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Abstract

In this paper, we propose an approximate dynamic programming approach for an energy-efficient

unrelated parallel machine scheduling problem. In this scheduling problem, jobs arrive at the system

randomly, and each job’s ready and processing times become available when an order is placed.

Therefore, we consider the online version of the problem. Our objective is to minimize a combination

of makespan and the total energy costs. The energy costs include cost of energy consumption of

machines for switching on, processing, and idleness. We propose a binary program to solve the

optimization problem at each stage of the approximate dynamic program. We compare the results

of the approximate programming approach against an integer linear programming formulation of

the offline version of the scheduling problem and an existing heuristic method suitable for scheduling

problem with ready times. The results show that the approximate dynamic programming algorithm

outperforms the two off-line methods in terms of solution quality and computational time.

Keywords: Scheduling, approximate dynamic programming, energy-efficient production planning,

makespan, time-of-use tariff

1. Introduction

In recent years, many countries have introduced new regulations to enforce sustainability recog-

nition and implementation in manufacturing industries to reduce resource consumption and carbon

footprint. Energy efficiency in production systems from the operational standpoint and new ad-

vanced equipment have been pursued as two strategies to make the reduction possible. However,

in recent years, more efforts have been devoted to operational energy efficiency in the form of pro-

duction planning and scheduling through time-of-use (TOU) tariff schemes set by energy suppliers

(Anghinolfi et al. 2020, Cao et al. 2020).

Since the implementation of TOU tariff by utility suppliers, many companies, especially energy-

intensive industries, have applied energy-aware production scheduling policies to reduce the electric-
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ity cost by shifting from peak hours operations to medium-pick or off-pick hours operations (Hadera

et al. 2015, Zhang et al. 2014). This creates a new interesting and challenging scheduling problem

in which there is a cost associated with each period (this cost is also called green metric or green

performance measure (Anghinolfi et al. 2020)). These problems belong to the class of bi-criteria

scheduling problems with machine assignment costs, and there is a trade-off between the two crite-

ria (Leung et al. 2012). Therefore, to measure the quality of each feasible schedule, a cost-oriented

objective should be considered in addition to the conventional performance measures such as com-

pletion time and tardiness. Wan and Qi (2010) proved that a single machine scheduling problem

with time-dependent scheduling cost is an NP-hard problem.

This paper deals with a class of online scheduling problem. In this class, unlike the off-line

problems, the required information is not available at the time of making decisions. For example,

the jobs to be processed, their arrival and processing times, and machine availability time may not

be known (Albers 2009). In this paper, we extend the work of Nezami et al. (2017) by considering

random arrival time and processing time of jobs, and present an approximate dynamic programming

(ADP) approach to solve the online bi-objective unrelated parallel machine scheduling problem.

The objectives are minimizing the makespan and total energy cost, which is defined based on the

TOU concept for measuring energy consumption. It is assumed that jobs arrive at the system

randomly. Therefore, the ready times of jobs are not known in advance, but it is assumed that

they follow a known probability distribution.

The main contributions of this paper are twofold: this is the first study that considers an online

energy-efficient unrelated parallel machine scheduling problem; and this is the first study in the

literature that presents an approximate dynamic programming algorithm for this online scheduling

problem. The remainder of this paper is organized as follows. A survey of previous works is given

in Section 2. The online scheduling problem is defined and formulated in Section 3. Section 4

presents the approximate dynamic programming algorithm designed for solving the problem at

hand. The computational analysis is presented in Section 5. Finally, concluding remarks are given

in Section 6.

2. Literature review

Energy-efficient scheduling has been the subject of many studies in the past few years, and the

number is still growing, indicating the importance and popularity of the subject. An excellent sur-

vey on the energy-efficient scheduling problem was written by Gahm et al. (2016). They considered

studies from 1990 to 2015 and introduced energetic coverage, energy supply, and energy demand as

three dimensions for classifying the literature. In another survey, two approaches were defined for

classifying energy-efficient scheduling problems known as input and output-oriented approach (Giret

et al. 2015). According to this classification, the input-oriented approaches mostly deal with perfor-

mance measures and energy minimization objectives, whereas output-oriented approaches deal with

environmental waste and pollution minimization along with performance measures (Nezami et al.

2017). This study, however, does not consider the output-related objectives such as carbon emission
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minimization. Several studies that applied the concept of energy-efficient scheduling in real-world

industries involved tempered glass process (Liu et al. 2020), glass production plant (Wang et al.

2016, 2020b), steel production plant (Cao et al. 2020, Hadera et al. 2015), steelmaking-refining-

continuous casting (Tan and Liu 2014), moulding industry (Paolucci et al. 2017), and scrap steel

melting process (Gajic et al. 2017, Yang et al. 2018).

In recent years, several studies have addressed the energy-efficient scheduling problem in dif-

ferent machine settings. Single machine scheduling problem was the first class of energy-efficient

scheduling problems that were studied. Cheng et al. (2016) developed a bi-objective (makespan

and total electricity costs) mixed-integer linear program for a single-machine batch scheduling

problem based on the TOU concept and developed an ε-constraint method for generating Pareto

optimal solutions. Wang et al. (2016) extended their problem by considering two new decision

variables, which are processing in machine low-temperature mode and processing in machine high-

temperature mode. They approximated the Pareto fronts by two decomposition-based heuristics.

Shrouf et al. (2014) considered processing, idle, and shutdown as three machine modes in their

formulation, which was solved by a genetic algorithm. Aghelinejad et al. (2018) solved the non-

preemptive case of Shrouf et al. (2014) by a genetic algorithm where scheduling at the machine

and job levels were considered. Cheng et al. (2017a) also considered idle and processing modes in

their MILP formulation and used an ε-constraint-based heuristic to handle instances of larger size.

Fang et al. (2016) developed an approximation algorithm for the uniform and speed-scaling single

machine problem. A weighted sum of the total energy costs and total completion time of all jobs

on all machines combined was studied by Mouzon et al. (2007) and Rubaiee and Yildirim (2019).

Energy-efficient scheduling problem in the flow-shop setting was studied extensively (for ex-

ample, see Mansouri and Aktas (2016), Wang et al. (2020b), Zhang et al. (2014), Zheng et al.

(2020)). Gong et al. (2020) studied the energy-efficient flexible flow shop with worker flexibility as

it has a significant impact on the performance of the production system. Therefore, they consid-

ered makespan, worker or human factor cost, and energy indicator for their proposed MILP model.

Then they developed a hybrid evolutionary algorithm for solving large-scale instances of the prob-

lem. Other variants of the energy-efficient flow-shop scheduling problem which have been studied

include flexible flow-shop with sequence-dependent setup times (Jiang and Wang 2019, Mansouri

et al. 2016), distributed no-idle flow-shop (Chen et al. 2019), permutation flow-shop (Lu et al.

2017), and hybrid flow-shop (Li et al. 2019, Luo et al. 2013).

Energy-efficient job-shop scheduling problem and its variants have been studied by many re-

searchers over the past few years. A dynamic energy-efficient job-shop scheduling problem was

addressed by Nouiri et al. (2018). They proposed a particle swarm optimization approach to mini-

mize makespan and energy efficiency simultaneously. Golp̂ıra et al. (2018) studied a robust energy-

efficient production scheduling problem in which supply and demand are uncertain and developed

risk-based robust mixed-integer linear program. Zhang et al. (2017) proposed a dynamic game

theory approach to minimize makespan, machine load, and energy consumption. Meta-heuristic

approaches such as genetic algorithms (Liu et al. 2016, May et al. 2015, Salido et al. 2016, Zhang and
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Chiong 2016), evolutionary algorithms (Wang et al. 2020a), memetic algorithms (Abedi et al. 2020),

and shuffled frog-leaping algorithms (Lei et al. 2017) were also used for solving the energy-efficient

job shop scheduling problem. Other variants of job-shop scheduling that received attention from

researchers include job shop scheduling with transportation constraint (Dai et al. 2019), scheduling

and lot-sizing (Giglio et al. 2017), flexible job shop scheduling (Dai et al. 2019, Meng et al. 2019,

Mokhtari and Hasani 2017), and job shop scheduling with variable spindle speed (Yin et al. 2017).

