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Abstract

Under partial shading conditions (PSC), conventional Maximum Power Point Tracking

(MPPT) algorithms are unable to reach the Maximum Power Point (MPP) due to non-

linear characteristics of the curve. In the literature, some algorithms, such as Fireworks

algorithm (FWA) and Particle Swarm Optimization (PSO), have been used to obtain the

MPP. However, they provide less than optimal convergence rate and tracking accuracy

of FWA which impair the MPPT performance.

In this thesis, an application of the hybrid method of PSO and FWA (PS-FW) algo-

rithm for GMPPT is proposed. The difficulty of balancing exploration and exploitation

is alleviated within the PS-FW through the PSO velocity operator and the FWA mu-

tation and explosion sparks operator. The population health is maintained through

abandonment and supplement strategy and an adaptive modification to the operators

to enforce convergence is also described.

The proposed GMPPT algorithm performance is verified within a simulation envi-

ronment under a PV system facing four irradiance patterns. Comparisons are made

against singular versions of the hybrid algorithm and another hybrid algorithm. Sim-

ulation results verify that the PS-FW algorithm outperformed the PSO, FWA and

Differential Evolution-PSO (DE-PSO) algorithm in terms of tracking speed, accuracy

and efficiency under PSC. In all shading patterns applied to verify the PS-FW, the

algorithm is able to obtain at least a minimum of 7.59% better tracking speed of the

GMPP under simulation verification at one initial population setting. Experimental

verification further validates the hybrid PS-FW algorithm. PS-FW is able to achieve at

least a minimum of 24.69% better tracking speed of the GMPP in two initial population

settings. The hybrid PS-FW algorithm proves itself as an alternative to the singular

PSO and FWA algorithms and builds upon the good aspects of the counterparts capable

of good tracking speeds and accuracy in GMPPT application.
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Chapter 1

Introduction

Due to the massive installation of solar photo-voltaic (PV) and wind turbine, the use of

renewable energy-based electricity generation increased by 3% in 2020 when compared

to previous year. As reported in [1], the share of renewable energy sources rose to

around 28% in Q1 2020, increasing from 26% in Q1 2019. Moreover, the share of

renewable energy sources is projected to grow from 15% in 2015 to 63% of total primary

energy supply in 2050 as stated in [2]. In tropical countries, e.g. Malaysia, where solar

energy is abundant, PV systems are suitable for exploration as renewable-energy sources.

Malaysia’s geological location is well suited for solar power generation as the country is

located on equator, where irradiation is favourable and average daily solar radiation is

at 4500 Wh/m2 with sunshine duration of 12 hours [3]. In addition, PV systems barring

just the benefits from reducing ecosystem pollution also includes advantages from low

maintenance cost, scalability, and ease of installation [4].

To this end, methods of improving PV solar systems are implemented through con-

trolling the Direct Current to Direct Current (DC-DC) power converter side of the

system with an optimization algorithm which is able to control the duty cycle of the

chosen converter switch. The maximum power point (MPP) can be found at a correct

duty cycle where the power conversion efficiency of the PV system is at its maximum.

Implementations of the DC-DC converter configuration dictate the output voltage from

the conversion, voltage can be either stepped up, stepped down or both within a single

configuration. An example of such methods out of many can be singled down to both

Maxmimum Power Point Tracking (MPPT) and Global MPPT (GMPPT) algorithms.

The GMPPT algorithm is a preferable design choice as cases of partial shading condi-

tions (PSC) which causes multiple maxima and minima to appear on the PV curves,
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which is the main advantage of the global tracking capabilities found in GMPPT al-

gorithms. The global capabilities stem from strategies employed in the design of a

GMPPT algorithm. These algorithms are implemented to control the switching in most

PV systems which install the DC-DC converter. However, a conducted review of meth-

ods used for GMPPT has shown that converters are commonly boost or buck converters,

thus the chosen converter application must be determined beforehand [5] based on sys-

tem requirements. Regardless of the configuration, conversion of voltage stepping up or

down both, are dependent on the frequency of switching the switch, duty cycle ratio,

inductance of the inductor, capacitance of the input and output capacitors, and finally

the load resistance [6].

Hence, the requirement of a form of control towards this duty cycle is required using

an algorithm. To provide voltage or current conversion, filtering, and regulation for

driving various loads, including power grids or motors; PV systems will typically be

integrated with algorithm controllers which implement a respective algorithm [7]. The

implemented algorithm is an optimization algorithm that can include meta-heuristic

methods which act as a black box to any given engineering solution due to their stochas-

tic and iterative problem solving nature. To obtain maximum power for any given envi-

ronmental conditions, the MPPT or GMPPT algorithm samples the output of PV cells

and apply various duty cycles to obtain information of the power obtained which will

assist in further search in later iterations of the algorithm.

1.1 Maximum Power Point Tracking

The operating point of the panel dictates the output power at the time. This point is

rarely at its peak when directly connected to the PV panel. Impedance of the entire

connection strictly determines the operating point of the PV panel, when modified;

the operating point is able to move towards the MPP [8]. Since PV panels output in

DC power, a form of impedance transformation must be implemented using DC-DC

converters. The impedance of the PV panel (source) can be matched with the load to

adjust the operating point. To match the impedance of the system, a change of the

duty cycle or ratio of the DC-DC converter is required. At a particular duty ratio,

the operating point will be the MPP where the power transfer from the PV panel or

conversion efficiency of the entire system is highest. The P-V or I-V curve characteristics

of the PV panel vary with adjustments of atmospheric conditions such as irradiance and
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temperature. The influence of the dynamically changing operating conditions render it

non-feasible to fix on one duty ratio for the DC-DC converters.

PV system MPPT implementations utilize MPPT algorithms that frequently sample

panel voltages and currents, then adjust the duty ratio as needed. These algorithms

perform favorably under a uniform irradiance level where there is only one MPP in the

power-voltage (P-V) or current-voltage (I-V) curve of the PV panel [9]. However, the

current PV system problem at hand can be expressed as a difficulty in choosing the

right duty or switching ratio for the switch in a converter to overcome the existence and

occurrence of PSC the PV panels. When the PSC affect the PV panel, the conversion of

solar energy is diminished as the solar cells become reverse biased and drain the power

generation from other solar cells in the panel.

Figure 1.1: Example of PSC on a PV Panel

A figure describing the PV panel with PSC on it panels or cells is shown in Fig. 1.1.

The shaded cells depreciate the output power of PV modules due to reduced operating

short-circuit current (Isc), moreover these shaded cells can cause hot spot phenomena,

where the reverse biased cells cause heat dissipation at the affected cell and cause per-

manent damage if high temperatures are reached. However, the solutions of mitigating

hot spot phenomena damage on the solar cells is not the main research objective of this

research project. The damage on the cells could be mitigated using an bypass diode for

each cell as proposed by [10] or complex designs in the power control system in [11].

The implications for these methods, however, suggest the inclusion of more expensive

electrical components by increase of diode, capacitors and MOSFETs. That could spike
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the development cost for a more complex design of the DC-DC converter. The selec-

tion of methods to improve the PV system implementation and its power conversion

efficiency in this project lies in the design of the GMPPT algorithm which controls the

DC-DC converter selected. The design of the GMPPT algorithm and implementation

of the PV system for the proposed application, in simulation and real experimentation

conditions is conducted.

MPPT algorithms, as the name implies must keep the solar panels at the MPP where

the power gain is highest [12]. The solar panel of a PV system has a unique MPP that

varies with different irradiance and temperature values where the power generation is at

maximum. A DC-DC converter controlled by the MPPT algorithm is inserted between

the PV panel and the load, which is controlled by the pulse width modulation (PWM)

signal from the micro-controller. Duty cycle from the PWM is then changed according

to the voltage and current by for example, a micro-controller or a signal processor. The

micro-controller maximizes the power output from the solar panel by controlling the

duty or step-up ratio to always keep the solar panel operating at its MPP. The methods

all differ from each other through their tracking and convergence speed, complexity

of the implementation, sensor requirements, hardware implementation costs as well as

their control parameters [13].

Some simple and low-cost techniques for MPPT have been proposed in the literature,

such as Incremental Conductance (IC) [14] and Perturb and Observe (P&O) [15]. The

relationship of the P-V or I-V curve describes the relationship of the output power,

current and voltage that the PV panel or array setup is able to extract at whichever

point. The curve itself arcs to a maximum on the graph and no matter how much

more voltage or current is extracted, the setup is only able to generate at this MPP

at the apex of the curve. Thus, the PV cells produce a nonlinear characteristic of

output based on the temperature and the total resistance within the cells which are

analyzable through the P-V or I-V curves [16]. The MPPT algorithms allow the highest

efficiency for the PV system through the tracking of Global MPP (GMPP). However,

the conventional MPPT techniques risk being unable to track the local peaks and true

GMPP when partial shading conditions (PSC) occur, thereby greatly disrupting power

generation [13]. PSC happens when PV panels are shaded to non-uniform degrees of

irradiance, lowering the efficiency of power generation while multiple MPP appear on

the curves. Reduced MPPT performance greatly hampers both the power generated

and the reliability of the PV system [17].
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Figure 1.2: P-V Curve Under PSC

The Fig. 1.2 demonstrates multiple data points on a P-V that are referred to

as local or global maximum points for the PV system, the appearance and non-linear

characteristic of this type of curve correlates to how the proposed optimization algorithm

must perform in order to seek the true global maximum point and is detailed in Chapter

2. The optimization algorithms must apply design theory of particular functions and

methods that avoid choosing the local maximums as a proper solution.

GMPPT methods are required to seek out the correct global maximum point among

multiple incorrect local maximums for PV panels under PSC. The GMPPT methods

are categorized as optimization-based algorithms, hybrid approaches combining multiple

optimization algorithms, and other methods such as curve fitting and fuzzy controller.

The optimization-based algorithms include swarm intelligence- and evolutionary-based

algorithms which reiterate upon a set of solutions to find the global best solution. In

particular, the commonly implemented optimization-based methods are Particle Swarm

Optimization (PSO) [18], Firefly Algorithm (FA) [19], and Simulated Annealing (SA)

[20]. Moreover, enhanced versions of these algorithms, enhanced PSO [21] or Modified

Firefly algorithm [22] will have superior performance than their originals [5]. Other

than enhanced versions of algorithms, hybrid methods which consist of combination of

two optimization algorithms or optimization method and conventional method exist. It

has been shown that the hybrid methods are able to improve the system performance

[23].

1.2 Problem Statements

As stated in papers [24],[25], MPPT algorithms improve the efficiency of PV systems;

however, they suffer from cases of PSC. Several aspects must be considered, such as the
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advantages and disadvantages of each algorithm and application system characteristics

[26]. However, slow convergence rates that could result from improper parameter ad-

justment and risk of falling into local maxima could still occur in enhanced or hybrid

methods [27]. The chosen algorithm may also not perform well in a different system

despite possessing a black-box nature [5]. A form of performance validation for GMPPT

must be known.

From the selection of GMPPT algorithm of literature review conducted in this

project, the PSO algorithm and Fireworks Algorithm (FWA) are subjects of improve-

ment. PSO and FWA have demonstrated their capabilities to overcome conventional

MPPT methods as seen in [28] and [5], the algorithms are also simple to implement.

However, PSO algorithm is hampered by initialization problems where an improper ve-

locity update can severely slow down the convergence rate [29]. Moreover, PSO has a

tendency to fall into premature convergence into local maxima [30]. The weakness of

the PSO in local search and the weakness of FWA in global search were also prime selec-

tion choices that attributed to the implementation of a hybrid algorithm based on PSO

and FWA. In [31], Chen et al. introduced a hybrid algorithm based on PSO and FWA

called Particle Swarm Fireworks Algorithm (PS-FW). The algorithms are combined to

alleviate the weaknesses of both PSO and FWA as discussed earlier. The performance

of PS-FW is proven on 22 benchmark functions which show that PS-FW is accurate

and converges relatively fast in global optimization problems. An implementation of

the PS-FW algorithm has not been used for solving GMPPT problems. Henceforth, a

GMPPT algorithm will be implemented and tested under simulation and practical cases

that bring greater performances in tracking speed and accuracy than that of commonly

used GMPPT algorithms. Through this research, a gap is closed within GMPPT al-

gorithm development through design of the PS-FW hybrid algorithms that applies the

strategies unused within GMPPT application and having better performance than the

singular versions of PSO and FWA.

A simulation model and an experimental setup of a PV system built must be used

to determine to evaluate and validate the effectiveness of the proposed GMPPT algo-

rithm and designed boost converter. Implementation of PV arrays under PSC with

various different shading patterns are required which can reflect the P-V and I-V curve

performance. The algorithm search behavior and performance determines the tracking

of the GMPP which is found in these two curves of the PV panel using the balance of

exploration and exploitation of the algorithm. Hence, a boost converter topology that
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is suitable for the GMPPT algorithm to be incorporated under PSC in simulation and

experimental setup is required to be developed. The algorithm determines the output

or duty cycle in its search process which accompanies the boost converter in stepping

up the voltage level while finding the GMPP. The maximization and minimization of an

algorithm process, the duty cycle can be found through each of the tracked performance

in MPPT. An improper boost converter does not accurately reflect the GMPPT algo-

rithm’s tracking performance. Thus, the boost converter must be calculated according

to requirements of the PV system [32].

The exploration and exploitation both refer to the accumulation of the capability

of local search and global search of an algorithm during the algorithm search process

in early, middle and late stages. With a good balance, it can be declared that a good

convergence speed and accuracy is obtained [33]. The problem that is stemmed from

all optimization algorithms are the trade-offs and balancing of these two aspects while

solving the optimization problem [33]. Thus, an algorithm that is designed in mind

with the application of seeking GMPP under PSC in a PV system is obtained with

the hybridization of two algorithms; it maintains a good balance of exploration and

exploitation that allow it to be properly optimized in its objective.

1.3 Aim and Objectives

The project aims to implement a GMPPT algorithm that is able to maximize power

conversion efficiency for the PV system. This algorithm will be able to track the GMPP

among many power points which may or may not exist on the P-V curve. If there

are PSC affecting the solar panel arrays, then the conventional maximum power point

algorithms are ill suited to track the correct maximum power point which brings the

need to implement a GMPPT algorithm in the PV system.

The GMPPT algorithm is an implementation of hybrid PS-FW algorithm; which

combines both the PSO and FWA algorithm. Methodology of implementing this al-

gorithm from simulation uses MATLAB/Simulink software. To support the GMPPT

application, an adaptive control of the spark number generation from FWA stage is also

proposed in this thesis which controls the explosion sparks generated in later stages of

the algorithm. The testing stage consists of the experimental setup which utilizes a

digital signal processing board, dSPACE1104 and the CP1104 board that will output



8 Chapter 1. Introduction

the duty cycle from PWM signal alongside receiving any voltage or current sensor val-

ues through the Analog to Digital Converter (ADC) Channel. In addition, verification

of the PS-FW algorithm for GMPPT application is conducted with different shading

patterns under both simulation and experimental setup.

This algorithm will be compared to PSO, FWA and DE-PSO GMPPT algorithms

based on their performance in speed, accuracy and implementation complexity under

non-shading conditions (NSC) and multiple patterns of PSC. Notably, the algorithms

must perform accordingly in order to prove convergence or exploitation, and good ex-

ploration in the population which results in better overall GMPPT performance. A

research based on the extent of algorithm design and the application of said algorithms

is required.

The completion of the research project requires the fulfillment of the following ob-

jectives.

1. Designing and implementing a novel GMPPT algorithm for PV arrays which are

able to track the local and global maximum respectively and identify the GMPP

under NSC and PSC.

2. Designing and building a simulation model and an experimental setup of a PV

system to evaluate and validate the effectiveness of the proposed GMPPT algo-

rithm and boost converter under NSC and PSC with various different shading

patterns on the PV systems.

3. Proving and comparing the implemented GMPPT algorithms under the proposed

PV system application in terms of performances based on the balance of explo-

ration and exploitation.

With completion of the aim and objectives, the contributions of this thesis are made

clear and as follows:

• The proposed PS-FW hybrid algorithm for GMPPT under NSC and PSC is im-

plemented.

• An adaptive spark control to speed up search process of PS-FW algorithm for

GMPPT is proposed.

• The results are validated through both simulations and experimental setup.
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With the contributions of the research project, the project itself would also serve to

assist whoever is interested in the design of PV systems with the use of meta-heuristic

GMPPT algorithms. The concept of the algorithms are explained in detail and the PV

system is also shown in both simulation and experimental setup. Thus, the proposed

research aims to further the development of GMPPT algorithms for the future.

1.4 Research Scope

The research scope of this project involves the design and implementation of a hybrid

GMPPT algorithm in a PV system that faces PSC. The PV system itself is comprised

of multiple components, which may be differ according to the extent of the implementa-

tion towards off-grid or on-grid systems. However, in this research, the PV system only

requires to the research of PV panel model that can reflect the cases of PSC happen-

ing on them and the current DC-DC boost converter configurations and components

needed. The GMPPT algorithm is implemented into the PV system to control the boost

converter’s duty cycle. The PV panel model equations are only derived to the point

that irradiance values and temperature may properly reflect the desired characteristics

on the P-V or I-V curves which include power values and any peaks that may appear.

The methodology for calculating the values of electrical components of the chosen boost

converter; the inductance, capacitance and load resistance are all understood which can

handle the input and output of the PV system under PSC. The boost converter is only

limited to boost converter configurations that appear in literature, thus there are no

new designs of the configurations proposed.

Currently, the GMPPT algorithms fall into a subcategory of meta-heuristic algo-

rithms; which are mostly evolutionary and swarm intelligence based. The research

extends to the understanding of most concepts involved in only these two subcate-

gories, which are the terminology, framework and operators involved which ultimately

influence the algorithm search process. With the research conducted, the proposed

implementation is modified for GMPPT purposes.

The research does not focus on other sub categories of the meta-heuristic family;

however, the other GMPPT methods that are not meta-heuristic in nature are men-

tioned if they are relevant to the literature review. Other GMPPT methods may be

mentioned as well as they share terminology or design choices or are involved in modifi-

cation and hybridization. The literature review is conducted on only GMPPT methods
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in literature, they are explored as well to determine the performance criteria that vali-

dates each GMPPT method. The performance criteria only involve the measurement of

speed and accuracy, while also mentioning the global search and local search capabilities

of a GMPPT method. The review is also conducted on strategies and operators of the

GMPPT method that determine or aid in the tracking process of GMPP under PSC.

Moreover, the literature review conducted influence the methodology of simulation

and experimental setup. Only the simulation and experimental tools that are adopted by

the literature are considered as the results from the papers reflect their validity. There

is no research of untested software or hardware in the proposed project. Thus, the

simulation and experimental setup is then complete with the PV panel, boost converter

and the GMPPT algorithms, creating a PV system under PSC with GMPPT.

1.5 Thesis Structure

The remaining of this thesis is organized as follows.

In Chapter 2, the background of the proposed PV system which includes the partial

shading, PV panel, DC-DC converter topology and the methods or techniques used in

the meta-heuristic optimization algorithms are expanded. Reasoning of meta-heuristic

usage chosen for the PV system application is given.

In Chapter 3, a literature review of implemented GMPPT algorithms, that are able

to track GMPP under PSC, is made. The literature review assists the proposed research

in simulation and experimental tool selection to contribute towards the design of the

methodology. Moreover, the performance criteria that denotes the performance of a

GMPPT algorithm is given. The chapter also focuses the concepts on hybridization as

the motivation for the hybrid algorithm is drawn from PSO algorithm and FWA.

The Chapter 4 focuses on the proposed research work regarding the design of PV

panel model, conventional boost converter specifications in terms of calculations and

the hybrid PS-FW GMPPT algorithm. The process and explanation of implemented

PSO algorithm and FWA mathematical operators, alongside the detail and operators

used for the hybrid PS-FW are presented.

Chapter 5 briefly introduces the hardware and software used for the simulation which

is the proposed simulation model of PV panel, simulation software for the PV system,

experimental software and experimental setup of the PV system. The methodology to
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be proven in this Chapter will validate the performance results of designed GMPPT

algorithm.

In Chapter 6, the validation of PSO, FWA and DE-PSO GMPPT algorithms and all

methodology of simulation and experimental setup is conducted. Performance criteria

regarding the GMPPT algorithms need to be given first, supplementary validation is

also made upon the power threshold and seed settings. The simulation results of the

performance of the hybrid PS-FW algorithm are shown and discussed with comparison

against other singular GMPPT algorithms. Then, the proposed PS-FW GMPPT al-

gorithm results are presented and discussed with terms to the performance criteria. A

complete summary of research objectives completed is also made.

Finally, the conclusion and future work are given in Chapter 7.



Chapter 2

PV System and Optimization

Algorithms

The relation to the background of the proposed PV system includes, PV panel, partial

shading on the PV panels, DC-DC converter topology and the methods or techniques

used in the meta-heuristic optimization algorithms. The mentioned background are

given in both Section 2.1 and Section 2.2.

There exist many other MPPT techniques in the field of PV system MPPT which

may be applicable to a simple PV system application. However, the reasoning of meta-

heuristic utilization for the PV system application itself is given through the culmination

of concepts in Section 2.3. As the MPPT or GMPPT problem is harder to solve, these

soft computing methods are suggested and justified as the meta-heuristics are able to

estimate a solution for the problem without sacrificing too much time or is able to

supply the best possible results.

Moreover, the operators which are sets of strategy and equations form a basic de-

scription of a section inside the operator’s framework. By denoting the operators, the

operators can be generalized as the main factors in modifying the population of indi-

viduals to find the best solution. As such, a modification to the operator as a whole

can also be easily recognized. Details regarding the operators are explained further in

Section 2.3.

Exploration and exploitation are commonly designated as the performance validation

of an algorithm. The Section 2.4 explains the exploration and exploitation (global search

and local search) further detail with context regarding the difficulty of balancing the
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two aspects.

2.1 Solar Panels and Partial Shading

A PV device may be any element that converts sunlight into electricity. The elementary

PV device is the PV cell. A set of connected cells form a panel. Panels are then

composed of PV cells series in order to obtain large output voltages. Panels with large

output currents are achieved by increasing the surface area of the cells or by connecting

cells in parallel. A PV array may be either a panel or a set of panels connected in series

or parallel to form large PV systems. Solar energy obtained from a solar PV cell is not

constant at all times as the amount of extracted power from a PV system is affected by

external conditions like solar irradiance and temperature [34].

When the photons in sunlight contact the PV panels, they are absorbed by semi-

conducting materials. The electrons (which are negatively charged) are separated from

their atoms as they are charged. Due to their unique structure as well as the materials in

the solar cells, electrons can only move in a single direction. For this process to work, it

is vital that the materials used in the electronic structure such as silicon contain small

amounts of boron or phosphorus and used in different layers. Solar cell arrays help

convert collected solar energy into usable amounts of direct current (DC) electricity.

Occasionally the performance of a PV panel is provided by manufacturers at Standard

Test Conditions (STC) where irradiance is at 1000 Wh/m2, temperature is at 25 degrees

Celsius and the angle of degree for the PV panel towards the sun is 45 degrees. During

this state, the P-V or I-V curve shows only one single peak MPP that is the optimal

operating point of the PV panel or array [35]. This point denotes the performance of

the specific PV panel with given maximum current Impp, voltage Vmpp and power Pmpp.

Partial shading on the PV panel is mostly caused by surrounding buildings, passing

clouds or trees, the P-V curves of the entire panel is affected drastically as the charac-

teristics vary due to multiple MPP existing on the curve [36]. As the PSC cases affect

the generation of power within the PV system, it is of advantage to use a simulation

model to understand the behavior of a PV panel or array under different solar irradiance

and temperature conditions. Thus, only the measurements made at the time via the

I-V and P-V curves allows us to accurately determine the electrical parameters of the

PV panels.
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The following issue is resolvable by utilizing a DC-DC converter which implements

a way to control the converter either through the use of integrated circuits or pro-

grammable devices such as micro-controller or field programmable gate arrays. Through

control of the switching at the converter, the method of maximizing the power of con-

version in the PV panel is applicable. Depending on the DC-DC converter configuration

applied in the system, desired voltage or current levels can also be obtained based on

the component values and proper control of the switching.

2.2 DC-DC Converter

On the topic of converters for PV systems, it is regarded that switching regulators,

which DC-DC converters are categorized as, are utilized in favour of other methods of

voltage or current regulation. For example, in linear regulators, the lack of inductors to

store electrical energy is discharged off through heat dissipation, greatly increasing risk

of damage to passive components in the system.

The DC-DC converter is a component used to match the input to the load output

of electrical systems either during current or voltage levels. This can be done by storing

the electrical power into inductors or capacitors then using various MOSFET, IGBT

switches and diodes. However, the efficiency of a DC-DC converter is dependant on

proper switching rise and fall times which can dictate the resultant parasitic excess of

electrical energy in the given circuit. There are two modes that a DC-DC converter

may operate in, the two modes being either discontinuous conduction mode (DCM)

or continuous conduction mode (CCM). A power stage can operate in both modes.

The primary characteristic of a continuous inductor current mode is that its current is

flowing continuously in the inductor during the entire switching cycle while in steady

state operation. The other mode, discontinuous inductor current mode, is characterized

by the inductor current flow of power reaching zero for a portion of the switching cycle.

The current initially starts off at zero then reaches a peak value before finally re-

turning to zero during each switching cycle. In addition, as DCM allows for the fall of

the inductor current to zero level, this means that the value of the inductance required

for DCM is lesser when compared to CCM. However, DCM has the disadvantage of

high peak current when at the switch terminal and high peak voltage at the load resis-

tor, which may result in strain on component durability. Regardless, the conventional

boost converter is able to operate in any mode of current operation under changed
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power levels. Certain topology exist to categorize the usage of the different types of

converters. The most basic of these include, buck, boost and buck-boost converters.

PV system applications may range from small scale battery charging applications to

large scale on-grid solar farms. Thus, the need to choose a suitable topology to fit the

chosen application is needed. Boost or buck converters have the advantage of being

used in design implementation and manufacturing compared to buck-boost converter

in the application due to the low number of electrical elements implemented inside the

topology [37].

Boost converters will obtain higher output voltage from lower input voltages, making

the converter appropriate for a PV system as the voltage values will be maximized [38]

[39]. Moreover, the boost topology is proven to maintain a balance in qualities in

comparison to buck and buck-boost by obtaining higher efficiencies when used for PV

system [40]. Given the previous statement, designs of boost converter topology can be

considered from then on for PV systems.

Boost converter configurations implemented may include but not limited to the

following;

1. Boost Converter

+

-

Figure 2.1: Conventional Boost Converter Schematic

Conventional topology that is commonly used in PV system for their use in step-
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ping up voltage from the PV panel. The principle operation of the DC-DC con-

ventional boost converter shown in Fig. 2.1. When the switch is on, the diode

becomes reverse biased, thus, isolating the load stage. The input from the PV

source will store electrical energy in the inductor constantly during on and off

states. As the switch turns off, the inductor discharges to the resistor load as

well as from the input source, resulting in a greater load voltage than the source

voltage.

The conventional boost converter configuration proves its simplicity and low cost

in design which makes a common choice in PV systems/ has a simple circuit and

low cost [41]. However, the conventional boost converter topology may consist of

undesired disadvantages which will need to be overcome through careful selection

of components. There are high ripple currents in the circuit that can damage the

active and passive components, high voltage stress may damage the power switch

and a sufficiently large capacitance value is needed to keep the output voltage

steady from voltage ripple [42].

2. Inter-leaved Boost Converter

+

-

Figure 2.2: Inter-leaved Boost Converter Schematic

The Fig. 2.2 shows the design of an inter-leaved boost converter, an extra set of a

component from the conventional boost converter used before the load. An extra
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switching element is inserted with its own inductor and diode. Hence, the load

will be in series with double the switching provided by the two switching elements.

One drawback of the conventional boost converter is that high current ripples can

be drastically reduced by adopting the interleaved boost converter configuration

[43].

The topology works with binary branches that operate 180 degrees out of phase

from each other. Each phase operates as a separate conventional boost converter

described earlier. Because the two phases are combined at the output capacitor,

effective ripple frequency is doubled, making ripple voltage reduction much easier

in the entire circuit. However, the number of passive and active elements increase

in the configuration, which increase cost and complexity.

3. Cascaded Boost Converter

+

-

Figure 2.3: Cascaded Boost Converter Schematic

High voltage applications that require outputs that start from kilo-volts can utilize

cascaded boost converters in comparison to single stage boost converters which

may not have sufficient voltage gain for high voltages [44]. The input voltage is

stepped up in several stages which cascades at the end of the output. Fig. 2.3

describes the cascaded boost converter configuration.
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4. Boost Converter with Voltage Multiplier

+

-

Figure 2.4: Boost Converter with Voltage Multiplier Schematic

If higher voltage gain is desired instead only then the voltage multiplier topology

can be utilized [45]. An addition of multiplier cells count to achieve the required

duty ratio for larger gain is implemented for the configuration, the multiplier cells

can be increased for further gain as well.

In a conventional boost DC-DC converter, the switch is powered by a high frequency

pulse-train current waveform that is also referred to as the pulse width modulation

(PWM). Frequency dictates the amount of pulses that occur per second according to

the (2.1).

f =
1

T
. (2.1)
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where f is the frequency, T is the time or period. In this pulse, a set duty ratio will

determine the time in the pulse where it is Von, so for example a 30% duty ratio will

turn the pulse on for 30% of its cycle. The Fig. 2.5 describes various duty cycle ratios.

The conventional boost converters require large switch duty ratios to obtain a higher

voltage gain, which results in risk of higher current stress in the boost switch. The

maximum possible voltage gain is determined based on the resistive components within

the circuit which can constrain the voltage gain. In turn, the power loss is potentially

reduced for large duty ratios. How many times the switch pulses at the chosen frequency

and for how long at the duty ratio will affect the electrical energy in inductor being

pulsed through the resistor load.

Various risks in the design of a boost converter can be determined which must

be resolved or compensated for. There are diode reverse recovery problems because

the diode conducts for a short period of time when switching from the conducting to

the blocking state, a diode or rectifier has stored charge that must first be discharged

before the diode blocks reverse current. The frequency and duty cycle ratios affect

these timings, if improper amount of time is given in the circuit then there will be

excess electrical energy in the circuit, damaging all the components. Furthermore if

large current ripples exist in the input, it will further degrade the efficiency of the

converter due to the stresses that occur on the switches [46]. The term ripple voltage

or current are synonymous with other and the terms will be commonly shared.

Coupled inductors or high frequency transformers are usually used to obtain high

conversion ratios of voltage in a converter [47]. The inductor selection would be compli-

cated if large gains are required as the inductor will require a higher number of winding
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turns. The leakage inductance for the inductor will increase which increases the voltage

stress on the switch, making the design more complicated [48].

Nevertheless, the boost converter usage is commonly found as seen in multiple re-

views of MPPT implementations [5][23] for both on grid and standalone PV systems.

As discussed, the boost converter’s specifications are suggested for grid-connected sys-

tems due to its ability to step up and maintain voltage levels while taking into account

unpredictable input PV levels [49]. A conventional boost DC-DC converter will hence

be utilized in the design for the PV system in this project. By utilizing less components

in the design, it will improve accessibility and distribution of the experimental setup.

As such, for the design of the current research application, the switch must be able to

maintain a high frequency of switching or large enough capacitor implemented to reduce

the ripple current. Furthermore, the inductance of the inductor and capacitance of the

capacitor must be high enough to satisfy the leakage of inductance. The selection of the

components in the proposed boost converter can be calculated from equations which

will be detailed in Chapter 4.

2.3 Meta-heuristics and Optimization Algorithms

Optimization algorithms are part of computational optimization techniques. Such algo-

rithms are also commonly referred to as methods or techniques within the application

scope. Optimization algorithms can be roughly divided into two categories: determinis-

tic algorithms and heuristics. Deterministic algorithms are designed in such a way that

it is guaranteed that they will find the optimal solution in a finite amount of time. How-

ever, for very difficult optimization problems like global optimization, the dimension of

these problems can drastically and exponentially increase the time needed to find an

exact solution.

Heuristics are not guaranteed to find an optimal solution, and therefore generally

return solutions that are not the exact solution, but is the current best possible solution

given in that time frame. The primary goal of a heuristic algorithm is to find the

most optimal solution in the given time for the current problem which makes them

specific and problem dependent. Normally, heuristic algorithms are easily trapped in

local optimum where the solution found is not the globally best solution.
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Thus, meta-heuristic methods or algorithms which are more complex and high-level

exist that are able to seek the global optimum solution. The meta-heuristics allow

themselves to explore the search region of a problem and thus avoid the chance of

trapping within local optimum [50]. This means that, meta-heuristic are problem inde-

pendent implementations of a method, technique or optimization algorithm. However,

fine tuning of the system is still required for the specific parameters are always depen-

dent on the application. Optimization algorithms are deemed as algorithms that find

solutions to the engineering problem at hand. An exact algorithm is usually defined

as an algorithm that always finds the optimal solution in the optimization problem;

given that, the application at hand where the input variables always differ, it will be

difficult to prove that the algorithm perform suitably in the PV system as the aim is to

maximize power generation efficiency under fast speeds. The meta-heuristic methods

as defined beforehand therefore will perform adequately in the PV system that requires

best possible optimal solution only; since, a good selection choice can also be made to

improve the performance of the PV system by implementing good meta-heuristics and

their practices fitting to the PV systems application.
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Figure 2.6: Taxonomy of Meta-heuristics [51]

The performance capability of meta-heuristics in their problem solving have been

proven to be efficient and feasible approaches to solve hard optimization problems [52].

