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Abstract 

Introduction 

Pre-professional dancers commonly experience musculoskeletal pain, which can be 

disabling and distressing to the dancer. A contemporary view of pain development and 

management suggests that pain should be considered using  a biopsychosocial perspective. 

In athletic populations, such as dancers, there has been a particular focus on the 

relationship between pain and a variety of movement parameters. However, quantifying 

these parameters within the context of daily training and performance remains a challenge. 

Movement parameters of particular interest can be broadly delineated into those that 

represent movement quantity and quality.  Movement quantity has previously been tracked 

using schedules and activity diaries, which are both imprecise and biased. Activity 

monitors have been implemented to derive a general energy expenditure output, however 

it is increasingly recognised that quantifying movement specific loads is critical when 

understanding links with pain. For example, jumping and leg lifting tasks have frequently 

been cited as potentially provocative of pain. Further, we know from cross-sectional 

laboratory-based research that quality of movement factors, such as high ground reaction 

forces (GRF) during jumping tasks and the substantial range of hip elevation and lumbar 

spine sagittal angles that dancers use during leg lifting tasks may also be provocative of 

pain. Currently, no field-based system exists to track movement quality. 

Recent developments in wearable sensor technology combined with computational 

approaches, such as machine learning, has allowed the potential for longitudinal research 

using serial, field-based measurement of specific movement quantity and quality 

variables. Machine learning models have been applied to wearable sensor data for the 

delineation of specific movement tasks in sports such as specific strokes in tennis, and 

tackles in rugby and Australian Rules football. While more limited, there are also 

examples of movement quality information, such as GRF and joint range of motion being 

output using machine learning applied to wearable sensor data during running. No 

researchers have applied machine learning methods to wearable sensor data for the 

objective quantification of movement quantity and quality in dancers. Additionally, while 

systems have been developed in other sporting areas, no researchers have applied the 

technology in a field-based study to explore the relationship between movement quantity 

and quality with athletes’ pain.  
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The aims of this thesis were: 

1. To develop and validate a field-based system capable of sufficiently accurate 

estimates of dance-specific movement quantity and the quality that these movements 

were executed (Study 1, 2A and 2B).  

2. to determine if there was a relationship between dancers’ movement quantity and 

quality with self-reported pain and pain related disability outcomes across a university 

semester (Study 3). 

Methods, Results and Discussion 

Study 1  

Objective: To develop a human activity recognition system using wearable sensor data to 

accurately identify key ballet movements (jumping and lifting the leg). The primary 

objective was to determine if machine learning can accurately identify key ballet 

movements during dance training. The secondary objective was to determine the influence 

of the location and number of sensors on accuracy. 

Methods: Pre-professional female dancers (n=23) were fitted with 6 Actigraph Link 

wearable sensors (100Hz). Dancers performed a series of discrete ballet movements; a 

series of different jumping and leg lifting tasks, followed by choreographed sequences. 

Dancers were simultaneously recorded on video (100fps). Activities were identified, 

classified and annotated frame-by-frame at 3 levels. Sensor and video data were time 

synchronised.  Convolutional neural networks were applied to develop 2 models for each 

combination of six sensors (6, 5, 4, 3, etc.) with and without the inclusion of transition 

movements. The models were validated using leave one out cross validation to determine 

the degree of accuracy for each sensor combination. 

Results: At the first level of classification, including data from all sensors, without 

transitions, the model performed with 97.8% accuracy. The degree of accuracy reduced at 

the second (83.0%) and third (75.1%) levels of classification. The degree of accuracy 

reduced with inclusion of transitions, reduction in the number of sensors and various 

sensor combinations. 

Discussion: The models developed were robust enough to identify jumping and leg lifting 

tasks in real-world exposures in dancers. The system provides a novel method for 

measuring dancer training volume through quantification of specific movement tasks. 



Abstract 

vii 

Such a system can be used to further understand the relationship between dancers’ pain 

and training volume and for athlete monitoring systems. Further, this provides a proof of 

concept which could be translated to other lower limb dominant sporting activities. 

Study 2A 

Objective: To develop a wearable sensor system, using machine learning models, capable 

of accurately estimating peak GRF during ballet jumps in the field.  

Methods: Female dancers (n = 30) performed a series of bilateral and unilateral ballet 

jumps. Dancers wore six ActiGraph Link wearable sensors (100 Hz). Data were collected 

simultaneously from two AMTI force platforms and synchronised with the ActiGraph 

data. Due to sensor hardware malfunctions and synchronisation issues, a multistage 

approach to model development, using a reduced data set, was taken. Using data from the 

14 dancers with complete multi-sensor synchronised data, the best single sensor was 

determined. Subsequently, the best single sensor model was refined and validated using 

all available data for that sensor (23 dancers). Root mean square error (RMSE) in body 

weight (BW) and correlation coefficients (r) were used to assess the model GRF profile, 

and Bland-Altman plots were used to assess model peak GRF accuracy.  

Results: The model based on sacrum data was the most accurate single sensor model 

(unilateral landings: RMSE = 0.24 BW, r = 0.95; bilateral landings: RMSE = 0.21 BW, r 

= 0.98) with the refined model still showing good accuracy (unilateral: RMSE = 0.42 BW, 

r = 0.80; bilateral: RMSE = 0.39 BW, r = 0.92).  

Discussion: Machine learning models applied to wearable sensor data can provide a field-

based system for GRF estimation during ballet jumps. 

Study 2B 

Objective: To develop a machine learning model to estimate thigh elevation and lumbar 

sagittal plane angles during ballet leg lifting tasks, using wearable sensor data.  

Methods: Female dancers (n = 30) performed ballet-specific leg lifting tasks to the front, 

side and behind the body. Dancers wore six ActiGraph Link wearable sensors (100Hz). 

Data were simultaneously collected using an 18 Camera Vicon Motion Analysis System 

(250Hz). Due to synchronization and hardware malfunction issues, only 23 dancers had 

usable data. Using leave-one-out cross validation, machine learning models were 

compared with the optic motion capture system using root mean square error (RMSE) in 



Abstract 

viii 

degrees and correlation coefficients (r) over the complete movement profile of each leg 

lift and mean absolute error (MAE) and Bland Altman plots for peak angle accuracy. 

Results: The average RMSE for model estimation was 6.8° for thigh elevation angle and 

5.6° for lumbar spine sagittal plane angle, with respective MAE of 6.3°and 5.7°. There 

was a strong correlation between the machine learning model and optic motion capture for 

peak angle values (thigh r = 0.86, lumbar r = 0.96). 

Discussion: The models developed demonstrated an acceptable degree of accuracy for the 

estimation of thigh elevation angle and lumbar spine sagittal plane angle during dance-

specific leg lifting tasks. This provides potential for a near-real-time, field-based 

measurement system. 

Study 3 

Objective: This field-based study aimed to determine the association between pre-

professional student dancers’ movement quantity and quality with (i) pain severity and (ii) 

pain related disability. 

Methods: Pre-professional female dance students (n=52) participated in 4 time points of 

data collection over a 12-week university semester. At each timepoint dancers provided 

self-reported pain outcomes (Numerical Rating Scale as a measure of pain severity and 

Patient Specific Functional Scale as a measure of pain related disability) and wore a 

wearable sensor system. This system combined wearable sensors with previously 

developed machine learning models capable of capturing movement quantity and quality 

outcomes. A series of linear mixed models were applied to determine if there was an 

association between dancers’ movement quantity and quality over the 4 time points with 

pain severity and pain related disability. 

Results: Almost all dancers (n=50) experienced pain, and half of the dancers experienced 

disabling pain (n=26). Significant associations were evident for pain related disability and 

movement quantity and quality variables. Specifically, greater pain related disability was 

associated with more light activity, fewer leg lifts to the front, a shorter average duration 

of leg lifts to the front and fewer total leg lifts. Greater pain related disability was also 

associated with higher thigh elevation angles to the side. There was no evidence for 

associations between movement quantity and quality variables and pain severity.  
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Discussion: Despite a high prevalence of musculoskeletal pain, dancers’ levels of pain 

severity and disability were generally low. Group level associations were identified 

between dancers' movement quantity and quality, and pain related disability. These 

findings may reflect dancers' adaptations to pain related disability, while they continue to 

dance. Further studies are required to understand this relationship, and the directional 

nature of the relationship, at an individual dancer’s level. This proof-of-concept research 

provides a compelling model for future work exploring dancers’ pain using field-based, 

serial data collection. 

Conclusion 

This doctoral thesis initially validated a novel, field-based approach to better 

understand the potential associations between movement and pain and it’s associated 

disability in dancers. We developed a wearable sensor system which was capable of 

measuring dancers’ movement quantity and quality of movement. The system combined 

a series of machine learning models developed using convolutional neural networks with 

a support vector machine and artificial neural networks to provide a comprehensive system 

capable of detecting the dance-specific jumping and leg lifting tasks. The system was also 

capable of estimating peak GRF during jumping and thigh elevation and lumbar spine 

sagittal angles during leg lifting tasks, with acceptable degrees of accuracy. The system 

was subsequently applied in a field-based study to explore the relationships between 

movement quantity and quality with pain severity and pain related disability. The results 

suggested some adaptation of dancers’ movement when they experienced changes in 

levels of pain related disability. While previous work has suggested that dancers tend to 

“push through” pain and keep on dancing, this work highlights that when faced with 

disabling pain, while they continue to dance, they modify their movement quantity and 

quality. Through applying the novel measurement system developed in this research to a 

group of pre-professional dancers over the course of a university semester, we have 

presented a compelling model and a prospect for future work exploring dancer pain using 

field-based, serial data collection.   
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Introduction 

This chapter provides an overview of the background and structure of this doctoral thesis. 

It begins by providing a brief background to the thesis, before stating the problem that this 

thesis is aiming to address. It highlights the primary aims of the thesis and provides a brief 

summary of each chapter and appendix. 

  

Chapter One  
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1.1 Background 

Dance is considered a valued activity to both dancers and audiences alike. Results of 

the AusPlay survey demonstrated that dance is the fourth most popular organised, out of 

school sport / physical activity for children under the age of 14, with an overall participation 

rate of 8.9% in Australia (Australian Sports Commission, 2021). Further, it is the second 

most popular sport / physical activity for girls in Australia, and female participation peaks 

at 5-8 years old (participation rate 22.8%) before dropping in subsequent years (Australian 

Sports Commission, 2021). By the time female dancers are aged 15-17 years old 

participation rates drop to 6.8% and by early adulthood (18-24 years old) rates drop to 2.4% 

(Australian Sports Commission, 2021). These late adolescent / early adulthood ages are 

typically when dancers who are considering a professional pathway in dance transition into 

pre-professional dance programs, such as university dance programs, with the potential to 

have a professional career. This is particularly true for ballet and contemporary dance. 

While multiple dance styles exist and are enjoyed by many, ballet and contemporary dance 

are most commonly the focus of pre-professional dance programs in Australia. 

Pre-professional dance training is characterised by a substantial increase in training 

loads from recreational dance loads, during a time when dancers’ bodies are continuing to 

develop, which may relate to the development of musculoskeletal pain and disability 

(Fuller, Moyle, Hunt, & Minett, 2019). Indeed, systematic reviews have suggested that 

dancers’ musculoskeletal pain and pain related disability is prevalent during transition into 

pre-professional training, and throughout dancers’ pre-professional years, with the 

majority of dancers experiencing pain at some point within their dance training (Fuller et 

al., 2019; Hamilton, Hamilton, Warren, Keller, & Molnar, 1997; Negus, Hopper, & Briffa, 

2005). The lower limb and lower back are the most common regions affected, with pain 

commonly suggested to be related to “overuse” (P. J. Smith et al., 2015). Within the dance 

literature, painful events are most commonly described as “injury” (P. J. Smith et al., 2015; 

T. O. Smith et al., 2016). However, there is a lack of consensus on the definition of “injury” 

and the construct of “injury” may not adequately reflect the true underlying basis of 

musculoskeletal pain in dancers, as identifiable tissue damage is often not present with 

many musculoskeletal pain presentations (Caneiro et al., 2021). Therefore, within this 

thesis broader concepts of pain and pain related disability will be the focus. However to 

accurately reflect the published literature, when a publication refers to “injury” the 

authors’ definition of “injury” has been included. 

 The impact of pain on dancers can be substantial, resulting in reduced training, more 

mental health issues and increased dancer attrition (Hamilton et al., 1997;  Mainwaring & 
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Finney, 2017).  Pain related disability is seen as the leading cause of attrition from dance 

training (Hamilton et al., 1997). Further, dancers with a history of pain related disability 

have reported increased generalized and performance anxiety and have rated 

psychological distress levels as high (Mainwaring & Finney, 2017). Gaining a deeper 

understanding of factors related to the development of pain related disability during 

dancers’ pre-professional years would provide an opportunity for targeted management of 

pain related disability during this time.  

Contemporary understanding of musculoskeletal pain development is complex and 

needs to include variables from a  broad biopsychosocial perspective (O'Sullivan et al., 

2018). There have been a number of studies that have identified a range of biopsychosocial 

risk factors for pain related disability in dancers (Cahalan, Bargary, & O'Sullivan, 2018; 

Cahalan, Bargary, & O’Sullivan, 2019; Cahalan et al., 2016; Kenny, Whittaker, & Emery, 

2016). These include psychological factors such as dancers’ coping skills, negative 

psychological distress, perfectionism and mood states as well as a range of physical factors 

including anthropometrics, biomechanics and training loads (Kenny et al., 2016). Given 

the physical nature of dancers’ daily training, particular research attention has been 

brought to the domain of physical factors. Within this domain, the majority of research 

has focussed on dancers’ overall training volume (Boeding, Visser, Meuffels, & de Vos, 

2019; Cahalan et al., 2019; Cahalan, Kearney, et al., 2018; Jeffries et al., 2020; L. Lee, 

Reid, Cadwell, & Palmer, 2017; Shaw et al., 2021; Volkova & Kenny, 2020). However 

more recently researchers have recognised that overall training volume, while useful, does 

not provide sufficient insight into the complete training demands that may be associated 

with the development of pain and pain related disability (Murphy, Glasgow, & Mosler, 

2021). As a result there is growing interest in more detailed movement quantity (for 

example, gross activity / movement counts) and quality (for example, detailed 

biomechanics, such as landing force) (Murphy et al., 2021). There are no reported studies 

identified within dance that explore the relationship of movement quantity and quality 

with pain and pain related disability.   

Within the last 10 years there has been substantial interest in the relationship between 

movement quantity and pain development in athletes more broadly (Gabbett, 2016, 2020a; 

Gabbett, Hulin, Blanch, & Whiteley, 2016; Gabbett, Whyte, Hartwig, Wescombe, & 

Naughton, 2014). However, within the dance literature this area of research remains in its 

infancy. While there is a growing interest in capturing dancers’ training volume as a 

measure of movement quantity, the current body of literature largely relies on dancers’ 
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schedules and their subjective reporting of their training hours (Boeding et al., 2019; 

Cahalan et al., 2019; Cahalan, Kearney, et al., 2018; Jeffries et al., 2020; Volkova & 

Kenny, 2020) These measures are both imprecise and potentially biased. Recently, 

researchers have started using accelerometry to capture dancers’ movement quantity, 

using data processing methods such as vector magnitude and time spent at different 

physical activity intensities as measures of cumulative movement quantity (Jeffries, 

Wallace, & Coutts, 2016; Kozai, Twitchett, Morgan, & Wyon, 2020). Additionally, 

reserachers have applied session rating of perceived exerction (RPE) to quantify 

workloads, providing measure of the burden of workload on the dancer (Boeding et al., 

2019; Jeffries et al., 2016; Jeffries et al., 2020). While these methods provide more 

objective quantification of dancers’ movement quantity, and the impact this movement 

quantity has on the dancer, they only provide an indication of overall workload and do not 

account for the specific movements that may be provocative of pain and disability in 

dancers, such as jumping and leg lifting tasks. While it is recognised that quantifying 

movement specific loads is critical when understanding links with pain, currently no field-

based systems capable of objectively quantifying dance-specific movements exist. 

Jumping and leg lifting tasks have commonly been suggested as being associated with 

musculoskeletal pain and pain related disability in dancers (Mattiussi et al., 2021; 

Mattiussi et al., 2021; C. Swain, Bradshaw, Whyte, & Ekegren, 2018; Vassallo, Hillier, 

Pappas, & Stamatakis, 2017). As well as the quantity of these movements being potentially 

provocative, researchers have hypothesised that the quality of movement seen during these 

tasks may also relate to pain and disability, however the direction of this relationship 

remains unclear (Mattiussi et al., 2021). Quality of movement refers to the specific 

biomechanical features of movement which could include aspects such as forces, 

acclerations, range of movement and variability (Fietzer, Chang, & Kulig, 2012; Gorwa, 

Dworak, Michnik, & Jurkojc, 2014; Peng, Chen, Kernozek, Kim, & Song, 2015). For 

example, the large ground reaction forces (GRFs) that dancers display during repeated 

jumping is thought to contribute to the development of lower limb pain (Fietzer et al., 

2012; Gorwa, Michnik, Nowakowska-Lipiec, Jurkojć, & Jochymczyk-Woźniak, 2019; 

Peng et al., 2015). Cross-sectional, laboratory-based studies have demonstrated that 

dancers with knee pain land with higher peak GRF than those without pain (Fietzer et al., 

2012; Peng et al., 2015). Researchers and clinicians also commonly believe that the large 

ranges of hip and lumbar spine movement that dancers employ during leg lifting tasks may 

relate to the development of hip and low back pain (Biernacki, d'Hemecourt, Stracciolini, 

Owen, & Sugimoto, 2020; Biernacki et al., 2018; Bronner, 2012; Bronner & Ojofeitimi, 
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2011; Swain et al., 2018). However, while laboratory-based set ups have been used to 

measure the range of motion dancers achieve during leg lifting tasks (Bronner, 2012; 

Bronner & Ojofeitimi, 2011), no research has formally evaluated the relationship between 

these movement parameters and pain. While laboratory-based measurement systems are 

considered gold standard for the measurement of GRF and range of motion, they have low 

ecological validity, not allowing for capture of the large range of different jumping and 

leg lifting movments that a dancer performs in their normal training, and may not be 

appropriate for repeated monitoring (Lara & Labrador, 2013).  

Recent developments in wearable sensor technology combined with advanced 

computational approaches, such as machine learning, have allowed the potential for 

longitudinal research using serial, field-based measurement of specific movement quantity 

and quality variables (Cust, Sweeting, Ball, & Robertson, 2019; Demrozi, Pravadelli, 

Bihorac, & Rashidi, 2020; Lara & Labrador, 2013). Machine learning is a branch of 

artificial intelligence where models and algorithms undergo “training” using raw data with 

criterion information, to then predict the response, and have been shown to perform better 

than simple algorithms for some complex problems (Cust et al., 2019). Within sport, 

machine learning has been applied to wearable sensors to recognise sport-specific 

movement tasks, such as tackles in rugby, specific strokes in tennis and hits in volleyball, 

allowing for the potential of automated, field-based movement quantity measurement 

(Cust et al., 2019). Additionally, machine learning applied to wearable sensor data has 

been used to estimate movement quality variables such as GRFs and joint range of motion 

during running (Wouda et al., 2018). There appears to be no published applications of 

machine learning to wearable sensor data for the measurement of movement quantity and 

quality in dance. Additionally, while the aforementioned systems have been developed for 

field-based use (Cust et al., 2019; Wouda et al., 2018), there are no published studies of 

their use within the field. Interestingly, while previous work has described the 

development of machine learning models, no reports of the application of these models in 

field-based studies to explore the relationship between movement parameters and pain 

have been published. Considered together, the results of these studies suggest the potential 

for the development of a wearable sensor system that can measure dance-specific 

movement quantity and quality. The development of such a system would allow for 

longitudinal, field-based research, exploring associations between physical factors and 

pain and pain related disability. 
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1.2 Statement of the problem 

Pain and pain related disability is common in pre-professional dancers. While 

movement quantity and quality are thought to be associated with pain and disability in 

dancers there is limited evidence to support these claims. The evidence that exists is 

limited to subjective, and potentially biased, reporting of movement quantity and to cross-

sectional laboratory-based studies of movement quality, with low ecological validity. To 

better understand the relationship of dancers’ movement parameters with pain and 

disability, the development of an accurate field-based system to measure dancers’ 

movement quantity and quality is required. This system subsequently needs to be applied 

to a sample of dancers to allow for determination of associations of movement quantity 

and quality with dancers’ pain. 

1.3 Thesis aims 

This thesis presents a series of 3 studies. The first 2 studies were cross-sectional 

validation studies, the first field-based where data was collected in a dance studio, the 

second laboratory-based. The third was a longitudinal field-based study. The aims of the 

thesis were: 

1. To develop and validate a field-based system capable of sufficiently accurate 

estimates of dance-specific movement quantity and the quality that these movements 

were executed (Study 1, 2A and 2B).  

2. to determine if there was a relationship of dancers’ movement quantity and quality 

with self-reported pain and pain related disability outcomes across a 12-week 

period (Study 3). 

1.4 Structure of the thesis 

This thesis comprises 7 chapters and a series of appendices. The thesis will describe 

three studies.  

Chapter 1 provides an introductory overview of the problem that is the high 

prevalence of pain amongst pre-professional dancers, it’s relationship with 

movement quantity and quality and the limitations in the current measurement 

systems and how machine learning applied to wearable senor data may assist in 

overcoming these limitations.  
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Chapter 2 provides a review and synthesis of the scientific literature associated with 

this body of work, beginning with the prevalence and impact of musculoskeletal pain 

and pain related disability in dance. It will provide review of the current literature 

regarding the association of movement quantity and quality with pain related disability, 

describing how movement quantity and quality is measured in dancers and how these 

factors relate with pain / pain related disability in dance, inclusive of specific movements 

that may be provocative of pain and pain related disability. The current scope of the use 

of wearable sensor technology within dance and the application of machine learning 

methods to wearable sensor data to allow for the objective quantification of movement 

quantity and quality will be reviewed. The chapter concludes by summarising the gaps 

in the literature. 

Chapter 3 describes the development and validation of a machine learning and wearable 

sensor human activity recognition system for dance-specific movement tasks (jumping 

and leg lifting), allowing for field-based measurement of movement quantity. This study 

was published in Sports Medicine Open. 

Chapter 4 describes the development and validation of machine learning models for the 

estimation of GRFs during dance-specific jumping activities, for field-based measurement 

of movement quality. This study was published in Sensors. 

Chapter 5 describes the development and validation of machine learning models for the 

estimation of thigh elevation angles and lumbar spine sagittal plane angles during dance-

specific leg lifting activities, for field-based measurement of movement quality. This study 

was published in Medical Problems of Performing Artists. 

Chapter 6 presents a field-based study in which repeated wearable sensor-based measures 

of movement quantity and quality (measured using the machine learning models described 

above), along with self-reported measures of pain and disability were collected at 4 time 

points across a 12-week period, in the lead up to and following a performance season. This 

study has been submitted to a journal and is under review. 

Chapter 7 presents the discussion of the main findings of the thesis, detailing what this 

study adds to existing methods for measuring quantity and quality of movement in dance 

and how movement quantity and quality are related with pain and pain related disability 

in dancers. Challenges of the development and application of the wearable sensor system 

will be described, with specific focus towards learnings from this body of work for 

application in future directions for research and clinical use.  
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Appendices A to N present ethical approval, recruitment materials, participant information 

and consent forms, questionnaires used and additional information for each study.  

Appendix O presents a parallel study that aimed to further explore some other factors that 

relate to dancers’ pain. This was a cross-sectional study that evaluated dancers’ beliefs 

surrounding low back pain and dance-specific movements. This study has been published 

in Medical Problems of Performing Artists.  

Appendices P and Q presents statements of contribution from all authors and copyright 

permissions from journals where manuscripts have been published. 
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Literature Review 

This chapter aims to review the current scientific literature and identify the gaps in the 

literature regarding: 1) the prevalence and burden of musculoskeletal pain and pain related 

disability in dance, 2) how movement quantity is measured in dancers and how it relates 

with pain / pain related disability in dance, 3) the specific movements that dancers perform 

which may relate with pain / pain related disability, 4) how movement quality is measured 

in dancers and how it relates with pain / pain related disability in dance,  5) the current 

scope of the use of wearable sensor technology within dance and 6) the application of 

machine learning methods to wearable sensor data to allow for the objective quantification 

of movement quantity and quality. Within the dance literature, painful events are most 

commonly described as “injury”. Limitations of this term will be highlighted and within 

this research the focus will be on broader concepts of pain and pain related disability. 

However, to accurately reflect the published literature, when a publication refers to 

“injury” this term is utilised and the authors’ “injury” definition is included.  

  

Chapter Two  
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2.1 Prevalence and burden of pain and pain related disability in 

dance 

Dance is a popular and valued industry in Australia and internationally. On stage, 

professional dancers wow audiences with athleticism, artistry and grace. However, in the 

quest to achieve this, dancers embark on a journey of demanding training volumes, often 

accompanied by periods of musculoskeletal pain and / or pain related disability. The 

majority of dance medicine literature describing painful events has used the term “injury”. 

However ‘injury’ implies evidence of anatomical level tissue damage (Liederbach, Hagins, 

Gamboa, & Welsh, 2012) yet pain does not necessarily correlate well with radiological 

evidence of tissue damage (Caneiro et al., 2021; Kulig, Loudon, Popovich, Pollard, & 

Winder, 2011; Kulig, Oki, Chang, & Bashford, 2014; Mayes, Ferris, Smith, Garnham, & 

Cook, 2016a, 2016b, 2016c, 2016d; Suri, Boyko, Goldberg, Forsberg, & Jarvik, 2014). For 

example, in dancers, radiological evidence of hip morphological and pathological changes 

(Mayes et al., 2016a, 2016b, 2016c, 2016d), and lower limb tendinopathic changes have 

not correlated with the presence of pain nor with pain related disability (Comin et al., 2013; 

Kulig et al., 2014). Therefore, there is a need to understand musculoskeletal pain outside 

of the currently used injury model. Another problem with many injury definitions is the 

requirement for the seeking of medical attention and / or a time period of absence from 

dance related activity (Comin et al., 2013; Ekegren, Quested, & Brodrick, 2014;  Kenny, 

Palacios-Derflingher, Whittaker, & Emery, 2018; Liederbach, Dilgen, & Rose, 2008; 

Winston, Awan, Cassidy, & Bleakney). Medical attention definitions may not be 

appropriate in the context of pre-professional dance, as dancers do not always have access 

to on-site physiotherapy or are often slow to seek help when experiencing musculoskeletal 

“injury” (Kenny et al., 2018). This is potentially because a) they believe they can manage 

the pain themselves, b) they do not want to bring attention to the problem because of any 

potential negative implications it may bring, or c) a lack of trust that the medical 

professional may lack the sill, understanding or language to deal with a dancer and their 

“injury” (Kenny et al., 2018). Research has demonstrated that dancers more commonly 

access medical attention if it is provided onsite compared to off-site services (Kenny et al., 

2018). While time-loss definitions do provide a measure of pain related disability, they may 

not capture the true impact of the problem within this population, as many dancers continue 

to dance whilst experiencing pain (Anderson & Hanrahan, 2008; Kenny et al., 2018;  

Mainwaring, Kerr, & Krasnow, 1993). This may be cultural, as dance populations often 

persevere regardless of the presence of pain, with phrases like ‘the show must go on”, 

ubiquitous within performance populations (Anderson & Hanrahan, 2008). As a result of 
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the limitations of using time away from dance to define injury, some researchers have 

instead quantified the time dancers spend engaged in modified dance activities in order to 

represent a period “injury” (Bowerman, Whatman, Harris, Bradshaw, & Karin, 2014; 

Byhring & Bo, 2002; Campoy et al.;  Kenny et al., 2018; Negus et al., 2005). Indeed the 

Self Estimated Functional Impairments due to Pain (SEFIP) scale has been developed to 

recognise the impact that pain has on function within the context of dance classes and 

rehearsals (Boeding et al., 2019; Jacobs et al., 2016; Ramel, Moritz, & Gun-Britt, 1999). 

No studies could be identified which examined pain in dancers sustained outside of dance 

practice, or the broader impact of pain on activities of daily living outside of dance.  

In light of the above outlined limitations of “injury” models in dance, this thesis will 

adopt more comprehensive measures of pain and related disability. Three separate 

classifications for musculoskeletal pain will be utilised: 1) Acute traumatic event which 

will refer to dancer reported incidents such as ankle sprains, muscle tears and fractures, 2) 

Pain will be considered via subjective reporting of musculoskeletal pain (location and 

intensity) in the event where there is no acute inciting incident and the dancer is able to 

continue to dance and participate in normal activities of daily living, and 3) Pain related 

disability will be considered when a dancer subjectively reports pain that either requires a 

time period of modified participation or complete cessation of dance training and 

performance and that impacts the dancer’s normal activities of daily living outside of 

dance. Both pain and pain related disability can include “overuse” related presentations. 

Further, it is likely that acute traumatic events may lead to disabling pain. All dancers at 

professional and pre-professional levels have reported experienced disabling pain within 

their career (Fuller, Moyle, & Minett, 2020; Hincapie, Morton, & Cassidy, 2008; Jacobs, 

Hincapie, & Cassidy, 2012; Kenny et al., 2018; Volkova & Kenny, 2020). Throughout a 

dancer’s pre-professional training is when pain and it’s related disability can be most 

problematic and the impact of pain on dancers can be substantial (Hamilton et al., 1997). 

Pain related disability can result in lost training time and is believed to be one of the most 

common reasons pre-professional dancers cease dance training (Hamilton et al., 1997). 

For example, within a group of pre-professional dancers (n=40 female, mean (SD) age 

14.9 (1) years) at a national level ballet school in America, 50% of students who dropped 

out in their first year of pre-professional training (n=8) had experienced pain related 

disability within that year (Hamilton et al., 1997). These dancers had missed over 4 months 

(109 days) of normal participation in dance classes due to pain related disability (Hamilton 

et al., 1997). Pain related disability was also cited as a reason for dancers to drop out in 

their second and third year of their pre-professional training, with less than half of the 
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dancers who commenced this program completing their training and gaining a position in 

a professional ballet company (Hamilton et al., 1997). Further, pain and pain related 

disability may impact mental health in dancers. Regardless of anatomical location of pain 

related disability and dance style, 20% of professional, student and amateur dancers 

(n=154, 125 female, aged 13-75 years) who sought treatment for musculoskeletal pain and 

pain related disability demonstrated high levels of psychological distress, measured using 

the Brief Symptom Inventory (Air, 2013). Dancers demonstrated little change to their 

distress following treatment for their pain (Air, 2013). Additionally, in a sample of 

professional and retired Irish dancers (n=178, 111 female, age range of majority 25-34 

years) both general and performance anxiety were recognised as psychological problems 

following pain related disability (Cahalan & O'Sullivan, 2013).  

There is general consensus that the lower limb is the most commonly affected area for 

musculoskeletal pain in dancers (Allen, Nevill, Brooks, Koutedakis, & Wyon, 2012; 

Ekegren et al., 2014; Gamboa, Roberts, Maring, & Fergus, 2008; Leanderson et al., 2011; 

Mattiussi et al., 2021; P. J. Smith et al., 2015; T. O. Smith et al., 2016). The majority of 

pain presentations (54%-85%) are cited as being “overuse” in nature, suggesting that it is 

the result of repetitive loading (Ekegren et al., 2014; Gamboa et al., 2008; Leanderson et 

al., 2011). Acute traumatic injuries, which are related to a specific event are less common 

(Ekegren et al., 2014; Gamboa et al., 2008; Leanderson et al., 2011). A 2016 systematic 

review and meta-analyses including studies in professional, pre-professional and 

recreational ballet dancers demonstrated that amongst all dancers, foot and ankle pain was 

most common with a pooled period prevalence of 25% and 21% respectively (T. O. Smith 

et al., 2016). The period of time that data was collected over varied between studies (T.O. 

Smith et al,  2016). When considering pre-professional dancers only the foot and knee were 

most commonly affected (pooled period prevalence of 29% and 17% respectively) (T. O. 

Smith et al., 2016). While the meta-analyses did not account for “injury” definition, these 

results are consistent with more recent publications in pre-professional dancers (Fuller et 

al., 2020; L. Lee et al., 2017). Amongst pre-professional ballet and contemporary dancers 

in New Zealand (n=66, 40 female, aged 16-20 years) over the course of a year, 125 

“injuries” were reported (L. Lee et al., 2017). “Injury” was defined as “any physical 

complaint sustained by a dancer resulting from performance, rehearsal or class and 

resulting in a dancer injury report or triage, irrespective of the need for medical attention 

or time loss from dance activities” (L. Lee et al., 2017). Sixty eight percent of “injuries” 

affected the lower limb with the foot and ankle being most commonly affected, followed 

by the knee and then the hip (L. Lee et al., 2017). Similarly, in a smaller cohort Australian 
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pre-professional ballet and contemporary dance students (n=17, 16 female, aged 19-25 

years) over the full 3-year duration of their dance, course 119 “injuries” were reported 

(Fuller et al., 2020). “Injury” was defined as “any musculoskeletal complaint requiring 

medical attention”, where medical attention was provided by an onsite physiotherapist in 

a triaging and initial advice capacity (Fuller et al., 2020). The most common locations were 

the ankle (18%), knee (17%) and hip (13%) (Fuller et al., 2020). Of these, only 7 “injuries” 

were considered traumatic and the rest were considered “overuse” (Fuller et al., 2020). This 

was substantially lower than that reported in professional ballet dancers over a 5-year 

period (n=123 professional dancers, 66 female, age range not reported), where 40% of time-

loss injuries (n=543) were considered traumatic and 50% were considered overuse 

(Mattiussi et al., 2021). Considered together, these findings suggest that “overuse” type 

pain presentations may be more common in pre-professional dancers than professional 

dancers. However this observation should be considered with caution as only one of these 

reports clearly defined the classification of “overuse” as “any medical incident that did not 

have a sudden onset from a discrete event” (Mattiussi et al., 2021). Thus, while the 

available literature suggests that “overuse” type injuries are most common in professional 

ballet dancers, for pre-professionals it is not quite clear. Low back pain is also common, 

with reports of a lifetime prevalence of 74%, a point prevalence of 24% and a 12 month 

prevalence 64% for pre-professional and professional, male and female  ballet and 

contemporary dancers (Swain, Bradshaw, Whyte, & Ekegren, 2017). In pre-professional 

contemporary dancers (n=134, 90 female, mean (SD) age 19.4 (1.5) years) it has been 

reported as the second most commonly affected area, with an annual prevalence of 17% 

(van Winden et al., 2019). However, dependent on how “injury” is defined, prevalence can 

vary substantially. The seasonal prevalence of musculoskeletal “injury” in a sample of pre-

professional Canadian ballet (n=85, 77 female, aged 11-19 years) and contemporary 

dancers (n=60, 58 female, aged 17-30 years) was reported to range from 9.4% to 82.4%, 

dependent upon “injury” definition (Kenny et al., 2018). Thus, understanding the true 

prevalence of musculoskeletal pain in dance is challenging due to variations in pain and 

injury definition (Kenny et al., 2018).  

2.2 Movement quantity and quality as risk factors within a 

biopsychosocial model of pain  

There is growing research supporting the influence of psychological, lifestyle and 

physical factors as contributing factors towards the development of musculoskeletal pain 

as well as the dancer’s pain experience (Caine et al., 2016; Gallo, Cormack, Gabbett, & 
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Lorenzen, 2016; Gastin, Meyer, & Robinson, 2013; Gatchel, Peng, Peters, Fuchs, & Turk, 

2007). A systematic review has recognised a lack of consensus surrounding the risk factors 

for the development of pain related disability in dancers, and highlighted the importance 

of future, high quality, prospective studies to explore the multifactorial nature of pain 

related disability (Kenny et al., 2016). While it is important that pain and disability is 

viewed from a broad biopsychosocial perspective, given the physical nature of a dancer’s 

work, and the long-held belief that this is related to the often high rates of pain and 

disability, specific attention on the relationship between physical factors and pain related 

disability is required. Within this thesis, the physical factors of interest will be considered 

under the broad terms of movement quantity, which encompasses the amount of 

movement a dancer performs within their day, and movement quality, which encompasses 

the biomechanical demands of the movements.  

2.3 Overall movement quantity and pain / pain related disability 

in dance 

There is consensus in the literature that pre-professional and professional dancers 

undertake persistent high training loads. Pre-professional dancers are reported to partake 

in 16-30 hours of dance-specific training per week (Ekegren et al., 2014; Gamboa et al., 

2008; Volkova & Kenny, 2020). Most of this time is spent in dance classes (77%) or 

rehearsals (21%) in order to optimally dance in performances that consume a relatively 

small proportion of time (1.4%) (Ekegren et al., 2014). Professional dancers partake in up 

to 30-40 hours of class, rehearsal and performance in a typical week (Byhring & Bo, 2002). 

Data collected on an English ballet company over a 5-year period demonstrated that 27% 

of this time is spent in class, 50% in rehearsals and 22% in performances (Mattiussi et al., 

2021). Historically, high physical training loads have been believed to be associated with 

the development of pain and disability, however more recently this notion has been 

challenged, and a general view prevails that pain related disability may be more related 

with changes in physical training load (Gabbett, 2016, 2020a, 2020b; Gabbett et al., 2016; 

Gabbett et al., 2014). In dance, this is supported by findings in a recent systematic review 

and meta-analysis (7 studies included in meta-analysis) (Fuller et al., 2019). The meta-

analysis revealed an increase in musculoskeletal pain presentations in the second (rate 

ratio 1.52 95%CI:1.11, 2.08)) and third months (rate ratio 1.26, 95%CI:1.07, 1.48) after 

returning to dance training at the start of the year following a break (Fuller et al., 2019). 

The authors hypothesised that this pattern was likely due to the changes in training loads 

seen at these times, as well as a potential latent response from when dancers transitioned 
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into full-time training hours at the beginning of the year (Fuller et al., 2019). Additionally, 

beyond the meta-analysis, systematic analysis of all 17 research papers included in that 

review suggested that pre-professional dancers generally experienced more pain related 

disability after returning to dance at the start of the year following a break, and when 

transitioning from rehearsal periods to performance seasons (Fuller et al., 2019). However 

these results were inconsistent and some evidence suggested that the increases in pain 

related disability occurred in later months of the year. Importantly, while this research 

provides a scope of when dancers may experience pain related disability based on 

schedules, none of the studies included in this systematic review captured the dancers’ 

movement quantity.  

