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Abstract 

HIV-associated sensory neuropathy (HIV-SN) is a debilitating condition affecting up to 60% of HIV+ 

individuals treated with antiretroviral therapy (ART) that included stavudine. As this prompted the 

withdrawal of stavudine from recommended regimens, studies of the prevalence, risk factors and 

underling mechanisms of HIV-SN need to be repeated. HIV-associated neurocognitive disorder 

(HAND) describes a spectrum of neurocognitive impairments that affect up to 70% of HIV+ 

individuals, even with effective ART. As the clinical pathology of HIV-SN and HAND involve 

inflammation and degeneration of neurons, investigation of genes affecting these pathways may 

illuminate critical mechanisms. This thesis assessed the role of single nucleotide polymorphisms 

(SNP) in the TNF-block (nine central MHC genes) and the P2X-block (P2X7R, P2X4R, CAMKK2 and 

ANAPC5) in HIV-SN, and the P2X-block in HAND. 

Chapters 2-4 describe associations between HIV-SN and TNF- and P2X-block SNP and haplotypes in 

South Africans and Indonesians. African participants were recruited and assessed for HIV-SN using 

the Brief Peripheral Neuropathy Screening Tool (BPNS) as they commenced stavudine-free ART and 

after 6-8 months by our colleagues at the University of the Witwatersrand. Indonesian participants 

stable on stavudine-free ART for >12 months were recruited and assessed using the BPNS by our 

colleagues at Universitas Indonesia. I genotyped participants for 64 SNP across both gene-blocks 

using the OpenArray platform, derived haplotypes using fastPHASE, assessed demographic/clinical 

risk factors, and derived optimal logistic regression models.  

12% (9/75) of Africans had HIV-SN prior to commencing ART and a further 27% (20/75) developed 

HIV-SN in the following 6-8 months. 17% (35/202) of Indonesians had HIV-SN. Optimal TNF-block 

models associated the minor allele of rs4947324 (NFKBIL1) with lower rates of HIV-SN in Africans 

after adjusting for body weight, CD4 T-cell counts and prior tuberculosis (TB), and rs9281523 

(BAT1[intron10]) with greater risk of HIV-SN in Indonesians after adjusting for CD4 T-cells and 

viremia (viral load >500). Haplotype analyses reflected these results and suggest rs4947324 and 

rs9281523 may be in linkage disequilibrium (LD) with a common causal variant. Optimal P2X-block 

models independently associated one P2X7R and three CAMKK2 SNP with altered susceptibility to 

HIV-SN after adjusting for body weight, CD4 T-cells and prior TB in Africans. In Indonesians, three 

different CAMKK2 SNP (in perfect LD), and one P2X7R and CAMKK2 haplotype were independently 

associated with altered risk of HIV-SN after adjusting for CD4 T-cells and viremia. These results 

demonstrate that HIV-SN remains a common complication despite the discontinuation of stavudine 

and confirms a role for the TNF- and P2X-block in HIV-SN. 
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To further investigate the clear link between HIV-SN, a subset of Indonesians underwent assessment 

for large and small fibre neuropathy using nerve conduction (NC) and stimulated skin wrinkling 

(SSW) tests, respectively (Chapter 5). SSW and BPNS diagnoses did not align but both diagnoses 

associated with SNP in CAMKK2. NC did not, so SNP in CAMKK2 may affect small fibres in HIV-SN.  

Chapter 6 used confocal microscopy to visualise expression of three proteins encoded by the P2X-

block (P2X7R, P2X4R and CaMKK2) in the epidermis of individuals with and without HIV-SN. P2X7R 

was expressed by cells in blood vessels of HIV-SN− donors but was rare in HC or HIV-SN+ donors. 

P2X4R was expressed by cells in blood vessels and by cells in the basal layer of the epidermis. 

Expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. CaMKK2+ cells 

were rare in HC. HIV-SN− donors appeared to have fewer CaMKK2+ cells than HIV-SN+ donors. 

CaMKK2+ cells were located close to dermal and epidermal nerve fibres. 

Chapters 7 and 8 described associations between P2X-block SNP and neurocognitive impairment in 

HIV+ Indonesians (n=59). Participants were recruited and assessed for neurocognitive impairment 

as they commenced stavudine-free ART and after 3, 6 and 12 months by our colleagues at the 

Universitas Indonesia, and participants were genotyped for P2X-block SNP by our colleague in Perth. 

I derived linear regression models identifying five intronic SNP in P2X7R which influenced 

neurocognitive impairment in specific domains and stages of recovery on ART. rs504677 associated 

with lower executive function and motor speed Z-scores at all time-points. rs1653598 influenced 

executive function and motor speed Z-scores at 0-6 months. rs208296 associated with higher 

memory Z-scores at 0-6 months of ART. rs208307 associated with higher memory and executive 

function and rs11065504 with higher attention Z-scores at 0 and 12 months. Three additional SNP 

from CAMKK2 (rs2686344, rs1653587, rs1718120) were linked with altered fluency and executive 

function outcomes after 12 months on ART. These results suggest P2X7R may influence HAND in a 

domain- and time-specific manner and CAMKK2 may play a role in the recovery of HAND.  

In conclusion, these result demonstrate that SNP within the TNF- and P2X-blocks do influence HIV-

SN and HAND, implicating a role for the encoded proteins. Further investigations to identify 

causative alleles and the pathways involving the encoded proteins are warranted. These should 

address the roles of P2X-block genes in neuropathy and neurocognitive loss that is not associated 

with HIV. 
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Chapter 1 

Introduction 

This thesis begins with the hypothesis that many HIV-associated neurological diseases exhibit 

an inflammatory aetiology, and that disease severity is influenced by variations in genes 

involved in inflammatory and neurological pathways. This thesis addresses the role of two 

blocks of genes involved in inflammation and neuronal growth/repair in two common 

neurological complications of HIV infection: 

1) HIV-associated sensory neuropathy (HIV-SN)

2) HIV-associated neurocognitive disorder (HAND)

Chapter 1 will first describe the epidemiology and clinical features of HIV-SN and HAND. This 

is followed by an introduction to the plausible roles for the TNF- and P2X-block of genes in HIV-

SN and HAND based on genetic and experimental evidence. Finally, I will describe the clinical 

and scientific relevance, the aims, and the hypotheses of this thesis. 
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1.0 Introduction  

1.1 An introduction to the neurological sequelae of HIV infection 

Around 37 million people worldwide are living with HIV, with approximately 7.7 million cases 

in South Africa (https://cfs.hivci.org/country-factsheet.html) and 640,000 in Indonesia 

(https://cfs.hivci.org/country-factsheet.html) in 2018. A cure or vaccine for HIV remains 

elusive and, while antiretroviral therapy (ART) has greatly reduced the severity of HIV disease, 

neurological complications remain common and severely impair the quality of life of those 

affected [1, 2].  

 

Neurological complications of HIV infection are common in both untreated and treated 

individuals, occur at all stages of infection, and affect the central (CNS) and peripheral nervous 

systems (PNS) [3-7]. The underlying neurotoxicity is attributed to inflammation resulting 

directly and indirectly from HIV itself and the chronic immune activation characteristic of HIV 

infection [3-5]. Therefore, it is plausible that common pathogenic mechanisms contribute to 

all neurological sequelae of HIV infection. Furthermore, disease severity may be influenced 

by an individual’s inflammatory profile during HIV infection and their ability to repair neurons 

following neuronal insult.  

 

Several comprehensive reviews describe the neurological manifestations of HIV infection [3-

9]. However, this thesis will focus on two of the most prevalent conditions; HIV-associated 

sensory neuropathy (HIV-SN) and HIV-associated neurocognitive disorders (HAND). The 

pathology, pathogenesis and risk factors of HIV-SN and HAND will now be detailed in sections 

1.2 and 1.3. 

 

 

1.2 HIV-associated sensory neuropathy  

1.2.1 Overview of HIV-SN 

HIV-SN is one of the most common neurological complications associated with HIV infection 

[10-13]. Historically, about 30% of treatment-naive patients with advanced HIV disease [11, 

12], and up to 60% of patients receiving neurotoxic ART, notably stavudine, experience 

https://cfs.hivci.org/country-factsheet.html


 
 

sensory neuropathy [10, 13]. HIV-SN is a complex disease influenced by demographic, clinical, 

and genetic risk factors [13-15]. 

 

1.2.2 Clinical and pathological features of HIV-SN 

HIV-SN is a distal sensory polyneuropathy which initially affects small fibres and progresses 

to small and large myelinated fibres causing impaired nociception and thermal perception. 

Symptoms occur bilaterally and ascend proximally, and may include numbness, ‘pins and 

needles’ or pain described as ‘aching’ or ‘burning’ in the feet and lower legs [16-18]. Patients 

may also experience allodynia (pain resulting from non-noxious stimuli), hyperalgesia 

(reduced pain threshold), absent ankle reflexes and loss of sensation in the feet [16-18]. 

Pathological features of HIV-SN include neuronal loss in sensory dorsal root ganglia (DRG), 

degeneration of long axons in a ‘die-back’ manner, a loss of primary afferent sensory 

terminals in the epidermis and reduced intraepidermal nerve fibre density (IENFD) [19-21]. 

There is also an underlying inflammatory pathology with an infiltration of macrophages 

around DRG, higher density of activated macrophages and increased levels of pro-

inflammatory cytokines in peripheral nerves, and increased expression of chemokine 

receptors on CD14+ and CD3+ cells surrounding intraepidermal nerve fibres in the ankle [7, 

22-24].  

 

1.2.3 Pathogenesis of HIV-SN 

The mechanisms leading to the development of HIV-SN are not fully resolved. HIV-SN 

comprises two clinically indistinguishable conditions; HIV-associated distal sensory 

polyneuropathy (HIV-DSP) and antiretroviral toxic neuropathy (ATN). HIV does not appear to 

infect neurons but experimental evidence suggest HIV encoded proteins, particularly viral 

envelope glycoprotein 120 (gp120), may play a direct and indirect role in the initiation of 

neurotoxic inflammatory responses leading to HIV-DSP [17, 25-29]. Gp120 can interact 

directly with chemokine receptors expressed on neurons, or indirectly through the receptors 

expressed by surrounding Schwann cells and macrophages. Direct or indirect activation 

results in the release of pro-inflammatory cytokines and/or apoptosis. For example, DRG 

sensory neurons and Schwann cells exposed to gp120  which can act on the C-X-C chemokine 

receptor type 4 (CXCR4), triggers upregulation of CCL5 which stimulates release of tumour 

necrosis factor-alpha (TNF) and consequent neuronal apoptosis [28].  



 
 

 

Dideoxynucleoside reverse transcriptase inhibitors (NRTI; notably stavudine (d4T)) used to 

treat HIV infection have been associated with higher rates of HIV-SN [10, 30-32]. While ART-

associated inflammation may play a role, the higher rates of HIV-SN in these patients is 

primarily attributed to NRTI-induced mitochondrial dysfunction [30, 31, 33]. Neurotoxic ART 

such as stavudine has now been substituted with safer therapies, but the impact this has had 

on the prevalence and risk factors of HIV-SN is not well documented and is addressed here.  

 

1.2.4 HIV-SN and stavudine 

Following the discontinued use of stavudine in 2010, anecdotal evidence suggested that HIV-

SN remained a common burden. Our group demonstrated in 2016 that HIV-SN affects around 

14% of Indonesians treated with stavudine-free ART, compared to 34% of patients at the same 

clinic receiving stavudine in 2006 [15, 34, 35]. Furthermore, when treated with stavudine, a 

patient’s age and height associated with HIV-SN, whereas in patients treated with stavudine-

free ART, HIV-SN associated with greater than 500 copies of HIV RNA/ml and less than 200 

CD4 T-cells/μl [15, 34]. So, HIV-SN remains an important neurological complication of HIV 

infection in Indonesians, but the prevalence is lower and risk factors are markers of HIV-

disease. This establishes the possibility that genetic risk factors may too differ without 

stavudine. Studies considering other stavudine-free populations and genetic risk factors are 

lacking. This thesis assesses the prevalence and risk factors in HIV+ Africans treated without 

stavudine, and genetic risk factors in HIV+ Indonesians and Africans treated without stavudine 

(Chapters 2-6).  

 

1.2.5 Genetic risk factors of HIV-SN  

Genetic studies aim to identify risk markers and pathogenic mechanisms. Given the 

pathological features of HIV-SN, several studies from our group and other teams have 

investigated genes involved in pain sensation, immunity and inflammation, and neurological 

pathways [36-42]. This thesis will focus on two blocks of genes involved in inflammatory, 

neurotransmission and neuronal growth/repair pathways which our group has previously 

linked with HIV-SN; the TNF-block and the P2X-block. 

 

 



 
 

 

1.2.5.1 The TNF-block in HIV-SN 

TNF is a potent pro-inflammatory cytokine involved in inflammation and apoptosis. 

Dysregulated TNF expression is associated with several inflammatory conditions (reviewed in 

[43]). HIV patients display elevated plasma TNF and TNF soluble receptor levels [44]. 

Increased levels of serum TNF and plasma TNF receptor has been described in several 

neuropathies including diabetic neuropathy, multifocal motor neuropathy, chronic 

inflammatory demyelinating polyneuropathy and Guillan-Barre syndrome [45-49]. 

Furthermore, TNF expression has been demonstrated histologically in sensory fibre axonal 

and demyelinating neuropathy samples, particularly in samples from individuals experiencing 

pain [50]. A role for TNF in HIV-SN is supported by animal studies. Exposure of the sciatic nerve 

of a rat to gp120 resulted in increased expression of TNF and CXCR4 in the DRG and the lumbar 

spinal dorsal horn [51]. Furthermore, inhibition of TNF with a TNF-soluble receptor expressed 

by a non-replicating herpes simplex virus vector encoding the p55TNFSR gene reversed 

gp120-induced mechanical allodynia.  

 

The gene encoding TNF (TNF) is located in the central MHC in a region of defined linkage 

disequilibrium (LD) termed the TNF-block. This block includes several immunoregulatory 

genes; TNF, LTB, LTA, NCR3, LST1, NFKBIL1, ATP6V1G2, BAT1 and MCCD1. Single nucleotide 

polymorphisms (SNP) within this region have been associated with altered circulating levels 

of TNF. However due to LD in the region, it is possible that the associated SNP may not be 

causative [52]. Carriage of the minor allele of TNF-1031 (rs1799964) associated with increased 

risk of HIV-SN in Caucasian Australians and Indonesian HIV+ patients treated with stavudine 

[15, 39, 53] but was not associated with HIV-SN in Africans [54]. Furthermore, a haplotype 

containing the minor allele of rs1799964 associated with HIV-SN in Indonesians and 

Caucasians but not Africans, and characterisation of TNF-block haplotypes in multiple 

ethnicities revealed that this haplotype is not present in Africans [55]. In Africans treated with 

stavudine, the minor alleles of seven SNP (rs11796*A, rs3130059*G, rs2071594*C, 

rs2071592*A, rs2071591*A, rs909253*G, and rs1041981*C) associated with lower rates of 

HIV-SN and one haplotype lacking these minor alleles associated with increased risk of HIV-

SN. The data suggest TNF genotype may influence susceptibility to HIV-SN in patients of 



 
 

several ethnicities treated with stavudine. Patients treated without stavudine are 

investigated here. 

1.2.5.2 The P2X-block in HIV-SN 

The P2X-block encodes four proteins, purinergic P2X receptors 7 and 4 (P2X7R and P2X4R), 

calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) and anaphase promoting complex 

subunit 5 (AnapC5). These proteins are expressed in the peripheral (PNS) and central nervous 

systems (CNS) and play critical roles in inflammatory and neurological pathways. P2X7R and 

P2X4R are adenosine triphosphate (ATP)-gated non-specific cation channels which form 

homo- and heterotrimers and large membrane pores (permeable to molecules up to 900 

Daltons). Several P2X7R and P2X4R isoforms exist with differing levels of expression and 

function, so SNP that affect splicing may influence disease progression [56].  

 

P2X7R can influence inflammatory responses. Stimulation of P2X7R initiates apoptosis, 

phagocytosis or production of inflammatory molecules including interleukin-1 beta (IL-1β), IL-

6 and TNF [57]. A role for P2X7R in animal models and in human studies of neuropathic pain 

is well established [56, 58]. For example, IL-1β and P2X7R expression by monocytes and 

lymphocytes were upregulated in patients with neuropathic pain compared to controls [57]. 

Furthermore, P2X7R is highly polymorphic and several P2X7R SNP have been associated with 

susceptibility to inflammatory, neurodegenerative and neuropsychological conditions 

including multiple sclerosis, tuberculosis, bipolar disorder and Alzheimer’s disease [59-61].  

 

P2X4R may also influence inflammation, neurotransmission and pain. Stimulation of P2X4R in 

macrophages and microglia drives an influx of calcium ions activating the p38 mitogen-

activated protein kinase (MAPK) [62] leading to release of neurotrophic factors and cytokines 

such as brain derived neurotrophic factor (BDNF) and TNF. The secretion of BDNF stimulates 

Tyrosine receptor kinase B receptors in the dorsal horn resulting in downregulation of 

potassium chloride co-transporter KCC2 [63, 64]. This increases intracellular chloride and 

disrupts the transmembrane anionic gradient. The chloride gradient influences gamma-

aminobutyric acid (GABA) receptor activity depends on chloride gradient, so reductions of 

KCC2 alters GABA-dependent inhibition of synaptic transmission and increased excitation of 

lamina 1 neurons leading to hypersensitivity to pain [63]. 

 



 
 

CaMKK2 is expressed at high levels within the nervous system and is vital in neuronal growth 

and repair [65, 66]. CaMKK2 is phosphorylated and activated by upstream kinases and exhibits 

autonomous activity when bound to calcium/calmodulin. Following activation, CaMKK2 

phosphorylates several substrates; calcium/calmodulin kinase 4 and 1 (CAMKIV and CAMKI), 

AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) [65, 67, 68]. These substrates are 

involved in axonal elongation, neurite outgrowth, and neuronal survival and repair pathways 

[69-71] as well as production of inflammatory molecules and spreading of macrophages [65]. 

CaMKK2 may contribute to peripheral neuropathy and neuropathic pain pathways [64, 72, 

73]. One such pathway involves the phosphorylation of CAMKIV. This causes an upregulations 

cyclic-AMP response element-binding protein and nuclear factor-Κβ, which stimulates 

production of BDNF encouraging neuronal growth and repair. Dysregulated release of BDNF 

has been linked with neuropathic pain [64].  

 

AnapC5 is one of 12 or more subunits comprising the anaphase promoting complex (APC/C). 

The APC/C is a ubiquitin ligase which marks regulatory proteins for degradation by the 26s 

proteasome thus permitting cell cycle progression. Neuronal replication disrupts signal 

transduction so re-entry into the cell cycle triggers apoptosis [74, 75]. SNP altering the 

function or expression of ANAPC5 may contribute to the neuronal loss characteristic of HIV-

SN. Furthermore, AnapC5 hampers IL-17 signalling by interacting directly with the receptor 

IL-17RA. This potentially impairs immune responses to infection and is associated with 

neuroinflammatory diseases such as multiple sclerosis [76, 77]. Additional relevant pathways 

are detailed in Chapters 3 and 4. 

 

I have previously demonstrated a link between SNP and altered concentrations of TNF in cells 

from healthy adults stimulated in vitro, supporting role for the P2X-block in inflammation 

(Appendix 2 [78]). Furthermore, our group previously associated SNP and haplotypes within 

the P2X-block with HIV-SN in South Africans treated with stavudine [79]. The minor allele of 

three SNP in CAMKK2 (s1560568, rs2686344 and rs2686367) associated with HIV-SN in 

Southern Africans treated with stavudine and the minor alleles of rs1560568 and rs2686367 

remained independently associated with higher rates of HIV-SN after adjusting for patient age 

and height. Six CaMKK2 haplotypes associated with HIV-SN of which two remained 



 
 

independently associated after adjusting for patient age height. These studies highlight a link 

between the P2X-block, most notably with CAMKK2.  

 

Previous investigations of the TNF- and the P2X- block highlight potential roles for the 

encoded proteins in the pathogenesis of HIV-SN. However, these investigations considered 

patients receiving stavudine, a known neurotoxic drug associated with increased rates of HIV-

SN. We cannot determine if associations with HIV-SN reflect mechanisms/pathways invoked 

by the use of stavudine. It is now pertinent to determine if these genes contribute to HIV-SN 

in the post-stavudine era. This thesis explores for the first time the role of the TNF-block and 

the P2X-block of genes in HIV-SN in patients treated with stavudine-free ART (addressed in 

chapters 2-6).  

 

 

1.3 HIV-associated neurocognitive disorder 

1.3.1 Overview of HAND 

HIV-associated neurocognitive disorder (HAND) is a primary neurological condition associated 

with HIV infection within the central nervous system (CNS). HAND encompasses a spectrum 

of neurological deficits including asymptomatic neurocognitive impairment (ANI), mild 

neurocognitive disorder (MND), and HIV-associated dementia (HAD) [80]. The advent of 

effective ART regimens has reduced the severity of neurocognitive impairment and drastically 

decreased the frequency of frank HAD [5]. However, milder forms of HAND remain common, 

impacting around 50% of HIV infected individuals even with treatment of ART and optimal 

viral suppression [81-86]. Unlike HIV-SN, increased rates of HAND have not been associated 

with stavudine use. 

 

1.3.2 Clinical and pathological features of HAND 

Individuals with HAND may experience varying levels of impairment across several or all 

neurocognitive domains. This may result in difficulties with attention and memory recall, 

speech deficits, and behavioural changes and motor dysfunction. The severity of impairment 

differs by neurocognitive domain [3, 81, 84]. Symptoms may impair an individual’s capability 

to work, reflect or reduce adherence to ART, and impact quality of life [2, 87]. Pathology of 

HAND includes neuronal loss, degeneration of synapses and neuroinflammation. HIV 



 
 

encephalitis and neuronal loss were common features of HAD [88]. However, inflammation 

marked by microglial activation and production of cytokines and chemokines, and synaptic 

degeneration correlate with milder forms of neurocognitive impairment including ANI and 

MND [82, 89, 90]. HAND can impact HIV+ individuals early after HIV infection. Initiation of 

ART may prevent severe symptoms of HAND developing or improve existing neurocognitive 

symptoms. However, ART does not always improve neurocognitive impairments, most 

notably in the memory domain [91, 92].  

 

1.3.3 Pathogenesis of HAND 

Experimental evidence highlights neuroinflammation as a crucial mediator of 

neurodegeneration observed in HAND [81-86]. HIV enters the CNS soon after infection. One 

route of entry involves HIV-infected monocytes and CD4+ T-cells crossing the blood brain 

barrier where the infected cells activate astrocytes and microglia [93-95]. This triggers 

production of pro-inflammatory cytokines and chemokines including TNF, IL-6, IL-1β and 

chemokine C-C motif ligand 2 (CCL2), and release of viral proteins including gp120 and 

transactivator of transcription (Tat). This causes release of ATP and calcium ions, and leads to 

oxidative stress and further inflammation which is associated with neuronal and synaptic 

degeneration characteristic of HAND [96, 97]. Identification of the precise mechanisms 

mediating the neuronal degeneration are hampered by the lack of suitable animal and in vitro 

models or ex vivo tissue and autopsy material from donors of different stages of HAND. 

Genetic investigations may help us to identify the underlying mechanisms.  

 

1.3.4 Genetic risk factors of HAND 

As with HIV-SN (described in 1.2.5), many genetic studies of HAND focus on genes involved in 

inflammatory pathways, including genes within the TNF-block [98-102]. Equivalent studies of 

genes which contribute to neuronal growth/repair pathways are lacking. Given the link with 

the P2X-block in HIV-SN in Africans treated with stavudine and with altered expression of TNF, 

Chapters 7 and 8 will explore associations between SNP in the P2X-block and HAND.  

 

1.3.4.1 P2X-block in HAND 

As described in 1.2.5.2, the P2X-block encodes P2X7R, P2X4R and CaMKK2 which are involved 

in inflammatory and neurological pathways in the PNS and CNS, and may too contribute to 



 
 

HAND. P2X7R and P2X4R are involved in astrocyte and microglial activation and production 

of TNF, IL-1β and IL-6 [62, 103, 104] which are associated with synaptic and neuronal loss. 

P2X7R is implicated in animal models of HAND. In a rodent model of gp120-induced cognitive 

impairment, the expression of P2X7R in the hippocampus was markedly higher than in the 

controls [105].  

 

CaMKK2 is expressed in high concentrations in the brain [65]. As described in 1.2.5.2, CaMKK2 

is essential in neuronal growth/repair pathways but also plays a pivotal role in synapse 

strengthening and long term memory potentiation. Given this role, CaMKK2 has been 

implicated in Alzheimer’s disease, schizophrenia and anxiety disorders [59, 106, 107] and is a 

plausible candidate in HAND. Accordingly, a CAMKK2 intronic SNP, rs1063843, was associated 

with decreased expression of CaMKK2 in the dorsolateral prefrontal cortex, deficits in working 

memory and executive function, and increased risk of schizophrenia [107]. The effect of the 

P2X-block genotypes in HAND are investigated in Chapters 7 and 8.  

 

 

1.4 Clinical Relevance of this thesis 

The introduction and availability of ART has significantly reduced the severity of HIV disease, 

but neurological complications such as HIV-SN and HAND remain common and severely 

impact an individual’s quality of life. The discontinuation of neurotoxic ART, notably 

stavudine, is a welcome change. Clarification of demographic, clinical and genetic risk factors 

of HIV-SN without stavudine will more clearly illuminate pathways involved in the 

pathogenesis of HIV-SN and help clinicians identify, monitor and mitigate patient risk. A 

targeted investigation including previously associated genes along with neighbouring 

candidate genes may help elucidate the underlying mechanisms of HIV-SN. 

  

Furthermore, neurocognitive impairment is associated with inflammation and 

neurodegeneration. Therefore investigation of candidate genes involved in neuronal 

growth/repair and inflammation and their role in neurocognitive impairment may also 

identify at-risk patients requiring specialised care and help identify underlying mechanisms. 

No treatments currently prevent or cure HIV-SN or HAND. Therefore, identification of 

molecular mechanisms will be of great clinical value. 



1.5 Hypothesis and Aims of this thesis 

Hypothesis: HIV infection and its treatment lead to inflammation and neuronal degeneration 

resulting in neurological disease, notably HIV-SN and HAND. The severity and recovery of HIV-

SN and HAND, in addition to demographic and clinical factors, is influenced by host 

inflammatory and neuronal growth/repair genotypes – the TNF- and P2X-block. Furthermore, 

effects of genetic risk factors are mediated by altered expression or function of the encoded 

proteins.  

Study Populations: This work was made possible because three cohorts of HIV+ patients 

treated without stavudine were available in Indonesia and South Africa. The following cohorts 

will be used to address the Aims of this thesis.  

1. Indonesian HIV-SN cohort – Participants were recruited by our colleagues Dr Fitri 

Octaviana, Dr Yanuar Ahmed Safri and Dr Denise Dewanto at the Cipto Mangunkusumo 

National Referral Hospital in Jakarta in 2016.

2. South African HIV-SN cohort – Participants were recruited by our colleagues Dr Prinisha 

Pillay and Dr Huguette Gaelle Ngassa Mbenda at the Lenasia South Community Health 

Hospital in Johannesburg in 2016.

3. Indonesian HAND cohort – Participants were recruited for the JakCCANDO study [108] by 

our colleagues Dr Riwanti Estiasari and Dr Dinda Diafiri the Cipto Mangunkusumo 

National Referral Hospital in Jakarta in 2013. Participants in the JackCCANDO study were 

previously genotyped for a subset of the P2X-block SNP but only two TNF-block SNP.

Aim 1: To determine demographic, clinical and the TNF- and P2X-block genetic markers of 

HIV-SN in Indonesians and Africans treated without stavudine. Additionally, to determine 

the prevalence and demographic and clinical risk factors of HIV-SN in Africans treated 

without stavudine. This study addresses the following questions: 

 Has the prevalence and risk factors of HIV-SN changed in African patients treated

without stavudine?



 
 

 Do TNF-block SNP and haplotypes previously associated with HIV-SN remain a marker of 

risk in South Africans and Indonesians treated without stavudine? (Chapters 2) 

 Do previously identified and newly included P2X-block SNP and haplotypes associate 

with HIV-SN in Africans treated without stavudine? Do P2X-block SNP associate with 

HIV-SN in Indonesians treated without stavudine? (Chapters 3 and 4) 

 Are associations between P2X-block SNP and HIV-SN specific to small or large fibre 

pathology? (Chapter 5) 

 

Aim 2: To determine if the expression of the proteins encoded by the P2X-block in the 

epidermis of skin from HIV-SN patients differs from that observed in HIV+ patients without 

HIV-SN and healthy controls. The investigation presented in Chapter 6 provides insight into 

the proteins involved in HIV-SN by answering the following questions: 

 Do individuals with HIV-SN have greater amounts of P2X7R, P2X4R and CaMKK2 in the 

epidermis compared to patients without HIV-SN or healthy controls? 

 Are P2X7R, P2X4R and CaMKK2 co-located with intraepidermal nerve fibres? Does the 

location of P2X7R, P2X4R and CaMKK2 differ in patients with and without HIV-SN and 

healthy controls? 

 Is the intraepidermal nerve fibre density decreased in patients with HIV-SN compared 

to patients without HIV-SN and healthy controls? 

 

Aim 3: To determine if P2X-block SNP are associated with neurocognitive impairment in 

HIV+ Indonesians. The investigations presented in Chapters 7 and 8 inform the following 

questions: 

 Do P2X-block SNP associate with neurocognitive assessment scores in HIV+ Indonesians 

as they commence ART and during the first 12 months of receiving ART? 

 Do P2X-block SNP associate with neurocognitive assessment scores for different 

neurocognitive domains? 
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Chapter 2 

TNF-Block Genotypes Influence Susceptibility 

to HIV-Associated Sensory Neuropathy in 

Indonesians and South Africans 

In this chapter, I assessed whether published associations between polymorphisms and 
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Abstract: HIV-associated sensory neuropathy (HIV-SN) is a disabling complication of HIV disease
and antiretroviral therapies (ART). Since stavudine was removed from recommended treatment
schedules, the prevalence of HIV-SN has declined and associated risk factors have changed. With
stavudine, rs1799964*C (TNF-1031) associated with HIV-SN in Caucasians and Indonesians but not in
South Africans. Here, we investigate associations between HIV-SN and rs1799964*C and 12 other
polymorphisms spanning TNF and seven neighboring genes (the TNF-block) in Indonesians (n = 202;
34/168 cases) and South Africans (n = 75; 29/75 cases) treated without stavudine. Haplotypes were
derived using fastPHASE and haplotype networks built with PopART. There were no associations
with rs1799964*C in either population. However, rs9281523*C in intron 10 of BAT1 (alternatively
DDX39B) independently associated with HIV-SN in Indonesians after correcting for lower CD4 T-cell
counts and >500 copies of HIV RNA/mL (model p = 0.0011, Pseudo R2 = 0.09). rs4947324*T (between
NFKBIL1 and LTA) independently associated with reduced risk of HIV-SN and shared haplotype 1
(containing no minor alleles) associated with increased risk of HIV-SN after correcting for greater
body weight, a history of tuberculosis and nadir CD4 T-cell counts (model: p = 0.0003, Pseudo
R2 = 0.22). These results confirm TNF-block genotypes influence susceptibility of HIV-SN. However,
critical genotypes differ between ethnicities and with stavudine use.
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1. Introduction

HIV-associated sensory neuropathy (HIV-SN) is a disabling complication of HIV disease and its
treatment. It predominately affects nerve fibers that innervate the distal limbs, particularly the feet [1].
Symptoms include pain, burning and numbness, which impact an individual’s quality of life and
ability to work [2,3]. Nucleoside reverse transcriptase inhibitors (NRTI) are effective anti-retroviral
therapies (ART) but some, most notably stavudine (d4T), have severe adverse effects, including sensory
neuropathy and lipodystrophy [4]. The prevalence of HIV-SN varied from 19% to 57% in patients
exposed to stavudine [5–9]. Stavudine has not been recommended since 2010 due to its toxicity and a
reduction in HIV-SN cases have been noted but not well documented.

We compared the prevalence of HIV-SN assessed with the AIDS Clinical Trial Group Brief
Peripheral Neuropathy Screening Tool in HIV+ patients treated at an inner-city clinic in Jakarta,
Indonesia with stavudine in 2006 and without stavudine in 2016 [10]. A patient’s height and age were
associated with HIV-SN among patients receiving stavudine, and 34% experienced neuropathy [5].
In 2016, the prevalence of HIV-SN was 14.2% among patients who had not been exposed to stavudine.
Most patients (94%) had <500 copies HIV RNA/mL plasma, but >500 copies HIV RNA/mL and a
nadir of below 200 CD4 T-cells/µL associated with HIV-SN. Thus, HIV-SN still presents in patients
treated without stavudine, but the prevalence is lower, and the risk factors are markers of HIV disease
severity. With the same screening test, the prevalence of HIV-SN was higher (57%) in South African
patients receiving stavudine, and was linked with age and height, as in Indonesia [9]. The prevalence
of HIV-SN without stavudine in this setting is unclear.

Tumor necrosis factor alpha (TNF) expression has been demonstrated histologically in specimens
from individuals with sensory fiber, axonal and/or demyelinating neuropathies, particularly when
there was pain [11]. Its role in HIV patients is supported by evidence that the application of HIV gp120
to the sciatic nerve of a rat upregulated expression of TNF, CXCR4 and CXCL12 in the dorsal root
ganglia and the lumbar spinal dorsal horn. A non-replicating herpes simplex virus vector encoding the
p55TNFSR gene (producing a TNF-soluble receptor able to block TNF bioactivity) reversed mechanical
allodynia [12]. Since HIV patients display elevated levels of TNF and its soluble receptor in plasma [13],
a role in HIV-SN is plausible. However, TNF is difficult to visualize in skin biopsies—perhaps because
expression is transient. Genetic associations provide a signature that is stable over time.

The gene encoding TNF (TNF) lies in the central MHC in a defined region of high linkage
disequilibrium (LD; the TNF-block), which contains several potentially pro-inflammatory genes
(TNF, LTB, LTA, NCR3, LST1, NFKBIL1, ATP6V1G2, BAT1 (alternatively DDX39B) and MCCD1) [14].
Carriage of the minor allele at TNF-1031 (rs1799964) associated with increased risk of HIV-SN in
Caucasians, Chinese and Malays who had received stavudine [5,6,15], but not in South Africans [16].
We characterized TNF-block haplotypes in multiple ethnicities and showed that the haplotype
containing the minor allele of TNF-1031 in Asians and Caucasians was not present in Africans [14,16].
This implicates an allele carried in linkage with TNF-1031 in its associations with HIV-SN.

Here, Indonesian and South African HIV patients treated without stavudine are assessed to identify
single nucleotide polymorphisms (SNP) and haplotypes of the TNF-block associated with HIV-SN.
In addition to TNF-1031, we consider markers of the Caucasian 8.1 ancestral haplotype (AH; HLA
A*0101: Cw*0701: B*0801: DRB1*0301: DQA1*0501: DQB1*0201), which has been associated with many
immunopathological conditions including diabetes and coeliac disease [17]. The most studied candidate
polymorphism lies at position -308 upstream of TNF (TNF-308; rs1800629). Despite several promising
ex vivo studies, alleles of rs1800629 did not affect TNF production when analyzed using promotor
constructs [18], so other SNP within the conserved haplotype may be important. As rs1800629*A occurs
in several TNF-block haplotypes, we use an indel in intron 10 of the BAT1/DDX39B gene (rs9281523*C)
as a specific marker of the TNF-block of the 8.1AH [14]. In Asians, the minor alleles of rs1800629 and
rs9281523 occur as part of the diabetogenic 8.1 AH [19,20], consistent with a role for the region in
immunopathology. The minor allele of rs9281523 associated with risk of HIV-SN in Caucasian patients
who developed a toxic neuropathy following exposure to stavudine [6], but showed no effect in our
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cross-sectional studies of Indonesian or South African patients treated with stavudine [5,16]. Here,
we assess two cohorts with no exposure to stavudine.

Parallel investigation in two cohorts of different ethnicity has potential to identify critical SNP
within conserved haplotypes. Specifically, instances where the predominant haplotypes vary, but the
same SNP associates with the phenotype provide circumstantial evidence that the SNP contributes
directly to the phenotype.

2. Results

2.1. Measures of the Severity of HIV Disease Predict HIV-SN in Indonesians and Africans

The South African cohort (n = 75) included 29 patients with HIV-SN (38.7%). Participants were
relatively young [39 (19–60)] and 60% were female (45/75). Patients with HIV-SN were a little heavier
and taller than those without. Height, weight and lower nadir CD4 T-cell counts associated significantly
(p < 0.05) with HIV-SN. A lower current CD4 T-cell count, a history of tuberculosis and >500 copies
of HIV RNA/mL associated weakly (p < 0.20) with HIV-SN (Table 1). The regression model retained
greater weight, tuberculosis and a low nadir CD4 T-cell count independently associated with HIV-SN
(model p = 0.0007; pseudo R2 = 0.18; Table S1).

The Indonesian cohort (n = 202) included 34 patients with HIV-SN (16.8%). Participants were
relatively young [35 years (19–60 years)] and 29% were female (58/202). A lower current CD4 T-cell
count and >500 copies of HIV RNA/mL were significantly associated with HIV-SN in bivariate analyses
(p < 0.05; Table 1). A lower nadir CD4 T-cell count and a history of tuberculosis were weakly linked
with HIV-SN (p < 0.20) and were also included multivariate analyses. The regression model identified a
current viral load >500 copies of HIV RNA/mL and a lower current CD4 T-cell count as independently
associated with HIV-SN (p = 0.0006; pseudo R2 = 0.08; Table S1) [21].

We note that height was associated with HIV-SN in African and Indonesian patients treated with
stavudine. Here, in Indonesians, height was excluded from logistic regression modeling as it did not
meet inclusion criteria (p = 0.71; Table 1). However, in Africans, height met criteria for inclusion in
logistic regression modelling (p = 0.03; Table 1) but was not retained in the optimal model. It is unlikely
that associations with body weight in the optimal model in Africans arise through correlations with
height (Pearson’s r = 0.225, p = 0.06).

Table 1. HIV-SN associates with CD4 T-cell counts and control of HIV replication.

Variable

Africans Indonesians

HIV-SN HIV-SN

+ve
(n = 29)

−ve
(n = 46) p a,b +ve

(n = 34)
−ve

(n = 167) p a,b

Age (years) 40 (24–60) 37 (19–58) 0.11 36 (21–59) 35 (19–60) 0.68

Height (cm) 168
(147–179)

163
(135–186)

n = 45
0.03 167

(151–185)
167 (142–180)

n = 166 0.71

Weight (kg) 66 (45–112) 55 (35–110)
n = 44 0.03 59 (39–88) 58.5 (37–104)

n = 166 1.00

Current CD4
T-cells/µL 221 (22–685) 300 (8–832) 0.06 326 (44–729) 458

(84–1166) 0.003

Nadir CD4
T-cells/µL 107 (4–575) 223 (8–771) 0.002 54 (3–428) 121 (1–599)

n = 165 0.06

HIV RNA >500 copies/mL 21/29 (72%) 25/46 (54%) 0.12 6/29 (17%) 7/163 (4.1%) 0.005
History of Tuberculosis 6/28 (29%) 3/45 (7%) 0.08 c 18/35 (53%) 66/168 (39%) 0.09

Female Gender 15/29 (52%) 30/46 (65%) 0.25 9/35 (26%) 49/167 (29%) 0.98
a Mann-Whitney test used to assess all continuous variables—Median (range); b χ2 test used to assess dichotomous
variables—Proportion (%); c Fisher’s Exact test used where n < 5; Shading marks factors included in logistic
regressions. Significant differences are shown in bold font.
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2.2. Two Alleles Associated with HIV-SN in Indonesians but not Africans

Thirteen SNP previously linked with HIV-SN either independently or within haplotypes were
selected from across the TNF-block for genotyping in these cohorts (Table 2) [6,15,16]. In the Indonesian
cohort, the minor alleles of rs9281523 (DDX39B/BAT1(intron10)) and rs1800629 (TNF-308) were more
common in patients with HIV-SN. These alleles were in tight LD but the minor allele of rs1800629 also
occurred alone, so only rs9281523*C was included in logistic regressions as it reflects carriage of both
alleles. No other SNP attained p < 0.20—the cut-off for inclusion in logistic regressions. The optimal
model included >500 copies HIV RNA/mL, a lower current CD4 T-cell count and the minor allele of
rs9281523 (p = 0.0011, pseudo R2 = 0.09; Table 3).

Minor alleles of rs2981523 and rs1800629 were present at higher frequencies but were not associated
with HIV-SN in Africans (Table 2). However weak associations with reduced risk (p < 0.20) were
evident with rs4947324*T (between NFKBIL1 and LTA) and rs1041981*C (in LTA). These were included
in logistic regression modeling. The resulting model (p = 0.003, pseudo R2 = 0.23; Table 4) incorporated
weight, tuberculosis, lower nadir CD4 T-cell count and rs4947324*T.

Table 2. Alleles of two SNP associate with HIV-SN in Indonesians but not Africans.