A depiction of generally widely used meta-heuristic methods and techniques in litera-

ture are presented by [51] in Fig. 2.6. The introduced taxonomy has classified the op-

timization methods based on the theoretical principles. Based on the taxonomy, meta-

heuristics are mainly grouped in single solution based, population based and swarm

intelligence (SI) based methods. Including the methods presented by the paper, single

solution based heuristics include SA, LNS , TS , ILS , GLS and VNS . Population based

methods can also fall into GP, EP, ES, DE and EDA. Finally, there are SI methods

which include the popular PSO, ACO and FA.

Outside of the presented taxonomy, several meta-heuristics have also appeared re-

cently. Single-solution based algorithms have no current recent developments. Single-
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solution algorithms experience popularity in enhanced or hybridized algorithms for op-

timization problems as shown in [53] and [54]. For example, the Jaya algorithm by [55]

introduced in 2016 is quite popular as it has shown improved versions over the years

in 2018 by [56] and in 2021 by [57]. In population based algorithms, Black-Widow

Optimization Algorithm from [58] in 2020, Aquila Optimizer by [59] in 2021, Sailfish

Optimizer (SFO) by [60] have emerged recently to solve optimization problems.

The details, application and benchmark of these algorithms are referred to in other

recent reviews of meta-heuristic methods as well. As such, the methods just mentioned

but not limited to, have been proven to be impeccable for the design of not just hard

optimization problems but the application into real-world solutions by Abdel et al. [61],

Wong and Chew in [62] and Paulo et al. in [63].

2.3.1 The Optimization Process

The optimization process is generalized in this subsection for most meta-heuristic meth-

ods. However, the specifics of implementation and terminology may not be shared be-

tween other classes of meta-heuristics. The description of the process is only basic and

will be expanded upon in Chapter 3 where the selection of meta-heuristic subclass is

decided on.

The goal of global optimization is to find the best possible elements xn from a set X

according to a set of criteria F = f1, f2, .., fn. However, in the case of single-objective

algorithm where the solution is already re-presentable with one objective function, f or

f1 then the quantifiable elements from X map themselves with respect to the objective

function and in turn fulfill the single objective. When the set of criteria F includes

elements of more than one fn, it is referred to as a multi-modal objective where the

multiple objective functions must be evaluated. Global optimization comprises all tech-

niques that can be used to find the best elements xn in X with respect to such criteria

f ∈ F .

The domain X of f is the problem space and contains the solution or answers to

its objective function, f . Depending on the type of optimization, elements inside X are

most commonly termed as individuals, candidate solutions and X itself is termed as

population or swarm. Hence, for this research project, the terms; such as, ’population’,

’individuals’, ’solutions’ and ’swarm’ are terms that remain synonymous with each other

as the meaning is shared. The solutions are sometimes denoted as genotypes which are
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comprised of numerable distinguishable individual characteristics that can be symbol-

ized as the DNA of a genotype. Typically, most meta-heuristics maintain a stochastic

generation and modification of solutions due to the non-deterministic behavior of the

objective function, which is what global optimization techniques strive to solve.

y = f(x). (2.2)

Equation (2.2) refers to the objective function of said optimization problem. Any given

x element will be able to fulfill the function and the amplitude of the evaluated fitness

is given.

xi = (x1, x2, ..., xn)t. (2.3)

Equation (2.3) refers to the set of elements that fulfill the objective function. An xn

element is a vector of size with dimensions that is dependent on how many variables

the element needs to answer the function and at whichever iteration or generation, t.

For example, if an element requires two variables to compute the amplitude or result of

the objective function, f then it is a two-dimensional problem. The dimensionality of

a problem increases the difficulty of solving the algorithm as more variables are needed

to be optimized and changed to seek the desired maximum or minimum. Even so, even

in one dimensional functions there can exist more than one global maximum, multiple

global minima or even both within the problem search space [64].
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Figure 2.7: Local and Global Maximums in Fitness Landscape [64]

The Fig. 2.7 describes a 3-dimensional optimization problem and its fitness land-

scape. The differentiation between local maximum, local minimum, global minimum

and global maximum are given. In optimization, the maximum and minimum represent

the objective of the problem solving. A solution to the objective function is reflected

onto a fitness landscape.

With a single criterion f fulfilling the optimization problem, an optimum consists of

either the maximum or minimum depending on the user requirements for the algorithm.

To give an example, there is an engineering problem which requires the minimization

of time spent doing a certain task by optimizing the task routing and scheduling, while

there is another business problem that requires the maximization of profit gained by

changing the sales price of stock. Though many algorithms build their process and

behavior upon the objective of minimization, maximization of objective function can be

done by simply reversing the fitness value initial comparison to a negative value.
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Figure 2.8: Multimodal Fitness Landscape [64]

In [64], different possible properties of fitness landscapes have been presented that

an optimization problem may fall under. The implication is that the optimization

problem can have different shapes in their landscape based on the objective function. An

objective function that is hard to solve will typically exhibit an alteration or mismatched

shape in the fitness landscape of objective values with respect to solution of the elements.

A simple optimization problem would have a linear ascending or descending shape in

their fitness landscape making the maximum or minimum seeking easy to solve.

According to the definition of fitness landscape of a one dimensional problem from

[65], the algorithm’s search operations within the search space influence the efficiency

of the algorithm. The Fig. 2.8 shows a fitness landscape that similarly represents

the problem if the solutions are mapped to the objective functions in this research

project. The mapping of the objective function for GMPPT is shown in Chapter 1 Fig.

1.1, that shape can be exactly defined as a multi-modal problem. Since optimization

algorithms are guided by objective functions, the optimization problem is identifiable

and solvable through a mathematical perspective in this context if it is not continuous,

not differentiable, or if it has multiple maxima and minima. Through understanding of a

problem’s difficulty, the applied methods and techniques of the optimization algorithm

may balance the local search (exploitation) and global search (exploration) abilities

while taking into account the characteristics of the objective function. It is a long

proven fact that the exploration and exploitation of solutions in the search space, fitness

landscape or solution range dictate an algorithm’s performance in global optimization

[66] [67]. The balancing of these two criteria are essential in any optimization algorithm
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objective. The applied methods are different for each optimization algorithm subclass as

already shown in Fig. 2.6, thus the method would be chosen based on application needs.

Given that the fitness landscape is non static in most cases, the difficulty of solving

an objective function with unknown fitness landscape at the time is resolved through

balancing the exploration and exploitation capabilities of an optimization algorithm for

the GMPPT problem at the chosen approaches which is either SI based or population

based evolutionary computation methods.

2.3.2 Improvement Aspect of Optimization Algorithms

While the use of optimization algorithm within engineering problems is widespread,

academic research into the improvement of the algorithms can be stemmed from the

addition of new behavior or operators that describe a method or feature in the algo-

rithm process in its determination of the minimization or maximization of objective

values. Moreover, the determination of algorithmic specific parameters is also a subject

of optimization.

The common parameters in evolutionary algorithms (EA) themselves mainly consist

of population size, coefficients that determine crossover or mutation which modify the

solution in each of their respective iterations, convergence criteria and initial randomized

population solutions. While similarly, the algorithms will also have other parameters

that are exclusive to them, for example PSO utilizes a velocity inertia that controls

the change of position on the solution. But, CS uses random values in Lévy flights

for the step sizes determination. A parameter deployed in one algorithm may not be

present in another. While an example was shown earlier, an algorithm may utilize

elite or random selection processes, random searches of solutions, solution limit search,

complete abandonment of weaker solutions through the removal of population size as

shown in FWA and adaptive control of parameters such as maximum allowed searches

for weaker population, and minimum searches for stronger solutions. Under the guise

of all these complex and unique differences between every type of implementation; how-

ever, the basic principle of the evolutionary algorithm employed is a common point in

which maximization or minimization of objective function values must be determined

regardless if the problem was constrained under time, complexity or cost.

In practicality, an approach to any method is sought after for its features such as

speed and precision rather than the design. Speed and precision are highly conflicting

objectives in the realm of meta-heuristic optimization given their probabilistic nature of
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the algorithms. A common viewpoint that can be gathered is improvements would only

occur from the trade off between either improving accuracy or investing more time [64].

Whether the methods of any algorithm are useful in the application must be compared

in between the application specific implementations of any algorithm as well; since, it

is proven that an algorithm cannot perform equally in all optimization problems unless

modifications to parameter values through tuning or unique features for application

specific implementation are made [68].

2.3.3 Hybrid Optimization Algorithm

A method of improving the efficiency of algorithms through the use of capitalizing on

the strengths and weaknesses of each certain algorithm technique or methods has been

a popular subject of research recently [69]. The method of hybridizing different algo-

rithm techniques is able to combine the good strategies of each algorithm technique and

produce the solution with performance that is greater than what a singular algorithm

is capable of. The hybrid algorithm usually combines a part of the behaviour or process

of two respective algorithms. Typically, a design of hybridization would stem from the

requirement of specific methods in other algorithms that is desirable for the application

problem at hand. Hybridization may lead to the combination of equations and oper-

ators from its algorithms in a bid to find an equal balance point between exploitation

and exploration of the solution search space.

1. Hybrid Harmony Search Algorithm With Grey Wolf Optimizer

The proposed hybrid algorithm for global optimization problems is called GWO-

HS [70], which combines Harmony Search (HS) with the Grey Wolf Optimizer

(GWO) to resolve HS parameter selection problem. Moreover, a form of opposition-

based learning technique is implemented within their hybrid algorithm to improve

HS exploration due to HS behavior that commonly traps it within local optima.

Moreover, two of HS parameters were updated using the GWO instead, which are

pitch adjustment rate and bandwidth. The demonstration of hybridization bene-

fits can be observed from the mutual benefit for the entire algorithm. The author

conducts an evaluation of the GWO-HS hybrid which has proven its performance

exceeding in speed and accuracy against other algorithms in literature while using

24 other classical benchmark functions and 30 state-of-the-art benchmark func-

tions from CEC2014.
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2. Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search

Algorithm

A hybrid algorithm proposed by Arora et al.[71] which combines the GWO and

Crow Search Algorithm (CSA) to form GWOCSA. CSA is a meta-heuristic algo-

rithm that mimics the intellectual conduct of craws is aptly called Crow search

algorithm (CSA). The author proposes their hybrid algorithm that combines the

strengths of algorithms effectively with the aim of generating promising candidate

solutions to achieve global optima efficiently. A widely utilized set of 23 bench-

mark test functions with a wide range of dimensions and varied complexities is

used in their paper to validate the competence of the proposed hybrid GWOCSA.

For verification, the results of the proposed algorithm are then compared to 10

other algorithms. In terms of high local optima avoidance ability and fast conver-

gence speed, the statistical results obtained show that the GWOCSA outperforms

other algorithms, including recent variants of GWO called enhanced grey wolf

optimizer (EGWO) and augmented grey wolf optimizer (AGWO).

3. Hybrid ACO with PSO Algorithm

Pal et al.[72] presents their ACO-PSO hybrid algorithm which combines ACO and

PSO together for enhanced performance capabilities. To create an initial popu-

lation from the existing population from the existing population applied in the

hybrid ACO-PSO (second stage), genetic algorithm (first stage) is used. This im-

plementation of the hybrid optimization algorithm makes complete use of param-

eter of both algorithms unlike the traditional ACO-PSO. In the given algorithm,

the PSO is used to enhance the attributes in the ACO which defines that the

selection of parameter does not depend on artificial experience but instead relies

on the robust search on the particles in the PSO. In this paper, an enhanced uti-

lization of ACO was also used and by this technique the shortest path or routes

of ants was found. In the output of the experiment it is shown that the optimize

algorithm not only reduced the number of paths in the ACO, but it also found

the shortest path at the largest path. Overall, the simulation result shows that

the combination of ACO-PSO performs better than ACO and PSO.

4. Hybrid Whale Optimization Algorithm with DE

Whale optimization algorithm (WOA) was initially presented in [73] as a biological-

inspired optimization algorithm. Initially, the algorithm promoted itself with the
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usage of less control parameters and relatively simple implementation. However,

WOA can easily get stuck in the local optimum and may lose the population diver-

sity, suffering from premature convergence in the later stages due to the presence

of elite vector [74]. Hence, the authors in [74] proposed a hybrid whale optimiza-

tion algorithm called MDE-WOA, which utilizes aspects from both the Whale

Optimization Algorithm and DE. The main change in the DE operators was a

modified differential evolution operator (MDE). A lifespan mechanism is intro-

duced to the whales in WOA, which when the MDE operator is applied to whales

in the population which will enhance local optima avoidance ability. Moreover,

an asynchronous model is utilized to accelerate the algorithm’s population con-

vergence and improve its accuracy. Their proposed MDE-WOA, is verified with

testing against 13 numerical benchmark functions and 3 structural engineering

optimization problems. The benchmark results prove that their proposed MDE-

WOA successfully obtains better performance than WOA, basic DE and three

DE variants, PSO, Sine Cosine Algorithm, Chaotic Squirrel Search Algorithm and

Adaptive Fireworks Algorithm in terms of accuracy and robustness on a majority

of cases.

5. Hybrid Meta-Heuristic Algorithm Based on Cross-Entropy Method and

Firefly Algorithm

The FA inspired by bionics is initially presented in [75]. In the original cross-

entropy method by Rubert in [76], the authors in [77] claim it has disadvantages

of large computational cost and slow convergence rate. While in FA, the algorithm

produces advantages of strong local search ability and fast convergence but risks

the possibility of falling into a local optima rather than obtaining the global best

solution. A novel hybrid meta-heuristic algorithm is proposed by [77] through

embedding the cross-entropy (CE) method into the FA to enhance the global

searching ability to form the Cross-Entropy Firefly Algorithm (CEFA). The new

method utilizes both CE operator and FA operator which has introduced individ-

ual information sharing between the CE sample and the FA population through

co-evolution in each iteration. In the validation of this proposed hybrid, the au-

thors have applied 23 standard testing functions onto their work. Comparisons

were made against conventional FA, CE, PSO, GA , SSA, Butterfly Optimization

and another Hybrid Firefly Algorithm. In the results, their proposed hybrid algo-

rithm minimizes the risk of falling into a local optimum, enhances the algorithm
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global searching capability and finally improves its convergence rate. The algo-

rithm can be deemed to successfully balance between exploration and exploitation.

The described hybrid algorithms serve to prove a demonstration of the implemen-

tations conducted by various authors in implementing hybrid algorithms. Through the

results provided the concept of hybridization is visualized through results proven in

general engineering problems.

2.3.4 Applications in Engineering Problems

Algorithms have already applied their methods onto various optimization problems,

namely engineering in specific. The engineering problems entail processes which are

either time constrained or face dynamically altered environmental changes, such prob-

lems forego a deterministic approach to their solving in favour of employing the different

optimization algorithms in their design. Without the meta-heuristic optimization al-

gorithms, the objective functions become substantially difficult to solve which affects

effectiveness of applied real-world systems due to improper control of the system [78].

The authors in [79] have utilized Moth-Flame Optimization Algorithm (MFO) to

solve minimization of speed design for gears or brake shafts while constrained under

stress of the components, design of car side impact based on the measurements of the

material used. Recently, big data has been a subject of interest in academic fields and

optimization algorithms are utilized in the subject. The authors in [80] have employed

Parallel Random Forest Algorithm (PRF) with the objective of determining useful data

sets in the sea of big data; the algorithm has also utilized operators to reduce the

dimension of the data sets and a weighted voting method to increase the accuracy

of choosing among high dimensional noisy data. Yongmin Zhang et. al in [81] has

developed their own data gathering optimization algorithm for the purpose of dynamic

sensing and routing of its rechargeable sensor network. The algorithm will balance

energy allocation of its sensors and then optimize the sensing and routing of its sensor

data in order to optimize the energy efficiency.

The algorithms above are examples of meta-heuristic optimization algorithms em-

ployed in engineering problems for problem solving, in the literature they are compared

using the average value of the speed and best solutions in respect to the specific appli-

cation at hand against other algorithms. Majority of the algorithms, however, always

propose that their algorithm performance is evenly matched or superior against oth-

ers, due to this fact the proposed algorithm in this project must be compared against



32 Chapter 2. PV System and Optimization Algorithms

other algorithms in literature within the proposed simulation and physical experimental

system to ensure a fair comparison without bias.

Figure 2.9: Framework of Basic Evolutionary Algorithm [82]

The framework of an evolutionary algorithm can be observed in Fig. 2.9. In its core,

evolutionary algorithms, their derivatives and sub-classes function in the same behavior

are described in the figure.

The term population refers to the candidate solutions of an optimization problem.

The candidate solutions share the name synonymously with individuals or phenotypes

in literature; since, each solution contains properties which can be modified or mutated.

The properties are also synonymously called chromosome or genotypes. In the context

of the application in this research project, the population of individuals contain solutions

of the duty cycle property. A chromosome in the typical GMPPT solution is denoted as

the duty cycle as the value itself is able to completely represent the candidate solution.

Each solution has a duty cycle that answers the PV system’s objective function.

In each generation, the evolution of an initially randomly generated individual pro-
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gresses iteratively per generation. The fitness value of the solutions are values obtained

from evaluating an individual solution against the objective function for the optimiza-

tion problem being solved. Then, individuals are chosen using the selection operator to

be modified to form the new generation with different properties. The next iteration will

be evaluating these new individuals. Finally, the algorithm terminates upon maximum

number of generations or when a certain fitness required is reached.

The terminology used in meta-heuristics was a large topic of discussion if not so

today where as meta-heuristics appeared in literature, their classification can be loosely

extended as a variant of evolutionary algorithm [83].

Take for example in the research topic of GMPPT algorithm and the application,

it is known that the duty cycle is represented as the candidate solutions and the duty

cycle can be evaluated using the objective function, which is a real-world model PV

system connected to the DC-DC boost converter to measure the quality (fitness) value.

An initial solution set is introduced to modification from a few variation operators

which modify the current solutions, creating a new set of candidate solutions; then,

after the evaluation of current, then new duty cycles, finally, a selection scheme such as

tournament or replace method at the end of one iteration. If needed, the introduction

of an extension of the algorithm with non-standard features like constraining the time

allowed for reaching a GMPP or assign penalties to weak candidate solutions. Search

processes repeat until the method ends. Finally, the parameter tuning is conducted in

the algorithm for maybe population size and the rates of the operators. The rates of

the operators can be deterministic or stochastic values; nevertheless, they are modified

to improve that operator or the method in a whole. If a term would be describing this

set of methods, it can be defined into a variant of evolutionary algorithm, it could be a

variant of evolutionary algorithms from SI because the behavior of the method can be

extended into PSO.
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Figure 2.10: PSO Iterative Movement [84]

In PSO, a set of candidate solution particles, are first initialised, evaluated and

modified using velocity and inertia operators. The entire particle swarm is brought over

into the next generation and inertia is decreased as iterations go on. The whole search

process obeys the criteria to be deemed an evolutionary algorithm, but why would PSO

be termed as a method of SI? The answer can be found in the intricacies or strategy of

the design in any method, a consideration of individual and group observations within

design such as PSO and FFA individuals would act in a collective behavior as a group by

moving to the best solution iteratively. For example, Fig. 2.10 describes this collective

behavior of improvement over the course of several iterations in PSO, the group utilizes

information from each other, as a group to search for the best solution. Other than that,

evolutionary algorithms rely on the selection of parents and or without crossover, as it

follows the rule of survival for the selection of best candidate solutions where surviving

individuals are the most likely to be chosen from selection scheme.

For this sake and within this research project application, an evolutionary algorithm

is defined so as long as it is able to represent the behavior of multiple evolutionary pro-

cesses; such modification of solutions using variation operators may include combination,

crossover, mutation and selection of populations into a compilation that obeys a math-

ematical process structure. Differences in the strategy of search process in the objective

of searching and convergence to the best possible solutions in the interests of user or

application needs cause differences between many other metaheuristic methods. Thus,

the design of the proposed algorithm is still seeking the best possible performance for

the GMPPT application and system requirements. When evaluating the performance of

an algorithm, two factors are taken into account which are the quality of final solution

and the time taken to reach this final solution. The efficiency of the whole process is
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problem dependent and relies heavily on the successful strategy, parameter usage, its

tuning and the plethora of variation operators used.

2.4 Operators

Variation operators will be defined in terms of evolutionary algorithms, genetic opera-

tors represent an analogy from but not limited to mutation, crossover, reproduction and

competition. Individuals henceforth evolve from the set of initial candidate solutions

that are modified by the operators. Genetic variation is a necessity for the process of

evolution to prevent genetic stagnation, computational programming applies the vari-

ation by reiterating its calculations with modified variables. The result is analogous

to evolution in nature with how the genetic operators modify the solutions in every

generation or commonly known as iterations.

With a set of mathematical expression and equations, the operator is built. Opera-

tors are aptly defined by their mathematical expression and how it utilizes information

from the populations, from known or unknown parameters. They are also sometimes

called or named depending on a description of its process; e.g Differential Operator,

Velocity Operator and any terms that can represent the process. Resultant population

of individuals are iteratively modified again using operators until the set convergence

criteria is resolved or fulfilled. Through manipulation of the individuals of a population

by the genetic operators, evaluated solutions can be assigned a fitness value that rep-

resents their position as good or strong solutions within that population and vice versa

for weaker solutions. Utilizing the best solutions are the basis of the evolution process

in any form of meta-heuristics; usually best solutions in the operators decide the next

generation of solutions by mainly choosing them as parents and then creating offspring

solutions using crossover or combination; mutation solutions are also produced if diversi-

fication of individuals are desired in the application, especially in dynamic environments

where objective functions are even more non-linear.

The mutation operator introduces or forces a change in the solutions, or a form of

genetic diversity in solutions. The mutated solutions, attempt to prevent the GA into

converging to a local minimum by stopping the solutions becoming too close to one

another, hence avoiding stagnation. Mutations, typically change the solutions entirely

to be different than the current population’s solution values. By mutating the solutions,

a GA can also seek the improved solution solely through the mutation operator [85].
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Different methods of mutation exist; the mutations may, modify the single chromo-

some or bits in the solution individual to a certain rate or to more complex mutation

methods, which may replace entire values in the solution with random values chosen

from the uniform distribution or the Gaussian distribution. As mentioned before, after a

complete generation of evaluated population, a set of existing individuals are selected for

the creation of new generation. By ranking individual solutions based on their perfor-

mance in the maximization or minimization of fitness process within the algorithm, the

individual solutions are ranked using a fitness function after obtaining their fitness by

subjecting them against the objective function. This is important for high dimensional

problems where the properties of the individual increase in number, thus the evaluation

of a solution must be weighed with the fitness function. Well performing individuals

dominate the selection process with preferential choice by the selection method or op-

erator as their fitness is higher than others in the population. Some methods, however,

do forego the former in favor of stochastic selection to save time and reduce complexity.

Different methods for choosing the solutions exist, the methods are listed as follows:

1. Roulette wheel selection: This scheme is sometimes denoted as a Fitness Ap-

propriation Scheme in which the fitness values of each individual in the population

in the current generation is summed together. Then, the fitness of each individual

is divided against the resultant sum from before, the value computed as a ratio

becomes a probability of being chosen for the next generation.

2. Tournament Selection: A number of tournaments, as the name is implies, are

conducted based off the objective function, the fitness values are used for compe-

tition between two individuals according to a subset and number of tournaments

allowed. Among a subset of individuals created from the population, the highest

fitness individual is chosen for surviving the next generation.

3. Replace selection: A class of selection operators which work on populations with

size of 2, treating the population as a sequence instead of set. In this method, the

fitness value between two individuals are competed against each other to denote

a survivor to carry over the next generation.

4. Elitist selection: An operation which falls under the elitism strategy prevalent

in design of evolutionary algorithm operators or methods where the best individ-

uals of the population are directly used in crossover, mutation and selection. In
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elitist selection, the best solutions are immediately brought over from the current

generation into the next generation with no contest.

2.5 Exploration and Exploitation

Exploration and exploitation guide the evolution of a set of stochastically selected in-

dividuals towards good near optimal or optimal solutions. Two fundamental processes

drive the evolution of any population: the variation process, which enables exploring

different regions of the search space, and the selection process, which ensures the ex-

ploitation of previous knowledge about the fitness landscape. As the algorithm runs, if

not balanced well, its search process will heavily skew towards either weak local search

or weak global search. If the chosen operators and other methods in an algorithm are

not balanced well, the solutions will skew towards either weak exploration or weak ex-

ploitation. Weak exploration is denoted mostly from a lack of global search in the search

process that causes the individual solutions to not explore other potential search areas

for a better candidate solution. In selection process, if an elitist behavior is adopted

to select the solutions every iteration, it will bring the risk of weaker search due to

only focusing operators to modify solutions around good potential search areas. The

disadvantage of this generates the possibility of not being to explore the search area

properly, which will indirectly cause weak exploitation.

There are methods to alleviate this flaw, introduction of initially more weighted

initialization of the solution towards a proper known average can usually result in a good

candidate solution search area; however, it will require prior research into the problem

or system. The known knowledge if unavailable can be substituted with an initialization

towards the normal distribution in a solution range applicable to the system. Otherwise,

introduction of mutation in the framework, as the name implies, is able to genetically

alter the solution. However, its role in the algorithm is able to inject solutions with

drastic modification that do not obey common crossover operator equations. In terms

of mathematical expression, exploration must spread away from current global best

solution so it must be designed without using historical global best values.

For example, the solution values can be given a minimum change in movement to

ensure the change difference from global best in the search area, otherwise it can be

randomly initialized again based on design needs. If the crossover operator is used for

exploitation, the mutation operator is more commonly used for exploration due to the
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ability to produce solutions which are inverted and away from the current best solutions.

Typically, only a low number of mutation solutions are generated to not prolong the

search process with sometimes useless searches that cannot be profited due to the loss of

time in favor of more exploitation than exploration. An adaptive control of the amount

of mutation to be generated can be also suggested through the use of iteration count and

limit, the longer the search process goes the less mutation can happen. The mutation

operator in mind must be beneficial to the system and be able to search as many other

areas in the search range that the current convergence has not explored.

Exploitation on the other hand functions as an inverse to exploration in the role

of evolutionary algorithm search process by its focus on intensification of individuals.

Exploitation is akin to what is described as an algorithm’s prowess towards local search

whereas exploration is also commonly known as the capability of global search. As

exploration is explained beforehand, exploitation aims to search in the region of the

currently global best solutions; the exploitation behavior is replicated through the use

of operators that calculate output solutions close by the current best solution. Crossover

operators primary objective are aligned with exploitation, the careful selection of which

individuals to undergo crossover in reproduction of offspring, produces and derives a

new solution for the current individual of the new iteratio. Typically when two indi-

viduals are utilized for crossover, the two values are crossed together in respect to the

mathematical expressions designed for it, which include but not limited to multiplica-

tion with random numbers, movement towards global best solution by assigning the

global best solution with a coefficient to denote its weight in the expression and use the

current iteration count or iteration limit to decide the step size. Much like the exploita-

tion where adaptive control can be applied, searches down the line in the search process

should not have large step sizes so the accuracy of the solution can be pinpointed.

2.6 Chapter Summary

In this chapter, the background regarding the PV panels and the partial shading problem

is given which arises the need of a method of alleviating the PSC problem; it drastically

hampers power generation efficiency in PV systems. A background of current DC-DC

converter topology in literature is reviewed which justifies the DC-DC converter as a

switching regulator to be commonly implemented into PV systems The conventional
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boost converter topology is suggested to be utilized in the PV system for this research

project, and is finalized in the literature review of Chapter 3.

In the aspect of optimization, the applications have applied machine learning or

search methodologies in the design of such system [86]. Evolutionary algorithms are

these search methods that mimic the behavior of nature in their algorithm process.

Its evolution ideology and methods are the main basis of the evolutionary computation

techniques, genetic algorithms, evolutionary strategies or any form of programming that

is loosely based on the evolutionary nature. Classification of evolutionary algorithms

fall under the meta-heuristic category by which the likes of SI, SA and differential evolu-

tion (DE) are included in their categorization due to the similarity in sharing methods,

search behavior and the stochastic nature in their by reiterative problem solving through

the use of random generation in the range of possibilities. The evolutionary algorithms

can be described as a rapidly developing associative analysis, by which the collection

of techniques and systems manage a complex problem or if applied, a complicated ap-

plication system [87]. The techniques under the term of evolutionary algorithms differ

in the representation of its form of deriving the solution and how the implementation

of the algorithm changes based on the applied problem. As such, the GMPPT prob-

lem is declared to be an engineering problem that is susceptible to the advantages of

implementing a meta-heuristic evolutionary or SI algorithm.

The operators of these algorithms have also been heavily detailed that state the

design of the operators must be taken into account. The operators influence the indi-

vidual solutions and the results obtained, with the proper strategy conducted based on

the engineering problem at hand, design of the operator itself can be improved. Chapter

3 reviews the operators adopted by GMPPT implementations in literature, which will

prove the background provided in Chapter 2.

Exploration and exploitation describes itself as a delicate balance of the capabilities

in a meta-heuristic algorithm to conduct the global search and local search effectively.

With regards to the background given, the proposed GMPPT algorithm design will

base itself off maintaining this balance while obtaining better convergence speeds and

tracking accuracy.



Chapter 3

Overview of GMPPT Algorithms

As stated earlier in Chapter 2, evolutionary and SI approaches dominate the field

in problem solving for implemented applications which also include the GMPPT and

MPPT optimization problem. The applied methods of these GMPPT algorithms are

compared and evaluated in this Chapter to validate the improvement that can be made

to the PV system problem with the proposed designed GMPPT algorithm. The prop-

erties that define the framework of a GMPPT have been shown in Chapter 2.4 are the

variation operators which can nudge, mutate or shift the solutions in a population in

the domain range to balance local and global search capabilities.

The proposed algorithm will retain, qualities that are beneficial to the GMPPT

problem. These qualities include fast tracking speeds, accuracy and complexity which

will are outlined in the following Chapter. Through the retention of good algorithmic

behavior in exploration and exploitation, the balance of these two aspects is able to

guarantee the performance of GMPPT. The design of the proposed method has already

assumed the above aspects into consideration for the objective of GMPPT performance

and the closing of any research gaps in current literature. How the GMPPT algorithm’s

performance relates to the exploration and exploitation balance is given in Section 3.1

which also derives the performance criteria related to this balance.

In the Section 3.3, applied GMPPT algorithm methods are detailed and compared

between each other. Regardless of method or algorithm used, the process of GMPPT

commonly shared is shown. A method in this chapter can denote a meta-heuristical

optimization evolutionary algorithm or any other form of control and generation for

the duty cycle, D. Henceforth, methods and algorithms will share the same synonym

following their similarity in process behavior.
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In Section 3.4, the adjustment of parameters in the chosen GMPPT technique, oper-

ators and hybridization, and modifications made to improve performances are detailed.

Variation operators within each algorithm are also categorized based on their type and

usage. Other variables or techniques utilized that are unique to the algorithm implemen-

tation are also found and detailed in comparison. Ultimately, the specific advantages

and weaknesses of the algorithms and their techniques applied to the GMPPT problem

will be shown.

3.1 Global Maximum Power Point Tracking

Given that optimization algorithms are used to solve difficult computational problems,

they are widely used in many applications that need to solve a specific objective function

which are mostly engineering problems. As explained previously, DC-DC converters re-

quire switching control or regulation of the duty ratio at any form of switching electrical

component such as transistor, MOSFETs and IGBTs. However, since the solar panels

which are the input side of a converter are always under dynamically changing irradiance

and temperature values which greatly affect generated power due to the solar conver-

sion, the duty ratio cannot be controlled using an exact or deterministic optimization

algorithm. An implementation of a meta-heuristic optimization algorithm is needed to

solve the problem by searching for the GMPP.

GMPPT algorithms control the duty ratio after evaluation through the objective

function, which is the obtained power at its current time and seek out the greatest pos-

sible power to maximize power conversion efficiency. The implementations of GMPPT

algorithms include the use of programmable devices or, a micro-controller to measure

the current and voltage to compute the current power generated of the input side of

the converter. The algorithm will determine the best duty cycle ratio for finding the

best possible power generation at the GMPPT. In the case of GMPPT where the name

applies, PV systems face dynamic environments where the power generation will never

be static, thus the algorithm is needed to actually calculate a duty ratio during the time

the system is running while facing PSC.

