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Abstract: The tribological properties of polytetrafluoroethylene (PTFE)/AP (poly(para-phenyleneterephthalamide)
(PPTA) pulp) composites under different test conditions (load: 2N, 10N; frequency: 1 Hz, 4 Hz;
amplitude: 2 mm, 8 mm) were holistically evaluated. PTFE/AP composites with different AP mass
ratios of 3%, 6%, and 12% as a skeleton support material were prepared. The coefficient of friction
(COF) and wear rate were determined on a ball-on-disk tribometer. Furthermore, the morphology,
element composition, and chemical structure of the transfer membrane were analyzed accordingly.
The relationships between load, frequency, amplitude, and tribological properties were further
investigated. According to the wear mechanism, AP enables effective improvement in the stiffness
and wear resistance, which is also conducive to the formation of transfer films.

Keywords: polytetrafluoroethylene (PTFE); poly(para-phenyleneterephthalamide) PPTA pulp;
tribological properties; transfer films

1. Introduction

Polytetrafluoroethylene (PTFE) composites are widely used as lubricating materials on
account of good mechanical and tribological properties [1]. However, the unique structure
of PTFE results in poor wear resistance, which can be overcome by adding fillers to improve
tribological properties by means of nanoparticle filling [2,3], fiber material blending [4,5],
and surface modification [6]. Among them, fiber reinforcement has demonstrated rapid
growth and development. This is because the matrix can effectively transfer the load to the
fibers to improve the bearing capacity of polymer-based composites [7]. Due to the high
bond energy of main molecular chains of fibers, greater hardness of fiber surfaces, good ther-
mal properties [8], and high tensile strength [9], the wear resistance can be improved accord-
ingly. Therefore, many types of fibers are widely used in composite materials [10], such as
poly-(para-phenylene-2,6-benzobisoxazole) (PBO), poly(para-phenyleneterephthalamide)
(PPTA), co-poly-(para-phenylene-3,4′-oxydiphenylene terephthalamide) (PPODTA), and
fibers from biodegradable polymers such as poly(lactic acid) (PLA). The reinforcing fibers
of PTFE composites include glass fibers (GFs) [11], carbon fibers (CFs) [12], nylon fibers [13],
ultra-high-molecular-weight polyethylene (UHMWPE) fibers [14], etc. The type of fiber
greatly affects the wear rate of resulting composite materials, especially for PTFE com-
posites. GF can effectively promote the formation of PTFE transfer film and reduce the
friction coefficient, while the transfer film can slow down the scraping effect of fiber. CF
can improve the binding force between fiber and PTFE matrix and thus improve wear
resistance [15]. Compared with CF, Wang et al. further proved that a large amount of
interfacial free space along and around basalt fibers resulted in poor bonding strength
with PTFE matrix [16]. Jasbir et al. [17] has proved that scraping of GFs does not destroy
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PTFE-based transfer films. Furthermore, due to abrasive and adhesive wear, the worn
surfaces are even self-repaired. As a result, GF can effectively improve the tribological
properties of PTFE-based polymers. CF has the strong ability to reduce the true contact
areas in friction so that the plough and the adhesion would be reduced inside the friction in-
terfaces [18]. However, the matrices far away from CFs have a dissimilar wear mechanism.
The low content of CFs cannot support the load sufficiently. Similarly, UHMWPE fibers
can bear most of the load and reduce the shear evolution on the adhesive point during
the friction process [19]. Further studies have drawn the conclusion that UHMWPE fibers
can be bonded well to the matrices as well as to be wrapped by PTFE, thus leading to the
great enhancement of tribological properties of resulting composite materials. The fiber
can also reduce the size of PTFE debris and improve the tribological properties of PTFE
composites [20].

