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Abstract 

 

The essence of rock physics consists of finding relationships between pore-scale 

characteristics and elastic properties estimated from geophysical data. Theoretical rock 

physics models based on idealised microstructures have given important insights to 

understanding of such relationships. However, because of variability of rock geologic 

histories, structures and textures, these models must always contain several parameters 

(such as pore aspect ratios, coordination numbers etc.), which are usually adjusted to 

measured velocities. This limits the predictive power of these models. At the same 

time, high resolution tomographic images are often available. Such data can provide 

detailed information about the rock structure. Furthermore, digital rock physics (DRP) 

enables direct calculation of effective elastic properties from tomographic images 

using different numerical schemes. Thus, DRP could act as a great tool to study on the 

relationship between effective elastic properties and pore-scale characteristics of rock, 

and potentially be used to constrain the theoretical rock physics models.  

In this research, I will first build a digital rock physics workflow by numerical 

computation of elastic properties with finite element method based on X-ray micro-

Computed Tomography (micro-CT) images of Bentheimer sandstones. The effect of 

sample size and micro-CT resolution on the computed elastic properties will be 

evaluated. Furthermore, a novel segmentation workflow will be built to detect feldspar 

and clay minerals in micro-CT images, despite their grayscale similarity to quartz. The 

simulated results based on the segmented multi-mineral labels will be compared 

against core measurements (Chapter 2).  

Elastic properties of sandstones can be highly pressure dependent. However, the 

pressure-induced deformation of intact sandstones in micro-CT images are below the 

resolving power of conventional image analysis methods. Also, most digital rock 

physics studies of the elastic properties operate with micro-CT images acquired at 

ambient pressure. In Chapter 3, I will perform a comprehensive analysis of micro-CT 

images acquired at a variety of pressures using a reservoir sandstone sample with 

pronounced stress-sensitivity. A purpose-built X-ray-transparent pressure cell enables 

scanning micro-CT images at confining pressures of up to 36 MPa. The pressure effect 
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on high-resolution micro-CT images of sandstone sample and elastic properties 

computed from these images will be investigated. 

Grain contact stiffness is crucial for predicting the effective elastic moduli of 

sandstones, and the change of effective elastic moduli in different cementation and 

pressure conditions. Contact stiffness cannot be measured directly with any current 

method. Even with the latest synchrotron-based X-ray tomographic microscopy, 

micro-CT still cannot resolve the majority of soft pores at grain contacts due to 

resolution limitation. These missing information lead to an overestimation of 

computed elastic moduli in DRP. In Chapter 4, I reconstruct the contacts according to 

the morphology of grains using watershed separation algorithm. These approximated 

grain contacts can then be used as a uniform phase with lower moduli in the numerical 

computation. In this way, the effect of unresolved soft pores is taken into account, so 

the computed moduli can be in a reasonable agreement with laboratory ultrasonic 

measurements. At the same time, the stiffness of contact phase can be inverted in this 

matching experiment. This inverted stiffness is a valuable information for 

understanding cementation or stress effect on the grain contact. 

The micro-CT image segmentation workflow developed in Chapter 2 consists of many 

stages, and thus becomes time and computationally expensive and involves a lot of 

manual labour. In Chapter 5, I propose an automated workflow for the multi-mineral 

segmentation of micro-CT images using a convolutional neural network (CNN). The 

CNN model is trained using labels of two sets of images of a Bentheimer sandstone 

that are segmented into pore, quartz, clay and feldspar using a segmentation workflow, 

which is introduced in Chapter 2. The trained model is then used to segment a new set 

of images of the Bentheimer sandstone. The segmented multi-mineral labels can 

achieve an accuracy of ~97% and the process takes only ~10 minutes as compared 

with interactive workflow which takes ~3 hours. The methodology developed in this 

study is not limited to the segmentation of micro-CT images of sandstones. A specific 

segmentation workflow may be designed, where segmentation for other kinds of rock 

or material is required. Then, a CNN model can be used to automate and standardize 

the segmentation process. 

In summary, this thesis provides a comprehensive study on digital rock physics in 

elastic properties estimation of sandstones, which includes scanning, segmentation and 
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computation. Significant improvement on micro-CT image multi-mineral 

segmentation is achieved with an advanced workflow and then automated with 

convolutional neutral network. Furthermore, the pressure effect on micro-CT images 

of sandstone is successfully detected and the effect on computed effective elastic 

properties is evaluated. The well-developed digital rock physics workflow is applied 

to understand the grain contact stiffness in sandstones with different cementation 

conditions or under different pressures. 
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Chapter 1 Introduction 

1.1 Background and motivation 

Direct access to log and core data from deep geological reservoirs is always sparse due 

to the limited number of wells. Hence, extrapolation of the rock properties away from 

the wells is often done using quantitative interpretation of seismic volumes (Avseth, 

Mukerji, & Mavko, 2010). This requires the knowledge of the relationship between 

observed seismic parameters and petrophysical properties of the subsurface, which is 

the central topic of the rock physics discipline. Seismic properties are controlled by at 

least three main factors: mineral composition of the rock frame, rock microstructure 

and fluid saturation. When microstructure is not known, Hashin-Shtrikman bounds 

provide the rigorous range of effective properties based on the volume fractions and 

moduli of the constituents (Hashin & Shtrikman, 1963). However, for porous 

sedimentary rocks, the upper and lower bounds are quite far apart due to the large 

contrast among different minerals in rock matrix and pore fluid. Thus, theoretical rock 

physics models have been developed to estimate the elastic moduli of rocks more 

accurately.  

Naturally, real rocks have very complex microstructure, so that their deformation is 

analytically intractable. Therefore, theoretical models to estimation of their elastic 

moduli are inevitably based on some simplifying assumptions about the rock geometry 

and deformation process itself (Berryman, 1995; Watt, Davies, & O'Connell, 1976). 

The modelling procedures usually consist of two steps: (1) deformation of an isolated 

and idealised pore/matrix configuration is derived; (2) cumulative effect of such 

building blocks is then found according to their spatial distribution (volume 

concentration, spacing etc.). For loose clastic sediments, spherical grain assemblage is 

the most appropriate (Digby, 1981; Norris & Johnson, 1997; Walton, 1987), and rock 

physics models based on this approximation are normally called contact models. Most 

of these models are based on the Hertz-Mindlin solution (Mindlin, 1949) for the elastic 

behaviour of two identical elastic spheres in contact. Then, the estimated effective 

moduli depend on the average number of contacts per grain. Conversely, for 

consolidated rocks, elastic properties are often modelled with an alternative approach 

called inclusion models—isolated pores are embedded in the solid matrix. Eshelby 

(1957) found deformation of an isolated ellipsoidal inclusion in the homogeneous 
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infinite medium. This idealised pore shape became very popular because it captures 

isometric matrix pores, thin cracks and needle-shaped pore throats. Kuster and Toksöz 

(1974) derived expressions for P- and S-wave velocities for a variety of simple 

inclusion shapes with dilute concentrations in low porosity rocks. This approach was 

extended to arbitrary concentrations of inclusions using a self-consistent method 

which approximates interaction between inclusions by replacing the background 

medium with the as-yet-unknown effective medium (O'Connell & Budiansky, 1974). 

Another way to extent the Kuster and Toksöz (1974) to higher concentration is by 

using it in an iterative manner by incrementally adding inclusions of one phase (phase 

2) to the matrix phase until the desired proportion of the constituents is reached 

(Norris, Sheng, & Callegari, 1985). This approach is called Differential Effective 

Medium or DEM.  

A single model is unlikely to capture the entire range of clastic rocks. More advanced 

integrated rock physics models have been developed to cover a broader porosity range 

and reduce the uncertainty using geological constraints on rock microstructure. Avseth 

et al. (2010) used a series of contact models to estimate the elastic properties of rocks 

with higher porosity and then applied modified Hashin-Shtrikman bounds to deduce 

the elastic properties of rocks with lower porosity in different geologic trends. Dræge, 

Johansen, Brevik, and Dræge (2006) developed a composite rock physics model with 

a selection of some contact models and inclusion models in different processes of 

diagenesis. A distribution scheme for quartz cement, K-feldspar and some of the most 

common clay minerals in sandstones (illite, kaolinite, smectite and chlorite) was 

suggested on the basis of thin-section observations. The predictable mineral reaction 

paths during burial and increasing temperature were then entered into the composite 

rock physics model to reproduce the diagenetic evolution of seismic rock properties. 

In another approach, Vernik and Kachanov (2010) built a sand diagenesis model for 

the entire range of porosities by combining the inclusion models and empirical 

relations. In the consolidated regime, the modelling is micromechanics based and 

yields the moduli in terms of porosity, pore-shape factor, and crack density, based on 

the non-interaction approximation with the Mori-Tanaka correction for interactions 

(Mori & Tanaka, 1973). By necessity, this approach contains empirical parameters 

reflecting highly irregular shapes of pores and micro cracks. In the unconsolidated 
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regime, Vernik and Kachanov (2010) proposed empirical relations of the Mori-Tanaka 

type where pore-shape factors assume large values, consistent with very soft, concave 

pore shapes typical in this regime.  

Even though these advanced rock physics models are more informed by geology, they 

are still based on rather schematic topological arrangement. They use conceptual 

spatial characteristics that may not be simple to derive from the images of rock 

samples, such as crack density, aspect ratio and grains radii. The uncertainties related 

to describing these shape parameters reduces the predictive power of these models 

because of variability of rock geologic histories, structures and textures (Vernik, 

2016). A high-quality match between model results and measured data does not 

necessarily indicate that the model is yielding useful information about the underlying 

controls on velocities (Smith, 2011), or even that the geometrical configuration 

underlying the model is an adequate representation of the rock structure.  

With the rapid advances in computing capacity, Digital Rock Physics (DRP) has 

emerged as an tool for the analysis of pore-scale processes governing effective rock 

properties (Andrä et al., 2013a). This technique relies on numerical simulations of rock 

deformation for a given rock microstructure, which may be obtained directly from 

stochastic simulations, process-based methods or real rock images (Sain, 2010). The 

stochastic methods could reconstruct the structure of general random heterogeneous 

media from limited morphological information artificially designed or obtained from 

2D thin sections (Yeong & Torquato, 1998a, 1998b). Process-based discrete element 

method may simulate spherical grain and even irregularly shaped grains packing 

deposit. Computational diagenesis schemes could mimic rock microstructures changes 

due to geological factors including deposition (grain size distribution, mineralogy), 

stress conditions (isotropic and anisotropic) and diagenesis (quartz overgrowth, 

cementation mode and cement material) (Al Ibrahim, Kerimov, Mukerji, & Mavko, 

2018; García & Medina, 2007; Sain, 2010). Then, effective elastic properties of the 

generated models can be calculated using various numerical schemes (Andrä et al., 

2013b).  

High resolution tomographic data provide detailed information about the rock 

structure and could be used to describe pore geometry. Microstructure of real rocks 

can be obtained using micro-CT, short for micro-scale X-ray computed tomography, 
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which provides three-dimensional images of a small rock fragment with a typical size 

of one to a few millimetres in each dimension. After image processing (noise 

reduction, smoothing, and segmentation), setting up the numerical experiment (object 

size and resolution as well as the boundary conditions), and numerically solving the 

field equations, macroscopic properties of rock sample with realistic microstructure 

information could be estimated (Andrä et al., 2013a).  

