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ABSTRACT 

Vibration displacement data is widely used in structural health monitoring (SHM) to analyse 

the health conditions of civil engineering structures. Traditionally, the displacement data is 

acquired by physical sensors such as linear variable differential transformers (LVDT) and laser 

displacement sensors (LDS), etc. When it is difficult to install displacement sensors, 

accelerometers are often used to indirectly derive the displacement from the accelerator 

measurements. In recent years, computer vision-based displacement measurements methods are 

receiving increasing attention, with inherent advantages in terms of cost-effectiveness and 

convenience. To date, most of the vison-based measurement methods are focused on two-

dimensional (2D) measurements or in-plane displacement measurements, although civil structures 

are built in three-dimensional (3D) space and 3D displacements could provide more 

comprehensive information for SHM. The research of 3D vibration displacement measurements is 

in an early stage with many unsolved challenging tasks such as target-free 3D displacement 

measurement and tiny 3D displacement measurement, etc. This dissertation proposes an advanced 

binocular vision-based vibration displacement measurement system for target-free full-field 3D 

dynamic vibration displacement measurement of civil engineering structures. A state-of-the-art 

deep learning-based key point detection and matching algorithm is applied to achieve target-free 

measurement, which greatly improves the quantity and quality of the matching natural key points 

with low contrast. In most practical SHM scenarios, except under some extreme cases, the 

displacement response of civil structures is usually very small. Some of them can even be invisible 

to human eyes. The vision-based measurement methods or even some physical sensors would fail 

in such cases. Another contribution of this dissertation is a phase-based motion magnification 

algorithm which is employed to amplify the tiny displacement in videos to enable target-free 3D 

tiny vibration displacement measurement. The measurement accuracy of the tiny measurement 

system is achieved to the subpixel level or the submillimeter level in the engineering unit.  

We conducted a series of experimental tests to evaluate the performance of the proposed vision 

measurement approaches based on deep learning. The performance of both the 3D and 3D tiny 

displacement measurement systems are evaluated through a steel cantilever beam vibration 

experiment conducted in a laboratory. A real field experiment is also conducted on a pedestrian 
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bridge on a university campus to evaluate the algorithm performance in practical applications. 

Displacements generated from the proposed vision system and the vibration frequencies converted 

from the displacements are compared with those measured by LVDTs and LDS, and/or 

acceleration responses measured by accelerometers. The results demonstrate that the performance 

of the proposed vision measurement system is on par with the traditional sensors, while it is much 

easier, cheaper, and safer to use. Accurate target-free and tiny 3D vibration displacement 

measurement can be achieved by the proposed vision based approach for civil engineering 

structural applications.   
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CHAPTER 1 

INTRODUCTION 

        From the early stage of human civilization, civil structures began to provide shelters, 

sacrificial places, cemeteries, etc., for human beings. Civil structure engineering that goes through 

development for thousands of years has become more complicated and it has already developed 

into a mainstream academic discipline. Modern people’s life is relying on civil structures with 

more complex functions, for example, the demand for accommodation, transportation, and 

recreation. For civil structures, safety is always one of the basic requirements. Although this basic 

requirement has improved significantly, damages, even collapses, of civil structures are still a 

common problem. Civil engineering structures could be damaged in different ways. In extreme 

situations, after some accidents such as earthquakes, floods, and so forth, the structures could have 

some inner damages that may impact the further use, or the structure would directly collapse. On 

the other hand, the structure ages due to usage, and accidents could occur if the damage 

accumulates to a certain degree. Structural health monitoring (SHM) is a process of tracking the 

operational status, assessing the conditions, and detecting the damages of various types of 

structures, which provides an accessible approach that spends relative less effort to monitor the 

damages in the early stage to avoid severe economic losses and heavy casualties.  

Computer vision is a branch of artificial intelligence (AI), which is used to understand the 

content of digital images using computers. Humans observe the world through both eyes, and the 

brain extracts and analyses features from the observed images. In computer vision, the images 

taken by cameras are processed by various algorithms to hopefully reach the equivalent 

performance of the human visual system or even beyond the human visual system. Recently, with 

neurobiology and deep learning rapidly developed over the last decade, the performance of 

computer vision on many applications has improved significantly. Today, computer vision has 
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been applied commonly in many real-world applications such as optical character recognition, 

machine inspection, surveillance, medical imaging, etc [1].  

In the SHM community, with the development of cameras of low cost and high quality, and 

the remarkable progress of computer vision techniques, computer vision-based SHM has received 

increasing attention in recent years. A significant advantage of the computer vision methods is 

their easy setup and operation to extract information of civil structures from images or videos. 

Computer vision has been applied to crack detection, spalling detection, delamination detection, 

displacement measurement, vehicle load estimation, and so forth [2]. Displacement responses of 

civil structures, which directly reflects the structural all-inclusive stiffness, provide important 

signals for accurate assessments of structural conditions [3]. However, the acquirement of such 

important data is sometimes difficult using traditional physical sensors. Digital image sequences 

with their powerful characterization capabilities have an inherent advantage in displacement 

measurement.  

1.1 Objective 

Figure 1.1. An overview of the limitations of displacement measurement in SHM 
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Figure 1.1 shows an overview of the challenges of the displacement measurement for SHM. 

The main goal of this thesis is to apply computer vision techniques for displacement measurement 

for structural health monitoring, especially the challenging 3D displacement measurement. 

Specifically, two algorithms are proposed to improve the 3D vision-based vibration measurement: 

one is for target-free full-field 3D vibration displacement measurement and the other is for 3D tiny 

vibration displacement measurement. 

1.1.1 Target-free Full-field 3D Vibration Displacement Measurement 

Natural key point detection and matching are essential but challenging processes for 3D 

reconstruction from 2D images. To assist key point detection and matching, high contrast artificial 

targets such as chessboard patterns are often utilized. However, with artificial targets, the 

installation that is time-consuming and labor-consuming prevents it from widely applying. Target-

free measurement overcomes such difficulty hence is much widely applicable. Furthermore, 

measuring vibration displacements of every part of the structure provides more comprehensive 

information about the structure and its changes. Such kind of measurement is termed as full-field 

measurement in a vision displacement measurement system. A vision measurement system that 

can achieve target-free full-field 3D measurement rely on accurately detecting and matching a 

sufficiently large number of natural key points, which must distribute all over the whole structure. 

In this thesis, deep learning-based key point detection and matching algorithms are applied to 

realize the two-view matching of natural key points, and thus enable the target-free 3D 

displacement measurement. The numerous matched key points detected are distributed on every 

part of the measured structure. Thus, the vision system has full-field measurement capabilities. 

The vision-based displacement measurement system does not require the cumbersome installation 

of traditional sensors, nor any artificial targets to be fixed on the structure. 

1.1.2 3D Tiny Vibration Displacement Measurement 

Computer vision algorithms such as key point tracking algorithms usually cannot recognize 

tiny motions (typically smaller than one pixel). Such cases are quite common in practice when the 

recording cameras are placed far from the inspected structure. To measure movements that are in 
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sub-pixel level in recorded images/videos using computer vision methods, a motion magnification 

method is employed to magnify the tiny displacements in the videos. A binocular vision system as 

described in Sec.1.1.1 can then be applied to measure the 3D displacement from the videos. The 

tiny displacement measurement system is also target-free and full-field.  

1.2 Structure of the Thesis 

This thesis contains 5 chapters. The rest of the thesis are organized as below: 

Chapter 2 introduces the preliminary knowledge related to this thesis. We begin with a brief 

introduction to the computer vision techniques relevant to this project. Some fundamental concepts 

of camera projection are first introduced. Classical key point detection algorithms in computer 

vision are then reviewed, followed by the key point matching algorithms which are important for 

3D coordinate recovery. Next, we introduce a series of motion magnification algorithms, which 

are used to amplify tiny movements in videos. A literature review on the vision-based displacement 

measurement approaches in the field of structural health monitoring is also provided, with analysis 

on the advantages and disadvantages of the existing vision-based displacement measurement 

systems. 

Chapter 3 proposes a binocular vision-based 3D displacement measurement system. We first 

introduce a calibration method based on epipolar geometry which does not require complicated 

manual measurement. Then a deep learning based key point detection and key point matching 

algorithm is introduced which is a key important component of the proposed vision system. The 

main contribution of this chapter is the development of a binocular vision system to achieve target-

free 3D displacement measurement. This is the first study in the target-free full-field 3D vibration 

displacement measurement of civil engineering structures using a binocular camera system. The 

effectiveness of the binocular vision system is validated by a 3D vibration test on an iron beam in 

a laboratory. 

Chapter 4 introduces a vision-based tiny displacement measurement method. Tiny 

movements captured by cameras are first amplified by a phase-based motion magnification 

algorithm to make them visible. The method is verified by a series of experimental tests. A 3D 

tiny vibration test in a laboratory is conducted to verify the system performance. The sensitivity 

of the vision system is also investigated. Next, a vibration test on an indoor pedestrian bridge is 
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conducted to investigate the in-field effectiveness of the proposed method. The main contribution 

of this chapter is the development of a vision-based binocular vision system for tiny 3D 

displacement measurement. Experimental results demonstrate that 3D subpixel level 

displacements, which are valuable data for structural health monitoring, can be effectively 

extracted by the proposed method. 

Chapter 5 summarizes the contributions of the thesis. Potential directions of future research 

are also discussed. 
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CHAPTER 2 

BACKGROUND 

The goal of this chapter is to highlight the related background of the research objectives 

addressed in this thesis. As mentioned earlier, the focus of this thesis is to realize 3D target-free 

displacement measurement including tiny displacement measurement for civil structures. We will 

first go through the basics of multi-view 3D reconstruction. Next, we will review the fundamental 

concepts of the key point detection and key point matching algorithms. Some video motion 

magnification algorithms for realizing tiny movement measurement will be introduced. The 

computer vision-based displacement measurement techniques for SHM will also be covered.  

2.1 Multi-view 3D Reconstruction 

Single camera imaging projects an object in a 3D Euclidean space to a 2D projective space, 

hence images captured by a stationary single camera (monocular camera) only contain 2D in-plane 

information. The camera’s image sensor converts the light signal into an electrical signal through 

photoelectric conversion and divides the photographed object into individual pixels. The 

photoelectric signal on the sensors is converted into a digital signal through an analog-digital 

converter and stored in the memory for further image processing [4]. The pinhole model is mainly 

designed for the cameras which contain charged coupled device (CCD) sensors. This model is 

widely used in the videogrammetry field to construct the mathematical model for the estimation 

of camera poses. Mathematically, the camera imaging process under the pinhole model can be 

expressed as 𝑠𝑠 × 𝑚𝑚 = 𝑃𝑃 × 𝑀𝑀, in which 𝑚𝑚 is a 2D pixel vector converted by a camera matrix 𝑃𝑃 

times a 3D real world point vector 𝑀𝑀, and 𝑠𝑠 is an arbitrary scale factor. Continuously recording a 

scene can get a sequence of images, i.e., a video. For civil structure vibration displacement 

measurement, the scene that contains structural vibration is recorded by a video camera.  Using 

computer vision techniques to extract the position of the structure in each image (frame) of a video, 

the dynamic vibration displacement responses of the structure can be derived.  

 The real-world structures always have 3D vibration and the vibration displacement in every 

direction is important data for SHM.  However, the displacement on the depth direction is lost 
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during the camera projection due to the camera imaging procedure mapping the 3D scene to a 2D 

plane. Accurate reconstructing the 3D scene is an essential and challenging branch in computer 

vision area. There are many 3D reconstruction methods in the field of computer vision, such as 

multi-view depth estimation [5], structure-from-motion (SfM) [6, 7], monocular depth estimation 

[8, 9], and so on. The SFM techniques takes videos recorded by a movement camera as input, by 

analyzing the geometry relationship between different frames to extract the 3D scene. It works 

well on static scenes reconstruction, whereas measuring the displacement of a movement object in 

a scene could raise to large error. Estimating depth from a single image is an ill-posed problem as 

technically the depth for a single image has lost. The monocular depth estimation approaches adopt 

deep learning to mimic human learning behavior that makes prediction of the depth from a single 

RGB image become possible. It is similar as a cheaper Lidar with higher resolution which captures 

a scene and output a depth map. Although powerful, it is still a developing area, and the accuracy 

of its predicted depth is unsatisfied for SHM currently.   

Multi-view depth estimation based on multi-view geometry is a mature method. It uses 

multiple cameras to take images of a scene from different perspectives and utilizes the correlation 

information between the images to recover the 3D information. A two-view camera system is 

shown in Figure 2.1, where 𝑀𝑀 represents a 3D point in the real world, and 𝑚𝑚1 and 𝑚𝑚2 are its 

projective pixels in two-view images respectively. The camera matrix describes the projection 

transformation of a pinhole camera between 3D points in the real world and their 2D projections 

in an image. Without considering the projection error, if the matching between and 𝑚𝑚1 and 𝑚𝑚2 in 

two images can be established, the coordinate of a 3D point 𝑀𝑀 can be obtained as the intersection 

in the 3D space of rays connecting the matched key points (representing the projections of M) and 

the optical centers of two cameras. 3D reconstruction of M can be achieved if matched key 

points 𝑚𝑚1, 𝑚𝑚2 and the camera matrices of camera 1 and camera 2 can be established.  Such kind 

of method for 3D reconstruction is called triangulation. The fundamental requirement of the 

triangulation algorithm is the sufficiently large number of key points that need to be detected and 

matched.  
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Figure 2.1. two-view 3D point coordinate recovery 

 

2.2 Key Point Detection and Matching 

A real world 3D object is projected into multiple different images when multiple cameras are 

employed. In the multi-view geometry, key points in different images are required to be detected 

and matched in order to solve tasks in geometric computer vision such as Simultaneous 

Localization and Mapping (SLAM) [10], Structure-from-Motion (SfM) [6, 7], and camera 

calibration [11]. In this context, key points are 2D pixel locations in images with two important 

properties: repeatability and well-description. The key points should be repeatable and stable from 

different view images. Besides the locations of key points, a unique identifier should be assigned 

to each key point for higher-level tasks such as key point matching [12]. This identifier is known 

as a descriptor, which is a unique descriptive vector endowed to each key point. Key points are 

distinguished from each other by these descriptors. There are certain properties that the key point 

descriptor should possess. For example, a descriptor of a key point should be make it highly 

distinctive from distant key points but similar to the key points in the vicinity. In order to facilitate 

key point matching, a key point should consist of two parts: a detector and a descriptor. The 

detector finds the location of key points; the descriptor sufficiently identifies the key points. Some 

key point detection algorithms have their designated feature description algorithms, while some 

others share description algorithms. In the field of computer vision, many studies have been 
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conducted to detect key points accurately and quickly. In the early stage of the key point detection 

research, corners are considered to be the good key points to detect, which can be traced back to 

1977 [13, 14].  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2.2. The flat area, edge area and corner area 
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The basic idea of the corner detection algorithm is to use a fixed sliding window (take a 

neighbourhood window of a certain pixel) to slide in any direction on the image. Comparing the 

two cases before and after sliding, if the pixel value in the window has a large change in any 

direction, then this window is considered as containing a corner point. In Figure 2.2 (a), pixels in 

a flat area have high similarities with each other. The distinctiveness of these pixels is lost; hence 

it is difficult to repeatedly detect them in another view. The uniqueness of key points on an edge 

is not obvious either. Sliding the window along the edge results in pixel value unchanged, as shown 

in Figure 2.2 (b). In contrast, the corner areas are highly distinctive. With slight movement of the 

sliding window, the pixel value in the area is changed dramatically, as shown in Figure 2.2 (c). 