In recent years, various kinds of aramid fiber derivatives have been developed rapidly,
mainly including aramid particles and aramid fiber. Xian et al. [21] reported that aramid
particles did not show potential influence on tribology properties. The abrasive wear
caused by aramid particles is the deterioration of the friction interface. However, aramid
fibers become very popular in the research field of fiber reinforcements [22]. Aromatic
fibers are spun from aromatic polyimide resins whose main chains consist of aromatic
rings and amide bonds [23]. Aramid fiber can be used as fabric material as reinforcement
phase or directly through blending to form high-performance materials. Fabric materials
containing aramid fibers have specific strength and excellent tribological properties [24],
especially PTFE/aramid fabric composites [25]. Different from aramid particle-reinforced
materials, the main wear form of PTFE/aramid fabric composites is adhesive wear, and the
more continuous and uniform transfer film can effectively reduce the wear degree [26]. The
varieties of aramide fibers which are blended directly as a filler contain poly (p-benzoyl p-
phenylenediamine) fiber (PPTA) and poly(p-benzoamide) fiber (PBA) developed by DuPont
de Nemours, Inc. (Wilmington, DE, USA) [27], Technora aparetic aramide copolymer fibers
(Technora) obtained from Teijin Limited Company (Japan) [28], and aramid fiber 1414
(Shuobang New Performance Materials Technology Co., Ltd., Jiangxi, China) [29]. Among
them, PPTA is the most commonly used in composite materials. The skeleton atoms
within the molecules are bound by strong covalent bonds, and the hydrogen on the polar
intermolecular amide groups can be combined with electron-available carbonyl groups in
the amide group on the other chain segment to generate hydrogen bonds, resulting in a
high degree of crystallinity. On the other hand, benzene rings form large conjugated bonds
that are difficult to rotate, so large molecular chains have linearly rigid extended chains
in order to yield high strength and modulus. PPTA pulp is a derivative of PPTA, which
maintains high performance and is easier to disperse in liquid phase [30]. Therefore, it is a
potential wear-resistant phase material.

In the present work, PTFE/AP composites with different AP mass ratios (i.e., 3%,
6%, and 12%) were prepared and their tribological properties were determined by ball-on-
disk tests in relation to the effect of load, frequency, and amplitude. The morphological
structures of worn surfaces and transfer films were observed by scanning electron mi-
croscopy along with the analysis of elemental content and distribution by means of energy
dispersive spectroscopy (EDS). Finally, the wear mechanism suggested that AP plays a
very good bearing role as a skeleton, and divides the contact surface into several areas to
effectively slow down the wear of PTFE. At the same time, the silane coupling agent solves
the problem of poor adhesion between the fiber and the matrix.

2. Materials and Methods
2.1. Materials

AP was provided by Tech-in Materials Co., Ltd., (Nanjing, China). The average length
of AP was 1 mm. PTFE with the diameter of 35 µm was supplied from Shanghai 3F New
Materials Co., Ltd., (Shanghai, China). Silane coupling agent KH550 was provided by
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Green Plastic Products Co., Ltd., (Dongguan, China). The detailed preparation process of
PTFE/AP composites is illustrated in Figure 1.
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Figure 1. Preparation process of PTFE/AP composites.

AP modified by KH550 and anhydrous ethanol as the solvent were mixed by magnetic
stirrer at 300 rpm. Then, PTFE powders were added into the mixture that underwent
additional 4 h stirring subsequently. In order to improve the uniformity of PA dispersion
and better combination with PTFE, the obtained pretreated material was subjected to
secondary ball milling by a ball mill (SPEX 8000D, USA). The extracted powders were
placed in a vacuum oven at 100 ◦C for 12 h. Then, the dried powders were pressed under
3 metric tonnes hydraulic press to turn into disk samples (Φ30 mm × 4 mm). Such samples
were sintered at 375 ◦C and remained warm for 2 h. Finally, there was natural cooling
to room temperature in a muffle furnace (SX2-5-12LTP, Lichen, China). The weights of
samples with different AP ratios were 6.11 g (3% AP), 5.95 g (6% AP), and 5.74 g (12% AP),
respectively. Many studies have shown that the properties of composites begin to decline
when the mass ratio of fiber-reinforced phase is greater than 10% [21,24]. Zhang et al.
prepared PTFE composites filled with PPTA mass ratio of 1–9% [31]. Higher AP mass
content may induce the material/filler agglomeration in the synthesis process resulting
in poor homogeneity of composite materials. The surface energy of PTFE is small, which
makes it difficult to adsorb and agglomerate. The low content of AP is more conducive to
mutual dispersion, which promotes the formation of cross-linking network structure.