Volume fractions and spatial distributions of different rock constituents can be 

potentially extracted from micro-CT images through the segmentation process 

(Schlüter, Sheppard, Brown, & Wildenschild, 2014). The most obvious method of 

segmentation is through setting global threshold values on the greyscale histogram of 

the whole micro-CT image. However, greyscale values of different minerals can often 

overlap due to the following reasons. First, the greyscale values of a mineral are 

distributed within a range, which may be larger than the difference between mean 

greyscale values of two minerals. Second, random noise, which is a common artefact 

in micro-CT images, makes the greyscale value of some small dotted parts inside a 

phase fall into the range of another mineral. Third, due to limited resolution, voxels on 

grain boundaries may include more than one phase, so that the effective greyscale 

value may fall into the greyscale range of another mineral. As a result, the 

segmentation of micro-CT images with global greyscale thresholds is not able to 

generate satisfactory multi-mineral labels (Iassonov, Gebrenegus, & Tuller, 2009).  

In contrast to the global thresholding method, local adaptive methods can further 

account for the local variations of greyscale value. In a popular local adaptive method 

named watershed (Roerdink & Meijster, 2000), only zones with the most distinctive 

greyscale values are selected as markers with global thresholding method, leaving the 

more ambiguous areas undefined. Then, markers grow like water emerging until they 

meet at the zones with high greyscale gradient, then the whole image is segmented. 

However, with the complexity of natural rocks and the artefacts of micro-CT scanning, 

it is even challenging to select appropriate markers. Due to these limitations, micro-

CT image analysis is often restricted to two-phase segmentation, lumping all the 

mineral phases into one solid phase. This simplification can induce significant 

systematic errors in the subsequent effective property estimation (Ahmed, Müller, 
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Liang, Tang, & Madadi, 2017; Ahmed, Müller, Madadi, & Calo, 2019; Andrä et al., 

2013a; Saenger, Lebedev, et al., 2016; Shulakova et al., 2013). 

Another common problem of DRP is a trade-off between the required representative 

sample size for the physical property and the maximum achievable resolution of micro-

CT images (Bazaikin et al., 2017). Dvorkin, Derzhi, Diaz, and Fang (2011) and 

Murphy III, Roberts, Yale, and Winkler (1984) reported substantial spatial variation 

of porosity for mm- and cm sized samples from a relatively homogeneous interval. 

Dvorkin et al. (2011) suggested that the properties of a small sample used in imaging 

and computing do not have to match the properties of its cm-sized host and suggested 

finding a trend calculated from subsamples. Furthermore, limited resolution could only 

partially characterise microstructure of a rock sample, which can lead to significant 

discrepancy between numerical estimates of rock properties based on micro-CT 

images and laboratory data. To overcome this problem, Madonna, Almqvist, and 

Saenger (2012) suggested separating the solid rock component into two phases, a 

pressure-insensitive mineral phase, and a pressure-sensitive grain-contact phase to get 

a reasonable agreement between computational and laboratory velocities. The 

limitations of DRP will be investigated in Chapter 2 and the corresponding 

improvement measures will be introduced in Chapter 2 and 4. 

Rock properties, especially elastic, can be strongly pressure dependent (Eberhart-

Phillips, Han, & Zoback, 1989; Han, Nur, & Morgan, 1986; Zimmerman, 1990). 

However, micro-CT images, as the foundation of DRP, are mostly scanned under 

ambient pressure (Ahmed et al., 2017; Arns, Knackstedt, Pinczewski, & Garboczi, 

2002; Shulakova et al., 2013). There are a few attempts to obtain medical CT and 

micro-CT images of rock at higher pressure. Kawakata, Cho, Yanagidani, and 

Shimada (1997) succeeded in observing faulting process in granite with medical CT 

images under confining pressure. Watanabe et al. (2011) scanned a fractured granite 

sample with medical CT at different confining pressures, and numerically simulated 

the corresponding fracture flow. Yu et al. (2019) scanned a fractured shale with micro-

CT to investigate the fracture morphology changes under different confining pressures. 

Furthermore, a digital volume correction (DVC) method can be used on micro-CT 

images analysis to quantitatively describe the three-dimensional strain field inside the 

sample due to applied stress (Seyed Alizadeh, 2014). For example, Shi et al. (2021) 
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monitored local creep strain field and cracking process in claystone by DVC analysis 

on micro-CT images.   

Compared with fractured rocks and unconsolidated sediments, studies of pressure 

effect on an intact sandstone micro-CT images is quite scarce. The deformation of 

intact sandstones under stress is much smaller, so its direct observation is very 

challenging. Saenger, Lebedev, et al. (2016) scanned a Bentheimer sandstone using 

micro-CT microscopy at confining pressures of 1MPa and 20MPa. The difference 

between the two sets of images (image size 400×400×400 voxel, voxel size length 

2.4µm) cannot be distinguished visually from the greyscale images. Saenger, Lebedev, 

et al. (2016) also compared the simulated elastic properties and permeability from 

images scanned at different pressures. The computed values are quite similar while the 

laboratory measurements show a strong pressure dependency. Furthermore, the 

traditional quantification of the strain field using the DVC method cannot capture 

small strain in an intact sandstone caused by small (under 50 MPa) stress. The 

application of DVC on intact objects is limited for determining large internal strain for 

soft materials (Bar-Kochba, Toyjanova, Andrews, Kim, & Franck, 2015). In Chapter 

3, the study to further push the boundary of pressure effect detection in micro-CT 

images will be presented. 

Several recent studies suggest that multi-mineral segmentation can be automated using 

convolutional neural networks (CNN) (Karimpouli & Tahmasebi, 2019; Wang, 

Shabaninejad, Armstrong, & Mostaghimi, 2020). In any application of neural network, 

a critical part is “ground truth” or labeled data. In previous applications of CNN on 

micro-CT segmentation, significant efforts were devoted to prepare the labeled data. 

Karimpouli and Tahmasebi (2019) semi-manually segmented only 20 slices of micro-

CT images of a sandstone, because the segmentation of each slice required a long time. 

Then, they augmented the manually segmented images with stochastic image 

generator algorithm. However, the generated images are very similar to the original 

ones with limited new mineral features included, which restricts the amount of 

information to be learnt by their CNN. Wang et al. (2020) scanned a mini-plug for 

micro-CT images and then selected the middle part of the image to create two surfaces. 

Then, they scanned one surface with Quantitative Evaluation of Minerals by 

SCANning electron microscopy (QEMSCAN) to automatically generate a mineral 
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map. After that, this 2D QEMSCAN image was used to guide the multi-mineral 

segmentation of 3D micro-CT using a local adaptive segmentation method. The 3D 

labels offered more realistic varieties of mineral phases for training than stochastic 

images generated from 20 slices. However, this label inherited the segmentation errors 

from QEMSCAN and the local adaptive segmentation method. Moreover, these 

studies tested the prediction of the CNN models based on sub-images from the same 

dataset. Ideally, trained CNN models should show effectiveness and robustness on a 

separate dataset (creating the so-called blind test). In Chapter 5, an encouraging study 

in applying CNN in micro-CT image segmentation will be introduced. 

In summary, a variety of theoretical rock physics models based on idealised micro-

structures have been developed to quantify the relationships between seismic 

properties and petrophysical properties. These models have a few parameters (such as 

pore aspect ratios, coordination numbers etc.), which are usually adjusted to measured 

velocities. At the same time, high resolution tomographic data is often available. Such 

data can provide detailed information about the rock structure, which can be used to 

direct calculate effective elastic properties using different numerical schemes. Thus, 

DRP could act as a great tool to study on the relationship between pore scale 

characteristics and effective elastic moduli and potentially indicate the validity of 

various rock physics models. However, it still requires significant effort in 

understanding and improving different process of DRP. An investigation on how to 

handle these challenges is quite necessary. 

1.2 Objectives 

The general objective of this thesis is to first build and improve a digital rock physics 

workflow for estimation of elastic moduli based on micro-CT images of sandstones, 

and then use this workflow to help understand the relation between pore scale 

characteristics and macroscale effective elastic moduli. More specifically, this 

objective will be achieved in the following steps. 

Objective 1. Evaluate the limitation of DRP in the estimation of effective moduli, 

such as sample size, resolution and segmentation, and investigate a possible 

solutions.  
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Successful examples of previous DRP for elastic moduli estimation are limited to 

samples with simple structure and mineralogy. The physical size of sample is often too 

small to present heterogeneities at a larger scale and the image resolution is insufficient 

to characterise the details of rocks. Also, the greyscale values of different minerals in 

micro-CT images are often similar, and previous attempts to segment them as separate 

phases are not very successful. To push the boundary of DRP, these issues should be 

carefully investigated and hopefully addressed. 

Objective 2. Understand how pressure can change micro-CT images and the 

corresponding estimated elastic moduli. 

Elastic properties of sandstones can be highly pressure dependent. However, the 

pressure-induced deformation of intact sandstones in micro-CT images are below the 

resolving power of conventional image analysis methods. Also, most digital rock 

physics studies of the elastic properties operate with micro-CT images acquired at 

ambient pressure. The pressure effect on high-resolution micro-CT images of 

sandstone sample and on elastic properties computed from these images should be 

investigated. 

Objective 3. Use DRP as a tool to understand the grain contact stiffness of 

sandstones in different cementation and stress conditions. 

Grain contact stiffness is the key factor in predicting effective elastic moduli in 

different cementation or stress conditions. However, the direct measurement of grain 

contact stiffness is not possible with any current method. By adjusting the grain contact 

stiffness in the DRP setup to match the computed elastic moduli and laboratory 

ultrasonic measurements, the stiffness of contact phase can be inverted. This inverted 

stiffness is a valuable information for understanding the cementation and stress effect 

on the grain contact. 

Objective 4. Explore how deep learning can automate the segmentation process 

in the DRP workflow. 

Convolutional neural networks (CNN) have been successfully applied to empower 

computers with the ability to derive meaningful information from images. Micro-CT 

images segmentation may involve significant manual effort and subjective parameter 
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adjustments. CNN may be tested to see the potential to automate the segmentation 

process and achieve consistent results.  

1.3 Thesis outline and related publications 

The outline of thesis will be as follows: 

Chapter 2: A digital rock physics workflow will be built to numerically compute 

elastic properties with finite element method, using micro-CT images of Bentheimer 

sandstones. The effect of sample size and image resolution on the computed elastic 

properties will be evaluated. Furthermore, a novel segmentation workflow will be built 

to detect feldspar and clay minerals, despite their grayscale similarity to quartz in 

micro-CT images. The simulated results based on the segmented multi-mineral labels 

will be compared against core measurements.  

Related publications: 

Liang, J., Gurevich, B., Lebedev, M., Vialle, S., Yurikov, A., & Glubokovskikh, S. 

(2020). Elastic Moduli of Arenites From Microtomographic Images: A Practical 

Digital Rock Physics Workflow. Journal of Geophysical Research: Solid Earth, 

125(10), e2020JB020422. 

Chapter 3: I will perform a comprehensive analysis of the stress effect on micro-CT-

images, using a reservoir sandstone sample with pronounced stress-sensitivity. A 

purpose-built X-ray-transparent pressure cell enables scanning micro-CT images at 

confining pressures of up to 36 MPa. An unbiased workflow will be designed to detect 

the overall rock deformation under different pressure. Elastic properties will be 

computed based on high-resolution micro-CT images of a sandstone sample scanned 

at different pressures. 

Related publications: 

Liang, J., Lebedev, M., Gurevich, B., Arns, C. H., Vialle, S., & Glubokovskikh, S. 