Therefore, some studies try to find key points by detecting corners. For example, the famous Harris 

corner detector [15], Shi-Tomasi Corner Detector [16], Oriented FAST and Rotated BRIEF (ORB) 

[17] and Fast Retina Keypoints (FREAK) [18]. Meanwhile, corners have some disadvantages, e.g., 

they are sensitive to scale changing and image rotation [19]. Some other algorithms relied on blobs 

(regions that have constant properties for scaling, rotation, etc.) for key point detection, for 

example, the glorious Scale Invariant Feature Transform (SIFT) [19] method and Speeded Up 

Robust Features (SURF) [20] method. Both are based on Gaussian scale space analysis and the 

effective handling of the stability of the detection of key points on the scale changing or rotation 

of the images. Alcantarilla et al. proposed a key point detection algorithm based on computing the 

scale normalized determinant of Hessian Matrix on multiple scale levels, called KAZE features 

[21]. In recent years, some sparse local key points detection algorithms based on deep learning 

have been developed. LF-NET neural network [22] is introduced in 2018 by Yuki Ono et al, which 

is trainable end-to-end and does not require using a hand-crafted detector to generate training data. 

In 2019, Revaud et al. proposed an R2D2 neural network [23], which is a self-supervised neural 

network trained by a mixture of images with known transformations and point correspondences. 

The highlight of the method is that a style transfer method is applied to increase robustness against 

day-night illumination changes. Dusmanu et al. [24] proposed an approach called D2-Net that 

jointly train a key point descriptor and a detector. The algorithm postpones the key point detection 

to a later stage to produce more stable key points. Unfortunately, all these methods can only detect 

a small number of high quality key points, which are usually not enough for higher-level computer 

vision tasks.  
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Key point matching aims to establish the corresponding relationship between a set of key 

points in two different views. Traditional machine learning provides some solutions to achieve 

such tasks. Graph matching (GM) is one of the mainstream methods for key point matching. The 

key point matching task can be formulated as an optimal transportation problem and the 

corresponding key points can be found via maximizing the overall score unary correspondence. 

Zhou et al. [25] presented a method called Factorized Graph Matching (FGM), a graph matching 

algorithm that exploits the properties of the factorized affinity or graph matrix. This approach does 

not need to explicitly compute the affinity matrix and it provides a unified approach to frame 

several graph matching algorithms. Yu et al. [26] proposed a bunch of continuous approximations 

to the quadratic assignment problem (QAP). Based on the above theory, Generalized Graph 

Matcher (GGM) is designed for approximating discrete graph matching. By understanding the 

geometric properties of different regularization techniques and the gradient behaviour in the 

optimization process, Yu et al. [27] introduced a regularization technique for graph matching, 

which is based on the analysis of the determinant of the node matching matrix between two images. 

Different from graph matching, the point set registration (PSR) determines a global transformation. 

Resampling technique is (arguably) a prevalent paradigm of PSR and is represented by the classic 

RANSAC algorithm [28, 29] or many RANSAC related algorithms, such as Maximum Likelihood 

Estimation Sample Consensus (MLESAC) [30], Universal RANSAC (USAC) [31], Maximum 

Likelihood Estimation Sample Consensus (MLESAC) [32], etc. In recent years, some deep 

learning methods have been developed to improve upon the traditional key point matching 

algorithm. Zhang et al. [33] proposed the Order-Aware Network to learn two-view matching and 

geometry. The local context is acquired by the clustering of relevant nodes which is learned by the 

Differentiable Pooling (DiffPool) layer and Order-Aware Differentiable Unpooling (DiffUnpool) 

layer. Kwang et al. [34] introduced a single-shot technique, in which the matched points are 

classified into inliers and outliers by a deep neural network. They operate on sets of match points, 

estimated by NN search, thus the assignment structure is ignored, and visual information 

discarded.  
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2.3 Motion Magnification 

In many real-life scenarios, the motions of an object can be very tiny. They can even be too 

small to be observed by naked eyes. Such kind of tiny motion is also difficult to be detected by 

computer vision algorithms. In some SHM cases, these sorts of tiny movements are very common 

and providing valuable information. Motion magnification algorithms are like microscopes to 

search for the invisible tiny motion in the video. These kinds of algorithms estimate the motion in 

the video and amplify them, and the invisible movement could become visible. Liu et al [35] 

presented the motion magnification technique in 2005. The algorithm groups the tiny motion of 

the input video into different motion layers and amplifies the motions of a layer selected by the 

user. “Holes” revealed by amplified motions are filled using texture synthesis methods. This study 

is the first attempt on such a difficult task to find the tiny motion in a video. It relies on accurate 

motion estimation, which is computationally expensive and difficult to make artefact-free, 

especially at regions of occlusion boundaries and with complicated motions. After seven years, in 

2012, Wu et al. [36] introduced a Eulerian method for real-time video motion magnification. The 

authors believed that tiny changes in a dynamic environment can be revealed through the Eulerian 

Spatio-temporal processing of video sequences. The method does not perform feature tracking or 

optical flow computation but merely magnifies temporal colour changes using Spatio-temporal 

processing. However, as the amplification factor increases, the noise is also significantly 

amplified. In 2014, Wadhwa et al [37] described a new technology using the Riesz pyramid to 

decompose the images. The method allows for much faster and a real-time implementation of 

motion magnification. Although, the quality of the magnified videos in lots of scenarios of this 

method is better than the previous approach, the Riesz pyramid may has trouble at points where 

there is not a single dominant orientation. Tae-Hyun et al [38], introduced a deep learning based 

motion magnification approach. Different from other hand-design approaches, this method used a 

deep convolutional neuro network to train a spatial decomposition filter from a synthetic data set. 

The approach achieves better noise handling and has fewer edge artifacts. The very small motions 

sometime cannot be aware by the algorithm, which could lead to patchy magnification. 
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2.4 Computer Vision for Displacement Measurement in SHM 

To analyse the state of a structure, it is essential to collect many data related to it, such as 

accelerator, displacement, strain and so on. Otherwise the SHM could become more arduous. The 

behaviours of structures can be described by the displacement responses which is one of the most 

important sorts of data for SHM [2]. The displacement response of structures in civil engineering 

applications is traditionally measured via physical sensors, which can be divided into two 

categories: contact-type sensors, e.g., linear variable differential transformer (LVDT), 

accelerometers, and noncontact-type sensors, e.g., laser displacement sensor (LDS), Global 

Navigation Satellite System (GNSS), and Lidar [39, 40, 41] etc. However, the use of these physical 

sensors is greatly restricted by accessibility. For example, the time/labour consuming and the 

associated cost for installing and maintaining of such measurement systems can be very high and 

in many cases can even be prohibitive, especially for large structures, such as long bridges or 

overpasses [42]. Another disadvantage of contact-type sensors is that a stationary platform must 

be used as a reference, which is often hard to find in practical scenarios [43]. The installation of 

noncontact-type sensors such as LDSs is easier and high measurement accuracy can be achieved. 

However, fixed platforms still need to be found for installation, and full-field measurement 

remains a big challenge for LDSs due to the installation and sparse beam density. GNSS systems 

are always used for large-scale structures, such as high-rise buildings, large bridges and so forth. 

Generally, the GNSS is integrated with some auxiliary means (Accelerometer [44], Robotic Total 

Station [45], etc.) to improve the measurement accuracy which can reach around 10-20 mm [46]. 

The accessibility of GNSS is the biggest problem for some medium- or small-scale structures. 

Lidars are widely used in self-driving vehicles. They can also be used to provide high-precision 

displacement measurement results for SHM. Nevertheless, Lidar systems have two main 

limitations: 1) for some low budget tasks, it is not worthwhile to spend a lot of money on an 

exorbitant Lidar system; 2) low resolution makes the radar systems unable to meet full-field 

measurement requirements. 

Computer vision system, being convenience and economical, have been used extensively for 

measuring the displacement of civil structures since 1990s [47]. Vibrations of civil structures to 

be inspected are first recorded by one or multiple cameras. The images/videos are then processed 

by computer vision algorithms to extract vibrational displacements. One of the straightforward 
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advantages of the computer vision based approach is the simple setup and installation. Compared 

with the traditional contact-type displacement sensors which require a stationary and separate fixed 

platform for the installation, video cameras can be placed at a long distance in a non-contact 

manner, and are not affected by the structural vibrations to obtain the dynamic displacement 

responses of structures. Computer vision-based vibration displacement measurement approaches 

can be classified into two categories: two-dimensional (2D) displacement measurement and three-

dimensional (3D) displacement measurement. The 2D or so-called in-plane vibration displacement 

can be extracted from single-view images as single-view images contain 2D information, but the 

depth direction information is lost over the camera imaging processing. At the present, for 2D 

displacement measurement, many vision-based methods such as target-free measurement, full-

field measurement, and even tiny displacement measurement have been developed. They can be 

used for different SHM applications. 3D displacement measurement, on the other hand, attempts 

to acquire the out-of-plane displacement as well which is the displacement in the depth direction. 

Studies of out-of-plane vibration displacement measurement in SHM is still in the early stage.  

To improve the accuracy and robustness of vision-based displacement measurement, it used 

to be a common practice to affix high-contrast artificial targets, such as chessboard patterns, spots 

and circle patterns, etc. on objects to assist the key point detection and tracking [47]. However, 

such artificial targets are not often available in real applications. It is almost impossible to affix 

artificial targets on every area of interest of a large civil structure to achieve full-field 

measurement. Due to the limited availability of artificial targets, target-free displacement 

measurement, which do not require any artificial targets to be installed, have aroused great research 

interests in recent years, which significantly increases the practicability of vision-based 

displacement measurement.  

There have been numerous attempts to use vision-based methods for displacement 

measurement of civil structures. A 2D vision-based approach is presented by Cigada et al. [48] to 

measure the bridge response due to train pass-by using different image processing methods, and 

the results are compared with displacement sensors. Although both artificial target and target-free 

methods are tested, the approach highly relies on artificial targets. Feng et al. [49] developed a 

vision sensor system to measure the 2D displacement of civil structures based on template 

matching, in which both high-contrast artificial targets and natural key points were tested. Some 
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studies have also investigated the target-free 2D measurement based on key point detection and 

tracking. Kuddus et al. [50] presented a full-field target-free 2D tracking approach using BRISK 

key points and the KLT algorithm. Ji et al. [51] proposed a method to measure the 2D displacement 

of a target-free small cable by the optical flow algorithm. Bartilson et al. [52] presented a vision-

based high precision 2D measurement system for traffic signal structure which can be rapidly set-

up and taken-down to evaluate the structural stresses. Yoon et al. [53] proposed a 2D target-free 

vision measurement method tested on a six-story model, employing the Harris corner feature as 

the key points, and tracking them using the KLT optical flow algorithm. Morliler and Michon [54] 

introduced a practical vision-based 2D vibration measurement system with KLT trackers, which 

is used to estimate the displacement of a simple Oberst beam and the first two main modes of a 

helicopter blade. 

Vision-based 3D displacement measurement of civil structures has also been studied. Park et 

al. [55] proposed a motion capture system with multiple cameras to measure 3D displacements 

with respect to a predetermined origin of the 3D coordinate system. The coordinates of artificial 

targets taken by each camera are used to calculate the 3D coordinates. Abdelbarr et al. [56] 

presented a method using an RGB-D sensor which is equipped with an RGB camera and an active 

depth sensor to measure multi-component displacement fields of flexible structures. Artificial 

markers are needed to install on the surface of the target structure. A target-free method is 

introduced by Gao et al. [57] to obtain the 3D dynamic responses of structural vibration of a 

double-tube five-layer structure. However, only the Y direction (vertical direction) result has been 

tested and verified. Limited studies investigated the feasibility and practicability of vision-based 

civil structural out-of-plane displacement measurement. The biggest limitation of the existing 

approaches is their dependence on artificial targets, due to the difficulty of natural key point 

detection and corresponding.  

In some structural displacement measurement tasks, the displacement responses of civil 

engineering structures can be tiny, sometimes even invisible to human eyes. Sometimes the tiny 

displacement in videos can be caused by the distant positioning of the recording cameras. A 

structure could have large displacement on the engineering unit (mm, cm, etc.), but the motion is 

recorded as smaller than one pixel in the video. In such cases, accurately extracting such tiny 

displacement by computer vision algorithms is impossible. If the displacements are actually 
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smaller than a certain value of the engineering unit, even the traditional physical sensors could fail 

to effectively detect them. Motion magnification algorithms have been employed on videos with 

tiny motions for modal identification and 2D displacement extraction. Yang et al. [58] developed 

a blind source separation (BSS) based modal analysis algorithm in 2013, which utilized the phase-

based motion amplification framework to acquire modal frequencies, damping ratios, and mode 

shapes of structures. Chen et al. [59] employed the phase-based motion magnification for 2D 

displacements extraction and demonstrated the algorithm's capability of qualitatively identifying 

the operational deflection shapes of a cantilever beam and a pipe from videos. Poozesh et al. [60] 

proposed a vision-based approach, which employed the phase-based motion magnification 

technique and stereo-photogrammetry to replace contact-type measurement sensors. However, 

artificial targets are required to be affixed on the structure to enhance the ability of the key point 

detection, and obtain the mode shapes of structures. Sarraf et al. [61] presented a method to extract 

the resonant frequencies and operational deflection shapes of a long wind turbine blade at the 2D 

level. The phase-based motion magnification method is applied to magnify the video of the tested 

structure to provide better visualization of structural modal characteristics. 