The subject of this research, energy-efficient parallel machine scheduling problem, has received

attention over the past few years. For a detailed literature review on the parallel machine environ-

ment see Safarzadeh and Niaki (2019) and the references therein. The off-line unrelated parallel

machine problem solved by genetic algorithm was studied by Moon et al. (2013). Ding et al. (2015)

proposed a MILP for the parallel machine scheduling problem based on TOU with makespan and

total energy cost as the objectives. They developed a column generation algorithm to deal with the

complexity. Their model was then improved by Cheng et al. (2017b). Che et al. (2017) developed

a mixed-integer linear program for the off-line uniform parallel machine scheduling problem based

on the concept of TOU and proposed a two-stage heuristic to handle the large-scale cases. Nezami

et al. (2017) developed a mixed-integer nonlinear program for unrelated parallel machine schedul-

ing with total completion time, total energy cost, and total power consumption as three objective

functions. Anghinolfi et al. (2020) developed a time-indexed MILP based on the concept of TOU

for an off-line identical parallel machine scheduling problem, where no-preemption is allowed, with

minimization of makespan and total energy cost. Then, they introduced a heuristic procedure

called Split-Greedy Heuristic, which is a constructive algorithm enhanced with a local search. Sa-

farzadeh and Niaki (2019) studied an off-line uniform parallel machine problem with minimization

of makespan and green production costs of all machines combined. Instead of using TOU, they

introduced three cost factors called green processing cost, green working cost of machines per unit

time, and green working cost of machines per unit of job processing. Using ε-constraint technique,

an improvement of the heuristic algorithm of Ji et al. (2013) was used to generate Pareto optimal

solutions. The current study and the work of Nezami et al. (2017), to the best of our knowledge,

are the only two studies that consider machines’ modes (states) such as processing, idle, on/off,

various processing speeds, and TOU policies simultaneously.

The subject of this study is related to the applications of approximate dynamic programming.

For some recent applications of approximate dynamic programming see (Al-Kanj et al. 2020, God-

frey and Powell 2002, Heydar et al. 2021, Jenkins et al. 2021, Koch and Klein 2020, Saure et al.

2012, Yuan and Tang 2017). Ronconi and Powell (2010) is the only study that applies the approx-

imate dynamic programming approach to the online single machine tardiness scheduling problem.

The current study differs from their work in several ways. First, this study considers the parallel

machine scheduling problem. Second, this study considers an energy-efficient scheduling problem

where the performance measure is makespan. Third, we consider different modes of machines in

this problem. Fourth, we use a double-pass approximate dynamic programming algorithm. Finally,

we consider a 0-1 program at each stage of the problem to find the best decision where the objective
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includes cost-per-stage and future costs.

3. The scheduling problem

In this section, we present the online energy-efficient unrelated parallel machine scheduling

problem formally. We mostly use the conventions defined in Nezami et al. (2017). It is assumed

that there areM =
{

1, 2, . . . .M
}

unrelated parallel machines available to process a set of available

jobs denoted by J . This implies that all jobs should be processed eventually. Each job arrives

at the system randomly and its job ready time (arrival time) is denoted by rj ≥ 0. Each job j

has an integer random machine-dependent processing time denoted by pmj > 0. If machine m is

not suitable to process job j, then we have pmj =∞. The processing time becomes available once

the job appears at the system. We also assume that the planning horizon is discretized into time

slots t ∈ T , where T :=
{

0, 1, . . . , TH
}

, with equal lengths of L. The newly arrived jobs are ready

at the beginning of each time interval. Moreover, without loss of generality, it is assumed that

the processing times are divisible by the interval length. No preemption is allowed. Finally, all

machines are off at the beginning of the planning horizon, and each machine can be switched on

only once over the planning horizon. The objective is to assign the arriving jobs to the machines

in order to minimize makespan and total energy costs.

We base the formulation of the problem on the following assumptions. We consider the TOU,

meaning that energy prices vary in peak/off-peak periods. The energy price for each time slot t ∈ T
is denoted by Et. We also assume that each machine can process only one job during each time slot

t ∈ T . There is an electricity consumption rate for each machine’s mode during each time slot t.

The electricity consumption for processing and idle mode are µmt and κmt , respectively. Similarly,

the parameter λmt denotes the required electricity to switch on machine m at the beginning of time

slot t. Finally, we assume that the time it takes to start a machine is negligible, however, during

the period that the machine is switched on the average energy consumption increases. All problem

notations are given in Table 1.

This online scheduling problem can be modeled as a Markov Decision Process, in which all as-

pects of a stochastic optimization problem are available (see Ronconi and Powell (2010) and Powell

(2007, Chapter 5)). These aspects are state variable, decision variables, an objective function,

transition function, and exogenous information. In the following, we explain these aspects of the

online scheduling problem at hand.

The state of the system at time slot t ∈ T , denoted by St, is defined by set St =
{
Jt, At,Υt

}
.

In this set, Jt is the set of unprocessed jobs at the beginning of time slot t and At =
{

(rj , pmj)|j ∈
Jt,m ∈ Mt

}
, where Mt is the set of available machines at time slot t. The state of machines, Υt,

is defined by (ymt , z
m
t , ρ

m
t , a

m
t ), where ymt ∈ {0, 1}, zmt ∈ {0, 1}, and ρmt ∈ {0, 1} denote whether

machine m is in idle mode, just switched on, and in processing mode at time slot t. In this

convention, amt shows the time when machine m is available to process which can be any time at or

after t. For instance, let us assume that job j with processing time pmj = 2 is scheduled on machine

m at t − 1, then machine m will be available at time amt = t + 1. In this case, machine m will be
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Table 1: Notations used in the paper
Sets

J Set of all jobs
Jt Set of unprocessed job at the beginning of time t, Jt ⊂ J
JCt Set of available jobs that can be scheduled at time t, Jct ⊆ Jt
JCat Set of jobs scheduled at time t, JCat ⊆ JCt
T The discretized planning horizon such that |T | = TH

M Set of all machines

Parameters

rj Arrival (ready) time of job j ∈ J
pmj Processing time of job j on machine m
κmt Power consumption of machine m at time t in idle mode
λmt Power consumption of machine m at time t when switches on
µmt Power consumption of machine m at time t in processing mode
Et Price of energy at time t
L The length of each interval t ∈ T
ζi The weight of objective i
St State of the system at time t
At The release time and processing time of unprocessed jobs at time t
Mt Set of available machine at time t
Wt The exogenous information that arrive at time t− 1 for time t
Υt State of machines at the beginning of time t
amt Shows the time that machine m becomes available
ρmt A binary parameter indicating whether machine m is processing (=1)

at time t or not (=0)
ymt A binary parameter indicating whether machine m is idle (=1) at time

t or not (=0)
zmt A binary parameter indicating whether machine m is switched on (=1)

at time t or not (=0)

Decisions

xmtj

{
1 if machine m starts processing on job j at time t
0 otherwise

ωmtj

{
1 if machine m is processing job j during time t
0 otherwise

occupied during time slots t and t+ 1, i.e. ρmt = ρmt+1 = 1 = 1− ymt = 1− ymt+1 =⇒ ymt = ymt+1 = 0.

The following remark defines the constraints of each machine during each time slot:

Remark 1. During each time slot t, a particular machine m is either in processing mode or idle

mode, mathematically, ρmt + ymt ≤ 1.

The inequality of Remark 1 implies that if machine m is off during time slot t, then ρmt =

ymt = 0. On the other hand, if machine m is on during time slot t, then it is either processing,

ρmt = 1 = 1 − ymt , or idle, ρmt = 0 = 1 − ymt . Furthermore, the following condition between two

consecutive time slots holds

ρmt−1 + ymt−1 = ρmt + ymt − zmt , (1)

with the initial condition ρm0 + ym0 − zm0 = 0. This initial condition is derived from the assumption

that all machines are off at the beginning of the planning horizon. The condition in Eq. (1) states

that if machine m is in processing or idle mode for the first time at time t, it should be switched
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on first.

Denote by JCt the subset of available jobs that can be scheduled at the beginning of time slot

t. The set of decisions is defined on set JCt and represented as follows

xmtj =


1 job j ∈ JCt is scheduled on available machine m

at time t;

0 otherwise.

(2)

For any other jobs not in JCt or unavailable machines, i.e. amt > t, we have xmtj = 0. At the beginning

of each time slot t, candidate jobs are assigned to the available machines. If the number of available

machines is less than the number of candidate jobs, i.e. |Mt| < |JCt |, only a subset of jobs can be

scheduled and the rest will be considered in the next time slot. This subset is denoted by JCat .