The details of initialization, crossover or mutation operators, selection strategies,

termination criteria from the evolutionary computation and SI methods are sub-classes

of meta-heuristics. A review of employed GMPPT algorithms in literature is laid out in

this Chapter 3 or literature review to pronounce the design and performance capability
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of modern GMPPT methods. The review of the GMPPT algorithms is made in order to

evaluate the algorithm for comparison for their design choices that must be considered

in the proposed design of the GMPPT algorithm.

3.2 GMPPT Algorithm Performance Evaluation

Algorithms differ on certain parameters depending on the application, and it is no dif-

ferent for the application of MPPT. Many conventional evolutionary and soft computing

GMPPT algorithms exist in literature; such as, PSO, GA and Fuzzy Logic which have

good performance but no capabilities to counter the occurrence of local trapping which

causes local maximum power points (LMPP). The assumption of these algorithms being

able to search for GMPPT effectively comes from the inherent nature of the algorithm

framework and more of a luck rather than actively seeking to escape local traps. Of

course, to alleviate such weaknesses the improvement of the aforementioned GMPPT

methods are improvable with modifications or additions of new methods [23]. The

algorithm designs have varying range of complexity from low to high of implementa-

tion. The complexity of a given algorithm is characterized from its usage of parameters

of variables and the amount of operators utilized just to search for the solution and

assemble the framework, it is important to note that complexity does not guarantee

a performance standard. Certain strategies of algorithms that are not limited to the

operator category include range limitation of solutions, different initialization of initial

population duty cycles, re-initialization strategy and adaptive modification of parameter

or variable values.

In canonical and generic implementations of most GMPPT methods, the afore-

mentioned strategies are unused or niche in other applications, the strategies must be

applied to the design of the proposed method to improve the performance of the overall

PV system under PSC. As the algorithm must consider PSC, methods that are able

to implement strategies that in turn improve tracking speed and accuracy of solutions

ultimately prevent the DC-DC converter from converting power at less than optimal

values. However, fine tuning of the algorithms is still required as specific parameters

are always dependent on the application. To summarize, the framework of a method or

algorithm depends on the operators it applies for the solutions; as such, any strategies

outside of operators used for modifying aspects of the framework, and the fine tuning
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of parameters and variables of these two points are the most important to be focused

on for the improvement of performance capabilities in GMPPT problem.

As the algorithm must take into account PSC, the referred techniques are ones that

are able to perform adequately as they possess features that allow the individual solu-

tions to spread out the search space, avoiding local traps and seeking the true GMPP.

Thus, these techniques must have suitable exploration and exploitation capabilities for

their application in GMPPT.

It is understood that based on the design of a GMPPT as said before with the

operators and strategies, any application of the GMPPT for a PV system should fulfill

most of the following criteria while designing the framework:

• Performance Accuracy

• Convergence Speed

• Sensor Requirements

• Complexity level of Design

• Control Parameters

• Hardware Implementation Costs

Accuracy will dictate the capability of the algorithms to find the GMPP among a

set of patterns of PSC that is applied or caused to the PV system during its run-time.

The convergence speed of an algorithm determine how fast the GMPPT algorithm is

able to perform while following the desire of the earlier requirement, a well sought after

algorithm must be fast and accurate. The GMPPT algorithm’s convergence speed is

split into two work flows, the population of solutions within the algorithm must be able

to converge to a current leader that obtained the best fitness value, the other is that the

algorithm must not converge too fast to this current leader to avoid local trap which

resulted from the inadequate and superficial search. Though extraneous search does

penalize the time in a constrained system, the balance of exploration and exploitation

is a huge hurdle to tackle in the GMPPT problem. Sensor requirements denote the

use of voltage or current sensing sensors in the PV system, typically two sensors are

used in the DC-DC converter; however, some algorithms can observe the fitness value

solutions with either voltage or current given that the component values in the DC-

DC converter are known beforehand; such as, resistor load value which allows only one
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sensor requirement and sense the other value through Ohm’s law. However, this limits

the delivery and commercialization of the algorithm as a universal solution to GMPPT

problems as the converter values must be assumed or known.

Moreover, the complexity of GMPPT algorithms are considered at times where

the deployment of them into low-power or weaker micro-controllers are demanded. The

criteria go hand in hand with control parameters as lesser control parameters are always

desirable to reduce the memory storage needed from the computing devices; therefore,

they also reduce complexity as the algorithm uses less parameters to calculate the

solution values. Ultimately, less complex design could result in less control parameters

needed which in turn reduce hardware implementation costs where weaker and cheaper

devices can be utilized instead.

3.3 Types of GMPPT Algorithms

The section dedicates itself to the review of GMPPT methods in literature. Compila-

tions of the methods utilized and their popularity, capability with performance is made.

Furthermore, the compilations of the methods under real world scenarios and real ex-

perimental setups are undoubtedly required to prove themselves. The following section

lists and describes the GMPPT techniques that have been reviewed for the purpose of

research into the development and design of a boost converter installed PV system with

GMPPT algorithm tracking that fits out application needs. Conventional MPPT tech-

niques include the Perturb & Observe (P&O) method and the Incremental Conductance

(IC) method. As seen during this literature review, these methods are not detailed due

to already set precedence of their weakness in GMPP. P&O and IC methods already

fall into local traps easily, choosing only LMPP and their GMPP searching is mostly

reliant on luck of not observing other peaks in the P-V curve. Even so, more mod-

ern MPPT methods have adopted features of global search to accurately detect GMPP

among LMPP in the P-V curve. For this reason, conventional MPPT methods with

weak GMPP or global search are abandoned and not considered for further study while

MPPT methods that have developed themselves further to overcome the PSC weakness,

are reviewed.

The applications requirements in this case answer to the implementation of GMPPT

method that is able to function with the simulation software, experimental setup, ac-

cording to the specified PV parameters, cases of PSC and DC-DC converter component
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values. Exclusivity of testing most methods do cause the lack of confirmation or trust

in the results, hence the confirmation of the GMPPT methods result would need to

be met with an application and implementation of them in the proposed PV systems

if needed. The stigma is unfortunately justified due to the nature of meta-heuristics

where the application or problem at hand is just as important as the method choice.

The methods or algorithms are classified in the list below, they are the works of

other authors to solve the GMPPT problem. Results of these algorithms in tracking

speed, efficiency and the complexity are compiled in a table below the section.

3.3.1 Bat Algorithm

The authors in [88] have presented the Bat algorithm for utilization in MPPT problem

under PSC. Bat algorithm is a population based optimization algorithm inspired by

the echolocation features of microbats in locating their foods. It is developed by Yang

in [89]. Bat algorithm maintains a swarm of N microbats, where each microbats flies

randomly with a velocity vi at position xi

The algorithm used a size of N bats to determine the GMPP, the author states that

utilization of high number of N presents slower GMPP convergence time but higher

accuracy on finding the GMPP. The vice versa occurs with low number of N bats, thus

the balance of ”convergence-speed efficiency” as stated by the author is required and

thus have set a bat population that falls in line with their requirements.

Moreover, this implementation of the bat algorithm has utilized a method of reflec-

tive impedance to calculate the vector (discrete values that make up the solution and a

direction) of the initial duty cycles to approximate the initial search space. This method

used the impedance values of the load, converter efficiency and the load values. The

corresponding power for each of the vectors from a bat is then evaluated and the best

bat, dbest is stored. An inertia weight factor is applied to the equation of velocity, vi

where each di must move towards the best duty cycle, dbest. The inertia weight factor

is able to determine the speed of a bat, the speed in this case is the movement step of

how far a bat is able to move. Basically, it affects the movement of the duty cycle per

bat.

In Bat algorithm, each bat has an emission pulse ri that a random number is com-

peted against after being generated according to uniform distribution. This step occurs

after initial search phase. If the random number is greater than ri, the exploitation

stage occurs and local search generates new dnew by adding its original value with the



46 Chapter 3. Overview of GMPPT Algorithms

velocity. As a result, the new solution is drawn locally by using a random walk around

the best current solution. The author in this implementation for GMPPT has utilized

a modified generation of the dnew using a fixed positive, Φ which is able to limit the

generation of the new duty cycle. Each duty cycle is tested for generation of dnew and

the iteration starts over again.

The convergence criterion is then checked if it has been fulfilled, which is a constraint

that limits the amount of times the algorithm should or can run. The condition in the

author’s bat algorithm implementation pit the two absolute differences in duty cycle,

d against each other and fulfills the criteria if this difference is lower than a threshold,

∆D.

The re-initialization technique utilized in this implementation detects the change of

the PV panel PSC through a change of the power between an old sample point and

a new sample point. A ∆P threshold is set for the requirements, if this threshold is

surpassed then the algorithm will reset to its initial state.

The paper in [88] also used a MATLAB/Simulink environment to verify the al-

gorithm performance, then later uses an experimental setup consisting of two series

connected SM55 PV panels, oscilloscope, FPGA board and the buck-boost converter.

The partial shading on the PV panels are configured in four different shading patterns

to be tested with their proposed algorithm. For comparing the algorithm performance,

however, it has only compared itself against P&O and PSO methods. Their proposed

scheme outperforms the two methods in the field of accuracy and oscillations in PV

power at the transient time by obtaining around an average 99% efficiency of the MPPT

with a tracking speed of 1.3 s.

3.3.2 Hybrid PSO and P&O Algorithms

In [90], the authors have presented their designed algorithm which is a combination of

PSO and P&O search operations within the algorithm framework. The P&O algorithm

starts with outputting a particular duty cycle. The Ppv at this duty cycle is then

measured. Perturbation ∆ is applied by increasing or decreasing the duty cycle. The Ppv

is measured after each perturbation; based on this information, the algorithm decides

whether to go to the left or right side of the P-V curve to reach the MPP. The author

implements the canonical PSO algorithm in the implementation for the combined PSO

and P&O method. The basic framework of PSO is already explained earlier in PSO-VD.

The framework of conventional P&O can be given in Fig. 3.1.
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Figure 3.1: Conventional P&O MPPT [90]

Their proposed algorithm functions in two stages, the process starts in PSO algo-

rithm stage and, then continued and maintained at the P&O process. The reasoning

given by the author by using PSO first is due to the existence and risk from current

ripple of ipv. The converter topology utilized by the author is the quasi-Z source in-

verter (qZSI) topology which they have stated to cause higher current ripples at higher

duty cycles. With this reasoning, the inaccuracy of measurement is possible and hence

difficult for PSO to search for GMPP alone.

Thus, the PSO algorithm is used only to reach the vicinity of the GP. It is assumed

that the vicinity of the GP has been reached when the convergence criteria is met. In

this case when the positions of all particles are close enough from each other. Then

the algorithm proceeds to the second stage. When the convergence criteria is met,

the controller outputs d0 of gbest, which is the best position the algorithm has found.

This value is subsequently used by the second stage. The second stage used the P&O

algorithm. Since the vicinity of the GP has been reached by the previous stage, the

P&O algorithm finds the GP with ease. In this case, it is important to have fine steps

∆, in order to avoid undesirable results.
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(a) Simulation Results of P&O (b) Simulation Results of PSO-P&O

Figure 3.2: Simulation Results of PSO and P&O [90]

The algorithm particularly does not utilize convergence criteria to stop the search

process at the P&O stage, this is common in P&O methods due to the feasibility of

constantly perturbing to track its current MPP constantly. The author proposes re-

initialization to PSO stage upon the shading pattern change as shown in their frame-

work; however, the details of using power, P threshold or other criteria is undisclosed.

To verify the simulation results, MATLAB/Simulink environment is used to implement

the algorithm design. The DC-DC qZSI boost converter topology is connected to two

undisclosed PV module models. No experimental setup is utilized for verification of real

world results.

There are two shading cases in their work, both of these two shading cases retain

only two peaks in the P-V curve. The difference of these two can be observed from the

placement of the local peaks and GMPP, one case has the GMPP on the left closer to

the lower d while vice versa on the other. The author proposes that lower d reduces the

current ripple and strain of the inverter.

For comparison of their work against others, canonical PSO and canonical P&O

are compared against the proposed combined version. The search speed and accuracy

results are observed in Fig. 3.2. The results confirm the viability of the combined

method against the conventional GMPPT of PSO and conventional MPPT of P&O

in terms of tracking speed and accuracy while obtaining less voltage ripple of 5 W

compared to the 30 W voltage ripple of PSO and P&O. The Hybrid PSO and P&O

algorithm obtains a tracking speed of 1.3 s at the GMPP with an efficiency of 99.8%.

Thus, P&O weakness of local trap is circumvented by the initial global search of PSO

and a working GMPPT algorithm is designed.
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3.3.3 PSO and Differential Evolution Algorithms

PSO and DE algorithms or known as PSO-VD have been known as popular techniques

of EA. Recently, these techniques have been gaining much attention due to their abil-

ity in optimizing real-valued nonlinear and multi-modal objective functions. As these

techniques are based on search optimization, the GP could be tracked with a reasonable

convergence time and a better dynamic response than conventional methods.

PSO is a stochastic optimization method developed by [91]. In PSO, the Gbest

dictates the movement of each particle in the swarm size of N . The particles have

a velocity that controls the movement (step size) and direction of each solution, the

velocity, Vi
t is usually summed with the particle solution xi

t.

DE, a genetic algorithm was introduced by Storn and Price in [92]. The algorithm

begins with the initialization of a population called target vectors. Then, a mutation

operator produces one mutated vector from the population. Next, crossover operation

generates a single trial vector. This new vector replaces the population of target vector

in iteration k + 1 if the fitness value is higher than it.

The author claims that, the next position of the particle after velocity operator might

not be better than the pbesti. Moreover, in PSO the particles are not eliminated even

when they experience the worst fitness. Thus, since the particles remain in the memory

of PSO, it wastes the limited computational resources, consequently resulting in a slower

speed of convergence. The author in [93] presents the PSO-VD to solve the GMPPT

problem. In order to circumvent the above-mentioned weakness of each method, a

differential operator, borrowed from DE, in the mutation stage is coupled with the

velocity update scheme in PSO. The operator is invoked on the position vectors of two

randomly chosen individuals, different from their best fitness. The main characteristic

of DE is to keep the competition in the population while the winning particles hardly

keep sufficient history. Therefore, the advantage of one method can compensate for the

shortcomings of the other technique.

First, a vector yi which chooses two random particle ji andki and calculates the

difference in their duty cycle, D to assign to the vector. The velocity operator of PSO

is taken and modified to include this yi vector in the calculation of a new velocity vi

for Pi particles. The utilization of Pbest factor in the original PSO velocity operator is

removed in favor of differential vector calculation from DE.

The author implements the Trial Vector equation to signify the Pbest of the popu-

lation. The trial vector is the resultant sum of the vi
t with xi

t. In trial vector fitness
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evaluation, if the particle reaches a better location or does not change its original posi-

tion, then the particle is remarked to be at its Pbest.

After few iterations, particles may turn stagnant in a local search space. To avoid

this problem, the particle is shifted by a random mutation to a new location through

the mutation operator. This operator used xmax,xmin, maximum and minimum range

of the search area which is 0 to 1 and the tmax which is the maximum iteration allowable

of the algorithm.

The PSO-VD algorithm process for GMPPT continues with differential operator

after the initial fitness evaluation of initial population. After the evaluation of the

population modified by the differential operator, the particles are assumed for local

trap if the xi
t = xi

(t + 1) and mutation operator is hence applied to escape the local

search area. For convergence criteria of this implementation, the algorithm decides to

choose tmax as the criteria and thus the algorithm runs fully until the set limit is reached.

Much like other algorithms, a re-initialization of the algorithm is implemented upon a

set threshold of change in the PV panel’s V or I.

MATLAB/Simulink environment is utilized by the authors to verify the algorithm

performance of PV system under various PSC. A DC-DC conventional boost converter

is applied in the system and a ET-M53695, 95 watt rated solar panel is used. Three

particular shading cases are implemented, case 1 maintains a P-V curve of 2 peaks while

case 2 and case 3 shading patterns measured the P-V curve with 3 peaks. Moving on

to experimental setup, the setup uses two series-connected ET-M53695. For the control

unit of the GMPPT, a Texas Instruments TMS320F28335 DSP board is utilized by the

authors.

Thus, unlike the conventional PSO, the PSO-VD prohibits the particles from visiting

the unnecessary positions by the differential operator borrowed from the DE. In addition,

in order to avoid from oscillating around a local optimum, the particle is shifted to a new

location by a random mutation when it gets stagnant at local optima. With a sampling

time of 100ms per duty cycle, the results observed for the PSO-DE in comparison against

PSO and DE show substantial improvement over the other two algorithms. The author’s

proposed algorithm is shown to be the faster and more accurate algorithm under their

waveforms by obtaining 97.5% to 98.2% average MPPT efficiency at around 3 s tracking

speed.
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3.3.4 Canonical Particle Swarm Optimization Algorithm

In literature for optimization and engineering problems, PSO has always revelled in the

spotlight of review and usage due to the simplicity of the algorithm and the relatively

good performance for dynamic problems. Even now, modifications and improvement to

the canonical PSO framework can be seen in literature. However, review of canonical

PSO in GMPPT for PSC is required in order to commence performance verification of

the improvements made over them. The authors in [94] present the performance of PSO

under cases of PSC. PSO bases itself on the natural phenomenon of bird flock, when

applied and mapped to in movement, it is observable that particles move in the search

space by following simple mathematical equations which can be called operators. The

velocity operator utilized is unmodified from original version of PSO.

The author uses 12 NT R5E3E PV modules, each module rated at 175W. The author

also uses MATLAB/Simulink simulation environment to verify the results of PSO under

PSC. The results conducted by the author have presented the ability of PSO to track

GMPP under PSC. Experimental results are not conducted with experimental setup

nor any comparison against other GMPPT methods in literature are made.

Another implementation of PSO was conducted by [95], where the algorithm is

implemented on FPGA circuit XC5VLX50-1FFG676 from the Vertex5 family. This

circuit is built around an ML501 development board written in VHDL language and

compiled through ISE 10.1 from Xilinx. 4 SM55 PV modules are utilized which is rated

at 55W each. An experimental setup with current sensor, voltage sensor, isolation and

driver for the PWM signal from the FPGA is implemented. The setup also implemented

a buck-boost converter where voltage can be stepped up or down. Two shading patterns

are tested on their system, one with P-V curve containing 3 peaks and another with 2

peaks. The results of the GMPPT tracking in PSC can be observed in the Fig. 3.3.
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Figure 3.3: PSO Results with FPGA Implementation [95]

In the results observed, the author has concluded that the PSO implementation

has successfully handled the GMPPT under PSC. The high accuracy of the proposed

scheme to handle the partial shading is stated. The PSO algorithm obtains the GMPP

at around 0.9 s and under 99% efficiency in the FPGA implementation across 2 shading

patterns.

3.3.5 Leader PSO Algorithm

Leader PSO (L-PSO) is a modified version of PSO by [96] that enhances the global

leader for every iteration in a procedure to locate GMPP. Considering the initial count

of particles/swarm as five, corresponding five consecutive mutation procedure is applied

to the swarm leader. If any of the mutated particle attains better fitness than the global

best particle, it will change the solution of current Gbest, effectively replacing weaker

leaders.

The process begins with a random initialization of initial Pi for the duty cycle, D.

The fitness evaluation of the population is done, and the velocity and particle update

operators of PSO are applied to the population.

The conventional PSO process henceforth ends, mutations are applied to the swarm
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leader in turns. The implementation by the author has utilized four different mutations

in the following procedure; which are, Gaussian normal distribution mutation, Cauchy

distribution, elite mutation and scaling mutation. The PG particle with the global best

solution Gbest generates a new Pg1 using Gaussian mutation values of ”O” mean and

”h”-standard deviation. A fitness evaluation is conducted with Pg1 and if the new

fitness is better than Pg, Pg1 will replace it. Even if the Pg is replaced, the mutation

continues with generation of Pg2 through Cauchy distribution of ”s” scaling factor and

mean-”O”. If f(Pg2) > f(Pg), then the Pg will be replaced by Pg2. These mutations

continue through elite mutation where boundary maximum will sum with the boundary

minimum, Xmax + Xmin and the new Pg3 will be generated through the equation,

Pg3 = (Xmax + Xmin) − Pg. The last mutation is scaling mutation where two random

particles (Xr1 − Xr2) are multiplied with the scaling factor, F and Pg4 will sum with

the resultant vector sum.

The next step after conducting mutation search, L-PSO algorithm locates the best

leader and the possible solution space in which global solution can be found. Algorithm

checks for global convergence, and determines that if the particles all converge to each

other the criteria has been fulfilled and output the Gbest solution. For re-initialization

condition, the author employs a condition based on the measurement of either voltage

in the current k iteration and an older k − 1 iteration. Through comparison of the

voltage V or I, if these values go over a certain threshold (0.2 for voltage and 0.1 for

current) the algorithm will reinitialized to detect new MPP.

The proposed L-PSO is experimented in MATLAB environment and experimentally

tested using an Intel i7 capable system carrying 4GB ram. As the algorithm is comparing

itself against others, the author has denoted that same sampling period of 300ms is given

for every duty cycle. Also, the algorithm shared the parameter setup against PSO, a

conventional GMPPT against their own improved L-PSO. The experimental setup for

the system to test the algorithm consists of PV emulator, a Chroma 62050H and a DC-

DC boost converter connected to current and voltage sensors. The gate of their IGBT

switch is controlled using the Arduino UNO development platform which also houses

the three algorithms used for performance testing.

The author pits its designed and proposed algorithm against conventional P&O and

PSO methods. Through the results seen, it is shown that P&O as expected performs

slowly in normal shading conditions and gets trapped in local peak upon PSC condition

occurrence at the PV panel. PSO is able to perform better than P&O; however, still
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loses out to their proposed L-PSO algorithm in convergence speed and tracking accuracy.

L-PSO algorithm obtains a 99% MPPT efficiency under all shading patterns and is able

to obtain the MPP at under 1.86 s.

3.3.6 FWA and P&O Algorithms

FWA is a global optimization method that draws its inspiration from the explosions

of fireworks in the sky. The sparks that appear due to the explosion from a firework

resemble or are tied to the generation of candidate solutions in a search space. A

chosen number N of fireworks are initially chosen to be created. The fitness value of

the N fireworks is evaluated, which will control the amount of sparks generated by

each individual firework. A higher fitness value will generate more sparks with smaller

changes in amplitude or velocity being generated off the individual firework. If the

fitness value is lower, then spark generation of the individual firework is reduced and is

lower than the higher fitness counterparts, and also reduces the wastage of search times.

YES

Restart

P&O Search Process 

FWA Search Process

Partial Shading 
Occurrence

Start

NO

MPPT Tracked

Record  and  
of MPP

Calculate  and 

YES

NO

Figure 3.4: The FWA-P&O hybrid for GMPPT [90]

The authors in [97] has proposed the usage of FWA in the GMPPT problem. The
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framework of their algorithm in implementation is shown in Fig. 3.4. However, they have

stated that when there is no partial shading occurrence then the usage of global search

is not needed. As such, FWA algorithm is only utilized when the occurrence of partial

shading is detected. However, when the controller first starts their proposed algorithm,

the FWA must run first due to the lack of initial information about the GMPP location.

In step 2 and 3, the P&O process continues after FWA determines a candidate GMPP.

The details of determining a candidate GMPP are not given and the convergence criteria

of the FWA are also not stated. When the P&O algorithm successfully tracks the MPP

in step 3, PV power, Ppv has not changed for a certain iteration or time. In step 4, the

MPP information of Impp and Vmpp are stored. In step 5, the change in each of these

quantities is computed with respect to the most recently stored values (step 5). Upon

occurrence of partial shading by the partial shading detection scheme of the authors, if

no PSC occurs then the P&O algorithm will continue to perturb at the MPP. Otherwise,

FWA algorithm is applied once more to the search range and obtain candidate GMPP,

restarting the algorithm search process.

The paper by the authors in [97] also do not utilize MATLAB/Simulink software

environment to simulate the code, but only uses experimental verification. The exper-

imental setup employs a DC-DC boost converter to track the GMPP of a PV string

containing four series-connected 80W PV modules. This PV string is emulated through

an Agilent E4360A modular Solar Array Simulator. A MSP430G2553 micro-controller

will control and implement their proposed algorithm. Several PSC cases are presented

with unique MPP points on the P-V curve as visible in Fig. 3.5.

Figure 3.5: Presented cases and their P-V Curves [97]
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(a) Simulation Results of PSO (b) Simulation Results of FWA-P&O

Figure 3.6: Dynamic tracking and Power Oscillation of Algorithms [97]

The performance validation of the FWA and P&O GMPPT method is tested in two

factors: reduction of power oscillations and dynamic tracking capability. The results of

the proposed method in comparison to PSO is described in the Fig. 3.6 where three

particular shading patterns are applied to the algorithm of PSO and their proposed

FWA and P&O method.

Rather than tracking accuracy and speed. The author presents the two factors as

results to their proposed GMPPT algorithm. The results show that the PSO algorithm

in Fig. 3.6a oscillate more from the dynamic change of irradiance which causes the

change in P-V curve to what is specified in Fig. 3.5. The dynamic tracking capability

of their proposed algorithm is also shown in Fig. 3.6b.

The authors in [97] henceforth state that the performance of the proposed GMPPT

strategy is compared to that of a conventional PSO based GMPPT control, and has

been demonstrated to be superior in terms of power oscillation during tracking, and dy-

namic tracking capability. To reduce power oscillation in the PV system, the algorithm

chooses not to deploy FWA if the shading condition does not produce a high change of

irradiation. The algorithm obtains the GMPP under 2.2 seconds after utilizing P&O

for the initial search stage. The P&O algorithm is employed under uniform irradiation

conditions due to better tracking capability if the GMPP is on a single slope on the P-V

curve, and the MPP voltage and current are monitored continuously. FWA is used for

its exploration and exploitation capabilities initially in the search of candidate GMPP.
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3.3.7 Grey-Wolf Optimization Algorithm

Grey-Wolf Optimization (GWO) is a meta-heuristic algorithm inspired by grey wolves,

which prefer to live in a pack and can be used to optimize a function that is difficult to

express analytically [98]. In GWO, i represents the wolf number, Pbesti and Gt
best denote

the personal and global best values which are to be updated at every iteration during

the optimization process. Much like other population based evolutionary algorithms,

the grey wolves have a coefficient vector that controls the movement of the population.

The grey wolf optimization technique has three coefficient vectors, D, A and C that are

all utilized to generate a position vector (xi)
t + 1. D is generated based on the position

of the current wolf’s duty cycle and coefficient C. It is given with D = |C ·((xi)t)−(xi)
t|.

Meanwhile, the generation of C is also dependent on coefficient A. They are both given

by, A = |2 · a · r1 − a| and C = |2 · r2|. Where a is a linearly decreasing value from 2 to

0 as iterations progress and r1, r2 are both random numbers in the range of [0, 1].

Initially, one grey wolf is set to test the fitness of its randomized location. The

grey wolf updates itself and saves P t
best − 1 of itself as its current Pbest as it is the

start of the algorithm, future iterations must compare to their older iterations of the

Pbest. Then, if any wolf has a duty cycle which global best power, Gbest is greatest after

comparison is recorded. Next, the i = 1, 2, 3, 4, ...N amount of wolves are all evaluated.

After evaluation is complete, the algorithm will update xi, A, C, D and a for the next

iteration. The algorithm iterates itself until convergence criteria are completed. The

author does not state a detailed method of detecting convergence criteria; thus, it is

assumed to be the maximum iterations if this is the case. The author also states a way

of re-initialization; however, no further detail is given except it occurs upon change in

shading on the PV modules.

Figure 3.7: P-V Curve of PSC Case from GWO [98]



58 Chapter 3. Overview of GMPPT Algorithms

The results in Fig. 3.7 show the P-V curve of a shading pattern implemented by the

author has the most local peaks and also the GMPP tracking results for GWO algorithm

in Fig. 3.8. Based on the results shown, the authors present their meta-heuristic

GMPPT technique with comparisons made towards P&O and an original Improved

PSO. The implemented GMPPT scheme by the author proves itself with results and

performance that exceeds the preceding methods introduced in terms of tracking speed

and accuracy. GWO obtains the GMPP with an efficiency range of 99.81% to 99.92%

at a speed of 3.18 s to the Improved PSO algorithm’s speed of 7.9 s in the experimental

setup.

For simulation verification, the author utilizes MATLAB/Simulink environment to

implement their proposed GWO. To validate the simulation results, Sukam 50 W PV

modules were connected in 4S, and 2S2P strings were established. To recreate par-

tial shading effects, the author utilizes man-made efforts through transparent sheets of

different shapes shadowing the PV modules. Implementation of the GMPPT is done

through a dSPACE1104 controller and their ADC channels are used to measure voltage

and current using Hall Effect sensor; hence, DAC channels were used to generate PWM

signals and a slave DSP subsystem based on a TMS320F240 DSP. Multiple PSC cases

were introduced to the GMPPT to test its performance, the cases can be seen to range

from uniform condition to cases where 4 peaks on the P-V curve are caused.

Figure 3.8: Tracking Performance of GWO Algorithm [98]
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3.3.8 Earthquake Optimization Algorithm

Earthquake Optimization Algorithm (EA) is a geo-inspired metaheuristic algorithm first

introduced in [99]. The application of the algorithm was extended, improved upon in

[100]. The authors in [101] have then introduced and adapted the algorithm into an

MPPT application. As an example, earthquakes carry two types of waves (P and S)

which carry information about the magnitude of the seismic. This principle is used to

make the velocity of P-wave and S-waves as an explorer agent providing information

from search space to acquire the optimum solution. Two types of wave velocities, P,

vp and S, vs, are generated through equations. A Lamé parameter is utilized in these

equations as well and given to be 1.5. Within the algorithm, the density of the solids is

dictated as a random value in a given range of values. A control of operation range for

the algorithm to use either the vp or vs is dubbed as the S-range. The S-range can be

characterized based on the orbiting of solutions around an epicenter (MPP) to ensure

optimization behavior. Utilizing this information, their adaptation of this geo-inspired

algorithm is presented in Fig. 3.9.

Figure 3.9: Flowchart of EA MPPT Algorithm [101]
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However, it is mention in the adaptation that only the vs velocity equation is used

for this version. The algorithm continuously updates and runs until a stopping criterion

is reached. The algorithm demonstrates its search process and is adapted to use in

the simulation setup through MATLAB Simulink. The simulation setup uses a conven-

tional DC-DC boost converter with an input of two different PV arrays, a CRM60S125S

module and a TP250MBZ module. The CRM60S125S module is arranged as a singular

module of 57.96W, while the TP250MBZ module is arranged in a 2P10S string, provid-

ing 249W per module. Two test cases can be made with the different PV arrays, a low

power case utilizing the singular module and a higher powered case utilizing the array

string. The author implements the two cases as presented in Fig. 3.10.

(a) Low power (b) Higher power

Figure 3.10: Irradiance profiles of low and high power simulations [101]

Testing in the simulation setup provided the results of power obtained based on the

irradiance profiles that change periodically within 10s of testing time are presented in

Fig. 3.11. Various algorithm were compared in the test, including PSO, P&O and EA.

(a) Low power (b) Higher power

Figure 3.11: Simulation results of low and high power tests [101]

The implemented MPPT scheme by the author proves itself with results and per-

formance that exceeds the preceding methods introduced in terms of energy harvested,

MPPT efficiency and total wasted power. In the low power simulation, EA harvests

the most energy at 455.6432 W, tracks the MPP with an efficiency of 97.2558% and

has the lowest total wasted power at 12.8568 W compared to the PSO and P&O. In

the high power simulation, the EA harvests the most energy at 41.388 kW, obtains the
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highest MPPT efficiency at 96.2512% and has the least amount of total wasted power

at 1.6120 kW. However, the proposed algorithm was not tested under shading patterns

of more than 1 peak on the P-V curve, further conviction would be required to verify

the effectiveness of the algorithm under GMPPT.

3.3.9 Salp Swarm Optimization Algorithm

A new meta-heuristic algorithm, Salp Swarm Optimization Algorithm (SSO) first intro-

duced in [102], has been adapted into MPPT by the authors in [103]. Salps are marine

organisms. Their movement is carried out in water through jet action propulsion. In

the deep sea, salps are linked into a swarm called a salp chain. The objective of these

chains aim for food exploration and better sustainability. A salp chains is made up of

a leader and a number of followers. The leader leads the movement, while followers up-

date their positions accordingly. The movement of the salp swarm is attributed towards

exploration and exploitation. For MPPT, the position of the salp leader is associated

with the output duty cycle. The population is initiated randomly in the search space.

Utilizing this information, the flowchart of the proposed implementation for MPPT can

be observed in Fig. 3.12.

Figure 3.12: Flowchart of SSO [103]
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The particles in this adaptation are treated as salps. Similar to PSO, the positions

of leader and follower particles are updated using an equation. The equation utilizes

information from the swarm leader and food positions to calculate the next iteration

position values. These updates to the position values follow Newtonian motion which

are given by equations. The equation can be simplified as (xj)
i = 1

2((xj)
i) + (xj)

(i− 1).