 

2.5 Summary 

In this chapter, we have reviewed the computer vision algorithms that are related with the 3D 

displacement measurement for SHM. We have also reviewed the existing computer vision 

applications on SHM and their shortcomings. The next Chapter will be focused on a target-free 

3D displacement measurement system we designed for civil structure displacement measurement. 
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CHAPTER 3 

TARGET-FREE THREE-DIMENSIONAL 

DISPLACEMENT MEASUREMENT 
 

3.1 Introduction 

One of the main objectives of this thesis is on the measurement of 3D displacements of civil 

structures. In this chapter such a measurement system is proposed which allows target-free full-

field measurement. The video recording system consists of two independent monocular cameras, 

which recorded two simultaneous videos about the structure as the input of the system. The 

calibration of the binocular camera system is first implemented. Then natural key points are 

detected, matched, and tracked. The 3D displacement can be extracted from the matched key points 

in each frame. The performance of the proposed vision-based system is evaluated by a 3D vibration 

experimental test on a cantilever beam structure in the laboratory. In order to measure the accuracy 

of the proposed method, LVDTs and LDSs are used to measure the displacement responses of the 

tested structures at the same time. The results of the proposed vision-based approach are compared 

with the displacement responses measured by LVDTs and LDS. To the best of the authors’ 

knowledge, this is the pioneer study to investigate the target-free full-field 3D vibration 

displacement measurement of civil engineering structures using a binocular camera system from 

video footages and deep learning techniques. The flowchart of the proposed binocular vision-based 

structure displacement measurement system is shown in Figure 3.1. Our contribution in this 

chapter is the design of a novel binocular camera system, which accomplish the requirement of 3D 

target-free vibration displacement measurement for SHM. 
1 

 

This chapter is reprinted, with permission, from [Shao, Y., Li, L., Li, J., An, S., & Hao, H. (2021). Computer vision based target-
free 3D vibration displacement measurement of structures. Engineering Structures, 246, 113040. © 2021 Elsevier B.V. DOI: 
https://doi.org/10.1016/j.engstruct.2021.113040]. 
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Figure 3.1. The flowchart of the proposed binocular vision-based 3D vibration displacement  

measurement system 

 

3.2 Camera Calibration and Triangulation for 3D Reconstruction 

3.2.1 Pinhole Camera Model 

The pinhole camera model is employed to mathematically represent the geometric 

construction of the binocular camera system in this study. We first introduce the pinhole model of 

the monocular camera to pave the way for the whole process. The architecture of the pinhole model 

of a monocular camera is shown in Figure 3.2. 
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Figure 3.2. The pinhole model of a monocular camera 

 

In the pinhole model theory, four coordinate systems are defined: World coordinate system, 

camera coordinate system, image coordinate system and Pixel coordinate system. The imaging 

process in Figure 3.2 is that an interest point M in the world coordinate system is projected to the 

pixel coordinate system as a pixel m. The world coordinate system is the reference system of the 

3D real-world; we denote it by  (U, V, W) in this thesis. The point M in the world coordinate system 

is first transferred to the camera coordinate system by a 3×3 extrinsic matrix, which is also a 3D 

coordinate system and the Z axes of it are perpendicularly cross the origin of the image coordinate 

system. It is denoted by (X, Y, Z). The image coordinate system and pixel coordinate system are 2 

dimensional. The interest point in the camera coordinate system is first transferred to the image 

coordinate system and then to the pixel coordinate system, denoted as (x, y) and (u, v) respectively, 

by a 3×4 intrinsic matrix. The camera matrix is a 3×4 matrix which is the product of the extrinsic 

matrix and intrinsic matrix. The interest point M can be directly transferred to pixel m by a camera 

matrix. The relationship between a 3D point in the world coordinate M and its 2D image m in the 

image coordinate for a monocular camera is given as: 
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𝑠𝑠 × 𝑚𝑚 = 𝑃𝑃 × 𝑀𝑀 (1) 

where P is the camera matrix, 𝑠𝑠 is a scale factor. The above equation can be expressed as: 
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The extrinsic matrix is denoted as [𝑅𝑅|𝑡𝑡], which is a rigid body transformation that consists of a 

rotation matrix and a translation matrix. A is the intrinsic matrix which consists of the principal 

point (𝑢𝑢0, 𝑣𝑣0), the scale factors for the 𝑢𝑢 and 𝑣𝑣 axes of the image 𝑑𝑑𝑋𝑋, 𝑑𝑑𝑌𝑌, and the angle between 

the vertical and horizontal axes of the image sensor, namely 𝜃𝜃, which is 90o if the axes are exactly 
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The error caused by the grinding in the manufacturing process of the camera lens will cause 

the radial distortion of the lens. This distortion makes the shape of the object in the video different 

from the actual object, which leads to errors in the measurement of the vision system. The 

tangential distortion, which is one of the two distortions, is ignored in our system since the modern 

manufacturing process has enough capability to reduce it to a negligible level. A solution is 

proposed in [11] to eliminate radial distortions. The redial distortion can be modelled as: 
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 𝑥𝑥� =  𝑥𝑥𝑐𝑐(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) 

𝑦𝑦� =  𝑦𝑦𝑐𝑐(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) 
(5) 

 

where 𝑘𝑘1 and 𝑘𝑘2 are the radial distortion coefficients,  (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) is defined as the normalized ideal 

image coordinate and (𝑥𝑥�,𝑦𝑦�) the distorted image coordinates, and  

 

 𝑟𝑟 =  𝑥𝑥𝑐𝑐2 + 𝑦𝑦𝑐𝑐2 (6) 

 

 

�
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
1
� =  

⎣
⎢
⎢
⎢
⎡

1
𝑑𝑑𝑋𝑋

−
𝑐𝑐𝑐𝑐𝑡𝑡𝜃𝜃
𝑑𝑑𝑋𝑋

𝑢𝑢0

0
1

𝑑𝑑𝑌𝑌𝑠𝑠𝑑𝑑𝑑𝑑𝜃𝜃
𝑣𝑣0

0 0 1 ⎦
⎥
⎥
⎥
⎤
�
𝑥𝑥𝑐𝑐
𝑦𝑦𝑐𝑐
1
�. 

 

(7) 

 

(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) is considered the ideal pixel coordinates. The angle, namely 𝜃𝜃, between the vertical and 

horizontal axes of the image sensor is 90o. Hence, 
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and 
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Substitute Eq. (8) into the formula above, we have 

 

 𝑢𝑢� − 𝑢𝑢0 = (𝑢𝑢𝑖𝑖 − 𝑢𝑢0)(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4)
𝑣𝑣� − 𝑣𝑣0 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣0)(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4).

 (10) 

 

So, 
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 (11) 

or equivalently 
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The radial distortion coefficients 𝑘𝑘1 and 𝑘𝑘2 can be obtained by the linear least-squares method to 

remove the distortion from the video images. 

 

3.2.2 Two-view Camera Geometry 

In the previous section, the monocular pinhole camera system is introduced. We use a 

binocular camera system which combines two monocular cameras to realize the 3D displacement 

measurement. Establishing a connection from the binocular camera system to the world coordinate 

of a measured object is important for a binocular camera system but using complicated manual 

measurement could result in a large measurement error. An Epipolar geometry based approach is 

applied to estimate the camera extrinsic matrices in this study. The epipolar geometry encodes the 

relationship between the two cameras. It is independent of scene structure and only depends on the 

intrinsic matrices and relative poses of the cameras.  

The epipolar geometry is shown in Figure 3.3. A point M in 3D is projected to two pixels in 

the pixel coordinate systems, which are denoted as 𝑚𝑚 and 𝑚𝑚′ respectively. With the knowledge of 

camera origins and the image points, we can define an epipolar plane (π). The intersections of the 

epipolar plane and the two image planes are the epipolar lines 𝑙𝑙 and 𝑙𝑙′. 𝑒𝑒 and 𝑒𝑒′ are epipoles. All 

the epipolar lines pass through their epipoles.  
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Figure 3.3. The architecture of epipolar geometry 

 

The epipolar constraint is that the corresponding point of 𝑚𝑚 can be found along the epipolar line 

𝑙𝑙′, and it must be somewhere on the line. A basic understanding of epipolar geometry allows us to 

create a strong constraint between image pairs without knowing the 3D structure of the scene. The 

epipolar geometry is encapsulated by an essential matrix or fundamental matrix. 

Assume that we have canonical cameras, in which intrinsic matrices are 𝐼𝐼, the camera matrices 

of camera 1 and camera 2 can be written as: 

 

 𝑃𝑃1  =  𝐼𝐼[𝐼𝐼   0] (13) 

 

 𝑃𝑃2  = 𝐼𝐼[𝑅𝑅𝑇𝑇  −𝑅𝑅𝑇𝑇𝑡𝑡] (14) 

 

where 𝑅𝑅 and 𝑡𝑡 are the rotation and translation between two cameras. Assuming we have point 𝑚𝑚 

by Camera 1 and 𝑚𝑚′ by Camera 2. In Camera 1’s reference coordinate system, the location of 𝑚𝑚′  

is 𝑅𝑅𝑚𝑚′ + 𝑡𝑡. The cross product of  𝑡𝑡 and (𝑅𝑅𝑚𝑚′ + 𝑡𝑡) generates a new vector perpendicular to the 

epipolar plane: 
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 𝑡𝑡 × (𝑅𝑅𝑚𝑚′ + 𝑡𝑡) = 𝑡𝑡 × 𝑅𝑅𝑚𝑚′. (15) 

 

Since 𝑚𝑚  lies on the epipolar plane which is normal to 𝑡𝑡 × (𝑅𝑅𝑚𝑚′) ,  we have the following 

constraint: 

 

 𝑚𝑚𝑇𝑇 ∙ [𝑡𝑡 × (𝑅𝑅𝑚𝑚′)] = 𝑚𝑚𝑇𝑇[𝑡𝑡×]𝑅𝑅𝑚𝑚′ =   0. (16) 

 

The Essential matrix can be defined as: 

 

 𝐸𝐸 = [𝑡𝑡×]𝑅𝑅.  (17) 

 

The Essential matrix has the following important properties: (1) the Essential matrix is a 3 × 3 

matrix; (2) it contains 5 degrees of freedom; (3) it has rank of 2; (4) it is singular; and (5) a 3×3 

matrix is an essential matrix if and only if two of its singular values are equal, and the third is zero. 

If the points are already represented in one of the pixel coordinate systems, the camera matrix 

P can then be calculated via the following formula: 

 

 𝑃𝑃1  =  𝐴𝐴1[𝐼𝐼   0] (18) 

 

 

 

where 𝐴𝐴1 and 𝐴𝐴2 are the intrinsic matrices of Camera 1 and Camera 2, respectively. 𝑅𝑅 and 𝑡𝑡 are 

the rotation and translation between the two cameras. The points in the pixel coordinate system 

can be converted to the camera coordinate system by the following formula: 

 

 𝑚𝑚𝑐𝑐 =  𝐴𝐴1−1𝑚𝑚 (20) 

 

 𝑚𝑚𝑐𝑐
′ =  𝐴𝐴2−1𝑚𝑚′ (21) 

 

 𝑃𝑃2  = 𝐴𝐴2[𝑅𝑅𝑇𝑇  −𝑅𝑅𝑇𝑇𝑡𝑡] (19) 
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Similar to (16), we have the constraint: 

 

 𝑚𝑚𝑐𝑐
𝑇𝑇[𝑡𝑡×]𝑅𝑅𝑚𝑚𝑐𝑐

′ = 𝑚𝑚𝑇𝑇𝐴𝐴1−𝑇𝑇[𝑡𝑡×]𝑅𝑅𝐴𝐴2−1𝑚𝑚′ =  0. (22) 

 

The Fundamental matrix 𝐹𝐹 can be expressed as: 

 

 𝐹𝐹 =  𝐴𝐴1−𝑇𝑇[𝑡𝑡×]𝑅𝑅𝐴𝐴2−1. (23) 

 

3.2.3 Camera Calibration 

Camera calibration is a common procedure in videogrammetry to obtain the geometrical 

projection information (camera matrix) of a camera system in order to recover the 3D information 

from images [11], and it is also crucial for removing geometric distortions [50].  

A camera matrix is the product of the corresponding intrinsic matrix and extrinsic matrix. The 

method described in [11] is applied in this study to extract the intrinsic matrices 𝐴𝐴1 and 𝐴𝐴2. When 

the origin of the world coordinate is not clear, the 3D camera coordinate system of Camera 1 can 

be considered as the world coordinate system, hence the extrinsic matrix of Camera 1 is an identity 

matrix. Since the extrinsic matrices describe the conversion from the world coordinate system to 

the camera coordinate system, the transformation between the camera coordinate systems of 

Camera 1 and Camera 2 can be considered as the conversion between the world coordinate system 

and the Camera 2 coordinate system. Therefore, the rigid body transformation [𝑅𝑅|𝑡𝑡]  between two 

cameras is the extrinsic matrix of Camera 2.  

Since images are in the pixel coordinate systems, the fundamental matrix 𝐹𝐹 can be calculated 

by the celebrated eight-point algorithm [62]. For robustness, the eight-point algorithm actually 

requires more than eight pairs of matched key points as inputs, which can be provided by key point 

detection and key point matching, as described later in Section 3.3. In SHM, the unit of 

measurement in need is generally in engineering units (e.g., mm, cm, m) rather than in pixel units. 

However, the unit associated with a fundamental matrix is in pixels. Fortunately, the essential 

matrix is the specialization of the fundamental matrix to the case of normalized image coordinates, 

which are associated with engineering units. The normalized image coordinate of a point m is 

𝑚𝑚𝑐𝑐 =  𝐴𝐴1−1𝑚𝑚. The essential matrix can be derived from the fundamental matrix by the following 
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formula: 

 

 𝐸𝐸 =  𝐴𝐴1𝑇𝑇𝐹𝐹𝐴𝐴2. (24) 

 

Once the essential matrix is known, the camera matrices can be retrieved. A method based on 

singular value decomposition (SVD) is employed to decompose the essential matrix to find the 

rigid body transformation [𝑅𝑅|𝑡𝑡] between two cameras. We define the essential matrix E as: 

 

 𝐸𝐸 =  [𝑡𝑡]×𝑅𝑅 = 𝑆𝑆𝑅𝑅 (25) 

 

where S is a skew-symmetric matrix, which has the property 𝑆𝑆 = 𝑘𝑘𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇. Here 𝑘𝑘 is an orthogonal 

matrix, and 𝑍𝑍 is a block matrix 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠1𝐷𝐷1, … , 𝑠𝑠𝑛𝑛𝐷𝐷𝑛𝑛, … ,0, … ,0)𝑇𝑇 . Followed by the property of 

skew-symmetric matrix, the determinant of 𝑆𝑆 is 0, thus 𝑍𝑍 can be expressed as: 

 

 
𝑍𝑍 = �

0 1 0
−1 0 0
0 0 0

� (26) 

 

In the situation without the scale factor 𝑘𝑘 , the decomposition of the essential matrix can be 

expressed as 𝐸𝐸 = 𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇𝑅𝑅. We also define an orthogonal matrix 𝑊𝑊: 

 

 
𝑊𝑊 =  �

0 −1 0
1 0 0
0 0 1

� (27) 

 

The matrix W is a rotation and Z is skew symmetry. Furthermore, for these matrices we have: 

 

 𝑍𝑍𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0) (28) 

 

 𝑍𝑍𝑊𝑊𝑇𝑇 = −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0) (29) 

 

The SVD decompensation of 𝐸𝐸 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)𝑉𝑉𝑇𝑇can be expressed by two situations: 
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 𝐸𝐸 =  𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇𝑅𝑅 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)(𝑊𝑊𝑇𝑇𝑘𝑘𝑇𝑇𝑅𝑅) = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)𝑉𝑉1𝑇𝑇         (30) 

 

 𝐸𝐸 =  𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇𝑅𝑅 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)(−𝑊𝑊𝑘𝑘𝑇𝑇𝑅𝑅) = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)𝑉𝑉2𝑇𝑇 (31) 

 

An important property of the essential matrix as mentioned before is that two of its singular values 

are equal, and the third one is zero. The decomposition of rotation matrix R can be written as: 

 

 𝑅𝑅 =  𝑘𝑘𝑋𝑋𝑉𝑉𝑇𝑇 (32) 

 

where 𝑋𝑋 is a rotation matrix. From Eq. (30) and  Eq. (25), we have 

 

 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0)𝑉𝑉𝑇𝑇  =  𝐸𝐸 =  𝑆𝑆𝑅𝑅 = (𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇)(𝑘𝑘𝑋𝑋𝑉𝑉𝑇𝑇) = 𝑘𝑘(𝑍𝑍𝑋𝑋)𝑉𝑉𝑇𝑇 (33) 

 

Hence, 𝑍𝑍𝑋𝑋 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0) ,  𝑋𝑋 =  𝑊𝑊  or 𝑋𝑋 =  𝑊𝑊𝑇𝑇 . Therefore, the rotation matrix has two 

situations: 

 

 𝑅𝑅 = 𝑘𝑘𝑊𝑊𝑉𝑉𝑇𝑇 

𝑅𝑅 = 𝑘𝑘𝑊𝑊𝑇𝑇𝑉𝑉𝑇𝑇 
(34) 

 

When a decomposition 𝐸𝐸 =  𝑆𝑆𝑅𝑅 have been determined, a translation vector 𝑡𝑡 from 𝑆𝑆 such that 

[𝑡𝑡]× = 𝑆𝑆 needs to be computed. For such a 𝑡𝑡 we have 

 

 𝑆𝑆𝑡𝑡 = [𝑡𝑡]×𝑡𝑡 = 𝑘𝑘𝑍𝑍𝑘𝑘𝑇𝑇𝑡𝑡 = 0 (35) 

 

Since 𝑆𝑆𝑡𝑡 = 0, it follows that 𝑡𝑡 = 𝑘𝑘(0,0,1)𝑇𝑇 =  𝑢𝑢3, the last column of 𝑘𝑘. However, the sign of 𝐸𝐸, 

and consequently 𝑡𝑡 , cannot be determined. Therefore, the translation vector has two possible 

choices: 

 

 𝑡𝑡 = ±𝑘𝑘(0,0,1)𝑇𝑇 =  ±𝑢𝑢3 (36) 
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The extrinsic matrix of Camera 2 is the combination of the rotation matrix and the translation 

vector. Therefore, there are four possible solutions for extracting the relative camera rotation 𝑅𝑅 

and translation 𝑡𝑡 from the essential matrix. For the correct pair (𝑅𝑅, 𝑡𝑡), the 3D triangulated point P 

exists in front of both cameras, which means that it has a positive z-coordinate with respect to both 

the camera coordinate systems. 