(2021). High‐Precision Tracking of Sandstone Deformation From Micro‐CT Images. 

Journal of Geophysical Research: Solid Earth, 126(9), e2021JB022283. 

Chapter 4: I will reconstruct the contacts according to the morphology of grains using 

watershed separation algorithm. These approximated grain contacts can then be used 

as a uniform phase with lower moduli in the numerical computation. In this way, the 
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effect of unresolved soft pores is taken into account, so the computed moduli can be 

in a reasonable agreement with laboratory ultrasonic measurements. At the same time, 

the stiffness of contact phase can be inverted in this matching experiment.  

Chapter 5: I will propose an automated workflow for the multi-mineral segmentation 

of micro-CT images using a convolutional neural network (CNN). The CNN model is 

trained using labels of two sets of images of Bentheimer sandstone. The training labels 

include pore, quartz, clay and feldspar phases, resulting from the segmentation 

workflow, which will be introduced in Chapter 2. The trained model is then used to 

segment a new set of images of the Bentheimer sandstone.  

Chapter 6: The conclusion of this thesis will be presented and future work will be 

suggested. 

1.4 Author’s contributions 

The work presented in this thesis is done with the support from scientists at Centre for 

Exploration Geophysics, Curtin University as well as collaborating with researchers at 

the University of New South Wales (UNSW) and The Commonwealth Scientific and 

Industrial Research Organisation (CSIRO). The building and optimisation of digital 

rock physics workflow was primarily done by myself with the guidance of my thesis 

committee. Micro-CT scanning was carried out by Prof. Maxim Lebedev. Ultrasonic 

measurements were performed by Prof. Maxim Lebedev and Dr. Alexey Yurikov. 

Nano-indentation was carried out by Dr. Stephanie Vialle. Some finite element 

computation was conducted by Prof. Christoph Arns from UNSW. Optical and 

electron based microscopy (TIMA) was prepared by Michael Verrall from CSIRO. 

The Nuclear Magnetic Resonance was done by Dr. Lionel Esteban from CSIRO. Since 

all the publications arising from this research are results of teamwork, I use “we” 

instead of “I” in the following chapters where appropriate. 

1.5 List of publications related to the research project 

The chapters of the thesis include the edited version of the following publications. 

All copyright material, where necessary, has been reproduced with permission. 

 Liang, J., Gurevich, B., Lebedev, M., Vialle, S., Yurikov, A., & Glubokovskikh, 

S. (2020). Elastic Moduli of Arenites From Microtomographic Images: A Practical 
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Chapter 2 Digital rock physics workflow for elastic moduli 
estimation from micro-CT images of sandstones* 

2.1 Introduction 

Quantitative interpretation of reflection seismic measurements is often used to map the 

spatial distribution of petroleum reservoir properties in the subsurface. In this process, 

elastic properties of rocks are first derived from seismic data, and then used to estimate 

the reservoir properties. The relationship between elastic properties and reservoir 

characteristics is referred to as rock physics models (Mavko et al., 2009). These models 

are either derived analytically, as hybrid of theoretical, empirical and heuristic 

relationships, or based on empirical trends observed in laboratory measurements. 

Analytical models relies on idealised microstructures and simplify the physics of rock 

deformation. For example, rocks are often modelled as solid particles with isolated 

ellipsoidal inclusions (Eshelby, 1957; Zimmerman, 1990). The critical input 

parameters of these models for estimating the elastic properties are pore microstructure 

parameters, which are often derived from elastic properties. Therefore, rock physics 

diagnostics can become a poorly constrained model-fitting exercise. Empirical models 

rely on laboratory measurements of elastic properties (usually, ultrasonic velocities) 

that are then correlated with some bulk petrophysical parameters: porosity, clay 

content, etc. For sedimentary rocks, elastic properties are only partially controlled by 

bulk petrophysical properties. The key pore microstructure parameters, such as micro-

cracks, may have a first-order effect of rock elasticity (Smith, Sayers, & Sondergeld, 

2009), but this effect cannot be well understood from the empirical models.  

Digital rock physics (DRP) aims to overcome this limitation (Ahmed et al., 2017; 

Ahmed et al., 2019; Andrä et al., 2013a, 2013b; Arns et al., 2002; Dvorkin et al., 2011; 

Makarynska, Gurevich, Ciz, Arns, & Knackstedt, 2008). In DRP, 3D geometry of the 

mineral and pore phases of a rock is imaged to digitise the sample into a dataset. Micro 

computed tomography (micro-CT) is the most popular method to acquire such pore-

scale information, which is attained from the local x-ray absorption difference (Andrä 

 

* This chapter is a modified version of the paper Liang, J., Gurevich, B., Lebedev, M., Vialle, S., 
Yurikov, A., & Glubokovskikh, S. (2020). Elastic Moduli of Arenites From Microtomographic 
Images: A Practical Digital Rock Physics Workflow. Journal of Geophysical Research: Solid 
Earth, 125(10), e2020JB020422. 
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et al., 2013a). Then, various physical processes can be simulated on this digital rock 

sample to quantify the corresponding effective rock properties (Andrä et al., 2013b). 

With the recent development of high-resolution 3D imaging technique and ever-

growing computational resources, DRP has the potential to provide a comprehensive 

analysis of rock properties and to simulate various conditions and processes that would 

be time and cost demanding if they were to be performed in the laboratory.  

In this chapter, we will focus on computing effective elastic moduli based on micro-

CT images. The standard approach to compute effective elastic moduli is the Finite 

Element Method (FEM) (Ahmed et al., 2017; Ahmed et al., 2019; Arns et al., 2002; 

Shulakova et al., 2013), which solves partial differential equations (PDE) numerically. 

Displacement or stress is induced on the boundary of a sample to define the boundary 

conditions for the PDE, and the displacement and stress field inside the heterogeneous 

medium is computed by minimising the elastic energy. Then, the effective elastic 

moduli of the whole medium can be derived by averaging the computed physical field. 

A major limitation of this technology is the fact that DRP predictions for the elastic 

moduli are systematically higher than the laboratory ultrasonic measurements (Andrä 

et al., 2013b; Saxena et al., 2019). First, current micro-CT images still lack resolution 

(voxel size of hundreds of nm at best) to characterise fine rock features: intergranular 

contacts, clay clusters etc. (Madonna et al., 2013). For instance, mercury porosimetry, 

which can measure pore throat diameters between 3nm and 14 um,  provides a long 

tail in the smaller pore throats part of the spectrum, which remains unresolved in 

micro-CT scans (Madonna et al., 2012). For most lithology types, the narrow 

compliant pores have significant effect on the elastic properties despite their small 

volumetric fraction. Secondly, there is a trade-off between resolution and the image 

volume. The number of voxels in micro-CT scans is usually 20003 or fewer, and hence 

digital samples with 0.5µm voxel size are around 1mm3, which is usually insufficient 

to adequately represent the laboratory sample, let alone larger rock volumes (Bazaikin 

et al., 2017; Saxena et al., 2019; Wollner, Kerimov, & Mavko, 2018). Thirdly, DRP 

modelling requires moduli of each mineral component. These moduli are often 

uncertain, because (1) some minerals do not form a sufficient volume to be measured 

(e.g. clay minerals) and (2) chemical composition and crystal structure of some 

minerals, such as feldspar, are variable (W. L. Brown, 2013; Mondol, Jahren, 
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Bjørlykke, & Brevik, 2008). Furthermore, computer simulations of rocks deformation 

require segmented images, where each voxel is attributed to a particular mineral or 

pore space. This segmentation process is uncertain because the grayscale values of 

different mineral are not clearly separated and grain boundaries are smeared as a result 

of the limited imaging resolution (Saxena et al., 2017).  

Due to the complexity of the problem, methodological studies are often limited to the 

simplest porous materials, such as Fontainebleau sandstone, oolites or sintered glass 

(Arns et al., 2002; Kalo et al., 2017; Knackstedt et al., 2009). The standard techniques 

tested on these materials require verification and often modification when applied to 

more complex rocks. This chapter proposes a practical DRP workflow for somewhat 

more complex and ubiquitous rocks, namely, sandstones that contain mostly quartz 

and a small fraction of dispersed clay (known as arenites) (Vernik, 2016).  

Our study relies on a set of micro-CT images of Bentheimer sandstones accompanied 

by ultrasonic measurements on the samples from the same block. Rock images are 

acquired under a variety of settings, so we can address the effects of image sizes and 

resolution on the computed effective moduli. In particular, we segment clay and 

feldspar as separate phases instead of treating all the solid material as one “mineral 

phase”. Thus, we can evaluate the effect of the minerals other than quartz on the 

computed moduli. Based on extensive tests, we establish an optimal image 

segmentation graph and a set of post-processing corrections for the computed moduli 

of the Bentheimer sandstone samples. To compare the computation results against 

laboratory measurements, we divide the digital samples into subsamples to reconstruct 

the porosity-moduli trends and compare this trend against laboratory measurements 

(Dvorkin et al., 2011). We find that the computed moduli are consistent with the 

laboratory measurements at higher pressure. We believe that the proposed DRP 

workflow should be directly applicable to rocks with similar lithology, and the 

approach to workflow optimisation can be extended to a wider range of rock types. 

2.2 The laboratory data set 

Bentheimer is an outcrop sandstone, which occurs in two varieties: clay- and iron-rich 

red type and clean pale yellow type (Peksa, Wolf, & Zitha, 2015). The analysis of thin 

section (Figure 2.1) shows that our samples belong to the pale class with mainly quartz 

(>90% of the matrix) with accessory feldspar, kaolinite and other minor rock 
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fragments, which is a typical kind of arenite. The moldic porosity most likely 

originates from dissolved feldspar grains, although some clay particles may also have 

been removed from large pores. Matrix and intergranular pores contain minor amounts 

of clay minerals and moderate quartz overgrowth. The microstructure is typical for 

relatively shallow hydrocarbon reservoirs that have not undergone extensive burial 

history, except for the fact that some of the clay did not form in-situ but inherited while 

the sample was exposed in an outcrop.  

Cylindrical (38.5 mm in diameter, 70.0 mm length) samples for laboratory ultrasonic 

measurements are visually indistinguishable from one another, and have been 

extracted from the same sandstone block right next to each other to guarantee similar 

porosity and texture. Samples were frequently sprinkled with water while being cored 

for cooling. Then, samples were put into a drying chamber at 50oC for 24h. Velocities 

were measured at ultrasonic frequencies (1MHz) inside a pressure cell at a range of 

hydrostatic pressures from 4MPa to 50MPa and back to 4MPa. Pressure-dependency 

curves showed only a negligible difference between loading and unloading cycles and 

are very similar for all the three samples (Figure 2.2). Since the measured parameters 

are almost identical for the selected samples, they collide into a single calibration point 

for standard rock physics modelling that involves no detailed petrographical 

information. The data set may therefore highlight the importance of information that 

can be extracted from a careful DRP study.  

Cylindrical (5 mm diameter, 20 mm length) samples for micro-CT imaging are 

extracted from the same sandstone block as for ultrasonic measurements. For this 

study, four sets of micro-CT images of Bentheimer sandstone were acquired with the 

Versa XRM-500 (XRadia-Zeiss) X-ray microscope at various resolutions and sizes 

(Table 2.1). This apparatus can provide a scanning voxel of less than 1 µm, and the 

maximum size of the sample is 2000 voxels in each dimension, which needs to be 

reduced by about 30% when the cylindrical scan is cut into cubic computational 

domain.  

