability, 𝑇𝑇∞ is the static tortuosity and 𝜙𝜙 is the porosity.  

The corresponding dynamic permeability and tortuosity for VEP model follow the similar 

format as, 

𝜅𝜅(𝜔𝜔) = 𝜅𝜅0
𝐹𝐹(𝜔𝜔)+

i𝑇𝑇∞ 𝜅𝜅0𝜌𝜌f𝜔𝜔
𝜇𝜇f∅

                                                        (3.19) 

𝑇𝑇(ω) = 𝑇𝑇∞  − i𝜇𝜇f𝜙𝜙
𝜔𝜔𝜅𝜅0𝜌𝜌f

𝐹𝐹(𝜔𝜔)                                                    (3.20) 

Equations (3.16), (3.19), (3.20) with the incorporation of the VEP model are the core results 

of this paper.  

3.3.2. Properties of the Dynamic Permeability and Tortuosity in the VEP Model 

By analysing equation (3.17) - (3.20), we find in the high-frequency limit 

lim
ω→∞

𝜅𝜅(𝜔𝜔) = lim
ω→∞

𝜅𝜅𝐵𝐵(𝜔𝜔) → 0                                                 (3.21) 

lim
ω→∞

𝑇𝑇(𝜔𝜔) = lim
ω→∞

𝑇𝑇𝐵𝐵(𝜔𝜔) = 𝑇𝑇∞                                                (3.22) 

Moreover, at low-frequency limit, 

lim
ω→0

𝜅𝜅𝐵𝐵(𝜔𝜔) = 𝜅𝜅0   ,                                                          (3.23) 

lim
ω→0

𝜅𝜅(𝜔𝜔) = 𝜃𝜃𝑣𝑣
𝜃𝜃𝑓𝑓
𝜅𝜅0 > 𝜅𝜅0   ,                                                  (3.24) 
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lim
ω→0

𝐼𝐼𝐼𝐼[𝑇𝑇𝐵𝐵(𝜔𝜔)] = − i𝜇𝜇f𝜙𝜙
𝜅𝜅0𝜔𝜔𝜌𝜌f

  ,                                                   (3.25) 

lim
ω→0

𝐼𝐼𝐼𝐼[𝑇𝑇(𝜔𝜔)] = −𝜃𝜃𝑓𝑓
𝜃𝜃𝑣𝑣

𝑖𝑖𝜇𝜇f𝜙𝜙
𝜅𝜅0𝜔𝜔𝜌𝜌f

                                                   (3.26) 

It is worth noticing that only the imaginary part of dynamic tortuosity reaches a concise 

expression in the low-frequency limit (Johnson et al., 1987). In the fraction part of the dynamic 

tortuosity as equation (3.18) and (3.20), the complex viscosity correction factors 𝐹𝐹𝐵𝐵(𝜔𝜔)and 

𝐹𝐹(𝜔𝜔) cancel out the change of frequency dependent denominator at low frequencies rendering 

the real part of the fraction is none-zero. 

 

Figure 3. 5 Comparison of dynamic permeability (a) and tortuosity (b) (real parts) of HF Biot 
and VEP (b = a/20) models for a porous medium with 10 μm average pore radius. 

One of the remarkable features of 𝜅𝜅(𝜔𝜔) is that, in the low frequency limit, it reaches a value 

higher than the static permeability, which represents the case of the wetting fluid flow (Figure 

3. 5).  

This coincides with the literature reports wherein slip-corrected permeability is higher than 

the intrinsic permeability without slippage for the static flow (Hosseini and Tafreshi, 2010; 

Javadpour et al., 2015).  

The dynamic permeability and tortuosity are scaled by static parameters (𝜅𝜅0,𝒯𝒯∞) and the Biot 

characteristic frequency  𝜔𝜔𝐵𝐵 = 𝜇𝜇f𝜙𝜙/𝑇𝑇∞𝜅𝜅0𝜌𝜌f (Charlaix et al., 1988; Sheng and Zhou, 1988; 

Smeulders et al., 1992). They are also connected via (Johnson et al., 1987; Müller and Sahay, 

2011c), 
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𝑇𝑇(𝜔𝜔)
𝑇𝑇∞

= 𝜔𝜔𝐵𝐵
𝑖𝑖𝑖𝑖
∙ 𝜅𝜅0
𝜅𝜅(𝜔𝜔)

                                                    (3.27) 

3.4. Implementation of VEP Model  

The VEP model can be incorporated into the Biot theory (Biot, 1956a) by either using the 

viscous correction factor to correct the viscosity or using the dynamic tortuosity to replace the 

static tortuosity. The two approaches are equivalent. Here we use the equations of motion with 

wettability dependent dynamic tortuosity to solve for the phase velocities, attenuation, and 

amplitude ratio and phase difference of fluid and solid phases analytically. A plane wave 

analysis is given in Appendix A. We use equation (3.1) to arbitrarily select two slip lengths b 

= a/80 and b = a/20 to represent the neutral wetting and strong non-wetting conditions of the 

fluid saturated rock which correspond to the contact angle of 90˚and 120˚, respectively.  HF 

Biot model with the no-slip boundary is used to represent the wetting condition for the fluid to 

the rock matrix frame with a contact angle of 40˚. Meanwhile, Gassmann velocities are adopted 

as a benchmark for the phase velocities in the low frequency range. The parameters in Error! 

Reference source not found. are used in the numerical example. 

Table 3. 1 Parameters of water-saturated sandstone. 

Grain Bulk modulus, 𝐾𝐾𝑠𝑠 50 GPa 
Density, 𝜌𝜌𝑠𝑠 2650 kg/m3 

Matrix Porosity, 𝜙𝜙 0.2 
Bulk modulus, 𝐾𝐾𝑑𝑑 18 GPa 
Shear modulus, 𝜇𝜇𝑑𝑑 12 GPa 
Permeability, 𝜅𝜅0 200mD 
Tortuosity, 𝑇𝑇∞ 2.76 
Average pore 

radius, 𝑎𝑎 
10 µm 

Sinuosity,𝑆𝑆 1.49 
Brine Bulk modulus, 𝐾𝐾f 2.25 GPa 

Density, 𝜌𝜌f 1040 kg/m3 
Viscosity, 𝜇𝜇f 1 cP 

Remark: 1 cP =10-3 Pa·s; 1mD ≈ 10-15 m2 
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3.4.1. Phase Velocities and Attenuation 

The Biot theory predicts two kinds of compressional (P-) wave (denoted as p+ and p-) and one 

shear (S-) wave (Biot, 1956a), which remain unchanged when the slip length dependent 

viscosity correction factor or dynamic tortuosity is applied. An explicit expression for the phase 

velocities and the attenuation factors is given in equation (A3) and (A4). The velocities of fast 

P (p+) and S-wave under various wettability conditions coincide with the predictions of the 

Gassmann model in the low-frequency range. In the high-frequency range, the velocities of all 

three kinds of waves increase when the contact angle (slip length) and hydrophobicity increase. 

For instance, Error! Reference source not found. shows the phase velocity and attenuation 

(inverse quality factor) for the fast and slow P-waves. We observe that the step transition of 

phase velocity is sharper and velocity dispersion is more pronounced for the non-wetting 

condition (large contact angle) than that of the wetting condition (small contact angle) which 

qualitatively agree with the experimental results (Li et al., 2001; Moerig et al., 1996). The 

velocities for each wave mode converge to the same value regardless of the wettability in an 

upper high frequency bound. 
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Figure 3. 6 Fast P wave phase velocity (a) and attenuation (b), and Slow P wave phase velocity 
(c) and attenuation (d) under different wettability conditions. The arrow indicates the Biot 
characteristic frequency 𝑓𝑓𝑐𝑐 = 𝜔𝜔𝐵𝐵

2𝜋𝜋
. 

As far as attenuation is concerned, the slow P-wave is less influenced by wettability. Since the 

friction reduction effect from the interfacial slip is weak at low frequencies (Figure 3. 4), it 

does not affect much the attenuation of slow P wave in this frequency range. The effect only 

becomes strong at high frequencies; however, the attenuation of the slow P-wave becomes 

negligibly small. This may explain the minimal impact of the wettability on the attenuation of 

the slow P-wave. For the fast P-wave and S-wave, the bulging attenuation curves become more 

prominent and better “localized” in the frequency domain when the contact angle increases. 

The attenuation peak also tends to a higher value when the non-wetting degree increases.    

3.4.2. Amplitude Ratio and Phase Difference of Fluid and Solid Phases 

The motions of the fluid and solid are in phase for fast P-wave and S-wave, while there is an 

opposite-phase motion for the slow P-wave for which the amplitude of the fluid is higher than 

that of the solid (Biot, 1956a). The amplitude ratios and the phase difference between the fluid 
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and solid phases are calculated with equation (A13) - (A16) in Appendix A. These properties 

are examined for the two kinds of P-waves in the following discussion, whereas S-wave has 

very similar behaviours as the fast P-wave in the amplitude ratio and the phase difference 

between the fluid and solid phases. 

The amplitude ratio between the fluid and solid phases 𝑔𝑔𝑗𝑗 ( j = p+, p- ) are plotted in the 

frequency domain in Figure 3. 7. We observe that for the slow P-wave the amplitude of the 

fluid is much larger than that of the solid phase. This indicates that the energy of the slow P-

wave is mainly transmitted in the fluid phase that has been enhanced in non-wetting condition 

(large contact angle) at high frequencies.  For fast P- and S-waves, we observe that the fluid 

and solid keep the same amplitude at low frequencies. However, at high frequencies of fast P 

and S-waves, the amplitude of fluid becomes lower than that of solid which is exaggerated by 

increasing hydrophobicity and contact angle.  
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Figure 3. 7 Amplitude ratio of fluid and solid phases under different wettability conditions 
for (a) fast P wave, (b) slow P wave in the frequency domain. The arrow indicates the Biot 

characteristic frequency 𝑓𝑓𝑐𝑐 = 𝜔𝜔𝐵𝐵
2𝜋𝜋

. 
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Figure 3. 8 Phase difference between fluid and solid phases under different wettability 
conditions for (a) fast P wave, and (b) slow P wave frequency domain. The arrow indicates 

the Biot characteristic frequency 𝑓𝑓𝑐𝑐 = 𝜔𝜔𝐵𝐵
2𝜋𝜋

. 

The phase difference 𝜓𝜓𝑗𝑗( j = p+, p- ) is shown in Figure 3. 8. The phase difference of fluid and 

solid starts to deviate from zero with increasing frequency of the fast P-wave, which implies a 

slight out-of-phase motion between the two phases. The S-wave behaves similarly to the fast 

P-wave. For the slow P-wave, the phase difference also deviates from 180 deg at high 
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frequencies. The non-wetting condition with a larger contact angle renders a larger peak 

deviation for all kinds of waves. This indicates that the hydrophobicity enhances the opposite 

motion between fluid and solid for all three kinds of waves at high frequencies. For the large 

contact angle case, through the slip BC, the inertial motion of a fluid parcel is facilitated and 

the transaction zones of phase difference are sharper or better "localized" in the frequency 

domain. This means that the coupling between fluid and solid motion in non-wetting condition 

becomes weaker and therefore there is a tendency to promote out-of-phase motion. The 

negative values of the phase difference in fast P- and S-wave indicate the motion of the fluid 

phase is lagging behind that of the solid phase. 

3.5. Discussion 

In the Navier slip (Navier, 1823) and the Vinogradova slip models (Vinogradova, 1995; 

Vinogradova, 1998),  the slip length is a constant, which only depends on the properties of the 

pore surface and the fluid.  

This assumption is supported by various experimental results (Bonaccurso et al., 2002; 

Cottin-Bizonne et al., 2002; Joseph and Tabeling, 2005; Leger, 2002; Pit et al., 2000; 

Vinogradova and Yakubov, 2003). Following these results, we use the constant slip length 

assumption in the VEP model. It is worth mentioning that other studies suggest a shear rate 

dependent slip model (Spikes and Granick, 2003; Thompson and Troian, 1997). The effect of 

shear rate on the slip length is still a controversial element in the debate on the BC (Neto et 

al., 2005). Thompson and Troian (1997) suggest that the constant slip length is only valid at a 

low shear rate before it reaches the critical shear rate, while Spikes and Granick (2003) claim 

that the slip may only occur with a finite slip length at the shear rates above the critical shear 

rate. Even though the slip length may become non-linear at the boundary, we believe that an 

effective, constant slip length is a reasonable choice to represent the overall slippage for the 

non-wetting saturated case. 

 As mentioned in section 3.1, there have been several studies discussing the slip BC effect on 

wave propagation in a porous medium.  Most notably, Tsiklauri (2002) suggests a 

phenomenological model by extending the HF Biot model. While the construction of Tsiklauri 

(2002) is similar to the VEP model suggested here, it has to introduce three parameters to 

describe the fluid slippage. In contrast, the VEP model only introduces one, physically 

meaningful parameter, the slip length b, to characterize the slippage effect. 
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There is experimental evidence that the bulk modulus of a core sample saturated by either 

strongly wetting or weakly wetting fluid does match the Gassmann-Biot theory prediction; 

however, the shear modulus of brine-saturated (i.e. a weakly wetting fluid) synthetic porous 

material is smaller than the Biot-Gassmann prediction (Wang et al., 2015). We suspect that two 

competing mechanisms contribute to these observations. On the one hand, a change in the 

surface energy which might enhance or reduce the stiffness of the grain contacts is independent 

of frequency (Murphy III et al., 1984). As a result, the drained frame moduli also change. 

However, the related theory itself is incomplete and also beyond the scope of this paper. On 

the other hand, the VEP model is based on the hydrodynamic analysis of saturated pore under 

excitation of a compressional wave, in which the bulk modulus is affected by the 

wettability/slippage. Whether the shear modulus is affected is still unknown. Thus, the bulk 

modulus may increase a little bit owing to the slippage resulting from weakly wetting condition, 

so as to compensate the decrease from the surface energy change. 

3.6. Conclusion 

We use the slip length to characterize the wettability of a fluid saturated porous medium. The 

wettability dependent virtually enlarged pore (VEP) model with slip BC is developed. We 

demonstrate that the VEP and HF Biot models can be converted to similar formats with a 

viscosity correction factor, dynamic permeability, and dynamic tortuosity. However, only the 

VEP model takes account of the wettability factor in the calculation. Wettability effect on the 

phase velocities, attenuation, the amplitude ratio of fluid and solid and their phase difference 

are analysed. The VEP model predicts higher phase velocities and attenuation peaks for 

hydrophobic fully saturated porous media in high-frequency range than the corresponding 

results of the hydrophilic ones. Meanwhile, the out-of-phase motion of fluid and solid is 

promoted in the non-wetting condition. 
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Chapter 4. Elastic Waves in Porous Media Saturated with Non-wetting Fluid 

This chapter is a published peer-reviewed journal paper in The APPEA Journal: 

Li, J. X., Rezaee, R., Müller, T. M., & Sarmadivaleh, M. (2020). Elastic waves in porous media 
saturated with non-wetting fluid. The APPEA Journal, 60(1), 315-325. 

4.1. Introduction 

Elastic wave propagation in porous media containing a fluid has been attracting attention not 

only because of its scientific value in the study of underground aquifers (Lin et al., 2004; Wang 

and Hsu, 2009) but because of its importance in geophysics (Nolet, 2012; Poletto and Miranda, 

2004; Romanowicz, 2017) and wave motion enhanced oil recovery (Huh, 2006; Jeong and 

Kallivokas, 2017; Jeong et al., 2015; Kouznetsov et al., 1998) for the oil and gas industry. 

Most of the poroelasticity theories either do not consider the fluid-solid coupling effect or only 

assume a wetting condition where the fluids are all wetting to the solid frame. For example, the 

Gassmann equations only considers the compressibility of the solid and fluid, not their relative 

motion. The Biot theory considers the relative fluid-solid motion but assumes that the solid 

frame is wetted by default (Biot, 1956a; Murphy III et al., 1984). However, the fluid bearing 

reservoir of sedimentary rocks can be modelled as either a hydrophilic (water-wetting) or 

hydrophobic (hydrocarbon-wetting) porous media, depending on the wettability of the rock 

matrix. Wettability of the rock matrix is a key parameter that affects not only the capillary 

pressure, and therefore, the mechanical properties (Feng et al., 2019; Lu et al., 2019; Qi, 2015; 

Qi et al., 2014) but also the hydrodynamic behaviour of the fluid  (Barrat, 1999; Cottin-Bizonne 

et al., 2005; Huang et al., 2008; Ortiz-Young et al., 2013; Ramos-Alvarado et al., 2016). 

The hydrodynamic properties of the wetting and non-wetting fluid in the same porous medium 

can be very different so that the frictional dissipation and the flow velocity are largely different 

from each other. The most obvious hydrodynamic property difference is that the pore-scale 

flow velocity of the wetting fluid becomes zero at the pore wall (Figure 4. 1a), while the non-

wetting fluid, to which the pore surface is hydrophobic, tends to slip on the solid surface. This 

non-zero flow velocity at the solid surface is the so-called ‘slip velocity’ vs (Figure 4. 1b) 

(Barrat, 1999; Cottin-Bizonne et al., 2005; Huang et al., 2008; Ortiz-Young et al., 2013; 

Ramos-Alvarado et al., 2016). The former hydrodynamic condition corresponds to the slip 

boundary condition (BC), while the latter condition corresponds to the non-slip BC. The 

slippage of the non-wetting fluid flow is quantified by the slip length b, which is defined as the 
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distance between the fluid-solid interfaces and the virtual no-slip plane, where the interpolated 

flow velocity profile vanishes (Figure 4. 1b). 

There is evidence that wettability is one of the most critical factors affecting the slip length. 

For instance, Huang et al. (2008) conclude that the slip length b is proportional to the static 

contact angle θc in the vapour, which is an indicator of the wettability  

𝑏𝑏 ∝ (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐)−2.                                               (4.1) 

This relationship is further supported by experimental findings (Ortiz-Young et al., 2013). 

Therefore, we use slip length as a proxy for wettability. 

Another model of slip BC links the apparent slip (AS) effect to the decrease in the viscosity of 

the fluid inside the viscous boundary layer, with a thickness equal to the viscous skin depth δ 

near the hydrophobic surface (Figure 4. 1c) (Lauga et al., 2007; Vinogradova, 1995). The slip 

length b is 

𝑏𝑏 = 𝛿𝛿 � 𝜇𝜇f
𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1�,                                            (4.2) 

where 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the average viscosity of the fluid within the viscous skin depth δ and 𝜇𝜇f is the 

viscosity of the bulk fluid.  

 

Figure 4. 1 (a) No-slip BC; (b) slip BC with slip velocity 𝑣𝑣𝑠𝑠 and slip length b in a virtually 
enlarged pore wall; (c) slip BC with slip length b and smaller apparent viscosity 𝜇𝜇𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 inside 
the viscous skin depth δ than the viscosity of the bulk fluid 𝜇𝜇𝑓𝑓. 

When b → 0, 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 𝜇𝜇f corresponds to the conventional no-slip BC; when b →∞ , 𝜇𝜇f

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 

𝜇𝜇f corresponds to ideal fluid flow, wherein complete slippage occurs. Previous studies 
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demonstrate that the slippage originates from a low fluid molecular density organisation near 

the hydrophobic surface, owing to the low intermolecular potential between the fluid and the 

solid (Barrat, 1999; de Gennes, 2002; Granick et al., 2003). This low fluid molecular density 

organisation is only constructed by several molecular layers, and thus, does not affect the mass 

density at the pore-scale but reduces the apparent viscosity of the non-wetting fluid. 

Such wettability dependent molecular density has been studied by molecular dynamic (MD) 

simulations for argon liquid flow in a nanochannel (Cao et al., 2006) with the result shown in 

Figure 4. 2. We can see that the wetting ability represented by the static contact angle θ mainly 

affects the organisation of the liquid molecules near the solid boundary at r = ± 4.5σ, while the 

organisation of the molecules in the middle of the channel is less affected. σ = 3.405 × 10–10m 

is the characteristic length for the argon molecule in the MD simulation. 

 

Figure 4. 2 The molecular density distribution in a nanochannel by MD simulation. Courtesy 
of Cao et al. (2006). 