The decision given by (2) is defined for the candidate jobs in JCt , and the available machines at

time slot t. According to our definition of state of machines, a machine is available only if amt ≤ t,
meaning that we can consider a machine only if it was freed before or just at the beginning of time

slot t. By using decision variable xmtj , we decide whether or not to assign job j to machine m at

time slot t. If xmtj = 1, then states of the machine should be updated as {ρmt = 1, ymt = 0}, for

t, t+ 1, t+ 2, . . . , t+ pmj − 1, and amt = t+ pmj , for t+ 1, t+ 2, . . . , t+ pmj .

Using this kind of decision variables, we define a policy π ∈ Π (the family of policies) that

satisfy some assignment constraints. The set of these decisions under policy π is defined by action

space Xπ
t .

The contribution of the objective function at time slot t for makespan, Cmax,t, is calculated by

C1
t (St, X

π
t ) = Cmax,t = max

m∈M
j∈|JCat |

{
max

{
rj , a

m
t

}
+ pmjx

m
tj

}
. (3)

Since rj ≤ t for all j ∈ JCat , and for all available machines we have amt = t, therefore, job j can only

start at time t and the first term in Eq. (3) is max{rj , amt } = t. As a result, Eq. (3) is simplified to

C1
t (St, X

π
t ) = Cmax,t = max

m∈M
j∈|JCat |

{
t+ pmjx

m
tj

}
,

which is equivalent to the constraints (45) in the off-line model of the appendix.

Similarly, we define per stage contribution of the objective function with respect to total energy

cost, TECt, as follows

C2
t (St, X

π
t ) = ECt = Et

M∑
m=1

(
µmt

|JCat |∑
j=1

ωmtj + κmt y
m
t + λmt z

m
t

)
,

where, ωmtj ∈ {0, 1} is an auxiliary variable indicating if job j is being processed by machine m

at time slot t. The three terms in the above equation are energy cost associated with processing
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mode, idle mode, and starting machine m at time slot t, and Et is the price of energy during time

slot t. The processing state of machine m due to machine capacity during each time slot t will be

updated as
|JCt |∑
j=1

ωmtj = ρmt . (4)

According to this condition, if machine m is in processing mode, it should process only one job

from the candidate list. By applying condition (4), the total energy cost can be written as follow:

C2
t (St, X

π
t ) = ECt = Et

M∑
m=1

(
µmt ρ

m
t + κmt y

m
t + λmt z

m
t

)
, (5)

The total cost at t is then defined by

Ct(St, X
π
t ) =

2∑
i=1

ζiC
i
t(St, X

π
t ), (6)

where ζi is the weight of the objective i = {1, 2}. It should be pointed out that the two criteria

in Eq. (6) have different dimensions. Therefore, the weights ζ1 and ζ2 should be determined or

normalized in such way that all terms of the resulting single objective problem have the same

dimensions. The weighted sum of Eq. (6) can be written as C1
t (St, X

π
t ) + ( ζ2ζ1 )C2

t (St, X
π
t ) which

means that the relativity of weights are important (Cohon 1978).

Since we consider the online version of the energy-efficient unrelated parallel scheduling problem,

the exogenous information is the arrival of the new jobs to the system for each time slot t. In any

stochastic system a transition from state St to state St+1 is defined by the following function

St+1 = SM (St, X
π
t , Rt+1), (7)

where Rt+1 denotes the exogenous information that becomes available after time t and before time

t+ 1. In this problem the SM (·) is defined as follows

Jt+1 = (Jt \ JCat ) ∪ Jωt+1,

At+1 = {(rj , pjm)|j ∈ Jt+1,m ∈Mt+1},

amt+1 = max(amt +
∑

j∈JCat
pmjx

m
tj , t+ 1), ∀m ∈Mt+1,

(8)

In this transition function, Jωt+1 is the set of jobs that become known to us between t and t+ 1,

with their associated information such as ready time, rj , and processing times, pmj . Using amt+1,

we are able to update the state of machine m ∈Mt+1 during the time slot t.

The last step in the modeling of the stochastic decision problem is to define the objective

function. Our objective is to find the best policy π to minimize the expected value of a linear
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Table 2: Data for example 1

j Time information received rj p1j p2j

1 0 0 4 6
2 0 1 1 3
3 1 3 2 3
4 1 3 3 4
5 3 3 4 3

combination of the makespan and total energy cost as follows

min
π∈Π

E
{ TH∑
t=1

Ct(St, X
π
t )
∣∣S0

}
, (9)

where E denotes the expectation value. Using Bellman’s equation, we can write the optimization

problem as follows

Vt(St) = min
xt∈Xπ

t

(
Ct(St, xt) + E

{
Vt+1(St+1)|St

})
, (10)

where Vt(St) is the minimum value of the value function at state St. The optimization problem (10)

can be solved using the backward dynamic programming. Reasons that make the computing of

the exact value of Eq. (10) intractable include: (1) the size of state space St, (2) the size of the

decision vector xt, and (3) the calculation of the expectation of the future cost due to the size

of decision vector xt and exogenous information Rt. The three reasons are known as the curse of

dimentionality (e.g., see Powell (2007, Chapter 4) for details on three curses of dimensionality). One

approach to resolve this curse of dimensionality issue is to use approximate dynamic programming

(ADP). Before introducing the proposed approximate dynamic programming approach, we provide

a small example.

Example 1. Consider a parallel machine environment with |M| = 2 machines. There are |J | = 5

jobs that we want to schedule over T = 20 time slots with Et = 1. The jobs information are

shown in Table 2. The second column of this table shows the time when exogenous information is

available. For example, at time t = 0, information for jobs j = 1 and j = 2 are received but only

j = 1 is available for processing. We also assume that µmt = κmt = λmt = 1, ∀m ∈ M, ∀t ∈ T . At

time t = 0, only information of jobs j = 1, 2 are available, hence we need to apply a sequential

decision making approach. One simple way is to use a myopic approach. In this approach we can

make decision as jobs arrive at the system without considering the impact of our decision on the

future cost. In this example, job j = 1 is assigned to machine m = 1. It results in Cmax,1 = 4 and

EC1 = 2. At time t = 1, the second job, j = 2, arrives and it is assigned to machine m = 2, since

this machine is the only available machine. The objective values are Cmax,2 = 4 and EC2 = 3,

respectively. At times t = 2, no job arrives, and three jobs, j = 3, 4, 5, arrive at time t = 3. At

this time slot we have to wait until t = 4, so that both machines become available. At time t = 4,

from 3× 3! = 18 different possible schedules, by scheduling jobs j = 3, 4 on machine m = 1 and job
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Table 3: The value of objective functions for each time slot t

t
0 1 2 3 4 5 6 7 8 9 10-20

Cmax,t 4 4 4 4 7 7 9 9 9 -
ECt 2 3 2 2 2 2 2 2 2 2

j = 5 on machine m = 2, the values of makespan for each time slot will be Cmax,5 = Cmax,6 = 7,

Cmax,7 = Cmax,8 = Cmax,9 = 9. Similarly, the energy costs for each time slot can be calculated.

It should be noted that in this schedule, the first machine is idle for time slots t = 8, 9, and for

t ≥ 10 both machines are idle. The sequential decision process using this myopic policy is depicted

in Figure 1. After scheduling all five jobs the problem maskespan and total energy cost are 9 and

41, respectively. The weighted sum of the objective value is 0.5 × (9 + 41) = 25. The values of

makespan and energy costs are given in Table 3. It should be noted that the schedule obtained

using the myopic policy is one of the 480 possibilities depending on the number of machines used.

These number of schedules are known only if all information is available at the beginning of the

planning horizon, which is the case for the off-line deterministic problems. Given this fact, other

possibilities such as delaying the processing of jobs will increase the number of schedules, hence

the complexity of the problem at hand. For the sake of comprehensiveness, we solve this example

with the integer program of the Appendix A. Again, we assume that both objectives are equally

important (ζ1 = ζ2 = 0.5). As depicted in Figure 2, the schedule starts as last as possible to

reduce the total energy cost. This schedule allows the machines to be turned on towards the end

of planning horizon, which eliminates the idle cost of machines. The overall objective of offline

model is 17.5 with Cmax = 20 and EC = 15. Although better, this value can be obtained only if all

information (exogenous and endogenous) are known prior to the decision making process; otherwise,

this schedule might be infeasible if any new job shows up.