A weight c1 is crucial to balance the exploitation and exploration of the swarm. It is

dictated by a calculation of the current iteration and set maximum iterations parameters

within the algorithm. Using the equations, when a leading swarm moves towards an

optimum solution so does the entire chain of particles. The fittest particle becomes

the leader. In each iteration, the distance between the food source and particles is

calculated to update position. The closest distance is considered the fittest in this study,

and followers’ positions are updated accordingly. Particles that exceed a boundary of

position update are treated as scouts and randomly initialized to avoid local maxima

traps.

The authors also introduced more complex shading patterns to test the SSO. In the

author’s proposed SSO, a mechanism has been incorporated to make sure the global

maxima is guaranteed to be tracked based on a closely relative calibrated technique

[104]. The search space is explored through using the search skip jump mechanism

and section division point in [105]. In their proposed work, the SSO algorithm was

verified in both simulation and experimental setup. Six test cases were applied to

the PV systems against all algorithms, including Dragonfly Optimization, P&O, ABC,

PSO-gravitational search, PSO, CS and the proposed SSO algorithm. The cases have

different shading patterns for the algorithms to solve, which range from a fast varying

irradiance, two cases of partial shading, two cases of complex partial shading and one test

case imitating real Hong-Kong climate conditions. The irradiance profile and simulation

results of case 5, with complex partial shading is presented in Fig. 3.13 and Fig. 3.14.

Figure 3.13: Complex Partial Shading condition (2) and cluster formation [103]
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Figure 3.14: Case 5 CPS power zoomed-in comparison [103]

In comparison to the other algorithms, their proposed SSO obtains the highest

efficiency and fastest tracking speed at 97.3% and 0.22 s respectively. Overall, the sim-

ulation results proved SSO performance exceeded that of all other algorithms tested in

comparison. An experimental setup, composed of PV system, boost converter hardware

including a designed emulator was utilized for validation. The algorithms are imple-

mented on an Atmel ATMEGA-2560, while the data acquisition is done by an Atmel

ATMEGA-328P and MATLAB interfacing. All the tests cases have been replicated and

emulated onto the experimental setup, all algorithms were compared under all test cases

and the results are provided in 3.15.

Figure 3.15: Average efficiency, convergence time and settling time of MPPT techniques.
[103]

Overall, the experimental results demonstrated that all inferred performance from

the SSO in simulation setup was verified. The SSO algorithm, in the experimental setup

obtains an average of 99.3% efficiency with a tracking time of 0.25 s. The algorithm,

outweighs all other algorithms in the tests in factor of performance in efficiency and in

speed except against P&O which is trapped in local minima.
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3.3.10 Literature Review Summary

As can be inferred from the review, the methods and techniques in one form or another

follow the framework as shown in Chapter 2 of how an algorithm should perform to

solve the optimization problem. As shown, GMPPT methods implement themselves in

a particular framework where an individual or population of candidate solutions sized

N proceed in a step-by-step fashion of searching for GMPP. Mathematical operations

that represent the operators in evolutionary algorithm are utilized to modify duty cycle,

D. Moreover, the operators assume for the balance of exploration and exploitation of

the entire population. Ultimately, there must be a convergence criterion which allows

termination of the algorithm search process upon the convergence of the population

or, in some cases a maximum iteration has been reached. Dynamic environment of

the surrounding may incur a change of PV panel power, Ppv through rapidly adjusting

irradiance and temperature levels.

The impedance of the circuit must be changed to comply with the change of Ppv, thus

the algorithm must restart to calculate a new D. Re-initialization is a shared process

that the reviewed GMPPT methods typically employ in order to restart the algorithm

from a point in the algorithm framework, commonly it is restarted at the beginning.

Through re-initialization, algorithms can restart the search for GMPP and obtain new

duty cycle that befits the current P-V curve. Moreover, the simulation software utilized

for simulation verification is all but guaranteed to be done using MATLAB/Simulink

environment as it is the most commonly used simulation tool. Experimental setup of

the reviewed GMPPT methods can be divided into real PV panel, emulation through

PV emulator or none at all. However, real PSC cases cannot be obtained or simulated

accurately in real life without the usage of electronically designation from a PV emulator.

Thus, the proposed research believes that the usage of PV emulator is the more accurate

tool in simulation of PSC cases where the control of when and what type of P-V curve

can be easily controlled.

Table 3.1: General Performance Results of Reviewed GMPPT Techniques

GMPPT Complexity Parameters Peaks Tracking Speed (s) Sample Time (s) Efficiency (%) Converter Type

Bat Algorithm [88] Low 5 4 1.3 0.05 98.8 Buck-Boost

Hybrid PSO and P&O [90] High 11 2 1.3 0.06 99.98 Boost

PSO-VD [93] High 5 2 ∼3 0.1 - Buck-Boost

PSO [94] Low 5 3 0.9 0.05 99.66 Boost

L-PSO [96] Medium 5 6 1.86 0.5 99.69 Boost

FWA-P&O [97] High 8 4 - - - Boost

GWO [98] High 1 4 - - 99.92 Boost

EOA [101] Low 3 1 - 0.1 96.25 Boost

SSO [103] Low 1 11 0.22 - 97.3 Boost
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The Table 3.1 compiled with reference to [5] expresses the performance all the

GMPPT techniques reviewed so far. A list of the reviewed algorithms in terms of

complexity, general tuning parameter amount usage, highest peak count tested in their

PSC, the tracking speed for the respective highest peaks, change in duty cycle per

sample time and the overall converter efficiency is demonstrated as results.

The complexity of an optimization algorithm is hard to describe in quantifiable

matter for the GMPPT problem as the algorithm faces dynamic environments. More-

over, stochastic optimization methods themselves risk solving the problems by chance

and have to rely on convergence time to have a resemblance of finding the time com-

plexity. Based on GMPPT method implementation papers, the term complexity can

be split to implementation complexity and mathematical complexity [106]. The time

complexity can be resolved to be given from the final tracking speed instead, forgoing

mathematical notation as a way to measure it. Implementation complexity is affected

by the utilization of complex MPPT algorithms such as PSO, ANN, FLC techniques

due to the utilization of micro-controllers, DSP and FPGA to implement them. The

mathematical complexity is given by the amount of parameters utilized and the amount

of mathematical expressions used [107]. In optimization computation theory, the di-

mensionality of a problem is given by the amount of variables required to solve the

optimization problem which in turn increases the complexity of the problem. But the

GMPPT problem only uses P as the input variable, thus the complexity is highly and

commonly referred to other aspects. The higher the amount of tunable parameters, the

harder it is to balance the algorithm performance for tracking speed and convergence

speed due to reasons laid out in Chapter 2. As such, lower parameters are be able to

reduce the amount of mathematical computation in an algorithm and in turn reduce

the need of high implementation cost as well.

Shading peaks in the results refer to the amount of local peaks and the one GMPP

combined. The degree of robustness and accuracy of an algorithm can be given from

the tracking speed and efficiency of power conversion obtained. In an increase of peaks,

the GMPP becomes harder to find due to the increase of peaks, thus it is possible

to evaluate algorithm robustness and search performances based on this amount. The

harder the P-V curve is because of the existence of many more peaks, then the longer

time it takes to track the GMPP and tracking speed is prolonged. The sampling time

in papers refer to, the time taken for the measurement of any Vpv, Ipv, Vload and Iload.

The measurement of the values after a sampling time has passed is important to the
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controller unit due to the fact that duty cycles are only modified per sampling period.

The system must settle after a duty cycle has been set to allow accurate measurement

from either the voltage sensor, current sensor or both. Ample time must be given

to avoid inaccuracies in measurement and avoid the mismatch of recording the duty

cycle/individual to its measured Ppv. The efficiency of power conversion, µ is always

given by the percentage of remaining power from the Ppv at the Pload. Equation (3.1)

easily shows the formula of calculating DC-DC conversion efficiency. External factors

affect this value easily and the design of the DC-DC converter is typically efficient in

simulation however the real-world experimental setup is subject to many uncertainties.

The efficiency of a uniform PV array can drop to 5% if the ripple in RMS MPP voltage

is approximately 8% [108].

Pload

Ppv
· 100% = µ(%). (3.1)

In the proposed algorithm, there is a need to balance the complexity of the algorithm,

the mathematical operators that improve an individual duty cycle Di which also imple-

mented an amount of tunable parameters. It is observed in the various improvements

made on PSO algorithm that, the algorithms that are modified substantially perform

better. For the generation of individual solutions through either combination of new

methods or addition of new behavior, the tracking speed substantially changes itself

over their non modified versions. The performance of the algorithm’s accuracy is also

tied to the tracking speed of the algorithm. Moreover, more shading peaks will disrupt

GMPP tracking times and in turn reduce tracking speed. We can observe a pattern

here where every form of result and expected behavior has to balance itself from the

reliance of every other factor. Expected performance comes with expected tradeoff; this

ties in to the known fact that one of the major points of tracking speed is reliance on

the basis of balancing both exploitation and exploration in the search space evenly.

In conclusion, the ideal form of a GMPPT algorithm can be derived. GMPPT

algorithms must be low in implementation complexity, computational complexity with

less parameters, able to perform heavily peaked of P-V curves, be as fast as possible

with the tracking speed and convergence time, also contain sufficient sampling time to

record the Ppv while speeding the algorithm and also be as efficient as possible. This is

of course an ideal whereas explained before, balance is important and perfection is hard

to achieve. However, there is an objective to obtain advantages where ever possible.

The proposed research takes a look into the improvement of the GMPPT computational
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aspects through the modification of solutions in the next section. The modifications to

the algorithm can improve its performance without sacrificing too much implementation

complexity and are able to make the individual solutions perform as best as possible in

high number of peaks P-V curves.

3.4 Performance Enchantment of the GMPPT Algorithms

The chapter aimed to lay out a general framework/structure of normal GMPPT compu-

tation behavior that can be mutually exclusive to most evolutionary algorithms, while

still showing the example of how programmers design an algorithm under the rules de-

scribed above. Modern implementations or designs of GMPPT algorithms commonly

show improvements over older versions or older ideas through different new or improved

methods constantly as evidenced by the development of modified algorithms and hybrid

algorithms [5][106][107].

It would be observed from the literature that different operators suit different evo-

lutionary algorithms and their strategies also depend on the application at hand. It is

necessary to develop a review of the formerly mentioned operators in MPPT or GMPPT

algorithm to aid the design of a GMPPT algorithm in the system through the demon-

stration of their feasibility in the reviewed papers. The algorithms when containing a

same method of PSO for example can be reviewed with the improvements made on it.

The improvements can be classified as adjustment of parameters in the chosen

GMPPT technique (e.g population size, coefficient), operators (e.g utilization of co-

efficient and individual information) and hybridization (e.g addition of other technique

methods). The design of the proposed GMPPT technique is improved in understanding

these aspects and applying them towards better GMPP search performance under PSC.

3.4.1 Parameter Adjustment or Tuning

As observable from the Table 3.1, the parameters would be dependent on the imple-

mentation conducted by the author. The behavior can be seen from the PSO results in

Subsection 3.3 where the two different implementations of the same algorithm can have

different results due to the parameter usage. Moreover, many improvements were made

with PSO as the base and improvements were made to them by applying new meth-

ods in PSO-VD, hybrid PSO-P&O. Inside of these reviewed algorithms, comparisons

conducted involved the parameter values were shared between canonical and modified
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forms in order to give contrast to the improvement made from their modification. Thus,

not conducting parameter adjustment and tuning is detrimental to the performance of

GMPPT.

Moreover, if an implementation of GMPPT were to be made from an optimization

technique. What must be considered is the parameter change due to the optimization

problem at hand. Obviously, some algorithms in their original versions of testing were

tested with benchmarks and multiple different parameters. These different parameters

can include N size population, Tmax, coefficients and weight factor for individuals. The

benchmarks provided validation of results to the authors. However, the optimization

problem of GMPPT cannot apply the same parameters, as shareable parameters are

unfeasible in the time constrained requirement of GMPPT tracking.

An example is derived from PSO as it is reviewed already in this Chapter. Given

the PSO algorithm, population size N , inertia weight Ω are the key tunable parameters

to decide the overall performance of the algorithm. Maximum iteration limit, Tmax

also decides the time where an algorithm must end. Noticeably, higher iteration limits

allow for more search to try and search for better MPP, but stagnancy will be risked

to appear. The risk can be seen where a reviewed algorithm implemented an individual

solution to shift duty cycles when stagnancy is calculated. However, these risks from

Tmax is circumvented as long as the implementation of good convergence criteria are

used where convergence must be detected. After all, stagnancy of population results

can basically mean that the algorithm has converged, thus ending the algorithm search

process earlier. Thus, in the papers for GMPPT reviewed, the maximum iteration is

usually less than 10 and there are also convergence criteria applied. The main reasoning

for this is that algorithm that have converged already should achieve the GMPP and

thus iteration limit is utilized as fail-safe condition to stop the algorithm. This maximum

iteration value is not inherently high for the GMPPT problem, as adaptive mathematical

expressions derive their offset of the population’s duty cycle off the tmax.

Larger N sized swarm would give initial fitness evaluation a good list of candidates

for the operators to start their search from. There will be more chances that one

individual with good duty cycle, D has found the point on the P-V curve that is closest

to a GMPP. The downside of this is of course, each iteration is multiplied with the

amount of population. Given high population count and high iteration count, there

can be many wasted searches and at the same time prolonged search process due to

the need to run through entire N population at fitness evaluation. If a choice is made
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to select good candidates only, then this wasted time can be instead used for more

meaningful searches with a leading individual. In the reviewed GMPPT algorithms,

a population size is given dependent on the operators utilized, a method like FWA

where more individual candidate solutions are generated off the original population size

does not implement as much as 10 or more population size. The sparks from FWA

would generate as much as 10 times the amount of minimum spark size allowable per

individual, greatly prolonging search times. In L-PSO, mutation of the Gbest particle is

done at a onetime fitness evaluation per mutation hence population size does not affect

the performance as much as FWA. However, methods like I&C, P&O, SA and voltage

curve tracking utilize only single N sized population, just as conducting individual

search. Thus, the population size is determined based on method used.

The previous two parameters were in fact general for most evolutionary algorithms.

These parameter values, of course, depend on the type of algorithm framework utilized,

but coefficients are unique to the type of algorithm framework instead and are unique

to the algorithm chosen. In GWO, the utilization of D,A and C coefficient vectors that

contain the numerical values needed to affect the next duty cycle of an individual is

observed. In Bat algorithm, the generation of new solutions has the coefficient Ω is a

weight factor that limits the speed of their microbats. In terms of GMPPT this means

the amount of value change of duty cycle is affected by the Ω. As observable from these

coefficients, they are related to the generation of new solutions and hence are the niche

of each algorithm framework that must be balanced for GMPPT problem.

As such, parameter tuning is important factor to obtain better GMPPT perfor-

mances. While parameter tuning itself depends on what parameters are available, the

expected behavior in a sense can be changed from changing the parameters such as

coefficients to the desire of the designer for the purpose of GMPPT.

3.4.2 Modifications to Generation of the Solutions

Given a general population of N size, the generation of xi = 1, 2, 3, 4, ...N is determinant

on the operators which use tunable parameters,random numbers and coefficients. The

three aspects can be seen from the review of implemented GMPPT above, where the pa-

rameter tuning adjustment is able to affect the performance of GMPP search greatly in

speed and accuracy [5]. Moreover, the usage of the parameters are designed for expected

or needed behavior during certain parts of the algorithm framework, e.g slower move-

ment of individuals can be set during higher iterations to maximize local fitness. The
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following subsections will detail the mathematical expressions and what adjustments

are implemented that spawn individual position speed,direction and position.

1. Variation Operators

As explained during Chapter 2, variation operators are different than mutation or

selection operators in methodology. The variation operators can be generalized

to modify next iteration individual positions, xi
t in local search prioritization in

contrast to the mutation operators which generate an offshoot candidate solution

from information in the population and are not in the vicinity of Gbest individual

solutions.

An expected usage of stochastic behavior in implementations of GMPPT algo-

rithms can be seen is large use of random generated numbers. These numbers

may be generated in a normal distribution or any other form of probability den-

sity of distribution where values are weighed towards the mean, µ. The utilization

of distributed number generated to fill the initial population position is more

commonplace though. Random number generation is used in many operators

including the currently discussed variation operators. For example, random num-

bers are used in PSO as r1 and r2 in velocity equation. By using these variables,

the mathematical expression becomes stochastic in nature and is able to gener-

ate minimal offset if multiplied against, larger offsets can be made from summing

original position with randomly generated numbers.

vt+1
i = wt · v(t)i + c1 · r1[Pbest − xti] + c2 · r2[Gbest − xti] (3.2)

The influence of coefficients can be seen from acceleration coefficient C1, it is

tied to the cognitive component of the operator expression where it is multiplied

with the particle memory, its personal best fitness value Pbest. The influence of

the coefficient can also be observed from acceleration coefficient C2, it is tied to

the social component of the operator expression where it is multiplied with the

influence of the Gbest.

An observable modification to the canonical PSO velocity operator from (4.15) is

seen in PSO-VD implementation for GMPPT in (3.3). The author has removed the

influence from Pbest in the calculation of the velocity. Instead, an influence from
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the swarm is calculated using information obtained randomly from two random

individuals , y.

vt+1
i = wt · v(t)i + y + c2 · r2[Gbest − xti], (3.3)

where y is given from two random chosen particles, xj and yk an observable in

(3.4).

y = xj − xk. (3.4)

Moreover, in the Bat algorithm GMPPT implementation, modifications are made

on the equation of velocity vi. The parameter ω called “inertia weight factor”

is introduced in [109]. This weight factor parameter limits the speeds of their

population of microbats. The author presents that weight factor can improve the

solution generation from the referenced paper. The calculation of the original

velocity generation for a microbat’s solution is given in (3.5). In the expression,

the social component of the entire swarm is known through information of the

current global best solution, Gbest which will be multiplied with the frequency of

each microbat fi which is a stochastic coefficient.

vt+1
i = v

(t)
i + (xti − xGbest) · fi. (3.5)

In the modified expression, an inertia weight factor, Ω is added to the expression

as observable in (3.6):

vt+1
i = Ω · v(t)i + (xti − xGbest) · fi. (3.6)

As reviewed from implemented versions of their optimization algorithm in GMPPT

problem, the modification to operators to fit GMPPT problem is commonplace

in order to optimize the search process for PSC. The results from these reviewed

GMPPT also present their modifications to be substantial to the problem as they

have succeeded other GMPPT in literature with regards to search speed and

accuracy.

2. Mutation Operators

Given that there are operators that assist in the generation of better results in term

of local search explained in the earlier subsection and in Chapter 2. Operators

that are able to look beyond the current solution’s search area are needed to
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escape local trap situations. The mutation operators are equations that generate

individual solutions outside the current Gbest area, thus are able to or should be

able to escape local traps and generate global search for the algorithm framework.

The behavior of mutation individuals follows one rule in the fitness evaluation of

their duty cycles, when the duty cycle of a mutated value does not outperform

its original position then it will not replace its original. As such, the weaker

individuals do not join the original population to be considered for more searches

and wasted searches are prevented or lessened.

An implementation of this is shown in L-PSO as reviewed in the Chapter. L-PSO

used multiple mutations on the current Gbest individual’s position. Thus, the best

duty cycle of the entire search area is mutated. Various forms of mutation are

used, Gaussian normal distribution is utilized and multiplied against as shown in

(3.7). In the algorithm, Pg is denoted as the current solution of the Gbest and it

has the same position.

Pg1 = Pg + (Xmax −Xmin) ·Gaussian(o, h) (3.7)

where Gaussian(o, h), the Gaussian function which is the normally distributed

range of values of the total fitness values of every duty cycle in the population.

By modifying mean o and standard deviation h, the degree of generated mutation

values can be altered to the user’s desire. This allows even some exploitation

to occur if parameter values are adjusted properly. The Cauchy distribution of

generated mutated value Pg2 follows the same behavior as the generation of Pg1.

Another form of mutation implemented can be observed in elite mutation which

is Pg3 in (3.8)

Pg3 = (xmax + xmin)− Pg. (3.8)

where xmax and xmin are respectively the maximum and minimum limit of the

generation of duty cycle, which is [1,0]. Observably, the mutation operator here

does not utilize any cognitive or social information of the swarm’s personal best,

Pbest or global best, Gbest. The operator is simplest to implement and can guar-

antee that the mutated position is the opposite of Pg global best solution. There

is guaranteed return of a global exploration from this operator.



3.4. Performance Enchantment of the GMPPT Algorithms 73

Scaling mutation is also another mutation that can be observed for implemen-

tation. As the name implies, it is able to scale the degree of mutation to a set

parameter. The coefficient F controls the multiplication of the sum of position

between two randomly chosen individuals, xj and xk in the population. The

mutation operator in question is shown in (3.9):

Pg4 = Pg + F (xj − xk). (3.9)

The author states that this mutation is more utilizable for exploitation instead.

However, an observation can be made that the value of this mutation can be ex-

ploration based from the earlier stages of search process and at early iterations.

At the early stage of search process, iteration count can be low and thus the pop-

ulation of duty cycles remains out of convergence. Thus, two randomly chosen

individuals from this population at this iteration time could offer more to explo-

ration instead in comparison to late stage randomly chosen individuals which are

local based in the area as the population is closer to each other.

As shown, multiple mutation operators have been reviewed and their use can

greatly assist in global search or exploration capabilities of the population in

the search area. It can be seen that mutation operators can be managed to

a certain degree also to control the degree of mutation. The reviewed algorithm

that implemented these operators has shown that their algorithm surpasses others

in literature in terms of tracking speed and accuracy.

3. Selection Operators

From the reviewed GMPPT algorithms, selection operators were not implemented

upon an entire population. Selection operators focus on calculating i individuals

to bring over into the next iteration for further search. In the reviewed GMPPT

techniques; however, entire populations were brought over to the next iteration.

While the reviewed techniques did indeed perform adequately for GMPPT and

were suitable for GMPP search, a selection operator which can include tourna-

ment, elite or random selection of individuals were not implemented. With the

basis that weak duty cycles should be pruned from the population, new individu-

als can rejoin the population swarm after generation from mutation or variation
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operators. Thus, selection operators can be considered for the design of an algo-

rithm’s framework and be tested in comparison to other algorithms that did not

implement selection operators.

3.4.3 Hybrid Methods

The main disadvantages of optimization algorithms in PV system applications are their

accuracy and speed having low convergence rate when in iterative processes while bal-

ancing the exploration and exploitation of the population [110]. The balance of these

two factors must be made in order to prove the performance of a GMPPT algorithm. Ac-

cording to an analysis of various GMPPT techniques in [5] and [23], it is concluded that

hybrid algorithms are the most interest point in further research for the development of

methods in GMPPT. Hybrid GMPPT algorithms have already shown their performance

in the reviewed GMPPT algorithm, in the hybrid PSO-VD and FWA-P&O. Other im-

plementations within literature such as hybrid Gaussian process regression-Jaya (GPR-

Jaya) algorithm by [111], hybrid whale optimization and pattern search (HWO-PS)

algorithm by [112] and hybrid GWO-Fuzzly Logic Controller (GWO-FLC) by [113]

have shown the capabilities of hybrid implementations. The hybrid algorithms show-

cased their combination of two methods to form a new method to search for GMPPT

under PSC. The hybrid algorithms are able to follow up or continue the search process

after a completion of one counterpart algorithm, delegating certain points of the search

process to its other half of the algorithm. The design of their hybrid algorithm were

designed with the need of overcoming weaknesses in one method or further improve

the performance of the individuals in the population for GMPPT search. Thus, the

use of the proposed hybrid algorithms with equations, operators and strategies must be

derived from a standpoint that befits the PV system need of GMPPT under dynamic

shading conditions through searching for GMPP with fast and accurate speeds while

also having good exploitation and exploration of solution search space.

3.5 Research Gap Analysis

Utilizing the information obtained in Subsection 3.3 and 3.4. The research gap analysis

of PV systems employing GMPPT algorithms determine the proposed DC-DC converter

type and the proposed GMPPT algorithm in this research project.
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3.5.1 Proposed DC-DC Converter Type

From the literature review, the PV panels, DC-DC converter and algorithm implemented

function as a whole PV system. Validation of the GMPPT algorithms thus require

the use and description of a chosen DC-DC converter type. A statement can be made

regarding the use of the defined converter types in Chapter 2.2, the literature review has

shown that a majority of implementations for GMPPT algorithms under PSC employ

the use of boost converters followed by buck-boost converters. To supplement this fact,

reviews of GMPPT algorithms also show that the boost converter is a majority in most

implementations [5], [23].

The benefit of boost converters in stepping up the output voltage due to lower or

unstable voltage levels in the PV system due to PSC can attribute to the decision of

most literature is utilizing the design. A buck-boost converter can step down or step

up output voltage levels, which give a layer of complexity to the implementation of

the algorithm instead. Topology wise, the boost converter is simpler to implement and

utilize for the problem of occuring PSC in PV systems. Moreover, improved or modified

boost converter design are not utilized in the literature review, the conventional design

and its topology would serve to accommodate the algorithm performance only.

In the proposed research, the conventional boost converter design will be adopted in

use of simulation and experimental setup to validate the proposed GMPPT algorithm.

The design must calculate the component values of the inductor, switch, capacitance

and load resistance utilizing formulae in respect of the PV system input and output

ranges for voltage and current.

3.5.2 Proposed GMPPT Algorithm

From the literature review, the algorithms have demonstrated their search process

and capabilities in seeking GMPP. The GMPPT methods can be categorized into

optimization-based algorithms, hybrid approaches combining multiple optimization al-

gorithms. The optimization-based algorithms include swarm intelligence and evolutionary-

based algorithms which reiterate upon a set of solutions to find the global best solution.

The improvement of algorithm performance and design is also built upon the afore-

mentioned balance of exploration and exploitation in Chapter 2.5. While obtaining

the fastest tracking speed and accuracy or efficiency of the GMPPT, the algorithm

design considers these two aspects as explained beforehand. Keeping in mind various
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techniques discussed in Subsection 3.4 based on the reviewed literature, the proposed

research aims to resolve the weakness in the algorithms which stem from lack of either

exploration or exploitation, while obtaining highest efficiency, most accurate and faster

GMPPT results.

Hybrid methods, which consist of combination of two optimization algorithms or

optimization method and conventional method have been proposed in the literature. It

has been shown that the hybrid methods are able to improve the system performance

[23]. However, choosing the right algorithms to be combined is not straightforward.

We need to consider several aspects, such as the advantages and disadvantages of each

algorithm and the system characteristics, if we want to implement it [26]. Even so,

slow convergence rates that could result from improper parameter adjustment and risk

of falling into local maxima may still occur when using the enhanced or hybrid algo-

rithms [27]. As a result, the design of GMPPT implementations must aim towards

obtaining better GMPPT performance through balance of exploration and exploitation

capabilities [114].

Within the literature review, PSO is a well-known evolutionary algorithm which is

simple and effective in most general optimization problems. When tracking the GMPP,

PSO algorithm outperforms the conventional MPPT algorithms in terms of speed and

accuracy [5]. However, the algorithm is hampered by initialization problems where an

improper velocity update can severely slow down the convergence rate to the GMPP

[29]. Moreover, PSO has a tendency to fall into premature convergence at a local

maxima [30]. PSO must consider the resolution of its slow convergence and chance

of local trap; thus, the two weaknesses are the main motif of its selection for further

research in GMPPT.

Meanwhile, FWA is also a popular optimization algorithm which exploits the local

search area for getting high tracking accuracy of the global solution [115]. Two research

works have been found for FWA in the literature which are [97] and [28]. The perfor-

mance results of conventional FWA proved the lack of review of itself as an algorithm

in GMPPT due to the performance as a hybrid algorithm. A canonical version of the

FWA as a GMPPT and verified against other GMPPT algorithms, is also not imple-

mented or known in current modern literature. Nevertheless, FWA has several issues

related to convergence speed [116]. Moreover, FWA has a larger parameter count ren-

dering the parameter adjustment to be difficult for MPPT application in its searching

process [117]. Therefore, the weaknesses demonstrated by FWA makes it a solid choice
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in further research to improve its capabilities for GMPPT and conviction regarding its

performance.

To overcome the PSO and FWA weaknesses in solving the GMPPT problems under

PSC environment, the research project proposes to use the PS-FW algorithm. The PS-

FW algorithm has been introduced in [31] by Chen et. al in order to solve optimization

problems. It has been seen in [31] that PS-FW has been bench marked and able to

converge rapidly and accurately in 22 global optimization problems. Furthermore, the

strong exploitation capabilities of FWA [115] and exploration of the PSO in searching

for a potential global solution [118] influences the expected performance in GMPPT

under PSC. Thus, a balance of global search and local search can be achieved with the

described implementation of PS-FW algorithm, strategies and adaptive spark control.

However, the use of PS-FW for solving GMPPT problems in PSC environment is not

straightforward due to difference in implementation, thereby more analyses are required.

In addition, the use of PS-FW implements the abandonment and supplement strategies,

in which, to the best of the conducted review, has not been discussed in the literature for

GMPPT problems. The research work also proposes an adaptive control of the PS-FW

parameters within spark number generation.

3.6 Chapter Summary

The reviewed GMPPT techniques beforehand described their complexity, parameter

usage, tracking speed under PSC and efficiency of power conversion. The review also

proves that each GMPPT implementation serves to prove their application scope, mean-

ing performance depends on how the PV system and technique is implemented. As said

before, each algorithm has unique methods of approaching the optimization problem,

that causes the difference in performance, application, framework design and how the

search process determines the GMPP. The parameter adjustment from their implemen-

tation into GMPPT, algorithm operators and the concept of hybridization are solutions

to enforce GMPPT performance, and both exploration and exploitation in the search

area for a GMPPT.

With the reviewed literature, the conventional boost converter topology as explained

in Chapter 2 is proven to be a safe choice among other boost converter topology as the

implementation is seen commonly in all the reviewed papers. The topology itself is
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implemented into the PV system in both simulation and experimental setups. MAT-

LAB/Simulink simulation software environment is implemented in the simulation setups

of most reviewed GMPPT algorithm implementations. This software will be adopted

for use in the research and the methodology is to understood to test the proposed hybrid

PS-FW GMPPT algorithm. There are GMPPT implementations that adopt the use of

PV emulator and dSPACE RTI unit to create an experimental setup of the PV system

by functioning as PV panel and GMPPT controller unit. Thus, the proposed research

also adopts the use of these two resources and the methodology is understood. The

accessibility of these tools assist in the testing and experimentation of PSC which will

be implemented with the proposed GMPPT algorithm.

The proposed GMPPT algorithm in this research is the PS-FW hybrid algorithm.

As explained beforehand, the PS-FW algorithm will be implemented for GMPPT appli-

cation to overcome weaknesses in both PSO and FWA. Thus, the PS-FW algorithm with

its abandonment and supplement strategies are implemented for GMPPT application.

Alongside the strategy is the proposed adaptive spark control for PS-FW in GMPPT.

PSO and FWA are also implemented as GMPPT algorithms to validate obtained per-

formance of the PS-FW hybrid algorithm. The algorithm will be verified under various

criteria within the PV system under both simulation and experimental setup.

Out of the criteria laid out in this literature review, emphasis is given to the conver-

gence speed and accuracy in order to prove the hybridization capabilities as a concept

to improve future GMPPT algorithms. Parameter count, complexity, hardware costs

and the sensor requirement are factors that are to be taken into account with expla-

nation inside the methodology. However, they are not be applied into the results and

discussion as a method of comparison as the application of PV system in the proposed

implementation focus on the GMPPT algorithms while functioning in fair condition.
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Proposed PV System with

Hybrid Algorithm

The completion of the research project objectives requires the validation of the pro-

posed GMPPT algorithm. However, validation to determine the overall performance of

the algorithm needs to be done through application into a PV system and tested. To

this end, the papers involved in literature review from Chapter 3.3 have implemented

simulation and experimental setups to test their algorithm. The reviewed papers have

described the setups using the modelling of the PV panel and the DC-DC converter

which are connected to any form of device that houses the algorithm. Moreover, the

papers describe their proposed GMPPT algorithms in detail of the operators and strate-

gies to be implemented into the PV system. Thus, the PV panel model, boost converter

parameters and all involved GMPPT algorithms are explained in this Chapter.

To determine the GMPPT algorithm performance through the PV system, a PV

model must be first devised, as the model determines the output current and voltage,

based on the irradiance and temperature which allows us to dynamically allocate prob-

lems to the PV panel with the partial shading patterns. The PV panel model is only

be utilized in simulation setup of the research as resources regarding the PV panel are

represented in the experimental setup.

It is important to choose the correct components and values for the design of the

boost converter as according to the selection of the boost converter design chosen in

Chapter 2.2. The ability of the boost converter to handle the PV system is determined

through the calculation of the parameter values. The conventional boost converter de-
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sign is then implemented into the PV system to be controlled by the GMPPT algorithms

that are designed in the research project. The simulation and experimental setups both

adopt the calculation of parameter values conducted for the components in the boost

converter.