Once the extrinsic matrix [𝑅𝑅|𝑡𝑡]  has been extracted, the camera matrices, namely 𝑃𝑃1  for 

Camera 1 and 𝑃𝑃2 for Camera 2, can then be simply derived from the intrinsic matrix and extrinsic 

matrix via the following formula: 

 

 𝑃𝑃1  =  𝐴𝐴1[I|0] (37) 

 

 

The camera mapping procedure is fully described by camera matrices, which is one of the 

most essential inputs of the 3D triangulation for depth direction displacement recovery. A 

polynomial triangulation approach will be introduced in the next section. 

 

3.2.4 Polynomial Triangulation for 3D Reconstruction  

In this section, an introduction to the polynomial triangulation method is given based on [62] 

and [63]. Camera imaging is a process of projection from the 3D space to a 2D plane. If a camera 

is used for back-projection, a ray directed to infinity is employed. However, if two angled cameras 

are used for back-projection, two rays directed to infinity will intersect at a certain point. 

Triangulation is a method for the 3D reconstruction of image data using this method. However, 

due to the inaccuracy camera calibration and key point detection, errors on reconstructed 3D 

coordinates could happen. A nonlinear triangulation method, namely polynomial triangulation 

[62], is employed in our system to optimize the 3D coordinates of the key points. 

With known camera matrices and corresponding points, two projection rays of the 

corresponding points can be calculated easily. However, the problem will be complicated when 

there are noises. Normally, two optical rays will not intersect perfectly under the influence of 

disturbance. In this study, the triangulation process is represented as a least-squares minimization 

 𝑃𝑃2  = 𝐴𝐴2[𝑅𝑅|𝑡𝑡]. (38) 
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problem. The solution of the global minimum of the cost function is obtained using a non-iterative 

algorithm. The cost function is formulated as 

 

 𝒞𝒞(𝑢𝑢,𝑢𝑢′)  =  𝑑𝑑(𝑢𝑢,𝑢𝑢�)2 + 𝑑𝑑(𝑢𝑢′,𝑢𝑢�′)2 (39) 

 

where 𝑢𝑢 and 𝑢𝑢′ are a pair of matched key points, 𝑢𝑢�  and 𝑢𝑢�′ are the estimated corresponding image 

points respectively, which should satisfy the epipolar constraint function 𝑢𝑢�′𝑇𝑇𝐹𝐹𝑢𝑢� = 0, with 𝐹𝐹 being 

the fundamental matrix, which is calculated from the camera calibration process. The function 

𝑑𝑑(𝑢𝑢,𝑢𝑢�) denotes the Euclidean distance between the two points 𝑢𝑢 and 𝑢𝑢� . The corresponding 3D 

point can be recovered by any triangulation method, when 𝑢𝑢�  and 𝑢𝑢�′ are available. Since this 

method needs to solve a six-order polynomial, it is called the polynomial triangulation method.  

Every pair of corresponding points satisfying the epipolar geometry must lie on a pair of 

epipolar lines, and the distance between 𝑢𝑢 and 𝑢𝑢�  equals to the distance between 𝑢𝑢 and the epipolar 

line 𝑙𝑙 associated with 𝑢𝑢� , that is, 𝑑𝑑(𝑢𝑢,𝑢𝑢�) = 𝑑𝑑(𝑢𝑢, 𝑙𝑙). Similarly, 𝑑𝑑(𝑢𝑢′,𝑢𝑢�′) = 𝑑𝑑(𝑢𝑢, 𝑙𝑙′), where 𝑙𝑙′ is the 

epipolar line associated with 𝑢𝑢�′. Furthermore, 𝑙𝑙′ can be computed from 𝑙𝑙 based on the epipolar 

constraint. Therefore, Eq. (39) can be rewritten as 

 

      𝒞𝒞(𝑢𝑢,𝑢𝑢′) =  𝑑𝑑(𝑢𝑢, 𝑙𝑙)2 + 𝑑𝑑(𝑢𝑢′, 𝑙𝑙′)2. (40) 

 

For both images, the epipolar lines 𝑙𝑙 and 𝑙𝑙′ can be parameterized by one variable 𝑡𝑡 as 𝑙𝑙(𝑡𝑡) and 

𝑙𝑙′(𝑡𝑡). Hence, the right side of Eq. (39) is a rational polynomial function of 𝑡𝑡 [62]   

 

 𝒞𝒞(𝑡𝑡) =  𝑑𝑑(𝑢𝑢, 𝑙𝑙(𝑡𝑡))2 + 𝑑𝑑(𝑢𝑢′, 𝑙𝑙′(𝑡𝑡))2. (41) 

 

The optimal 𝑢𝑢�  and 𝑢𝑢�′ can be found by solving the following minimization problem 

 

𝑚𝑚𝑑𝑑𝑑𝑑
𝑡𝑡
𝒞𝒞(𝑡𝑡)  =  𝑑𝑑(𝑢𝑢, 𝑙𝑙(𝑡𝑡))2 + 𝑑𝑑(𝑢𝑢′, 𝑙𝑙′(𝑡𝑡))2. (42) 

 

The minimization of function 𝒞𝒞(𝑡𝑡)  can be solved by finding the real root of a six-degree 

polynomial [62]. The core of the polynomial triangulation method is to obtain the correct 
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corresponding points to perform back-projection for the optimal intersection.  

 

3.3 Key Point Detection, Matching and Tracking 

3.3.1 Key Point Detection 

Artificial targets, such as fixed-sized high contrast planar patterns, have been commonly 

employed in most computer vision-based motion measurement and/or 3D reconstruction tasks. 

These patterns are treated as key points for subsequent processing according to task requirements. 

In recent years, target free methods have gained attention due to their wide applicability and 

advantages for practical applications. However, reliable detection of a sufficiently large number 

of matchable natural key points remains a challenging task. In this chapter, a 3D target-free 

approach is proposed by using natural key points to replace the artificial targets. These natural key 

points are obtained by a key point detection algorithm based on deep learning, rather than 

traditional methods. 

The method used in our proposed system is inspired by a state-of-the-art deep learning-based 

algorithm called SuperPoint [64], which uses a self-supervised framework in training key point 

detectors and descriptors. The detection algorithm can be widely used in multi-view geometry 

problems in computer vision. The key point detector and fixed-length descriptors are generated in 

a single feed forward channel by applying the algorithm on a full-size image. The system 

bootstraps itself from many unlabeled images in a dataset (e.g., Microsoft-COCO), after a basic 

detector on synthetic data is pre-trained. Due to the lack of data for key point detection training, 

the unlabeled image is automatically labelled by a novel Homographic Adaptation procedure, 

which will be described in Section 3.1. A fully convolutional network that jointly derives key point 

detectors and descriptors from an image is trained using the generated labels. The overview of the 

algorithm is shown in Figure 3.4. 
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Figure 3.4. The overview of the SuperPoint algorithm 

 

A basic detector called MagicPoint neural network [65] for dense prediction is designed, 

which operates on single grey scaled images and outputs the probability of each pixel that can be 

a key point. The architecture is shown in Figure 3.5.  

 

 

Figure 3.5. The architecture of the MagicPoint network 

 

At the beginning of the MagicPoint convolutional neural network, a VGG-style encoder [66] 

is used to extract the features, which consists of convolutional layers, spatial downsampling via 

pooling, and nonlinear activation functions. The architecture is shown in Figure 3.6.  
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Figure 3.6. The architecture of the VGG style encoder 

 

The encoder has four 3×3 convolutional layers with 64 channels and four 3×3 convolutional 

layers with 128 channels. The Rectified Linear Unit (ReLU) activation function and the batch 

normalization (Batch norm) are connected to every convolutional layer. Every two layers have a 

2×2 max pool layer. Fully convolutional layers and a SoftMax layer are used at the end of the 

network. The dimension of the input image (𝐻𝐻 × 𝑊𝑊) is reduced to a 𝐻𝐻/8 × 𝑊𝑊/8 × 1 cell grid by 

the encoder.   

An explicit decoder based on Efficient Sub-Pixel Convolutional Neural Network (ESPCN) 

[67] is designed to upsample the feature map for resolution recovery. The output of the encoder is 

first fed into two convolution layers for feature extraction and a 𝐻𝐻/8 × 𝑊𝑊/8 × 65 feature map is 

outputted with 65 channels, which correspond to 8×8 grid regions of pixels plus a dustbin channel 

without key point detected. It is desirable to represent an object with key points evenly distributed 

on it rather than an uneven distribution (e.g., many key points are concentrated in a certain region, 

but very few in other places). Thus, a channel-wise Soft-max is used to compute the key points, 

which applies Soft-max on every 64 pixels region. To finally reshape the feature map to the 

original resolution, a periodic operator for spatial reshape processing is used to reshape the feature 

map to 𝐻𝐻/8 × 𝑊𝑊/8 × 1. Due to the lack of the key point training dataset, a large-scale synthetic 

dataset is created, which consists of simplified 2D geometries such as polygons, cubes, lines and 

ellipses, etc. The network is trained with this synthetic database using a standard cross-entropy as 

the loss function 
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ℒ𝑝𝑝(𝒳𝒳,𝑌𝑌)  =  

1
𝐻𝐻𝑐𝑐𝑊𝑊𝑐𝑐

� 𝑙𝑙𝑝𝑝(𝑥𝑥ℎ𝜔𝜔;𝑦𝑦ℎ𝜔𝜔)
𝐻𝐻𝑐𝑐,𝑊𝑊𝑐𝑐

ℎ=1;𝜔𝜔=1

 
 

(43) 

 

where 𝑥𝑥ℎ𝜔𝜔 is the predicted value from the MagicPoint network,  𝑦𝑦ℎ𝜔𝜔 is the ground truth,  𝒳𝒳,𝑌𝑌 are 

the sets of 𝑥𝑥ℎ𝜔𝜔  and  𝑦𝑦ℎ𝜔𝜔  respectively. 𝑙𝑙𝑝𝑝(𝑥𝑥ℎ𝜔𝜔;𝑦𝑦ℎ𝜔𝜔) is  a standard cross-entropy loss. The 

MagicPoint performs reasonably well on images with real world objects, especially those with neat 

shapes, for example, cabinets, computers, windows and boxes. However, for images with more 

complicated shapes, the performance of MagicPoint is unsatisfactory, especially when the images 

are taken from various viewpoints.  

The ability of the original MagicPoint for key point detection on the real image is improved 

by the homographic adaptation method which can provide quite accurate image-to-image 

transformation by manipulating the original images (rotating, scaling and translation etc.) to help 

the key point detector observe the scene from many different viewpoints and scales. The 

homographic adaptation is combined with the MagicPoint detector to improve the performance of 

the detector and generate the pseudo-ground truth key point for SuperPoint joint training.  

 

 

Figure 3.7. Homographic adaptation 
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a scene is recorded from different views, the same key points should be detected from the images 

with different views. Therefore, the purpose of the Homographic Adaptation is like data 

augmentation in deep learning to generate more labelled key points which are repeatable in 

different views in natural images for SuperPoint training. As shown in Figure 3.7, the MagicPoint 

is first applied to an original natural image from Microsoft-COCO to detect some key points. Then 

the original image is modified by homographic adaptation to generate some warped images. The 

MagicPoint detector is applied to every warped image to generate more key points. Finally, all the 

key points detected from every modified image are combined with the original image. The clusters 

of key points generated from different images produce a new and improved detector, which can 

generate more repeatable and reliable labelled key points as the training data for joint training that 

is described below.  

The last stage of the SuperPoint algorithm is joint training, which generates the SuperPoint 

detector and descriptor as shown in Figure 3.8. 

 
Figure 3.8. Joint training in SuperPoint 
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The SuperPoint network is trained by a Siamese training model. The original image is warped 

by a homography matrix. Two images are trained together in order to generate a descriptor. The 

encoder and detector of SuperPoint are exactly the same as those in the MagicPoint model. A fixed 

dimensional descriptor vector is commonly attached to each of these points for other tasks, e.g., 

key point matching. Traditionally, the key point descriptor is generated after the key point 

detection. The detector and descriptor are not directly connected in terms of computation and 

representation. The SuperPoint architecture is designed to share about 90% of computation 

between the detector and descriptor. An additional subnetwork that computes descriptors for points 

of interest is combined with the encoder, since the SuperPoint architecture is formed by a deep 

stack of convolutional layers that extract multi-scale features. In order to produce an L2 normalized 

fixed-length descriptor, a model similar to Universal Correspondence Network (UCN) [68] is 

applied first to generate a semi-dense grid of descriptors (e.g., one for every 8 pixels). The decoder 

then performs the bi-cubic interpolation of the descriptor and then normalizes the activations to be 

the unit size.  

The final loss is a combination of the detector loss ℒ𝑝𝑝 and the descriptor loss ℒ𝑑𝑑: 

 

 ℒ(𝒳𝒳,𝒳𝒳′,𝒟𝒟,𝒟𝒟′,𝑌𝑌,𝑌𝑌′, 𝑆𝑆)  =  ℒ𝑝𝑝(𝒳𝒳,𝑌𝑌) + ℒ𝑝𝑝(𝒳𝒳′,𝑌𝑌′) + 𝜆𝜆ℒ𝑑𝑑(𝒟𝒟,𝒟𝒟′, 𝑆𝑆) (44) 

 

where ℒ𝑝𝑝(. , . ) is the same as those in MagicPoint for the original image and the warped image, 

respectively. ℒ𝑑𝑑(𝒟𝒟,𝒟𝒟′, 𝑆𝑆)  is the loss function of the descriptor, 𝒟𝒟  and  𝒟𝒟′  are key point 

descriptors, we denote the entire set of correspondences for a pair of images with 𝑆𝑆.  

For training the SuperPoint network, the MagicPoint must be pre-trained to act as a basic 

detector, using synthetic shapes for 200,000 iterations. SuperPoint is then trained on 80,000 

wrapped images in MS-COCO dataset, and it is evaluated on the HPatches dataset [69] which has 

116 scenes with 696 unique images. All training uses PyTorch [70] with mini-batch sizes of 32. 

Adam optimizer [71] is used during training with a default learning rate of 0.001. The exponential 

decay rate for the first moment estimates is 0.9 and for the second-moment estimates is 0.999. 

 

3.3.2 Key Point Matching 

In order to achieve 3D vibration displacement measurement, after the key points are detected 
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using the SuperPoint algorithm, the corresponding key points in the two camera images need to be 

matched. The matched key points play a vital role in solving the fundamental matrix and 

triangulation thus allowing the back projection from 2D to 3D. Without artificial targets, such kind 

of key point matching is a very challenging task in computer vision. A deep learning-based key 

point matching algorithm called SuperGlue [72] is recently proposed, which consists of two major 

parts, namely, the attentional graph neural network and the optimal matching layer. Partial point 

visibility and occlusion can be handled in the SuperGlue algorithm by solving an assignment 

optimization problem. The SuperGlue network is described in the following subsections and the 

architecture of the SuperGlue network is shown in Figure 3.9. 

