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Abstract9

Accounting for spatial variability is crucial while estimating treatment effects in large on-farm trials. It allows10

to determine the optimal treatment for every part of a paddock, resulting in a management strategy that improves11

sustainability and profitability of the farm. We specify a model with spatially correlated random parameters to12

account for the spatial variability in large on-farm trials. A Bayesian framework has been adopted to estimate13

the posterior distribution of these parameters. By accounting for spatial variability, this framework allows the14

estimation of spatially-varying treatment effects in large on-farm trials. Several approaches have been proposed in15

the past for assessing spatial variability. However, these approaches lack an adequate discussion of the potential16

problem of model misspecification. Often the Gaussian distribution is assumed for the response variable, and this17

assumption is rarely investigated. Using Bayesian post sampling tools, we show how to diagnose the problem of18

model misspecification. To illustrate the applicability of our proposed method, we analysed a real on-farm strip19

trial from Las Rosas, Argentina, with the main aim of obtaining a spatial map of locally-varying optimal nitrogen20

rates for the entire paddock. The analysis of these data revealed that the assumption of Gaussian distribution for21

the response variable is unsatisfactory; the Student-t distribution provides a more robust inference. We finish the22

paper by discussing the difference between the proposed Bayesian approach and geographically weighted regression,23

and comparing the results of these two approaches.24

Keywords: Geographically weighted regression, Geostatistics, Large strip trials, No-U-turn sampler, Precision25

agriculture, Site-specific management.26

1 Introduction27

Traditional agricultural experiments are often conducted on small plots, and more often than not, these experiments28

do not address the main concerns of an individual farmer. For a farmer, one of the main motivations of conducting29

an experiment is to identify a management strategy that could improve the profitability of a farm. This closely aligns30
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with the objective of site-specific farming, typically enabled by precision agriculture technologies (Cook and Bramley31

1998). The main aim is to identify the optimal strategy of input utilisation for every part of a large paddock. Because32

of inherent spatial variation in a large paddock, a uniform management strategy for the entire paddock is sub-optimal.33

An optimal strategy may require the identification of location-specific optimal treatments that could vary across the34

paddock. Small plot experiments are inadequate for obtaining a spatially-varying map of optimal treatments for a35

paddock (Rakshit et al. 2020; Evans et al. 2020). Consequently, there is an increasing trend to conduct on-farm36

experiments (OFE) using large strips across farmers’ paddocks, utilising their own tools and machinery (Yan et al.37

2002; Rakshit et al. 2020; Evans et al. 2020).38

The spatial scale at which treatments are varied in these strip trials is larger than that is observed in typical small-39

40 plot trials. Because a finer spatial scale may lead to more precise estimates of the treatment effects, the aim always is to 41 

incorporate the narrowest possible treatment strips. However, in practice, the width of a strip in a paddock-scale strip 42 

experiment is determined by the size of the machinery (e.g., spreader’s width or harvester’s width) used in conducting 43 the 

experiment. Other designs such as the chequerboard and eggbox designs may incorporate a relatively finer scale 44 of 

treatment variation over space using the variable rate technology (Cook et al. 2018). However, the strip trials are 45 often 

cheaper and easier to implement, and thus, more attractive to farmers than these other designs. Furthermore, 46 because the 

spatial scale of treatment variation in a large strip experiment is reasonably small relative to the size of 47 the experiment, we 

can estimate the spatially-varying parameters quite successfully using such a trial. The resulting 48 map of optimum 

treatment levels from such trials is often practically useful for farmers in terms of the spatial scale at 49 which they are 

comfortable implementing any changes in management practices at the local scale within a paddock. 50 In this paper, we 

focus on the analysis of large strip experiments.

Spatial variation in OFE may introduce bias while estimating treatment effects and inflate associated standard51

errors if not accounted for in fitted models. Spatial variation may be caused by environmental factors such as soil52

fertility, moisture trends, and light exposure (Selle et al. 2019), or it could also arise due to management practices with53

reoccurring patterns (Gilmour et al. 1997; Hinkelmann 2012). Two common approaches of tackling spatial variation54

are through the modelling of a nonstationary mean structure or modelling of a spatially autocorrelated error structure55

(Fotheringham 2009; Harris 2019). However, these two forms of spatial variation are quite difficult to disentangle56

from each other. The following statement from (Cressie 1993) articulates this point: “What is one person’s (spatial)57

covariance structure may be another person’s mean structure.”58

Our aim in this paper is to obtain spatially-varying estimates of treatment effects, which in turn enables the59

creation of spatial maps of optimum treatment levels for large paddocks. This further allows an investigation of the60

central hypothesis of precision agriculture that the optimum treatment varies spatially within a paddock (Páez et al.61

2002; Brunsdon et al. 1999; Lark and Wheeler 2003; Pringle et al. 2010). To obtain spatially-varying treatment effects,62

we incorporate spatial heterogeneity in our modelling framework, which is quite different than the traditional models63

used for analysing small plot trials (Rakshit et al. 2020; Piepho et al. 2011). The analysis of a small-plot trial typically64

assumes a spatially-invariant global treatment effect, as the main objective here is to obtain an unbiased estimate of65

the treatment effect. The unbiased estimation in small plot trials is ensured through appropriate randomisation in66

experimental designs, and the spatial variation is accounted for by fitting a spatially correlated covariance structure to67

the error terms (Gilmour et al. 1997; Stefanova et al. 2009). Randomisation does not play the same crucial role in the68
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analysis of large strip experiments — a systematic design is more suitable for estimating spatially-varying treatment69

effects (Rakshit et al. 2020; Piepho et al. 2011; Evans et al. 2020).70

We propose a Bayesian framework for modelling the nonstationary first-order effect, characterised by the conditional71

mean of the response variable, for any location within a paddock. We first specify a regression function with spatially-72

varying coefficients, representing local departures of treatment effects from their global estimates (Banerjee et al.73

2004). Appropriate prior distributions are considered next for the model parameters, and finally, the spatially-varying74

estimates are computed by sampling from the posterior distributions. The proposed modelling framework is used to75

determine the locally-varying optimum nitrogen rates for a real-life large strip experiment from Las Rosas, Argentina76

(details of the analysis are provided below in Section 5 and the results in Section 6).77

There have been efforts in the recent past to estimate spatially-varying treatment effects for large strip experiments78

(Lawes and Bramley 2012; Marchant et al. 2019; Rakshit et al. 2020; Evans et al. 2020). However, some of these79

approaches can be considered as merely ad hoc solutions to the problem, particularly restricted to comparing adjacent80

strips in a large strip trial (Lawes and Bramley 2012). A more statistically principled approach, called geographically81

weighted regression (GWR), is proposed by Rakshit et al. (2020) for estimating spatially-varying treatment effects in82

large strip experiments, based on the general theory of local likelihood estimation (Hastie and Loader 1993). GWR83

is fairly easy to implement using open-source software and provides a pragmatic solution to support on-farm decision84

making (Evans et al. 2020). However, a crucial step in GWR is the bandwidth selection for kernel functions. Inaccurate85

bandwidth may introduce unknown bias in estimated coefficients. Because the optimal bandwidth size would always86

be unknown for a given dataset, one needs to use some data-based methods to select an appropriate bandwidth. See87

Rakshit et al. (2020) for a discussion on the topic of bandwidth selection for on-farm strip experiments.88