A detailed explanation is given regarding the design of the proposed hybrid PS-

FW GMPPT algorithm. First, the introduction of the singular counterparts which are

also GMPPT algorithms in literature must be given in the form of PSO algorithm and

FWA. Initially, the framework of PSO and FWA was explained briefly in the literature

review. However, the implementation must be understood and the design is be properly

reflected by elaborating the operators into a flow of processes and equations that can

be represented onto mathematical expressions calculated and generated by the GMPPT

controller unit. Next, the proposed PS-FW algorithm is described with correlation to

both the PSO algorithm and FWA in the aspect that the PS-FW algorithm utilizes

strategies and operators in the new search process. The designed GMPPT algorithms

of PSO algorithm, FWA and PS-FW algorithm are then applied into the entire PV

system that controls the boost converter through the GMPPT controller unit.

In Section 4.1, the PV panel is modelled where it is used in simulation setup with

regards to the input of solar irradiance and temperature values. The P-V or I-V curve

of the proposed PV model is calculated using the equations given.

In Section 4.2, the conventional DC-DC boost converter specifications are calculated

to denote the minimum and maximum values of input power and output power based

on the switching frequency specified. The values calculated determine the values used

in both simulation and experimental setup.

The singular PSO algorithm is presented in Section 4.3, the modern and canonical

form which is used in common GMPPT implementations currently in literature. The

operators are denoted and the search process is given.

In Section 4.4, the singular FWA algorithm is presented in the modern and canonical

form of which is used in common GMPPT implementations currently in literature. The

operators of the FWA are denoted and the search process is presented.

A proposed hybrid algorithm that reintroduces the usage of the operators in both

PSO algorithm and FWA is presented in Section 4.5. The proposed PS-FW hybrid

algorithm is an algorithm that utilizes these operators and strategies that best fit the

GMPPT usage of fast convergence speed and best tracking accuracy.
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4.1 PV Panel Modelling

Mathematical-based model of solar cell/module is programmed to obtain desired output

data usually, by taking into account of ambient temperature, and solar irradiance level.

A mathematical-based model can describe PV cell/module accurately using complicated

mathematical algorithm. For the PV system, the equivalent circuit of a solar cell can

consist of either single-diode or two-diode models which are the most widely used. The

single-diode model has already been proven to be simple as it utilizes less parameters and

accurate enough in many cases as applied in [119]. In this section, the implementation

for this model of single-diode model of the PV cell is conducted through calculation of

the equations and trace of a P-V/I-V curve. The equivalent circuit for a single-diode

model PV cell is shown in Fig. 4.1:

Figure 4.1: The equivalent PV cell with one diode

The I-V curve characteristic of the model is described using (4.1):

I = Iph − Io{exp
q(V +RsI)

AKT − 1} − V +RsI

Rsh
, (4.1)

where V is the panel voltage, Ipv is the panel current, I is the output current, Id is the

current of parallel diode, Ish is the shunt current, Rs is the equivalent series resistance,

Rsh is the equivalent shunt resistance, A is the ideality factor, K is the Boltzmann

Constant which is 1.380649× 10−23, q is the electron charge (1.602 x 10−19C) and T is

the PV module temperature in °C.

The current Iph at a given temperature is found by the (4.2) which relates it to the

irradiation, temperature and those two conditions compared to a reference condition

(notably at STC):

Iph = Iscn(1 + a(Ta − Tn))
G

G∗ , (4.2)
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where coefficient Iscn is the short-circuit current Isc of the cell at given STC which is

usually (25◦C, 1000W/m2), Ta represents a given temperature (°C), a is the temperature

coefficient of Isc, G is the irradiance value and G∗ is the nominal irradiance at the

reference condition (W/m2).

The reverse saturation current of diode (Io) at reference temperature of Tn can be

given by the (4.3):

Ion =
Iscn

e(qVocn/(nKTn)) − 1
. (4.3)

The reverse saturation current of the cell at a given temperature (Ta) can be given by

the (4.4):

Io = Ion(Ta/Tn)(3/n) e((−qEg/nK)(1/Ta−1/Tn)). (4.4)

Using the equations, an I-V or P-V curve characteristic of the determinant PV cell

can be traced with different given temperatures and solar irradiance with utilization of

manufacturer data regarding the PV cell voltage and current values.

Given this established model of a PV solar cell, the equivalent PV model is able to

be simulated into whole PV array or PV strings through theoretical calculations and

thus determining the performance of the PV system.

4.2 Conventional DC-DC Boost Converter

A switching mode power supply (SMPS) configuration labelled and configured as a

boost converter is used to step down and step up the DC voltage by controlling the

duty ratio of the MOSFET and frequency of its switching. If the duty ratio is less than

0.5, the output voltage will be less than the input voltage; while if the duty ratio is

greater than 0.5, the output voltage will be greater than the input voltage. Duty ratio

is the time at which the MOSFET is on to the total switching time. The conventional

boost converter in this research project is implemented into the PV system setup as

shown in Fig. 4.2.
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Figure 4.2: A DC-DC Converter with PWM Control from Controller
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Figure 4.3: Boost Converter Design

Based on Fig. 4.3, the calculation of the boost converter output is to be found,

initially a load resistor value is determined from Vout = Iout · R. Vout and Iout are

user defined and desired values of the expected output power from the boost converter

and PV system. The PV panels are the Vin and Iin of the system. The Vout is easily

pronounced in (4.5).

Vout =
−D

1−D
Vin, (4.5)

where D is the duty cycle of the converter which is given as follows in (4.6):

D = 1− Vin(min)× η
Vout

, (4.6)

where η is the efficiency of the converter. Power dissipation is known in the conversion

to stem from the temperature and switching loss, an estimated around 90% of efficiency

is used in most calculations [120] in a worst case scenario. The efficiency has given it its

worst case scenario to facilitate and accommodate the resultant calculations for boost

converter component values. Vin can be given as the minimum value of the Vpv. This

value can also be assumed as the Vmpp and treated as the Vin, due to the fact the boost
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converter parameter values are calculated to function properly even at the voltage and

current given at MPP. Thus, any given calculation of component values for the converter

are able to handle the power conversion below rated PMPP . The expected and desired

Vout must be chosen for the converter and application requirements.

The maximum switch current is calculated, to do this the inductor ripple current,

δIL must be known beforehand in (4.7),

δIL =
Vin(min)×D

fs × L
. (4.7)

The ripple current present in the boost converter can be given from δIL. fs is the

desired switching frequency at the switching device. L is given as the inductance value,

which if not available, can be calculated at a minimum recommended value from (4.8):

L =
Vin × (Vout − Vin)

δIL × fs × Vout
. (4.8)

However, the δIL is typically assumed to be given as 20 to 40% of the output current

initially, then the calculation of L can be made. Afterwards, the L can be used in (4.7)

to calculate the δIL to a more accurate degree. The initial assumption of δIL can be

made with the (4.9):

δIL = (0.2 ∼ 0.4)× Iout. (4.9)

A value of 0.3 was assumed for the calculation of δIL. The Imaximum is calculated to

find out if the system is able to produce the output current needed. The value of the

calculated Imaximum must be larger than what is desired from the Ioutmax at the load.

If the Imaximum is lower than what is needed, a larger inductor inductance is required

and calculated using (4.10).

Imaximum = (Ilimmin
− δIL

2
)× (1−D), (4.10)

where Ilimmin
is the minimum limit of current for the MOSFET or IGBT switch.

Typically, by using a higher inductance, the maximum output current is increased

due to reduced ripple current. Lower inductance inductors have the disadvantage of

higher ripple current. Regardless, inductors are accompanied with a current rating that

must satisfy the maximum output current, Ioutmax in order to avoid high temperatures

damaging the inductor. The output current that the switch is able to output, Iswmax
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must be able to be higher than given output current at the Ioutmax , this switching current

output is provided in (4.11):

Iswmax =
δIL
2

+
Iout

1−D
. (4.11)

The diode used in the boost converter must be able to handle the rated switching

current, and is also required to be higher or equal to the Ioutmax , which can be found

using (4.12):

IF = Ioutmax , (4.12)

where IF is the average rectifier current limit that is typically available in the data

sheet of a given diode. Capacitor specifications are required to determine the selection

of input and output capacitor.

In the proposed design of the conventional boost converter, a capacitor at the input

side of the boost converter is installed to reduce ripple voltage and stabilize the input

side of voltage. The value of the capacitance, Cmin can be given in (4.13):

δV =
Iswmax

fs × Cin
, (4.13)

where δV is the desired voltage ripple of the converter. fs is the switching frequency

desired for the system. Typically, δV is also estimated to be around 10-20% of the

output voltage, Vout.

With the ripple voltage known, it is possible to fulfill the calculation of the Cin at

(4.13). And the Cout minimum required capacitance at the output side can also be

calculated in (4.14). Otherwise, the δV can be assumed to be around 10-20%. The

lower the voltage ripple, the higher the value of the rated capacitance and the current.

Higher value capacitors and inductors combined with the large Vout and Iout demand a

larger physical volume of space to accommodate the size needed to fulfill their power

ratings.

Cout =
Ioutmax ×D
fs × δV

. (4.14)

Thus, by calculating the component values of inductor, diode, switch and capacitor

the desired boost converter is derived. The equations utilized serve to calculate the
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Table 4.1: Calculation of Boost Converter Parameters

Parameter Value Parameter Value

Vin(min)
54.00 V Imaximum 40 A

Vin 54.00 V Iswmax 3.608 A
Vout 76.00 V Ilimmin

22.57 A
Iout 1.89 A IF 1.89 A
D 0.4315 δV 7.6 V
η 80% Cmin 11.868 µF
δIL 0.567 A Cmax 2.682 µF
fs 40KHz Rload 40 Ω
L 687 µH

minimum inductance values, minimum capacitance values, maximum possible switching

current at the switch and the desired output voltage.

A table that specifies the parameter values for all components has been detailed

in a list as shown in Table 4.1. As explained earlier, the converter specifications are

calculated at the maximum possible power available, P from the power source. In the

following table, the inductor inductance, L and the capacitors capacitance, Cin,Cmax

are chosen with minimum requirements. Thus, any selection of these two values must be

larger than values specified in the table, while also fulfilling Iout rating for the inductor

and Vout rating for the capacitors. The efficiency of the entire system is assumed to

be low at 80%; however, the true efficiency of the system can actually be found after

experimental validation when the GMPPT algorithm successfully tracks the GMPP

where power conversion efficiency is at the highest.

4.3 Particle Swarm Optimization Algorithm

The PSO algorithm is an evolutionary computation technique first proposed by Kennedy

and Eberhart in [91]. It assumes a group of birds are looking for food; however, there

is only one food in the area. All birds know their own distance to the food, but not

the specific location of the food. Thus, the birds move towards flocking around the

bird that is closest to the food location, converging towards the best possible location

of the food. The algorithm uses particles that each represent a potential individual

solution in the function or problem search space, each individual results in an objective

fitness value pertaining to the fitness function. The population consists of ith particles

that have a velocity and position. The position denotes its objective variable while the
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velocity of a particle determines its change of position, direction of position at each

iteration. Through each iteration, the particle’s position and velocity converge to the

globally most optimal solution found. Equation (4.15) and (4.16) both determine the

new velocity,vt+1
i and position change,x

(t+1)
i of the particles respectively:

vt+1
i = wt · v(t)i + c1 · r1[Pbest − xti] + c2 · r2[Gbest − xti], (4.15)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (4.16)

where vt+1
i is the velocity for the next iteration, (t + 1) of the ith particle, wt is the

inertia weight of the convergence speed for the particles in current iteration, c1c2 are

cognitive coefficient factors, r1, r2 are random real numbers from (0 to 1), Pbesti is the

personal best position of the ith particle, x
(t+1)
i is the position of the ith particle at

current iteration t, Gbest is the global best position of the algorithm.

This velocity Vi and coefficients c1, c2 are the parameters that affect the speed and

searching prowess of PSO. The two coefficients are a factor when multiplied by the r1, r2

random numbers, a larger coefficient factor sets the velocity calculations to be higher

while the smaller factors offer smaller velocity calculations.

After each iteration, the inertia factor wt which influences the velocity of the particle

reduces linearly. A high inertia factor generates a larger velocity which allows the

particle to move in longer steps and search further in exploration, while the smaller

inertia factor causes the particle velocity to be smaller and results in shorter steps and

enforce a local search exploitation around the current optimal best solution [121]. The

inertia weight factor can be calculated per iteration as in (4.17):

wt = wmax −
t · (wmax − wmin)

tmax
, (4.17)

where wt is the current iteration’s inertia, wmax is the maximum inertia coefficient,

wmin is a coefficient that controls the minimum inertia, tmax is the maximum iterations

that the algorithm can run. Upon reaching the end of one search process, the itera-

tion count is incremented until the maximum iteration limit is reached, enabling the

convergence criteria and output the best duty cycle, D.



88 Chapter 4. Proposed PV System with Hybrid Algorithm

	Update	particles	with	new
position	and	velocity

Specify	algorithm	specific
parameters

Evaluate	new	particle	population
fitness

Termination	criteria
reached

Iteration	=	Iteration	+	1

YESOutput	 	with	best
power,	P	

Start

NO

ORIGINAL	PARTICLE	SWARM	OPTIMIZATION

Initialize	and	evaluate	initial	
particle	swarm

	Record	each	particle's	 	and
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Figure 4.4: PSO Framework

The following Fig. 4.4 describes the flow of process in the PSO algorithm search

behavior.

To elaborate on the drawbacks of the canonical singular PSO algorithm that remain

in GMPPT implementations currently, a main weakness of the PSO algorithm is that

they suffer from from premature converges and slow convergence rate. Following the

equation calculation for velocity, a set factor that is innately high causes the velocity to
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be high even in the beginning of the algorithm’s run. The opposite case happens when

the factors are set too low, slowing down the change in position or even minimizing it

to the point of being redundant in the search. This behavior causes the parameter set-

tings to be difficult to determine correctly as high factors cause premature convergence,

low factors cause slow convergence rate. The premature convergence and convergence

rate are also affected by the inability of the algorithm to escape local traps. The PSO

algorithm lacks a way to explode out their solutions during the algorithm run, if the

candidate solution was inadequate then the premature convergence may occur due to

lack of the exploration in the algorithm. The third weakness, the lack of good explo-

ration in the algorithm leads to useless searches as an iteration does not improve upon

itself with relative change.

4.4 Fireworks Algorithm

The Fireworks Algorithm (FWA) was first proposed by Tan and Zhu in [122]. It sets off a

number of n fireworks in a location, which then explode in a number of random locations.

The explosions from these fireworks are able to generate sparks which replicate a real

firework explosion. Good fireworks produce a higher amount of sparks within a close

distance from each other, while the bad fireworks generate only little sparks and further

away from each other. In FWA, the individuals are the fireworks and sparks that

represent a solution in the search space for the current optimization problem. Much like

PSO and other optimization algorithms, fireworks and sparks have their own position

and solutions are searched and obtained through successive iterations. Much like PSO

which is shown as a population-based kind of evolutionary algorithm, the FWA has

already been implemented in problems such as [123] and [124]. Given the age of FWA,

it is a relatively new algorithm, improvements and analysis of the algorithm have been

conducted in [125] and [126] where the operators are modified or new strategies are

introduced. Within this research project, the operators have been derived to best fit the

GMPPT problem and are also based on GMPPT implementations of FWA in literature

as observable in the Chapter 3.3.

The following Fig. 4.5 describes the flow of process in the FWA search behavior.
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Figure 4.5: FWA Framework

The idea is that a firework represents an individual solution on the search space

and each firework may explode into si amounts of sparks depending on how well the

firework did. The fireworks produce sparks through explosion operator and Gaussian

mutation. Sparks position for a firework is determined by explosion amplitude and its

amount by the number of explosion sparks. Fireworks with lower fitness values generate

lower number of explosion sparks, larger explosion amplitude while better fitness value
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fireworks generate more sparks and smaller explosion amplitudes. The sparks number

can be obtained using (4.18) and the explosion amplitude of generated sparks using

(4.19):

si = m · fmax − f(ẋi) + ε∑p
j=1(fmax − f(ẋi)) + ε

, (4.18)

Ai = A · f(ẋi)− fmin + ε∑p
j=1(f(ẋi)− fmin) + ε

, (4.19)

where si is the amount of sparks generated by the ith firework, xi denotes the current

individual firework, m is a variable that controls the amount of sparks generated by

a firework, p is the swarm size, fmax and fmin represent the maximum and minimum

objective values among all of the p sized swarm, f(ẋi is the objective value of the current

ith firework in the current iteration, ε is a real number used to avoid zero-division errors,

Ai is the amplitude for the generated sparks of the current firework.

A way to control the generated sparks number for a firework can be done through

(4.20):

Si =


round(a ·m), Si < a ·m,
round(b ·m), Si > b ·m,
round(Si), otherwise.

(4.20)

Parameters a and b represent the bound limits for determining the sparks number.

Equation 4.20 is a case determination that controls the si number of sparks per explosion

generation, the first case would control the minimum value of the sparks, second case

would control the maximum value of the sparks and the last case generates the original

value otherwise. The generated sparks are evaluated based on their fitness, then a

selection process where the fireworks are randomly brought over to the next generation is

implemented. This marks the end of one iteration in the search process. Upon reaching

the end of one search process, the iteration count is incremented and the algorithm is

repeated until the maximum iteration limit is reached, enabling the convergence criteria

and output the best duty cycle, D.

The main unbecoming of the conventional FWA would stem from the lack of proof

of convergence in its problem solving. The existing literature have proven that the FWA

implementations in GMPPT from Chapter 3.6 are also lacking in terms of research and
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elaboration. Moreover, issues that are commonly shared with the conventional evolu-

tionary algorithms such as convergence speed and slow convergence are also prevalent in

the FWA [116]. The algorithm itself also has a problem with a high number of param-

eters needed to be saved in memory or used as the determinant in the equations during

the algorithm process. Thirdly, the behavior of fireworks explosions in the FWA does

not share information with each other in the effort of seeking optimal solutions. For

example, fireworks explode and the sparks are generated, the generated sparks between

each firework do not know the position and fitness value of a group of sparks outside of

themselves. So in the case a greater fitness value was found in another firework explo-

sion elsewhere, the sparks generated cannot be altered due to the preexisting generated

amplitude and this could lead to useless searches.

4.5 Proposed PS-FW Algorithm

Through the weaknesses mentioned in the previous two subsections, the approach to-

wards GMPPT application can be made. The hybrid PS-FW algorithm for GMPPT is

applied to the PV system while under PSC. In the proposed algorithm, the duty cycle,

D is represented as position of both particle and explosion spark. While the voltage,

V and the current, I are taken as inputs to the algorithm, the duty cycle is an output.

In this hybrid method, the FWA fireworks are now represented by the particles from

the PSO. The Fig. 4.6 briefly describes the combination of PSO algorithm and FWA,

initially in a form of position change due to the explosion and velocity operators.

New	Velocity,	

Explosion	sparks,	
	

Initial	Particle	Position	,	

New	Particle	Position	,	

Global	Best	Position,	

Figure 4.6: The behavior of PS-FW search process

The Fig. 4.7 also describes the step by step process of the proposed hybrid algorithm

framework.
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Figure 4.7: PS-FW Algorithm Framework

The PSO algorithm is first applied to obtain the fitness value Power, P of the initial n

swarm population size. Initial duty cycle of the n swarm is randomized from a number

range from (0,1). After initial fitness evaluation, particles are compared, the global

best Gbest and individual particle personal best Pbest among the population is updated.
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The velocity and position are updated using (4.15) and (4.16). After the update, the

inertia factor w is decreased for the next iteration’s update, (4.21) shows the equation

to decrease the inertia:

w(t) = wmax − (t · wmax − wmin

tmax
). (4.21)

The conventional PSO algorithm ends and all particles are sorted in ascending order

to their P obtained. Pnum number of particles are then chosen to have spark explo-

sions, while the FWnum number of particles are removed from the original swarm. The

equation to determine the FWnum is calculated using (4.22):

FWnum = round[(FWmax − FWmin) · ( tmax − t
tmax

)r + FWmin], (4.22)

where FWmax and FWmin are maximum and minimum limits of allowable particles to

be abandoned, tmax is the maximum iteration count for the algorithm, t is the current

iteration count, r represents a real positive integer, the resultant equation is rounded to

ensure an integer. From the hybrid PS-FW algorithm, abandonment and supplement

strategies are employed to improve search performances. Abandonment strategy refers

to the employed behavior of the framework after the initial fitness evaluation to remove

individuals from the population, the process aims to cull the weaker individuals from

being considered for further search and search time. Supplement strategy refers to a

selection scheme conducted after the final evaluation of current iteration individuals,

which are the mutation sparks. The importance of the supplement strategy is in re-

populating after the abandonment strategy was employed, strong individuals rejoin the

population and weaker individuals are removed per iteration. The loop of removal and

addition to the population enforces the convergence time while providing local search

at candidate solutions.

The remaining Pnum number of particles are selected to create explosion sparks, ẍi

where each ith particle has ẍi amounts of sparks which are determined by the respective

si. Each spark has the explosion operators applied to their D. Using (4.18), the number

of sparks for each individual Pnum particle are calculated, their amplitude is calculated

using (4.19). Moreover, an adaptive control of the number of sparks that the weaker

particles produce is implemented to facilitate the exploration of the method in early runs

and providing equal opportunity initially to all particles before converging towards the
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best solution, while the strong particles remain unchanged and explode with maximum

sparks allowed. The adaptive spark number equation is calculated using equation (4.23):

Si =


round(a ·m), Si < a ·m,
round(b ·m+ tmax−m

t+2 ), Si > b ·m,
round(Si), otherwise.

(4.23)

The duty cycle is finally modified by (4.24):

¨xit+1 = ẋi + ∆x, (4.24)

where ∆x = Ai · rand(−1, 1). After fitness evaluation of the explosion sparks, mutation

sparks are used to explore outside the current optima region to avoid trapping inside a

local area. The referred mutation operator is defined by the (4.25):

...
xm = Gbest + (β1 · ẍrand − β2 · ẍrand), (4.25)

where
...
xm is a mutation spark, β1 and β2 are random numbers in the range of (0,1),

ẍrand is a random spark with rand being in the range of (1, NumE), Gbest is the global

best individual.

In the mutation operator, a predefined amount of
...
xm = (1, 2, 3 . . . , Numm) sparks

are used to diversify the individual across the current search space to avoid trapping

within local search regions. Through this strategy, individuals with greater P are re-

tained over iterations. The explosion sparks which produce greater exploration around

the current optimal solution would seek greater P , while the mutation sparks search

randomly around the search space for potentially higher P .

The possibility of the algorithm achieving the optimal solution earlier before reaching

the maximum iteration count exists, therefore a convergence criterion is needed for the

algorithm. The criterion must be checked; thus, the comparison steps after any fitness

evaluation is chosen as the checking point. At the end of the algorithm, the GMPP

is tracked in lieu of presence of PSCs and the boost converter switches at the best

solution of duty cycle, D. The convergence criteria are chosen to be when the process

has reached the maximum iteration limit or when the solutions have converged to each

other. When the maximum iteration limit has not been reached, the PS-FW algorithm

will constantly restart the search process until maximum iteration limit is reached.
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The convergence criteria determines the algorithm’s performance to search around

the solution region. To evaluate if the particles or sparks have converged within a range

of each other, the difference of fitness Gbest and average fitness of the population is

within a certain threshold.

Hence, the culmination of proposed hybrid PS-FW GMPPT algorithm implementa-

tion in PV system with PSC is described in detailed manner based on the strategy and

operators used. The summarized code of the proposed GMPPT algorithm is given in

Algorithm 1.
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4.6 Chapter Summary

In the Chapter, the work conducted has contributed to the objectives of the research

project. As the validation of the proposed GMPPT algorithm requires the implemen-

tation of the PV system application under PSC. The designed PV model has been suc-

cessfully made in Section 4.1 which introduces an implementation of PV panel model

for use in the PV system application through simulation software environment.

Next, the conventional DC-DC boost converter or more specifically its minimum and

maximum parameters according to the design requirement have been calculated through

the equations, is summarized and completed in Section 4.2. With these calculations, the

boost converter can be built using the determined parameters of the components in the

Simulink environment. Moreover, a selection of components within the experimental

setup can be made with regards to the limits of voltage and current rating.

The design of the proposed hybrid PS-FW GMPPT algorithm has been completed.

First, the introduction of the singular counterparts, PSO algorithms in Section 4.3

and FWA in Section 4.4 have been explained in detail in terms of the search process.

Any operators related to these two algorithms as they are implemented in PV systems

within literature have been explained with the equations and explanation regarding

their usage. Next, the proposed PS-FW algorithm in Section 4.5 has been described

with correlation to both the PSO algorithm and FWA in the aspect that the PS-FW

algorithm has based itself upon the continuation of PSO algorithm search process and

then into the FWA. The PSO velocity operator begins the first part of the PS-FW

algorithm search process. Then, the explosion sparks generation with mutation sparks

generation finalizes the FWA process after selection operator. Hence completing the

entire PS-FW search process after any of the two convergence criteria is reached which

are the convergence of the population or reaching the maximum iteration limit. The

designed GMPPT algorithms of PSO algorithm, FWA and PS-FW algorithm are now

possible to be implemented within the GMPPT controller unit of both simulation and

experimental setups.

In the next chapter, the methodology regarding implementation of the PV system in

both simulation and experimental setup will be given. The results of the performance

validation in the algorithm framework and search behavior must be determined through

finding the accuracy and tracking speed following tests in PV system application under

PSC. Hence, the design of the two setups of PV systems need to be detailed and allow
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the simulation and experimental setup to be constructed properly with different PSC

patterns.



Chapter 5

Simulations and Experimental

Setup of PV System

In this chapter, the simulation and experimental setups are described which implement

and verify the proposed PS-FW hybrid and other algorithms. As chosen in Chapter

3.6, MATLAB/Simulink simulation environment is utilized to verify, test and compare

GMPPT algorithms including the proposed PS-FW GMPPT algorithm. The PV model

and boost converter specifications obtained in Chapter 4.1 and 4.2 are utilized in this

simulation setup to create the PV system application. The boost converter specifications

are also shared with the experimental setup; thus, it is through the calculations that

selection choice of the boost converter may be done with regards to the voltage and

current ratings.

The existence of the dSPACE RTI unit and the Chroma PV emulator within the

reviewed literature in Chapter 3.6 proved that the implementations have introduced

their capabilities and feasibility of the use in experimental setup of PV system that

is able to also control the GMPPT algorithm. In experimental setup, dSPACE RTI

interface unit is utilized to measure and record statistical and analytical data for real-

world testing and acting as the GMPPT controller by implementing the algorithms.

Moreover, the experimental setup utilizes the Chroma PV emulator device to emulate

the PV panel output under any shading pattern. The experimental setup is also built

with consideration to certain aspects which cannot be replicated like the simulation

environment, this includes the voltage offset of the current transducers and settling time

considerations for the entire boost converter system. Understanding the tools available



100 Chapter 5. Simulations and Experimental Setup of PV System

can assist in providing required dynamic environments and the necessary control to

measure or observe the performance of the entire PV system.

In Section 5.1, the PV system application with PSC is implemented into the MAT-

LAB and Simulink Software environment. The PV panel modules are connected into

an array, its specifications at this connection will be summarized. The selected boost

converter specifications are chosen also in regards to the calculation made earlier. A

frequency time fulfilling the Nyquist Sampling Theorem is chosen for the entire discrete

system. Then, the simulation setup as in the software itself will be presented.

The parameters utilized in the boost converter application for simulation setup are

completely detailed in Section 5.2. Moreover, the PSC patterns adopted for use to test

the GMPPT algorithms are shown in the Simulink environment and their output values

will be summarized.

An application of the entire PV system with PSC and GMPPT controller imple-

mentation as conducted in the earlier sections for simulation setup is converted for use

in the experimental setup in Section 5.3. The experimental setup consists of dSPACE

RTI interface unit, Chroma PV emulator and the conventional boost converter. Some

considerations will be made in the conversion between simulation and experimental

setup as there are factors to account for, which include the settling time of the boost

converter, optocoupler and sensor voltage offset.

In Section 5.4, the parameters utilized in the experimental setup for the boost con-

verter are shown. To elaborate, this section provides all necessary component names

and values utilized in the experimental setup of the conventional boost converter. More-

over, the respective P-V and I-V curves of the PV arrays arranged in the Chroma PV

emulator will be obtained and their output values will be summarized.

5.1 MATLAB and Simulink Software Environment

Verification of the effectiveness of the proposed hybrid PS-FW GMPPT algorithm is

required, hence the MATLAB/Simulink simulation software will setup an entire PV

system. Systems are easily constructed using blocks from libraries provided and defined

personally if needed for custom blocks. Custom blocks were not utilized for this research

project and all needed blocks to simulate the PV panel with PSC, conventional boost

converter and GMPPT algorithm implementation through a MATLAB function block

are readily available through the Simulink libraries.
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Table 5.1: PV Module and Array Specifications

PV Panel Parameters One PV Parameters 3 PV Panel Parameter Settings in Series

Current at MPP, Impp 2.75A 2.75A
Voltage at MPP, V mpp 18V 54.5V

Power at MPP, Pmpp 50W 150W
Open circuit voltage, Voc 21.9V 65.7V
Short circuit current, Isc 3A 3A

Current temperature coefficient, KI 0.04%°C 0.04%°C
Voltage temperature coefficient, KV -0.33%°C -0.33%°C

The PV system consists of a DC-DC boost converter, a GMPPT control block which

is represented by a MATLAB function block and the three 50W PV panels; thus, PV1,

PV2 and PV3 connected in series as a PV array in 3 series configuration. By connecting

to the 3S configuration in series, the total input current in the system is the same as

Impp, but the voltage is the sum of all Vmpp. The specifications of the 50W panel and

the panels in 3 series connection used are as follows in Table 5.1

The system is comprised of Simulink blocks that take and measure the input given.

An output is provided that is calculated, then generated after a set sampling time has

passed in the model’s system. The sampling time set in the Simulink environment

determines a measurement state where all blocks process their calculations, thus it is

required to set the sampling time where the MATLAB code and model’s blocks then

compute with enough time. The required time is able to found determined based on

the slowest time sample output required by a block, in the case of the implemented PV

system environment it is the frequency of switching from the PWM generator block.

A calculation of the time sample that is able to process the frequency specified

must follow the Nyquist Sampling Theorem. The Nyquist Sampling Theorem states

that a band-limited continuous-time signal can be sampled and perfectly reconstructed

from its samples if the waveform is sampled over twice as fast as its highest frequency

component. The formula for determining this recommended sampling time is found in

(5.1):

Fs = 2× Fn, (5.1)

where Fs is the recommended sampling frequency of the system so no information is

lost. Fn is the sampling frequency of the subjected signal that is needed to be measured;

as such, this is the PWM frequency. Given a 40 KHz PWM signal from the controller,

sampling time of at least more or equal than 80 KHz or 1.25−5 seconds is required for

digital signal processing and ensuring no signal loss.
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Within the Simulink environment, theoretical calculations of the boost converter

are assumed to contain less or no ripple and fast settling times. Depending on the

configuration, settling times vary differently and may cause inaccuracies due to the

ripple power that fluctuates the reading of a measurement device. However, simulation

environments as noticed in literature review where simulation results for GMPPT in

switching the DC-DC converter had no trace of the ripple or settling time as describable

in [96], more-so that the sampling time applied within simulation environments are

typically fast as shown in the Table 3.1.

However, the authors in literature review have presented that a sufficient hold time

was required to allow settling of the converter and for accurate measurements in the

system. The hold time in question does not refer to the sampling frequency as discussed

before but the time where the output duty cycle is allowed to change, which is the time

taken per duty cycle change in the entire PV system. Thus, the duty cycle changes every

zero order hold time,Ds and at a frequency of 40 KHz. A consideration to take into

account is, all algorithms to be tested for both simulation and experimental fall under

the same hold time, it is considerable that a sufficient hold time benefits the accuracy

of the obtained results. As a result, there is no bias in a faster speed from faster change

of duty cycle times when all algorithms output the duty cycle, D with the same Ds.

The mentioned hold time to be chosen within Simulink, Ds is set to 100 milliseconds

due to the lack of ripple voltage and sufficient sampling time.

Through the MATLAB function block within the Simulink environment, the pro-

posed GMPPT algorithm is implemented. The GMPPT algorithm itself then computes

the input and outputs the duty cycle for the MOSFET gate of the boost converter to

switch at the specified duty cycle. The system uses a 5µs discrete sampling time. The

blocks that consist of the PV panel arrays compute the voltage and current output

based on the current irradiance and temperature, while voltage and current measure-

ment blocks obtain the voltage and current within the converter. The zero-order hold

block retains the measurement of voltage and current every Ds seconds, after which it

outputs the two values into the MATLAB function block as inputs. After one sample

period, MATLAB function block outputs the duty cycle. All GMPPT algorithms are

also implemented and executed from a MATLAB function block.
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The setup of the system within Simulink environment is observable in Fig. 5.1 and

the subsystem for the PWM generator block is shown in Fig. 5.2.