 

 
Figure 3.9. The architecture of the SuperGlue network 

 

In the attentional graph neural network, a key point encoder is used to combine the positions 

𝑝𝑝𝑖𝑖 and the visual descriptors 𝑑𝑑𝑖𝑖 for key point 𝑑𝑑 through a Multilayer Perceptron (MLP). To make 

the features related to each other, self- and cross-attention layers are applied to create a new 

matching descriptor 𝑓𝑓𝑖𝑖. A new initial representation of key points on the first layer is generated 

as： 

 

 (0)x𝑖𝑖  =  𝑑𝑑𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑃𝑃𝑒𝑒𝑛𝑛𝑐𝑐(𝑝𝑝𝑖𝑖). (45) 

 

To match key points, two images are observed to filter some key points and check back and forth. 

If they do not match, it is required to observe whether there are better key points around until the 

correct key points are determined [73]. In order to imitate the behaviour of human beings, an 
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attention graph neural network [74, 75] is designed to connect a key point with other key points in 

the same image (self-attention), and with key points in another image (cross-attention). Self-

attention is like the process of human beings looking for similar key points in the same image. The 

cross-attention is to imitate the process of humans trying to match two images after finding good 

key points.  

A message passing formulation [76, 77] is used to propagate information along with both 

types of attention. The residual message passing updates for all key points 𝑑𝑑 in an image a is 

expressed as 

 

 (ℓ + 1)x𝑖𝑖𝑎𝑎  =  (ℓ)x𝑖𝑖𝑎𝑎 + 𝑀𝑀𝑀𝑀𝑃𝑃([(ℓ)x𝑖𝑖𝑎𝑎||𝑚𝑚𝜀𝜀→𝑖𝑖]) (46) 

 

where [. ||. ]  denotes concatenation; (ℓ)x𝑖𝑖𝑎𝑎  is the intermediate representation of key point 𝑑𝑑  in 

Image a at Layer ℓ; Message 𝑚𝑚𝜀𝜀→𝑖𝑖 is the result of the aggregation from all key points, which is 

computed as a weighted average of the values. The final matching descriptors 𝑓𝑓𝑖𝑖 of images are 

linear projections of the representation x𝑖𝑖 in the last layer.  

The optimal matching layer is responsible for generating a partial assignment matrix. Two 

assumptions are made for corresponding key points: 1) a key point is corresponding with at most 

a single key point in another image; 2) some key points will be discarded due to occlusion or 

detection failure. A confidence value can hence be defined for each possible correspondence 

between the corresponding key points derived from a partial assignment between two sets of key 

points. The goal of the optimal matching layer is to design a network to find the assignment H 

from two sets of local features.  

The assignment matrix H can be obtained by maximizing the total score ∑ 𝑆𝑆𝑖𝑖,𝑗𝑗𝐻𝐻𝑖𝑖,𝑗𝑗𝑖𝑖,𝑗𝑗 , where S 

is the similarity score matrix: 𝑆𝑆𝑖𝑖,𝑗𝑗  = < f𝑖𝑖𝑎𝑎, f𝑗𝑗𝑏𝑏 >. The optimization problem can be efficiently 

solved by the Sinkhorn algorithm [78, 79], whose entropy-regularized formulation can be easily 

plugged into a deep learning framework. SuperGlue is trained on ScanNet dataset [80] which has 

well-defined training, validation and test splits corresponding to different scenes. 230 million 

training data and 1500 test pairs are selected. Adam solver is applied to optimize the gradient 

descent. The constant learning rate is set as 0.0001 for the first 100k iterations, followed by an 

exponential decay of 0.999992 until the iteration number reaches 900k [72]. 
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3.3.2 Key Point Tracking 

In order to track the movement of the matched key points in in-plane directions (a.k.a., the X 

and Y directions) in a video sequence, the robust Kanade-Lucas-Tomasi (KLT) optical flow 

tracking algorithm [81, 82, 83] is applied to obtain their trajectories in the two directions. KLT 

retrieves the coordinates of a point in every frame by comparing the neighbours around the pixel 

to find the most similar one with the interested pixel. The algorithm is based on three assumptions: 

1) Constant brightness; 2) Small displacement of pixels between consecutive frames; 3) Spatial 

consistency (Neighboring pixels move consistently).   

Denoting the intensity of a point 𝑘𝑘 = (𝑥𝑥,𝑦𝑦) in the current image frame at time instant 𝑡𝑡 as 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡), the displacement of point 𝑘𝑘 is 𝑑𝑑 = (𝜉𝜉, 𝜂𝜂), and the intensity of point 𝑘𝑘 at time instant 𝑡𝑡 +

𝜏𝜏 is 

 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡 + 𝜏𝜏)  =  𝐼𝐼(𝑥𝑥 − 𝜉𝜉,𝑦𝑦 − 𝜂𝜂, 𝑡𝑡) (47) 

 

with 𝐽𝐽𝑈𝑈  =  𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡 + 𝜏𝜏) and  𝐼𝐼(𝑘𝑘 − 𝑑𝑑)  =  𝐼𝐼(𝑥𝑥 − 𝜉𝜉,𝑦𝑦 − 𝜂𝜂, 𝑡𝑡). A small motion is represented as 

 

 𝐽𝐽𝑈𝑈  =  𝐼𝐼(𝑘𝑘 − 𝑑𝑑) + 𝑁𝑁(𝑘𝑘)  =  𝐼𝐼(𝑘𝑘)  −  𝑑𝑑 ∙ 𝑑𝑑 (48) 

 

where 𝑁𝑁(𝑘𝑘)  is the noise (often assumed to be zero) ,𝑑𝑑  is the gradient vector, and 𝑑𝑑  is the 

displacement vector of a point between two frames. The residual of the intensity changes for a tiny 

window can be denoted as 

 

 𝜖𝜖 =  � [𝐼𝐼(𝑘𝑘) − 𝑑𝑑 ∙ 𝑑𝑑 − 𝐽𝐽(𝑘𝑘)]2𝜎𝜎𝑑𝑑𝑘𝑘 
𝒲𝒲

= � (ℎ −  𝑑𝑑 ∙ 𝑑𝑑)2𝜎𝜎𝑑𝑑𝑘𝑘 
𝒲𝒲

   (49) 

 

where ℎ = 𝐼𝐼(𝑘𝑘) − 𝐽𝐽(𝑘𝑘), and 𝜎𝜎 is a weighting function that could be one in the simplest case. To 

emphasize the window centre, 𝜎𝜎 can be set as a Gaussian function. The residual value is equal to 

zero when differentiating with respect to 𝑑𝑑 

 

 � (ℎ −  𝑑𝑑 ∙ 𝑑𝑑)𝑑𝑑
𝒲𝒲

𝜎𝜎𝑑𝑑𝐴𝐴 =  0.  (50) 
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Since (𝑑𝑑 ∙ 𝑑𝑑)𝑑𝑑 =  (𝑑𝑑𝑑𝑑𝑇𝑇)𝑑𝑑 and d is assumed to be constant within the window 𝒲𝒲, we have 

 

 
�� 𝑑𝑑𝑑𝑑𝑇𝑇𝜎𝜎𝑑𝑑𝐴𝐴

𝒲𝒲
�𝑑𝑑 =  � ℎ𝑑𝑑𝜎𝜎𝑑𝑑𝐴𝐴

𝒲𝒲
 (51) 

 

This is a system of two scalar equations with two unknowns. It can be rewritten as 

 

 𝐺𝐺𝑑𝑑 =  𝑒𝑒 (52) 

 

where the coefficient matrix 𝐺𝐺 is the symmetric 2×2 matrix: 

 

 𝐺𝐺 =  � 𝑑𝑑𝑑𝑑𝑇𝑇
𝒲𝒲

𝜎𝜎𝑑𝑑𝐴𝐴 (53) 

 

and the right-hand side is the two-dimensional vector: 

 

 𝑒𝑒 =  ∫ (𝐼𝐼 − 𝐽𝐽)𝑑𝑑𝒲𝒲 𝜎𝜎𝑑𝑑𝐴𝐴. 
(54) 

 

The displacement vector 𝑑𝑑 is calculated for each matched key point 𝑘𝑘 in each frame of the video.  

The KLT algorithm is performed simultaneously in two synchronized videos, therefore the key 

points matched in the first frame are matched in each subsequent frame. These tracked key points 

are not only used to calculate the displacement in the X and Y directions but also used in the 

triangulation algorithm to extract the displacement in the Z direction.  

The triangulation algorithm requires reasonably precise key point matching, so an outlier 

removing process is used on the key points tracked by the KLT algorithm. The outlier removing 

processing is commonly used in conjunction with key point matching and tracking to filter outlier 

points. In this study, an outlier removing algorithm [84] comparing forward-backward errors is 

adopted to improve the performance of the KLT algorithm. 𝑉𝑉 =  (𝑀𝑀𝑡𝑡 , 𝑀𝑀𝑡𝑡+1,   ...  ,𝑀𝑀𝑡𝑡+𝑘𝑘) is defined as 

an image sequence (video) and 𝑢𝑢𝑡𝑡 is a key point located on frame 𝑡𝑡. At first, the KLT tracker 

produces a trajectory by tracking the point forward in time. The trajectory can be represented as 
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𝑇𝑇𝑓𝑓𝑘𝑘  =  (𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑡𝑡+1,   ...  ,𝑢𝑢𝑡𝑡+𝑘𝑘), where 𝑓𝑓 indicates “forward” and 𝑘𝑘 is the length of the video. Next the 

point in the last frame is tracked backwards to the first frame to obtain the trajectory 𝑇𝑇𝑏𝑏𝑘𝑘  =

 (𝑢𝑢�𝑡𝑡 ,𝑢𝑢�𝑡𝑡+1,   ...  ,𝑢𝑢�𝑡𝑡+𝑘𝑘), where 𝑢𝑢�𝑡𝑡+𝑘𝑘 = 𝑢𝑢𝑡𝑡+𝑘𝑘. Various types of distances can be used to calculate the 

distance between 𝑇𝑇𝑓𝑓𝑘𝑘 and 𝑇𝑇𝑏𝑏𝑘𝑘. In this study, Euclidean distance between 𝑢𝑢𝑡𝑡 and 𝑢𝑢�𝑡𝑡 is employed for 

the estimation of the forward-backward error. In our experiments, when the bidirectional error is 

more than two pixels, the corresponding points will be considered invalid hence discarded. 

 

3.4 Experimental Studies on a Beam Structure  

3.4.1 Experiment Setup 

To evaluate the performance of the proposed target-free vision-based approach for 3D 

vibration displacement measurement in structural engineering, a 3D vibration test on a steel 

cantilever beam (425 mm × 50 mm × 5 mm) are conducted in the laboratory. A bi-axial shake table 

and a uniaxial vibration shaker are used to produce the 3D vibrations of the testing structure. Figure 

3.10 shows the experimental setup of the shake table, vibration shaker and testing specimen.  

 

 
Figure 3.10. The 3D vibration test setup 

 

A bi-directional shake table (denoted as Shaker 1) is used to provide excitations in the X and 

Z directions. The excitation in the Y direction is provided by an APS 400 ELECTRO-SEIS long 
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stroke shaker (denoted as Shaker 2) that is mounted on the shake table. These two vibration shakers 

are used simultaneously during the vibration test to provide controllable vibration movements to 

the steel cantilever beam in three directions. To provide a comparison for the proposed vision-

based approach for 3D vibration displacement measurement, two LVDTs, two LDSs are installed 

to measure the vibration displacement responses. Figures 3.11(a) shows the setup of the 

displacement sensors for the test. The synchronization between the vision system and the sensor 

system is manually adjusted.  

The binocular vision system consists of two SONY video cameras (SONY PXW-FS5 4K 

XDCAM). A remote controller is used to remotely control these two cameras to start and finish 

recording synchronously. The frame size recorded by these two cameras is 1920 × 1080 and the 

frame rate is 50 fps (frame per second). The duration of each excitation of the vibrating shakers is 

30 seconds. The experimental setup of these two cameras is shown in Figure 3.11(b). To simulate 

the realistic conditions, these cameras are setup at different heights with an angle between them.    

 

 
(a) 
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(b) 

Figure 3.11. The installation of displacement sensors and setup of cameras: (a) The sensor 

installation for the 3D vibration test; (b) The setting of the two cameras. 

 

3.4.2 Results 

In this experimental test, the sinusoidal wave excitations with an amplitude of 3 mm and a 

frequency of 3 Hz in X and Z directions are generated by Shaker 1. Shaker 2 is controlled by 

adjusting the voltage of the shaker controller, which cannot provide the exact value of vibration 

displacement amplitude and frequency. Multiple displacement sensors are installed to measure the 

vibration responses in three directions as shown in Figure 3.11(a). The details of these used sensors 

are shown in Table 3.1. 

Table 3.1. Sensors used in the 3D vibration test 

Sensor Name Version Measurement Direction 
LDS 1 Keyence IL300 Y 
LDS 2 Keyence IL300 Z 

LVDT 1 HBM Displacement Transducer  Z 
LVDT 2 HBM Displacement Transducer  X 

 

The structural vibration is first recorded by two synchronized cameras, which means the image 

frames captured by the two cameras have one-to-one correspondence. The proposed algorithms as 

discussed in Section 3.3 are applied to detect and match natural key points for camera calibration. 

Figure 3.12(a) shows an example of the key points detected on and around the cantilever beam. 
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Figure 3.12(b) shows an example of the key point matching. Note that for viewing clarity Figure 

3.12(b) only shows a small subset of the matched key points in an image pair. It is possible to 

detect and match many more key points than what are shown here using these algorithms. 

Numerically, in ScanNet indoor dataset, the precision of the proposed algorithms achieves 84.4% 

precision with a match score of 31%, whereas the SIFT with RANSAC only obtains 61.9% 

precision with a match score of 0.7% [72]. Here the precision is defined as the proportion of the 

correctly matched key points among all key points matched, and the match score is defined as the 

ratio of the number of correct matches key points over the total number of detected key points, 

matched or un-matched. From the matched key points, the camera parameters can be derived for 

subsequent tasks. Once the matched key points and camera parameters are accurately obtained, the 

3D information can be recovered. The matched key points are then tracked by the KLT tracker 

frame by frame to obtain the displacement responses in the time domain. 

 
(a) 

 
(b) 

Figure 3.12. The performance of the proposed system: (a) Some key points detected; (b) 

Corresponding points matched. 

The vibration displacement responses measured by the proposed vision system against those 

obtained by physical sensors are shown in Figures 3.13 and 3.14. The cantilever is relatively stiff 
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and the excitation frequency applied in the test was small. The vibration mode of the cantilever 

beam was not excited, and the cantilever beam vibrated rigidly with the same displacement across 

the entire structure. Figure 3.13 shows the time domain 3D vibration displacement responses of an 

arbitrary key point on the middle of the beam structure measured by the proposed vision system, 

compared to those measured by various physical sensors. Figures 3.13(a), (c) and (e) show the 

complete time domain responses in the vibration duration of the test and Figures 3.13(b), (d) and 

(f) provide a clearer view by showing only part of the vibration displacements. It can be clearly

observed that the vibration displacement measurements by the proposed vision approach match

very well with those obtained by the physical sensors. It should be noted that the maximum

displacements in the X and Z directions are only 3mm, and the maximum displacement in the Y

direction is only around 1mm.