SNP rsID

Africans (n = 75) Indonesians (n = 202)

Minor Allele MAF a HIV-SN
p e Minor Allele MAF a HIV-SN

p d
+ve b −ve +ve b −ve c

rs2075582
(MCCD1) C 0.13 7/28 d

(25%)
12/46
(27%) 0.87 C 0.34 19/34 e

(56%)
94/166
(57%) 0.97

rs9281523
(DDX39B) - 0.20 9/29

(31%)
17/46
(37%) 0.60 - 0.03 5/29

(17%)
8/166
(5%) 0.03

rs11796
(DDX39B) A 0.41 16/29

(55%)
31/46
(67%) 0.27 T 0.35 21/35

(60%)
95/167
(57%) 0.73

rs2523506
(DDX39B) T 0.12 6/28

(21%)
9/46

(20%) 0.85 T 0.34 13/34
(38%)

70/165
(42%) 0.65

rs2523504
(intergenic) T 0.17 8/29

(28%)
15/46
(33%) 0.60 T 0.33 19/35

(54%)
92/165
(56%) 0.87

rs2071594
(intergenic) G 0.41 16/29

(55%)
31/46
(67%) 0.29 C 0.37 21/35

(60%)
98/165
(59%) 0.95

rs2071593
(intergenic) A 0.07 2/29 f

(7%)
8/46

(17%) 0.30 A 0.12 7/34
(21%)

38/167
(23%) 1.00

rs2071592
(NFKBIL1) T 0.42 16/29

(55%)
30/46
(67%) 0.32 A 0.30 19/34

(56%)
83/166
(50%) 0.53

rs4947324
(intergenic) T 0.16 6/29

(21%)
16/46
(35%) 0.19 T 0.03 3/35

(9%)
8/166
(5%) 0.41

rs909253
(LTA) A 0.41 16/29

(55%)
31/46
(67%) 0.29 G 0.36 21/35

(60%)
99/167
(59%) 0.94

rs1041981
(LTA) C 0.39 15/29

(52%)
30/46
(67%) 0.20 A 0.36 21/35

(60%)
99/167
(59%) 0.94

rs1799964
(intergenic) C 0.15 6/29

(21%)
12/46
(27%) 0.56 C 0.27 16/35

(46%)
76/165
(46%) 0.97

rs1800629
(intergenic) A 0.23 10/29

(34%)
19/46
(41%) 0.56 A 0.04 6/35

(17%)
11/167
(7%) 0.04

a MAF: minor allele frequency; b Individuals with HIV-SN who carry one or two copies of the minor allele;
c Individuals without HIV-SN who carry one or two copies of the minor allele; d χ2 or Fisher’s Exact test if n < 5;
e Up to six samples failed to genotype for each SNP; f Two SNP in Indonesians which associated with HIV-SN
(p < 0.05) are in bold; Two SNP in Indonesians and two SNP in Africans which met the criteria for inclusion in
logistic regression modelling (p < 0.20) are shaded.
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Table 3. Logistic regression modelling identified rs9281523*C in Indonesians as an independent marker
of susceptibility to HIV-SN.

Variable Odds Ratio p Value 95% Confidence Interval

SNP Model: n = 193 a, p = 0.0011, Pseudo R2 = 0.09
Current CD4 T-cells/µL 1.00 0.02 1.00–1.00
>500 copies HIV RNA/mL 1.86 0.12 0.85–4.07
rs9281523*C 2.49 0.15 0.71–8.65

Haplotype Model: No haplotypes independently associated with HIV-SN after
correction for current CD4 T-cells/µL and >500 copies of HIV RNA/mL
a Excluding samples with missing demographic, clinical and/or genotype data.

Table 4. Logistic regression modelling identified rs4947324*T in Africans as an independent marker of
susceptibility to HIV-SN.

Variable Odds Ratio p Value 95% Confidence Interval

SNP Model: n = 71 a, p = 0.0003, Pseudo R2 = 0.23

Weight (kg) 1.04 0.04 1.00–1.08
History of Tuberculosis 5.66 0.04 1.09–29.36
Nadir CD4 T-cells/µL 0.99 0.02 0.99–1.00
rs4947324*T 0.25 0.05 0.06–1.01

Haplotype Model: n = 71 a, p = 0.0003, Pseudo R2 = 0.22

Weight (kg) 1.04 0.02 1.01–1.08
History of Tuberculosis 5.22 0.04 1.09–24.86
Nadir CD4 T-cells/µL 0.99 0.02 0.99–1.00
S1 (Shared Haplotype 1) 3.21 0.07 0.93–11.12

a Excluding samples with missing demographic, clinical, genotype data and/or haplotypes perfectly aligned with
the absence of HIV-SN.

2.3. One Haplotype Containing rs9281523*C and rs1800629*A Associated with HIV-SN in Indonesians but
Not Africans

FastPHASE generated 10 haplotypes in Indonesians and 12 haplotypes in Africans present at
>1.0%. These accounted for 98% and 96% of each population, respectively (Tables 5 and 6). Eight
haplotypes were shared between the two populations (S1–S8) and are numbered in order of the
frequency of each haplotype in Africans. An additional four haplotypes were unique to Africans
(A1–A4) and two were unique to Indonesians (I1, I2).

The haplotype S2 contained the minor alleles of rs9281523 and rs1800629, and associated with
HIV-SN in bivariate analyses of the Indonesian cohort (Table 5) but did not remain in the final model
(Table 3). This haplotype was also common in Africans but was not linked with HIV-SN. Three other
haplotypes (S1, A3 and S7) carried by Africans met the criterion for inclusion in logistic regression
models (p < 0.20; Table 6). However, A3 and S7 perfectly predicted the absence of HIV-SN and could
not be included. The resulting model (p = 0.0003, pseudo R2 = 0.22; Table 4) included greater body
weight, prior TB, lower nadir CD4 T-cell counts and S1. S1 contains no minor alleles.
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Table 5. One haplotype associated with HIV-SN in Indonesians.
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9 HIV-SN b

pc

+ve
(n = 35)

−ve
(n = 167)

S1 T - T G C C G A C G A T G 15 43% 72 43% 0.69
S3 T - A T C G G T C A C C G 14 40% 70 42% 0.85
S4 C - A G T G G T C A C T G 12 34% 60 36% 0.87
S8 C - A G T G A T C A C T G 7 20% 36 22% 0.97
I1 T - T G C C G T C G A T G 3 9% 21 13% 0.77
S6 T - A G C G G T C A C T G 2 6% 10 6% 0.99

S2 d T C T G C C G A C G A T A 5 14% 8 5% 0.02
S7 T - A G C G G T T A C C G 2 6% 8 5% 0.66
I2 C - A G C C G A C G A T G 0 0% 5 3% 0.99
S5 T - T G C C G A C G A T A 1 3% 3 2% 0.51

a Haplotypes shared between Africans and Indonesians are labelled S1–S8 in order of their population frequencies
in Africans. Haplotypes unique to Indonesians are labelled I1 and I2 in order of population frequencies. Haplotypes
carried at <1% are excluded. Minor alleles for each population are shaded grey; b Number of individuals who carry
one or two copies of each haplotype; c χ2 (or Fisher’s Exact test if n < 5); d Haplotypes meeting logistic regression
criteria (p < 0.20) are in bold.

Table 6. Three haplotypes were weakly associated with HIV-SN in Africans.
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9 HIV-SN b

pc

+ve
(n = 29)

−ve
(n = 46)

S1 d T - T G C C G A C G A T G 19 66% 23 50% 0.19
S2 T C T G C C G A C G A T A 9 31% 16 35% 0.34
S3 T - A T C G G T C A C C G 5 17% 8 17% 0.99
A1 T - A G C G G T T A C T G 3 10% 8 17% 0.51
S4 C - A G T G G T C A C T G 3 10% 5 11% 0.99
S5 T - T G C C G A C G A T A 1 3% 4 9% 0.64
A2 C - A G T G A T T A C T G 1 3% 4 9% 0.64
S6 T - A G C G G T C A C T G 3 10% 2 4% 0.37
A3 T - T G T C G A C G A T G 0 0% 4 9% 0.15
S7 T - A G C G G T T A C C G 0 0% 4 9% 0.15
S8 C - A G T G A T C A C T G 0 0% 2 4% 0.52
A4 C - A G T G G T C A A T G 0 0% 2 4% 0.52

a Haplotypes shared between Africans and Indonesians are labelled S1–S8 in order of their population frequencies
in Africans. Haplotypes unique to Africans are labelled A1–A4 in order of population frequencies. Haplotypes
carried at <1% are excluded. Minor alleles for each population are shaded grey; b Number of individuals who carry
one or two copies of each haplotype; c χ2 (or Fisher’s Exact test if n < 5); d Haplotypes meeting logistic regression
criteria (p < 0.20) are in bold.

2.4. One Haplogroup Contained the Two Haplotypes Associated with HIV-SN in Africans and Indonesians

A haplotype network was constructed for the 14 haplotypes occurring at >1% in Africans or
Indonesians; S1–S8, A1–A4 and I1–I2. The haplotype network identified two haplogroups (A and B),
where each contained two shared haplotypes and one unique to Africans (Figure 1).

Haplogroup A included S1, S2 and A3—carried by 91% of the Africans and 50% of Indonesians.
S1 associated with HIV-SN in Africans and S2 with HIV-SN in Indonesians (Tables 5 and 6). S1 and
S2 differ only at rs9281523 (DDX39B/BAT1 (intron10)) and rs1800629 (TNF-308), marking the 8.1AH.
A3 perfectly predicted the absence of HIV-SN in Africans.

Haplogroup B contained S4, S8 and A2, and was carried by 20% of Africans and 57% of Indonesians.
S8 was also not observed in Africans with HIV-SN. These three haplotypes share seven minor alleles
and differ at a further two loci: S8 and A2 include the minor allele of rs2071593 and A2 carries the
minor allele of rs4947324, which are associated with reduced risk of HIV-SN in Africans (Table 2).
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of HIV disease, impacting 14% of Indonesians surveyed in the 2016 cross-sectional study [10] and 
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Figure 1. The haplotype network was constructed using all haplotypes which occurred in Africans and
Indonesians at greater than 1%. This includes the eight shared haplotypes, four haplotypes unique
to Africans and two haplotypes unique to Indonesians, as defined as in Tables 5 and 6. a Associated
with increased risk of HIV-SN in Africans in bivariate analyses (Table 6). b Associated with increased
risk of HIV-SN in Indonesians in bivariate analyses (Table 5). c Haplotypes not found in Africans with
HIV-SN. d Haplotypes not found in Indonesians with HIV-SN. e Median vector: hypothetical haplotype
automatically generated for maximum parsimony.

3. Discussion

Despite the discontinuation of stavudine, HIV-SN remains a common neurological complication
of HIV disease, impacting 14% of Indonesians surveyed in the 2016 cross-sectional study [10] and
38% of Africans in this study. We describe associations between HIV-SN and demographic variables,
clinical variables and SNP and haplotypes in the TNF-block which have previously been linked with
HIV-SN in Caucasians, Asians and Africans.

Age and height were strong predictors of HIV-SN in Africans and Indonesians treated with
stavudine [5,9]. However, without stavudine, markers of HIV disease severity were more clearly
associated with HIV-SN. In African patients, the optimal markers were lower nadir CD4 T-cell counts,
greater weight and a history of tuberculosis whilst low current CD4 T-cell counts and >500 HIV
RNA copies/mL were the clearest associations with HIV-SN in Indonesians. As the African patients
had received ART for only 6–8 months, current CD4 T-cell levels may not have stabilized and a
clearer association with nadir CD4 T-cell counts is reasonable. In Africans, tuberculosis remained
independently associated with HIV-SN in all regression models (Table S1 and Table 4), despite being
present in 41% of Indonesians (cf 15% of Africans) and associated weakly with HIV-SN in both
populations in bivariate analyses (Table 1). Pyridoxine is routinely provided to patients treated for
tuberculosis in South Africa and Indonesia, but a previous South African study linked inadequate

30/170



Int. J. Mol. Sci. 2020, 21, 380 8 of 12

levels of pyridoxine with neuropathy despite administration of supplements [22]. Overall, biological
markers of HIV disease were the clearest demographic and clinical associations of HIV-SN. This is
consistent with findings prior to the advent of ART (and hence, stavudine) [23] and suggests the
underlying mechanisms of HIV-SN may differ between patients treated with and without stavudine.

Differences in the pathogenic pathways are also evidenced by the different genetic associations
identified in this study. We found no associations between the minor allele of rs1799964 (TNF-1031)
and HIV-SN in Africans or Indonesians evident in our studies of Asians and Caucasians treated with
stavudine [5,6,15]. In Indonesians treated without stavudine, rs9281523*C (DDX39B/BAT1 (intron10))
is independently associated with HIV-SN after correcting for lower current CD4 T-cell counts and
>500 copies of HIV RNA/mL (model p = 0.0011, Pseudo R2 = 0.09; Table 3). The S2 haplotype, which
contains rs9281523*C, was associated with HIV-SN in Indonesians in bivariate analyses. rs9281523*C
marks the 8.1AH which has been linked with accelerated loss of CD4 T-cells and impaired recovery
following HIV infection [24,25] and with numerous immunopathological diseases [17,26]. So, a link
with HIV-SN is plausible and the search for the SNP responsible has wide ramifications. A direct role
for rs9281523 is supported by its inclusion in the optimal model for Indonesians, while the associated
haplotype (S2) was excluded. However, S2 and S1 (the haplotype linked with risk of HIV-SN in
Africans) differed only at rs9281523 and rs1800629 and occurred in the same haplogroup (Figure 1).
This suggests the haplotypes may have descended from a common ancestor, but argues against a direct
role for rs9281523 or rs1800629. It also fits with the observation that rs9281523 shows no associations
with HIV-SN in Africans.

In Africans, the minor alleles of rs4947324*T and rs1041981*C associated weakly with reduced
risk of HIV-SN in bivariate analyses (Table 2). Both SNP have been associated with reduced risk of
HIV-SN in South Africans treated with stavudine where rs1041981*C and six additional SNP from
the TNF-block were included in the logistic regression model with age and height [16]. Without
stavudine, rs4947324*T alone remained in the optimal model (p = 0.0003, Table 4). Three haplotypes
(S1, A3 and S7) were weakly associated with altered risk of HIV-SN (p < 0.20; Table 6). A3 and S7
were rare haplotypes with no minor alleles in common, but S7 contained rs4947324*T and rs1041981*C.
Neither A3 nor S7 occurred in patients with HIV-SN so they could not be included in logistic regression
modeling. S1, was independently associated with risk of HIV-SN in the final model along with greater
weight, tuberculosis and nadir CD4 T-cells/µL (p = 0.0003, Pseudo R2 = 0.22; Table 4). S1 included no
minor alleles and therefore contained the major (*C) risk allele of rs4947324.

The search for SNP responsible for associations with TNF-block haplotypes is complicated
by the lack of relevant in vitro assays for chronic conditions. For example, haplotypes containing
polymorphisms within the TNF-block were associated with altered TNF and lymphotoxin-alpha
production in cultured mononuclear cells from Australian Caucasians but haplotypes containing
rs9281523*C and rs4947324*T had no impact [27]. SNP within the TNF-block may also impact other
MHC genes. The GTEX eQTL database reports altered expression of several immune-related genes
within the MHC is associated with carriage of rs9281523*C or rs4947324*T including C4A, HLA-C and
MICB (https://gtexportal.org/). However, understanding the biological consequences of these SNP and
associated haplotypes is complicated by LD within the region [28].

We recognize the small size of our cohorts, but strict inclusion criteria avoided alternative causes
of neuropathy. Further studies are required to validate our findings in larger cohorts when they
become available, and to address the biological implications. Overall, we confirm that HIV-SN
remains a clinically relevant problem in HIV+ patients treated without stavudine and is more common
in those with African ancestry. We confirm that TNF-block genotypes associate with HIV-SN but
show that different mechanisms are invoked with and without stavudine. Critical genotypes differ
between Indonesians and Africans so the causative alleles remain unknown. However, the haplotypes
associated with HIV-SN may descend from a common ancestor, and therefore, include allele/s not
typed in our panel. Associations with TNF-block haplotypes per se confirm the inflammatory etiology
of HIV-SN. Moreover, the clearer associations with HIV-SN seen in Africans (evidenced by stronger
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regression models) may plausibly align with the greater frequency of HIV-SN in Africans compared
with Indonesians. This distinction warrants further investigation.

4. Materials and Methods

4.1. Participants and Phenotypes

HIV-positive adults (n = 185) who had used ART for at least 12 months with no exposure to
stavudine were screened for neuropathy at POKDISUS HIV Care Clinic, Cipto Mangunkusumo
Hospital, Jakarta, Indonesia in 2016 [21,29]. Patients with any history of other conditions potentially
linked with neuropathy were excluded. DNA was also available from nine HIV+ patients with HIV-SN
and eight patients without HIV-SN matched by age, gender and CD4 T-cell count. These 17 individuals
were recruited in 2012 at the same clinic and met inclusion criteria for the present study. Patients
with African ancestry attending the Lenasia South Community Health Hospital, Johannesburg, South
Africa, were enrolled after 6–8 months on ART. These studies were approved by the Ethics Committee
of the Faculty of Medicine, Universitas Indonesia (approval number: (579/UN2.F1/ETIK/2014), and the
Human Research Ethics Committee (Medical) of the University of the Witwatersrand, Johannesburg
(approval number: MR121018-R14/49). Written informed consent was obtained in all cases.

HIV-SN was assessed using the AIDS Clinical Trials Group Brief Peripheral Neuropathy Screening
Tool, a validated metric for diagnosing HIV-SN [30]. HIV-SN was defined by bilateral presence
of at least one symptom (pain/burning/aching, numbness, and paresthesia) and one clinical sign
(absent reflexes and impaired vibration sense in the great toe). In South Africans, pinprick sensitivity
was added to the BPNS as it provides an assessment specific to small fiber pathology and has high
specificity for HIV-SN [31,32]. Clinical and demographic records were collected from medical files
to determine risk factors that may be linked with HIV-SN. This included the patient’s history of
tuberculosis as medications used in its treatment, notably isoniazid, competitively interferes with
pyridoxine metabolism and may result in peripheral neuropathy [22,33].

4.2. Genotyping

As described previously [21], genomic DNA was extracted from EDTA-blood samples using
Favorprep Blood Genomic DNA Extraction Mini Kits (Favorgen Biotech Corporation, Changzhi,
Taiwan) adjusted to 50 ng/µL and diluted 1:1 in TaqMan® OpenArray™ Genotyping Master Mix
(Life Technologies, Grand Island, NY, USA). Samples were genotyped for 13 SNP (Table 2) spanning
MMCD1, DDX39B, ATP6V1G2, NFKBIL1, LTA and TNF using the QuantStudio 12K Flex Real-Time PCR
System on custom TaqMan® OpenArrayTM Real-Time PCR Plates. All alleles were in Hardy-Weinberg
Equilibrium (HWE).

4.3. Haplotype Analyses

Haplotypes and their estimated frequencies were determined using the default parameters of
the fastPHASE algorithm [34], with haplotypes sampled from the observed genotypes an additional
5000 times per sample. Haplotypes with an estimated frequency less than 1% were excluded from
analyses. Haplotypes shared between Africans and Indonesians are labelled S1–S8 in order of their
population frequencies in Africans. Haplotypes unique to Africans are labelled A1–A4 and haplotypes
unique to Indonesians are labelled I1 and I2 in order of their respective population frequencies. PopART
version 1.7 (Population Analysis with Reticulate Trees, Otago, New Zealand; http://popart.otago.ac.nz)
was used to construct haplogroups using Median-Joining methods [35].

4.4. Statistical Analyses

Bivariate associations between HIV-SN and demographic or clinical variables, SNP and haplotypes
were assessed with t-tests, Mann-Whitney tests, Chi2 or Fisher’s exact tests using GraphPad Prism
version 8.2.1 for Windows (Graphpad Software, La Jolla, CA, USA). No corrections were made for
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multiple comparisons. All variables which weakly (p = 0.05–0.20) or significantly (p < 0.05) associated
with HIV-SN in bivariate analyses were included in logistic regression modelling. Optimal models
identifying variables independently associated with HIV-SN were determined with a stepwise removal
process using Stata/IC 16.0 for Windows (StataCorp LLC, College Station, TX, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/380/s1.
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HIV Human immunodeficiency virus
HIV-SN HIV-associated sensory neuropathy
BPNS Brief peripheral neuropathy screening tool
TNF Tumor necrosis factor
CXCR4 C-X-C chemokine receptor type 4
CXCL12 C-X-C chemokine ligand 12
MHC Major histocompatibility complex
LD Linkage disequilibrium
LTB Lymphotoxin beta
LTA Lymphotoxin alpha
NCR3 Natural Cytotoxicity Triggering Receptor 3
LST1 Leukocyte-specific transcript 1
NFKBIL1 Nuclear Factor if Kappa Light Polypeptide Gene Enhancer In B-Cells Inhibitor-Like 1
DDX39B DExD-Box Helicase 39B
MCCD1 Mitochondrial Coiled-Coil Domain 1
AH Ancestral Haplotype
S1-8 Shared haplotypes 1-8
A1-4 African haplotypes 1-4
I1-2 Indonesian haplotypes 1 and 2
GTEX Genotype-Tissue Expression
eQTL Expression quantitative trait loci
C4A Complement Component 4A
HLA Human leukocyte antigen
MICB MHC class I polypeptide-related sequence
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Table S1. Logistic regression modelling identifies demographic and clinical variables independently 

associating with HIV-SN in Africans and Indonesians. 

Variable Odds Ratio P Value 95% CI 

African Optimal Model: n = 71a, p = 0.0007, Pseudo R2 = 0.18 

Weight (kg) 1.04 0.03 1.00–1.08 

History of Tuberculosis 4.26 0.07 0.90–20.03 

Nadir CD4 T-cells/µL 1.00 0.03 0.99–1.00 

Indonesian Optimal Model: n = 195a, p = 0.0006, Pseudo R2 = 0.08 

Current CD4 T-cells/µL 1.00 0.01 0.99–1.00 

>500 copies HIV RNA/mL 3.80 0.04 1.10–13.15 
a excluding samples with missing demographic, clinical and/or genotype data. 

36/170



Chapter 3 

The role of CAMKK2 polymorphisms in  

HIV-Associated Sensory Neuropathy in South Africans 

In addition to associations with the TNF-block, polymorphisms and haplotypes of the P2X-

block have been associated with HIV-SN in South Africans treated with stavudine. Here, I 

sought associations in an independent cohort of South African patients treated without 

stavudine. The data confirm the role of these genes in HIV-SN. 

Data from this chapter have been published: 

Gaff J, Pillay P, Cherry C, Laws SM, Price P, Kamerman P. The role of CAMKK2 polymorphisms in HIV-

associated sensory neuropathy in South Africans. Journal of the Neurological Sciences. 

2020;416:116987. doi: 10.1016/j.jns.2020.116987 

This chapter was published after Chapter four due to delays in the availability of the South African 

cohort. Therefore, this chapter refers to results included in Chapter 4.  

37/170

https://doi.org/10.1016/j.jns.2020.116987


Contents lists available at ScienceDirect

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

The role of CAMKK2 polymorphisms in HIV-associated sensory neuropathy
in South Africans
Jessica Gaffa, Prinisha Pillayb, Catherine Cherryb,c,d, Simon M. Lawsa,e, Patricia Pricea,b,⁎,
Peter Kamermana,b
a School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
b Brain Function Research Group, School of Physiology, University of Witwatersrand, Johannesburg, South Africa
c Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
d Burnet Institute, Melbourne, Australia
e Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia

A R T I C L E I N F O

Keywords:
HIV-associated sensory neuropathy
Antiretroviral therapy
CAMKK2
Polymorphisms
Haplotypes

A B S T R A C T

Human immunodeficiency virus-associated sensory neuropathy (HIV-SN) is a common neurological complica-
tion of HIV infection. It affected 57% of South African patients whose antiretroviral therapy (ART) included
stavudine and was influenced by genotypes of the P2X-block (P2X7R, P2X4R and CAMKK2). We investigate
associations between HIV-SN and P2X-block genotypes in patients who never received stavudine. An adjacent
gene, ANAPC5, was included.
75 HIV+ individuals were assessed using the Brief Peripheral Neuropathy Screen before treatment and after

6-8 months on stavudine-free regimens. DNA was genotyped for 48 polymorphisms across the four genes using
an OpenArray™ platform. Haplotypes were derived using fastPHASE. Associations with HIV-SN were assessed
using bivariate and multivariate analyses.
Nine individuals (12%) were diagnosed with HIV-SN prior to ART and a further 20 individuals (27%) de-

veloped HIV-SN within 6-8 months. Five polymorphisms, rs503720*G (OR= 133) in P2X7R, rs10849861*A (OR
= 5.99), rs1653586*T (OR = 67.8) and rs11065504*C (OR = 0.02) in CAMKK2, and rs2089886*A (OR =
6.68) in ANAPC5, associated with HIV-SN after adjusting for body weight, nadir CD4 T-cell counts and prior
tuberculosis (model p<0.0001, n = 69, Pseudo R2 = 0.54). Three CAMKK2 haplotypes were associated with
HIV-SN (OR = 2.82, 3.42 and 6.85) after adjusting for body weight, nadir CD4 T-cell counts and prior tu-
berculosis (model p<0.0005, n = 71, Pseudo R2 = 0.26).
The results support a role for CAMKK2 in HIV-SN, independent of mechanisms invoked by stavudine.

Significance statement: HIV-associated sensory neuropathy (HIV-SN) remains a clinically relevant complication of
HIV infection and its treatment, affecting 38% of patients treated without neurotoxic stavudine. HIV-SN can
impact an individual’s ability to work and quality of life, with few effective therapeutic options, so an under-
standing of the underlying mechanisms would have clinical value. We confirm that CAMKK2 polymorphisms and
haplotypes influence susceptibility to HIV-SN in South Africans treated without stavudine. This provides further
evidence for a role for the protein encoded by CAMKK2 in the pathogenesis of HIV-SN, independent of me-
chanisms initiated by stavudine.

1. Introduction

Human immunodeficiency virus-associated sensory neuropathy
(HIV-SN) is a debilitating neurological complication of HIV infection
and antiretroviral therapy (ART) [1–4]. The prevalence of HIV-SN in
South African patients treated with the nucleoside reverse transcriptase
inhibitor (NRTI) stavudine was 57% compared to 38% in those treated

with alternative NRTIs, notably Tenofovir [4,5]. HIV-SN can affect an
individual’s ability to work and quality of life, and existing treatments
lack efficacy for managing pain associated with HIV-SN [6], so an un-
derstanding of the underlying mechanisms will have clinical value.

An inflammatory pathology of HIV-SN is supported by the observed
infiltration of macrophages in dorsal root sensory ganglia, increased
density of activated macrophages and production of pro-inflammatory
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cytokines in peripheral nerves, and increased expression of chemokine
receptors by CD14+ and CD3+ cells surrounding subcutaneous nerves
in the lower leg [7–10]. Furthermore, polymorphisms and haplotypes of
TNF (and neighbouring genes) are associated with susceptibility to HIV-
SN [5,11–13]. P2X7R, P2X4R and CaMKK2 may play a role in this in-
flammatory pathology.

P2X7R and P2X4R (purinergic receptors 7 and 4) are involved in
inflammatory pathways and excitatory neurotransmission following
activation by ATP [14]. Stimulation of P2X7R results in interleukin-1β
(IL-1β)-dependent induction of tumour necrosis factor (TNF) [15], and
the activation of P2X4R causes an influx of calcium ions in microglia.
This activates p38 mitogen activated protein kinase (p38-MAPK) re-
sulting in release of brain-derived neurotrophic factor (BDNF) [16] and
pro-inflammatory cytokines including TNF [17]. IL1β and TNF can
cause hyperexcitability in dorsal neurons causing neuropathic pain [15]
and have been implicated in the development of HIV-SN [10,15,18].

CaMKK2 (calcium/calmodulin kinase kinase 2) also induces pro-
duction of IL-1β and TNF via the p38-MAPK pathway. However,
CaMKK2 is expressed in the nervous system and is crucial in neuronal
growth and repair [19,20]. CaMKK2 phosphorylates and activates
AMPK (AMP-activated protein kinase), SIRT1 (sirtuin 1), CaMKIV
(calcium/calmodulin kinase 4) and CaMKI (calcium/calmodulin kinase
1) [19,21,22]. AMPK is associated with neurite outgrowth [19], and
SIRT1, CaMKIV and CaMKI are involved in neuronal growth, survival
and repair pathways [23–25]. CaMKK2 pathways have been linked to
peripheral neuropathy and neuropathic pain [16,26,27]. For example,
phosphorylation of CaMKIV upregulates nuclear factor-Κβ and cyclic-
AMP response element-binding protein, which triggers release of BDNF
and promotes neuron growth and survival. Dysregulated release of
BDNF has been linked with neuropathic pain [16].

The encoding genes, P2X7R, P2X4R and CAMKK2 (the “P2X-
block”), lie in a region of linkage disequilibrium (LD) in chromosome
12. We associated alleles of single nucleotide polymorphisms (SNP) in
P2X4R and CAMKK2 with concentrations of tumour necrosis factor in
vitro [28], and with HIV-SN in HIV+ South Africans treated with sta-
vudine [29]. Three co-inherited SNP in CAMKK2 associated with lower
rates of HIV-SN in HIV+ Indonesians treated without stavudine [30].

ANAPC5 lies upstream of CAMKK2 and exhibits LD with SNP in
CAMKK2. ANAPC5 encodes the anaphase promoting complex 5
(AnapC5), involved in progression from metaphase into anaphase.
Replication of neurons would disrupt signal transduction so re-entry
into the cell cycle triggers apoptosis [31,32]. Hence altered function or
expression of ANAPC5 may promote neuronal death characteristic in
HIV-SN. Furthermore, AnapC5 hampers interleukin 17 (IL-17) signal-
ling by interacting directly with the receptor IL-17RA. Reduced IL-17
signalling impairs defence against infections and modifies neuroin-
flammatory diseases such as multiple sclerosis [33,34].

Here we investigate whether alleles of the P2X-block or ANAPC5
mark susceptibility to HIV-SN inHIV+ South Africans who have never
received stavudine.

2. Materials and methods

2.1. Participants and phenotypes

75 HIV+ adults with self-declared African ancestry were enrolled as
they commenced first-line ART (usually tenofovir, emtricitabine and
efavirenz) at the Lenasia South Community Health Hospital,
Johannesburg, South Africa in 2016. Participants were re-assessed 6-8
months after initiating ART. We excluded patients with a clinical his-
tory of an illness [other than HIV or tuberculosis (TB)] potentially
linked with neuropathy or preventing clinical assessment. Written in-
formed consent was received from all participants and the study was
approved by the Human Research Ethics Committee (Medical) of the
University of the Witwatersrand, Johannesburg (approval number:
MR121018-R14/49).

Participants were assessed for HIV-SN using the Brief Peripheral
Neuropathy Screen (BPNS) amended by inclusion of pinprick sensi-
tivity, as it assesses small fibre pathology and has high specificity for
HIV-SN [3,35]. Demographic and clinical data were collected from
medical files. Data included the participant’s age, height, body weight,
nadir and current CD4 T-cell count, plasma HIV RNA, and a history of
TB as the disease and its treatments may result in peripheral neuro-
pathy [3,36].

2.2. Genotyping and SNP selection

48 SNP from the P2X-block and ANAPC5 were genotyped. 22 SNP
within the P2X-block were associated with HIV-SN in South Africans
treated with stavudine [29]. An additional 16 SNP from the P2X-block
and 10 SNP in ANAPC5 were selected based on published links with
inflammatory or neurological conditions, and a minimum global minor
allele frequency of 5% (https://www.ncbi.nlm.nih.gov/variation/
view/).

Genomic DNA was extracted from venous whole blood samples in
EDTA using Favorprep Blood Genomic DNA Extraction Mini Kits
(Favorgen Biotech Corporation, Changzhi, Taiwan), adjusted to 50ng/
μl and diluted 1:1 in TaqMan® OpenArray™ Genotyping Master Mix
[5,30]. DNA samples were genotyped using the QuantStudio 12K Flex
Real-Time PCR System (Life Technologies, Grand Island, NY, USA) on
custom TaqMan® OpenArrayTM Real-Time PCR Plates. Genotypes were
assigned manually using the OpenArrayTM SNP Genotyping Analysis
software. Two polymorphisms were monoallelic and all remaining al-
leles were in Hardy-Weinberg Equilibrium (HWE) in this population.

2.3. Haplotype analyses

Haplotypes and corresponding estimated frequencies were de-
termined using the default parameters of fastPHASE [37], with haplo-
types sampled an additional 5,000 times per sample from the observed
genotypes. Haplotypes observed in at least two individuals were as-
sessed for associations with HIV-SN. Haplotype networks were con-
structed using default Median-Joining methods with an epsilon value of
0 in PopART v1.7 (Population Analysis with Reticulate Trees, Otago,
New Zealand; http://popart.otago.ac.nz; [38]).

2.4. Statistical analyses

Individuals diagnosed pre-ART (n = 9) and post-ART (n = 20) were
grouped to create a cross-sectional study and allow analyses of in-
frequent demographic and genetic variables. Bivariate associations
between HIV-SN and clinical variables, SNP and haplotypes were as-
sessed using T-tests, Mann-Whitney tests, Chi-squared or Fisher’s exact
tests in GraphPad Prism version 8.2.1 for Windows (Graphpad
Software, La Jolla, CA, USA) without corrections for multiple compar-
isons. Multivariable analyses were then undertaken using Stata/IC 16.0
for Windows (StataCorp LLC, College Station, TX, USA). Logistic re-
gression modelling included clinical and genetic variables with a p-
value less than 0.20 on bivariate testing, and a stepwise removal pro-
cess was used to obtain models of best fit. Logistic regression models
excluded samples with missing clinical and genetic information and
excluded genetic variables aligned perfectly with risk or protection of
HIV-SN.

3. Results

3.1. Clinical factors associated with HIV-SN

We assessed 75 individuals commencing ART and after 6-8 months.
All participants received tenofovir, emtricitabine and efavirenz, with
the exception of three individuals without HIV-SN who were treated
with abacavir, efavirenz and lamivudine. The median age was 39 (19-
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Table 1
One SNP in CAMKK2 associated with reduced risk of HIV-SN.

 
RSID 

 
Chromosome 
12 Loca!on 

Minor 
Allele 

Major 
Allele MAFa 

Without 
HIV-SNb 

n=46d 

With  
HIV-SNc 

n=29d 

 
P 

(Chi2)e 
P2X7R 
rs10849849 121148592 G A 0.14 11/46 24% 8/29 28% 0.72 
rs1718125 121155216 A G 0.35 22/44 50% 17/29 59% 0.47 
rs208293 121162377 G A 0.12 11/46 24% 6/29 21% 0.75 
rs1169737 121162491 T C 0.00 0/44 0% 0/24 0% - 
rs1186055f 121162726 G T 0.48 35/46 76% 18/29 62% 0.19 
rs208307 121166053 G C 0.50 34/46 74% 22/29 76% 0.85 
rs503720 121167271 G A 0.39 23/45 51% 21/29 72% 0.07 
rs7132846 121177131 T C 0.04 2/46 4% 3/29 10% 0.37 
rs1718119 121177300 C T 0.44 27/46 59% 20/29 69% 0.37 
rs10160951 121180454 G C 0.18 13/46 28% 11/29 38% 0.38 
rs2230912 121184393 G A 0.04 3/45 7% 3/29 10% 0.67 
rs3751142 121184616 A C 0.13 9/45 20% 7/28 25% 0.62 
rs1621388 121184760 C T 0.43 26/45 58% 19/29 66% 0.51 
P2X4R 
rs2686387 121211067 G C 0.32 24/46 52% 15/29 52% 0.97 
rs7298368 121221881 T C 0.05 3/46 7% 3/29 10% 0.67 
rs25644 121228843 G A 0.06 3/46 7% 4/29 14% 0.42 
rs2668252 121230671 C A 0.36 25/43 58% 13/24 54% 0.75 
rs11608486 121232923 C G 0.04 4/44 9% 2/24 8% 1.00 
rs1169719 121233310 A G 0.11 9/46 20% 8/29 28% 0.42 
rs7961979 121233458 A C 0.13 13/46 28% 4/29 14% 0.17 
CAMKK2 
rs1718158 121237098 G A 0.14 10/46 22% 10/29 34% 0.22 
rs10849861 121237504 A G 0.42 23/46 50% 21/29 72% 0.19 
rs1653586 121237772 T G 0.14  9/46 20% 10/29 34% 0.16 
rs1653587 121238429 G A 0.13  9/46 20%  8/29 28% 0.42 
rs11065504g 121242657 C G 0.10 12/45 27%  2/29  7% 0.04 
rs2686342 121247385 T A 0.24 20/46 43% 10/29 34% 0.44 
rs3794204 121249212 G A 0.41 28/46 61% 21/29 72% 0.31 
rs7975295 121251298 C T 0.38 22/46 48% 20/29 69% 0.07 
rs2686344 121252745 T C 0.16 14/46 30%  8/29 28% 0.79 
rs1560568 121252784 A G 0.37 21/45 47% 20/29 69% 0.06 
rs1132780 121253293 T C 0.37 21/45 47% 20/29 69% 0.06 
rs7314454 121260982 T C 0.34 22/45 49% 14/29 48% 0.96 
rs11837114 121263634 G A 0.27 19/41 46% 10/25 40% 0.61 
rs1109453 121269518 A G 0.41 26/45 58% 19/29 66% 0.51 
rs3817190 121274274 T A 0.33 24/46 52% 14/29 48% 0.74 
rs9805130 121277592 G A 0.35 27/46 59% 14/29 48% 0.38 
rs7965129 121297604 G A 0.00  0/45  0%  0/29  0% - 
rs2686367 121297794 A C 0.27 23/46 50% 13/29 45% 0.66 
ANAPC5 
rs113195670 121299178 A C 0.24 18/43 42% 10/28 36% 0.60 
rs2942067 121317758 A G 0.20 15/45 33% 10/29 34% 0.92 
rs2942064 121319857 G A 0.18 15/46 33% 10/29 34% 0.87 
rs2948129 121320159 G T 0.19 15/46 35% 10/29 34% 0.92 
rs2089886 121323973 A G 0.41 26/45 58% 23/29 79% 0.06 
rs74644631 121337408 T G 0.02  3/43  7%   0/29  0% 0.29 
rs11065527 121343210 T A 0.14 11/45 24%  8/29 28% 0.76 
rs2668262 121350299 T C 0.37 27/45 60% 20/27 74% 0.22 
rs1799525 121352124 A C 0.11 11/45 24%  6/27 22% 0.83 
rs7961855 121392140 C T 0.32 24/46 52% 16/28 57% 0.68 

aMAF – minor allele frequency.
b Number of individuals without HIV-SN who carry 1 or 2 copies of the minor allele.
c Number of individuals with HIV-SN who carry 1 or 2 copies of the minor allele.
d Up to 9 samples failed to reliably genotype for each SNP.
e Fisher’s Exact test was used where n< 5.
f Ten SNP which met the criteria for inclusion in multivariate analyses (p<0.20) are shaded.
g One SNP in CAMKK2 which associated with reduced risk of HIV-SN is shown in bold.
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60) years and 60% were female (45/75). Nine individuals (12%) were
diagnosed with HIV-SN before ART and a further 20 individuals (27%)
developed HIV-SN in the following 6-8 months. Pre- and post-ART HIV-
SN groups were merged resulting in an overall prevalence of HIV-SN of
38% (29/75). Clinical factors associated with HIV-SN included age,
height, body weight, nadir and current CD4 T-cell counts,> 500 co-
pies/ml of HIV RNA and a history of TB (p<0.20; Appendix A) [5].
The optimal logistic regression model included body weight, TB and a
low nadir CD4 T-cell count (model p = 0.0007; Pseudo R2 = 0.18;
Appendix A).

3.2. Five SNPs in P2X7R, CAMKK2 and ANAPC5 associated with HIV-SN

Samples were genotyped for 48 SNP spanning P2X7R, P2X4R,
CAMKK2 and ANAPC5. Two SNP were mono-allelic (rs1169737 and
rs7965129). Up to nine individuals could not be genotyped for 21 of the
remaining 46 SNP, but all were in HWE and so were assessed for as-
sociations with HIV-SN.

Carriage of the minor CAMKK2 allele, rs11065504*C, associated
with lower prevalence of HIV-SN (p = 0.04; Table 1). An additional
nine SNP across all four genes met the criteria for inclusion in logistic
regression analyses (p< 0.2; Table 1). This included two SNP in P2X7R
(rs1186055*G and rs503720*G), one in P2X4R (rs7961979*A), five in
CAMKK2 (rs10849861*A, rs1653586*T, rs7975295*C, rs1560568*A
and rs1132780*T) and one in ANAPC5 (rs2089886*A). Three alleles in
CAMKK2 (rs7975295*C, rs1560568*A and rs1132780*T) were in per-
fect LD and so rs1560568*A and rs1132780*T were excluded. The final
model retained body weight, a history of TB, nadir CD4 T-cell counts
and five SNP from P2X7R (rs503720*G), CAMKK2 (rs10849861*A,
rs1653586*T, rs11065504*C) and ANAPC5 (rs2089886*G; model
p<0.0001, n = 69, Pseudo R2 = 0.54; Table 2). rs11065504*C was
again linked with decreased risk of HIV-SN [OR = 0.02, 95% Con-
fidence Interval (95%CI) = 0.00-0.31].

3.3. Three CAMKK2 haplotypes associated with HIV-SN

FastPHASE, applied to each gene individually, yielded 100 haplo-
types in P2X7R, 17 in P2X4R, 153 in CAMKK2 and 45 in ANAPC5. As
the estimated frequencies of several haplotypes were low, we restricted
our analyses to haplotypes carried by two or more individuals in this
population. This resulted in 21 haplotypes in P2X7R, 9 in P2X4R, 25 in
CAMKK2 and 21 in ANAPC5. Haplotype alleles are denoted as “1”
(major allele) or “2” (minor alleles) as determined within this popula-
tion and ordered by chromosomal position as in Table 1.

Nine haplotypes (one in P2X7R, one in P2X4R, five in CAMKK2 and
two in ANAPC5; Table 3) met the criteria for inclusion in logistic re-
gression modelling along with body weight, TB and nadir CD4 T-cell
counts. Four of these haplotypes perfectly predicted protection (P2X7R
haplotype 10 and CAMKK2 haplotype 8) or risk (CAMKK2 haplotype 22
and ANAPC5 haplotype 19) of HIV-SN and were therefore omitted from
logistic regression modelling. P2X7R haplotype 10 contains no minor
alleles and CAMKK2 haplotype 8 contains three minor alleles –
rs11065504*C, rs3714454*T and rs1109453*A. Of which,
rs11065504*C independently associated with lower rates of HIV-SN.
CAMKK2 haplotype 22 contained just one minor allele, rs10849861*T,
which independently associated with increased risk of HIV-SN. ANAPC5
haplotype 19 contained five minor alleles, of which, none were linked
with HIV-SN in bivariate analyses.

The optimal model retained CAMKK2 haplotypes 2, 3 and 4 after
adjusting for body weight, TB and nadir CD4 T-cell count (model p =
0.0005, n = 71, Pseudo R2 = 0.26; Table 2). All three CAMKK2 hap-
lotypes in the optimal model associated with increased risk of HIV-SN
(OR = 4.44-7.79; Table 2). No minor alleles were common across all
three haplotypes although they share three major alleles:
rs11065504*G, rs7965129*A and rs2686367*C. Of which, the minor
“C” allele of rs11065504 associated with lower rates of HIV-SN in

bivariate and multivariate analyses (Table 1 and 2).
Haplotype networks were built for each gene using all haplotypes

derived by fastPHASE to determine if haplotypes associating with HIV-
SN were clustered and to permit analyses of rarer haplotypes but no
distinct haplogroups were identified for any gene (Appendix A).