Because of the reduced apparent viscosity of the non-wetting fluid, the viscous dissipation of 

the wave energy is supposed to decrease, and the phase velocities should also be affected. The 

dynamic permeability and tortuosity, initially introduced by Johnson et al. (1987), are functions 

of the viscosity and vary according to the wetting condition between the fluid and the solid 

frame. In this paper, we incorporate the wettability (slip length) dependent apparent viscosity 

into the Biot model to examine the slip effect as a proxy of the wettability on the phase 

velocities, attenuation, and tortuosity. 
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4.2. Theory of Apparent Slippage and Effective Viscosity 

As a wave passes through a saturated porous medium, wave-induced flow is generated at 

various scales (Müller and Gurevich, 2005). At pore-scale, the flow field can be decomposed 

into the viscous flow within the viscous skin depth and the potential flow in the rest space of 

the pores (Johnson et al., 1987; Landau and Lifshitz, 1987; Lighthill and Lighthill, 2001). For 

a porous medium saturated by a fluid of which density is 𝜌𝜌f and viscosity is 𝜇𝜇f, the viscous 

dissipation, and therefore wave attenuation, is only caused by the viscous flow constrained 

within the viscous boundary layer with the viscous skin depth 

𝛿𝛿(𝜔𝜔) = �2𝜇𝜇f
𝜌𝜌f𝜔𝜔

   ,                                                           (4.3) 

which becomes much smaller than the pore size at high frequencies. The bulk fluid outside of 

the viscous skin depth is governed by the potential flow for which the flow pattern is identical 

to that for an ideal fluid and independent of the viscosity (Johnson et al., 1987; Müller and 

Sahay, 2011c). This means the viscosity of the bulk fluid is of less importance for the energy 

dissipation and the contribution to the average flow velocity. 

Therefore, to account for the wettability/slippage effect on the wave motion, we replace the 

viscosity 𝜇𝜇f by the average viscosity inside the viscous skin depth 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔, 𝑏𝑏) = 𝜇𝜇f

1+𝑏𝑏𝛿𝛿
  ,                                                        (4.4) 

which can be derived from equation (4.2). We denote it as the effective viscosity that should 

be used for the calculation of the phase velocities and attenuations. 

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is a function of slip length b, the viscosity of the bulk fluid 𝜇𝜇f, fluid density 𝜌𝜌f and 

angular frequency ω. It is the same value as the normal viscosity at the low-frequency limit and 

decreases as frequency increases. When the slip length vanishes (b → 0), the effective viscosity 

is identical to the normal viscosity 𝜇𝜇f relevant to the no-slip condition, 

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑏𝑏→0 = 𝜇𝜇f.                                               (4.5) 

It is convenient to normalise the effective viscosity 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 by the normal viscosity 𝜇𝜇f 
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𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜇𝜇f
= 1

1+𝑏𝑏𝛿𝛿
 .                                                     (4.6) 

 

Figure 4. 3 The normalised effective viscosity under different slip lengths for brine in 
frequency spectral. Three slip lengths are a fraction of a typical pore size of sandstone r = 10 

μm. Parameters in Table 4.1 are used. 

 

Figure 4. 4 Normalised effective viscosity of four different fluids in frequency spectral. The 
slip length b = 0.1r is a fraction of a typical pore size of sandstone r = 10 μm. Parameters in 

Table 4.1 are used. 
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The effective viscosity is a function of multiple parameters, where 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝜔𝜔, 𝑏𝑏, 𝜇𝜇f,𝜌𝜌f). To 

examine the effects of these parameters on effective viscosity, we check the normalised 

effective viscosities of four types of typical fluids that commonly appear in an oil reservoir 

(Figure 4. 3 and Figure 4. 4). The parameters of the fluids are summarised in Table 4. 1. 

Figure 4. 3 demonstrates that the effective viscosity decreases when the frequency or slip 

length (or hydrophobicity) increases. The densities of the reservoirs that contain the liquids are 

normally in the same order, but the viscosity of the reservoirs varies largely from one to 

another. It is clear that the higher the viscosity is, the less impact apparent slippage has on the 

frequency domain (Figure 4. 4). 

Table 4. 1 Parameters of sandstone and four different fluids commonly found in the oil 

reservoir 

Grain Bulk modulus, 𝐾𝐾𝑠𝑠 50 GPa 
Density, 𝜌𝜌𝑠𝑠 2650 kg/m3 

Matrix Porosity, 𝜙𝜙 0.2 
Bulk modulus, 𝐾𝐾𝑑𝑑 18 GPa 
Shear modulus, 𝜇𝜇𝑑𝑑 12 GPa 
Permeability, κ0 200mD 

Average pore radius, 𝛬𝛬 10 µm 
Static Tortuosity, 𝑇𝑇∞ 3 

Oil Bulk modulus, 𝐾𝐾f1 2.16 GPa 
Density, 𝜌𝜌f1 890 kg/m3 

Viscosity, 𝜇𝜇f1 240 cP 
Brine Bulk modulus, 𝐾𝐾f2 2.25 GPa 

Density, 𝜌𝜌f2 1040 kg/m3 
Viscosity, 𝜇𝜇f2 1 cP 

Light oil Bulk modulus, 𝐾𝐾f3 0.57 GPa 
Density, 𝜌𝜌f3 700 kg/m3 

Viscosity, 𝜇𝜇f3 10 cP 

Supercrictical 
CO2 
  

Bulk modulus, 𝐾𝐾f4 0.3 GPa 
Density, 𝜌𝜌f4 870 kg/m3 

Viscosity, 𝜇𝜇f4 0.5526 cP 
Remark: 1 cP=10-3 Pa·s; 1mD≈10-15 m2 

  



69 

 

4.3. Apparent Slip Effect on Dynamic Permeability and Tortuosity 

Johnson et al. (1987) developed a dynamic permeability model by analysing the potential 

flow and dissipation within the viscous skin depth. We denote this model as the ‘JKD’ model. 

It assumes that the vorticity only exists inside the viscous skin depth, which will become much 

smaller than the characteristic pore size at the high-frequency limit. In this case, the flow, 

except for the boundary flow within the viscous skin depth, is identical to that for an ideal fluid 

with a high-frequency limit tortuosity 𝑇𝑇∞, which is the same value as the static tortuosity. The 

dynamic tortuosity 𝑇𝑇�  (b, ω) below the high-frequency limit is frequency and wettability 

dependent, as shown in the following analysis.  

The static tortuosity is a purely geometrical factor related to the porosity (Berryman and 

Thigpen, 1985), 

𝑇𝑇∞ = 1 − 𝐶𝐶 �1 − 1
𝜙𝜙
�,                                        (4.7) 

where the weighting factor C = 1/2 for spheres and lies between 0 to 1 for other ellipsoids. 

With a random system of pores with all possible orientations, 𝑇𝑇∞ = 3 (Stoll, 1977). 

Based on the ‘theory of apparent slippage and effective viscosity’ above, we introduce the 

slippage effect into the JKD model by replacing the viscosity with the effective viscosity 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

The wettability dependent dynamic permeability and the dynamic tortuosity under harmonic 

loading exp(–iωt) are, 

𝜅̃𝜅(𝑏𝑏,𝜔𝜔) = 𝑘𝑘𝑜𝑜 �𝐹𝐹(𝑏𝑏,𝜔𝜔) − i𝑇𝑇∞𝜔𝜔𝜅𝜅0𝜌𝜌𝑓𝑓
𝜙𝜙𝜇𝜇f

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
−1

                                        (4.8) 

and 

𝑇𝑇�(𝑏𝑏,𝜔𝜔) = 𝑇𝑇∞ + i𝜙𝜙𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜔𝜔𝜅𝜅0𝜌𝜌f
𝐹𝐹(𝑏𝑏,𝜔𝜔),                                              (4.9) 

respectively, where, 

𝐹𝐹(𝑏𝑏,𝜔𝜔) = �1 − 4i𝑇𝑇∞2 𝜅𝜅02𝜌𝜌f𝜔𝜔

𝛬𝛬2𝜙𝜙2𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

1
2
.                                              (4.10) 
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Λ is the pore structure parameter with dimensions of length, with 2/Λ being the ratio of pore 

surface to pore volume or the specific area. The factor F(b, ω) plays a role similar to the viscous 

correction factor in the high-frequency Biot theory (Biot, 1956a). Both the dynamic 

permeability and the tortuosity are complex-valued. The phase of the dynamic permeability in 

degree is 

𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎[𝜅̃𝜅(𝑏𝑏,𝜔𝜔)] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝐼𝐼𝐼𝐼(𝜅𝜅�)
𝑅𝑅𝑅𝑅(𝜅𝜅�)� ⋅

180
𝜋𝜋

,                                (4.11) 

where 𝐼𝐼𝐼𝐼(𝜅̃𝜅) and 𝑅𝑅𝑅𝑅(𝜅̃𝜅)are the imaginary and the real part of the complex value, respectively. 

There exists the following empirical relation between T, Λ and the static permeability 𝜅𝜅0 

𝜉𝜉𝑇𝑇∞𝜅𝜅0
𝜙𝜙𝛬𝛬2

= 1,                                                (4.12) 

where ξ = 8 for a group of non-intersecting canted tube-shape pores. Then, equation 4.10 

becomes, 

𝐹𝐹𝑡𝑡(𝑏𝑏,𝜔𝜔) = �1 + i𝑇𝑇∞𝜅𝜅0𝜌𝜌f𝜔𝜔

2𝜙𝜙𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

1
2
,                                  (4.13) 

where ξ = 12 for a group of canted slabs of fluid and, 

𝐹𝐹𝑠𝑠(𝑏𝑏,𝜔𝜔) = �1 + i𝑇𝑇∞𝜅𝜅0𝜌𝜌f𝜔𝜔

3𝜙𝜙𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

1
2
.                                    (4.14) 

Figure 4. 5 compares the normalised dynamic permeability for both tube-shape and slab-

shape pores saturated by brine with various slip conditions. The dynamic permeability only 

deviates from the static permeability in the high-frequency range (>1000 Hz in our example). 

The normalised dynamic permeability is slightly smaller for tube-shape pores than slab-shape 

pores under a certain frequency and slip length; however, it decreases when slip length 

increases in the intermediate frequency for both types of pore network. Therefore, the slip 

condition promotes the transition from the viscous dominated frequency regime to the inertia 

dominated frequency regime. 
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Figure 4. 5 The dynamic permeability normalised by the static permeability for tube-shape 
and slab-shape pores saturated by brine under various slip conditions. 

 

Figure 4. 6 The phase of the dynamic permeability for tube-shape and slab shape pores 
saturated by brine under various slip conditions. 

The phase of the dynamic permeability increases when the slip length increases, indicating 

the apparent slippage (hydrophobicity) enhances the out-of-phase motion (Figure 4. 6). 

The dynamic tortuosity of the tube-shape pore network is higher than that of the slab-shape 

pore network at low frequency (Figure 4. 7). Nevertheless, both networks converge to the static 

tortuosity in the high-frequency limit. The slip condition favours the convergence. The higher 

the slip length is, the closer the dynamic and static tortuosity will be. 
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Figure 4. 7 The dynamic tortuosity normalised by the static tortuosity for tube shape and slab 
shape pores saturated by brine under various slip conditions. 

In the high-frequency limit 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜔𝜔→∞

𝜅̃𝜅(𝑏𝑏,𝜔𝜔) → 0 .                                                  (4.15) 

and 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜔𝜔→∞

𝑇𝑇�(𝑠𝑠,𝜔𝜔) → 𝑇𝑇∞,                                                 (4.16) 

whereas in the low-frequency limit 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜔𝜔→0

𝜅̃𝜅(𝑏𝑏,𝜔𝜔) = 𝜅𝜅0   ,                                          (4.17) 

and 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜔𝜔→0

 𝐼𝐼𝐼𝐼[𝑇𝑇�(𝑏𝑏,𝜔𝜔)] = 𝑖𝑖𝜇𝜇f𝜙𝜙
𝜅𝜅0𝜔𝜔𝜌𝜌f

.                                   (4.18) 

It is worth noticing that only the imaginary part of dynamic tortuosity reaches a concise 

expression, which has been obtained by Johnson et al. (1987). In the second term of the 

dynamic tortuosity in equation 4.9, the complex factor F(b, ω) cancels out the change of the 

denominator at low frequencies, rendering the real part of the fraction as non-zero. 
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4.4. Phase Velocity and Attenuation 

The plane-wave solution is commonly used to calculate the phase velocities and dissipation 

factor represented by the quality factor within the framework of Biot theory (Biot, 1956a; 

Carcione, 2015; Carcione and Gurevich, 2011; Stoll, 1977). 

For a shear wave, the wettability dependent complex velocity is 

𝑉𝑉𝑠𝑠(𝑏𝑏,𝜔𝜔) = �
𝜂𝜂𝑑𝑑
𝜌̄𝜌

; 𝜌̄𝜌 = 𝜌𝜌 − 𝜌𝜌f2/𝜌𝜌1,                                        (4.19) 

where 

𝜌𝜌1 = 𝜌𝜌f𝑇𝑇∞
𝜙𝜙

+ 𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒

i𝜔𝜔𝜅𝜅𝑜𝑜
.                                                   (4.20) 

The wettability dependent complex P-wave velocity Vp follows from the quadratic equation 

𝜌̄𝜌𝜌𝜌1𝑉𝑉𝑝𝑝4 + 𝑎𝑎1𝑉𝑉𝑝𝑝2 + 𝑎𝑎0 = 0,                                  (4.21) 

where 

𝑎𝑎1 = �2𝛼𝛼𝜌𝜌𝑓𝑓 − 𝜌𝜌�𝑀𝑀 − 𝜌𝜌1 �𝐾𝐾𝑑𝑑 + 𝛼𝛼2𝑀𝑀 + 4
3
𝜂𝜂𝑑𝑑�                 (4.22) 

and 

𝑎𝑎0 = �𝐾𝐾𝑑𝑑 + 4
3
𝜂𝜂𝑑𝑑�𝑀𝑀.                                (4.23) 

To incorporate the wettability dependent dynamic permeability/tortuosity effect, we replace 

the effective viscosity 𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏,   𝜔𝜔) = 𝐹𝐹𝜇𝜇f

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , where 𝐹𝐹  is determined by equations 4.13 and 

4.14. 

An alternative plane-wave solution with dynamic tortuosity is given by Johnson et al. 

(1994b). The complex phase velocities of the normal-mode solutions can be solved explicitly. 

The detailed equations are included in Appendix A. 
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We note that the dynamic tortuosity 𝑇𝑇�  (b, ω) is used here instead of the static parameter to 

account for the viscous dissipation. 

Once the complex velocities are calculated by equations 4.19 and 4.21, the phase velocity 

and the inverse quality factor can be calculated, 

𝑉𝑉𝑝𝑝ℎ = �𝑅𝑅𝑅𝑅 � 1
𝑉𝑉𝑐𝑐
��
−1

,                                                 (4.24) 

and 

𝑄𝑄−1 =
2𝐼𝐼𝐼𝐼� 1𝑉𝑉𝑐𝑐

�

𝑅𝑅𝑅𝑅� 1𝑉𝑉𝑐𝑐
�

,                                                   (4.25) 

where Vc is the complex velocity and c = p+, p– and s. 

The attenuation caused by the dissipation of wave energy is quantified by the inverse quality 

factor Q in equation 4.25. It is defined as the dissipated energy divided by the total wave energy. 

Another form of the inverse of quality factor Q is 

𝑄𝑄−1 = 𝐼𝐼𝐼𝐼�𝑉𝑉𝑐𝑐2�
𝑅𝑅𝑅𝑅�𝑉𝑉𝑐𝑐2�

,                                             (4.26) 

which represents the ratio of the time-averaged dissipated-energy density and twice the time-

averaged strain-energy density (Carcione, 2015). 

Figure 4.8 illustrates the phase velocity of the fast P wave of the fully saturated sandstone 

for four different fluids. For all cases, the phase velocity increases when the slip length 

increases in the intermediate frequency. The lower- and upper-velocity limits are unaffected 

by the slippage. The non-wetting fluid-saturated porous medium has a slightly higher velocity 

than the velocity of the wetting fluid saturation scenario. The fast P-wave velocity in the porous 

medium with slab-shape pores is slightly higher than that with tube-shape pores. Similar 

behaviour on the phase velocity is also found for the slow P wave (Figure 4.9). 
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Figure 4. 8 The fast P-wave velocity of fully saturated sandstone. Four types of fluids are used: 
(a) oil, (b) brine, (c) light oil and (d) supercritical CO2. Parameters in Table 4. 1are used. 

The attenuation represented by the inverse quality factor calculated using equation 4.25 is 

plotted in Figure 4.10 for fast P wave and in Figure 4.11 for slow P wave. For fast P wave, we 

can see that the tie shape attenuation curve is separated by the frequency of the peak attenuation 

into two parts, while in the low-frequency range attenuation increases, and in the high-

frequency range the attenuation decreases when the slip length increases. Meanwhile, slippage 

tends to constrain the attenuation in a narrower frequency range than the case of no-slip 

condition. The critical frequency of the peak attenuation of four fluids saturation cases is in the 

sequence of: fc (oil) > fc (light oil) > fc (water) ≈ fc (s – CO2). The peak attenuations are in 

sequence of: Q–1(s – CO2) >> Q–1(light oil) > Q–1(water) > Q–1(oil). 

For slow P wave, the attenuation decreases when the slip length increases at any given 

frequency. There is only a negligible difference in either velocity or the attenuation of the 

saturated porous medium with the tube-shape and the slab-shape pore networks. 
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Figure 4. 9 The slow P-wave velocity of fully saturated sandstone. Four types of fluids are 
used: (a) oil, (b) brine, (c) light oil and (d) supercriticalCO2. Parameters in Table 4.1 are used. 
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Figure 4. 10 The attenuation (fast P wave) of fully saturated sandstone. Four types of fluids 
are used: (a) oil, (b) brine, (c) light oil and (d) supercritical CO2. Parameters in Table 4.1 are 
used. 
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Figure 4. 11 The attenuation (slow P wave) of fully saturated sandstone. Four types of fluids 
are used: (a) oil, (b) brine, (c) light oil and (d) supercritical CO2. Parameters in Table 4.1 are 
used. 

4.5. Discussion 

The peak attenuation is marked by the Biot characteristic frequency scaled by the tortuosity 

(Biot 1962), 

𝜔𝜔𝐵𝐵 = 𝜇𝜇f𝜙𝜙
𝜅𝜅𝑜𝑜𝜌𝜌f𝑇𝑇∞

.                                                  (4.27) 

However, because of the joint effect of the wettability/slippage and the dynamic 

permeability/tortuosity, the peak attenuation shifts to a much lower frequency than the original 

Biot frequency. In fact, the viscosity and the tortuosity used in equation 4.27 have become 

frequency and wettability dependent variables based on the analysis in the previous sections 

𝜔𝜔𝑐𝑐 = 𝜙𝜙𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏,  𝜔𝜔𝑐𝑐)

𝜅𝜅𝑜𝑜𝜌𝜌f𝑇𝑇∞
,                                                (4.28) 
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where 𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏,   𝜔𝜔𝑐𝑐) = 𝐹𝐹𝑡𝑡𝜇𝜇f

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 acts as effective viscosity for the slip boundary condition and 𝐹𝐹𝑡𝑡 

is determined by equation (4.13). 

To solve equation (4.28), a simple function is constructed, 

y(𝜔𝜔) = 𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒(b,𝜔𝜔)
𝜇𝜇f

− 𝜔𝜔
𝜔𝜔𝑐𝑐

   ,                                       (4.29) 

in which 𝜔𝜔𝑐𝑐 can be obtained numerically by finding the cross point of the curve of y function 

and x-axis or by finding the minimum value of |𝑦𝑦(𝜔𝜔)|  where the corresponding angular 

frequency is the characteristic frequency 𝜔𝜔𝑐𝑐. The calculated critical frequencies fc = 2πωc for a 

tube-shape porous medium with three different slip lengths are plotted by the vertical lines in 

Figure. 4.12. 

4.6. Conclusion 

We introduce the apparent slip model into the JKD dynamic permeability theory and Biot’s 

poroelasticity theory. The vast interface of the pore network, where the fluid and solid contact 

each other, plays an important role in the wave motion. Wettability is one of the key controlling 

factors that dominate the hydrodynamic behaviour of the wave-induced flow. The non-wetting 

fluid tends to slip on the solid boundary, which can be characterised by a reduced apparent 

viscosity. By taking advantage of the apparent viscosity, the dynamic permeability, tortuosity, 

phase velocities and attenuation are analysed for the fully saturated sandstones in the cases of 

two types of pore network and four different fluids. We conclude that the dynamic permeability 

slightly decreases when the slippage/hydrophobicity increases in the intermediate frequency 

but the phase velocity slightly increases. Moreover, the critical frequency represents the peak 

attenuation shift to a lower frequency when slippage occurs. 
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Chapter 5. Pore Size Distribution Controls Dynamic Permeability 

This chapter is a published peer-reviewed journal paper in Geophysical Research Letters:  

Li, J. X., Rezaee, R., Müller, T. M., & Sarmadivaleh, M. (2020). Pore Size Distribution 
Controls Dynamic Permeability. Geophysical Research Letters, e2020GL090558.  