Within the review of the literature, prior to the commencement of this thesis, no 

publications formally evaluating the relationship of dancers’ pain and movement quantity 

were identified. However, with growing interest in this area, over the last 4 years, 7 

studies have explored the relationship between dancers’ training load and pain / pain 

related disability (Boeding et al., 2019; Cahalan et al., 2019; Cahalan, Kearney, et al., 

2018; Jeffries et al., 2020; L. Lee et al., 2017; Shaw et al., 2021; Volkova & Kenny, 

2020). These studies are summarised in Table 2.1, with particular focus on how 

movement quantity was measured and how pain/ pain related disability/ “injury” was 

defined and discussed below. 
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Table 2.1  

Summary of identified publications exploring the relationship between dancers’ movement quantity and pain / pain-related disability 

Study Study Design Dancers 

Measure of  

movement quantity 

Definition of pain / pain 

related disability / injury Results 

(Boeding et al., 

2019) 

Longitudinal, across 

7 training weeks 

Professional contemporary 

dancers n=21 (10 female) 

mean(SD) age 28 (2) in 

the Netherlands 

“Session RPE” Self Estimated Functional 

Inability due to Pain 

Questionnaire (SEFIP) 

indicating pain related 

disability of “overuse 

injury”  

No association between dancers’ 

“session RPE” and SEFIP 

score (beta coefficient: 

0.000145, 95%CI: -0.00043, 

0.00333, p=0.127) 

(Cahalan, 

Kearney, et al., 

2018) 

Longitudinal, across 

1 training year 

Pre-professional 

contemporary dancers 

n=29 (28 female) mean 

(SD) age 21 (3.1) years 

and Irish dancers n=21 

(20 female) mean (SD) 

age 21.5 (1.7) years and in 

Ireland 

Self-reported weekly 

training hours 

Any pain or injury that 

impacted upon the 

dancers’ ability to dance 

Contemporary dancers who 

reported a time loss injury 

participated in more training 

hours the week prior to the 

injury (mean (SD) 18.9 (7.5) 

hours than over the 4 weeks 

prior to the injury (mean (SD) 

15.2 (7.5) hours) (z= -2.02, r= 

-0.34, p=0.04). No difference 

demonstrated for Irish dancers.  

(Cahalan et al., 

2019) 

Longitudinal, across 

1 training year 

Adolescent Irish dancers  

n=37 (35 female), aged 13-

17 years In Ireland 

Self-reported weekly 

training hours 

Any pain or injury that 

impact the dancers’ ability 

to dance 

No relationship between total 

number of injuries and average 

hours of dancer per week (risk 

ratio= 0.91, 95% CI: 0.82,1.02, 

p=0.11). Significant 

relationship between average 

number of hours danced per 

week and total number of 

weeks injured (95% 

CI:0.69,0.92, p=0.001) 
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Study Study Design Dancers 

Measure of  

movement quantity 

Definition of pain / pain 

related disability / injury Results 

(Jeffries et al., 

2020) 

Longitudinal, across 

1 training year 

Professional contemporary 

dancers n=16 (9 females), 

aged 18-32 in Australia 

“Session RPE” (session 

duration x RPE) 

Categorised as low, 

medium and high 

Medical attention and time 

loss definition 

No relationship between 

“session RPE” and injury. 

(L. Lee et al., 

2017) 

Longitudinal, across 

1 training year 

Pre-professional ballet and 

contemporary dance 

students  

n=66 (40 female) aged 16-

20 years in New Zealand 

Schedule: hours of dance 

exposure per month and 

number of dance 

exposures per month 

Any physical complaint 

sustained by a dancer 

resulting from 

performance, rehearsal or 

class and resulting in a 

dancer injury report or 

triage, irrespective of the 

need for medical attention 

or time loss from dance 

activities 

No association between total 

hours of dance exposure an 

injury (p=0.964). An 

association between total 

number of dance exposures per 

month and total number of 

injuries reported across the 

cohort per month was evident 

(p=0.016).  

(Shaw et al., 

2021) 

Longitudinal, across 

5 training years 

Professional ballet dancers  

n=118 (number of females 

varied over 5 years) age 

not reported 

Weekly dance exposure 

measured using dancers’ 

schedules 

Recorded by in house 

medical staff. Defined 

using both medical 

attention and time-loss 

definitions. Categorised as 

“overuse” or “traumatic” 

Week to week increases in 

dance exposure associated 

with the rate of overuse, time 

loss injury (Hazard ratio 1.27, 

95%CI 1.06-1.53, p=0.011).  

(Volkova & 

Kenny, 2020) 

Longitudinal, across 

3 training years 

Elite level student ballet 

dancers  

n=172 (152 female), aged 

10-21 years in Canada 

Self-reported weekly 

training hours  

3 definitions: 

Any physical complaints 

Physical complaints 

resulting in time loss  

Physical complaints 

requiring medical 

attention 

Weekly reported injury across 3 

training years mirrored the 

fluctuations in weekly training 

volume 
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Three of the published studies measured movement quantity using dancers’ self-

reported training hours per week. One study of full-time elite level student ballet dancers 

in Canada (n=172, 152 female, aged 10-21 years), found weekly reported “injury” across 

3 training years mirrored the fluctuations in weekly training volume (Volkova & Kenny, 

2020). “Injury” was defined using 3 definitions; any physical complaints, physical 

complaints resulting in time loss and physical complaints requiring medical attention 

(Volkova & Kenny, 2020). A study surveying pre-professional contemporary dancers 

(n=29, 28 female, mean (SD) age 21 (3.1) years) and Irish dancers (n=21, 20 female, mean 

(SD) age 21.5 (1.7) years) demonstrated that contemporary dancers who reported an 

“injury” participated in more training hours the week prior to the “injury” (mean (SD) 18.9 

(7.5) hours than over the 4 weeks prior to the “injury” (mean (SD) 15.2 (7.5) hours) (z= -

2.02, r= -0.34, p=0.04). injury was defined as “any pain or injury that impacted the dancers’ 

ability to dance” (Cahalan, Kearney, et al., 2018). This relationship did not exist in the Irish 

dancers. Interestingly however, another study of 37 adolescent Irish dancers (33 female, 

aged 13 to 17 years) followed over one year and employing the same “injury” definition, 

also found no relationship between total number of “injuries” and average hours of dance 

per week (risk ratio= 0.91, 95%CI: 0.82, 1.02, p=0.11) (Cahalan et al., 2019). However a 

significant relationship existed for the average number of hours danced per week and total 

number of weeks injured, where for every additional hour danced the weeks injured 

decreased by a factor of 0.8 (95%CI: 0.69,0.92, p=0.001), suggesting that higher training 

volume may be protective in relation to training time loss / burden of musculoskeletal pain 

(Cahalan et al., 2019). In both these studies movement quantity was self-reported by the 

dancers, thus the measure of movement quantity was potentially prone to bias.  

Two of the studies utilised the dancers’ schedules to determine dance exposure as a 

measure of movement quantity. In both these studies a single dance exposure was 

considered a single dance class / rehearsal / performance. In a sample of pre-professional 

ballet and contemporary dance students from New Zealand (n=66, 40 female, aged 16-20 

years), over the course of a year, dance exposures were recorded and dancers reported any 

“injuries” every 3 weeks (L. Lee et al., 2017). “Injury” was defined as “any physical 

complaint sustained by a dancer resulting from performance, rehearsal or class, and 

resulting in a dancer injury report or triage, irrespective of the need for medical attention 

or time loss from dance activities” (L. Lee et al., 2017). While there was no association 

between total hours of dance exposure and injury (p=0.964), an association between total 

number of dance exposures per month and total number of injuries reported across the 

cohort per month was evident (p=0.016) (L. Lee et al., 2017). In a 5-year prospective 
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study, dancers (n=118, number of females varied over 5-year period, age not reported) in 

a large professional ballet company, “injury” data was recorded by in-house medical staff, 

and defined using both medical attention and time loss definitions (Shaw et al., 2021). 

Additionally “injuries” were categorised as “overuse” and “traumatic”. Week to week 

increases in dance exposure was associated with the rate of overuse, time loss injury 

(Hazard ratio: 1.27, 95% CI: 1.06-1.53, p=0.011), however no associations existed for 

traumatic injuries (Shaw et al., 2021). Additionally, no associations existed for the 

relationship between injury and both 7-day and 28-day accumulated dance exposure. 

Combined, these results suggest that “injury” is associated with the way a dancer 

progresses in their workload, as opposed to accumulated high workloads (Shaw et al., 

2021). While a relationship between training load and pain related disability exists, 

loading that occurs within each of these dance exposures is important. There is great 

potential for variations in the nature of each dance exposure with respect to volume, 

intensity, technical and choreographic demand (Liederbach et al., 2006). Therefore, 

measuring overall movement quantity by time or number of exposures does not provide 

insight on the quantity of specific movements, nor on the quality of the movements, that 

the dancers may do within their training.  

The other 2 studies which have explored the relationship between dancers’ training 

load and pain / pain related disability used a measure of movement load created by a product 

of the duration of a dance activity session and the dancers’ perceived activity intensity, 

called session rate of perceived exertion (“session RPE”) (Boeding et al., 2019; Jeffries et 

al., 2016; Jeffries et al., 2020). In a study of Australian professional contemporary dancers 

(n=16, 9 females, aged 18-32) session durations and RPE were collected for each dancers’ 

ballet class, contemporary class, rehearsal, and performance over a 1-year period (Jeffries 

et al., 2020). The relationship between movement quantity and pain related disability was 

assessed by looking at the incidence of “injury” at different categories of “session RPE” 

(low, medium, and high). “Injury” was defined using a medical attention and time loss 

definition and there was no consistent relationship demonstrated between “session RPE” 

and “injury” (Jeffries et al., 2020). Similarly in a study of professional contemporary 

dancers in the Netherlands over a 7-week period (n=21, 10 female, mean(SD) age 28 (2)), 

a linear mixed model demonstrated no association between dancers’ “session RPE” and 

pain related disability (beta coefficient: 0.000145, 95%CI: -0.00043, 0.00333, p=0.127) 

(Boeding et al., 2019). Pain related disability was measured using the SEFIP, and all 

dancers experienced symptoms at some point over the 7-week period. Interestingly, when 

comparing dancers with and without musculoskeletal symptoms at a single time point, 
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those with no musculoskeletal pain participated in lower training loads compared to those 

who had musculoskeletal pain and continued dancing (Boeding et al., 2019). However, 

RPE is subjective and therefore tainted by a dancer’s perception, as such “session RPE” is 

a combination of movement quantity and perceptions of mental and physical loading 

(Jeffries et al., 2016). Thus, it is possible that dancers perceived greater effort when dancing 

with musculoskeletal pain, as opposed to actually participating in greater training volumes. 

Further, while “session RPE” includes the time that a dancer has spent training in class, 

again it does not directly account for how much a dancer moves in class, the specific 

movement tasks that dancers perform, and the quality of movement during these tasks. To 

better understand the relationship between specific movement parameters with pain and 

pain related disability, the addition of objective quantification of movement quantity is 

needed, including the quantity of specific movements.  

In summary, while all of these studies explored the associations of dancers’ 

movement quantity with pain related disability, measures of movement quantity were 

limited to dancers’ self-report and schedules which may be inaccurate and potentially 

biased. Further, pain related disability was generally viewed from a variety of definitions 

of injury, where the relationships between movement quantity and pain related disability 

were based on the number of pain presentations at a given time point, and did not consider 

fluctuations in an individual dancer’s levels of pain or disability.  

2.4 Specific movement quantity and pain / pain related disability 

in dance 

Specific movements that dancers perform may be provocative of pain / pain related 

disability. For instance, repeated jumping and leg lifting activities have been identified as 

specific movements that may be associated with the development of musculoskeletal pain 

(Costa, Ferreira, Orsini, Silva, & Felicio, 2016; Mattiussi et al., 2021).  

2.4.1 Jumping quantity and pain / pain related disability  

Jumping is an integral part of ballet and contemporary dance and is frequently 

performed (Mattiussi et al., 2021). Within their movement vocabulary, dancers may have a 

large range of different jumping movements that they perform. These can broadly be 

classified into bilateral and unilateral jumps, and small, medium, and large jumps. Two 

studies have attempted to quantify the number jumps dancers perform (Liederbach et al., 

2006; Wyon et al., 2011). Based on the analysis of 16 ballet classes, the first study found 

that professional ballet dancers perform up to 232 jumps in a typical ballet class, over half 
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of which land on a single limb (Liederbach et al., 2006). This was 38% greater than the 

number of jumps performed in a professional contemporary dance class (145 jumps), 

however there was no difference between the number of single limb landings (Liederbach 

et al., 2006). The other study reported that jumping was more frequent during ballet dance 

performance than contemporary dance performance irrespective of gender (mean (SD) 5 (5) 

jumps per minute and 2 (2) jumps per minute respectively, p<0.001) (Wyon et al., 2011). In 

both these studies researchers manually counted the number of jumps directly during a ballet 

class or using video recording. No further research was found which reported the number of 

jumps that dancers perform within their normal training. This paucity of research is likely 

the result of the burdensome methods, for example manual counting of movements. Further, 

even though dancers consider jumping activities as provocative of musculoskeletal pain, and 

jumping has been linked to up to a quarter of all musculoskeletal pain presentations in 

professional ballet (Allen et al., 2012; Mattiussi et al., 2021), no researchers have 

longitudinally or cross-sectionally analysed the amount of jumping that a dancer performs 

within their training and how it relates to pain and disability.  

2.4.2 Leg lifting quantity and pain / pain related disability 

As well as jumping, dancers commonly perform leg lifting tasks. These can vary 

considerably and include slow and controlled movements and fast, explosive movements, 

performed to the front, side and behind the dancers’ body at varying heights. These 

repetitive, stereotyped movements, often performed towards the end of their physiological 

joint range of motion are thought to be provocative of hip and low back pain (Biernacki et 

al., 2020; Biernacki et al., 2018; Bronner, 2012; Bronner & Ojofeitimi, 2011; Charbonnier 

et al., 2011; Swain et al., 2017; Swain et al., 2018). However, no studies could be identified 

that have reported on the quantity of leg lifting that dancers perform within their normal 

training, nor the relationship between the quantity of this movement and pain and disability 

in dancers.  

In summary, while several studies have evaluated the relationship between 

movement quantity and pain related disability in dancers, the measures used for 

movement quantity have been limited to subjective reporting and schedules. These are 

potentially imprecise and prone to bias, and do not capture specific movements that 

dancers perform within their training. No studies could be identified that explored the 

relationship between the quantity of specific movements, in particular jumping and leg 

lifting activities, and pain related disability.  
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2.5 Movement quality and pain / pain related disability in dance 

Within the current body of work, movement quality refers to the specific 

biomechanical features of movement which could include aspects such as forces, 

acclerations, range of movement and variability (Fietzer et al., 2012; Gorwa et al., 2014; 

Peng et al., 2015).The movement quality features of interest for this research are the peak 

ground reaction force (GRF) during jumping and thigh elevation and lumbar spine sagittal 

angles during leg lifting tasks. Ground reaction force is an indication of the total load a 

dancer is exposed to on landing and the smoothness of landing in a jump, and thus provides 

indication of movement quality in jumping activities (Slater, Campbell, Smith, & Straker, 

2015). Greater peak GRF is thought to be linked to pain, especially when coupled with the 

large volume of jumping that dancers participate in, or if the dancer’s tissue does not have 

the capacity to tolerate the high loads (Cook & Docking, 2015; Dye, 2005; Mattiussi et 

al., 2021). Thigh elevation and lumbar spine sagittal angle is related to the characteristic 

coordinated end of physiological range movements that dancers demonstrate during leg 

lifting tasks, thus provide indications of movement quality during leg lifting tasks. Large 

movements are purported to indicate stress on the passive structures of the joint (Han, 

Kim, Harris, & Noble, 2019). 

2.5.1 Jumping movement quality and pain / pain related disability 

When Jumping and landing, dancers must conform to a specific aesthetic requirement, 

whereby dancers are required to execute an apparently smooth and effortless landing 

(Orishimo, Kremenic, Pappas, Hagins, & Liederbach, 2009). From early in their training, 

dancers are taught to land initially on the plantar surface of their phalanges before “rolling 

through” the remainder of their foot, eccentrically controlling their landing into a demi plié, 

to promote the appearance of a quiet and effortless landing (Orishimo et al., 2009). Despite 

this, jumping in dance has been associated with high peak GRF of 1.4-9.6 times body 

weight (BW), which vary substantially between jumping demands (Mattiussi et al., 2021; 

McPherson, Schrader, & Docherty, 2019). A grand jeté (large jump taking off and landing 

unilaterally) has been reported as having mean peak GRF from 3.5-9.6BW (Gorwa et al., 

2019; Kulig, Fietzer, & Popovich Jr, 2011; McPherson et al., 2019). Smaller dance-specific 

jumps have been reported to result in smaller GRFs, 3.2-3.4 BW during an assemble 

(medium jump taking off unilaterally and landing bilaterally) and 1.3-1.5 BW during an 

echappe saute (small jump taking off and landing bilaterally) (Peng et al., 2015). While 

GRF is the most widely studied biomechanical variable pertaining to jumping movement 

quality in dancers, potentially due to being related to pain (Mattiussi et al., 2021), only 3 
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studies have actually attempted to verify this relationship (Fietzer et al., 2012; H.-H. Lee, 

Lin, Wu, Wu, & Lin, 2012; Peng et al., 2015).  

Within the dance literature, several small, laboratory-based, cross-sectional studies 

have demonstrated significant differences in GRF between dancers with and without knee 

pain (Fietzer et al., 2012; Peng et al., 2015). Pre-professional dancers with a history of 

patella tendinopathy (n=6 [3 female]) demonstrated greater mean peak vertical GRFs than 

those without patella tendinopathy, during the unilateral landing of a grand jete (n=12 [6 

female]; mean difference=1.58BW, P<0.001) (Fietzer et al., 2012). Similarly, female pre-

professional dancers with patellofemoral pain (n=11) demonstrated greater peak vertical 

GRF on landing than those without patellofemoral pain (n=14) during the bilateral 

landing of an echappe saute (1.58 BW and 1.35 BW respectively; p<0.05) (Peng et al., 

2015). Notably, the dancers with patellofemoral pain also jumped higher than those 

without pain. Thus, it is plausible that the observed difference in GRF was secondary to 

a difference in jump height rather than the presence of pain, however the authors of this 

paper hypothesized that the dancers with pain were jumping with greater “effort” (Peng 

et al., 2015). It is also possible that these dancers were landing with a protective motor 

response. After repeated jumping, as these dancers fatigued, both the patellofemoral pain 

group and the pain free group reduced their vertical jump height, however there was no 

difference in peak vertical GRF compared to prior to fatigue. Conversely, pre-

professional dancers with a history of ankle sprain in the last year (n=11) demonstrated 

no significant difference in GRF compared to those without ankle sprain injury (n=11; 

p=0.128) during a sissonne fermee (medium jump with unilateral landing) (H.-H. Lee et 

al., 2012). Considered together, these findings suggest that there may be a relationship 

between GRF and a history of knee pain but not ankle pain. However, these studies come 

with several methodological limitations. While all 3 studies were conducted using gold-

standard GRF measurement systems, laboratory-based measurements have low 

ecological validity, that is, it is unlikely dancers perform in a truly natural manner in the 

artificial setting (Lara & Labrador, 2013). Further, in all studies dancers only completed 

one type of jumping task, which differed across studies, and the repetitions of the task 

were limited to only a few trials. As described above, dancers jump more frequently than 

this within their normal training, and usually perform an array of different jumping tasks 

within a single training session. Thus, the ability to measure a dancer’s GRF within the 

field would assist in overcoming these limitations. Further, the analyses compared the 

movement quality of dancers with and without pain, and did not consider within or 

between person changes in movement with varying pain intensity or degrees of pain 
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related disability. In fact, in both knee pain studies, while dancers had current pain, and 

reported disability on valid outcome measures, they did not experience pain during the 

testing procedure, suggesting that they were able to jump pain free at the time of testing. 

To our knowledge, no studies in dancers have tracked changes in GRF over time or 

relative to fluctuations in pain and disability.  

2.5.2 Leg lift movement quality and pain / pain related disability  

To perform leg lifting movements to the required standard, dancers commonly use 

large multiplanar ranges of motion at the hip and lumbar spine. During leg lifts performed 

to the front and side of the body (developpe devant and developpe a la seconde), female 

dancers (n=11, aged 18-38 years) were reported to require 93° and 95° of hip flexion 

(measured as the thigh segment relative to the pelvis) respectively (Charbonnier et al., 

2011). During a back leg lift (arabesque) dancers were shown to use a much smaller 28° 

of hip extension (Charbonnier et al., 2011). A different study has reported dancers utilising 

23° of hip extension combined with 21° of lumbar spine extension, reflecting the nature 

of the movement, which combines lumbar spine and hip movement (Bronner, 2012; Mira, 

Marulanda, Pena, Torres, & Orrego, 2019). These studies utilised laboratory-based 3-

dimensional optic motion capture systems to measure the kinematics during these 

movements. While these systems are considered gold standard for motion analysis, they 

are once again limited to laboratory-based data collection, with the limitations described 

above. Further, laboratory-based data collection requires a dancer to step away from their 

normal training environment, therefore are not optimal for serial monitoring. To date, there 

do not appear to be any published studies on dancers’ leg lifts incorporating serial data. 

Having a system that could be used within the field, in a dancer’s normal training may 

allow serial monitoring which could provide insight on the role of the dancer’s movement 

quality during leg lifting tasks in the development of pain and pain related disability. While 

there is a popular belief amongst dancers, clinicians, and researchers alike that these large 

ranges of motion are proposed to be associated with the development of hip and lower 

back pain, currently there is no empirical research identified to support this notion.  

In summary, GRF and hip and lumbar spine joint angles provide insight of movement 

quality during jumping and leg lifting activities respectively. While GRF has been 

associated with knee pain, the true relationship between GRF and pain related disability is 

unclear. Additionally, there is a need to couple movement quality with movement quantity, 

to reflect the cumulative training volumes of repetitive jumping and GRF loading. Further, 

no studies were identified that explored the relationship between leg lifting movement 
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quality and pain related disability. Current studies are limited to laboratory-based research 

which is not ecologically valid and does not allow for serial monitoring of dancers’ 

movement quality within their normal training environment.  

2.6 System for objective measurement of quantity and quality of 

movement in dance 

The current paucity of evidence linking movement quantity or quality with pain and 

disability might relate to the lack of appropriate objective measurement systems. Current 

research exploring the relationship of movement quantity and quality with pain related 

disability also only looks at these factors independently, rather than including both factors. 

When being related to pain and pain related disability, movement quantity is limited to 

subjective reporting and schedules, which does not capture movement quality. Similarly, 

laboratory-based research capturing movement quality in a one-off testing protocol, does 

not capture the amount of these movements that dancers perform within their day. A field-

based system, capable of capturing both movement quantity and quality may overcome 

these limitations. Such a system could utilise data collected from wearable sensors.  

Wearable sensors are small microtechnology units that are typically used to capture 

the physical movement demands in sport. Most units include one microsensor, or combine 

microsensors which include global positioning systems, tri-axial accelerometers, tri-axial 

gyroscopes and tri-axial magnetometers (Chambers, Gabbett, Cole, & Beard, 2015). To 

our knowledge, while accelerometers are starting to be used in dance to capture overall 

movement quantity, no specific field-based system has been reported and validated that 

can measure both dance-specific movement quantity and quality during dance classes and 

rehearsals. The above-mentioned literature underpins the need to undertake field-based 

investigations, including comprehensive measures of both movement quantity and quality.  

2.7 Wearable sensors in dance 

In an effort to perform more ecologically valid research, researchers are turning to 

wearable sensor technology to objectively estimate movement quantity in the field. To date 

global positioning systems (GPS) and accelerometers have been the most popular tool for 

recording movement quantity information representing physical workloads in sport and 

exercise. Analysis approaches include distances travelled (GPS) and vector magnitude 

algorithms (applied to accelerometer data) that can categorise daily movement into 

different intensities (Camomilla, Bergamini, Fantozzi, & Vannozzi, 2018; Chambers et al., 

2015; Gabbett et al., 2016; Gabbett & Jenkins, 2011; Gabbett et al., 2014). Researchers 
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have used wearable sensors in team sports to describe the intensity and frequency of match-

play demands, such as running in Australian Rules Football and tackling in rugby (Gabbett, 

Jenkins, & Abernethy, 2010; Gabbett, 2013; Gabbett & Jenkins, 2011; Rogalski, Dawson, 

Heasman, & Gabbett, 2013). The data generated for these devices is used in the prevention 

of musculoskeletal pain and pain related disability that may come secondary to changes in 

training loads (Chambers et al., 2015). While global positioning systems are commonly 

used in sport, they are not useful in dance as dance is typically performed indoors and 

within a confined space (e.g. a dance studio or theatre stage) (Kjærgaard et al., 2010). More 

importantly, the physical demands of dance are, likely, more related to the types of 

movement a dancer performs rather than the distance travelled or the speed at which the 

dancer travels that distance. Therefore, accelerometers are more commonly used in dance.  

Within dance, accelerometers have been used to measure cumulative movement 

quantity during professional dancers’ working days (Kozai et al., 2020). The results of that 

study revealed that professional dancers spent and average of 50% of their day (mean (SD) 

272 (72) mins) engaged in light activity, compared to 174 (56) minutes at moderate 

intensity and only 28 (23) minutes in vigorous and 6 +/- 9 minutes in very vigorous activity 

(Kozai et al., 2020). Accelerometry has also been utilised to report the estimated energy 

expenditure and physical workload of professional contemporary dancers, by using the 

vector magnitude to provide an indication of the total stress on the body resulting from 

accelerations, decelerations and change of direction (Jeffries et al., 2016). The profile of 

accelerometer tri-axial output also tends to reflect the types of movement that the dancers 

perform during a choreographed routine (Nagy, Brogden, Orr, & Greig, 2021). During 

jumping movements there appeared to be a higher contribution of the vertical plane (Nagy 

et al., 2021). However visual analysis of accelerometer data to determine when jumping 

occurs is time consuming, thus not practical. While the authors of these studies suggest that 

the high movement quantity demonstrated by dancers may relate to musculoskeletal pain 

and disability, they did not analyse this. Further, while the intensity and vector magnitude 

data generated from accelerometers provide an objective indication of overall movement 

quantity, these methods of measurement do not provide specific counts of dance-specific 

movements or information on the quality of movement seen during specific tasks.  

Other wearable sensors, such as inertial measurement units (IMUs) may be more 

useful for movement quantification in dance. Whereas an accelerometer is only able to 

detect linear accelerations, IMUs combine an accelerometer with a gyroscope and 

magnetometer (Camomilla et al., 2018). Gyroscopes detect angular acceleration and 
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orientation, and magnetometers detect a specific reference direction (Camomilla et al., 

2018). This combination provides increased sensitivity to allow for the detection and 

analysis of movements (Camomilla et al., 2018; Chambers et al., 2015).  

2.8 Machine learning applied to inertial measurement units 

Inertial measurement units generate huge data sets, of which processing is 

cumbersome. Currently this is most commonly via set algorithms, for example customised 

and manufacturer developed algorithms that process accelerometer data to determine 

times spent at different exercise intensities as a measure of movement quantity, and sensor 

fusion techniques to measure joint angles as a measure of movement quality (Camomilla 

et al., 2018; Chambers et al., 2015). However, to capture more specific movement quantity 

and quality from raw data, researchers are increasingly using customised machine learning 

methods (Cust et al., 2019).  

Machine learning is an overarching term for a branch of artificial intelligence, which 

has been applied broadly commercially and in research, and is a rapidly advancing field 

(Bulling, Blanke, & Schiele, 2014; Cust et al., 2019; Demrozi et al., 2020; Lara & 

Labrador, 2013). Machine learning models and algorithms are trained to learn from data 

(Bulling et al., 2014). When applied to wearable sensor data, machine learning has 

provided new insight into the evaluation of a range of athletic movement demands (Cust 

et al., 2019; Demrozi et al., 2020). Specifically, researchers have trained models using 

varied techniques to detect and classify specific athletic movement tasks (human activity 

recognition) to allow for measurement of movement quantity, as well as provide estimates 

of quality of movement variables associated with these movements (Argent, Drummond, 

Remus, O'Reilly, & Caulfield, 2019; Cust et al., 2019; Wouda et al., 2018). 

2.8.1 Overview of machine learning methods  

Several approaches to machine learning exist and these can be broadly classified as 

supervised and unsupervised machine learning methods (Demrozi et al., 2020). In 

supervised learning, a model is created based on the known output data and is used to 

predict future data points that it has not been trained on (Demrozi et al., 2020). These 

methods are most used for the application of machine learning to wearable sensor data and 

include support vector machines and various regression models (such as linear regression, 

logistic regression, and regression trees) (Demrozi et al., 2020). Unsupervised learning 

involves identifying patterns in the input data without knowledge of the output (Demrozi 

et al., 2020). The most well-known unsupervised models include k-means clustering, 
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hierarchical clustering and mixture models (Demrozi et al., 2020). Recently, another field 

of machine learning known as deep learning has grown in popularity, and computational 

experts are recommending them over traditional machine learning methods for application 

to wearable sensor data for measurement of movement quantity and quality as it 

demonstrates superior accuracy with less required human effort (Cust et al., 2019; 

Demrozi et al., 2020). Deep learning techniques are based on the concept of data 

representation (Demrozi et al., 2020; Lara & Labrador, 2013; LeCun, Bengio, & Hinton, 

2015). In essence, where traditional supervised and unsupervised models are programmed 

to identify specific features from the data for subsequent identification, deep learning 

models automatically generate optimal features from raw wearable sensor data without 

human intervention (Demrozi et al., 2020; Lara & Labrador, 2013; LeCun et al., 2015). 

As a result, they may identify patterns for subsequent identification that is otherwise 

unknown (Demrozi et al., 2020; Lara & Labrador, 2013; LeCun et al., 2015). Examples of 

deep learning techniques include convolutional neural networks, recurrent neural 

networks and long short term memory networks (Demrozi et al., 2020; LeCun et al., 2015). 

As machine learning is a rapidly evolving field, there are continuous advances occurring 

in the area. Brief descriptions, adapted from Demrozi et al (2020), as well as the 

advantages and disadvantages of the specific machine and deep learning methods that are 

pertinent to this body of work are presented in Table 2.2. The large range of machine 

learning approaches available suggest that there may be more appropriate ways of 

processing sensor data than currently used algorithms for the measurement of quantity and 

quality of movement.  
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Table 2.2  

Definitions of machine and deep learning methods (Demrozi et al., 2020) 

Machine/ 

deep learning 

approach Description 

Support Vector 

Machine 

Supervised machine learning algorithm utilised for classification purposes. 

Based upon finding a hyperplane that divides a dataset into 2 classes. The 

support vectors are the data points that lie nearest to the hyperplane, thus if 

removed would alter the position of the hyperplane. If a data point lies further 

away from the hyperplane we can be more confident of correct classification. 

This method generally demonstrates a high degree of accuracy however 

works better on smaller, clean data sets. It can have high processing demands. 

Artificial 

Neural 

Networks 

Artificial neural networks are able to learn any nonlinear function. They 

consists of 3 layers of neurons; input, hidden and output.The input layer 

accepts inputs, the hidden layer processes then and the outer layer produces 

the results. Artificial neural networks are commonly used for image and 

tabular data, however are not capable of dealing with sequence data. 

Long Short 

Term 

Memory 

Networks 

Long short term memory networks are a variant of a recurrent neural network, 

which learns from sequential time-series dat. In a long short term memory 

network each, in the middle layer (described above in artificial neural 

networks) each unit is replaced by a cell which has a gated loop and a system 

ofgates which controls the flow of information, thus have advantages in 

modelling sequential dependencies in long-term time-series data and are 

more computationally effective. 

Convolutional 

Neural 

Networks 

Convolutional neural networks rely upon filters which are used to extract 

relevant features from input data. the filters are automatically learnt without 

having to be explicitly taught, similar to the human brain. They are most 

commonly used for classification of image and video data, where they 

capture the arrangement of pixels and the relationship between them in an 

image. They are considered to perform with a very high degree of accuracy, 

however can have high processing demands.  

 

2.9 Machine learning application for measuring movement quantity: 

Human activity recognition 

A systematic review exploring the applications of machine learning for human 

activity recognition identified 31 studies which utilised wearable sensor data with degrees 

of accuracy ranging from 52-100%, however generally the accuracy for specific 

movement was greater than 90% (Cust et al., 2019). Table 2.3 summarises the details of 

the included studies and others identified in a literature search conducted July 2018, at the 

commencement of this research. Since the commencement of this research, another 13 

studies have been identified which have applied machine learning models to wearable 

sensor data for human activity recognition in sports. These studies are summarised in 

Table 2.4. Overall, models have been developed for activity recognition in range of 

different sports, including team sports, winter sports, water sports and racquet sports (Cust 
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et al., 2019). As a result, models were developed to identify a range of different 

movements, specific to each sport. These were inclusive of jumps and shots in volleyball, 

different styles of aerial jumps in ski jumping, strokes in swimming and shots in tennis 

(Cust et al., 2019). The tables present the degree of accuracy reported within each 

development manuscript. The degree of accuracy is important as it reflects the system’s 

performance at accurately detecting specific movements, thus accurate objective 

quantification of movement quantity (Cust et al., 2019). To date, there have been no 

reported thresholds identified for acceptable degrees of accuracy in human activity 

recognition. Further, several factors may have influenced the reported accuracy of the 

systems. These include the number of people whom data was collected from for model 

development, the number of sensors used and the location of these, the machine learning 

approach applied, and the validation approach applied. Where available, these are reported 

for each study in Table 2.3 and Table 2.4 and described further below in section 2.9.1.  
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Table 2.3  

Summary of human activity recognition in sport publications based on a search of literature in July 2018, prior to the commencement of the study 

Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Adelsberger & 

Troster, 2013) 

Weightlifting: 

thruster (squat 

press) 

3 IMU (left ankle, 

left wrist, lower 

back) 

16  SVM 75% / 25% train-test 

dataset split 

93.4% 

(Anand, Sharma, 

Srivastava, 

Kaligounder, & 

Prakash, 2017) 

Tennis: forehand 

topspin, forehand 

slice, backhand 

topspin, backhand 

slice, serve 

Badminton: serve, 

clear, drop, smash 

Squash: forehand, 

backhand, serve 

1 IMU-

Accelerometer 

and gyroscope 

only (wrist) 

31 tennis  

34 badminton  

5 squash  

LR, LSTM 

CNN 

None reported Tennis: 93.8% 

Badminton: 78.9% 

Squash: 94.6% 

(Brock & Ohgi, 2017) Ski jumping: error 

jump, non-error 

jump 

9 IMU (pelvis, 

bilateral thigh, 

bilateral shank, 

bilateral ski, 

bilateral arm) 

4 SVM, DTW None reported 52-82% 

(Brock, Ohgi, & Lee, 

2017) 

Ski jumping: 9 

motion style 

errors in flight and 

landing 

9 IMU (pelvis, 

bilateral thigh, 

bilateral shank, 

bilateral ski, 

bilateral arm) 

3 CNN, SVM 8-fold cross validation 93% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Buckley et al., 2017) Running: form 

classified as a 

fatigued or non-

fatigued state 

3 IMU (lumbar 

spine, Right 

shank, left shank)- 

note evaluated 

each separately 

21 RF, SVM, kNN, 

NB 

Leave-one-out cross 

validation 

10-fold cross validation 

Lumbar spine: 75% 

Right shin 70% 

Left shin: 67% 

(Büthe, Blanke, 

Capkevics, & Tröster, 

2016) 

Tennis: forehand 

topspin, forehand 

slice, backhand 

topspin, backhand 

slice, smash, shot, 

steps, side steps 

3 IMU (Bilateral 

foot and racquet) 

4 Shots- LCS 

Steps- SVM 

Leave-one-out cross 

validation 

Overall 76% 

Side steps: 96% 

Shot steps 63% 

(Connaghan et al., 

2011) 

Tennis: serve, 

forehand, 

backhand 

1 IMU (arm) 8 NB 10-fold cross validation Combined accelerometer, 

magnetometer and 

gyroscope model: 90% 

Accelerometer only model: 

97% 

Gyroscope only model: 76% 

Magnetometer only model: 

76% 

(Groh, Kautz, & 

Schuldhaus, 2015) 

Skateboarding: 

ollie, nollie, 

kickflip, heelflip, 

pop shove it, 360 

flip 

1 IMU (skateboard) 7 NB, PART, 

SVM, kNN 

Leave-one-out cross 

validation 

: 97.8% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Groh, Fleckenstein, & 

Eskofier, 2016)  

Snowboarding: 2 

trick categories 

with 3 trick 

classes each 

category 

1 IMU (snowboard) 4 for part A, 7 for 

Part B 

NB, kNN, SVM Leave-one-out cross 

validation 

Grind 90.3% 

Airs 93.3% 

(Groh, Fleckenstein, 

Kautz, & Eskofier, 

2017) 

Skateboarding: 11 

trick types, trick 

fail, resting period 

1 IMU (Skateboard) 11 NB, RF, LSTM, 

SVM, kNN 

Leave-one-out cross 

validation 

79.8% 

(Jensen et al., 2015) Golf: putt phases, 

putt event, no putt 

event 

1 IMU (Golf Club) 15 AB NR 68.2% 

(Jensen, Blank, Kugler, 

& Eskofier, 2016) 

Swimming: rest 

period, turn, 

butterfly, 

backstroke, 

breaststroke, 

freestyle 

1 IMU (back of the 

head) 

11 AB, LR, PART, 

VM 

Leave-one-out cross 

validation 

82.4% 

(Jensen, Prade, & 

Eskofier, 2013) 

Swimming: 

butterfly, 

backstroke, 

breaststroke, 

freestyle, turns 

1 IMU (back of the 

head) 

12 DT Leave-one-out cross 

validation 

95% 

(Jiao, Wu, Bie, Umek, 

& Kos, 2018) 

Golf: 9 swing types 1 IMU (Golf Club) 4 CNN 10-fold cross validation 95% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Kautz, 2017) Volleyball: 9 skills 1 (wrist of dominant 

hand) 

30 SVM, kNN, 

Gaussian NB, 

CART, RF, 

VOTE 

Leave 3 subjects out 

cross validation 

60.3%  

(Kautz et al., 2017) Volleyball: 9 skills 1 (wrist of dominant 

hand) 

30 CNN Leave 2 out cross 

validation 

79.5% 

(Kelly, Coughlan, 

Green, & Caulfield, 

2012) 

Rugby union: tackle 

and non-tackle 

impacts 

1 (between shoulder 

blades) 

9  SCM, HCRF, 

Learning grid 

approach with 

model fusion by 

AB 

None reported Recall: 0.933 

Precision: 0.958 

(Kobsar, Osis, 

Hettinga, & Ferber, 

2014) 

Running: specific 

motion patterns 

based on training 

background and 

experience level 

1 (lower back) 42 Decomposition 

using Daubechies 

5-mother wavelet 

Leave-one-out cross 

validation 

Training background: 

96.2% 

Experience level: 96.4% 

(Kos & Kramberger, 

2017) 

Tennis: Forehand, 

backhand, serve 

1 (wrist of racquet 

arm) 

7 Unsupervised 

discriminative 

analysis 

None reported Serve: 96.2% 

Forehand: 93.5% 

Backhand: 98.6% 

(Ó Conaire et al., 2010) Tennis: serve, 

forehand, 

backhand 

6 (bilateral wrists, 

bilateral ankles, 

chest, lower back) 

5 SVM, kNN Leave-one-out cross 

validation 

Right arm: 98.41%  

Full body: 93.44%  
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(O'Reilly et al., 2015) Gym: Squatting- 

correct or 

incorrect 

technique and 

specific technique 

deviations 

1 (low back) 22 Back propagation 

neural network 

Leave-one-out cross 

validation 

Binary classification: 

80.45% 

Multilabel classification: 

56.55% 

(O'Reilly, D. F. 

Whelan, Ward,  

Delahunt, &  

Caulfield, 2017) 

Gym: lunge- 

different levels of 

lunge performance 

and identify 

aberrant 

techniques 

5 (low back, 

bilateral thigh, 

bilateral shank) 

80 RF Leave-one-out cross 

validation 

Acceptable and aberrant 

technique: 90% 

Specific technique 

deviations: 70% 

(O'Reilly, D. F. 