The Bayesian framework proposed in this paper simplifies statistical inference by providing straightforward inter-89

pretation of the results (Che and Xu 2010). Statistical inference using GWR is not straightforward, as it involves90

adjusting for the problem of multiple testing. In particular, localised p-values are required to be adjusted to avoid91

a large number of false positives in the spatial map of treatment effects; see Rakshit et al. (2020) for the details92

of computing adjusted p-values in GWR. Due to the availability of adequate computing resources and due to the93

fact that both model fitting and statistical inference under Bayesian framework are extremely intuitive, Bayesian94

modelling has become popular for analysing agricultural field trials in the last few years (Besag and Higdon 1999;95

Theobald et al. 2002; Che and Xu 2010; Donald et al. 2011; Montesinos-López et al. 2018; Selle et al. 2019; Shirley96

et al. 2020). Montesinos-López et al. (2018) proposed a multivariate Bayesian analysis to estimate multiple-trait and97

multiple-environment on-farm data. Selle et al. (2019) compared popular spatial models and proposed a Bayesian98

modelling framework for variety selection in plant breeding experiments. Jiang et al. (2009) used Bayesian conditional99

auto-regressive models to account for spatial autocorrelation in OFE data. However, none of these approaches is useful100

to fit a regression function with spatially-varying coefficients. These methods are also inadequate for developing a101

management practice that may lead to the optimal use of input resources.102

For modelling spatial nonstationarity, we adopted a Bayesian hierarchical model with spatially correlated random103

parameters. We use the No-U-Turn Sampler (NUTS) (Hoffman and Gelman 2014) for performing Bayesian inference.104

NUTS is an efficient sampler that allows quick exploration of the posterior distribution in high dimensional space.105

NUTS was developed by extending the popular Hamiltonian Monte Carlo (HMC) algorithm to address a crucial106

3



drawback of HMC — it is highly sensitive to two user-specified parameters: a step size ε and the desired number of107

steps L. NUTS determines the step size during the warm-up (burn-in) phase while aiming at a target acceptance rate,108

and then uses the chosen step size for all subsequent sampling iterations (Monnahan et al. 2017). It also eliminates109

the need to set the number of steps L; see Hoffman and Gelman 2014 for a detailed discussion on this topic.110

We investigate the potential problem of model misspecification during the stages of post-sampling posterior diag-111

noses and model evaluation. To this end, we utilised advanced model diagnostic tools, such as probability integral112

transformation (PIT) checks (Gabry et al. 2019), and model evaluation methods, such as Bayesian leave-one-out113

(LOO) cross validation (CV) (Vehtari et al. 2017) and Bayesian R2 (Gelman et al. 2019).114

The paper is organised as follows. In Section 2, we specify the regression model for analysing the data from115

large strip experiments; in Section 3 we describe the prior and posterior distribution for the model, and explain the116

mechanism of NUTS sampler; in Section 4 we discuss the post-sampling model checking and diagnostic process; finally,117

in Section 5 and Section 6, we apply the proposed model to Las Rosas corn yield data set, and compare with the118

results obtained from GWR.119

2 Statistical models120

We describe here a Bayesian hierarchical regression model for analysing data from a large strip experiment. We start121

by first introducing in Section 2.1 the linear mixed effects model used to analyse typical small-plot field experiments. We122

extend this model to analyse large strip experiments under a Bayesian hierarchical modelling framework in Section 2.2,123

and finally in Section 2.3 we show how to incorporate a spatially-correlated structure for model parameters into the124

Bayesian modelling framework.125

2.1 Statistical model for field experiments126

127 A field experiment can be considered as a rectangular array, consisting of r rows and c columns, where the total 128 number 

of observed data points is n = r × c. We adopt the notation used by Zimmerman and Harville (1991), in 129 which si ∈ R2, i = 

1, . . . , n, is a two-cell vector of the Cartesian coordinates of the plot centroid corresponding to the 130 ith plot. Let y(si) be the 

real-valued response variable corresponding to the ith plot, and let Y denote the vector 131 consisting of response data from all 

n plots, ordered as rows within columns. Then a linear mixed effects model for 132 Y , using the matrix notation, is

Y = Xb+Zu+ e, (1)

where b and u are vectors of fixed and random effects, respectively, X and Z are the associated design matrices, and133

e is the residual error vector. It is typically assumed that the vectors u and e are distributed independently of each134

other, and that their joint distribution is a multivariate Gaussian distribution such that135

u
e

 ∼ N

0

0

 ,
Σu 0

0 Σe


 , (2)
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and136

Y ∼ N (Xb,ZΣuZ
> + Σe), (3)

where Σu and Σe are variance-covariance matrices corresponding to the random vectors u and e, respectively. The137

fixed term b in (1) typically represents the treatment effects under consideration, and the random term u represents138

the effects of blocking units imposed by an experimental design (Piepho et al. 2003). The residuals e are often assumed139

spatially correlated.140

The covariance matrix Σe can accommodate a separable first or second order autoregressive process to model the141

spatial correlation of plot residuals. Gilmour et al. (1997) suggested a separable first-order autoregressive AR1×AR1142

process with column and row correlation matrices Σc and Σr, respectively, to model the residual covariance structure,143

and this is given by144

Σe = σ2Σc(ρc)⊗ Σr(ρr), (4)

where ⊗ denotes the Kronecker product, σ2 is the residual variance component, and the parameters ρc and ρr determine145

the strengths of spatial correlations in the column and row directions, respectively. Note that sorting the data rows146

within columns produces the neat representation (4) of Σe in terms of two correlation matrices. In the case where147

there is no spatial autocorrelation, the residual variance-covariance matrix becomes Σe = σ2In.148

In the context of our large strip-trial example in Section 5, the fixed effects b would correspond to the (global)149

regression parameters for the entire trial, and the random effects u would correspond to the local departures from these150

global parameters. When analysing a small plot experiment using a linear mixed effects model with h random terms151

in which each term is of dimension m × 1, it is typically assumed that these terms are independently distributed of152

each other, imposing a direct sum structure on the variance matrix Σu = ⊕h
j=1σ

2
uj
Im for u with variance components153

σ2
uj

, j = 1, . . . , h (Butler et al. 2009). In contrast, any analysis of a large strip experiment would require to incorporate154

correlated random effects in the regression model to account for the spatial correlations amongst treatment effects.155

2.2 Bayesian hierarchical model156

In the context of large strip experiments, we have n grid points instead of n plots, as defined for general field157

experiments in the section above. At each of these n grid points, the response variable is measured, and the values158

of treatment factor and other spatial covariates are recorded. This is similar to the setup considered by Rakshit159

et al. (2020). These authors proposed a GWR model for analysing data arising from large strip experiments. GWR160

allows spatial nonstationarity in modelled relationships and estimates spatially-varying parameters governing these161

relationships by maximising local loglikelihoods. The regression function defined in GWR can also be written in the162

form of a linear mixed effects model, given in (1). The main difference between the linear mixed effects model (1) and163

the Bayesian approach is that, in the Bayesian model, we treat both model components b and u as random vectors,164

i.e., some (prior) distributions are specified for both b and u, along with a distribution for the error term (Bürkner165

2017). Consequently, the uncertainty associated with the estimates of the model parameters can be derived using166

posterior distributions.167

Using the grid point specific notation of the response variable (i.e., y(si)) introduced in the previous section, the168
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169 underlying model for analysing a large strip experiment is given by

y(si)=
l∑

m=1

bmxm(si) +
h∑

j=1

uj (si)zj (si) + e(si),

ui | θu ∼ N (0, Vu(θu)), 

e(si) | σe ∼ N (0, σe
2),

(5)

170 where b1, . . . , bl are global effects corresponding to the l explanatory variables x1, . . . , xl; z1, . . . , zh denote h variables 171 

whose effects are fitted as local effects; uj (si) denotes the local effect corresponding to zj at grid si ∈ S; ui = 172 (u1(si), . . . , 

uh(si))
> is the vector of all local effects at si, i = 1, . . . , n; θu is a set of parameters of the covariance 173 matrix Vu, and σe is 

the error standard deviation, assumed to be distributed as either Gamma, half-Cauchy, or 174 half-normal.