2.2. Determination of Tribological Properties

The tribological performance was evaluated by a ball-on-disk tribometer (CSM, Aus-
tria) at room temperature in a test mode based on the reciprocating movement. The upper
specimen was YG6 ball (i.e., 94% tungsten carbide and 6% carbonic oxide) with a ball
diameter of 6 mm. Prior to the tests, the specimens were polished using 1000#, 2000#
abrasive papers and ultrasonically cleaned with the absolute alcohol for 15 min. Each test
was repeated at least three times to warrant the test reproducibility with reported average
data and associated standard deviations. Twelve groups of tests were designed according
to different test conditions according to Table 1.
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Table 1. Tribology test number.

Test Number Load (N) Frequency (Hz) Amplitude (mm)

1# 10 1 8
2# 10 4 8
3# 5 1 8
4# 5 4 8
5# 2 1 8
6# 2 4 8
7# 10 1 2
8# 10 4 2
9# 5 1 2

10# 5 4 2
11# 2 1 2
12# 2 4 2

A multifunctional precision coating material performance tester (Anton Paar, Austria)
was employed to characterize the worn surface morphology of PTFE/AP composites, and
proprietary software (Image Plus) was utilized to calculate the cross-sectional area of the
composites. The cross-sectional areas on five different positions were selected to calculate
the average dimensions. The calculation formula is given as follows:

∆V = Sd (1)

W = ∆V/(F × L) (2)

where W is the wear rate (m3/N·m), S is the mean cross-sectional area of wear tracks (µm2),
d is the length of wear tracks(mm), F is the test load (N), and L is the sliding distance (m).

A scanning electron microscope (SEM, Phenom Nano, The Netherlands) using energy
dispersive X-ray spectroscopy (EDS) was implemented to perform the morphologies of
worn surfaces and the element distribution of the transfer films. The density of composite
materials was determined by an electronic density detector (BSA2245, Sartorius, Germany).
The hardness of the composites was measured using a Shore D hardness tester (HSD,
Hitech (Qingdao) Enterprise Inc., Qingdao, China). The mechanical properties of the
PTFE/AP composites were tested using a microcomputer-controlled electronic universal
testing machine (WDW-100E, Jinan Hensgrand Instrument Co., Ltd., Jinan, China) at a
loading speed of 2.0 mm/min. Photos of specimens required for the test are shown in
Figure 2. The key input parameters of the tensile test specimens are 5 mm in width and
4 mm in thickness and the size of the compressed sample is Φ8 × 15 mm.
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Figure 2. Photos of tensile (and compression) specimen before (and after) sintering.

The chemical structures of transfer films were tested by a Fourier transform infrared
spectrometer (FTR-IR, iS5, Thermo Scientific Nicolet, Waltham, MA, USA). The average
value of each group performance test was taken five times.
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3. Results
3.1. Mechanical Properties and Physical Properties

Figure 3a,b show the compression and tensile stress–strain curves of PTFE/AP com-
posites, respectively. With the increase in AP content, the tensile and compressive properties
of composites are improved, which undoubtedly plays a positive role in tribological prop-
erties. The compressive strength increases by 10 MPa and the tensile strength increases
by 2 MPa with the increase in AP content by two times. Failure stress and failure strain
were obtained from the stress–strain curves shown in Figure 3c. The increase in AP content
results in the decrease in tensile failure strain. This is because the decrease in density
(Figure 3d) and crosslinking degree leads to a decrease in toughness and increase in brittle-
ness. With the increase in AP content, the non-uniform dispersion of AP in the PI matrix
causes structural defects, leading to stress accumulation. When the AP content reaches
12%, the adhesion between it and the substrate is severely weakened, and the decrease
in bonding strength leads to a decrease in the overall performance of the material. The
densities were determined to be 2.213, 2.154, and 2.080 g/cm3 at the AP mass ratios of
3%, 6%, and 12%, respectively. The surface hardness of PTFE/AP composites increases by
1.5 HD every time the AP content increases by two time. The increase in hardness enhances
the bearing capacity and wear resistance effectively.
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3.2. Friction and Wear