5.1. Introduction  

Analogous to the direct current (dc) and alternating current (ac) electrical conductivity of 

metals, the dc and ac permeability are prime characteristics of a porous medium. The estimation 

of the flow (dc) permeability in presence of a fluid pressure gradient is of uttermost importance 

in geo-fluid detection (Blunt, 2017), water resource management and development 

(Ghanbarian et al., 2016; Molz et al., 1989; Neuzil, 1986), biomechanics and mechanobiology 

(Benalla et al., 2012; Cardoso et al., 2013), nuclear waste disposal and storage (Liu, 2014; 

Reynes et al., 2001), and chemical engineering (Xue et al., 2018). When the fluid pressure 

gradient is time-harmonic, for example, when induced by elastic waves, oscillatory motion 

arises and then the ac (dynamic) permeability concept originally developed by Johnson et al. 

(1987) is essential with direct applications in borehole acoustics (Lin, 2011; Zhang and Müller, 

2019). 

The so-called JKD model of Johnson et al. (1987) for the ac permeability is known to work 

well in porous media with relatively simple pore structures  (Charlaix et al., 1988; Sheng and 

Zhou, 1988; Zhou and Sheng, 1989). Various theoretical and numerical analyses point out the 

limitations of the JKD model in the presence of corrugated pore channels as typically observed 

in porous rocks (Achdou and Avellaneda, 1992; Cortis et al., 2003). Then, the bulk fluid flow 

contribution dominates the flow in the viscous boundary layer (VBL), resulting in slower 

convergence of the dynamic permeability to its high-frequency asymptotic limit. Recent 

oscillating-flow experiments and simulations have documented the anomalous phase of the 

dynamic permeability, which are believed to be related to the poroelastic coupling between 

fluid and solid as well as to microscopic heterogeneity such as variable pore sizes (Hasanov et 

al., 2020; Hasanov et al., 2019). The importance of pore sizes and their distribution on the 

hydrodynamics of oscillating flows has also been recognized (Achdou and Avellaneda, 1992). 

Given that the pore sizes in rocks are highly variable and their spatial distribution is complex, 

one expects that the ac permeability is strongly controlled by the pore size distribution (PSD). 

However, its impact is typically neglected or oversimplified, for example, by roughly 

estimating parameters in the existing dynamic permeability models (Müller and Sahay, 2011c; 
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Pazdniakou and Adler, 2013). This is striking since the pore size distribution in rocks is 

measurable in the laboratory and in situ in boreholes. 

Perhaps the most popular laboratory techniques for PSD determination include experiments of 

mercury injection capillary pressure (MICP), gas absorption, and nuclear magnetic resonance 

(NMR) (Al Hinai et al., 2014; Xiao et al., 2016). However, due to environmental and economic 

concerns, modern approaches more commonly construct the capillary pressure curve and the 

PSD from NMR measurements (Eslami et al., 2013; Xiao et al., 2016). It is also common to 

extract the PSD from image analysis of scanning electron microscopy (SEM) or micro-

computed tomography (μ-CT) (Blunt, 2017; Widiatmoko et al., 2010) with excellent 

visualization of pore structure. However, such image-based PSD is often restricted to very 

small areas or sub-volumes, making it unrepresentative for macroscopic formations. Thus, 

from this perspective, the PSDs from NMR or MICP are better choices, since they provide 

averaged values (i.e. core or even larger scale) and yet sufficient detail to represent macroscopic 

spatial variations. Especially, the inversion of PSD from NMR spectra is of great practical 

significance given its applicability in borehole measurements. In this letter, we construct a 

dynamic permeability model that incorporates the broadband PSD derived from NMR 

measurements. 

5.2. Theory 

5.3.1. Hydrodynamics of Oscillating Flow at Pore-scale 

Let us consider a representative pore channel saturated by a viscous fluid with shear viscosity 

𝜇𝜇f and density 𝜌𝜌f. Under the action of an externally imposed, harmonic loading e−𝑖𝑖𝑖𝑖𝑖𝑖, a fluid 

parcel performs an oscillatory movement along the channel axis. The fluid velocity can be 

decomposed into a potential flow field up and a viscous flow field due to the drag of the pore 

wall (Biot, 1956b; Lighthill and Lighthill, 2001), 

𝐮𝐮 = 𝐮𝐮𝐩𝐩[1 − 𝑣𝑣�] ,                                             (5.1) 

where 𝑣𝑣� is conceived as the viscous flow velocity normalized by �𝐮𝐮𝐩𝐩� . Only the viscous flow 

contributes to the Darcy flow, observed at macro-scale and through which the dc permeability 

is defined. In contrast, the potential flow is independent of the shear viscosity. With increasing 

frequency, the viscous skin depth𝛿𝛿 = �2𝜇𝜇f 𝜌𝜌f𝜔𝜔⁄  becomes very small and the oscillatory flow 

is dominated by the flow in the bulk volume (Cortis et al., 2003). Thus, with increasing 
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frequency, the dc permeability is expected to vanish and the frequency-dependent transition is 

governed by the ac permeability. For idealized pore geometries, the normalized velocity of 

bulk flow is a function of pore size r: 

𝑣𝑣�(𝑘𝑘(𝜔𝜔); 𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , Flat  pore wall

1
𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑖𝑖𝑖𝑖𝑖𝑖) , Slit  pore

1
𝐽𝐽0(𝑘𝑘𝑘𝑘) , Cylindrical  pore

                                           (5.2) 

Here r is half of the aperture length for planar and slit-like pores or the radius for the cylindrical 

pore. The viscous wave describing the process of vorticity diffusion has the wave number 𝑘𝑘 =

(1 + i) 𝛿𝛿⁄ . J0( ) denotes the zero-order Bessel function. 

For an assemblage of pores, that is, a porous medium with porosity ϕ, the dc permeability is 

proportional to the square of the effective hydraulic length scale 𝑟𝑟ℎ, that is, κ0 ∝ 𝑟𝑟ℎ2. This dc 

permeability becomes only meaningful for a low-frequency regime 𝛿𝛿 ≫ 𝑟𝑟ℎ, but not for a high-

frequency regime when potential flow prevails as 𝛿𝛿 ≪ 𝑟𝑟ℎ. The crossover frequency is the Biot 

frequency (Biot, 1956a) scaled by the tortuosity 𝑇𝑇∞: 𝜔𝜔𝐵𝐵 = 𝜙𝜙𝜇𝜇f 𝑇𝑇∞𝜅𝜅𝑜𝑜𝜌𝜌f⁄  (Charlaix et al., 1988; 

Sheng and Zhou, 1988). 

5.3.2. Interaction of Propagating and Diffusive Waves at Macro-Scale 

The volume averaging framework of poroelasticity systematically brings the role of the 

diffusive viscous wave to the macroscopic level, that is, at the scale of a porous medium 

containing one or multiple pore networks (Sahay et al., 2001). The diffusive viscous wave in 

the VBL emerges at the macro-scale as slow shear (S-) wave, which is the fourth kind of wave 

in fluid-saturated porous media (Sahay, 2008). The conversion scattering from fast P- to slow 

S-waves in a weak-fluctuation approximation results in an effective P-wavenumber (Müller 

and Sahay, 2011b), 

𝑘𝑘1 = 𝑘𝑘1∞�1 + ∆1�1 + 𝑘𝑘42ℓ�2��.                                          (5.3) 

This means that an incoming P-wave (𝑘𝑘1∞) is becoming attenuated due to conversion into the 

slow S-wave (𝑘𝑘4), or equivalently, due to the presence of VBL. ∆1 represents a combination of 

variances of the randomly fluctuating medium parameters and ℓ�2 contains their characteristic 

length scales. Similarly, a propagating slow P-wave 𝑘𝑘2∞  is becoming attenuated due to 

conversion scattering into the slow S-wave according to Müller and Sahay (2011c), 
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𝑘𝑘2 = 𝑘𝑘2∞�1 + ∆1�1 + 𝑘𝑘42ℓ�2��.                                              (5.4) 
In equations (5.3) and (5.4), the complex-valued slow S-wave number is 𝑘𝑘4 = 𝑘𝑘− + 𝑖𝑖𝑘𝑘+ with 

𝑘𝑘∓ = �
𝜔𝜔

2𝑑𝑑f𝐷𝐷𝜈𝜈
��(1 + 𝑑𝑑f𝑚𝑚f)2 + 𝜔𝜔𝐵𝐵

2

𝜔𝜔2 ∓
𝜔𝜔𝐵𝐵
𝜔𝜔

                                         (5.5) 

where 𝑑𝑑f = 1/(𝑇𝑇∞ −𝑚𝑚f), 𝑚𝑚f = 𝜙𝜙𝜌𝜌f/[𝜙𝜙𝜌𝜌f + (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠] is the fluid mass fraction, 𝜌𝜌𝑠𝑠  is the 

density of the solid. Thus, in the porous medium context, the normalized velocity of bulk flow 

𝑣𝑣�(𝑘𝑘(𝜔𝜔); 𝑟𝑟) is obtained by replacing the wave number of the ordinary diffusive wave 𝑘𝑘  in 

equation (5.2) by the slow S-wave number 𝑘𝑘4. 

5.3.3. Dynamic Permeability Based on Pore Size Distribution 

Müller and Sahay (2011c) draw an analogy between the slow P-wave in the inertial regime 𝑘𝑘2∞ 

and the potential flow field to develop a model for the dynamic permeability based on the 

frequency-dependent 𝑘𝑘2 → 𝑘𝑘4 conversion scattering process. Key to this model is the 

interpretation of the dynamic length scale in equations (5.3) and (5.4), 

ℓ�2 = ∫ 𝑟𝑟𝑟𝑟(𝑟𝑟)𝑒𝑒𝑖𝑖𝑘𝑘4𝑟𝑟𝑑𝑑𝑑𝑑∞
0 .                                               (5.6) 

It arises due to the presence of random heterogeneity, whose spatial correlation function is 

𝐵𝐵(𝑟𝑟), and the slow S-wave number 𝑘𝑘4 as a proxy for the vorticity diffusion process in the VBL. 

We remark that the use of equation (5.6) for heterogeneous porous media is permitted since 

equations (5.3) and (5.4) are macroscopic equations. Here, we conceptualize the heterogeneous 

porous medium as a medium in which the sub-porosity is variable in space. For such a multiple 

porosity medium, we assign to each incremental porosity  𝜙𝜙𝑖𝑖, a characteristic hydraulic length 

r, which quantifies the dominant pore size associated with the spatial domain of  𝜙𝜙𝑖𝑖. This is 

symbolically denoted as  𝜙𝜙𝑖𝑖(𝑟𝑟). We assume that this length is variable within a range 𝑟𝑟 ∈

[𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚]. Then, the dynamic length scale becomes 

ℓ�2 = ∫ 𝑟𝑟𝜙𝜙𝑖𝑖(𝑟𝑟)𝑣𝑣�(𝑘𝑘(𝜔𝜔); 𝑟𝑟)𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑.                                      (5.7) 

We note that the finite range of integration replaces the requirement of a vanishing 𝐵𝐵(𝑟𝑟 → ∞) 

in the original weak-fluctuation approximation. Since laboratory measurements of the pore size 

and the corresponding distribution of the incremental porosity are discrete quantities, we 
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discretize the integral. Assuming that there are n different characteristic hydraulic lengths in 

[𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚] with an increment ∆𝑟𝑟 = (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚) 𝑛𝑛⁄ , we find 

ℓ�2 = ∑ �𝑟𝑟𝜙𝜙𝑖𝑖(𝑟𝑟)𝑣𝑣�(𝑘𝑘(𝜔𝜔); 𝑟𝑟)�Δ𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

.                                        (5.8) 

Without the oscillating perturbation, the ℓ�   defined in equation (5.8) is a length scale 

ℓ� (𝑘𝑘4 = 0) = �𝜙𝜙𝜙𝜙𝑎𝑎∆𝑟𝑟 associated with the average pore size 𝑟𝑟𝑎𝑎 = ∑𝑟𝑟𝜙𝜙𝑖𝑖/𝜙𝜙. The incremental 

porosity 𝜙𝜙𝑖𝑖 is the calibrated porosity, associated with all pores of the ith pore size (Coates et al., 

1999). Under the excitation of external harmonic loading, the frequency-dependent square of 

length scale ℓ�2 controls the amount of the fluid in the porous medium contributing to Darcy 

flow. Therefore, the term ∆1ℓ�2 in equations (5.3) and (5.4) acts as the dynamic permeability. 

In the low-frequency limit, the dynamic permeability is not arbitrary but has to converge to the 

dc permeability. Thus, the dynamic permeability incorporating a discrete PSD (with measured 

𝑟𝑟 and 𝜙𝜙𝑖𝑖) is 

𝜅̃𝜅 = 𝜅𝜅0 ∑ 𝑟𝑟𝜙𝜙𝑖𝑖(𝑟𝑟)𝑣𝑣�(𝑘𝑘4(𝜔𝜔); 𝑟𝑟)𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑟𝑟𝜙𝜙𝑖𝑖(𝑟𝑟)𝑣𝑣�(𝑘𝑘40; 𝑟𝑟)𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

�  ,                          (5.9) 

where 𝑘𝑘40 ≡ 𝑘𝑘4(𝜔𝜔 → 0) = 𝑖𝑖�𝜙𝜙/𝜅𝜅𝑜𝑜𝑇𝑇∞𝑑𝑑𝑓𝑓. It allows us to quantify the dynamic permeability in 

porous media with multiple porosity peaks in the discrete PSD. Thus, equation (5.9) provides 

a possible cross-link between seismic sounding and the PSD probing techniques such as NMR. 

5.3.4. Dynamic Permeability for Different Wettability Conditions 

Based on the different hydrodynamic behavior of fluids on hydrophobic and hydrophilic solid 

surfaces, the impact of the wettability on the dynamic permeability is represented by the slip 

boundary condition (SBC) (Li et al., 2020a; Li et al., 2020b). The wettability indicator, the 

static contact angle 𝜃𝜃𝑐𝑐 for the liquid cluster immersed in its vapor on a solid surface, and the 

slip length b follow the scaling relationship 𝑏𝑏 ∝ (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐)−2 (Huang et al., 2008; Ortiz-

Young et al., 2013). Thus, the wettability of a porous medium can be modeled by a variable 

slip length (𝑏𝑏 > 0 ). The effective shear viscosity corresponding to SBC is the apparent 

viscosity of the fluid inside the VBL (Li et al., 2020b), 

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜇𝜇f

1+ 𝑏𝑏
𝛿𝛿𝑝𝑝(𝜔𝜔)

 .                                                        (5.10) 
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where 𝛿𝛿𝑝𝑝(𝜔𝜔) = |(1 + i) 𝑘𝑘4⁄ | is a modified viscous skin depth. This approximation implies that 

the VBL has a finite thickness in the low-frequency limit, 𝛿𝛿𝑝𝑝0 = |(1 + i) 𝑘𝑘40⁄ | . Thus, 

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔 → 0) = 𝜇𝜇f

1+ 𝑏𝑏
𝛿𝛿𝑝𝑝
0
≤ 𝜇𝜇f, which in turn implies that the effective dc permeability exceeds 𝜅𝜅𝑜𝑜, 

 𝜅𝜅0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜅𝜅𝑜𝑜 �1 + 𝑏𝑏

𝛿𝛿𝑝𝑝0
� ≥ 𝜅𝜅𝑜𝑜 .                                                      (5.11) 

This means that a hydrophobic porous medium saturated by a nonwetting fluid corresponds to 

the SBC where the effective dc permeability is higher than that in the case of wetting fluid 

saturation, in agreement with  Javadpour et al. (2015). There is also a close resemblance to the 

model of Berg et al. (2008). By using the effective viscosity 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and the effective dc 

permeability 𝜅𝜅0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  for SBC in equation 9, we obtain a generalization of the dynamic 

permeability model to account for the wettability condition. 

5.3. Implications  

5.3.1. Dynamic Permeability for Bimodal PSD 

In order to evaluate the impact of PSD on dynamic permeability, we construct two different 

bimodal pore size distributions often observed for rocks (Xiao et al., 2016). The PSD of 

example #1 includes a large portion of big pores and only a little portion of small pores, a 

typical feature for conventional sandstones (black curve in Figure 5. 1a, b). In contrast, in 

example #2 the PSD means that the pore volume of small-sized pores comprises a larger portion 

of the pore volume than that of large-sized pores. This PSD is often characteristic for so-called 

tight rocks (red curve in Figure 5. 1a, b). We note that this name is used only tentatively since 

there is high variability among tight rocks. Real and imaginary parts of the dynamic 

permeability (without and with SBC) are shown in Figure 5. 1c, d. To investigate the effect of 

PSD solely, we use in both examples the parameters given in Table 5. 1. The slip length is 

arbitrarily chosen as 𝑏𝑏 =  0.1𝑟𝑟𝑒𝑒  for the SBC, where the effective capillary radius 𝑟𝑟𝑒𝑒 =

5�𝜅𝜅0 𝜙𝜙⁄   (Berg et al., 2008; Blunt, 2017). 

We observe that the dynamic permeability of the nonwetting fluid saturated hydrophobic 

porous medium (SBC) in the high-frequency range converges more quickly as compared to the 

hydrophilic case (Figure 5. 1c). Compared to the quick convergence to the low limit value in 

conventional rock (#1), the real part of the dynamic permeability for tight rock (#2) has a slower 

convergence rate. The negative real part of dynamic permeability in the frequency range around 
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1 MHz indicates that the motion of the bulk fluid is out-of-phase with respect to the solid frame. 

The imaginary part of the hydrophobic case is higher at low frequencies, but lower at high 

frequencies than that of the hydrophilic case indicating that the hydrophobicity of SBC 

promotes the relative motion of the fluid, therefore increase the dissipation in low frequencies, 

but diminishes the viscous friction at high frequencies (Figure 5. 1d). 

 

Figure 5. 1 (a) Accumulative and (b) incremental porosity of two bimodal pore size 
distributions; (c) real and (d) imaginary part of the dynamic permeability and approximation 
in the slip boundary (hydrophobic) condition. The horizontal dash lines indicate zero values. 

The vertical dotted line marks the Biot frequency 𝑓𝑓𝐵𝐵 = 𝜔𝜔𝐵𝐵/2𝜋𝜋. 

Parameter Value Unit 
Grain 
Density 𝜌𝜌𝑠𝑠 2650 kg/m3 
Frame 
Porosity 𝜙𝜙 0.2192  
Permeability 𝜅𝜅𝑜𝑜 3×10-12 m2 
Tortuosity 𝑇𝑇∞ 2.78  
Fluid 
Density 𝜌𝜌f 1000 kg/m3 
Viscosity 𝜇𝜇f 0.001 Pa•s 

Table 5. 1 Parameters for water-saturated Bentheimer sandstone. 

In contrast to the smooth crossover predicted by the JKD model, the PSD-dependent dynamic 

permeability exhibits quite different patterns. This is because the variability of the pore sizes 
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is embedded in our model. The imaginary parts have two peaks, which is especially prominent 

for the tight rock because of its large portion of the pore volume comprised of small size pores. 

The Biot frequency coincides with the low-frequency peak indicating the general validity of 

the relation 𝜅̃𝜅(𝜔𝜔) 𝜅𝜅𝑜𝑜⁄ = 𝑓𝑓(𝜔𝜔 𝜔𝜔𝐵𝐵⁄ ) with the corresponding characteristic pore size 𝑟𝑟𝑐𝑐~�𝜅𝜅0 𝜙𝜙⁄ . 

The high-frequency peaks arise due to the presence of smaller characteristic pore sizes. 

5.3.2.  Dynamic Permeability for Measured PSD 

We infer the pore sizes and their distribution for a Bentheimer sandstone sample by using the 

Magritek 2 MHz NMR Rock Core Analyzer. Following the experimental protocol of Xiao et 

al. (2016), we obtain 53 data points of the NMR T2 (transverse relaxation time) distribution 

data, which are subsequently calibrated to pore size distribution by using the mercury injection 

data (Figures (5.2a, b)). The SEM image is taken at the same time for grain shape/sorting 

analysis (inset of Figure (5.2a)), which also illustrates the complexity of pore spaces (light red 

shading in the inset of Figure (5.2b)). 