4. Discussion

This study investigated HIV-SN in Southern African patients before
ART and after 6-8 months on ART which excluded the neurotoxic drug
stavudine. We assessed associations between HIV-SN and polymorph-
isms in P2X7R, P2X4R, CAMKK2, and ANAPC5, as alleles of these genes
affected HIV-SN in patients receiving stavudine [29]. Our inclusion and
exclusion criteria minimised alternative causes of neuropathy, but a
limitation of our study is the modest number of participants recruited.
This limited our ability to correct for multiple comparisons and our
power to investigate associations between HIV-SN and infrequent SNP
and haplotypes. The large confidence intervals obtained in some re-
gression models reflect the resulting uncertainty. Nonetheless we con-
firm that HIV-SN remains prevalent and can develop before or on sta-
vudine-free ART, and establish a role for CAMKK2 SNP and haplotypes
in HIV-SN in patients treated without stavudine.

HIV-SN was diagnosed in nine individuals (12%) before commen-
cing ART and an additional 20 cases (27%) re-assessed at 6-8 months.
The timing suggests a role for HIV itself and/or immune recovery on
ART in HIV-SN. Some individuals experience acute inflammation
shortly after initiating ART (known as immune restoration in-
flammatory syndrome, IRIS). This has been linked to HIV-SN and
neuropathic pain [18,39]. However, signs of HIV-SN may also persist or
evolve when HIV RNA is undetectable and CD4 T-cells are replenished
[40]. A direct role for HIV remains plausible as animal and human ex

Table 2
CAMKK2 SNP and haplotypes associated with HIV-SN in Africans.

Variable Odds Ratio P 95% Confidence
Interval

SNP Modela: n = 69,bp < 0.0001, Pseudo R2= 0.54
Body Weight (kg) 1.07 0.031 1.01–1.13
History of Tuberculosis 11.28 0.071 0.81–156
Nadir CD4 T-cells/μl 1.00 0.007 0.98–1.00
rs503720*G (P2X7R) 133 0.002 6.47–2757
rs10849861*A (CAMKK2) 5.99 0.050 1.00–35.9
rs1653586*T (CAMKK2) 67.8 0.004 3.80–1210
rs11065504*C (CAMKK2) 0.02 0.006 0.00–0.31
rs2089886*A (ANAPC5) 6.68 0.088 0.76–58.9

Haplotype Modelc: n = 71,dp = 0.0005, Pseudo R2= 0.26
Body Weight (kg) 1.03 0.032 1.00–1.07
History of Tuberculosis 5.81 0.076 1.16–29.1
Nadir CD4 T-cells/μl 0.99 0.049 0.99–1.00
CAMKK2 Haplotype 2 2.82 0.153 0.68–11.7
CAMKK2 Haplotype 3 3.42 0.106 0.77–15.2
CAMKK2 Haplotype 4 6.85 0.110 0.65–72.7

Haplotypes which aligned perfectly with the presence or absence of HIV-SNe

P2X7R Haplotype 10 Never found in individuals with HIV-SN
CAMKK2 Haplotype 8 Never found in individuals with HIV-SN
CAMKK2 Haplotype 22 Only found in individuals with HIV-SN
ANAPC5 Haplotype 19 Only found in individuals with HIV-SN

a The optimal logistic regression model considering demographic variables
and SNP.
b Excluding samples with missing demographic, clinical and/or genotype

data.
c The optimal logistic regression model considering demographic variables

and haplotypes.
d Excluding samples with missing demographic or clinical data, or in-

dividuals carrying haplotypes aligned perfectly with the presence or absence of
HIV-SN.
e Haplotypes excluded from multivariate analyses as they aligned perfectly

with risk or protection of HIV-SN.
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Table 3
Nine haplotypes associated weakly with HIV-SN.

(continued on next page)
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vivo studies demonstrate a role for inflammation initiated by the HIV
envelope glycoprotein 120 [41,42]. Indeed, significant clinical risk
factors include low nadir CD4 T-cell counts, which are a permanent
marker of a history of severe HIV disease (Appendix A). The data are
consistent with studies prior to the advent of combination ART [43–45]
and with our findings in Indonesians treated for 4.4 (1.1-12.7) years
without stavudine [2]. Participants here were treated without stavu-
dine, but it remains possible that other NRTIs may promote HIV-SN.
Most participants (72/75) received tenofovir, which has been im-
plicated in the development of peripheral neuropathy in mice [46].
However, studies in humans report no associations between tenofovir
use and HIV-SN [2,47,48]. Further studies addressing the impact of

HIV, immune recovery and next generation NRTIs on peripheral nerves
are warranted.

Genetic analyses generated two models predicting risk of HIV-SN. In
the optimal model considering haplotypes, three common CAMKK2
haplotypes (CAMKK2 haplotype 2, 3 and 4) associated with HIV-SN
after adjusting for lower nadir CD4 T-cell count, prior tuberculosis and
greater body weight (model p = 0.0007; Pseudo R2 = 0.26; Table 2).
No minor alleles were common across all three haplotypes but two
minor alleles (rs3817190*T and r9805130*G) were shared by CAMKK2
haplotypes 2 and 4, and so warrant consideration. rs3817190 is a non-
synonymous SNP, changing a threonine (rs3817190*T) to serine
(rs3817190*A) in exon 1, reducing the ability of CaMKK2 to function

Table 3 (continued)

a The number of individuals without HIV-SN who carry 1 or 2 copies of the haplotype.
b The number of individuals with HIV-SN who carry 1 or 2 copies of the haplotype.
c Fisher’s Exact test was used when n<5.
d Nine haplotypes meeting criteria for inclusion in logistic regression models (p<0.20) are shaded.
e Haplotypes never found in individuals with HIV-SN.
f Haplotypes only found in individuals with HIV-SN.
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autonomously [20]. However in Indonesians, rs3817190*A is the minor
allele and is found in a haplotype associated with increased risk of HIV-
SN [30]. In South Africans, rs3817190*T is the minor allele in a hap-
lotype associated with risk. Moreover, neither rs3817190*T nor
r9805130*G associated with HIV-SN in bivariate analyses in South
Africans (p = 0.74 and 0.38; Table 2) so these are probably not cau-
sative alleles. Three major alleles were common between all three risk
haplotypes – rs11065504*G, rs7965129*A and rs2686367*C.
rs7965129 is monoallelic and rs2686367 did not associate with HIV-SN
in bivariate analyses here (p = 0.66; Table 2) or in Indonesians (p =
0.51; [30]). The minor “C” allele of rs11065504 associated with lower
risk in bivariate analyses (OR = 0.02, 95% CI = 0.00-0.31; Table 1)
and was retained in the logistic regression. This SNP warrants further
consideration.

In the optimal model considering SNP alleles, rs503720*G in
P2X7R, rs10849861*A, rs1653586*T and rs11065504*C in CAMKK2,
and rs2089886*A in ANAPC5 associated with HIV-SN after adjusting
for body weight, nadir CD4 T-cell counts and TB (model p<0.0001, n
= 69, pseudo R2 = 0.54; Table 2). These SNP demonstrate inconsistent
associations and are therefore unlikely to play a direct role in HIV-SN.
For example, rs503720*G and rs2089886*A associated with HIV-SN in
Africans, but showed no associations in Indonesians [30]. Furthermore,
no P2X7R and ANAPC5 haplotypes were retained in the optimal hap-
lotype model, and just one P2X7R and ANAPC5 haplotype aligned
perfectly with risk or protection of HIV-SN but did not contain
rs503720*G or rs2089886*A.

rs11065504*C which associated with decreased risk (OR = 0.02,
95%CI = 0.00–0.31) and rs10849861*A with increased risk of HIV-SN
(OR = 5.99, 95CI% = 1.00–35.9; Table 2) demonstrated opposing
associations in Indonesians, both individually or within haplotypes, and
rs1653586*T does not associate with HIV-SN in Indonesians [30]. This
suggests that these CAMKK2 alleles also do not play a direct role in HIV-
SN. However, these three alleles are consistently found within haplo-
types associated with altered risk of HIV-SN here in Africans.
rs11065504*C is one of three minor alleles found in CAMKK2 haplo-
type 8, which aligned with protection from HIV-SN (Table 3). Fur-
thermore, the corresponding major “risk” allele (rs11065504*G) was
contained within all three haplotypes associated with increased risk of
HIV-SN (CAMKK2 haplotypes 2, 3 and 4; Table 2). rs10849861*A is the
only minor allele in CAMKK2 haplotype 22, which aligned perfectly
with risk of HIV-SN (Table 3), and is included in CAMKK2 haplotype 4
(Table 3). Lastly, rs1653586*T was contained in CAMKK2 haplotype 2
which associated with risk of HIV-SN (Table 2). It is plausible that while
these alleles may not directly drive HIV-SN, they may be in LD and co-
inherited with the causative allele/s.

Our results show clearer associations between HIV-SN and poly-
morphisms and haplotypes of CAMKK2 than with P2X7R, P2X4R, and
ANAPC5. While all four genes are involved in inflammation, CAMKK2 is
crucial in neuronal growth and repair pathways. Associations with
CAMKK2 may reflect an individual’s ability to recover from neuronal
insults, so pharmacological activation or inhibition of CaMKK2 and/or
its substrates may prevent or revert pathological features of HIV-SN.
This is supported in a rodent model of diabetic peripheral neuropathy,
whereby activation of AMPK (a CaMKK2 substrate) with anti-mus-
carinic drugs overcame mitochondrial dysfunction [26]. Treatment
prevented or reversed markers of peripheral neuropathy including loss
of sensory nerve terminals, thermal hyperalgesia and decreased nerve
conduction.

Overall, this study confirms that HIV-SN remains a clinically im-
portant issue affecting HIV+ individuals prior to and shortly after
commencing ART without stavudine. Furthermore, our results confirm
a role for polymorphisms in CAMKK2 in the pathogenesis of HIV-SN
independent of stavudine, but critical genotypes differ between ethni-
cities [30] so the causative SNP have not been identified. Our approach
utilising multivariable analyses identifies the strongest determinants of
risk. Replications of this study in large independent cohorts, defined by

treatment status and ethnicity, are warranted to confirm our findings
and to elucidate underlying mechanisms.
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ONLINE SUPPLEMENT 1 

Supplementary Table 1. Demographic and clinical variables associate with HIV-SN in Africans 

Variable With HIV-SN 

(n=29) 

Without HIV-SN 

(n=46) 

P value 

Age (years) 40 (24-60) 37 (19-58) 0.11 

Height (cm) 168 (147-179) 163 (135-186 (n=45) 0.03 

Weight (kg) 66 (45-112) 55 (35-110) n=44 0.03 

Current CD4 T-cells/µl 221 (22-685) 300 (8-832) 0.06 

Nadir CD4 T-cells/µl 107 (4-575) 223 (8-771) 0.002 

HIV RNA >500 copies/ml 21/29 (72%) 25/46 (54%) 0.12 

History of Tuberculosis 6/28 (29%) 3/45 (7%) 0.08c 

Female Gender 15/29 (52%) 30/46 (65%) 0.25 

Variables significantly associated with HIV-SN are in bold (p<0.05). All demographic variables achieving 
p<0.20 were included in logistic regression modelling. 
a Mann-Whitney test used to assess all continuous variables – Median (range) 
b χ2 test used to assess dichotomous variables – Proportion (%) 
c Fisher’s Exact test used where n<5 

Supplementary Table 2. Logistic regression modelling identifies demographic and clinical variables 

independently associating with HIV-SN in Africans 

Variable Odds Ratio P Value 95% CI 

Optimal Model: n=71a, p=0.0007, Pseudo R2=0.18 

Weight (kg) 1.04 0.03 1.00-1.08 

History of Tuberculosis 4.26 0.07 0.90-20.03 

Nadir CD4 T-cells/µl 1.00 0.03 0.99-1.00 

a excluding samples with missing demographic, clinical and/or genotype data 
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ONLINE SUPPLEMENT 2 

Supplementary Figure 1. No clear P2X7R haplogroups were identified 

The P2X7R haplotype network was constructed in PopART using the Median-Joining method and an 

epsilon value of 0. The network includes 100 P2X7R haplotypes which were derived from the 13-SNP 

genotypes of the 75 Southern African using fastPHASE. No distinct haplotype clusters can be seen.  

47/170



Supplementary Figure 2. No clear P2X4R haplogroups were identified 

The P2X4R haplotype network was constructed in PopART using the Median-Joining method and an 

epsilon value of 0. The network includes 17 P2X4R haplotypes which were derived from the 7-SNP 

genotypes of the 75 Southern African using fastPHASE. No distinct haplotype clusters can be seen. 
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Supplementary Figure 3. No clear CAMKK2 haplogroups were identified 

The CAMKK2 haplotype network was constructed in PopART using the Median-Joining method and 

an epsilon value of 0. The network includes 160 CAMKK2 haplotypes which were derived from the 

18-SNP genotypes of the 75 Southern African using fastPHASE. No distinct haplotype clusters can be

seen.
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Supplementary Figure 4. No clear ANAPC5 haplogroups were identified 

The ANAPC5 haplotype network was constructed in PopART using the Median-Joining method and 

an epsilon value of 0. The network includes 45 ANAPC5 haplotypes which were derived from the 11-

SNP genotypes of the 75 Southern African using fastPHASE. No distinct haplotype clusters can be 

seen 
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Chapter 4 

Polymorphisms in CAMKK2 associate with susceptibility to 

sensory neuropathy in HIV patients treated without stavudine 

Polymorphisms in the P2X-block associated with HIV-SN in South Africans treated with and 

without stavudine, confirming a role independent of mechanisms invoked by stavudine. 

However, genotypes identified differed between the two South African cohorts so the 

causative alleles may differ in the manifestation of HIV-SN without stavudine. To help identify 

critical genotypes, I next investigated associations between the P2X-block and HIV-SN in 

Indonesians treated without stavudine. 

Data from this chapter have been published: 

Gaff J, Octaviana F, Ariyanto I, Cherry C, Laws SM, Price P. Polymorphisms in CAMKK2 associate with 

susceptibility to sensory neuropathy in HIV patients treated without stavudine. Journal of 

Neurovirology. 2019;25(6):814-24. doi: 10.1007/s13365-019-00771-w 
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Abstract
HIV-associated sensory neuropathy (HIV-SN) is a debilitating neurological complication of HIV infection potentiated by the
antiretroviral drug stavudine. While stavudine is no longer used, HIV-SN now affects around 15% of HIV+ Indonesians. Here,
we investigate whether polymorphisms within the P2X-block (P2X4R, P2X7R,CAMKK2) and/orANAPC5mark susceptibility to
HIV-SN in this setting. As polymorphisms in these genes associated with HIV-SN in African HIV patients receiving stavudine,
the comparison can identify mechanisms independent of stavudine. HIV patients who had never used stavudine (n = 202)
attending clinics in Jakarta were screened for neuropathy using the AIDS Clinical Trials Group Brief Peripheral Neuropathy
Screen. Open-array technology was used to type 48 polymorphisms spanning the four genes. Haplotypes were derived for each
gene using fastPHASE. Haplogroups were constructed with median-joining methods. Multivariable models optimally predicting
HIV-SN were based on factors achieving p < 0.2 in bivariate analyses. Minor alleles of three co-inherited polymorphisms in
CAMKK2 (rs7975295*C, rs1560568*A, rs1132780*T) associated with a reduced prevalence of HIV-SN individually and after
adjusting for lower CD4 Tcell count and viremia (p = 0.0002, pseudo R2 = 0.11). The optimal model for haplotypes linked HIV-
SN with viremia and lower current CD4 T cell count, plus CAMKK2 haplotypes 6 and 11 and P2X7R haplotypes 2 and 12 (p =
0.0002; pseudo R2 = 0.11). CAMKK2 haplogroup A (includes 16 haplotypes and all instances of rs7975295*C, rs1560568*A,
rs1132780*T) associated with reduced rates of HIV-SN (p = 0.02, OR = 0.43 CI = 0.21–0.88). These findings support a protec-
tive role for these three alleles, suggesting a role in the pathogenesis of HIV-SN that is independent of stavudine.

Keywords HIV . Sensory neuropathy .CAMKK2 . Single nucleotide polymorphisms . Indonesia

Introduction

HIV-associated sensory neuropathy is a debilitating neu-
rological complication of HIV infection and antiretroviral
therapy (ART) (Evans et al. 2011; Keswani et al. 2002;
Smyth et al. 2007; Wulff et al. 2000). Neurotoxic ART
such as stavudine has been replaced with safer therapies,

reducing the prevalence of HIV-SN from 34% to 15% in
HIV+ Indonesians (Affandi et al. 2008; Octaviana et al.
2018). HIV-SN can impact an individual’s ability to work
and their quality of life. No interventions prevent HIV-SN
progression (Ellis et al. 2010; Phillips et al. 2010), so a
better understanding of the underlying mechanisms will
have clinical value.
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HIV-SN is predominantly a small-fibre neuropathy, affect-
ing peripheral C-fibres with loss of neurons in the dorsal root
ganglia (DRG), degeneration of long axons and loss of prima-
ry afferent terminals in the epidermis of the feet and hands
(Shikuma et al. 2015). Signs of an inflammatory pathology
include infiltration of macrophages and expression of chemo-
kine receptors in the affected epidermis (Mountford et al.
2018; Polydefkis et al. 2002) and associations with genotypes
of TNFA and neighbouring genes (Hendry et al. 2016; Wadley
et al. 2015). The mechanisms driving the neuronal death and
inflammation are not fully understood, but P2X7R, P2X4R
and CaMKK2 are plausible candidates.

P2X7R and P2X4R are purinergic receptors involved in
inflammatory pathways and excitatory neurotransmission fol-
lowing activation by ATP (Tsuda et al. 2012). P2X7R knock-
out mice demonstrate reduced mechanical and thermal per-
ception whereas tactile allodynia is reduced following admin-
istration of P2X7R inhibitors in rats in a model of neuropathic
pain (Chessell et al. 2005). Additionally, P2X7R induces pro-
inflammatory cytokines including TNFα (Kawasaki et al.
2008). Stimulation of P2X4R in hyperactive microglia trig-
gers tactile allodynia (Tsuda et al. 2003). Activation of P2X4R
stimulates prostaglandin E2which in turn sensitises peripheral
nociceptors increasing the responsiveness of sensory neurons
in the periphery (Lin et al. 2006).

CaMKK2 (calcium/calmodulin kinase kinase 2) phosphor-
ylates AMPK (AMP-activated protein kinase), SIRT1 (sirtuin
1), CaMKIVand CaMKI (calcium/calmodulin kinase 4 and 1)
(Wen et al. 2013); Kokubo et al. 2009; Racioppi and Means
2012). AMPK activation is associated with reduced inflam-
matory and macrophage responses (Racioppi et al. 2012;
Zhang et al. 2011). SIRT1 regulates axonal regeneration, pro-
tects neurons from oxidative stress and promotes dendrite
arborisation (Codocedo et al. 2012; Li et al. 2008; Liu et al.
2013). CaMKIV activation upregulates NFkB and cAMP re-
sponse element-binding protein (CREB) which stimulates
brain-derived neurotrophic factor (BDNF) promoting neuro-
nal growth and survival (Cao and DeLeo 2008; Racioppi and
Means 2012; Wayman et al. 2008). BDNF has been implicat-
ed in neuropathic pain (Coull et al. 2005; Ulmann et al. 2008).
Activated CaMKI regulates axonal growth cone morphology
and outgrowth, dendrite arborisation and synapse formation
(Ageta-Ishihara et al. 2009; Wayman et al. 2008).

P2X7R, P2X4R and CAMKK2 (the “P2X-block”) are
neighbouring genes located in a region of high linkage dis-
equilibrium (LD) in chromosome 12—spanning approximate-
ly 165 kb. Single nucleotide polymorphisms (SNPs) and hap-
lotypes from the P2X-block associated with HIV-SN in
Southern African HIV+ patients receiving stavudine-based
ART (Goullee et al. 2016). An optimal multivariable model
l inked rs208307*G in P2X7R , rs2668252*C and
rs1169719*A in P2X4R and rs1560568*A, rs7975295*C
and rs2686387*A in CAMKK2, plus age and height, with

increased risk of HIV-SN. A second model linked HIV-SN
status with age, height, a P2X7R haplotype and three
CAMKK2 haplotypes, which associated with reduced risk of
HIV-SN despite carrying rs1560568*A and rs7975295*C. As
these SNPs had opposing associations when assessed inde-
pendently and in haplotypes, the causal SNP/s may lay outside
the panel tested.

Topologically associated domains (TADs) have been
identified on chromosome 12 in astrocytes from the cerebel-
lum and spinal cord. The larger TAD spans 120600001–
121840000 bp and encompasses 30 genes, including the
P2X-block and ending at the 5′ border of ANAPC5 (https://
www.encodeproject.org/experiments/; Online Resource 1).
ANAPC5 lies upstream of CAMKK2 and encodes the
anaphase promoting complex 5 (AnapC5), one of over 12
subunits of the anaphase-promoting complex (APC) — an
E3 ubiquitin ligase which tags A and B cyclins, marking
them for destruction by the 26S proteasome. This permits
progression of the cell cycle from metaphase into anaphase
and so promotes mitosis (Peters 2006; Thornton and
Toczyski 2006; Zhou et al. 2016). Replication of neurons
would disrupt signal transduction so re-entry into the cell
cycle results in apoptosis (Kaul et al. 2001; Windebank
and McDonald 2002). Altered function or expression of
ANAPC5 may alter APC activity and result in neuronal
death characteristic of HIV-SN. AnapC5 also interacts with
IL-17RA (Ho et al. 2013), the receptor for the IL-17 inflam-
matory cytokine, reducing downstream signalling which
may impair defence against infections and modify inflam-
matory diseases including psoriasis, rheumatoid arthritis and
multiple sclerosis (Chang et al. 2011; Genovese et al. 2010;
Papp et al. 2012). Hence, SNPs in ANAPC5 may also con-
tribute to HIV-SN via inflammatory pathways.

Here, we investigate whether SNPs within the P2X-block
and ANAPC5 mark susceptibility to HIV-SN in Indonesian
HIV+ patients who have never received neurotoxic stavudine
(Octaviana et al. 2018).

Materials and methods

Participants

HIV-positive adults who had used ART for at least 12 months
but who had never been exposed to stavudine were screened
for neuropathy at POKDISUS HIV Care Clinic, Cipto
Mangunkusumo Hospital, Jakarta, Indonesia. Patients with
any history of another condition that might be associated with
a neuropathy or any condition preventing the patient from
being able to provide informed consent were excluded.
Neuropathy was assessed using the AIDS Clinical Trials
Group Brief Peripheral Neuropathy Screen (ACTG-BPNS)
and defined as present if the individual had one or more of
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the lower limb neuropathic symptoms (pain, aching or burn-
ing, pins and needles or numbness), plus absent ankle reflexes
or reduced vibration sense at the great toe (vibration of a 128-
Hz tuning fork felt for 10 s or less). We did not diagnose
neuropathy in patients with only asymptomatic neuropathic
signs, as the presence of both symptoms and signs on the
ACTG-BPNS tool better associates with impaired peripheral
nerve function and pathology (Cherry et al. 2005).
Demographic associations with HIV-SN in the parent cohort
have been described previously (Octaviana et al. 2018). DNA
samples were available from 185 patients and an additional 9
HIV-SN and 8 age and gender-matched Indonesian HIV+ pa-
tients without HIV-SN recruited in 2012 at the same clinic and
who met the inclusion criteria. The study was approved by the
Ethics Committee of the Faculty of Medicine, Universitas
Indonesia. Written and informed consent was obtained.

Genotyping and Haplotyping

DNA was extracted from EDTA-blood samples using
Favorprep Blood Genomic DNA Extraction Mini Kit
(Favorgen, Taiwan). Samples were adjusted to 50 ng/μL, di-
luted 1:1 with TaqMan® OpenArray™ Genotyping Master
Mix and genotyped for 48 SNPs across P2X7R, P2X4R,
CAMKK2 and ANAPC5 using cus tom TaqMan®
OpenArray™ Real-Time PCR Plates using the QuantStudio
12 K Flex Real-Time PCR System (Life Technologies, NY).
Genotypes were assigned manually using TaqMan®
Genotyper Software and assessed for conformance with
Hardy-Weinberg Equilibrium (HWE). All SNPs met HWE
criteria except for five SNPs that were monoallelic in
Indonesians (rs1169737, rs10160951, rs1169719,
rs11837114 and rs7965129). These were retained in our anal-
yses. Haplotypes and estimated population frequencies were
derived for each gene individually using fastPHASE (Scheet
and Stephens 2006) with the default parameters and sampled
from the observed genotypes an additional 5000 times per
sample. Haplotypes with an estimated frequency less than
1% were excluded from analyses. Haplotype networks were
constructed for P2X7R, P2X4R and CAMKK2 with median-
joining methods (Bandelt et al. 1999) using PopART v1.7
(Population Analysis with Reticulate Trees, Otago, New
Zealand; http://popart.otago.ac.nz). Non-synonymous SNPs
linked with HIV-SN were assessed with the SIFT (sorting
intolerant from tolerant) web server to predict their impact
on protein function (https://sift.bii.a-star.edu.sg/www/SIFT_
dbSNP.html; Sim et al. 2012).

Statistical analyses

Stata 12 (StataCorp, TX) was used to assess bivariate associ-
ations between HIV-SN and demographic and clinical vari-
ables, SNPs and haplotypes using t tests, Mann-Whitney tests,

Chi2 or Fisher’s exact tests, as appropriate. No corrections
were made for multiple comparisons in this exploratory study.
As many SNPs and haplotypes occurred at low frequencies,
all variables which showed weak (p = 0.05–0.2) or significant
(p < 0.05) associations were included in logistic regression
modelling. Optimal logistic regression models were deter-
mined with a stepwise removal process.

Results

Markers of severe and persistent HIV disease
associated with HIV-SN

In the parent cohort (n = 197) described previously,
HIV-SN was associated with poor control of HIV repli-
cation on ART (Octaviana et al. 2018). With the addi-
tional 17 patients, 17% (35/202) had HIV-SN and
28.7% (58/202) were female, with a median (range)
age of 35 years (19–60), 434 (44–1166) CD4 T cells/
μl and 0 (0–121,000) copies HIV RNA/ml at the time
of assessment. Demographic factors associated with
HIV-SN in bivariate analyses and included in the logis-
tic regression modelling included current CD4 T cell
count (p = 0.006), current viremia (> 500 copies of
HIV RNA/ml; p = 0.004), a nadir CD4 T cell count <
200/μl (p = 0.02) and a history of tuberculosis (p =
0.14). The current viral load and/or CD4 T cell count
was not available for seven patients, so the logistic re-
gression models were based on 195 patients. The final
model identified current viremia and a lower CD4 T cell
count as the independent clinical associations with HIV-
SN (p = 0.0006; pseudo R2 = 0.08).

Three SNPs in CAMKK2 associated with reduced
prevalence of HIV-SN

Minor alleles of three SNPs in CAMKK2 (rs7975295*C,
rs1560568*A and rs1132780*T) associated with a reduced
risk of HIV-SN in univariate analyses (p < 0.05; OR = 0.44;
95% CI = 0.21–0.94; Table 1). However, the minor alleles
were invariably co-inherited so only rs1560568*Awas includ-
ed in logistic regression modelling. We also included
rs25644*G in P2X4R and rs10849861*A in CAMKK2 (as
they achieved p < 0.2), plus current CD4 T cell count and
viremia. The optimal model identified carriage of
rs1560568*A (marking rs7975295*C and rs1132780*A) as
an independent association with HIV-SN, after adjustment
for a lower CD4 T cell count and viremia (p = 0.0002,
pseudo R2 = 0.11; Table 3). In this model, carriage of
rs1560568*Awas again associated with a reduced prevalence
of HIV-SN (OR = 0.43, 95%CI = 0.19–0.95) so at least one of
the three alleles may be protective.

J. Neurovirol. (2019) 25:814–824816

54/170

http://popart.otago.ac.nz/
https://sift.bii.a-star.edu.sg/www/SIFT_dbSNP.html
https://sift.bii.a-star.edu.sg/www/SIFT_dbSNP.html


Table 1 Three SNPs in CAMKK2 significantly associate with reduced risk of HIV-SN

RSID

Chromosome 

12 Location

Minor

Allele

Major 

Allele MAF
a

Without

HIV-SN
b,d

With 

HIV-SN
c,d

P (Chi
2

)
e

P2X7R

rs10849849 121148592 G A 0.32 88/167 53% 17/35 49% 0.66

rs1718125 121155216 A G 0.43 117/167 70% 21/35 60% 0.24

rs208293 121162377 G A 0.50 123/167 74% 26/35 74% 0.94

rs1169737 121162491 T C 0.00 0/167 0% 0/35 0% 1.00

rs1186055 121162726 T G 0.38 101/165 61% 19/35 54% 0.45

rs208307 121166053 G C 0.17 54/165 33% 8/35 23% 0.25

rs503720 121167271 A G 0.18 56/167 34% 9/34 26% 0.42

rs7132846 121177131 T C 0.22 65/166 39% 13/35 37% 0.82

rs1718119 121177300 T C 0.21 59/165 36% 11/35 31% 0.63

rs10160951 121180454 G C 0.00 0/166 0% 0/35 0% 1.00

rs2230912 121184393 G A 0.01 4/167 2% 0/34 0% 1.00

rs3751142 121184616 A C 0.22 66/167 40% 13/35 37% 0.79

rs1621388 121184760 T C 0.21 58/166 35% 11/35 31% 0.69

P2X4R

rs2686387 121211067 G C 0.41 109/167 65% 20/35 57% 0.36

rs7298368 121221881 T C 0.41 107/166 64% 19/35 54% 0.26

rs25644 121228843 G A 0.31 88/164 54% 14/35 40% 0.14

rs2668252 121230671 C A 0.43 111/166 67% 22/35 63% 0.65

rs11608486 121232923 C G 0.01 2/162 1% 0/34 0% 1.00

rs1169719 121233310 A G 0.00 0/166 0% 0/35 0% 1.00

rs7961979 121233458 A C 0.02 6/167 4% 0/35 0% 0.59

CAMKK2

rs1718158 121237098 G A 0.10 27/166 16% 8/35 23% 0.35

rs10849861 121237504 A G 0.32 92/166 55% 14/35 40% 0.10

rs1653586 121237772 T G 0.10 27/166 16% 8/35 23% 0.35

rs1653587 121238429 G A 0.08 23/167 14% 7/35 20% 0.35

rs11065504 121242657 C G 0.30 84/165 51% 16/35 46% 0.58

rs2686342 121247385 T A 0.25 66/166 40% 17/35 49% 0.34

rs3794204 121249212 G A 0.47 120/166 72% 22/35 63% 0.27

rs7975295 121251298 C T 0.34 100/166 60% 14/35 40% 0.028

rs2686344 121252745 T C 0.24 64/166 39% 17/35 49% 0.27

rs1560568 121252784 A G 0.34 101/167 60% 14/35 40% 0.026

rs1132780 121253293 T C 0.34 100/165 61% 14/35 40% 0.037

rs7314454 121260982 T C 0.04 15/165 9% 2/35 6% 0.74

rs11837114 121263634 G A 0.00 0/162 0% 0/33 0% 1.00

rs1109453 121269518 A G 0.07 21/165 13% 3/35 9% 0.77

rs3817190 121274274 A T 0.18 57/167 34% 12/35 34% 0.99

rs9805130 121277592 A G 0.19 59/167 35% 12/35 34% 0.94

rs7965129 121297604 G A 0.00 0/166 0% 0/35 0% 1.00

rs2686367 121297794 C A 0.13 38/163 23% 10/35 29% 0.51
a.

MAF – minor allele frequency
b.

Number of individuals without HIV-SN who carry 1 or 2 copies of the minor allele
c.

Number of individuals with HIV-SN who carry 1 or 2 copies of the minor allele
d.

Up to 6 samples failed to genotype for each SNP
e.

Fisher’s Exact test was used where n<5
f.

Three SNPs in CAMKK2 which significantly associate with reduced risk of HIV-SN are in bold
g.

Five SNPs which met the criteria for inclusion in logistic regression modelling (p<0.2) are shaded
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Two CAMKK2 and two P2X7R haplotypes associated
with HIV-SN

FastPHASE, applied to each gene separately, yielded 33 hap-
lotypes which occurred at greater than 1% in this population
(Table 2). Of these, 14 haplotypes were from P2X7R and
accounted for 88% of patients, 5 in P2X4R accounted for
97% and 14 in CAMKK2 accounted for 89%. Each haplotype
is presented using the individual SNP alleles [1(major) or 2
(minor)] as determined in this population. These are ordered to
match their chromosomal position (as in Table 1).

No haplotypes significantly associated with HIV-SN but
three in P2X7R, one in P2X4R and four in CAMKK2 met the
criterion (p < 0.2) for inclusion in logistic regression model-
ling (Table 2). The optimal model linked viremia and a lower
current CD4 T cell count, plus CAMKK2 haplotypes 6 and 11
and P2X7R haplotypes 2 and 12 with HIV-SN (model p =
0.0002; pseudo R2 = 0.11; Table 3). Haplotypes 6 and 11 lack
rs1560568*A, rs7975295*C or rs1132780*A (which associ-
ated with protection). The associations of P2X7R haplotypes 2
and 12 with HIV-SN were in the opposite direction in the
optimal model and neither associated with HIV-SN in bivari-
ate analyses.

CAMKK2 haplogroups associated with reduced risk
of HIV-SN

Haplotype networks were constructed for P2X7R, P2X4R and
CAMKK2 individually, but no distinct haplogroups were iden-
tified in P2X7R and P2X4R (Online Resource 2 and 3).

The 64 CAMKK2 haplotypes segregated into four
haplogroups (denoted A-D; Fig. 1.). This accounted for 27
of the 64 haplotypes and 80% of the patient population.
Haplogroups C and D contained two and three haplotypes,
and each accounted for only 1% of this population so only
haplogroups A and B were assessed for associations with
HIV-SN.

CAMKK2 haplogroup A included 16 haplotypes.
Haplotypes from within this group were carried by 49% (17/
35) of patients with HIV-SN and 69% (115/167) of patients
without and associated with being free of HIV-SN (p = 0.02,
OR = 0.43 CI = 0.21–0.88). Haplogroup A included two hap-
lotypes which were not seen here in any individual with HIV-
SN. All haplotypes in the group included the three alleles
associated with lower rates of HIV-SN here [rs7975295*C,
rs1560568*A, rs1132780*T], and/or rs3794204*G.
rs3794204*G is an intronic SNPwhich showed no association
with HIV-SN on bivariate analyses but is carried in all haplo-
types containing the three alleles of interest. Our findings sup-
port a protective role for the three shared alleles.

CAMKK2 haplogroup B covered six haplotypes and was
carried by 20% (7/35) and 11% (19/167) of patients with and
without HIV-SN, creating a weak association with HIV-SN

(p = 0.16, OR = 1.95, CI = 0.76–5.08). Haplogroup B includ-
ed CAMKK2 haplotype 4 which also weakly associated with
risk of HIV-SN (p = 0.055) and contains four minor alleles
( r s1718158*G, rs1653586*T, rs1653587*G and
rs3794204*G) but these did not associate with HIV-SN.

ANAPC5 genotypes did not associate with HIV-SN

DNA samples were genotyped for 10 SNPs in ANAPC5 and
12 haplotypes which occurred at greater than 1% were de-
rived. However, no SNPs or haplotypes associated with
HIV-SN (p = 0.2–1.0; data not shown), so LD with ANAPC5
does not explain the protective effect of rs7975295*C,
rs1560568*A and/or rs1132780*T in CAMKK2.

Discussion

HIV-SN is a neurological complication which remains clini-
cally important even though recommended antiretroviral reg-
imens no longer include neurotoxic drugs such as stavudine.
This study investigated genotypes of P2X7R, P2X4R and
CAMKK2 that were associated with HIV-SN in an African
population treated with stavudine (Goullee et al. 2016).
Here, we describe a cohort of Indonesian HIV patients who
had never received stavudine. HIV-SN was associated with
CD4 T cell counts and HIV RNA. This contrasted with the
association with age and height seen in the same clinic popu-
lation 10 years earlier when patients received stavudine
(Octaviana et al. 2018) and establishes the possibility that
genetic associations may illuminate distinct mechanisms un-
derlying HIV-SN in patients who do not receive stavudine.
Here, our optimal model considering SNPs included a lower
CD4 T cell count and viremia at the time of assessment and
rs1560568*A in CAMKK2. This allele is co-inherited with
rs7975295*C and rs1132780*T, so either of these or a linked
(untyped) SNP may exert the protective effect. Similarly, the
optimal model considering haplotypes included a lower CD4
T cell count and viremia at the time of assessment plus four
haplotypes (P2X7R-2, P2X7R-12,CAMKK2-2 andCAMKK2-
11).

As the genes lie in a region of high LD and within a TAD, it
is necessary to consider whether these associations reflect the
functions of P2X4R, P2X7R or CaMKK2. The P2X7R-2 and
P2X7R-12 (2211211211121 and 2211111211121) haplotypes
had opposing associations with HIV-SN in the optimal model
(OR = 0.44 versus OR = 11.37; Table 3). These haplotypes
differ by one allele, rs1186055*T, an intronic variant which
was associated with risk of HIV-SN in South African HIV+
patients (Goullee et al. 2016) but not in this study (Table 1).
These two haplotypes also shared four minor alleles
(rs10849849*G, rs1718125*A, rs7132846*T and
rs3751142*A). Rs1718125*Awas associated with sensitivity
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to cold pain (Ide et al. 2014) and is found in a haplotype
independently associated with HIV-SN in South African

HIV+ patients receiving stavudine (Goullee et al. 2016), as
was rs10849849*G. As all four shared SNPs are in non-

Table 2 Eight haplotypes from P2X7R, P2X4R and CAMKK2 weakly associated with HIV-SN

Haplotype 

Number

Haplotype 

Alleles
Without 

HIV-SN
a

With 

HIV-SN
b

P 

(Chi2)
c

P2X7R

1 1121111111111 102 61% 21 60% 0.91

2 2211211211121 52 31% 6 17% 0.10

3 2211211111111 22 13% 6 17% 0.54

4 1211122121112 24 14% 4 11% 0.79

5 1111222121112 13 8% 2 6% 1.00

6 1121211111111 8 5% 1 3% 1.00

7 2211111111111 9 5% 1 3% 1.00

8 1121211211121 8 5% 3 9% 0.41

9 1211111111111 11 7% 0 0% 0.22

10 1121111211121 4 2% 3 9% 0.10

11 2211112121112 8 5% 2 6% 0.69

12 2211111211121 2 1% 2 6% 0.14

13 1211121111111 6 4% 0 0% 0.59

14 1111111111111 2 1% 0 0% 1.00

P2X4R

1 1111111 132 79% 27 77% 0.80

2 2222111 87 52% 14 40% 0.19

3 2212111 24 14% 8 23% 0.21

4 1112111 8 5% 2 6% 0.69

5 2112111 3 2% 1 3% 0.54

CAMKK2

1 121111221221111111 85 51% 13 37% 0.14

2 111112112111111111 53 32% 15 43% 0.21

3 111121111111111111 47 28% 8 23% 0.52

4 212211211111111111 15 9% 6 17% 0.15

5 111121111111112211 14 8% 4 11% 0.57

6 111121111111112212 16 10% 6 17% 0.19

7 111121221221111111 12 7% 1 3% 0.47

8 111111211111111111 6 4% 2 6% 0.63

9 111121111111111112 5 3% 2 6% 0.35

10 121111221221111112 4 2% 0 0% 1.00

11 111112112111111112 2 1% 2 6% 0.14

12 121111221222122211 4 2% 0 0% 1.00

13 111112112111112212 5 3% 0 0% 0.59

14 212111211111111111 3 2% 1 3% 0.54
a.

Number of individuals without HIV-SN who carry 1 or 2 copies of the haplotype
b.

Number of individuals with HIV-SN who carry 1 or 2 copies of the haplotype
c.

Fisher’s Exact was used where n<5
d.

Eight haplotypes which met the criteria for inclusion in logistic regression modelling

(p<0.2) are shaded
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coding regions, we considered evidence that they may influ-
ence expression of P2X7R or neighbouring genes.
Accordingly, the GTEX eQTL database links carriage of the
minor allele of rs7132846*T and rs3751142*Awith increased
expression of P2X4R in many cell types, including tibial
nerves (https://gtexportal.org/home/). This is consistent with
a role for P2X4R in the manifestation of HIV-SN despite the
lack of association with SNPs in that gene.

However, several lines of evidence also support a role for
CaMKK2:

1. CAMKK2 haplotype 6 included the minor alleles
rs2686367*C, rs11065504*C, rs3817190*A and
rs9805130*A where the latter two are in complete LD.
The rs3817190*A allele changes a threonine to serine at
the 85th amino acid in exon 1. This variant has been
associated with severity of panic and agoraphobia scores
in patients with anxiety disorders and reduces autono-
mous activity of CaMKK2 (Barden et al. 2006; Erhardt
et al. 2007; Scott et al. 2015). However, as this SNP was
not associated on univariate analyses (p = 0.99), it is un-
likely to be causative.

2. CAMKK2 haplotype 11 included the minor alleles
rs2686367*C, rs2686342*T and rs2686344*T. Carriage
of these three alleles is associated with increased expres-
sion of CaMKK2 (https://gtexportal.org), a characteristic
typically associated with disease phenotypes and poorer
outcomes.

3. Three polymorphisms in CAMKK2, rs7975295*C,
rs1560568*A and rs1132780*T, associated with reduced
risk of HIV-SN in bivariate analyses (p < 0.05; OR =
0.44–0.46; 95% CI = 0.21–0.99; Table 1), were retained
in the optimal model predicting HIV-SN (p = 0.0002,
pseudo R2 = 0.11; Table 3). We also identified a

haplogroup marked by carriage of all three minor alleles
which associated with reduced risk (p = 0.022; Fig. 1.)

Here, we discuss these three SNPs and mechanisms by
which they may impact HIV-SN. rs7975295*C and
rs1560568*A independently associated with increased risk
of HIV-SN but were found within haplotypes which associat-
ed with reduced risk of HIV-SN in South African HIV+ pa-
tients (Goullee et al. 2016). This suggests the pattern of LD in
South Africans may differ from Indonesians. The two SNPs
lie in non-coding regions. The GTEX eQTL database links
carriage of both minor alleles with increased expression of
P2X4R in many tissues, notably tibial nerves, consistent with
a role in disease progression. However, only a single non-
synonymous P2X4R SNP, rs25644*G, weakly associatedwith
reduced risk of HIV-SN (p = 0.14, OR = 0.58, CI95% = 0.28–
1.24; Table 1) and this did not remain in the optimal model.
Investigations of the impact of rs7975295*C and
rs1560568*A on the regulation of CaMKK2 are warranted.