4. Approximate Dynamic Programming

Approximate dynamic programming has been successfully applied to many stochastic optimiza-

tion problems (e.g., see (Alkaabneh et al. 2020, Silva and de Souza 2020)). ADP is an algorithmic

strategy that moves forward through time to approximate the future expected value of the value

function. Its origin dates back to the birth of dynamic programming when Bellman introduced the

concept of the curse of dimensionality (Ronconi and Powell 2010). There are two approximation

approaches for solving dynamic programs, namely optimization-based and simulation-based (Saure

et al. 2012). The simulation-based ADP, which is the focus of this paper, uses the concept of a

post-decision state to cope with the expectation in the Bellman’s equation (see (Powell 2007, 2016,

2019)). Our solution approach to the online unrelated parallel machine scheduling problem is based

on the double-pass value iteration algorithm within the framework of approximate dynamic pro-

gramming. In particular, we combine the approximate dynamic programming and mathematical
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Figure 1: The sequential decisions made in Example 1
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Figure 2: The optimal schedule of Example 1 obtained by the IP of Appendix A
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programming to handle the three curses of dimnesionality. In this section, we present the details

of our approach.

4.1. Post-decision state

We use the concept of post-decision state to reduce the size of the decision outcome space and

intractability of expected future cost. The post-decision state, Sxt , refers to the state of the system

immediately after decision xt is made, but before the arrival of any new exogenous information Rt+1.

In other words, the post-decision state is a state between states St and St+1. The post-decision

state for this problem is defined by

Sxt = {Jxt , Axt ,Mx
t }, (11)

where Jxt , Axt , and Mx
t are updated as follows

Jxt = (Jt \ JCt ),

Axt = {(rj , pjm)|j ∈ Jxt ,m ∈Mx
t },

Mx
t = {m ∈M|xmtj = 1}.

(12)

Here, Mx
t denotes the post-decision states for machines with the updated states after making

decision xt. After this post-decision state the system will move forward to the next pre-decision

state St+1 which is defined as follows

Jt+1 = Jxt ∪ Jωt+1,

At+1 = Axt ∪ {(rj , pjm)|j ∈ Jωt+1,m ∈Mt+1},

Mt+1 = Mt \Mx
t ∪ {m ∈M : amt+1 = t+ 1}.

(13)

Using the concept of post-decision state, we are able to write the Bellman’s equation as follows

Vt(St) = min
xt∈Xπ

t

(
Ct(St, xt) + V x

t (Sxt )

)
, (14)

V x
t (Sxt ) = E

{
Vt+1(St+1)|Sxt

}
, (15)

where V x
t (Sxt ) is the value function approximation for being in post-decision state Sxt . The expec-

tation value in Eq. (15) still makes the calculation of the value function intractable. Therefore, it

is necessary to estimate it based on the simulation-based approach which it benefits from statisti-

cal learning algorithms (Hulshof et al. 2016, Ronconi and Powell 2010). This estimation converts

the stochastic optimization problem into a deterministic one which is easier to solve because it
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removes the expected future cost. Next, we explain one method for approximating the expectation

in Eq (15).

4.2. Value function approximation

To reduce the size of space-action space for a particular decision, we need to approximate the

value of post-decision state V x
t (Sxt ). We use a statistical learning algorithm that approximates the

value function over N iterations. Let V
n
t (Sxt ) denotes an estimation for V x

t (Sxt ) at iteration n of

the algorithm, then equation (15) can be expressed as

V
n
t (Stx) = E

{
Vt+1(St+1)|Sxt

}
.

Using this new definition and the original definition of Bellman’s equation given by Eq. (10), we

can write approximate dynamic programming equation as

v̂nt = min
xt∈Xπ

t

(
Ct(St, xt) + V

n−1
t (Sxt )

)
, (16)

and

xnt = arg min
xt∈Xπ

t

(
Ct(St, xt) + V

n−1
t (Sxt )

)
, (17)

where xnt is the value of decision vector xt that optimizes value function Eq. (16) at iteration n

of the algorithm (Mes and Rivera 2017). At iteration n, we have to solve Eq (17) to obtain the

best decision that minimizes the value v̂nt for state St. Finally, using Eq. (16) we can update the

estimate for the value function at time t− 1 and iteration n by

V
n
t−1 ←− Un

(
V
n−1
t−1 , S

x,n
t−1, v̂

n
t

)
. (18)

The update function Un(·) depends on the value approximation at time t− 1 from iteration n− 1,

V
n−1
t1 , post-decision state at time slot t− 1 at iteration n denoted by Sx,nt−1, and the objective value

estimation (16). Now the main challenge is to calculate V
n
t−1 in Eq. (18).

There are various algorithms to estimate the value function V
n
t−1. In this paper, we use the

concept of basis function. In the basis function, some particular features of a system that can

capture required information of the system, which has impacts on the value function, are considered.

Then, the value function calculation using an affine combinations of basis functions is defined by

V
n
t (Sxt ) =

∑
f∈F

ηnf φf (Sxt ), (19)

where F is the set of features, ηnf is a weight for feature f ∈ F , and φf (Sxt ) is the value of the

basis function for a feature f given the post-decision state Sxt . In this approximation of the value

function, the weight ηnf is updated recursively at each iteration n of the algorithm.

There are different approaches for calculating and updating ηnf , among which the recursive least
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square method is the most effective approach (Hulshof et al. 2016, Powell 2007). Depending on the

data, there are two methods for the recursive least square methods. If the data are stationary, the

method puts equal weights on each data; while in the non-stationary data, the more recent data

receives higher weights (Hulshof et al. 2016)(for details of this approach see Powell (2007)). At

each iteration n of the algorithm, the weights ηnf are updated recursively using following equation

ηnf = ηn−1
f − 1

γn
Bn−1φf (Sxt )

(
V
n−1
t−1 (Sxt−1)− v̂nt

)
, ∀f ∈ F , (20)

where Bn−1 is a |F| × |F| matrix which is updated recursively by

Bn =
1

αn

(
Bn−1 − 1

γn

(
Bn−1φ(Sxt )

(
φ(Sxt )

)T
Bn−1

))
. (21)

The parameter γn is defined and updated by

γn = αn + φ(Sxt )TBn−1φ(Sxt ). (22)

At iteration n = 1, we set B0 = εI, where I is the identity matrix and ε is a very small constant. The

parameter αn, n = 1, 2, . . . , N , shows that the observations are either stationary or non-stationary

and is defined by

αn =


1 stationary;

1− δ
n non-stationary.

(23)

The parameter δ, which tunes our approximation, should be determined in advance. In our model,

we assume that our data are non-stationary; therefore, we set αn = 1− δ
n . The approximate dynamic

programming algorithm, known as the double-pass algorithm, is given in Algorithm 1 (Heydar

et al. 2021, Hulshof et al. 2016, Powell 2007). In this algorithm, we can arbitrarily assign values

to parameters σ, ε, and η0
t . At each iteration of the algorithm, we solve the decision problem

to obtain the post-decision states, and then using the exogenous information and the transition

function SM (·), the next pre-state will be obtained. In this study, we use probability distribution

to generate the required information. The exogenous information for the problem at hand is the

number of jobs along with their ready time and processing time on different machines. It should

be noted that the exogenous information can be obtained from the historical data or the true

distribution if it is known. Once we have cost-per-stage values Ct(St, xt) for all t, we backward

through time from the end of the planning horizon, TH , and calculate v̂nt . This will enable us to

update weights using Eqs. (20)-(23), and calculate the value approximation V
n
t (Sxt ) by Eq. (19).

At the end of the algorithm, when the weights reach their steady-state values, the optimization

method can be applied to the problem that we want to solve.

As mentioned earlier, we use the basis functions to estimate the value function of the post-

decision state. The basis function has an impact on the quality of the ADP algorithm. The basis
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function is a set of features that captures the required information of the system. For the problem

in this study, we define the indicator function 1{·} to capture the state of machine m at time t.