 

Figure 5. 2 The pore sizes and the distribution of (a) accumulative and (b) incremental 
porosity for Bentheimer sandstone obtained from NMR T2 data (53 measurement points) 

calibrated by the pore throat radii distribution of MICP; SEM image in the insets 
demonstrates the Bentheimer sandstone has well-sorted grain framework but complicated 
pore network structure (light red shading in (b)). A comparison of the (c) real parts and (d) 

imaginary parts of the dynamic permeability normalized by dc permeability for the 
Bentheimer sandstone by three different pore shape models. The Biot frequency 𝑓𝑓𝐵𝐵 is marked 
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by the red dashed line. The characteristic frequencies 𝑓𝑓𝑐𝑐1, 𝑓𝑓𝑐𝑐2, 𝑓𝑓𝑐𝑐3 are associated with the 
characteristic pore sizes. MICP, mercury injection capillary pressure; NMR, nuclear magnetic 

resonance; SEM, scanning electron microscopy. 

Using the parameters in Table 5. 1, the real parts and imaginary parts of normalized dynamic 

permeability are shown in Figure 5. 2c, d. The dynamic permeability based on PSD has a lot 

of similarities with other dynamic permeability models (Achdou and Avellaneda, 1992; 

Johnson et al., 1987; Müller and Sahay, 2011c; Sheng and Zhou, 1988). For instance, the 

scaling function 𝜅̃𝜅(𝜔𝜔) 𝜅𝜅𝑜𝑜⁄ = 𝑓𝑓(𝜔𝜔 𝜔𝜔𝐵𝐵⁄ ) is validated for the dynamic permeability based on 

PSD (Figure 5. 2). It is clearly segmented by the Biot frequency 𝑓𝑓𝐵𝐵 = 𝜔𝜔𝐵𝐵/2𝜋𝜋 into two parts: 

the viscous dominated regime at low frequencies (𝑓𝑓 ≪  𝑓𝑓𝐵𝐵) where 𝜅̃𝜅 ≈ 𝜅𝜅𝑜𝑜 , and the inertia 

dominated regime at high frequencies (𝑓𝑓 ≫  𝑓𝑓𝐵𝐵)), where the dynamic permeability decreases 

as frequency increases. The difference between the three pore shape models of PSD dependent 

dynamic permeability is insignificant, especially in the low-frequency range, thus validating 

the insensitivity of the dynamic permeability to the microstructure (Sheng and Zhou, 1988). 

5.3.3. Characteristic Frequencies 

In Figure 5. 1d and Figure 5. 2d, the Biot frequency 𝑓𝑓𝐵𝐵 matches the main peak of the imaginary 

part of the dynamic permeability very well. In addition, we observe that at high frequencies 

there are further characteristic frequencies associated with characteristic pore sizes. Because 

the dynamic permeability model involves the slow S-wave, a characteristic frequency fc arises 

when the slow S wavelength λ is on the order of the characteristic pore size of a certain pore 

network. Substituting equation (5.5) for the slow S-wave number into 𝑘𝑘4 = 2𝜋𝜋/𝜆𝜆, we find 

𝑓𝑓𝑐𝑐 = 2𝜇𝜇f
𝑇𝑇∞𝜌𝜌f

�4𝜋𝜋2

𝜆𝜆4
+ 𝜙𝜙/(𝜅𝜅𝑜𝑜𝑇𝑇∞𝑑𝑑f)

𝜆𝜆2
 .                                         (5.12) 

At high frequencies, 𝑓𝑓 ≫  𝑓𝑓𝐵𝐵, we have 1/𝜆𝜆4  ≫  1/𝜆𝜆2 and thus 

 𝑓𝑓𝑐𝑐 = 4𝜋𝜋𝜇𝜇f
𝑇𝑇∞𝜌𝜌f𝜆𝜆2

 .                                               (5.13) 

 Interestingly, the characteristic pore sizes are not necessarily the pore sizes with local porosity 

extremes in the pore size distribution but rather they represent the local extremes of 

contribution to the bulk viscous flow, and hence the Darcy flow. 
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Figure 5. 3 Imaginary part of the length scale 𝐿𝐿𝑖𝑖(𝜔𝜔; 𝑟𝑟) = 𝑟𝑟𝜙𝜙𝑖𝑖𝑣𝑣�   as a function of frequency 
and pore size where the solid black line (𝜆𝜆 ≈ 4𝑟𝑟) based on equation (5.12) corresponds to the 
pore-scale dissipation peaks and the high-frequency linear asymptotic approximation based 

on equation (5.13) is plotted as a dashed line. 

According to equation (5.8), the dynamic permeability is controlled by the frequency-

dependent length scale 𝐿𝐿𝑖𝑖(𝜔𝜔; 𝑟𝑟) = 𝑟𝑟𝜙𝜙𝑖𝑖𝑣𝑣�. The local peaks in the imaginary part are linked by 

the characteristic pore sizes (i.e. 𝑟𝑟𝑐𝑐1, 𝑟𝑟𝑐𝑐2, 𝑟𝑟𝑐𝑐3 for Bentheimer sandstone) and the corresponding 

characteristic frequencies (Figure 5. 3) when the slow S-wavelength approaches the 

characteristic pore sizes 𝜆𝜆 ≈ 4𝑟𝑟𝑐𝑐. It means that the highest dissipation at pore scale occurs as 

the half wavelength of slow S-wave is comparable to the pore opening (2r). These sub-

characteristic frequencies (i.e. 𝑓𝑓𝑐𝑐1, 𝑓𝑓𝑐𝑐2, 𝑓𝑓𝑐𝑐3 for Bentheimer sandstone) result in the piece-wise 

curvature pattern in the dynamic permeability ( Figure 5. 2c, d). 

5.4. Discussion and Conclusions 

The recent oscillating-flow experiments and simulations have documented the frequency 

dependence of permeability and anomalous phase of the dynamic permeability, which are 

believed to be related to the spatial heterogeneity and the coupling between pore pressure 

diffusion and elastic deformation (Bernabé et al., 2004; Hasanov et al., 2020; Hasanov et al., 

2019). It lends support to our finding that the dynamic permeability is controlled by the pore 

size distribution. While this result was anticipated, our proposed model for 𝜅̃𝜅(𝜔𝜔) makes a 
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quantitative connection for the first time. For multimodal PSDs with distinguishable peaks 

additional characteristic frequencies arise, which clearly manifest in the imaginary part of the 

dynamic permeability as additional peaks. 

The wettability condition affects not only the dynamic permeability but also the dc 

permeability. Interestingly, for a porous medium with parameters in Table 5.1, we find that the 

effective dc permeability in slip boundary condition (equation (5.11)) is equivalent to the Berg 

model 𝜅𝜅0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜅𝜅0 �1 + 𝐶𝐶 𝑏𝑏

𝑟𝑟𝑒𝑒
� by using the constant 𝐶𝐶 ≈ 3.3. This is very close to the value 

(𝐶𝐶 =  4) obtained by Berg et al. (2008) for the end-point relative permeability of nonwetting 

fluid saturation. 

There are broader implications. The proposed model provides a link between PSD as obtained 

by NMR measurements and the dynamic permeability, which in turn, controls attenuation and 

dispersion of seismic waves at high frequencies (𝑓𝑓 ≫  𝑓𝑓𝐵𝐵). For example, in boreholes, either 

Stoneley wave or NMR can be applied to estimate the formation permeability. Therefore, in 

principle, the proposed model might lead to a cross-fertilization of experimental and in-field 

techniques. Moreover, since dynamic permeability is an integral part of seismoelectric theory, 

we expect that our model gives further impetus in the analysis of seismoelectric signals. 
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Chapter 6. Vorticity Dissipation and Slip Boundary Condition on Biot 

Mechanism in the Porous Media with Broadband Pore Size Distribution 

6.1.  Introduction 

The poroelasticity of the fluid saturated porous medium is well described by Biot theory, 

which incorporates the global flow accounting for the viscous frictional attenuation (Biot, 

1956a). It is extended to be applicable in the high-frequency range by the analysis of the 

hydrodynamics of the oscillatory flow in the slit and cylindrical pore to capture the deviation 

of the Poiseuille flow (Biot, 1956b). The velocity of the viscous fluid flow with respect to the 

pore wall includes a viscosity independent potential flow field and a viscous flow field where 

the latter can be described as a viscous wave.  

By incorporating the fluid strain rate into the constitutive equations, Sahay (2008) find such 

viscous wave in porous media is a slow S-wave which drains energy from the propagating 

waves through the conversion scattering process (Müller and Sahay, 2011b).  

The slow S- wave in porous media is a non-propagating diffusive wave as the fourth kind of 

wave beside the three kinds of waves predicted by Biot theory. Its wavenumber is 𝑘𝑘4 = 𝑘𝑘− +

𝑖𝑖𝑘𝑘+  with (Müller and Sahay, 2011c), 

𝑘𝑘∓ = �
𝜔𝜔 𝜌𝜌f
2𝑑𝑑f𝜇𝜇f

��(1 + 𝑑𝑑f𝑚𝑚f)2 + 𝜔𝜔B
2

𝜔𝜔2 ∓
𝜔𝜔B
𝜔𝜔

                                        (6.1) 

The crossover angular frequency 𝜔𝜔B is the Biot frequency scaled by the tortuosity, 

𝜔𝜔B = 𝜙𝜙𝜇𝜇f
𝑇𝑇𝜌𝜌f𝜅𝜅𝑜𝑜

.                                                            (6.2) 

where 𝜌𝜌f  and 𝜇𝜇f   are the density and viscosity of the fluid, respectively, and 𝜅𝜅𝑜𝑜  is the 

permeability. The parameter 𝑑𝑑f = 1/(𝑇𝑇 −𝑚𝑚f) ,  𝑇𝑇  is the tortuosity, and  𝑚𝑚f = 𝜙𝜙𝜌𝜌f/[𝜙𝜙𝜌𝜌f +

(1 − 𝜙𝜙)𝜌𝜌s] is the fluid mass fraction, 𝜙𝜙 is the porosity, 𝜌𝜌s is the density of the solid. In the 

low-frequency viscous-dominated regime, the slow S- wave is found as a heavily damped 

diffusive wave so that it dies off rapidly near the pore wall (Sahay, 2008). 

When a fast-compressional wave passes through the porous medium, the tangential shear 

stresses of the pore wall slow the fluid down so as to its relative velocity to be zero at the solid 

boundary, creating a profile of flow velocity with gradients. It occurs in each wave cycle as an 
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oscillating flow wherein the slow S-wave generated on the pore wall diffuses away in the 

normal direction, and the viscous fluid is transformed into rotational vortices within the viscous 

boundary layer (VBL). The shear stresses in the viscous fluid are equilibrated through vorticity 

diffusion (Müller and Sahay, 2011a; Müller and Sahay, 2010). 

The vorticity quantifies the rotational motion of the fluid in the vicinity of the solid surface, 

which rapidly decays into the irrotational potential flow across the VBL as illustrated in Figure 

6. 1a (Johnson et al., 1987; Landau and Lifshitz, 1987; Lighthill and Lighthill, 2001; Müller 

and Sahay, 2011a). The vorticity vector Ω��⃗ = rot 𝐯𝐯 obeys the right-hand rule where its sign 

depends on the direction of the fluid spin motion (Figure 6. 1b). A parabolic profile of the flow 

velocity (v) is created when the largest flow velocity occurs in the middle of the pore but 

decreases towards the pore wall (x = ±r) so that the fluid particles are pushed to conduct the 

circular motion from the centre to the sides. It can be visualized by imaging the spiral paddle 

wheels in the flow where the direction of the vorticity points out of the plane. Curl the fingers 

of the right hand in the direction of the spiral wheel, and if the thump points up, the vorticity is 

positive. If the thump points down, the vorticity is negative. Hence, the vorticity has an opposite 

sign for the two sides of the flow velocity profile plane but forms axis symmetry in the three 

dimensions at any given frequency. 

 

Figure 6. 1 (a) Schematic of the vortices in porous medium induced by the elastic waves; (b) 
vorticity direction determined by the right-hand rule. 

We find that the frictional dissipation at pore-scale is controlled by the magnitude of 

vorticity at the pore wall where the vorticity is generated. The vorticity has its largest value at 

the pore wall and becomes smaller and smaller toward the interior of the fluid (Figure 6. 2). 
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Such vorticity dissipation increasing with the escalating frequency not only affects the overall 

rigidity but also becomes an important source of the wave attenuation in high frequencies, 

which cannot be ignored.  

 

Figure 6. 2 Schematics of the profiles of the viscous fluid velocity v and the corresponding 
vorticity 𝛺𝛺�⃗ .  

The pore scale flow velocity and the vorticity dissipation are the functions of frequency and 

pore size. Although an average pore size is often conceived, it might be too simplified and 

unrepresentative for the natural sedimentary rock with broadband pore sizes and multiple peaks 

on their pore volume distribution. Thus, accurate values of flow velocity and friction require 

the average computation based on pore size distribution data, which can be measured by 

nuclear magnetic resonance (NMR) or mercury intrusion porosimetry (MIP) experiments (Xiao 

et al., 2016). The pore size distribution effects on the vorticity dissipation and, therefore, the 

wave dispersion and attenuation are explored in this paper. 

In addition, the wettability of the porous media can also affect the wave dispersion and 

attenuation, which has been studied experimentally (Shakouri et al., 2019; Wang et al., 2015) 

and theoretically (Li et al., 2020a; Li et al., 2020b). Due to the vast interfacial area of fluid and 

solid contact, wettability plays a crucial role in porous media. In general, the wettability effect 

could be proxied by the slip boundary condition quantified by the slip length. It is based on the 

fact that the non-wetting micro-fluid parcel tends to slip on the hydrophobic pore wall where 

the intermolecular potential between the fluid and solid is weaker than that in wetting fluid 

saturated condition (Barrat, 1999; de Gennes, 2002; Granick et al., 2003). This particular 

feature renders that the flow velocity is higher and the friction on the solid boundary is lower 

for the non-wetting fluid than these for the wetting fluid under the excitement of the passing 
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wave (Barrat, 1999; Cottin-Bizonne et al., 2005; Huang et al., 2008; Ramos-Alvarado et al., 

2016).  

The structure of this chapter is as follows. Firstly, we derive the analytical forms of the 

pore-scale flow velocity and vorticity of oscillating flow in the single pore and the porous 

media context, respectively. We further use numerical examples to visualize and compare the 

velocity and vorticity field in various frequencies and pore sizes. Secondly, the wettability 

effect is considered by using the apparent slip model wherein the frequency-dependent 

viscosity is adopted for slip boundary conditions. Further, the effective viscosity is computed 

to account for the combined effect of vorticity dissipation, slip boundary and pore size 

distribution. We numerically exam the model and compare it with the Biot model on two 

sandstone samples with different pore size distributions. Lastly, we check the experimental 

results, which can be qualitatively explained by our model.  

6.2.  Pore-scale Vorticity Diffusion in Porous Media 

6.2.1. Vorticity Diffusion and the Frictional Dissipation 

The oscillatory flow model in an infinitely long cylindrical tube has been derived by Biot 

(1956b). For a cylindrical tube with radius r and saturated by viscous fluid oscillates with 

viscosity 𝜇𝜇f and density 𝜌𝜌f in the z direction, the Navier-Stokes equation is, 

𝑇𝑇𝜌𝜌f
𝜕𝜕v
𝜕𝜕𝜕𝜕

= 𝐹𝐹𝑏𝑏 + 𝜇𝜇f∇2v.                                                (6.3) 

𝐹𝐹𝑏𝑏 = −∇P − 𝑇𝑇𝜌𝜌f
𝜕𝜕u
𝜕𝜕𝜕𝜕

 is equivalent to external volume (body) force. The term ∇P is the pressure 

gradient and u is the velocity of the solid. Here we start with this simple model with Fourier 

sign 𝑒𝑒𝑒𝑒𝑒𝑒(−i𝜔𝜔𝜔𝜔). The velocity of the fluid with respect to the solid is, 

 𝐯𝐯(𝜔𝜔, 𝑥𝑥) = 𝐮𝐮𝐩𝐩 �1 −
𝐽𝐽0(𝑘𝑘𝑘𝑘)
𝐽𝐽0(𝑘𝑘𝑘𝑘)� .                                                 (6.4) 

The 𝐮𝐮𝐩𝐩  is the potential flow independent of viscosity and the 𝐽𝐽0 ()  is zero-order Bessel 

function. The k = �i𝜔𝜔 𝐷𝐷0⁄  is the wavenumber of the diffusive viscous wave with diffusivity 

𝐷𝐷0 = 𝜇𝜇f 𝑇𝑇𝜌𝜌f⁄ , which equals to the kinematic viscosity scaled by the tortuosity. The thickness 

of the viscous boundary layer is known as viscous skin depth, which is the penetration depth 

of the vorticity in the oscillatory viscous flow. For the infinite long cylindrical tube, it is, 
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𝛿𝛿0(𝜔𝜔) = 1+i
k

= �2𝐷𝐷0/𝜔𝜔 .                                                    (6.5)  

By substituting equation (4) back into equation (3) and taking the curl operating on both 

sides, the potential flow term vanishes identically and we obtain the diffusion equation, 

𝜕𝜕𝛺𝛺��⃗

𝜕𝜕𝜕𝜕
= 𝐷𝐷0

𝜕𝜕2𝛺𝛺��⃗

𝜕𝜕𝑥𝑥2
 .                                                       (6.6) 

where the vorticity   

𝛺𝛺�⃗ (𝜔𝜔, 𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟 (𝐯𝐯) = 𝑘𝑘 𝐽𝐽1(𝑘𝑘𝑘𝑘)
𝐽𝐽0(𝑘𝑘𝑘𝑘)

∙ 𝐮𝐮𝐩𝐩 .                                            (6.7) 

For the dynamic motion of the viscous fluid in the porous media, equation (4) is still applicable 

by using the wave number of the slow S- wave k4 to replace that of the ordinary viscous wave 

k. Thus, the relative fluid velocity becomes 

𝐯𝐯(𝜔𝜔, 𝑥𝑥) = �1 − 𝐽𝐽0(𝑘𝑘4𝑥𝑥)
𝐽𝐽0(𝑘𝑘4𝑟𝑟)� ∙ 𝐮𝐮𝐩𝐩 .                                      (6.8) 

The corresponding vorticity is 

𝛺𝛺�⃗ (𝜔𝜔, 𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟 (𝐯𝐯) = 𝑘𝑘4
𝐽𝐽1(𝑘𝑘4𝑥𝑥)
𝐽𝐽0(𝑘𝑘4𝑟𝑟) ∙ 𝐮𝐮𝐩𝐩 .                                  (6.9) 

which obeys the diffusion equation, 

𝜕𝜕𝛺𝛺��⃗

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝑝𝑝

𝜕𝜕2𝛺𝛺��⃗

𝜕𝜕𝑥𝑥2
  .                                                 (6.10) 

If we consider the planar wave solution for the vorticity as  Ω��⃗ = Ω��⃗ 0𝑒𝑒𝑖𝑖(𝑘𝑘4𝑥𝑥−𝜔𝜔𝜔𝜔), we obtain its 

frequency dependent diffusivity as 

𝐷𝐷𝑝𝑝(𝜔𝜔) = 𝑖𝑖𝑖𝑖
𝑘𝑘42

 .                                                    (6.11) 

Therefore, the viscous skin depth for the porous media is, 

𝛿𝛿𝑝𝑝(𝜔𝜔) ≡ 1+𝑖𝑖
𝑘𝑘4

=  �2𝐷𝐷𝑝𝑝/𝜔𝜔  .                                        (6.12) 

Owing to the oscillatory motion of the viscous fluid, the viscous boundary cannot maintain a 

stable near-to-pore layer as it is in the steady flow, which renders the viscous skin depth to be 

a complex value. At low-frequency limit, 𝛿𝛿𝑝𝑝 has a finite value, 

𝛿𝛿𝑝𝑝0  = 𝛿𝛿𝑝𝑝(𝜔𝜔 → 0) = 1+𝑖𝑖
𝑘𝑘4
0   .                                    (6.13) 
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where 𝑘𝑘40 ≡ 𝑘𝑘4(𝜔𝜔 → 0) = 𝑖𝑖� 𝜙𝜙
𝜅𝜅𝑜𝑜𝑇𝑇𝑑𝑑f

. 

Because the vorticity is mainly confined within the viscous skin depth, we can define a quantity 

to represent the magnitude of the pore-scale vortices, which equals to the product of the 

vorticity and the viscous skin depth, 

𝛺𝛺�⃗ 𝛿𝛿(𝜔𝜔, 𝑥𝑥) = 𝛺𝛺�⃗ ∙ 𝛿𝛿𝑝𝑝   .                                            (6.14) 

Since the symmetry of the cylindrical pore model, the vorticity 𝛺𝛺�⃗ (𝜔𝜔, 𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟 (𝐯𝐯) = ∂𝐯𝐯
∂x

.  

Therefore, the viscous frictional stress τ is proportional to the vorticity at the pore wall.  