Because both components b and u under the Bayesian framework are considered random, the use of the term175

176 “fixed effects” when referring to the vector b may seem inappropriate. However, it is common to use this term when 177 

linear mixed effects models are fitted under a Bayesian framework; see Zhao et al. (2006) and Fong et al. (2010) for 178 details. 

In this paper we shall use both terms “fixed effects” and “global effects” to refer to the model parameters bm, 179 m = 1, . . . , l.

A regression model of particular interest is the quadratic response model, used to model the example data set in180

181 Section 5. The term associated with the global effects in (5) would take the form:

b1 + b2x(si) + b3x2(si), i = 1, . . . , n, (6)

182 where x(si) is the particular level of some controllable treatment applied at location si. Local departures from the 183 global 

treatment effects b2 and b3 take the form:

u1(si) + u2(si)x(si) + u3(si)x
2(si), i = 1, . . . , n, (7)

184 where u1(si), u2(si), and u3(si) are spatially correlated local effects corresponding to the location si. See Piepho et al. 185 

(2011) for detailed description of the quadratic response model.

2.3 Model with spatially correlated random parameters186

187 To incorporate spatial correlation amongst the model parameters in our Bayesian hierarchical modelling framework, 188 we 

investigate here how the variance-covariance matrix of u can be specified to represent the spatial correlation across 189 all the 

grid points si, i = 1, . . . , n. Note that, at location si, the covariance matrix of ui is Vu (5).

190 Without any spatial correlation between grid points, the variance-covariance matrix of the random parameters is

Σu = In ⊗ Vu. (8)

191 If the correlation between grid points is characterised by a spatial variance-covariance matrix Vs, the variance-
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covariance matrix of u is given by192

Σu = Vs ⊗ Vu, (9)

where Vs may be considered either a AR1 × AR1 spatial variance-covariance matrix or a weighted distance matrix.193

The model (8) implies correlation within grid points, but not between grid points. This is a simple model to fit,194

but may be unrealistic for modelling treatment effects of a large strip experiment. The model (9) imposes spatial195

correlation both within and between grid points, and thus, allows us to estimate the spatially-varying treatment effects196

across the whole field. Despite that only a single treatment is directly observed at each grid point, the estimation of197

localised treatment effects ui is possible due to the fact that the spatial model (9) allows the use of information from198

neighbouring plots with other treatments (Piepho et al. 2011). In what follows, we incorporate the spatial structure199

specified in (9) into our Bayesian modelling framework (5).200

3 Bayesian process201

E[f(θ) | Y ] =

202 Suppose θ ∈ Θ is the set of all parameters under consideration in (5). For a given f : Θ → R, the main focus in 203 the 

Bayesian approach is to estimate f(θ), typically by its conditional expectation, which is given by

∫
Θ

f(θ)p(θ | Y )dθ. (10)

Assuming a prior distribution for θ and applying the Bayes theorem we obtain the posterior density function p(θ | Y ),204

which, subsequently, leads to the solution in (10).205

In the rest of this section, we discuss the analytical tools that are essential for our Bayesian modelling of the206

real-life on-farm data from Las Rosas, Argentina, described below in Section 5.207

3.1 Prior specification208

The main difference between the REML and Bayesian estimation is that, in Bayesian modelling, we assume that the209

model parameters are random variables and estimate them using their posterior distributions. The estimation starts210

with the specification of a prior distribution, which may summarise the previous knowledge about the parameters211

(Onofri et al. 2019). Therefore, the prior distributions can be specified even before conducting the experiment.212

The selection of priors in Bayesian inference has been discussed for a long time. Usually, if nothing is known from213

earlier studies, we can use a flat non-informative prior p(θ)(∝ constant), also called an “improper prior” (Gelman214

et al. 2006). In many circumstances, a Cauchy or Gamma prior is a reasonable candidate for regression coefficients.215

Some researchers prefer inverse Wishart (IW) or inverse Gamma as the prior distribution for the standard deviation216

parameter of a hierarchical model, while Gelman et al. (2006) and Gelman et al. (2017) suggested using weakly217

informative priors for variance parameters for Bayesian analyses of hierarchical linear model. In the cases when the218

number of groups is small, a half-t family is also recommended.219

To specify a prior distribution for the parameters associated with the variance-covariance matrix Vu, note that the220

matrix can be decomposed as follows:221

Vu = B(σu)RuB(σu), (11)
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where B(σu) denotes the diagonal matrix with diagonal elements σu1 , . . . , σuh
, the standard deviation of u1, . . . , uh, and222

Ru is the matrix whose diagonal elements are equal to unity and off-diagonal elements are the correlation coefficients223

(details are given in (29)) between the random effects. The prior distribution of Vu can now be specified by specifying224

priors separately for B(σu) and Ru (McElreath 2015). A possible choice of a prior for the standard deviation parameters225

σuj
in B(σu) is an inverse Wishart distribution (Kass and Natarajan 2006); another choice is an inverse Gamma226

distribution. However, in our setting, a weakly informative prior is preferred. We adopted the half-normal distribution227

in our work for all σuj , j = 1, . . . , h. For the matrix Ru with correlation coefficients, we specify the Lewandowski-228

Kurowicka-Joe (LKJ) distribution (Lewandowski et al. 2009) as the prior distribution, and this specification is given229

by230

Ru ∼ LKJcorr(ε), (12)

where LKJcorr(ε) is a positive definite correlation matrix sampled from the LKJ distribution that depends on the231

value of a positive parameter ε. The parameter ε controls the correlations in a way that, as the value of ε increases, the232

correlations amongst parameters decrease. An useful feature of our prior selection process is that the selected priors233

would adaptively regularise the individual coefficients of random effects and the associated correlation coefficients; see234

Gelman et al. (2017) and Gabry et al. (2019) for more details.235

3.2 Likelihood and posterior distribution236

In precision agriculture, the focus is on, firstly, determining the optimal treatment (e.g., the most productive237

nitrogen rate) for every part of the field, and then applying the spatially-varying optimal treatments to the entire field238

as part of a site-specific management strategy. To this end, an important quantity is239

p(X | Y ) =

∫
p(X | Y , θ)p(Y , θ)dθ, (13)

the conditional probability of X given the response, computed by integrating out the set of unknown parameters θ.240

In order to estimate θ conditional on Y , we use the Bayes theorem to obtain the joint posterior density of the241

parameters in terms of the likelihood p(Y | θ) and the prior π(θ) as follows:242

p(θ | Y ) =
p(Y | θ)π(θ)

p(Y )
, (14)

where p(Y ) =
∫
p(Y | θ)π(θ)dθ is the normalising constant, which is often difficult to compute. Because this constant243

does not affect the inference, we can ignore it while computing the posterior distribution. Consequently, the equation244

(14) is often written as245

p(θ | Y ) ∝ p(Y | θ)π(θ). (15)

The distribution p(θ | Y ) is the key ingredient for “Bayesian inference” of the parameter θ. The posterior distribution246

p(θ | Y ) provides all information about θ conditional on the observed data (Che and Xu 2010).247

Below we specify the Gaussian and Student-t log likelihoods for our problem. We obtain for multivariate Gaussian248
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249 distribution

log p(Y | θ) ∝ −
1

2
(Y − Xb − Zu)>Σe

−1(Y − Xb − Zu) −
1

2
ln det Σe, (16)

250 and for multivariate Student-t distribution

log p(Y | θ) ∝ −
ν + n

2
ln

(
1 +

1

ν

)
(Y − Xb − Zu)>Σe

−1(Y − Xb − Zu)−
n

2
ln ν

+ ln Γ(
ν + n

2
) − ln Γ(

ν

2
) −

1

2
ln det Σe,

(17)

251 where ν ≥ 1 is the degrees of freedom.