Then, in each state, we count the number of machines in each processing, idle, and switched on

mode. Also, we keep track of the number of jobs already assigned from the set of candidate jobs,

denoted by JCat , and the number of unassigned jobs. We use a linear approximation for value

function in Eq. (16) as follows

V
n
t (Sxt ) :=ηnt,0 + ηnt,1|JCat |+

∑
m∈M

ηnt,21{ymt =1}

+
∑
m∈M

ηnt,31{zmt =1} +
∑
m∈M

ηnt,41{ρmt =1} + ηnt,5(|Jt| − |JCat |). (24)

In this equation, ηnt,0 is a constant and |JCat | = min{|JCt |, |Mt|} is the set of jobs that are assigned

to machines at time slot t. The function 1{ymt =1} returns 1 if machine m is idle at time t. Similarly,

1{ρmt =1} and 1{zmt =1} are defined for processing and switched-on modes, respectively. The last term

in Eq. (24) keeps track of the number of unassigned job at time slot t. Using this basis function,

we can approximate the current and future costs that are imposed on the value function. In the

next section, this new value function will be used to solve the decision problem.

4.3. Optimal decision vector

Making the best decision in each pre-decision state St is the most important and challenging

part of the ADP as the dimensions of the problem increase. Therefore, it is of great importance to

design powerful solution techniques. For this purpose, we develop a 0-1 programming model with

the approximated value function given by Eq. (16) as an objective function. Then, we use CPLEX

12.8 to solve this 0-1 program for each time slot t of the system. In this formulation, in addition to

decision variable xmtj , we define other binary decision variables for state variables ρmt , ymt , and zmt .

This new mathematical model is defined by

min ζ1Cmax,t + ζ2TECt−Lxmtj + V
n
t (Sxt ) (25)

subject to ∑
m∈Mt

xmtj ≤ 1, ∀j ∈ JCt , (26)

∑
j∈JCt

xmtj ≤ ρmt , ∀m ∈Mt, (27)

ymt + ρmt ≥ ÿmt−1 + ρ̈mt−1, ∀m ∈Mt, (28)

ρmt + ymt − zmt ≤ ρ̈mt−1 + ÿmt−1 + z̈mt−1, ∀m ∈Mt, (29)

ymt + ρmt ≤ 1, ∀m ∈Mt, (30)

zmt +

θ=t−1∑
θ=0

z̈mθ ≤ 1, ∀m ∈Mt, (31)
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Algorithm 1 The double-pass approximate dynamic programming algorithm

1: Initialize the value function approximation V
0
t (S

x
t ), which mean initialize η0

t and B0
t = εI.

2: Set n = 1.
3: Initialize S0.
4: while n ≤ N do
5: for t = 0, 1, . . . , TH do
6: Solve

xnt = arg min
xt∈Xπt

(
Ct(St, xt) + V

n−1
t (Sxt )

)
.

7: if t < TH then
8: Generate the next state using St+1 = SM (St, Xt,Wt+1).
9: end if

10: end for
11: Let v̂nTH+1 = 0.

12: for t = TH , TH − 1, . . . , 1 do
13: Compute

v̂nt = Ct(St, xt) + v̂nt+1,

14: Update

V
n
t−1 ←− Un

(
V
n−1
t−1 , S

x
t−1, v̂

n
t

)
,

15: and then calculate
V
n
t−1(Sxt−1) =

∑
f∈F

φf (Sxt−1)ηnf .

16: end for
17: end while
18: Return V

N
t (Sxt ), ∀t ∈ TH .

t+
∑
m∈Mt

pmjx
m
tj ≤ Cmax,t, ∀j ∈ JCt . (32)

The values of ẍm(t−1),j , ρ̈
m
t−1, ÿmt−1, and z̈mt−1 are known from previous stage with initial values of

ẍm0,j = ρ̈m0 = ÿm0 = z̈m0 = 0. In this formulation, constraints (26)- (27) are the job assignment and

machine capacity constraints. Writing constraint (26) in inequality form refrains the model from

infeasibility in cases where number of jobs to process is greater than number of available machines,

|Jt| > |Mt|. On the other hand, having constraint (26) in its current form may render some machines

useless. To resolve this, we added each decision variable xmtj with a very small coefficient (L) to

the objective function. This guarantees that xt 6= ∅ at time slot t. Constraint (28) updates the

state of machine m, and constraint (29) determines whether or not machine m must be switched

on. Constraint (30) guarantees that the switched-on machine m can be either in its idle mode or

processing mode. This constraint is equivalent to Remark 1. Constraint (31) ensures that each

machine can be switched on only one time over the planning horizon. Constraint (32) links the

completion time of each job to the makespan. This decision problem possesses the Markov property.

It should be noted that it is not required to solve the 0-1 program at some time slots. If Jt = ∅
or ρmt = 1,∀m ∈M , then the only decision is do nothing. In this situation, the value function can

be easily computed using the system information and Eq. (25).

Now let us explain how the strategy functions. At each time slot t, we solve the 0-1 program

for the available jobs with rj ≤ t and their known processing times. These available jobs are those
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which were in the system before t−1 or became availabe between t−1 and t. Using the solution of

the 0-1 program, the contribution of the cost from time slot t to time slot t+ 1 is calculated. The

impact of the current decision on the time slots after t + 1 is then updated and calculated using

the value function approximation V t. At time slot t + 1 new jobs may arrive, where rj ≥ t + 1,

and the set of available jobs will be updated. At this point, we find an optimal schedule using 0-1

program. This new schedule with its respective optimal objective value will be used to update the

parameters of value function at time slot t, which can be used in the next iteration of the ADP

algorithm.

Now we present a small illustrative example to better explain the optimization problem and

algorithm presented in this study.

Example 2. We consider an instance with |M| = 3 and T = 13. In each time t, random jobs

arrived according to a discrete distribution DU(0, 3) inclusive. We assume that system is empty

at beginning of the process. To solve this problem using the proposed approximate dynamic pro-

gramming, we start with an initial value of ηnf = Jf , where J is an all-one matrix of size f , and

generate N = 3000 iterations or sample paths. Each sample path refers to a sequence of realization

of the information over planning horizon. In this example, for each sample path n, starting from

time t = 0 (current time) forward, number of arrivals is revealed using discrete uniform distribu-

tion. Once new information, such as job completion time and/or arrival time, is revealed, St, the

(pre-)state of the system at the beginning of time t is obtained. Then, using the IP model of Sec-

tion 4.3, a decision is made. This converts the system from pre-decision state to the post-decision

state Sxt . Then by arriving new information (denoted by Rt+1), the system moves to the next state

St+1. This process continues until the end of planning horizon, when the forward pass is completed

(lines 5-10 of Algorithm 1). Through this forward pass, we make the best decision and calculate

the per-stage cost for all t ∈ T . Then, the backward pass starts by setting v̂T+1 = 0, and solve

v̂nt = Ct(St, xt) + v̂nt+1. Then, using Eqs. (20)- (23), the parameter ηnf is updated which is used

for updating the value function approximation at time t − 1, V
n
t−1 (lines 11-16 of Algorithm 1).

When the algorithm finalizes, η3000
f converges to its approximation and V

3000
0 is calculated using∑6

f=1 η
3000
f φf (Sx0 ). The results of each iteration through double-pass algorithm are given Table 4.

5. Computational study

In this section, we present the performance of the ADP algorithm, as depicted in Algorithm 1.

One way of measuring the performance of the ADP algorithm is to compare its results with a

deterministic model of the stochastic problem (Godfrey and Powell 2002, Powell 2007, 2008). For

this purpose, we compare the results of the ADP with the deterministic counterpart of the problem

at hand which is presented in Appendix A as an integer linear program (referred to as IP hereafter).

Since the IP is incapable to solve large instances, we also compare the ADP algorithm with a

simulation-based heuristic algorithm for the energy efficient scheduling problem (Paolucci et al.

2017). Their algorithm, to the best of our knowledge, is the only algorithm that can handle jobs
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ready time (rj > 0) when multiple objectives are involved. This heuristic algorithm is presented in

Appendix B. We refer to this algorithm as Paolucci-Anghinolfi-Tonelli algorithm or the heuristic

algorithm in this paper.

All algorithms were written in Python 3.6, and all tests were run on a desktop computer with

a Windows 10 Enterprise Edition 64 bit, a i7 Core processor at 2.5 GHz, and 8 GB of RAM. For

the optimization part of the algorithm as well as the IP, the solver of CPLEX 12.8 with its default

parameters was called into the Python code. All text files containing the problem instances used

in this study are available upon request.