τ(𝜔𝜔, 𝑟𝑟) = 𝜇𝜇f ∙ �
∂𝐯𝐯
∂x
��
𝑥𝑥=𝑟𝑟

= 𝜇𝜇f ∙ 𝛺𝛺�⃗ �𝑥𝑥=𝑟𝑟  .                               (6.15) 

Thus, at the pore wall interface, the magnitude of the pore-scale vortices defined by 

equation (6.14) is proportional to the pore-scale frictional dissipation caused by the vorticity, 

which is a function of frequency and the pore size. The normalized magnitude of the interface 

vortices is, 

Ω𝑖𝑖(𝜔𝜔, 𝑟𝑟) = �𝛺𝛺�⃗ 𝛿𝛿�𝑥𝑥=𝑟𝑟� /𝐮𝐮𝐩𝐩 =  𝑘𝑘4
𝐽𝐽1(𝑘𝑘4𝑟𝑟)
𝐽𝐽0(𝑘𝑘4𝑟𝑟)  .                             (6.16) 

6.2.2.  The Critical Frequency and The Critical Pore Size 

The critical frequency arises if the wavelength of the slow S-wave is on the order of the pore 

size when maximum interaction between the propagation waves and the diffusive wave (slow 

S-wave) occurs (Müller and Sahay, 2011c). Li et al. (2020c) find that the pore-scale critical 

frequency for each pore size is the frequency when the half of the slow S-wavelength is 

comparable to the pore opening (𝜆𝜆 ≈ 4𝑟𝑟), which can be calculated by substitute the wave 

number 𝑘𝑘4 into 𝑘𝑘4 = 2𝜋𝜋/𝜆𝜆.  

𝑓𝑓𝑐𝑐 = 2𝜇𝜇f
𝑇𝑇𝜌𝜌f

�4𝜋𝜋2

𝜆𝜆4
+ 𝜙𝜙 (𝜅𝜅0𝑇𝑇𝑑𝑑f)⁄

𝜆𝜆2
  .                                         (6.17) 

It convergences to the linear function at high frequencies (𝜔𝜔 ≫ 𝜔𝜔𝐵𝐵), 

𝑓𝑓𝑐𝑐 = 4𝜋𝜋𝜇𝜇f
𝑇𝑇𝜌𝜌f𝜆𝜆2

  .                                                    (6.18) 

When this critical frequency coincides with the Biot characteristic frequency 𝑓𝑓𝑐𝑐 = 𝜔𝜔𝐵𝐵/2𝜋𝜋, the 

corresponding critical pore size (i.e. radius) can be derived, 
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𝑟𝑟𝐵𝐵 = 𝑐𝑐𝑐𝑐�
𝜅𝜅0
2𝜙𝜙

  ,                                                (6.19) 

where the constant parameter 𝑐𝑐 = �𝑚𝑚𝑠𝑠 + �1 + 𝑚𝑚𝑠𝑠  and the 𝑚𝑚𝑠𝑠 = 1 −𝑚𝑚f = (1 − 𝜙𝜙)𝜌𝜌s/

[𝜙𝜙𝜌𝜌f + (1 − 𝜙𝜙)𝜌𝜌s] is the solid mass fraction. For the common sedimentary rock saturated by 

oil or water 𝑐𝑐 ≈ 3 2⁄ . 

6.2.3.  Numerical Examples of The Pore-scale Vorticity and Flow Velocity Field  

In this section, we use numerical examples to exam the pore-scale vorticity and flow velocity 

field. A porous medium (i.e. sandstone) is considered with grain density 𝜌𝜌𝑠𝑠 = 2650 kg/m3, 

permeability 𝑘𝑘0 = 200𝑚𝑚𝑚𝑚, and porosity 𝜙𝜙 = 0.2 and saturated by water with density 𝜌𝜌f =

1000kg/m3 and viscosity 𝜇𝜇f = 1 cP. The tortuosity is calculated by 𝑇𝑇 = 1 2⁄ (1 + 1 𝜙𝜙⁄ ) = 3. 

The normalized magnitude of interface vortices Ω𝑖𝑖(𝜔𝜔, 𝑟𝑟) , which represent the pore-scale 

vorticity dissipation are plotted in Figure 6. 3. The pore-scale frequency 𝑓𝑓𝑐𝑐  coincides the 

highest values in the imaginary part of the normalized magnitude of interface vortices (Im(Ω𝑖𝑖)). 

The Biot frequency 𝑓𝑓𝐵𝐵 and the critical pore radius 𝑟𝑟𝐵𝐵 divide Ω𝑖𝑖 into four quadrants:  

Ⅰ: large pores (𝑟𝑟 > 𝑟𝑟𝐵𝐵) at high frequencies (𝑓𝑓 > 𝑓𝑓𝐵𝐵): high magnitude of vortices with largest 

peak values at frequencies closed to Biot frequency 𝑓𝑓𝐵𝐵; 

Ⅱ: large pores (𝑟𝑟 > 𝑟𝑟𝐵𝐵) at low frequencies (𝑓𝑓 < 𝑓𝑓𝐵𝐵): high magnitude of vortices with largest 

peak values at frequencies closed to Biot frequency 𝑓𝑓𝐵𝐵; 

Ⅲ: small pores (𝑟𝑟 < 𝑟𝑟𝐵𝐵) at low frequencies (𝑓𝑓 < 𝑓𝑓𝐵𝐵): low magnitude of vortices;  

Ⅳ: small pores (𝑟𝑟 < 𝑟𝑟𝐵𝐵) at high frequencies (𝑓𝑓 > 𝑓𝑓𝐵𝐵): transition of vortices magnitude from 

low level to a high level at pore-scale critical frequency 𝑓𝑓𝑐𝑐. 
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Figure 6. 3 Real part and (b) imaginary part of the normalized magnitude of interface vortices 
𝛺𝛺𝑖𝑖(𝜔𝜔, 𝑟𝑟) are function of frequency and pore size, which are plotted at log-log scale. The pore-
scale critical frequency 𝑓𝑓𝑐𝑐 defined by equation (6.17) is plotted as a solid white line and its 
linear asymptotic value defined by equation (6.18) are plotted as a white dash line. The Biot 
frequency 𝑓𝑓𝐵𝐵 = 𝜔𝜔𝐵𝐵/2𝜋𝜋. and the critical pore radius 𝑟𝑟𝐵𝐵 defined by equation (6.19) are plotted 
in red and black dash lines, respectively. 

We further compare the pore-scale relative flow velocity v normalized by the potential flow 

and the corresponding normalized 𝛺𝛺�⃗ 𝛿𝛿  in the single cylindrical tube (Biot, 1956b) and the 

porous media on the frequency domain (Figure 6.4 and 6.6). Two different pore sizes are 

checked. One pore size is r = 𝛿𝛿𝑝𝑝0 < 𝑟𝑟𝐵𝐵  representing the maximum pore size in which the 

viscous flow is dominated and at low frequency limit. The other pore size r = 5�𝜅𝜅0 𝜙𝜙⁄ > 𝑟𝑟𝐵𝐵 

is considered as the effective capillary radius in the porous medium (Blunt, 2017; Dullien, 

2012).  It shows that the viscous skin depths (black dashed lines) in the porous medium (e.g. 

sandstone) have a finite value rather than an infinitely large value for the single infinite long 

cylindrical tube at the low-frequency limit.  

For the small size pores (𝑟𝑟 ≤ 𝑟𝑟𝐵𝐵), the vorticity in porous medium retains a low level at the low-

frequency range (𝑓𝑓 < 𝑓𝑓𝐵𝐵 ) due to the underdevelopment of the viscous flow (Figure 6.5). 

However, the vorticity increases rapidly at the high-frequency range (𝑓𝑓 > 𝑓𝑓𝐵𝐵) though it is 

restricted within the viscous skin, which becomes much smaller than the pore size. The 

vorticity vector obeys the right-hand rule and has the opposite sign on the two sides (Figure 

6.1 and 6.2), however, the vorticity is axial-symmetry in the three dimensions (Figure 6.5d). 

At the same time, the velocity profile gradually deviates from the parabolic shape and evolves 

to be a flange shape in the high-frequency range (Figure 6.5b). 
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For the large size pores (𝑟𝑟 ≫ 𝑟𝑟𝐵𝐵) in the porous medium, the viscous skin depth can only occupy 

a portion of the pore space so that the potential flow dominates the bulk fluid flow in any 

frequency, which is different from the scenario in the single cylindrical pore (Figure 6.6). The 

viscous skin depth reaches the highest value at the Biot frequency 𝑓𝑓𝐵𝐵 when the magnitude of 

the vortices 𝛺𝛺�⃗ 𝛿𝛿 also comes to the peak (Figure 6.7). The velocity profile is parabolic shape at 

the low-frequency range (𝑓𝑓 < 𝑓𝑓𝐵𝐵) but becomes flange shape at the high-frequency range (𝑓𝑓 >

𝑓𝑓𝐵𝐵) (Figure 6.7a, b). 

 

Figure 6. 4 The pore-scale profiles of normalized v in (a) cylindrical tube and (b) porous 
medium; and pore-scale profiles of the corresponding normalized 𝛺𝛺�⃗ 𝛿𝛿 in (c) cylindrical tube 
and (d) porous medium at frequency domain. The viscous skin depths are marked as black 
dashed lines. The crossover frequency 𝑓𝑓𝐵𝐵 = 𝜔𝜔𝐵𝐵/2𝜋𝜋 are marked as white dashed lines. The 

pore radius 𝑟𝑟 = 𝛿𝛿𝑝𝑝0. 
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Figure 6. 5 (a) the pore-scale profiles of normalized v in a porous medium at 6 different 
frequencies and (b) the corresponding 3D plot; (c) the pore-scale profiles of normalized 𝛺𝛺�⃗ 𝛿𝛿 in 
porous medium at 6 different frequencies and (d) the corresponding 3D plot; The viscous skin 

depths are marked as light red shadings. The pore radius 𝑟𝑟 = 𝛿𝛿𝑝𝑝0. 

 

Figure 6. 6 The pore-scale profiles of normalized v in (a) cylindrical tube and (b) porous 
medium; and pore-scale profiles of the corresponding normalized 𝛺𝛺�⃗ 𝛿𝛿 in (c) cylindrical tube 
and (d) porous medium at frequency domain. The viscous skin depths are marked as black 
dashed lines. The crossover frequency 𝑓𝑓𝐵𝐵 = 𝜔𝜔𝐵𝐵/2𝜋𝜋 are marked as white dashed lines. The 

pore radius 𝑟𝑟 = 5�𝜅𝜅0 𝜙𝜙⁄ . 
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Figure 6. 7 (a) the pore-scale profiles of normalized v in sandstone at 6 different frequencies 
and (b) the corresponding 3D plot; (c) the pore-scale profiles of normalized 𝛺𝛺�⃗ 𝛿𝛿 in porous 
medium at 6 different frequencies and (b) the corresponding 3D plot; The pore radius 𝑟𝑟 =
5�𝜅𝜅0 𝜙𝜙⁄ . 

6.3. Effective Viscosity for the Porous Media with Broadband Pore Size Distribution 

and Slip Boundary Condition 

6.3.1. Viscosity Correction Based on Pore Size Distribution Data 

In order to describe the viscous frictional effect in the porous media at high frequencies,  Biot 

(1956b) workout a viscosity correction factor by analysis of the ratio of the average velocity 𝑣𝑣𝑖𝑖 

and the frictional force ℎ𝑖𝑖 at pore-scale, which could be considered as a frequency and pore 

size-dependent frictional coefficient.  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑣𝑣𝑖𝑖(𝜔𝜔,𝑟𝑟)
ℎ𝑖𝑖(𝜔𝜔,𝑟𝑟)

  .                                                     (6.20) 

In the Biot model, all pores are considered to have the same characteristic pore size 𝑟𝑟 = 𝑎𝑎. 

However, as the analysis in section 6.4, the contribution of the pores with various pore sizes 

have important differences. Thus, for the porous medium in which the pore size is distributed 

in a wide range, pore size distribution should be considered so that a distribution of friction 
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would then occur between pores as the frequency varies with a corresponding distribution in 

the velocity pattern.  

The pore-scale average velocity of the oscillatory-forced fluid flow in the porous medium 

based on equation (6.8) is: 

𝑣𝑣𝑖𝑖(𝜔𝜔, 𝑟𝑟) = �1 − 2𝐽𝐽1(𝑘𝑘4𝑟𝑟) 
𝑘𝑘4𝑟𝑟𝐽𝐽0(𝑘𝑘4𝑟𝑟)

� ∙ 𝐮𝐮𝐩𝐩  ,                                    (6.21) 

and the frictional force based on equation (6.15) is:  

ℎ𝑖𝑖(𝜔𝜔, 𝑟𝑟) = 2𝜋𝜋𝜋𝜋𝜇𝜇f𝜏𝜏 = 2𝜋𝜋𝜋𝜋𝜇𝜇f𝑘𝑘4
𝐽𝐽1(𝑘𝑘4𝑟𝑟) 
𝐽𝐽0(𝑘𝑘4𝑟𝑟) ∙ 𝐮𝐮𝐩𝐩 .                            (6.22) 

However, the volume-averaged velocity and the frictional force are not only frequency 

dependent but also pore size distribution dependent. For the porous medium with a broadband 

pore size distribution (each pore size 𝑟𝑟𝑖𝑖 ∈ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚) corresponds to an incremental porosity 

𝜙𝜙𝑖𝑖), their volume averaged values are,   

𝑣̅𝑣(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖) =
∑ 𝜙𝜙𝑖𝑖𝑣𝑣𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙
   ,                                                (6.23) 

ℎ�(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖) =
∑ 𝜙𝜙𝑖𝑖ℎ𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙
   .                                               (6.24) 

Therefore, the corresponding frictional coefficient becomes, 

𝐵𝐵𝜔𝜔(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖) = 𝑣𝑣�(𝜔𝜔,𝑟𝑟,𝜙𝜙𝑖𝑖)
ℎ�(𝜔𝜔,𝑟𝑟,𝜙𝜙𝑖𝑖)

  .                                               (6.25) 

In the low-frequency limit, its value is, 

𝐵𝐵0(𝑟𝑟,𝜙𝜙𝑖𝑖) = 𝑣𝑣�0(𝑟𝑟,𝜙𝜙𝑖𝑖)
ℎ�0����(𝑟𝑟,𝜙𝜙𝑖𝑖)

 .                                                  (6.26)  

where  

𝑣̅𝑣0 =
∑ 𝜙𝜙𝑖𝑖𝑣𝑣𝑖𝑖

0𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙
  ,                                                        (6.27) 

ℎ�0 =
∑ 𝜙𝜙𝑖𝑖ℎ𝑖𝑖

0𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙
  ,                                                        (6.28) 

𝑣𝑣𝑖𝑖0 = �1 − 2𝐽𝐽1(𝑘𝑘40𝑟𝑟) 
𝑘𝑘4
0𝑟𝑟𝐽𝐽0(𝑘𝑘4

0𝑟𝑟)
� ∙ up  ,                                            (6.29) 

ℎ𝑖𝑖0 = 2𝜋𝜋𝜋𝜋𝜇𝜇f𝑘𝑘40
𝐽𝐽1�𝑘𝑘40𝑟𝑟� 
𝐽𝐽0�𝑘𝑘4

0𝑟𝑟�
∙ up  .                                           (6.30) 
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The viscosity correction factor F(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖) is defined as the ratio of the frictional coefficient 

and its value at zero frequency limit, which measures the deviation from Poiseuille flow 

friction as a function of frequency.  

F(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖) = 𝐵𝐵𝜔𝜔
𝐵𝐵0

  .                                                (6.31) 

6.3.2.  Effective Viscosity with Slip Boundary Condition 

The velocity and vorticity derived above are based on the no-slip boundary condition; however, 

for a non-wetting fluid situated porous medium, the slip boundary condition is appropriate. The 

viscosity with slip boundary condition has been achieved by using the apparent slip model (Li 

et al., 2020b; Li et al., 2020c), 

𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔, 𝑏𝑏) = 𝜇𝜇f

1+ 𝑏𝑏
𝛿𝛿𝑝𝑝

≤ 𝜇𝜇f  .                                           (6.32) 

In the low-frequency limit, 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔 → 0) = 𝜇𝜇f �1 + 𝑏𝑏

𝛿𝛿𝑝𝑝0
��  results in the increase of the effective 

static permeability, 

𝜅𝜅0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜅𝜅0 �1 + 𝑏𝑏

𝛿𝛿𝑝𝑝0
� ≥ 𝜅𝜅0  .                                    (6.33) 

where b is the slip length whose value is dependent on the wettability of the porous medium to 

the saturated fluid. In general, the slip length and contact angle obeys the quasi-universal 

relationship 𝑏𝑏 ∝ (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)−2 (Huang et al., 2008; Ortiz-Young et al., 2013) i.e. the strong 

wetting fluid has zero slip length 𝑏𝑏 = 0 corresponding to the hydrophilic non-slip boundary 

condition and non-wetting fluid has finite slip length b > 0 correspondings to the hydrophobic 

slip boundary condition.  

It is worth noting that the increase of the effective static permeability is caused by the decrease 

of the viscosity with slip boundary condition so that the component �1 + 𝑏𝑏
𝛿𝛿𝑝𝑝0
� related to the slip 

boundary condition should not be included in the calculation of the fluid mobility of the fluid 

�𝜅𝜅0/𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�, otherwise, the slip boundary condition would be overused.  

By using the viscosity 𝜇𝜇f
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠defined in equation (6.32) to replace the ordinary viscosity 𝜇𝜇f in the 

equation (6.31) and the sub-equations, one enables its feasibility for any kind of slip boundary 

condition. The effective viscosity, therefore, can be defined as, 
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𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔, 𝑟𝑟,𝜙𝜙𝑖𝑖 , 𝑏𝑏) = F ∙ 𝜇𝜇f

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  .                                              (6.34) 

By using the effective viscosity for the slip boundary, we can further explore the wettability 

effect on the hydrodynamics of the wave-induced-fluid-flow and the attenuation and velocity 

of the elastic wave propagation.  

6.4. The Solution of Velocity Dispersion and Attenuation in the Porous Media  

The velocity dispersion is often referring to the discrepancies between the measured velocities 

of waves with different frequencies in the saturated porous medium. The dispersion occurred 

is due to the attenuation, which could be caused by the intrinsic attenuation of the rock matrix 

or the frictional attenuation of the viscous fluid. The wettability plays a role in the latter part 

of the attenuation and the corresponding dispersion. For two porous media with the same solid 

frame properties but saturated by different wetting fluids, the dispersion is mainly due to the 

frictional attenuation which is affected by the fluid slippage (wettability) based on our previous 

analysis. Therefore, the dispersion can be an indicator of wettability.  

In order to incorporate the vorticity dissipation and slip boundary condition effect, the 

solution of the velocity and attenuation in the porous media with broadband pore size 

distribution can be calculated by equations (4.14) and (4.15) by using the effective viscosity 

𝜇𝜇f
𝑒𝑒𝑒𝑒𝑒𝑒 defined by equation (6.34). The compressional and shear moduli of the saturated porous 

media can be further calculated by, 

M𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑝𝑝2𝜌𝜌𝑏𝑏  ,                                                        (6.35) 

μ𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑠𝑠2𝜌𝜌𝑏𝑏   ,                                                       (6.36) 

where 𝜌𝜌𝑏𝑏 = 𝜌𝜌𝑠𝑠 + 𝜙𝜙(𝜌𝜌𝑓𝑓 − 𝜌𝜌𝑠𝑠) is the bulk density of the saturated porous medium. 

The dispersion of velocity and modulus are defined as, 

∆V𝑝𝑝ℎ = 𝑉𝑉𝑝𝑝ℎ(ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)−𝑉𝑉𝑝𝑝ℎ(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑉𝑉𝑝𝑝ℎ(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

                                  (6.37) 

∆M𝑠𝑠𝑠𝑠𝑠𝑠 = M𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)−M𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
M𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

                               (6.38) 

∆μ𝑠𝑠𝑠𝑠𝑠𝑠 = μ𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)−μ𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
μ𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

                               (6.39) 
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Since the shear wave only transmits in the solid phase, we can use the shear modulus of the dry 

porous media as an approximation of the shear modulus of the saturated porous media with the 

low frequency wave. 

6.5.  Results and Application 

6.5.1. Pore Size Distribution Data 

To exam the theory of wettability and pore size distribution dependent wave propagation, we 

numerically construct two kinds of pore size distribution (PSD) data as demonstrated in Figure 

6.8: one (#1) PSD contains more portion of large size pores and a small portion of small size 

pores; the other one (#2) PSD contains more portion of small size pores and a little portion of 

large size pores. The pore size range (10−7𝑚𝑚 < 𝑟𝑟𝑖𝑖 < 10−4𝑚𝑚)  is selected to simulate the 

typical sandstone.  The other parameters are used as in Table 6.1.  