Whelan, Ward, 

Delahunt, &  

Caulfield, 2017) 

Gym: deadlifting- 

technique 

deviations 

5 (low back, 

bilateral thigh, 

bilateral shank) 

135 RF Leave-one-out cross 

validation 

Binary classification  

Global classifier 73% 

Personalised classifier 84% 

Multi class classification 

Global classifier 54% 

Personalised classifier 78% 

(Pernek, Kurillo, 

Stiglic, & Bajcsy, 

2015) 

Weightlifting: 6 

dumbbell lifting 

exercises 

5 (Chest, bilateral 

wrist, bilateral 

upper arm) 

11 SVM Leave-one-out cross 

validation 10-fold 

cross validation 

75 / 25% train-test data 

set split 

84.2-93.6% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Qaisar et al., 2013) Bowls: Correct and 

incorrect medium 

paced bowls 

3 (upper arm, elbow 

joint and wrist of 

bowling arm) 

1 K-means 

clustering, 

Markov Model, 

HMM 

None reported 90.2%  

Wrist sensor data 100% 

Elbow sensor data 88.24% 

Upper arm sensor data 

82.35% 

(Rassem, El-Beltagy, & 

Saleh, 2017) 

Cross country 

skiing: gears 

variations 

1 (location not 

reported) 

Not reported Recurrent LSTM, 

CNN, MLP 

None reported LSTM: 1.6% class error 

value 

CNN: 2.4% class error 

value 

(Rindal, Seeberg, 

Tjønnås, Haugnes, & 

Sandbakk, 2017) 

Cross country 

skiing: 8 

technique sub-

classes 

2 (chest and lower 

arm) 

10 NN Validation data set  96.5% 

(Salman, Qaisar, & 

Qamar, 2017) 

Cricket: legal or 

illegal bowls 

3 (upper arm, elbow 

joint and wrist of 

bowling arm) 

14 SVM, kNN, NB, 

RF, NN 

Leave-one-out cross 

validation 

81% 

(Schuldhaus et al., 

2015) 

Soccer: shot pass, 

event leg, support 

leg, other soccer 

events 

2 (bilateral shoes) 23  SVM, CART, NB Leave-one-out cross 

validation 

Validation data set 

(match conditions) 

Leg type: 99.9% 

Other events: 96.7% 

Pass or shot: 88.6% 

Match conditions 

Shot: 86.7% 

Pass: 81.7% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  Validation approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Srivastava et al., 2015) Tennis: Forehand, 

backhand, serve, 

sub-shot types 

(flat, topspin, 

slice) 

1 (wrist of racquet 

arm) 

14 2 level 

hierarchical 

classifier 

Not reported 99.4% 

(Whiteside, Cant, 

Connolly, & Reid, 

2017) 

Tennis: serve, 

forehand (rally, 

slice, volley), 

smash, false shot 

1 (wrist of racquet 

arm) 

19 SVM, CT, kNN, 

NN, RF, DA 

10-fold cross validation Condition 1: 97.4% 

Condition 2: 93.2% 

Abbreviations:  

IMU: Inertial Measurement Unit, NR: Not reported SVM: Support Vector Machine, LR: Logistic Regression, LSTM: Long Short Term Memory, DTW: Dynamic Time Warping, RF: 

Random Forrest, kNN: k-Nearest Neighbour, NB: Naïve Bayesian, LCS: Longest Common Subsequence Algorithm, PART: Partial decision tree, AB: Adaptive Boosting, CART: 

Classification and regression tree, VOTE: Vote Classifier, HCRF: Hidden Conditional Random Field, HMM: Hidden Markov Model, MLP: Multi-Layer Perceptron, NN: Neural 

Network 
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Table 2.4  

Summary of published research post 2018 on machine learning applied to wearable sensor data for human activity recognition in sport 

Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  

Validation  

approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Chambers, Gabbett, & 

Cole, 2019) 

Rugby union: scrum 

events 

1 Accelerometer 

(thoracic) 

30  97 files to train 

algorithm, 310 to 

validate performance 

Match play: 93.6% 

Training: 87.6% 

(Chambers, Gabbett, 

Gupta, et al., 2019) 

Rugby union: 1:1 

tackles and ruck 

events 

1 Accelerometer 

(thoracic) 

 RF  Rucks: 79.4% and Tackles: 

81%  

(Cust, Sweeting, Ball, 

& Robertson, 2021) 

Australian Rules 

Football: kick 

types: 

Binary 

classification 

Drop Kicks and 

all other kicks 

4 different kick 

types) 

1 IMU (ankle) 20 RF 70 / 30% split 2 kick: 83% 

4 kick: 80% 

(Hollaus, Stabinger, 

Mehrle, & Raschner, 

2020) 

American Football: 

catches and drops 

2 IMU and audio 

sensor (bilateral 

wrist) 

8 CNN 75 / 25 split 93% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  

Validation  

approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Jang et al., 2018) Cross Country 

Skiing: 8 

techniques 

Several IMU Sensor 

combinations: 

17 sensors (whole 

body worn- pelvis, 

chest, head, 

bilateral 

shoulders, 

bilateral upper 

arms, bilateral 

forearms, bilateral 

hands, bilateral 

upper leg, bilateral 

lower leg, bilateral 

foot). 

11 sensors (upper 

body only) 

7 sensors lower 

body only 

5 sensors (pelvis, 

bilateral hand, 

bilateral feet) 

1 sensor pelvis 

4 CNN LSTM Training and validation 

set for each person- 

validation set 

representative of a 

competitive 

environment. 1 skier 

used to test. 5 sensor 

model then used with 

Leave-one-out cross 

validation 

Whole body model: 87% 

Upper body model: 80% 

Lower body model: 70% 

5 sensor model: 87% 

Single pelvis sensor model 

64% 

Leave-one-out cross 

validation- 5 sensor model 

79.7% 
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  

Validation  

approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Jowitt, Durussel, 

Brandon, & King, 

2020) 

Cricket: Deliveries 1 IMU and GPS 

(thoracic) 

35  RF Model developed on 21 

people and validated on 

14 

Sensitivity:  

Training: 96.3%, Match: 

99.6% 

Specificity: Training:98.3%  

Match: 96.9% 

(Kuhlman & Min, 

2021) 

Basketball: 4 

different shots 

1 accelerometer 

(wrist) 

NR SVM 5-fold cross validation 86.3% 

(McGrath, Neville, 

Stewart, & Cronin, 

2019) 

Cricket- bowling 

and non-bowling 

events 

1 IMU (thoracic) 17 SVM 10-fold cross validation 100%  

(Shahar, Ghazali, 

As'ari, & Swee, 2020) 

Hockey: pass, drive, 

drag flick, 

dribbling, 

receiving, tackling 

4 IMUs (chest, 

waist, bilateral 

wrist)  

11  Cubic SVM 90 / 10% split 4 sensor model: 96.7% 

3 sensor model: 94.5- 

95.7% 

2 sensor model: 75.3%-

94.8% 

1 sensor model: 63.8%- 

89.8% -  
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Reference 

Sport: Specific 

movements 

identified 

Number of sensors 

(sensor locations) 

Participants 

Number  

Machine 

learning 

approach(es)  

Validation  

approach 

Model performance of 

best performing model 

(reported as classification 

accuracy unless 

alternative provided) 

(Stoeve, Schuldhaus, 

Gamp, Zwick, & 

Eskofier, 2021) 

Soccer: shot, pass 

and transitions 

2 IMUs (bilateral 

foot) 

836 players- 181 

sessions (38 field/ 

143 lab) 

Sensor 

malfunctions- data 

lost for 292 

players 

CNN 90 / 10% split F1 score: 0.93  

(Taghavi, Davari, 

Malazi, & Abin, 

2019) 

Tennis (3 strokes) 1 Accelerometer 

(wrist) 

8 RF, 

Linear SVM, 

kNN 

3-fold cross validation 84% 

(Xia et al., 2020) Racquet sports: 4 

shot types of 

badminton, 4 shot 

types of table 

tennis, walking 

1 IMU (wrist of 

racquet hand) 

5 Multilayer 

hybrid clustering 

model 

3 subjects for training, 2 

subjects to test 

86.32 

 

(Zhang, Fu, & Shu, 

2019) 

Ping pong: 8 short 

types 

1 accelerometer 

(wrist_ 

12 RF, 

CNN 

70 / 30% split RF: 97.8% 

CNN: 87.55% 

Abbreviations:  

CNN: Convolutional Neural Network, IMU: Inertial Measurement Unit, NR: Not reported SVM: Support Vector Machine, LSTM: Long Short Term Memory, kNN: K Nearest 

Neighbour, RF: Random Forrest 
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2.9.1 Factors that can influence accuracy  

Research published prior to the commencement of this thesis demonstrated sample 

sizes recruited for training and validation of the models ranged from 1 to 135 athletes, and 

almost half of the published studies trained and tested their models using 10 or less athletes 

(Cust et al., 2019). Generally this was the same in the research that was published 

throughout this thesis, however one recent publication utilised data from 836 players 

(Stoeve et al., 2021). Of note, within this study over a quarter of the players had missing 

data, mainly due to sensor malfunctions (Stoeve et al., 2021). While models generated 

using small samples may appear to have acceptable levels of accuracy, as they are only 

trained and tested on a small group of people they have questionable generalisability 

beyond the study sample. Greater sample sizes allow for more between person variability 

in performance of sport-specific movements within the training data, thus potentially 

creating a more generalisable model (Bulling et al., 2014). 

Accuracy may also be influenced by the number of wearable sensors used, as well as 

the location of sensors. Bulling et al (2014) suggested that for improved movement 

detection a greater number of sensors, capturing movement at different body segments 

should be used. More recently, Demrozi et al (2020) recognised that in athletic populations 

wearing several sensors may not be practical as it may affect athlete performance and a 

minimum number of sensors is preferable. Thus, while some researchers have used multi-

sensor models (i.e., where data is collected from multiple sensor locations), others have 

developed single-sensor models (i.e., where data is collected from a single sensor 

location), as shown in the tables. One study has compared the accuracy for different single 

sensor locations during running, demonstrating superior accuracy with a lumbar spine 

mounted sensor when compared with lower limb sensors (Buckley et al., 2017). The 

human activity recognition machine learning model developed in this study was used to 

recognise if an athlete was running in a fatigued or non-fatigued state (Buckley et al., 

2017). Sensor location is potentially very task specific (Bulling et al., 2014). To our 

knowledge, no researchers have formally evaluated the accuracy of a sensor system with 

different combinations of both number and location of sensors.  

Based on the described methods, the majority of publications both prior to the 

commencement of this thesis and during the thesis considered movement tasks of interest 

discretely and did not consider the movements proceeding and following these. Only one 

study appeared to consider transitions, where they identified a list of specific soccer 
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movements and “other” soccer movements (Schuldhaus et al., 2015). However, this 

development utilised separate machine learning models to identify the different categories 

of movements, as opposed to a single model that could detect specific events and 

transitions (Schuldhaus et al., 2015). The inclusion of transitions in a single model 

potentially requires a machine learning model to have greater flexibility to being able to 

recognise any movements that are not the movement of interest, as even with the inclusion 

of transitions there was reduced performance in a real-world setting. Thus, it can be 

hypothesised that the inclusion of transitions may reduce the degree of accuracy of the 

model but improve usability in a real-world setting. However, no reports of studies were 

identified that formally evaluated this.  

The wide range of accuracy may also reflect the machine learning approaches applied. 

While no identified studies compared methodology of traditional machine learning 

approaches to deep learning, across two separate studies using the same data set, 

researchers demonstrated superior accuracy (93%) with the use of a deep learning 

approach to detect skateboarding manoeuvres than the accuracy shown with traditional 

machine learning approach (52-82%) (Brock & Ohgi, 2017; Brock et al., 2017). Similarly, 

superior accuracy was demonstrated using deep learning (80%) compared with a 

traditional machine learning approach for detecting 9 different volleyball skills (60%) 

(Kautz, 2017; Kautz et al., 2017). These results suggest, that in the context of human 

activity recognition, deep learning methods may allow for a higher degree of accuracy. 

Multiple validation approaches have been described in order to understand the 

performance of the machine learning trained model (Cust et al., 2019). Half of the studies 

in Table 2.3 utilised the same validation approach as an estimate of generalised 

performance of a trained model, which can be described as a form of “leave-one-out cross 

validation” (Cust et al., 2019). This is where the model is trained on all participants except 

one, and then tested on the remaining participant. This process is iteratively cycled through 

each participant until the accuracy of the model on each participant is known. This 

approach is favoured as it allows the best indication on how the models will perform on 

people outside of the training population, thus validating the models. Some studies have 

altered this approach, by leaving every combination of 2 or 3 participants out instead of 1. 

These approaches may provide the most conservative validation number (Cust et al., 

2019). The main downside of these approaches is that they are inefficient, requiring 

significant computing time, particularly on large samples. Other less popular validation 

methods include k-fold validation, where 70% of the data from a combination of any of 
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the participants is used to train the model and the model is subsequently tested on the 

remaining 30%. Variations of these percentages have also been utilised, particularly in 

more recently published studies (Jowitt et al., 2020; Stoeve et al., 2021). This method is 

computationally more efficient and will frequently provide better results as the training 

and testing data sets include data from the same people. However, these are less 

generalisable and representative of real-world performance, especially when exposed to 

unique sets of data (Cust et al., 2019). While the majority of publications both prior to and 

during the course of the PhD have utilised data collected in a controlled setting, e.g. 

laboratory or simulated settings, for both development and validation of the models, a 

recent publication describing the validation of machine learning models for soccer activity 

detection has stressed the importance of validation of models utilising real-world data (i.e. 

data collected during a soccer game). While this approach potentially provides greater 

real-world performance, it may not always be practical.  

2.9.2 Human activity recognition for measuring movement quantity 

in dance 

As shown in Tables 2.2 and 2.3, human activity recognition models have been 

developed for recognition of several different movements in a range of different sports, 

with varying degrees of accuracy. In applying machine learning models to wearable sensor 

data for the purpose of human activity recognition, there is a high evolution rate of new 

machine learning techniques and adaptations. More recently established deep learning 

methods such as convolutional neural networks appear to demonstrate superior accuracy, 

and the use of these methods have been suggested for future model developments 

(Camomilla et al., 2018; Cust et al., 2019). While number of sensors and sensor locations 

may also influence accuracy, no studies were identified that formally evaluated this. 

Within this review of the literature, no studies were identified that have developed 

a model which detects dance-specific movement tasks, such as jumping and leg lifting 

tasks. Manufacturer developed machine learning models built into manufacturer specific 

wearable sensors known as the VERT sensor, for measurement of movement quantity 

via jump detection have been tested, post  thesis model development, in volleyball with 

a high degree of accuracy (Charlton, Kenneally-Dabrowski, Sheppard, & Spratford, 

2017). Average accuracy of detection of jumping events, based on comparison of 

complete jump counts taken from video data during a volleyball game, was 99.7% and 

accurate rejection of non-jumping events was 87.9% (Charlton et al., 2017). Further, 

there was excellent specificity and sensitivity, where 96.8% of jumps and 100% of non-
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jumping movements were correctly identified (MacDonald, Bahr, Baltich, Whittaker, & 

Meeuwisse, 2017). It was unclear whether these models included movement transitions, 

such as stepping or running in between jumps, or how these models were developed, and 

the described validation was performed on an established product as opposed to during 

model development. However, given the large number of different jumping movements 

performed by dancers (outlined above), it is unlikely this product could transfer to dance. 

Additionally, these manufacturer developed models are only capable of detecting 

jumping tasks and not other activities that dancers perform, such as leg lifts. However, 

the outcomes of these two volleyball studies validating this sensor, suggest that a unique 

model built from wearable sensor data and machine learning could feasibly detect dance-

specific movements, allowing for a field-based measurement system for specific 

movement quantity in dance.  

2.10 Machine learning application for measuring movement quality 

Machine learning models have also been applied to wearable sensor data to estimate 

movement quality variables during different activities. Specifically, convolutional neural 

networks and artificial neural networks have been used to estimate GRFs during the 

cyclical predictable action of running (Alcantara, Day, Hahn, & Grabowski, 2021;  

Johnson et al., 2019; Wouda et al., 2018). Joint angles have been estimated using machine 

learning regression models and artificial neural networks in multiple movements (Argent 

et al., 2019; Wouda et al., 2018). Analysis is either performed to the full wave form of the 

movement or of a specific feature of interest such as peak joint angle or peak GRF (Argent 

et al., 2019; Wouda et al., 2018). Accuracy has typically been reported in these studies 

using root mean square error (RMSE) and correlation coefficients. Root mean square error 

is determined by the standard deviation of prediction errors. However, it has been 

recommended that both RMSE and mean absolute error (MAE) should be included in 

analysis to provide a better indication of model performance (Chai & Draxler, 2014; 

Willmott & Matsuura, 2005).  

2.10.1 Estimation of movement quality: Ground reaction forces 

At the inception of this thesis, to our knowledge, no studies had been published 

applying machine learning models to wearable sensor data to estimate GRF. A more recent 

review of the literature has revealed a total of 5 recent studies where machine learning 

methods had been used to estimate GRF during sporting activities, demonstrating the 

growing interest in this field (Alcantara et al., 2021; Dorschky et al., 2020; Johnson et al., 
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2019; Johnson et al., 2021; Wouda et al., 2018). All 5 studies estimated the GRF generated 

during running. Using a convolutional neural network applied to data from a single sacrum 

mounted sensor a substantial RMSE of 29.7% (estimated 0.70BW) was demonstrated 

between the predicted and gold standard force platform values (Johnson et al., 2019). 

Using 5 wearable sensors, the RMSE reduced to 13.9% (Johnson et al., 2021). This is 

greater than the RMSE of 6% demonstrated using a convolutional neural network applied 

to data from 7 wearable sensors, for the estimation of GRF during walking and running 

(Dorschky et al., 2020). However, the latter study, as well as using more sensors, 

augmented their sample size of 10 people with simulated data, increasing the amount of 

data for model development. The models developed on the original data, demonstrated a 

higher RMSE of 14.4% (Dorschky et al., 2020). Whilst the addition of simulated data 

increases data sets it may not accurately reflect normal human movement thus results 

should be interpreted with caution.  

Using 3 IMUs, mounted on the sacrum and legs, Wouda et al (2018) developed an 

artificial neural network machine learning model, capable of detecting GRF during 

running. The model was developed and validated using 8 runners, and used a leave-one-

out cross validation (i.e. the model was trained on 7 participants and tested on one, and 

this was iteratively cycled through) approach the authors demonstrated a degree of 

accuracy with a RMSE of 0.39BW (range = 0.21–1.25 BW), with a correlation coefficient 

of 0.96 across the GRF profile, and no significant difference in peak GRF between the 

estimated and gold standard force plate values (Wouda et al., 2018). Accuracy improved 

further when the models were developed and validated on the same person (RMSE range 

0.11-0.28BW), however this approach is not useful if a model is going to be used on larger 

samples as it promotes overfitting (Krawczyk, 2016). Overfitting is when a machine 

learning model is unable to generalise to an unseen data set, as it has been trained on a 

dataset without sufficient variability (Krawczyk, 2016). Additionally, to apply the models 

to larger samples for longitudinal research with current technology it is potentially 

impractical to train models on individuals. Machine learning models applied to data from 

a single waistband mounted accelerometer to estimate GRF during running, developed 

using data from 37 cross country runners, have demonstrated an RMSE of 0.15BW 

(Alcantara et al., 2021). These results support the notion that training a model on a larger 

sample not only improves generalisability of the model, but when comparing these results 

to Wouda et al (2018), also allows for a similar model performance to a model developed 

and validated on the same person.  
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To our knowledge, machine learning for the estimation of GRFs from wearable sensor 

data in a sporting context is limited to running. However, machine learning has also been 

applied to estimate specific joint forces during sport-specific tasks (Stetter, Ringhof, 

Krafft, Sell, & Stein, 2019). Application of an artificial neural network to data from two 

IMUs (thigh and shin mounted) developed using data from 13 participants was able to 

estimate knee joint force during sports-specific cutting and basic jumping tasks with an 

average RMSE of 19.1% and correlation coefficients ranging from 0.60-0.94 (Stetter et 

al., 2019). These results suggest the potential for GRF estimation using machine learning 

during dance-specific jumping tasks.  

2.10.2 Estimation of movement quality: Joint angles 

Traditionally, joint angles are derived from IMU data using a sensor fusion algorithm 

as an indirect measure of segment orientation (Teufl, Miezal, Taetz, Frohlich, & Bleser, 

2019). However this method requires several sensors (that require precise positioning 

either side of every joint being measured), which can be costly and increases processing 

demands (Camomilla et al., 2018). These methods also rely on the magnetometer in 

inertial measurement units, which can be highly influenced in the magnetic fields in field-

based environments (Camomilla et al., 2018; Vitali, McGinnis, & Perkins, 2020). As a 

result, machine learning is beginning to be applied to estimate joint angles in clinical and 

running research, where researchers are using the accelerometer data only or 

accelerometer and gyroscope data for estimation of joint angles (Argent et al., 2019; 

Dorschky et al., 2020; Mundt et al., 2020; Wouda et al., 2018).  

Using data from either thigh- or shin-mounted sensors on healthy young adults, 

machine learning models to estimate hip and knee angles during simple rehabilitation 

exercises (such as active knee and hip flexion) performed by healthy young adults were 

developed (Argent et al., 2019). The average RMSE for knee angles ranged from 5.7 to 

6.1° and for hip from 3.6 to 6.1° (Argent et al., 2019). Machine learning has also been 

applied to the more dynamic, functional tasks of walking and running. A model capable of 

estimating multiplanar hip, knee and ankle joint angles was developed using data from 5 

sensors (bilateral shin, bilateral thigh and pelvis) using data from 30 healthy adults, 

demonstrating an average RMSE for joint angle (across all joints and planes of motion) 

prediction of 4.1° (range 0.5-35°) (Mundt et al., 2020). This performance was similar to 

that of a convolutional neural network developed using data from 7 wearable sensors worn 

by 10 people to estimate lower limb joint angles, with an average RMSE of around 5° 

(Dorschky et al., 2020). Of note, the 7 sensors were worn all on one lower limb, thus to 
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estimate angles of both sides would require 14 sensors (Dorschky et al., 2020). Using fewer 

sensors (3, sacrum and bilateral shin), and just accelerometer data, Wouda et al (2018) 

estimated knee sagittal plane angles during running with a similar degree of accuracy. 

When the model was trained and tested on the same participant (n=8), the RMSE ranged 

from 1.4° to 4.4° (Wouda et al., 2018). However, as previously mentioned, training and 

testing the model on the same individual provides a model of very limited generalizability. 

When this model was trained using the previously described leave-one-out cross validation 

approach, the accuracy of the model substantially reduced with an RMSE range from 4.8° 

to 19.5° (Wouda et al., 2018). No reports of applications of machine learning to wearable 

sensor data for joint angle estimation in sports specific tasks were identified.  

2.10.3 Estimation of movement quality in dance 

While researchers have employed machine learning methods to estimate movement 

quality in clinical and sporting contexts, there were no reports identified that applied 

machine learning models to wearable sensor data for the estimation of either GRF or joint 

angles in dance.  

2.11 The application of machine learning systems applied to wearable 

sensor systems in field-based research 

Despite the development of human activity recognition wearable sensor systems for 

the measurement of movement quantity in several sports (Cust et al., 2019), and the 

emerging body of literature demonstrating the use of machine learning for the estimation 

of movement quality variables, research surrounding these systems are limited to 

development and validation studies. Additionally, the applications of machine learning 

data to wearable sensor systems appear to capture either movement quantity or movement 

quality, with no identified system capturing both. To date, no reports were identified in 

either sport or dance that have utilised these systems in a field-based study exploring the 

relationship of movement quantity and quality with pain and pain related disability.  

2.12 Summary of the literature 

− While there is an emerging body of literature focused on the relationship between 

movement quantity and pain related disability in dancers, measurement of movement 

quantity is limited to biased and inaccurate measures that do not capture dance-

specific movement tasks. 
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− While there is some evidence for a relationship between peak GRF and dancers’ pain, 

evidence is limited to small, cross-sectional, laboratory-based studies with low 

ecological validity. 

− Results of sports studies applying machine learning methods to wearable sensor data 

provides direction towards the potential for the development and application of a 

field-based wearable sensor system to objectively quantify dancers’ movement 

quantity and quality.  

2.13 Aims of the thesis 

Within this thesis, we aimed to address the identified gaps in the literature via a series 

of 3 studies. For the first study data collection was performed in a dance studio utilising 

wearable sensors and video data, the second study was in a laboratory utilising wearable 

sensors and a gold standard optical motion analysis system, and the third study was field-

based in a pre-professional dance institution and utilised wearable sensors and machine 

learning models. The aims of the thesis were: 

1. To develop and validate a field-based system capable of sufficiently accurate 

estimates of dance-specific movement quantity and the quality (Study 1, 2A and 2B).  

a) In Study 1, the primary aim was to develop a human activity recognition system 

using wearable sensor data to accurately measure dancers’ movement quantity 

by identifying specific ballet movements (jumping and leg lifting activities). The 

primary objective was to determine if machine learning can accurately identify 

key ballet movements during dance training. The secondary objective was to 

determine the influence of the location and number of sensors on accuracy. 

b) In Study 2, the primary aim was to develop a series of machine learning models 

to accurately estimate dancers’ movement quality during jumping and leg lifting 

tasks. The quality of movement variables of interest were GRF during jumping, 

and peak thigh elevation and lumbar spine sagittal angles during leg lifting tasks. 

This was achieved through two studies (Study 2A and 2B).  

c) The machine learning models developed and validated were then utilised in the 

final study, where the aim of this third study was: 

2. to determine if there was a relationship of dancers’ movement quantity and quality 

with self-reported pain and pain related disability outcomes across a 12-week period 

(Study 3). 
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3 

Study 1: 
 

Development of a Human Activity 

Recognition System for Ballet Tasks 

This Chapter presents findings from Study 1, describing the development and validation 

of deep learning models for the recognition of ballet-specific jumping and leg lifting tasks, 

allowing for field-based measurement of movement quantity. Findings from this study 

have been published and are presented verbatim in this chapter. The full reference for the 

published manuscript is: 

Hendry, D., Chai, K., Campbell, A., Hopper, L., O’Sullivan, P. & Straker, L. (2020) 

Development of a human activity recognition system for ballet tasks. Sports 

Med Open, 6, 20  

Ethics approval for this study was obtained from Curtin University Human Research 

Ethics Office (HRE2017-0185) (Appendix A). An information session was utilised to 

recruit participants (Appendix B) and participants were provided with a participant 

information and consent form which they completed prior to commencing the study 

(Appendix C). The convolutional neural network model developed in this chapter was 

presented as supplementary digital content in the published manuscript and is presented 

in Appendix D. 

Chapter Three  
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3.1 Introduction 

The quantification of training volumes in sport has significantly advanced knowledge 

regarding the development of musculoskeletal pain disorders in athletes (Gabbett, 2016). 

Due to a high prevalence of lower limb and lower back pain and associated disability in 

dancers, there is a growing body of literature focussing on physical training volume in this 

population (Byhring & Bo, 2002; Gamboa et al., 2008; Twitchett, Angioi, Koutedakis, & 

Wyon, 2010). Assessment of dancer training volumes have been largely derived from 

subjective, self-reported measures such as schedules and activity diaries (Byhring & Bo, 

2002; Twitchett et al., 2010), which are imprecise and are frequently biased (Halson, 

2014). Furthermore, these methods are limited to the number of hours of training / 

performing, and do not account for individual dancer training volume or specific 

movements. In quantifying training volume, specific movements likely to be provocative 

of pain should be considered (Kenny et al., 2016); such as jumping and landing, which has 

been associated with development of foot / ankle, knee and lower back pain (Costa et al., 

2016; Fietzer et al., 2012), and lifting the leg to the front, side or behind the body, which 

has been associated with hip and lower back pain (Winston et al., 2007). Accurate and 

detailed measurement of a dancer’s training volume is a key requirement in understanding 

the relationship between training volume and pain disorders. However, no automated and 

objective system exists which provides the sensitivity to measure the training volume of 

specific movements performed by individual dancers.  

Small, relatively inexpensive, commercially available wearable sensors have been 

rapidly adopted in mainstream sports for the objective quantification of training volume 

(Halson, 2014). Sensor units typically incorporate accelerometery technology to evaluate 

movement magnitudes and provide an estimation of metabolic demands of sporting 

activities (Halson, 2014). Specific movement tasks may be better detected using inertial 

measurement units (IMU), which incorporate accelerometers, gyroscopes and 

magnetometers allowing for the use of multiple sensor outputs to identify specific 

movement tasks (Wundersitz et al., 2015). Accelerometers measure the rate of change of 

velocity via linear accelerations and gyroscopes measure orientation and angular 

velocity(Henriksen et al., 2018 ). Magnetometers provide directional information, similar 

to a compass, by measuring magnetic field strength (Henriksen et al., 2018). 

Machine learning algorithms, when applied to IMU data, have provided new insight 

into the evaluation of athletic movement demands through the automatic recognition of 

sport-specific movements, via human activity recognition (Chambers et al., 2015). 
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Machine learning algorithms learn from data and can perform better than manually hard 

coded rules for complex problems. For example, machine learning algorithms have been 

applied to data from a single wrist-worn IMU in tennis, demonstrating an accuracy of 

97.4% when classifying 3 different tennis strikes (Whiteside et al., 2017). Accuracy 

reduced to 93.2% when 9 different types of tennis strikes were included in the algorithm 

(Whiteside et al., 2017), suggesting that machine learning performance reduces with 

greater levels of feature classification. Further, a manufacturer developed algorithm for 

detecting jumps during volleyball using a sacrum mounted sensor, with an average 

precision (accurate detection of relevant events) and recall (accurate rejection of irrelevant 

events) of 99.8% and 87.9% respectively (Charlton et al., 2017), as well as with excellent 

specificity and sensitivity, correctly identifying 96.8% of the jumping activities and 100% 

of non-jumping activities, with no false negatives (MacDonald et al., 2017). These results 

suggest that there is great potential for human activity recognition using IMU’s in dance 

to provide specific automated means of quantifying dance-specific movements.  

Recently, more sophisticated machine learning techniques have been developed, such 

as deep learning for human activity recognition (Cust et al., 2019; LeCun et al., 2015). 

Deep learning models are able to automatically learn features from raw data, and are often 

able to achieve better performance than traditional machine learning because their added 

complexity allows the models to take greater advantage of larger and more complex 

training datasets(LeCun et al., 2015). A convolutional neural network (CNN) is a deep 

learning technique commonly used for image classification and object detection and can 

be applied to any type of ordered data such as wearable sensor data (time series) for human 

activity recognition (LeCun et al., 2015).  

The placement and number of sensors utilised can influence accuracy of human 

activity recognition (Attal et al., 2015). Within human activity recognition, the inclusion 

of multiple sensors at specific locations can impact the accuracy of classification, as well 

as the variety of activities that can be detected (Attal et al., 2015). However, wearing 

multiple sensors is burdensome for the athlete. As a result, researchers aim to achieve a 

minimum number of sensors whilst still developing human activitiy recognition models 

with the highest possible degree of accuracy (Attal et al., 2015).  

Ballet is an art form founded by a number of specific movement activities. Repeated 

jumping and leg lifting tasks are common ballet movements that have been associated with 

the development of pain disorders (Khan et al., 1995; Liederbach et al., 2006). Within a 

single ballet class, dancers can perform over 200 jumps, with a large variety of 

biomechanical demands and over half of which land unilaterally (Liederbach et al., 2006). 
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Similarly, dancers may lift their leg to the front, side or behind the body and the speed and 

pathway of the leg movement depends upon the specific activity they are performing 

(Bronner, 2012; Bronner & Ojofeitimi, 2011). Finally, activities in ballet are rarely 

performed in isolation, instead they are dictated by their preceding and proceeding 

movements, which can be termed transitions. Currently it is unclear as to whether 

transitions have been incorporated into human activity recognition models for sporting 

activities. However, when applied to ballet, a human activity recognition model needs to 

recognise specific activities while also accounting for the large, within activity variations 

and consider transitions.  

While there is a growing body of literature supporting the use of machine learning 

for activity recognition in sports (Chambers et al., 2015; Cust et al., 2019), based on 

review of the literature, to our knowledge there are no reports of a machine learning 

approach to assist in quantifying ballet specific movement tasks. Thus, the purpose of 

this study was to develop a human activity recognition system using wearable sensor data 

to accurately identify key ballet movements (jumping and lifting the leg), allowing for 

objective quantification of training volume in ballet. Our primary objective was to 

determine if machine learning can accurately identify key ballet movements during dance 

training. The secondary objective was to determine the influence of the location and 

number of sensors on accuracy.  

3.2 Methods 

3.2.1 Participants 

We recruited 23 female pre-professional dancers (mean (SD) age: 19.6 (1.2) years) 

from a university dance institution. Dancers were included in the study if they were 

currently enrolled in one of the full-time vocational dance training programs at the 

institution, uninjured at the time of data collection and were participating in a minimum 

of 8 hours of ballet training per week. Only female dancers were recruited for this study 

as the movement profile of females and males are different in ballet, where many dance 

movements are gender specific, and there are differences in the biomechanics 

demonstrated between males and females (Orishimo, Liederbach, Kremenic, Hagins, & 

Pappas, 2014). Additionally, there is greater female participation at a pre-professional 

level. Dancers were excluded from the study if they were currently injured or unwell. This 

study was approved by the university’s human research ethical committee (HRE2017-

0185) with reciprocal ethical approval from the dance institution. Informed consent was 

obtained from all individual participants included in the study.  
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3.2.2 Data collection and tasks 

Data collection took place in groups of 2 to 5 dancers within a standard ballet studio, 

equipped with a common sprung dance studio floor. Following a self-directed warm up 

and attachment of sensors, dancers performed a series of discrete movement tasks 

commonly performed within classical ballet; jumping and leg lifting tasks (see Table 3.1 

and Table 3.2), i.e., the tasks were performed in isolation rather than embedded within a 

choreographed sequence. The jumping and leg lifting tasks were selected to reflect the 

movement sequences performed within a typical ballet class and were performed in the 

same order by all dancers. Jumping tasks incorporated small jumps and large jumps, 

landing bilaterally and unilaterally, on the right and left leg. The leg lifting tasks were 

performed to the front, side and behind the body, on the right and left leg. To allow for 

movement variability between the tasks, timing, magnitude and arm movements for the 

discrete movement tasks were determined by the dancers, reflecting normal practice. 

These tasks were then performed within specified choreographed sequences and to music, 

typical of a normal ballet class. The discrete tasks, including the order they were performed 

in, and examples of choreographed sequences are detailed in Table 3.2. Data collection 

for each dancer took approximately 45 minutes.  

Table 3.1  

Levels of classification for movement tasks 

Jumping tasks: Levels of classification 

Movement (1) Jump type (2) Laterality (landing leg) (3) 

Jump 

Bilateral landing small jump Bilateral  

Unilateral landing small jump 
Right 

Left  

Unilateral landing large jump 

(leap) 

Right  

Left  

Leg lifting task: Levels of classification 

Movement (1) Direction of leg lift (2) Laterality Lifted leg (3) 

Leg lift 

Front 
Right  

Left  

Side  
Right  

Left  

Back 
Right  

Left  

Other – used only for models when transitions included 
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Table 3.2  

Order and description of discrete ballet movement tasks and example of choreographed sequences 

Ballet Movement Description 

Leg lifting tasks 

Grands battements 

(devant,  
a la seconde,  

derriere) 

In a controlled, large amplitude tossing or throwing action the dancer 

flexes at the hip to bring the lower limb with the knee held in 

extension) to the front of the body 3 times in succession closing 

into 5th position each time. The dancer then repeats this movement 

to the side of the body and then behind the body (hip and lumbar 

spine extension). This is repeated on the other leg. 

Developpe  

(devant,  
a la seconde,  

derriere) 

In a slow, controlled unfolding movement the dancer lifts the leg to 

the front of the body. This is repeated to the side and the back. This 

is repeated on the other leg. This is repeated 3 times. 

Battement Lente  

(devant,  

a la seconde, 

derriere) 

In a slow, controlled movement the dancer lifts the leg to the front of 

the body, maintaining knee extension. This is repeated to the side and 

the back. This is repeated on the other leg. This is repeated 3 times. 

Jumping tasks 

Sauté in first position The dancer commences in first position of the feet (lower limbs 

externally rotated and heels placed together) and performs 8 

vertical jumps landing bilaterally. 

Changement in 5th 

position 

The dancer commences in fifth position of the feet (lower limbs 

externally rotated and feet crossed) and performs 8 vertical jumps 

changing the front foot upon landing. 

Entrechat Quatre The dancer commences in fifth position of the feet (lower limbs 

externally rotated and feet crossed) and performs 4 vertical jumps 

beating the legs in air before landing bilaterally with the same foot 

in front. This was performed with the right leg and left leg starting 

in front 

Assemblé  The dancer commences in 5th position and swishes one leg out to the 

side as they take off, they gather the legs in the air together and 

land before immediately taking off for the next jump. This is 

repeated 6 times. 

Jeté ordinaire The dancer commences in 5th position and swishes one leg out to the 

side as they take off, they then land on the limb that they swished 

to the side. This is repeated 8 times 

Temps levé A single leg vertical jump and land performed 5 times in succession 

Grand Jeté en avant A big leap. To prepare for the movement the dancer performed a 

travelling sequence to generate momentum, as they would 

normally do within a dance class. This was repeated 2 times on 

each leg 

Grand Jeté en tournant A big leap turning the body in the air. This was repeated 3 times on 

each leg 
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Ballet Movement Description 

Choreographed Sequences Example:  

Slow leg lift sequence Developpe devant with right leg, lower the leg to pass through first 

position to lift into battement lente derriere. Lower the leg into 5th 

position.  

Developpe the left leg a la seconde. Carry the leg, still lifted to 

derriere. Hold the leg lift derriere and pivot the body slowly 360°.  

Once returned to original position, close in 5th position. Travelling 

step into a pirouette. 

Jump sequence Travelling step to the right, jeté ordinare to the right, temps levé 

Travelling step to the left, jeté ordinare to the left, temps levé 

Travelling step to the right, jeté ordinare to the right, temps levé 

Travelling step to the left, assemble 

3 changements changing direction on each on to turn 360° 

Bold indicates movements for classification, italics indicates transition movement 

3.2.3 Instrumentation: Sensors and video 

Dancers wore 6 ActiGraph Link wearable sensors (ActiGraph Corporation, 

Pensacola, FL), operating at 100Hz and with the gyrosocope and magnetometer enabled. 

The Actigraph Link is a small commercially available tri-axial wearable sensor which 

integrates data from an on-board accelerometer, gyroscope and magnetometer. The 

ActiGraph sensors were secured to the skin using double sided tape and a single piece of 

hypoallergenic tape covering at the anatomical locations showed in Figure 3.1.  