Rs1132780 is located in a coding region and carriage of the
T (minor) allele results in a non-synonymous change of argi-
nine to cysteine at position 363 in the kinase domain. The
SIFTweb server predicts this change to be deleterious in sev-
eral isoforms (see Online resource 4) and so may contribute to
HIV-SN via altered activity of CaMKK2 and/or its substrates.
Altered CaMKK2-dependent activity of AMPK, SIRT1,
CAMKI and CAMKIV has been implicated in peripheral
neuropathies and neuropathic pain. For example, Calcutt
et al. (2017) demonstrated that inhibition of CaMKK2-
dependent AMPK activity with antimuscarinic drugs
prevented or reversed thermal hypoalgesia and reduced
intraepidermal nerve fibre density in diabetic, chemotherapy-
induced and HIV-gp120-induced peripheral neuropathies in
rodents. Additionally, Shao et al. (2014) demonstrated that

Table 3 Optimal logistic
regression models show
CAMKK2 SNPs and haplotypes
independently associate with
HIV-SN

Variable Odds ratio P value 95% confidence interval

Optimal model including demographic and clinical variables and SNPs

n = 195a, p = 0.0002, pseudo R2 = 0.11

Current CD4 T cell Count 1.00 0.009 0.99–1.00

Current Viremia 3.55 0.047 1.02–12.40

rs7975295 / rs1560568 / rs1132780 (CAMKK2) 0.43 0.038 0.20–0.95

Optimal model including demographic and clinical variables and haplotypes

n = 195a, p = 0.0002, pseudo R2 = 0.11

Current CD4 T cell count 1.00 0.003 0.99–1.00

Current viremia 4.62 0.020 1.28–16.7

P2X7R-2: 2211211211121 0.44 0.128 0.16–1.26

P2X7R-12: 2211111211121 11.37 0.023 1.39–92.8

CAMKK2–6: 111121111111112212 2.21 0.158 0.73–6.65

CAMKK2–11: 111112112111111112 18.98 0.008 2.13–169

a Excluding samples with missing demographic, clinical and/or genotyping data
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Symbol Definition

Median vector: hypothetical haplotype automatically generated for maximum parsimony 

Haplotypes contained within the optimal statistical model

Haplotypes not seen in patients with HIV-SN

Haplotypes weakly associated (p<0.2) with risk of HIV-SN in bivariate analyses

Haplotypes weakly associated (p<0.2) with protection of HIV-SN in bivariate analyses

Node size is proportional to haplotype frequency in this population

Haplogroup A
P=0.022 OR=0.43 CI=0.21-0.88

Haplogroup B
P=0.16 OR=1.95 CI=0.76-5.08

Haplogroup C

Haplogroup D

Fig. 1 CAMKK2 haplogroup A associated with reduced risk of HIV-SN
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stimulation of SIRT1 ameliorated neuropathic pain in rodent
models. Altered CaMKI and CaMKIV activity is also impli-
cated in peripheral neuropathies and neuropathic pain (Elzière
et al. 2014; Zhao et al. 2016). The structural and functional
impact of rs1132780*T should be investigated.

Overall, we have identified three candidate SNPs in
CAMKK2 which are co-inherited and associated with
reduced prevalence of HIV-SN in Indonesian patients
who have never received stavudine. Whilst we acknowl-
edge the small size of the cohort, preliminary screening
of patients eliminated unrelated causes of neuropathy.
Our approach based on multivariable analyses identifies
the strongest determinants of risk, which then warrant
validation in an independent cohort. The findings pro-
vide new insight into possible mechanisms of HIV-SN
independent of those initiated by stavudine. Future stud-
ies should explore the functional impact of carriage of
rs1132780*T and regulatory roles of rs7975295*C and
rs1560568*A in the context of HIV-SN. Finally, genetic
studies should consider interactions between the P2X-
block and the remaining 26 genes within this TAD
(Online Resource 1). We are now addressing ethnic dif-
ferences and genotypes affecting large fibre damage in
this cohort.
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Online Resource 1. The larger TAD in astrocytes from the cerebellum and spinal cord spans 
chromosome 12: 120600001-121840000bp and contains 30 genes. 

Location (Chromosome 12)a Gene ID Gene Name 

120565014 – 120632513 GCN1 GCN1, eIF2 alpha kinase activator homolog 

120634502 – 120639014 RPLPO Ribosomal protein lateral stalk subunit P0 

120639094 – 120650631 PXN-AS1 PXN antisense RNA 1 

120648242 – 120703574 PXN Paxillin 

120730002 – 120751045 SIRT4 Sirtuin 4 

120759914 – 120765592 PLA2G1B Phospholipase A2 group IB 

120779133 – 120806983 MSI1 Musashi RNA binding protein 1 

120875893 – 120878545 COX6A1 Cytochrome c oxidase subunit 6A1 

120881764 – 120884215 TRIAP1 TP53 regulated inhibitor of apoptosis 1 

120884241 – 120901556 GATC Glutamyl-tRNA amidotransferase subunit C 

120899471 – 120907558 SRSF9 Serine and arginine rich splicing factor 9 

120907660 – 120936298 DYNLL1 Dynein light chain LC8-type 1 

120928141 – 120933749 NRAV Negative regulator of antiviral response 

120941082 – 120966964 COQ5 Coenzyme Q5, methyltransferase 

120972132 – 121015397 RNF10 Ring finger protein 10 

121016848 – 121019201 POP5 POP5 homolog, ribonuclease P/MRP subunit 

121078422 – 121105129 CABP1 Calcium binding protein 1 

121124949 – 121139667 MLEC Malectin 

121148238 – 121161443 Unc119b Unc-119 lipid binding chaperone B 

121160996 – 121161069 Mir4700 MicroRNA 4700 

121163544 – 121177811 ACADS Acyl-CoA dehydrogenase short chain 

121200313 – 121342155 SPPL3 Signal peptide peptidase like 3 

121407641 – 121410095 HNF1A-AS1 HNF1A antisense RNA 1 

121415861 – 121440315 HNF1A HNF1 homeobox A 

121440835 – 121454300 C12orf43 Chromosome 12 open reading frame 43 

121458095 – 121477045 OASL 2'-5'-oligoadenylate synthetase like 

121570622 – 121624439 P2X7R Purinergic receptor P2X 7 

121647664 – 121671909 P2X4R Purinergic receptor P2X 4 

121675495 – 121736111 CAMKK2 Calcium/calmodulin dependent protein kinase kinase 2 

121746048 – 121792012 ANAPC5 Anaphase promoting complex subunit 5 

a      Genome Assembly GRCh37 
b      Genes assessed in this study are in bold 
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Symbol Definition 

Median vector: hypothetical haplotype automatically generated for maximum parsimony 

Haplotypes contained within the optimal statistical model 

Haplotypes not seen in patients with HIV-SN 

Haplotypes weakly associated (p<0.2) with risk of HIV-SN in bivariate analyses 

Haplotypes weakly associated (p<0.2) with protection of HIV-SN in bivariate analyses 

Node size is proportional to haplotype frequency in this population 

Haplogroup A 

Online Resource 2. No distinct P2X7R haplogroups were identified 
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Symbol Definition 

Median vector: hypothetical haplotype automatically generated for maximum parsimony 

Haplotypes contained within the optimal statistical model 

Haplotypes not seen in patients with HIV-SN 

Haplotypes weakly associated (p<0.2) with risk of HIV-SN in bivariate analyses 

Haplotypes weakly associated (p<0.2) with protection of HIV-SN in bivariate analyses 

Node size is proportional to haplotype frequency in this population 

Online Resource 3. No distinct P2X4R haplogroups were identified 

Haplogroup A 
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Chapter 5 

Demographic and genetic associations with markers of small and large fiber 

sensory neuropathy in HIV patients treated without stavudine 

Genetic investigation of the P2X-block in Indonesians and Africans treated without stavudine identified 

a clear link between HIV-SN and CAMKK2. Given the role of the protein encoded by CAMKK2 in neuronal 

growth and repair, I assessed whether this link may reflect the small or large nerve fibre pathology in 

HIV-SN. In Chapter 5 I compare demographic, clinical and P2X-block genetic risk factors of large and 

small fibre neuropathy with HIV-SN in a subset of the Indonesian cohort.  

Data from this chapter have been published: 

Safri, A. Y., J. Gaff, F. Octaviana, D. D. Setiawan, D. Imran, C. L. Cherry, S. M. Laws, and P. Price. Brief 
Report: Demographic and Genetic Associations With Markers of Small and Large Fiber Sensory 
Neuropathy in HIV Patients Treated Without Stavudine. Journal of Acquired Immune Deficiency 
Syndromes, 85: 612-16. doi: 10.1097/QAI.0000000000002503 
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BRIEF REPORT: CLINICAL SCIENCE

Demographic and Genetic Associations With Markers of
Small and Large Fiber Sensory Neuropathy in HIV Patients

Treated Without Stavudine

Ahmad Yanuar Safri, MD,a,b Jessica Gaff, BSc Hons,c Fitri Octaviana, MD, PhD,a,b

Denise Dewanto Setiawan, MD,a Darma Imran, MD,a,b Catherine L. Cherry, MD, PhD,d

Simon M. Laws, PhD,c,e and Patricia Price, PhDa,c

Abstract: Neurotoxic antiretroviral therapy (ART) such as stavu-
dine has been now replaced with safer therapies, reducing the
prevalence of neuropathy from 34% to 15% in HIV+ Indonesians.
However, it is unclear whether the residual cases display damage to
small or large nerve fibers and whether both are influenced by known
risk factors, including alleles of CAMKK2 associated with neurop-
athy in HIV patients. The encoded protein influences the growth and
repair of nerve fibers. HIV-positive adults on ART for .12 months
without exposure to stavudine were screened for neuropathy using
the AIDS Clinical Trials Group Brief Peripheral Neuropathy Screen
(BPNS). Large fiber neuropathy was assessed by nerve conduction
(NC) and small fiber neuropathy using stimulated skin wrinkling
(SSW) applied to the fingers. CAMKK2 alleles were assessed by
TaqMan OpenArray technology. Neuropathy diagnoses were more
common with SSW than BPNS (49/173 vs 26/185, x2; P = 0.0009),
with poor alignment between these outcomes (P = 0.60). NC and
BPNS diagnosed neuropathy at similar frequencies (29/151 vs 26/
185; P = 0.12) and were aligned (P , 0.0001). In bivariate analyses,
all diagnoses were associated with patients’ age and persistent HIV
replication, with minor effects from CD4 T-cell counts and time on
ART. CAMKK2 alleles associated with neuropathy diagnosed with
BPNS and SSW but not NC. Multivariable analyses confirmed the
importance of age and HIV replication, with distinct CAMKK2
polymorphisms affecting BPNS and SSW. Paradoxically, height was
protective against skin wrinkling. Overall the data link CAMKK2
genotypes with small rather than large fiber damage. SSW may
reflect pathology distinct from that identified using BPNS.

Key Words: HIV, sensory neuropathy, risk factors

(J Acquir Immune Defic Syndr 2020;85:612–616)

INTRODUCTION
Management of people living with HIV (PLWH) can

now focus on their quality of life as antiretroviral therapy
(ART) increases life expectancy. However, HIV-associated
sensory neuropathy (HIV-SN) still arises, and debate remains
regarding the roles of HIV infection itself and different
modalities of ART. Neurotoxic ART such as stavudine has
been now replaced with safer therapies, reducing the
prevalence of HIV-SN from 34% to 15% in Indonesian
PLWH,1 but the condition remains problematic. Patients
describe unusual sensations, such as neuropathic pain,
tingling, numbness, hyperalgesia, and allodynia. Physical
examination may reveal nonspecific signs including loss of
ankle reflexes and sensory loss in the distal part of the feet.2,3

An established tool validated to diagnose HIV-SN is the
AIDS Clinical Trial Group Brief Peripheral Neuropathy
Screen (BPNS). HIV-SN is diagnosed if there is at least
one listed symptom, plus decreased Achilles reflexes or
decreased sensibility to vibration when a tuning fork is held
on a toe.4 These tests detect small and large fiber neuropathy,
and it remains unclear which risk factors affect small and
large nerves.

Nerve conduction (NC) studies assess sensory and
motor conduction of an electrical impulse to identify sensory
motor deficits that affect large fiber nerves5 and may trigger
weakness, loss of joint position and vibration sense, and
sensory ataxia. Small fiber neuropathy manifests as neuro-
pathic pain, impairment of temperature, and autonomic
function and is more difficult to assess. Intraepidermal nerve
fiber density is considered to be the optimal criterion to detect
damage to small diameter sensory nerves, including non-
myelinated and myelinated intraepidermal nerve fibers. The
European Federation of Neurological Societies recommends a
biopsy of skin to a depth of 3 mm by using a skin punch
biopsy on the distal limbs to calculate the linear density or
nerve fibers with a minimum of 50 mm thickness slices. Nerve
fibers can be stained with antibodies recognizing PGP9.5 and
visualized using confocal microscopy,6 but the technique is
invasive and unsuitable for routine screening. Stimulated skin
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wrinkling (SSW) can assess small nerve fiber function using
exposure to eutectic mixture of local anesthetics. Skin
wrinkling occurs as result of vasoconstriction in the glabrous
skin, mediated by postganglionic sympathetic fibers.7 SSW
has been correlated with intraepidermal nerve fiber density in
patients with sensory neuropathy.8 The sensitivity of SSW
test for diagnosing diabetic sensorimotor polyneuropathy
using NCS as a reference standard was 81.3%, and specificity
was 67.0% The authors noted that this was comparable with
other testing methods, but it is difficult to interpret as NC
assesses large nerve fibers.9

Our genetic studies identified a role for polymorphisms
in the CAMKK2 gene in HIV-SN diagnosed using BPNS in
South African PLWH receiving stavudine.10 CAMKK2 poly-
morphisms and haplotypes aligned with BPNS positivity
were different in Indonesian and African patients treated
without stavudine, but polymorphisms in this gene were
retained in the optimal multivariable models for each
cohort.11,12 The encoded protein, CaMKK2 (calcium/
calmodulin kinase 2) phosphorylates AMPK (AMP-
activated protein kinase), SIRT1 (sirtuin 1), CaMKIV, and
CaMKI (calcium/calmodulin kinase 4 and 5).13,14 SIRT1
regulates axonal regeneration, protects neurons from oxida-
tive stress, and promotes dendrite arborisation.15 CaMKIV
activation upregulates NFkB and cAMP (cyclic adenosine
monophosphate) response element-binding protein which
stimulates brain-derived neurotrophic factor promoting neu-
ronal growth and survival.14 Brain-derived neurotrophic
factor has been implicated in neuropathic pain.16 Activated
CaMKI regulates axonal growth cone morphology and out-
growth, dendrite arborisation, and synapse formation.17 A
possible explanation for associations with different CAMKK2
genotypes is a shift in the relative importance of small and
large fibers in the pathogenesis of HIV-SN in different
populations and with the cessation of stavudine. This is
addressed here in Indonesian PLWH assessed by BPNS, NC,
and SSW. Associations with genetic and demographic factors
are compared.

METHODS
HIV-positive adults who had used ART for at least 12

months without exposure to stavudine were screened for
neuropathy at POKDISUS HIV Care Clinic, Cipto Mangun-
kusumo Hospital, Jakarta, Indonesia.1 Laboratory, clinical,
and demographic data were collected from the medical files.
Plasma HIV RNA was measured using a Cobas Amplicor
Monitor (Roche Molecular Diagnostics, Pleasanton, CA). The
study was approved by the Ethics Committee of the Faculty
of Medicine, University of Indonesia (579/UN2.F1/ETIK/
2014). All participants gave written informed consent.

Neuropathy was assessed using the AIDS Clinical Trial
Group-BPNS and defined as present if the individual had one
or more of the lower limb neuropathic symptoms (pain,
aching or burning, pins and needles, or numbness), plus
absent ankle reflexes, or reduced vibration sense at the great
toe (vibration of a 128-Hz tuning fork felt for 10 seconds or
less). NC was assessed according to protocols of the
American Association of Neuromuscular and Electro Diag-

nostic Medicine and compared with normative values from
our clinic. Motor and sensory NC was assessed bilaterally in
lower limbs for tibial, peroneal, and sural nerves and in upper
limbs for median and ulnar nerves. NC positivity was defined
as decrease of sensory nerve action potential amplitude
(microvolt) , 80% lower limit of normal values or absent
in 2 or more nerves in different extremities.18 To assess SSW,
the distal digit pulp of the left second, third, and fourth fingers
was covered with 5% EMLA cream (Eutectic Mixture of
Local Anaesthetics; lidocaine 2.5% and prilocaine 2.5%;
AstraZeneca, Cambridge, United Kingdom) for 30 minutes.
Wrinkling was graded using a published scale from 0 (no
wrinkling) to 4 (normal wrinkles).8 Results from the 3 digits
were added, and individuals scoring less than 9 were defined
as SSW (+).

DNA extracted from EDTA-blood samples using
FavorPrep Blood Genomic DNA Extraction Mini Kit (Favor-
gen Biotech Corporation, Changzhi, Taiwan) was adjusted to
50 ng/mL, diluted 1:1 with TaqMan OpenArray Genotyping
Master Mix and genotyped for single nucleotide polymor-
phisms (SNPs) spanning CAMKK2 using custom TaqMan
OpenArray Real-Time polymerase chain reaction Plates using
the QuantStudio 12K Flex Real-Time polymerase chain
reaction System (Life Technologies, Grand Island, NY).
Genotypes were assigned manually using TaqMan Genotyper
Software. All SNPs conformed with Hardy–Weinberg Equi-
librium, excepting 2 omitted because they were monoallelic
in Indonesians (rs11837114 and rs7965129).11

Demographic, clinical, and treatment details of patients
with and without neuropathy were compared using x2 tests
(dichotomous variables) or Mann–Whitney tests [non-
normally distributed continuous variables, described using
median (range)], using GraphPad Prism version 8.2.1 for
Windows (GraphPad Software, La Jolla, CA) without cor-
rections for multiple comparisons. Multivariable analyses of
associations with neuropathy were performed using multiple
logistic regression modeling, undertaken using Stata/IC 16.0
for Windows (StataCorp LLC, College Station, TX). Model-
ing including all factors with P , 0.20 in bivariate analyses,
followed by a stepwise removal process. Odds ratios and 95%
confidence intervals are presented.

RESULTS AND DISCUSSION

Age and Persistent HIV Replication Promote
Small and Large Fiber Neuropathy

After screening 2596 patients, 2411 were excluded for
reasons including ,12 months continuously on ART, past/
current stavudine, diabetes mellitus, stroke, schizophrenia,
vasculitis, deafness, blindness, hyperthyroidism, systemic
lupus erythematous, cytomegalovirus radiculopathy, and
cancer chemotherapy.1 Demographic and clinical character-
istics of 185 patients are described in Table 1. Neuropathy
diagnoses were more common with neuropathy diagnosed
with SSW than BPNS (x2; P = 0.0009), with poor alignment
between these outcomes (6/49 vs 19/124; P = 0.65). This was
investigated further using aspects of the BPNS believed to
assess damage to small fibers. Patients positive and negative
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for neuropathy diagnosed with SSW (resp.) displayed similar
frequencies of neuropathic pain (5/49 vs 7/124; P = 0.29),
tingling in the feet (4/49 vs 9/124, P = 0.84), and numbness in
their feet (5/49 vs 12/124, P = 0.92). Hence, SSW is a poor
marker of neuropathy captured by BPNS or its components.

NC and BPNS positivity occurred at similar frequencies
(P = 0.12) and were significantly aligned (P , 0.0001). NC
assessments (including distal latency, amplitude and mor-
phology of CMAP/SNAP, and conduction velocity) can
distinguish demyelination from axonal degeneration. Changes
observed in this cohort were consistent with axonal degen-
eration. As described previously,1 factors weakly associated
with BPNS positivity (P , 0.2) include age, .500 copies
HIV RNA/mL, current CD4 T-cell counts, and a history of
tuberculosis. We also associated NC positivity with slightly
greater age and time on ART (P , 0.2) with a clear effect of
.500 copies HIV RNA/mL (P = 0.01). When demographic
factors achieving P , 0.2 were assessed in multivariable
analyses, BPNS and NC positivity were independently
associated with greater age and HIV replication (Table 2).

SSW positivity associated with slightly reduced height,
increased age, and time on ART, and .500 copies HIV
RNA/mL (Table 1). The optimal multivariable model for
SSW included height as a protective factor. This was
unexpected as height was a risk factor for neuropathy in

patients receiving stavudine.1 As a link between skin
wrinkling (ie,: SSW negativity) and poor circulation in the
fingers has been demonstrated,7 we speculate that wrinkling
may be accentuated in taller individuals, but this requires
verification. We are aware that HIV-SN rarely affects the
hands but dysfunction of the sympathetic fibers as shown by
an abnormal SSW are likely to be systemic as they reflect
sympathetic nerve function.7

SSW and BPNS Associate With Different
Alleles of CAMKK2, but CAMKK2 Does Not
Affect NC

As described previously,10 alleles of 3 polymorphisms
in CAMKK2 (rs7975295*C, rs1560568*A, and rs1132780*T)
associated with reduced risk of HIV-SN assessed by BPNS in
bivariate analyses (P , 0.05; odds ratio = 0.44–0.46; 95%
confidence interval = 0.21 to 0.99; Table 1). As these alleles
are in complete linkage disequilibrium, only rs1560568 was
carried forward into multivariable analyses, along with
rs10849861 (Table 2). rs1560568 was retained in the optimal
model predicting BPNS positivity. rs1132780 is located in a
coding region and carriage of the T (minor) allele changes an
arginine to cysteine at position 363 in the kinase domain.11

This should be investigated further.

TABLE 1. Demographic and Genetic Factors Align Differentially With BPNS, Nerve Conduction, and Stimulated Skin Wrinkling

BPNS (+)
n = 26

BPNS (2)
n = 159 P j NC (+)

n = 29
NC (2)
n = 122 P j SSW (+)

n = 49
SSW (2)
n = 124 P

Male 15 103 0.51 j 24 88 0.25 j 32 73 0.49

Age, yr 37 (29–59) 35 (22–60) 0.17 36 (22–59) 35 (23–60) 0.08 36 (23–60) 35 (22–50) 0.04

Height, cm 167 (151–175) 166 (142–180) 0.89 167 (153–178) 165 (142–180) 0.50 165 (142–178) 167 (148–180) 0.02

.500 HIV RNA copies/mL 4 6 0.03 5 4 0.01 7 3 0.006

Nadir CD4 T-cells/mL 65 (11–428) 122 (2–599) 0.29 86 (2–421) 130 (4–599) 0.17 90 (2–402) 123 (3–454) 0.40

Current CD4 T-cells/mL 397 (103–729) 457 (84–1166) 0.09 416 (103–795) 462 (84–1166) 0.30 433 (103–757) 465 (84–1166) 0.19

ART duration, yr 5.2 (1.0–10.9) 4.2 (1.0–12.7) 0.55 4.9 (1.1–12.2) 4.4 (1.0–12.7) 0.14 5.5 (1.2–12.2) 4.0 (1.0–12.7) 0.10

History of tuberculosis 15 64 0.07 14 48 0.38 21 51 0.84

Carriage of the minor allele of SNP in CAMKK2 (minor/major allele)

rs1718158 G/A 23% 16% 0.35 j 10% 20% 0.29 j 17% 18% 0.87

rs10849861 A/G 40% 55% 0.10 55% 53% 0.83 49% 55% 0.45

rs1653586 T/G 23% 16% 0.35 10% 20% 0.29 17% 18% 0.87

rs1653587 G/A 20% 14% 0.35 7% 16% 0.19 14% 15% 0.86

rs11065504 C/G 46% 51% 0.58 54% 49% 0.68 61% 45% 0.05

rs2686342 T/A 49% 40% 0.34 41% 40% 0.93 37% 44% 0.39

rs3794204 G/A 63% 72% 0.27 69% 70% 0.89 71% 71% 1.00

rs7975295 C/T 40% 60% 0.03 66% 55% 0.32 59% 56% 0.71

rs2686344 T/C 49% 39% 0.27 41% 39% 0.80 35% 43% 0.31

rs1560568 A/G 40% 60% 0.03 66% 56% 0.34 59% 56% 0.74

rs1132780 T/C 40% 61% 0.04 66% 56% 0.34 60% 56% 0.61

rs7314454 T/C 6% 9% 0.74 3% 8% 0.69 13% 6% 0.13

rs1109453 A/G 9% 13% 0.77 7% 12% 0.74 13% 11% 0.72

rs3817190 A/T 34% 34% 0.99 38% 32% 0.54 43% 27% 0.05

rs9805130 A/G 34% 35% 0.94 38% 34% 0.66 47% 27% 0.01

rs2686367 C/A 29% 23% 0.51 34% 23% 0.18 26% 23% 0.77

Variables achieving P , 0.20 are bolded.
Variables achieving P , 0.05 are bold and italics.
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NC positivity showed no significant associations with
CAMKK2 alleles, but rs1653587 and rs2686367 were carried
forward into multivariable analyses. Table 2 shows a model
retaining the most promising SNP (rs2686367) to illustrate
the lack of any significant effect of CAMKK2 genotypes.
rs2686367 lies between CAMKK2 and the adjacent gene
ANAPC5 (upstream of CAMKK2). From 10 SNPs in
ANAPC5, an allele of rs74644631 associated with NC
positivity (12% vs 29%, P = 0.03), as did 2 coinherited
SNPs in the neighboring gene KDM2B (rs12427382, 63% vs
86%, P = 0.02; rs11065575 66% vs 89%, P = 0.02). ANAPC5
encodes the anaphase promoting complex 5 (AnapC5),
involved in progression from metaphase into anaphase.
Replication of neurons would disrupt signal transduction so
re-entry into the cell cycle triggers apoptosis.19 Hence, altered
function or expression of ANAPC5 may promote
neuronal death.

In contrast to BPNS and NC, bivariate analyses linked
SSW positivity (P , 0.20) with alleles of rs11065504,
rs7314454, rs3817190, and rs9805130 (Table 1), where the
latter 2 were in linkage disequilibrium. Multivariable model-
ing of SSW positivity included rs11065504, rs7314454, and
rs9805130. The optimal model retained significant indepen-
dent associations with rs11065504 and rs9805130 genotypes
(Table 2) and was stronger than the model obtained with
demographic factors. The rs3817190*A allele changes a

threonine to serine at the 85th amino acid in exon 1. This
variant has been associated with panic and agoraphobia
scores in patients with anxiety disorders and reduces auton-
omous activity of CaMKK2.20 The findings reinforce the role
of nerve damage in SSW.

CONCLUSIONS
We present a cohort study of PLWH attending outpatient

clinics in Jakarta, Indonesia. Its limitations include a modest
sample size, use of data from clinical records, and incomplete
coverage with the 3 screening methods applied. However, the
novel tests are compared with an established screening protocol
(BPNS) and with risk genotypes based on CaMKK2. Our data
link CAMKK2 genotypes with small rather than large fiber
damage, but SSW was shown to reflect pathology distinct from
that identified using any component of BPNS. NC was affected
by persistent HIV replication but not by CAMKK2 genotypes.
However, it may be affected by genes upstream of CAMKK2
that have potential to influence neuronal death.
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Prediction of NC (demographics & CAMKK2 genotype): Pseudo R2 = 0.0810, P = 0.008, n = 151
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.500 copies HIV RNA/mL 8.003 1.86 to 34.3 0.005
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Chapter 6 
 

Epidermal investigation of  

calcium/calmodulin-dependent kinase kinase 2 and  

purinergic receptor 7 and 4 expression in  

HIV-associated sensory neuropathy 

 

Polymorphisms in the P2X-block associated with HIV-SN in Indonesians and Africans treated 

without stavudine. Although causative alleles have not been identified associations      

implicates the encoded proteins in the pathogenesis of HIV-SN. Here, I used skin biopsies to 

compare expression of P2X7R, P2X4R and CaMKK2 in the dermis and epidermis from 

Indonesian patients with and without HIV-SN, and healthy controls.  
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ABSTRACT 

Objectives: HIV-associated sensory neuropathy (HIV-SN) is a common, sometimes painful, 

neurological complication affecting 14-38% of HIV+ individuals treated with antiretroviral 

therapies excluding neurotoxic stavudine (ART). Polymorphisms in adjacent genes P2X7R, P2X4R 

and CAMKK2 associate with altered risk of HIV-SN.  

Design: We assessed expression of P2X7R, P2X4R and CaMKK2 proteins in skin biopsies from 

HIV+ Indonesians with and without HIV-SN treated for >12 months with stavudine-free ART and 

healthy controls (HC).  

Methods: HIV-SN was assessed using the Brief Peripheral Neuropathy Screen. Biopsies from the 

lower leg were stained to detect protein gene product 9.5 (PGP9.5) on nerve fibres and P2X7R, 

P2X4R or CaMKK2, and visualised using 3-colour confocal microscopy. Intraepidermal nerve fibre 

density (IENFD), and expression of the three proteins was assessed in de-identified images.  

Results: IENFD was lower in HIV+ donors than in HC, but similar in HIV-SN+ and HIV-SN– donors 

(p=0.19). IENFD correlated positively with nadir CD4 T-cell counts (r=0.69, p=0.004). P2X7R was 

expressed by cells in blood vessels of HIV-SN− donors, but rarely in HC or HIV-SN+ donors. P2X4R 

expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. CaMKK2+ 

cells were rare in HC. HIV-SN− donors had fewer CaMKK2+ cells than HIV-SN+ donors. CaMKK2+ 

cells were located close to dermal and epidermal nerve fibres.  

Conclusions: Cells expressing P2X7R, P2X4R and CaMKK2 may interact with and damage dermal 

and epidermal nerve fibres, leading to a reduced IENFD and the development of HIV-SN in HIV+ 

Indonesians treated with ART excluding stavudine. 

Word Count: 245 words 

Keywords: HIV-associated sensory neuropathy, CaMKK2, P2X7R, P2X4R, Intraepidermal nerve 

fibre density, HIV+ Indonesians 
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INTRODUCTION 

HIV-associated sensory neuropathy (HIV-SN) is a debilitating neurological complication of HIV 

infection and antiretroviral therapy (ART) [1-4]. Despite the use of ART free of drugs associated 

with neurotoxicity (usually stavudine), HIV-SN continues to impact up to 38% of people living 

with HIV [2, 3]. Symptoms of HIV-SN include numbness, “pins and needles”, disordered 

sensation and neuropathic pain, which impact an individual’s ability to work and their quality of 

life [5]. No interventions prevent or reverse HIV-SN progression [5], so a better understanding 

of the underlying mechanisms will have clinical value. 

Clinical features of HIV-SN include neuronal loss and degeneration of long axons in a “die-back” 

manner, correlating with reduced intraepidermal nerve fibre density (IENFD) [6]. Increased 

infiltration of mononuclear cells and cytokine expression in dorsal root sensory ganglia (DRG) [7, 

8], and increased expression of chemokine receptors by CD3+ and CD14+ cells surrounding 

intraepidermal nerves [9], suggest a central role for inflammation in the manifestation of HIV-

SN. An inflammatory aetiology is supported by genetic associations with polymorphisms in a 

block of genes surrounding the TNF gene [10, 11], and in three neighbouring genes; P2X7R, 

P2X4R and CAMKK2 (the P2X-block) [12-15]. Our studies associated single nucleotide 

polymorphisms (SNP) and haplotypes from the P2X-block with HIV-SN in Indonesian and South 

African patients, implicating the encoded proteins in the pathogenesis of HIV-SN [12, 13] 

P2X7R and P2X4R encode purinergic P2X receptors 7 and 4 (P2X7R and P2X4R, resp.) which are 

activated by adenosine triphosphate (ATP) and are involved in inflammatory and 

neurotransmission pathways [16]. Activation of P2X7R in microglia in the DRG and satellite glial 

cells in spinal dorsal horn induces pro-inflammatory interleukin-1 beta (IL-1β), IL-6 and tumour 

necrosis factor-alpha (TNFα) via p38-mitogen activated protein kinase (p38-MAPK) [17]. Mice 

treated with P2X7R antagonists display reduced expression of IL-1β and IL-6 and alleviated 

mechanical allodynia in a model of neuropathic pain [18]. P2X4R is also implicated in the 
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development of neuropathic symptoms in rodent models [19]. Following spinal injury, 

expression of P2X4R is upregulated in the spinal cord. Intraspinal administration of P2X4R 

antisense oligodeoxynucleotides reduced P2X4R expression and inhibited tactile allodynia 

following nerve injury, and intraspinal administration of P2X4R-positive microglia triggered 

tactile allodynia [19]. Upregulation of P2X4R results in p38-MAPK-dependent release of brain-

derived neurotrophic factor (BDNF), IL-1β, TNFα and IL-6, leading to neuropathic pain [20, 21].  

CAMKK2 encodes calcium/calmodulin-dependant kinase kinase 2 (CaMKK2) which 

phosphorylates adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin 1 

(SIRT1), and calcium/calmodulin-dependant kinase 1 and 4 (CaMKIV and CaMKI) [22-24]. AMPK 

activation mediates inflammation and apoptosis [25, 26]. SIRT1 activation regulates axonal 

regeneration, promotes dendrite arborisation, and protects neurons from oxidative stress [27-

29]. CaMKIV activation upregulates nuclear factor B and cyclic AMP response element-binding 

protein which stimulates BDNF, promoting neuronal growth and survival [23, 30, 31]. Excessive 

BDNF expression is implicated in neuropathic pain [20]. Activated CaMKI regulates axonal 

growth cone morphology and outgrowth, dendrite arborisation and synapse formation [32, 33]. 

Experimental evidence implicates P2X7R, P2X4R and CaMKK2 expressed by cells in DRG, spine 

and brain in neurological outcomes affecting the periphery. It is also plausible that these 

proteins may contribute directly to a reduced IENFD and the pathogenesis of HIV-SN via the 

degeneration of sensory nerve terminals in the skin. P2X7R is expressed in the skin by 

keratinocytes, Langerhans cells, dermal dendritic cells, T-cells and macrophages [34]. P2X4R 

expression has been detected in cultured keratinocytes, macrophages and sensory axon 

terminals [35-38], and CaMKK2 is expressed by monocytes/macrophages [25, 35]. Here, we 

assess ex vivo expression of P2X7R, P2X4R and CaMKK2 and their association with nerve fibres 

in skin biopsies from the lower leg donated by HIV+ Indonesian patients with and without HIV-

SN, and healthy controls.  
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MATERIALS AND METHODS 

Participants and Phenotyping 

The study was approved by the Ethics Committee of the Faculty of Medicine, Universitas 

Indonesia (579/UN2.F1/ETIK/2014) and validated by Curtin University (HR210-2015). Written 

and informed consent was obtained from all participants. HIV+ adults who had used ART for at 

least 12 months (median 6.4 years; range 1.2-11.7 years), but who had never been exposed to 

stavudine, were screened for neuropathy at POKDISUS HIV Care Clinic, Cipto Mangunkusumo 

Hospital, Jakarta, Indonesia in 2016 [2]. Individuals with a history of other conditions potentially 

associated with a neuropathy, or any condition preventing provision of informed consent, were 

excluded. Neuropathy was assessed using the AIDS Clinical Trials Group Brief Peripheral 

Neuropathy Screen (ACTG-BPNS), and defined as present if the individual had one or more of 

the lower limb neuropathic symptoms (pain, aching or burning, “pins and needles” or 

numbness), together with absent ankle reflexes or reduced vibration sense at the great toe 

(vibration of a 128-Hz tuning fork felt for 10 seconds or less). We did not diagnose neuropathy 

in patients with only asymptomatic neuropathic signs, as the presence of both symptoms and 

signs on the BPNS tool better associates with impaired peripheral nerve function and pathology 

[39]. Biopsies were collected from six individuals with HIV-SN (HIV-SN+) and six individuals 

without HIV-SN (HIV-SN–). An additional five control biopsies were provided from healthy, age-

matched adults of South East Asian ancestry (HC) who declared no risk factors for HIV. 

Biopsy collection 

Biopsies were collected as published previously [9]. Briefly, 2% lidocaine with epinephrine 

anaesthesia was injected subcutaneously under sterile conditions approximately 10cm above 

the lateral malleolus. The skin biopsy was collected using a 3mm circular skin punch, fixed in 4% 

paraformaldehyde-lysine-periodate overnight at 4°C, and incubated with cryoprotectant (20% 

glycerol and 80% 0.1M Sorenson’s phosphate buffer) overnight at 4°C prior to storage at -20°C. 

Biopsies were sectioned at 50μm using a freeze cryostat sliding microtome (Leica Biosystems, 

77/170



Nussloch, Germany) and stored in antifreeze (33% glycerol, 33% ethylene glycol, 10% 2x 

phosphate buffer, 24% dH2O) at -20°C. 

Immunofluorescent protocol 

Floating sections were incubated with Image-iT FX Signal Enhancer (Invitrogen, Carlsbad, CA, 

USA) for 30 minutes (min) at room temperature, incubated over consecutive nights at 4°C with 

primary, secondary and detection antibodies diluted in Tris buffered saline (TBS) with 5% normal 

donkey serum (NDS), and washed the following morning six times for 1 hour each at room 

temperature using TBS with 0.01%v/v triton-X (TBS-wash). Sections were treated with goat anti-

CaMKK2 (sc-9629; 2 μg/ml; Santa Cruz Biotechnology, Dallas, TX, USA), P2X4R (ab134559; 5 

μg/ml; Abcam, Cambridge, UK) or P2X7R (ab105047; 5 μg/ml; Abcam), followed by biotinylated 

donkey anti-goat IgG (ab6884; 20 μg/ml; Abcam) and detected with streptavidin conjugated to 

AlexaFluorTM 647 (S-32357; 20 μg/ml; Invitrogen). Protein gene product 9.5 (PGP9.5) was 

targeted using rabbit anti-PGP9.5 (ab15503; 2 μg/ml; Abcam) and detected with mouse anti-

rabbit IgG conjugated with Dylight® 594 (ab96893; 5 μg/ml; Abcam). Nuclei were stained with 

4′,6-diamidino-2-phenylindole (DAPI; 1:10,000; Invitrogen) for 10 min at room temperature to 

visualise tissue morphology. Sections were washed twice with TBS-wash, and mounted on glass 

slides (Proscitech, Queensland, Australia) with a coverglass (#1.5; Proscitech) using Immumount 

(Thermo Scientific, Waltham, MA, USA). Section treated without primary antibodies were 

included as negative controls (Supplementary Figure 1). 

Microscopy 

Samples were imaged using an inverted Nikon A1+ confocal microscope (Nikon Instruments, 

New York, NY, USA) and NIS-Elements software (Nikon Instruments). Images were acquired 

using a digital scan resolution of 0.64μM/pixel, pinhole of 1.2 airy units and pixel dwell 6.2 with 

1024 resolution using a 20x Plan Apo dry objective (N.A. 0.75; Olympus Corporation, Tokyo, 

Japan). Sequential scanning was completed using three lasers; 405nm (450/50 filter), 561nm 
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(595/50 filter) and 640 nm (700/75 filter) to view nuclei, PGP9.5+ nerve fibres and P2X4R+, 

P2X7R+ and CaMKK2+ cells respectively. Multiple images spanning 0.5mm were acquired across 

the full width of the epidermis in a z-series at 1.1 μm intervals (as per Nyquist settings) through 

the full thickness of the section. Z-series for each section were combined into a single maximum 

intensity projection image with NIS-Elements Viewer (Nikon Instruments) and equivalent 

thresholds were applied across all images to assess PGP9.5+ nerve fibres (red) and P2X7R, P2X4R 

and CaMKK2 positive cells (green).  

P2X7R, P2X4R and CaMKK2 expression and intraepidermal nerve fibre density 

The expression patterns of P2X7R, P2X4R or CaMKK2 and association with PGP9.5+ nerve fibres 

was investigated from a subset of HC (n=3), HIV-SN– (n=3) and HIV-SN+ (n=3) donors selected 

randomly for each protein. Images from three sections per donor were assessed and expression 

patterns described.  

Three images from all HC (n=5), HIV-SN– (n=6) and HIV-SN+ (n=6) donors were analysed to 

determine the IENFD. Images were available for an additional two HC, three HIV-SN–  and two 

HIV-SN+ donors assessed for IENFD in 2017 using the same study criteria and protocols, and 

were included here to better identify differences between donor groups [2, 9]. All images were 

coded and PGP9.5+ nerve fibres were quantitated by three raters (JG, PK and PP) blinded to 

donor diagnoses. Quantitation was completed using a standard IENFD protocol [40] in which 

single fibres crossing the dermo-epidermal junction are counted and secondary branches are 

excluded. The average counts derived from each sample were doubled to generate IENFD per 

square millimetre. Fisher’s exact tests, Mann-Whitney tests, and Spearman’s correlations were 

used as appropriate to compare IENFD with donor characteristics using GraphPad Prism version 

8.2.1 for Windows (Graphpad Software, La Jolla, CA, USA). An intraclass correlation coefficient 

was calculated (two-way random, single measures and absolute agreement) using the “irr” 

package [41] in the R statistical environment [42].  
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RESULTS 

Intraepidermal nerve fibre densities correlated with nadir CD4 T-cells/μl but did not differ 

between donors with and without HIV-SN 

Confocal images of PGP9.5+ intraepidermal nerve fibres were collected (Supplementary Figure 

2) and IENFD determined for all donors (Table 1). The intraclass correlation coefficient was 0.86

(95% confidence interval = 0.79-0.92), suggesting strong agreement between the three raters 

(data not shown). IENFD was higher for HC than those with or without HIV-SN (p = 0.02 and 0.07, 

resp.), but similar in HIV-SN+ and HIV-SN– donors (p=0.19; Table 1). There were no differences 

in age, height, time on ART and current CD4 T-cells between HIV-SN– and HIV-SN+ donors 

(Supplementary Table 1). However, nadir CD4 T-cell counts were lower in HIV+ individuals with 

HIV-SN than those without (p=0.05; Table 1). To explore this difference, we assessed whether 

IENFD correlated with demographic and clinical features of donors and determined that IENFD 

correlated positively with nadir CD4 T-cell counts (r=0.67, p=0.004; Supplementary Figure 3). 

Age did not correlate with IENFD (r=-0.36, p=0.08). 