 

Figure 6. 8 (a) Cumulative porosity and (b) incremental porosity. 

 

Table 6. 1 Parameters of brine-saturated sandstone. 

 

Grain Bulk modulus, 𝐾𝐾𝑠𝑠 35 Gpa 
Density, 𝜌𝜌𝑠𝑠 2650 kg/m3 

Matrix Porosity, 𝜙𝜙 0.2 
Permeability, 𝜅𝜅0 200mD 

Bulk modulus, 𝐾𝐾𝑑𝑑 15 Gpa 
Shear modulus, 𝜇𝜇𝑑𝑑 12 Gpa 

Brine Bulk modulus, 𝐾𝐾f 2.25 Gpa 
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Density, 𝜌𝜌f 1040 kg/m3 
Viscosity, 𝜇𝜇f 1 cP 

Remark:  
 1 cP=10-3 Pa·s; 1mD≈10-15 m2. 
 Tortuosity is calculated by T∞ = 1

2
�1 + 1

𝜙𝜙
�. 

 The slip length b = �𝜅𝜅0 𝜙𝜙⁄  is selected for the 
slip boundary condition (non-wetting fluid 
saturation).  

The effective viscosities are calculated based on Eq. (6.34) as in Figure (6.9) for the porous 

media with two different PSD, respectively. We note that the effective viscosity in the slip 

boundary condition is smaller than it in the non-slip condition, which is especially obvious in 

the high-frequency range. The #2 PSD with smaller size pores has seen slightly smaller 

effective viscosity than it in the #1 PSD in the same boundary condition.  

 

Figure 6. 9 The effective viscosity in the porous media with two kinds of pore size 
distributions (PSD) and different slip boundary conditions. 

6.5.2. Wave Attenuation and Velocity Dispersion 

The velocities and the attenuation (1/Q) of P- and S-waves are calculated for the two PSDs and 

the corresponding slip boundary condition in Figure (6.10). It is clear that the slip length only 

affects the step transition of the phase velocities in the intermediate frequency, however, does 

not affect the lower and upper velocity bounds which correspond to phase velocities at the low 

and high-frequency limits, respectively. In the low-frequency limit, the velocity of fast P- wave 

and S- wave agree with the predictions of Gassmann's theory. The two kinds of P- waves and 

the S- wave have a similar pattern that the velocities increase if the slip length/hydrophobicity 

increase, which can qualitatively explain the recent experiment result (Shakouri et al., 2019). 

However, the extent of the influence of the slippage on the velocity is dependent on the inherent 
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dispersion of the porous medium (i.e. the difference between the high and the low limit 

velocities). On the other hand, the impact of the pore size distribution on the velocity is not 

significant. 

The attenuation of the wave is quantified by the dissipation factor 1/𝑄𝑄, which is the reciprocal 

quality factor (Figure 6.10b,d). The slip boundary promotes the out-of-phase motion at the low 

frequency where the attenuation is higher than it in the non-slip condition. But the vorticity 

dissipation and friction decrease due to the slip boundary so that the attenuation becomes lower 

value quickly at high frequency. For the same boundary condition, the attenuation in the #1 

sample where large size pores are rich is significantly higher than it in the #2 sample where 

small size pores are dominated. However, either of them has higher attenuation than the 

predictions of Biot theory (blue lines). This agrees with the analysis of the magnitude of 

interface vortices, which represent the vorticity dissipation, as shown in Figure 6.3, where 

vorticity dissipation is more prevalent in the relatively large pores. 

The slow P- wave as a diffusive wave is highly attenuated at the low frequency (Chandler and 

Johnson, 1981; Müller and Sahay, 2011b), which is still valid for any apparent slip condition. 

The fluid and solid frame conduct the out of phase motion in the slow P wave where the reduced 

effective viscosity aid the friction reduction so that the slip effect lowers the attenuation rapidly 

when the frequency increase (Figure 6.11). However, for the non-slip condition (b = 0), the 

attenuation becomes higher than the Biot prediction (blue lines) due to the vorticity dissipation 

at high frequencies. 
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Figure 6. 10 The velocities (V) and the attenuation (1/Q) of P-wave (p+) and S-wave (s-) are 
compared in the porous medium with different PSD and wettability conditions. No-slip 
condition only has the vorticity loss only and slip condition has the vorticity loss plus the slip 
effect in the boundary layer. 

 
Figure 6. 11 The velocities and the attenuation (1/Q) of slow P-wave (p-) in the porous 
medium with different PSD and wettability conditions. 

6.9.2. The implication in the prediction of wettability 

The major discrepancies of the velocity between different boundary conditions occur in the 

area closed to the critical frequency 𝜔𝜔𝐵𝐵. For the same frequency, the velocity difference of slip 
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boundary and non-slip boundary may not be big enough to be detected. However, if we use 

two or more detectors with more frequencies, as shown in Figure (6.12), the velocity 

differential or the velocity dispersion may be able to be used as an indicator of the slip 

boundary, therefore, the indicator of the wettability. For example, for two frequencies signals 

on the two sides of the critical frequency, the P-wave velocity dispersion of the slip boundary 

(hydrophobic) condition ∆𝑉𝑉𝑝𝑝
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is always higher than it in the non-slip boundary (hydrophilic) 

condition ∆𝑉𝑉𝑝𝑝. This principle is also applicable to the S-wave. The combined dispersion of P- 

and S-waves, either velocities or moduli (i.e. cross-plot), can further support the reliable 

wettability determination. 

 

 
Figure 6. 12 The velocity dispersion is an indicator of different slip boundary conditions 
(wettability). The hydrophobicity promotes a higher dispersion than it in the hydrophilic 

condition. 

6.5.3. Experimental Validation of Natural Sedimentary Rock  

Based on the theoretical analysis and the numerical example, we figure out that the combined 

P- and S-wave dispersion can possibly be used for wettability estimation. To validate the 

method for the real porous media, we measured the P- and S-wave velocities in various natural 

sedimentary rocks (Bentheimer sandstone, Berea sandstone and Indiana carbonate) and with 

different wettability conditions. The saturation fluids water and decane are used. The saturation 

conditions are specified in Table 6.2.  
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The dispersions of the moduli are calculated based on equations (6.37-6.39), and their cross-

plots are demonstrated in Figure (6.13). We can see that the measured dispersion with non-

wetting saturation (hydrophobic condition) is generally higher than its value in the wetting 

saturation (hydrophilic condition), which is especially true for the rocks with low clay contents 

(i.e. Bentheimer sandstone and Indiana carbonate).  

The dispersion data points can be segmented by the dash lines in different groups to determine 

the wetting (blue points) and non-wetting conditions (red points) in the cross-plots (Figure 

(6.13)). In this way, the wettability can be determined from the measurement of the dispersions. 

However, for Berea sandstone, such segmentation is more challenging. It is because that the 

clay content in the Berea sandstone is relatively high, and its impact compensates for the 

wettability impact on the dispersion.  

 In the oil field, the wetting fluid (e.g. water) tends to spread and cover the solid minerals, while 

the non-wetting fluid (e.g. oil) is isolated by the wetting fluid and prevented from direct contact 

with the solid. During the wave passing, the non-wetting fluid tends to flow over the wetting 

fluid, which is a slip boundary condition. Therefore, the proposed method can also be 

applicable for the in-situ wettability determination in the oil reservoir.  

Table 6. 2 Saturation condition in the natural sedimentary rocks with different wettability. 

 
No. Rock type Wettability 

condition 
Saturated fluid Boundary 

Condition 
1 Bentheimer 

sandstone 
Hydrophilic Water 

(wetting fluid) 
No-slip 

2 Bentheimer 
sandstone 

Hydrophobic Decane 
(wetting fluid) 

No-slip 

3 Bentheimer 
sandstone 

Hydrophilic Decane 
(non-wetting 

fluid) 

Slip 

4 Bentheimer 
sandstone 

Hydrophobic Water 
(non-wetting 

fluid) 

Slip 

5 Berea 
sandstone 

Hydrophilic Water 
(wetting fluid) 

No-slip 

6 Berea 
sandstone 

Hydrophobic Decane 
(wetting fluid) 

No-slip 

7 Berea 
sandstone 

Hydrophilic Decane 
(non-wetting 

fluid) 

Slip 

8 Berea 
sandstone 

Hydrophobic Water Slip 
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(non-wetting 
fluid) 

9 Indiana 
carbonate 

Hydrophilic Water 
(wetting fluid) 

No-slip 

10 Indiana 
carbonate 

Hydrophobic Decane 
(wetting fluid) 

No-slip 

11 Indiana 
carbonate 

Hydrophilic Decane 
(non-wetting 

fluid) 

Slip 

12 Indiana 
carbonate 

Hydrophobic Water 
(non-wetting 

fluid) 

Slip 

 
 

 
Figure 6. 13 The crossplot of the dispersions of compressional wave moduli and shear 

moduli for (a) Bentheimer sandstone, (b) Berea sandstone and (c) Indiana carbonate. The red 
and blue data points are from porous media saturated by non-wetting fluid and wetting-fluid, 

respectively.  

6.6. Discussion  

The viscous skin depth concept has been widely used in acoustical physics in the porous media 

saturated by fluid (Gurevich, 2002; Johnson et al., 1987; Murphy III et al., 1986). However, 

the most common viscous skin depth defined by equation (6.5) is derived by the analysis of the 

oscillatory flow above an infinite large flat plane (T=1) (Landau and Lifshitz, 1987) which is 

unrepresentative for the torturous pore network in the porous media context.  

To tackle this problem, Biot (1956b) attempts using a sinuosity factor multiplying the angular 

frequency to give the weight of the unparallel placement of the cylindrical tube with respect to 

the direction of wave propagation. For a similar reason, Johnson et al. (1987) use the tortuosity 

factor multiplying the fluid density in the macroscopic model. In fact, these two approaches 

serve the same purpose to introduce the impact of the tortuosity on the inertia term, which 

reduces the viscous skin depth (Figure (6.14)) and decreases the diffusivity of the viscous wave 
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(vorticity) (Figure 6.15).  Sahay (2008) further proves such viscous wave at low frequencies in 

porous media is slow S- wave. 

At the low frequencies (𝑓𝑓 < 𝑓𝑓𝐵𝐵 ), the slow S-wave is heavily damped whose frequency-

dependent diffusivity defined by equation (6.11) increases when frequency increases (Figure 

6.15); at the high frequencies (𝑓𝑓 > 𝑓𝑓𝐵𝐵 ), it becomes an ordinary viscous wave where the 

diffusivity is constant for no-slip boundary conditions but decreases along with the increasing 

frequency for the slip boundary condition. It is because the effective viscosity in the slip 

boundary decreases when frequency increases. 

Correspondingly, the viscous skin depth in the porous media has finite value when 𝑓𝑓 < 𝑓𝑓𝐵𝐵, 

reaches its peak at the critical frequency fB  and decreases along with increasing frequency 

when 𝑓𝑓 > 𝑓𝑓𝐵𝐵 . The viscous skin depth becomes smaller in the slip boundary condition 

consequently due to the reduced effective viscosity (Figure 6.14).  

 

 
Figure 6. 14 Comparison of the viscous skin depth in the infinite long cylindrical tubes (T=1 

and 3) and the sandstone (no-slip and slip boundary). The slip length 𝑏𝑏 = �𝜅𝜅0 𝜙𝜙⁄  is 
arbitrarily selected for the slip boundary condition. 
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Figure 6. 15 Diffusivity of the vorticity diffusion in the infinite long cylindrical tube 𝐷𝐷0 and 

the porous medium 𝐷𝐷𝑝𝑝. 

The magnitude of the wettability impact on the velocity and the corresponding dispersion may 

not be detectable if the clay content in the rock (i.e. Berea sandstone) is relatively high, which 

may introduce a more complicated viscoelastic effect and distort the response to the wettability.  

The  

 

6.7. Conclusion 

The vorticity dissipation and the slip boundary condition have been applied to the Biot 

mechanism for the wave propagation in the porous medium with broadband pore size 

distribution.  

Vorticity dissipation related to the viscous loss due to the shear drag within the fluid comprises 

an important part of the frictional attenuation in the saturated porous medium. The extra energy 

dissipation occurs through the vorticity diffusion of the viscous fluid in the wave of slow S- 

wave, which draws the energy from propagating waves by the mode conversion. In this chapter, 

the slow S- wave is adopted into the oscillating flow model and explores the profiles of the 

velocity and the vorticity in the pore scale. The vorticity is mainly constrained within the 

viscous skin depth, which in the porous media context is finite in low frequencies and becomes 

much smaller than the pore size in the high frequencies.  
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The non-wetting fluid tends to slip on the solid boundary in the wave-induced-fluid-flow, 

which is a slip boundary condition and different from the basic assumption of the conventional 

Biot theory. Slip length represents the degree of the slippage and can be used as a proxy for the 

wettability or hydrophobicity degree, which plays a role in the wave motion. The slip boundary 

condition is treated by an apparent slip model where the fluid behaves less viscous inside the 

viscous boundary layer under the excitement of elastic waves. Wettability takes effect in the 

hydrodynamics of the microfluidics by the implementation of slip boundary where the effective 

viscosity is developed. 

In general, the non-wetting fluid saturated porous material has higher phase velocities than the 

wetting fluid saturated one for all kinds of P- waves and S- wave in the intermediated 

frequencies but convergent to the same value in the low and high-frequency limits. The 

attenuation demonstrates a higher peak value, and the entire attenuation curve is constrained in 

a narrower frequency range for the slip BC (non-wetting saturation) compared to that of the 

no-slip BC (wetting saturation). The theoretical model developed has the potential to be applied 

in the prediction of wettability by measuring the velocity dispersion, which has been 

qualitatively validated by the experiments.  

 

Chapter 7. Wettability-dependent Wave Velocities and Attenuation in 

Granular Porous Media 

This chapter is based on below published conference papers and unpublished journal papers:  

Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., & Sarmadivaleh, M. (2020). Wettability 
dependent P-wave scattering and velocity saturation relation in granular medium. SEG 
Technical Program Expanded Abstracts 2020. 

Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., Ma, R., & Sarmadivaleh, M. (2021). Path 
dispersion of elastic waves in granular matter. Paper presented at the SEG/SPWLA 2020 
Workshop: 7th Workshop on Porous Media: Structure, Flow and Dynamics, Virtual, 2–3 
December 2020. 
 
Li, J. X., Rezaee, R., Müller, T. M., Madadi, M., Ma, R., & Sarmadivaleh, M. (2021). 
Wettability-dependent Wave Velocities and Attenuation in Granular Porous Media. Submitted 
to Geophysics. 
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7.1. Introduction 

Since granular porous media provide zones with high porosity and permeability that is 

important for freshwater aquifers, oil and gas production, and 𝐶𝐶𝑂𝑂2 geo-sequestration, there are 

wide genre of scientific interests in its properties especially the acoustic properties (Güven et 

al., 2017; Johnson and Jia, 2005; Liu and Nagel, 1992; Melosh, 1996; Moebius et al., 2012; 

Scott, 1996). In the context of groundwater exploitation and exploration geophysics, soft and 

unconsolidated sediments (e.g. soil and sand packings) in the subsurface are often 

conceptualized as fluid-saturated granular porous media. In particular, for the interpretation of 

sonic and seismic data it is important to understand their overall elastic properties, velocity 

dispersion, and attenuation mechanisms  (Anthony and Marone, 2005; Daniels and Hayman, 

2008; Dutta et al., 2010).  

It is known that for porous media saturated with more than one fluid the wave velocity is not 

only dependent on the saturation, i.e., the volumetric proportion, but also dependent on the 

fluid distribution, i.e., the geometrical arrangement and length scales of fluid pockets. In this 

regard, there have been several experiments to study the velocity-saturation-relation (VSR) in 

various lithologic rocks with mixed liquid-gas saturation (Alemu et al., 2013; Cadoret et al., 

1995; Lebedev et al., 2009; Lopes et al., 2014; Murphy III, 1984). 

These VSR can be often constrained by the two end-member models of patchy and uniform 

saturation.  They correspond to the upper bound and lower bound velocities described by the 

Gassmann-Hill (GH) and Gassmann-Wood (GW) equations, respectively (Toms et al., 2006). 

Similar experiments for granular media are not known. Even the applicability of the GW and 

GH bounds in partially saturated granular porous media remains unclear. Nonetheless, it is 

known that wave velocities are strongly different in dry and saturated granular media (Brunet 

et al., 2008; Griffiths et al., 2010; Job et al., 2008). Therefore, one can expect a pronounced 

signature of partial saturation to be present in granular media as well.  

As far as velocity dispersion and attenuation in partially saturated rocks are concerned, there 

are multiple models to account for wave-induced-fluid-flow (WIFF), which is thought to be a 

relevant dissipation mechanism caused by the relative motion of solid and fluid (Ba et al., 2011; 

Dutta and Odé, 1979; Johnson, 2001; Lo et al., 2005; Mavko and Mukerji, 1998; Müller and 

Gurevich, 2004; Santos et al., 1990; Sun et al., 2018; White, 1975).  
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These models are used to interpret observed VSRs that do not follow either the GH or GW 

bounds, but show trends in between these bounds. These WIFF models also allow us to 

interpret the attenuation-saturation relation (ASR) (Liu et al., 2016; Qi et al., 2014). 

While it is known that waves in granular media become attenuated, one may expect additional 

attenuation in partially saturated granular media (Brunet et al., 2008). However, the precise 

nature of WIFF in granular media is unknown, and therefore the applicability of one of the 

above-mentioned models remains questionable. 

The presence of two fluids inevitably implies that two-phase flow concepts such as capillarity 

and wettability become relevant. For example, Qi et al. (2014) find that capillarity stiffening 

may result in higher wave velocities and accordingly modify the GW bound based on ideas 

earlier suggested by Nagy and Blaho (1994) and Tserkovnyak and Johnson (2003). Lo et al. 

(2017) discover the dynamic response of the water retention curve (relationship of capillary 

pressure and water saturation) during water drainage in unsaturated porous media under the 

acoustic excitations. The wettability as interfacial phenomena is thought to be a key factor 

controlling the spatial distribution and fluids and location of the fluid displacement, which 

could have a significant influence on the capillary pressure, relative permeability and water-

flooding performance (Anderson, 1986b; Anderson, 1986e; Anderson, 1986f; Bultreys et al., 

2016; Hu et al., 2017; Khishvand et al., 2017).  

However, in none of the above studies, the wettability of the porous media to the saturated 

fluids has been considered. Ignoring the wettability impact on wave propagation may lead to 

errors and mis-interpretation of experimental and field test results. Therefore, in an attempt to 

understand the effect of wettability on waves velocities, we aim at experiments in an idealized 

porous medium, in which we can have full control of the wettability. For this purpose, we 

choose glass bead packings as a particular simple representation of a granular medium.       

Although there are a lot of similarities between a granular porous medium and rigid porous 

medium and some poroelastic theories may be applicable to the granular medium, the grains in 

the granular medium have an additional degree of freedom compared to the solid frame of 

consolidated rigid porous media. In non-cohesive granular media under external stress, some 

grains are load-bearing, others not. This results in an inhomogeneous pattern of load-bearing 

grains, the so-called force chain networks. Force chain networks can be directly observed by 
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photo-elastic visualization experiments (Howell et al., 1999; Ladd and Reber, 2020; Owens 

and Daniels, 2011). 

Since the contact force chain network bears the strongest stress on the direction of the 

compression, it dominates the mechanical properties of granular media, including the elastic 

response to the external disturbance such as acoustical perturbation (Sayers, 2021). When the 

granular medium is saturated by two immiscible fluids, the grain contacts are always occupied 

by the wetting fluid because of the capillary action, while the non-wetting fluid is forced into 

the relatively larger pores (Anderson, 1986a). Such a wettability-dependent spatial distribution 

of fluids is most likely to affect the structure of the force chain network. Different from the dry 

Hertzian contacts, the presence of the liquid bridges in the grain contacts (i.e. the water bridges 

in the water-wetting sample) induce the elastohydrodynamic collision of grains under 

ultrasonic frequency, which consequently increase the stiffness of the contact, enlarge the force 

chain network and therefore increase the characteristic length of the force chains (Davis et al., 

1986; Job et al., 2008). 

In this paper, we explore the wettability effect on the wave propagation in the (partial) saturated 

granular media by the experiments combining acoustic measurement and core flooding. We 

first present the experiment setup and results. The waveform of the P- and S-wave on each step 

of incremental water injection (an increase of water saturation) are recorded for both water-

wetting and gas-wetting glass bead packings. The velocity-saturation-relation (VSR) and 

attenuation-saturation-relation (ASR) are extracted from the waveforms. Then, the wettability 

dependent scattering patterns are identified for two samples with different wettability. A 

wettability-dependent characteristic length of the force chains is used to interpret the wave 

scattering observations and the piece-wise function of effective bulk and shear moduli are 

proposed to simulate the transition from the coherent wave in dry or low saturation to 

incoherent wave in high and full saturation. 