Table 3.2 shows the relative errors (𝜖𝜖) in the measured time domain displacement responses 

in three directions and correlation coefficients (𝜌𝜌) between the displacement responses obtained 

by physical sensors and the proposed vision approach in three directions. They are defined as: 

𝜖𝜖 =  
||𝐵𝐵𝑖𝑖 − 𝐴𝐴𝑖𝑖||

||𝐵𝐵𝑖𝑖||
× 100% 

(55) 

𝜌𝜌 =  
1

𝑁𝑁 − 1
��

𝐴𝐴𝑖𝑖 − 𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

� �
𝐵𝐵𝑖𝑖 − 𝜇𝜇𝐵𝐵
𝜎𝜎𝐵𝐵

�
𝑁𝑁

𝑖𝑖=1

 
(56) 

where the displacement trajectory 𝐴𝐴  is measured by physical sensors (ground truth) and 𝐵𝐵  is 

measured by the vision method, 𝑁𝑁 represents the total sampling number, 𝜇𝜇 stands for the mean of 

a set of data, and 𝜎𝜎 is the standard deviation. The maximum relative error is less than 8% and the 

minimum correlation coefficient is larger than 0.9958, indicating that the time domain 3D vibration 

displacement responses are measured accurately by the proposed approach.  

Table 3.2. Displacement error analysis of the 3D vibration test 

Direction Error (𝝐𝝐) Corr (𝝆𝝆) 
X 4.09 0.9969 
Y 4.41 0.9980 
Z 7.20 0.9958 



59 

 

 

 

 

 
Figure 3.13. Three direction displacement comparison of the 3D vibration test: (a) Vision against 

LVDT 2 in X direction; (b) A zoomed-in view for (a); (c) Vision against LDS 1 in Y direction; 

(d) A zoomed-in view for (b); (e) Vision against LDS 2 in Z direction; (f) A zoomed-in view for 

(e). 

 

Results in Figure 3.14 and Table 3.2 demonstrate the accuracy of the proposed vision system 

in measuring the 3D vibration displacement responses of a single key point. Since the cantilever 
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beam is a rigid body, the full-field measurement reliability can be checked by randomly taking a 

point on the cantilever, extracting the vibration displacement and comparing it with the physical 

sensor measurements. In Figure 3.14, the 3D displacement responses of thirty randomly chosen 

key points that cover the whole structure measured by the vision system are provided, in 

comparison with physical sensors. 

 

 

 

 
Figure 3.14. Three direction displacement comparison for thirty key points of the 3D vibration 

test: (a) Vision against LVDT 2 in X direction; (b) A zoomed-in view for (a); (c) Vision against 

LDS 1 in Y direction; (d) A zoomed-in view for (b); (e) Vision against LDS 2 in Z direction; (f) 

A zoomed-in view for (e). 
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Figure 3.14 shows the 3D displacement responses of multiple key points. Since the cantilever 

beam used is a rigid object, it is expected that the movements of different parts of the object are 

highly similar, and should match the measurement by physical sensors well. The measurement 

results by the proposed vision system shown in Figure 3.14 confirmed this. In fact, the trajectories 

of the 30 key points are so close that they can hardly be distinguished from each other in the plot. 

This experiment confirms that the proposed vision-based approach is able to provide full-field 3D 

displacement measurement for a structure. Tables 3.3 and 3.4 provide a numerical evaluation of 

the measurement in all 30 points, in terms of relative error and cross-correlation coefficients. The 

displacement responses measured by physical sensors are used as the ground truth which is 

denoted as G in the table, whose relative error is set as 0.00% and the correlation coefficient as 

1.0000. The other rows in the two tables show the performance of the displacement measurement 

using the proposed vision method at every one of the 30 points. As shown in Table 3.3 and 3.4, 

the displacement measurement at all 30 key points have very high similarities with cross-

correlation coefficients consistently over 0.99 in 3 directions, and the relative errors within 6% in 

the X, Y, and 10% in the Z direction. 

Table 3.3. Displacement relative errors of thirty key points 

No. Error (𝝐𝝐) No. Error (𝝐𝝐) No. Error (𝝐𝝐) 
X Y Z X Y Z X Y Z 

G 0.00 0.00 0.00 11 4.14 5.47 8.93 22 4.06 4.39 7.49 
1 4.09 4.41 7.20 12 4.52 4.47 7.62 23 5.38 5.43 8.24 
2 5.23 5.14 8.65 13  5.33 5.93  8.49 24  4.63 4.23 7.54 
3 4.86 5.24 7.64 14 5.40 6.45 9.63 25 5.45 4.47 8.27 
4 5.35 6.43 9.72 15 4.92 4.93 7.32 26 4.92 4.03 7.54 
5 4.87 6.63 9.48 16 5.34 6.04 9.74 27 5.04 4.27 7.78 
6 4.34 5.35 8.87 17 5.29 6.73 9.72 28 4.29 4.93 7.26 
7 5.26 6.64 9.22 18 4.23 6.23 9.01 29 4.14 5.04 8.62 
8 4.93 4.04 7.98 19 4.76 5.65 8.42 30 4.72 4.30 7.74 
9 4.23 4.63 7.68 20 5.97 6.03 9.74 - - - - 
10 5.27 5.12 8.06 21 4.65 5.63 8.37 - - - - 
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Table 3.4. Displacement correlation coefficients of thirty key points 

No. Corr. (𝜌𝜌) No. Corr. (𝜌𝜌) No. Corr. (𝜌𝜌) 
X Y Z X Y Z X Y Z 

G 1.0000 1.0000 1.0000 11 0.9963 0.9974 0.9947 22 0.9963 0.9982 0.9957 
1 0.9969 0.9980 0.9958 12 0.9956 0.9978 0.9953 23 0.9956 0.9980 0.9943 
2 0.9959 0.9973 0.9943 13 0.9958 0.9982 0.9948 24 0.9978 0.9961 0.9952 
3 0.9968 0.9972 0.9955 14 0.9962 0.9945 0.9933 25 0.9965 0.9969 0.9949 
4 0.9957 0.9946 0.9935 15 0.9976 0.9965 0.9973 26 0.9963 0.9963 0.9953 
5 0.9964 0.9945 0.9962 16 0.9954 0.9984 0.9957 27 0.9959 0.9963 0.9952 
6 0.9962 0.9973 0.9948 17 0.9967 0.9963 0.9973 28 0.9968 0.9964 0.9958 
7 0.9983 0.9964 0.9955 18 0.9987 0.9986 0.9932 29 0.9967 0.9958 0.9949 
8 0.9943 0.9974 0.9975 19 0.9956 0.9973 0.9955 30 0.9963 0.9986 0.9954 
19 0.9974 0.9963 0.9954 20 0.9956 0.9982 0.9957 - - - - 
10 0.9964 0.9953 0.9963 21 0.9976 0.9935 0.9943 - - - - 
 

The displacement responses measured from the presented binocular vision system and the 

physical displacement sensors are transferred to the frequency domain by Fast Fourier 

Transformation (FFT) to reveal the vibration frequencies of the structure. The results are shown in 

Figure 3.15. Table 3.5 shows the relative errors of the frequencies and Fourier spectrums. It is 

clearly observed that the displacement responses generated by the proposed vision system are able 

to obtain the vibration frequencies of the structure in three directions accurately, with the same 

accuracy and performance to measure vibration frequencies by the physical displacement sensors. 
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Figure 3.15. Vibration frequencies obtained from the displacement measurement: (a) in X 

direction obtained from LVDT 2; (b) in X direction obtained from the vision system; (c) in Y 

direction obtained from LDS 1; (d) in Y direction obtained from the vision system; (e) in Z 

direction obtained from LDS 2; (f) in Z direction obtained from the vision system. 

 

Table 3.5 gives the numerical results of the obtained vibration frequencies comparing with 

those from physical sensors in three directions. The measured frequencies in X, Y and Z directions 

match perfectly with those from the physical sensors, while the measurement in amplitudes of 

Fourier Spectrum has relative errors less than 1.87%. 
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Table 3.5. The relative errors of vibration frequencies and Fourier spectrum 

Direction                Peak Relative error of Frequency 
(%) 

Relative error of Fourier 
Spectrum (%) 

  X     First Peak 0.00 0.23 
 

  Y 
    First Peak 0.00 0.46 

    Second Peak 0.00 0.16 
    Third Peak 0.00 1.87 

  Z     First Peak 0.00 0.13 
 

3.5. Summary 

This chapter introduced a computer vision-based full-field 3D vibration displacement 

measurement approach without artificial targets. A binocular vision system with two video 

cameras is developed to measure the in-plane and out-of-plane vibration displacement responses 

of the target structure. Compared with the previous vision-based 3D displacement measurement 

methods, the proposed approach introduces state-of-art key point detection and key point matching 

algorithms based on deep learning to achieve highly accurate target-free measurement. 

Experimental results demonstrate that the proposed target-free vision system can accurately 

measure the vibration displacement responses and obtain the natural frequencies of structural 

vibrations in 3D.  

In in-field measurements, the cameras are often located far away from the inspected structure. 

This could result in very tiny displacements recorded in the video, sometimes even invisible. There 

are also situations where the structure vibrations are indeed very tiny, but have significant impact 

in structural health monitoring. No matter whether displacement sensors or computer vision 

methods are used, accurate measurement of 3D tiny vibrations remains a very difficult task. In the 

next chapter, a vision-based tiny 3D displacement measurement system will be presented.  
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CHAPTER 4 

3D TINY STRUCTURAL VIBRATION 

MEASUREMENT 
 

4.1 Introduction 

In this chapter, a deep learning-based binocular vision system for target-free full-field 3D tiny 

vibration measurement of civil engineering structures is introduced. A phase-based video motion 

magnification algorithm [85] is employed to achieve a high measurement accuracy of tiny 

vibrations at submillimeter level. This motion magnification method allows tiny movements in 

videos to be manipulated by analyzing the local phase at different orientations and scales. This 

processing does not involve the computation of optical flow, and it supports larger amplification 

factors and is significantly less sensitive to noise comparing to other methods [35, 36]. The 

advanced key point detection and matching algorithms based on deep learning techniques 

discussed in Chapter 3 are employed to achieve target-free displacement measurement. The 

accuracy and performance of the proposed approach are first evaluated through experimental tests 

on a steel cantilever beam in the laboratory. In-field experimental tests are then conducted on a 

pedestrian bridge on a university campus to further evaluate the performance of the proposed 

approach in practical applications. The tiny vibration measurements obtained from the proposed 

approach are compared with those measured by LVDTs and/or LDS, and the derived acceleration 

responses are compared with those measured from the installed accelerometers on the testing 

structures. The results demonstrate that 3D tiny vibration that are almost impossible to measure 

with existing non-physical sensor-based methods, are obtained with satisfactory accuracy by the 

proposed approach. The flowchart of the proposed system is shown in Figure 4.1. 
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Figure 4.1. The flowchart of deep learning assisted tiny 3D structural vibration measurement 

method 

4.2 Motion Magnification 

Vibration displacement responses of civil engineering structures under some loading 

conditions, such as ambient conditions, could be very small, often not visible to human eyes. Under 

certain circumstances, measuring very small vibration displacement responses of civil engineering 

structures is necessary for SHM, for example, obtaining the small vibration displacement of long-

span bridges and monitoring the settlement of bridge piers. For the in-field measurement tasks, it 

is impossible to guarantee that the camera setup can be very close to the structure. In those cases, 

the structural vibration in the video will be very tiny or even invisible to human eyes and it is 

possible that vision-based methods for measuring vibration displacement response would fail. It is 

hence necessary to perform motion magnification on the original video to enlarge the motion in 

the video so that the tiny displacement becomes visible for vision-based methods to detect, match 

and track key points and subsequently obtain the vibration displacement. In this study, a phase-

based video motion magnification algorithm [85] is employed to magnify the motion in the 

vibration video and consequently enable the measurement of tiny displacement responses. 

The local phase shift approximating the local motion has been well investigated in phase-

based optical flow [86, 87] and it is a more robust representation than amplitude for motion field. 
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The phase-based motion magnification algorithm assumes that the motion is composed of multiple 

sinusoidal waves. The motions of pixels can hence be adjusted by changing the phase of these 

sinusoidal waves. However, by changing the global phase, the signal can only be processed 

globally, although the local movements in the video are often of more interest. Complex steerable 

pyramids [88, 89] are applied to decompose each image into different scales and directions. The 

phases at each location, orientation and scale are temporally extracted and amplified. The 

meaningless phase in the low amplitude area is blurred by an amplitude-weighted spatial Gaussian 

filter to improve the quality of the magnified videos. The amplified signals can then be 

reconstructed to form a motion-magnified video. The flowchart of the motion magnification 

technique is shown in Figure 4.2.  

Figure 4.2. The flowchart of the phase-based motion magnification 

An example for magnifying a one-dimensional (1D) translation movement is described below, 

in which the motion is magnified using the phase of global Fourier basis coefficients. A 1D image 

intensity is denoted by 𝐼𝐼(𝑢𝑢, 𝑡𝑡) at location 𝑢𝑢 and time 𝑡𝑡. The image is then translated by a tiny 

motion function 𝛿𝛿(𝑡𝑡) to location 𝑢𝑢 − 𝛿𝛿(𝑡𝑡) at time 𝑡𝑡, which can be express by 𝐼𝐼(𝑢𝑢, 𝑡𝑡) =  𝑓𝑓(𝑢𝑢 −
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𝛿𝛿(𝑡𝑡)). The image motion profile 𝑓𝑓(𝑢𝑢) at time 0 and 𝑓𝑓(𝑢𝑢 − 𝛿𝛿(𝑡𝑡)) at time 𝑡𝑡 can be written as a sum 

of complex coefficients times sinusoids corresponding to frequency 𝜔𝜔  by Fourier series 

decomposition 

 

𝑓𝑓(𝑢𝑢)  =  �𝐴𝐴𝜔𝜔𝑒𝑒𝑖𝑖Φ𝜔𝜔𝑒𝑒−𝑖𝑖𝜔𝜔𝑖𝑖
𝜔𝜔

 (57) 

 

𝑓𝑓�𝑢𝑢 − 𝛿𝛿(𝑡𝑡)� =  �𝐴𝐴𝜔𝜔𝑒𝑒𝑖𝑖Φ𝜔𝜔𝑒𝑒−𝑖𝑖𝜔𝜔�𝑖𝑖−𝛿𝛿(𝑡𝑡)�

𝜔𝜔

 =  �𝐴𝐴𝜔𝜔𝑒𝑒𝑖𝑖(Φ𝜔𝜔+𝜔𝜔𝛿𝛿(𝑡𝑡))𝑒𝑒−𝑖𝑖𝜔𝜔𝑖𝑖.
𝜔𝜔

 (58) 

 

The phase difference ΔΦ𝜔𝜔 between time 0 and time 𝑡𝑡 is 

 

ΔΦ𝜔𝜔 = �Φ𝜔𝜔 + 𝜔𝜔𝛿𝛿(𝑡𝑡)� − Φ𝜔𝜔 =  𝜔𝜔𝛿𝛿(𝑡𝑡). (59) 

 

Use a magnification factor 𝜑𝜑 to enlarge the phase and the image intensity 𝐼𝐼(𝑢𝑢, 𝑡𝑡) become 

 

 

𝐼𝐼(𝑢𝑢, 𝑡𝑡) =  𝑓𝑓�𝑢𝑢 − (1 + 𝜑𝜑)𝛿𝛿(𝑡𝑡)� =  �𝐴𝐴𝜔𝜔𝑒𝑒𝑖𝑖Φ𝜔𝜔+(1+𝜑𝜑)𝜔𝜔𝛿𝛿(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑖𝑖
𝜔𝜔

 (60) 

 

It is clear that the global translation motion from time 0 to time 𝑡𝑡 is amplified. Nevertheless, in 

most of the real scenarios, the motion in the video is local movement rather than global movement. 