 

 

 



16 

 

(a) 

 

(b) 

 

Figure 2.1 Thin section of Bentheimer sandstone. (a) The sample is lower-medium-
grained well-sorted sandstone. The grains are predominantly monocrystalline quartz, 
with potassium feldspar (black arrow) and other rock fragments. Authigenic minerals 
include minor amounts of clay minerals (red arrow) and moderate quartz overgrowths. 
Intergranular pores (blue) are abundant, but the largest blue spaces are grain-moldic 
dissolution pores (green arrows). The location of the high-magnification image (image 
b) is outlined with a red rectangle within the low-magnification image. Thin section 
preparation and analysis was conducted by Core Laboratories. 
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Figure 2.2 Pressure dependent ultrasonic velocities of three Bentheimer sandstone 
samples at dry conditions. Samples are dried in a vacuum at 50℃ for 24h.  The 
effective pressure is varied by changing confining pressure. 

Table 2.1 Bentheimer sandstone micro-CT images 

Image Name Voxel size (µm) Voxel 

A-1 1.5854 972×1012×1007 

A-2 3.3452 988×1012×1007 

B-1 2.1137 988×1012×992 

B-2 3.4348 988×1012×992 

C-1 0.9814 988×1012×992 

C-2 3.4348 988×1012×999 

C-3 4.7003 988×1012×998 

D-1 1.0009 988×1012×992 

D-2 2.0002 984×1012×996 

D-3 4.0009 988×1012×1000 

2.3 Scanning effects evaluation 

First, we analyse the effects of the image sizes and resolution on the computed 

effective moduli. Theoretically, a DRP study require a Representative Volume 

Element (RVE) to make the computed results consistent with measurements at larger 

scales. A RVE should be large enough to satisfy the following two criteria: 

 Sampling criterion: the fractions of pores, cracks and grains are the same as in 

the laboratory sample; 
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 Physical criterion: the computed moduli are independent of boundary 

conditions, that is, the parts near the boundary are small compared to the whole 

sample volume. 

2.3.1 Numerical simulations 

Here and below, we define a numerical simulator as a suite of algorithms required to 

model elastic deformations of a segmented micro-CT image – regular 3D grid where 

each voxel is indexed according to the material it belongs to: pore space or a particular 

mineral. Essentially, the simulator is defined by the approach to solution of two inter-

dependent problems: discretization of the image’s geometry – meshing, and numerical 

solution of the differential equations that govern the physical field. Several studies 

reviewed existing approaches to these problems (Andrä et al., 2013b; Cotton, 

Tompsett, Smigaj, Kerim, & Agarwal, 2016; Saxena et al., 2019) and concluded that 

a numerical solver has relatively small effect on computed moduli and cannot explain 

their discrepancy from measured moduli. Hence, our choice of the computational 

framework is driven by practical considerations: robustness of the computations and 

sensitivity to user input, such as meshing parameters and post-processing of the results.  

For the computations, we implemented FEM approach of Garboczi (1998) in 

COMSOL (v. 5.4.) to get direct access to the rich toolbox of pre- and post-processing 

algorithms and solvers in this software (Figure 2.3). The framework of Garboczi is 

widely used in DRP, because it treats each voxel of an image as a cubic computational 

grid cell. Some other workflows aim to recover the smooth surface between grains and 

pores, and then mesh the reconstructed geometry using tetrahedral elements (Ahmed 

et al., 2017; Shulakova et al., 2013). However, due to complicated microstructure of 

natural rocks, the reconstructed surface process may produce a less accurate 

representation of the real geometry (Antiga, Ene-Iordache, Caverni, Cornalba, & 

Remuzzi, 2002; Cebral & Löhner, 2001). Therefore, a voxel-based approach such as 

Garboczi code is more popular in practical applications. 

An important component of the numerical simulator are the boundary conditions, 

because the physical RVE criterion is almost never fulfilled and hence the behaviour 

imposed at the boundaries will affect the computed moduli. Regardless of the 

numerical implementation, kinematic (fixed displacements) and dynamic (fixed 

surface tractions) boundary conditions on the surface of the computational domain 
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provide the upper and lower bounds on the effective rock moduli, respectively (Huet, 

1990). The moduli computed with periodic boundary conditions always lie between 

the bounds computed from the kinematic and dynamic boundary conditions and are 

less scattered around the mean values when samples are small (Kanit, Forest, Galliet, 

Mounoury, & Jeulin, 2003). The periodic boundary conditions enforce the strain to be 

relatively uniform through the digital sample, while the value of strain is determined 

in a self-consistent manner during computations.  

 

Figure 2.3 Digital rock workflow implemented in COMSOL. 

The numerical simulations require significant computational resources, especially in 

terms of RAM. Due to an internal limitation of COMSOL, we limit the models to 6003 

cells, which already require 4TB RAM. The computations are run on a research cluster 

at the Curtin Centre for Exploration Geophysics and Pawsey Supercomputing Centre. 

The first cluster has 16 virtual nodes with a total of 368 Intel Xeon Gold 5120 CPUs 

and 5TB RAM, and the second includes six nodes, each with 16 “Broadwell” Intel 

Xeon CPUs and 1T RAM. Depending on the purpose for the specific simulation and 

availability of the cluster, the computational times are shown in Table 2.2. 

Table 2.2 Computational resource requirement for samples of difference sizes and 
computation efficiency. 

Sample voxel 
number 

Node number 
CPU number of 

each node 
RAM of each 

node (GB) 
Computation 
time (hour) 

6003 4 16 1024 ~18 

5003 4 16 1024 ~10 

3003 6 28 256 ~1 

a. Define a block geometry in COMSOL c. Segmented minerals indices 

b. Regular grid built in COMSOL with “swept” function d. Organize data for COMSOL 

e. COMSOL “interpolation” and “analytic” function to define varying material property 

f. Define periodic boundary conditions with “linear extrusion” in COMSOL  

g. Computation in parallel and result analysis 
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The simulation workflow will remain the same for the subsequent analysis of this 

Chapter. One may see it as a pre-defined image processing procedure that converts the 

segmented micro-CT images into estimates of the moduli. Therefore, the user controls 

only two internal parameters of this conversion: dimensions of the computational 

domain and the grid cell size. This approach allows us to explore how the match 

between the measurements and DRP results depends on the image processing and post-

processing of the computations. 

There is always a trade-off between sample size and resolution, because any increase 

in the scanned volume would result in a lower resolution. However, we may 

compensate for the size/resolution effects using statistical analysis of a suite of images 

and computations as shown below. 

2.3.2 Scanning parameters and resolution-size trade-off 

To investigate the size effect of the computational domain, we use images with the 

largest physical dimensions, and hence, the coarsest resolution. To further reduce the 

computational cost, the greyscale images are down-sampled with Lanczos method 

(Madhukar & Narendra, 2013) from 6803 voxel to 5003. We first analyse only binary 

segmentation into dry pores and solid quartz using Otsu method (Otsu, 1979), as 

implemented in AVIZO (2019.3). Figure 2.4 shows the computed moduli for the 

samples that grow outwards from the same centres. The moduli seem to stabilise as 

the sample gets larger. Once the edge length reaches ~1.25mm, the moduli remain 

almost constant. However, the computed moduli of four samples still do not converge 

even they are extracted from the same sandstone block. It indicates that the theoretical 

Sampling RVE cannot be fulfiled in our DRP study even with relatively homogeneous 

sandstone samples and large scanning resolution. Thus, we cannot assume that the mm 

scale DRP sample statistially contains the same microstructure and mineral 

information as the cm scale ultrasonic sample. A promising solution is to divide the 

image set of DRP study further into subsamples and compare the trend of computed 

moduli from subsamples with the ultrasonic measurements (Dvorkin et al., 2011). 

Next, we investigate the effect associated with the Physical RVE criterion. 

Fluctuations of the stress/strain prescribed at the boundary are controlled by the size 

of heterogeneities and hence characteristic thickness of the boundary layer is the same 

for samples of the same material. However, the volume fraction of the boundary layer 
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increases for smaller samples, and thus causes size-dependence of the computed 

moduli. As a result, computed moduli of subsamples will in general be scattered 

around the moduli of the largest sample with biased mean value.  Figure 2.5 shows 

computed moduli for four full-size samples and their subsamples with a half and 

quarter of the original edge length. The variability of moduli increases significantly as 

the edge gets smaller. We describe the relationship between the mean computed 

moduli and edge length using an exponential fit ����(−�/�) + �,	where A controls 

the magnitude of the size dependence, B the characteristic size of the computational 

domain where the effect of boundary conditions vanishes and C the estimated effective 

modulus (see equations in Figure 2.5 and Table 2.3). The regressions show the same 

trend: the mean values of moduli computed on smaller subsamples are systematically 

higher. Even at ~1.25mm edge length, where the local computed moduli stabilise, the 

mean computed moduli are higher than the true one. In the following sections, we use 

the exponential relationship between computed moduli and edge length to correct 

computed moduli to their asymptotic limits.  

 

Figure 2.4 Computed moduli change as the edge length grows. Variability of computed 
moduli decrease, and the values of each single sample relatively stabilise from 1.25mm 
edge length, but the difference among four samples remain. 

Finally, we need to consider the effect of resolution. Although micro-CT may not 

accurately image the grain contacts in Bentheimer sandstone, 1µm voxel size carries 

much more information about the microstructure of sample D than 4µm voxels (Figure 

2.6). Arns et al. (2002) proposed a simple method to compensate the resolution effect 

on computed moduli. They found a linear relationship between the computed moduli 

and voxel size (� = �� + �, where � is voxel size and � is computed moduli; � and � 
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are coefficients defining the linear relationship). The coarser mesh was obtained by 

artificially resampling original images. We have however found that the trends 

estimated from resampled images deviate from the trends for scans that were 

physically acquired at different resolutions (Figure 2.7). We will use the trend 

observed in all four samples as a heuristic correction to bring the computed moduli to 

a reference resolution of 1µm. The extrapolation would not have been necessary, were 

the computational facilities capable of handling models of 20003 voxels. 

 

Figure 2.5 Boundary condition effect on the computed moduli. In each row, bulk and 
shear moduli computed from each of our four samples and the corresponding 
subsamples with half and a quarter of original edge length are plotted. The variability 
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of moduli increases significantly while the edge length decreases as the box plot shows. 
Assuming the relationship between mean moduli and edge length is exponential, we 
derive the asymptotic moduli for each sample. 

 (a)                                                    (b) 

    

(c)                                                   (d) 

    

Figure 2.6 Resolution effect on greyscale and segmented images. (a) Sample D 
greyscale image (voxel size 1µm), (b) Sample D segmented image (voxel size 1µm), 
(c) Sample D greyscale image (voxel size 4µm), (d) Sample D segmented image (voxel 
size 4µm). 

Based on the tests above, we have several key findings related to limitations of micro-

tomography and computational facilities in the present study. For Bentheimer 

sandstone, we conclude that the images with the largest edge length still cannot satisfy 

the theoretical RVE requirement. The deviation effect of the boundary conditions 

exists and can be corrected using an exponential relationship between computed 

moduli and sample edge length. As for the resolution effect, a linear relationship 

between computed moduli and voxel size can remove the extra stiffness of low-

resolution samples. Quantitatively, the correction for the boundary condition effects 
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reduces the computed moduli by 0.45%-0.7% for samples with 1.25mm edge length 

and by 1.45%-2.59% for samples with 0.625mm edge length (Table 2.3). The 

resolution effect can cause up to 10% reduction of the computed stiffness (Figure 2.7). 