7.2.  Experimental Setup 

The experimental setup consists of a poly-carbonate cylinder (15.5mm inner diameter and 48-

52mm length) packed with spherical glass beads with a quasi-identical diameter of 200 ± 50 

µm and two piston piezoelectric acoustic transducers mounted on the two ends. This is the 

typical configuration to carry out acoustic measurements in granular materials (Johnson and 

Jia, 2005). The fluid can be injected through the inlet line and the displaced fluid exits through 
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the outlet line (Figure 7.1). Olympus V103 and V153 piezoelectric transducers with broadband 

frequency range 0.2 – 2 MHz and 1 MHz centre frequency are used to generate and receive P- 

and S-wave pulses, respectively. A uniaxial pressure of about 150 kPa is applied on the outside 

faces of the transducers to guarantee dense packing.  

 

Figure 7. 1 (a) Real and (b) schematic experimental set-up for conducting acoustic 
measurement during the water-air core flooding in the glass bead pack under axial pressure P. 

T and R denote the piezoelectric transmitter and receiver, respectively. 

To indicate the wettability the contact angle is measured. The water droplets are applied on the 

original glass surface and the Quilon-C treated surface, respectively, in the air environment. 

The measured contact angle is on a water-air-glass interface is 7.64°, which is far less than 90° 

indicating that the pure, untreated glass beads are strongly water-wetting (Figure (7.2)). The 

water is incrementally injected into the packing through the inlet line with an approximate flow 

rate of 0.7 ml/s. The acoustic measurement is conducted after each incremental injection. The 

change of water saturation is precisely captured by measuring the weight of the sample.  
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Figure 7. 2 (a) Original glass bead sample (top) appearing in shiny white color and the 
Quilon-C treated glass bead sample (bottom) in dark green color; (b) microscopy images of 

the original glass beads and treated beads; (c) the corresponding contact angle of water 
droplet on the original glass surface (top) is 7.64° and on the processed glass surface after 

Quilon chemical treatment (bottom) is 105.5°. 

The same injection-measurement procedure is performed on the glass bead packing when the 

wettability is altered in order to have gas wetting glass beads. Quilon-C in isopropyl alcohol 

solution is used to alter the wettability of the original water-wetting glass beads to be gas-

wetting by following the same procedures outlined in the literature (Garrouch and Sharma, 

1995). The chemical contains C-14-C-18 fatty acids with chromium, which bonds the 

negatively charged glass bead surface rendering a gas-wetting thin coating on the spheres. An 

advantage of such treatment is that there is little impact on the porosity of the fully saturated 

porous medium (Garrouch and Alikhan, 1997). We find that the porosity of glassbead packing 

changes from 38.5% as the original hydrophilic condition to 37.5% as processed hydrophobic 

condition. The hydrophobicity or gas-wetting condition is confirmed by a 105.5° measured 

contact angle on the water-air-glass interface after the Quilon chemical treatment (Figure 7.2).  

While the porosity and permeability are not significantly changed due to the chemical 

treatment, the mechanical properties are expected to change. In the case of water-wetting glass 

bead packing, the sample can be thought of as almost uncemented, only held together by the 

enclosure of the sleeve and the uniaxial compression applied. However, in the gas-wetting glass 

bead packing, the water-repellent coating and the possible residual chemical deposition on the 

glass beads as demonstrated in Figure 7.2b act as cement layers. They strengthen the entire 

stiffness of the gas-wetting glass bead packing (Dvorkin et al., 1991; Dvorkin et al., 1994). 
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This is confirmed by the observation that the P-wave velocity of dry gas-wetting glass bead 

packing is higher than the value of the dry water-wetting sample (Figure 7.5 and 7.6).  

7.3.  Experimental Results  

7.3.1. Water-wetting Case 

Seismograms of P- and S-wave are recorded separately for the water-wetting sample for each 

saturation step (Figure 7.3). We observe that in the P-wave transmission experiment (Figure 

7.3a) there is a clear transition from a stable coherent wave pulse towards a set of incoherent 

scattering waves with shorter wavelengths for increasing water saturation. With incremental 

water injection, initially, the traveltime of the first arrival slightly increases and the amplitude 

decreases slowly until a critical water saturation 𝑆𝑆𝑐𝑐 ≈  89% is reached. Beyond this saturation, 

the traveltime becomes very short and the amplitude increases sharply. For the S-wave 

transmission experiment, there is only one coherent pulse recognizable whose traveltime 

increases slightly with the increase of water saturation. Nevertheless, the P-wave arrival is 

visible on the S-wave measurement at low and intermediate water saturation (Figure 7.3b). 

 

Figure 7. 3 Recorded waveforms of (a) P-wave and (b) S-wave after incremental injection for 
water-wetting glass bead packing. The small peak at the t=0 is the cross-talk signal during the 
pulse generation. 

7.3.2. Gas-wetting Case 

The gas-wetting glass beads are obtained from the original water-wetting beads treated by the 

wettability alteration agent Quilon C. Better cemented contact between glass beads is expected 

after the treatment.  This is indeed corroborated since we observe higher amplitude and higher 
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velocity for dry gas-wetting glass bead packing compared to the original water-wetting one. 

However, with the increase of water saturation, the gas wetting packing exhibits a strong 

damping effect, and the waveforms of both P- and S-wave become attenuated drastically 

(Figure 7.4). The increase of water saturation stops around 93%-94% in the standard water 

flooding procedure with about 6% residual gas saturation. After a three-fold increase of the 

injection pressure, we spot some of the suspected scattered P-waves after the critical water 

saturation 𝑆𝑆𝑐𝑐 ≈ 98%, though the amplitude is very small (Figure 7.4a). The gas as wetting fluid 

phase is trapped inside the grain contact and hardly displaced by the water in the standard water 

injection process. However, the increased injection pressure may overcome the capillary 

pressure and thereby push the non-wetting water into some of the grain contacts. 

 

Figure 7. 4 Recorded waveforms with incremental water injection for gas-wetting glass bead 
packing: (a) P-wave; (b) S-wave transmission experiments. 

7.4. Wettability Impact on the Velocity and Attenuation 

The inferred velocity-saturation-relation (VSR) of both P- and S-wave transmission 

experiments are plotted in Figures 7.5 and 7.6 for the water-wetting and gas-wetting samples, 

respectively. The results are compared with the Gassmann-Wood limit (lower bound for 

uniform saturation) and Gassmann-Hill limit (upper bound for patchy saturation), where the 

detailed formulas are given in Appendix B. The predictions of the Biot theory, i.e., for a fully 

saturated porous medium are also provided for reference by using the parameters provided in 

Table 7.1. In addition, we infer the attenuation-saturation relation for both transmission 

experiments.  The attenuation is obtained via the spectral-ratio method (with key formulas in 

Appendix C). The results are plotted in Figure 7.7. 
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7.5.1. Water-wetting case 

For the water-wetting sample, water tends to occupy the glass bead surface and the grain 

contacts as soon as the fluid is fingering through the inter-granular voids. This favors the 

generation of capillary bridges (pendulum rings made of water). Initially, such capillary bridges 

may only appear in the finest and smallest pores. The water then quickly occupies the relatively 

large pores. At low to intermediate water saturation, the capillary bridges are not fully 

established in all grain contacts. Therefore, the force chains are thought to form a discontinuous 

pattern like schematically indicated in the inset of Figure 7.5. Then the P-wave VSR is closer 

to the prediction of Gassmann-Wood bound. At the same time, the attenuation of the P-wave 

(Figure 7.7a) becomes higher with increasing water saturation but the attenuation of the S-

wave (Figure 7.7b) is less affected by the change of water saturation. Once the water saturation 

reaches a critical saturation (i.e., 𝑆𝑆𝑐𝑐 ≈ 89%) and beyond, the force chains under ultrasonic 

frequency become reinforced and the grain contacts saturated by water form in a continuous 

percolating pattern (inset of Figure 5).  

 

Figure 7. 5 The measured velocity-saturation relation in water-wetting glass bead packing is 
compared with Gassmann-Wood and Gassmann-Hill theoretical predictions for (a) P-Wave 
and (b) S-Wave. As a reference, Biot theory is used for the calculation of the velocities of the 
sample under full water saturation. The inset cartoons illustrate the network of force chains 
(black solid line) in low and fully saturated samples. 
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Figure 7. 6 Velocity-saturation relations in gas-wetting glass bead packing vs Gassmann-
Wood and Gassmann-Hill predictions for (a) P-Wave and (b) S-Wave. The last three 
measurements in high water saturation are obtained after increasing 300% injection pressure 
Pi. The inset cartoons demonstrate the network of force chain (black solid line) in dry and 
high to near fully saturated samples. 

Table 7. 1 Parameters of glassbead packing and the injected water 

Parameters Symbol Value Unit 
Water 

Density ρw 997 kg/m3 
Bulk Modulus Kw 2.25E+09 Pa 

Viscosity μw 1.00E-03 Pa·s 
Solid 

Density ρs 2455 kg/m3 
Bulk Modulus Ks 3.70E+10 Pa 

Hydrophilic water-wetting dry frame 
P Wave Velocity Vp 963.504 m/s 
S Wave Velocity Vs 466.36 m/s 

Porosity φ 0.385  
Tortuosity* T 1.80  

Permeabilityⴕ κ 3.37E-11 m2 
Hydrophobic gas-wetting dry frame 

P Wave Velocity Vp 1295.24 m/s 
S Wave Velocity Vs 782 m/s 

Porosity φ 0.375  
Tortuosity* T 1.83  

Permeabilityⴕ κ 3.00E-11 m2 
* T ≈ 1

2
�1 + 1

ϕ
� as (Berryman and Thigpen, 1985); 

ⴕ Kozeny-Carman (KC) permeability 𝜅𝜅 = 𝜙𝜙3

36𝑘𝑘(1−𝜙𝜙)2 𝑑𝑑
2 as (Xu and Yu, 2008), 

where the empirical KC constant 𝑘𝑘 = 5 and grain diameter 𝑑𝑑 ≈ 2 × 10−4𝑚𝑚. 
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This interstitial liquid-induced structural change of the force chains has a paramount impact on 

the velocity and the attenuation. On the one hand, it leads to higher effective elastic moduli 

(both bulk modulus and shear modulus) of matrix frame.  Since the composite density does not 

change appreciably, the corresponding P- and S-wave velocities at higher saturation are larger 

compared to the Gassmann predictions (Figure (7.5)). On the other hand, the overall growth of 

the force chain network is accompanied by a local clustering of grains connected via capillary 

bridges. These clusters, in turn, can be characterized by a characteristic length that exceeds the 

individual grain size. Once the characteristic length becomes comparable to the P-wavelength, 

the notion of an effective medium is no longer valid. Instead, one expects that the P-wave is 

elastically scattered at the clusters. This could explain the emergence of the incoherent wave 

pulses seen in Figure (7.3).  Given that the frequency range of the piezoelectric transducer is 

0.2-2 MHz, the P-wavelength ranges from 1-10 mm for either water-wetting or gas-wetting 

samples in (near) full water saturation condition. However, the diameters of the glass beads are 

much smaller, d = 0.2 ± 0.05mm. If the characteristic length of the force chains is short-ranged 

(𝜉𝜉~𝑑𝑑) due to the gas filled grain contacts, there should be little incoherent signals and a stable 

P-wave pulse is propagating. However, the observation of the incoherently scattered waves in 

the water-wetting sample is suggestive of the existence of long-range characteristic length 

(𝜉𝜉~5𝑑𝑑 − 10𝑑𝑑).   

The appearance of these incoherently scattered waves is also clearly marked as a negative 1/Qp 

in the P-wave attenuation-saturation relation (Figure 7.7a). The negative value is a consequence 

of using the spectral ratio method to determine the inverse quality factor 1/Q. It essentially 

consists of dividing the amplitude spectrum of a waveform by a reference amplitude spectrum. 

(i.e., the signal in an aluminium core with the same length as the sample). This reference 

amplitude spectrum in shown in Figure 8b (black line). The amplitude spectrum corresponding 

to the first period of a scattered wave in the water-wetting sample has two peaks (Figure 8b, 

red line). The centre frequency that corresponds to the first peak (#1 in Figure 8b) is lower than 

the centre frequency of the reference amplitude spectrum. Computing the spectral ratio at this 

centre frequency yields to a positive Q value. Conversely, computing the spectral ratio at the 

centre frequency of the second peak (#2 in Figure 8b) yields to a negative Q value. The changes 

in the force chain network due to the injection of the liquid bring the amplitude spectrum a bi-

modal pattern, which contains not only low-frequency coherent waves but also high-frequency 

incoherent scattering components (Figure 9a). These scattered waves are associated with a 
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negative 1/Q. In this sense, the Q factor does not quantify the amplification of a pulse but is an 

indication of the change of signal character. 

The Gassmann-Wood predictions match the measured P-wave velocity reasonably well at low- 

to intermediate water saturation as long as the saturation is below the critical water saturation 

Sc. At a water saturation beyond Sc, the force chain networks can be thought of as unrelaxed 

grain contacts, where local pressure gradients induced by the wave are not equilibrated. Such 

a scenario resembles the high-frequency unrelaxed frame concept developed by Mavko and 

Jizba (1994) and described by the Mavko-Jizba relations. The basic idea is that the non-

equilibrated wave-induced pressure perturbation at grain contact is incorporated in form of 

high-frequency unrelaxed “wet-frame moduli” 𝐾𝐾𝑢𝑢𝑢𝑢  and 𝜇𝜇𝑢𝑢𝑢𝑢 . These moduli are higher 

compared to the moduli at low frequencies when the pressure gradients are equilibrated. We 

find that the Mavko-Jizba relations work well to predict the P- and S-wave velocities of the 

fully saturated water-wetting sample as the water occupies the grain contacts to form a “wet-

frame”. By taking advantage of the two end velocities (dry and full saturation), we are able to 

simulate the P-wave velocities at high saturation (𝑆𝑆𝑤𝑤 ≥ 𝑆𝑆𝑐𝑐) and S-wave velocities by the Voigt 

averaged elastic moduli: 

𝐾𝐾 = �
𝐾𝐾𝐺𝐺𝐺𝐺;                                     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤 < 𝑆𝑆𝑐𝑐
𝐾𝐾𝑑𝑑(1 − 𝑆𝑆𝑤𝑤) + 𝐾𝐾𝑀𝑀𝑀𝑀𝑆𝑆𝑤𝑤      𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤 ≥ 𝑆𝑆𝑐𝑐

                                             (7.1) 

𝜇𝜇 = 𝜇𝜇𝑑𝑑(1 − 𝑆𝑆𝑤𝑤) + 𝜇𝜇𝑀𝑀𝑀𝑀𝑆𝑆𝑤𝑤  ,                                                         (7.2) 

where the 𝐾𝐾𝐺𝐺𝐺𝐺 are Gassmann-Wood limit of the bulk modulus of the partially saturated 

sample, 𝐾𝐾𝑀𝑀𝑀𝑀 and 𝜇𝜇𝑀𝑀𝑀𝑀 are the bulk and shear moduli of the fully saturated sample by Mavko-

Jizba relations, 𝐾𝐾𝑑𝑑 and 𝜇𝜇𝑑𝑑 are the bulk and shear moduli of the drained (dry) sample. We list 

the relevant formulas in Appendix B.  

The results of the simulation of velocities in water-wetting sample by using the piecewise 

function equations 7.1 and 7.2 match the experimental measurements very well as 

demonstrated in Figure (7.5).  
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Figure 7. 7 Attenuation-saturation relations of (a) P-wave and (b) S-wave for both water-
wetting and gas-wetting samples. 

 

Figure 7. 8 (a) The waveforms through the reference sample (aluminium dummy core) and 
water-wetting sample with 100% water saturation where the time windows of the first period 
of waveforms are selected (shading highlight) for calculating the amplitude spectrum in each 
sample; (b) the corresponding spectra by Fourier transform where two peaks are produced in 
the spectrum of signals in fully saturated water-wetting sample. 

7.5.2. Gas-wetting case 

Our hypothesis is that only the fluid between the grain contacts has a significant impact on the 

force chain network and therefore on the effective bulk moduli of the matrix frame. For the 

gas-wetting case, air as wetting-fluid tends to occupy the grain contacts while water is forced 

into the relatively large interstitial pores from the beginning to the end of the water injection 

(inset of Figure 7.6). However, the bulk modulus of the air in the grain contacts of the gas-

wetting glass beads is negligibly small so that there should be no big change in the structure of 

the force chain network and the effective moduli of the matrix frame during the water flooding. 

The measured P-wave VSR coincidentally agrees with the predictions of the Gassmann-Wood 
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limit but far away from Gassmann-Hill predictions indicating that the two immiscible fluids 

tend to be in a homogenous mixing condition but with little heterogeneous patchy fluid pocket 

(Figure 7.6).  

The water saturation stops increase at about 93-94% in the normal water flooding procedure 

with about 6% residual gas saturation for the gas-wetting sample. However, after increasing 

about 300% injection pressure overcoming the capillary pressure, the non-wetting water was 

pushed into some of the grain contacts. In our interpretation, this should lead to a force chain 

reinforcement. This is supported by the observation of small amplitude "scattered" waves, 

which in fact contain both coherent part and incoherent part (Figure 9b). Their P-wave 

attenuation obtained by the spectral-ratio method is as similar to the scenario of the water-

wetting sample. 

7.5.3. The Role of Wettability in P-wave Transmission 

There is only one coherent pulse observed in the S-wave transmission experiments regardless 

of the saturation condition and the wettability of the samples. However, in the P-wave 

transmission experiments, there is a transition from the coherent P-wave pulse in the dry 

samples to the incoherently scattered waves in the samples with high water saturation. 

 

Figure 7.9 The Amplitude spectra A(f) normalized by the maximum value for the fully 

saturated (a) water-wetting and (b) gas-wetting glass bead packings. The insets of figures 

show the contact angle of water droplet on the glass-air interface. 
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The amplitude spectra of P-waves in the fully water-saturated samples are plotted in Figure 

7.9. We observe that the water-wetting spectra contain a low-frequency part and a high-

frequency part. Similar experimental observations are reported by  Güven et al. (2017) and  Jia 

et al. (1999). However, the incoherent arrivals in the spectra of the gas-wetting sample are rare 

and small. We project that the fluid in the grain contacts plays a crucial role in the continuity 

of the force chains, where the liquid promotes the development of long force chains as in the 

water-wetting glass bead packing, but the gas, i.e., air restrains the extension of the force chains 

as in the gas-wetting glass bead packing. In such a way, the wettability is identified to have a 

significant impact on the force chain network by controlling the intergranular fluid distribution, 

which further determine the wave velocity, attenuation and scattering. 

7.5. Discussion 

7.5.1. Path Effect on the Acoustics of Porous Granular Media 

When the wetting phase fluid is injected into the dry granular porous medium, it percolates 

through the pore space and occupies relatively small voids (i.e., grain contacts) in sequence. In 

this way, the force chains are extended and re-organized. However, it is unlikely that the 

percolation process proceeds such that a homogeneous force chain pattern (FCP) is generated. 

This should be especially true when the capillary pressure is small and the impact of gravity 

on the fluid distribution become considerable. In the following we explore some of the factors 

that may be responsible for the generation of heterogeneous FCPs, which in turn could explain 

the wavefield signatures observed from ultrasonic experimentation. 

We hypothesize that heterogeneous FCP may occur during the injection such that the notion of 

an effective medium is no longer valid and instead the heterogeneous FCP gives rise to 

preferential wave (ray) paths, i.e., the path effect. To verify this hypothesis and investigate the 

path effect in porous granular media, we repeat the experiment as described in Section 2 but 

introduce two changes. First, we inject decane instead of water as the wetting phase fluid. The 

benefit of decane over water is that the decane has smaller interfacial tension in air (σ= 

24.47mN/m) compared to water (σ= 72mN/m) (Rolo et al., 2002). The glass bead surface has 

similar wettability to the decane as to the water in the air with a contact angle of less than 10° 

so that the capillary pressure Pc =2σ cos θ/r for the decane-air system is only about 1/3 of the 

water-air system. Hence, the interplay between capillary forces and gravity (the sample in 

Figure 1 is oriented horizontally) should be more pronounced, thereby generating a more 
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favorable condition for FCP generation.  