P2X7R+ cells were observed in dermal blood vessels of HIV-SN– donors, but rarely in HC or 

HIV-SN+ donors 

P2X7R was variably expressed across donor groups, but was very rare in sections from HC (Figure 

1a). Expression was also rare in sections from HIV-SN+ donors, but a few P2X7R+ cells were 

observed in dermal blood vessels (yellow arrows) and some within the epidermis close to 

epidermal nerves (yellow box; Figure 1c). Sections from two out of three of the HIV-SN– donors 

exhibited an abundance of P2X7R+ cells in dermal blood vessels (Figure 1b). Sections from the 

remaining HIV-SN– donor had moderately higher levels of P2X7R expression in blood vessels 

than HC and HIV-SN+ donors (Supplementary Table 1, donor #18). P2X7R+ cells were observed 

close to epidermal nerve fibres in sections from all three HIV-SN– donors (Figure 1b). This 

suggests up-regulation by HIV disease – potentially as a mechanism that suppresses HIV-SN. 
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P2X4R expression may be increased in the epidermis of HIV-SN+ donors 

P2X4R+ cells were present in dermal blood vessels and the basal layer of the epidermis in all 

sections from all three HC, HIV-SN– and HIV-SN+ donors assessed for P2X4R expression (Figure 

2). P2X4R+ cells were often closely located to epidermal nerves and subepidermal nerve plexi 

(yellow arrows; Figure 2a-c). While expression of P2X4R occurred in all donors, its expression in 

the basal layer of the epidermis was more abundant in sections from all three HIV-SN+ donors 

compared to HC and HIV-SN- donors (Figure 2c vs Figure 2a and b). This is consistent with a role 

for P2X4R in HIV-SN.  

Donors with HIV-SN had more CaMKK2+ cells than HIV-SN– donors, and CaMKK2+ cells were 

close to dermal and epidermal nerves 

 CaMKK2+ cells were only observed in sections from two of the three the HC donors, and even 

then expression was limited to a few cells (Figure 3a). CaMKK2+ cells were more evident in 

sections from all three HIV-SN– and HIV-SN+ donors. However, sections from HIV-SN– donors 

had slightly fewer CaMKK2+ cells (an average of 3, 5 and 8 positive cells per donor; Figure 3b) 

than HIV-SN+ donors (an average of 8, 14 and 19 positive cells per donor; Figure 3c). CaMKK2+ 

cells were typically located close to dermal and epidermal nerves (yellow arrows) or co-located 

with dermal nerves (yellow box; Figure 3c), so CaMKK2+ cells may interact with peripheral 

nerves in HIV+ patients.  

DISCUSSION 

We assessed IENFD of PGP9.5+ fibres and investigated ex vivo expression of P2X7R, P2X4R and 

CaMKK2 in skin biopsies from healthy controls, HIV-SN– and HIV-SN+ Indonesians receiving 

stavudine-free ART for >12 months. The median (range) IENFD for HC was 12.7 (7.4-17.3/mm2), 

which is comparable to earlier studies [43, 44]. IENFD was lower in HIV+ donors compared to 

HC, but did not differ between donors with and without HIV-SN (p=0.19; Table 1). We are not 
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the first to show this. A longitudinal investigation of 150 HIV+ Thai individuals not detect a 

difference in IENFD between those with and without HIV-SN [45]. Lower IENFD was recently 

associated with the presence of neuropathic pain at the biopsy site [46]. The prevalence of 

neuropathic pain in Indonesian HIV-SN+ patients is low (5/28; [47]). Only one biopsy was 

available from an HIV-SN+ donor with neuropathic pain (IENFD = 4.4/mm2; not shown), so we 

couldn’t assess IENFD in relation to pain. 

Age is negatively correlated with IENFD in healthy individuals [44] but has not been linked in HIV 

patients [6, 9, 45, 48]. Here, HIV+ participants are relatively young (aged 23 to 47) and age did 

not correlate with IENFD (r=-0.36, p=0.08). Instead, we identified a positive correlation between 

nadir CD4 T-cell counts and IENFD in the HIV+ groups (r=0.67, p=0.004; Supplementary Figure 

3). We previously associated lower CD4 T-cell counts at the time of assessment with greater risk 

of HIV-SN in Indonesians [2], and with lower nadir CD4 T-cells in HIV+ Africans [13]. A lower CD4 

T-cell count may reflect a greater severity of HIV disease, supporting a direct role for HIV itself

in the degeneration of epidermal nerve fibres and highlighting the need for early initiation of 

ART.  

CaMKK2+ cells were identified in all HIV+ sections. CaMKK2+ cells were usually located close to 

or co-located with damaged nerve fibres and were more common in donors with HIV-SN (Figure 

3). CaMKK2 activates AMPK, a master regulator of cellular energy homeostasis. AMPK activation 

can replenish ATP supplies required for energy intensive axonal growth by recruiting 

mitochondria to the site of repair [49]. Therefore, the close association between CaMKK2+ cells 

and nerve fibres may reflect CaMKK2-mediated neuronal growth and repair pathways. CaMKK2 

is also expressed by macrophages and mediates inflammatory pathways [25, 50]. CaMKK2 

activates CaMKIV which in turn activates the p38-MAPK cascade and activation factor 1 (AP-1), 

inducing pro-inflammatory cytokines including TNFα, IL-1β and IL-6 [32]. It is plausible that 
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CaMKK2+ cells may contribute directly to a reduced IENFD and HIV-SN via neuronal or 

inflammatory pathways. 

P2X4R expression was observed in the basal layer of the epidermis, in blood vessels and closely 

located to epidermal nerves and subepidermal nerve plexi in all donors assessed (Figure 2). 

However, P2X4R appeared upregulated in the basal layer of the epidermis in HIV-SN+ donors. 

Most cells in the basal layer proliferate and differentiate into keratinocytes which can express 

sensory receptors and produce neuroactive molecules that can illicit nociceptive responses in 

epidermal axon terminals of sensory neurons in response to noxious stimuli [51]. Rodent studies 

show that mechanical, cold, and heat stimulation of keratinocytes produces ATP which activates 

P2X4R receptors on sensory neurons and results in behaviours associated with temperature 

stress and pain [37, 38]. As extracellular ATP can act on P2X4R in an “autocrine” fashion [52], 

the increased expression of P2X4R in the epidermis of HIV-SN+ donors could plausibly 

exacerbate this nociceptive pathway and contribute to neuropathic symptoms.  

P2X4R is also a moderator of inflammation [20]. Sciatic nerve injury in a rodent model of 

neuropathy upregulates P2X4R expression in spinal microglia leading to increased production of 

IL-1β, TNFα and IL-6 [20, 21]. Activation of keratinocyte P2X4R is associated with production of 

IL-6 [36]. Like P2X4R, P2X7R is implicated in inflammation associated with neuropathic pain [18]. 

Interestingly, P2X7R was abundantly expressed in the blood vessels of individuals without HIV-

SN, but less in HC or HIV-SN+ individuals (Figure 1). Expression of P2X7R may be dependent on 

disease phenotype, disease stage and tissue or cell type [53, 54]. For example, P2X7R expression 

was upregulated on peripheral blood monocytes and lymphocytes in patients with neuropathic 

pain but not in patients with chronic nociceptive low back pain when compared to healthy 

controls [55]. Furthermore P2X4R and P2X7R expression may be compensatory as P2X4R was 

upregulated in CD4+ T-cells from P2X7R knockout mice in a model of heart transplantation [56]. 
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Our study has limitations. Firstly, we acknowledge the modest number of donors. However, a 

well-established protocol for determining IENFD [40] and the assessment of IENFD by multiple 

raters blinded to donor diagnoses ensured reliable quantification. This was supported by an 

intraclass correlation coefficient of 0.86 (95% confidence interval = 0.79-0.92) indicating strong 

agreement between raters. Secondly, we utilised a simple clinical tool to diagnose HIV-SN. We 

cannot rule out that HIV-SN– donors may have had sub-clinical peripheral nerve pathology or 

physiological malfunctions not detected by this tool. We assessed if IENFD correlated with large 

or small fibre neuropathy diagnosed in a subset of participants using established nerve 

conduction tests and stimulated skin wrinkling tests, respectively [15]. However, as with HIV-SN 

diagnosed by BPNS, IENFD did not differ between donors with and without large or small fibre 

neuropathies (0.28 and p=0.62, resp.; Online Supplementary Table 2). Finally, no data pertaining 

to the duration of neuropathy were available due to the cross-sectional design. This may explain 

individual variation of P2X4R, P2X7R or CaMKK2 expression within the donor groups.  

Overall, we have demonstrated that IENFD is reduced in HIV+ participants, and IENFD is 

positively correlated with nadir CD4 T-cells which may reflect an individual’s severity of HIV 

disease prior to commencing ART. We identified that P2X4R is upregulated in epidermal basal 

layer cells in donors with HIV-SN whereas P2X7R+ cells were more abundant in the blood vessels 

of HIV+ donors without HIV-SN. Finally, we demonstrated that tissue from donors without HIV-

SN contained fewer CaMKK2+ cells compared to donors with HIV-SN, and most CaMKK2+ cells 

were located near or co-located with PGP9.5+ nerves. The expression patterns and location of 

P2X7R, P2X4R and CaMKK2+ cells suggests a role for these proteins in the pathogenesis of HIV-

SN in the periphery. 
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Table 1. Summary of donor characteristics 

BPNS 

Diagnosis 

Male Age 

(years) 

Height 

(cm) 

Time on ART 

(months) 

Nadir CD4 

(cells/μl) 

Current CD4 

(cells/μl) 

IENFD 

(per mm2) 

HC 2/7 33 (23-41) - - - - 12.7 (7.4-17.3) 

HIV-SN– 4/9 36 (25-44) 165 (150-179) 58.6 (14.8-141) 225 (6-330) 435 (84-693) 5.2 (3.5-18.4) 

HIV-SN+ 4/8 36 (29-47) 167 (155-175) 84.4 (24.4-131) 47 (17-166) 485 (284-729) 3.8 (1.3-15.4) 

P=0.99 a P=0.83 b P=0.63 b P=0.33 b P=0.05 b,c P=0.67 b P=0.19 b 

Results are presented as median (range) 

a Fisher's exact test (HIV-SN+ versus HIV-SN-);  

b Mann-Whitney test (HIV-SN+ versus HIV-SN-)   

c P≤0.05 are in bold 

BPNS, brief peripheral neuropathy screening tool; ART, antiretroviral therapy; IENFD, intraepidermal nerve fibre density 
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Figure 1. Representative confocal images showing intraepidermal expression of PGP9.5 (red) 
and P2X7R (green) in HC (a), HIV-SN– (b), HIV-SN+ (c). P2X7R+ cells (yellow arrows) are rarely 
seen in sections from HC donors (a). P2X7R+ cells (yellow arrows) are abundant in dermal blood 
vessels and sometimes closely located to epidermal nerves of sections from HIV-SN– donors (b). 
P2X7R+ cells are occasionally seen in dermal blood vessels and closely located to epidermal 
nerves (yellow box) in HIV-SN+ donors (c). scale bar = 100 μm 

(a)  PGP9.5 P2X7R 

(b) PGP9.5 P2X7R 

(c) PGP9.5 P2X7R 
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Figure 2. Representative confocal images demonstrating intraepidermal expression of PGP9.5 
(red) and P2X4R (green) in HC (a), HIV-SN– (b), HIV-SN+ (c). P2X4R expression is observed in 
the basal layer of the epidermis and dermal blood vessels of all donors but was increased in 
sections from donors with HIV-SN (c). P2X4R+ cells were observed in dermal blood vessels in all 
donors and located near dermal and epidermal nerves (yellow arrows). scale bar = 100 μm 

(a) PGP9.5 P2X4R 

f

(b) PGP9.5 P2X4R 

(c) PGP9.5 P2X4R 
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Figure 3. Representative confocal images showing intraepidermal expression of PGP9.5 
(red) and CaMKK2 (green) in HC (a), HIV-SN– (b), HIV-SN+ (c). CaMKK2+ cells are very rarely 
seen in sections from HC donors (a) but are observed in sections from HIV-SN– and HIV-SN+ 
donors (b-c). CaMKK2+ cells are usually located close to nerves (yellow arrows; b-c) or co-
located with nerves - appearing yellow (yellow box; c). scale bar = 100 μm 

(a)  PGP9.5 CaMKK2 

(b) PGP9.5 CaMKK2 

(c) PGP9.5 CaMKK2 
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Online Supplements 

Supplementary Figure 1. Representative confocal images of negative control 
sections for P2X7R (a), P2X4R (b) and CaMKK2 (c) treated only with secondary 
antibodies DyLight® 594 and AlexaFluorTM 647.   
Background staining of Dylight® 594 (red) and AlexaFluorTM 647 (green) occurred in 
the dermis and blood vessels of all negative controls (a-c). Scale bar = 100μm 

(a) P2X7R DyLight® 594 AlexaFluorTM 647 

(b) P2X4R DyLight® 594 AlexaFluorTM 647 

(c) CaMKK2 DyLight® 594 AlexaFluorTM 647 
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Supplementary Figure 2. Representative confocal images of PGP9.5+ 
intraepidermal nerve fibres from HC (a), HIV-SN- (b) and HIV-SN+ (c) donors. 
Numerous PGP9.5+ fibres branch from dermal fibres innervating the epidermis in 
HC donors (a) with a median (range) intraepidermal nerve fibre density of 12.7 (7.4-
17.3). The number of PGP9.5+ fibres were similar in HIV-SN– (5.2 [3.5-18.4]) and 
HIV-SN+ donors (3.8 [1.3-15.4]). A reduction in epidermal fibres length was 
common in HIV-SN+ donors (yellow arrows; c). Scale bar = 100μm 

(a) PGP9.5 

(b) PGP9.5 

(c) PGP9.5 
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Supplementary Table 1. Characteristics of IENFD donors 

# HIV-SNa 
Small 
fibre b 

Large 
fibre c Sex 

Age 
(years) 

Height 
(cm) 

Nadir CD4 
(cell/μL) 

Last CD4 
(cell/μL) 

Time on ART 
(months) 

IENFD 
(per mm2) 

1 HC - - Female 26 - - - - 16.3 
2 HC - - Female 41 - - - - 16.0 
3 HC - - Female 30 - - - - 17.3 
4 HC - - Female 33 - - - - 12.7 
5 HC - - Female 33 - - - - 9.7 
6 HC - - Male 37 - - - - 10.2 
7 HC - - Male 23 - - - - 7.4 
8 Neg NA Neg Female 40 150.5 251 448 76.8 5.1 
9 Neg Neg Neg Female 32 165 225 385 42.7 11.3 

10 Neg Neg Neg Female 36 153 234 321 84.4 18.4 
11 Neg Pos Neg Female 41 150 330 435 24.1 8.3 
12 Neg Pos Neg Male 31 174 214 386 58.6 4.9 
13 Neg Neg Neg Male 44 171 6 84 27.6 3.9 
14 Neg Neg Neg Male 38 179 179 626 103.7 5.2 
15 Neg Pos NA Male 35 165 28 693 140.7 3.5 
16 Neg Pos Neg Male 25 165 231 653 14.8 12.4 
17 Pos Neg Neg Female 37 155 43 526 92.2 3.0 
18 Pos Neg Neg Female 29 163 166 598 87.8 15.4 
19 Pos Neg Pos Female 32 167 117 729 47.4 9.7 
20 Pos Pos Pos Female 31 158 50 406 131.1 2.8 
21 Pos Pos Pos Male 47 167 17 284 80.9 4.6 
22 Pos Neg Neg Male 34 175 34 714 58.6 3.0 
23 Pos Neg Neg Male 41 171 143 444 110 10.0 
24 Pos Neg NA Male 45 167 32 300 24.4 1.3 

a HIV-SN diagnosis using BPNS 
b Small fibre neuropathy diagnosis using stimulated skin wrinkling tests [15] 
c Large fibre neuropathy diagnosis using nerve conduction tests [15] 

HC, healthy control; NA, not available; Pos, positive test results; Neg, negative test result; ART, antiretroviral therapy; IENFD, intraepidermal nerve fibre 
density 
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Supplementary Figure 3. Nadir CD4 T-cell counts positively correlated with IENFD 

Spearman’s correlation coefficient 
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Supplementary Table 2. IENFD was generally lower in BPNS+ than BPNS- participants 

Diagnosis of 
Donors 

IENFD (per mm2) P value b 

Positive Donors a Negative Donors 
a

HIV-SN 3.8 (1.3-15.4) 
n=8 

5.2 (3.5-18.4) 
n=9 

0.19 

Large fibre 
neuropathy 

4.6 (2.8-9.7) 
n=3 

8.0 (3.0-18.4) 
n=13 

0.29 

Small fibre 
neuropathy 

4.8 (2.8-12.4) 
n=6 

7.5 (1.3-18.4) 
n=10 

0.62 

a Median (Range)  
b Mann-Whitney test 
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Chapter 7 

Neurocognitive outcomes in Indonesians living with HIV 

are influenced by polymorphisms in the gene  

encoding purinergic P2X receptor 7 

P2X-block genotypes associated with HIV-SN. HIV-associated neurological disorder (HAND) is 

a spectrum of neurological disorders resulting from HIV infection. HAND has a clinical 

pathology including inflammation and neuronal degeneration in the brain. It is plausible that 

inflammatory and neuronal repair mechanisms contributing to HIV-SN in the periphery may 

also contribute to the pathogenesis of HAND. Here I assessed associations between P2X7R SNP 

and neurocognitive outcomes in HIV+ Indonesians across five neurocognitive domains, over 

the first 12 months of stavudine-free ART.  

Trail Making Test B – Assessing Executive Function 

Data from this chapter have been published: 

Gaff J, Estiasari R, Diafiri D, Halstrom S, Kamerman P, and Price P. Neurocognitive outcomes in 

Indonesians living with HIV are influenced by polymorphisms in the gene encoding purinergic P2X 

receptor 7. Brain, Behavior, & Immunity - Health. 2021;13:100220. doi: 10.1016/j.bbih.2021.100220 
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A B S T R A C T

The advent of effective antiretroviral therapy (ART) has decreased the prevalence and severity of HIV-associated
neurocognitive disorders (HAND), but milder forms of HAND remain despite optimal treatment. Neuronal injury
and loss due to inflammation may mediate HAND. P2X7R encodes purinergic P2X receptor 7 which influences
neuroinflammatory pathways and carries polymorphisms associated with sensory neuropathy in HIV patients. We
assessed associations between P2X7R polymorphisms and neurocognitive outcomes in Indonesian patients (n ¼
59) as they commenced ART and after 3, 6 and 12 months. Z-scores were calculated over 5 domains using local
controls and evaluated as continuous variables. Optimal linear regression models identified polymorphisms
influencing attention, memory, executive function, motor speed and total cognitive function at each time point.
rs504677 was associated with lower executive and motor speed Z-scores at 0, 3, 6, and 12 months, and with
memory at 0 and 12 months. Memory was positively influenced by carriage of the rs208296 minor allele at 0, 3
and 6 months and by carriage of the rs208307 minor allele at 0 and 12 months. Higher attention Z-scores
associated with carriage of minor alleles of rs1653598 after 0 and 12 months. These also positively influenced
executive function and motor speed after 0–6 months. This study identifies polymorphisms in P2X7R which in-
fluence domain-specific neurocognitive outcomes in HIVþ Indonesians prior to and shortly after commencing
ART. This implicates purinergic P2X receptor 7 in the pathogenesis of HAND.
1. Introduction

Effective antiretroviral therapy (ART) has decreased the prevalence
and severity of HIV-associated neurocognitive disorders (HAND), but
milder forms of HAND remain a serious complication of HIV infection
(Estiasari et al., 2015; Heaton et al., 2010a; Cysique et al., 2014). Neu-
rocognitive impairment affects up to 50% of ART naive Indonesian pa-
tients with <200 CD4 T-cells/μl, and improvements in neurocognitive
function after 6 months of ART are influenced by age, education and CD4
T-cells/μl (Estiasari et al., 2015, 2020). In vivo and in vitro studies of the
neuropathology of HAND identify neuroinflammation as a crucial
mediator of neurocognitive impairment [reviewed in (Ru and Tang,
2017)]. HIV-infected monocytes and CD4 T-cells cross the blood-brain
Biomedical Science, Curtin Univ
Price).
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barrier, resulting in infection and activation of microglia and astro-
cytes. These cells release proinflammatory cytokines and chemokines
including tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), inter-
leukin-1β (IL-1β), chemokine (C–C motif) ligand 2 (CCL2), and viral
proteins including transactivator of transcription (Tat) and glycoprotein
120 (gp120), resulting in release of adenosine triphosphate (ATP),
intracellular influx of calcium ions (Ca2þ), and oxidative stress. This leads
to further inflammation and neuronal and synaptic dysfunction charac-
teristic of neurocognitive impairment and HAND (Ru and Tang, 2017).

Purinergic P2X receptor 7 (P2X7R) is an ATP-gated non-specific
cation channel involved in neuroinflammatory pathways [reviewed in
(Alves et al., 2020)]. P2X7R is highly expressed in the brain and is
activated by high levels of ATP released from damaged cells, triggering
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an influx of Ca2þ and efflux of potassium ions (Kþ) (Alves et al., 2020).
P2X7R-dependent intracellular depletion of Kþ drives the assembly of the
nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3)
inflammasome, promoting the accumulation of caspase-1 which cleaves
pro-IL-1β and releases mature IL-1β (Giuliani et al., 2017). P2X7R acti-
vation induces NADPH oxidase-dependent production of IL-6 from as-
trocytes (Munoz et al., 2020) and the release of TACE (TNFα converting
enzyme) which subsequently increases release of TNFα from microglia
(Barber�a-Cremades et al., 2017). Moreover, in a rodent model of cogni-
tive dysfunction induced by gp120, P2X7R expression was significantly
higher in the hippocampus compared to control groups (Liu et al., 2017).
In rat primary culturedmicroglia, application of gp120 stimulated P2X7R
expression, increased concentrations of TNFα and IL-1β, and resulted in
microglial apoptosis (Chen et al., 2017). In human astrocyte and neuron
cultures, treatment with Tat resulted in calcium-dependent upregulation
of P2X7R, release of CCL2 from astrocytes, and direct and indirect
neuronal death (Tewari et al., 2015).

The gene encoding P2X7R (P2X7R) is highly polymorphic and located
in a region of high linkage disequilibrium (LD) on chromosome 12. We
have associated single nucleotide polymorphisms (SNP) and haplotypes
within P2X7R with HIV-associated sensory neuropathy (a common
neurological complication of HIV infection affecting peripheral nerves)
in Indonesians and Africans (Gaff et al., 2019a, 2020; Goullee et al.,
2016; Safri et al., 2020). Furthermore, SNP in P2X7R have been associ-
ated with neuroinflammatory and neuropsychological conditions
including bipolar disorder, multiple sclerosis, and Alzheimer’s disease
(Sanz et al., 2014; Oyanguren-Desez et al., 2011; McQuillin et al., 2009).
In the present study, we assessed associations between SNP in P2X7R and
neurocognitive outcomes across five neurocognitive domains in HIVþ
Indonesians as they commenced ART and after 3, 6 and 12 months.

2. Materials and methods

2.1. Participants

The JakCCANDO study conducted in Cipto Mangunkusumo National
General Hospital, Jakarta, Indonesia (Wulandari et al., 2017) recruited
82 adults with horizontally-acquired HIV infection (Estiasari et al., 2015,
2020), with <200 CD4 T-cells/μl, a Karnofsky performance score
70–100, living in Jakarta, and providing written and informed consent to
participate in the study. Participants with a history of head injury, stroke,
recurrent seizures, severe depression (Hamilton Depression Scale)
(Estiasari et al., 2015), neurological deficits which may interfere with
neurocognitive evaluation, pregnancy, breastfeeding and current use of
illicit drugs were excluded. To establish a normative value, we recruited
82 local healthy controls similar in proportion of males (48% vs 68%),
age (30 vs 31 years) and education (85% completed 9 years of education
vs 78%) using the same criteria, plus no declared history of HIV risk
behaviour. Subjects were assessed for pulmonary tuberculosis (TB),
plasma HIV RNA was quantitated using COBAS® AmpliPrep/COBAS®
TaqMan® HIV-1 Tests (version 2.0) and CD4 T-cell counts were deter-
mined using standard flow cytometric techniques. CD4 T-cells/μl and
plasma HIV-RNAwere assessed before ART and after 3, 6 and 12 months.
The study was approved by the Faculty of Medicine Universitas
Indonesia, Cipto Mangunkusumo National General Hospital, and Curtin
University ethics committees.

2.2. Neurological assessments

All participants underwent baseline neurological assessment for five
cognitive domains as per published methods (Estiasari et al., 2015,
2020). Follow up assessments were completed for HIVþ participants
after receiving ART for 3, 6 and 12 months. Tests included Forward Digit
Span to evaluate attention, Animal Naming Test to assess fluency, Rey
Auditory Verbal Learning Test (immediate recall, delayed recall and
learning over trials) to assess memory, Trail Making Test A and B to asses
2

executive function, and Grooved Peg Board to assess motor speed.
Z-scores for each domain were calculated by subtracting the neuro-
cognitive test result from the mean normative value (obtained from the
healthy controls) and dividing by the standard deviation of the normative
value. The total cognitive Z-scores are an average of the Z-scores repre-
sented by each cognitive domain. Of the 82 participants, 21 participants
did not complete follow-up clinical and neurocognitive assessments due
to withdrawal from ART (n ¼ 4), pregnancy (n ¼ 2), death (n ¼ 4),
relocation (n ¼ 4), and loss of contact (n ¼ 7).
2.3. Genotyping

DNA samples were available for 59 of the 61 participants with com-
plete neurological assessments. DNA samples were adjusted to 50 ng/μl
and diluted 1:1 with TaqMan® OpenArray™ Genotyping Master Mix.
Samples were genotyped for 20 SNP across P2X7R (Supplementary
Table 1) using custom TaqMan® OpenArray™ Real-Time PCR Plates
with the QuantStudio 12 K Flex Real-Time PCR System (Life Technolo-
gies, NY) and genotypes were assigned manually using the TaqMan®
Genotyper Software and assessed as a dominant model (homozygous
major allele versus hetero- or homozygous carriage of the minor allele).
rs2230911 and rs3751144 were invariably co-inherited, so rs2230911
was excluded from analyses. Two SNP which failed to genotype in >10%
of samples (rs208288 and rs1653609), two SNP that were monoallelic
(rs10160951 and rs2230912), and three SNP that were carried by <10%
of this group (rs1169737, rs17525767 and rs2857585) were excluded
from analyses.
2.4. Statistical analyses

The effect of markers of HIV disease on neurocognitive Z-scores in
HIVþ participants were assessed for each domain at 0 and 12 months on
ART using Wilcoxon matched-pairs signed rank tests in GraphPad Prism
version 8.2.1 for Windows (GraphPad Software, La Jolla, CA, USA).
Multiple linear regression models were generated for Z-scores at all four
time points, for each of the five cognitive domains and the total cognitive
scores (Tables 2–5). Models included the SNP from P2X7R and de-
mographic and clinical variables previously associated with neuro-
cognitive outcomes; age, CD4 T-cells/μl and education (years) (Estiasari
et al., 2020). Optimal models were determined using backward elimi-
nation of demographic and genetic predictors with p > 0.1 using the
‘olsrr’ v0.5.3 package (Hebbali, 2020) for the R programming language
(Team, 2020). Models with a p < 0.05, an adjusted R-squared � 0.1 and
including one or more SNP are considered significant and discussed
further (Tables 2–5). Regression coefficients are represented by Beta.

3. Results

3.1. Markers of HIV disease and cognitive function improved over 12
months on ART

Demographic, clinical and neurocognitive outcomes in this subset of
59 participants reflects the parent cohort, and demonstrate improvement
of markers of HIV disease and neurocognitive function as described
previously (Estiasari et al., 2015, 2020). The median (range) CD4
T-cell/μl and log10 of plasma HIV RNA/ml was 67 (2–199) and 5.15
(2.64–6.68) at baseline, and improved to 288 (44–763) and 1.30
(1.30–6.32), respectively, at 12 months on ART (Table 1), so ~60% of
participants had undetectable plasma HIV RNA after 12 months of ART
(Estiasari et al., 2020). TB was identified in 27/59 (46%) participants at
baseline but did not influence Z-scores at baseline or at 12 months of ART
(p > 0.05 for all cognitive domains; Supplementary Table 2). Z-scores
improved between baseline and 12 months of ART (p < 0.05 for all
cognitive domains; Table 1), with the exception of memory (P ¼ 0.67;
Table 1).
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Table 1
Markers of HIV disease and neurocognitive outcomes improved over 12 months on ART.

Time on ART 0m vs 12m

Variablea 0 months 3 months 6 months 12 months Pb

Age (years) 31 (19–48)
Male Genderc 43 (73%)
Education (years) 12 (6–16)
TB co-infectionc 27 (46%)
CD4 T-cells/μl 67 (2–199) 189 (7–601) 208 (6–516) 288 (44–763) <0.0001
Log10 HIV RNA/ml 5.15 (2.64–6.68) 1.67 (1.30–5.23) 1.30 (1.30–5.23) 1.30 (1.30–6.32) <0.0001
Z-Attention �0.78 (�2.44 to 1.81) �0.53 (�1.94 to 2.23) �0.36 (�1.94 to 1.81) �0.11 (�1.94 to 2.23) 0.0004
Z-Fluency �0.57 (�3.67 to 1.57) �0.33 (�2.48 to 3.71) �0.10 (�2.48 to 1.22) �0.10 (�2.48 to 3.48) <0.0001
Z-Memory �2.06 (�6.92 to 1.22) �2.46 (�6.92 to 1.22) �2.49 (�6.96 to 1.16) �2.72 (�6.19 to 1.25) 0.67
Z-Executive 0.26 (�5.94- to 1.29) 0.63 (�15.03 to 1.52) 0.77 (�3.00 to 1.50) 0.93 (�2.88 to 1.57) <0.0001
Z-Motor Speed �0.14 (�7.90 to 1.01) 0.21 (�8.88 to 1.43) 0.58 (�1.40 to 2.96) 0.65 (�2.82 to 1.75) <0.0001
Z-Total Cognitive Function �0.84 (�4.82 to 0.67) �0.45 (�7.24 to 1.33) �0.35 (�1.99 to 1.13) �0.25 (�2.05 to 1.17) <0.0001

a Median (range).
b Wilcoxon matched-pairs signed rank test between 0 and 12 months.
c n (%).

Table 2
SNP in P2X7R influence neurocognitive Z-scores prior to commencing ART.

Variable
Beta 95% CIa P

2.5% 97.5%

Attention: Adjusted R2 ¼ 0.112 Model P ¼ 0.030
rs11065464 0.44 �0.002 0.89 0.05
rs504677 �1.03 �1.88 �1.18 0.02
rs1653598 1.13 0.26 2.00 0.01

Fluency: Adjusted R2 ¼ 0.140 Model P ¼ 0.002

Education 0.53 0.20 0.86 0.002

Memory: Adjusted R2 ¼ 0.231 Model P ¼ 0.005

rs208296 1.03 0.02 2.03 0.05
rs208307 2.62 1.01 4.24 0.002
rs503720 �2.20 �4.78 0.37 0.09
rs504677 �3.25 �5.42 �1.09 0.004
rs1653598 2.51 �0.07 5.08 0.06

Executive Function: Adjusted R2 ¼ 0.310 Model P ¼ 0.0003

Education 0.53 0.20 0.86 0.003
rs208307 0.78 �0.07 1.63 0.07
rs504677 �2.14 �3.22 �1.05 0.000
rs1653598 1.49 0.52 2.46 0.003

Motor Speed: Adjusted R2 ¼ 0.260 Model P ¼ 0.0004

Education 0.62 0.20 1.04 0.005
rs504677 �2.19 �3.39 �0.98 0.001
rs1653598 2.27 1.03 3.51 0.001

Total Cognitive: Adjusted R2 ¼ 0.321 Model P ¼ 0.0002

Education 0.39 0.12 0.67 0.006
rs208307 1.03 0.33 1.73 0.005
rs504677 �1.86 �2.76 �0.96 0.000
rs1653598 1.02 0.22 1.82 0.01

a CI; Confidence Interval.

Table 3
SNP in P2X7R influence neurocognitive Z-scores after 3 months on ART.

Variable
Beta 95% CIa P

2.5% 97.5%

Attention: Adjusted R2 ¼ 0.176 Model P ¼ 0.006
Age �0.06 �0.10 �0.02 0.007
rs208307 �0.58 �1.12 �0.04 0.04
rs3751144 �0.54 �1.08 �0.01 0.05

Fluency: Adjusted R2 ¼ 0.136 Model P ¼ 0.002

Education 0.20 0.07 0.32 0.002

Memory: Adjusted R2 ¼ 0.193 Model P ¼ 0.005

Age �0.10 �0.18 �0.03 0.008
rs1718125 1.07 1.04 2.04 0.03
rs208296 0.87 �0.05 1.80 0.06
rs12301635 �1.33 �2.49 �0.18 0.03

Executive Function: Adjusted R2 ¼ 0.433 Model P ¼ 0.0000

Age 0.07 �0.01 0.16 0.08
Education 0.31 0.12 0.50 0.002
rs208307 2.75 1.04 4.45 0.002
rs504677 �6.37 �8.59 �4.16 0.000
rs1653598 3.89 1.95 5.82 0.000

Motor Speed: Adjusted R2 ¼ 0.334 Model P ¼ 0.0001

Education 0.15 0.04 0.26 0.07
rs208307 1.05 0.09 2.01 0.03
rs504677 �2.84 �4.06 �1.61 0.000
rs1653598 1.81 0.71 2.91 0.002

Total Cognitive: Adjusted R2 ¼ 0.324 Model P ¼ 0.0002

Education 0.16 0.02 0.30 0.03
rs208307 1.54 0.26 2.83 0.02
rs504677 �3.85 �5.49 �2.21 0.000
rs1653598 2.69 1.22 4.16 0.001

a CI; Confidence Interval.
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3.2. Linear regression models identified SNP from P2X7R as predictors of
neurocognitive outcomes in all domains, except fluency

Linear regression models for the Z-scores of the five neurocognitive
domains and total cognitive function at 0, 3, 6 and 12 months of ART
were determined using backward elimination of covariables with p> 0.1
(Tables 2–5). Optimal models achieving analyses criteria of an adjusted
R2 > 0.1, model p < 0.05 and inclusion of �1 SNP were identified for all
domains except fluency and are presented separately for each time point
(Tables 2–5). Outcomes for each domain are described below.

Attention: Three SNP (rs504677, rs11065464 and rs1653598)
remained in the optimal model before ART (Table 2), with rs1653598
remaining at 12 months (P ¼ 0.006). Carriage of the minor allele of
3

rs1653598 associated with positive attention outcomes at baseline and at
12 months (Tables 2 and 5). Attention also associated with rs10849849
and rs1718125 at 12 months (P ¼ 0.001 and 0.005, respectively;
Table 5).

Fluency: Models from all time points achieved an adjusted R2 > 0.1
with P < 0.001, but none retained any P2X7R SNP. Fluency was
consistently influenced by level of education (Tables 2–5).

Memory: The optimal model for memory outcomes before ART had
an adjusted R2 of 0.231 (P ¼ 0.005) and included five SNP, of which
rs208296, rs208307 and rs504677 were significantly associated with
memory Z-scores (P < 0.05; Table 2). rs208296 remained in the optimal
memory model at 3 months (P ¼ 0.06; Table 3), and associated with
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Table 4
SNP in P2X7R influence neurocognitive Z-scores after 6 months on ART.

Variable
Beta 95% CIa P

2.5% 97.5%

Attention: Adjusted R2 ¼ 0.026 Model P ¼ 0.117
Education 0.06 0.00 0.14 0.12

Fluency: Adjusted R2 ¼ 0.237 Model P ¼ 0.0002

Age �0.06 �0.11 �0.01 0.03
Education 0.22 0.10 0.34 0.001

Memory: Adjusted R2 ¼ 0.202 Model P ¼ 0.002

Age �0.14 �0.21 �0.06 0.000
rs208296 0.94 0.00 1.88 0.05
rs1653598 �0.85 �1.78 0.09 0.07

Executive Function: Adjusted R2 ¼ 0.221 Model P ¼ 0.0013

Education 0.10 0.05 0.16 0.001
rs504677 �0.70 �1.27 �0.13 0.02
rs1653598 0.67 0.09 1.26 0.03

Motor Speed: Adjusted R2 ¼ 0.135 Model P ¼ 0.016

Age �0.03 �0.06 �0.002 0.04
rs504677 �0.74 �1.42 �0.06 0.03
rs1653598 0.64 �0.06 1.33 0.07

Total Cognitive: Adjusted R2 ¼ 0.320 Model P ¼ 0.0001

Age �0.05 �0.08 �0.02 0.001
Education 0.10 0.04 0.17 0.004
rs208296 0.33 �0.04 0.71 0.08
rs504677 �0.33 �0.70 0.04 0.08

a CI; Confidence Interval.

Table 5
SNP in P2X7R influence neurocognitive Z-scores after 12 months on ART.

Variable
Beta 95% CIa P

2.5% 97.5%

Attention: Adjusted R2 ¼ 0.182 Model P ¼ 0.009
rs10849849 1.52 0.70 2.34 0.001
rs1718125 �1.08 �1.82 �0.34 0.005
rs11065464 0.46 �0.03 0.94 0.06
rs1653598 0.91 0.28 1.55 0.006

Fluency: Adjusted R2 ¼ 0.137 Model P ¼ 0.002

Education 0.67 0.52 1.10 0.002

Memory: Adjusted R2 ¼ 0.058 Model P ¼ 0.087

rs208307 1.71 0.13 3.28 0.03
rs504677 �1.61 �3.18 �0.03 0.05

Executive Function: Adjusted R2 ¼ 0.277 Model P ¼ 0.007

rs10849849 0.48 0.03 0.93 0.04
rs208307 0.75 0.12 1.39 0.02
rs504677 �1.03 �1.69 �0.36 0.003
rs3751144 �0.64 �1.11 �0.16 0.009

Motor Speed: Adjusted R2 ¼ 0.129 Model P ¼ 0.010

CD4 T-cells/μL �0.001 �0.003 0.00 0.03
rs504677 �0.44 �0.86 �0.02 0.04

Total Cognitive: Adjusted R2 ¼ 0.321 Model P ¼ 0.0002

Age �0.03 �0.06 �0.004 0.02
rs504677 �0.32 �0.67 0.04 0.08

a CI; Confidence Interval.
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memory at 6 months (P ¼ 0.05; Table 4). The rs208296 minor allele had
a positive effect on memory outcomes at 0, 3 and 6 months (Tables 2–4).
At 12 months, rs208307 and rs504677 were significantly associated with
memory, but the model did not meet our analyses criteria (Table 5).

Executive function: Robust models were identified for executive
function at 0, 3, 6 and 12 months after ART (Adjusted R2 ¼ 0.22 to 0.43,
4

P ¼ 0.007 to 0.0000; Tables 2–5). Three SNP (rs504677, rs208307 and
rs1653598) consistently influenced executive outcomes after adjusting
for education at 0, 3 and 6 months on ART and for age at 3 months on
ART. Carriage of the minor allele of rs504677 associated with lower Z-
scores at all four time points. Optimal models at baseline and 3 months
retained rs208307 and rs1653598, at 6 months included rs1653598 and
at 12 months included rs208307 (Tables 2–5).

Motor speed: The optimal model at baseline, 3 and 6 months
included rs504677 and rs1653598 after adjusting for education (0 and 3
months; Tables 2 and 3) or age (6 months; Table 4). At 12 months, only
rs504677 remained in the optimal model after adjustment for CD4 T-cell
counts. The effects of age and CD4 T-cells/μl on motor speed Z-scores
were marginal and rs504677was consistently linked with lower Z-scores,
as noted with other domains.

Total cognitive function: Optimal models at each time point re-
flected models for each domain at the corresponding time point. All
included P2X7R SNP after adjusting for education (0, 3 and 6 months;
Tables 2–4) and/or age (6 and 12 months; Tables 4 and 5). Accordingly,
carriage of the minor allele of rs504677 is independently associated with
lower Z-scores at baseline (P ¼ 0.0006; Table 2) and at 3 months after
ART (p < 0.001; Table 3), and remained in the optimal models at 6 and
12 months but did not reach significance (P ¼ 0.08 and 0.08; Tables 4
and 5).

4. Discussion

This study provides unique insights into neurocognitive function
across five domains in HIVþ Indonesians prior to commencing ART and
at 3, 6 and 12 months of ART. Furthermore, we assessed associations
between P2X7R SNP and the neurocognitive outcomes at these time
points. This creates a large number of potential associations, and the
longitudinal design complicates corrections for multiple comparisons.
We address this by confining the discussion to associations evident in
multiple domains or more than one timepoint. We report improvements
of neurocognitive outcomes and associations with P2X7R SNP that vary
by domain and time on ART.

By following patients responding to ART, we also shed light on the
process of recovery of neurocognitive capacity. Patients began ART with
<200 CD4 T-cells/μl, so they were experiencing a range of inflammatory
symptoms affecting their general health and neurocognitive perfor-
mance. With the exception of the memory domain, all Z-scores improved
over time to approximate the healthy controls after 6–12 months
(Estiasari et al., 2020), but rates differed by domain. It is therefore
plausible that anti-inflammatory mechanisms were activated differen-
tially or as a cascade. Rubin et al. demonstrated that levels of microglial
activation varied between brain regions of virally-suppressed HIVþ in-
dividuals, and higher levels of microglial activation are inversely asso-
ciated with neurocognitive outcomes in a domain-specific manner
(Rubin et al., 2018). Additionally, immune responses can be affected by
suboptimal adherence or changes to ART (García de Olalla et al., 2002).
Short periods of non-adherence to ART have been associated with
memory deficits (Obermeit et al., 2015). This may complicate longitu-
dinal analyses. It is pertinent here that only ~60% of participants were
virally suppressed after 12 months and several had changed their treat-
ment regimens.

Memory was the only domain that did not improve over 12 months of
ART (Table 1). Memory deficits have been described in individuals with
viral suppression through effective ART (Rubin et al., 2018; Heaton et al.,
2010b), but may also reflect the severity of HIV disease before treatment
(Tozzi et al., 2007; Ellis et al., 2011). Participants in our study
commenced ART with only 67 (2–199) CD4 T-cell/μl - which may
enhance persistent neurological defects. Furthermore, the JakCCANDO
cohort has a high burden of cytomegalovirus (CMV). CMVwas associated
with more severe HIV disease in a Thai population (Durier et al., 2013)
and with neurocognitive impairment in older adults without HIV (Luz
Correa et al., 2014). We associated the baseline burden of CMV with
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memory and total cognitive outcomes after 6 months on ART in this
population (Estiasari et al., 2020).