Table 2.3 The deviation of computed bulk modulus (GPa) in absolute value and 
percentage due to boundary effect. 

 A B C D 

asymptotic 19.98 / 0.00% 16.60 / 0.00% 17.70 / 0.00% 19.76 / 0.00% 

1.25 mm 20.12/ 0.70% 16.71 / 0.66% 17.78 / 0.45% 19.85 / 0.46% 

0.625 mm 20.27 / 1.45% 17.03 / 2.59% 18.01 / 1.75% 20.11 / 1.77% 

 

Figure 2.7 The relationship between computed moduli and voxel size. The computed 
moduli based on images scanned with different voxel size and manually resampled 
images from one high resolution image are compared. 

Among the images available in our study, the proposed corrections may be directly 

applied to image pairs B-1, B-2 and D-2, D-3 (Table 2.1). They are sufficiently large 

to minimise the moduli variability associated with the mentioned RVE issues. Also, 

two resolutions can define a linear trend to extrapolate the moduli to higher resolution. 

2.4 Specialised image processing for arenites 

The previous section treated an arenite sample as a two-phase medium – solid minerals 

had the moduli of quartz and pores zero moduli. Most digital rock physics studies lump 

all solid material into the same “mineral phase” (Andrä et al., 2013a; Shulakova et al., 

2013). It is however well-known that the effective moduli of sandstones vary 

significantly with properties and spatial distribution of clay (Dræge et al., 2006; Sams 

& Andrea, 2001). Hence the clay (mainly kaolinite) may have first-order effect on the 
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stiffness of the Bentheimer sandstone samples of this study. To incorporate the clay 

phase, we design a detailed workflow for image processing, which is implemented 

using AVIZO software. 

2.4.1 Suppression of random noise 

The original micro-CT images are contaminated with random noise, which is caused 

by instrumentation noise and variability of the conditions inside the tomography 

instrument. Most the random noise suppression approaches involve comparison of a 

voxel intensity against average intensity in its vicinity. Such procedures tend to blur 

the images, so we use a non-local means filter (Buades, Coll, & Morel, 2005) with 

parameters as mild as possible to reduce the blurring (Figure 2.8). Our goal is to reduce 

the noise level so that a segmentation algorithm may detect pores and solid phase 

accurately. After extensive tests, we conclude that unsharp masking recovers most of 

the small pores and cracks from the blurred images (Figure 2.8) by enhancing the high 

frequency content of the images (Sheppard, Sok, & Averdunk, 2004).  

      (a)                            (b)                            (c)                            (d)  

    

                (e)                             (f)                            (g)                             (h)  

    

Figure 2.8 Image processing effects on greyscale and segmented images. (a) Part of 
original CT image D-2, (b) after non-local means filter with strong parameters from 
(a), (c) after non-local means filter with mild parameters from (a), (d) unsharp masking 
from (c). (e) – (h) are segmented images from the corresponding greyscale images 
above. 
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2.4.2 Standard techniques for multi-mineral segmentation  

Although feldspar and clay particles can be identified visually (Figure 2.9a), their 

automatic segmentation is challenging, since the histogram of voxels intensity 

indicates only two phases - solid and pore (Figure 2.9b). Figure 2.10a shows the result 

of three-phase segmentation using global thresholds in Otsu segmentation (Otsu, 

1979). This approach fails due to the overlapping greyscale for feldspar, random noise, 

instrumentation ringing (Sijbers & Postnov, 2004) and grain boundaries. Figure 2.10b 

shows the output of watershed segmentation for the same image (Roerdink & Meijster, 

2000). Compared with Otsu, watershed is less sensitive to the local noise, but tends to 

ignore small features (red ellipse in Figure 2.10c). Also, the X-ray intensity of quartz 

grains gets closer to feldspar because of the proximity to air-filled pores (Joseph & 

Spital, 1981), hence the boundaries are misclassified as a feldspar. Both Otsu and 

watershed fail to accurately detect clay in the solid phase. 

With these unsatisfactory segmentation results, most studies resort to two-phase Otsu 

segmentation, which is more robust and hence produces less unphysical features. The 

simplification of various minerals with a single solid phase will certainly bring about 

systematic errors. Here, we propose a more advanced segmentation workflow 

implemented in AVIZO. Then, Bentheimer sandstone greyscale images can be 

accurately segment into four-phase labels (quartz, pore, clay and feldspar). 

                           (a)                                                            (b) 

 

Figure 2.9 Micro-CT image of D-2 and the greyscale histogram. 

 

 

Feldspar 

Clay 
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                     (a)                                         (b)                  (c) 

   
Figure 2.10 Greyscale images segmented into three phases using Otsu (a) and 
watershed (b) method, segmented into two phases with Otsu method (c). 

2.4.3 Four-phase multi-mineral segmentation: clay segmentation 

The workflow for clay segmentation takes advantage of both pixel intensity and 

morphology of clay particles.  

 Median filter is used to suppress random noise.  

Intensities of the solid constituents become distinguishable in the blurred image. 

The clay phase, which formed flurry clusters in the original images, now shows as 

homogeneous light-grey regions due to stacking of the micro pores and particles 

(Figure 2.11). 

 Three-phase Otsu algorithm to segment the filtered images. 

Segmentation attributes each voxel to the following three groups: pores, quartz and 

feldspar, clay and grain boundaries (Figure 2.12a). Then, we extract the phase 

including clay with arithmetic function in AVIZO (Figure 2.12b). 

 Opening algorithm (Haralick, Sternberg, & Zhuang, 1987) removes the high-

intensity lines at grain boundaries.  

The algorithm consists of a sequential erosion and dilation operations with disc as 

a matching template, which first highlight the thin shell-like artefacts and then 

remove them (Figure 2.12c). Eventually, the third solid phase includes almost 

exclusively clay. 

 Segmented clay region as a mask for unsmoothed two-phase segmented images.  

The mask module in AVIZO is applied on unsmoothed two-phase segmented 

images (Figure 2.10c) using segmented clay region to retrieve back the clay 

particles and micro pores (Figure 2.12d). Then the recovered clay particles are 
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combined with unsmoothed two-phase segmented images to achieve the three 

phase segmented labels (Figure 2.12e). At this stage, the segmented images contain 

clay phase, pores and combination of the quartz/feldspar grains.  

       (a)                                                        (b)  

    

Figure 2.11  Grayscale image blurred with median filter (a) and histogram (b). 

2.4.4 Four-phase multi-mineral segmentation: feldspar segmentation 

We have seen that quartz and feldspar may not be discriminated by the voxel intensity. 

Straightforward application of watershed segmentation fails too (see Figure 2.10b). 

The fundamental reason for the latter failure is inappropriate initial seeding for the 

segmentation (Vincent & Soille, 1991). A refined workflow for preparation of the 

initial seeds include the following: 

 Select the feldspar phase from figure 2.10b according to the phase index. Feldspar 

phase is mixed with random noise and grain boundaries (Figure 2.13a). 

 Apply closing algorithm to remove intragranular voids by sequential dilation and 

erosion operations (Haralick et al., 1987) (Figure 2.13b). 

 Use erosion function to remove the noise and edge artefacts (Haralick et al., 1987). 

The resulting patches become initial seeds for watershed segmentation (Figure 

2.13c). 

 Apply watershed segmentation again with the seeds obtained at the previous step 

(Figure 2.13d). The segmented feldspar phase becomes a mask for the output 

shown in Figure 2.10c. This retrieves back the intra-granular pores (Figure 2.13e). 

 Combine the segmented feldspar with three-phase labels from Figure 2.12e to get 

the final four-phase segmented label (Figure 2.13f). 

The whole segmentation process is summarised as a flowchart in Figure 2.14. 
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             (a)                                       (b)              (c) 

   
                          (d)                                      (e)  

 

  
Figure 2.12 Three-phase segmented image with Otsu method (a), extracted clay phase 
(b), further apply Opening algorithm to eliminate the partial volume effect on grain 
boundaries (c), use clay phase as mask to extract clay particles from the unsmoothed 
two-phase segmented label (d) and final three-phase segmented label (e). 

 (a)                                      (b)               (c) 

    

 (d)                                     (e)                                        (f) 
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Figure 2.13 Extracted feldspar phase is mixed with random noise and grain boundaries 
(a), after Closing operation, feldspar grain becomes more connected (b), with Erosion 
operation, the noise and boundaries artefacts are removed (c), with (c) as watershed 
seeds, feldspar can be better segmented (d), segmented feldspar acts as Mask for 
Figure 9c to recover the micro cracks (e) and final segmented four-phase label (f). 

 

Figure 2.14 Optimised segmentation workflow for Bentheimer sandstone. 

2.5 Effective moduli computation with reduced mineral moduli 

Finally, we implement the full DRP workflow: multi-mineral segmentation followed 

by corrections for the sample size and grid cell size. We assess the accuracy of the 

predicted moduli by comparison with the moduli-porosity trends obtained at 40MPa 

from the laboratory measurements on Bentheimer sandstones and from literature data 

(Han et al., 1986). We only analyse the measurements in the range of relatively high 
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confining pressure or effective pressure (40MPa), which increases the stiffness of 

intergranular contacts by closing the voids between the contacting grains 

(Glubokovskikh, Gurevich, Lebedev, & Mikhaltsevitch, 2015) and suppressing the 

sorption-induced deformations (Yurikov, Lebedev, Gor, & Gurevich, 2018). 

2.5.1 Multi-mineral matrix  

First, we divide the samples B-2 and D-3 into eight subsamples, compute the elastic 

moduli, and compensate for the boundary effect using the corresponding equation in 

Figure 2.5. Figure 2.15 shows that even for sample B-2 with 0.6% clay and 1.69% 

feldspar, the four-phase segmentation results in ~5% difference from the two-phase 

segmentation. For sample D-3 with 2.16% clay and 2.19% feldspar, the average 

difference reaches 12%. Yet, the computed moduli still overestimate the 

measurements. 

 

Figure 2.15 Computed moduli with different segmentation methods versus 
measurements. Red and yellow marks stand for the moduli computed from two- and 
four-phase images respectively. The triangle marks stand for the subsamples of image 
B-2. The square marks stand for subsamples of image D-3. The moduli deduced from 
our ultrasonic measurements on Bentheimer sandstones are shown in blue diamonds. 
Also, we show similar measurements on clean arenites (<2% clay) with black cross 
and arenites (2-14% clay)  with grey cross from published laboratory data set of Han 
et al. (1986). 

Partially, this discrepancy is compensated by the linear extrapolation to resolution of 

1µm (Figure 2.16). For bulk moduli the multi-phase segmentation and correction for 

resolution result in a good match with the ultrasonic measurements. Yet, the shear 

moduli are still systematically higher. This deviation may be empirically compensated 

by the adjustment of mineral moduli.  
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Figure 2.16 Computed moduli with different voxel sizes versus measurements. The 
triangle marks stand for the subsamples of sample B. The square marks stand for 
subsamples of sample D. Yellow and light blue marks stand for the moduli computed 
form four-phase images with low and high resolution respectively. Pink marks stand 
for the moduli extrapolate from moduli computed based on images with two different 
resolutions to 1µm voxel size. Blue diamonds, grey and black cross are the same as 
Figure 2.15. 