Second, we use a shorter sample of length L = 2.8cm (roughly half of the length of the original 

sample as in Figure 1). Because the shorter sample is used in the decane injection experiment, 

a portion of the heterogeneous decane saturation front is likely to reach the receiver early-on 

in the fluid injection experiment, say at low to moderate decane saturation. This is indeed 

observed experimentally (Figure 10a). It is thought that this heterogeneous saturation front 

creates different ray paths for ultrasonic waves (Figure 10b), thereby increasing the level of 

heterogeneity of the FCP. Specifically, the continuously decane saturated regions constitutes a 

distinguished fast ray path along which the high frequency waves travel. Since the FCP in the 

saturated regions is thought to be accompanied with larger characteristic lengths, these fast rays 

are scattered at clusters. The dry and the low saturation regions correspond to slow ray path 

along which mainly the low-frequency part of the broadband waves propagates. This leads to 

a deformation of the wave front and bias towards larger velocity by picking the first break as 

illustrated in Figure 10b. Such deformed wave front accounts for the mechanism of fast path 

dispersion or velocity shift (Cadoret et al., 1995; Mukerji et al., 1995). This could explain the 

recorded P-waveforms at intermediate saturation (i.e., So = 58% and So = 64%) in the decane 

injection experiment, where two types of wave arrivals with different frequencies are recorded 

in the same wave train (Figure 11). 

 
Figure 7. 10 (a) Different ray paths are produced during the injection of liquid into the short 
sample (L=2.8cm). (b) This schematic shows the path effect on the receiving signals with 
broadband frequencies where the short wavelength (high-frequency) wave tends to follow the 
fastest ray path. 

7.5.2. Effect of Micro-slip Between Grains 

It is worth noting that the velocities of both P- and S-wave drop to values lower than the 

Gassmann prediction at high saturations (from about 75% to 93%) in the gas-wetting sample 

but not in the water-wetting sample (Figure 7.6).  This drop might be explained by microslip 

(sliding) between glass beads as suggested by Langlois and Jia (2014) and Makse et al. (2004). 
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This leads to an increase of the tangential friction (dissipation) since we see a similar pattern 

of increasing attenuation in both P- and S-wave at the middle to high water saturations in the 

gas-wetting sample. Such microslip also results in a drop in the velocities where the attenuation 

increases. The occurrence of microslip due to the grain sliding may be dependent on the 

wettability and water saturation, but a detailed investigation is required for this open question.  

 

Figure 7.11 Recorded P-waveforms with incremental decane (oil) injection for shorter 
glassbead packings (L=2.8cm). Two types of signals with different frequencies are recorded in 
the same wave trains at intermediate saturations (i.e. So = 58% and So = 64%). 

7.5.3. Comparison with Literature 

As shown in the experimental results section, we observe a dramatic change in the waveforms 

during the change of the fluid saturation in porous granular media. It is interesting to note that 

a similar phenomenon is documented by Sayers and Dahlin (1993) (their Figure 12). The time-

lapse waveform changes from high-frequency (short-period) arrivals when the sample is in the 

state of a cement paste (suspension of cement particles in water) to low-frequency (long-period) 

waves when sample becomes a cemented solid (saturated porous media). These waveform 

changes are caused by the structural changes during hydration and, compared to our results, 

the transition of the acoustic wave form has a reverse sequence. Since in the cement paste the 

interconnected chains of cement particles develop as a function of time, their observations may 

relate to our interpretation in terms of the reinforced force chains due to the presence of the 

intergranular fluid. 
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7.6.  Conclusion 

The velocity- and attenuation-saturation relations and P-wave scattering patterns in the water-

wetting and gas-wetting granular porous media examined here show distinct characteristics. 

This indicates that wettability has a significant impact on wave propagation in the granular 

porous medium. We explain these characteristics in terms of wettability-dependent force chain 

network alterations. In particular, the effective elastic moduli and the characteristic length of 

the force chain network are altered during the water injection. The dry granular porous medium, 

as an extreme example, where all pores are saturated by air, has a short-range characteristic 

length. It behaves as an effective medium in which a stable pulse waveform is observed. For 

partial saturation, only if the water wets the grains, the liquid can intrude the small grain 

contacts. Therefore, the grain contact-filling fluid as wetting phase (i.e., water) results in the 

development of the longer range force chains and higher effective moduli. This appears to be 

a plausible explanation of the wave velocities that exceed the prediction of the Gassmann 

equations and the appearance of shorter pulses comprising a more complex wave train.  
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Chapter 8. Conclusions and Outlook for Future Research 

8.1. Conclusions 

This thesis aims to summarize the outcome of the research project of estimation of wettability 

by the elastic wave. Conventionally, the wettability measurement is a complicated and time-

consuming task. While elastic wave has been widely used in seismic exploration and bore hole 

sonic logging, which is a non-destructive and economic technique. This research project 

demonstrates the possibility to use the elastic wave to determine the wettability of the saturated 

porous media by theoretical simulation and experimental study. The wettability as an interface 

phenomenon significantly influences the hydrodynamics and spatial distribution of the pore-

filling fluids, by which the elastic properties (wave velocities and moduli) and the acoustic 

impedance properties (attenuation) are influenced. The main results and innovations of the 

research project are summarised below for a better understanding of the impact of wettability 

on the propagation of the elastic wave in porous media and its application of estimation of 

wettability from the measurement of elastic waves. 

1. Impact of Wettability on the Elastic Wave Propagation in the Porous Media 

 The slip length can be used to characterize the wettability of a fluid saturated porous 

medium. The wettability dependent VEP model and apparent slip model with slip BC 

are developed.  

  The wettability effect on the viscosity correction factor, dynamic 

permeability/tortuosity, velocities, attenuation are analysed.  

 The wettability dependent wave propagation models predict higher phase velocities 

and attenuation peaks for hydrophobic fully saturated porous media in high-frequency 

range than the corresponding results of the hydrophilic ones. 

2. Combined Effect Pore Size Distribution and Wettability on the Dynamic Permeability and 

Elastic Wave Propagation in the Porous Media 

 The dynamic permeability of porous medium is controlled by the pore size distribution 

(PSD) and the wettability, where the sub characteristic frequencies are associated with the 

characteristic pore sizes. 
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 The potential applications of the PSD dependent dynamic permeability model may 

extend to the continuous dynamic permeability from the NMR well logging for the wellbore 

sections. 

 The wettability effect on the wave propagation in the porous media with broadband 

PSD is studied by implementing the slip boundary condition, which points to similar results 

as VEP model. 

3. Impact of Wettability on the Wave Propagation in the Partially Granular Porous Media  

 The velocity-saturation relation (VSR) and attenuation-saturation relation (ASR) in the 

water-wetting and gas-wetting granular porous media show distinct characteristics, which 

can be explained by the wettability dependent force chains.  

 As in the partial saturation conditions, only if the water wets the grains, can the liquid 

intrude the small grain contacts/gaps; therefore, the gap-filling fluid water results in the 

development of the long-range force chains and higher effective moduli and velocity than 

the prediction of Gassmann equations. 

4. Potential of the Wettability Determination by Using the Measurement of Elastic Wave  

 The theoretical studies demonstrate that the non-wetting fluid saturated porous material 

has higher phase velocities than the wetting fluid saturated one for all kinds of P- waves 

and S- wave in the intermediated frequencies but convergent to the same value in the low 

and high frequency limits.  

 The attenuation demonstrates a higher peak value and the entire attenuation curve is 

constrained in a narrower frequency range for the slip BC (non-wetting saturation) 

compared to that of the no-slip BC (wetting saturation).  

 The theoretical model developed has the potential to be applied in the prediction of 

wettability by measuring the velocity dispersion, which has been qualitatively validated by 

the experiments. 

8.2. Outlook for Future Research 

This thesis has studied the role of wettability in wave propagation in the porous medium, 

which has been neglected in the previous geophysics and rock physics studies. Although 

several theoretical models have been developed in this research project, limited experiments 



134 

 

are performed. Thus, more experimental studies are desired for this research topic to verify 

and supplement the theoretical predictions. In particular, the following works are suggested to 

continue this research project: 

 Theoretical study/models are required to be developed to account for the wave 

propagation in the porous media with partial saturation of multiple immiscible fluids 

with respect to the wettability impact. 

 The experiments of wave measurement in the partially saturated samples with different 

wettability are preferred. Since the spatial distribution of the fluid is influenced not only 

by the wettability but also by the saturation regulating method, i.e. drainage/imbibition, 

the monitor of fluid distribution is preferably conducted at the same time as the wave 

measurement. 

 Multiple frequency measurements are suggested due to the wettability effect are sensitive 

to the frequency range. The dispersion of the wave velocities has been identified as a key 

factor to determine the wettability in porous media. However, the approach will be more 

experimental measurements are conducted in more samples with various lithology and 

more saturation combinations of various immiscible fluids.  
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Appendix A Plane Wave Solution 

The original equations of motion for an isotropic fluid-saturated porous medium are developed 

by Biot (Biot, 1956a). The set of equations are compatible with the dynamic permeability and 

tortuosity concept (Johnson et al., 1987). The complex phase velocities solved by plane wave 

analysis (Johnson et al., 1994a) are, 

𝑉𝑉𝑐𝑐2(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =
∆±�∆2−4(𝜌𝜌11𝜌𝜌22−𝜌𝜌122 )(𝒜𝒜ℛ+2𝜇𝜇𝑑𝑑ℛ−𝒬𝒬2)

2(𝜌𝜌11𝜌𝜌22−𝜌𝜌122 )
   ,                         (A.1) 

V𝑐𝑐2(𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 𝜇𝜇𝑑𝑑𝜌𝜌22
𝜌𝜌11𝜌𝜌22−𝜌𝜌122

     ,                                           (A.2)  

Where, ∆= (𝒜𝒜 + 2𝒩𝒩)𝜌𝜌22 + ℛ𝜌𝜌11 − 2𝒬𝒬𝜌𝜌12. 

The phase velocities and the inverse quality factors (dissipation factors) can be calculated as, 

V𝑗𝑗 = �𝑅𝑅𝑅𝑅( 1
𝑉𝑉𝑐𝑐

)�
−1

, 𝑗𝑗 = 𝑝𝑝+,𝑝𝑝−, 𝑠𝑠                                        (A.3) 

𝑄𝑄−1 =
2𝐼𝐼𝐼𝐼� 1𝑉𝑉𝑐𝑐

�

𝑅𝑅𝑅𝑅� 1𝑉𝑉𝑐𝑐
�

                                                        (A.4) 

𝒜𝒜, 𝒬𝒬, and ℛ are generalized elastic constants which are connected to the measurable quantities 

as 𝜙𝜙 porosity, 𝐾𝐾𝑠𝑠 the bulk modulus of solid, 𝐾𝐾𝑑𝑑 the bulk modulus of matrix frame, and 𝐾𝐾f the 

bulk modulus of the fluid. 𝜇𝜇𝑑𝑑 is the shear modulus of the saturated rock as well as the matrix 

frame.  

𝒜𝒜 = 𝐾𝐾𝑑𝑑 −
2
3
𝑁𝑁 + 𝑀𝑀(𝛼𝛼 − ∅)2                                             (A.5) 

𝒬𝒬 = ∅(𝛼𝛼 − ∅)𝑀𝑀                                                        (A.6) 

ℛ = ∅2𝑀𝑀                                                                 (A.7) 

𝑀𝑀 = [𝛼𝛼−∅
𝐾𝐾𝑠𝑠

+ ∅
𝐾𝐾f

] 
−1

                                                     (A.8) 

𝛼𝛼 = 1 − 𝐾𝐾𝑑𝑑 𝐾𝐾𝑠𝑠⁄                                                          (A.9) 
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The density coefficients ρ𝑖𝑖𝑖𝑖  are related to the densities of solid and fluid and the dynamic 

tortuosity which combines the viscous and inertial force. 

𝜌𝜌11 + 𝜌𝜌12 = (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠                                               (A.10) 

𝜌𝜌12 + 𝜌𝜌22 = 𝜙𝜙𝜌𝜌f                                                     (A.11) 

𝜌𝜌12 = �1 − 𝑇𝑇�(𝜔𝜔, 𝑏𝑏)�𝜙𝜙𝜌𝜌f                                               (A.12) 

𝑇𝑇�(𝜔𝜔, 𝑏𝑏) is the dynamic tortuosity of either the VEP model as equation (3.21) or HF Biot model 

as equation (3.19). 

The amplitude ratio of fluid and solid phases for compressional waves and shear wave are, 

𝑔𝑔𝑗𝑗 = 𝐶𝐶𝑓𝑓𝑓𝑓/𝐶𝐶𝑚𝑚𝑚𝑚 = |𝒬𝒬 − 𝜌𝜌12𝑉𝑉𝑐𝑐2| |ℛ − 𝜌𝜌22𝑉𝑉𝑐𝑐2|⁄ , j = p+, p −                 (A.13)  

𝑔𝑔𝑠𝑠 = 𝐶𝐶𝑓𝑓𝑓𝑓 𝐶𝐶𝑚𝑚𝑚𝑚⁄ = |𝜌𝜌12| |𝜌𝜌22|⁄                                        (A.14) 

The phase difference between the fluid and solid phases are, 

𝜓𝜓𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐼𝐼𝐼𝐼�𝒬𝒬−𝜌𝜌12𝑉𝑉𝑐𝑐

2

ℛ−𝜌𝜌22𝑉𝑉𝑐𝑐
2�

𝑅𝑅𝑅𝑅�𝒬𝒬−𝜌𝜌12𝑉𝑉𝑐𝑐
2

ℛ−𝜌𝜌22𝑉𝑉𝑐𝑐
2�
�, j = p+, p −                              (A.15) 

𝜓𝜓𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐼𝐼𝐼𝐼�𝜌𝜌12𝜌𝜌22

�

𝑅𝑅𝑅𝑅�𝜌𝜌12𝜌𝜌22
�
�                                                (A.16) 

Appendix B Gassmann-Wood and Gassmann-Hill Limits for Partially Saturated 

Sample 

The velocity of the P- and S-wave for the sample saturated by a single fluid can be calculated 

as, 

𝑉𝑉𝑝𝑝 = �𝐾𝐾+43𝜇𝜇

𝜌𝜌
   ，                                              (B.1) 

𝑉𝑉𝑠𝑠 = �
𝜇𝜇
𝜌𝜌
       .                                            (B.2) 
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K: bulk modulus of the fully saturated sample 

𝜇𝜇: shear modulus of the fully saturated sample 

𝜌𝜌: density of the fully saturated sample 

The K and 𝜇𝜇 can be derived by the Gassmann equations, 

𝐾𝐾
𝐾𝐾𝑠𝑠−𝐾𝐾

= 𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠−𝐾𝐾𝑑𝑑

+ 𝐾𝐾f
𝜙𝜙(𝐾𝐾𝑠𝑠−𝐾𝐾f)

    ,                                                      (B.3) 

𝜇𝜇 = 𝜇𝜇𝑑𝑑  .                                                             (B.4) 

𝐾𝐾𝑠𝑠: bulk modulus of solid 

𝐾𝐾𝑑𝑑: bulk modulus of the drained matrix (dry) frame 

𝐾𝐾f: bulk modulus of the fluid 

𝜙𝜙: porosity 

𝜇𝜇𝑑𝑑: shear modulus of the drained matrix (dry) frame 

Gassmann-Wood lower bound limit applying the Wood’s law to determine the effective fluid 

bulk modulus 𝐾𝐾f which can be further applied to determine the bulk modulus of the partially 

saturated sample (𝐾𝐾𝐺𝐺𝐺𝐺 = 𝐾𝐾) by Eq. (B.3) and the velocity by Eq. (B.1), 

1
𝐾𝐾f

= 𝑆𝑆𝑤𝑤
𝐾𝐾𝑤𝑤

+ 1−𝑆𝑆𝑤𝑤
𝐾𝐾𝑔𝑔

.                                             (B.5) 

𝑆𝑆𝑤𝑤 is the water saturation; 𝐾𝐾𝑤𝑤 and 𝐾𝐾𝑔𝑔 are the bulk moduli of the water and gas, respectively. 

Gassmann-Hill upper bound limit uses the Hill’s averaged bulk modulus of the partially 

saturated sample K which can be further used to calculate the velocity by Eq. (B.1),  

1
𝐾𝐾+43𝜇𝜇

= 𝑆𝑆𝑤𝑤
𝐾𝐾1+

4
3𝜇𝜇

+ 1−𝑆𝑆𝑤𝑤
𝐾𝐾2+

4
3𝜇𝜇

.                                                    (B.6) 

𝐾𝐾1 , 𝐾𝐾2 are the bulk moduli of the sample fully saturated by water and gas, respectively. 
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In either Gassmann-Wood or -Hill limit calculation, the density of the composite partially 

saturation sample is, 

ρ = 𝜌𝜌𝑠𝑠(1 − 𝜙𝜙) + �𝜌𝜌𝑤𝑤𝑆𝑆𝑤𝑤 + 𝜌𝜌𝑔𝑔 − 𝜌𝜌𝑔𝑔𝑆𝑆𝑤𝑤�𝜙𝜙.                         (B.7) 

𝜌𝜌𝑤𝑤 , 𝜌𝜌𝑔𝑔 are the density of the water and gas, respectively. 

The Mavko-Jizba relations use the bulk modulus 𝐾𝐾𝑢𝑢𝑢𝑢 and shear modulus 𝜇𝜇𝑢𝑢𝑢𝑢 of the 

“unrelaxed frame” to replace the 𝐾𝐾𝑑𝑑 and 𝜇𝜇𝑑𝑑 in the Gassmann equations (Eq. (B.3) and (B.4)) 

to calculate the moduli of the fully saturated sample (𝐾𝐾𝑀𝑀𝑀𝑀 = 𝐾𝐾; 𝜇𝜇𝑀𝑀𝑀𝑀 = 𝜇𝜇 = 𝜇𝜇𝑢𝑢𝑢𝑢) and the 

corresponding velocities by Eq. (B.1) and (B.2). 

1
𝐾𝐾𝑢𝑢𝑢𝑢

≈ 1
𝐾𝐾ℎ

+ � 1
𝐾𝐾f
− 1

𝐾𝐾𝑠𝑠
�𝜙𝜙𝑠𝑠   ,                                                       (B.8) 

� 1
𝜇𝜇𝑢𝑢𝑢𝑢

− 1
𝜇𝜇𝑑𝑑
� = 4

15
� 1
𝐾𝐾𝑢𝑢𝑢𝑢

− 1
𝐾𝐾𝑑𝑑
�    .                                                 (B.9) 

𝐾𝐾ℎ: effective bulk modulus of the dry sample at very high pressure; 𝐾𝐾ℎ = 𝜋𝜋𝐾𝐾𝑑𝑑 is used in the 

simulation. 

𝜙𝜙𝑠𝑠: soft porosity or the porosity that closes at high pressure; 𝜙𝜙𝑠𝑠 = 𝜙𝜙/50 is used in the 

simulation. 

Appendix C Attenuation Estimation by Spectral-Ratio Method 

The P- and S-wave attenuation (inverse quality factor) in glass bead packings is calculated by 

the spectral-ratio method (Toksöz et al., 1979). The ratio of amplitudes for the referenced 

aluminium dummy core and the sample is given as 

ln �𝐴𝐴1
𝐴𝐴2
� = (𝛾𝛾2 − 𝛾𝛾1)𝐿𝐿𝐿𝐿 + ln �𝐺𝐺1

𝐺𝐺2
�,                                                      (C.1) 

where 𝐴𝐴 is the Fourier amplitude, 𝛾𝛾 is the attenuation coefficient, 𝑓𝑓 is the frequency, and 𝐺𝐺 is 

the geometrical factor. Subscripts 1 and 2 indicate the sample and reference, respectively. 

ln(𝐺𝐺1/𝐺𝐺2) is a constant due to the sample and reference have the same shape and size. The 

sample length 𝐿𝐿 and can be obtained from the direct measurement. The quality factor 𝑄𝑄 

related to the attenuation coefficient can be expressed as: 
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𝑄𝑄 = 𝜋𝜋
𝛾𝛾v

  ,                                                        (C.2) 

where v is the phase velocity. Owing to 𝑄𝑄 of referenced sample is very high, the 𝛾𝛾2 could be 

as 0, which only introduces less than 1% error. Thus, equation (C.1) can be written as 

ln �𝐴𝐴1
𝐴𝐴2
� = − 𝜋𝜋𝜋𝜋

𝑄𝑄1𝑣𝑣
𝑓𝑓 + ln �𝐺𝐺1

𝐺𝐺2
�.                                     (C.3) 

The attenuation of sample (𝑄𝑄1−1) can be estimated from the slope of the linear fitting of 

ln(𝐴𝐴1/𝐴𝐴2) versus the frequency.  
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