Sensors were placed on the thoracic spine (used in previous sporting activity 

recognition research (Gastin, McLean, Breed, & Spittle, 2014; Hulin, Gabbett, Johnston, 

& Jenkins, 2017; McNamara, Gabbett, Chapman, Naughton, & Farhart, 2015)), sacrum 

(recommended as this is close to an individual’s centre of mass (Attal et al., 2015)) and 

lower limbs (to capture lower limb movement). On the lower limbs, sensors were placed 

bilaterally in order to detect the different asymmetrical movements of dance. Both thigh 

and shin sensors were placed on each lower limb as the shin would likely provide a larger 

amplitude of acceleration due to the larger axis of rotation (particularly in leg lift tasks), 

thus providing different information for the human activity recognition model 

development. Additionally, dancers were simultaneously video recorded using a GoPro 

Session 5 (GoPro. Inc, USA), capturing 100 frames per second.  
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Figure 3.1  

Wearable sensor locations 

 

Anatomical landmarks for sensor locations:  

Thoracic: T2 spinous process 

Sacrum: Between the posterior superior iliac spine 

Bilateral thigh: Midway between the anterior superior iliac spine and tibial tubercle 

Bilateral shin: 10cm distal to the tibial tubercle 

3.2.4 Human activity recognition system development 

The process of developing the human activity recognition system is described in 

detail below (Bulling et al., 2014).  

3.2.4.1 Data preparation  

Following data collection, ActiLife software (Version 6.13.3) was used to output 

date-time stamped files of each wearable sensor’s raw data: including tri-axial 

accelerometer, gyroscope and magnetometer outputs.  

The video data was manually annotated frame by frame by a ballet expert to identify 

and classify the specific movements at 3 levels (see Table 3.1). The first level of 

classification determined if the dancer was performing a jump or a leg lifting task. At the 

second level of classification, jumps were identified based upon size (smaller jumps or 

large leaps) and whether they landed bilaterally or unilaterally. Smaller jumps included 

both bilateral and unilateral landings, whereas all large leaps land unilaterally. At the 

second level of classification, leg lifting tasks were classified by the direction (front, side 
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or back). The third level of classification described laterality of the tasks, i.e., whether the 

dancer was landing on the right or left leg during unilateral jumping tasks and whether 

they were lifting their right leg or left leg during leg lifting tasks. Movements that dancers 

performed that were not these specific movements were left without annotation and 

considered ‘other’ at all 3 levels of classification.  

A customised LabVIEW program (LabVIEW 2017 SP1, National Instruments, 

Austin, TX, USA) was used to synchronise and merge the 6 sensor files with the video-

based specific movement annotations file. Time synchronisation was based on a 

standardised movement; dancers were instructed to stand still for 5 seconds, then perform 

a double leg heel raise and then stand still for another 5 seconds at the beginning of data 

collection. This generated an accelerometry signal which was similar on all sensors, with 

a period of stillness on either side which could be used for visual synchronisation with the 

video data. Following synchronisation, unwanted data was removed. Unwanted data were 

time periods where dancers were not performing the discrete movement tasks or 

choreographed sequences of movements. This included periods such as breaks, when 

dancers were being instructed on what movements to perform, as well as short practice 

sessions performed by the dancers.  

3.2.4.2 Segmentation  

The data was segmented at a fixed window size of 100 frames to align with the 100Hz 

sensor and 100 fps video data, resulting in the dataset being split into 1 second segments 

of data. Additionally, overlapping segments were created in order to capture enough data 

for detecting events near the window boundaries. An overlap size of 75% was used as it 

achieved better results compared to other sizes (0%, 25% and 50% were tested).  

3.2.4.3 Feature extraction 

Initial experimentation was performed, extracting a number of time and frequency 

domain features commonly used in human activity recognition with wearable sensors 

(Mannini & Sabatini, 2010; Trost, Zheng, & Wong, 2014; Wundersitz et al., 2015), such 

as calculating the average and median signal values for various time segments and discrete 

cosine transforms. These features were used with a number of machine learning 

approaches including, but not limited to, logistic regression, random forests, support 

vector machines and shallow neural networks. However, these approaches did not achieve 

satisfactory results. Convolutional neural networks were therefore used to learn and 

extract features automatically from the dataset (LeCun et al., 2015).  
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3.2.4.4 Feature selection 

Exhaustive feature selection was applied in order to evaluate all location 

combinations of sensors for training our models.  

3.2.4.5 Classification 

A number of CNN architectures were experimented with, using different numbers of 

layers, filters, filter sizes, activation functions and combinations of convolution and 

pooling layers. The filter size (layer 1, 25 horizontal, 9 vertical; layer 2, 10 horizontal, 9 

vertical) for the convolution layers was selected to allow for filters to learn for each sensor 

location at a time. i.e., filters to be learnt for the left shin x, y, z along with the 

accelerometer, gyroscope and magnetometer all at once and then the next sensor location 

would be learnt. The optimisation algorithm applied to the entire model was the adaptive 

momentum (Adam) algorithm (Kingma & Ba, 2015).  

Two models were developed for each possible sensor combination, 1 without the 

consideration of transition movements and the second with the consideration of transition 

movements. Data that was annotated as ‘other’, was considered transition movement.  

3.2.5 Determining model performance / statistical testing 

The performance of the models were evaluated using a leave-one-out cross validation 

method (Trost et al., 2014). In the leave-one-out cross-validation, the classification model 

is trained on data from all of the participants except one, which is ‘‘held out’’ and used as 

the test data set. The process is repeated until all participants have served as the test data, 

and the performance evaluation results are averaged (Trost et al., 2014).  

To explore the primary aim, determining the performance of the model in detecting 

the movement tasks, the models were evaluated using all 6 sensors, at each of the 3 levels 

of classification. The models developed without consideration of transition movements 

allowed comparisons with existing literature, while the addition of transitions allows for 

greater ecological validity (Lara & Labrador, 2013). To explore the secondary aim, 

determining to what extent the number and location of sensors affect performance of the 

model, the model was evaluated using all other possible sensor combinations (i.e., all 

possible combinations for 5 sensors, 4 sensors, 3 sensors etc) at each of the 3 levels of 

classification. This allowed determination of the best combination for each number of 

sensors. To interpret the performance of the models, confusion matrices were constructed 

for each participant with every combination of sensors and averaged across the population. 
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The components of a confusion matrix are demonstrated in Figure 3.2. This was used to 

calculate the degree of accuracy for each model in classifying the movements at each of 

the 3 levels of classification for all sensor combinations. Accuracy was calculated by the 

sum of the true positive and true negative divided by the total (Whiteside et al., 2017).  

Figure 3.2  

Components of a Confusion Matrix 

 

Definitions of terms: 

True positive: Cases where the model correctly identified the activity 

False negative: Cases where the model correctly identified when the activity was not performed 

False negative: Cases where the model incorrectly identified the activity 

True negative: Cases where the model incorrectly identified when the activity was not performed 

3.3 Results 

3.3.1 All 6 sensors 

At the first level of classification, including all 6 sensors, the model without 

transitions performed with 97.8% accuracy. The degree of accuracy reduced at the second 

and third levels of classification to 83.0% and 75.1% respectively. When transitions were 

included the performance of the model reduced to 84.2% accuracy at the first level of 

classification, 77.1% at the second level and 73.5% at the third level.  

3.3.2 Different sensor combinations 

Without transitions the model performed with a high degree of accuracy at the first level 

of classification regardless of the number of sensors the dancer was wearing (see Table 3.3). 

At the second and third levels of classification there were reductions in performance of the 

model with reduced sensors regardless of the sensor combination (see Table 3.3).  

A similar trend existed when transitions were applied (see Table 3.4).  
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Table 3.3  

Degree of accuracy for different sensor combinations at all 3 levels of classification- without transitions 

# sensors 

number (number of 

possible sensor 

combinations) 

Level 1 Level 2 Level 3 

Accuracy  

Score 

Mean (Range) Best Worst 

Accuracy 

Score 

Mean (Range) Best Worst 

Accuracy  

Score 

Mean (Range) Best Worst 

5 (6) 98.2%  

(98-98.5%) 

L shin 

L thigh  

R shin  

R thigh 

Sacrum 

L thigh  

L shin  

R thigh  

Sacrum  

Thoracic 

81.8%%  

(81.3-81.8%) 

L shin 

L thigh 

R shin  

R thigh 

Sacrum 

L shin 

L thigh 

R thigh 

Sacrum 

Thoracic 

74.9%  

(74.1-76.3%) 

L shin 

L thigh  

R shin  

R thigh 

Sacrum 

L shin  

L thigh 

R thigh  

Sacrum 

Thoracic 

4 (15) 98.1%  

(97.8-98.4%) 

L shin  

L thigh 

R shin 

R thigh 

L thigh 

R shin 

R thigh 

Sacrum 

81.3%  

(79.3-82.4%) 

L shin  

R shin  

R thigh  

Sacrum 

L shin  

L thigh 

Sacrum 

Thoracic 

73.8%  

(71.8- 75.1%) 

L shin  

R shin 

R thigh 

Sacrum 

R shin 

R thigh 

Sacrum 

Thoracic 

3 (20) 98%  

(97.6- 98.2%) 

L shin  

R thigh 

Sacrum 

R shin 

Sacrum 

Thoracic 

79.5%  

(73.7-81.7%) 

L shin  

R shin  

Sacrum 

L shin  

L thigh 

Thoracic 

72.0%  

(65.2-74.5%) 

L shin  

R thigh 

Sacrum 

L shin 

L thigh 

Thoracic 

2 (15) 97.7%  

(97.2-98.1%) 

L shin  

R thigh 

Sacrum 

Thoracic 

75.8%  

(69.7- 80.2%) 

L shin 

R thigh 

L shin 

L thigh 

68.0%  

(61.5-72.5%) 

L shin  

R thigh 

L shin 

Thoracic 

1 (6) 97.3%  

(97-97.7%) 

R Thigh R Shin 67.1%  

(60.2-76.5%) 

Sacrum Thoracic 56.5%  

(38.0-65.3%) 

Sacrum Thoracic 
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Table 3.4  

Degree of accuracy for different sensor combinations at all 3 levels of classification- with transitions 

# sensors 

number (number of 

possible sensor 

combinations) 

Level 1 Level 2 Level 3 

Accuracy  

Score 

Mean (Range) Best Worst 

Accuracy 

Score 

Mean (Range) Best Worst 

Accuracy  

Score 

Mean (Range) Best Worst 

5 (6) 84%  

(83.6-84.4%) 

L shin 

L thigh  

R shin  

R thigh 

Thoracic 

L thigh  

L shin  

R thigh  

Sacrum  

Thoracic 

76.2%  

(75.9-76.6%) 

L shin 

L thigh 

R shin  

R thigh  

Thoracic 

L shin, 

L thigh  

R shin  

R thigh 

Sacrum 

73.6%  

(73.2-74%) 

L shin 

L thigh  

R shin  

R thigh 

Sacrum 

L shin  

L thigh 

R shin 

R thigh 

Thoracic 

4 (15) 83.4%  

(82.5-84.0%) 

L shin  

R shin  

R thigh 

Sacrum 

L shin  

L thigh  

Sacrum  

Thoracic 

75.3%  

(74.5-75.9%) 

L shin  

R shin  

R thigh  

Thoracic 

L shin  

L thigh 

Sacrum 

Thoracic 

73.0%  

(71.5-74%) 

L shin  

L thigh 

R shin 

R thigh 

L shin  

L thigh 

Sacrum 

Thoracic 

3 (20) 82.9%  

(82.1-83.6%) 

L shin  

R shin 

Thoracic 

L shin  

L thigh  

Sacrum 

73.9%  

(70-75.4%) 

L shin  

R shin  

Sacrum 

L shin  

L thigh 

Thoracic 

71.6%  

(67.1-73.3%) 

L shin  

R shin  

R thigh 

L shin 

L thigh 

Thoracic 

2 (15) 82.1%  

(81.2-82.9%) 

L shin  

R high 

L shin  

Thoracic 

71.2%  

(67.3- 74.4%) 

L shin 

R thigh 

L shin 

Thoracic 

68.5%  

(64-71.8%) 

L shin  

R thigh 

L shin 

Thoracic 

1 (6) 80.6%  

(78.0-81.6%) 

R thigh Thoracic 64.7%  

(58.5- 70%) 

Sacrum Thoracic 61.0%  

(47.4-67%) 

Sacrum Thoracic 
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3.4 Discussion 

Using triaxial accelerometer, magnetometer and gyroscope outputs of 6 wearable 

sensors, a CNN model was trained to identify dance-specific jumping and leg lifting tasks 

at 3 different levels of classification. Models based on data without transitions performed 

superiorly to models which considered transition movements. There was a gradual 

reduction in model performance with increased levels of classification and performance 

also reduced with reduced sensor numbers and for different sensor location combinations.  

At the first level of classification, determining if the dancer was jumping or lifting 

their leg, using all 6 sensors, and not including transitions, the model developed in this 

study performed superiorly to previously developed human activity recognition algorithms 

in sport (Chambers et al., 2015; Cust et al., 2019; Kautz et al., 2017; Wundersitz et al., 

2015), with an average degree of accuracy of 98.2%. Convolutional neural networks have 

previously been applied to a single wearable sensor’s accelerometer output to identify 10 

different specific strikes in beach volleyball at a single level of classification with a lower 

classification accuracy of 83.2% (Kautz et al., 2017). The results of the current study are 

closer to those of machine learning programs which have been developed for the 

recognition of bowling tasks in cricket (99% specificity and 98.1% sensitivity) 

(McNamara et al., 2015), and tackles in rugby (97.6% accuracy) (Hulin et al., 2017). While 

manufacturer developed algorithms have been developed to detect jumping on other 

sporting populations with similar accuracy, these have not been validated in dance-specific 

jumps (Charlton et al., 2017; MacDonald et al., 2017). Further they only detect jumping 

movements and not activities (Charlton et al., 2017). Therefore, the current study provides 

a system to detect specific dance movements for training volume monitoring in dance, that 

is as robust as that being used for movement measurement in elite sport.  

As expected, the inclusion of transition movements reduced the accuracy of the model 

at the first level of classification (mean accuracy 84%). To our knowledge, no previously 

developed human activity recognition models and algorithms have applied transition 

movements in the development of their models within sport. The inclusion of transitions 

is more ecologically valid as movement is rarely performed discretely, rather within the 

context of the sport or activity they are part of (Lara & Labrador, 2013). While the 

application of transitions reduced the accuracy of the model, developing a model with 

transitions will likely promote superior real-world performance of the system (Lara & 

Labrador, 2013). With this in mind, we contend that future system developments should 



Chapter 3.  Study 1 

65 

include transition movements within the model development. As a result, the remainder 

of this discussion will reflect the results including transitions.  

The degree of accuracy reduced with increasingly complex classification levels; from 

84.2% at the first level, to 77.1% at the second and 73.6% at the third level. This supports 

previous findings of diminishing accuracy with increasing complex classifications during 

tennis (97.4% at level 1, and 93.2% at level 2) (Whiteside et al., 2017). While there are 

currently no thresholds defined in terms of acceptability in degree of accuracy, a potential 

error rate of between 15.8% at the first level of classification and 22.9% at the second 

level, is still superior to self-reported measures which can have errors of up to 36.9% 

(Phibbs et al., 2017).  

The human activity recognition system presented included 3 levels of classification, 

providing additional critical information that is not reflected in training schedules 

(Twitchett et al., 2010), nor in manufacturer developed algorithms for jump detection 

(Charlton et al., 2017; MacDonald et al., 2017). At the second level of classification the 

jumping tasks were classified based upon jump size and whether the dancer landed 

bilaterally or unilaterally. This information may be pertinent given that during unilateral 

landings, the substantial GRFs evident in dancers are absorbed by a single leg (Liederbach 

et al., 2006), imposing greater risk towards musculoskeletal pain development (H.-H. Lee 

et al., 2012). The leg lifting tasks were categorised according to leg lift direction. This might 

help inform musculoskeletal risk, given that repeated leg lifting tasks to the front and side 

of the body have implications for the development of hip pain, while repeated leg lifting 

tasks behind the body have implications for the development of back pain (Khan et al., 

1995). At the third level of classification laterality was identified with jumps and leg lifts, 

with an accuracy of 73%. Of note this is the first human activity recognition system 

developed that includes laterality. Despite the overall decreased accuracy of the human 

activity recognition with increased classification, this detailed information may provide 

critical insights to better understanding the relationship between training volumes and 

musculoskeletal pain in this population.  

Our results demonstrate diminished accuracy with decreased number of sensors, 

particularly at the second and third levels of classification. It is likely that this was due to a 

greater number of potential activities that were being recognised at these levels, thus 

reducing the size of the data set for each activity, and also looking at the activities in greater 

detail. Interestingly, the best sensor combination for 5, 4, 3 and 2 sensors all included the 

right thigh and left shin sensors. We believe that this is because of the, largely, lower limb 
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dominant and asymmetrical nature of ballet movements, where bilateral sensors located in 

different locations would provide varying information to a human activity recognition 

model. Thus in future human activity recognition model developments, sensor location on 

each lower limb should be considered.  

Wearing multiple sensors can be burdensome to the dancer, as well as require greater 

equipment, data collection, and processing demands (Lara & Labrador, 2013). 

Additionally, the aesthetics of ballet focus on clean, unimpeded movements and line of 

the leg and torso, in both training and performance settings (Chang et al., 2016). It is 

unlikely that an elite dancer or athlete would regularly wear 6 sensors, and within other 

sports a single upper back worn sensor is more common (Hulin et al., 2017; McNamara et 

al., 2015). Our study demonstrated a single sensor worn on the upper back having the 

poorest accuracy. This may be due to the nature of the tasks considered which are lower 

limb dominant, and dancers maintain an upright posture through the thorax. Our results 

do however indicate that a single sensor worn on the sacrum would allow for reasonable 

accuracy in detecting the movement tasks of interest to this study, at the first and second 

levels of classification (81.5% and 70% respectively). This may be optimal, as a single 

sensor on the sacrum is easily concealed providing scope for the use of the sensor system 

without detracting from the traditional aesthetic lines created in classical ballet, nor 

impeding the dancers’ movement.  

3.4.1 Strengths and limitations 

This system can be used to measure a dancer’s training volume with regards to 

multiple specific movement tasks, providing coaches, medical staff and dancers with 

information for training volume monitoring and implication for pain development. The 

accuracy achieved by the models is promising with the strengths being; the dance 

population the models were developed on, and ecological validity of the data collected. 

The dancers involved in the study represented a cross section of pre-professional 

dancers enrolled in a university pre-professional dance program, inclusive of both 

classical ballet and contemporary dance majors, thus displayed a range of differences 

in technical abilities. The benefit of this is that the human activity recognition system 

should be generalisable to a range of pre-professional dancers with varying abilities, 

however the system may not be accurate in activity recognition for either less 

experienced dancers, or more experienced, professional dancers. Additionally, the 

inclusion of transition movements allows for greater real-world application of the 

human activity recognition system.  
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This human activity recognition system was limited to the recognition of jumping 

and leg lifting tasks and developed using only a female population of dancers. Further 

development of a system to measure training volume in dancers should include a greater 

variety of movement tasks such as pirouettes, pointe work and travelling phrases of 

movement. Such development should also include male dancers, considering specific 

movements that have been associated with the development of pain in male dancers, 

such as partnering work, lifting and jumping. As technological advances in wearable 

sensors continue, embedded sensors in dancers’ footwear and attire may also promote 

further opportunity.  

While the models in the current study are developed to recognise dance-specific 

movement tasks, the methodology demonstrated is transferrable and generalisable for 

human activity recognition of other lower-limb dominant sporting activities, such as 

kicking in Australian football and soccer, or specific jumping tasks demonstrated during 

athletics and basketball. Methodologically, one of the limitations of the use of CNNs for 

the human activity recognition model development is that it is unable to be ascertained 

which specific sensor outputs have been utilised in recognising the activities, thus we 

are not able to comment on the role of the accelerometer, magnetometer and gyroscope 

outputs to inform future developments. However, our results highlight the importance 

of the inclusion of transition movements in human activity recognition model 

development and also consideration of activities at multiple levels of classification, 

allowing for further insight on the specific workloads that athletes are exposed to within 

training and competition.  

3.5 Conclusions 

A human activity recognition model developed with transition movements was robust 

enough to identify jumping and leg lifting ballet tasks in real world exposures. Further, 

the human activity recognition model could provide some indication of size of the jumps, 

whether the dancer was landing bilaterally or unilaterally and the direction that the dancer 

was lifting the leg. While the use of all 6 sensors provided the most accurate identification, 

fewer sensors still provided a respectable degree of accuracy in detecting the specific tasks. 

Further, this model of human activity recognition could be applied to other sports to more 

accurately assess exposures and thus better understand mechanisms of performance and 

musculoskeletal pain conditions. 
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4 

Study 2A: 
 

An Exploration of Machine Learning 

Estimation of Ground Reaction Force 

from Wearable Sensor Data 

This Chapter presents findings from Study 2A, describing the development and validation 

of machine learning models for the estimation of ground reaction force (GRF) during 

commonly practiced ballet jumps, allowing for field-based measurement of movement 

quality. Findings from this study have been published and are presented verbatim in this 

chapter. The full reference for the published manuscript is: 

Hendry, D., Leadbetter R., Mckee, K., Hopper, L., Wild, C., O’Sullivan, P., Straker, 

L. & Campbell, A. (2020) An exploration of machine learning estimation of 

ground reaction force from wearable sensor data. Sensors, 20(3), 740 

Ethics approval for this study was obtained from Curtin University Human Research 

Ethics Office (HRE2017-0185) (Appendix A). A recruitment flier and social media posts 

were utilised to recruit participants (Appendix E) and participants were provided with a 

participant information and consent form which they completed prior to commencing the 

study (Appendix F). 

Chapter Four  
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4.1 Introduction  

Ground reaction force (GRF) is a commonly measured biomechanical feature during 

impact-based activities such as landing from a jump (Devita & Skelly, 1992; Harwood, 

Campbell, Hendry, Ng, & Wild, 2018; Hendry, Campbell, Ng, Harwood, & Wild, 2019; 

Pappas, Sheikhzadeh, Hagins, & Nordin, 2007; Slater et al., 2015). Peak values of the 

GRF during jumping typically exceed several times an athlete’s body weight (BW) 

(Devita & Skelly, 1992; Slater et al., 2015). For example, laboratory-based studies have 

demonstrated that basketballers, volleyball players, and runners exhibit peak GRFs 

between 2–5 BW (Devita & Skelly, 1992), and gymnasts land a frontsault with up to 15.8 

BW (Slater et al., 2015). Ballet dancers are aesthetic athletes who have been reported to 

perform up to 220 jumps within a single training session, from over half of which they 

land unilaterally (Liederbach et al., 2006), with peak GRFs commonly exceeding 4 BW 

(Hendry et al., 2019; Jarvis & Kulig, 2016). High GRF during landings may increase the 

accumulated internal loads that these athletes experience during training, competition and 

performance, thus increasing susceptibility to musculoskeletal pain conditions (Kiernan et 

al., 2018; Pappas et al., 2007). For example, recreational athletes have demonstrated 

3.4%–6.5% higher peak vertical GRF on landing when fatigued (Pappas et al., 2007). 

Similarly, high peak GRFs during impact-based activities have been associated with the 

development of lower limb musculoskeletal pain conditions (Kiernan et al., 2018). 

Therefore, GRF is considered an important issue for dancers.  

GRF is commonly measured in laboratory studies using force platforms (Devita & 

Skelly, 1992; Harwood et al., 2018; Hendry et al., 2019; Liederbach, Kremenic, Orishimo, 

Pappas, & Hagins, 2014). The output from a force platform provides a complete GRF 

profile, allowing identification of the GRF at any point during the jump. However, force 

plates are expensive and restricted by their dimensions, and thus are typically unable to 

assess complicated athletic manoeuvres, such as series of jumping tasks commonly 

performed in ballet. Importantly, these systems are not ecologically valid (Sinclair et al., 

2013), i.e., they are unable to capture a dancer’s movement in a normal training 

environment or across a performance season or training period, where changes in 

movement due to factors such as fatigue may be common. As a result, there is a need for 

a field-based system for measuring GRF during jumping tasks.  

Recent advancements in wearable technology has opened the possibility of field-

based GRF measurement, providing biomechanical insight in sports where laboratory-

based measurement is challenging. For example, force insoles have been added to ski 
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boots for analysis of ski jump landings (Bessone, Petrat, & Schwirtz, 2019), and bendable 

outsoles used for GRF measurement during walking (Park, Kim, Na, Kim, & Kim, 2019). 

Within a dance population, the addition of an insole or outsole to a ballet shoe is not 

possible due to the aesthetic and technical requirements of the athletic pursuit. Rather, 

wearable technology potential in this population lies in small, body-worn, commercially 

available wearable sensors (Benson, Clermont, Bosnjak, & Ferber, 2018; Johnson et al., 

2019; Leporace, Batista, Metsavaht, & Nadal, 2015; Shahabpoor et al., 2018; Tan, 

Chiasson, Hu, & Shull, 2019; Wouda et al., 2018).  

Traditionally, wearable sensor accelerometer data has been used in the field during 

walking and running activities to estimate force directly using inverse dynamics (Ancillao, 

Tedesco, Barton, & O'Flynn, 2018; Benson et al., 2018; Shahabpoor et al., 2018; Tan et 

al., 2019). However, given the noisy signal, this method has variable success (Ancillao et 

al., 2018). Most current wearable sensors contain multiple hardware chips such as inertial 

measurement units (IMUs), which combine an accelerometer, magnetometer and 

gyroscope. Rather than directly entering the derived data into calculations, sports scientists 

are applying sophisticated machine learning algorithms to indirectly estimate GRF using 

data from these sensors (Johnson et al., 2019; Leporace et al., 2015; Wouda et al., 2018). 

Machine learning models have been applied to both multi-sensor and single sensor data in 

order to estimate GRF during running (Wouda et al., 2018). Using 3 IMUs, mounted on 

the sacrum and legs, Wouda et al (2018) demonstrated a RMSE of 0.39BW (range= 0.21-

1.25 BW), with a correlation coefficient of 0.96 across the GRF profile, and no significant 

difference in peak GRF between the predicted and gold standard force plate values. While 

these results are promising, running is characterised by a rhythmical, consistent and 

predictable movement profile.  

Machine learning has also been applied to estimate other biomechanical forces. For 

example, data from two IMUs for knee joint force estimation during sports-specific tasks, 

such as cutting and basic jumping tasks (Stetter et al., 2019). This model demonstrated 

reduced accuracy (average RMSE of 19.1%) compared to that used in running, potentially 

due to more variable movement patterns (Stetter et al., 2019). Further research is required 

for development of such models for GRF during complex, sports-specific tasks such as 

jumping. Additionally, within the unique context of dance, a system requiring a minimum 

number of sensors is required to conform within the aesthetic requirements. 

The purpose of this study was to develop a series of machine learning models capable 

of predicting peak GRF during bilateral and unilateral dance-specific jumping tasks. A 
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field-based measurement of these biomechanical features would enable exploration of the 

role of GRF in the development of musculoskeletal pain conditions in people when 

engaging in lower-limb loading tasks.  

4.2 Materials and methods 

The Consensus-based Standards for the Selection of Health Measurement Instruments 

(COSMIN) provided guidelines for the design and reporting of this study [17].  

4.2.1 Participants 

Thirty female ballet dancers (mean (standard deviation, SD) age: 18.50 (1.68) years, 

mean (SD) weight (kg): 54.7 (3.3) kg) were recruited from ballet schools across Perth, 

Western Australia. Dancers were included in the study if they were aged 16 years or older 

and participating in a minimum of 6 hours of ballet training per week. Only female dancers 

were recruited for this study as the movement profile of females and males are different 

in ballet, and there is greater female participation at a pre-professional level. Both 

recreational and pre-professional dancers were included in the study to allow for greater 

diversity of skill level, and thus variability of movement for model development. Dancers 

were excluded from the study if they were currently injured or unwell. This study was 

approved by the university’s human research ethics committee (HRE2017-0185). 

Informed consent was obtained from all participants included in the study.  

4.2.2 Data collection  

Dancers attended a single data collection session at the university’s motion analysis 

laboratory. Following completion of a short questionnaire detailing their current dance 

participation and years of dance experience, body mass, height and limb measurements 

(lower limb length, knee width, ankle width) were recorded using calibrated scales (Tanita 

Corporation of America, Arlington Heights, Illinois, USA), a stadiometer (Mentone, 

Victoria, Australia) and a tape measure.  

All jumps were performed on a single force plate (Advanced Mechanical Technology, 

Inc., Water-town, Massachusetts, USA) operating at 2000 Hz. The force platform was 

covered with a thin, soft mat attached to the platform to better simulate a dance floor.  

Dancers were fitted with 6 ActiGraph Link wearable sensors (ActiGraph Corporation, 

Pensacola, FL), operating at 100 Hz and with the gyroscope and magnetometer enabled. 

The ActiGraph Link is a small commercially available tri-axial wearable IMU. The 
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sampling frequency of 100 Hz was selected as this was the maximum sampling frequency 

available on this device. The ActiGraph sensors were secured to the skin using double-

sided tape (3M 1522 Medical Tape, double sided, transparent, 3M, MN, USA), where the 

double-sided tape was placed between the sensor and the skin. This was then further 

secured using a single piece of hypoallergenic tape (Rocktape, Australia), which covered 

the sensor so that it did not dislodge during jumps. The double-sided tape is non-elastic 

and commonly used within biomechanical research, the hypoallergenic tape is elastic so 

as not to restrict the dancers’ movements. Sensors were placed on the thoracic spine, 

sacrum (recommended as this is close to an individual’s centre of mass) and bilateral shin 

and thigh (to capture lower limb movement) (See Figure 4.1).  

Figure 4.1  

Anatomical locations of inertial measurement units (IMUs) 

 

IMU locations:  

Thoracic: T2 Spinous Process 

Sacrum: Between the posterior superior iliac spine 

Bilateral Thigh: Midway between the anterior superior iliac spine and tibial tubercle 

Bilateral Shin: 10cm distal to the tibial tubercle 
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Lower limb sensors were placed anteriorly on the thigh to avoid obstruction of 

movement. All sensor locations also allowed for easy attachment to the dancer’s skin, 

reducing the potential impact of movement artefact from clothing interfering with the 

sensors. The sacrum sensor can be concealed easily, thus conforming with the aesthetic 

requirements of ballet. Data collection for each participant took approximately 45 minutes. 

4.2.3 Jumping tasks 

Following a self-directed warm up and sensor attachment, the dancers performed a 

series of bilateral and unilateral ballet specific jumps (Appendix G). The tasks selected 

were performed in progressions that followed a typical ballet class format, i.e., jumps with 

bilateral landings, followed by jumps with unilateral landings. The number of repetitions 

of each task is presented in Appendix G and is also reflective of performance within a 

normal ballet class. All unilateral tasks were repeated on both lower limbs.  

4.2.4 Data processing  

Following data collection, ActiLife software (Version 6.13.3) was used to output date-

time stamped files of each wearable sensor’s raw data: including tri-axial accelerometer, 

gyroscope and magnetometer outputs. Force platform data were down-sampled to 100 Hz 

to match IMU data. Both force plate and acceleration data were normalised to G-force (Gs). 

A customised LabVIEW program (National Instruments, Austin, Texas, USA) was 

designed to allow semi-manual time synchronisation of wearable sensor data with force 

platform data. For this purpose, a single reviewer visualised the sum of the residuals of the 

sacrum sensor accelerometer data with the force plate data to align and check for 

synchronisation. Following time synchronisation, the program outputted a collated file of 

all wearable sensor and force platform data for each task. 

4.2.5 Machine learning model development and validation  

While data were collected on 30 dancers, wearable sensor data from 7 of the dancers 

had issues with hardware malfunctions. This was recognised when data was downloaded 

and visually inspected after data collection. Hardware malfunction issues included sensors 

not being accepted by the docking station to download data and sensors breaking during 

data collection and not collecting data. Therefore only 23 of the dancers had data that could 

be used in the development of the machine learning model. Of these 23 dancers, 14 had 

data which were deemed adequately synchronised across all 6 sensors, allowing for 

exploration of multi-sensor models. Synchronisation issues were caused by a manufacturer 
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fault in this brand of sensors, which can result in a between-sensor time shift. As a result, 

some sensors could not be synchronised due to large time differences between both the 

other sensors and the force platform. Adequate synchronisation of sensors was determined 

via visual observation of a single researcher, by alignment of the peaks of acceleration 

data, and matching the periods between these peaks. 

Visual inspection of the data revealed that the magnetometer raw data was unstable 

and not representative of the dancers’ movement, thus this data was not utilised. Only the 

accelerometer outputs were used in the development of the models. Gyroscope data was 

not used in the development of the model to avoid having too much data that was similar 

to each other, where acceleration is related to velocity, and is also more closely related to 

force. The model was developed in a number of stages, with the final goal being to achieve 

a model capable of estimating peak GRF. The stages of development are demonstrated in 

Figure 4.2, and described below (sections 4.2.5.1 – 4.2.5.3) 

Figure 4.2  

Flow chart demonstrating model development and validation 

process and model architecture 
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4.2.5.1 Stage 1: Initial model development and evaluation 

Based on initial experimentation, two pilot model designs were developed using data 

from 14 of the dancers; one for unilateral landings, and one for bilateral landings. The 

models were initially trained on 12 dancers (training set) and evaluated on the remaining 

two (test set). Model architecture is shown in Figure 4.3. The models incorporated a 

support vector machine (SVM) for flight and ground phase classification with separate 

artificial neural networks (ANN) for the GRF estimation during each phase. The models 

were constructed so that the final output model only required single data points and no 

historic points, thus GRF could be predicted for each data point individually, allowing for 

the potential of real-time GRF estimation. 

4.2.5.1.1 Support vector machine to classify ground and flight phases  

The SVM was developed using a gaussian kernel function, to determine if a data point 

was classified within the flight or ground phase of the jump. The input for the SVM was 

the vector magnitude of the acceleration data from the IMUs, measured in Gs at 100 Hz for 

the period of the activity. During the ground phase, the segment accelerations were coupled 

to the GRF, whereas during the flight phase the GRF determined by the force platform is 

reduced to zero, while the segment accelerations are not. Segment accelerations refer to the 

acceleration vector of segments of the body such as the torso, thigh or shin. Therefore, a 

data point was assigned a ground phase label if the GRF recorded by the force plate was 

greater than 0.05 BW, and assigned a flight phase label if it was less than 0.05 BW.  

An equal number of data points for every type of jump performed by each dancer 

were sequentially arranged, before being rearranged randomly using the MATLAB 

Random Number Generator (MathWorks, Inc., MA, USA), to produce an overall training 

set. As the data was collected at 100 Hz, a data point is defined as a time period of data 

that is 1/100th of a second in duration. The first 500 data points from the overall training 

set were taken to train the SVM, with a 5-fold cross validation process used, allowing for 

selection of the best-performing model with a smaller training set. The first 200 data points 

from the test set were then used to assess the performance of the SVM. A reduced sample 

was decided upon due to the reduced data requirements of a SVM, requiring smaller 

training and test data, and to prevent the occurrence of overfitting. Additionally, the 

smaller test set was used to enable more efficient training and testing of the models, given 

the large number of models being developed. Overfitting is when a model corresponds too 

closely or exactly to a particular data set and, therefore, may not be able to predict future 
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observations reliably. Within the context of machine learning for wearable sensors and 

human movement, this can occur due to a data set which does not provide sufficient 

variability of movement (i.e. is trained on a set of data that is all very similar, thus the 

model learns only to recognise these patterns) (Krawczyk, 2016). 

To evaluate SVM classification accuracy for each possible sensor combination, 

confusion matrices were constructed using the percentage of data points that were 

correctly predicted, for both unilateral and bilateral jumps.  

4.2.5.1.2 Artificial neural networks (ANNs) to estimate ground reaction 

force during ground and flight phase 

Separate ANNs were developed; one for the ground phase and one for the flight phase 

of the jump. Optimal ANN architecture was determined using an iterative loop, to 

determine which number of neurons in each hidden layer resulted in most accuracy when 

all 6 sensors were used. For the flight phase, only 1 hidden layer was assessed, and for the 

ground phase both single and double hidden-layer networks were investigated. Single and 

double hidden-layer networks with a lower bound of 1 and an upper bound of 35 in each 

layer were explored when determining the hyperparameters. All models were trained 

starting with randomly generated weights. 

4.2.5.1.3 Combined 14 models to estimate GRF across whole jump activity 

The SVM and two ANNs were combined in 2 models, 1 for bilateral landings and 

1 for unilateral landings. Separate models were used for each type of landing to improve 

accuracy due to the differences between bilateral and unilateral landings. In each 

individual model, once a data point was classified by the SVM as being within the 

ground phase or the flight phase of the jump, it was fed into the corresponding neural 

network, as demonstrated in previous reporting (Leporace et al., 2015). This structure 

allowed for each individual data point to be introduced to the machine learning model 

to produce an estimation of GRF profile across the whole activity. The model 

architecture is shown in Figure 4.3. 
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Figure 4.3  

Model architecture 

 

To evaluate the combined model, incorporating the SVM and both ground- and flight-

phase ANNs, the GRF estimations across the total GRF curve were compared with force 

platform ‘gold standard’ GRF using RMSE, as well as Pearson’s correlation coefficients 

to provide indication of standardised fit. The total GRF curve of each jump was considered 

including both the flight phase and subsequent ground phase.  

4.2.5.1.4 Determination of optimal sensor number and locations 

The performance of all sensor combinations was compared by utilising a SVM, an 

ANN and the Combined 14 Models for each sensor combination. For both unilateral and 

bilateral jumps, 63 models were developed, 1 for each different combination of sensors 

(all 6 sensors, all combinations of 5 sensors, all combinations of 4 sensors, etc.). SVM 

performance was evaluated using a confusion matrix for classification accuracy. ANN and 

Combined 14 Model performance was evaluated by comparison with force platform GRF 

across the whole jump activity using RMSE and Pearson’s correlation coefficients. This 

was determined using a leave-two-out-cross validation approach, where the model was 

trained on 12 dancers and evaluated on the remaining two, and this was iteratively repeated 

on all combinations of two dancers (total of 91 combinations, yielding a total of 11,466 

models trained and tested (63 [possible sensor combinations] × 91 [combinations of 

dancers] × 2 [unilateral/bilateral]). The 10 best possible combinations (number and 

locations) of sensors were saved. The leave-two-out cross validation approach was used 

to allow greater generalisability of the model given the smaller sample size. The best 

single-sensor model based on location was identified for both unilateral and bilateral 

jumps. The best single-sensor model was determined by looking at the SVM, ANN and 
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Combined Model results together and determining which single-sensor location performed 

with greatest accuracy. Additionally, one of the top performing models from the leave-

two-out-cross validation for this single sensor was selected to be integrated into a user-

friendly program to use for Stage 3 of this development. 

4.2.5.2 Stage 2: Refinement and evaluation of single sensor models 

using a larger sample  

Single sacral-sensor models for both the bilateral and unilateral jumps were refined 

using data from 23 dancers. The model was developed using a leave-one-out-cross 

validation where it was iteratively trained on 22 dancers’ data and evaluated for the 

remaining 1 (total of 23 combinations) (Hendry, Chai, et al., 2020).  

To evaluate the performance of the Refined 23 Models, the average RMSE and 

correlation coefficients were determined for the GRF profile across the jump activity in 

comparison with the gold standard force platform GRF profile. One of the top performing 

models was selected to be integrated into a user-friendly program to use for Stage 3 of 

this development. 