In such cases, the Fourier transform cannot break the image into a representation consisting of 

exact sinusoids.  

 

4.2.1 Complex Steerable Pyramid 

To extract the local phase, the complex steerable pyramid is applied to decompose the images. 

The complex steerable pyramid decomposes the images with multi-scale, multi-oriented and 

aliasing-free subbands [88, 89]. The basis function of complex steerable pyramid is shown in 

Figure 4.3. Each basis function is complex therefore has a real part and an imaginary part. The 
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waveform is that a Gaussian envelop is covered on the sinusoid. The basis function decomposes 

the image to local amplitude and phase instead of the global decomposition of Fourier 

transformation. 

 

 
Figure 4.3. The basis function of complex steerable pyramid 

 

The basis function of the complex steerable pyramid is convoluted with a 2D image with 

intensity 𝐼𝐼(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) for extracting the local amplitudes and phases at each video frame. A set of 

transformed images in different scales and orientations can be expressed as 

 

𝐼𝐼𝜃𝜃,𝜏𝜏(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) = 𝐼𝐼(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) ∗ 𝐺𝐺𝜃𝜃,𝜏𝜏 = 𝐴𝐴𝜃𝜃,𝜏𝜏𝑒𝑒𝑖𝑖Φ𝜃𝜃,𝜏𝜏(𝑖𝑖,𝑣𝑣,𝑡𝑡) . (61) 

 

where 𝐺𝐺𝜃𝜃,𝜏𝜏 is the basis function corresponding to scale 𝜏𝜏 and orientation 𝜃𝜃. Subtracting the phase 

at time 0, the phase shift between time 0 and time t can be obtained as 

 

ΔΦ𝜃𝜃,𝜏𝜏(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) = Φ𝜃𝜃,𝜏𝜏(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) −Φ𝜃𝜃,𝜏𝜏(𝑢𝑢, 𝑣𝑣, 0). (62) 

 

The phase shift is then multiplied by a magnification factor 𝜑𝜑  to generate a new set of 

transformation 𝐼𝐼𝐴𝐴𝜃𝜃,𝜏𝜏
(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) of the image sequence, in which the amplitudes are the same, but the 

phase shifts are magnified. The new video can be rebuilt by multiplying the transformed images 

by basis function and summing the scales and orientations to generate the video that the tiny 

motions are visualized 
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�𝐼𝐼𝐴𝐴𝜃𝜃,𝜏𝜏
(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) ∗  𝐺𝐺𝜃𝜃,𝜏𝜏

𝜃𝜃,𝜏𝜏

=  𝐼𝐼𝐴𝐴(𝑢𝑢, 𝑣𝑣, 𝑡𝑡), (63) 

 

The basis function introduced by [89] has 4-orientation, octave-bandwidth, which support 

real-time processing, but only allows the small motion-magnification. A 8-orientation half-octave 

pyramid that has two periods sinusoid under the Gaussian envelope supports larger amplification, 

but the processing time is longer [85]. A 1D half-octave basis function is shown in Figure 4.4. In 

our study, the half-octave pyramid is applied, since the vibration of civil engineering structures is 

normally tiny.  

 

 
Figure 4.4. The waveform of 1D half-octave basis function 

 

4.2.2 Temporal Filtering and Denoising 

To manipulate the real signals, the signal-to-noise ratio (SNR) is a measure to compare the 

level of signal and noise. The performance of the output video can be improved by maximizing 

the SNR of the local phase changes. The components related to the noise are removed by 

temporally and spatially filtering, and the desired signal is preserved. Since different motions are 

occurred at different frequencies, the signals are also limited in a certain frequency range of interest 

by temporally filtering the signals. Simply applying narrowband linear filters [85], SNRs for 

motions occurring in a certain frequency range can be improved.  

Although phase-based motion magnification has inherent noise characteristics, the noises in 

the input videos can also result in the noisy output magnified video that the noise signals are 
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amplified much more than deserved signals. Spatially Lowpassing the phase signal is an easy and 

efficient way for increasing the SNR of the input video [85]. For removing the meaningless phase-

signals in low amplitude areas, an amplitude-weighted spatial Gaussian is applied to blur on the 

phases: 

 

�(∆∅)𝐴𝐴� ∗ 𝐽𝐽𝜌𝜌
𝐴𝐴 ∗ 𝐽𝐽𝜌𝜌

 . 
(64) 

 

where 𝐽𝐽𝜌𝜌 =  𝑒𝑒(−𝑥𝑥
2+𝑦𝑦2

2𝜌𝜌2
)  is a Gaussian filter and the indices of amplitude 𝐴𝐴 and phase ∅ have been 

suppressed for readability. The parameter 𝜌𝜌 is equal to the widths of the spatial domain filter which 

is two pixels in our project. The results without this noise handling process can be avoided, because 

this step increases the computing speed, and the quality of the magnified videos is usually good 

without it. 

 

4.2.3 Magnifying the Local Motion 

A single basis function similar to the global phase-shift theorem of Fourier basis functions is 

demonstrated below to show the local phase shift approximates local translation. A basis function 

is modelled as a Gaussian window multiplying with a complex sinusoid 

 

𝑒𝑒(− 𝑥𝑥2
2𝜎𝜎2)𝑒𝑒−𝑖𝑖𝜔𝜔𝑥𝑥 

(65) 

 

where 𝜎𝜎 is the standard deviation of the Gaussian function and 𝜔𝜔 is the frequency of the complex 

sinusoid. Due to the self-similar property of the basis function in the complex steerable pyramid, 

the ratio between 𝜎𝜎 and 𝜔𝜔 is fixed, which means the lower the frequency the higher the window. 

Multiplying the phase of the basis function by a complex coefficient 𝑒𝑒−𝑖𝑖∅ results in 

 

 

𝑒𝑒(− 𝑥𝑥2
2𝜎𝜎2)𝑒𝑒−𝑖𝑖𝜔𝜔𝑥𝑥  ×  𝑒𝑒−𝑖𝑖∅ =  𝑒𝑒(− 𝑥𝑥2

2𝜎𝜎2)𝑒𝑒−𝑖𝑖𝜔𝜔(𝑥𝑥−∅/𝜔𝜔)   
(66) 
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The complex sinusoid under the window is translated, which is approximately a translation of the 

whole basis function by ∅
𝜔𝜔

. Conversely, the phase difference between two translated basis functions 

is proportional to translation. Specifically, supposing we have a basis element and its translation 

by 𝛿𝛿, that is 

 

𝑒𝑒(− 𝑥𝑥2
2𝜎𝜎2)𝑒𝑒−𝑖𝑖𝜔𝜔𝑥𝑥, 𝑒𝑒

−(𝑥𝑥−𝛿𝛿)2
(2𝜎𝜎2) 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑥𝑥−𝛿𝛿)   

(67) 

 

The local phase of each element only depends on the argument to the complex exponential and is 

−𝜔𝜔𝑥𝑥 in the first case and −𝜔𝜔(𝑥𝑥 − 𝛿𝛿) in the second. The phase difference is then 𝜔𝜔𝛿𝛿 which is 

directly proportional to the translation. Local phase shift can be used both to analyze tiny 

translations and synthesize larger ones. 

As same as the global translation example, the differences of the local phases extracted by the 

half-octave pyramid are multiplied with an amplification factor 𝜑𝜑 at each level of the steerable 

pyramid. These amplified phase differences are finally used to modify the phase of the pyramid to 

amplify the motion in the sequence. The magnified complex steerable pyramid is finally collapsed 

to synthesize the output motion magnified video. A 1D displacement example is shown in Figure 

4.5. The local phase of complex steerable pyramid coefficients is used to amplify the motion of a 

translation movement. 

 

 
Figure 4.5. The flowchart of the phase-based motion magnification  
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Two frames from a video of a subtly translation is transformed to the complex steerable 

pyramid representation by projecting onto basis functions. The phase between the complex 

coefficients is computed and amplified. In Figure 4.5, only the coefficient corresponding to exactly 

one location and scale is shown. This processing is actually done on every pyramid coefficient. 

The new coefficients are used to shift the basis functions and a reconstructed video is produced in 

which the translation between the two frames is enlarged. 

 

4.2.4 The Limitation of Magnification 

Due to the limitation of the spatial support of the complex steerable pyramid and the essence 

of the motion magnification approach is shifting the image phase covered by the basis function, 

the phase will finally reach the border that it cannot be moved. Once the magnification factor is 

beyond this border, the approach cannot amplify the tiny motion according to the factor assigned 

and the images are blurred by noises. Figure 4.6 shows a frame from our cantilever beam vibration 

test, in which Figure 4.6(a) is the image without noise, in the contrast, Figure 4.6(b) is full of noise 

since the applied magnification factor is too large. 

 

 
(a) 
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(b) 

Figure 4.6. A comparison of motion magnification with magnification factors inside and beyond 

the border. (a) The magnification factor inside the border; (b) The magnification factor beyond 

the border.  

 

In such a case, the displacement is impossible to be accurately extracted from the noisy video.  

It is important to ensure the factor chosen is always inside the border to avoid measurement errors.  

According to Ref.[85], the standard deviation of the Gaussian window is used as the border, which 

is described as 

 

𝜑𝜑𝛿𝛿(𝑡𝑡) < 𝜎𝜎 . (68) 

 

where 𝜎𝜎 is the standard deviation of the half-octave handpass filter and 𝜑𝜑 is the magnification 

factor. Exceeding the limitation above can result in flaws or blur since some image pyramid 

components are not present in their proper ratios to reconstruct the desired motion.  

 

4.5 Experimental Validations 

4.5.1 3D Vibration Tests of a Beam Structure  

4.5.1.1 Experiment Setup 

Once the 3D tiny motions of civil structures magnified using the system described in the 

sections above, the vision-based target free full-filed displacement measurement system 
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introduced in Chapter 3 can be employed for their measurement. The performance of the 3D tiny 

vibration displacement measurement is first evaluated by conducting 3D vibration tests. The 

shaking table setup is the same as that described in Section 3.4.1. Two LDSs are installed for 

displacement measurement on Z direction to provide more accurate ground truth. The detail of the 

sensors is listed in Table 4.1. 

Table 4.1. Displacement sensors used in the 3D vibration test 

Sensor Name Version Measurement Direction 
LDS 1 Keyence IL300 Z 
LDS 2 Keyence IL300 Z 

LVDT 1 HBM Displacement Transducer  Y 
LVDT 2 HBM Displacement Transducer X 

 

4.5.1.2 Results and Discussions 

The purpose of this test is to evaluate the performance of the proposed 3D vision system on 

measuring tiny vibration displacement. In this test, Shaker 1 is set to generate sinusoidal 

excitations with an amplitude of 0.1 mm and a frequency of 3 Hz in two directions (X and Z), and 

Shaker 2 is to generate a vertical vibration with the displacement within the range of 0.1mm.  

The vibration displacement measured by the proposed vision system without and with 

applying the motion magnification, compared with those obtained by physical displacement 

sensors are shown in Figures 4.7 and 4.8. The time-domain 3D vibration displacement responses 

of an arbitrary key point in the middle of the beam structure obtained from the original videos are 

shown in Figure 4.7. Figure 4.8 shows the 3D vibration displacement responses of the same point 

obtained from the magnified videos. Figures 4.7 and 4.8(a), (c) and (e) show the whole time series 

of the displacement vibration response of the complete test, and Figures 4.7 and 4.8(b), (d) and (f) 

provide a clearer view by zooming into a certain range of the time series. It can be observed that 

the displacement responses are generally tiny (on the scale of 0.1 mm with each pixel represents 

0.3038mm in videos recorded by Camera 1 and 0.3213mm in those recorded by Camera 2). When 

the videos are not magnified, the accuracy of the measurement results from the vision-based 

method is unsatisfactory when compared with the physical sensors. When the phase motion 

magnification is applied and the magnified videos is used, the proposed vision-based approach is 
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able to obtain vibration displacement measurements very similar to those obtained by the physical 

displacement sensors, as shown in Figure 4.8.  

Table 4.2 shows the numerical analysis of the proposed methods. For video images without 

magnification, the relative errors are 30.29%, 55.14%, and 80.02% in X, Y, and Z directions, 

respectively, and the correlation coefficients are 0.9578, 0.8160, and 0.6001, respectively. These 

indicate a large error in displacement measurement. For the magnified video, the relative errors in 

the in-plane directions, namely X and Y directions, are less than 13%, and the relative error in the 

out-plane Z direction is about 37%. The correlation coefficient for the displacement in the Z 

direction is 0.9419, demonstrating much more accurate tiny displacement measurements than those 

without using motion magnification. Given that the vibration displacements in all three directions 

are in the magnitude of 0.1mm, which is extremely difficult to measure using the vision-based 

methods, the obtained results with motion magnification are highly satisfactory with the minimum 

correlation coefficient of 0.94. 

 

Table 4.2. Displacement error analysis of tiny vibration test 

Direction Original Videos Magnified Videos 
Error (𝝐𝝐)  Corr (𝝆𝝆) Error (𝝐𝝐)  Corr (𝝆𝝆) 

X 30.29% 0.9578 9.02% 0.9949 
Y 55.14% 0.8160 12.67% 0.9763 
Z 80.02% 0.6001 37.64% 0.9419 
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Figure 4.7. 3D tiny displacement measurement (original videos): (a) Vision vs. LVDT 2 in X 

direction; (b) A zoomed-in view of (a); (c) Vision vs. LVDT 1 in Y direction; (d) A zoomed-in 

view of (c); (e) Vision vs. LDS 2 in Z direction; (f) A zoomed-in view of (e). 
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Figure 4.8. 3D tiny displacement measurement (magnified videos): (a) Vision vs. LVDT 2 in X 

direction; (b) A zoomed-in view of (a); (c) Vision vs. LVDT 1 in Y direction; (d) A zoomed-in 

view of (c); (e) Vision vs. LDS 2 in Z direction; (f) A zoomed-in view of (e). 

 

Fast Fourier Transformations (FFT) are performed to transfer the vibration responses 

measured by the binocular vision system with motion magnification and by the physical 

displacement sensors to the frequency domain in order to reveal the vibration frequencies of the 

structure. The results are shown in Figure 4.9. Although the 3D displacements presented in this 

test are very tiny, the proposed vision system can obtain a very good measurement of the 

displacements and subsequently vibration frequencies matched very well with those obtained by 

the physical sensors.  
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Figure 4.9. FFT spectrums of measured 3D vibrations in test: (a) X direction obtained from 

LVDT 2; (b) X direction obtained from vision method; (c) Y direction obtained from LVDT 1; 

(d) Y direction obtained from vision method; (e) Z direction obtained from LDS 2; (f) Z direction

obtained from vision method. 

Full-field displacement measurement capability of the proposed vision system for tiny 

vibration is again verified by randomly selecting multiple points all over the structure to check the 

measurement of their motions compared with physical sensors. If the vibration trajectories of the 

key points are highly similar, the full-field displacement measurement ability is validated. In 

Figure 4.10, the 3D displacement responses of thirty randomly chosen points that cover the whole 
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structure measured by the vision system are shown, in comparison with those measured by the 

physical sensors. It can be clearly seen that the obtained vibration displacement trajectories of the 

30 key points are very close and can match accurately with those measured by the physical sensors, 

even when the vibrations in the three directions are all very tiny, with the magnitudes at 0.1mm in 

the X and Z directions, and 0.05 mm in the Y direction. 