Several classes of instances were considered. These classes were defined based on the different

levels of factors such as the length of the planning horizon, the number of jobs arriving at the

system per time slot, the number of machines, and the interval from which jobs processing time

on each machine is generated. These levels are given in Table 5. As shown in the table, in our

numerical study, we considered three levels for time horizon which are TH =
{

50, 100, 150
}

units

of time, and three levels for machines which are M =
{

6, 10, 15
}

. We also considered three levels

for jobs. In the first level, it is assumed that the number of arrivals to the system between time

slot t and t+ 1 follows a discrete uniform distribution DU [0, 6], for the second level, the number of

arrival jobs follows a discrete uniform distribution DU [0, 12], and in the third level, the number of

arrival jobs follows a discrete uniform distribution DU [0, 16]. To avoid the infeasibility, we let the

jobs arrive in the first [0, T2 ] time slots. Therefore, the average number of jobs in each sample path

of each instance are 75, 300, and 600 for class one, two, and three, respectively. For processing

times of jobs, pmj , we considered two levels. In the first level, processing times follow a discrete

uniform distribution DU [1, 5], and in the second level, processing times follow another discrete

uniform distribution DU [1, 10].

In our numerical study, instances are categorized in classes which are presented by a quadru-

ple (aM, [b, c]J , dT , [e, f ]pmj), where a shows the number of machines, interval [b, c] indicates

the discrete uniform distribution from which the arriving jobs in each time t are randomly gen-

erated, d shows the number of time slots in the planning horizon, and [e, f ] shows the discrete

uniform distribution for generating processing times. We considered three classes of the prob-

lem denoted by C1 = (6M, [0, 6]J , 50T, [1, 10]pmj), C2 = (10M, [0, 12]J , 100T, [1, 10]pmj),

and C3 = (15M, [0, 16]J , 150T, [1, 5]pmj). For each class, we generated 10 instances, and for

each instance, we generated N = 3000 sample paths. Overall, the double-pass ADP, the IP, and

Paolucci-Anghinolfi-Tonelli algorithms were applied to 30 instances. From deterministic point of

view, this problem can be considered as small to medium to large instances. But, more importantly,

from stochastic point of view, all of these instances are categorized as large size due to the number

of states, hence difficult to solve.

The price of energy per time slot t was randomly generated from Et ∼ DU [1, 10]. The other

problem parameters for instance generation such as energy consumption rates (λt, µt, κt) were

assumed to be random for all time slots t ∈ T throughout the experimental study and follows

DU [1, 5]. After running several instances with different values for double-pass ADP parameters
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Table 5: Levels of factors used in experimental study

Parameters Levels and values

TH 50, 100, 150
|M| 6, 10, 15
|J | ∼ DU [0, a], where a = 6, 12, 16
pmj ∼ DU [1, b], where b = 5, 10
Et ∼ DU [1, 10]
λt, µt, κt ∼ DU [1, 5]

Table 6: Parameter values selected for the ADP and Paolucci-Anghinolfi-Tonelli algorithm

Parameter Value

ADP

δ 0.99
ε 0.001
α1 1
ζ1 0.8
ζ2 0.2
γ1
t 1, ∀t ∈ T
η1
f 1, ∀f ∈ F
N 3000

Heuristic

H 500
πmin 0.05
q0 0.9
χ 0.95

and Paolucci-Anghinolfi-Tonelli algorithm, we chose the values depicted in Table 6.

As mentioned, in order to evaluate the performance of the double-pass ADP, we compared

it against a deterministic IP model of the energy-efficient unrelated parallel machine scheduling

problem given in Appendix A, and another heuristic, called Paolucci-Anghinolfi-Tonelli algorithm,

which is given in Appendix B. In the former, all information were known a priori (Godfrey and

Powell 2002, Powell 2007, 2008), while in the latter, the jobs arrival process were simulated using

discrete-even simulation. In our ADP approach, we considered that all jobs arrive at the system

over a sample path, and solved the parallel machine scheduling problem by the MILP solver of

CPLEX 12.8. We used the standard setting of CPLEX except that we limited the run-time to 100

seconds for each problem of the sample path.

Table 7 shows the results of 10 randomly generated instances of the first class, C1. For each

instance of this table, we generated N = 3000 sample paths. These iterations are required until

the approximated objective values converges to its steady state. It is worth mentioning that, in

our case, each sample path is a parallel machine scheduling problem itself. In this table, total

number of jobs arrived, percentage of jobs dropped, overall objective, makespan, energy cost and

computational times for each instance are depicted. In this table, the total number of jobs and

time are cumulative for all 3000 sample paths, and the percentage of dropped jobs is the average
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Table 7: Results for applying the ADP on C1 (N = 3000, ζ1 = 0.8)
Instance Total jobs arrived Dropped jobs (%) Overall objective Makespan Energy cost Time (seconds)

1 225157 1.01 1095.33 46 5292.66 2781.61
2 225010 0.97 1096.56 56 5258.77 3157.84
3 224841 0.96 1151.68 54 5542.39 3280.18
4 225006 1.04 1062.06 49 5114.32 2373.77
5 224656 1.02 1127.24 41 5472.22 2722.81
6 225149 0.99 1102.89 45 5334.49 2436.30
7 224653 0.97 1047.58 47 5049.89 2360.55
8 225366 0.94 1103.20 55 5296.01 2690.37
9 224820 1.07 1188.77 39 5787.84 2541.07
10 224629 1.03 1120.43 42 5434.17 3166.59

Average
per instance 224929 1 1109.57 47.4 5358.28 2751.11
Average per
sample path 74.98 1 1109.57 47.4 5358.28 0.92

of all 3000 sample paths. The overall objective, makespan, and energy cost is the converged value

function of the ADP. This table also reports the average values per instance and average values

per sample path. The last row of this table shows the value for each sample path. In this row, the

average number of jobs per sample path and CPU time are simply obtained by 224929
3000 and 2751.11

3000 ,

respectively. The reason is that, once we obtained the approximate value of ηf , we can simply

solve any sample path by applying the decision problem of Sec 4.3. It should be mentioned that

the value of overall objective, Makespan, and Energy cost are not divided by 3000 since they are

approximate value after 3000 iterations where the values are converged. Finally, from this row, it

can be concluded that after approximating ηf , we can find the best decision in about 0.92 seconds

and schedule 99% of jobs.

Table 8 shows the results of comparison of three methods. In this table, we considered the first

five instances of Table 7, and within each instance, we considered the first five sample paths. Since

each sample path is a realization of a deterministic parallel machine scheduling problem, we were

able to apply the IP and the heuristic methods to each sample path. These three methods can

be compared via three criteria, namely, percentage of the dropped jobs, the value of the objective

functions, and computational time. In this table, all values of ADP (except the CPU time) for the

first five instances are copied from the associated columns in Table 7. To obtain the CPU time, we

divide the CPU time of each instance by N , for example the CPU time of Instance 1 is obtained by
2781.61

3000 = 0.93. The ADP approach is better than the other two methods in processing of jobs and

computational time. Although at the first glance it may seem that the IP returns the minimum

values for the objective among all these three approaches, considering its rate of assignment (it

assigns only 50% of jobs), its actual objective values can be higher than ADP. Therefore, we can

claim that the ADP outperforms the other two approaches for all three criteria.

In our second experiment, we randomly generated 10 instances of the second class, C2, and the

results are tabulated in Table 9. In this table, the overall objective, makespan, and energy cost is

the converged value function of the ADP are reported. From last row of this table, it can be seen

that the ADP can find the best schedule for more that 85% jobs in instance of 300 jobs in about

13.90 seconds. The comparison results of the ADP, the IP, and the heuristics are given in Table 10.
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Table 9: Results for applying the ADP on C2 (N = 3000, ζ1 = 0.8)
Instance Total jobs arrived Dropped jobs (%) Overall objective Makespan Energy cost Time (seconds)

1 899250 16.20 4736.49 101 23278.45 46498.14
2 900780 16.29 4865.05 109 23889.23 45230.64
3 899508 16.05 4808.98 100 23644.95 42612.61
4 899861 16.02 4688.44 100 23042.18 39220.79
5 900539 16.19 4751.73 101 23354.63 39147.19
6 899404 15.99 4783.79 104 23502.97 39457.44
7 899168 15.94 4750.81 96 23370.03 38191.84
8 898277 16.12 4787.29 100 23536.47 36993.39
9 903194 16.52 4690.01 100 23050.03 37567.63
10 898116 16.07 4651.51 100 22857.56 52025.46

Average
per instance 899809.7 16.14 4751.41 101.1 23352.65 41694.51
Average per
sample path 299.94 16.14 4751.41 101.1 23352.65 13.90

The structure of this table is the same as Table 8. As can be seen from this table, the IP could

only solve two sample paths out of 25 sample paths (which is only 8% of instances) to optimality.