A sharp drop of solid phase shear modulus with a small amount of clay has also been 

reported by Vernik (1997) and Goldberg and Gurevich (1998). They accounted for this 

effect by lowering the shear modulus of solid phase in rock physics modelling with 

calibrations from laboratory measurements. Vernik (1997) separated sandstones into 

several categories according to the clay content fraction and derive particular solid 

matrix moduli for each category. By contrast, Goldberg and Gurevich (1998) 

determined solid matrix moduli as a continuous function of clay fraction. Since we 

have specific clay content fraction from segmentation, we prefer the mineral moduli 

determined by Goldberg and Gurevich (1998).  

2.5.2 Reduced matrix moduli  

Goldberg and Gurevich (1998) proposed an empirical model that accounts for drop of 

the shear modulus due to the presence of clay. The model splits solid matrix into clay 

and sand, which have different moduli. The effective bulk modulus of the solid 

material is computed with lower Hashin-Shtrikman bound: 

   ������ = ���_       (2.1) 

In addition to the lower Hashin-Shtrikman bound, expression for the effective shear 

modulus includes an exponential term that accounts for the pronounced effect of clay: 
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     ������ = ���_ + �������� − ������ exp(−� ��⁄ ),                (2.2) 

where � is the clay content fraction, and �� is the parameter that describes the interval 

of � over which ����� exponentially declines. 

The derived effective moduli of the solid material are then substituted into the model 

of Krief, Garat, Stellingwerff, and Ventre (1990) to compute the effective moduli of 

the sample. With this rock physics modelling workflow and laboratory measurements 

by Han et al. (1986),  Goldberg and Gurevich (1998) used a multivariate non-linear 

regression to derive the solid moduli as a function of clay content fraction.  

Table 2.4 Elastic moduli of the mineral components used in computer simulations 

 Bulk modulus (GPa) Shear modulus (GPa) Reference 

Quartz 37 44 Carmichael (1989) 

Feldspar 37 15 Mavko et al. (2009) 

Kaolinite 12 6 
Vanorio, Prasad, and Nur 

(2003) 

Pore 0 0  

Matrix other 
than clay 

39 function of clay 
further derived from Goldberg 
and Gurevich (1998) 

Clay 20 7.6 Goldberg and Gurevich (1998) 

 

With clay volume from the segmented images, we further invert the shear modulus of 

matrix other than clay from solid shear modulus in Goldberg and Gurevich (1998), 

assuming only lower Hashin-Shtrikman bound relationship (Table 2.4). This matrix 

phase moduli are defined for the segmented quartz and feldspar phases. The moduli of 

clay from Goldberg and Gurevich (1998) are used for the segmented clay phase. Figure 

2.17 shows the final computed moduli after the corrections for mineral moduli. The 

results agree well with the measurements on Bentheimer samples as well as Han et al. 

(1986) data. The observed agreement means that the proposed workflow may provide 

a rock physics template for velocity-porosity-clay relationships using only two sets of 

micro-CT images. Derivation of this template from the laboratory data would require 

ultrasonic measurements on dozens of samples and thin section/XRD for 

determination of the clay content. 
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Figure 2.17 Computed moduli versus measurements. Green square marks stand for 
moduli extrapolated to 1µm of subsamples of sample B, and green triangle marks stand 
for moduli extrapolated to 1µm of subsamples of sample D. Blue diamonds, grey and 
black cross are the same as Figure 2.15. 

2.6 Discussion 

In this chapter, we carefully evaluated the effects of sample size, voxel size and 

segmentation on the computed moduli. With proper optimisation, the computed bulk 

moduli are consistent with the laboratory measurements. However, the presented data 

set – three samples and four sets of images – can only be used as an initial test. We 

discuss the basic assumptions behind the implemented DRP workflow below. To 

assess its accuracy and/or refine it, a more extensive data set is needed. 

Estimates of shear modulus are known to be less accurate than the bulk modulus of 

sandstones (Bachrach & Avseth, 2008; Goldberg & Gurevich, 1998). The thin section 

in Figure 2.1 indicates that the presence of grain coating clay minerals which may 

prohibit some local quartz overgrowths, resulting in more complex and softer 

intergranular grain contact than the grain contact in clean sandstone (Han et al., 1986). 

However, this information is missing in the four-phase segmentation labels from 

micro-CT images. Also, we assumed that the contacts are fully closed at 40MPa. It is 

however known that sandstone samples continue to get stiffer until they collapse at 

really high pressure ~ 150MPa (Adelinet, Fortin, Guéguen, Schubnel, & Geoffroy, 

2010; David & Zimmerman, 2012). Furthermore, even with infinite resolution, careful 

discretisation of a contact would make computations intractable as the mesh has to be 

refined enormously near the grain contact to capture the complex stress distribution 

(Wong & Wu, 1995; Yastrebov, 2011). Thus, we would advocate an empirical 
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approach that reduces the mineral shear moduli for computing the effective elastic 

moduli, similarly to Vernik (1997) and Goldberg and Gurevich (1998). 

Our workflow carefully verifies and integrates the DRP modules in previous studies. 

We evaluate sample size effect similarly to Saxena et al. (2019) and correct for the 

resolution effect based on the assumption of linear relationship between voxel size and 

moduli similarly to Arns et al. (2002). Periodic boundary conditions and voxel based 

mesh used in previous studies (Andrä et al., 2013b; Arns et al., 2002) are also shown 

to be appropriate in our workflow. The comparison of computed moduli against 

ultrasonic measurements is conducted by dividing the sample into subsamples and 

compute the moduli-porosity trend following Dvorkin et al. (2011). However, our 

workflow is not just a combination of the advantages of previous studies. The 

boundary condition effect on moduli is highlighted into notice and then compensated. 

A novel and effective approach of multi-mineral segmentation workflow is developed. 

This proves that the effect of minor amount of clay and feldspar on computed moduli, 

often neglected (Andrä et al., 2013b) or inverted from ultrasonic measurements 

(Saenger, Lebedev, et al., 2016), may be significant. Our reduced moduli approach is 

more practical as it is based on clay fraction derived from segmentation. It successfully 

counts in the assumed clay induced change of the shear modulus of the sandstone 

matrix. 

Finally, the meshing part of workflow for numerical simulations was not explored 

thoroughly. We anticipate the computed moduli depend on the mesh size due to the 

stress concentration effect around relatively small contacts, especially, between clay 

particles. While it is relatively straightforward, studies optimizing the meshing 

parameters are relatively scarce (Aliyeva, Alabbad, Daza, & Mukerji, 2017; Cotton et 

al., 2016) as they require significant computational effort.  

2.7 Conclusions 

In this chapter, we developed an optimised digital rock physics workflow for 

predicting elastic moduli of sandstones with low clay content. Our approach 

recognizes the shortcomings of the micro-CT images as proxy for laboratory samples 

and does not attempt to replicate the laboratory measurements in the numerical 

simulations. Instead, we obtain a suite of post-computation corrections that are 

calibrated to images of different sizes and resolution and laboratory measurements.  
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First, we performed a set of simulations for images segmented into solid and pore 

constituents. We found that the boundary conditions induce size dependence into the 

computed effective moduli, which can be removed by an exponential correcting 

function. The insufficient resolution can be fixed by linear extrapolation to a desired 

voxel size based on the computations for images scanned with different resolution. 

Then, we developed a multi-stage four-phase segmentation graph that targets feldspar 

and clay minerals. In order to do so, we apply a combination of mathematical 

morphology filters, Otsu and watershed segmentation algorithms. Numerical 

simulations indicate that the appropriate segmentation graph and compensation for 

scanning parameters may reduce significantly the discrepancy between the 

measurements and computed moduli. 

Eventually, the computed bulk modulus for multi-mineral matrix agrees well with the 

ultrasonic measurements at 40MPa, where the effect of unresolved compliant pores is 

small. The shear modulus remains overestimated. The discrepancy is corrected with 

an empirically determined matrix moduli. The current version of the workflow 

provides accurate velocity trends with porosity and clay content based on two samples 

of Bentheimer sandstone. Traditionally, such a relationship for quantitative 

interpretation would require ultrasonic measurements on dozens of samples and thin 

sections/XRD.  

 

 

 

 

 

 

 

 

 



37 

 

Chapter 3 Tracking the stress effect on micro-CT images of a 
reservoir sandstone† 

3.1 Introduction 

Understanding the relationship between microstructures and effective properties of 

rocks is a key for quantitative interpretation of geophysical measurements (Avseth et 

al., 2010). The recent development of micro-Computed Tomography (micro-CT) 

imaging technique provides high-resolution, three-dimensional representations of the 

pore geometry (Cnudde & Boone, 2013; Maire & Withers, 2014). Then, different 

physical processes are simulated based on the pore geometry to derive the rock 

effective properties (e.g., elasticity, permeability, electrical conductivity) (Andrä et al., 

2013a, 2013b; Dai, Shikhov, Li, Arns, & Arns, 2021; Hossain, Arns, Liang, Chen, & 

Arns, 2019; Madadi, Jones, Arns, & Knackstedt, 2009). The whole “image and 

compute” workflow is called Digital Rock Physics (DRP). 

Rock properties, especially elasticity, can be strongly pressure dependent (Eberhart-

Phillips et al., 1989; Han et al., 1986; Zimmerman, 1990). However, micro-CT images, 

as the foundation of DRP, are mostly scanned under ambient pressure (Ahmed et al., 

2017; Arns et al., 2002; Liang, Glubokovskikh, Gurevich, Lebedev, & Vialle, 2020a; 

Liang, Gurevich, et al., 2020; Shulakova et al., 2013). There are a few exceptional 

attempts to obtain medical CT and micro-CT images of rock at higher pressure. 

Kawakata et al. (1997) succeeded in observing faulting process in granite with medical 

CT images under confining pressure. Watanabe et al. (2011) scanned a fractured 

granite sample with medical CT at different confining pressures, and numerically 

simulate the corresponding fracture flow. Yu et al. (2019) scanned a fractured shale 

with micro-CT to investigate the fracture morphology changes under different 

confining pressures. Furthermore, a digital volume correction (DVC) method can be 

used on micro-CT images analysis to quantitatively describe the three-dimensional 

strain field inside the sample due to applied stress (Seyed Alizadeh, 2014). For 

 

† This chapter is a modified version of the paper Liang, J., Lebedev, M., Gurevich, B., Arns, C. H., 
Vialle, S., & Glubokovskikh, S. (2021). High‐Precision Tracking of Sandstone Deformation From 
Micro‐CT Images. Journal of Geophysical Research: Solid Earth, 126(9), e2021JB022283. 
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example, Shi et al. (2021) monitored local creep strain field and cracking process in 

claystone by DVC analysis on micro-CT images.   

Compared with fractured rocks and unconsolidated sediments, the study of pressure 

effect on intact sandstone micro-CT images is quite scarce. The deformation of intact 

sandstones under stress is much smaller, so the direct observation of it is very 

challenging. Saenger, Lebedev, et al. (2016) scanned a Bentheimer sandstone using 

micro-CT microscopy at confining pressures of 1MPa and 20MPa. The difference 

between the two sets of images (image size 400×400×400 voxel, voxel size length 

2.4µm) cannot be distinguished visually from the greyscale images. Saenger, Lebedev, 

et al. (2016) also compared the simulated elastic properties and permeability from 

images scanned at different pressures. The computed values are quite similar while the 

laboratory measurements show a strong pressure dependency. Furthermore, the 

traditional quantification of the strain field using the DVC method cannot capture 

small strain in an intact sandstone caused by small (under 50 MPa) stress. The 

application of DVC on intact objects is limited for determining large internal strain for 

soft materials (Bar-Kochba et al., 2015). 