The coefficient of friction and wear rate of PTFE/AP composites are shown in Figure 4.
The most intuitive feature is that the COFs are enhanced with increasing the test frequency
(Figure 4a). Moreover, by increasing AP mass ratio, such a reduction trend becomes
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more evident (Figure 4c,e). The increase in test frequency accelerates the destruction
of composite surfaces and further increases the increment of friction temperature, thus
resulting in phenomenal wear intensification. COFs reveal a decreasing tendency with
the load reduction at the amplitude of 8 mm. Conversely, decreasing the load leads to an
increase in COF at the amplitude of 2 mm. A smaller amplitude arises from shorter slip
distance of steel ball per unit time to generate a stick-slip vibration state for PTFE/AP
composites that are deemed as an elastic solid. Both smaller load and amplitude result in
the easy formation of transfer films on the steel ball surfaces leading to increasing the COFs.
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Figure 4b–f indicate that wear rate is inversely proportional to AP content. When AP
content increases twice, wear rate decreases the same accordingly. The wear rate at the
amplitude of 2 mm is lower than that at 8 mm. In particular, the wear rate of PTFE/AP
composites with the inclusion of 3% AP at the amplitude of 2 mm can be about twice as
low as that at 8 mm, as illustrated in Figure 4b. At short amplitudes and low loads, the
high frequency results in high wear rates and the pattern is not significant. For example,
the wear rate of 10# (2.3639 × 10−14 m3/N·m) is higher than 9# (2.243 × 10−14 m3/N·m).
As well as the load, the wear rate of 8# (2.8637 × 10−14 m3/N·m) is higher than 11#
(2.5182 × 10−14 m3/N·m). However, this trend becomes relatively slow with increasing the
AP content. When taken as the reinforcing materials, AP enables effective promotion of the
hardness and stiffness of PTFE/AP composites while reducing plasticity for better wear
resistance. It is manifested that there is a proportional relationship between the frequency
and wear rate. For instance, the wear rate of PTFE/AP composites with the inclusion
of 12% AP at the frequency of 4 Hz is almost twice as high as the counterpart at 1 Hz.
A high frequency inevitably induces an increase in the number of scratches of the same
length, which further aggravates the damage to PTFE/AP composites. As such, friction
temperature is increased and oxidation reaction becomes intensified, leading to the difficult
formation of high-quality transfer films.

3.3. Wear Morphology

Figure 5 demonstrates the counter surface morphology of PTFE/3% AP composites
along with main-element distribution, where Figure 5a–d refer to test numbers 7 and 8,
respectively. Figure 5e,f are the control group (unfilled PTFE) of Figure 5a,b, and 5g,h are
the control group (unfilled PTFE) of Figure 5c,d.

The COFs of 7# and 8# conditions sliding against 3% AP/PTFE composites are 0.1098
and 0.1519, respectively. When increasing the frequency from 1 to 4 Hz, the COF would be
increased by 38.34%. When the surface contains more fluorine, the transfer films cover a
larger and more continuous area, resulting in a lower friction coefficient [32]. The atomic
and weight concentration of fluorine on the worn surface are 19.760% and 7.307% for 7#
(0.260% and 0.100% for pure PTFE), and 5.325% and 2.300% for 8# (3.672% and 0.800%
for pure PTFE). Combined with Figure 4, the high frequency prevents the formation of
transfer films from causing high COF. The contents of carbon and oxygen have proven
that high frequency also enables to strengthen the oxidation reaction of friction interfaces.
However, there is almost no fluorine on the worn surface against pure PTFE, which verifies
that the low surface energy of pure PTFE is difficult to form a transfer to the dual surface,
indicating that PTFE/AP is beneficial to the formation of transfer film.