For the other 92%, the IP could not find even a feasible solution in 18000 seconds of computation

time. Although the heuristic could solve all sample paths, its performance is inferior to the ADP

for all three criteria. Therefore, this class of instances are more difficult than the instances of C1.

The results of the third and last experiments are tabulated in Tables 11 and 12, respectively.

In this class, every sample path has on 600 jobs on average, which is comparable with other studies

in the literature. Interestingly, after approximating parameter ηf , it took less than 7 seconds to

find the best schedule with zero job dropped. The computational time and objective values are

higher for the heuristic according to Table 12. The IP could not find any feasible solution in 18000

seconds for any 25 sample paths.

6. Conclusion and future research

This paper addresses an online energy-efficient unrelated parallel machine scheduling problem

where random jobs arrive at the system over time. We minimize the weighted sum of makespan and

total energy cost simultaneously. A double-pass approximate dynamic programming approach was

developed to solve this problem. In order to make the best decision at each time slot, a bi-criteria

0-1 program was solved where the objective function is the weighted sum of makespan and total

energy cost combined with the estimate of future value function expressed by basis functions. Since

the dimension of the problem explodes as the size of the instances increases, it is not possible to

solve a dynamic program to find the exact solution for comparison. For this purpose, we compared

the results of the approximate dynamic programming algorithm with a 0-1 programming model of

the problem, assuming that all information is available at the beginning of the planning horizon,

as well as a heuristic developed by Paolucci et al. (2017) which is suitable for solving dynamic

unrelated parallel machine scheduling with two objectives.

For numerical study, we considered three medium to large classes of problems and compared the

performance of these three methods based on three different criteria. These performance criteria

include the percentage of dropped jobs (those jobs which are not scheduled), the value of the

23



T
a
b
le

1
0
:

C
o
m

p
a
ri

n
g

re
su

lt
s

o
f

A
D

P
,

th
e

IP
,

a
n
d

th
e

h
eu

ri
st

ic
fo

r
C

2
A

D
P

IP
H

e
u
ri

st
ic

In
st

a
n
c
e

S
a
m

p
le

p
a
th

D
ro

p
p

e
d

jo
b
s

(%
)

O
v
e
ra

ll
o
b

j.
C
m
a
x

E
n
e
rg

y
c
o
st

T
im

e
(s

e
c
)

D
ro

p
p

e
d

jo
b
s

(%
)

O
v
e
ra

ll
o
b

j.
C
m
a
x

E
n
e
rg

y
c
o
st

T
im

e
(s

e
c
)

D
ro

p
p

e
d

jo
b
s

(%
)

O
v
e
ra

ll
o
b

j.
C
m
a
x

E
n
e
rg

y
c
o
st

T
im

e
(s

e
c
)

1
1

1
6
.2

0
4
7
3
6
.4

9
1
0
1

2
3
2
7
8
.4

5
1
5
.5

0
-

-
-

-
-

3
2
.3

4
3
3
4
3
.2

1
0
5

1
6
2
9
6
.0

3
7
.7

6
2

-
-

-
-

-
3
7
.3

6
3
3
4
5
.4

1
0
4

1
6
3
1
1
.0

3
5
.0

7
3

-
-

-
-

-
3
4
.8

3
3
3
3
6
.2

1
0
6

1
6
2
5
7
.0

2
6
.5

5
4

-
-

-
-

-
3
6
.2

3
3
3
0
9
.8

1
0
8

1
6
1
1
7
.0

2
9
.8

8
5

-
-

-
-

-
3
6
.4

2
3
3
4
3
.2

1
0
4

1
6
3
0
0
.0

3
3
.5

9
A

v
e
ra

g
e

3
5
.4

4
3
3
3
5
.5

6
1
0
5
.4

1
6
2
5
6
.2

3
2
.5

7
2

1
1
6
.2

9
4
8
6
5
.0

5
1
0
9

2
3
8
8
9
.2

3
1
5
.0

8
3
5
.4

1
1
8
6
.6

9
9

5
3
6
.9

1
6
8
6
3
.8

2
4
.5

1
3
6
7
3
.2

1
0
4

1
7
9
5
0
.0

2
9
.0

5
2

-
-

-
-

-
2
9
.2

1
3
6
7
3
.6

1
0
4

1
7
9
5
2
.0

3
2
.0

3
3

-
-

-
-

-
3
2
.5

2
3
6
7
3
.6

1
0
4

1
7
9
5
2
.0

3
4
.4

9
4

-
-

-
-

-
3
3
.6

6
3
6
7
2
.8

1
0
3

1
7
9
5
2
.0

3
2
.8

3
5

-
-

-
-

-
3
1
.8

9
3
6
5
5
.8

1
0
4

1
7
8
6
3
.0

2
3
.9

6
A

v
e
ra

g
e

3
0
.3

6
3
6
6
9
.8

1
0
3
.8

1
7
9
3
3
.8

3
0
.4

7
3

1
1
6
.0

5
4
8
0
8
.9

8
1
0
0

2
3
6
4
4
.9

5
1
4
.2

0
3
8
.4

6
3
5
8
.2

5
2

1
5
8
3
.0

1
7
9
1
6
.6

3
1
.1

5
3
5
1
3
.9

1
0
4

1
7
1
5
4
.0

3
2
.3

7
2

-
-

-
-

-
3
7
.7

2
3
5
2
3
.8

1
0
5

1
7
1
9
9
.0

4
1
.0

3
3

-
-

-
-

-
3
8
.6

8
3
5
1
3
.8

1
0
5

1
7
1
4
9
.0

3
3
.7

2
4

-
-

-
-

-
4
0
.2

3
3
5
1
9
.2

1
0
6

1
7
1
7
2
.0

4
1
.0

3
5

-
-

-
-

-
4
1
.1

3
5
2
1
.9

1
0
5

1
7
1
9
0
.0

4
2
.0

1
A

v
e
ra

g
e

3
7
.7

8
3
5
1
8
.5

2
1
0
5

1
7
1
7
2
.8

3
8
.0

3
4

1
1
6
.0

2
4
6
8
8
.4

4
1
0
0

2
3
0
4
2
.1

8
1
3
.0

7
-

-
-

-
-

4
2
.2

3
1
6
2
.6

1
0
5

1
5
3
9
3
.0

4
1
.7

1
2

-
-

-
-

-
4
3
.0

3
3
1
8
2
.8

1
0
6

1
5
4
9
0
.0

3
8
.7

4
3

-
-

-
-

-
4
0
.4

3
3
2
0
3
.6

1
0
4

1
5
6
0
2
.0

3
5
.9

6
4

-
-

-
-

-
3
8
.3

1
3
1
6
7
.9

1
0
7

1
5
4
1
2
.0

3
7
.1

5
5

-
-

-
-

-
3
9
.0

2
3
1
7
1
.9

1
0
7

1
5
4
3
2
.0

3
8
.2

2
A

v
e
ra

g
e

4
0
.5

9
3
1
7
7
.7

6
1
0
5
.8

1
5
4
6
5
.8

3
8
.3

6
5

1
1
6
.1

9
4
7
5
1
.7

3
1
0
1

2
3
3
5
4
.6

3
1
3
.0

4
-

-
-

-
-

2
2
.3

6
3
2
7
7
.8

1
0
6

1
5
9
6
5
.0

2
5
.2

4
2

-
-

-
-

-
2
9
.1

1
3
1
5
4
.8

1
0
9

1
5
3
3
8
.0

3
2
.5

1
3

-
-

-
-

-
2
8
.2

5
3
3
4
3
.8

1
0
6

1
6
2
9
5
.0

2
7
.5

7
4

-
-

-
-

-
2
3
.9

4
3
3
1
3
.4

1
0
7

1
6
1
3
9
.0

1
7
.4

9
5

-
-

-
-

-
2
7
.6

9
3
2
5
7
.8

1
0
7

1
5
8
6
1
.0

4
2
.7

3
A

v
e
ra

g
e

3
1
.8

1
3
2
6
9
.5

2
1
0
7

1
5
9
1
9
.6

2
9
.1

1

24



Table 11: Results for applying the ADP on C3 (N = 3000, ζ1 = 0.8)
Instance Total jobs arrived Dropped jobs (%) Overall objective Makespan Energy cost Time (seconds)