No alleles of P2X7R associated with fluency scores and optimal
models consistently associated fluency with education (Tables 2–5). The
cohort included individuals with only primary education and several
who had completed university. The socioeconomic sequelae of this range
in a large Asian city (Jakarta) provides further scope to identify an effect
as "education". Older age has been associated with poorer fluency out-
comes (Elgamal et al., 2011) but the cohort is relatively young and uni-
form in age [31 (19–48) years].

When we commenced this study, we anticipated associations with
coding SNP which impact the function of P2X7R and therefore influence
inflammation. We included six exonic SNP, but only two met our inclu-
sion criteria for bivariate and multivariable analyses (Supplementary
Table 1). One of the SNP excluded was rs2230912, a missense variant
associated with neuropsychological disorders (McQuillin et al., 2009;
Erhardt et al., 2007), as the minor allele was not detected in this popu-
lation. This highlights differences in patterns of LD between ethnicities
and may suggest P2X7R pathways differ between disease phenotypes.
Our results instead identified five intronic SNP which influence neuro-
cognitive outcomes in a time- and domain-specific manner in HIVþ In-
donesians as they recover on ART. These will be discussed individually.

4.1. rs504677

rs504677 associated with lower Z-scores across all domains (except
fluency) and at all four timepoints in executive function, motor speed and
total cognitive function (Tables 2–5). rs504677 has a RegulomeDB score
of 2b (https://regulome.stanford.edu), suggesting this SNP affects tran-
scription factor binding and therefore may influence neurocognitive
outcomes via the regulation of expression and splicing of P2X7R (Boyle
et al., 2012). This variant has been linked to altered expression and splice
variants of both P2X7R and the neighbouring gene encoding purinergic
P2X receptor 4 (P2X4R) in the Gene Tissue Expression (GTEx) Portal
(https://gtexportal.org/; accessed Nov 2020). Furthermore, rs504677 is
in LD (r2 and D’ >0.90) with more than 25 intronic P2X7R SNP within a
�5000 base pair region in the 1000 Genomes East Asian (EAS) pop-
ulations, and so may also mark a causal variant outside our genotyping
panel (https://ldlink.nci.nih.gov/).

4.2. rs1653598

rs1653598 occurs in all optimal models prior to commencing ART
(excluding fluency), with executive and motor speed domains at 3 and 6
months, memory at 6 months, and attention at 12 months (Tables 2–5).
Carriage of the minor allele of rs1653598 is consistently linked to higher Z-
scores. As with rs504677, this allele is linked with altered expression and
splicing of P2X7R and P2X4R (https://gtexportal.org/), and is in LD with
over 25 P2X7R SNP in the EAS population in a window �5000 base pairs.
One SNP in LD (r2¼ 1.0, D’¼ 1.0) is a gain-of-function variant, rs1718119
(https://ldlink.nci.nih.gov/). rs1718119 is associated with higher pain
intensity scores in females with diabetic peripheral neuropathy (Ursu et al.,
2014) and with inflammatory conditions including systemic lupus ery-
thematosus, chronic obstructive pulmonary disease, and localised aggres-
sive periodontitis (Chen et al., 2013; Dai et al., 2018; Harris et al., 2020).
Homozygous carriage of the minor allele of rs1718119 is associated with
an ATP-induced increase of IL-1β from monocytes and with increased
levels of IL-6 in whole blood (Harris et al., 2020; Stokes et al., 2010). This
fits with a role in HAND and warrants investigation.

4.3. rs11065464

The rs11065464 minor allele was explicitly linked with modest im-
provements in attention Z-scores at baseline and after treatment with
ART for 12 months (Tables 2 and 5). This allele is linked in the GTEx
Portal with altered expression of P2X4R and with altered splicing of
5

calcium/calmodulin-dependent kinase kinase 2 (CAMKK2) and P2X7R
(https://gtexportal.org/) but evidence of a pathological role for this SNP
is lacking.

4.4. rs208296

Carriage of the minor allele of rs208296 is consistently associated
with higher memory Z-scores in the optimal models at 0, 3 and 6 months
(Tables 2–4). rs208296 has a regulomeDB score of 1f (https://regulome
.stanford.edu) indicating a highly regulatory role, and is associated with
altered expression of P2X4R and splicing of CAMKK2 (https://gtexpo
rtal.org/). Carriage of the minor allele correlates with increased cold
pain tolerance in a Finnish population (Kambur et al., 2018) suggesting a
neurological role for this SNP. However, no studies assess its role in
inflammation or memory/cognition.

4.5. rs208307

rs208307 associated with higher Z-scores in memory and executive
domain optimal models at multiple timepoints. This allele was linked
with HIV-SN in Africans treated with stavudine but not in Africans and
Indonesians treated without stavudine (Gaff et al., 2019b, 2020; Goullee
et al., 2016). rs208307 is located at an acceptor splice site in intron 6 and
is associated with altered expression and splicing of P2X7R in the GTEx
Portal (https://gtexportal.org/). Furthermore, carriage of the rs208307
minor allele associated with higher levels of P2X7R mRNA lacking exons
7 and 8, which is predicted to impair P2X7R function (Skarratt et al.,
2020). It is plausible that associations between memory and executive
Z-scores and rs208307 are mediated by higher levels of exon 7 and 8
skipping in P2X7R mRNA and warrants investigations. We were able to
replicate our finding in Australian HIV patients (Gott et al., 2017). These
were males (n ¼ 49) aged 57 (45–73) years, of European descent and
tested after >2 years on ART. We associated carriage of the minor allele
with higher scores for verbal learning [49 (18–66) vs 41 (10–61), Mann
Whitney P ¼ 0.04] and verbal memory [50 (23–61) vs 40 (10–63), P ¼
0.009] (unpublished data).

Overall, this study provides novel insights in time- and domain-
specific neurocognitive changes in HIVþ Indonesians over the first 12
months on ART.We identify five intronic polymorphisms which associate
with neurocognitive outcomes in specific domains. These may influence
the levels or isoforms of P2X7R expressed, or may be in LD with causal
SNP. P2X7R is abundantly expressed in microglia and overexpression of
P2X7R drives microglial activation (Monif et al., 2016; Chen et al., 2016).
Microglial activation differs between regions of the brain in HIVþ in-
dividuals and correlates with domain-specific cognitive impairments, so
it is plausible that our SNP may impact HIV-associated neurocognitive
outcomes. Further genetic investigations in larger cohorts of defined
ethnicity are warranted.
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Supplementary Table 1. DNA samples were genotyped for 20 P2X7R SNP and 12 were included in 

bivariate and multivariable analyses 

a Minor and Major alleles as determined in this population 

b MAF; Minor allele frequency in the 59 participants in this study 

c SNP excluded from analyses are shaded 

# SNP ID Minor/Majora MAFb Transcript Included in Analyses 

1 rs10849849 G/A 0.27 Intronic Yes 

2 rs208288c C/G 0.06 Intronic No Genotyping Failure 

3 rs17525767 T/C 0.05 Intronic No <10% Carriage 

4 rs1718125 T/C 0.37 Intronic Yes 

5 rs1169737 T/C 0.03 Exonic No <10% Carriage 

6 rs1186055 A/C 0.33 Intronic Yes 

7 rs2857585 A/G 0.05 Intronic No <10% Carriage 

8 rs208296 A/G 0.34 Intronic Yes 

9 rs11065464 A/C 0.25 Intronic Yes 

10 rs208307 G/C 0.22 Intronic Yes 

11 rs503720 A/G 0.19 Intronic Yes 

12 rs504677 T/C 0.22 Intronic Yes 

13 rs1653609 A/C 0.44 Intronic No Genotyping Failure 

14 rs2230911 G/C 0.24 Exonic No LD with rs3751144 

15 rs1653598 C/T 0.19 Intronic Yes 

16 rs10160951 G/C 0.01 Exonic No Monoallelic 

17 rs2230912 G/C 0.00 Exonic No Monoallelic 

18 rs3751144 T/C 0.26 Exonic Yes 

19 rs3751143 C/A 0.20 Exonic Yes 

20 rs12301635 G/C 0.12 3’ UTR Yes 
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Table 2. TB does not influence neurocognitive Z-scores at baseline or after 12 months of ART 

Domain Z-scores TB +ve 

n=27/59 (46%) 

TB -ve 

n=32/59 (54%) 

Pa 

Baseline 

Attention -0.86 (-2.44 to 0.98) -0.78 (-2.11 to 1.81) 0.98 

Fluency -0.81 (-3.67 to 1.10) -0.33 (-2.48 to 1.57) 0.14 

Memory -2.94 (-6.92 to 0.81) -1.96 (-6.46 to 1.22) 0.40 

Executive -0.12 (-5.42 to 1.29) 0.48 (-5.94 to 1.08) 0.27 

Motor Speed -0.42 (-7.90 to 1.01) -0.07 (-3.38 to 0.99) 0.26 

Total -0.89 (-4.82 to 0.57) -0.77 (-2.50 to 0.67) 0.28 

12 months of ART 

Attention -0.11 (-1.94 to 2.23) -0.11 (-1.61 to 1.14) 0.42 

Fluency -0.81 (-1.76 to 3.48) 0.38 (-2.48 to 3.24) 0.19 

Memory -2.41 (-6.19 to 1.25) -2.78 (-5.71 to 0.70) 0.83 

Executive 0.90 (-1.16 to 1.57) 1.00 (-2.88 to 1.42) 0.36 

Motor Speed 0.53 (-2.02 to 1.75) 0.76 (-2.82 to 1.50) 0.92 

Total -0.52 (-2.05 to 1.17) -0.18 (-1.57 to 0.96) 0.46 

a Wilcoxon rank sum test. Data are presented as Median (range). 
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Chapter 8 
 

Polymorphisms in CAMKK2 may influence domain-specific 

neurocognitive function in HIV+ Indonesians receiving ART 

 

In Chapter 7, I identified domain and time-specific associations between P2X7R 

polymorphisms and neurocognitive outcomes in HIV+ Indonesians for the first 12 months 

receiving ART excluding stavudine. As the P2X4R and CAMKK2 genes are adjacent to P2X7R in 

a region of linkage disequilibrium, I considered whether P2X4R and CAMKK2 may also impact 

neurocognitive outcomes in HAND in HIV+ Indonesians who had received ART for 12 months. 
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ABSTRACT 

Background: Despite effective antiretroviral therapy (ART), milder forms of HIV-associated neurocognitive 

disorders (HAND) remain prevalent, and are characterised by neuroinflammation, synaptic dysfunction and 

neuronal loss.  

 

Methods: We explore associations between neurocognitive impairment in HIV+ Indonesians and 17 

polymorphisms in neighbouring genes involved in inflammation and neuronal growth/repair pathways, 

P2X4R and CAMKK2. HIV+ Indonesians (n=59) who had received ART for 12 months were assessed to derive 

Z-scores for the attention, fluency, memory, executive and motor speed domains relative to local control 

subjects. These were used to determine total cognitive scores.  

 

Results: No alleles of P2X4R displayed significant associations with neurocognition in bivariate or 

multivariable analyses. In CAMKK2, rs2686344 influenced total cognitive scores in bivariate analyses (p=0.04). 

Multivariable linear regression modelling independently associated rs2686344 with higher executive 

function Z-scores (P=0.05) after adjusting for CD4 T-cell counts (Adjusted R2=0.103, Model P=0.034), whilst 

rs1653588 associated with lower and rs1718120 (p=0.05) with higher fluency Z-scores (p=0.05) after 

adjusting for education and log10 HIV RNA copies/ml (Adjusted R2=0.268, Model P=0.001). 

 

Conclusions: Polymorphisms in CAMKK2 may influence neurocognitive outcomes in specific domains in HIV+ 

Indonesians receiving ART for 12 months.  
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INTRODUCTION 

Despite effective antiretroviral therapy (ART), milder forms of HIV-associated neurocognitive disorders 

(HAND) remain prevalent [1, 2] and can impact ability to work, quality of life, and adherence to ART. Around 

50% of our cohort of HIV+ Indonesians beginning ART with <200 CD4 T-cells/μl experienced HAND [1, 3]. 

Neurocognitive function improved over 6 months at rates influenced by age, education and/or CD4 T-cell 

counts, but memory function remained poor [1, 3]. Neuroinflammation, synaptic dysfunction and neuronal 

degeneration are hallmarks of HAND [4]. Accordingly, markers of microglial activation and synaptic 

dysfunction are associated with neurocognitive impairment in HIV+ individuals [5, 6]. Purinergic P2X receptor 

4 (P2X4R) and calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) are involved in neuroinflammatory 

and neuronal growth and repair pathways [7, 8] and so may play a role in HAND.  

 

P2X4R are ATP-gated cation channel proteins found abundantly in the central nervous system and highly 

expressed by microglia [7]. Stimulation of P2X4R drives an influx of calcium ions and activation of p38 

mitogen-activated protein kinase (MAPK) [9]. In microglia, p38 MAPK signalling regulates expression of 

cytokines including interleukin 1-beta (IL-1β) and tumour necrosis factor-alpha (TNFα) [10]. This can promote 

synaptic and neuronal loss in co-cultured microglia and neurons treated with lipopolysaccharide [10]. 

Additionally, cultured satellite glial cells from rat dorsal root ganglia treated with HIV envelope glycoprotein 

120 exhibited decreased viability correlated with increased phosphorylation of p38 MAPK and production of 

IL-1β. These increases were attenuated by inhibition of P2X4R [11]. 

 

CaMKK2 activates the AMP-activated protein kinase [8] which activates p38 MAPK pathways [12] and so has 

potential to elicit a cytokine response. However CaMKK2 has a clearer neurological role, involved in synapse 

and dendrite development, axonal growth and repair, neuronal survival, and learning and memory formation 

[8]. In cultured hippocampal neurons, CaMKK2 phosphorylates calcium/calmodulin-dependent kinase I 

(CaMKI), which phosphorylates and complexes with βPak-interacting exchange factor. In turn, this activates 

Rac1, a member of the Rho family GTPases which stimulates spine and synapse formation [13]. Inhibition of 

CaMKK2 or CaMKI decreased spine formation, and silencing of CaMKK2 impaired maturation of spines - thus 

inhibiting synapse formation [13].  

 

P2X4R and CAMKK2 are adjacent genes in a region of high linkage disequilibrium [14]. We have associated 

polymorphisms in P2X4R and CAMKK2 with altered concentrations of TNFα in vitro [15], and with HIV-

associated sensory neuropathy (HIV-SN) affecting peripheral nerves [14, 16, 17]. SNPs were selected based 

on (in order) exonic location, published links with inflammatory/neurological diseases, location in proximal 

untranslated regions and presence in more than one population. A CAMKK2 intronic SNP, rs1063843, was 

associated with decreased expression of CaMKK2 in the dorsolateral prefrontal cortex, deficits in working 

memory and executive function, and increased risk of schizophrenia [18]. Here we use multivariable 
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regression models to address the hypothesis that associations between polymorphisms in P2X4R and 

CAMKK2 influence cognitive function in HIV+ Indonesians treated with ART for 12 months. As HIV does not 

affect neurocognitive domains equally, this may illuminate which pathways are impacted by P2X4R and 

CAMKK2.  

MATERIALS AND METHODS 

82 HIV+ Indonesians were recruited at Cipto Mangunkusumo National General Hospital in Jakarta, Indonesia 

[1, 3]. Participants were ART-naïve, had <200 CD4 T-cells/μl, a Karnofsky performance score of 70-100 and 

were living in Jakarta. Exclusion criteria included history of recurrent seizures, severe depression, stroke, 

head injury, neurological deficits which may interfere with neurocognitive evaluation, pregnancy, 

breastfeeding and current use of illicit drugs. An additional 82 age-, gender- and education-matched local 

healthy controls were recruited with the same criteria plus no declared HIV risk behaviour. Patients were 

assessed for pulmonary tuberculosis (TB), plasma HIV RNA was quantitated using COBAS® 

AmpliPrep/COBAS® TaqMan® HIV-1 Tests (version 2.0) and CD4 T-cell counts were determined using 

standard flow cytometric techniques. All participants provided written and informed consent, and the study 

was approved by the Human Research Ethics Committee of the Faculty of Medicine Universitas Indonesia, 

Cipto Mangunkusumo National General Hospital and Curtin University.  

 

Neurocognitive assessments over five domains [19] were completed at baseline and after 12 months on ART 

for HIV+ participants, and once for healthy controls to establish demographically adjusted normative values 

[1, 3]. Briefly, attention was assessed using the Forward Digit Span, fluency by the Animal Naming Test, 

memory by the Rey Auditory Verbal Learning Test (immediate recall, delayed recall and learning over trials), 

executive function by the Trail Making Test A and B, and motor speed by the Grooved Peg Board test. The 

test results were subtracted from the mean normative value and then divided by the standard deviation of 

the normative value to calculate Z-scores for each domain. The average of the Z-scores for each domain were 

calculated to derive the total cognitive function Z-scores. Of the 82 participants, 61 completed baseline and 

follow-up neurocognitive assessment after 12 months of ART. DNA samples were available for 59 of the 61 

participants for genotype analyses.  

 

The 59 DNA samples were diluted to 50ng/µl and mixed with TaqMan® OpenArray™ Genotyping Master Mix 

at a 1:1 ratio. Samples were genotyped for 17 SNP across P2X4R and CAMKK2 with custom TaqMan® 

OpenArray™ Real-Time PCR Plates on the QuantStudio 12K Flex Real-Time PCR System (Life Technologies, 

NY). Genotypes were determined manually using the TaqMan® Genotyper Software. Four SNP from P2X4R 

(rs2303998, rs10849860, rs11608486 and rs7961979) and three SNP from CAMKK2 (rs11065502, rs3714454 

and rs3817190) were carried by less than <10% of participants or failed to genotype in more than 10% of 
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samples and so were excluded from analyses. P2X4R (rs25643) and CAMKK2 (rs1560568) were excluded as 

they were co-inherited with tested SNP (rs7298368 and rs7975295, respectively). 

 

Z-scores of individuals carrying one or two copies of the minor alleles were compared to Z-scores of 

individuals with homozygous carriage of the major allele (dominant models; Supplementary Table 1) with 

Wilcoxon rank sum tests in the R statistical programming environment (v1.3.959) [20]. No corrections were 

made for multiple comparisons. Linear regression modelling was completed using the ‘olsrr’ v0.5.3 package 

for R [21, 22] and included variables previously associated with neurocognitive scores [age, CD4 T-cells/μl, 

years of education [1]], log10 HIV RNA copies/ml, plus SNP from P2X4R or CAMKK2. Optimal models were 

determined for each domain using backward elimination until only variables achieving p<0.1 remained [22]. 

Only models achieving an adjusted R-squared (R2) ≥0.1, a model p<0.05, and with at least one SNP are 

discussed.  

 

RESULTS AND DISCUSSION 

The demographic, clinical and neurocognitive outcomes in this subset of 59 participants reflects the parent 

cohort described previously [1, 3]. The median (range) age was 31 (19-48) years, education completed was 

12 (6-16) years, CD4 T-cell counts were 288 (44-763) cells/l, and log10 plasma HIV RNA was 1.30 (1.30-6.32) 

copies/ml after 12 months on ART (Supplementary Table 2). Pulmonary TB was identified in 27/59 (46%) 

participants at baseline but did not influence Z-scores after 12 months of ART (P-values = 0.20 to 0.92; 

Supplementary Table 2).  

 

P2X4R SNP were not retained in linear regression models 

No alleles of P2X4R achieved P<0.05 in bivariate analyses for any domain or total cognitive function after 12 

months of ART (Table 1). Optimal linear regression models were based on age, CD4 T-cell counts, Log10 HIV 

RNA copies/ml and education, and did not retain either SNP (Supplementary Table 3). This suggests a limited 

role for P2X4R in HAND. However, we only tested two SNP and it is pertinent that animal and in vitro studies 

suggest a role for P2X4R in neuropathic pain, memory loss and anxiety, and synaptogenesis [23-25]. We were 

able to validate the effect of rs7298368 in Australian HIV patients [26]. These were males (n=72), aged 55(42-

74) years and of European descent, and had been on ART for over 2 years [26]. We identified significant 

effects on mean T-scores for mental flexibility [51.1 (29-78) vs 47.9(24-68), p=0.01] and verbal fluency [54.1 

(33-69) vs 47.7(36-64), p=0.03] (unpublished data). Genetic studies of other P2X4R SNP in larger cohorts 

should consider ethnicity, as we have shown that this has clear effects on linkage disequilibrium influencing 

the haplotypes that predominate in the populations [14, 16, 17]. 
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Fluency and executive function domain Z-scores were influenced by SNP in CAMKK2  

In bivariate analyses, five CAMKK2 SNP achieved P=0.06-0.18 in at least one of the five domains or total 

cognitive function. rs2686344 associated significantly with total cognitive function (P=0.04; Table 1). Of the 

five, rs11065504 and rs7975295 associated with reduced risk of HIV-SN in Africans [17] and Indonesians [16] 

treated without stavudine (respectively).  

 

Models for two domains retained CAMKK2 SNP and achieved an Adjusted R2>0.1 and model P<0.05 (Table 

2). Those failing these criteria are presented but are not discussed further. The optimal model for fluency 

(Adjusted R2=0.268, P=0.001) included education, log10 HIV RNA copies/ml, rs1653588 and rs1718120. The 

minor allele of rs1653588 associated with poor fluency (P=0.04; Table 2) and the minor allele of rs1718120 

associated with higher fluency Z-scores (P=0.05; Table 2). rs1653588 is a non-coding variant located in the 3-

prime untranslated region of CAMKK2, so carriage of this allele may impact neurocognitive function via 

altered expression of CAMKK2 or neighbouring genes. The Gene Tissue Expression (GTEx) Portal (version 8) 

is an online reference resource which reports associations between gene expression levels and genotype in 

non-diseased human tissue. The GTEx portal associates rs1653588*A with altered P2X4R expression and 

splice variants (https://gtexportal.org/; accessed Nov 2020).  

 

The optimal model for executive function retained rs2686344 and rs1718120 after adjusting for CD4 T-cell 

counts (Table 2). Carriage of the minor alleles of both SNP was linked with higher Z-scores. rs2686344 is an 

intronic variant associated with altered CAMKK2 expression in the GTEx Portal (https://gtexportal.org/), but 

yields conflicting results. Here it approached significant associations with fluency and total cognitive Z-scores 

and not executive function in bivariate analyses (Table 1), so interactions with clinical factors may be 

important. rs2686344 associated with lower rates of peripheral neuropathy in Africans treated with 

stavudine, but showed no effect in Africans and Indonesians treated without stavudine [14, 16, 17]. Stavudine 

probably inhibits mitochondrial function in peripheral nerves, so the ART regimen may be important. We 

sought validation of associations between rs2686344 and cognitive deficits in the Australian HIV patients as 

described above. These individuals were tested in 2009-11 so some had used stavudine or related drugs at 

some time [26]. Carriage of the minor allele associated with higher T-scores for speed information processing 

[51.9(42-66) vs 47.6 (17-69), P=0.038], with a marginal effect on verbal memory [44 (10-63) vs 49.5(23-61), 

P=0.11] (unpublished data). 

 

rs1718120 displayed weak links with Z-scores in all five domains in bivariate analyses (Table 1) and was 

included in the optimal models for fluency and executive function (Table 2). The association with carriage of 

the minor allele in the optimal models was positive but weak (0.05 < P < 0.10). rs1718120 is intronic and has 

been associated with altered expression of CAMKK2 and the upstream gene ANAPC5 

(https://gtexportal.org/). We associated SNP in ANAPC5 with large fibre neuropathy in HIV+ Indonesians [27]. 

https://gtexportal.org/
https://gtexportal.org/
https://gtexportal.org/
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ANAPC5 encodes a subunit of the anaphase promoting complex (APC) which initiates cell progression from 

metaphase into anaphase. Replication of neurons would disturb signal transmission, so aberrant re-entry 

into the cell cycle elicits apoptosis [28]. Accordingly, Almeida et al demonstrated that dysregulation of APC 

pathways in cultured primary rat cortical neurons triggers apoptotic neuronal death [28]. 

 

The exploratory nature of this study and the modest number of participants limited our ability to assess rare 

SNP and correct for multiple comparisons. Nonetheless, our study identifies SNP in CAMKK2 which may 

contribute to HIV-associated neurocognitive impairment in specific domains. Overall, these results suggest a 

role for CAMKK2 in neurocognitive impairment in HIV+ individuals and warrants further investigation. 
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Table 1. rs2686344 in CAMKK2 associated with total cognitive function in HIV+ Indonesians after receiving ART for 12 months 

  Cognitive domain 

 MAF b Attention Fluency Memory Executive Motor Speed Total 

Z-Scores 

Median (range) 

    - -0.11  

(-1.94 to 2.23) 

-0.10  

(-2.48 to 3.48) 

-2.72  

(-6.19 to 1.25) 

0.93  

(-2.88 to 1.57) 

0.65  

(-2.82 to 1.75) 

-0.25  

(-2.05 to 1.17) 

                                                             p-values for Mann-Whitney U tests a 

P2X4R SNP ID  

minor/major allele 

rs2686387 G/C 0.43 0.20c 0.47 0.90 0.43 0.27 0.99 

rs7298368 T/C 0.45 0.43 0.56 0.79 0.87 0.09 0.88 

CAMKK2 SNP ID  

minor/major allele 

rs1653587 T/A 0.09 0.38 0.48 0.79 0.62 0.52 0.54 

rs1653588 A/T 0.08 0.77 0.11 0.85 0.87 0.79 0.15 

rs11065504 C/G 0.32 0.27 0.80 0.28 0.71 0.18 0.83 

rs7975295 C/T 0.32 0.92 0.83 0.17 0.16 0.97 0.39 

rs2686344 T/C 0.24 0.93 0.06 0.23 0.21 1.00 0.04d 

rs1718120 G/T 0.26 0.10 0.12 0.17 0.12 0.12 0.45 

a Dominant model; Heterozygous or homozygous minor allele versus homozygous major allele;  
b MAF; Minor allele frequency;  
c Variables achieving P<0.20 are bolded;  
d Variables achieving P<0.05 are underlined 



Table 2. SNP in CAMKK2 differentially influence neurocognitive outcomes after 12 months of ART  

 

Variable 

 

 b 

95% CIa  

P 2.5% 97.5% 

Attention: Adjusted R2=0.050, Model P=0.054 

rs1718120 0.47 -0.01 0.94 0.05 

Fluency: Adjusted R2=0.268, Model P=0.001c 

Education 0.20 0.08 0.32 0.002 

HIV RNA copies/ml -0.24 0.05 0.29 0.10 

rs1653598 -0.93 -1.79 -0.06 0.04 

rs1718120 0.65 -0.01 1.32 0.05 

Memory: Adjusted R2=0.103, Model P=0.018 

Age -0.09 -0.16 -0.02 0.02 

HIV RNA copies/ml -0.35 -0.74 0.03 0.07 

Executive: Adjusted R2=0.103, Model P=0.034 c 

CD4 T-cells/l -0.001 -0.002 0.000 0.06 

rs2686344 0.39 0.01 0.77 0.05 

rs1718120 0.36 -0.01 0.74 0.06 

Motor Speed: No individual variables achieved P<0.1 

Total Cognitive: Adjusted R2=0.119, Model P=0.011 c  

Age -0.03 -0.06 -0.01 0.02 

HIV RNA copies/ml -0.14 -0.29 0.01 0.08 

Optimal models achieving an Adjusted R2 ≥0.1 and mode P<0.05 are shown. 

a CI: Confidence Interval;  

b  represents the regression coefficient 

c models retaining at least one SNP (P<0.05)  

 



Saupplementary Table 1. The median (range) neurocognitive domain Z-scores for each genotype 

  Cognitive Domain a 

 n Attention Fluency Memory Executive Motor Speed Total  

P2X4R 

rs2686387*G 

rs2686387*C 

37 

20 

-0.11 (-1.94 to 2.23) 

-0.28 (-1.94 to 1.06) 

-0.33 (-2.48 to 3.48) 

0.38 (-2.00 to 3.24) 

-2.41 (-6.19 to 1.25) 

-2.93 (-5.40 to 0.49) 

0.93 (-2.88 to 1.57) 

0.91 (-1.16 to 1.40) 

0.62 (-2.82 to 1.75) 

0.96 (-2.02 to 1.43) 

-0.25 (-1.31 to 1.17) 

-0.18 (-1.57 to 0.96) 

rs7298368*T 

rs7298368*C 

38 

19 

-0.11 (-1.94 to 1.06) 

-0.11 (-1.94 to 2.23) 

-0.22 (-2.48 to 3.48) 

0.38 (-2.00 to 3.24) 

-2.55 (-5.71 to 1.25) 

-2.83 (-6.19 to 0.49) 

0.93 (-2.88 to 1.57) 

0.99 (-1.16 to 1.40) 

0.59 (-2.82 to 1.64) 

0.98 (-2.02 to 1.75) 

-0.28 (-1.31 to 1.17) 

-0.17 (-1.57 to 0.96) 

CAMKK2 

rs1653587*T 

rs1653587*A 

10 

47 

-0.11 (-0.53 to 1.14) 

-0.11 (-1.94 to 2.23) 

-0.45 (-2.48 to 1.57) 

-0.10 (-2.00 to 3.48) 

-3.2 (-4.38 to 0.10) 

-2.72 (-6.19 to 1.25) 

1.08 (-2.88 to 1.42) 

0.93 (-1.16 to 1.57) 

0.64 (-2.82 to 1.50) 

0.76 (-2.21 to 1.75) 

-0.48 (-1.08 to 0.64) 

-0.13 (-2.05 to 1.17) 

rs1653588*A 

rs1653588*T 

10 

49 

-0.28 (-0.78 to 0.64) 

-0.11 (-1.94 to 2.23) 

-0.57 (-2.48 to 1.33) 

0.14 (-2.00 to 3.48) 

-3.16 (-4.38 to 0.10) 

-2.68 (-6.19 to 1.25) 

0.96 (-2.88 to 1.41) 

0.93 (-1.16 to 1.57) 

0.68 (-2.82 to 1.50) 

0.65 (-2.21 to 1.75) 

-0.58 (-1.08 to 0.44) 

-0.17 (-2.05 to 1.17) 

rs11065504*C 

rs11065504*G 

27 

29 

0.23 (-1.94 to 2.23) 

-0.11 (-1.94 to 1.14) 

-0.10 (-2.00 to 3.48) 

-0.10 (-2.48 to 3.24) 

-3.02 (-6.19 to -0.13) 

-2.13 (-5.71 to 1.25) 

0.98 (-0.62 to 1.57) 

0.92 (-2.88 to 1.42) 

0.91 (-2.02 to 1.75) 

0.62 (-2.82 to 1.64) 

-0.19 (-2.05 to 1.15) 

-0.25 (-1.57 to 1.17) 

rs7975295*C 

rs7975295*T 

32 

25 

-0.11 (-1.94 to 1.14) 

-0.11 (-1.94 to 2.23) 

-0.22 (-2.48 to 3.48) 

-0.10 (-2.00 to 3.24) 

-2.07 (-5.71 to 1.25) 

-3.25 (-6.19 to 0.49) 

0.99 (-2.88 to 1.57) 

0.83 (-1.16 to 1.41) 

0.63 (-2.82 to 1.64) 

0.76 (-2.02 to 1.75) 

-0.20 (-1.31 to 1.17) 

-0.36 (-2.05 to 0.81) 

rs2686344*T 

rs2686344*C 

25 

34 

-0.11 (-1.61 to 1.14) 

-0.11 (-1.94 to 2.23) 

0.38 (-2.00 to 3.24) 

-0.57 (-2.48 to 3.48) 

-2.21 (-5.06 to 1.25) 

-3.14 (-6.19 to 0.10) 

0.99 (-0.20 to 1.42) 

0.93 (-2.88 to 1.57) 

0.65 (-2.21 to 1.40) 

0.68 (-2.82 to 1.75) 

-0.09 (-1.57 to 1.17) 

-0.56 (-2.05 to 1.15) 

rs1718120*G 

rs1718120*T 

25 

31 

-0.11 (-1.94 to 2.23) 

-0.44 (-1.94 to 1.14) 

0.38 (-2.48 to 3.48) 

-0.33 (-2.00 to 3.24) 

-3.25 (-6.19 to 1.25) 

-2.01 (-5.71 to 0.70) 

1.05 (-1.16 to 1.57) 

0.83 (-2.88 to 1.42) 

0.94 (-1.19 to 1.75) 

0.54 (-2.82 to 1.50) 

-0.17 (-1.34 to 1.17) 

-0.31 (-1.57 to 0.64) 

a Median (range)



Supplementary Table 2. Clinical features and the impact of TB on neurocognitive outcomes in 

Indonesians after 12 months of ART 

Variable 

 

Median (Range)   

Age (years) 31 (19-48)   

CD4 T-cells/l 288 (44-763)   

HIV RNA log10 copies/ml 1.3 (1.3-6.32)   

Education (years) 12 (6-16)   

History of TB 27/59 (46%)   

ARTb: 

Lamivudine 

Efavirenz 

Tenofovir 

Stavudine 

Zidovudine 

 

100% 

90% 

25% 

12% 

23% 

  

Domain Z-scores 

Median (range) 

TB +ve 

n=27/59 (46%) 

TB -ve 

n=32/59 (54%) 

Pa 

Attention -0.11 (-1.94 to 2.23) -0.11 (-1.61 to 1.14) 0.42 

Fluency -0.81 (-1.76 to 3.48) 0.38 (-2.48 to 3.24) 0.20 

Memory -2.41 (-6.19 to 1.25) -2.78 (-5.71 to 0.70) 0.83 

Executive 0.90 (-1.16 to 1.57) 1.00 (-2.88 to 1.42) 0.36 

Motor Speed 0.53 (-2.02 to 1.75) 0.76 (-2.82 to 1.50) 0.92 

Total  -0.52 (-2.05 to 1.17) -0.18 (-1.57 to 0.96) 0.46 

a Wilcoxon rank sum test  

b ART regimens included 3 antivirals and changes to regimens were common [1, 3] 



Supplementary Table 3. SNP in P2X4R do not influence neurocognitive outcomes after 12 months 

of ART 

 

Variable 

 

 

95% CIa  

P 2.5% 97.5% 

Attention:  No individual variables achieved P<0.1 

Fluency: Adjusted R2=0.144, Model P=0.009 

Education 0.20 0.08 0.32 0.002 

Memory: Adjusted R2=0.065, Model P=0.029 

Age -0.08 -0.15 -0.01 0.03 

Log10 HIV RNA copies/ml -0.35 -0.74 0.03 0.07 

Executive: Adjusted R2=0.090, Model P=0.027 

CD4 T-cells/l -0.001 -0.002 0.00 0.09 

Education 0.08 0.01 0.14 0.02 

Motor Speed: No individual variables achieved P<0.1 

Total Cognitive: Adjusted R2=0.321, Model P=0.0002 

Age -0.03 -0.06 -0.01 0.02 

Education 0.07 0.01 0.13 0.02 

a CI: Confidence Interval 
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9.0 Conclusions and Future Directions 

9.1 Thesis Conclusions  

The neurological sequelae of HIV infection remains a common burden in the lifelong 

management of patients. Up to 40% and 50% of individuals receiving stavudine-free ART may 

be affected by HIV-SN or HAND, respectively. Both complications feature increased 

inflammation and neuronal degeneration and so may share common mechanisms. However 

the precise mechanisms that lead to HIV-SN and HAND are not clear. This thesis sought 

demographic, clinical and genetic risk factors for developing HIV-SN or HAND, and considers 

how they may shed light on the pathogenesis of these conditions. To do this, I investigated 

the role of host genes involved in inflammatory and neuronal repair/growth pathways in 

Indonesians and Africans assessed for HIV-SN and/or HAND. The results have the potential to 

inform HIV treatment and management of those at risk, and may one day aid the rational 

design of therapeutic strategies. A conceptual model based on the results in thesis is 

presented in Figure 1. 

 

I first assessed SNP in the TNF-block in Indonesians and Africans treated without stavudine. I 

identified that TNF-block genotypes associate with HIV-SN but are different to associations 

seen without stavudine [1-4]. This suggests differences in the underlying pathways. 

Furthermore, SNP associated with HIV-SN differed in Indonesians and Africans. However the 

haplotypes associated with HIV-SN in each cohort differed by only one allele. Haplotype 

analyses suggest these haplotypes may descend from a common ancestor. Therefore, it’s 

plausible that haplotypes may share critical allele/s not typed in our panel which influences a 

common mechanisms contributing to HIV-SN. This study confirms a role of inflammation in 

the pathogenesis of HIV-SN. 

 

I then investigated associations between the P2X-block genotypes and HIV-SN in Africans and 

Indonesians treated without stavudine. The cohorts recruited by my colleagues confirmed 

that the prevalence of HIV-SN in Indonesians and Africans treated without stavudine has 

decreased. HIV-SN in Indonesians treated without stavudine decreased by 50% (34 to 14%) 

and associated with markers of HIV disease severity [5]. In Africans, HIV-SN decreased from 

56% to 38% and associated with higher viral loads and lower CD4 T-cell counts. Moreover, I 



confirmed a role in HIV-SN for SNP in the P2X-block, particularly CAMKK2. Associated 

genotypes differed from those in Africans receiving stavudine [6] and between Africans and 

Indonesians treated without stavudine. As with TNF-genotypes, this may reflect the differing 

patterns of LD between the two populations or slight differences in the pathways leading to 

HIV-SN. Nonetheless, I established a clear link between HIV-SN and CAMKK2 which warrants 

further investigations in larger cohorts of clearly defined ethnicities and ART regimens.  

 

Given the strong link between CAMKK2 and HIV-SN, we assessed associations between the 

P2X-block and large and small fibre neuropathy in a subset of the Indonesian cohort. Small 

fibre neuropathy associated with two SNP in CAMKK2 whereas large fibre neuropathy 

associated with a single SNP in ANAPC5. This suggests a link between CAMKK2 and small fibre 

pathology in HIV-SN and warrants further assessment.  

 

In light of associations between the P2X-block and HIV-SN, I compared the expression 

patterns of P2X7R, P2X4R and CaMKK2 and the IENFD in skin samples from Indonesian 

patients with and without HIV-SN, and healthy controls. IENFD were significantly lower in 

samples from HIV+ individuals with and without HIV-SN compared to healthy controls. This is 

consistent with neurotoxicity associated with HIV infection. P2X7R, P2X4R and CaMKK2 

expression differed for each protein and varied by HIV-SN status. An important finding is that 

CaMKK2+ cells were more common in patients with HIV-SN than those without, and most 

CaMKK2+ cells were co-located with nerves. The differences in expression and the close 

vicinity to nerves supports a neurological role for CaMKK2 in HIV-SN, and further 

substantiates the genetic evidence linking the P2X-block to HIV-SN.  

 

I next investigated whether P2X-block SNP associated with HIV-SN in Indonesians and Africans 

were also markers of risk for HAND in HIV+ Indonesians as they commenced ART and in the 

first 12 months of treatment. Interestingly, no P2X4R SNP associated with HAND. However, 

only two SNP from P2X4R were included in the final analyses and effects of P2X4R may be 

mediated by SNP in LD in CAMKK2 and P2X7R. Two intronic SNP in CAMKK2 were associated 

with altered domain-specific neurocognitive outcomes after 12 months on ART. One SNP, 

which associated with higher executive function scores in Indonesians, also associated with 

higher speed information processing scores in HIV+ Australians, supporting a link between 



CAMKK2 and neurocognitive impairment. Five intronic P2X7R SNP associated with 

neurocognitive outcomes in a time- and domain-specific manner. Based on existing literature, 

each of the five SNP may plausibly contribute to neurocognitive outcomes. These results were 

again partially replicated in Australian HIV+ patients, highlighting P2X7R as a promising 

candidate for future investigations into the pathogenesis of HAND. Validation of these 

findings in larger independent cohorts and multiple ethnicities is warranted.  

 

9.2 Future Directions 

This thesis builds on the work of my colleagues and of other groups, providing further 

evidence that susceptibility to HIV-SN is influenced by the TNF-block genotype and highlights 

a link with the TNF-block that is independent of stavudine use. Furthermore, this thesis 

provides strong evidence for a role of the P2X-block in HIV-SN and HAND. A clear relationship 

is established with CAMKK2 in HIV-SN and an early link with P2X7R in HAND. Furthermore, 

this thesis presents preliminary evidence that associations with P2X-block genotypes may be 

mediated in HIV-SN by the encoded proteins.  

 

Future investigations should aim to identify critical P2X-block genotypes and confirm a role 

for the encoded proteins in the inflammatory and neurotoxic pathways underpinning both 

HIV-SN and HAND. Further genetic investigations of HIV-SN and HAND utilising a more 

comprehensive gene and SNP panel (including the TNF-block), genome-wide association 

studies or deep sequencing of large, longitudinal cohorts and in multiple ethnicities are 

warranted. In silico modelling of key SNP associated with HIV-SN and HAND could identify 

possible pathogenic variants which could be validated utilising expression constructs.  

 

Assessment of the expression patterns of P2X7R, P2X4R and CaMKK2 in biopsies from the 

lower leg of patients with and without HIV-SN provides invaluable insights of the physical 

relationship between nerves and proteins with minimal impact to the patient. Validation of 

expression patterns of P2X7R, P2X4R and CaMKK2 with additional markers of immune cells 

and epithelium to clearly identify expressing cells is required. Furthermore, future studies 

should address longitudinal cohorts of known P2X-block genotype as expression of the 

proteins may vary during the development of HIV-SN. This should be linked with clinical 



features such as numbness and pain. Quantitation of protein and mRNA expression from 

biopsy material will provide additional information.  

 

Understanding the role of the encoded proteins and the expression patterns of the P2X-block 

in the brain of individuals with HAND would also be of great value. However, post-mortem 

tissue is very limited and provides only a snapshot into the pathology of the later stages of 

HAND. Assessment of proteins in blood or cerebrospinal fluid may not capture time- or tissue-

specific expression of the encoded proteins. Therefore, further genetic investigations, as 

discussed above, in silico modelling, and studies utilising animal models are required to 

further the understanding of the pathogenic mechanisms of HAND and identify potential 

therapeutic targets.  