Then the posterior distribution can be calculated by combining the likelihood and prior distribution using equation252

253 (15) (Besag and Higdon 1999; Tsionas 2002).

Assuming u ∼ N (0, Σu), for faster gradient evaluation and sampling we impose Cholesky decomposition, such that254

255

> > >
Σu = Σc ⊗ Σr ⊗ Vu = (LcLc ) ⊗ (LrLr ) ⊗ (LuLu ) = (Lc ⊗ Lr ⊗ Lu)(Lc ⊗ Lr ⊗ Lu)>, (18)

256 where Lc, Lr, and Lu are the lower triangular Cholesky decomposition factors of the matrices Σc, Σr, and Vu, 257 

respectively. Moreover, to improve the efficiency of sampling, we also impose the following formula based on the 258 Kronecker 

product property, shown in Appendix C, that

>ũ = (Lr ⊗ Lc ⊗ Lu)zu = (Lc ⊗ Lu)z̃uLr , (19)

259 where zu is the length r × c × k vector of i.i.d. samples from N (0, 1) and z̃u is the transformation of zu with size 260 (k × c) × 

r. The order the matrices Lc and Lr has been swapped as columns are nested within rows. It is because 261 c � r, and the 

Kronecker product of small matrices is faster to compute than that of large matrices.

The predictive distribution for a new query location s∗, based on the aforementioned posterior distribution, is262

263 obtained by marginalizing over θ and is written as

p(y(s∗) | x(s∗), z(s∗), Y , X, Z) =
∫
p(y(s∗) | x(s∗), z(s∗), θ))p(θ | Y , X, Z)dθ. (20)

3.3 No U-turn sampler264

265 Hamiltonian Monte Carlo (HMC) (Brooks et al. 2011; Duane et al. 1987) is an efficient Markov chain Monte Carlo 266 

(MCMC) method that overcomes the inefficiency associated with the random walk and with the sensitivity to correlated 267 

parameters. An important step in HMC is the drawing of a set of auxiliary momentum variables r = {r1, . . . , rd}, 268 

independently from the standard normal distribution for each parameter in the set θ = {θ1, . . . , θd}. The joint density 269 

function f(θ, r) of θ and r is given by

f(θ, r) ∝ exp{L(θ) − K(r)} = exp{−H(θ, r)}, (21)

270 where H(θ, r) is the Hamiltonian system dynamics (HSD) equation with potential energy L(θ) and kinetic energy 271 K(r). 

An useful property of the dynamics is that it keeps the joint distribution invariant (Nishio and Arakawa 2019).
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The HSD is numerically approximated in discrete time space with the leapfrog method to maintain the total energy272

when a new sample (θ∗, r∗) is drawn. The leapfrog method requires two parameters: (i) a step size ε, representing273

the distance between two consecutive draws, and (ii) a desired number of steps L, required to complete the process.274

A new sample is accepted with the probability275

α = min

{
1,
f(θ∗, r∗)

f(θ, r)

}
. (22)

Because HMC can be highly sensitive to the choice of ε and L, and in turn, may affect the results crucially, Hoffman276

and Gelman (2014) proposed the No-U-Turn Sampler (NUTS), which determines the step size adaptively during the277

warm-up (burn-in) phase to a target acceptance rate and uses it then for all sampling iterations (Monnahan et al.278

2017). The NUTS also eliminates the need to specify a value of L by using the criterion279

d

dt

(θ∗ − θ) · (θ∗ − θ)
2

= (θ∗ − θ) · d
dt

(θ∗ − θ) = (θ∗ − θ) · r∗ < 0, (23)

where r∗ is the current momentum and (θ∗ − θ) is the distance from the initial position to the current position. The280

idea is that the trajectory will keep exploring the space until θ∗ starts to move back towards θ.281

To guarantee time reversibility and convergence to the correct distribution, NUTS uses a recursive algorithm282

that preserves reversibility by running the Hamiltonian simulation in both forward and backward time directions283

(Hoffman and Gelman 2014). This process starts by introducing a slice variable w with conditional distribution284

p(w | θ, r) = U(0, f(θ, r)), where U(0, f(θ, r)) is the uniform distribution between the bounds zero and f(θ, r). The285

slice sampling generates a finite set of samples of the form (θ, r) during the doubling procedure and the binary tree286

building process by randomly taking forward and backward leapfrog steps until287

(θ+ − θ−) · r− < 0 or (θ+ − θ−) · r+ < 0, (24)

where (θ−, r−) and (θ+, r+) are the leftmost and rightmost leaves, respectively, in the subtree. The best candidate288

(θ∗, r∗) is uniformly sampled from the subset of all candidate values of (θ, r).289

4 Post-sampling checking290

A few common strategies for Bayesian model checking, as suggested by Gelman (2003), are: (1) ensuring that291

the posterior inference is reasonable, given the substantive context of the model; (2) assessing the sensitivity of the292

inference to reasonable changes in the prior distribution and the likelihood; and (3) examining whether the model is293

capable of generating data similar in characteristics to the observed data. See Gelman (2004), Weiss (1994), Gelman294

et al. (2013), and Congdon (2019) for an overview of the topic. To examine the suitability of our Bayesian model295

for analysing an on-farm strip experiment, we particularly focused on the third strategy of graphically checking the296

similarities between the observed and simulated data from the fitted model.297

In an ideal situation, researchers would be able to use an independent data set, which is not used in the modelling298

process, to test the predictive performance of the fitted model. Alternatively, in the absence of such independent data,299
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one may split the observed data into training and testing data sets, and use the training data for model fitting and the300

test data for evaluating the predictive performance of the fitted model. However, it may not even be feasible for many301

experimental data in agricultural applications to reasonably split into training and testing data sets. We illustrate our302

Bayesian model checking procedure below in Section 5.3 using a real-life on-farm data from Las Rosas, Argentina.303

4.1 Posterior predictive checking304

The posterior predictive (PP) checking uses the posterior distribution of the model parameters to regenerate the305

observations. The idea behind this concept is that, if a model is a good fit, we should be able to use it to generate data306

that resemble the observed data (Gabry et al. 2019). Let Y rep denote a simulated or replicated data set, generated307

using the posterior predictive distribution308

p(Y rep | Y ) =

∫
p(Y rep | θ)p(θ | Y )dθ. (25)

To assess the fitted model, several data sets are simulated from p(Y rep | Y ), and each of them is compared with the309

observed data Y (Dipak Dey and C.R. Rao 2005; Congdon 2019). The application of posterior predictive distributions310

is robust to prior specification because the details of the prior are washed out by the likelihood (Gelman et al. 2017).311