4.2.5.3 Stage 3: Validation of Combined 14 Models and Refined 23 

Models to determine peak ground reaction force using 

single sensor 

For both the 14 dancer and 23 dancer single-sensor models, one of the top-performing 

models was selected to be integrated into a user-friendly MATLAB (MathWorks, Inc., 

MA, USA) program to use for peak GRF output (maximum value within the ground phase) 

for a selection of trials for each of the 23 participants. Bland–Altman plots were 

constructed to determine the level of agreement between the machine learning models and 

the gold standard force platform peak GRF values. 

4.3 Results 

4.3.1 Stage 1: Support vector machine, artificial neural network and 

Combined 14 Models performance 

The performance of the SVM when all 6 sensors were used demonstrated an average 

87.8% degree of accuracy for unilateral jumps and 80.8% for bilateral jumps. Using all 6 

sensors, the Combined 14 Models, trained and tested on 91 combinations of dancers, 

demonstrated an average RMSE of 0.24 BW for unilateral landings and 0.21BW for 

bilateral landings, with average correlation coefficients of 0.96 and 0.98, respectively. 
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4.3.2 Stage 1: Determination of optimal sensor number and locations  

The performance of the Stage 1 SVMs tended to improve with fewer sensor inputs. 

This is demonstrated in Table 4.1 which shows the best sensor location combinations for 

1 to 5 sensors. The sacral sensor had the highest accuracy of any single sensor. Confusion 

matrices for the single sacral sensor are demonstrated in Figure 4.4. 

Table 4.1  

Support vector machine (SVM) performance for best sensor location combinations for each 

number of sensors 

 Unilateral  Bilateral  

# sensors Best Combination 

% correctly 

predicted Best Combination 

% correctly 

predicted 

1 Sx 89.3 Sx 83.6 

2 Sx, LSh 88.5 Sx, Tx 82.8 

3 Sx, Tx, RSh 88.3 Sx, LTh, RTh 78.5 

4 Sx, Tx, LSh, RSh 86.3 Sx, Tx, LTh, RTh 82.3 

5 Sx, Tx, RTh, LSh, RSh 88.5 Sx, Tx, LTh, RTh, RSh 76.5 

Key:  

Sx- Sacrum, Tx- Thoracic, LTh- Left Thigh, RTh- Right Thigh, LSh- Left Shin, RSh- Right Shin 

Figure 4.4  

Confusion matrices for support vector machine performance with single sacrum sensor 

 

The performance of the top 10 performing sensor combination Stage 1 ANNs and 

Combined 14 Models is shown in Table 4.2.  
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Table 4.2  

Artificial neural network (ANN) and Combined 14 Model performance of top 10 performing 

unilateral and bilateral jump models ranked by degree of accuracy from most to least accurate 

Sensor Combinations 

Flight phase 

(ANN1) 

RMSE (BW) 

mean 

Ground phase 

(ANN2) 

RMSE (BW) 

mean 

Combined 

(flight and 

ground phase) 

RMSE (BW) 

mean 

Correlation 

coefficient 

mean  

Unilateral 

Sx, Tx, LTh, RTh, LSh 0.05 0.27 0.24 0.96 

ALL 0.05 0.28 0.25 0.96 

Sx, Tx, LTh, RTh 0.05 0.28 0.25 0.96 

Sx, Tx, LTh 0.05 0.28 0.25 0.96 

Sx, Tx 0.05 0.28 0.25 0.96 

Sx, LSh, RSh 0.05 0.28 0.25 0.96 

Sx, LTh, RTh, LSh, RSh 0.05 0.28 0.25 0.95 

Sx, LTh, RTh 0.05 0.28 0.25 0.95 

Sx 0.05 0.29 0.25 0.95 

Tx 0.05 0.40 0.35 0.90 

Bilateral 

Sx, Tx 0.04 0.26 0.20 0.99 

Sx, Tx, LTh, RTh, LSh 0.04 0.26 0.20 0.99 

Sx, Tx, LTh 0.04 0.27 0.21 0.98 

All 0.04 0.27 0.21 0.98 

Sx, Tx, LTh, RTh 0.05 0.29 0.22 0.98 

Tx, LTh, RTh, LSh, RSh 0.04 0.31 0.24 0.98 

Tx, RTh, LSh 0.04 0.31 0.24 0.98 

Sx, LTh, RTh 0.04 0.31 0.24 0.98 

Sx 0.04 0.32 0.24 0.98 

Tx 0.04 0.31 0.24 0.98 

Key:  

Sx- Sacrum, Tx- Thoracic, LTh- Left Thigh, RTh- Right Thigh, LSh- Left Shin, RSh- Right Shin 

ANN1- Flight Artificial Neural Network, ANN2- Ground Artificial Neural Network, RMSE- Root Mean 

Square Error, BW- Body Weight 

4.3.3 Stage 1: Combined 14, best single-sensor models 

Considering the performance of the model overall, it was determined that the best 

single-sensor model was the sacrum sensor, with an RMSE of 0.25 BW for unilateral 

landings and 0.24 BW for bilateral landings, with a correlation coefficient of 0.95 and 

0.98, respectively. Considering both the SVM and the Combined 14 Model results this 

was also considered the best sensor combination overall. Examples of the GRF profile 

output by the force plate and the best single sensor model are shown in Figure 4.5.  
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Figure 4.5  

Outputs from unilateral and bilateral models—ground reaction force (GRF) profiles 
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4.3.4 Stage 2: Refined 23 Models 

The accuracy of the Refined 23 Models’ capability to estimate the GRF profile, 

accounting for all 23 dancers’ data, is demonstrated in Table 4.3.  

Table 4.3  

Accuracy of final model estimation of Ground reaction force (GRF) across complete curve 

Model 

SVM to 

identify flight 

or ground 

phase 

accuracy (%)  

mean 

(range) 

Flight phase 

(ANN1) 

RMSE (BW) 

mean 

(range) 

Ground Phase 

(ANN2) 

RMSE (BW) 

mean 

(range) 

Combined 

(flight and 

ground phase) 

RMSE (BW) 

mean 

(range) 

Correlation 

coefficient 

mean 

(range) 

Unilateral 
83.17  

(69.93–92.66) 

0.05 

(0.03–0.06) 

0.30 

(0.19–0.46) 

0.42 

(0.22–0.61) 

0.80 

(0.55–0.97) 

Bilateral 
84.06 

(75.40–95.59) 

0.04 

(0.02–0.05) 

0.27 

(0.18–0.53) 

0.39 

(0.25–0.67) 

0.92 

(0.71–0.98) 

 

4.3.5 Stage 3: Combined 14 Models and Refined 23 Models’ ability to 

determine peak GRF 

The best bilateral and unilateral model determined for the Combined 14 Models and 

Refined 23 Models was evaluated. The mean (SD) peak GRF as determined by the force 

platform was 2.35 BW (0.38) for the unilateral jumps and 3.13 BW (0.72) for the bilateral 

jumps. The mean (SD) peak GRF for the Combined 14 Models was 2.24BW (0.35) for the 

unilateral model and 2.95 BW (0.58) for the bilateral model. For the Refined 23 Models 

the mean (SD) peak GRFs were 2.12 (0.20) and 3.28 BW (0.62), respectively. The Bland–

Altman plots are demonstrated in Figure 4.6.  
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Figure 4.6  

Bland-Altman plots for peak GRF estimation performance 
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4.4 Discussion 

The overall aim of this study was to validate the estimation of peak GRF from 

wearable sensor data during dance jumping tasks against gold standard force plate data. 

This aim was achieved through a multistage approach to development. The model 

architecture was developed within the first stages using 14 dancers, and evaluation of the 

different sensor numbers and locations determined that a single sacrum-mounted sensor 

performed with the same accuracy as the multi-sensor models for both unilateral and 

bilateral jumps. Interestingly, the second-stage model, developed on a larger sample, 

yielded poorer accuracy.  

Regardless of the number and locations of sensors, all developed models in Stage 1 

performed well. All of the top 10 sensor combinations for the Combined 14 Models 

demonstrated an RMSE of less than 0.35 BW for the unilateral models and 0.24 BW for 

the bilateral models. This model performance was superior to previous machine learning 

model developments for GRF using data from 3 sensors on 8 participants to predict GRFs 

during running (average RMSE of 0.40 BW) (Wouda et al., 2018). Additionally, the 

accuracy demonstrated in the current was similar to that shown for a knee joint reaction 

force machine learning model, developed on data from 13 participants (Stetter et al., 

2019). Their model achieved an average RMSE of 16.7% for unilateral jump landings and 

25.9% for bilateral. Table 4.4 demonstrates a tabulated comparison of the results of the 

existing study compared with previous reporting. Additionally, the single sacrum sensor 

Combined 14 Models and Refined 23 Models were capable of detecting peak GRF with a 

similar mean difference between the model and the gold standard force platform. For the 

single sacrum sensor unilateral Combined 14 Models the mean difference was 0.11 BW 

and for the single sacrum sensor bilateral Combined 14 Models the mean difference was 

0.19 BW. Similarly, for the single sacrum sensor unilateral Refined 23 Models the mean 

difference was 0.22 BW and for the single-sacrum sensor bilateral Refined 23 Models it 

was 0.18 BW. These mean differences were slightly higher than that demonstrated by 

Wouda et al, where the peak GRF mean difference demonstrated between their model and 

the force platform was 0.10 BW (Wouda et al., 2018). Overall the current study’s findings 

suggest that the application of a machine learning approach to wearable sensor dancer for 

GRF estimation during complex athletic jumping activities, provides an accurate means to 

field-based estimation of GRF.  
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Table 4.4  

Comparison of findings with other studies 

Reference 

Participants 

used for 

development 

Number of  

sensors 

Sensor 

locations 

Machine 

learning 

approach Movement tasks 

Variable measured by 

machine learning 

approach Average RMSE  

Current Study 23 female 

dancers 

(Stage 1 

developed on 

14 dancers, 

stage two on 

23) 

All 

combinations 

of 6, 5, 4, 3, 2 

and 1 sensors. 

Demonstrated 

a single 

sensor 

approach in 

final reporting 

Bilateral thigh, 

bilateral tibia, 

sacrum, 

thoracic 

SVM and ANN Unilateral and bilateral 

jumps 

Resultant GRF across 

all data points of GRF 

profile, peak GRF. 

Stage one development: 

Unilateral: 0.25 BW 

Bilateral: 0.24 BW 

Stage two development:  

Unilateral: 0.42 BW 

Bilateral 0.39 BW  

(Wouda et al., 

2018) 

8 runners 3 sensors Bilateral leg, 

sacrum 

ANN Running  Vertical GRF across all 

data points of GRF 

profile, peak GRF 

0.40 BW 

(Johnson et al., 

2019) 

Did not specify  1 sensor Sacrum Convolutional 

Neural 

Network 

Running and side 

stepping 

3-dimensional GRF 

across all data points 

of GRF profile 

19.7% (sidestep)–

29.7% (run) of BW 

(Stetter et al., 

2019) 

13 2 sensors Thigh and shin ANN Running, running with 

turn, sprint start, full 

stop, side cutting 

maneuvers, walking, 

walking with turning, 

unilateral and bilateral 

jumping and landing 

3-dimensional knee 

joint reaction force 

Vertical: 19.1% of BW 

Anterior/ Posterior: 

21.8% of BW 

Medial/Lateral: 38% of 

BW 
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The Combined 14 Models development revealed the most accurate number of sensors 

and sensor locations for the unilateral model consisted of 5 sensors, and the second most 

accurate of all 6. Interestingly, the single sacrum sensor was almost as accurate as a 

combination of multiple sensors, with the same RMSE, of 0.25 BW as these multi-sensor 

combinations. For the sacrum bilateral model, the difference between the best performing 

multi-sensor combination (sacrum and thoracic sensor) was only 0.04 BW. Additionally, 

regardless of whether a multi-sensor or single-sensor model was used, there was excellent 

correlation between the machine learning models and gold standard force platform (0.95 

and 0.96, respectively). A similar difference existed for the bilateral model, which 

displayed stronger correlation than the unilateral. This was unexpected, as previous 

literature has suggested that for machine learning applied to wearable sensors and human 

movement, multiple sensors are advisable, as it can provide the highest recognition rate 

(Attal et al., 2015). The results of the SVM suggest that, within the current study, the use 

of more sensor locations resulted in poorer classification of ground or flight phase, thus 

effecting the rest of the model. To date, no other researchers have demonstrated the use of 

machine learning with a single sensor; only one other study has utilised a single sensor 

machine learning model for GRF estimation during sidestepping and running (Johnson et 

al., 2019). There are multiple practical benefits of using a single sensor as opposed to 

multiple sensors; a single sensor is more affordable, has a reduced athlete and analysis 

burden, and does not require synchronisation with other sensors, thus reducing overall 

processing demands.  

The best single-sensor location was the sacrum. This was of interest as, currently 

within the sporting environment the most common location for a single sensor appears to 

be on the upper back (Chambers et al., 2015; Hulin et al., 2017; McNamara et al., 2015; 

Rogalski et al., 2013). For example, when sensors are used in team sports for quantification 

of training volumes and impacts, as part of athlete monitoring regimes, the sensor is most 

commonly mounted to the upper back (Hulin et al., 2017; Rogalski et al., 2013). While 

the single thoracic sensor still featured within the top 10 performing sensor combinations 

in the unilateral model, as found during feature extraction, it had a 0.10 BW higher RMSE 

than the sacrum sensor, thus was less accurate. Interestingly, the RMSE was not different 

between sacrum and thoracic mounted sensors in the bilateral model. One other machine 

learning study has demonstrated the use of a single sacrum sensor, showing an error of up 

to 29.7% during running, which would equate to approximately 0.7 BW, given that during 

running the GRF attained can be up to 2.5 BW (Johnson et al., 2019). Thus, the models 
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developed in the present study performed with greater accuracy. A sacrum-mounted 

sensor is also the most feasible sensor location for the application to dance, conforming to 

both aesthetic and movement requirements. Within other sports, the results of our study 

suggest that if sports scientists would like to objectively quantify impact loading, 

particularly for single limb loading activities as part of athlete monitoring, a sacrum 

mounted wearable sensor may be more accurate when compared to an upper back-

mounted sensor.  

When the single sensor sacrum model was further developed in the Refined 23 

Models, the mean RMSE increased to 0.42 BW for unilateral jumps and 0.39 BW for 

bilateral jumps. Additionally, the correlation coefficients also reduced to 0.80 for the 

unilateral model and 0.92 for the bilateral model. While in theory, a larger data set should 

improve generalisability of the model and model performance, it is likely that the reduced 

accuracy of the models seen in the Refined 23 Models is due to overfitting. When the 

models were trained with the larger data set, the data set was skewed. This is common of 

normal human movement and one of the common challenges within machine learning 

(Krawczyk, 2016), where in this case the dancers demonstrated a small number of variable 

GRF profiles. This was clearly highlighted in the peak GRFs Bland–Altman plots. When 

peak GRF was output using the Refined 23 Models, the unilateral model did not 

demonstrate peaks greater than 2.29 BW and the bilateral 4.01 BW, despite the gold 

standard force platform demonstrating greater values up to 3.85 BW and 5.51 BW for 

unilateral and bilateral jumps respectively. This cropping of values in the Refined 23 

Models was not evident in the Combined 14 Models development. This has not been 

reported before and, given that increased data have been reported to increase accuracy, is 

surprising (Krawczyk, 2016). Further exploration of the data set using frequency 

histograms for the bilateral jumps (see Appendix H), demonstrating the range of GRFs 

used for training the models in the development of the Combined 14 and Refined 23 

Models confirmed this hypothesis. The dancers landed with reasonably consistent GRFs, 

with the majority of peaks falling between 1.5–2.5 BW for unilateral jumps and 2.0–2.8 

BW for bilateral jumps. Furthermore, the Refined 23 Models’ data shown in Appendix H 

appears to be skewed towards smaller GRFs. This was likely due to the nature of the 

jumping tasks that were utilised, and represented an imbalanced data set (Krawczyk, 

2016). Future research aiming to determine peak GRF during athletic tasks could 

potentially firstly endeavour to train the model with a large range of peak GRFs and also 

train the model specifically to detect the peak as opposed to the whole curve.  
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4.4.1 Strengths and limitations 

The models developed in this study can be used to estimate the GRF during impact-

based activities in the athletic area of dance. While the authors acknowledge that dance is 

a niche athletic area, this study provides a proof-of-concept that could be easily applied to 

other sports, thus is highly translatable. The accuracy achieved is promising with a number 

of strengths. The models were developed using a relatively large sample compared to other 

studies, and additionally this sample included a range of dance ability thus increasing 

generalisability of the models. This study was limited to estimation using only IMU 

acceleration outputs. While the use of only accelerometer potentially reduces processing 

time and promotes longer battery life in the sensor, it only allows for resultant GRF 

estimation with no indication of the direction of the forces. Future developments of 

machine learning algorithms should consider utilising well calibrated magnetometer and 

gyroscope data to allow for force direction. Furthermore, by accurately estimating the GRF 

combined with specific segments kinematics, traditional inverse dynamics models could 

be applied to potentially calculate external joint forces at every joint. Additionally, the 

ActiGraph Link sensor used in this research was limited to a maximum sampling 

frequency of 100 Hz. A higher sampling frequency may provide more accurate results but 

also creates a greater burden of analysis.  

Despite the very strong correlations and low RMSE reported for the full GRF profile, 

the Refined 23 Models demonstrated an overfitting error that led to reduced accuracy in 

estimation of large peak GRF values during jumping. This suggests that future machine 

learning endeavours on athletic pursuits with large variability need to manage data 

carefully to ensure it encompasses the full variety of movement and is normally 

distributed. Finally, the models developed through the different stages of this research 

used different validation techniques dependent on the sample size presented for the model. 

Further research evaluating the most beneficial validation of machine learning models 

based on sample sizes is needed. Finally, the sensors may not always represent movement 

of true ‘rigid segments’ as they are fixed to soft tissue and may come loose. This risk was 

minimised by attaching the sensor with tape, participants wearing fitted clothing and 

securing clothing away from the sensor where possible to minimise movement artefact. 
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4.5 Conclusions 

The current study demonstrates that the novel application of machine learning to 

wearable sensor data allows for accurate estimation of peak GRF and the GRF profile 

during dance-specific jumping tasks. Interestingly, feature extraction testing revealed that 

a single sensor was capable of predicting GRF with the same degree of accuracy as a multi-

sensor model. No previous reports have demonstrated the use of machine learning applied 

to a single wearable sensor on a sample of this size and with the degree of accuracy shown 

in this study.  

While the results are promising, the development did come with challenges. When 

the model was trained and tested on a larger sample, the accuracy of the model deteriorated 

and there appeared to be overfitting of the model, resulting in a cropping of peak forces. 

This is reflective of an imbalanced data set which is considered typical to normal human 

movement, and movement that is performed by a highly trained, aesthetic population. 

Additionally, challenges of hardware malfunctions and synchronisation problems reduced 

the overall data set that was available for model development.  

These results provide scope for the use of a single wearable sensor, combined with 

machine learning, to accurately estimate near real-time GRF within a dancer’s normal 

training environment. While developed within the niche athletic area of dance, the models 

developed in this research demonstrate the feasibility of this approach, which could be 

applied to other lower limb-loading sports and activities, providing a field-based 

measurement system for biomechanical quantification. This system, and future 

developments of it, could be used for athlete monitoring, both clinically and in research 

settings, for the provision of field-based objective quantification of GRF’s during training, 

competition and performance could lead to an improved understanding of musculoskeletal 

pain conditions. 
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5 

Study 2B: 
 

Development of a Machine Learning 

Model for the Estimation of Hip and 

Lumbar Angles in Ballet Dancers 

This Chapter presents findings from Study 2b, describing the development and validation 

of machine learning models for the estimation of thigh elevation and lumbar spine sagittal 

plane joint angles during leg lifting tasks, allowing for field-based measurement of 

movement quality. Findings from this study have been published and are presented 

verbatim in this chapter. The full reference for the published manuscript is: 

Hendry, D., Napier, K., Hosking, R., Chai, K., Davey, P., Hopper, L., Wild, C., 

O’Sullivan, P., Straker, L., & Campbell, A. (2021) Development of a machine 

learning model for the estimation of hip and lumbar angles in ballet dancers. 

Med Probl Perform Art, 36(2): 61-71 

Ethics approval for this study was obtained from Curtin University Human Research 

Ethics Office (HRE2017-0185) (Appendix A). A recruitment flier was utilised to recruit 

participants (Appendix E) and participants were provided with a participant information 

and consent form which they completed prior to commencing the study (Appendix F). 

Chapter Five  
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5.1 Introduction  

Hip and low back pain are commonly experienced by ballet dancers (Allen et al., 

2012; Swain et al., 2017; Swain et al., 2018; Trentacosta, Sugimoto, & Micheli, 2017). 

This pain can be highly disabling, resulting in substantial modification to training and time 

loss from performance (Swain et al., 2018). For example, a systematic review 

demonstrated hip pain accounted for 17.2% of all musculoskeletal pain conditions 

reported by 2001 student and professional dancers whose training included ballet 

(Trentacosta et al., 2017). Similarly the low back is the third most common site of 

disabling pain in ballet and contemporary dancers, with recent studies finding 38-52% of 

pre-professional and professional ballet and contemporary dancers report a history of 

disabling low back pain (Hendry, Straker, et al., 2019; Swain et al., 2018). The majority 

of hip and low back pain presentations in dancers may be associated with repetitive loading 

through limb movement (Allen et al., 2012).  

Classical ballet choreography often requires the leg to be repeatedly elevated in a 

range of front, side and back positions that has been shown to require multi-planar hip 

movement and lumbar spine sagittal movement (Bronner, 2012; Bronner & Shippen, 

2015). For example, laboratory studies have reported that female dancers use 92.5° and 

95.2° of hip flexion (thigh relative to pelvis) during leg lifts to the front and side of the 

body (developpe devant and developpe a la seconde respectively, see Table 5.1), and 

during an arabesque task 23.4° of hip extension and 21° of lumbar spine extension. 

(Charbonnier et al., 2011) These movements are believed to be linked to hip and low 

back pain in dancers, however there is no evidence to support this hypothesis. This may 

be, in part, due to the limitations of current measurement systems. While the optical 

motion capture systems are considered the gold standard for evaluating joint kinematics, 

they cannot assess the cumulative exposure of dancers during normal dance training. 

Thus, a field-based system capable of measuring thigh elevation and lumbar angles may 

assist to further explore the relationship between large leg lift movements and the 

development of hip and low back pain in dancers. Recent advancements in small, 

commercially available inertial measurement unit sensors (IMUs), have opened the 

possibility of field-based measurement of joint angles and body segment elevation 

(Teufl et al., 2019; Wouda et al., 2018).  
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Table 5.1  

Description of leg lifting task 

Grands battements 

(devant,  
a la seconde, 

derriere) 

In a controlled large amplitude tossing or throwing 

action, the dancer flexes at the hip to bring the lower 

limb with the knee held in extension to the front of the 

body successively, closing into 5th position each time. 

The dancer then repeats this movement to the side of 

the body and then behind the body (hip and lumbar 

spine extension). 

3 repeats of 

each: 

3 directions, 

right and left 

Developpe  

(devant,  

a la seconde, 

derriere) 

In a slow controlled movement, the dancer lifts the lower 

limb by flexing the hip while keeping the knee flexed 

until the hip reaches end range, then extends the knee, 

to the front of the body. This is repeated to the side and 

the back.  

3 each direction, 

right and left 

Battement Lente  

(devant,  

a la seconde, 

derriere) 

In a slow controlled movement, the dancer lifts the leg 

to the front of the body, maintaining knee extension. 

This is repeated to the side and the back.  

3 each direction, 

right and left 

Translations:  

devant- to the front, a la seconde- to the side, derriere- to the back/ behind the body 

An IMU typically contains an accelerometer, gyroscope and magnetometer. Joint 

angles are often derived from data collected by several sensors utilizing a sensor fusion 

algorithm to estimate segment orientations (Teufl et al., 2019). For example, this indirect 

measure of orientation has been used to assess sagittal plane hip movement of healthy 

(non-dancer) participants during a squat using data from the accelerometer, gyroscope and 

magnetometer of 7 sensors, with a RMSE of 5.4-8.8° when compared to an optical motion 

capture system (Teufl et al., 2019). However, these methods have a number of limitations. 

Sensor fusion algorithms require several sensors to determine segment orientation. As well 

as being costly and increasing processing demands, multiple sensors are burdensome to 

the dancer and may impede the aesthetic and movement of dancers (Mjosund et al., 2017; 

Teufl et al., 2019). Furthermore, in field-based use, magnetometer interference and drift 

can result in reduced sensor accuracy (Vitali et al., 2020). Direct measurement of angular 

velocity and acceleration may afford analyses of movement quality beyond what is 

afforded by traditional metrics of range of motion and activity tracking. Recent advances 

in computational methods, such as machine learning algorithms, have opened the 

possibility of a different way of processing the raw data to allow for joint angle or body 

segment elevation estimation.  

Machine learning is an application of artificial intelligence which enables systems to 

automatically learn from experience without being explicitly programmed (Argent et al., 

2019). Machine learning is beginning to be applied to develop models that can predict 
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joint kinematics in clinical and sports research (Argent et al., 2019; Wouda et al., 2018). 

For example, Argent et al.,2019 developed machine learning models using data from 

either thigh or shin mounted sensors on healthy young adults, to measure hip and knee 

angles during simple rehabilitation exercises (such as active knee and hip flexion) (Argent 

et al., 2019). The average RMSE for knee angles ranged from 5.7 to 6.1°, and for hip 

from 3.6 to 6.1°. Machine learning, in the form of an artificial neural network, has also 

been applied to the more dynamic, functional task of running. Wouda et al  (2018)  

estimated knee sagittal plane angles, using data from 3 sensors (sacrum and bilateral 

shin). When their model was trained and tested on the same participant (n=8) the RMSE 

ranged from 1.4° to 4.4° (Wouda et al., 2018). However training and testing the model 

on the same individual provides a model of very limited generalizability. When this 

model was trained on 7 participants and tested on 1, and this was cycled through (leave-

one-out cross validation), the accuracy of the model substantially reduced with an RMSE 

range from 4.8° to 19.5° (Wouda et al., 2018). Recent research has applied machine 

learning methods to sensors used in ballet for human activity recognition and estimation 

of ground reaction forces (GRFs) (Hendry et al., 2020a; Hendry, Leadbetter, et al., 2020), 

however, to our knowledge, no researchers have utilized machine learning to estimate 

segment angles from sensor data during more complex, functional athletic- or dance-

specific tasks. Development of such a model would allow for field-based measurement 

of kinematics, which could be used to further understand the etiology of hip and lower 

back pain in dancers.  

The aim of this study was to develop a machine learning model capable of 

estimating a dancer’s peak thigh elevation angle (as a measure of commonly discussed 

leg height construct) and peak lumbar sagittal plane angle during leg lifting tasks, using 

wearable sensor data. Such a system would provide accurate field-based measurements 

of dancers’ thigh and lumbar spine kinematics, enabling a better understanding of the 

role of these kinematics as contributing etiological factors in the development of 

dancers’ hip and low back pain.  

5.2 Methods 

5.2.1 Participants 

Thirty female ballet dancers (mean (SD) age: 18.5 (1.7) years) were recruited from 

dance schools across Perth, Western Australia. To be included in the study, dancers were 

required to be 16 years or older and participating in a minimum of 6 hours of ballet training 
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per week. Only female dancers were recruited for this study due to higher female 

participation rates in pre-professional ballet. Both recreational and pre-professional 

dancers were included in the study to capture a diversity of skill levels and substantial 

variability of movements to enhance model development. Informed written consent was 

obtained from all individual participants included in the study. Dancers were excluded 

from the study if they were currently injured or unwell. This study was approved by the 

institutional human research ethics committee (HRE2017-0185).  

5.2.2 Data collection  

Dancers attended a single, 1 hour data collection session at the institutional motion 

analysis laboratory. Dancers completed a short questionnaire detailing their current dance 

participation and years of dance experience. Body mass, height and limb measurements 

(lower limb length, knee width, ankle width) were recorded using calibrated scales (Tanita 

Corporation of America, Arlington height, Illinois, USA), a stadiometer (Mentone, 

Victoria, Australia) and a tape measure, allowing for subject calibration with the motion 

analysis system. Data collection for each participant took approximately 45 minutes. 

Three-dimensional motion analysis data were collected using an 18 camera Vicon 

motion analysis system (Oxford metrics, Oxford, UK) operating at 250 Hz. For this purpose, 

21 reflective markers (12.5 mm diameter) were attached to each dancer’s lower limbs, pelvis 

and trunk using low allergenic double-sided tape according to the Plug in Gait lower limb 

and trunk models (Oxford Metrics, Oxford, UK) (Hendry et al., 2015; Krasnow, 

Wilmerding, Stecyk, Wyon, & Koutedakis, 2012). Exact marker locations are detailed in 

Figure 5.1. Segment orientations are detailed in Appendix I. 

The dancers also wore 6 ActiGraph Link IMU sensors (ActiGraph Corporation, 

Pensacola, FL), operating at 100Hz and with the gyroscope and magnetometer enabled. The 

ActiGraph Link is a small commercially available wearable sensor which includes an on-

board tri-axial accelerometer, gyroscope and magnetometer. The sensors were secured to 

the skin using a single piece of double-sided hypoallergenic tape, and a piece of elasticated 

hypoallergenic tape covering the sensor (Hendry et al., 2020a; Hendry et al., 2020b). Sensors 

were placed on the thoracic spine (at the level of T1), sacrum (recommended as this is close 

to an individual’s center of mass) and bilateral thigh and shin (to capture lower limb 

movement) (Hendry et al., 2020a; Hendry et al., 2020b). Exact sensor located are detailed 

in Figure 5.1 and in Hendry et al (2020 a & b).  
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Figure 5.1  

Anatomical locations of inertial measurement units (IMUs) 

 

Reflective marker placement for Plug in Gait Model shown in blue and wearable 

sensor placement shown in orange. 

5.2.3 Leg lifting tasks 

Following a self-directed warm up and attachment of markers and sensors, the 

dancers performed a series of 3 types of ballet-specific leg lifting tasks (Table 5.1). The 

selected tasks were representative of the different types of leg lifting tasks performed 

within a ballet class and included slow (battement lente and developpe) and fast (grands 

battements) movements, as well as movements where the dancer lifted their leg up while 

maintaining knee extension (battement lente, grands battements), and when they unfolded 

the leg (developpe). All leg lifting tasks were performed to the front, side and behind the 

body, and performed 3 times on 2 sides (right and left). Dancers self-selected their timing 

and amplitude of the movement, rather than timing being controlled by a metronome or 

music, allowing for the model to be trained and tested on diverse data. The relative speed 

of the movement performed conformed with the specific movement they were 

performing. The side (right or left leg) that the dancer was lifting was recorded by the 

researchers for each trial. 
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5.2.4 Data preparation 

The optic motion capture data were collected (250Hz) and processed using Vicon 

Nexus software (Oxford Metrics, Oxford, UK). This system is known to have only small 

dynamic reconstruction errors (<2mm) (Merriaux, Dupuis, Boutteau, Vasseur, & Savatier, 

2017) and optical motion capture using retroreflective markers is generally the gold 

standard motion analysis system to derive body segment positions and orientations (Ehara 

et al., 1997). Optic motion capture data were down-sampled from 250Hz to 100Hz to allow 

for time synchronization with the sensor data (100Hz). Three output variables were 

estimated: whether the dancer was lifting the right or left leg, thigh elevation angle and 

lumbar spine sagittal plane angle. The thigh elevation angle is the angle of the thigh relative 

to the horizontal, formed using the Z component of a YZY Euler angle decomposition. The 

change in the rotation sequence was the decomposition that allowed for this. The lumbar 

spine sagittal plane angle was determined using the Z component from a ZXY Tait-Bryan 

decomposition of the orientation of the thorax relative to the sacrum. The complete 

movement profile of each leg lift task was output, as well as the maximum angle achieved 

during the leg lift (for leg lifts to the front and side) and the minimum angle achieved (for 

leg lifts to the back, which were primarily extension movements). 

The sensor raw data, including accelerometer, gyroscope and magnetometer outputs 

in all 3 planes, were downloaded using ActiLife software (Version 6.13.3) as date-time 

stamped files.  

A customized LabVIEW program (National Instruments, Texas, USA) was used to 

fuse the raw sensor data using a modified Madgwick algorithm (Madgwick, Harrsion, & 

Vaidyanathan, 2011). The program then used cross-correlation of the sensor orientation 

quaternions with the orientation quaternions of the corresponding Plugin-Gait segment of 

the leg that the dancer was lifting, to automatically time synchronize the sensor and optic 

motion capture data. Synchronization of the sensor and optic motion capture data was 

visually inspected by 1 of the researchers and manually adjusted where required. 

Following time synchronization, the program output a collated file of all wearable sensor 

raw data, the leg that the dancer was lifting (right or left) and the optic motion capture 

thigh and lumbar spine angle data for each task.  

Data from 7 dancers were removed from the dataset due to; sensor hardware 

malfunctions resulting in sensors not collecting data (n=1), sensor data download 

malfunctions (n=1), synchronization issues detected during initial synchronization (n=2), 

and abnormal sensor data detected during data cleaning and preliminary modelling (n=3). 
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Abnormal sensor data and synchronization issues appeared to stem from sensor drift and 

misalignment due to magnetometer calibration issues and interference, during 

synchronization. The remaining dataset (n=23 dancers, 1242 individual movements: 3 

types of leg lifts at 2 speeds (slow and fast) in 3 directions (front, side, back) repeated 3 

times by each of 23 dancers) was reviewed and cleaned. Outliers, such as movements 

beyond physiological capabilities, were removed. Specifically, global thigh angles of 

greater than 150° to the front and back or greater than 160° to the side were removed 

Additionally, trials where the optic motion capture peak thigh and lumbar spine angles 

were missing due to occlusion of hip reflective markers were also removed. A total of 24 

individual movements removed, accounting for 2% of the data set. The final analytic data 

set used for modelling was from 23 dancers and 1218 leg lifts.  

The models were developed in 2 stages, with the final goal being to achieve a system 

capable of estimating which leg the dancer lifted, peak thigh elevation angle, lumbar plane 

sagittal angle. The stages of development are demonstrated in Figure 5.2, and described 

below (Section 5.2.5). 

Figure 5.2  

Flow diagram detailing methods 
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5.2.5 Machine learning model development 

5.2.5.1 Stage 1: Initial models development and evaluation 

Initial experimentation was performed utilizing neural networks, with a number of 

different architectures explored (detailed further in Appendix J). A neural network 

architecture based on long-short term memory units delivered the best results. Long short-

term memory units are a class of recurrent neural networks that can effectively learn 

dependencies between steps in sequence data (Liu, Du, Wu, Wang, & Qiao, 2016). 

Removing the magnetometer sensor data improved model performance, so only 

accelerometer and gyroscope sensor data were used. During data collection, metal 

equipment in the space may have interfered with the magnetometer’s ability to measure 

magnetic north.  

The aim of this stage was to determine which combination of the 6 sensors performed 

with the greatest degree of accuracy. Models were developed for all possible combinations 

of 6, 5, 4, 3, 2 and 1 sensor, yielding a total of 63 possible sensor combinations. Each of 

these models were trained and tested using a leave-one-out cross validation process, where 

each model was trained on 22 dancers and tested on 1 and this was iteratively cycled 

through all 23 dancers, yielding a total of 1449 individual models. The RMSE was 

determined. To allow comparison, the top 10 different sensor combinations and their 

average RMSE are reported in the results. These experiments were run on a compute 

instance using Google Cloud’s compute engine (n1-standard-4 (4 vCPUs, 15GB memory)).  

The model that demonstrated the lowest RMSE from these experiments, used the 

sensor data from the left and right thigh sensors. This was considered the most accurate 

model and was used throughout the remainder of the study as the final model.  

5.2.5.2 Stage 2: Final model architecture  

The final model architecture consisted of a single model architecture (Figure 5.3), 

requiring the input of the raw triaxial accelerometer and gyroscope data from the 2 thigh 

sensors with 3 outputs returned; a prediction for side (left or right) and estimations for 

thigh elevation angle and lumbar spine sagittal plane flexion for each time step.  
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Figure 5.3  

Model architecture demonstrating inputs and outputs of model 

 

The model was capable of producing the described outputs regardless of whether the 

leg was lifted to the front, side or back. However, the model was not designed to predict 

if the leg was lifted to the front, side or back. Therefore, investigator knowledge of the 

direction of the leg lift is required when applying the model. This was decided as this 

research is part of a larger body of work, which includes human activity recognition 

models capable of detecting the direction of leg lifting movements (Hendry et al., 2020a). 

Full details of the final model and definitions of terms can be seen in Appendix J.  

5.2.6 Evaluation of final model performance 

Model performance was evaluated using a leave-one-out, cross validation method, 

where the model was trained on data from all participants except 1, which is “held out” as 

a test data set. This process was iteratively repeated until all participants had served as the 

test data, thus testing a total of 23 different models. The performance of all 23 models 

were aggregated for further analysis. 

Descriptive statistics (mean and standard deviation) were used to describe the average 

peak thigh elevation angle and lumbar spine sagittal plane angle across all trials for both 

the machine learning models and optic motion capture output. The models’ ability to 

determine which leg (right or left) the dancer was lifting, as determined by recording 

during data collection, in each trial was reported using a percentage of accuracy. RMSE 

was determined for angle across the entire leg lift movement profile and MAE determined 
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for the peak angle within each individual leg lift movement. The average percentage of 

accuracy, and average (range) RMSE and MAE determined from the leave-one-out cross 

validation method was reported. Bland-Altman plots were constructed to further evaluate 

the models’ capability for detecting the peak thigh elevation angle and lumbar spine 

sagittal plane angles. Pearson’s correlation coefficients, between the machine learning 

model and optic motion capture system, were determined for the peak thigh elevation 

angle and lumbar spine sagittal plane angles. The performance of the model was 

determined for all leg lifts (front, side and back directions combined) and each direction 

of movement individually.  

5.3 Results 

5.3.1 Initial models performance 

The top 10 models developed are demonstrated in Table 5.2. The model with the most 

optimal performance was the bilateral thigh model. 

Table 5.2  

Top 10 Performing sensor combinations considering all movement directions 

(front, side and back) 

Sensor Combination 

Leg accuracy  

(%) 

Thigh elevation 

angle RMSE  

(°) 

Lumbar spine 

sagittal plane 

angle RMSE  

(°) 

L thigh, R thigh 100% 7.0 5.8 

L thigh, R thigh, R shin 100% 7.2 6.0 

L thigh, R thigh, L shin 100% 7.3 6.0 

L thigh, R thigh, Sacrum 100% 7.4 6.0 

L thigh, R thigh, L shin, R shin 100% 7.7 6.1 

L thigh, R thigh, R Shin, Sacrum 100% 7.7 6.3 

L thigh, R thigh, Thoracic 100% 7.7 6.3 

L thigh, R thigh, L shin, Sacrum 100% 7.8 6.1 

L thigh, R thigh, L Shin, Thoracic 100% 7.8 6.3 

L thigh, R thigh, Sacrum, Thoracic 100% 7.8 6.5 
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5.3.2 Final model performance 

The models were able to correctly determine which leg the dancer was lifting in each 

trial 100% of the time.  When considering model performance specifically to the front, 

side and back, the average errors were similar (Table 5.3).  