 

Finally, this study highlights potential common pathways between two HIV-associated 

neurological conditions. Associations with the P2X-block and the peripheral and central 

nervous systems may be independent of HIV and so the P2X-block may influence other 

neurodegenerative diseases. Indeed the literature supports a links with Alzheimer’s disease, 

schizophrenia and multiple sclerosis [7-10]. We recently reported that expression of P2X7R, 

P2X4R and CaMKK2 in neurons in the frontal cortex of post-mortem tissue did not differ 

between donors with and without Alzheimer’s disease (Appendix 1; [11]) Expression may vary 

within specific regions of AD brain or be restricted to earlier stages of AD pathology. 

Histological investigation is limited by the availability of samples from younger donors. 

Therefore, we are now exploring the genetic signature of the P2X-block in the progression of 

Alzheimer’s disease.  

 

  



Figure 1. 

 

Figure 1. Conceptual model based on the results in thesis 

This thesis identified demographic, clinical and genetic markers of risk for HIV-SN and HAND 

in Indonesians and South Africans. SNP in TNF, NFKBIL1, and BAT within the TNF-block 

associated with HIV-SN. A clear association was identified between CAMKK2 in the P2X-block 

and HIV-SN, notably with impairment of small fibres and SNP within P2X7R associated with 

HAND. However, associating SNP differed between Indonesians and South Africans and 

further investigation is required to identify critical genotypes. 
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Immunohistochemical evidence of P2X7R, P2X4R and CaMKK2 in 
pyramidal neurons of frontal cortex does not align with Alzheimer’s disease 
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A B S T R A C T

Alzheimer’s disease (AD) is an incurable neurodegenerative condition resulting in progressive cognitive decline. 
Pathological features include Aβ plaques, neurofibrillary tangles, neuroinflammation and neuronal death. 
Purinergic receptors 7 and 4 (P2X7R and P2X4R) and calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) 
are implicated in neuronal death. We used immunohistochemistry to investigate the distribution of these proteins 
in neurones from frontal cortex of donors (n = 3/group; aged 79–83 years) who died with and without AD. 
Neurones were identified morphologically and immunoperoxidase staining was achieved using commercial 
antibodies. Immunoreactive neurones were counted for each protein by 2–3 raters blinded to the diagnoses. We 
observed no differences in percentages of P2X7R, P2X4R or CaMKK2 positive neurones (p = 0.2–0.99), but 
sections from individuals with AD had marginally fewer neurones (p = 0.10). Hence P2X7R, P2X4R or CaMKK2 
appear to be expressed in neurones from older donors, but expression does not associate with AD.   

1. Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease
resulting in a progressive cognitive decline which impairs basic func-
tional abilities (Mattson, 2004). Neuropathological hallmarks of AD 
include extracellular deposition of the neurotoxic beta amyloid peptide 
1-42 (Aβ) in the form of senile plaques, and the appearance of intra-
cellular neurofibrillary tangles composed of the hyperphosphorylated
microtubule-associated protein tau (Selkoe and Hardy, 2016). AD is
further characterised by dysregulated neuroinflammation, calcium
dyshomeostasis, increased oxidative stress, and synaptic and neuronal
dysfunction triggered by cell death (Akiyama et al., 2000; Huang et al.,
2016; Kawahara et al., 2009). Underlying mechanisms remain unclear.
Purinergic receptors 7 and 4 (P2X7R and P2X4R) and calcium/
calmodulin-dependent kinase kinase 2 (CaMKK2) are implicated in
neuronal death and warrant investigation in brains affected by AD.

Several recent reviews describe a role in AD for purinergic receptors, 
including P2X7R and P2X4R (Godoy et al., 2019; Cieślak and Wojtczak, 

2018; Francistiová et al., 2020). P2X7R and P2X4R are ATP-gated non- 
specific cation channels activated by Aβ-induced release of extracellular 
ATP triggering influx of calcium ions (Ca2+) (Parvathenani et al., 2003; 
Varma et al., 2009). In mice, microglial activation of P2X7R and Ca2+

influx induce synthesis and release of proinflammatory cytokines 
including TNFα (Shieh et al., 2014) which is found at elevated levels in 
AD (Akiyama et al., 2000). In co-cultures and rodent models of AD, 
P2X7R-dependent activation of microglia and influx of Ca2+ increase 
levels of reactive oxygen species and neuronal death (Parvathenani 
et al., 2003). Inhibition of P2X7R in rodent models of AD reduced Aβ 
plaques (Diaz-Hernandez et al., 2012) and neuronal death (Ryu and 
McLarnon, 2008). 

The role of P2X4R in AD is less clear. In neuroinflammatory settings, 
P2X4R is upregulated in spinal and brain microglia in patients with 
multiple sclerosis – this was replicated in microglial cultures stimulated 
in vitro (Vázquez-Villoldo et al., 2014). Moreover the downregulation of 
spinal expression of P2X4R in mice diminished production of proin-
flammatory cytokines (Xu et al., 2018). P2X4R may also play a role in 
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neurotoxicity attributed to sustained Ca2+ influx in AD. Cultured hip-
pocampal neurones treated with neurotoxic Aβ trigger upregulation of 
full length and c-terminal cleaved P2X4R in neuronal cell bodies and 
neurites. Cleavage of P2X4R delays channel closure, permitting greater 
influx of Ca2+ and subsequent neuronal death. Moreover, cultures 
overexpressing P2X4R exhibited greater cytosolic Ca2+ levels and Aβ- 
induced neurotoxicity than cultures with reduced P2X4R expression 
(Varma et al., 2009). 

CaMKK2 is a serine/threonine kinase expressed abundantly in the 
brain. CaMKK2 phosphorylates and activates AMP-activated kinase 
(AMPK), which phosphorylates tau at S262. Phosphorylation at S262 
induces dendritic spine loss in cultured hippocampal neurones exposed 
to Aβ, whereas inhibition of CaMKK2 and/or AMPK prevented S262 
phosphorylation and Aβ-associated neurotoxicity (Mairet-Coello et al., 
2013). Furthermore, CaMKK2-activated AMPK is found abundantly in 
dystrophic neurites surrounding Aβ plaques and in tangle- and pre-
tangle- bearing neurones in patients with AD, suggesting involvement in 
AD progression (Vingtdeux et al., 2011). 

Genetic evidence further supports a role for the three proteins. A 
single nucleotide polymorphism (SNP) within the gene encoding P2X7R 
associated with reduced risk of AD (Sanz et al., 2014). Furthermore, a 
SNP in the gene encoding CaMKK2 associated with lower expression of 
CaMKK2 in dorsolateral prefrontal cortex, increased risk of schizo-
phrenia, and deficits in cognitive function in schizophrenics (Yu et al., 
2016). We have associated SNP in all three genes with altered risk of 
HIV-associated sensory neuropathy, a neurodegenerative condition 
affecting peripheral nerves (Gaff, 2019; Gaff et al., 2020). 

Although P2X7R, P2X4R and CaMKK2 are linked with neuronal 
pathology in animal models of AD and in models based on cultured 
neurones, the expression of these proteins in human brain affected by 
AD is uncertain. Using immunohistochemistry, we describe the distri-
bution of the three proteins in neurones from frontal cortex of donors 
who died with or without AD. 

2. Materials and methods

2.1. Ethics and sample information

This research and the use of human tissue was approved by the 
Human Research Ethics Office of Curtin University (HRE2018-0318). 
Post-mortem central nervous system tissues, specifically, formalin fixed 
paraffin embedded frontal cortex from Brodmann areas 11 and 12 were 
provided for three donors diagnosed with clinical AD (Braak stage V, V 
and VI) and three age and gender-matched non-AD donors (Braak stage 
0, 0 and I) by the Victorian Brain Bank (VBB) at the Florey Institute for 
Neuroscience and Mental Health. 

2.2. Sample preparation 

Three serial sections (~10mm2, 5 μm thick) from each of the donors 
were deparaffinised (5 min, 3 changes xylene; 534,056; Sigma, Missouri, 
USA), rehydrated (2 × 10 min in 100, 95, 70, and 50% ethanol; 
ET00052500; Scharlab, Barcelona, Spain) and washed in MilliQ water 
(2 × 5 min). For antigen retrieval, sections were submerged in 10 mM 
sodium citrate buffer (trisodium citrate dehydrate; pH = 6.0; S1804; 
Sigma) with 0.05% Tween 20 (P1379; Sigma), microwaved for 10 min 
and washed in MilliQ water (2 × 5 min). Endogenous peroxidases were 
blocked using 1% hydrogen peroxide (H1009; Sigma) at room temper-
ature for 10 min, followed by 5 min in phosphate-buffered saline (PBS; 
P4417; Sigma). Sections were incubated for 10 min in avidin/biotin 
blocking reagents (004303; Life Technologies, California, USA) and 
washed for 5 min in PBS. Samples were incubated overnight in 5% 
normal donkey serum (NDS) in PBS at 4 ◦C to reduce non-specific 
binding of antibodies. 

2.3. Immunohistochemistry 

Three serial sections were treated with antibodies; goat anti-P2X7R 
at 5μg/ml (ab105047; Abcam, Cambridge, UK), anti-P2X4R at 5μg/ml 
(ab134559; Abcam) or anti-CaMKK2 at 2 μg/ml (sc-9629; Santa Cruz 
Biotechnology, Texas, USA) diluted in PBS with 1% NDS (2 h at room 
temperature). The specificity of the antibodies was validated by 
Immunohistochemistry and Western Blot in studies cited by the manu-
facturer (Asif et al., 2019; Briski et al., 2017; Chessell et al., 1998). 
Sections were then washed in PBS (3 × 5 min) before incubation with 
donkey anti-goat IgG conjugated with biotin (ab6884; Abcam) diluted to 
20 μg/ml in PBS with 1% NDS for 1 h at room temperature, followed by 
PBS washes (3 × 5 min). This was visualised using streptavidin labelled 
with horseradish peroxidase (BD Pharminogen, California, USA) diluted 
1:200 in PBS plus 1% NDS (30 min at room temperature). Sections were 
washed in PBS (3 × 5 min) and treated with 3, 3′ diaminobenzidine 
(DAB; D4293, Sigma) dissolved in MilliQ water and applied for 12 min 
(following anti-CaMKK2) or 8 min (following anti-P2X7R or -P2X4R). 
After washing in PBS and MilliQ water sections were counterstained 
with Gill’s Haematoxylin (30 s), washed in running tap water, dehy-
drated for 1 min in 70%, 95% and three changes of 100% ethanol, and 
cleared for 1 min in three changes of xylene. Sections were mounted 
with Entellan New (Proscitech, Queensland, Australia) and glass cov-
erslips (#1.5; Proscitech). Samples treated without primary antibodies 
were included as negative controls. 

2.4. Imaging and analyses 

Brightfield images were collected using an Olympus UPlanSApo 40×
NA0.75 objective on an Olympus BX-51 (Olympus Corporation, Tokyo, 
Japan) equipped with a DP70 camera (Olympus) and Olympus cellSens 
Standard software version 3.14 for Windows (Fig. 1). Whole-section 
digital images were obtained using a Leica (Aperio) Scanscope XT® 
slide Scanner (Aperio Technologies, California, USA) with an Olympus 
UPlanSApo 20× NA0.75 objective. From whole slide images, three to 
five fixed size (110,000μm2), random fields containing layer V pyra-
midal neurones were extracted as individual images using the Aperio 
ImageScope software (Version 12.3.2.8013 for Windows; Aperio Tech-
nologies Inc). Immunoreactive counterstained cells with the morpho-
logical features of layer V pyramidal neurones were defined as ‘positive’ 
and non-immunoreactive cells as ‘negative’. All positive and negative 
neurones in every image were counted by 2–3 raters blinded to AD di-
agnoses. Percentages of positive neurones were assessed using Mann- 
Whitney tests in GraphPad Prism version 8.2.1 for Windows (Graph-
pad Software, California, USA). Intraclass correlation coefficients were 
calculated (two-way random, average measures and absolute agree-
ment) using the “irr” package (Gamer et al., 2019). 

3. Results and discussion

Donors with and without AD were matched by age (79.9–82.9 vs
79.0–82.7 years, resp.) and proportion of males (33% vs 33%, resp.; 
Table 1). Brightfield images (40× objective) were used to define neu-
rones as positive or negative based on morphological features (distinct 
pyramidal soma and visible nucleus and nucleolus) and immunoreac-
tivity (Fig. 1). Cells which could not be identified morphologically were 
excluded from our counts. Comparisons with sections stained without 
primary antibodies established that staining detected with all three 
antibodies reflected expression of P2X4R, P2X7R and CaMKK2 in all 
sections from donors dying with and without AD (Fig. 1). Sections from 
one donor with AD exhibited high background staining with P2X4R and 
were excluded. 

The average percentage of positive neurones per sample was deter-
mined for each rater (JG, PP, SW) and intraclass correlation coefficients 
were calculated for each protein. Intraclass correlation coefficients of 
0.60, 0.72 and 0.83 for CaMKK2, P2X7R and P2X4R (resp.) indicate 

J. Gaff et al.

132/170



Experimental and Molecular Pathology 120 (2021) 104636

3

Fig. 1. A–H. Immunohistochemical staining of frontal cortex from AD (A, C, E, G) and non-AD (B, D, F, H) donors. Cells defined as positive and negative neurones are 
indicated with filled and open arrows, respectively. Cells with the morphological features of astrocytes (triangles), oligodendrocytes (diamonds) and microglia 
(squares) were observed adjacent to neurones. Neurones from AD and Non-AD donors were immunoreactive for P2X7R (A–B), P2X4R (C–D), and CaMKK2 (E–F). 
Minimal immunoreactivity was observed in negative control tissue treated without primary antibodies (G–H). Scale bars indicate 20 μm. Abbreviations: AD; Alz-
heimer’s disease, P2X7R; purinergic receptor 7, P2X4R; purinergic receptor 4, CaMKK2; calcium/calmodulin dependent kinase kinase 2. 
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satisfactory correlation between counts (data not shown). Most neuro-
nes were positive for P2X7R, P2X4R and CaMKK2 (57–95% positive; 
Table 1), so many neurones must express 2–3 of the proteins. Indeed, 
coexpression of P2X7R and P2X4R is well documented (Koo and Li, 
2016). Proportions of positive neurones calculated for each protein 
show no significant differences between AD and non-AD tissue (p =
0.20–0.99; Table 1). Sections from individuals with AD had slightly 
fewer neurones than controls, but the difference was not significant (p =
0.10). 

While AD did not affect P2X7R, P2X4R and CaMKK2 immunoreac-
tivity in neurones within the frontal cortex, expression may vary be-
tween regions of the brain or be restricted to earlier stages of AD 
pathology. In a prior study (Varma et al., 2009), P2X4R levels were 
decreased in the medial frontal gyrus and the medial temporal gyrus of 
donors with severe AD pathology compared with non-AD donors, but no 
difference was observed in the cerebellum. Moreover, P2X4R expression 
was upregulated following exposure to Aβ but prior to neuronal cell 
death in an in vitro model of AD. In a familial AD mouse model, tran-
scription of P2X7R in neurones of the dentate gyrus was reduced in the 
early and advanced AD, but normalised in late stage AD (Martínez- 
Frailes et al., 2019). Patients in this study, aged 79.9–82.9, had a 
diagnosis of AD for around 7 years, but neurological changes may have 
been initiated before that time. Donors without a diagnosis of AD were 
similar in age (aged 79.0–82.7 years) and may display age-related 
changes. 

Cells with the morphological features of astrocytes, oligodendrocytes 
and microglia were often observed adjacent to neurones, but immuno-
reactivity was rarely clear in glial cells (Fig. 1). Expression of P2X7R, 
P2X4R and CaMKK2 is reported in astrocytes and microglia in rodent 
brain and in human cultures (Zhang et al., 2018; Burnstock, 2008). Dual 
labelling with cell-specific markers is warranted to assess these lineages 
in human brain. 

Although our study was small, we observed P2X7R, P2X4R or 
CaMKK2 immunoreactivity in frontal cortex pyramidal neurones from 
all six donors. No differences between individuals with and without AD 
were apparent and most neurones in all sections expressed the three 
proteins. Further investigations will be limited by the availability of 
clinical material collected from younger donors, so it is appropriate to 
view our data in the context of studies based on animal models. In an 
alternative approach, we are now examining associations between AD 
and polymorphisms in the genes encoding P2X7R, P2X4R or CaMKK2. 
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A B S T R A C T

Polymorphisms in P2X4R and CAMKK2 associate with susceptibility to HIV-associated sensory neuropathy (HIV-
SN) – a condition likely mediated by TNFα. As single nucleotide polymorphisms (SNPs) and haplotypes of
CAMKK2, and a neighbouring gene P2X4R, mark susceptibility to HIV-SN in South Africans living with HIV, we
examined the relationship between P2X4R and CAMKK2 genotypes and TNFα production. Peripheral blood
mononuclear cells from 129 healthy donors were stimulated with killed Escherichia coli, and concentrations of
soluble TNFα were assessed. Their DNA was genotyped for 22 SNPs in P2X4R and CAMKK2. Three SNPs within
P2X4R and two SNPs within CAMKK2 influenced concentrations of TNFα, but these SNP did not associate with
risk for HIV-SN. This incongruence may reflect differences in P2X4R haplotypes present in Africans and
Europeans. However some CAMKK2 haplotypes were found in both populations, so CAMKK2 polymorphisms
may impact upon HIV-SN via effects of the protein on pathways other than TNFα.

1. Introduction

HIV-associated sensory neuropathy (HIV-SN) is a neurological
complication occurring in up to 60% of HIV+ individuals. It is a length-
dependant disease predominately affecting the nerve fibres that in-
nervate the distal limbs, particularly the feet [1]. Symptoms include
pain, burning, and numbness, which impact an individual’s quality of
life and work capabilities [2,3]. Susceptibility has been linked to single
nucleotide polymorphisms (SNPs) and haplotypes in the P2X4R and
CAMKK2 genes in patients of African descent [4]. However genetic
analyses, post-mortem studies in humans, and animal models implicate
tumour necrosis factor alpha (TNFα) in the underlying pathology [5–8].
We seek a link between TNFα, P2X4R and CAMKK2.

CAMKK2 and P2X4R are contiguous genes located in a region of
high linkage disequilibrium on chromosome 12. CAMKK2 encodes
calcium/calmodulin-dependant protein kinase kinase 2 (CaMKK2), a
protein with roles in cellular metabolism, neuronal repair and in-
flammation [9,10]. Little is known about the expression of CaMKK2 in
immune cells, but it appears, at least in mice, to be limited to mono-
cytes and macrophages. CaMKK2 activation by intracellular Ca2+

propagates CaM kinase signalling cascades, including CaM kinase IV

(CaMKIV)-induced TNFα production, via p38-MAPK and Activation
Factor 1. Indeed, ablation of CAMKK2 in macrophages from knockout
mice diminished toll-like receptor 4 (TLR4) signalling after stimulation
with lipopolysaccharide (LPS), impairing synthesis of inflammatory
chemokines and cytokines including TNFα [9].

P2X4R encodes a purinergic receptor 4 (P2X4R) which is a ligand-
gated ion channel implicated in inflammatory signalling and synaptic
transmission in the central nervous system. P2X4R is abundant in
macrophages and microglia, where tissue insults trigger release of ex-
tracellular adenosine triphosphate (ATP) and activate P2X4R at the cell
surface, initiating ion permeability. Activation of P2X4R triggers TNFα
production via the p38-MAPK cascade or Brain Derived Neurotrophic
Factor (BDNF) [11]. P2X4R expression was upregulated in microglial
cultures after stimulation with LPS, placing the gene in a TLR4-TNFα
pathway [12]. It is plausible that SNP affecting a TLR4-TNFα pathway
may affect HIV-SN as TLR4-null mice exhibited attenuation of neuro-
pathic-like hypernociception [13]. This is tested here using cells sti-
mulated with E. coli.

We address the possibility that the observed associations between
polymorphisms in CAMKK2 and P2X4R and HIV-SN [4] may be
mediated through TNFα. Overall CAMKK2 exhibited the strongest
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associations with HIV-SN, with two SNPs and six haplotypes predicting
HIV-SN status in South Africans of African descent. Using
immunohistochemistry, we confirmed that cultured CD14+

macrophages isolated from human PBMC express P2X4R and CaMKK2
(Supplement 1). Here we explore whether genotypes associated with
HIV-SN align with variations in TNFα production in vitro.

Table 1
Three SNPs in P2X4R and 2 in CAMKK2 affect TNFα levels in cultures stimulated with killed E. coli.

SNP IDa HIV-SNb 1,1 1,2 2,2 P-Valuec

1,1 vs 1,2 1,1 vs 2,2 1,2 vs 2,2

P2X4R

rs2686387d

C/G (0.30)e
P > 0.20
RR=0.70

0.95f

(0.01–5.37)
n=61

1.85
(0.03–4.90)
n=54

1.30
(0.41–4.00)
n=10

0.006 0.30 0.30

rs2303998
G/A (0.03)

–g 1.27
(0.59–4.00)
n=118

1.55
(0.01–5.37)
n=8

0.38 h

rs7298368
C/T (0.18)

P > 0.20 RR=0.51 1.25
(0.01–5.37)
n=86

1.68
(0.03–4.90)
n=33

0.74
(0.03–1.19)
n=6

0.07 0.16 0.024

rs25643
T/C (0.40)

P > 0.20
RR=0.89

0.98
(0.01–5.37)
n=43

1.52
(0.03–4.90)
n=64

1.50
(0.03–4.00)
n=1 9

0.29 0.25 0.80

rs10849860
T/C (0.13)

P > 0.20
RR=0.92

0.97
(0.01–5.37)
n=94

1.70
(0.05–3.99)
n=33

0.034

rs11608486
T/C (0.14)

P > 0.20
RR=0.89

0.90
(0.00–5.37)
n=86

1.05
(0.00–4.00)
n=32

0.92

rs7961979
C/A (0.11)

P > 0.20
RR=1.11

1.04
(0.00–5.37)
n=93

0.99
(0.00–3.26)
n=26

0.74

CAMKK2

rs1653587
A/G (0.07)

P=0.12
RR=1.80

1.29
(0.01–5.37)
n=107

1.30
(0.03–4.00)
n=18

0.52

rs1653588
T/A (0.06)

P > 0.20
RR=1.61

1.27
(0.01–5.37)
n=112

1.68
(0.03–3.17)
n=15

0.58

rs11065502
G/C (0.16)

P > 0.20
RR=1.01

0.95
(0.00–5.37)
n=86

1.10
(0.00–4.00)
n=38

0.97

rs11065504d

C/G (0.35)
P > 0.20
RR=0.00

1.38
(0.03–5.37)
n=53

1.49
(0.01–4.90)
n=52

0.58
(0.01–4.72)
n=17

0.65 0.04 0.15

rs7975295
T/C (0.12)

P=0.007
RR=0.68

1.31
(0.01–5.37)
n=93

1.43
(0.03–4.90)
n=25

0.75

rs2686344
C/T (0.28)

P=0.018
RR=1.67

1.21
(0.03–4.72)
n=67

1.27
(0.01–3.86)
n=50

1.30
(0.05–5.37)
n=11

0.36 0.98 0.65

rs1560568
G/A (0.11)

P=0.023
RR=0.71

1.29
(0.01–5.37)
n=103

1.43
(0.03–4.90)
n=25

0.64

rs7314454
C/T (0.12)

P > 0.20
RR=0.56

0.98
(0.01–5.37)
n=90

1.76
(0.03–4.00)
n=27

0.017

rs1718120d

G/T (0.50)
P > 0.20
RR=0.00

1.05
(0.00–4.00)
n=26

1.02
(0.00–4.72)
n=60

0.60
(0.00–5.37)
n=25

0.57 0.40 0.88

rs3817190d

A/T (0.37)
P=0.19
RR=1.91

1.29
(0.01–5.37)
n=39

1.45
(0.03–4.72)
n=44

1.36
(0.15–4.00)
n=14

0.76 0.49 0.33

a In chromosomal order.
b Association with carriage of the minor allele and HIV-SN in South Africans [4] P values (chi2 tests) and Relative Risk (RR) are shown.
c Mann Whitney statistics comparing concentrations of TNFα between genotypes.
d The major and minor alleles of these SNP were reversed in the African population relative to Australian Caucasians. The minor allele of rs2686387 in P2X4R associated weakly with

increased risk of HIV-SN in univariate analyses (p= 0.15) [4]. Rs11065504, rs1718120 and rs3817190 did not affect HIV-SN in African patients.
e Major/minor allele (minor allele frequency) from samples successfully genotyped.
f Median (range) concentrations of TNFα (ng/ml) in culture supernatants at 4 h.
g Allele 2 was not found in patients with HIV-SN.
h (1,2) and (2,2) were merged when < 5 individuals carried the (2,2) genotype.
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2. Materials and methods

Healthy adult donors (n= 129) declaring European descent were
recruited in Western Australia with approval from the Royal Perth
Hospital Human Research Ethics Committee. Peripheral blood
mononuclear cells (PBMC) were isolated using Ficoll Hypaque gradients
and cryopreserved. 5×105 PBMC were stimulated with 1x107 cfu/ml
heat-killed E. coli and incubated at 37 °C in 5% CO2 for 4, 8 or 24 h, in
parallel with unstimulated PBMC. Soluble TNFα concentrations in the
supernatants were measured using Duoset ELISA Development System

(R&D Systems, Minneapolis, MN) [14]. DNA was extracted using
QIAmp DNA mini Blood Kits (QIAGEN, Valencia, CA) and typed using
OpenArray SNP kits (Thermo Fisher Scientific, Waltham, MA), designed
to assess SNPs in P2X4R and CAMKK2 [4]. The major and minor alleles
in the European population are denoted 1 and 2 (respectively). SNPs
outside Hardy-Weinberg Equilibrium or with no call outputs were
excluded from analysis. Haplotypes with a frequency greater than 1%
were derived from the genotypes using fastPHASE [15].

Table 2
One P2X4R and CAMKK2 haplotype affected TNFα levels in cultures stimulated with killed E. coli.

Haplotype Sequencea South Africanb Australian Caucasianc TNFαlevelsd P-valuee

Haplotype Absent Haplotype Present

P2X4R

111111 0% 55% 1.10 (0.03–4.00)
n=101

1.39 (0.01–5.37)
n=28

0.47

2122111 0% 15% 1.26 (0.01–5.37)
n=93

1.51 (0.03–4.90)
n=36

0.24

1112122 0% 13% 1.29 (0.01–5.37)
n=104

1.23 (0.03–3.26)
n=25

0.68

2112211 0% 12% 0.98 (0.01–5.37)
n=106

2.08 (0.06–3.00)
n=23

0.01f

2212221 0% 2% 1.28 (0.01–5.37)
n=123

1.55 (0.59–4.00)
n=6

0.56

CAMKK2

1111121111 0% 16% 1.14 (0.01–4.90)
n=100

1.50 (0.03–5.37)
n=29

0.33

1112111111 0% 12% 1.29 (0.01–5.37)
n=92

0.95 (0.01–4.90)
n=37

0.56

1112111122 18% 12% 1.29 (0.01–5.37)
n=99

1.39 (0.03–4.72)
n=30

0.52

1121111122 0% 11% 1.29 (0.01–5.37)
n=108

1.23 (0.03–3.18)
n=21

0.77

1111212111 0% 7% 1.28 (0.01–5.37)
n=113

1.62 (0.09–4.90)
n=16

0.56

1111111111 0% 7% 1.23 (0.01–5.37)
n=119

2.08 (0.05–2.84)
n=10

0.32

2211111121 3% 4% 1.29 (0.01–5.37)
n=121

1.23 (0.03–2.71)
n=8

0.84

1111111222 1% 3% 1.26 (0.01–5.37)
n=125

1.89 (1.68–2.49)
n=4

0.24

1111121121 1% 2% 1.28 (0.01–5.37)
n=125

1.68 (0.60–3.00)
n=4

0.47

1111111122 0% 2% 1.28 (0.01–5.37)
n=125

2.37 (0.15–3.26)
n=4

0.32

1112121111 0% 2% 1.30 (0.01–5.37)
n=127

0.35 (0.28–0.42)
n=2

0.18

1111121222 2% 2% 1.26 (0.01–5.37)
n=126

1.67 (0.05–3.86)
n=6

0.40

1112121122 4% 2% 1.33 (0.01–5.37)
n=123

0.03 (0.01–0.55)
n=6

0.0003g

1112111121 7% 2% 1.33 (0.01–5.37)
n=125

0.49 (0.07–1.18)
n=4

0.13

2211111111 0% 1% 1.29 (0.01–5.37)
n=124

1.50 (0.59–3.03)
n=5

0.46

1111212121 3% 1% 1.29 (0.01–5.37)
n=126

0.90 (0.03–1.68)
n=3

0.36

1121111121 0% 1% 1.30 (0.01–5.37)
n=127

0.94 (0.62–1.26)
n=2

0.64

1121111222 0% 1% 1.27 (0.01–5.37)
n=124

2.76 (0.74–4.00)
n=5

0.08

a Defined by alleles of SNPs in the order shown in Table 1.
b The fastPHASE haplotype frequency in the South African HIV+ population [4].
c The fastPHASE haplotype frequency in the Australian Caucasian population.
d Median (range) concentrations of TNFα (ng/ml) in cultures stimulated with killed E. coli at 4 h.
e Mann Whitney statistics comparing concentrations of TNFα between genotypes.
f Includes minor alleles of rs2686387 and rs10849860 associated with increased TNFα.
g Includes the minor allele of rs11065504 and major allele of rs7314454 associated with reduced TNFα.
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3. Results

Median (range) TNFα concentrations in unstimulated cultures were
0.02 (0.00–0.72), 0.02 (0.00–1.6) and 0.09 (0.01–2.1) ng/ml at 4, 8 and
24 h. As these values are low, the effect of genotype was determined in
stimulated cultures, where TNFα concentrations were 1.3 (0.01–5.4),
1.4 (0.00–10.8) and 1.4 (0.01–4.5) ng/ml after 4, 8 and 24 h. As these
values do not rise over time, data collected at 4 h was selected as the
best measure of de novo synthesis (Table 1).

Carriage of the P2X4R minor alleles of rs2686387 and rs10849860
associated with an increased concentration of TNFα (p= 0.006 and
0.034) while rs7298368 was associated with a decrease (p= 0.002),
supporting an effect of the gene on a TLR4-TNFα pathway. Accordingly
rs2686387, which showed a weak association with HIV-SN in South
Africans, is classified as an expression quantitative trait locus (eQTL) of
P2X4R in whole blood and tibial arteries, but rs7298368 and
rs10849860 are not [16]. However, the “high TNFα” allele 2 of
rs2686387 aligned with resistance to HIV-SN. We therefore considered
the possibility that rs2686387 may have different haplotypic associa-
tions in populations of African and European descent. These analyses
were done after adjustment of the South African data because the major
and minor alleles rs2686387, rs11065504, rs1718120 and rs3817190
were reversed in the African population relative to Australian Cauca-
sians. FastPHASE derived five haplotypes in the Australian Caucasian
population, none of which occurred in the South African population
(Table 2). As such, the haplotypes containing rs2686387, rs7298368
and rs10849860 must be different. This leaves open the possibility that
the SNPs affecting TNFα responses in Caucasians may affect neuropathy
in Caucasians.

In Caucasians, one P2X4R haplotype associated with increased
TNFα levels and contained rs2686387 and rs10849860. A second
haplotype contained these SNP but occurred in only 2% of the popu-
lation thus no association could be determined. Another haplotype
which occurred in 15% of this population contained rs2686387 but not
rs10849860 and did not associated with TNFα. This suggests that car-
riage of the minor alleles of both rs2686387 and rs10849860 are ne-
cessary to generate an effect on TNFα production.

For CAMKK2, carriage of minor alleles of rs11065504 and
rs7314454 had small and opposing effects on TNFα concentrations, but
neither SNP associated with HIV-SN in South Africans. Rs11065504 is
located between P2X4R and CAMKK2 so it may impact expression of
either gene. Carriage of the minor allele of this SNP is reported as an
eQTL in whole blood, tibial arteries and tibial nerves for P2X4R but not
CaMKK2 expression [16]. The three CAMKK2 SNPs associated with
HIV-SN did not affect concentrations of TNFα detected in stimulated
cultures at 4 h (Table 1), so we again considered the possibility that
CAMKK2 haplotypes may be different in populations of African and
European descent. FastPHASE analyses of the Caucasian genotypes
generated 18 haplotypes with frequencies> 1%. While eight of these
are also observed in the South African population, the haplotypes which
contain more than one minor allele associated with HIV-SN do not
occur in both populations (Table 2). Overall we cannot determine
whether haplotypic differences explain our failure to align the effects of
individual SNPs on TNFα concentrations and HIV-SN.

A CAMKK2 haplotype found in Caucasians and South Africans at 2
and 4% (respectively) was significantly associated with reduced TNFα
levels (p= 0.04). Accordingly this haplotype contained the minor allele
of rs11065504 and the major allele of rs7314454, which were asso-
ciated with low TNFα levels. However this combination of SNPs is
found in five other haplotypes that had no interesting associations, so
the causative SNP may lie outside the panel investigated in this study.

4. Discussion

It is plausible that the SNP tested affect aspects of TNFα production
that are not modelled by in vitro stimulation of PBMC. Alternatively,

their impact on HIV-SN may reflect another role of CaMKK2. For in-
stance, another SNP significantly associated with HIV-SN, rs2686367, is
located in the 5′UTR of CAMKK2 [4], an area containing consensus
DNA for transcription factors which regulate neuropoesis [9]. Fur-
thermore, rs2686367 is classified as an eQTL of CAMKK2 expression in
tibial nerves [16], so this SNP may impact protein function in neuron
repair.

In view of the data presented here, we cannot exclude the possibility
that the strong link between CAMKK2 polymorphisms and HIV-SN may
result from interactions between the expressed protein and neurons.
The high genetic variability of P2X4R and the effect of several SNP on
TNFα concentrations leaves open the possibility that P2X4R may im-
pact HIV-SN via a TLR4-TNFα pathway. It will be a challenge moving
forward to exploit variations in haplotypes carried in different popu-
lations to identify SNPs critical to disease pathogenesis.
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SUPPLEMENT 1. 

Blank CD14 

P2X4R CaMKK2 

Supplementary Figure 1. CD14+ macrophages express CaMKK2 and P2X4R 

Macrophages cultures isolated from human PBMC were stained with FITC labelled anti-CD14 (mouse 

1:20; BioLegend, CA, USA), or unlabelled anti- CaMKK2 (goat 1:200; AbCam, Cambridge, UK) or P2X4R 

(goat 1:200; AbCam). The biotinylated secondary antibody donkey anti-goat IgG (AbCam, Cambridge, 

UK) was used at 1:100 and detected using Alexa Fluor 647 labelled Streptavidin (1:100, Life 

Technologies, CA, USA). Images were viewed and enhanced with Nikon A1 confocal microscope and 

NIS-Elements Viewer (Nikon Instruments, NY, USA).
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Ex-vivo expression of chemokine receptors on cells
surrounding cutaneous nerves in patients with

HIV-associated sensory neuropathy

Jenjira Mountforda, Fitri Octavianab, Riwanti Estiasarib,

Denise Dewanto Setiawanb, Ibnu Ariyantoc, Silvia Leea,d, Jessica Gaffa,

Constance Chewe, Connie Jackamana, Peter Kamermana,f,

Catherine Cherryf,g,h and Patricia Pricea,c,f

Objective: HIV-associated sensory neuropathy (HIV-SN) remains common in HIVþ
individuals receiving antiretroviral therapy (ART), even though neurotoxic antiretroviral
drugs (e.g. stavudine) have been phased out of use. Accumulating evidence indicates
that the neuropathy is immune-mediated. We hypothesize that chemokines produced
locally in the skin promote migration of macrophages and T cells into the tissue,
damaging cutaneous nerves causing HIV-SN.

Design: We assessed chemokine receptor expression on infiltrating CD14þ and CD3þ

cells around cutaneous nerves in standardized skin biopsies from HIV-SNþ patients
(n¼5), HIV-SN� patients (n¼9) and healthy controls (n¼4).

Methods: The AIDS Clinical Trials Group Brief Peripheral Neuropathy Screen was used
to assess Indonesian HIVþ patients receiving ART without stavudine (case definition:
bilateral presence of at least one symptom and at least one sign of neuropathy). Distal
leg skin biopsies were stained to visualize chemokine receptors (CCR2, CCR5, CXCR3,
CXCR4, CX3CR1), infiltrating CD3þ and CD14þ cells, and protein-gene-product 9.5 on
nerves, using immunohistochemistry and 4-colour confocal microscopy.

Results: Intraepidermal nerve fibre density was variable in patients without HIV-SN
and generally lower in those with HIV-SN. CX3CR1 was more evident on CD14þ cells
whereas CCR2, CCR5, CXCR3 and CXCR4 were more common on CD3þ cells.
Expression of CX3CR1, CCR2 and CCR5 was more common in HIV-SNþ patients
than those without HIV-SN. CXCR3 and CXCR4 were upregulated in all HIVþ patients,
compared with healthy controls.

Conclusion: Inflammatory macrophages expressing CX3CR1 and T cells expressing
CCR2 and CCR5 may participate in peripheral nerve damage leading to HIV-SN in
HIVþ patients treated without stavudine. Further characterization of these cells is
warranted. Copyright � 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

HIV-associated sensory neuropathy (HIV-SN) is a
common neurologic manifestation of HIV and its
treatment. Historically, neuropathy has been described
in about 30% of treatment-naive patients with advanced
HIV disease [1,2], and about 60% of patients on
antiretroviral therapy (ART) regimens that included
zalcitabine, didanosine or stavudine [3,4]. It is now
accepted that these drugs are neurotoxic. Despite patients
now starting treatment earlier and without known
neurotoxic antiretroviral agents, HIV-SN remains a
problem [5–7].

A pathological hallmark of HIV-SN is distal degeneration
of long axons in a ‘dying back’ pattern, which is associated
with reduced intraepidermal nerve fibre density
(IENFD), nerve fibre swelling and mononuclear cell
infiltration [8,9]. HIV-infected and uninfected activated
macrophages can infiltrate peripheral nerves, dorsal root
ganglia (DRG) [10] and/or tissues adjacent to peripheral
nerves, and release cytokines such as tumour necrosis
factor alpha (TNF-a), interferon-gamma (IFN-g) and
interleukin (IL)-1 and/or IL-17, which can cause axonal
degeneration [11]. TNF-a injected into rat sciatic nerve
stimulated neuropathic pain behaviour [12] and TNF-a
mRNA levels were increased in peripheral nerve tissue
from AIDS patients [13]. Furthermore, genetic associa-
tion studies have linked polymorphisms and haplotypes
from TNF and surrounding genes with increased risk of
HIV-SN in Africans [14], Asians and Caucasians [15].

Chemokines produced in cutaneous tissues can bind to
their receptors expressed on neuronal and inflammatory
cells, initiating damage to the nerves. CCR5 and
CXCR4 are co-receptors supporting HIV-1 entry
[16]. CCR1, CCR2, CCR4, CCR5, CXCR4 and
CX3CR1 are expressed on subpopulations of sensory
neurons and their axons [17,18]. CCR2, CCR5 and
CXCR4 are upregulated in primary sensory neurons
and adjacent nonneuronal cells following peripheral
nerve injury in animal models [19,20]. HIV-1 envelope
glycoprotein 120 (gp120) may bind CCR5 and/or
CXCR4 on nerve cells causing direct axonal damage
[21], but there is no evidence of HIV infecting peripheral
nerves in humans. In primary DRG cultures, gp120
mediated neuronal toxicity via TNF-a/TNF receptor
(TNFR)-1 signalling [22]. CXCR4 and CCR5 ligation
by CXCL12 and CCL5 (respectively) mimicked neuro-
toxicity induced by gp120 [22]. Administration of gp120
into rat sciatic nerve, upregulated CCL2/CCR2 and
triggered hypernociception [23]. CCR2 expression was
upregulated on primary sensory neurons and Schwann
cells after peripheral nerve injury [24], and CCR2-
knockout mice showed reduced pain behaviour following
partial ligation of sciatic nerves [25]. CX3CL1 can recruit
macrophage expressing CX3CR1. CX3CR1 was up-
regulated on spinal microglia and DRG glial satellite cells

following peripheral nerve injury [26], and CX3CR1-
deficient mice showed reduced neuropathic pain
behaviour [27].

There is a reasonable consensus linking HIV-SN with a
reduced IENFD [28,29], but no studies have addressed
whether HIV-SN is associated with critical chemokine
signalling pathways. Here we present evidence on the ex-
vivo expression of chemokine receptors on infiltrating
CD14þ and CD3þ cells around nerves in skin biopsies
from HIVþ patients exposed to modern ART regimens
that excluded the known neurotoxic agents. We believe
we are the first to investigate chemokine-signalling
pathways and IENFD in this context. These results will
enhance the knowledge of the underlying pathogenesis of
HIV-SN in the modern era of HIV care.

Materials and methods

Patients and controls
HIVþ patients treated at Cipto Mangunkusumo
Hospital, Jakarta, Indonesia, were screened for sensory
neuropathy using the AIDS Clinical Trials Group Brief
Peripheral Neuropathy Screen (ACTG-BPNS), a vali-
dated tool based on detection of clinical signs (reduced/
absent ankle reflexes or absent/diminished vibration
sense) and symptoms (pain, aching, burning, pins and
needles or numbness) of neuropathy [30]. We used the
standard ACTG-BPNS case definition for HIV-SN:
bilateral presence of at least one clinical sign and at least
one symptom. Patients had received ART for at least 12
months (median: 4.7 years; range: 1 – 12) and had never
received stavudine. Biopsies from 14 HIVþ participants
(HIV-SNþ, n¼ 5, HIV-SN�, n¼ 9) were used. Control
biopsies were obtained from Asian volunteers from Jakarta
(male volunteer, n¼ 1) and Curtin University, Australia
(women, n¼ 3). All donors are described in Supplemen-
tary Table 1, http://links.lww.com/QAD/B202. The
study was approved by the Ethics Committee of the
Faculty of Medicine, University of Indonesia (579/
UN2.F1/ETIK/2014) and validated by Curtin Univer-
sity (HR210–2015). All participants gave written
informed consent.

Sample collection and preservation
Local anaesthetic was injected and 3 mm punch skin
biopsies were collected �10 cm above the lateral
malleolous on the distal leg under sterile conditions.
Biopsies were placed in 4% paraformaldehyde-lysine-
periodate fixative for 12–24 h at 4 8C before transfer
to glycerol-based cryoprotectant (20% glycerol, 20%
0.4 mol/l Sorrenson’s phosphate buffer and 60% dH2O)
for storage at -20 8C. Biopsies were cut perpendicular
to the epidermal surface on a freeze cryostat sliding
microtome (Microm HM550; Thermo Fisher Scientific,
Waltham, Massachusetts, USA) set at 50 mmol/l , placed
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into antifreeze (33% glycerol, 33% ethylene glycol, 10%
2� phosphate buffer and dH2O) and stored at �20 8C
for immunochemistry (IHC).