The friction coefficient determined via deformation energy analysis is in good ac-
cordance with a classical tribological theory that the friction force is proportional to the
applied load. When the normal load increases, PTFE/AP composites yield higher contact
stress and plastic deformation while the sliding process requires more energy. Figure 6a–d
reveal the worn surfaces of composites with the inclusion of 12% AP at the same frequency
of 4 Hz under two different loads of 5 and 2N, respectively. A large amount of PTFE/AP
composite debris has been observed to be accumulated at the edge of worn surfaces, which
is attributed to the enrichment of fluorine. Due to the poor distribution of fluorine in the
central region, as well as a high proportion of tungsten, a very thin and discontinuous
transfer film is formed at the friction interface despite the existence of major bare steel
surfaces. The formation of transfer films is hindered by more carbon ratios, suggesting
the difficult aggregation of fluorine at its low concentration. Figure 6e–h show that the
long amplitude is favorable for the formation of transfer film. The interfacial friction
temperature of pure PTFE samples rises higher, and the increase in carbon and fluorine
contents proves that the interfacial reaction intensifies.
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In comparison (Table 2), it has been found that both friction coefficient and wear rate
of PPTA/AP composites obtained in this study are similar or lower than those according
to previous investigations [13,19,33].
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Table 2. Comparison of references.

Tensile Strength
(Mpa) COF Wear Rate

(10−14 m3/N·m)

PTFE + 20%glass fiber [7] 19.3 0.19 1.1
PTFE + 20% Carbon fibers (D = 7 µm) [13] 18.99 0.418 0.021
PTFE + 20% Basalt fibers (D = 9 µm) [13] 15.68 0.211 0.124

PTFE + 20% Serpentine + 10% UHMWPE fibers [18] 0.316 0.12
PTFE + 3% Aramid fibers (D = 12 µm) [19] 0.703 0.82
PTFE + 2% Carbon fibers (D = 7 µm) [33] 18.74 0.174 60.4

PTFE + 2% Carbon fibers (D= 200 nm) [33] 21.87 0.151 58.2
PTFE + 2% Multiwalled carbon nanotube [33] 11.19 0.159 18.3
PTFE + 15% Potassium titanate whiskers [34] 23.7 0.15 0.12

PTFE + 15% Carbon fibers (D = 9 µm) [34] 20.18 0.121 0.23

3.4. Wear Mechanism

The chemical structure of the transfer film based on PTFE/AP composites at different
AP ratios was determined by FTR-IR spectra in Figure 7. The strong absorption peak at
3448 cm−1 is assigned to the stretching vibration peak of O-H bond, which is caused by
the adsorption during the formation of transfer films. The absorption peak at 2927 cm−1

represents the stretching vibration peak of saturated C-H bond. C=C stretching vibration
peak at 1633 cm−1, C-H asymmetric stretching vibration peak at 1212 cm−1 and 1153 cm−1,
and C-F bond at 639 cm−1 and 503 cm−1 are typical PTFE peaks [33]. The stretching
vibration peak of amide A band from the N-H bond is represented at 3340 cm−1 in Figure 7b.
Amide III band at 1636 cm−1 is mainly induced by C=O stretching vibration. The associated
peak at 1383 cm−1 is referred to the amide II band, which is mainly ascribed to the coupling
of C-N stretching vibration and N-H bending vibration. The peak at 1248 cm−1 denotes the
amide I band owing to the superimposed peaks of CH2 rocking vibration, N-H bending
vibration, and C-N stretching vibration. These peaks indicate the presence of amide groups
in transfer films. The absorption peak at 2932 cm−1 is associated with the stretching
vibration peak of saturated C-H bond [17]. The weak absorption peak at 2361 cm−1 can
arise from the overtone of C-H stretching vibration. The peak location is close to Figure 7b
in Figure 7c,d despite different relative peak intensities. The O-H/N-H bond strength
near 3440 cm−1 appears to be the highest (Figure 7d), indicating the occurrence of more
N-H, which is consistent with AP mass ratio. The C-H bond at 2360 cm−1 has achieved
the highest strength as opposed to a low strength in relation to C-F bond at 503 cm−1,
which infers the significant deformation of C-H bond. It is proven that silane coupling
agent is firstly combined with PPTA-AP as the bonded framework material to generate a
much stronger chemical bond at the interface for the improvement of bonding strength.
Meanwhile, such a couple agent is also beneficial for effectively enhancing the dispersibility
of the solvent along with the reduction in agglomeration in the preparation process of
PTFE/AP composites.