Figure 5.1: Proposed Simulink PV System with Integrated GMPPT Controller

Figure 5.2: PWM Generator Subsystem

The algorithms are tested under 3 different cases of shading on the PV panels. Tests

were made under the conditions of constant and partially shaded irradiance and given

temperature of 25 degrees Celsius to obtain the P-V or I-V curve. The temperature

on the surfaces of PV arrays typically does not experience rapid change compared to

the irradiance, thus most literature do not take temperature as a consideration when

conducting testing. The rapid change of irradiance with the relatively static temperature

are the main causes of the hotspot phenomena and damage to the PV cells. The single

diode model PV panel array in 3S configurations is shown in Fig. 5.3.

In conclusion, the popularity of the software in reviewed GMPPT implementations

have demonstrated its capabilities and feasibility of the use in simulating a PV system
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while implementing the GMPPT algorithm. The usage of MATLAB/Simulink software

is therefore justified simulation setup while presenting the performance comparisons of

all involved GMPPT algorithms. The simulation verification of the results however,

must be validated in the results and discussion in experimental setup.
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Diode

PV3

PV2

PV1

(a) Unshaded

-

+
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PV3

PV2

PV1

(b) Shaded

Figure 5.3: 3S PV Panel Arrangement

5.2 Parameters within MATLAB Simulink

The parameters of the simulation setup components are to be detailed. The PV system

consists of a DC-DC boost converter, GMPPT control block which is represented by a

MATLAB function block and the 3 PV panels connected in the 3S configuration. Ini-

tially, the PV panel specifications have been set and chosen in the earlier Section 5.1.

This section describes the component values obtained for the boost converter in induc-

tance, capacitance and resistor. Moreover, the shading patterns from the simulation

setup of the 3S PV array is given in the form of P-V and I-V curve while also tabling

its given power values at MPP, Pmpp.
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5.2.1 Boost Converter Specifications

The selection of the boost converter’s components specifications within the simulation

setup are thus listed in Table 5.2. These component values satisfy the minimum re-

quirements of a conventional boost converter as calculated in Table 4.1 of Chapter 4.3.

Table 5.2: Boost converter specifications.

Parameter Values

Switching Frequency, fs 40 KHz
Period, s 25 µs
Hold Time, Ds 100 ms
Simulation Sample Time, Ts 5 µs
Resistor Load, Rload 40 Ω
Inductance, L 1000 µH
Capacitance, Cin, Cout 100 µF

where switching frequency, fs is the switching speed of the MOSFET in the setup.

Period, s is determined based on the switching frequency. Simulation sample time, Ts

is the sampling time of the discrete system within Simulink that is a logical increment

from the chosen frequency. Resistor Load, Rload is the load resistor value. inductance,

L is the value of the inductance in the inductor coil. Capacitance, Cin, Cout are the

input and output capacitor capacitance values. The values of Rload, L and Cin, Cout are

chosen based on the boost converter specifications within Chapter 4 Section 4.2.

5.2.2 PV Shading Patterns

The shading pattern to be tested is important to estimate an occurrence of partial

shading in the real world. The shading patterns allow the simulation performance to

properly reflect the PV system performance that could occur in real life. Under four

different patterns, all PV panels have a given irradiance value and given temperature

of 25°C to obtain the P-V or I-V curve. The single NSC pattern and three shading

patterns applied for the simulation’s PV panel array are as follows:

1. Pattern 1 (Non-shading condition, NSC): All three PV panels receive uniform

irradiance of 1000 W/m2. The P-V characteristic curve of this pattern shows that

the maximum power output is at 150 W. The pattern is used as a benchmark and

a reference to the power output of the system under STC.
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2. Pattern 2 (Partial shading condition 1, PSC1): Both PV1 and PV2 receive uniform

irradiance at 1000 W/m2, however PV3 receives nonuniform irradiance level of 700

W/m2. This shading pattern produces multiple peaks that are seen on the I-V

or P-V characteristic curve where the maximum power output is at 115 W. It is

worth mentioning that if the algorithms are trapped in the local peak where power

output is lower, we get a significant decrease in power efficiency.

3. Pattern 3 (Partial shading condition 2, PSC2): PV1 receives 1000 W/m2, PV2

receives 700 W/m2, and PV3 receives 300 W/m2. The algorithm’s ability to seek

out the GMPP is tested in this pattern, as there exists three different peaks on

the P-V curve where all power output is different.

4. Pattern 4 (Partial shading condition 3, PSC3): PV1 receives 500 W/m2, PV2

receives 700 W/m2, and PV3 receives 300 W/m2. Middle high points (MHP)

exist on this pattern where there are MPP in close proximity between each point

[127]. The algorithm’s ability to seek out the GMPP when in the presence of MHP

will be tested in this pattern.

The PV patterns are applied as NSC, PSC1, PSC2 and PSC3 to the PV panels in

Simulink and summarized in the Table 5.3.

Table 5.3: Patterns for NSC, PSC1, PSC2 and PSC3 cases in Simulation

Pattern Panel Irradiance(W/m2) Pmpp(W ) Vmpp(V ) Impp(A) Vload(V ) Iload(A)

PV1 1000
1 PV2 1000 149.4 54.13 2.76 76.29 1.97

PV3 1000

PV1 1000
2 PV2 1000 114.90 56.00 2.05 66.99 1.685

PV3 700

PV1 1000
3 PV2 700 72.44 36.31 1.99 52.97 1.32

PV3 300

PV1 500
4 PV2 700 50.49 35.15 1.43 34.87 1.44

PV3 300

Occurrence of partial shading on a PV string affects the number of local peaks and

the single true GMPP that exists on either P-V or I-V curve. A greater number of local

peaks on the curves in turn deliberately weaken and cause disadvantageous rate of power
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Figure 5.4: P-V characteristic of 4 patterns.

conversion if the chosen GMPP algorithm is unable to search for the correct GMPP and

with fast convergence speeds as well. Understanding this, the performance of GMPPT

algorithm greatly depends on how well the performance obtained reflects upon the P-V

curves with more local peaks. In the patterns applied to the implemented PV system,

the performance of all implemented GMPPT algorithms are able to be fairly tested with

one to five peaks in the simulation and one to three peaks in the experimental setups

through the different shading patterns.

The following P-V and I-V curves observable in Fig. 5.4 and Fig. 5.5 both pin point

the MPP on the curve and the expected power output for the array string implemented

for the implemented PV system. The P-V curves and I-V curves are traced based on the

four proposed respective PV patterns that cause NSC, PSC1, PSC2 and PSC3 on the

PV array block. Through the ”PV Array” block in Simulink, these curves are obtained

and layered upon each pattern in the two subfigures. The local peaks and GMPP

are accurately shown on the figures and represent where the implemented GMPPT

algorithms must track in order to confirm their accuracy for the power conversion.
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Figure 5.5: I-V characteristic of 4 patterns.

5.2.3 Simulation Expanded Validation

An extended set of tests utilizing more difficult PSC patterns for the P-V curves are

proposed to verify the performance of the hybrid PS-FW algorithm within the simulation

setups. An increase of peaks will deliberately increase the difficulty of search for the

algorithms as a higher possibility of searches falling into local trap is introduced. Two

P-V curves, containing four and five peaks patterns satisfying the condition of PSC are

introduced to all algorithms. Thus, the PV array setup is expanded from 3 panels to 5

panels in series, allowing the P-V curve to procure 5 total peaks under PSC. The Rload

is also increased to 100 Ω to satisfy the larger PV array. The PV panels within the

array are now specified as PV1, PV2, PV3, PV4 and PV5. Similar to the preceding four

patterns, all PV panels have a given irradiance value and given temperature of 25°C to

obtain the P-V or I-V curve.

The two PSC patterns, PSC4 and PSC5 are applied for the simulation’s PV array

as follows:

1. Pattern 5 (Partial shading condition 4, PSC4): PV1 receives 500 W/m2, PV2

receives 600 W/m2, and PV3 receives 800 W/m2, PV4 receives 900 W/m2 and
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PV5 receives 900 W/m2. In this pattern, 4 peaks exist on the P-V curve.

2. Pattern 6 (Partial shading condition 5, PSC5): PV1 receives 400 W/m2, PV2

receives 600 W/m2, and PV3 receives 700 W/m2, PV4 receives 800 W/m2 and

PV5 receives 1000 W/m2. In this pattern, 5 peaks exist on the P-V curve.

The expanded PSC P-V patterns applied as PSC4 and PSC5 to the PV panels in

Simulink are summarized in the Table 5.4.

Table 5.4: Patterns for PSC4 and PSC5 cases in Simulation

Pattern & Peaks Panel Irradiance(W/m2) Pmpp(W ) Vmpp(V ) Impp(A) Vload(V ) Iload(A)

PV1 500
PV2 600

5 PV3 800 138.69 94.81 1.463 115.7 1.157
PV4 900
PV5 900

PV1 400
PV2 600

6 PV3 700 128.33 73.63 1.742 110.4 1.104
PV4 800
PV5 1000

The following P-V and I-V curves observable in Fig. 5.6 and Fig. 5.7 both pin point

the MPP on the curve for the expanded shading patterns introduced for the simulation

setup.
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5.3 Experimental Setup and Considerations

The usage of simulation tools greatly understate what is required to be utilized in real

life as the experimental setup is not so easily replicated. The experimental setup is

able to emulate the performances of an implemented PV system under PSC to a certain

degree. Thus, the methodology of the experimental setup is considered in this section.

Chroma PV Emulator
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Figure 5.8: Experimental Setup of Proposed PV System

5.3.1 dSPACE Real Time Interface (RTI)

The dSPACE Control Desk software allows integration of MATLAB/Simulink into im-

plementation of the PV system experimental setup. This process was done through

installing the RTI platform support that links the Simulation software to the dSPACE

RTI interface unit which acts as the controller of the physical board. This particular

link was established by the installation of proprietary software by dSPACE and after

executing the MATLAB program. The main program consists of a graphical user in-

terface (GUI) which, with the use of libraries allowed the integration of the physical

hardware with the control of variables or measurement of signal data.

The following Fig. 5.9 shows the connections between the PV system and the

GMPPT controller, the dSPACE RTI unit. In this implementation, analog-to-digital
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converters (ADC) are required, which are voltage and current sensors to read the in-

formation from the output power. An implementation utilizing the digital-to-analog

converters (DAC) in the form of PWM channel to send the duty cycle at a specified

frequency is also required.

dSPACE

Controller 

Boost

Converter

System

(Voltage & 

Current Sensor)

DAC

Sampling time period = T Continuous section

Command

Feedback

ADC

Figure 5.9: Real-time control structure

The CP1104 connector board is the interface that links the software from physical

hardware to the computer. The connector board is seen in the Fig. 5.10. From the

boost converter configuration, the gate of the MOSFET are attached to the PWM pin,

voltage sensors are attached to the ADC channels.

Figure 5.10: Physical CP1104 Board and Connections

The software is observed in the following Fig. 5.11. Within the Simulink environ-

ment which has already been linked to the dSPACE RTI, models must be created using

the libraries provided by dSPACE to link the software interface to physical interface
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in real time manner. The physical interface includes the two ADC channels related to

both current and voltage sensors and one DAC PWM channel. The pins of the ADC

utilized are the ADC5 and ADC6 respectively, while the PWM output is located on Pin

17. The physical input signal input range is from –10V to +10V. dSPACE RTI scales

this by a factor of 0.1 to place the value on a range of – 1V to +1V initially. The ADC

signal is multiplied by 10 to remove the scale factor.

Meanwhile, the PWM is set to a starting voltage and in either symmetric or asym-

metric wave-forms in the specified frequency. The frequency specified for the experi-

mental setup is equal to the desired value from simulation and the design, which is 40

KHz while the starting voltage is 0V and in symmetric mode. Symmetric waves start

the wave-form signal immediately to the specified duty cycle value in the beginning of

the period, in comparison to the asymmetric mode where signal activates when time

passes half the period. The settling time of the system requires that symmetric mode is

utilized to prevent delays in the boost converter so that it may settle faster in the first

change of duty cycle in accordance to the recording of the time taken for convergence.

Figure 5.11: Model Built with Target to dSPACE RTI

Measurement and recording is available from the Control Desk, the data obtained in

this experimental setup are exported to MATLAB compatible database. The database

thus consists of; power at the input Pinput, voltage at the load Vload, current at the load

Iload and current time t of the experimental recording which is set to start at the enable

condition of the algorithm that ends upon the achievement of convergence criteria. The

data, which is easily presented in MATLAB are the main basis of how the recording

and measurement of data is conducted in the research project.

The software described has explained the link between the physical components

of the CP1104 board, computer, sensors and the duty control of the boost converter
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through PWM pin. The control of the physical components is possible, measurement

values are obtainable and the GMPPT algorithm is able to be implemented through

the entire controller system. With this, the data required to express the experimental

results exactly the same as the simulation results is possible.

With the implementation of PV emulator as the power source, the proposed research

will be able to fulfill the experimental setup requirements of a PV panel or array. The

experimental PV system will be able to reflect the simulation settings. Moreover, the

shading patterns that are proposed are easily emulated so that the PV array under no

shading pattern and three shading patterns. are applicable in the experimental tests.

The experimental setup is therefore built upon the connection of the input of the boost

converter as the Chroma PV emulator, the control of the duty cycle switching of the

MOSFET gate through dSPACE RTI and the measurement of voltage and current at

the input of the boost converter. However, certain considerations must be taken into

account that are not shared between the simulation conditions. These factors can affect

the results that must be compensated or resolved through implementation of other

components.

5.3.2 Voltage and Current Sensors

With the discussion of the simulation and experimental setup disclosed beforehand,

the two setups aim to implement the GMPPT algorithms for testing and validation of

their performance. However, considerations in the form of hardware must be taken into

account to ensure the performance of the implemented experimental setup. To begin

with, the inclusion of real current transducers requires calculations to ensure that the

offset of the Routput which is a derivation of the sensed voltage or current is calculated.

The voltage and current sensors are current transducers which must be powered by a

positive and negative rail voltage source.

For the aspect of current sensing, through-hole current sensors have an empty volume

of space in the transformer loop of the component, which allow the insertion or pass by

of the wire to be sensed. The transformer loop is charged and current flows through the

Routput, allowing voltage to be output to the ADC channel and hence sense the current

in the circuit after the transformation ratio.

Vsense = Rsense × Isense (5.2)
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Hence, the Vsense output at the resistor to the ADC channel is obtained. However,

most current transducers have an offset that must be compensated. The overall accuracy

is given by a percentage in the manufacturer data sheet, thus it is more practical to

calculate the offset manually with a multi-meter on a powered transducer with zero

power load. With current sensor and voltage sensor, utilization of a multi-meter to

measure the Rsense in parallel to obtain the offset. Within the Simulink software, this

offset is easily applied into the Simulink and dSPACE linked model to compensate for

this value. The diagram of the voltage and current sensor circuit connection utilized

in the experimental setup can be found in Fig. 5.12. In the LV25-P voltage sensor

circuit, the Vmeasure represents the parallel connection at either the input side of the

boost converter towards the PV or the load, the Vc is the positive and negative 15V

power rails used to power the sensor and M is our sensor output which connects to the

dSPACE ADC channel. In the LA25-P current sensor circuit, the Imeasure is sensed

through a through-hole connection at the input side of the boost converter towards the

PV or the load.

(a) LV25-P Voltage Sensor (b) LA-25P Current Sensor

Figure 5.12: Voltage and Current Sensor Circuits

5.3.3 Signal Measurement and MOSFET Driver

Another aspect to consider when converting to experimental setup is the settling time

of the entire boost converter system. The boost converter in real life must consider

settling time of the components in the conventional boost converter. Much unlike the

simulation setup where 100 millisecond sample time was given before a change in duty

cycle, the change in the duty cycle, sampling time is chosen to be 1 second for the

experimental setup. This is shown in the Fig. 5.13. The X-axis is given in seconds.
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While the Y-axis precedes the amplitude of a signal, which are the measurements from

the LV25-P voltage sensor and LA-25P current sensor. Within the dSPACE software

environment, the measurement of settling time required for accurate measurement is

shown.

Figure 5.13: Settling Time For Measurement.

The PWM channel of the dSPACE retains a voltage limit output of ±10V at the

channel. If the voltage at this channel bypasses the set voltage, then there is a con-

siderable risk that damage to the PWM channel will occur. The protection of the

experimental equipment must be considered to prevent permanent damage and loss of

assets.

The voltage at the PWM channel can overflow or leak due to the reverse current

flow at the boost converter system from the MOSFET switch. In the case that the

MOSFET is damaged from power dissipation or heat, then the MOSFET may melt

internally and cause the power overflow. With the high power in the system with Vmpp

at 76V , the value is 7.6 times higher than the voltage limit at the PWM channel.

Moreover, with the value of the voltage output of the PWM channel only outputting

around ±10V , the MOSFET switch depending on the model is unable to switch fully.

Vgs is the threshold required to open and close the switch fully at the specified frequency.

The frequency is dependent on the model and typically also provided by manufacturer

data sheet. The Vgs of the implemented model IRF3710Z requires 15V to fully switch
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on, thus the PWM channel is unable to drive sufficient voltage to power the switch. To

alleviate the lack of voltage, a MOSFET driver or commonly called optocoupler which

is commonly an 8-pin IC must be implemented. The optocoupler has a primary goal

of propagating the PWM signal at the input side, then outputting the PWM signal

at the output side. The PWM signal retains its duty cycle range, the frequency and

most importantly is able to output voltage at boosted levels according to the level

of boost provided by the manufacturer data sheet. The device isolates the dSPACE

board’s PWM channel from the boost converter and PV system, completely negating

the chance of damage which may be incurred. The optocoupler used in this proposed

research is the TLP250(H) by Toshiba which is powered by an external DC-DC power

supply.

In conclusion, these considerations are taken into account to prevent asset damage,

the risk of harm to the persons involved in the experimental setup and also supplement

the voltage required to power the MOSFET in the complete PV system with GMPPT

algorithm controller. The connection of the physical components and software interfac-

ing hence completes the experimental setup. As such, the real experimental setup is

connected and any considerations are also taken into account since the ideal simulation

conditions cannot be replicated in real life.

5.4 Parameters for Experimental Setup

The parameters of the experimental setup components are to be detailed. The entire

PV system consists of the Chroma PV emulator, DC-DC boost converter and GMPPT

controller unit which is represented by the dSPACE interface unit. This section de-

scribes the component part models chosen for the boost converter. With regards to

the simulation setup and work conducted in Chapter 4.2, the selection of boost con-

verter components is made and chosen with consideration towards the power ratings

not prevalent in simulation environment.

Initially, the PV panel specifications within simulation setup have been set and

chosen in the earlier Section 5.1, thus the Chroma PV emulator follows the same speci-

fications from the simulation setup. Thus, the use of Chroma PV emulator to substitute

for the PV panel is detailed in this section. Moreover, the shading patterns from the

experimental setup of the 3 series PV array is given in the form of P-V and I-V curve

while also tabling its given power values at MPP, Pmpp.



118 Chapter 5. Simulations and Experimental Setup of PV System

Table 5.5: Component Summary

Component Model Description

Cin EEUEE2C101 - 100 µF , 160V rating, Aluminium Electrolytic Capacitor

Cou EEUEE2C101 - 100 µF , 160V rating, Aluminium Electrolytic Capacitor

Inductor Wurth 7447075 - 1000µH Torodial, Leaded , 3A maximmum rating

MOSFET IRF3710 - N-Channel MOSFET which satisfy specified 40 KHz
- MOSFET higher efficiency over IGBT [128]
- Drain to Source Voltage Vdss of 100V, Drain Current at ID, 57A
- Handles maximum Iout and Voutlimit ratings.

Diode IN5408 Rectifier Diode - Average Rectified Current of 3A , satisfies maximum Iout
- Maximum RMS Voltage of 700V, satisfies maximum Vout

Resistive Load Tubular Rheostat - 40Ω
- Withstand high temperatures at 500W

5.4.1 Boost Converter Specifications

The section closely details all utilized parts within this proposed research for the boost

converter in the experimental setup. The component names and the reasoning of select-

ing these components which satisfy the requirement of minimum requirements from the

calculations conducted in Chapter 3 for the design of a conventional boost converter.

With consideration of the minimum specifications required, the components are assem-

bled into a conventional boost converter, connected to the PV emulator and controlled

at the switch with the GMPPT algorithms.

Figure 5.14: Experimental PV System Setup
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A completed working experimental setup is described in the image Fig. 5.14. The

system is connected as per described in this chapter. The utilization of the setup during

testing must consider the safety of the individual in mind and partake in proper safety

measures. All tests and proper experimentation are conducted in the utilization of this

experimental setup.

5.4.2 Chroma PV Emulator

The Chroma PV emulator is an electrical device that is able to simulate the properties

of a PV panel with multiple settings possible. The particular model utilized in this

proposed research is the 62100-H which is connected to a 3-phase AC power source due

to the high power output possible. As such, the settings for the specified PV panel

must be set accordingly to prevent harm to the user and damage to any connected

components, which in the implementation are the boost converter and the load.

The relevant requirements of the emulator is that it must include configuring the PV

array into 3 PV panels in series as according to the 50W PV panel specification. Also,

the NSC, PSC1, PSC2 and PSC3 patterns must be emulated in the specified patterns 1,

2, 3 and 4. Through the emulation, the device functions as the PV panel with positive

and negative leads as the output to be connected at the boost converter. Other than

an analog interface with digital display, the device is interfaced with a computer in

multiple communication modes available including RJ45, USB-B to USB-A and RS232.

The communication mode utilized in the experimental setup is the USB-B to USB-A

mode. The method of control is done through the National Instruments(NI) Lab View

based proprietary software included by the manufacturers. Relevant drivers from NI

are installed that is compatible with the software to execute the program.

The communication scan button detects the communication mode used, by pressing

the OK button then proceeds into the main menu of the software. Through this menu,

the Dynamic MPPT button must be pressed which allows configuration in a new menu

for the PV array settings. The PSC patterns are able to be specified with desired

irradiance and temperature which allow configuration to the PSC.

Moreover, the PV panel configuration used for these arrays are configured easily

and in series or parallel with amount of panels connected per string. Following the

simulation setting parameters in Section 5.2.2, all four patterns are applied into the 3S

PV array. A compilation of the four proposed shading patterns under the emulator’s

specifications are shown in Fig. 5.15, Fig. 5.16 and Fig. 5.17. The patterns validate
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that the P-V curve and I-V curve of the affected PV panels are obtained accurately for

the experimental testing of the proposed GMPPT algorithms.

Figure 5.15: Pattern 1 at Emulator

Figure 5.16: Pattern 2 at Emulator

Figure 5.17: Pattern 3 at Emulator

With the new curves of all shading patterns detailed by the emulator, the PV array
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Figure 5.18: Pattern 4 at Emulator

performances under the emulator setup are presented with minimal differences. The

Table 5.6 details four pattern cases and their respective power, Pmpp on the curve from

the Chroma PV emulator. The performance values of these patterns under the experi-

mental setup must be obtained in the results section due to the numerous uncertainties

in inaccuracies through tolerance across each possible component which include diode,

MOSFET, resistor and the voltage/current sensors. The exact value of the Pinput are

to be presented in the results and discussion upon testing the GMPPT algorithms.

Table 5.6: Patterns for NSC, PSC1, PSC2 and PSC3 cases in PV Emulator

Pattern & Peaks Panel Irradiance(W/m2) Pmpp(W ) Vmpp(V ) Impp(A)

PV1 1000
1 PV2 1000 148.73 54.04 2.75

PV3 1000

PV1 1000
2 PV2 1000 114.26 53.67 2.13

PV3 700

PV1 1000
3 PV2 700 71.81 36.19 1.98

PV3 300

PV1 500
4 PV2 700 50.22 34.57 1.45

PV3 300
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Within the experimental setup, the tracked GMPP on the proposed P-V curves to

be tested are observed from the software of the Chroma PV Emulator in the following

Fig. 5.20. The main objective of all the GMPPT algorithms are to reach this point and

achieve the highest conversion efficiency.

(a) Pattern 1 Tracked GMPP) (b) Pattern 2 Tracked GMPP

(c) Pattern 3 Tracked GMPP (d) Pattern 4 Tracked GMPP

Figure 5.20: Tracked GMPP under the Chroma Emulator

5.5 Chapter Summary

In this Chapter, the work conducted has contributed to the objectives of the research

project. To validate the performance of GMPPT algorithms involved in this work, the

design, the methodology and setup of both simulation and experimental setups were

first required. The designed simulation setup within MATLAB/Simulink simulation

software environment has been successfully made in Section5.1 with detail regarding the

parameter specifications summarized in Section 5.2. Moreover, the shading patterns in

the simulation setup, shading patterns for the expanded simulation and for the rest of

the proposed research were disclosed for use in the experimental setup as well.
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Next, the experimental setup has been detailed and given considerations to the con-

version between simulation and experimental conditions. First, the dSPACE RTI unit

has had substantial exposition regarding its usage and the placement as the controller

unit in the entire PV system in 5.3. The considerations in aspects of settling time,

optocoupler and the voltage offset from the experimental setup are also described.

Finally, the parameter specifications as shown in the earlier simulation setup are

also conducted for the experimental setup in 5.4. The difference between the setups

are the specifications regarding each boost converter component model selected. The

utilization of these models have been selected and summarized in terms of the original

converter specifications required from Table 5.2. Each component has been successfully

constructed into the conventional boost converter for the experimental setup.

The simulation and experimental setups are the required applications of methodol-

ogy to simulate then verify the PV system under NSC, PSC1, PSC2 and PSC3 cases

with GMPPT algorithm control. The simulation setup in particular applies the PSC4

and PSC5 in the setup additionally. This Chapter has successfully complemented the

literature review in Chapter 3 where the selection of simulation tool to verify GMPPT

and PV system was made, while the experimental devices are presented in their feasibil-

ity to provide the research data required to validate GMPPT algorithm performances.

In the next chapter, the performance comparisons of all algorithms with no shad-

ing and partial shading patterns are to be made. The verification of all methodology

and results are also obtained in the simulation and experimental testing based on the

discussion that will be made.



Chapter 6

Results and Discussion

The PV system application is created from the results of the methodology. Hence,

the results of implemented GMPPT algorithms are obtained in this Chapter using the

simulation and experimental setups. A discussion regarding each result and observations

on the wave-forms provided through compiling, testing and analyzing the behavior of

the effects of the GMPPT operators, equations and strategies is conducted.

In the Section 6.1, the degree of performance validation needed to prove the proposed

GMPPT algorithm implemented in the application is described. Certain test conditions

are applied in order to assume the performance of all given algorithms. Moreover, the

parameter settings in the test are set according to the summary given.

The wave-forms and results discussion from the testing of all implemented GMPPT

algorithms in the simulation implementation of the PV system application is obtained

and labelled in Section 6.2.

In Section 6.3, the wave-forms and results discussion from the testing of all imple-

mented GMPPT algorithms in the proposed experimental implementation of the PV

system application are obtained and labelled.

The case study and discussion is made in Section 6.4, the discussion are made based

on the obtained wave-forms and observing the patterns while deriving expected results

from them. The discussion is made upon all implemented GMPPT algorithms and

contrast is made based on each algorithm’s performances. The tracking of the GMPP is

explained in terms of accuracy and convergence speed; then, the speed of the convergence

is through the different operators. The power threshold is finally used as a method to

control convergence and discussed. Through the discussion, future considerations and



6.1. Simulation Validation 125

improvements of a GMPPT algorithm can be known and expanded upon in the next

chapter.

The proposed PS-FW GMPPT algorithm performance will be described in summary

in its capabilities for the PV system application under PSC within Section 6.5. The

summary itself compiles the discussion in order to prove the PS-FW GMPPT algorithm

as a viable alternative and improvement to the other implemented GMPPT algorithms.

6.1 Simulation Validation

In this section, the simulation performance will test the validity of the implemented

GMPPT algorithms. The culmination of all involved components has been calculated

in value and expected to function as a whole PV system that is able to emulate and

produce required results. The PV system in the simulation setup is reliant on the

methodology proven using PV panel with the accurate P-V/I-V curves under any pro-

posed PV patterns containing NSC or PSC, boost converter that is able to switch

properly, accurate voltage and current sensors at the input side of the converter and

finally a controller that can track the GMPP by implementing GMPPT algorithm.

In this proposed research, the chosen GMPPT algorithms to compare the algorithm

performance must be relevant to the context. With the use of hybridization, PS-FW is

composed from the operators, strategies and techniques introduced from PSO and FWA

algorithms. Thus, the two algorithms are required to be introduced to the PV system

and applied with testing validation to also prove the proposed GMPPT algorithm in

sections of the performance criteria. The algorithms chosen must be able to contrast and

provide information from the improvement of the proposed PS-FW GMPPT algorithm.

The algorithms performance validation thus consist of singular PSO algorithm and

FWA, which are the counterparts of the proposed PS-FW hybrid algorithm. Moreover,

another hybrid algorithm, DE-PSO optimization algorithm by [93] is implemented to

provide contrast between our proposed hybrid and one established in the literature.

The conventional MPPT methods such as P&O or Hill Climbing, are relatively

weak in global search functionality and do not perform well in PV systems that face

any PSC. The explanation of the P&O algorithm’s real life performance in GMPPT has

already been presented in the literature review of Chapter 3. P&O works like a form of

hill-climbing on the P-V curve, its framework and search behavior will stop perturbing

itself once the previous obtained MPP is better than the new MPP. Thus, P&O will be
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invalidated from testing as it will fail to track GMPP if the slope on the P-V curve is

not the first one.

Out of the factors that relate to the performance of GMPPT algorithms described

and proven in the literature review and summarized in Chapter 3.6, the research project

introduces operators, shading peaks, tracking speed and the efficiency of the power

conversion to determine the simulation and experimental results. These criteria will

pronounce and describe the performance of the GMPPT algorithm implementation. In

the proposed research, these criteria will be proven from the implemented GMPPT

algorithms in the simulation and experimental setup. Moreover, the criteria will be

appended with the guarantee of pseudo-random number generation for the initialization

of starting population. Another criterion introduced will be the threshold of power as

a convergence criterion; which are undisclosed or unpopular as a subject of review

or performance criteria when evaluating algorithms from the given literature review

conducted, both the new criteria will be implemented to test performance results of the

GMPPT implementations.

6.1.1 Seed and Algorithm Parameter Setting

MATLAB or Simulink in particular handle the aspect of RNG manipulation. Within

the MATLAB function block, the function ”rng(seed)” dictates the seed for the MAT-

LAB random number generator. Given a seed value of 5, utilizng the function ”rng(5)”

initializes the Mersenne Twister generator using a seed of 5. This ’rng’ function allows

control of the global stream which determines the sequence of random numbers gen-

erated from functions such as ”rand”, ”randi”, ”randn”. The function is particularly

most useful in guaranteeing the generation of initial starting population within both

simulation and experimental setups as they both implement and house the GMPPT

algorithm through MATLAB. Moreover, setting a random seed for algorithm operators

with the same initial population would allow us to contrast the performance of new

operators brought in through hybridization through shared operators between PS-FW,

DE-PSO, PSO and FWA. Through this contrast, evaluation of performance is more

viable as a measure and the research results are further enriched from understanding

the improvements brought about from implementation of various operators. All seeds

provided in the initial population do not generate a GMPP. Table 6.1 denotes how the

settings are set for this simulation test.
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Table 6.1: Same seed value test parameters.

Seed Values PS-FW DE-PSO PSO FWA

Initialization 18 18 18 18
Velocity Operator Randomized Randomize Randomized N/A

Fireworks Operator Randomized N/A N/A Randomized
Selection Operator Randomized N/A N/A Randomized

For PSO, the algorithm is used as is from the Chapter 3 discussion, the operators

derived from there are from the canonical implementation of current algorithms, its

implementation is commonly shared among all currently implemented GMPPT appli-

cations. The parameters for the PSO are maximum inertia parameter wmax, minimum

inertia parameter wmin, velocity modification parameter c1 and c2.

The parameters for the FWA are maximum amplitude modifier A, maximum sparks

count m, maximum mutation sparks NumM , zero-error division parameter ε, spark

number calculation modifier r, maximum spark count comparison modifiers a and b.

One consideration for the FWA is that GMPPT implementations of the algorithm

are not widespread or heavily reviewed in literature. The operators in GMPPT imple-

mentations for canonical FWA retain the same operator equations from the canonical

version. However, the selection operator is highly contested for specific reasoning of

how the implementation is conducted. A general behavior adopted by authors are that

uniform randomly chosen fireworks in the population would be brought over into the

next iteration. This is implemented into the FWA operator as a random selection of

fireworks to be brought over to the next generation.

Within the DE-PSO algorithm, PSO side parameters will be c1, c2, wmax and wmin.

The DE side parameters implemented are crossover rate CR, scaling factor K and

combination factor F . This research project the same value of PSO parameters from

above, while the value of crossover rate, scaling and combination factors are adopted

from the implementation in literature.