Immunochemical staining
Staining was performed in 24-well plates. Sections were
bleached with 0.25% potassium permanganate (15 min,
room temperature), washed with 1 ml Tris-buffered saline
(TBS) containing 0.1% Triton-X, and treated with 5%
oxalic acid (2 min). Sections were then blocked with
Image-iT FX Signal Enhancer (Invitrogen, Carlsbad,
California, USA) for 30 min. This solution was removed
before the addition of primary antibodies.

To identify chemokine receptors on CD14þ cells, sections
were treated (overnight, 4 8C) with mouse-monoclonal
IgG antibodies against CCR2, CCR5, CXCR3 or
CXCR4 (5 mg/ml; R&D Systems, Minneapolis, Minne-
sota, USA) or CX3CR1 (10 mg/ml; Biolegend, San
Diego, California, USA), biotinylated polyclonal sheep
IgG anti-CD14 (R&D systems) and polyclonal rabbit IgG
anti-protein-gene-product 9.5 (PGP9.5; 2 mg/ml) to
detect nerves (Abcam, Cambridge, Massachusetts,
USA). Sections were washed five times with TBS,
followed by six 1-h washes before adding secondary
antibodies; goat anti-mouse IgG FITC (20 mg/ml),
donkey anti-rabbit IgG Dylight (5 mg/ml; Abcam) and
AlexaFluor fluorochrome streptavidin (20 mg/ml; Invitro-
gen). Secondary antibodies were diluted in 2% donkey,
goat and human serum and applied overnight at 4 8C.

To identify chemokine receptors on CD3þ cells, sections
were treated (overnight, 4 8C) with polyclonal goat
IgG against CCR2, CCR5, CXCR4 (20 mg/ml) or
CXCR3 (10 mg/ml), mouse-polyclonal IgG anti-CD3
(10 mg/ml; Novus Biologicals, Littleton, Colorado, USA)
and anti PGP9.5 (as above). Sections were washed as
described above and treated with biotinylated donkey
anti-goat IgG (20 mg/ml; Abcam). Sections were blocked
with 1% goat serum for 30 min before addition of
AlexaFluor fluorochrome streptavidin (20 mg/ml; Invi-
trogen), goat anti-mouse IgG FITC (20 mg/ml) and
donkey anti-rabbit IgG (5 mg/ml; Abcam). Secondary
antibodies were diluted in 1% goat serum and 2% donkey
serum, and applied overnight at 4 8C. Stained sections
were washed six times, incubated with 40,6-diamidino2-
phylindole, diyhdrochloride (10 min; Invitrogen),
washed twice with TBS, mounted using Shandon
Immumount (Thermo Fisher Scientific) and coverslips
(#1.5; Proscitech, Queensland, Australia) before viewing.
One section, stained only with secondary antibodies was
included in each run as a negative control.

Visualization of sections using confocal
microscopy
Images were acquired using an inverted Nikon A1þ
confocal microscope with NIS-Elements confocal soft-
ware (Nikon Instruments, Tokyo, Japan). Images were

collected at digital scan resolution 0.62 mm/pixel, pixel
dwell 4.8 with 1024 resolution using a 20� Plan Apo dry
objective (N.A. 0.75). Sequential laser scanning was
performed using four lasers; 405 nm (450/50 filter),
488 nm (525/50 filter), 561 nm (595/50 filter) and
640 nm (700/75 filter) to view nuclei, chemokine
receptors, nerve fibres and CD14þ or CD3þ cells,
respectively. The position of the top and bottom of the
image was recorded before multiple images were taken in
a z-series, collected according to Nyquist criteria.
Equivalent thresholds were applied across images to
visualize nerves (white), chemokine receptors (red) and
CD14þ or CD3þ (green). Chemokine receptors co-
located with either CD14þ or CD3þ cells appeared
yellow.

Intraepidermal nerve fibre density
NIS-Elements Advanced Research software (Nikon
Instruments) was used to acquire three 0.5 mm2 sections
per biopsy (only two samples were available for one
participant). Sections were coded and nerve fibres were
counted by six investigators using standardized rules for
IENFD quantification [31]. In brief, single IENF crossing
the dermal–epidermal junction is counted with second-
ary branching excluded from quantification. The average
count across the three sections per biopsy was multiplied
by 2 to generate IENFD per square millimeter area of
skin for each participant (Supplementary Figure 1, http://
links.lww.com/QAD/B202).

We computed Light’s k for exact agreement (zero
tolerance) between the six raters, treating rating as a
weighted variable and using squared distance. A bootstrap
95% confidence interval (CI; n¼ 1000 resamples) was
calculated using the bias-corrected and accelerated
bootstrap method. The analysis yielded a Light’s
k U 0.79 (95% CI 0.61–0.91); the point estimate
indicating strong inter-rater agreement, with the CI
indicating moderate-to-strong agreement [32].

Results

Intraepidermal nerve fibre density was generally
reduced in HIV-SNR patients
HIV-SNþ (n¼ 5) and HIV-SN� (n¼ 9) patients were
matched for age, height, time on ART and CD4þ T-cell
counts (Supplementary Table 1, http://links.lww.com/
QAD/B202). Healthy controls (n¼ 4) were also matched
with the patients by age and height. All donors were of
South East Asian ancestry. Figure 1 shows confocal images
from two healthy controls (a and b), two HIV-SN� patients
(c and d) and two HIV-SNþ patients (e and f) selected to
represent the range seen in each group. Median (range)
IENFD per square millimeter field were 11.2 (5.8–15.2),
5.8 (1.4–14.0) and 3.0 (0.8–9.7) in healthy controls, HIV-
SN� and HIV-SNþ groups, respectively. The IENFD
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tended to be reduced in HIV-SNþ patients compared with
healthy controls, but the study was not powered to find
a significant difference (Supplementary Tables 1 and 2;
Supplementary Figure 1, http://links.lww.com/QAD/
B202). A reduction in the length of nerve fibres within the
epidermis of HIV-SNþ patients was common. CD14þ

macrophages were visible in sections from HIVþ patients.

Many were adjacent to blood vessels, scattered within
cutaneous tissue or adjacent nerve fibres.

CX3CR1 was expressed on CD14R cells adjacent
to peripheral nerves in HIV-SNR patients
Sections were stained to visualize expression of
CX3CR1 on infiltrating CD14þ cells (Fig. 1). CX3CR1
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Fig. 1. Representative confocal images showing expression of CX3CR1 and CD14 in skin from two healthy controls (a and b),
HIV-SNS (c and d) and HIV-SNR (e and f) patients. Abundant thin intraepidermal nerve fibres run from the dermis innervating the
basement membrane and epidermis in healthy controls’ skin sections. The median nerve count (IEFND) was 11.2 (range: 5.8–
15.2) fibres per square millimeter skin area. IENFD was variable in HIV-SN� sections (5.8 [1.3–14.0]) and slightly lower in HIV-
SNþ (3.0 [0.8–9.7]). CX3CR1 was rare in healthy controls’ skin sections and minimally expressed in skin sections from patients.
However, CX3CR1 expression was closely associated with epidermal nerves in HIV-SNþ sections, and co-localized with CD14þ

cells (e and f; yellow arrows). The white lines represent 100 mm.
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expression was extremely rare in the three sections
from healthy controls (a and b). They were also rare
in sections from three HIV-SN� patients (e.g. c and d).
Few CX3CR1þ cells were seen in two of three
sections from HIV-SNþ patients (e and f). In all

sections from HIV-SNþ patients, CX3CR1 was co-
located with CD14 (yellow arrows) and was closely
associated with the subepidermal nerve plexi [Fig. 1(e
and f)]. This is consistent with a role for the receptor in
HIV-SN.
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Fig. 2. Representative confocal images showing expression of CCR2 with CD14 (left) or CD3 (right) in skin from healthy controls
(a and b), HIV-SNS (c and d) and HIV-SNR (e and f) patients. CCR2 expression was rare in healthy controls. Two of eight stained
sections from HIV-SN� patients had detectable CCR2þ cells, whereas seven of seven sections from five HIV-SNþ cases displayed
CCR2. Some CCR2þ cells were located close to nerves. CCR2 was rarely expressed on CD14þ cells (e), but was seen on CD3þ cells
(d and f; yellow arrows).
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CCR2 is upregulated in HIV-SNR skin and
predominantly expressed by CD3R cells
Sections were stained to visualize CCR2 on infiltrating
CD14þ or CD3þ cells (Fig. 2). Very few CCR2þ cells
were evident in healthy controls (e.g. a and b). Two of
eight stained sections from HIV-SN� cases displayed
detectable CCR2þ cells (e.g. Fig. 2d), whereas all seven
sections from five HIV-SNþ cases displayed CCR2
expression (e.g. e and f). The HIV-SN� patient
expressing CCR2 most clearly (patient 11; not shown)
had the lowest IENFD and a case review uncovered a
history of Stevens Johnson Syndrome – an inflammation
of the skin. The patient was excluded from further IHC.
Most CCR2 was co-located with CD3 (d and f, yellow

arrows). CD14þ cells were visible but rarely expressed
CCR2 (a, c and e).

CCR5 is upregulated and associated with
peripheral nerves in HIV-SNR skin sections
Sections were also stained to visualize expression of
CCR5 on infiltrating CD14þ or CD3þ cells (Fig. 3).
CCR5þ cells were very rare in healthy controls (a and b).
Isolated positive cells were seen in two of five samples
from HIV-SN� (c and d) and five of five samples
from HIV-SNþ patients, with some cells located
close to nerve fibres (e and f). CCR5 was co-located
with CD3 (yellow arrows, d and f), but not CD14
(a, c and e).
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Fig. 3. Representative confocal images showing expression of CCR5 with CD14 (left) or CD3 (right) in skin from healthy controls
(a and b), HIV-SNS (c and d) and HIV-SNR (e and f) patients. CCR5þ cells were rare in sections from healthy controls (a and b),
but expression was up-regulated in sections from HIVþ patients; HIV-SN� (two of five sections) and HIV-SNþ (six of six sections).
CCR5 was predominantly co-localized with CD3 (d and f; yellow arrows). Some CCR5þ cells were located close to nerve fibres in
sections from HIV-SNþ patients (e and f).
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CXCR3 was expressed by scattered CD3R cells in
all HIVR patients
CXCR3þ cells were visible in blood vessels present in
some sections from all groups. CXCR3þ cells located
closely with CD14þ cells but the two markers did not

co-stain (Fig. 4a, c and e). In addition, variable numbers
of CD3þ CXCR3þ cells were seen scattered in the
tissues, so that some were adjacent to nerves in all eight
sections from HIV-SN� and three sections from HIV-
SNþ patients. Fewer positive cells were seen in samples
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Fig. 4. Representative confocal images showing expression of CXCR3 with CD14 (left) or CD3 (right) in skin from healthy
controls (a and b), HIV-SNS (c and d) and HIV-SNR (e and f) patients. CXCR3 was rare in healthy controls, mostly surrounding
dermal blood vessels. CXCR3 was highly expressed in sections from all HIVþ patients, and most commonly co-located with CD3
(d and f; yellow arrows). An expanded red box (e) highlights the close proximity of CD14þ (green) and CXCR3þ (red) cells on the
nerve. A yellow box (f) shows the co-localization of CD3 and CXCR3 (yellow) adhering to a cutaneous nerve in a HIV-SNþ section.
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from healthy controls, so expression of this marker may be
a consequence of HIV infection.

CXCR4R CD3R cells were seen along the
epidermis and the dermis in HIVR patients
CXCR4þ cells were seen in some but not all sections
from healthy controls [Fig. 5(a and b)]. CXCR4 was
expressed in all six sections from HIV-SN� patients
(c and d) and three HIV-SNþ patients (e and f) and was
distributed along the epidermis (c and f) or adjacent to
blood vessels (e). Some larger cells expressed CXCR4
without CD14þ (e). CXCR4 was expressed on a subset
of CD3þ cells in the dermis (d and f). This may reflect
HIV disease rather than HIV-SN.

Discussion

We have developed a protocol that identifies cells and
receptors that could contribute to the damage of small

nerve fibres and form the basis of HIV-SN. The
compilation of images into z-series allowed us to follow
individual nerves as if they were distributed in the tissue in
just two dimensions. Counts made by multiple observers
blinded to the disease phenotype provide reliable
quantification of IENFD (Supplementary Figure 1,
http://links.lww.com/QAD/B202). The median IENFD
at the distal leg of normal controls was 11.2/mm2. This is
consistent with an earlier study with the reference range of
13.8� 6.7/mm2 [33]. IENFD was generally reduced in
HIV-SNþ patients and variable in those without HIV-SN.
The wide range of nerve fibre densities in HIV-SN�
patients may reflect early lesions not detected by the
ACTG-BPNS. A recent longitudinal study of 150 Thai
HIVþ individuals found that IENFD measurements did
not distinguish individualswith HIV-SN or signal theonset
of neuropathic signs/symptoms [34]. However, IENFD
decreases with increasing age [35]. Here all donors were
25–47 years old so any effect from age is likely to be
minimal. We were also unable to assess associations with
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Fig. 5. Representative confocal images showing expression of CXCR4 with CD14 (left) or CD3 (right) in skin from healthy
controls (a and b), HIV-SNS (c and d) and HIV-SNR (e and f) patients. CXCR4 was upregulated in the epidermis and the dermis of
HIVþ patients, with mixed patterns of expression (c–f). CXCR4 was rarely expressed on CD14þ cells (a, c and e) but was seen on
CD3þ cells (d and f; yellow arrows).
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genotype [14,36], but all participants were of South East
Asian descent.

In addition to a reduction in the number of nerves in the
epidermis, our methods demonstrate a reduction in
cutaneous nerve fibre length in adults with HIV-SN
(Fig. 1e) and in some HIV-SN� cases (Fig. 1c). It is
unlikely that the loss of nerves reflects direct infection by
HIV [9]. However, HIV-infected macrophages may have
a primary role in nerve damage or may accumulate in
response to debris from destroyed axons [37]. Our results
show that CD14þmacrophages were visible in all sections
from all HIVþ patients and some healthy controls. These
CD14þ macrophages may release pro-inflammatory
cytokines causing axonal and DRG neuronal injury
[38,39]. A recent study has linked the loss of IENFD with
increased recruitment of macrophages to DRG in Simian
Immunodeficiency Virus-infected macaques [40]. We
show macrophages adjacent to blood vessels, scattered
within cutaneous tissues and adjacent to nerve fibres. This
distribution is consistent with their extravasation and
migration towards the nerves, a pattern observed in other
chronic inflammatory neuropathies [41]. These CD14þ

macrophages did not express CCR2, CCR5, CXCR3 or
CXCR4 but did express CX3CR1.

CX3CR1þ monocyte/macrophage are expressed in low
levels and are recruited in healing tissues [42]. CX3CL1/
CX3CR1 signalling is implicated in the development of
neuropathic pain in animal models [27,43–45]. Our results
show CX3CR1 was minimally expressed, but CX3CR1þ

CD14þmacrophages were seen near the residual nerves in
sections from HIV-SNþ patients. This supports a study
showing increased expression of CX3CR1 by macro-
phages in the sciatic nerve proximal to a site of mechanical
injury and in the corresponding DRG [26]. Furthermore,
in a spinal nerve ligation model, CX3CR1 expression was
upregulated in spinal microglia, whilst membrane-bound
levels of CX3CL1 were reduced [43]. The cleavage of
CX3CL1 after nerve injury may initiate activation of the
low-affinity purinergic P2X7 receptor, leading to the
release of the lysosomal cysteine protease cathepsin S from
microglia. This may mediate neural–glial interaction and
neuropathic pain behavior [46]. Accordingly, the gene
encoding the P2X7 receptor, P2X7R, lies in a region of
linkage disequilibrium with upstream genes P2X4R and
CAMKK2. Single nucleotide polymorphisms and haplo-
types within this block of genes were associated with HIV-
SN in South African HIVþ individuals [47]. Other studies
suggest downstream mechanisms of CX3CR1 via p38
mitogen-activated protein kinases [43] or extracellular
signal-regulated protein kinase 5 [48] may activate
microglia after nerve injury. Blockade or knockout of
CX3CR1 impaired neuropathic pain behaviours and
reduced hypersensitivity to thermal stimuli following
peripheral nerve injury in animal models [27,43,44]. These
considerations support our evidence that CX3CR1 could
have a role in HIV-SN.

Our results show CCR2, CCR5, CXCR3 and CXCR4
were co-localized with CD3 but not CD14. T
lymphocytes were observed in nerves obtained from
patients with inflammatory neuropathies [49]. An
immunocytochemical study investigating mononuclear
cells in sural nerve biopsies from 42 HIV� and HIVþ
patients with various types of peripheral neuropathy
found that 72% of infiltrating mononuclear cells were
CD3þ [50]. T cell infiltration into the spinal dorsal horn
after nerve injury was also implicated in the development
of pain-like hypersensitivity in rats [51]. CCR2 is critical
in recruiting T cells in responses to axonal injury of the
central nervous system [52]. CCL2/CCR2 expression
were upregulated by primary sensory neurons and
Schwann cells after a sciatic nerve constriction injury
[24]. CCL2/CCR2 was also upregulated by gp120
injected into rat sciatic nerve. This paralleled the
development of mechanical hypernociception [23].
Accordingly, we found CCR2 was upregulated and
expressed in five of five HIV-SNþ skin sections.

CCR5 and CXCR4 are co-receptors for HIV. CXCR4
was expressed in all HIVþ skin sections whilst CCR5 was
more evident in skin sections from patients with sensory
neuropathy, with some positive cells located near nerve
fibres. In a study of chemokine receptors in HIV/gp120-
induced neurotoxicity based on mixed neuronal–glial
cerebrocortical cultures, gp120 utilized CCR5, CXCR4
or both to cause neurotoxicity [53]. Interestingly, CCL4
and CCL5 (ligands of CCR5) can inhibit gp120-induced
neuronal death, whilst CXCL12 (the ligand of CXCR4)
could alone be neurotoxic. Moreover, CCR5 ligands
could inhibit CXCR4/CXCL12-induced neurotoxicity
[53]. Hence our finding linking CCR5 with HIV-SN
may place the receptor in a complex cascade. For
example; the binding of gp120 to CXCR4 on Schwann
cells can cause the release of CCL5. CCL5 can stimulate
the production of TNF-a by neuronal cells in DRG,
leading to TNFR1-mediated neurotoxicity [22].

CXCR3 co-localized with CD3 in all HIVþ patients.
CXCR3 plays role in the adaptive immune response to
inflammation and viral infection [54]. Some CXCR3þ

cells were located near damaged nerves. In patients
with diabetic neuropathy, quantitative polymerase chain
reaction and flow cytometric analyses showed that
CXCR3þ CD8þ T cells were recruited and infiltrated
into affected tissues [55]. CXCR3 ligands, CXCL9,
CXCL10 and CXCL11, released from Schwann cells can
further recruit CXCR3þ CD8þ T cell into sites of
peripheral neuropathy [56]. Furthermore, Schwann cells
can stimulate CD8þ T cells to release TNF-a and
programmed death-ligand 1 (PD-1) leading to neuronal
apoptosis [55]. In foetal neuronal cultures, ligation of
CXCR3 and CXCL10 can increase intracellular calcium,
which in turn increases membrane permeability and
cytochrome c release. This activates caspase-9, which
activates caspase-3, ultimately leading to neuronal
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apoptosis [56]. Caspase-3-dependent neuronal apoptosis
cascades have been demonstrated in studies of gp120-
induced neurotoxicity [22,57].

Our study has some limitations. First, tissue samples were
small, and sampling error remains a possible issue as we
did not scan the entire biopsy. Second, we used one
validated but simple clinical tool to distinguish patients
with structural changes to the cutaneous nerves (HIV-
SNþ) from those without (HIV-SN�). We cannot
exclude the possibility that some of our ‘SN free’ HIVþ
patients may have had early, sub-clinical peripheral nerve
lesions that were not detected by this tool. Third, the
presence of chemokine receptors in skin tissues does not
prove that their signalling is critical. However, we have
linked CD14þ macrophages expressing CX3CR1, and
CD3þ T-cells expressing CCR2 and/or CCR5 with
HIV-SN in skin sections from HIVþ individuals. The
cells may have a role in the loss of nerves (evident from the
IENFD) or may impact upon nerve function creating the
characteristic signs and symptoms of HIV-SN (numbness,
tingling, pain, reduced vibration sense, etc.). Expression
of CXCR3 and CXCR4 was linked with HIV disease as
these receptors were found in all sections from patients.
Further investigation is needed with longitudinal studies
including samples collected during earlier phases of HIV-
SN.

Acknowledgements

We thank patients and controls who donated biopsies, Dr
Graham Thom (Southbank Dermatologists, South Perth)
for collecting control skin biopsies, Dr Yanuar Ahmad for
his help recruiting patients, Ms Fitri Rahmi Fadhilah for
her help in the laboratory, Dr Fera Ibrahin and Dr
Budiman Bela for access to laboratory facilities at
Universitas Indonesia and Professor John Papadimitriou
for an expert review of our manuscript. The authors
acknowledge the support of Curtin University and
Curtin Health Innovation Research Institute, and the
Victorian Operational Infrastructure Support Program
for support from the Burnet Institute

Conflicts of interest
There are no conflicts of interest.

References

1. Hall CD, Snyder CR, Messenheimer JA, Wilkins JW, Robertson
WT, Whaley RA, et al. Peripheral neuropathy in a cohort of
human immunodeficiency virus-infected patients: incidence
and relationship to other nervous system dysfunction. Arch
Neurol 1991; 48:1273–1274.

2. McArthur JH. The reliability and validity of the subjective
peripheral neuropathy screen. J Assoc Nurses AIDS Care
1998; 9:84–94.

3. Cherry CL, Affandi JS, Imran D, Yunihastuti E, Smyth K, Vanar S,
et al. Age and height predict neuropathy risk in patients with
HIV prescribed stavudine. Neurology 2009; 73:315–320.

4. Wadley AL, Cherry CL, Price P, Kamerman PR. HIV Neuropathy
risk factors and symptom characterization in stavudine-
exposed South Africans. J Pain Symptom Manage 2011;
41:700–706.

5. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D,
Alexander T, et al. Continued high prevalence and adverse
clinical impact of human immunodeficiency virus–associated
sensory neuropathy in the era of combination antiretroviral
therapy: the CHARTER Study. Arch Neurol 2010; 67:552–558.

6. Cherry C, Kamerman P, Bennett DLH, Rice ASC. HIV-asso-
ciated sensory neuropathy: still a problem in the poststavudine
era? Future Virol 2012; 7:849–854.

7. Arenas-Pinto A, Thompson J, Musoro G, Musana H, Lugemwa
A, Kambugu A, et al. Peripheral neuropathy in HIV patients in
sub-Saharan Africa failing first-line therapy and the response to
second-line ART in the EARNEST trial. J Neurovirol 2016;
22:104–113.

8. Polydefkis M, Yiannoutsos CT, Cohen BA, Hollander H, Schi-
fitto G, Clifford DB, et al. Reduced intraepidermal nerve fiber
density in HIV-associated sensory neuropathy. Neurology
2002; 58:115–119.

9. De La Monte SM, Gabuzda DH, Ho DD, Brown RH, Hedley-
Whyte ET, Schooley RT, et al. Peripheral neuropathy in the
acquired immunodeficiency syndrome. Ann Neurol 1988;
23:485–492.

10. Herzberg U, Sagen J. Peripheral nerve exposure to HIV viral
envelope protein gp120 induces neuropathic pain and spinal
gliosis. J Neuroimmunol 2001; 116:29–39.

11. Keswani CS, Pardo AC, Cherry LC, Hoke CA, McArthur CJ. HIV-
associated sensory neuropathies. AIDS 2002; 16:2105–2117.

12. Wagner R, Myers RR. Endoneurial injection of TNF-[alpha]
produces neuropathic pain behaviors. Neuroreport 1996;
7:2897–2902.

13. Tyor WR, Wesselingh SL, Griffin JW, McArthur JC, Griffin DE.
Unifying hypothesis for the pathogenesis of HIV-associated
dementia complex, vacuolar myelopathy, and sensory neuro-
pathy. J Acquir Immune Defic Syndr Hum Retrovirol 1995;
9:379–388.

14. Wadley AL, Kamerman PR, Chew CSN, Lombard Z, Cherry CL,
Price P. A polymorphism in IL4 may associate with sensory
neuropathy in African HIV patients. Mol Immunol 2013;
55:197–199.

15. Chew C, Cherry C, Imran D, Yunihastuti E, Kamarulzaman A,
Varna S, et al. Tumour necrosis factor haplotypes associated
with sensory neuropathy in Asian and Caucasian human
immunodeficiency virus patients. Tissue Antigens 2011;
77:126–130.

16. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV
coreceptors CXCR4 and CCR5 are differentially expressed and
regulated on human T lymphocytes. Proc Natl Acad Sci U S A
1997; 94:1925–1930.

17. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller
RJ. Chemokines and glycoprotein120 produce pain hyper-
sensitivity by directly exciting primary nociceptive neurons.
J Neurosci 2001; 21:5027–5035.

18. Abbadie C. Chemokines, chemokine receptors and pain.
Trends Immunol 2005; 26:529–534.

19. White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M, et al.
Excitatory monocyte chemoattractant protein-1 signaling is
up-regulated in sensory neurons after chronic compression
of the dorsal root ganglion. Proc Natl Acad Sci U S A 2005;
102:14092–14097.

20. Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi
C, et al. Delayed functional expression of neuronal chemokine
receptors following focal nerve demyelination in the rat: a
mechanism for the development of chronic sensitization of
peripheral nociceptors. Mol Pain 2007; 3:38.

21. Melli G, Keswani SC, Fischer A, Chen W, Höke A. Spatially
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SUPPLEMENTS 

Table 1; Characteristics of patients and healthy controls (HC) 

Donor BPNSTa Gender 
Age 

(years) 

Height 

(cm) 

Time on ART 

(years) 

Last CD4 count 

(cell/uL) 

IEFNDb 

(per mm2) 

Patient 1 HIV-SN+ Female 33 158 7 406 1.6 

Patient 2 HIV-SN+ Female 33 167 7.5 729 9.7 

Patient 3 HIV-SN+ Male 34 175 5 714 3.0 

Patient 4 HIV-SN+ Male 47 167 6.8 284 4.6 

Patient 5 HIV-SN+ Male 45 167 3.5 300 0.8 

Patient 6 HIV-SN- Male 38 179 8.7 626 6.7 

Patient 7 HIV-SN- Female 41 150 1 435 6.6 

Patient 8 HIV-SN- Male 35 165 12 693 5.4 

Patient 9 HIV-SN- Female 32 165 3.6 385 9.0 

Patient 10 HIV-SN- Male 44 171 2.8 84 4.0 

Patient 11 HIV-SN- Male 36 168 1 566 1.3 

Patient 12 HIV-SN- Male 25 165 1.6 653 14.0 

Patient 13 HIV-SN- Male 34 166 2.2 386 5.2 

Patient 14 HIV-SN- Female 41 150 1 448 5.8 

HC1 - Female 28 158 - - - 

HC2 - Female 33 162 - - 11.2 

HC3 - Female 33 151 - - 15.2 

HC4 - Male 37 169 - - 5.8 

a  Brief Peripheral Neuropathy Screening Tool 

b Inter Epithelial Nerve Fibre Density 
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Table 2; Summary of donor characteristics 

(BPNST) 
N value Male 

(n) 

Age 

(years) 

Height 

(cm) 

Time on ART 

(years) 

Last CD4 

(cell/uL) 

IEFND 

(per mm2) 

HIV-SN+ 

HIV-SN- 

HC 

5 

9 

4 

3 

6 

1 

p=1.0a 

34 (33-47) 

36 (25-44) 

33 (28-37) 

p=0.84b 

167 (158-175) 

165 (150-179) 

160 (151-169) 

p=0.50 b 

6.8 (3.5-7.5) 

2.2 (1.0-12) 

n/a 

p=0.14 b 

406 (284-729) 

448 (84-693) 

n/a 

p=1.0 b 

3.0 (0.8 – 9.7) 

5.8 (1.3 – 14.0) 

11.2 (5.8 – 15.2) 

p=0.19 b 

Results are presented as median (range); n/a  not applicable 

a Fisher's exact test (HIV-SN+ versus HIV-SN-),  b Mann-Whitney test (HIV-SN+ versus HIV-SN-) 

Figure 1. Mean intraepidermal nerve fibre count for each patient as determined by each rater 
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Interleukin 10 (IL-10) is a potent anti-inflammatory cytokine influenced by single nucleotide polymor-
phisms (SNP) located in upstream regulatory regions. Here we address the effects of five SNP
(rs1518111, rs3021094, rs3024491, rs1800872 and rs1800871) on CD4 T-cell counts in Indonesian HIV
patients assessed before ART and over 12 months on treatment. Heterozygosity at rs1518111 or
rs1800872 associated with low CD4 T-cell counts at all time points. Both alleles were carried in two hap-
lotypes. Haplotype 21122 (present in 30% of participants) associated with low CD4 T-cell counts, whereas
21222 (in 6% of participants) did not. Hence untyped SNP(s) tagged by 21122 may depress CD4 T-cell
counts. The association with heterozygosity suggests synergy with an allele from a haplotype lacking
rs1518111 and/or rs1800872.
� 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights

reserved.
1. Introduction

CD4 T-cell counts are a reliable prognostic marker of HIV dis-
ease progression and risk of opportunistic infections. HIV-
infected individuals differ in their rate of disease progression and
their response to antiretroviral therapy (ART). This suggests com-
plex interactions between the virus, the environment and the host
genome. Host genes known to affect HIV disease include those
encoding chemokine receptors, human leukocyte antigens (HLA),
cytokines and apoptosis-related genes [1,2].

Interleukin-10 (IL-10) is an anti-inflammatory and
immunomodulatory cytokine produced by macrophages, mono-
cytes, T-helper cells and B-lymphocytes. IL-10 can inhibit the pro-
duction of pro-inflammatory cytokines and down-regulate the
expression of HLA class I and II molecules. IL-10 production in
humans is influenced by genetic factors, which consequently have
potential to affect HIV disease. Previous studies have focused on
single nucleotide polymorphisms (SNP) within the IL10 promoter
region, notably �1082G/A (rs1800896), �592C/A (rs1800872)
and �819C/T (rs1800871), and generate conflicting results. For
example; the A allele of rs1800872 and the ‘‘ATA” haplotype
defined by the three SNP increased susceptibility to HIV infection
and disease progression in Indian cohorts [3,4]. However in an
African population, carriers of AA at rs1800872 had attenuated
CD4 T-cell loss and a broader CD8 T-cell response to HIV peptides,
whilst rs1800896 more clearly affected plasma IL-10 levels [5].
Similarly the A alleles were protective against HIV and Hepatitis
B disease in an Estonian population using intravenous drugs [6].
Studies from the Indian sub-continent associate �1082G/A
(rs1800896) and �592C/A (rs1800872) with susceptibility to
tuberculosis amongst HIV patients, but results included associa-
tions with heterozygous carriage [7].

This highlights the need for further studies to identify IL10 SNP
that may affect CD4 T-cell counts before and on ART. A study of 21
SNP spanning IL10 in Caucasians HIV patients confirmed the
�1082G/A (rs1800896), �592C/A (rs1800872) and �819C/T
(rs1800871) haplotype as the most informative marker of disease
progression but showed that it tagged and its effects were modi-
fied by broader IL10 haplotypes. Interestingly, no clear associations
were found in African Americans [8].

The patterns may also be distinct in Asians, so we have investi-
gated associations between five polymorphisms in IL10
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Table 1
Two IL10 SNPs associated with low CD4 T-cell counts before and on ART.

SNP ID V0/V3 V6/V12a CD4 T-cell countsb P-valuec

1,1 1,2 2,2 1,1 vs 1,2 1,1 vs 2,2 1,2 vs 2,2

rs1518111 V0 72(9–199) 48(3–191) 74(2–187) 0.02 0.18 0.91
C (0.40)d (n = 30) (n = 30) (n = 15)

V3 212(79–601) 169(7–492) 148(11–410) 0.08 0.04 0.50
(n = 28) (n = 25) (n = 14)

V6 226(118–516) 173(6–501) 221(20–394) 0.04 0.31 0.83
(n = 26) (n = 23) (n = 13)

V12 304(171–763) 242(121–616) 328(44–736) 0.057 0.72 0.67
(n = 24) (n = 21) (n = 12)

rs3021094e V0 49(2–187) 65(3–198) 69(9–199) 0.72 0.12 0.26
G (0.46) (n = 24) (n = 26) (n = 19)

V12 283(44–736) 285(121–603) 304(171–763) 0.87 0.5 0.32
(n = 18) (n = 20) (n = 16)

rs3024491f V0 62(2–199) 94(4–191) – 0.49 – –
A (0.06) (n = 68) (n = 8)

V12 282(44–763) 377(101–496) – 0.38 – –
(n = 53) (n = 6)

rs1800872 V0 69(9–199) 45(3–191) 52(2–187) 0.03 0.1 0.83
G (0.42) (n = 29) (n = 32) (n = 16)

V3 206(79–601) 136(7–492) 159(11–410) 0.03 0.08 0.80
(n = 27) (n = 27) (n = 15)

V6 242(118–516) 157(6–501) 226(20–394) 0.02 0.45 0.39
(n = 25) (n = 25) (n = 14)

V12 304(171–763) 207(121–616) 298(44–736) 0.01 0.67 0.41
(n = 23) (n = 23) (n = 13)

rs1800871 V0 67(2–187) 48(3–198) 67(9–196) 0.21 0.26 0.82
G (0.43) (n = 16) (n = 29) (n = 26)

V12 286(144–763) 233(121–616) 328(44–736) 0.21 0.96 0.79
(n = 22) (n = 22) (n = 12)

a V0: CD4 T-cell counts before ART. V3, V6 and V12: CD4 T-cell counts after 3, 6 and 12 months on ART.
b Median (range) CD4 T-cell counts (cells/ul).
c Non-parametric Mann-Whitney test analysing association between the IL10 genotypes and CD4 T-cell counts.
d Minor allele (MAF), where MAF are calculated from samples genotyped successfully.
e Observed allele frequencies deviated from the expectations of HWE ((Χ2 4.01 > Χ2 0.05, 1 df (3.84)).
f (1,2) and (2,2) were merged as <5 individuals carried the (2,2) genotype.

Table 2
One haplotype associated with low CD4 T-cell counts before and on ART.

Haplotype Sequencea V0/V12 CD4 T-cell countsc P-valued

0 1 2 1 vs 2 0 vs 2 0 vs 1

12111
(0.41)b

V0 50(2–198)
(n = 31)

62(3–196)
(n = 27)

69(9–199)
(n = 21)

0.17 0.12 0.81

V12 253(44–736)
(n = 24)

289(121–567)
(n = 20)

304(171–763)
(n = 17)

0.46 0.21 0.75

21122
(0.3)

V0 72(7–199)
(n = 38)

48(3–180)
(n = 30)

50(2–166)
(n = 11)

0.72 0.07 0.02

V12 310(144–763)
(n = 29)

207(101–616)
(n = 23)

285(44–736)
(n = 9)

0.48 0.61 0.003

11111
(0.14)

V0 63(2–199)
(n = 62)

55(8–198)
(n = 17)

– – – 0.61

V12 288(44–763)
(n = 49)

276(141–616)
(n = 12)

– – – 1.0

21222
(0.06)

V0 55(2–199)
(n = 71)

94(4–191)
(n = 8)

– – – 0.44

V12 282(44–763)
(n = 55)

377(101–496)
(n = 6)

– – – 0.35

12112
(0.3)

V0 55(2–199)
(n = 75)

144(21–198)
(n = 4)

– – – 0.17

V12 285(44–763)
(n = 58)

441(144–603)
(n = 3)

– – – 0.50

a Defined by SNP alleles in the order shown in Table 1.
b Haplotype frequencies determined using the most probable assignment for each individual.
c Median (range) CD4 T-cells/ul. 0, 1 and 2 represent patients without the haplotype or with 1 or 2 copies.
d Non-parametric Mann-Whitney test.
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(rs1518111, rs3021094, rs3024491, rs1800872 and rs1800871)
and CD4 T-cell count recovery in HIV-infected Indonesian patients
beginning ART. We sought the haplotypes that best define the risk.

2. Materials and methods

2.1. Patients and routine assessments

A longitudinal study of 79 HIV-1 patients was conducted at the
HIV clinic at Cipto Mangunkusumo Hospital in Jakarta, Indonesia.
Patients were invited to participate if they began ART with <200
CD4 T-cells/uL between March 2013 and March 2014. They were
tested serologically for HCV, for oral candidiasis by clinical exami-
nation and for pulmonary tuberculosis by chest X-ray and sputum
acid bacilli smear. The study was approved by the Ethics Commit-
tee of Cipto Mangunkusumo Hospital and Universitas Indonesia.
Written informed consent was obtained from individuals who
agreed to participate. CD4 T-cells were quantified by standard flow
cytometry from the commencement of triple therapy (V0) includ-
ing lamivudine, zidovudine, nevirapine, stavudine, efavirens and/
or tenofovir. Most individuals were re-tested at 3, 6 and 12 months
(V3, V6, V12). Reasons for discontinuation included death from
causes related to AIDS (5 patients), drug-induced allergy requiring
discontinuation of ART and loss to follow up. Plasma HIV RNA loads
were determined using COBAS� AmpliPrep/COBAS� TaqMan� HIV-
1 Tests (version 2.0).

2.2. Genotyping

DNA was quantified using a Qubit fluorometer (Thermo Fisher
Scientific, Waltham, MA) and diluted to 50 ng/uL. IL10 polymor-
phisms (rs1518111, rs3021094, rs3024491, rs1800872 and
rs1800871) were genotyped using custom TaqMan OpenArray
Genotyping Plates (Life Technologies, Grand Island, NY) [9]. DNA
samples were diluted at 1:1 in TaqMan OpenArray Genotyping
Master Mix for 50 cycles of PCR amplification. The data was anal-
ysed using the OpenArray SNP Genotyping Analysis software, and
the genotypes were assigned manually. Chi Square analysis with
5% significance level and 1 degree of freedom was used to deter-
mine if the observed allele frequencies were in Hardy-Weinberg
equilibrium (HWE). Haplotypes and their estimated frequencies
were calculated using the fastPHASE algorithm with the default
parameters and sampled from the observed genotypes 10,000
times [10]. Haplotypes with an estimated frequency <1% were
excluded.

2.3. Statistical analyses

Statistical analyses were done with GraphPad Prism software
(v6; Tree Star, La Jolla, CA), using non-parametric Mann-Whitney
tests, Chi2 or Fisher’s exact tests. A 5% significance level (P < 0.05)
was considered statistically significant.

3. Results and discussion

Seventy-nine Indonesian HIV-infected patients were screened
for IL10 polymorphisms and their effect on CD4 T-cell counts
before ART and over 12 months on treatment. The cohort included
51(65%) males and had a median (range) age of 31(19–48) years.
The CD4 T-cell count at baseline was 61(3–199) cells/ul. 37(47%)
of the patients had pulmonary tuberculosis and 17(22%) were co-
infected with Hepatitis C. Heterosexual transmission accounted
for 46 subjects (58%), with homosexual transmission and intra-
venous drug use each accounting for 18%. This is a common pattern
in many Asian centres.
No genotypes associated with pulmonary tuberculosis, candidi-
asis or HCV (data not shown). Table 1 summarises associations
between the five IL10 SNP genotypes and CD4 T-cell counts. As
the IL10 rs3024491 (2,2) genotype was rare, patients with this
genotype were analysed with those carrying rs3024491 (1,2). Uni-
variate analyses associated heterozygous carriage of the minor
alleles of two SNP with CD4 T-cell counts recorded before ART
(rs1518111; p = 0.02 and rs1800872; p = 0.03) and after 3, 6 and
12 months (see Table 1), so the effect remains evident on ART.
rs1518111 and rs1800872 are in linkage disequilibrium (1000
Genomes, D’ = 1, R2 = 0.925) in East Asians and Europeans, so com-
mon associations are plausible.

The G allele of the commonly studied �1082G/A (rs1800896)
was also checked and found to be rare in our Indonesian cohort
(MAF = 0.09). Moreover it is not in linkage disequilibrium with
rs1800872 in East Asians described in the 1000 genomes database.
Accordingly, carriage of the minor (G) allele of rs1800896 did not
affect CD4 T-cell counts before ART or after 12 months (data not
shown, p = 0.77–0.83).

To resolve the effect of heterozygous carriage of rs1518111 and
rs1800872 and address which SNP were responsible for the pheno-
type, we considered the haplotypes carried by individuals in the
cohort. Fifteen haplotypes of the five IL10 SNP described in Table 1
were derived. Five haplotypes occurred at an estimated frequency
of 1% or greater and accounted for 94% of this population (Table 2).
The alleles of the SNP in each haplotype are expressed as a 1 (major
allele) or a 2 (minor allele), in chromosomal order as listed in

Table 1. Carriage of the haplotype (2 1 1 2 2) was associated with
low CD4 T-cell counts (p = 0.02, Table 2). This haplotype contains
the minor alleles of three SNP, where the first (rs1518111) and
fourth (rs1800872) were associated with CD4 T-cell counts
(Table 1). These two minor alleles also occurred in a rarer haplo-

type (2 1 2 2 2) that showed no association with low CD4 T-cell
counts. This suggests that neither SNP is directly responsible for
the low CD4 T-cell counts – rather the effect appears to reside with

an unknown SNP tagged by the (2 1 1 2 2) haplotype.
In conclusion; our data links heterozygosity at IL10 rs1518111

and rs1800872 with low CD4 T-cell counts in untreated HIV-
infected Indonesian patients and on ART. Derivation of 5-SNP hap-
lotypes demonstrated that these SNP are not directly responsible
for the effect on CD4 T-cell counts. Moreover the consistent associ-
ation with heterozygosity suggests synergy between SNP carried in
distinct haplotypes, perhaps including the distal promoter region
[8]. As data in the 1000 Genomes database show distinct IL10 hap-
lotypes carried by different ethnic groups, studies of CD4 T-cell
recovery in other ethnicities may reveal which SNP are critical.
As IL-10 is critical for limiting inflammation and the host immune
response to pathogens, the association with IL10 haplotypes con-
firms that these pathways influence CD4 T-cell loss and recovery
on ART.
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