The symmetrical helical conformation of PTFE results in poor mechanical properties
and creep resistance. However, the rigidity of helical conformation chains is very high with
a bending difficulty. Meanwhile, the high crystallinity of PTFE leads to flaky spalling and
poor wear resistance in dry friction.

It can be seen from Figure 8a,b that AP has been steadily embedded in PTFE matrices,
resulting in the improvement of mechanical properties (Figure 8c,d) and wear resistance.
The arrows in the Figure 6 point to the AP on the wear track of PTFE/AP composites. The
AP inside the wear track is divided into smaller sizes under the combined action of friction,
pression, and shear force, which further improves the stiffness and wear resistance of
PTFE/AP composites. Furthermore, AP also promotes the speed and intensity of chemical
reaction at the friction interface, making the formation of transfer film easier and thus
reducing the COF.
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Figure 9 demonstrates the wear-track morphologies of PTFE/AP composites. As a
material skeleton, AP has been well dispersed in PTFE matrices. With increasing the AP
content, the ratio of skeleton becomes much larger, and KH550 strengthens the bonding
between the skeleton and matrices in order to enhance the mechanical properties of com-
posites. In contrast, larger loads make it easier for AP on the worn surfaces to escape
from the substrate (Figure 9a,b) leading to curl deformation. Local sliding friction can be
changed to rolling friction for purpose of the reduction in friction coefficient. On the other
hand, exposed AP and worn PTFE debris are more likely to form AP–PTFE lubrication film
using shorter stroke under the physical action, which can effectively avoid adhesion wear
and fatigue wear in order to diminish the wear rate. The apparent grooves illustrated in
Figure 9c are indicative of adhesion wear of polymers. The high AP ratio results in much
fewer PTFE fragments separated by the wear of the matrices. Accordingly, this prevents
the stroke of AP–PTFE lubricating films while the smaller load also reduces the equivalent
rolling friction effect of AP. In addition, longer reciprocating distance also slows down the
transfer of PTFE to the counterface. The rough counterface further aggravates the wear
of PTFE/AP composites. Cracks are a typical characteristic of fatigue wear identified in
polymers, such cracks originate from holes and pitting corrosion. The skeleton effect of
AP can effectively slow down the crack formation of wear surface and weaken the fatigue
wear. Such combined effects contribute to the highest wear rate determined in sample 6#
for PTFE/12% AP composites.
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4. Conclusions

In conclusion, PTFE/AP composites with different AP mass ratios were successfully
prepared along with the determination of their tribological properties. The COFs are
comparatively decreased with increase in the load at 8 mm (amplitude) and decrease in the
load at 2 mm (amplitude). Apparently, both smaller load and amplitude benefit the easy
formation of transfer films. It is manifested that increasing the AP mass ratio decreases the
wear rate that is proportional to the frequency. A high frequency yields the increase in the
number of scratches of the same length, resulting in the aggravated damage taking place
in PTFE/AP composites. According to morphological and elemental analyses, oxidation
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reaction is intensified and the formation of transfer films becomes very difficult at a high
frequency. The formation of discontinuous transfer films is believed to be associated with
the poor distribution of fluorine in the central region of worn counter-surfaces. As the
difficult aggregation of fluorine at its low concentration, the formation of transfer films
can be inhibited by the additional carbon. Furthermore, in view of FTR-IR spectra, silane
coupling agent plays an important part in improving the bonding of AP as the skeleton and
PTFE matrices. Overall, AP can be confirmed to be vital reinforcing materials to increase
both stiffness and wear resistance of composite materials, which is directly conducive to the
formation of transfer films. PTFE/AP composites has the advantages of simple preparation,
lightweight, good lubricity, and low wear rate. It can be used as a self-lubricating material
in various tribocomponents, such as self-lubricating bearings.
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