Table 5.3  

Leave-one-out cross model validation results for thigh elevation angle and lumbar spine 

sagittal plane angle 

 Thigh Elevation Angle Lumbar Spine Sagittal Plane Angle 

 

Average  

[Standard 

Deviation]  

RMSE  

(Range) (°) 

Average  

[Standard 

Deviation]  

MAE  

(Range) (°) 

Average  

[Standard 

Deviation] 

RMSE  

(Range) (°) 

Average  

[Standard 

Deviation]  

MAE  

(Range) (°) 

Front 6.3 [3.2]  

(2.0-32.0) 

5.8 [4.8] 

(0.0-23.8) 

5.0 [2.1] 

(1.5-12.3) 

4.7 [3.5] 

(0.0-15.6) 

Side 6.6 [2.4] 

(1.8-16.8) 

6.1 [5.3] 

(0.0-26.0) 

5.2 [2.0] 

(1.3-12.3) 

5.8 [4.4] 

(0.0-19.2) 

Back 7.4 [3.8] 

(2.4-33.7) 

6.9 [5.8] 

(0.1-30.8) 

6.6 [2.6] 

(1.8-15.1) 

6.6 [5.1] 

(0.0-30.2) 

 

The average (SD) RMSE for the machine learning models thigh elevation angle 

estimation across the complete leg lift profile was 6.8° (3.2°) and average MAE for peak 

thigh elevation angle was 6.3° (5.3°). The average RMSE for the machine learning models 

lumbar spine sagittal plane angle estimation across the complete leg lift profile was 5.6° 

(2.4°) and average MAE for peak lumbar spine sagittal plane angle was 5.7° (4.5°). While 

the averages were relatively small, the range was relatively large (Table 5.3). There was a 

strong correlation between the machine learning models and optic motion capture for the 

peak angle values (thigh elevation angle r = 0.87, p < 0.001, lumbar spine sagittal plane 

angle r = 0.96, p < 0.001). 

The similarity between machine learning and optic motion capture outputs is further 

demonstrated in Figure 5.4, showing peak angles for thigh elevation angle (Figure 5.4 [1]) 

and lumbar spine sagittal plane angle (Figure 5.4 [2]) for leg lifts to the front, side and back.  

The Bland-Altman Plot analysis for the peak thigh and lumbar spine sagittal plane 

angles, during front side and back leg lifts are demonstrated in Figure 5.5. The bias for 

thigh elevation angle ranged from 1.0° to 3.9° across the 3 directions, with limits of 
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agreement from around -10° to +20°. For the lumbar spine sagittal angle, the bias ranged 

from -1.8° to 0.2° across the 3 directions, with limits of agreement from around -8° to +25°  

Figure 5.4  

Optic motion capture and machine learning determined mean (SD) peak thigh elevation angle 

[1] and lumbar spine sagittal plane angle [2] during leg lifts to the front, side and back 
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Figure 5.5  Bland-Altman Plots comparing machine learning model and optic motion capture estimated peak thigh and lumbar angles 
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The model with optimal performance, and thus recommended for future use, had 

100% leg side prediction accuracy, with an average (SD) RMSE of 5.4° (1.6°) for thigh 

elevation angle and 4.9° (4.3°) for lumbar spine sagittal plane angle, and average (SD) 

MAE of 3.9° (2.8°) and 4.6° (2.8°) respectively, with correlation coefficients of 0.85 (p < 

0.001) and 0.99 (p < 0.001) respectively.  

5.4 Discussion  

Using data from 6 sensors worn by 23 ballet dancers, machine learning models were 

developed which could accurately identify which leg the dancer was lifting, the global 

thigh elevation angle and the lumbar spine sagittal plane angle during a range of ballet- 

specific leg lift tasks. Interestingly, the models which used the data from 2 sensors worn 

on the left and right thighs yielded the greatest degree of accuracy.  

Overall the data used to train and test the models was a typical representation of the 

range of thigh and lumbar region movement that dancers achieve during leg lifting tasks. 

Previous literature using optical motion capture has demonstrated that dancers (n=11) 

achieve a mean hip joint (thigh relative to pelvis) flexion angle (SD) of 88.4° (14.5°) to 

95.2° (16.6°) during developpe to the front and the side (Charbonnier et al., 2011). The 

current study, which estimated thigh global angles, estimated magnitudes greater than 

those previously reported, i.e. 107.6° for front leg lifts and 117.6° for side leg lifts. While 

this difference is in part due to the difference in measurements, it may also be due to the 

tasks that were measured, or the larger sample of dancers. The data from the current study 

was taken from 3 different leg lifting tasks, incorporating slower and faster movements 

with different movement trajectories of the lower limb. Recent research has demonstrated 

that dancers achieve a greater range of motion in faster leg lifting tasks (Mira et al., 2019). 

Thus the data used to develop the models was representative of a range of different tasks, 

increasing generalizability of the models. The lumbar spine demonstrated the greatest 

sagittal plane movement during leg lifts to the back with an average of 37.5° extension. 

Again, this is greater than that previously reported, where dancers have demonstrated a 

mean of 21° extension, relative to the reference position (ballet first position), during an 

arabesque measured using an electrogoniometer (Feipel, Dalenne, Dugailly, Salvia, & 

Rooze, 2004). Similar to the thigh elevation angles, this study’s measurement of less 

lumbar extension could be due to the range of tasks presented within the current study and 

differences between measurement systems.  
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The results of the top 10 sensor combinations during the first stage of model 

development demonstrated only very small differences in accuracy (less than 1°) between 

these different combinations. However, the most accurate performing models used only 2 

thigh sensors. This was favorable, as a smaller number of sensors reduces processing 

demands and burden on the dancer (Hendry et al., 2020b). These findings were however 

surprising, particularly in relation to the lumbar spine angles, where traditional IMU 

filtering techniques use thorax and sacrum mounted sensors to estimate lumbar angles. 

The increased degree of accuracy using only 2 thigh mounted sensors in the current study 

likely reflects the stereotyped, coupled movement between the lower limb and lumbar 

spine seen during the leg lifting movements used for model development. Potentially, if 

the dancers performed a wider range of leg lifting tasks, incorporating more varied multi-

planar and multi-directional choreography the inclusion of sacrum and thorax mounted 

sensors would be needed to improve accuracy.  

The final models developed in this study performed with an acceptable degree of 

accuracy and excellent level of agreement with the gold standard motion capture data 

across all tasks. The average RMSE of 6.8° and MAE of 6.3° for the thigh elevation angle 

was reported during movements where the dancers were on average lifting their thigh 

107.8°. This is superior to the results of 2 comparable studies that applied machine learning 

to sensor data to estimate lower limb joint angles during running, and active range of 

movement tasks (Argent et al., 2019; Wouda et al., 2018). During running, a machine 

learning model developed using data from 3 sensors (bilateral shin and sacrum) placed on 

8 participants, demonstrated an average RMSE of 9.3° for sagittal knee angles (Wouda et 

al., 2018). The average peak knee flexion angles reached by the runners were 39.7° 

(Wouda et al., 2018). The current research used global angles, whereas the previous 

research used relative joint angles, which is computationally challenging. Further, a 

machine learning model for estimation of sagittal plane hip joint angles measured during, 

uniplanar range of movement tasks (standing hip flexion and extension) demonstrated 

RMSE’s ranging from 3.6-6.1° (Argent et al., 2019). While this error was smaller than 

that seen in the current study, the machine learning model developed only estimated hip 

angles, during a single movement task as opposed to estimating both thigh elevation and 

lumbar spine sagittal angles during multiple tasks. The estimation of the lumbar spine 

angles in the current study also demonstrated reasonable accuracy (RMSE 5.6°). However, 

the range of lumbar spine movement is substantially less than that achieved at the hip. 

There is a growing body of research using wearable sensors and machine learning to study 

complex movements in their natural environment, such as the study of postural alignment, 
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walking gait, running etc. (Díaz, Stephenson, & Labrador, 2020). The introduction of 

using machine learning has improved the ability to estimate segmental and joint angles as 

demonstrated by the accuracy estimates reported in the current study (Díaz et al., 2020). 

Given the results of the current study and previous studies, this growing area warrants 

further investigative effort. 

Interestingly, the Bland-Altman plot for the lumbar spine sagittal angles for the back 

leg lifts (Figure 5.5) demonstrated a clear linear relationship between the mean of the optic 

motion capture and machine learning model and difference between the two, with 

increasing negative error for smaller amounts of extension. Specifically, when the dancers 

achieved mid-range lumbar extension during a back leg lift the model performed 

reasonably well, however when they demonstrated greater or lesser amounts of lumbar 

extension, the final machine learning model tended to underestimate or overestimate the 

angle respectively. Interestingly, this clear linear relationship was not evident for the 

lumbar spine angles in the front and side leg lifts, nor in the thigh elevation angles. This 

pattern may be, due to the larger ranges of movement achieved by the lumbar spine during 

leg lifting tasks performed to the back than to the front and side. Potentially, the use of 

thigh sensor data rather than sensors located on the trunk would also influence this pattern.  

While the mean RMSE and MAE were reasonably small, the reported range of errors 

of both thigh elevation and lumbar sagittal angle were large, with errors ranging from 0° 

to 34°. However, these larger errors were very infrequent, as demonstrated by the small 

standard deviations. Rather than individual participants consistently displaying the larger 

errors, the larger errors were randomly occurred in some trials by different participants 

(e.g. an individual trial from 1 or 2 participants). Thus, while generally the model performs 

well sometimes there were large errors. This might be overcome by training on more 

diverse data sets. Alternatively, in applying machine learning to wearable sensor data, 

future model developments may consider retraining an established model on each 

particular application, in the effort to improve model performance. Regardless, the model 

developed in the current research have sufficient accuracy for group-based analysis, 

however caution should be exercised with individual analysis.  

5.4.1 Strengths and limitations 

This study demonstrates the accuracy of a machine learning method to estimate thigh 

elevation angle and lumbar spine sagittal angle from a diverse range of leg lift tasks 

representative of those performed in a typical ballet class were used to train the models. 
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While the leg lifts were taken from a ballet class, similar leg lifting tasks are performed 

during other dance styles (such as contemporary dance and jazz), therefore potentially 

increasing the generalizability of the model across multiple dance styles. The data used to 

develop the models was representative of a cross-section of ballet and contemporary 

dancers from recreational through to pre-professional levels, thus further enhancing the 

model generalizability. The sample was also larger than those previously used for machine 

learning model development for measuring joint kinematics, which may improve 

generalizability of the models. Further, the models were developed using raw 

accelerometer and gyroscope data, which are not susceptible to rotational drift, thus 

reducing potential issues with magnetometer drift and interference. 

The study was however limited to a population of female dancers, thus it cannot be 

determined whether these models would be feasible for use in male dancers, as men 

anecdotally demonstrate reduced hip and lumbar range of motion compared with their 

female counterparts. Further, the model was limited to thigh elevation and lumbar spine 

sagittal plane angles. While thigh elevation angles provide a good indication of leg height, 

future research should consider the 3-dimensional hip and lumbar angles independently. 

Given that ballet is characterized by large degrees of transverse plane motion in both the 

hip and lumbar spine 3-dimensional angles may provide further information on tissue 

loading and thus pain development. Also, the addition of pelvis-lumbar and pelvis-thigh 

interaction may also provide further information. However, 3-dimensional angle 

assessment and addition of pelvis interaction may require increasing the number of sensors. 

Regardless, this research provides a proof-of-concept that could be easily translated to 

measure segment angles in other dance-specific and other athletic-specific tasks. 

While the model provides estimates of side of leg lift, thigh elevation and lumbar spine 

sagittal plane angle, it does not identify the direction of the leg lift. As a result, in applying 

this model in a research or clinical based setting, prior knowledge of whether the dancer is 

lifting the leg to the front, side or back is required. It is noted, that this manuscript details 

one component in a more comprehensive machine learning system, which also incorporates 

a human activity recognition system for identification of leg lifts and direction of leg lift 

(Hendry et al., 2019). By combining these models, a comprehensive system that can 

measure both movement quantity (specific training volume) and quality (biomechanical 

features of thigh elevation and lumbar spine sagittal plane angles) would be possible.  
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5.5 Conclusion 

The final model developed in this research demonstrated excellent accuracy for 

detecting if the dancer was lifting their left or right leg and mostly acceptable accuracy for 

estimating thigh elevation angle and lumbar spine sagittal plane angle during ballet-

specific leg lifting tasks to the front, side and back.  

The findings of the research provide scope for a field-based, near real-time 

measurement system of joint angles during dynamic, functional dance leg lifting tasks. A 

minimal sensor, field-based motion capture system provides the capacity to capture a 

dancer’s movement in their normal training environment rather than an artificial and 

expensive lab environment. This potentially allows for the tracking of dancers’ real-world 

movements over time. Such a system provides new opportunities for researchers and 

clinicians working within dance medicine. For researchers it enables longitudinal field-

based studies to further understand the complex interaction of different factors that may 

contribute to the development of hip and low back pain in dancers. For clinicians, it allows 

for a system that can be used within the dancer’s normal training environment to assist 

with the assessment and management of dancers’ pain. 
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6 

Study 3: 
 

Movement Quantity and Quality: 

How do they Relate to Pain and 

Disability in Dancers? 

This Chapter presents findings from Study 3, where the wearable sensor system developed 

in Studies 1 and 2 was utilised in a field-based study to explore the relationship of 

movement quantity and quality with pain and pain related disability in pre-professional 

dancers. Findings from this study have been submitted to a journal.  

Ethics approval for this study was obtained from Curtin University Human Research 

Ethics Office (HRE2017-0726) (Appendix K). A participant information session was 

utilised to recruit participants (Appendix L) and participants were provided with a 

participant information and consent form which they completed prior to commencing the 

study (Appendix M). The questionnaires used in this study are presented in Appendix N. 

  

Chapter Six  
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6.1 Introduction 

Dancers frequently experience musculoskeletal pain, which can be disabling, 

resulting in the need to modify or cease normal training. Dancers are reported to undertake 

substantial workloads and perceive large workloads and related fatigue as leading causes 

of injury (Jeffries et al., 2020; Kozai et al., 2020). In recent years, substantial attention has 

been placed on quantifying athlete training to assist in understanding the development and 

experience of pain and disability (Gabbett, 2016; Gabbett et al., 2016; Gabbett & Jenkins, 

2011; Gabbett et al., 2014). While athlete monitoring systems are commonly applied in 

many elite sports, it’s only recently emerging within the field of dance, and only assesses 

quantity of dancers’ movement (Jeffries et al., 2016; Jeffries et al., 2020; Kozai et al., 

2020; L. Lee et al., 2017; Shaw et al., 2021). One recent study has demonstrated that week 

to week increases in professional ballet dancers’ movement quantity is associated with the 

rate of overuse, time loss injury (Shaw et al., 2021). However, amongst pre-professional 

dancers, the relationship is less clear. While one study has observed that weekly reported 

injuries mirror fluctuations in dancers self-reported hours of weekly training, another has 

found no association (L. Lee et al., 2017; Volkova & Kenny, 2020). The lack of consensus 

may reflect how movement quantity is measured.  

Previous research exploring dancers’ movement quantity has focussed on quantifying 

cumulative workload from activity diaries and schedules, for example daily hours of 

training (Byhring & Bo, 2002; L. Lee et al., 2017; Shaw et al., 2021; Twitchett et al., 2010; 

Volkova & Kenny, 2020). However it is recognised that these measures do not capture the 

movements that dancers perform within their training (Shaw et al., 2021). More recently, 

wearable sensors have been used to objectively determine the exercise intensity of dancers 

during their daily training (Jeffries et al., 2016; Kozai et al., 2020). This work has 

demonstrated that while dancers participate in several hours of training per day, the 

majority of this time is spent at low to medium intensity exercise (Kozai et al., 2020). Both 

approaches offer useful insights, however, to date no method exists that provides detailed 

cumulative workload information such as the number of repetitions of movements that 

may be provocative of pain, for example the number of jumps or leg lifts performed.  

Previous laboratory-based work has also demonstrated that the quality of movement 

may also be associated with pain and disability (Bronner, 2012; Bronner & Ojofeitimi, 

2011; Peng et al., 2015). Movement quality refers to the specific biomechanical 

characteristics of movement and could include aspects such as forces, accelerations, range 

of movement and variability (Bronner, 2012; Bronner & Ojofeitimi, 2011; Peng et al., 

2015). Specifically in dance movement quality, ground reaction force (GRF) during 
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jumps, and thigh elevation angles and lumbar spine sagittal angles during leg lifting tasks, 

may be an important consideration for pain and disability (Bronner, 2012; Bronner & 

Ojofeitimi, 2011; Peng et al., 2015). Cross-sectional laboratory studies have shown that 

during jumping activities dancers achieve peak GRF 2-7 times BW (Fietzer et al., 2012; 

Harwood et al., 2018; Hendry et al., 2020b; Jarvis & Kulig, 2016; Kulig, Fietzer, & 

Popovich, 2011). These substantial forces have been associated with the presence of lower 

limb pain (Peng et al., 2015). Additionally, the large ranges of motion associated with leg 

lifting tasks have been suggested as contributing to the development of lower back and hip 

pain (Bowerman, Whatman, Harris, & Bradshaw, 2015; Han et al., 2019; Swain et al., 

2018). While considered gold standard, laboratory methods have low ecological validity, 

thus are more appropriate for once off screening tests as opposed to regular or ongoing 

monitoring. Regular monitoring of dancers’ movement quality may assist in understanding 

the role of biomechanical demands in dancers’ pain.  

Recent developments in wearable sensor technology combined with the application 

of machine learning have allowed for the development of a dance-specific wearable sensor 

system capable of field-based measurement of movement quantity and quality (Hendry et 

al., 2020a; Hendry et al., 2020b; Hendry et al., 2021). This system enables field-based 

studies exploring the relationships of dancers’ pain and disability with movement quantity 

and quality within their naturalistic environment. Large longitudinal studies incorporating 

ongoing monitoring would enhance understanding of temporal association of changes in 

movement quality and quantity with musculoskeletal pain, which could be bidirectional. 

However, to justify larger studies it is important to understand if there are associations 

between movement quantity and quality within a dancer’s normal training when they are 

experiencing pain, and if the system is capable of detecting these. Thus, this study aimed 

to estimate the association between pre-professional student dancers’ movement quantity 

and movement quality with (i) pain severity, and (ii) pain related disability over the course 

of 1 university semester.  

6.2 Methods 

6.2.1 Study design 

This was a field-based study in which repeated wearable sensor-based measures of 

movement quantity and quality, along with self-reported measures of pain and disability 

were collected at 4 time points across a 12-week university semester, in the lead up to and 

following a performance season. This research was approved by the institutional human 

research ethics committee (HREC2017-0726).  
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6.2.2 Participants 

All female dance students enrolled in the full-time dance courses at an Australian 

dance training institute (n= 100) were invited to participate in this study. The dancers were 

provided with an information session about the research and participant information sheets 

prior to 52 providing consent. Only female students were included in the study, as female 

and males demonstrate different pain and movement profiles (Mattiussi et al., 2021; 

Novosel, Sekulic, Peric, Kondric, & Zaletel, 2019). To be included in the study, dancers 

were required to be a minimum of 16 years old and enrolled in one of the university’s full 

time dance training programs. These programs include extensive training in ballet and 

contemporary dance. All dancers provided written, informed consent prior to participation.  

6.2.3 Data collection 

Prior to commencing training for the semester dancers had a brief (1-2 minute) 

interview with 1 of the researchers, either a qualified physiotherapist or a final year 

physiotherapy student, both with backgrounds in dance. Demographic and 

anthropometric information collected by interview included year of training enrolment 

(first, second or third), age they commenced dancing, dance stream (ballet or 

contemporary) and height and weight.  

Dancers participated in 4 separate days (time points) of data collection. Only 4 days 

of data collection were scheduled across the 12-week semester period (see Figure 6.1) to 

minimise dancer burden. Data collected on 10-12 dancers each day, on a day with 

scheduled ballet technique class.  

On each time point of data collection, dancers independently completed a short 

electronic survey detailing any current pain they were experiencing and were fitted 

with a previously developed wearable sensor system, capable of field-based 

movement quantification. 
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Figure 6.1  

Data collection time periods across a university semester 

 

6.2.3.1 Pain severity and pain related disability 

Using the Self Estimated Functional Inability because of Pain Screening 

questionnaire (SEFIP) (Ramel et al., 1999), dancers reported the anatomical location(s) of 

their pain in Qualtrics (Qualtrics, Seattle, WA, USA). Dancers were requested to report 

any pain, irrespective of whether it affected their ability to dance. If the dancer reported 

multiple locations, they were asked to identify the body region which was bothering them 

the most. This was considered their most bothersome pain and self-report of pain intensity 

and pain related disability for that time point was made with reference to this pain location. 

For each dancer, the location of most bothersome pain could differ over the 4 time points.  

For their most bothersome pain dancers were asked to rate the intensity of their pain 

using a Numerical Rating Scale (NRS) (0-10 scale) (Hjermstad et al., 2011). NRS scores 

reported at each time point were used as a continuous variable indicating pain severity for 

aim 1, where higher scores indicated greater pain severity. The NRS has been determined 

as a reliable and valid measure of musculoskeletal pain (Hjermstad et al., 2011). 

Dancers completed the Patient Specific Functional Scale (PSFS) (Abbott & Schmitt, 

2014; Nicholas, Hefford, & Tumilty, 2012), whereby they identified up to 3 self-selected 

important activities that they are unable to do or are having difficulty with as a result of 

their most bothersome pain. They then scored each activity from 0 to 10, where 0 indicated 

they were unable to perform the activity at all and 10 indicated that they were able to 

perform the activity at the same level as before the problem. PSFS scores reported at each 

time point were used as a continuous variable indicating pain related disability for aim 2. 

Lower scores indicated greater disability. For each dancer, the nominated activities could 

differ across the 4 time points. The PSFS has been determined as a reliable and valid 

measure of musculoskeletal disability (Nicholas et al., 2012). 
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Additionally, the presence of pain related disability at any of the time points was used 

to describe the sample. Pain was considered disabling for scores of less than 7 in the PSFS 

for at least 1 activity.  

6.2.3.2 Movement quantity and quality 

Dancers were fitted with a wearable sensor system consisting of 6 Actigraph GT9x 

Link (Actigraph, Pensocola, FL) wearable inertial measurement units, which include 

an accelerometer, gyroscope and magnetometer, operated at 100Hz, at previously 

detailed anatomical landmarks (thoracic spine, sacrum, bilateral thigh and bilateral 

shin) in order to estimate movement quantity and quality (Hendry et al., 2020a; Hendry 

et al., 2020b). Dancer’s movement quantity was defined as the number of movements 

that a dancer performed or the time spent performing the movements, and movement 

quality was defined as the biomechanical characteristics of the movement. Specifically, 

the previously developed and validated system utilised machine learning models 

applied to raw data to estimate every occurrence of jumping (unilateral and bilateral 

jumps) and leg lifting (to the front, side and back), as measures of specific movement 

quantity (Hendry et al., 2020a). It then output peak GRF during jumps (with a potential 

error of 0.24BW for unilateral landings and 0.21BW for bilateral landings, as well as 

thigh elevation angles and lumbar spine sagittal angles during leg lift tasks (with a 

potential error of 6.8° and 5.7° respectively during leg lifts), as measures of movement 

quality (Hendry et al., 2020b; Hendry et al., 2021). In addition, the accelerometer data 

collected with the sacrum sensor was used to determine the physical activity intensity 

completed by the dancers using established physical activity intensity cut points 

(McVeigh et al., 2016), this was utilised as a measure of general movement quantity.  

.Following data collection, the sensor data was processed and cleaned as described in 

the flow diagram in Figure 6.2. Extensive and comprehensive data cleaning was applied 

to remove any movements that were misclassified. Specific parameters applied for data 

cleaning are detailed in Figure 6.2. Initially, it was proposed that the dancers’ quantity and 

quality of movement would be analysed over a full day of training. However due to the 

complex computational time we focussed on the best estimate of the dancer’s load, which 

was their ballet class. Quantity and quality of movement within a single 1.5-hour ballet 

class at each time point was analysed.  

General and specific quantity of movement variables were considered (Figure 6.2).  
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Figure 6.2  

Flow diagram representing sensor data processing steps and variables generated 

 

6.2.4 Statistical analyses 

Sample demographics were summarised with descriptive statistics.  

For aim 1, a series of linear mixed models were used to estimate the association 

between quantity and quality of movement and pain severity. Pain severity (NRS) was 

used as the dependent variable and, in separate models, quantity and quality of movement 

variables were used as the independent variable.  
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The level 1 unit of observation was occasion (4 measures over the semester), nested 

in participants as the level 2  unit of observation. For each model, within-person and 

between-person level associations were estimated separately using subject mean centering 

(Rabe-Hesketh & Skrondal, 2015). Between-person analysis seeks to explain how much 

the variability between the pain scores of different people is a function of differences in 

levels of movement between those people, whereas within-person analysis seeks to 

explain how much of the variability in pain a single person over time is a function of that 

person’s levels of movement over time. 

A likelihood ratio test was conducted to assess support for a random slope over a 

random intercept model, and nonlinear and linear effects for time were also evaluated. The 

association of year level (first, second or third year) and stream of dance (ballet or 

contemporary) with pain severity was assessed to evaluate the potential confounding of 

these variables on the between-person associations between pain severity and quantity and 

quality of movement variables. Regression coefficients with accompanying 95% 

confidence intervals and p-values are reported. 

The same analyses were conducted for aim 2, using pain related disability (PSFS) as 

the dependent variable. All analyses were conducted using Stata/IC 16.0 for Windows 

(StataCorp LLC; College Station TX USA).  

6.3 Results 

Of the 52 dancers who consented to participate in this study, two dancers withdrew 

from the dance program after the second data collection period, and two more elected not 

to wear sensors for the final data collection due to skin irritation. These dancers were still 

included in the analysis, whereby the analysis model accounted for missing data. One 

dancer’s data at all 4 time points was not usable as the human activity recognition machine 

learning model could not provide an output, and thus was excluded from analysis.  

6.3.1 Participant characteristics 

Participant characteristics are displayed in Table 6.1. There were similar numbers of 

ballet and contemporary focussed dancers represented in the sample, however there were 

more first-year dancers than second- and third-year dancers. 
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Table 6.1  

Participant characteristics 

Characteristic Mean (SD) 

Age (years) 18.4 (1.1) 

Height (cm) 168.4 (5.4) 

Weight (kg) 59.5 (5.8) 

Years of dance training (years) 13.7 (3.0) 

Year group (first/ second/ third) 26/16/10 

Stream (ballet/ contemporary) (n) 28/ 24 

 

Throughout the study, 50 of the 52 dancers experienced pain, and 26 of these reported 

PSFS scores of less than 7/10, classified as disabling pain. The frequency of reporting of 

all pain sites, most bothersome pain sites and disabling pain sites across all 4 time periods 

is demonstrated in Figure 6.3. When considering all pain presentations, the lower back 

was most commonly affected, followed by the hip and the foot and ankle. The lower back 

was most commonly nominated as the most bothersome, followed by the foot and ankle 

and 22 dancers reported multiple pain sites as most bothersome. The foot and ankle were 

most common area of disabling pain (< 7 on PSFS), followed multiple pain sites (9 

presentations) and then the lower back. Only 2 of the dancers with disabling pain 

completely stopped dancing due to their pain. Both were due to acute traumatic injuries, 

the only two across the course of the study.  

Figure 6.3  

Frequency of pain reports by pain location 
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6.3.2 Relationship between movement quantity and quality with pain 

severity and pain related disability 

The overall mean values for each variable at each time point are demonstrated in 

Table 6.2. Pain severity and pain related disability remained fairly constant over the 4 time 

points, and there was no statistical evidence for linear or non-linear effects for time for 

either outcome in linear mixed models (pain severity: coefficient -0.07, 95%CI: -0.32, 

0.18, p=0.58, pain related disability: coefficient -0.10, 95%CI: -0.41, 0.22, p=0.55). 

Of the large number of movement parameters examined, we identified only a small 

number of modest associations between dancers’ movement quantity and quality and 

dancers’ self-reported pain outcomes. In summary, there were no significant between-

person level associations for pain severity, however increased pain related disability was 

associated with higher levels of light activity and a lower duration and count of leg lifts to 

the front and all leg lifts, and higher thigh elevation angles during side leg lifts. At a within-

person level there were no significant findings for either pain severity or pain related 

disability. Results of the between-person and within-person analysis for movement 

quantity and quality are demonstrated in table form in Table 6.3.  

When considering movement quantity, there was no evidence of between-person 

associations with pain severity after adjusting for year and stream.  

When considering movement quantity, there was some evidence of between-person 

associations with pain related disability on adjusted analysis. very modest between-person 

associations with pain related disability on adjusted analysis. A 1-minute increase in light 

activity was associated with a reduction in patient specific functional scale of -0.15 points, 

95%CI: -0.26, -0.03, p=0.02) equating to an association with increased pain-related 

disability. A 10 second increase in duration of front leg lifts was associated with a decrease 

in pain related disability of 0.19 points (95%CI: 0.04, 0.34, p=0.02).  

Additionally, a 10-count increase in front leg lifts was associated with a decrease in 

pain related disability of 0.66 points (95%CI: 0.13, 1.19 p=0.02). Further, a 10-count 

increase in all leg lifts was associated with a decrease in pain related disability of 0.40 

points (95%CI: 0.03, 0.76, p=0.03).  

When considering movement quality, there was evidence of a between-person 

association with pain related disability on adjusted analysis, with a 10° increase in thigh 

elevation angle during side leg lifts was associated with an increase in pain related 

disability of 0.83 points. (95%CI: -1.57, -.0.09, p=0.03). 
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Table 6.2  

Overall mean values for each variable at each time point 

 Mean (SD) score at each time point 

 1 2 3 4 

Pain 

Pain Related Disability (PSFS) 8.2 (2.7) 8.2 (3.0) 7.8 (3.3) 8.1 (2.9) 

Pain Severity (NRS) 3.5 (2.1) 3.1 (2.1) 3.2 (2.3) 3.2 (2.3) 

Movement Quantity 

General: Intensity 

Sedentary (mins) 29.5 (15.6) 29.7 (10.9) 25.6 (10.1) 21.8 (7.7) 

Light (mins) 62.2 (8.9) 56.3 (7.2) 57.5 (7.5) 62.4 (11.0) 

Moderate (mins) 7.5 (4.7) 11.8 (7.0) 13.4 (7.0) 9.6 (4.8) 

Vigorous (mins) 1.4 (1.3) 2.4 (2.3) 1.8 (1.2) 2.9 (2.7) 

Moderate to Vigorous (mins) 8.9 (5.3) 14.2 (8.4) 15.2 (7.4) 11.9 (6.3) 

Specific: Leg lift 

Duration front (secs) 82.9 (64.5) 118.0 (71.1) 88.1 (56.3) 115.8 (68.3) 

Duration side (secs) 28.3(29.1) 47.2 (31.6) 48.1 (30.7) 45.4 (34.8) 

Duration back (secs) 36.6 (32.1) 70.9 (48.9) 82.1 (56.0) 68.5 (44.5) 

Duration all (secs) 143.2 (96.7) 236.0 (108.9) 217.3 (106.3) 228.2 (105.5) 

Count front 28.2 (20.8) 35.6 (16.2) 32.0 (19.0) 40.1 (21.7) 

Count side 11.2 (9.0) 18.0 (11.6) 19.8 (11.0) 18.5 (15.1) 

Count back 16.6 (15.9) 28.9 (15.1) 35.4 (23.2) 28.1 (19.4) 

Count all 54.3 (35.9) 82.5 (27.7) 86.7 (39.6) 86.1 (40.7) 

Specific: Jumps 

Count Unilateral 20.1 (21.7) 35.3 (27.9) 41.2 (33.6) 65.6 (67.9) 

Count bilateral 7.9 (12.5) 19.6 (19.2) 20.0 (22.8) 28.1 (39.3) 

Count all 25.7 (26.1) 53.4 (38.4) 59.4 (46.5) 90.7 (92.6) 

Movement Quality 

Leg lifts 

Thigh elevation front (°) 93.7 (19.1) 91.9 (7.8) 90.3 (11.1) 84.4 (11.6) 

Thigh elevation side (°) 110.9 (19.8) 104.6 (13.1) 110.9 (17.5)  102.6 (19.6) 

Thigh elevation back (°) 91.2 (23.1) 84.2 (10.9) 84.5 (13.1) 80.3 (12.5) 

Thigh elevation all (°) 96.7 (19.7) 91.6 (8.0) 91.9 (10.5) 86.8 (13.2) 

Lumbar sagittal front (°) -6.0 (4.34) -6.7 (2.7) -5.8 (3.4) -4.7 (2.6) 

Lumbar sagittal side (°) -5.3 (4.9) -4.9 (2.4) -4.3 (2.5) -3.8 (2.8) 

Lumbar sagittal back (°) 29.4 (4.6) 29.9 (5.7) 30.4 (4.2) 31.7 (3.6) 

Jumps 

GRF Unilateral (BW) 2.7 (0.4) 2.6 (0.3) 2.6 (0.3) 2.6 (0.4) 

GRF Bilateral (BW) 2.7 (0.5) 2.8 (0.6) 2.6 (0.4) 2.7 (0.4) 

GRF All (BW) 2.7 (0.4) 2.7 (0.3) 2.6 (0.3) 2.6 (0.3) 

Secs: Seconds; Mins: Minutes; BW: Body weight; GRF: Ground reaction force  
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Table 6.3  

Results of linear mixed models examining associations between quantity and quality of movement with pain severity and pain related disability  

  

Pain Severity 

Greater scores indicate greater pain severity 

Pain Related Disability 

Lower scores indicate greater pain related disability 

  Unadjusted Analysis 

Analysis adjusted for year and 

stream Unadjusted Analysis 

Analysis adjusted for year and 

stream 

  

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)# P 

Coefficient (95% 

Confidence 

Interval)# P 

Movement Quantity: General 

Sedentary  

(mins) 

Between -0.04 (-0.08, 0.01) 0.07 -0.01 (-0.07, 0.04) 0.62 -0.02 (-0.08, 0.04) 0.46 -0.04 (-0.11, 0.04) 0.31 

Within 0.01 (-0.02, 0.04) 0.60   -0.01 (-0.06, 0.03) 0.50   

Light  

(mins) 

Between 0.08 (-0.01, 0.17) 0.06 0.06 (-0.03, 0.14) 0.19 -0.16 (-0.27, -0.05) 0.01 -0.15 (-0.26, -0.03) 0.02 

Within -0.01 (-0.04, 0.02) 0.43   0.01 (-0.03, 0.05) 0.63   

Moderate  

(mins) 

Between 0.09 (-0.01, 0.18) 0.08 0.04 (-0.10, 0.17) 0.60 0.07 (-0.07, 0.20) 0.32 0.12 (-0.07, 0.31) 0.21 

Within 0.012 (-0.04, 0.07) 0.65   -0.01 (-0.78, 0.07) 0.88   

Vigorous  

(mins) 

Between 0.32 (0.02, 0.63) 0.04 0.29 (-0.22, 0.79) 0.27 0.15 (-0.28, 0.58) 0.50 0.23 (-0.52, 0.98) 0.55 

Within -0.09 (-0.25, 0.07) 0.27   0.00 (-0.22, 0.21) 0.98   

Moderate-

Vigorous  

(mins) 

Between 0.08 (0.00, 0.15) 0.05 0.05 (-0.07, 0.16) 0.44 0.05 (-0.060, 0.158) 0.38 0.09 (-0.08, 0.27) 0.29 

Within 0.00 (-0.05, 0.05) 0.96   0.00 (-0.068, 0.064) 0.96   
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Pain Severity 

Greater scores indicate greater pain severity 

Pain Related Disability 

Lower scores indicate greater pain related disability 

  Unadjusted Analysis 

Analysis adjusted for year and 

stream Unadjusted Analysis 

Analysis adjusted for year and 

stream 

  

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)# P 

Coefficient (95% 

Confidence 

Interval)# P 

Movement Quantity: Leg Lifts 

Duration front  

(secs)a 

Between 0.01 (-0.11, 0.12) 0.94 -0.01 (-0.11, 0.11) 0.10 0.18 (0.02, 0.32) 0.03 0.19 (0.04, 0.34) 0.02 

Within -0.01 (-0.05, 0.03) 0.67   0.001 (-0.04,0.07) 0.64   

Duration side 

(secs)a 

Between -0.11 (-0.12, 0.34) 0.37 -0.02 (-0.31, 0.27) 0.91 0.02 (-0.31, 0.35) 0.92 0.19 (-0.23, 0.63) 0.37 

Within 0.06 (-0.15, 0.03) 0.20   0.05 (-0.06, 0.17) 0.35   

Duration back 

(secs)a 

Between -0.02 (-0.17, 0.19) 0.87 -0.01 (-1.66, 0.19) 0.89 0.09 9 (-0.17, 0.36) 0.48 0.09 (-0.17, 0.36) 0.49 

Within -0.01 (-0.07, 0.05) 0.70   0.02 (-0.05, 0.010) 0.54   

Duration all 

(secs)a 

Between 0.02 (-0.05, 0.09) 0.58 0.01 (-0.06, 0.08) 0.82 0.08 (-0.02, 0.18) 0.13 0.10 (-0.01, 0.21) 0.06 

Within -0.01 (-0.03, 0.02) 0.49   0.02 (-0.02, 0.05) 0.37   

Count frontb Between 0.14 (-0.21, 0.48) 0.44 -0.02 (-0.39, 0.34) 0.90 0.51 (0.02, 0.99) 0.04 0.66 (0.13, 1.19) 0.02 

Within -0.03 (-0.19, 0.12) 0.66   0.08 (-0.11, 0.28) 0.39   

Count sideb Between 0.29 (-0.31, 0.89) 0.34 -0.30 (-0.18, 0.57) 0.50 0.13 (-0.73, 0.99) 0.77 0.85 (-0.45, 2.15) 0.12 

Within -0.14 (-0.38, 0.09) 0.23   0.11 (-0.20, 0.42) 0.49   

Count backb Between 0.24 (-0.15, 0.64) 0.24 0.10 (-0.34, 0.53) 0.67 0.16 (-0.42, 0.73) 0.59 0.19 (-0.46, 0.84) 0.56 

Within -0.02 (-0.16, 0.13) 0.83   0.09 (-0.10, 0.27) 0.36   

Count allb Between 0.13 (-0.06, 0.32) 0.17 0.01 (-0.24, 0.26) 0.93 0.18 (-0.09, 0.45) 0.18 0.40 (0.03, 0.76) 0.03 

Within -0.02 (-0.10, 0.05) 0.55   0.06 (-0.04, 0.16) 0.23   
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Pain Severity 

Greater scores indicate greater pain severity 

Pain Related Disability 

Lower scores indicate greater pain related disability 

  Unadjusted Analysis 

Analysis adjusted for year and 

stream Unadjusted Analysis 

Analysis adjusted for year and 

stream 

  

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)# P 

Coefficient (95% 

Confidence 

Interval)# P 

Movement Quantity: Jumps 

Count Jump 

unilateralb 

Between 0.11 (-0.05, 0.27) 0.16 0.03 (-0.16, 0.23) 0.73 0.02 (-0.23, 0.26) 0.89 0.01 (-0.30, 0.32) 0.93 