 

 

 

 
Figure 4.10. The similarity of 3D vibration trajectories of 30 key points in tiny movement test: 

(a) Vision approach vs. LVDT 2 in X direction; (b) A zoomed-in view of (a); (c) Vision approach 

vs. LVDT 1 in Y direction (d); A zoomed-in view of (c); (e) Vision approach vs. LDS 2 in Z 

direction; (f) A zoomed-in view of (e). 
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4.5.2 In-field Test on an Indoor Pedestrian Bridge  

4.5.2.1 Experiment Setup 

In order to verify the effectiveness of the proposed approach in measuring tiny vibration 

displacement responses for real world scenarios, vibration tests on an indoor pedestrian bridge 

were conducted, as shown in Figure 4.11(a). Since it is not feasible to install displacement sensors 

inside a building, six accelerometers were installed instead to measure acceleration responses in 

three dimensions at two locations, as shown in Figure 4.11(c). The two cameras as described in 

3.4.1 were placed 6.5 meters away from the pedestrian bridge to capture its vibration, as shown in 

Figure 4.11(b). The details of the installed accelerometers are provided in Table 4.3. 

Multiple shakers were initially intended to be used to vibrate the pedestrian bridge in three 

directions. However, due to safety concerns, only one APS 400 ELECTRO-SEIS long stroke 

shaker was eventually installed, generating small excitations in the vertical direction on the deck 

of the pedestrian bridge. Driven by the shaker, the pedestrian bridge produces tiny vibrations 

mainly in the vertical direction. Motion amplification on the original video is therefore necessary 

to enlarge the vibrations, which are almost invisible in the original videos. The proposed deep 

learning assisted target-free vision-based approach is used to analyse the magnified videos to 

perform the key point detection, matching and tracking, and subsequently obtain the 3D vibration 

displacement responses.  

Table 4.3. Sensors installed on the indoor pedestrian bridge.  

Sensor Name Version Measurement Direction 
Accelerometer 1 PCB-393B04  Z 
Accelerometer 2 PCB-393B04 Y 
Accelerometer 3 PCB-393B04 X 
Accelerometer 4 PCB-393B04 Z 
Accelerometer 5 PCB-393B04 Y 
Accelerometer 6 PCB-393B04 X 

 



82 

 

 
(a)                                                                                   (b) 

 
(c) 

Figure 4.11. Experimental setup for indoor pedestrian bridge vibration tests: (a) The pedestrian 

bridge; (b) the Setup of two cameras; (c) Installed accelerometers and shaker. 

 

4.5.2.2 Results and Discussions 

Since only accelerometers are installed for this vibration test, displacement responses are not 

directly measured by the physical sensors. Vibration displacement responses are only obtained 

from the proposed vision measurement system. To validate the accuracy of the displacement 

measured and compare them with the acceleration responses measured by the accelerometers, 

acceleration responses are obtained by taking the second derivative of the displacement responses 

measured by the vision system. Since the sampling rate of the camera is 50 fps, and the unit of 

accelerometer data is 𝑚𝑚/𝑠𝑠2, the measured displacement is processed using the following formulas: 
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 𝑉𝑉(𝑡𝑡) =  50 × (𝑦𝑦(𝑡𝑡 + 1) − 𝑦𝑦(𝑡𝑡)) (67) 

 𝐴𝐴(𝑡𝑡)  =  2500 × (𝑦𝑦(𝑡𝑡 + 1) − 𝑦𝑦(𝑡𝑡 − 1)) (70) 

where 𝑦𝑦(𝑡𝑡) is the displacement response at time instant 𝑡𝑡, 𝑉𝑉(𝑡𝑡) is the velocity response and 𝐴𝐴(𝑡𝑡) 

is the acceleration response. 

Since the displacement in the Y direction is the focus in this test for accuracy validation, key 

points near Accelerometer 2 and Accelerometer 5, which are installed to measure the accelerations 

in the Y direction, are chosen to be evaluated. The vibration displacement responses of the key 

points near the accelerometers are defined by the average displacement of all the key points in the 

location of the installed sensor. Figure 4.12 shows the vertical displacement near Accelerometer 2 

obtained by the proposed vision-based method, in which the displacement is less than 0.02 mm. 

Figure 4.13 shows the comparison of the acceleration responses obtained by Accelerometer 2 and 

the proposed vision-based approach. It can be clearly observed that the vibration acceleration 

responses measured by the proposed vision system match very well with those from the physical 

sensor (Accelerometer 2). An even better match is obtained for Accelerometer 5, as shown in 

Figure 4.14. 

 

 
Figure 4.12. Vertical displacement near Accelerometer 5 obtained by the proposed vision 

method. 
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Figure 4.13. Comparison of the vertical acceleration responses by the proposed vision approach 

and from Accelerometer 2: (a) The complete time series; (b) A zoomed-in view of (a). 

 

 
Figure 4.14. Comparison of the vertical acceleration responses by the proposed vision approach 

and from Accelerometer 5: (a) The complete time series; (b) A zoomed-in view of (a). 

 

The relative errors in the acceleration responses obtained by the proposed vision approach 

against those measured from wired accelerometers are listed in Table 4.4. It is shown that the 

correlation coefficient is larger than 0.94, and the relative errors are less than 36%. The errors in 

the measured time domain acceleration responses could be from the inaccuracy of the numerical 

derivation process from displacement to acceleration and the uncertainty in the binocular vision 

system for measuring tine displacement.  

Frequency domain analysis of the obtained acceleration responses by the proposed vision 

method and from the accelerometers are performed. The Fourier spectrum results for the 

acceleration responses near Accelerometer 2 and Accelerometer 5 are shown in Figures 4.15 and 
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4.16, respectively. The obtained natural frequencies by the proposed vision-based approach match 

very well with those from the installed accelerometers. 

Table 4.4. Relative errors of obtained acceleration responses.  

Position Error (𝝐𝝐) Corr (𝝆𝝆) 
Accelerometer 2 35.43% 0.9647 
Accelerometer 5 33.24% 0.9462 

 

 

 
Figure 4.15. FFT spectrums of acceleration time histories obtained by the proposed vision 

approach and recorded by Accelerometer 2: (a) FFT spectrum of Y direction response obtained 

from Accelerometer 2; (b) FFT spectrum of Y direction response obtained by the proposed 

vision method. 
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Figure 4.16. FFT spectrums of acceleration time histories obtained by the proposed vision 

approach and recorded by Accelerometer 5: (a) FFT spectrum of Y direction response obtained 

from Accelerometer 5; (b) FFT spectrum of Y direction response obtained by the proposed 

vision method. 

4.6 Sensitivity Investigations 

A binocular vision system is proposed for target-free 3D displacement measurement method 

for tiny vibration displacements in an order of less than 1 mm.  Phase-based motion magnification 

is utilized to enlarge the movement of the vibration response videos. To examine the sensitivity of 

the proposed binocular vision system without and with motion magnifications, four sets of 

experiments are conducted. The accuracy of the vision system could be impacted by the position 

of the cameras, as well as the accuracy of key point matching and tracking. When conducting these 

four experiments, the cameras are positioned at the same locations as those for the 3D vibration 

tests of the steel beam in the laboratory as described in Section 3.4.1, which means that the camera 

matrices are not changed in the four experiments. Likewise, a pair of identical matched key points 

are used to limit the impact of the key point selection. The sensitivity analysis is conducted by 

using different magnitudes of vibration displacement to evaluate the performance of the proposed 

vision approach for tiny displacement measurement. For a fixed camera, it is easy to derive the 

real size (measured in the engineering units such as millimetres) represented by one pixel, which 

is determined by the distance from the camera to the recorded object. In our experimental setup, a 

pixel represents 0.3038mm in videos recorded by Camera 1 and 0.3213mm in those recorded by 

Camera 2.  

Table 4.5 shows the 3D displacement magnitudes in each test, and the resulted relative errors 

in the time domain responses from the original videos and the magnified videos, respectively. The 

X direction displacements are larger than one pixel in Tests 1 and 2, and are smaller than one pixel 

in Test 3 and Test 4. In the Y direction, only the displacement in Test 1 is larger than one pixel. 

Displacements in the Z direction are triangulated by those in X and Y directions, therefore the 

accuracy of the displacement measurement in Z is affected by the displacement measurements in 

both the X and Y directions. It can be observed from Table 4.5 that the measurement errors using 

the original video in all three directions are acceptable when the displacements in both the X and 
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Y directions are larger than one pixel. However, when the displacement in either X or Y direction 

is less than one pixel, the accuracies of the vibration measurements with the original videos in the 

direction with less-than-1-pixel displacement and in the Z direction decrease dramatically, as 

shown in the Y and Z directions in Test 2. In Tests 3 and 4 where the displacement responses are 

very small in both the X and Y directions, the relative errors with the original videos are very large. 

This clearly shows the necessity of performing motion magnification when the vibration 

displacements are small, especially if they are invisible to human eyes. When motion 

magnification is applied, as demonstrated in Tests 2, 3 and 4, much more accurate displacement 

measurements in all three directions are achieved with smaller relative errors and larger correlation 

coefficients. From the sensitivity study, the proposed approach can obtain reasonable displacement 

measurements even when the displacements are at the scale of 0.05 mm as shown in Test 4, which 

is less than 1/6 of a pixel, and is hardly visible to naked eyes.  

Table 4.5. Sensitivity study of the vision system without and with motion magnification  

Test Applied Peak 
Displacement 

Original Video Magnified Video 
Error (𝝐𝝐) Corr. (𝝆𝝆) Error (𝝐𝝐) Corr. (𝝆𝝆) 

 
1 

X: 0.6 mm 8.33% 0.9905 N/A N/A 
Y: 0.4-0.6 mm 12.72% 0.9723 N/A N/A 
Z: 0.6 mm 10.63% 0.9837 N/A N/A 

 
2 

X: 0.4 mm 14.45% 0.9697 15.24% 0.9795 
Y: 0.2-0.32 mm 31.92% 0.9263 12.34% 0.9863 
Z: 0.4 mm 40.34% 0.9171 20.03% 0.9723 

 
3 

X: 0.2 mm 30.29% 0.9538 9.02% 0.9949 
Y: 0.1-0.2 mm 55.14% 0.8660 12.67% 0.9763 
Z: 0.2 mm 80.02% 0.6001 37.64% 0.9419 

 
4 

X: 0.2 mm 30.43% 0.9591 9.34% 0.9908 
Y: 0.05-0.06 mm 115.03% 0.1858 37.64% 0.9419 
Z: 0.2 mm 110.76% 0.3055 51.04% 0.8976 

  

From the above sensitivity study, it is recommended that when the displacement magnitude in 

either X or Y direction is smaller than one pixel, motion magnification should be applied first before 

using the proposed vision system to obtain the target-free vibration displacement measurement. 

When movements are larger than one pixel, motion magnification might not be necessary. In fact 

further errors could be introduced due to the process of amplifying the original motion. For 

example, in the X direction of Test 2 shown in Table 4.5, the vibration displacement is larger than 
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one pixel. The relative error from the original videos is 14.45%, whereas the displacement obtained 

from the magnified videos has a relative error of 15.24%. 

 

4.7 Summary 

A deep learning assisted vision-based approach for target-free 3D tiny vibration displacement 

measurements of structures is proposed. To measure tiny vibration displacement responses, a 

phase-based video motion magnification algorithm is used to amplify the motion of objects in the 

video to achieve 3D measurement of tiny vibrations. Both the laboratory and in-field experimental 

results demonstrate that the proposed target-free vision system can accurately measure tiny 

vibrations of structures and obtain the natural frequencies of structural vibrations in 3D space 

accurately.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 
 

5.1 Conclusions 

Following the worldwide construction of infrastructures, more and more civil structures are 

built to improve people’s life quality.  Especially in developing countries or areas, a large number 

of infrastructure facilities have been built intensively within a short period of time. Monitoring the 

health conditions is essential for these rapidly built structures, since accidents of civil structures 

may cause significant economic loss, even cost lives. However, compared to the efforts and funds 

invested in the design and construction of civil structures, the funds for SHM are limited. 

Moreover, in SHM, the investment and return cannot be balanced in a short time since the accidents 

of civil structures are very rare. Thus, economic and effective methods for SHM are keenly 

required. Traditional SHM approaches are costly and sometimes unaffordable for structure 

management organizations.  

In this thesis, we propose vision-based displacement measurement approaches which can be 

easily accessible and significantly reduce the costs of SHM. The proposed methods overcome the 

limitations of traditional SHM methods and enable target-free, full-field and tiny movement 

measurements.  The proposed vision system realizes 3D target-free displacement measurement for 

SHM. A two-view 3D reconstruction approach using a binocular camera system is used for depth 

direction displacement extraction.  The proposed system uses natural key points instead of artificial 

targets, which avoids complicated pattern installations to save cost. Sophisticated deep learning-

based key point detection and matching algorithms are used. The quality and quantity of the 

detected natural key points are significantly better than traditional key point detection and 

matching algorithms. The KLT optical flow tracker is used for accurately retrieving 2D 

displacements frame by frame. Vision-based measurements of tiny displacements are also enabled 

using the proposed system, which was traditional impossible to perform. The tiny motion in the 

video is amplified by a phase-based motion magnification algorithm, which visualizes invisible 
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motions in videos and enables computer vision algorithms to handle and process the subtle changes 

in videos. The vision system is validated by a series of experimental vibration tests in the lab and 

the measurement results are directly compared with various kinds of physical sensors, achieving 

highly accurate results. The proposed vision systems are also evaluated by in-field tests on a 

pedestrian bridge on a university campus. The motion magnification is applied in the tests since 

the vibration displacement of the pedestrian bridge is tiny. Since the bridge is not allowed to install 

displacement sensors, the results are indirectly compared with accelerators measured by multiple 

accelerometers, which confirms that the proposed method performs comparably with physical 

sensors.  

In summary, this thesis addresses problems in regard with 3D vibration displacement 

measurement of civil engineering structures. The contributions in this thesis are listed as follows: 

1) A binocular camera measurement system that applied novel computer vision algorithms is 

proposed to realize the target-free 3D displacement measurement; 2) The system is then extended 

to tiny 3D vibration displacement measurement that is feasible and more general for in-field 

measurement of tiny vibration displacement responses.   

 

5.2 Future Works 

The proposed approaches in this thesis focus on laboratory and in-door structural applications. 

The environment in such a situation is controllable that allows the systems to run stably. In the 

contrast, the outdoor environment is more unpredictable, such as in the raining or snowing weather, 

the raindrop or snowflakes appearing in the scene, which could impact the capability of the vision 

system. The proposed system will further consider testing on the outdoor structures under different 

weather conditions to improve the system robustness for the outdoor environment.  

Moreover, our system can be installed on a UAV to measure the structures that are inaccessible 

for people. For instance, large scale bridge and tunnel structures always need to be monitored but 

it is very hard to install the vision system. A drone or a UAV equipped with vision measurement 

systems could help in this situation. Drones are not static platforms, novel visual odometry 

techniques are necessary to be designed to eliminate the drone’s motion for accurately measuring 

the displacement of the structures. 
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It is interesting to extend our works to using single cameras for 3D displacement measurement, 

which can improve the flexibility of the vision measurement system and further cutting the budget 

of the measurement system. The single image 3D reconstruction is a growing and energetic area 

in computer vision. A popular strategy at the moment is using self-supervised learning to train a 

model with a single image and a depth map as input and output, respectively. The algorithms 

developed based on this strategy need to be modified for the application in SHM in order to 

improve the measurement precision. 
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