4.2 Model diagnosis and evaluation312

The leave-one-out (LOO) cross validation (CV) is widely used for model evaluation. It is performed by first313

omitting an observation and fitting the model based on the remaining data, and then by computing the predictive314

error associated with the omitted observation. The process is repeated for all observations, omitting one observation at315

a time. The predictive errors from the LOO CV are finally used to compute an estimate of the average out-of-sample316

predictive error for a given model. In Bayesian statistics, the expected log LOO predictive density (ELPD) is used to317

measure the predictive accuracy :318

elpdloo =

n∑
i=1

log p(yi | y−i), (26)

where p(yi | y−i) =
∫
p(yi | θ)p(θ | y−i)dθ is the LOO predictive density with the i-th observation omitted from the319

data set (Vehtari et al. 2017). One disadvantage of this measure is the high computational cost due to the model320

being refitted n times. Recently, an approximated LOO CV has been proposed by Bürkner et al. (2021), using only a321

single model fit and calculating the pointwise log predictive density as a fast approximation to the exact LOO CV. It322

uses the Pareto-smoothed importance-sampling (PSIS) algorithm (Vehtari et al. 2017), which draws n samples, each323

of size M , from the posterior distribution. For each observation, then the pointwise log-likelihood is computed based324

on the M sampled values, and the PSIS-LOO-CV estimate is computed taking a weighted sum over all n pointwise325

log-likelihood as follows:326

̂elpdpsis-loo =

n∑
i=1

log

(∑M
m=1 p(yi | θ(m))w

(m)
i∑M

m=1 w
(m)
i

)
, (27)

where w
(m)
i are stabilised weights computed during PSIS, m = 1, . . . ,M . See Vehtari et al. (2017) for the details of327

computing the stabilised weights in PSIS.328

The resulting PSIS-LOO-CV (27) can be used for model diagnosis and comparison. The advantage of PSIS is that329
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it automatically computes an empirical similarity between the full data predictive distribution and the LOO predictive330

distribution for each omitted observation in LOO CV (Gabry et al. 2019). Another useful quantity, obtained during331

PSIS, is the estimated tail shape parameter k̂ of the generalised Pareto distribution. This estimate can also be used332

for assessing the reliability of the model. If k̂ < 0.5 the distribution of raw importance ratios has finite variance and333

the central limit theorem holds; see Vehtari et al. (2017) for a detailed discussion on the raw importance ratio. In334

practice, however, the model may still be robust for k̂ values up to 0.7. Otherwise the variance and the mean of the335

raw ratios distribution do not exist (Vehtari et al. 2017).336

The Bayesian R2, proposed by Gelman et al. (2019), is used for model evaluation as well. R2 is presented as the337

variance of the predicted values divided by the variance of predicted values plus the expected residual variance338

Bayesian R2 =
Var(Y pred)

Var(Y pred) + Var(res)
. (28)

However, it should not be interpreted solely if the model has a large number of bad Pareto k̂ values, i.e., values greater339

than 0.7 or, even worse, greater than 1.340

5 Analysis of a real-life large strip experiment341

A part of Las Rosas data set, which is publicly available by the name of lasrosas.corn in the R-package agridat342

(Edmondson 2014), was used in our study. In this section, we adopt the proposed Bayesian approach to analyse the343

data set.344

5.1 Las Rosas data345

The data were produced by a yield monitor in an Argentinian corn field trial conducted by incorporating six346

nitrogen rates 0, 39.0, 50.6, 75.4, 99.8, and 124.6 kg/ha, which are systematically allocated in three replicated blocks347

comprising 18 strips (columns) and 93 rows. In order to account for some of the spatial variation (Figure 1), a four-level348

topographic factor was defined: W (West slope), HT (Hilltop), E (East slope) and LO (Low East).349

Additionally, a geographic projection was applied to the data. It transforms the geo-spatial coordinates to planar350

coordinates expressed in meters and assists with the model fitting (Rakshit et al. 2020). The field area of the Las351

Rosas experiment is approximately 810 metres long and 150 metres wide.352

5.2 Statistical models and prior predictive simulations353

To obtain the map of locally varying optimal input rates, we specified a quadratic regression model, in which354

the corn yield is modelled as a quadratic function of the nitrogen rate. The optimal treatment can be determined355

by estimating the coefficients of the quadratic regression model at each grid point. To demonstrate the flexibility356

of the proposed model (5), in which the random parameters u are spatially correlated, we compare it with the one357

without spatial correlation, used as a benchmark model for the rest of the analysis. We also compare two distributional358

assumptions in the context of specifying the likelihood – the popular Gaussian likelihood has been compared with the359

Student-t distribution in order to assess whether the Gaussian model, often chosen as the default model, is misspecified360
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(c) Six nitrogen treatment levels 0, 39.0, 50.6, 75.4, 99.8,
and 124.6 kg/ha are systematically allocated into three
replicates; the ordering, from left-to-right, used within
each replication is 124.6–75.4–99.8–0–50.6–39.0.
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(d) Bimodal histogram and density plot of yield.

Figure 1: Visualisation of Las Rosas yield monitor data for harvests in 2001.
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for our example data set. We define our four models below in Table 1.361

Model 1 Model 2 Model 3 Model 4

Spatial correlation No Yes No Yes
Var(u) In×n ⊗ Vu Vs ⊗ Vu In×n ⊗ Vu Vs ⊗ Vu
Distribution Gaussian Gaussian Student-t Student-t

Table 1: Four models that are fitted in our study.

The modelling process starts by selecting appropriate priors for the model parameters by comparing the simulated362

responses and the observed responses graphically, as shown in Figure 3. In the right panel of Figure 3, we have chosen363

weakly informative priors to simulate responses based on the quadratic regression function. In the left panel, we show364

the simulated responses obtained using vague priors for the regression coefficients.365

The vague priors used in our analysis are b0 ∼ N (µ, 100), b1, b2 ∼ N (0, 100) and σe ∼ IG(1, 100), where µ is the366

median of the observed responses and IG refers to the inverse Gamma distribution. We assume uih ∼ N (0, σ2
h) with367

σ2
h ∼ IG(1, 100) and h = 0, 1, 2 at grid si. Alternatively, we can choose weakly informative priors b0 ∼ N (80, 10),368

b1 ∼ N (0, 0.01), b2 ∼ N (0, 0.001), σ0 ∼ N+(0, 1), σ1 ∼ N+(0, 0.01), σ2 ∼ N+(0, 0.001), Ru ∼ LKJcorr(1) and369

σe ∼ N+(0, 1), where N+(·) is the positive half Gaussian distribution.370

The correlation matrix Ru, defined in (11), is given by371

Ru =


1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 , (29)

where ρs are the pairwise correlation parameters. For the correlation matrix Ru, we select LKJcorr(ε) with ε = 1,372

which represents weak correlation amongst ui values at grid i, i = 1, . . . , n.373

Figure 2 demonstrates how the distribution of ρ is influenced by ε. A small ε leads to a wider tail and a big ε374

typically narrows down the tail. In the case of ε = 1, all correlations are equally plausible. As ε increases, the variables375

are more likely to be independent.376
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(a) Distribution of correlation coefficients ρ extracted
from random 2×2 correlation matrices with different val-
ues of ε.
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(b) Visualisation of ρ12 against ρ13 from a 3×3 correlation
matrix with ε = 1.

Figure 2: LKJcorr(ε) probability density.
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Figure 3 compares the simulated data with vague and weakly informative priors. When the vague priors are applied,377

Model 1 generates extremely small and large values, which are highly unlikely for our corn yield data set. This is378

mostly because the vague priors disregard practical knowledge. The use of weakly informative priors avoids negative379

values and keeps the simulations within a reasonable interval. Even though some simulations are not perfect, the380

weakly informative priors overall exhibit good results that reflect commonsense knowledge about the yield response.381

On the other hand, if the priors are too informative, the posterior distribution maybe badly influenced and result in382

partial exploration of the posterior space.383
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(a) With vague priors
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(b) With weakly informative priors

Figure 3: Capability of regenerating observed data with different priors by running 100 simulations. Vague priors
failed in regenerating and lead to extreme values. Weakly informative priors give plausible regenerated data.