In PS-FW hybrid algorithm, the implemented operators adopt all previous parame-

ters from the two singular GMPPT algorithms. The additions introduced via the aban-

donment strategy introduced 2 more parameters that control the amount maximum and

minimum number of particles/fireworks dropped; which are the abandonment control

parameters, Fmax,Fmin. Otherwise, the parameter values are equal to the previous two

algorithms.
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The parameter value of all involved algorithms is stated in the Table 6.2. The

parameters of the singular algorithms will be shared into the hybrid PS-FW algorithm,

PSO and FWA parameters are adopted by the PS-FW algorithm. Thus, the behavior of

the operators can be explained easily and the performance of each operator is presented

within each GMPPT used. More importantly, the contrast of each singular counterpart

can be made. However, in the case of PSO, larger iteration count tmax was provided as

the PSO algorithm could not converge to the candidate GMPP in allocated time frame,

thus the reasoning for the increased iteration limit.

Since the algorithm parameters are shared, there is an assumption of performance

being equal across the board. However, explanation regarding the performance of the

algorithm under the same parameters is reasoned with in the discussion at the experi-

mental results section in this chapter.

Table 6.2: Parameter Usage in all GMPPT algorithms

Algorithm Parameter Values

wmax = 0.95, wmin = 0.45 , c1 = 1.45, c2 = 1.45, A = 0.5
PS-FW m=4, Numm = 4, ε = 1e−100, Fmax = 4,

Fmin =2 , r = 2, a = 0.04, b = 0.9, n=8, tmax=4

wmax = 0.95, wmin = 0.45, c1 = 1.45, c2 = 1.45
PSO tmax = 10, n = 8

A = 0.5, m=4, Numm = 4, ε = 1e−100, r = 2
FWA a = 0.04, b = 0.9, tmax = 4, n = 8

wmax = 0.95, wmin = 0.45, c1 = 1.45, c2 = 1.45
DE-PSO F = 0.7 ,CR = 0.8, K = 0.5

The performance criteria of respective GMPPT implements that have already de-

scribed in Chapter 3 are utilized as performance validation measurements of the im-

plemented GMPPT algorithms in this research project. Also, the convergence criteria

of the PSO, FWA, DE-PSO and PS-FW algorithms maintain that the population con-

verges to the optimal solution rather than ending the algorithm upon obtaining MPP.

This factor is supplemented by explanations in the literature review, a convergence of

all N individuals should prove that the algorithm has finished searching.

The difference of power threshold as a convergence criterion is the strategy of a
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MPPT algorithm using the difference of measured fitness value power, Ppv of the entire

population to control the ending of the GMPPT search process. This threshold, when

surpassed, will denote the state of convergence for a population as the process has

successfully searched and converged into one MPP. This was disclosed more in Chapter 2,

where the value of this threshold was not proven or given and at times the algorithms are

stated only upon convergence of the entire population. The statement is unacceptable

as a large threshold can easily cause the system to believe it has converged and a small

threshold can cause further meaningless searches. Given that this threshold value is

seldom modified as a way to control when the algorithm ends, the experimental testing

phase of this research proposes an argument that the threshold value is to be analyzed

to determine that the threshold is set properly while maintaining balanced exploration

and exploitation characteristics of any GMPPT algorithm. The threshold ultimately

also balances the time local search consumes.

Moreover, the research project proposes that validation of results are taken one step

further with the including of pseudo-random number generation manipulation to guar-

antee initial population solution duty cycles and also any relevant functions that call

for random number generation. Hopefully the effects of implemented techniques can be

isolated from the chances that lucky scenarios occurred in favor of any of the GMPPT

algorithms, which include the proposed PS-FW algorithm. Furthermore, the analysis of

all parameters and in particular the P threshold is proposed that can potentially alter

the algorithm search behavior time and accuracy. Through obtaining all these results,

the PV system methodology can be proven to be implemented correctly. The imple-

mentation of the threshold criteria and random seed test are conducted in experimental

methodology as the results will be proven further than in the simulation tests.

6.2 Simulation Performance

The simulation performance of chosen GMPPT and under the implementation of the

PV system is conducted and compared. As mentioned beforehand, the system is imple-

mented with use of the calculated values in 4.1. Thus, the converter uses values for the

components as shown in 5.2. All GMPPT algorithms are tested with 1 no shading and

3 different shading patterns, the produced results describe the performance of the PSO,

FWA, DE-PSO and PS-FW algorithms for use in GMPPT under PSC. The peaks range

of difficulty begin with 1 power point peak as the easiest and 3 power point peaks as the
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hardest, the results observed are based off this fact. Further validation of the simulation

performance is provided through 2 more shading patterns, which will be expanded in

the next subsection.

Within MATLAB/Simulink simulation environment, a scope block has provided the

performance results in terms of power, voltage, current and the applied duty cycles at

sampling times. All the values have been recorded and accumulated into suitable format

for accessibility.

In literature review, the results are defined from tracking speed and accuracy. Typ-

ically, the GMPPT efficiency is defined as the difference of the power obtained from the

defined P-V curve and the power sensed from sensors attached at the start of the boost

converter configuration, which essentially detects the PV array’s voltage and current

and derive the PV power, Ppv. Thus, three power values are taken into account when

measuring the converted power efficiency, which are maximum power obtained from the

PV panels as seen in the curves, Pmpp, the maximum power obtained or sensed at the

input side of the boost converter, Ppv, and, the maximum power obtained at the load,

Pload. When evaluating the power of the Ppv against the Pmpp from the curve, the ηgmpp,

GMPPT efficiency can be calculated by using [129]

ηgmpp =

∫ t
0 P(pv)tdt∫ t
0 P(mpp)tdt

. (6.1)

The total conversion efficiency is derived from percentage difference of the Pload against

the Pmpp, providing ηload, the system’s conversion efficiency when under GMPP which

can be calculated using [129]

ηload =

∫ t
0 P(load)tdt∫ t
0 P(mpp)tdt

. (6.2)

A compilation of the performance of the different algorithms under Pattern 1 to

Pattern 4 non-shading and shading case patterns is presented in Fig. 6.1, Fig. 6.2, Fig.

6.3 and Fig. 6.4.
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(b) FWA Pattern 1

0

50

100

150

P
o
w

e
r
 (

W
)

0

1

2

3

4

C
u
r
r
e
n
t 

(
A

)

0

0.5

1

D
u
ty

 C
y
c
le

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

V
o
lt

a
g
e
 (

V
)

0

20

40

60

80

Time (s)

(c) DE-PSO Pattern 1

0

50

100

150

P
o
w

e
r
 (

W
)

0

1

2

3

4

C
u
r
r
e
n
t 

(
A

)

0

0.5

1

D
u
ty

 C
y
c
le

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

V
o
lt

a
g
e
 (

V
)

0

20

40

60

80

Time (s)

(d) PS-FW Pattern 1

Figure 6.1: Simulated Pattern 1 results.

The GMPPT algorithms performances under the Pattern 1 non-shading case can be

observed in the Fig. 6.1. The PSO algorithm obtains the GMPP at 8.1 seconds with

an efficiency of 100%. The FWA obtains the GMPP at 8.9 seconds with an efficiency of

99.06%. The DE-PSO algorithm obtains the GMPP at 7.9 seconds with an efficiency

of 100%. The PS-FW algorithm obtains the GMPP at 7.3 seconds with an efficiency of

100%.



132 Chapter 6. Results and Discussion

0

50

100

150

P
o
w

e
r
 (

W
)

0

1

2

3

4

C
u
r
r
e
n
t 

(
A

)

0

0.5

1

D
u
ty

 C
y
c
le

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

V
o
lt

a
g
e
 (

V
)

0

20

40

60

80

Time (s)

(a) PSO Pattern 2

0

50

100

150

P
o
w

e
r
 (

W
)

0

1

2

3

4

C
u
r
r
e
n
t 

(
A

)

0

0.5

1

D
u
ty

 C
y
c
le

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

V
o
lt

a
g
e
 (

V
)

0

20

40

60

80

Time (s)

(b) FWA Pattern 2
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(c) DE-PSO Pattern 2
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(d) PS-FW Pattern 2

Figure 6.2: Simulated Pattern 2 results.

The GMPPT algorithms performances under the Pattern 2 shading case 1 can be

observed in the Fig. 6.2. The PSO algorithm obtains the GMPP at 8.1 seconds with

an efficiency of 100%. The FWA obtains the GMPP at 9.6 seconds with an efficiency

of 100%. The DE-PSO algorithm obtains the GMPP at 7.2 seconds with an efficiency

of 100%. The PS-FW algorithm obtains the GMPP at 4.2 seconds with an efficiency of

100%.
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(b) FWA Pattern 3
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(d) PS-FW Pattern 3

Figure 6.3: Simulated Pattern 3 results.
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The GMPPT algorithms performances under the Pattern 3 shading case 2 are ob-

served in the Fig. 6.3. The PSO algorithm obtains the GMPP at 8.1 seconds with an

efficiency of 100%. The FWA obtains the GMPP at 8.5 seconds with an efficiency of

100%. The DE-PSO algorithm obtains the GMPP at 7.1 seconds with an efficiency of

100%. The PS-FW algorithm obtains the GMPP at 4.9 seconds with an efficiency of

100%.
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(d) PS-FW Pattern 4

Figure 6.4: Simulated Pattern 4 results.

The GMPPT algorithms performances under the Pattern 4 shading case 3 are ob-

served in the Fig. 6.4. The PSO algorithm obtains the GMPP at 8.1 seconds with an

efficiency of 100%. The FWA obtains the GMPP at 9.3 seconds with an efficiency of

99.48%. The DE-PSO algorithm obtains the GMPP at 6.3 seconds with an efficiency

of 100%. The PS-FW algorithm obtains the GMPP at 5.7 seconds with an efficiency of

100%.
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The tracking speed, PV power output, efficiency is obtained from the simulations

and compared. A compilation of the performance of the different algorithms under

Pattern 1 to Pattern 4 non-shading and shading case is presented in Fig. 6.1, Fig. 6.2,

Fig. 6.4 and Fig. 6.3. The simulation results are extracted and presented in the Table

6.3. They are separated by all applied GMPPT algorithms in the test. The algorithms

begin from the left with PSO algorithm, to FWA, to DE-PSO and end at the right with

PS-FW algorithm.

Table 6.3: Simulated Performance of GMPPT algorithms.

Pattern Algorithm Pmpp (W) Ppv (W) Pload (W) Tracking Speed (s) MPPT Efficiency (%) Converter Efficiency (%)

1 PSO 149.4012 149.4012 145.1084 8.1 100.00 97.12
FWA 149.4012 148.0025 143.6075 8.9 99.06 96.12

DE-PSO 149.4012 149.4012 145.1084 7.9 100.00 97.12
PS-FW 149.4012 149.4012 145.1084 7.3 100.00 97.12

2 PSO 114.9045 114.9045 112.0012 8.1 100.00 97.47
FWA 114.9045 114.9045 112.0012 9.6 100.00 97.47

DE-PSO 114.9045 114.9045 112.0012 7.2 100.00 97.47
PS-FW 114.9045 114.9045 112.0012 4.2 100.00 97.47

3 PSO 72.4427 72.4427 69.6887 8.1 100.00 96.19
FWA 72.4427 72.4427 69.6887 8.5 100.00 96.19

DE-PSO 72.4427 72.4427 69.6887 7.1 100.00 96.19
PS-FW 72.4427 72.4427 69.6887 4.9 100.00 96.19

4 PSO 50.4533 50.4533 48.7954 8.1 100.00 96.71
FWA 50.4533 50.1912 48.6031 9.3 99.48 96.33

DE-PSO 50.4533 50.4533 48.7954 6.3 100.00 96.71
PS-FW 50.4533 50.4533 48.7931 5.7 100.00 96.71

It can be inferred that PS-FW algorithm easily converges and tracks the GMPPT

fastest among the four tested algorithms and under Pattern 1 to Pattern 4. In particular,

the PS-FW algorithm ranges from a minimum of 7.59% to a maximum of 56.25% faster

than the PSO, FWA and DE-PSO algorithms to converge to the GMPP in Pattern 1

to Pattern 4 patterns. It is also noticed that the PSO, DE-PSO and PS-FW algorithms

have accurately tracked the GMPP in Pattern 1 to Pattern 4 while the FWA algorithm

loses out in exploitation in Pattern 1 and Pattern 4.
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6.2.1 Expanded Validation Performance

The expanded simulation performance of the PSO, FWA, DE-PSO and PS-FW algo-

rithms under the shading Pattern 5 and Pattern 6 are presented in Fig. 6.5 and Fig.

6.6.
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(b) FWA Pattern 5
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(c) DE-PSO Pattern 5
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(d) PS-FW Pattern 5

Figure 6.5: Simulated Pattern 5 results.

The GMPPT algorithms performances under the Pattern 5 shading case 4 are ob-

served in the Fig. 6.5. The PSO algorithm obtains the GMPP at 8.1 seconds with an

efficiency of 100%. The FWA obtains the GMPP at 8.9 seconds with an efficiency of

91.96%. The DE-PSO algorithm obtains the GMPP at 7.3 seconds with an efficiency

of 100%. The PS-FW algorithm obtains the GMPP at 5.7 seconds with an efficiency of

100%.
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(d) PS-FW Pattern 6

Figure 6.6: Simulated Pattern 6 results.

The GMPPT algorithms performances under the Pattern 6 shading case 5 are shown

in the Fig. 6.6. The PSO algorithm obtains the GMPP at 8.1 seconds with an efficiency

of 100%. The FWA obtains the GMPP at 8.6 seconds with an efficiency of 100%. The

DE-PSO algorithm obtains the GMPP at 7.1 seconds with an efficiency of 100%. The

PS-FW algorithm obtains the GMPP at 5.9 seconds with an efficiency of 100%.

The tracking speed, PV power output, efficiency is obtained from the expanded

simulations and compared. A compilation of the performance of the different algorithms

under the Pattern 5 and Pattern 6 shading case is presented in Fig. 6.5 and Fig. 6.6.

The simulation results are extracted and presented in the Table 6.4.

Table 6.4: Expanded Simulated Performance of GMPPT algorithms.

Pattern Algorithm Pmpp (W) Ppv (W) Pload (W) Tracking Speed (s) MPPT Efficiency (%) Converter Efficiency (%)

5 PSO 138.6943 138.6943 133.6917 8.1 100.00 96.39
FWA 138.6943 127.5411 122.5451 8.9 91.96 88.35

DE-PSO 138.6943 138.6943 133.6917 7.3 100.00 96.39
PS-FW 138.6943 138.6943 133.6917 5.7 100.00 96.39

6 PSO 128.3374 128.3374 121.8325 8.1 100.00 94.93
FWA 128.3374 128.3374 121.8325 8.6 100.00 94.93

DE-PSO 128.3374 128.3374 121.8325 7.1 100.00 94.93
PS-FW 128.3374 128.3374 121.8325 5.9 100.00 94.93

It can be inferred that PS-FW algorithm easily converges and tracks the GMPPT

fastest among the four tested algorithms under Pattern 5 and Pattern 6 shading cases.

In particular, the PS-FW algorithm ranges from a minimum of 16.90% to a maximum of

35.96% faster than the PSO, FWA and DE-PSO algorithms to converge to the GMPP

in Pattern 5 and Pattern 6 shading cases. It is also noticed that the PSO, DE-PSO
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and PS-FW algorithms have accurately tracked the GMPP in Pattern 5 and Pattern 6

while the FWA algorithm loses out in exploitation in Pattern 5.

Based on initial and expanded simulation results, the advantage of PS-FW algo-

rithm can be seen where the solutions will converge at maximum point with fast speeds

and great accuracy compared to the slow convergence of PSO. The duty cycle as seen

in the wave-form describes the abandonment and supplement strategy of PS-FW algo-

rithm. Particles in the initial population which did not provide a good power output

were subsequently removed and explosion sparks generated are only from the surviving

population. The duty cycles in later iterations were not from the initial population as

observed from the lack of any searches conducted there, the supplement strategy suc-

cessfully selects good particles for the next iteration. Meanwhile, the PSO convergence

presents its weakness of slow convergence through the long search required to converge

its population. The curve of the wave-form for duty cycle slowly flattens itself proving

its slow convergence speeds. However, the extensive search of the duty cycles proves

the good exploration capabilities of PSO as the entire search area is found.

FWA adopts the same behavior of PS-FW in local convergence capabilities through

the explosion spark generation; however, the selection strategy implemented is not suit-

able and the chance of explosion for good fireworks is less. The abandonment strategy

is not used; thus, the initial weakness of bad exploration is not supplemented. The local

search capabilities, however, are prevalent in the sparks generation as the explosions are

made at good fireworks; duty cycles that provide greater power have slight changes in

their values to search for better MPP around its area with the use of amplitude oper-

ator. The waveform of duty cycle in FWA results describe the bad selection strategy

where even weaker fireworks were able to explode, the curve is irregular which signifies

the explosions of varying duty cycles. Convergence of the duty cycles in the waveform

is shown to be slow due to the prevalent weaker explosion sparks being able to join the

population from a lack of good selection scheme.

The DE-PSO algorithm performance validates its capability in achieving faster track-

ing speed through the hybridization of PSO and DE algorithm. Moreover, it is able to

achieve the speeds while tracking the GMPP. The DE side of the hybrid algorithm in

retaining particles every iteration that do not achieve greater results and only replacing

particles with better obtained power benefits the convergence speed of the overall algo-

rithm. In the results, it is shown that the convergence speed of DE-PSO is faster than

PSO and FWA. However, the weakness of slow convergence from the PSO aspect is still
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prevalent as the population fails to converge in time compared to PS-FW algorithm.

Still, the benefits of DE-PSO is able circumvent the convergence weakness slightly. .

As the PS-FW algorithm has an aggressive abandonment and selection strategy, the

population maintains healthy individual solutions that can be exploited further in the

next iteration and can obtain the state of convergence in the population fast and easily.

In PS-FW, the waveform of the duty cycle curve proves that the convergence is faster

to obtain than the PSO, FWA and DE-PSO convergence speeds.

The initial population size, the number of particles to be dropped, and the number

of sparks that a particle may produce are important to determine the optimal solution.

A large initial population size is required to find a good potential solution and start the

exploitation process from there. In this application, the PV system employs 8 particles

as the population which allows ample chances of a potential solution. If the initial

population size is small, the convergence time will be faster as there are less particles to

explode sparks from, but the solution may not be accurate and diverge further from the

GMPP. Given that many particles will be abandoned after the initial fitness evaluation;

the adaptive spark number operator ensures that each particle can have at least one

spark and as such the chances of trapping into a local search region will be decreased as

every one of the particles can explode at least once. Further on, the chances to explode

are relegated only to the current most optimal solution, the tracking speed for the MPP

is greatly increased; however, there is a greater risk of falling into local search region as

there is less searching in the process. In contrast, the mutation operator and velocity

operator after the explosion spark generation step will focus on global search.

For the application of this PS-FW algorithm, a PV system which requires the track-

ing of GMPP to be as fast and accurate as possible, the algorithm will be limited in

steps or amount of iteration cycles given to extract the GMPP. The speed of the PS-FW

thus proves to be faster than PSO and FWA, with equal or better accuracy in GMPPT

performance from the power obtained.

At the crux of it, the algorithms must therefore be tested in a real-life setup to ensure

that its behavior and waveform curves can be replicated as the simulation results have

shown. From the simulation results, it can be inferred that PS-FW can be used as an

alternative to conventional GMPPT algorithms in PSC due to the results and discussion

made above.
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6.3 Experimental Validation

The simulation results have presented the feasibility of the proposed GMPPT hybrid

algorithm with the PSC cases in terms of accuracy and speed. However, the proposed

results must be validated under real experimental setup in order to prove the observa-

tions first, then discussion can be given to the proposed PS-FW algorithm, PSO and

FWA. Within this section, the experimental results for the algorithms must be similar

to the simulation or better than, in terms of speed, accuracy and with the behavior and

waveform curves of the algorithm framework in its search patterns.

To this end, the specified conventional boost converter, its current transducers,

Chroma PV emulator and the dSPACE RTI control unit are interlinked together to

form the setup needed to test the various GMPPT algorithms in all shading patterns of

PSC. Through utilization of the Chroma PV emulator, accurate shading cases can be

also implemented much like the simulation environment of MATLAB/Simulink. The

boost converter is implemented with the calculations of component values conducted

at the Chapter 4. The dSPACE board houses all the GMPPT implementations. The

board will also measure LV-25P and LA-25P current transducer values which are the

voltage and current sensing components, they are connected through ADC channels

available. The PWM channel on board of the dSPACE is able to output duty cycle at

desired frequency settings. Thus, the board is able to measure all relevant information

available that is needed for the input of a GMPPT algorithm and output of duty cycle.

Also, another test vector is introduced to prove the GMPPT algorithms by supplying

a random seed of all involved function calls. The random seed is given to all experimental

test cases, this means initial population will always be different and any random function

call is not the same as another test case. The Table 6.5 denotes how the settings are

set for the tests involving the GMPPT algorithms.

Table 6.5: Random seed value test parameters.

Seed Values PS-FW PSO FWA

Initialization Randomized Randomized Randomized
Velocity Operator Randomized Randomized N/A

Fireworks Operator Randomized N/A Randomized
Selection Operator Randomized N/A Randomized

Thus, results are split into same seeded and random seeded test settings without
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change to other parameters. The next two subsections detail each setting and their

results; which are observable in wave-forms much like the simulation results.

6.3.1 Same Seed Test

The following Figures and sub-figures describe the experimental results of proposed

hybrid PS-FW algorithm, and implemented GMPPT algorithms; utilized to compare

and discuss the GMPPT process. In Fig. 6.7, Fig. 6.8 and Fig. 6.9, the GMPPT

algorithms in all patterns (NSC, PSC1, PSC2, PSC3) shading patterns are presented.

The results are presented from PSO to FWA and finally into PS-FW algorithm. They

are separated by the three applied GMPPT algorithms in the test. The algorithms

begin from the left with PSO algorithm, to FWA and end at the right with PS-FW

algorithm. The results are formed from the condition that all GMPPT algorithms

retain the same seed in population initialization with random seed to the operators to

observe the changes made to the initial population by each of the algorithms.
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(c) PS-FW Pattern 1

Figure 6.7: Experimental seeded Pattern 1 results.

The GMPPT algorithms performances under the Pattern 1 shading case are shown

in the Fig. 6.7. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 99.12% efficiency. The FWA obtains the GMPP at 87 seconds with an accuracy of

92.92% efficiency. The PS-FW algorithm obtains the GMPP at 61 seconds with an

accuracy of 99.19% efficiency.
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(b) FWA Pattern 2
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(c) PS-FW Pattern 2

Figure 6.8: Experimental seeded Pattern 2 results.

The GMPPT algorithms performances under the Pattern 2 shading case 1 is shown

in the Fig. 6.8. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 99.39% efficiency. The FWA obtains the GMPP at 87 seconds with an accuracy of

99.27% efficiency. The PS-FW algorithm obtains the GMPP at 56 seconds with an

accuracy of 99.43% efficiency.
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(b) FWA Pattern 3
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(c) PS-FW Pattern 3

Figure 6.9: Experimental seeded Pattern 3 results.

The GMPPT algorithms performances under the Pattern 3 shading case 2 is seen

in the Fig. 6.9. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 99.03% efficiency. The FWA obtains the GMPP at 84 seconds with an accuracy of



142 Chapter 6. Results and Discussion

98.89% efficiency. The PS-FW algorithm obtains the GMPP at 61 seconds with an

accuracy of 99.08% efficiency.
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(c) PS-FW Pattern 4

Figure 6.10: Experimental seeded Pattern 4 results.

The GMPPT algorithms performances under the Pattern 4 shading case 3 can be

observed in the Fig. 6.10. The PSO algorithm obtains the GMPP at 81 seconds with

an accuracy of 98.24% efficiency. The FWA obtains the GMPP at 77 seconds with an

accuracy of 96.23% efficiency. The PS-FW algorithm obtains the GMPP at 45 seconds

with an accuracy of 98.39% efficiency.

In the respective set of results shown, PS-FW hybrid algorithm has successfully

exceeded the performances of its singular counterparts in terms of speed and similar

accuracy. It can be observed that PS-FW algorithm easily converges and tracks the

GMPPT fastest among the three tested algorithms and under all shading patterns. In

all patterns, the PS-FW algorithm successfully exceeds the singular counterparts in

speed. Among the accuracy results compared, it is shown that the PSO, FWA and

PS-FW algorithms have successfully tracked GMPP in all patterns except FWA that

has lower accuracy in Pattern 1. In this test setting, the PSO and FWA algorithms are

unable to converge in time before the iteration limit, the given threshold of 1W proves

to be hard to fulfill for these two algorithms. However, the PS-FW algorithm is able

to converge easily while tracking GMPP as observable in the faster speeds with varying

range.
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Table 6.6: Same seed experimental performance of GMPPT algorithms.

Pattern Algorithm Pmpp (W) Ppv (W) Pload (W) Tracking Speed MPPT Efficiency (%) Converter Efficiency (%)

1 PSO 148.73 147.43 143.34 81.00 99.12 96.37
FWA 148.73 138.21 134.11 87.00 92.92 90.17

PS-FW 148.73 147.53 143.42 61.00 99.19 96.43

2 PSO 114.26 113.57 109.46 81.00 99.39 95.79
FWA 114.26 113.43 109.35 87.00 99.27 95.70

PS-FW 114.26 113.61 109.47 56.00 99.43 95.81

3 PSO 71.81 71.12 65.61 81.00 99.03 91.36
FWA 71.81 70.99 65.54 84.00 98.89 91.26

PS-FW 71.81 71.15 65.63 61.00 99.08 91.39

PSO 50.22 49.34 45.21 81.00 98.24 90.02
4 FWA 50.22 48.33 44.16 77.00 96.23 87.93

PS-FW 50.22 49.41 45.29 45.00 98.39 90.18

The results from the test are detailed in Table 6.6. The average MPPT efficiency is

around 96.23% to 99.43%, while the converted power efficiency is given to range from

90.02% to 96.43%. Under all the patterns evaluated, the PS-FW algorithm achieves a

minimum improvement of 24.69% to a maximum of 41.55% at converging tracking speed

relative to PSO and FWA in all shading patterns. FWA also demonstrates inaccuracy

in tracking as the power conversion from Ppv is worse than the PS-FW hybrid and

PSO algorithms. The PSO and PS-FW GMPPT accuracy are in close proximity due to

the great exploration from velocity operator, the values are similar and the mismatch

could be caused by tolerance or inaccuracies in the experimental system. Thus, PS-FW

provides faster tracking speed, better ability to converge, and better tracking accuracy

in the same seed test settings.

6.3.2 Random Seed Test

The following Figures and sub-figures describe the experimental results of proposed

hybrid PS-FW algorithm and implemented GMPPT algorithms utilized to compare and

discuss the GMPPT process. The experimental results of random seed initial population

of the proposed hybrid PS-FW algorithm, and implemented GMPPT algorithms are

shown in Fig. 6.11, Fig. 6.12, Fig. 6.13 and Fig. 6.14. The algorithms begin from the

left with PSO algorithm, to FWA and end at the right with PS-FW algorithm. The

results are formed from the condition that all GMPPT algorithms retain the random

seed in population initialization and random seed to the operators to observe the changes

made to the initial population by each of the algorithms.
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(b) FWA Pattern 1
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(c) PS-FW Pattern 1

Figure 6.11: Experimental random seed Pattern 1 results.

The GMPPT algorithms performances under the Pattern 1 shading case is observed

in the Fig. 6.11. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 99.11% efficiency. The FWA obtains the GMPP at 69 seconds with an accuracy of

98.97% efficiency. The PS-FW algorithm obtains the GMPP at 61 seconds with an

accuracy of 99.11% efficiency.
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(a) PSO Pattern 2
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(b) FWA Pattern 2
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(c) PS-FW Pattern 2

Figure 6.12: Experimental random seed Pattern 2 results.

The GMPPT algorithms performances under the Pattern 2 shading case 1 is observed

in the Fig. 6.12. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 99.36% efficiency. The FWA obtains the GMPP at 75 seconds with an accuracy of
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90.46% efficiency. The PS-FW algorithm obtains the GMPP at 62 seconds with an

accuracy of 99.38% efficiency.
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(a) PSO Pattern 3
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(b) FWA Pattern 3
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(c) PS-FW Pattern 3

Figure 6.13: Experimental random seed Pattern 3 results.

The GMPPT algorithms performances under the Pattern 3 shading case 2 is observed

in the Fig. 6.13. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 98.99% efficiency. The FWA obtains the GMPP at 93 seconds with an accuracy of

84.61% efficiency. The PS-FW algorithm obtains the GMPP at 45 seconds with an

accuracy of 99.11% efficiency.
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(a) PSO Pattern 4
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(b) FWA Pattern 4
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(c) PS-FW Pattern 4

Figure 6.14: Experimental random Pattern 4 results.

The GMPPT algorithms performances under the Pattern 4 shading case 3 is observed



146 Chapter 6. Results and Discussion

in the Fig. 6.14. The PSO algorithm obtains the GMPP at 81 seconds with an accuracy

of 97.92% efficiency. The FWA obtains the GMPP at 93 seconds with an accuracy of

98.07% efficiency. The PS-FW algorithm obtains the GMPP at 58 seconds with an

accuracy of 98.12% efficiency.

The results demonstrate that PS-FW hybrid algorithm outperforms the perfor-

mances of its singular counterparts. It is obvious that PS-FW algorithm easily con-

verges and tracks the GMPPT fastest and under all shading patterns. In all shading

patterns, the PS-FW algorithm successfully exceeds the singular counterparts in speed.

With regards to the accuracy, it is shown that the PSO, FWA and PS-FW algorithms

have successfully tracked GMPP in all patterns except FWA that has inaccuracy in

Pattern 2 and Pattern 3. In comparison to the same seed setting, FWA is capable of

achieving convergence in time before the iteration limit completes. However, PSO is still

unable to fulfill convergence as expected due to slow convergence rates from the velocity

operator. Thus, PS-FW provides faster tracking speed, better ability to converge, and

better tracking accuracy in the random seed test settings.
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Table 6.7: Random seed performance summary of GMPPT algorithms.

Pattern Algorithm Pmpp (W) Ppv (W) Pload (W) Tracking Speed MPPT Efficiency (%) Converter Efficiency (%)

1 PSO 148.73 147.41 143.31 81.00 99.11 96.35
FWA 148.73 147.21 143.07 69.00 98.97 96.19

PS-FW 148.73 147.42 143.33 61.00 99.11 96.36

2 PSO 114.26 113.53 109.49 81.00 99.36 95.82
FWA 114.26 103.31 99.21 75.00 90.46 86.83

PS-FW 114.26 113.56 109.52 62.00 99.38 95.85

3 PSO 71.81 71.09 65.61 81.00 98.99 91.36
FWA 71.81 60.76 55.38 93.00 84.61 77.12

PS-FW 71.81 71.17 65.78 45.00 99.11 91.60

PSO 50.22 49.18 44.98 81.00 97.92 89.56
4 FWA 50.22 49.25 45.08 93.00 98.07 89.76

PS-FW 50.22 49.28 45.11 58.00 98.12 89.82

The results from the test are detailed in Table 6.7. The measurement takes into

account the power obtained, tracking speed and MPPT efficiency as they are the primary

values as deciding factors of a chosen GMPPT algorithm. The given MPPT efficiency

averages from around 84.61% to 99.38%, while converted power efficiency ranges from

77.12% to 96.36%. The speed of convergence in the PS-FW hybrid can be observed to

be even faster than the tracked speed of the GMPP in PSO and FWA within the same

seed testing. The PS-FW algorithm ranges from a minimum of 17.44% to a maximum

of 51.72% faster than the PSO and FWA algorithms to converge to the GMPP in all

patterns. FWA obtained a lower tracking accuracy as the power conversion from Ppv

is less than PS-FW hybrid and PSO algorithms in the Pattern 2 and Pattern 3. As

mentioned before in the previous test setting, the PSO and PS-FW GMPPT accuracy

is comparable due to the great exploration of a candidate region from PSO. Thus, the

random seed setting results are concluded with PS-FW as the victor through faster

tracking speed, ability to converge and good tracking accuracy.

6.4 Performance Discussion

Within this section, the experimental results for the algorithms must be similar to

the simulation or better than, in terms of speed, accuracy and with the behavior and

waveform curves of the algorithm framework in its search patterns.

With the completion of summary of the results in the experimental testing, discus-

sion can be built upon the findings and how the proposed hybrid PS-FW outweighs the

singular canonical versions in tracking speed while maintaining good accuracy.
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In the experimental testing, the initial claims of GMPPT performance are proven.

The PS-FW algorithm has exceeded the performance of singular PSO and FWA coun-

terparts in aspects of speed and accuracy under the multiple test conditions of seeded

and non-seeded settings. While the PS-FW algorithm does indeed perform adequately

enough to replace the non hybridized forms, there is a need to explain the performance

from the algorithms and how they achieve the GMPPT searching under their own

frameworks. We begin this discussion by explanation in the subsections below which

will prove to be the criteria or aspects of an algorithm’s performance.