The study of Saenger, Lebedev, et al. (2016) concluded that the effect of stress on 

micro-CT image of Bentheimer sandstone was negligible. This suggests that we can 

compute elastic properties based on micro-CT images scanned at ambient pressure and 

there is no need to scan the rock at elevated pressures. However, there are still several 

questions requiring clarification. First, in the study of Saenger, Lebedev, et al. (2016), 

the comparison of micro-CT images scanned at different pressures were compared 

visually, which can be extended with more objective image analysis to detect the 

stress-induced displacement on the images. Secondly, even though the stress effect is 

shown to be small on computed elastic properties of Bentheimer sandstone, it is still 

not clear if image insensitivity of stress is applicable to other sandstones. According 

to previous studies, Bentheimer sandstone is quartz-cemented, and pressure 

dependency of elastic property may be weaker than for other less cemented sandstones 

(Peksa et al., 2015). Thirdly, the micro-CT images can be acquired with a much smaller 

voxel size length than 2.4µm, which was used in Saenger, Lebedev, et al. (2016). It is 

thus possible and interesting to see if higher resolution can better resolve the stress 
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effect on images. Lastly, a confining pressure of 20MPa may be still lower than in-situ 

pressure and can be raised further. 

To address this objective, we study in this chapter the effect of confining pressure on 

micro-CT images of a gas reservoir sandstone. For this sandstone, laboratory 

measurements show significant pressure dependency of elastic properties. The sample 

is scanned at different confining pressures (up to 36MPa) in an X-ray transparent 

pressure cell (Lebedev, Zhang, Mikhaltsevitch, Inglauer, & Rahman, 2017). The voxel 

size length for image scanning is ~1µm to capture more detailed information. With the 

difficulty of DVC detecting minor deformation, we design an unbiased workflow to 

detect the overall rock deformation under different pressures. For the first time, the 

displacement of an intact sandstone sample boundaries can be quantified from the 

micro-CT images scanned at different pressures. Then, we calculate the static bulk 

modulus based on the detected deformation, and compare it with the dynamic modulus 

derived from ultrasonic measurements to evaluate the accuracy of the deformation 

estimation workflow. We also compare the porosity change under pressure estimated 

using segmented labels from images with the value derived from the estimated static 

modulus using poroelastic theory. The results of this analysis prove the accuracy of 

the estimated displacement. Finally, we compute the elastic moduli and assess the 

stress effect on the computed results. The minor difference between the computed 

elastic moduli based on micro-CT images scanned at different pressures shows that 

micro-CT cannot capture most of the soft pores at the grain contacts, even with high 

resolution image scanning setting and higher pressure applied. Our results will enrich 

the understanding of confining pressure effect on the micro-CT images of sandstones 

and the corresponding estimated elastic properties.  

3.2 Laboratory characterisation of sandstone sample 

The studied sample is a Jurassic sandstone (named S60 hereafter) from a gas reservoir 

located offshore Australia in the Northern Carnarvon Basin. The original depth of this 

sample is about 2400m, which is above the common initial depth of quartz cementation 

(Dræge et al., 2006). According to the modal analysis performed with a Scanning 

Electron Microscopy-based technique (TESCAN integrated mineral analyser or 

TIMA) on a polished thin section (Figure 3.1), quartz is the most abundant mineral 
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(76.4% of the total minerals) with 11.6% of feldspar, 3.7% of clay and other accessory 

minerals. We cut a cylindrical sample (38.4 mm in diameter, 56.24 mm in length) for 

porosity and ultrasonic velocity measurements. Pressure dependent porosities are 

measured with helium porosimeter (Figure 3.2a). After stress loading and unloading, 

velocities are measured at ultrasonic frequencies (~1MHz) in dry condition at 

confining pressures up to 40MPa. Then, the sample is saturated with glycerol and 

ultrasonic velocities are again measured at several differential pressures. The 

uncertainty of ultrasonic measurements due to the ambiguity of first arrival picking is 

~1% of the measured velocity. The measured velocities (and densities) are then used 

to compute pressure-dependent bulk and shear moduli (Figure 3.2b). This figure shows 

that the increase of effective pressure causes the compliant micro-pores and cracks of 

the sample to gradually close (Sayers, 1988), resulting in lower porosity. The closing 

of a small number of compliant pores with stress increases the elastic moduli (dry 

condition) almost a factor of two. The pressure dependency of the dynamic elastic 

moduli of the glycerol-saturated rock is much weaker, due to the significant squirt flow 

effect (Gurevich, Makarynska, de Paula, & Pervukhina, 2010). This indicates the 

abundance of micro pores, which is also the cause for the strong stress-sensitivity of 

the elastic moduli in dry condition. 

A cylindrical mini-plug (5 mm in diameter, 20 mm in length) is extracted from the 

bigger sample used in the previous measurements. This plug is loaded into a pressure 

cell (Lebedev et al., 2017), which is made of X-ray transparent polyetheretherketone 

(PEEK). This pressure cell is then assembled in the 3D X-ray microscope VersaXRM 

500 (XRadia-Zeiss). After stress loading and unloading cycles, sample is scanned at 

0MPa, 20MPa and 36MPa hydrostatic pressure. The voxel size lengths of three images 

are set to be exactly the same (1.0042µm) and the image sizes are approximately 20003 

voxels. Then, the sample remains under ambient pressure for 21 days, before it is 

scanned at 0MPa again with the same image size and resolution settings. This last 

image will be used as the reference image.   

 



41 

 

 

Figure 3.1 The optical microscopy (top) and TIMA (bottom) images of a thin section 

from S60. The image consists of quartz (shown in grey), feldspar (shown in orange) 

and other accessory minerals. 

 

Figure 3.2 Pressure dependent properties of dry sandstone S60 from laboratory 
measurement: (a) helium porosity, (b) bulk and shear moduli derived from measured 
velocities at ultrasonic frequency in dry and glycerol-saturated conditions. 
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3.3 Pressure effect detection method 

Next, we try to capture the pressure effect by comparing the first three sets of images 

with the baseline image. To this end, we process the micro-CT images with the 

software AVIZO (version 2020.2). First, we use a non-local means filter to suppress 

the random noise in the image while preserving the fine structures (Buades et al., 

2005). Then, by setting the image scanned at 0MPa (image scanned after 21days at 

ambient pressure without residual stress) as the reference, the images scanned at 0MPa 

(with residual stress), 20MPa and 36MPa are rotated and moved rigidly (without 

rescaling) to eliminate the small shift between scans. This process is called registration 

and the metric to align the images is called normalized mutual information (Estévez, 

Tesmer, Perez, & Zurada, 2009). This metric is more robust than correlation methods, 

because it aims at minimizing the entropy, and does not require images with similar 

histograms. After registration, we try to select the maximum physical part of the 

sample that can be found in all the four scans. Visually, we find that the same part of 

the sandstone sample, which occupies 1255×1021×1620 voxels in the reference image, 

shrinks slightly when imaged in other pressure conditions. The difference between two 

adjoining slices is tiny, and it is difficult to identify the deformation accurately by 

visual inspection. Next, we try to use the 2D slice searching method to quantitatively 

and unbiasedly locate the same physical part of the sample in different images. 

First, we select the cube of 1255×1021×1620 voxels in the reference image. Based on 

the visually identified corresponding parts in the other images, we select slightly larger 

cubes as targets. Each time we pick one of the six boundary slices of the reference 

cube and try to automatically locate the corresponding slice in the group of boundary 

slices of the target images (Figure 3.3). Again, the similarity is quantified with 

normalized mutual information (Figure 3.4). We find that the same physical part of the 

studied sample S60 occupies the space of 1255×1021×1620 voxels at 0MPa (without 

residual stress), 1253×1019×1616 voxels at 0MPa (with residual stress), 

1250×1017×1613 at 20MPa, and 1252×1017×1613 at 36MPa (Figure 3.5). This means 

that the stress-induced deformation of an intact sandstone can be detected on the 

micro-CT images, even when the volumetric strain derived from deformation is only 

on the order of 0.001. More specifically, first, the amount of deformation can 

characterise how the residual stress affects the sandstone by comparing the two scans 
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at 0MPa. Secondly, the deformation is more significant between 0 and 20MPa than 

between 20 and 36MPa.  

 

Figure 3.3 Diagram of the slice searching workflow in one dimension. The reference 
image is scanned at 0MPa (without residual stress), and the target image is scanned at 
20MPa. In the reference image, two boundary slices with the index of 0 and 1254 
(length of 1255 voxels) correspond to the slices with the index of 6 and 1255 (length 
of 1250 voxels) in the target images. 

 

Figure 3.4 Searching for the best matching slices with normalized mutual information 
metric. The reference image is scanned at 0MPa (without residual stress), and the 
target image is scanned at 20MPa. The slices with index of 0 and 1254 (length of 1255 
voxels) in the reference image correspond to the slices with the index of 6 and 1255 
(length of 1250 voxels) in the target image.  



44 

 

 

Figure 3.5 2D slices of micro-CT images showing the same physical part of sample 
S60 scanned at (a) 0MPa (without residual stress), (b) 0MPa (with residual stress), (c) 
20MPa, and (d) 36MPa.  

After locating the same physical part of the S60 sample on the micro-CT images 

scanned under different stress conditions, we segment the greyscale images into pore 

and solid phase with the Otsu method (Liang, Gurevich, et al., 2020; Otsu, 1979). The 

porosity of the same part of S60 is 0.1753 at 0MPa (without residual stress), 0.1673 at 

0MPa (with residual stress), 0.1621 at 20MPa, and 0.1625 at 36MPa. To make a 

comparison, we fit the porosity measured for the larger sample with helium 

porosimeter with a � − �� + �����  relation. The fitted porosity decreases from 

0.2127 at 0MPa to 0.2015at 20MPa, and 0.1989 at 36MPa. It should be noted that the 

sample sizes for micro-CT scanning (mm scale) and porosity measurements (cm scale) 

are quite different, and the comparison are for qualitative understanding only. Next, 

we will calculate the static bulk modulus based on the detected deformation and 

compare with the dynamic modulus derived from ultrasonic measurements.  
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3.4 Estimates of the static moduli 

The static bulk modulus of a rock refers to the elastic property derived from the ratio 

between static confining pressure and volumetric strain. The common way of 

measuring static bulk modulus is by strain gauges. The searching slice strategy 

described above gives an opportunity to calculate the static bulk modulus of a 

millimetre scale sample. Elastic moduli of our sample are highly pressure dependent, 

but it is only scanned at discrete pressure settings. Thus, the static bulk modulus 

derived from images is an effective value of a large pressure interval (e.g., 0-20MPa).  

The estimation of the strain from micro-CT images is limited by the voxel size. To 

improve the result, we further resample the group of boundary slices in the target 

images. The resampling is conducted with the Lanczos method to decrease the voxel 

size length from 1.0042µm to 0.10042µm (Madhukar & Narendra, 2013). Because we 

will later compare the static moduli detected from images and dynamic moduli derived 

from the ultrasonic measurements and the ultrasonic velocities are measured after 

pressure loading and unloading, we will now use the image scanned at 0MPa after 

loading and unloading process as reference. After resampling, we find that the same 

physical part of S60 occupies the space of 1253×1019×1616 voxels at 0MPa (with 

residual stress), of 1250.1×1016.6×1611.9 at 20MPa, and of 1251.8×1016.5×1612.2 

at 36MPa. The effective static bulk modulus from 0MPa to 20MPa is 2.78GPa. The 

sandstone under pressures of 20MPa to 36MPa is much stiffer than that in the lower 

pressure range, so the strain is comparable to the accuracy limit of the deformation 

detection workflow. We also try several resampling methods other than Lanczos, and 

the estimated static bulk modulus is invariant. 