In Model 2, in addition to the priors used in Model 1, we need priors for the parameters ρc and ρr, and suppose384

ρc, ρr ∼ U(0, 1), where U(0, 1) is the uniform distribution between 0 and 1. In Model 3 and 4, we have an extra385

parameter ν(≥ 1) for the degrees of freedom, and we specify a Gamma prior ν ∼ Γ(2, 0.1), as suggested by Juárez and386

Steel (2010).387

In Table 2, we present the complete list of priors selected for our study. In general, it is not recommended to use388

the same priors across all the different models listed in Table 2. Furthermore, if a new prior is proposed for a new389

parameter, examining the suitability of that prior is recommended for each model. In this study, we have checked390

the suitability of all the priors for all our four models, and it turns out that the same priors, listed in the top-half of391

Table 2, work well for all the four models (see Figure 10 for further details). Consequently, we built the models by392

using the same weakly informative priors for a number of common parameters, and only adding new priors (listed in393

the bottom-half of Table 2) for the additional parameters.394

Using the above priors, our proposed hierarchical Bayesian models were run on four parallel Markov chains using395

the R-package rstan with each chain having a warmup period of 1000 iterations and post-warmup period of another396

1000 iterations. Consequently, for each parameter, we generated 4000 samples (1000 samples from each of the four397

chains) from its posterior distribution.398

5.3 Posterior checking399

The prior predictive checking is a powerful tool for understanding the structure of the model. However, it is400

not possible to extend this technique to choose between competing models for the data and evaluate their predictive401
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Model 1 Model 2 Model 3 Model 4

b0 N (80, 10)
b1 N (0, 0.01)
b2 N (0, 0.001)
σ0 N+(0, 1)
σ1 N+(0, 0.01)
σ2 N+(0, 0.001)
σe N+(0, 1)

Ru — LKJcorr(1) — LKJcorr(1)
ρc — U(0, 1) — U(0, 1)
ρr — U(0, 1) — U(0, 1)
ν — — Γ(2, 0.1) Γ(2, 0.1)

Table 2: Priors of four models. Top-half: priors for common parameters of four models; Bottom-half: new priors for
additional parameters.

performances. To assess the performance of a fitted model and diagnose potential model misspecifications, it is crucial402

to include posterior checking in the Bayesian modelling workflow. We use MCMC and PP diagnostic tools as part of403

our posterior checking.404

We start with the PP checking to visualise the performance of the four models described in Table 1. Figure 4405

displays the results of the PP checking. It appears that, if we do not take into account the spatial correlation of406

parameters u, we are incapable of simulating the data that adequately capture the distribution of the observations407

(see plots of models 1 and 3 in Figure 4). On the contrary, because models 2 and 4 incorporate spatial correlation,408

simulations from these models closely mimic the distribution of observed yield from the Las Rosas experiment.409

Figure 5 illustrates the observed skewness of the posterior predictive distribution for the four models. While models410

2 and 4 capture the skewness of the observed corn yield, the plots of models 1 and 3 indicate that these models may411

be misspecified. See Gabry et al. (2019, p. 397) for more details on the use of such skewness plots for model selection412

in a Bayesian workflow.413

LOO CV predictive cumulative density plots can also be used to assess the performance of fitted models. A model414

is well calibrated for continuous responses when the corresponding plot shows asymptotically uniform behaviour415

(Gabry et al. 2019; Gelman et al. 2013). Figure 6 compares the density of the computed leave one out probability416

integral transformation (LOO PIT) (the thick dark curve) with the 100 simulated data sets from a standard uniform417

distribution (the thin light curves). It is evident from Figure 6 that Model 1 and 3 are miscalibrated. Although418

the Model 2 fit seems good, the frown shape of the curve indicates inferior calibration than Model 4. This implies419

that Model 2 is either misspecified or too flexible. A flexible model often has the capability of predicting successfully420

out-of-sample data. However, amongst the four fitted models, Model 4 demonstrates the best fit for the Las Rosas421

data set.422

Pareto k̂ diagnostic value is also important, as shown in Table 3. Model 1 has too many large k̂ values, which423

indicates that the model is either misspecified or too flexible. A similar interpretation can be made for Model 3 where424

a few “bad” values can be observed. These results should not be interpreted solely based on the computed k̂ values425

in Table 3, but we need to take into account the values of LOO PIT and the effective number of parameters ploo426

in Table 4. The ploo is calculated by subtracting the elpdloo from the full log posterior predictive density. Figure 4427

shows that Model 1 and 3 are misspecified. The LOO PIT plots (Figure 6) also confirm that these two models are428

16



0.000

0.005

0.010

0.015

0.020

0 50 100 150

y y rep

(a) PP check of Model 1

0.000

0.005

0.010

0.015

0.020

0 50 100 150

y y rep

(b) PP check of Model 2

0.000

0.005

0.010

0.015

0.020

0 50 100 150

y y rep

(c) PP check of Model 3

0.000

0.005

0.010

0.015

0.020

0.025

0 50 100 150

y y rep

(d) PP check of Model 4

Figure 4: Posterior predictive checking for simple linear and the proposed spatial models with 100 simulations (blue
lines) comparing to the observed data (black line).
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(a) Skew check of Model 1
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(d) Skew check of Model 4

Figure 5: Histograms of skewness for 4000 draws (blue) from the posterior predictive distribution comparing to the
observed data (black).
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(a) LOO PIT diagnosis of Model 1
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(c) LOO PIT diagnosis of Model 3
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(d) LOO PIT diagnosis of Model 4

Figure 6: LOO PIT plots of the four models. The thick dark line is the density of the LOO PIT for each candidate
model, and the thin lines are simulated data from a standard uniform distribution.
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misspecified, even though there are no “very bad” k̂ values. In the case where high Pareto k̂ values are observed but429

the model fit is good, one can conclude that the model is both misspecified and flexible. In this scenario, a K-fold CV430

is recommended instead of LOO CV for some K ≥ 5.431

For Model 2, there are six “bad” and “very bad” k̂ values, which might be due to highly influential points or outliers.432

These large k̂ values also indicate the potential misspecification of the Gaussian likelihood. Therefore, instead of using433

Gaussian distribution, Model 4 uses the Student-t distribution. The selection of the Student-t distribution resulted in434

improvement in all k̂ values, as these are estimated to be less than the threshold value of 0.70. Then the elpdloo and435

Bayesian R2 are valid.436

Model 1 Model 2 Model 3 Model 4
Count Per M.Eff Count Per M.Eff Count Per M.Eff Count Per M.Eff

(-Inf, 0.5] (good) 28 1.7% 457 1585 94.7% 432 1474 88.1% 494 1672 99.9% 868
(0.5, 0.7] (ok) 372 22.2% 112 83 5.0% 103 176 10.5% 254 2 0.1% 1733
(0.7, 1] (bad) 1138 68.0% 18 4 0.2% 70 24 1.4% 170 0 0.0% —
(1, Inf) (very bad) 136 8.1% 8 2 0.1% 4 0 0% — 0 0% —

Table 3: Pareto k̂ diagnostic values including count, percentage (Per) and minimal effective sample sizes (M.Eff) for
all models.