1 1799139 0.0 4838.71 80 23873.55 19093.89
2 1798442 0.0 4692.94 83 23132.69 17934.68
3 1800738 0.0 4570.06 81 22526.31 18510.46
4 1798376 0.0 4739.52 79 23381.62 18384.18
5 1797067 0.0 4884.62 79 24107.09 18577.93
6 1800606 0.0 4791.59 78 23645.97 23645.97
7 1796514 0.0 4651.82 85 22919.12 16509.95
8 1798873 0.0 4601.54 81 22683.72 19876.89
9 1800149 0.0 4837.14 79 23869.72 18324.70
10 1801347 0.0 4598.12 81 22666.62 24436.80

Average
per instance 1799125.1 0.0 4720.61 80.6 23289.64 19529.55
Average per
sample path 599.71 0.0 4720.61 80.6 23289.64 6.51

weighted objectives, and run time. These results can be summarized as follows: 1) our ability to

solve every instances using the ADP after approximating parameter ηf in a minimum amount of

time, 2) the ADP drops the minimum number of jobs, while this value is over 50% for the IP and

the heuristic), 3) comparing the results of the ADP and the heuristic reveals that in large scale

instances the heuristic returns lower values for the objective function at the cost dropping about

50% of jobs which we can conclude that the ADP is more reliable in handling such scenarios, and

4) although the value of objective functions using the IP is better than the ADP in small instances,

the IP can schedule on average 50% of jobs, therefore enforcing the IP to schedule more jobs will

either deteriorate the objective value or make the problem infeasible.

For future research, an algorithms for generating Pareto solutions could be devised. The per-

formance of the algorithm with other policies could be investigated. The reliability of machines

could be considered as an extension of the current model. Also, models and algorithms for other

performance criteria as well as machine setting could be developed.
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A. Appendix 1

In this appendix, we present a 0-1 programming model for the off-line version of the scheduling

problem, where its results are compared with the approximate dynamic programming approach in

the computational study. A version of this model with three objectives was introduced by Nezami

et al. (2017) for the deterministic model of the scheduling problem. The following decision variables

are used in this model:
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• xmtj =

{
1 if machine m starts processing on job j in time t,

0 Otherwise

• ωmtj =

{
1 if machine m is processing job jin time t,

0 Otherwise

• ymt =

{
1 if machine m is in idle mode in time t,

0 Otherwise

• zmt =

{
1 if machine m is turned on in time slot t,

0 Otherwise.

The parameters are the same as in defined in the paper.

min ζ1Cmax + ζ2

∑
t

Et
( ∑
m∈M

∑
j∈J :rj≥t

µmt ω
m
tj +

∑
m∈M

κmt y
m
t +

∑
m∈M

λmt z
m
t

)
(33)

subject to∑
m∈M

T−pmj+1∑
t=rj

xmtj ≤ 1, ∀j ∈ J , (34)

∑
j∈J :rj≤t

xmtj ≤ 1, ∀m ∈M,∀t, (35)

∑
j∈J :rj≤t

ωmtj ≤ 1, ∀m ∈M,∀t, (36)

pmjx
m
tj ≤

t+pmj−1∑
θ=t

ωmθj , ∀m ∈M,∀j ∈ J ,∀t ∈ {rj , rj + 1, . . . , T − pmj + 1}, (37)

ωmtj =
t∑

θ=rj

xmθj , ∀m ∈M,∀j ∈ J ,∀t ∈ {rj , rj + 1, . . . , rj + pmj − 1}, (38)

ωmtj =
t∑

θ=t−pmj+1

xmθj , ∀m ∈M, ∀j ∈ J , ∀t ∈ {rj + pmj , . . . , T}, (39)

∑
t

zmt ≤ 1, ∀m ∈M, (40)

∑
j∈J :rj≥t

xmtj −
t∑

θ=1

zmθ ≤ 0, ∀m ∈M, ∀t, (41)

t∑
θ=1

zmθ + (1−
∑

j∈J :rj≤t
ωmtj ) ≤ 1 + ymt ∀m ∈M, ∀t, (42)

1−
∑

j∈J :rj≤t
ωmtj ≥ ymt ∀m ∈M,∀t, (43)
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t∑
θ=1

zmθ ≥ ymt ∀m ∈M,∀t, (44)∑
m∈M

∑
t∈T

(t+ pmj − 1)xmtj ≤ Cmax ∀j ∈ J , (45)

xmtj , ω
m
tj , z

m
t , y

m
t ∈ {0, 1}, Cmax ≥ 0. (46)

The objective function (33) minimizes a linear combination of makespan and total energy cost. Con-

straint (34) ensures that jobs are assigned to exactly one time slot on all machines combined. Con-

straints (35)-(36) ensure that each machine processes at most one job at a time. Constraints (37)-

(39) ensure the necessary processing times for each job without preemption. Constraint (40) limit

the number of times a machine can be switched on. Constraint (41) ensure that a job can be pro-

cessed by a working machine. Constraints (42)-(44) define the state of each machine during each

time slot. Constraint (45) defines the completion time of each job and links it to the makespan,

Cmax. Constraint (46) is the integrality constraint. It should be noted that the IP (33)-(46) extends

the decision problem of the approximate dynamic programming to the entire planning horizon.

B. Appendix 2: Paolucci-Anghinolfi-Tonelli algorithm

Presented below is the algorithm of Paolocci (Paolucci et al. 2017) that we used to compare the

performance of our proposed method. First, we define the following notations:

• h: the iteration index,

• H: the maximum number of iteration,

• SB: the current best solution,

• SR: the current reference solution,

• SC: the candidate schedule,

• Γk: the list of jobs that are ready to be processed on machine k,

• O: number of oredered candidate job (an algorithm parameter),

• πmin: a small positive number (an algorithm parameter),

• q0: a fixed exploitation threshold,

• fSB: the weighted sum of the objective function of the best schedule,

• fSC : the weighted sum of the objective function of the candidate schedule,

• Th: temperature at iteration h,

• χ: the cooling factor.
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The steps of algorithm are outlined below:

Step 1. Read all relevant data such as number of jobs and number of machines. Create a list of

future events based on the jobs arrival and completion times. Sort this list in the chronological

order of events. Set h = 0.

Step 2. Let t be the current simulation time at which the next event to be processed occurs. At

each event time, t, an existing job in the system should be assigned to one of the available machines.

Step 2.1. Consider all jobs ready to start and available machines at event time t. Machines are

ordered randomly.

Step 2.2. Select machine k from list of machines. Create a list of jobs that are ready to be

processed on machine k, and denote it by Γk. From list Γk, choose job τ as follows:

Step 2.2.1. Jobs in Γk is sorted according to their start time in the SR (ties are broken randomly).

At the first iteration, SR = 0.

Step 2.2.2. Create list of O ordered jobs, Ck = (τ1, . . . , τO), from jobs in Γk. Assign the following

selection probability to each job in Ck:

Pi =
O−i
O−1 + πmin

Oπmin +
∑O

j=1
O−j
O−1

, i = 1, . . . , O. (47)

Step 2.2.3. Using (47), select job τC ∈ Ck.
Step 2.2.4. Generate a random number q ∼ U [0, 1], if q < q0, assign job τ1 to machine k; otherwise,

assign job τC to machine k.

Step 2.2.5 Update machine and set M = M \ {k} and event list. If M 6= ∅, go to Step 2.1;

otherwise, go to Step 3.

Step 3. If the event list is empty, a complete schedule SC has been generated, go to Step 4;

otherwise, go to Step 2.

Step 4. Evaluate the candidate schedule SC of Step 3 by the percentage deviation ∆Z(SC) with

respect to SB defined as follows

∆Z(SC) =
fSB − fSC

fSB
. (48)

If ∆Z(SC) > 0, then set SB = SC, SR = SC, and h = h+ 1, go to Step 6; otherwise, go to step

5.

Step 5. Use a simulated annealing acceptance rule. Set SR = SC if random number p ∼ U [0, 1] <

e

(
∆Z(SC)
Th

)
. Set Th+1 = αTh and h = h+ 1. Go to Step 2.

Step 6. If h ≤ H, go to Step 2; otherwise STOP.
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