The performance can be categorized into the following sections that describe the op-

erators, search framework and threshold value of power to justify parameters chosen and

applied to the algorithms involved in the experimental testing for GMPPT under PSC.

The parameters are shared also for simulation environment; however, it was important

to evaluate them under experimental setup and in real life. In the case of a possible

parameter combination containing better performances in GMPPT, then it is justified

that the bias is irrelevant as all algorithms chosen will share the parameter values. If

not stated, any parameter values and testing conditions are all same if applicable in the

case of the singular versions of PS-FW compared to its hybrid.

6.4.1 Tracking GMPP Accuracy

The qualitative assumption of accuracy in a GMPPT algorithm is tied to the degree of

local search around the candidate solutions performed by the population. Given a larger

population, the local search or exploitation of the candidate solution can potentially be

easier. A good candidate solution is derived from large initial population and with

greater chances. However, a larger population of solutions directly affects the difficulty

of proving convergence of the population. Moreover, the large population may lead to

many useless searches when the GMPP was already found.

Within the experimental results, it can be seen from canonical PSO algorithm that

the convergence speed is inadequate when compared with the proposed PS-FW algo-

rithm, but the accuracy of the particle to find GMPP is high. The operator applied

within the PSO algorithms consists of the velocity operator that moves the individual

solutions. The velocity of an individual solution is too slow to converge when a potential

candidate MPP is found. The PSO particles have slow search and slow convergence as

the duty cycle can be seen to slowly flatten itself over time towards the candidate MPP.



6.4. Performance Discussion 149

The PSO has a good exploration, but lacks the necessary speed to benefit from this

balance as the convergence speed is slow from lack of exploitation.

The singular FWA has adequate GMPP accuracy in the sense of local search as its

operator is adopted straight into PS-FW. But, the exploration of the FWA with only

the original mutation operator is proven lacking with the weaker results obtained with

minimum of more than 10% mismatch to the GMPP. FWA has missed the trajectory

of its individuals to the candidate MPP in regards to the other two. The exploitation

of FWA is proven with the better local search capabilities in the exploitation of current

candidate MPP; however, it did not manage to find better duty cycles even with ample

chance given to all explosion sparks generated. The selection strategy chooses the

fireworks to carry over into the next generation randomly; thus there is a chance in

the search that a firework that is not around the current candidate MPP is chosen. Its

presence in the population harms the convergence speed as the average fitness is skewed

by the weaker solutions.

The proposed PS-FW hybrid has supplemented the behavior and benefits from the

focus on local search. This behavior is clearly observed in all Figures where in the PS-

FW, particles succeed in choosing candidate MPP and start local search of candidate

MPP immediately with the explosion sparks generation. The same behavior is also seen

but with a chance of wasted search with the FWA algorithm as it explodes on every

firework regardless of its position for global best MPP. PSO’s balance is skewed towards

exploration as the exploitation is weak from slow convergence around the candidate

area.

PS-FW hybrid which makes use of the tournament selection strategy is able to ran-

domly obtain solutions to bring over to the next iteration. The abandonment strategy

removes weaker solutions after velocity operator is applied and thus the population re-

mains healthy. Observable from the wave-forms of the duty cycle is that the velocity

operator and mutation operators succeed in global exploration while a sufficient chunk

and population is conducting local search with the amplitude operator that generates

movement of the explosion sparks from the fireworks or particles. The mutation oper-

ator in question does not apply Gaussian distribution, Elite mutation or the like but a

type of mutation which relies on the global best fitness value. The population of duty

cycles with the greatest power, P will ultimately stagnate within a small difference be-

tween each other and signify convergence. In conclusion, the PS-FW hybrid successfully
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exploits more from local search than PSO while obtaining a better solution even under

the same initial population set of duty cycles.

But, the PS-FW has equal accuracy to the PSO algorithm in terms of GMPPT as

the power conversion is the same. Since PSO algorithm is proven to be able to find the

GMPP due to great exploration, then it can be assumed that the PS-FW successfully

adopted the PSO algorithm’s exploration capabilities.

6.4.2 Speed of Convergence Rate from Operators

The convergence rate of the velocity operator in PSO algorithm as described before-

hand situates itself as having slow convergence; however, the convergence rate itself for

velocity can be controlled from its variables c1,c2 and w. The change in duty cycle

value is the sum of velocity and original duty cycle, thus the desired movement for

faster convergence can be controlled from a decrease of all the variables. Even in its

stochastic nature, the change of a solution can be made lower or higher with certain

degree of magnitude through the modification of those values. Originally, the canonical

PSO algorithm framework utilizes only the velocity operator as the strategy of both

global and local search for the solutions. However, modern canonical versions typically

adopt the inertia weight parameter as a way to control the global and local search dur-

ing early and later stages of the search process. These versions are as observed in both

literature review and in the first half of the proposed PS-FW hybrid. Given the inertia

weight, the PSO algorithm is introduced with an algorithm of controlling exploration

and exploitation. However, it is seen that this balance is inefficient due to the time

taken to reach convergence, as well as wasted search time in the time to reach a candi-

date MPP’s solution. When favouritism towards exploitation is given instead to speed

up the convergence through reducing all parameter values, then the exploration of the

system will be proven lacking.

The PSO algorithm particles contain solutions that fluctuate greatly from the ve-

locity operator applied where less exploitation of the candidate MPP is conducted. The

fluctuation of the velocity operator imitates the convergence of an entire solutions, in

a sense the stagnation of the entire population resembles and builds upon the conver-

gence of all solutions. This proves that the PSO algorithm is slow to converge upon a

candidate MPP as the particles exploit the areas around itself due to the inertia weight

factor at the late stages of search. The convergence from requiring the average fitness

to be less in the population becomes hard to fulfill due to this.
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The singular FWA retains superb exploitation capabilities around a candidate MPP;

its convergence rate would be just as fast as PS-FW algorithm if it had an abandonment

strategy or better selection strategy as the population sometimes retains the weaker fire-

works due to the inadequate and random selection strategy. The abandonment strategy

would partake in removing the weak fireworks. The process does supplement a sort

of exploration, but the amplitude of the sparks generated off the weak fireworks lacks

any momentum to explore far enough to be relevant to the FWA. The result of the

behavior delays the convergence time as there are weaker solutions in the population

with no competitive selection strategy to cull the weaker fireworks. In short, the ex-

ploitation capabilities are strong, but another method of exploration would need to be

introduced if the FWA needs to perform as adequately as PSO algorithm in accuracy

while retaining faster speed from its own fast convergence.

Our proposed PS-FW hybrid algorithm aimed to succeed its singular counterpart

in exploitation and has done so without sacrificing the balance towards exploration.

It is observable in the wave-form from the results obtained in both non-seeded and

seeded case that the local search capability of the PS-FW hybrid algorithm is sufficient

in finding the GMPP. The mutation and velocity operators both also work in twine

to prevent any case of local trap. Moreover, the initial stage of searching allows all

explosion sparks to explore the region once. The result of the strategy allowed the

strong convergence through local search of an already good candidate for the GMPP,

while preventing any case of local trap. It is evident in the seeded case that a perfect

location is not found and more searching is required for the GMPP, it is observable in

the wave-form that the correct GMPP is only found after local search of the candidate

GMPP.

As the algorithm attempts to also search the candidate GMPP which is done by ex-

ploding into the sparks for better solutions, it converges its population to the area while

also keeping mutated sparks and particles searching outside the current region. These

mutated sparks and particles do not rejoin the population, while the normal explosion

sparks begin to rejoin the population randomly through tournament selection strategy

but still keeping one leader particle in the population memory. Thus a great balance of

exploration and exploitation is achieved. Regardless of non-seeded or seeded case, the

operators will be able to perform in the same behavior as evident in the two cases of

wave-forms. With the comparison made between experimental and simulation setup,
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the discussion conducted beforehand regarding the convergence rate can be verified and

proven.

6.4.3 Power Threshold to Modify Convergence Rate

The power threshold and maximum iteration limit are the de-facto utilization of a

convergence criteria for GMPPT algorithms. The algorithm must not end before any

one of these criterion is fulfilled. The design of a GMPPT algorithm may find it desirable

and more profitable to end the search processes when the GMPP is reached, but the

question in response can be asked with the credibility of the solution and the GMPP.

First of all, the problem with setting the convergence criteria as reaching the GMPP

requires the algorithm to know the value of power at GMPP, Pmpp. This factor requires

precognition of knowledge regarding all possible power points on the P-V curve and

at which combination of irradiance and temperature. As such, the use of a set value

of power for the GMPP is unsuitable and costly to implement which was one of the

main basis of using stochastic optimization algorithms to solve the GMPPT problem.

Moreover, dynamic environments which cause PSC will undoubtedly dislodge the area of

GMPP in the P-V curve, setting the Pmpp value off track and failing the search properly.

The reasons given above stress the need of searching for a solution space properly with

balance of exploration and exploitation that are very much affected by a convergence

criterion in tandem with reasons stated before from the operators and population.

In the proposed PS-FW algorithm, the algorithm was explained to be able to balance

exploration and exploitation adequately in comparison to PSO algorithm and FWA.

However, the power threshold convergence criteria can be observed to alter time spent

to converge on a potential GMPP. A given threshold which is too high will result in

too fast of a convergence speed as not all solutions were able to perform exploitation

properly given the inadequate time as the algorithm has thus ended. A given threshold

that is too low can potentially forever cause the algorithm to search iteratively until the

maximum iteration limit is reached. This is a prevalent issue on the population based

search algorithms PS-FW, PSO and FWA. The smaller threshold, if in tandem with

a larger population size, can weaken the convergence time needed to converge entire

population into a candidate MPP, as the entire population must stagnate as close as

possible between every N individual. A larger threshold with a larger population size

is able to somewhat alleviate this solution, the balance of threshold is thus required.
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(a) PSO (Low Threshold)
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(b) PSO (High Threshold)
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(c) PS-FW (Low Threshold)
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(d) PS-FW (High Threshold)

Figure 6.15: Threshold Comparison of PSO and PS-FW
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Testing has been conducted on two algorithms, the PS-FW algorithm and the PSO

algorithm. PSO algorithm has troubling issues regarding convergence as explained and

shown in the results so a larger threshold is given to test the performance. PS-FW

algorithm is used to promote the proposed algorithm’s performance. The Table 6.8

describes the algorithm’s test conditions, first of all the testing parameters, which are

the parameters involved in operators will be unchanged between both threshold tests of

1W and 2W.

Table 6.8: Thresholds Applied for Testing

Testing Parameters Power Threshold (W) Convergence Time
PSO PS-FW

Same 1 Slow Same
Same 2 Fast Same

For example, Fig. 6.15 shows the proposed PS-FW algorithm with a high threshold

value, along with describing PSO algorithm with high threshold values. In Fig. 6.15a,

the lower threshold, 1W is used which shows a prolonged speed of convergence and

tracking time of the PSO algorithm. When modified to a larger threshold of 2, the Fig.

6.15b describes a much faster tracking speed of PSO algorithm. In PS-FW algorithm,

the threshold value does not affect the PS-FW search process much and it is able to

perform in equal behavior between both threshold values.

It can be observed that threshold value is able to influence the ending time that

determines the tracking speed of an algorithm. All GMPPT algorithms have successfully

tracked the GMPP adequately under both threshold values of 1W and 2W. Thus, given

that the 1W power threshold is harder for entire N population to converge in, the

threshold is proposed to be utilized and justified for all previous wave-forms shown

except in this subsection.

An evidence to the performance of the proposed hybrid is that in the due time

given, PS-FW is able to converge faster than PSO algorithm even under equal threshold

parameter, equal starting population and all shading patterns. The exploitation of the

explosion sparks in the PS-FW algorithm is able to sufficiently maintain the population

in convergence range between each other while searching for even better GMPP on

the P-V curve. The abandonment and selection strategy successfully circumvents the

aspect of slow convergence and instead opts towards the local search and global search

immediately instead of slow converging populations.
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The population does not remain in stagnation though, as mutation sparks are al-

ways searching outside the current candidates, with velocity operator particles searching

initially at earlier iterations as well. This behavior in the algorithm framework always

maintains a healthy population of good solutions so that the convergence is easier, but

this difficulty in converging to the threshold can be affected from a large population

as mentioned before as well. While the threshold is indeed possible to be set higher to

achieve a faster convergence rate, a lower threshold tests the capability of local search

for an algorithm. In conclusion, the threshold rate is set to 1W and shared between all

algorithms for fair assessment and testing to prove local search capabilities.

This section reviews the threshold as a factor to balance for the convergence of the

GMPPT algorithms. The testing is conducted in the experimental setup due to power

ripple in the converter system, sensor measurement and the dSPACE RTI may alter

the accuracy of the measurement. These elements are not present in the implemented

Simulink simulation of the PV system. Thus, the experimental setup had the best con-

ditions to test the power threshold as a convergence criterion for all involved GMPPT

algorithms; since, when the error tolerance of the entire GMPPT system is expected to

have minute inaccuracies, the threshold check is much harder to achieve. In conclusion,

the threshold proved a substantial influence that is able to inadvertently control con-

vergence criteria in the GMPPT algorithm. If the proper threshold is not set, then in

essence, the results from all GMPPT algorithms always end in a set maximum iteration

times the amount of population chosen as the parameter. The behavior is unsuitable for

the GMPPT as it is required for the GMPPT to actually end before the iteration limit

is reached to enforce robustness of the algorithm through balance of the exploitation

and exploration with the fastest time and pinpoint accuracy.

6.5 Validity of Proposed Hybrid

Within simulation and experimental validation conducted, the methodology is proven

correct and applied properly; which are the measured values of boost converter, em-

ulation of PV system using the Simulink environment, and experimental setup of PV

system using Chroma PV emulator and dSPACE RTI system. The results present

themselves according to the theoretical explanations conducted within the literature as

well as the objective of each operator is proven from the discussion regarding the pro-

posed PS-FW hybrid in Chapter 3. The canonical versions of PSO algorithm and FWA
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are inefficient when compared to the hybrid algorithm in terms of speed and accuracy

under various factors. The factors includes guarantee of both seeded population and

completely randomized RNG test and then a threshold that is small enough to ensure

all algorithms do not converge as easily as possible.

Ultimately, the proposed PS-FW hybrid GMPPT algorithm has thus proven its

balance of exploration and exploitation capabilities by being able to conduct great

local search with explosion sparks generation while good exploration is obtained from

mutation and velocity operator. The abandonment and supplement strategy would

circumvent otherwise disadvantageous solutions in the population that would slow down

convergence. The singular PSO algorithm lacked the mutation needed for global search

if it changed inertia weight in favor of faster exploitation. Meanwhile, the singular FWA

lacks the exploration needed and thus explosion sparks do not retain good global search

capabilities.

The strategies in tandem and combination with each other for PS-FW algorithm have

overcome the weaknesses of PSO and FWA described. With the hybridization, PS-FW

algorithm proves its capability as a new GMPPT algorithm that is able to perform as

an alternative GMPPT solution to others in the literature. The hybridization is also

proven successful to the extent that, the utilization of hybrid algorithms has directly

improved performance of GMPPT algorithms.

6.6 Chapter Summary

In this Chapter, the culmination of work conducted has completed the objectives of the

research project. The proposed PS-FW GMPPT algorithm has been tested under the

methodology designed in the simulation and experimental setup. The results have been

successfully obtained and discussion regarding all implemented GMPPT algorithms con-

ducted in terms of tracking speed and accuracy. Moreover, the validity of the proposed

hybrid is successfully proven in the midst of the comparisons made. The concept of

hybridization is also proven slightly in favor of the performance to PV systems under

PSC.

In Section 6.1, the criteria of how performance validation is conducted is further

detailed and appended from the given selection in Chapter 3.6. The suggested criteria

to test the algorithms are introduced, both the seed and algorithm parameter settings

have demonstrated the GMPPT algorithm capabilities in modifying the population to
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track GMPP. Moreover, threshold of power has been introduced as the test setting that

is able to control convergence rate and final tracking time.

Next, the wave-forms and results discussion from the testing of all implemented

GMPPT algorithms in the simulation implementation of the PV system application has

been obtained in Section 6.2. With the proposed PS-FW GMPPT algorithm exceeding

the performance of the two singular counterparts of PSO and FWA as well as the

hybrid DE-PSO algorithm in tracking speed and best accuracy in all 5 shading patterns;

an assumption can be made on the performance of all implemented algorithms. The

simulation results successfully prove the initial assumptions and allow the algorithm to

be implemented into an experimental setup for further validation.

Section 6.3 has provided the discussion built upon the simulation results, by imple-

menting the GMPPT algorithms tested into the PV system application using experi-

mental setup. Both same seed and random seed tests are made to test the algorithms

performance in the operator to modify populations until a GMPP is reached. In a

starting population condition where the initial population is replicated for each test and

GMPPT algorithm, the PS-FW algorithm has successfully tracked GMPPT than other

algorithms with best accuracy and fastest speed in all 3 shading patterns. In another

test, the experimental testing has applied random initial population to test conventional

performance in real world scenarios as each operator and population are not guaranteed.

In the tests for the PS-FW algorithm, the experimental results conducted mimic the

findings obtained in the simulations. The PS-FW algorithm successfully obtains the

fastest tracking speed and best accuracy.

Regarding the discussion on the singular counterparts, Section 6.5 explains that

PSO algorithm and FWA both are characterized by the weaknesses that motivate the

implementation of PS-FW hybrid algorithm into GMPPT for PV systems under PSC.

The PSO algorithm has weaknesses in exploitation or local search as denoted by the

slow convergence in the results wave-forms, which more than likely result in slow con-

vergence times and thus slow tracking speed. The weakness is observed to be caused by

the velocity operator and the inertia weight. In FWA, the weakness is given by the lack

of global search or exploration which reduces tracking accuracy and proven in the lower

power conversion efficiency and GMPPT efficiency observed in simulation and experi-

mental results. The weakness is caused by lack of mutation or movement of fireworks

to enforce global search.
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The hybrid PS-FW algorithm then demonstrates that the combination of these two

algorithms and strategy is able to successfully balance exploration and exploitation by

obtaining the results proven before. The PS-FW algorithm uses the velocity operator

for use in exploration, while the convergence issue in PSO is successfully subsided with

explosion sparks generation for better fireworks with greater fitness values. Its frame-

work is proven with the results obtained, the hybridized algorithm is able to be utilized

in the GMPPT algorithm with no qualms based on its superior performances.

The research project hence concludes with all research objectives completed; since,

the GMPPT algorithm that is able to track local and global maxima respectively is

completed. A simulation and experimental setup of the boost converter topology ac-

companied with the PV array under any PSC that is controllable with the GMPPT

algorithm is validated with the obtained results. Finally, the implemented GMPPT

algorithms under our PV system application in terms of performances based on the bal-

ance of exploration and exploitation is fully disclosed in terms of results and discussion.



Chapter 7

Conclusions and Future Works

The research project concludes with the simulation and experimentation verification

of the GMPPT methods. The design of a whole PV system and the review of some

certain modern implementations of GMPPT are conducted and tested for simulation

setup within the MATLAB / Simulink environment. Meanwhile, the experimental setup

validates the design of the simulation setup of PV system with GMPPT controller

with the utilization of dSPACE RTI and the PV panel under multiple cases of PSC is

emulated with Chroma PV Emulator. The experimental design is accompanied with the

use of suitable hardware components that complete the conventional boost converter

design which had calculated parameters in the literature, that are able to handle the

power load in the system when the PV panels are in GMPP.

7.1 Conclusions

In Chapter 1, the discussion regarding the requirement to implement GMPPT over

MPPT methods and the application into PV systems under PSC is given. The reasoning

towards GMPPT is given by the appearance of multiple MPP on the P-V curve that

an MPPT method may or may not be able to track efficiently, hence there is a need of

GMPPT. Our aim, problem statements and research scope are presented in this chapter.

A review of the occurrence of PSC on PV panels has been conducted in Chapter

2. The DC-DC converters are responsible to implement the entire PV system, thus

the types of boost converters utilized in the PV systems are reviewed as they are the

main components responsible for switching the duty cycle from the GMPPT method

to maximize power conversion efficiency. The P-V curve representing a problem that
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requires the use of meta-heuristics is also explained in regards to its contrast to a multi-

modal problem, the meta-heuristics must be used to track the GMPP properly with

good performance.

In Chapter 3, the GMPPT methods utilized in modern literature that are involved

and related with the proposed GMPPT algorithm in the research project have been

reviewed. The performance criteria that evaluates these modern implementations are

observed, how the algorithms enable the search of their populations with the use of

variation operators in order to track the GMPP are introduced. Furthermore, the

concept of hybridization between multiple meta-heuristic methods in order to form a

GMPPT method is introduced.

The PV panel model proposed has been used to construct the PV array in the

simulation environment to conduct simulation validation in Chapter 4. The DC-DC

conventional boost converter design is then calculated in terms of all parameters of the

electrical components in the circuit so that the simulation and experimental setup are

able to obtain component and component values to construct the setup. The rest of

the chapter proposes the hybrid PS-FW GMPPT algorithm that is not implemented for

use in GMPPT application under PSC. The algorithm abandons the disadvantages and

utilizes the good concepts from its singular counterparts to provide better performance

in tracking speed and accuracy through balance of exploration and exploitation.

In Chapter 5, the methodology of the simulation and experimental setup is described

in detail. The simulation software utilized in the project is the MATLAB/Simulink

simulation software environment that is able to procure the theoretical results of the

PV system under PSC correctly while controlling the GMPPT through functions. The

shading patterns introduced in the project possesses 1, 2 and 3 power points on their

P-V or I-V curves which describe where the MPP is. The simulation setup introduced

two more shading patterns with 4 and 5 power points on their P-V or I-V curves. The

total of 5 shading patterns are used to test the simulation setup while 3 are used in the

experimental setup. The experimental setup, consists of the dSPACE 1104 RTI that

acts as a controller board used to record and output signals through ADC or PWM

output and the Chroma PV emulator that outputs the designed PV panel at specified

irradiance levels, essentially allowing us to emulate the shading patterns as well. The

voltage and current sensors record the DC-DC boost converter output values, while the

GMPPT receives these two values as input to produce and generate duty cycles for

the converter to switch at a specified frequency. Considerations for the experimental
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setup are of course taken in measure due to the switch over from simulation setup.

The components required for the boost converter are also described, presented with the

reasoning of the choice made while still fulfilling the calculated minimum requirements.

In Chapter 6, the GMPPT results and discussion are procured and given. How the

proposed research chooses to validate the results is given in the criteria specified in the

literature review. The speed of the algorithm, tracking accuracy of the algorithm and

convergence rate of the algorithm are the criteria. Moreover, other criteria have been

introduced which include the power threshold to determine convergence and convergence

rate. Another criterion is the seeded result which does not contain a population with

result fulfilling the GMPP immediately to observe operator performance for exploration

and exploitation. The recorded tracking speed and accuracy of the proposed PS-FW

GMPPT algorithm has proved itself to be faster than its singular counterparts and has

excelled in terms of the aforementioned criteria. The hybrid algorithm itself has proved

the concept of hybridization briefly, through the adoption of good concepts in meta-

heuristic methods shown from using exploration from PSO and exploitation from FWA.

The velocity operator of PSO provides the global search necessary to disregard local

traps, while the amplitude and sparks generation operator performs the local search

to increase accuracy of tracking. Moreover, the hybrid itself introduced other niche

strategies, such as, abandonment and removal of weaker particles, adaptive reduction

of sparks in further iterations and a better selection strategy that is more competitive

in the survival of better fitness duty cycles.

To reiterate on the designed hybrid PS-FW GMPPT in this project, the hybrid

PS-FW was proposed in respect to the stated weaknesses of the canonical singular PSO

in exploitation and the canonical singular FWA in exploration. A design choice of hy-

bridization method which combines the strategies or operators which modify individual

solutions utilizing both swarm information and personal information. The two GMPPT

algorithms are hybridized into a singular GMPPT algorithm through retention of ve-

locity operator from PSO for exploration while keeping explosion spark operator and

mutation operator from the FWA.

Moreover, the canonical FWA introduced the selection operator which is a random-

ized retention of individuals of the solution. In the hybrid algorithm, a tournament

selection operator scheme is introduced in order to retain the good individuals with

greater MPP. The selection scheme introduced has shown its capabilities in improving
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convergence and exploitation by being able to select good candidates among a tour-

nament style ranking where fitness is used to evaluate them. The greatest difference

between the performance of FWA and PS-FW algorithm was proven to be the explo-

ration capabilities as the PSO’s velocity operator was not present to improve exploration

of the population; thus, the weakness is supplemented by the difference of modification

towards the mutation operator used. The two factors were used in PS-FW algorithm to

improve GMPPT and prove that FWA had lower accuracy than that of PS-FW from

the lower power conversion efficiency at GMPP. In PS-FW algorithm, an abandonment

strategy was introduced where weaker individuals with worse MPP are always dropped

in favour of the healthier individuals, maximizing the convergence chance and exploita-

tion of current candidate GMPP. Of course, the trade off for this was weaker exploration

chance from explosion of the other individuals. However, the utilization of mutation

operator and velocity operator modifies individuals which do not rejoin the population

unless a greater candidate GMPP was found. The GMPPT algorithm is modified to

include adaptive qualities where chances to explode for weaker individuals are nullified

and the amount of individuals to be abandoned lessen with increasing iteration counts.

The measures are taken to enforce the convergence speed of the algorithm. All involved

strategies with the parameters established have successfully balanced the exploitation

and exploration of the PS-FW GMPPT algorithm, its results are validated from the

increased tracking and convergence speed with highest accuracy to the GMPP. The

proposed algorithm successfully obtains a minimum of 7.59% better tracking speed of

the GMPP under simulation verification at one initial population setting compared to

the PSO, FWA and DE-PSO. The PS-FW under experimental verification is able to

achieve at least a minimum of 24.69% better tracking speed of the GMPP in two initial

population settings compared to the PSO and FWA.

The meta-heuristics optimization methods which can directly translate to being

implemented into GMPPT problem, as GMPPT methods were conducted in order to

understand the framework of the basic methodology where the method iteratively im-

proves its solution(s) with natural, genetic, generational and physics based modelling of

the operators, terms and strategies. The PV system which was to be directly controlled

by the GMPPT method that is housed inside a controller is understood and the design

of the system is proven with various methodologies. For example, the usage of PV mod-

els in simulation to the utilization of hardware PV emulator, the conventional boost

converter design parameter calculations and the partial shading cases replicated on the
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P-V or I-V curves. These were substantial in order to derive the entire PV system under

cases of PSC which were fortuitous in the validation of the performance for all involved

GMPPT methods: PSO, FWA proposed hybridized PS-FW.

The key contributions of this research as have been set out to be accomplished can

be concluded:

• The PS-FW algorithm with abandonment and supplement strategies successfully

solved GMPPT problems under PSC environment as evidenced by the wave-form

obtained from the results.

• The proposed adaptive spark control in the PS-FW algorithm to accelerate the

convergence time in later stages of the search process, which is a common weakness

of most GMPPT.

• In simulation setup, the performance of our proposed algorithm against PSO,

FWA and DE-PSO is demonstrated while the experimental setup demonstrated

the performance of our proposed algorithm with PSO and FWA. The PS-FW al-

gorithm accomplishes the best results in both simulation and experimental setups

among the implemented algorithms.

In turn, the research project is successfully fulfilled, with minor delay due to external

circumstances, the milestones and time-line are completed with a modicum of respect

to the reasons stated. While the understanding of new concepts to the researcher has

taken some effort, the understanding of various concepts have proved impeccable to the

design of the GMPPT algorithm from this research project.

Nevertheless, the proposed PS-FW GMPPT algorithm showcases its merit as a

liable alternative to PSO and FWA. The increased speed and accuracy puts PS-FW at a

pedestal against its counterparts, which already exist in implementations of PV systems.

The algorithm choice in designing future PV systems is further exemplified with the

use of our proposed algorithm with its good performance using the abandonment and

supplement, and adaptive spark control strategies. The strategies employed present

their merit in rallying convergence of individuals in a population with the emphasis on

speed and accuracy, future designs of GMPPT algorithms may employ similar strategies

to obtain the desired performance. Furthermore, the future work of PV system design

may specifically utilize the proposed research work as their GMPPT algorithm with the

guaranteed performance quality. With regards to the future developed PV systems, the

conducted work regarding the methodology of PV system development in the form of
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the simulation and experimental setup are concise enough to be replicated for further

development.

7.2 Future Works and Considerations

In the future work, the completed research work will strive to improve concepts un-

explored or not fully developed in this research project. It includes aspects from the

experimental methodology, as well as all the GMPPT algorithms involved. As the pro-

posed research seeks to commercialize the research work in the future, the discussion

made below must be considered in the future plans.

Within the boost converter design, steady state oscillation is a real condition seen in

the settling time of the DC-DC boost converter during experimental testing. It is not

observed in the simulation setup due to theoretical conditions. The transient response,

in electrical engineering specifically, is the circuit’s temporary response that dies out

with time. Following closely is the steady state response, which is the behavior of the

circuit a long time after an external excitation is applied. The oscillations are observ-

able during the settling time of the converter observed from the measurement of the

wave-forms in the dSPACE software, moreover the results show the settling time of the

power, voltage and current sensed. Research must be done regarding the steady state

oscillation, it should be related to the step sizes of switching as large gaps in the duty

cycle may cause ripple power. The transient response may be improved using a pro-

portional–integral–derivative controller through controlling the feedback of the system.

The controller is subsequently used in industrial grade control systems that require con-

tinuously modulated control. In our PV system, the boost converter configuration only

provided basic capability of obtaining GMPP and showed low converted efficiency at the

load resistance of around 91% to 94% . The PV system configuration itself should im-

plement transient stability improvement to facilitate the steady state oscillations while

obtaining better final conversion efficiency.

An apparent downside to the hybrid PS-FW GMPPT algorithm however, would

reside in the number of parameters used in its search process. A small scale PV system

which aims for low cost implementations may be unable to implement the PS-FW

algorithm due to the size or computation capability required. The lower cost micro-

controller devices or other GMPPT controller units will be hampered from using the

algorithm.This limitation must be addressed by reducing the parameter dependency in
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the framework and have the PS-FW GMPPT algorithm be tested under commercially

popular controller units.

1. In the experimental methodology, another criterion that is able to influence the

validity or give value to the GMPPT algorithms performances would be the fea-

ture to restart itself under dynamic PSC. The feature if implemented inside the

GMPPT code, restarts the algorithm search framework upon determining the oc-

currence of PSC, by which it means that the irradiance has changed to a significant

degree that warrants the restart of the algorithm. The idea is novel, but could

be a moot point as all involved GMPPT methods may just implement it. It does

not detract from value of a singular method, but it does not allow us to draw

comparison through discussion. But, the occurrence of a changing PSC is always

possible and thus the future work can be considered.

2. Within the GMPPT method’s parameters, the results section has assumed same

value in the parameters of all shared operators. The assumption was to give

contrast of the changes made in the operators and search strategies newly intro-

duced so that the research work does not need to constantly explain the parameter

choice. However, the future consideration that should be performed will be the

introduction of parameters tuned to the point that it may draw out the maximum

performance possible from a method. The choice of the initial parameters can

not be concluded as final. Thus, further changes to all GMPPT methods per-

formances of the operators due to the internal parameters including the hybrid

PS-FW GMPPT algorithm are possible for better or worse. With optimization

done on the internal parameters, the optimized PS-FW algorithm can benefit from

further validation and performance results obtained for GMPPT problem through

comparison of each algorithm at their peak performance.

3. Furthermore, more GMPPT algorithms should be introduced to contest with the

hybrid PS-FW GMPPT algorithm. The concept of hybridization should be fur-

ther considered in another design of the GMPPT algorithm in order to improve

the performances as proven in literature and in the research results. While the

PSO is already an industrially utilized GMPPT method, the FWA method is

relatively unused in literature which warranted the research into its performance
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in the research work. The two methods should be supplemented with the modi-

fied versions of it present in literature and implemented within the experimental

methodology.

4. With the completion and success of the PV system implementation, the research

project innovations can attribute towards the development of whole solar inverters

or PV inverters which can feed into commercial electrical grid, local, and off-

grid electrical networks. The inverters themselves implement GMPPT algorithms

as well and are the next step of further research for the commercial systems.

Moreover, besides bench marking the energy efficiency of the hybrid algorithm

and PV system with those in the research reports, the life span of the newly

designed hybrid system can be assessed or appraised in relation to the devices that

are available commercially. This future work can be considered as the algorithm

enters the stage at which commercial distribution is viable, which further exposes

the research work conducted.

In conclusion, the future work and considerations specified detail the further plan

of research work for endeavors beyond the scope of this thesis. The future plans of

research work will base the improvement of overall PV system implementation based

on the boost converter design, GMPPT algorithm design along with its parameters, the

GMPPT performance validation and the commercial plans possible.
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