5.4 Model evaluation437

We use elpdloo, ploo, LOO information criterion (looic), which is −2×elpdloo in deviance scale, and Bayesian R2
438

to evaluate and compare the performance of different models. In Bayesian analysis, even if there are no high Pareto439

k̂ values, R2 is not indicative if ploo is relatively high compared to the total number of parameters or the number of440

observations. High ploo and looic values imply weak predictive capability and potential model misspecification.441

The results for each of our four fitted models are presented in Table 4. The mean and standard deviation of the442

posterior distribution, along with the 95% credibility interval (CI) are reported. The lower and upper limits of the CI443

are given by the 2.5% and 97.5% quantiles of the posterior samples, respectively.444

Model 1 Model 2 Model 3 Model 4

Estimate SE Estimate SE Estimate SE Estimate SE
elpdloo -7236.2 13.4 -4945.2 134.8 -7848.4 17.1 -4734.3 38.3
ploo 1487.1 11.7 341.8 41.3 241.2 6.8 516.1 10.5
looic 14472.5 26.7 9890.4 269.6 15696.8 34.3 9468.7 76.7

Median CI Median CI Median CI Median CI
Bayesian R2 0.842 0.563∼0.965 0.974 0.972∼0.977 0.190 0.135∼0.251 0.989 0.987∼0.991

Table 4: LOO CV estimates with standard errors, medians of Bayesian R2, and 95% credibility intervals.

The R2 is valid only when the model is not misspecified. Table 4 shows that Model 1 is a better fit than Model445

3 in terms of the R2 value. But these two models are misspecified, as evidenced by their high Pareto k̂ values and446

large ploo values. Therefore, we shall only focus on Model 2 and 4. Model 4 with Student-t distribution is better than447

Model 2 with Gaussian distribution in terms of smaller looic and higher R2 value. The bad Pareto k̂ values in Model448

2 are eliminated by fitting Model 4. Therefore, we use Model 4 to fit the Las Rosas data, and the results are presented449

in the section below.450
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6 Results451

In the previous section, through model selection and evaluation process, we concluded that Model 4 is the best fit452

for our example data set. It shows the capability of spatially correlated random parameters in capturing the spatial453

variation. Using the posterior distribution of the model parameters, we are able to produce the spatially-varying maps454

of the regression coefficients and subsequently, obtain a smooth map of optimal treatment levels across the whole field.455

We have also produced the estimated yield map for spatially-varying optimal nitrogen rates.456

6.1 Model assessment457

Table 5 presents the summary statistics of the posterior distribution of all parameters from Model 4. It should be458

noted that the means and the medians for all parameters are very close or identical which indicates robust results.459

Another feature is that the magnitude of the values of b̂2 and σ̂2 are very small. It indicates a week influence of the460

quadratic term of the regression. The pattern of coefficients magnitude is well illustrated in Figure 7.461

Parameter Mean SD
Credibility interval

2.5% Median 97.5%

b̂0 78.7361 3.0680 72.8282 78.6723 84.8108

b̂1 0.0126 0.0091 -0.0049 0.0127 0.0303

b̂2(×104) 1.9850 1.0945 -1.3057 1.9776 4.1425
σ̂0 9.1322 0.3902 8.4027 9.1271 9.9447
σ̂1 0.0173 0.0071 0.0034 0.0174 0.0314
σ̂2(×104) 1.7157 0.7151 0.3935 1.6742 3.2388
σ̂e 2.6399 0.1244 2.3953 2.6398 2.8905
ρ̂12 -0.6493 0.2467 -0.9623 -0.7005 -0.0115
ρ̂13 0.5367 0.2481 0.0193 0.5514 0.9480
ρ̂23 -0.4282 0.3754 -0.9361 -0.5033 0.4732
ρ̂c 0.9076 0.0115 0.8835 0.9080 0.9287
ρ̂r 0.9274 0.0074 0.9120 0.9275 0.9410
ν̂ 4.1321 0.5503 3.2098 4.0861 5.3573

Table 5: Summary statistics of the posterior samples from Model 4. Mean, standard deviation (SD), 95% credibility
interval (showing 2.5% and 97.5% sample quantiles) and median of posterior samples are reported.

Figure 7 displays the maps of the spatially-varying regression coefficients, estimated using Model 4. The top,462

middle, and bottom panels of Figure 7 show the intercept β̂0 = b̂0 + ũ0, the linear term β̂1 = b̂1 + ũ1 and the463

quadratic term β̂2 = b̂2 + ũ2, respectively. The plots cover the whole trial area, as presented in Figure 1a and 1c.464

The contour maps are aligned with the topology of the area. It can be observed that the Hilltop area and small part465

of the neighbouring areas on the left and right (see Figure 1c) are exhibiting different pattern in comparison to the466

other three topological regions, for all of the β̂ coefficients. The linear component coefficient for the Hilltop area is467

the highest, in the range of 0.02 – 0.08, while for the other three areas is around -0.01. The quadratic component468

coefficient for the Hilltop area is negative, which indicates that an optimal treatment in the area is available. However,469

in other areas, the coefficients are positive and a linear pattern is sufficient in model fitting.470

The result is consistent with the discovery by Rakshit et al. (2020) that the quadratic pattern is strong in Hilltop471

region but weak in other regions. Even though a quadratic pattern is identified in the East slope and Low East, the472

adjusted-p values indicate non-significant for these areas.473
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Figure 7: Contour plots of spatial-varying coefficients β̂0 (top), β̂1 (middle) and β̂2 (bottom) for Las Rosas data.

Negative β̂2 is available in the Hilltop region, where optimal treatments exist. For other regions, linear response is
sufficient.
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6.2 Yield prediction474

Because we have fitted a quadratic response of yield to nitrogen rates, we can compute the optimal nitrogen rate475

Ñi for the ith grid point using Ñi = −β̂1/(2β̂2), i = 1, . . . , n, given β̂2 < 0. However, if the optimum rate exceeds476

the maximum rate Nmax = 124.6 kg/ha used in the trial, the maximum rate has been chosen as the optimal rate.477

Therefore, we can compute the adjusted optimal rate N̂i = min{Ñi, Nmax} for i = 1, . . . , n. Figure 8 depicts the478

map of the adjusted optimal treatment and estimated yield corresponding to the spatially-varying adjusted optimal479

treatment rates across the field.480

120 121 122 123 124

40 50 60 70 80 90 100

Figure 8: Top: adjusted optimal nitrogen rates (N̂); Bottom: estimated yield corresponding to the adjusted optimal
rates.

Figure 9 shows the difference between the predicted yield for the adjusted optimal treatments and the observed481

yield. As expected, the difference is positive, indicating a higher yield prediction under the optimal nitrogen treatment.482

6.3 Comparing to the GWR approach483

Rakshit et al. (2020) suggested a GWR based analysis for the same problem considered in this paper, and estimated484

the spatially-varying coefficients by maximising the local loglikelihoods. GWR is also used to estimate the optimal485

nitrogen rate for each grid and to predict the yield for the Las Rosas data set.486

In GWR, the results crucially depends on the bandwidth of the selected kernel function. Although an appropriate487

bandwidth can be selected using spatial cross validation, it is computationally challenging for large data sets. To488

estimate the regression parameters for a query location, the neighbouring observations are given more weight than the489

distant ones in GWR. On the contrary, the proposed Bayesian approach uses all data in one go to produce estimates490
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2 3 4

Figure 9: Yield difference computed between predicted yield with optimal nitrogen and observed yield.

for all grid point, based on a spatial variance matrix defined for the entire field. The Bayesian inference is affected by491

the choice of priors and the likelihood. However, the influence of the prior reduces if the amount of data increases.492

The Bayesian approach in general is more flexible than GWR, as it can be easily extended and applied broadly to493

other applications.494

A comparison of these two approaches is summarised in Table 6.