Within 0.01 (-0.07, 0.09) 0.81   0.05 (-0.05, 0.14) 0.34   

Count Jump 

bilateralb 

Between 0.13 (-0.20, 0.46) 0.43 0.07 (-0.31, 0.45) 0.71 -0.11 (-0.63, 0.40) 0.66 -0.24 (-0.86, 0.37) 0.44 

Within 0.12 (-0.01, 0.25) 0.07   0.01 (-0.15, 0.16) 0.94   

Count Jump  

allb 

Between 0.08 (-0.04, 0.20) 0.19 0.03 (-0.12, 0.18) 0.71 -0.03 (-0.21, 0.16) 0.78 -0.06 (-0.30, 0.18) 0.61 

Within 0.03 (-0.02, 0.09) 0.25   0.03 (-0.04, 0.10) 0.38   

Movement Quality: Leg Lifts 

Thigh elevation 

all (°)c 

Between 0.14 (-0.75, 0.47) 0.64 -0.05 (-0.79, 0.70) 0.90 -0.31 (-1.18, 0.56) 0.48 -0.08 (-1.21, 1.05) 0.89 

Within -0.04 (-0.18,0.25) 0.74   -0.12 (-0.39, 0.16) 0.41   

Thigh elevation 

front (°)c 

Between -0.40 (-1.01, 0.20) 0.19 -0.47 (1.17, 0.22) 0.18 0.05 (-0.94, 0.83) 0.91 0.29 (-0.77, 1.36) 0.59 

Within 0.03 (-0.18, 0.23) 0.80   -0.04 (-0.31, 0.23) 0.75   

Thigh elevation 

side (°)c 

Between 0.25 (-0.27, 0.72) 0.31 0.31 (-0.20, 0.82) 0.23 -0.83 (-1.47, -0.19) 0.01 -0.83 (-1.57, -0.09) 0.03 

Within 0.05 (-0.11, 0.20) 0.54   -0.08 (-0.28, 0.12) 0.45   

Thigh elevation 

back (°)a 

Between 0.18 (-0.29, 0.65) 0.46 0.33 (-0.16, 0.82) 0.18 --0.57 (-1.22, 0.08) 0.09 -0.56 (-1.30, 0.18) 0.14 

Within 0.06 (-0.12, 0.24) 0.51   0.10 (-0.33, 0.13) 0.40   
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Pain Severity 

Greater scores indicate greater pain severity 

Pain Related Disability 

Lower scores indicate greater pain related disability 

  Unadjusted Analysis 

Analysis adjusted for year and 

stream Unadjusted Analysis 

Analysis adjusted for year and 

stream 

  

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)* P 

Coefficient (95% 

Confidence 

Interval)# P 

Coefficient (95% 

Confidence 

Interval)# P 

Lumbar sagittal 

front (°)c 

Between 0.12 (-1.88, 2.13) 0.91 0.41 (-1.58, 0.241) 0.69 -1.88 (-4.75, 0.98) 0.19 -2.66 (-5.61, 0.30) 0.08 

Within 0.04 (-0.83, 0.92) 0.92   0.40 (-0.74, 1.53) 0.49   

Lumbar sagittal 

side (°)c 

Between 0.67 (-2.29, 3.64) 0.66 0.48 (-2.57, 3.53) 0.76 -2.30 (6.60, 2.00) 0.29 -3.77 (-8.36, 0.81) 0.10 

Within -0.23 (-1.06, 0.59) 0.58   -0.25 (-1.31, 0.82) 0.65   

Lumbar sagittal 

back (°)c 

Between -1.16 (-3.00, 0.68) 0.22 -0.69 (-2.53, 1.15) 0.46 -0.41 (-3.07, 2.25) 0.76 -0.50 (-3.23, 2.32) 0.75 

Within -0.18 (-0.79, 0.43) 0.56   -0.011 (-0.91, 0.69) 0.79   

Movement Quality: Jumps 

GRF unilateral 

(BW) 

Between 1.48 (-0.44, 3.40) 0.13 0.72 (-1.50, 2.94) 0.52 1.12 (-1.56, 3.80) 0.41 1.73 (-1.46, 4.93) 0.29 

Within -1.01 (-2.10, 0.08) 0.07   -0.29 (-1.70,1.13) 0.69   

GRF bilateral 

(BW) 

Between 0.61 (-0.79,2.01) 0.39 0.49 (-0.95, 1.92) 0.51 -0.31 (-2.30, 1.67) 0.76 -0.65 (-2.75, 1.45) 0.55 

Within 0.75 (-0.86, 2.35) 0.36   -0.23 (-1.10, 0.64) 0.61   

GRF All  

(BW) 

Between 1.44 (-0.42, 3.31) 0.13 1.10 (-0.84, 3.04) 0.27 0.27 (-2.30, 2.84) 0.84 -0.01 (-2.76, 2.74) 1.00 

Within -0.99 (-2.05, 0.07) 0.07   -0.01 (-1.37, 1.34) 0.99   

Secs: seconds; Mins: minutes; BW: Body weight; GRF: Ground reaction force 

a Coefficients represent the change in y for a 10s change in duration of leg lifts 

b Coefficients represent the change in y for a 10 repetitions of movement 

c Coefficients represent the change in Y for a 10° increase in angle 

*Positive signed coefficient indicated increase in the independent variable associated with increased pain severity 

#Negatively signed coefficient indicated increase in the independent variable associated with increase in pain related disability  
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6.4 Discussion 

This field-based study utilised wearable sensor technology combined with machine 

learning methods to repeatedly monitor the movement quantity and quality for 52 dancers 

during their ballet classes over 4 time periods, in the lead up to and following a 

performance in a 12-week university semester. Some associations between self-reported 

pain outcomes with field-based movement quantity and quality were identified at the 

between-person level. While there was no evidence of associations with dancers self-

reported pain severity, a few modest associations were identified between some movement 

factors and pain related disability. There was no evidence of changes over the 4-time 

points time in either pain or pain related disability. The methods used in this study provides 

a platform for further longitudinal research using continuous dancer monitoring to 

understand the complexities related to the development of, and responses to pain and pain 

related disability in dancers.  

There was a high prevalence of musculoskeletal pain reported within this sample 

of dancers, with almost all dancers (50 out of 52) reporting having musculoskeletal pain 

at some point during the semester. The foot and ankle, and lower back were the sites 

most commonly reported for presence of pain, most bothersome pain and disabling 

pain. These findings are consistent with previous literature, where a systematic review 

has demonstrated a 14-57% prevalence for foot and ankle pain and 62% for low back 

pain (P. J. Smith et al., 2015). Further, the prevalence of disabling pain was lower, with 

half the dancers reporting disabling pain at some point during the semester. This is 

consistent with previous work, where the prevalence of dance related pain is influenced 

by how it is defined (Kenny et al., 2016). In our cohort, while half of the dancers 

experienced disabling pain across the semester, only two ceased dancing completely 

for at least 1 day due to their pain. The rest persisted, with some training modifications, 

which may reflect relatively low levels of pain and disability. Alternatively, it may 

reflect a culture of persisting in dance activities regardless of pain (Anderson & 

Hanrahan, 2008; Encarnacion, Meyers, Ruan, & Pease, 2000), or that movement is only 

modestly associated with pain. 

Interestingly, there was no evidence for associations between pain severity and both 

movement quantity and quality when year and stream were accounted for. This result 

suggests that irrespective of pain intensity, dancers continue to engage in a similar amount 

of training and with the same movement quality.  
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Considering pain related disability, there was evidence for some weak between 

person associations for movement quantity. At a between-person level, greater levels 

of disability were associated with larger amounts of time spent in light intensity 

activity. Additionally, greater levels of disability were associated with a lower leg lift 

count to the front and overall, as well as less time spent performing leg lifts to the 

front. It is widely cited that dancers frequently continue to dance despite the presence 

of pain and related disability (Anderson & Hanrahan, 2008; Encarnacion et al., 2000). 

The results of our research suggest that while dancers continue to dance when 

experiencing pain, they do so with small modifications of movement quantity. It is 

possible that these findings reflect an adaptive response to reduce load, while 

continuing to dance with disabling pain. An alternative hypothesis is that the observed 

reduction in load is indicative of dancers’ lack of strength, which may in turn lead to 

increased pain related disability. Further research involving daily dancer monitoring 

and temporal analysis would provide indication of causality and the bidirectional 

relationship of movement and pain. 

There was also evidence for some weak associations between pain related 

disability and movement quality, specifically, greater pain related disability was 

associated with greater thigh elevation angles during side leg lifts. Initially this came 

as a surprise as movement is thought to be more constrained in the presence of pain 

and disability (Bauer et al., 2017), however a systematic review has identified that 

when experiencing disabling pain, people move with greater movement variability 

(Baida, Gore, Franklyn‐Miller, & Moran, 2018). Considering these findings together, 

it could be hypothesised that dancers with higher levels of disability were modifying 

their training behaviours in some ways to reduce general load (e.g., reducing the 

volume of movement), while also modifying behaviours in ways which may increase 

specific joint loading (e.g., pushing how high they lifted their leg during side leg lifts). 

However, it cannot be assumed that all dancers were employing these strategies. 

Indeed, the low number of differences in movement, and with no clear pattern, may 

suggest that dancers are generally able to maintain movement quality despite pain.  

Additionally, analysis did not account for the specific movements that dancers reported 

as provocative. Thus, moving forwards in unravelling the individual complexity of the 

relationship between movement quality and quantity and pain, it may be more helpful 

to evaluate these associations, using serial monitoring of individual dancers rather than 

investigating group differences.  
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Interestingly, there was no evidence for an association between either pain severity 

or pain related disability and any jumping variables, suggesting that the dancers may be 

able to maintain movement quantity and quality irrespective of pain, during jumping 

activity. This finding challenges findings of a previous cross-sectional study comparing 

dancers with and without anterior knee pain (n=25) suggested that those with pain 

demonstrated greater peak GRF during a ballet specific jump (mean difference 0.2BW, 

CI: 0.08, 0.32) (Peng et al., 2015). However, this study was limited in that it only captured 

a single trial of a jump on a single day, and only considered pain presence rather than pain 

severity. In contrast, we captured all jumps within the dancers’ daily class at 4 different 

time points, taking into consideration changes in pain severity at each of these time points. 

Another explanation may relate to the relatively low levels of pain observed in this study, 

with average pain scores ranging from 3.1-3.5/10 across the 4 time points. It is possible 

that the threshold for marked changes in movement in response to pain was not met, in 

line with previous experimental research (Henriksen, Rosager, Aaboe, Graven-Nielsen, & 

Bliddal, 2011). Finally, pain location may also influence these findings, where it can be 

hypothesised that a dancer with foot, ankle or knee pain may land differently to a dancer 

with hip or low back pain. With serial monitoring of individual dancers in future research, 

the relationship between movement quality variables specific pain locations and the 

changes in pain severity relative to these locations may be explored.  

6.5 Strengths and limitations 

Previous research in this space has focussed predominantly on general movement 

quantity with limited focus on specific movement quantity and movement quality. Thus, 

a major strength of this study is the unique combination of movement quantity and quality 

measures and the exploration of their relationship with pain and disability. Importantly, 

this study used technology that allowed for field-based measurement of movement in a 

dancer’s normal ballet class environment. This system was able to detect common ballet 

movements that are considered potentially pain provocative. The serial design allowed for 

observation at the within-person level, however the use of only 4 time points was a 

limitation as discussed below.  

The study was limited to a sample of pre-professional female dancers from a single 

dance training facility. To promote generalisability, future research should include dancers 

from multiple centres and include male and non-binary dancers as variations in training 

regimes across facilities, and gender specific movement profiles may influence results. 
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For example, the greater volume of jumping activities performed by male dancers, could 

mean jumps are more strongly associated with pain and / or disability in men. 

The fact that we only identified evidence for between-person associations may be a 

result of the study design. Repeated measures at only 4 time points over a 12-week 

period rather than daily monitoring, reduced the information available to elucidate 

associations at the level of the individual dancer. Furthermore, the variation in pain 

location, and task selection for the PSFS, over the 4 time points both within dancers 

across time, as well as between dancers, was not possible to account for within the 

analysis with the numbers available. The study also only considered physical factors 

associated with pain and disability, when pain is known to be a complicated 

biopsychosocial construct (Hainline, Turner, Caneiro, Stewart, & Moseley, 2017). This 

study is proof-of-concept that the field-based system used could allow future research to 

evaluate these associations at an individual level using serial monitoring over time. This 

would provide adequate data for sophisticated temporal analyses to further unravel the 

complexities of dancers’ pain and disability.  

To our knowledge this is the first application of machine learning to wearable sensor 

data that has been used in a longitudinal field-based study. However, a number of 

challenges of the wearable sensor system need to be addressed before more sophisticated 

applications of the wearable sensor system can be undertaken. The system required 

multiple sensors being attached to each dancer and, as detailed in Figure 6.2, there were 

several steps in the processing of data due to multiple machine learning models which, 

combined with the computational demands of the machine learning algorithms, resulted 

in lengthy data processing. Additionally, while the human activity recognition model used 

demonstrated an acceptable degree of accuracy when validated in previous work (Hendry 

et al., 2020a), the application of this system in a true field-based study required extensive 

manual data cleaning as the accuracy of classification varied amongst the dancers. 

Specifically, each identified movement was visually inspected by 1 of the researchers and 

removed if the movement was misclassified. This was why only a single dance class was 

analysed on each of the 4 days. All previous applications have focused on the development 

and validation of systems, thus have not accounted the extensive data processing and 

cleaning that is required when these novel models are applied in field-based settings 

(Chambers et al., 2015). To allow for larger studies with continuous daily monitoring the 

machine learning models would require further optimisation, to allow for a fully 

automated accurate system.  
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6.6 Clinical implications and conclusions 

The results of this study provide insight into how dancers with disabling pain may 

adapt the way they move to reduce load, in order to continue dancing. However, it is 

unlikely that these same responses are adopted by all dancers when faced with pain and 

pain related disability. Further, it is likely that complex interactions between movement 

quantity and quality, as well as other biopsychosocial factors, that are unique to each 

individual, influence a person’s pain development and coping responses to pain. Future 

application of wearable sensor technology provides the opportunity for clinicians to gain 

a deeper insight into the inter-relationships between pain, disability, and movement in 

athletic populations, to better inform person centred care.  

The field-based sensor system used in this research can provide quantitative 

information on both movement quantity and quality in a real-world environment. While 

further optimisation of the technology used in this research is needed to promote ease of 

usability, this research demonstrates a proof-of-concept for larger, longitudinal field-based 

research to occur. Specifically, it provides future opportunity using frequent, field-based, 

serial measures of movement quantity and quality in a dancer's everyday training, to allow 

the collection of the large amount of data needed for modelling the complexity of 

interrelationships between movement, pain, disability and other salient factors, using 

sophisticated analytics such as complex systems approaches (Bittencourt et al., 2016). 

This creates opportunities within clinical research and practice for assessment and 

monitoring of individual dancers, and detect shifts in individual dancer movement 

behaviours in response to treatment or advice. 
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7 

Discussion and Conclusions 

The main aims of this thesis were: to (i) develop and validate a field-based system capable 

of capturing field-based measures of dance-specific movement quantity and quality, and (ii) 

to determine if there was a relationship of dancers/ movement quantity and quality with self-

reported pain and pain related disability outcomes across a 12-week period. 

This chapter integrates the main findings of this thesis, detailing the evolution of 

monitoring dancers’ movement quantity and quality, providing a proof-of-concept to assist 

in unravelling the complexities of dancers’ pain and pain related disability. After 

summarising the findings of the studies conducted for this thesis, this chapter will discuss 

the measurement of dancers’ movement quantity and quality and understanding of the 

associations with dancers’ pain and pain related disability. Specific focus will be brought 

to where the field begun prior to this work, how the field has progressed during the thesis 

work, including how this thesis has advanced the field, and finally opportunities for future 

research and clinical applications. The chapter will conclude by summarising the 

limitations of the thesis and providing further recommendations for future research before 

final remarks are made.  

  

Chapter Seven  



Chapter 7.  Discussion and Conclusions 

132 

7.1 Summary of the thesis developments and findings 

In the first 2 studies of this project, presented in Chapters 3-5, a field-based wearable 

sensor system which was capable of measuring dancers’ movement quantity and quality 

was developed and validated. This system consisted of a series of machine learning models 

applied to wearable sensor data.  

The first study, presented in Chapter 3, focussed on the development of a human 

activity recognition system, using convolutional neural networks for the measurement of 

dance-specific movement quantity. Specifically, the study aimed to develop a system 

capable of the detection of dance-specific jumping and leg lifting tasks. The jumps and leg 

lifts were classified at 3 different levels. The primary aim of the study was to develop and 

validate the human activity recognition system. The study also investigated if the degree 

of accuracy changed at each level of movement classification and with different sensor 

numbers and locations. Finally, whether the inclusion of transitions influenced accuracy 

was explored. Machine learning models were developed using convolutional neural 

networks for every combination of 6 sensors (6,5,4,3,2 etc). With the inclusion of data 

from all 6 sensors and without transitions the model performed with 97.8% accuracy. As 

expected, the degree of accuracy reduced at the second and third level of classification and 

also when transitions were included, number of sensors were reduced and with different 

sensor combinations. The main outcomes of this study were two-fold. Firstly, the system 

developed allows for the objective quantification of specific training volumes as a measure 

of movement quantity in dancers. Secondly, capturing jumping and leg lifting tasks from 

a string of wearable sensor data allows for analysis of dancers’ movement quality during 

these movements.  

The second study, presented in Chapters 4 and 5, focussed on the development of a 

series of machine learning models for the estimation of ground reaction force (GRF) during 

jumping tasks (Study 2A), and thigh elevation angles and lumbar spine sagittal angles 

during leg lifting tasks (Study 2B). Study 2A, presented in Chapter 4, detailed the multi-

stage development and validation of machine learning models, applied to wearable sensor 

data, for the estimation of GRF during dance-specific bilateral and unilateral jumps. In the 

first stage of model development, where models were initially trained and tested on a 

sample of 14 dancers, the best performing single sensor model was determined and this was 

the sacrum sensor. During the second stage of model development, when the sacrum sensor 

model was optimised and trained and tested further on 23 dancers the average RMSE was 

0.42BW for the unilateral models and 0.39BW for the bilateral models. Study 2B, presented 
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in Chapter 5, detailed the multi-stage development and validation of machine learning 

models, applied to wearable sensor data, for the estimation of thigh elevation and lumbar 

sagittal angles during dance-specific leg lifting tasks. In the first stage of model 

development, the best performing model was the bilateral thigh sensor model. In the second 

stage of development, when this model was refined and optimised, the average RMSE for 

thigh elevation angle across the complete leg lift profile was 6.8° and for lumbar spine 

sagittal plane angle the RMSE was 5.6°, with strong correlation between the machine 

learning and gold standard optical motion capture systems. 

In Study 3, presented in Chapter 6, the machine learning models developed in the first 

2 studies were applied within a longitudinal field-based investigation that aimed to 

determine the association of dancers’ movement quantity and quality with pain severity 

and pain related disability. Fifty-two dancers were monitored over a 12-week period, in 

the lead up to and following a performance. On 4 separate days, dancers wore the wearable 

sensors and completed a series of questionnaires about their pain and disability. Movement 

quantity and quality data from their ballet class was extracted from the wearable sensor 

data using the machine learning models. Overall, dancers reported low levels of pain 

severity and disability, and results of the mixed methods analysis demonstrated evidence 

of group level associations for some movement parameters and pain related disability. 

There were no associations evident for pain severity. This proof-of-concept research 

provides a compelling model for future work exploring dancers’ pain using field-based, 

serial data collection.  

7.2 Measuring movement quantity and quality in dance  

7.2.1 Past and current methodologies: What other work in this field 

has demonstrated  

Prior to the inception of this thesis in January 2017, while several researchers had 

suggested that the high training volumes that dancers partake in may be associated with 

pain and pain related disability, no publications had formally evaluated this relationship. 

However, during the course of this PhD there have been 7 new publications exploring the 

relationship of training loads with pain and pain related disability in dancers in the last 4 

years (Boeding et al., 2019; Cahalan et al., 2019; Cahalan, Kearney, et al., 2018; Jeffries 

et al., 2020; L. Lee et al., 2017; Shaw et al., 2021; Volkova & Kenny, 2020). These studies 

are summarised in Table 2.1, within the literature review in Chapter 2. Within this body 

of literature dancers’ training volumes have generally been measured as dancers’ general 
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movement quantity, and all of the studies utilised subjective and schedule-based reporting. 

Specifically, researchers have utilised dancers’ self-reported training hours per week ( 

Cahalan, Bargary, et al., 2018; Cahalan et al., 2019; Volkova & Kenny, 2020), their 

training and performance schedules (L. Lee et al., 2017; Shaw et al., 2021), and their 

“session rating of perceived exertion” (“session RPE”) (Boeding et al., 2019; Jeffries et 

al., 2020), which is the product of the duration of dance activity session (based off 

schedules or self-report) and the dancers’ perceived activity intensity.  

While these methods provide an overall sense of how much a dancer trains and moves 

within their day, as well as their perception of effort they come with certain limitations. 

Self-reporting of training loads has recently been challenged as athletes have reported 

feeling burdened by having to self-report data (Murphy et al., 2021; Saw, Main, & Gastin, 

2015) In an effort to optimise athlete mental health, it has been suggested that non-

essential stressors and burdens, such as reporting of training loads, are minimised (Murphy 

et al., 2021). Self-reported training hours are also highly subjective and prone to bias 

(Murphy et al., 2021), where dancers may overestimate or underestimate the number of 

hours that they have trained and performed. Further, while schedules reflect the number 

of programmed or planned hours of training, neither schedules nor self-report, clearly 

capture the specific movements that a dancer performs within their training (Shaw et al., 

2021). The perception of effort captured within  “session RPE” is useful may provide some 

indication of how a dancer feels following a training session, thus could be indicative of 

the overall burden of training on a dancer, however it does not capture the specific 

movements they have performed and the loads that these movements have imposed on 

their body. Based on choreographic demands and individual dancer goals, the specific 

movements performed may be highly variable both between and within dancers 

(Liederbach et al., 2006; Wyon et al., 2011). For example, if a dancer is preparing for a 

role requiring a high volume of jumping activity, she may increase the number of jumps 

she is performing within class and rehearsal. She may perform more jumps than another 

dancer with a similar schedule, and perform more jumps than she would if she were 

training towards a different role or working on a different goal.  

The use of wearable sensor technology to capture dancers’ training volume, while 

mainstream in some elite sports, is only emerging within the field of dance. As summarised 

in Chapter 2, physical activity intensity, using metabolic cut points has been captured in 

professional ballet dancers (Kozai et al., 2020), and movement quantity has also been 

captured in professional contemporary dancers using vector magnitude (Jeffries et al., 
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2016). These measures capture overall movement quantity however do not provide 

indication of either specific movement quantity.  

While several of these recent longitudinal studies have explored the relationship of 

dancers’ movement quantity and pain, no publications were identified which 

longitudinally explored the relationship between dancers’ movement quality and pain 

or pain related disability. Historically, the relationship between dancers’ movement 

quality and pain has been primarily captured within cross-sectional studies using 

laboratory-based measurement systems (Fietzer et al., 2012; H.-H. Lee et al., 2012; 

Peng et al., 2015). The gold standard measurement tools are force platforms and 3-

dimensional optic motion capture systems for GRFs and range of movement 

respectively. However, these large systems are expensive and require the dancer to 

leave their normal training environment for measurement, thus have limited ecological 

validity and are not appropriate for serial measurements.  

7.2.2 The present: What this thesis adds to the field 

7.2.2.1 Development of a system using machine learning applied to 

wearable sensor data for the measurement of movement 

quantity and quality in dance 

The first 3 results chapters of this thesis, together demonstrate for the first time, 

the application of 6 wearable sensors and 3 machine learning systems, combined as a 

single system, to objectively measure dancers’ movement quantity and quality with 

acceptable validity, during dancers’ normal training. Specifically, with acceptable 

accuracy it is possible to output: 1) the number of jumps and leg lifts and when they 

occur, and 2) the GRF during jumping and the thigh elevation and lumbar spine sagittal 

angles during leg lifting.  

7.2.2.2 Determining which models to use within the field-based study: 

A balance between accuracy and practicality 

Within Study 1 4416 machine learning models were required to be developed in order 

to assess every possible combination of the 6-sensor location, (64 possible combinations), 

at each of the 3 levels of classification, and validate them using a leave-one-out cross 

validation process (23 participants). Thus, a process to determine which of this large 

volume of models would be used within the final field-based study was undertaken. This 

decision-making process required a careful balance of subjective and objective factors. 
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Subjectively, concepts such as practicality of the system and level of detailed information 

was considered. The objective considerations were the accuracy of the system. This 

balance between practicality and accuracy allowed the optimal system to be adopted for 

the final field-based data collection.  

The results of Study 1 indicated that the highest degree of accuracy (97.8%) would 

be achieved using all 6 sensors, without the inclusion of transitions and at the first level of 

classification, whereby the model was able to determine if the dancer was jumping or 

lifting her leg. This degree of accuracy is similar to what has been reported in several other 

human activity recognition studies for a range of athletic tasks (Cust et al., 2019). The 

level of accuracy for all published studies identified are demonstrated in Table 2.3 and 

Table 2.4. Table 2.3 demonstrates findings from publications prior to the commencement 

of machine learning model development and Table 2.4 demonstrates findings in 

publications since the commencement of model development.  

However, the machine learning system that yielded the highest degree of accuracy, 

was not deemed suitable for application in our field-based study, due to the lack of 

specificity of task demands at the first level of classification, the omission of transitions 

in this model and the use of multiple sensors. These reasons are described further below. 

Therefore, a trade-off of accuracy for practicality in real-world use was required.  

7.2.2.3 Levels of classification 

With each level of classification the amount of detail of the movement increased, 

however the degree of accuracy of the system decreased. The first level of classification 

simply quantified when and how often a dancer jumped or lifted their leg, with no 

indication of the type of jump or direction of leg lift. The second level however, provided 

further detailed insight on the type of jump (bilateral, unilateral or large) and direction of 

leg lift and the third level provided indication of laterality.  

The first level of classification detailed whether dancers were jumping or lifting their 

leg, not taking into consideration the specific type of jump or leg lift. Within their training 

and performance, dancers perform a range of different jumping and leg lifting tasks and the 

movement quality and in turn physical loading during these vary with task demands. 

Ground reaction forces during jumping varies dependent on the type of jump a dancer 

performs. Further the thigh and lumbar kinematics demonstrated during leg lifts to the back 

are very different to those demonstrated during a leg lift to the front or side (Bronner, 2012; 

Bronner & Ojofeitimi, 2011; Charbonnier et al., 2011). Previous laboratory-based studies 
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have demonstrated that leg lifts to the back are characterised by substantial hip and lumbar 

spine extension, whereas front and side leg lifts are characterised by hip flexion and the 

lumbar spine has much smaller amounts of movement (Bronner, 2012; Bronner & 

Ojofeitimi, 2011; Mira et al., 2019). The differences in physical loading in these variations 

of jumping and leg lifting activities highlight the need for a system that is able to detect 

more than whether a dancer is simply jumping or lifting their leg.  

Models developed at the second level of classification were able to determine if the 

dancer was performing a small bilateral jump, small unilateral jump, or large jump (which 

typically also land unilaterally). A 6 sensor model at the second level of classification 

without transitions performed with a degree of accuracy of 83%. These results were 

consistent with previous findings in tennis and Australian Rules Football, where the degree 

of accuracy of a system for detecting different tennis strokes reduced with increasing 

complex classifications of the tennis strokes (97.4% accuracy at the first level of 

classification and 93.2% at the second level in tennis and 83% accuracy at the first level of 

classification and 80% at the second level in Australian Rules football) (Cust et al., 2021; 

Whiteside et al., 2017). The third level of classification in the current study provided 

indication of laterality for single limb jumps and leg lifts, however accuracy was further 

reduced at this third level to a level deemed insufficient. Thus, the models developed at the 

second level of classification were deemed to most appropriately balance detailed 

information with accuracy.  

7.2.2.4 Transitions 

Model performance also reduced with the inclusion of transitions. Transition 

movement was anything that was not a jump or a leg lift task. These are important as in 

dance movement is rarely performed discretely. Rather, it is influenced by the movements 

that proceed and follow it, thus a model that can differentiate transitions from movmeents 

of interest is more ecologically valid than one without. When transitions were included, 

the 6 sensor model at the second level of classification performed with a degree of 

accuracy of 77.1%.  

Prior to the commencement of this research, in our review of the literature (Chapter 2) 

there appeared to be only 1 other study that had utilised transitions in the development of 

their machine learning models (Schuldhaus et al., 2015). A human activity recognition 

model for the detection of kicks in soccer was developed using data from two shoe-attached 

wearable sensors worn by 23 soccer players (Schuldhaus et al., 2015). The machine 
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learning models were trained and tested using data from 11 of the players, where each 

movement was classified as a pass, shot or “other” (i.e. a transition) (Schuldhaus et al., 

2015). Leave-one-out cross validation yielded a degree of accuracy of 88.6% for detecting 

the different shots and 96.7% for detecting anything that was a transition (Schuldhaus et 

al., 2015). However when the model was validated in a real-world soccer match, the 

accuracy of the model reduced (84.2% for detecting different shots and 89.2% for detecting 

transitions in the real-world setting) despite the inclusion of transitions (Schuldhaus et al., 

2015). Match-play model performance of 84.2% for detecting different shots, exceeds the 

match-play model performance of a manufacturer developed model for the detection 

tackles in Australian Rules Football, which detected only 18% of tackles within a game 

(Gastin et al., 2014). It was unclear whether the manufacturer developed model used in the 

Australian Rules Football study included transitions. Eighteen percent accuracy is also 

lower than the degree of accuracy achieved at any level of classification and with any 

combination of sensors with the inclusion of transitions demonstrated in this thesis. This 

difference in accuracy supports the notion that the inclusion of transitions may provide 

superior real-world performance. As a result, the lower degree of accuracy demonstrated 

by the 6 sensors model, at the second level of classification, with transitions, was chosen 

for use in Study 3 as it would potentially promote better real-world performance of the 

system within our field-based study.  

7.2.2.5 Number of sensors 

A system which required a minimum number of sensors would be ideal for field-based 

use in dance. The results of Study 1 indicated that the degree of accuracy reduced as the 

number of sensors reduced. Therefore, given the compromises in accuracy that were made 

to accommodate for level of classification and transitions, it was decided that the full 6 

sensor set would provide the most accurate results for both movement quantity and quality 

in the longitudinal field-based study.  

Interestingly, while the full 6 sensor model was deemed to have the highest degree of 

accuracy for the human activity recognition model, for the models developed for 

estimation of movement quality variables, the use of fewer sensors yielded higher 

accuracy. For both the unilateral and bilateral jumping GRF estimation models, the degree 

of accuracy was very similar whether we utilised multiple sensors or the single sacrum 

sensor, with a RMSE of 0.25BW for both the single sacrum sensor and 6 sensor unilateral 

landing models. The bilateral landing single sacrum sensor and 6 sensor models also had 

similar degrees of accuracy (RMSE= 0.24 and 0.21BW respectively). Interestingly, when 
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the single sensor model was trained and tested on more dancers, the accuracy reduced. 

The reduction in accuracy may have been due to an imbalanced data set, resulting in 

overfitting, as described in Chapter 4, page 74. The model that performed with the greatest 

degree of accuracy for the estimation of hip and lumbar angles was the model using the 

sensors from both thighs (bilateral thigh model), using only 2 sensors, with an RMSE of 

6.8° for thigh elevation angles and 5.6° for lumbar spine sagittal plane angles. Of note, the 

6 sensor model was not identified as one of the top 10 performing models, and all of the 

top 10 performing models used data from 2, 3 or 4 sensors.  

The models developed for estimation of movement quality variables performed with a 

comparable accuracy to other applications of machine learning to wearable sensor data for 

estimation of GRF and joint angles in running. Wouda et al (2018) demonstrated 2 artificial 

neural networks that were capable of estimation of GRF and knee sagittal joint angles 

during the cyclical task of running, using 3 wearable sensors (bilateral shin and sacrum). 

The models demonstrated an RMSE 0.39BW for GRF and 9.3° for sagittal knee joint angles 

in running, both greater than the error demonstrated in the current study. Other publications 

in this area have reported substantial differences between single sensor and multisensor 

models. Specifically, a 15.9% difference in the RMSE of a single sensor (RMSE = 29.7%) 

and multisensor (RMSE = 13.9%) convolutional neural network model, was reported  

(Johnson et al., 2019; Johnson et al., 2021). Conversely, a single sacrum worn sensor model 

developed on 37 running athletes performed with a lower RMSE of 0.15BW. It is possible 

that the greater degree of accuracy in the latter study was due to the larger sample size used 

for model training (Alcantara et al., 2021). For the estimation of joint angles, all published 

research identified utilised multisensor models, combining between 3 and 14 sensors for 

bilateral joint angle estimation (Argent et al., 2019; Dorschky et al., 2020; Mundt et al., 

2020; Wouda et al., 2018). While the degree of accuracy reported in this thesis was similar, 

the model had the added advantage of estimating GRF during varied dance tasks than the 

cyclical task of running. 

7.2.3 The final system 

Based on the process detailed above where concepts around practicality and 

information required were weighed up against accuracy, it was decided that the 6-sensor 

system, at the second level of classification, with the inclusion of transitions would be the 

optimal model for our field-based study. The 77.1% level of accuracy was deemed 

sufficient and superior to previously used subjective and schedule-based measures for 

movement quantity (Phibbs et al., 2017). Additionally, the performance of this model 
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compares favourably to a manufacturer developed commercially available model and 

sensor, called VERT (Benson et al., 2020; Charlton et al., 2017; Skazalski, Whiteley, 

Hansen, & Bahr, 2018). VERT is a wearable sensor programmed for automated jump 

detection in athletes. While the manufacturer’s website claims that the system is utilised 

by over 350 sporting teams at elite and professional levels, peer review publications 

validating the system exist only in basketball and volleyball (Benson et al., 2020; Charlton 

et al., 2017; Skazalski et al., 2018). When applied to 46 basketballers, the VERT was able 

to accurately identify only 68% of all jumps within a basketball game (Benson et al., 

2020). However when considering the jump height threshold of 15cm that the algorithm 

was programmed with, 91% of jumps that were over this threshold were detected (Benson 

et al., 2020). When worn by volleyballers, the VERT was able to accurately detect 89-

99% of all jumps (Charlton et al., 2017; Skazalski et al., 2018). The VERT also estimates 

GRF, however no peer reviewed publications were identified where this feature was 

validated. While the accuracy of the VERT is higher than the accuracy in the final model 

of the current study, the VERT has not been applied to and validated in dancers. 

Additionally, it can only detect jumps, and no other tasks, and does not provide an 

indication of the type of jump that a dancer is performing.  

In summary, the final system combined a total of 4 machine learning models that were 

applied to data collected using 6 wearable sensors. The first model was a human activity 

recognition model which was capable of detecting dance-specific jumps (bilateral, jumps, 

unilateral jumps and large jumps) and dance-specific leg lifting tasks (to the front, side 

and back), as well as transitions between these movements where a transition was anything 

that was not a jump or leg lift. The data generated from this machine learning model 

provided an indication of dancers’ specific movement quantity. The remaining models 

provided an indication of dancers’ movement quality during these movements of interest. 

Two models (1 for unilateral and 1 for bilateral jumps) were used to estimate the GRF 

during dancers’ jumps. The final model was used to estimate the thigh elevation and 

lumbar spine sagittal angles when the dancers lifted their leg. The development of this 

wearable sensor system allowed for the measurement of dancers’ movement quantity and 

quality within a field-based study, allowing for the exploration of the relationship between 

both movement quantity and quality with pain and pain related disability.  
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7.2.4 Applying this system to a field-based study: Challenges and 

limitations of the system 

Interestingly, while we identified several studies that have applied human activity 

recognition to sporting tasks prior to the development of our models, there were no 

subsequent field-based studies identified that utilised the developed models to explore 

athletes’ movement quantity in real-world settings. As a result, prior to the commencement 

of this research there was little published on the challenges that are faced with applying a 

wearable sensor / human activity recognition system within a field-based study.  

Utilising data from 6 wearable sensors for a full day’s training resulted in substantial 

computational times for data outputting, of approximately 10 hours, per dancer, per time 

point. Specifically, as the PhD scholar, I ran each set of data through the 4 individual 

models. Had a full day’s training been utilised this would have resulted in a total of 

approximately 2080 hours of processing. Potentially, the use of a super-computer may 

have assisted in overcoming this limitation of the system, however this was not an option 

within this body of work. Future developments require software optimisation to allow 

more efficient processing of data, with a single step process and on readily available 

platforms, such as personal computers and smart devices.  

Further, to improve the accuracy of our system within the field-based setting 

substantial data cleaning was applied, as described in Figure 6.2. The data cleaning process 

was performed manually, however was augmented by the movement quality machine 

learning outputs. Specifically, the outputs of the human activity recognition model were 

utilised to capture the data within the string of the wearable sensor data, which was then 

used within the machine learning models for the estimation of movement quality variables. 

For each jump that was identified, the machine learning model estimated the peak GRF, 

and the processing software also output a visual representation of the data. Similarly, for 

each leg lifting task, the machine learning model estimated the peak thigh elevation angle 

and lumbar spine sagittal angle, and the processing software also output a visual 

representation of the data. These data were all visually inspected. For the identified jumps, 

if the peak GRF was not identified or appeared small (<1.4BW) or large (>8BW) the visual 

representation of the jump was excluded from the analysis. For the identified leg lifts, if 

the peak thigh elevation angle was not identified or was greater than 160° the leg lift was 

excluded. Additionally, if the duration of a single leg lift was greater than 15000 frames 

(15 seconds) it was excluded from the analysis. The visual representation of all remaining 

trials of jumps and leg lifts were manually inspected by a single reviewer, and if the 
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waveform was not consistent with standard jump GRF and leg lift kinematic profiles it 

was excluded from the analysis. This cleaning process resulted in the removal of all false 

positives. Therefore, while the accuracy of the model utilised was 77.1%, the final 

accuracy would have been substantially greater due to the described cleaning process. 

Due to the substantial time demands of processing and cleaning the data in this thesis, 

it was determined that rather than utilising a full day’s data, data from a single ballet class 

at each of the 4 time points would be included in the final study. We determined that this 

was appropriate as a proof-of-concept for monitoring of dancers’ training loads as it 

provided capture of a class that the dancers consistently participated in. Given these 

resource limitations, the wearable sensor system developed and used within this thesis has 

demonstrated the potential for use within larger field-based studies, incorporating 

individual serial monitoring over time, allowing for the collection of large amounts of data 

to facilitate sophisticated temporal analytics such as complex systems approaches to 

further explore the complexities of individual dancer’s pain and pain related disability 

(Bittencourt et al., 2016). 

7.2.5 The future: Advancing the field  

For larger studies to occur optimisation of the wearable sensor system is required to 

improve accuracy and usability. Given the substantial quantity of data processing and 

manual data cleaning required within the field-based study, a fully automated system with 

a greater degree of accuracy when utilised within the field is desirable. Suggestions of how 

this may be approached are described below, and can be broadly categorised into software 

and hardware considerations, and are described below.  

7.2.5.1 Software considerations  

Based on learnings from the current study, considerations surrounding the software 

utilised are: improving the accuracy of the machine learning models, considering both 

types of movement and optimising generalisability or individuality of the model, and 

optimising model integration with user-friendly devices.  

7.2.5.2 Improving accuracy of machine learning models: types of 

movements 

For the development of the human activity recogntion model, 23 dancers attended a 

data collection session in a ballet studio, where they performed a series of discrete 

movement tasks. These movements were then repeated within choreographed sequences. 
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Each dancer performed the same movements and the same choreographed 

sequences.Thus, while the diversity and range of jumps and leg lifts were common to what 

the dancers perform in their normal training, it is unlikely that every type of jump and leg 

lift movement was included. To allow for greater variability in movements, in future 

developments of machine learning models applied to wearable sensor data, researchers 

should consider fitting dancers with wearable sensors in their normal ballet classes to 

acquire the data for model development and validation. This would allow for a broader 

selection of jumps to be captured, as well as a broader capture of the movements of interest 

(i.e., a broad range of jumping movements) and other dance and non-dance movements 

(for example other movements such as pirouettes (when the dancer “spins” around on 1 

leg), movements where the dancer is travelling across the studio or non-dance movements 

(such as walking or sitting). By capturing different dancers in different ballet classes, 

greater variation in the choreographed routines may improve the performance of the 

models when used in field-based settings. Additionally, the inclusion of data captured 

within contemporary dance classes, pointe work and rehearsals with varying repertoire 

would further promote generalisability of the model, allowing for use outside of a typical 

ballet class. This approach may further improve ecological validity of the field-based 

system, allowing for capture of a greater number of movements, thus improving both 

accuracy and practicality.  

7.2.5.3 Improving accuracy of machine learning models: 

generalisability or individuality 

Within the development of the current system, it was evident there was a range of 

accuracy across the sample of dancers, whereby the models performed extremely well for 

some dancers however not for others. It is therefore likely, but unclear, if this was also the 

case in the field-based study. Future model developments could aim to improve 

generalisability of the model or account for dancers’ individual movement patterns. 

Specifically, model generalisability could be potentially improved by training models on a 

larger sample of dancers. This would increase the between dancer movement variability, 

thus developing models that are generalisable to a greater number of dancers. An alternative 

to developing machine learning models that are generalisable across a broad population of 

dancers, is to develop or refine models on individual dancers. Specifically for each dancer 

involved in the research, there is potential that machine learning models can be retrained 

and refined for each individual dancer within the research (Amrani, Micucci, & 

Napoletano, 2021). Such an approach would likely have the benefit of resulting in a more 
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accurate system, when used for monitoring of this individual dancer (enabling the dancer 

to be their own baseline). This approach would allow individual differences of dancers to 

be accounted for, as the machine learning model would essentially be customised to the 

dancer that it was being used on. While this may increase accuracy, in order to be 

implemented training and testing data sets would need to be acquired for both movement 

quantity and quality models for every participant, as the model would only be able to used 

on the dancer it was developed on, and would not be easily generalisable to all dancers. 

Currently computational time likely would not allow for this and supercomputer systems, 

which may be difficult to access, would be required. There is however precedence for this 

approach through other applications of machine learning such as how social media retrains 

algorithms based on individual data. Therefore, while this approach may not be feasible 

currently, in the future there may be larger scope for it.  

7.2.5.4 Improved integration with user friendly devices 

The substantial data processing times could be improved by designing and optimising 

the machine learning models allowing for compatibility with personal computers and 

smart devices. Such developments would reduce the significant time burdens for 

researchers. Clinically, this would allow dancers, dance teachers and clinicians working 

in the field with the potential for real-time feedback on a dancers’ movement quantity and 

quality to assist with the prevention of pain and pain related disability in dancers.  

7.2.6 Hardware considerations 

The wearable sensor system could be further optimised through the parameters that 

the sensors were set at and by looking at reducing the number of sensors. Importantly, 

with rapid advances in wearable sensor technology, some of the limitations and challenges 

presented in the field-based application of the wearable sensors may be overcome by 

advancing technology.  

7.2.6.1 Sensor parameters 

Within the current study, data was collected using Actigraph Link wearable sensors 

(Higgins, Higgins, & Vallabhajosula, 2021). The sensors were operating at 100Hz with 

the accelerometer, gyroscope and magnetometer all switched on. This was the highest 

collection frequency the wearable sensor enabled. However, collecting at this frequency 

and with these settings limits the battery life of the wearable sensors used to 8 hours, which 

is approximately the time of a single training day. Additionally, collecting at this 
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frequency results in very large data sets, which increase processing times. At lower 

collection rates and with only the accelerometer switched on, the battery life of the sensor 

increases dramatically, and up to two weeks of data can be collected prior to the unit 

requiring charging. Therefore, a lower collection rate may be more appropriate for ongoing 

/ serial monitoring of dancers’ movement quantity and quality, unless hardware 

developments can improve battery life. Regardless, if lower frequencies were utilised for 

model development, machine learning models would need to be developed reflecting these 

parameters and this may influence accuracy. Specifically, given that the gold standard 

laboratory-based set ups collect at frequencies of 1000Hz for force platforms and 250Hz 

for optical motion capture systems, it could be hypothesised that the accuracy of the 

movement quality estimation would have reduced with a lower collection frequency. For 

example, a lower sample rate may result in loss of peak accelerations of high-speed 

movements and in turn the loss of peak GRFs, which have the potential for informing risk 

of pain development in future larger studies. However, these parameters and limitations 

are specific to this wearable sensor device, and the market for devices is constantly 

growing, with technology developing rapidly. Therefore, the identified challenges may 

soon become overcome or obsolete with continued advances in wearable sensor 

technology.  

7.2.6.2 Number of sensors 

As discussed in Section 7.2.2.5, future developments of machine learning models 

applied to wearable sensor data should consider using fewer sensors. Dance is highly 

aesthetic, and the attachment of multiple sensors has the potential to impede both the 

aesthetic qualities of dance and dancers’ movement. This would both reduce the likelihood 

of dancers wearing such a system for the prolonged period that is required for serial 

monitoring. Further the use of multiple sensors would limit the utility of the system in a 

performance context. However, with improvements in wearable technology, smaller and 

smaller sensors are becoming available. In the future, if a sensor of similar size and form 

as a Band-Aid was developed there would be greater scope for the use of multiple sensors. 

However, from a practicality perspective for researchers, the use of multiple sensors still 

requires greater set up, processing and computational demands. Further, more sensors 

provide greater scope for more technology malfunctions, and missing data potential. 

Currently, a greater number of sensors is also more costly to purchase and maintain, 

however again, with growth in the wearable sensor market the purchase and running costs 

of wearable sensors is reducing.  
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Within the context of dance, the ideal system would likely use only a single sensor. 

Based on the results of Study 1, the most accurate single sensor model used the data from 

the sacrum sensor. At the second level of classification, with the inclusion of transitions 

this performed with 70% accuracy. However, 70% accuracy is lower than that 

demonstrated for machine learning models in several other sports which have used only a 

single sensor, as shown in Table 2.3 and Table 2.4 (Cust et al., 2019). Regardless, these 

results should be considered in future developments as this sensor location may be ideal 

for dancers. A sacrum sensor is easily concealed, thus neither impedes dancers’ 

movements nor the aesthetics of dance. As well as being the best single sensor for the 

human activity recognition model, the sacrum sensor was the most optimal model for 

estimation of GRF during jumping also performed with an acceptable degree of accuracy. 

Therefore, use of this single sensor would allow for quantification of dance-specific 

movements and estimation of the movement quality variable of GRF. However, a single 

sacrum sensor system would be insufficient to estimate joint angles during leg lifting tasks. 

Based on the results of Study 2B, the most accurate model for the estimation of thigh 

elevation and lumbar spine sagittal angles during leg lifting tasks required data from the 

bilateral thigh sensors. Indeed, all top 10 performing models utilised thigh sensor data. 

Therefore, based on the movements investigated, the results of this thesis suggests that the 

minimum number of sensors that would be required for a wearable sensor system to 

comprehensively measure dancers movement quantity and quality involving jumping and 

leg lifting would be 3 sensors, located at the sacrum and bilateral thighs. However such a 

system would not have acceptable accuracy at measuring movment quantity, as described 

in Section 7.2.2.5. 

Within this body of work, dancers and dance teachers were not surveyed in relation 

to the acceptability of wearing the wearable sensors in dance class and performance.  

However, with continued advances in wearable sensor technology, where manufacturers 

are reducing the size of sensors and developing the ability to build sensors into clothing, 

a sacrum worn sensor has the potential to be built into a dancer’s leotard, thus minimising 

any potential aesthetic and movement interference. Currently, this may be similar to a 

sports person wearing a wearable sensor in a built-in pocket in their shirt. However, 

advances in technology may allow for the potential of improved accessibility and 

wearability of the sensors for a dancer, similar to the small, Band-Aid style sensors 

described above. Not only would they promote easier field-based serial monitoring of 

dancers for research purposes, they would provide opportunity for real-world use by 

clinicians and dance teachers to monitor dancers in their normal training.  
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7.3 The relationship of dancers’ movement quantity and quality with 

pain and pain related disability: Where the field currently sits. 

Recent publications exploring the relationship of dancers’ pain with movement 

quantity has analysed the relationship looking at pain under the construct of “injury” and 

considered the number of “injuries” present. Generally there is a lack of consensus 

surrounding the relationship between dancers’ movement quantity and “injury”, as 

described in Chapter 2. While some studies have identified injury rates mirroring 

fluctuations in movement quantity, either by total number of hours or total number of 

sessions per week, others have shown no relationship disability (Boeding et al., 2019; 

Cahalan et al., 2019; Cahalan, Kearney, et al., 2018; Jeffries et al., 2020; L. Lee et al., 

2017; Shaw et al., 2021; Volkova & Kenny, 2020). The variable relationships 

demonstrated may, in part, reflect the limitations of the current body of literature in this 

field. Specifically, dependent on how it is defined, the construct of “injury” may not truly 

capture the burden of the problem of musculoskeletal pain amongst dancers, both at a 

population level and at an individual level (Kenny et al., 2018). Further, while the number 

of injuries experienced at a time point provides an indication at a group level of how 

movement quantity may relate with the incidence of injury within dance, it does not 

provide any indication of a dancer’s individual experience of pain. Thus, the current body 

of literature is limited to group-level analysis, without consideration of the individual, 

when pain is a highly individual experience (Caneiro et al., 2021).  

7.3.1 Understanding of pain via an “injury” model 

The majority of the dance literature exploring pain in dancers view pain using an 

“injury” model. Within previous work exploring the relationship between dancers’ 

movement quantity and “injury”, injury definitions have also been variable. Research 

exploring the relationship of professional dancers’ movement quantity and “injury” 

utilised medical attention and time loss definitions, and “injury” recorded by in house 

medical staff. Professional dance companies frequently have medical teams onsite, which 

allows easy access to these resources, but this is less common in pre-professional settings 

(Kenny et al., 2018). Additionally, pre-professional dancers do not consistently access 

services from health care providers when experiencing pain (Wang & Russell, 2018). 

Therefore, the use of a “medical attention” definition may not be appropriate for use in 

pre-professional dancers, as it would likely not capture the full burden of the problem of 

musculoskeletal pain in this cohort. This may be why researchers exploring the 

relationship of movement quantity with “injury” in pre-professional dancers have utilised 
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dancers’ self-reported “injury”. Some of these studies have included a time loss definition, 

whereby within their self-report dancers include the number of days they cease training 

due to their injury. However, it is widely cited that dancers frequently continue to dance 

while experiencing pain or injury, thus time-loss definitions may not truly capture a 

dancer’s pain experience (Anderson & Hanrahan, 2008; Encarnacion et al., 2000; Kenny 

et al., 2018; Mainwaring & Finney, 2017).  

Importantly, as detailed in Chapter 2, there is a need to understand musculoskeletal 

pain outside of the “injury” model, as this term implies the presence of anatomical level 

tissue damage, which frequently does not correlate well with a person’s pain experience 

(Caneiro et al., 2021; Hainline et al., 2017). Tissue damage tends to occur when the load 

applied to tissue exceeds the tissue’s capacity to tolerate that load, and can be associated 

with pain (Caneiro et al., 2021). For example in an acute ligament tear, where tissue is 

exposed to a sudden traumatic event and cannot withstand this load a person can experience 

substantial pain (Caneiro et al., 2021). Similarly, pain associated with a change in loading 

or repetitive loading over time may be related to a stress fracture (Caneiro et al., 2021). 

However, it is broadly recognised that pain can exist in the absence of tissue damage, and 

conversely, changes to anatomical structure can exist in the absence of pain (Hainline et 

al., 2017). Indeed, previous research in dancers, has demonstrated that radiological 

evidence of hip morphological and pathological changes and lower limb tendinopathic 

changes do not correlate with pain, and instead are considered to be adaptive changes to 

the tissue based on the physical occupational related exposures of dance (Comin et al., 

2013; Mayes et al., 2016a, 2016b, 2016c, 2016d; Mayes, Smith, & Cook, 2018). Thus pain 

that presents without clear evidence of a pathoanatomical basis should not be labelled as 

injury. Similarly, anatomical changes that may be adaptive in nature should not be labelled 

as injury. As a result there is a need to move away from the “injury” model and look towards 

a model of pain (Caneiro et al., 2021).  

Additionally, in determining the relationship of movement quantity with pain related 

disability, the majority of the current body of literature utilises the number of “injuries” 

present in a sample of dancers at a time point within their analysis. In essence, this method 

of capturing the presence of pain, looks at pain or injury as a dichotomous variable, where 

either the dancer is, or is not, experiencing pain. While this provides capture of the problem 

at a group level, it does not provide insight to the individual experience of a dancer’s pain 

and pain related disability.  
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7.3.2 The dancers’ experience of pain 

To overcome the limitations of the “injury” model, within this research we adopted 

more comprehensive measures of pain and related disability. Three separate classifications 

for musculoskeletal pain were utilised: 1) Acute traumatic event referred to dancer 

reported incidents such as ankle sprains, muscle tears and fractures, 2) Pain was considered 

via subjective reporting of any musculoskeletal pain (location and intensity) in the event 

where there was no acute inciting incident, and the dancer was able to continue to dance 

and participate in normal activities of daily living, and 3) Pain related disability was 

considered when a dancer subjectively reported pain that either required a time period of 

modified participation or complete cessation of dance training and performance and that 

impacted the dancer’s normal activities of daily living outside of dance. Both pain and 

pain related disability could include “overuse” related presentations.  

The presence of pain and pain related disability was only dichotomised to describe 

the sample. Almost all the dancers in the study experienced pain at some point during the 

12-week period and half of these dancers’ pain was considered disabling (PSFS < 7). 

Interestingly, only 2 of the dancers reported pain as a result of an acute traumatic event, 

one of these was due to a patella dislocation and the other a shoulder dislocation. Both of 

these dancers required a period of complete rest from dance due to these events. However, 

they were the only dancers within this study who required complete cessation of dance 

activity due to pain. These results were consistent with those in other samples of pre-

professional dancers. In a sample of Australian university level, pre-professional ballet 

and contemporary dance students (n=17), of the 119 “injuries” experienced over the 

duration of their 3-year dance course, only 7 injuries were considered traumatic and only 

3 injuries required time loss. It was unclear if those requiring time loss were classified as 

traumatic (Fuller et al., 2020). However, 56% of the injuries were disabling, requiring 

modification to dancers training (Fuller et al., 2020). Thus the results of this thesis and 

previous work on Australian pre-professional dancers suggest that while pain is 

experienced by all dancers, approximately half experience some degree of pain related 

disability. However, those who are disabled by their pain generally continued to engage 

in their training under modified conditions rather than completely ceasing dancing 

activity. This supports previous suggestions that a “time loss injury” definition does not 

truly capture the problem of musculoskeletal pain in pre-professional dancers (Kenny et 

al., 2018). Additionally, the low numbers of acute traumatic events, which would have 
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resulted in definite tissue damage, supports the suggestion of a need to step away from an 

“injury” model (Caneiro et al., 2021; Hainline et al., 2017).  

Within the analysis for Study 3 (Chapter 6), rather than utilising the total number of 

pain presentations at each time point, dancers’ pain experience was considered. 

Specifically, the analyses considered dancers’ pain severity and pain related disability 

measured at each time-point using the Numerical Rating Scale (NRS) and Patient Specific 

Functional Scale (PSFS).  

Despite the high prevalence of pain, as a group the dancers in the current study 

reported relatively low levels of both pain severity and pain related disability. Average 

NRS scores ranged from 3.1-3.5/10 and average PSFS scores ranged from 7.8-8.1/10 

across the 4 time points. The average pain severity scores demonstrated are consistent with 

those seen in professional and non-professional ballet, jazz and street dance dancers, where 

the majority of dancers rated their pain as mild (Diogo, Ribas, & Skare, 2016). However 

the average pain severity is low compared to other reports in professional ballet and 

contemporary dancers, where the majority of dancers experiencing pain reported moderate 

to severe levels of pain (Dore & Guerra, 2007; Jacobs et al., 2016). The reason for these 

low levels of pain severity and pain related disability in this sample of dancers is unclear, 

however previous work has suggested that, consistent with professional athletes, 

professional dancers demonstrate higher pain tolerance than controls (Tajet-Foxell & 

Rose, 1995). Two possible explanations were hypothesised for these findings (Tajet-

Foxell & Rose, 1995). The first theory was biological in nature, where the greater pain 

thresholds demonstrated by dancers were potentially due to increased levels of 

endogenous opioids resulting from their physical training and increased fitness (Tajet-

Foxell & Rose, 1995). Their second theory reflected dancers’ cognitions developed within 

their training, suggesting dancers explore boundaries with extreme physical activity and 

pain in a way that non-dancers do not, providing them with a perception of control in 

relation to pain when they are dancing (Tajet-Foxell & Rose, 1995). The theme of a 

perception of control was reflected in the findings of the adjunct study presented in 

Appendix O, where dancers reported actions aligning with controlling and protecting the 

lower back during dance-specific low back movements.  

An alternative theory is that the relatively low levels of pain severity and disability 

may reflect how dancers perceived their pain. Previous publications have described how 

dancers differentiate between “performance pain” and “injury pain” (Anderson & 

Hanrahan, 2008; Harrison & Ruddock-Hudson, 2017; Thomas & Tarr, 2009). It is possible 



Chapter 7.  Discussion and Conclusions 

151 

that the majority of dancers perceived their pain as “performance pain” which is 

considered harmless, tolerable and short lived pain, of low intensity, as opposed to “injury 

pain”, which is considered threatening, dangerous and intolerable and is difficult to 

control, limiting dancing and is severe in intensity (Anderson & Hanrahan, 2008; Harrison 

& Ruddock-Hudson, 2017; Thomas & Tarr, 2009). However, this theory is speculative 

and requires further research. Regardless, the average pain and disability scores 

demonstrated in this thesis highlight the importance of consideration of a dancer’s 

individual experiences of pain as opposed to the number of pain presentations within a 

group. Further, the relatively low levels of pain severity and pain related disability may 

have influenced the associations identified in this thesis.  

While no associations between pain severity and both movement quantity and quality 

were apparent, there was evidence of some modest, group level associations between pain 

related disability and movement quantity and quality. These results suggest that irrespective 

of pain intensity dancers continue to engage in their training normally. However, when their 

pain becomes disabling, they continue to dance, but with modifications. Specifically, 

greater levels of pain related disability were associated with more time spent in light 

intensity activity, and this time appeared to be taken from moderate intensity activity. 

Further, greater levels of pain related disability were associated with fewer leg lifts to the 

front and overall, and less time spent performing leg lifts to the front. These results 

potentially challenge the notion of a culture in dance where dancers ignore and “push 

through” pain in order to continue dancing (Encarnacion et al., 2000; Lampe, Borgetto, 

Groneberg, & Wanke, 2018; Tajet-Foxell & Rose, 1995). Rather than ignoring and 

“pushing through” pain, the dancers modified their training, making potentially adaptive 

changes. Specifically, even with relatively low levels of pain and disability, the dancers in 

our study demonstrated what appears to be an adaptive response to disabling pain whereby 

they reduced their movement quantity overall, and during leg lifts to allow themselves to 

continue to engage in their dancing. However, in relation to movement quality, greater pain 

related disability was associated with greater thigh elevation angles during side leg lifts. 

Within the review of literature, no other studies exploring changes in movement quality 

with changes in dancers’ pain related disability were identified. However it has been 

recognised that the large ranges of movement that dancers achieve during side leg lifts may 

be associated with the development of hip pain secondary to increases in joint loading (Han 

et al., 2019). Thus, it could be hypothesised that when experiencing higher levels of pain 

related disability, the dancers, at a group level, were modifying their training behaviours in 

ways which may reduce general load (movement quantity) while also increasing specific 
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joint load (thigh elevation angle during leg lifts). These findings potentially reflect the 

continuous juggling act that dancers are faced with in the management of pain and 

disability, where they are persistently aiming to continue to engage in their valued activity, 

while either coping with, or compensating for, their pain. Further research, including a more 

diverse array of movements is needed to explore this hypothesis. 

Interestingly, there was no association demonstrated between pain related disability 

and both the quantity and quality of dancers jumping activity. This came as a surprise as 

previous literature suggesting jumping, and the associated GRF, as one of the leading 

mechanisms of “injury” amongst dancers (Allen et al., 2012; Mattiussi et al., 2021;  

Mattiussi et al., 2021). Specifically, in a 5-year epidemiological study, published during the 

course of this doctoral thesis, 27% of “time-loss injuries” experienced by professional ballet 

dancers were linked to jumping (Mattiussi et al., 2021). “Time-loss injury” was defined as 

injury requiring modification or cessation of dance training and performance. Potentially, 

had the dancers in the current work been monitored daily and for a longer time period an 

association between movement quantity and quality of dancers jumping activity would 

have been established. Additionally, research has demonstrated that professional 

contemporary and ballet dancers perceive jumping as one of the most pain provocative 

activities within their training (Vassallo et al., 2017), thus it would be expected that when 

experiencing pain dancers may alter their jumping behaviour.  

The lack of association of jumping movement quantity and quality with pain and pain 

related disability, challenge findings demonstrated in cross-sectional studies comparing 

dancers with and without anterior knee pain suggesting that those with pain demonstrated 

greater peak GRF during a ballet specific jumps (grand jeté mean difference=1.58BW, 

P<0.001, echappe saute mean difference 0.2BW, CI: 0.08, 0.32) (Fietzer et al., 2012; Peng 

et al., 2015). However, both of these studies only considered pain presence rather than 

pain severity, and were performed on a single day. Additionally, they were limited to 

laboratory-based settings, thus reducing the ecological validity. In contrast, the findings 

presented in this thesis considered changes in pain severity at 4 different time-points and 

data was collected within the dancers normal training environment, thus reflecting their 

normal training behaviours when experiencing pain. Notably however, the dancers in the 

above-mentioned studies were experiencing knee pain (Fietzer et al., 2012; Peng et al., 

2015), whilst pain location was not accounted for in Study 3’s analysis. It is possible that 

different movement quality factors are linked to specific pain areas, for example knee pain 

may be linked to changes in GRF and low back pain linked to lumbar spine kinematics 
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during leg lifts to the back. Another explanation for the lack of association of jumping 

movement quantity and quality with pain and pain related disability, may relate to the 

aforementioned low levels of pain and disability observed in this thesis. Potentially, the 

threshold for marked changes in movement in response to pain was not met, in line with 

previous experimental research, where changes in movement were only demonstrated at 

higher pain intensities (Henriksen et al., 2011).  

7.3.3 Advancing the field: Considerations for continuing to improve 

our understanding of the complexities of dancers’ pain and 

pain related disability 

While this thesis employed the use of more comprehensive measures of pain 

compared to previous work, and considered both changes in pain severity and pain related 

disability, there are a number of considerations for future work to assist in understanding 

the complex nature of a dancer’s pain and disability. Specifically, individualised analysis 

incorporating serial monitoring of both movement quantity and quality, as well as other 

salient risk factors would be useful. Additionally, accounting for variation in pain 

location and the task that dancers selected in the PSFS, both within and between dancers 

should be considered. Consideration of these factors may assist in understanding dancers’ 

pain at an individual level.  

7.3.4 Understanding pain at an individual level 

While some associations demonstrated in Study 3 were considered statistically 

significant, they should be regarded with caution, as they reflect group level 

associations as opposed to that of the individual. Essentially, it cannot be assumed that 

all dancers were employing the strategies in response to pain, as pain is a highly 

individual experience. However, the results of the within person analysis demonstrated 

no evidence of within person relationships of movement quantity and quality with either 

pain severity or pain related disability. The lack of within person associations may be 

due to the study design. Having only 4 time-points of data collection over a 12-week 

period and capturing only a single ballet class likely reduced the available amount of 

information to demonstrate associations at the level of the individual dancer. Future 

work should consider daily monitoring of dancers’ over a prolonged time period. 

However, this study provides a proof-of-concept that the field-based system developed 

and used could allow for future research incorporating continuous, serial monitoring of 

dancers’ movement quantity and quality.  
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7.3.4.1 Variation in pain location 

Consistent with previous literature, the foot/ankle was the most common location for 

dancers’ pain, followed by the lower back. However, in Study 3 (Chapter 6) pain severity 

and pain related disability was considered irrespective of pain location. At each time point, 

dancers were able to report different pain locations. Allowing for this variation in reporting 

was considered important, as dancers commonly experience pain in different locations at 

different times. Fuller et al., 2020 revealed that 75% of subsequent “injuries” in pre-

professional dancers are at a different site. Therefore, accounting for pain location within 

the analysis may influence results and provide a more comprehensive understanding of 

the relationship of dancers’ movement quantity and quality with pain and pain related 

disability, both between and within dancers. Potentially, both movement quantity and 

quality could be linked with the anatomical location of pain. For example, it could be 

hypothesised that dancers experiencing foot and ankle pain may modify their jumping 

movement quantity and quality, potentially reducing the number of jumps or landing their 

jumps differently to dancers with lower back pain. Similarly, an individual dancer may 

land a jump differently when she is experiencing foot and ankle pain at 1 time point, 

compared to if she is experiencing lower back pain at a different time point. Therefore, 

future research might better elucidate understanding the relationship between movement 

and pain if it addresses specific pain locations.  

7.3.4.2 Variation in task selection in the Patient Specific 

Functional Scale  

While dancers selected specific tasks that they were finding difficult to perform due 

to their pain to provide ratings on in Study 3, these were not considered in the analysis. 

Rather the score that the dancer applied to the task was utilised as a measure of disability. 

As for pain location, dancers were able to select different tasks at each time point. 

However, accounting for the specific tasks that dancers select may influence results. For 

example, it could be hypothesised that a dancer with lower back pain may select back leg 

lifts as a movement they are having difficulty with in the PSFS. As a result, they may 

reduce the number of leg lifts to the back, or modify their movement quality during leg 

lifts to the back, utilising lower thigh elevation and lumbar spine sagittal angles, compared 

with a dancer who is experiencing foot and ankle pain who has identified jumping as 

difficult on the PSFS due to their pain. Similarly, an individual dancer may demonstrate 

different movement quantity and quality at a time period when she identifies leg lifts as 

difficult on the PSFS compared to when she identifies jumping as difficult on the PSFS. 

Future mixed methods studies exploring if modifications in movement behaviour are 
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conscious or subconscious would also allow further exploration of this concept. 

Additionally, qualitatively exploring dancers’ perceptions of their pain, disability and 

dance performance in conjunction with the quantitative measurement that the system 

developed in this thesis provides allows the potential of seeing if dancers’ perceptions of 

pain match their movement behaviours.  

7.3.4.3 The inclusion of other domains 

Given the physical nature of a dancer’s training and the long-held belief that this is 

related to the often high rates of pain and disability, this thesis explored the domains of 

dancers’ movement quantity and quality relative to pain and disability. However, pain 

development, and the trajectory that a person’s pain takes is influenced by more than 

movement parameters (Caneiro et al., 2021; O'Sullivan et al., 2018). Therefore, to advance 

our understanding of the complexities of pain in dancers, future longitudinal studies should 

also include serial monitoring of other domains that may influence pain and disability. 

Specifically concurrent serial monitoring of dancers psychological and lifestyle factors, 

such as mood, cognitions, coping responses, fatigue and sleep would be useful. It is 

plausible that these factors, and the potential multidirectional relationships that they may 

have with both movement quantity and quality, may influence dancers’ pain development, 

their behaviours and coping responses when they experience pain and the trajectory their 

pain takes. Additionally, the incorporation of serial monitoring of “session RPE” 

integrating wearable sensor measures of specific training loads, such as the number of 

jumps or leg lifts, with dancers’ perception of effort during training would continue to 

strengthen this research (Jeffries et al., 2016). This would allow for further analysis of the 

complex interactions between different domains to provide a comprehensive 

understanding of the risks for the development of an individual dancer’s pain and the 

responses that a dancer has when experiencing pain and disability.  

7.4 Strengths and limitations of thesis 

This thesis includes work of notable strength. The wearable sensor system developed 

across Studies 1 and 2, presented in Chapters 3 to 5, employed innovative techniques to 

objectively quantifying movement quantity and quality in dancers. The final developed 

system was capable of detecting dance-specific movement tasks and their associated 

movement quality that have been considered relevant in the development of pain and 

disability by researchers, dancers and clinicians alike. While the degree of accuracy was 

considered acceptable, it was also enhanced via significant data cleaning efforts when 

applied to the field-based study in Study 3 (Chapter 6). In applying this system to a field-
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based study the thesis reports on the first longitudinal research project within the field that 

had considered both dancers movement quantity and quality relative to pain and disability.  

Several limitations of the thesis have been identified and highlighted throughout this 

chapter. In relation to the wearable sensor system developed in Study 1 and 2 and 

described in Section 7.2.4 of this chapter, the limitations described surrounding accuracy 

and usability of the system likely reflect the unique nature of this work, where the field of 

machine learning is rapidly growing, and methodological advances are continuously being 

explored to facilitate improvements in model developments. As described in Section 7.3.3 

of this chapter, there were challenges when applying the wearable sensor system to a 

longitudinal, field-based study resulted in collecting data from just 4 single dance classes 

as opposed to a full day’s training at each time point of data collection. Repeated measures 

at only 4 time points over the 12-week period, reduced the available information to 

elucidate associations within individual dancers.  

All 3 studies were also limited to the inclusion of only female pre-professional ballet 

and contemporary dancers. The inclusion of only female dancers for the machine learning 

model development, limits the application of the wearable sensor system to female pre-

professional dancers. Future developments should consider the inclusion of data from a 

more diverse selection of dancers including male dancers, recreational dancers, and 

professional dancers. The inclusion of only female dancers for the field-based study in 

Study 3 reflected the differences in participation rates of male and female dancers at a pre-

professional level, however may have influenced results. Typically, in Australian 

university dance settings there are fewer males than females enrolled in dance programs 

(Fuller et al., 2020). Indeed, less than 10% of dancers in the dance program where dancers 

for this thesis were recruited from were male. However, as other training facilities and 

professional dance companies may have similar numbers of male and female dancers, 

future research should include male dancers. Further, limiting the sample for Study 3 to a 

single dance institution reduces generalisability of the results, as training regimens across 

facilities may influence movement demands and thus associations with pain and related 

disability. Future work could usefully engage multicentre collaborations to capture 

recreational through to professional dancers at multiple institutions internationally.  

7.5 Beyond research: Real-world, clinical application of a wearable 

sensor system 

Looking beyond the scope of research, the ultimate goal of a system such as the one 

developed in this thesis is a fully automated system which can be used by dancers within 
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their normal training, allowing for real-time monitoring of movement quantity and quality. 

By integrating a single wearable sensor with user friendly software on a dancer’s smart 

device, this technology could be used in the prevention of musculoskeletal pain and 

disability. However, to allow for such application, further work in this space is required. 

As well as optimising wearable sensor systems to promote consumer usability, further 

research utilising the system to continue exploring the complex interactions between 

movement quantity and quality and pain related disability is needed.  

7.6 Conclusions of thesis 

The novel field-based sensor system developed and validated in this thesis 

demonstrated it could provide quantitative information on both movement quantity and 

quality in a real-world environment. While further optimisation of the technology used is 

required to enhance both accuracy and practicality, this thesis demonstrates a proof-of-

concept for larger, longitudinal field-based research to occur. By applying the wearable 

sensor system to a field-based study, insight was sought into how dancers with disabling 

pain may adapt the way they move to reduce load, allowing them to continue to engage 

in their dance training. However, it is unlikely that these same responses are utilised by 

all dancers when faced with pain and pain related disability. Rather, it is likely that 

complex interactions between movement quantity and quality, as well as other 

biopsychosocial factors, that are unique to each individual, influence a person’s pain 

development and coping responses to pain. Future application of wearable sensor 

technology provides the opportunity for clinicians to gain a deeper insight into these 

complex interrelationships, to better inform person centred care. 

The outcomes of this thesis provide scope for frequent, field-based, serial measures 

of movement quantity and quality in a dancer's everyday training. Access to such 

measurement tools would provide an opportunity for collection of the substantial data 

requirements needed for modelling the complexity of interrelationships between 

movement, pain, disability and other factors such as psychological and lifestyle factors, 

using sophisticated analytics such as complex systems approaches (Bittencourt et al., 

2016). This would also create opportunities within clinical research and practice for 

assessment and monitoring of individual dancers, and detecting shifts in individual dancer 

movement behaviours in response to treatment or advice. 
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Study 1: Participant Recruitment Materials 
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Study 1: Participant Information and Consent Form 
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Appendix D  

Study 1: Supplementary Digital Content Machine Learning Model Architecture 
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Definition of terms: 

Stride The size of the step that the filter takes in the convolution layer 

Rectified Linear Unit A non-linear activation function to transform input values = max(0, x) 

Pooling and Max Pool 

Layer 

A function that reduces the spatial representation (size) of the data in a 

neural network. This helps reduce the number of parameters and 

computation in addition to reducing overfitting when training the network.  

Neuron A mathematical approximation of a biological neuron. It takes a vector of 

inputs, performs a transformation, and outputs a single scalar value. 

Fully Connected Layer Neurons in a fully connected layer have neurons (nodes) connected to all 

activations in the previous layer.  

Categorical Cross Entropy A loss (error) function used to evaluate how well a model performs on a 

multi-class classification task. 
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Study 2: Recruitment Flier 
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Appendix F  

Study 2: Participant Information and Consent Form 
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Appendix G  

Study 2A: Description of Tasks 

Name Description Image demonstrating movement  

Bilateral Landings 

Sauté in first 

position 

The dancer commences 

in first position of the 

feet (lower limbs 

externally rotated and 

heels placed together) 

and performs 8 

bilateral vertical jumps 

landing bilaterally. 

 

Changement 

in 5th 

position 

The dancer commences 

in fifth position of the 

feet (lower limbs 

externally rotated and 

feet crossed) and 

performs 8 vertical 

jumps changing the 

front foot upon 

landing.  

Entrechat 

Quatre 

The dancer commences 

in fifth position of the 

feet (lower limbs 

externally rotated and 

feet crossed) and 

performs 4 vertical 

jumps beating the legs 

in air before landing 

bilaterally with the 

same foot in front. 

This was performed 

with the right leg and 

left leg starting in 

front. 
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Name Description Image demonstrating movement  

Unilateral Landings 

Assemblé  The dancer commences 

in 5th position and 

swishes one leg out to 

the side as they take 

off, they gather the 

legs in the air together 

and land before 

immediately taking off 

for the next jump. 
 

Jeté 

ordinaire 

The dancer commences 

in 5th position and 

swishes one leg out to 

the side as they take 

off, they then land on 

the limb that they 

swished to the side. 

 

Temps levé A single leg vertical 

jump and land 

performed 5 times in 

succession. 
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Appendix H  

Study 2A: Frequency Histograms Representing Data Distribution 
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Appendix I  

Study 2B: Segment Orientations 

Plug in Gait Model coordinates for thigh and thorax 

Segment Origin Axis 1 Axis 2  Axis 3 

Thigh 

Mid point of 

femoral 

epicondyles 

Z: Origin to the 

centre of the 

femoral head 

Y: Between 

epicondyles (knee 

flexion axis) Cross product 

between axis 

1 and 2 
Thorax 

Mid point anterior 

surface of 

clavicular heads 

Z:Mid clavicle 

(C7) to mid 

sternum (T10) 

X: In an anterior 

direction from the 

origin 
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Appendix J  

Study 2B: Model Architecture Description 

Initial experimentation and final model architecture details 

Initial experimentation was performed utilizing neural networks, with a number of 

different neural network architectures explored with various parameters, such as individual 

single input and output models for the three leg lifts utilising the Keras Sequential API, and 

combined models with multiple outputs utilising the Keras Functional API. A single input, 

multiple output model designed with the Keras Functional API incorporating a recurrent 

neural network long short term memory layer delivered the best results. 

The final model architecture consisted of a shared input model with three outputs 

returned; a prediction for leg (left or right) and estimations for thigh elevation angle and 

lumbar spine sagittal plane angle at each timestep, where there were 100 data points per 

second (100 Hz). A single input layer was connected to a masked layer, which then passed 

inputs to 2 separate hidden layers. As the sequence lengths (i.e. number of data points of 

each individual movement) were variable, the masking layer was used. This is where the 

sequences were padded to the maximum sequence length of 1068 data points, with data 

points with the masking input value ignored by the masking layer. A single hidden dense 

layer with 57 units extracted the features from the sequences, followed by a fully 

connected dense output layer with sigmoid activation that returned a prediction for the 

side of the leg (ranging from 0 (right) to 1 (left)). A single long short-term memory 

(LSTM) hidden layer with 128 un extracted the features from the sequences, followed by 

2 separate fully connected time distributed output layers with linear activation returning 

estimations for thigh elevation angle and lumbar spine sagittal angle.  

The number of input units was 15, and consisted of the 2 types of sensors 

(accelerometer and gyroscope) three planes (x, y and z), for 2 thigh sensors and categorical 

inputs for the direction of leg lift (back, front or side, researcher supplied). The 

optimization algorithm applied to the whole model was the adaptive momentum (Adam), 

a popular algorithm in the field of deep learning due to its fast and accurate performance. 

The final model parameters were selected after an optimization process assessing the 

model metrics (i.e. accuracy of the model: accuracy, RMSE, MAE) and loss function 

(RMSE, MAE, binary cross-entropy) for side of leg, and thigh elevation angle and lumbar 

spine sagittal plan angle, respectively. For each timestep within each trial, leg prediction 
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values were rounded to 0 (right leg) or 1 (left leg), with the value of the mode determining 

the final prediction of the leg. The predicted values for thigh elevation angle and lumbar 

spine sagittal plane angle at each timestep for each movement were smoothed using a 

Savitzky-Golay filter with a window size of 51 and polynomial order of three. The 

Savitzky-Golay filter is a particular type of low-pass filter that is well adapted for data 

smoothing. The window size and polynomial order were selected after an optimization. 

The peak thigh elevation and lumbar spine sagittal plane angles were determined by 

extracting the maximum angle of the smoothed curve.  
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Study 3: Ethics Approval  
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Appendix L  

Study 3: Recruitment Information Session Outline 
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Appendix M  

Study 3: Participant Information and Consent Form 
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Study 3: Questionnaires 
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Appendix O  

An exploration of pre-professional dancers’ beliefs of the low back and 

dance-specific low back movements 
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