GWR Bayesian

Inference with neighbouring data with all data
Initialisation bandwidth selection prior specification
Objective local log-likelihood global log-likelihood

Evaluation t scores and p-values credible intervals
PP check and LOO PIT
Pareto k diagnosis
Bayesian R2

Table 6: Comparison of GWR and Bayesian approach.

495

7 Discussion496

In this paper, we developed a Bayesian hierarchical model for estimating spatially-varying treatment effects and497

mapping locally-varying optimum treatments for large strip experiments. We maximised yield in order to determine498

the spatially-varying optimum nitrogen rates for the Las Rosas data example. However, another choice, particularly499

desirable from a farmer’s perspective, could be to maximise profit in order to determine the spatial map of optimum500

nitrogen rates. Such an analysis would require authentic data on economic variables, including treatment cost and501

revenue from yield, and our proposed Bayesian framework could be easily adapted to incorporate these information into502

the analysis of on-farm data sets. It is crucial in Bayesian inference to be able to sample from posterior distributions.503

In order to analyse the Las Rosas data set, we have used the NUTS sampler to sample from highly correlated high-504

dimensional posterior distributions. NUTS exhibits excellent sampling qualities in terms of generating large effective505

sample sizes, producing low autocorrelation, and obtaining low skewness of marginal posterior distributions (Nishio and506

Arakawa 2019). Moreover, NUTS does not require conjugate priors, exhibits faster convergence for multi-parameters507

and has considerable flexibility for fitting user-specified models by researchers using the R-package rstan. However,508
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if the data set is large, computing the inverse of the covariance matrix, which is three times the size of the data, is509

510 extremely time consuming by conventional algorithm. Therefore, we implement a faster algorithm for calculating the 

511 autocorrelation matrix and develop a faster algorithm for computing the Kronecker product of three matrices. The 

512 details of these algorithms are presented in the Appendix.

Other covariance structures, including the Matérn class of covariance functions (Cressie and Huang 1999), also can513

514 be used for capturing spatial variation in OFE (Selle et al. 2019). The Matérn covariance structure can be incorporated 515 

in our Bayesian modelling framework. However, the main drawback of implementing the Matérn covariance is that 516 it takes 

a large amount of time to calculate the inverse of the covariance matrix when the data size is large. For 517 implementing the 

Matérn covariance function, we have to either wait for a long time to obtain converged MCMC chains 518 or reduce the 

effective sample size and terminate the sampling process earlier, which increases the risk of obtaining 519 non-converged chains 

and leaving parts of the posterior space unexplored. In practice, however, the difference between 520 the results due to AR1 × 

AR1 and due to Matérn covariance is not significant, as shown in (Selle et al. 2019). For 521 most gridded OFE data sets, the 

AR1 × AR1 covariance structure is a reasonable choice in terms of both efficiency 522 and accuracy.

The model checking and diagnostic process for post-sampling were presented as well. In order to check the523

524 appropriateness of spatially-correlated regression parameters, we considered models without any spatial correlation 525 as 

benchmark models (see Table 1). Using posterior model checking in Section 5.3, we showed that the models with 526 spatially-

correlated parameters performed much better than the models without spatially-correlated parameters for 527 the Las Rosas 

data. Without any prior knowledge of the data, one may wish to first investigate the spatial variability 528 by comparing a 

model with local effects with a model with only fixed regression coefficients. Conventionally, one may 529 only check the 

divergence of MCMC chains and insufficiently diagnose the model and its assumption. Hence, the 530 potential model 

misspecification is not detected. Besides, some researchers use Bayesian R2 as the index in model 531 comparison. However, 

The Bayesian R2 is misleading in some situations, and it should not be interpreted solely, such 532 as the example in the paper. 

The Gaussian assumption of the model for the Las Rosas data is misspecified even though 533 the Bayesian R2 value is 

relatively high. Therefore, other than checking the behaviour of MCMC chains, candidate 534 models should be diagnosed 

with advance diagnostic tools, such as PP check, LOO CV, Pareto k, etc, in the first place. 535 With the help of these 

diagnostic tools, we discover that Student-t distribution provides a more robust inference.

A coefficient of determination for random effects of a linear mixed model and a generalised linear mixed model is536

537 proposed by Piepho (2019). The coefficient is corresponding to Bayesian R2. The author also proposed to use averaged 538 

semivariance (ASV), which is a measure of variance commonly used for spatially correlated data, and concluded that 539 ASV 

is preferable for LMMs. We calculated ASV for four models and the results are consistent. The full results are 540 listed in 

Table 7.

Mean SD 2.5% Median 97.5%

Model 1 554.986 19.047 519.458 554.441 593.611
Model 2 85.340 5.844 74.484 85.037 97.151
Model 3 637.510 33.657 576.394 635.357 708.738
Model 4 76.441 5.617 66.449 76.042 88.233

Table 7: Summary statistics of the average semi-variances (ASV) calculated from the posterior samples of four models. 
Mean, standard deviation (SD), 95% credibility interval (showing 2.5% and 97.5% sample quantiles) and median are 
reported.
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Finally, in Section 6.3, we explained the difference between our proposed Bayesian approach and the GWR method.541

542 However, the results from the Bayesian approach are very similar to those from GWR, reported in Rakshit et al. 543 (2020). 

Another potential method of analysis is based on the residual maximum likelihood (REML). The estimation 544 of regression 

coefficients under the REML framework would require the development of a computing algorithm that 545 would take into 

account the spatial correlation of the random effects while computing the best linear unbiased predictors 546 of the treatment 

effects.

8 Conclusion547

The novelty of our work can be summarised as follows:548

549

550

551

552

553

554

• A Bayesian hierarchical model is adopted to analyse large on-farm strip trials.

• Spatial variation is accounted for by incorporating spatially correlated random terms in the model.

• The posterior samples of all parameters were obtained by utilising faster Kronecker product computing algorithms 

in rstan.

• Advanced diagnostic tools were used to guard against the crucial problem of model misspecification.

• The real-life OFE data set from Las Rosas, Argentina, was analysed to obtain the spatially-varying optimum 

nitrogen rates for maximising corn yield across the entire field.555
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Figure 10: Weakly informative priors checking for four models.
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Appendix564

A Prior predictive checking565

B Faster Cholesky factor for AR1(ρ)566

The AR1(ρ) correlation matrix with correlation coefficient ρ is defined as ρij = ρ|i−j|. A simple form of Cholesky567

factor for the AR1(ρ) structure, given by Madar (2015), was used568

lij =


ρj−1 j ≥ i = 1

ρj−i
√

1− ρ2 j ≥ i ≥ 2

, (30)

which significantly improved the computational efficiency in rstan.569

C Fast Kronecker product570

Let A = [a1, a2, . . . , an] ∈ Rm×n, where aj ∈ Rm, j = 1, 2, . . . , n. Then the vector vec(A) is defined as571

vec(A) = [a1, a2, . . . , an]> ∈ Rmn, (31)

which vec-permutes the given matrix. With the vector-valued operator, we have the “Vec Trick” theorem:572

Lemma 1. (Roth’s Column Lemma: “Vec Trick” (Roth 1934; Airola and Pahikkala 2018) ): Let A ∈ Rm×n, B ∈573

Rn×p, and C ∈ Rp×q be matrices. Then574

vec(ABC) = (C> ⊗A)vec(B). (32)

The above property and theorem are implemented in rstan and considerably saved computation time. For other575

properties of the Kronecker product see Zhang and Ding (2013).576
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