The derived static modulus can be further used to derive the porosity change from 

0MPa (with residual stress) to 20MPa. The stress dependency of porosity can be 

described with poroelastic theory as below 

                                                
��

��
=

�

���
−

(���)

�
,               (3.1) 

where �, �, ��� and � stand for porosity, pressure, bulk modulus of grain material 

and dry rock frame (Zimmerman, 1990). � is assigned to be the static modulus derived 
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from the deformation (2.78GPa) and ��� is assumed to be the bulk modulus of quartz 

(37GPa) (Mavko et al., 2009). As shown from the segmented label, the porosity is 

0.1673 at 0MPa (with residual stress). Based on that, the derived porosity at 20MPa 

with poroelastic theory is 0.1618. The porosity change estimated with equation (3.1) 

is 0.0055, which is very close to, but slightly higher than, the resolvable porosity 

change from the segmented images (0.0052). The difference may be attributed to 

measurement or segmentation errors, or perhaps to the closure of the soft porosity 

unresolvable in the micro-CT image; indeed soft porosity is usually estimated to be on 

the order of 10-4 to 10-3 (Mavko & Jizba, 1991; Shapiro, 2003). This demonstrates the 

accuracy of the slice matching workflow. 

3.5 Comparison between static and dynamic bulk moduli 

Dynamic bulk modulus is the elastic property derived from the velocities of elastic 

waves propagating through the rock. According to the theory of elasticity, the dynamic 

and static moduli of a dry rock are one and the same. Indeed, the standard expressions 

for the compressional and shear wave velocities are derived from static Hooke’s law. 

However for many dry rocks, static bulk modulus is smaller than dynamic one, mainly 

due to strong non-linearity caused by the presence of pores and cracks (Cheng & 

Johnston, 1981). Here, we compute the static and dynamic bulk modulus ratio and 

compare with literature values.  

The dynamic bulk modulus of a core sample is obtained from ultrasonic and density 

measurements. The static and dynamic moduli are based on samples of different scales 

and the comparison is for qualitative understanding only. To match the effective static 

modulus, we need to extrapolate the effective dynamic modulus to the same pressure 

increment as the static moduli are measured from the images. Based on discrete 

ultrasonic measurements (Figure 3.2b), a regression is applied to derive a continuous 

function of compressibility (reciprocal of bulk modulus) and pressure. Then the strain 

between 0 and 20MPa is integrated. The accumulated volumetric strain is 0.0036247. 

Assuming the bulk modulus is a constant value in the pressure range from 0MPa to 

20MPa, we can calculate the effective dynamic bulk modulus to be 20MPa/0.0036247 

= 5.52GPa. The integration of strains and stresses implies that the sample is linearly 

elastic within 0-20MPa. For such a pressure-sensitive rock, this assumption is 
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definitely invalid; hence the dynamic modulus obtained should be regarded as a 

linearized proxy, and not a modulus that we would have measured if the stress 

amplitude in the wave were ±10 MPa (or strain amplitude ±0.002). The static to 

dynamic modulus ratio is 0.504, which is consistent with the literature values (Cheng 

& Johnston, 1981; Fjær, 2009). Next, we will try to see the stress effect on the 

computed elastic moduli. 

3.6 Pressure effect on computed elastic moduli 

Based on the slice searching method, we locate the same physical part of sandstone in 

images scanned at different pressures. After the two-phase segmentation, we assign 

the bulk and shear moduli to be 0 for pore phase and, respectively, 37 and 44GPa for 

the solid phase. Then, we use the finite-element method to compute the effective 

elastic properties, treating each voxel as a trilinear finite element (Arns et al., 2002). 

The computed results are listed in Table 3.1. 

Table 3.1 Comparison of properties from images scanned at different pressures. 

Stress condition Voxel Porosity 

Bulk modulus 

(GPa) 

Shear modulus 

(GPa) 

0MPa (without 

residual stress) 
1255×1021×1620 0.1753 20.8 22.0 

0MPa (with 

residual stress) 
1253×1019×1616 0.1673 21.7 23.1 

20MPa 1250×1017×1613 0.1621 22.3 24.1 

36MPa 1252×1017×1613 0.1625 22.2 24.1 

The differences between the moduli computed from images at 0MPa (without residual 

stress) and 36MPa are 5.8% in bulk modulus and 9.5% in shear modulus. This 

indicates that the micro-CT images captured a small amount of confining pressure 

effect. Also, it shows that the pressure effect on computed elastic properties is more 

significant in the lower pressure range than at higher pressures.  

Next, we compare pressure dependency of elastic properties from computation and 

ultrasonic measurements. As the sample is loaded and unloaded with stress before 

ultrasonic measurements, the reference computed elastic property here is also taken 
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from images scanned at 0MPa with residual stress. The comparison between computed 

results between images of 0MPa (with residual stress) and 36MPa shows that the 

differences are 2.3% in bulk modulus and 4.3% in shear modulus. In contrast, the 

elastic moduli derived from ultrasonic measurements increased by around 200% 

between these pressure points (Figure 3.2b).  

3.7 Discussion 

The stress induced deformation in the micro-CT images of an intact sandstone is 

extremely small and obscured by random noise and other artefacts from the image 

scanning and reconstruction processes. Thus, it is extremely difficult to identify the 

pore scale difference visually or with traditional digital volume correlation algorithms. 

By selecting a boundary slice of reference image, we use image registration to search 

for the most similar slice in the target images. We use normalized mutual information 

as the criteria to match slices, and compute the entropy by taking the information of 

the whole slice. The main advantage of this approach is that the differences from stress 

are accumulated while the random effects are cancelled out. Also, normalized mutual 

information does not require images with similar histograms, which may change in 

scans at different pressures. By minimizing the entropy between the reference and 

target slices, the matching slices can be located and the corresponding displacement of 

the sample boundaries can be deduced. Based on this technique, we see the more 

significant deformation when the stress is changed from 0MPa to 20MPa and minor 

deformation when the stress is further increased from 20MPa to 36MPa, which is in 

agreement with the laboratory observations. Furthermore, we observe the residual 

stress effect from micro-CT images. 

Even though the overall deformation can be detected from the images, the relative 

changes of computed elastic properties from micro-CT images under stress is 20 to 30 

times less than that derived from ultrasonic measurements. The much smaller relative 

change of computed moduli implies that the increased stress mainly stiffens already 

existing intergranular contacts by increasing either the number or area of the contacting 

asperities and closing nanopores (Glubokovskikh, Gurevich, Lebedev, Mikhaltsevitch, 

& Tan, 2016). To be noted, a direct match of moduli from computation and experiment 

may not be expected and DRP is only invoked to test whether there is sensitivity to 
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confining pressure by considering a 2-phase segmentation alone. In this current study, 

we are trying to understand the stress effect on the micro-CT images. We assume that 

the strong pressure dependency of elastic properties observed in the ultrasonic 

measurements results from the soft pores at grain contacts. Also, we assume the soft 

pores are surrounded by quartz, and if the soft pores are not resolved in the micro-CT, 

they are segmented to be quartz. We believe that it suffices to segment micro-CT 

images into two phases to see the effect of soft pore resolving differences on the 

relative pressure dependency of the rock. Segmenting micro-CT images into more 

difference phases with a workflow involving manual factors would increase the 

uncertainty of the segmentation process. Since the computed moduli difference with 

micro-CT images scanned at different pressures are very small, the segmentation 

uncertainty may obscure the stress effect on the computed moduli (which is the focus 

of this study). Based on the previous studies and our results, it can be concluded that 

DRP cannot fully capture the pressure dependent elasticity of intact sandstones directly 

from the micro-CT images.  

A possible solution to overcome the limitation is to reconstruct the grain contact 

according to grain geometry (Arns, Madadi, Sheppard, & Knackstedt, 2007; Madonna 

et al., 2012; Saenger, Lebedev, et al., 2016). This so-called grain contact phase is 

actually a combination of grain and unresolved micro pores. In this approach, the grain 

contact part is considered as a separate phase with lower moduli than those of pure 

grains. The detected global scale deformation can be a source of information to 

estimate the effective moduli of the grain contact phase.  

3.8 Conclusions  

We have investigated the pressure effect on high-resolution micro-CT images of a 

reservoir sandstone and on elastic properties computed from these images. The X-ray 

transparent pressure cell allows micro-CT scanning at confining pressures of up to 

36MPa. The images produced at different pressures are very close to each other and 

the differences are almost invisible to a naked eye. To detect these differences, we 

designed a slice matching workflow. Application of this workflow to our images 

shows that the same physical part of the studied sample occupies the space of 

1255×1021×1620 voxels at 0MPa (without residual stress), 1253×1019×1616 voxels 
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at 0MPa (with residual stress), 1250×1017×1613 at 20MPa, and 1252×1017×1613 at 

36MPa. The detected deformation is larger from 0MPa to 20MPa, than from 20MPa 

to 36MPa. The effect of stress release is also detected by comparing the images at 

0MPa with and without residual stress. The derived static bulk modulus from 

deformation from 0MPa to 20MPa is 2.78GPa, which is consistent with literature 

values. The porosity change detected from segmented labels is consistent with the 

value derived from static modulus using poroelastic theory.  

The images scanned at different pressures were used to compute the effective elastic 

moduli. The difference between the computed moduli is much smaller than the 

difference between the ultrasonic measurements. This shows, consistent with previous 

studies, that micro-CT imaging cannot resolve the geometry of grain contacts 

responsible for the pressure effect on the elastic properties. The accuracy improvement 

of the estimated elastic properties from images scanned at higher pressures is 

negligible. One way to overcome this limitation is to parameterize the pressure 

dependency of the contact stiffness indirectly.  
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Chapter 4 Grain contact stiffness inversion with digital rock physics 

4.1 Introduction 

Sandstone is a type of sedimentary rock with the structure of silicate grains deposited 

in contact. The stiffness of the grain contact plays a critical role in defining effective 

elastic moduli of sandstones (Digby, 1981; Winkler, 1983). In the diagenesis process 

of sandstone, with the first bit of cement at grain contacts, the elastic moduli of a 

sandstone increase sharply (Dvorkin, Nur, & Yin, 1994). With growing effective 

stress, the crack-like soft pores at grain contacts may be progressively closing, 

resulting in strong increase of the elastic properties of sandstones (Pervukhina, 

Gurevich, Dewhurst, & Siggins, 2010; Shapiro, 2003). Thus, grain contact stiffness is 

the key factor in understanding and predicting the cementation and stress effect on the 

effective elastic moduli of sandstones.  

With the rapid advances in imaging and computing capacity, Digital Rock Physics 

(DRP) has emerged as an tool for the analysis of pore-scale processes governing 

effective elastic rock properties (Andrä et al., 2013a). This technique relies on 

numerical simulations of rock deformation for a given rock microstructure, which may 

be obtained directly from real rock micro-Computed Tomography (micro-CT) images 

(Sain, 2010). However, even with the latest synchrotron-based X-ray tomographic 

microscopy, micro-CT still cannot resolve the majority of soft pores at grain contacts 

due to resolution limitation. Ignoring compliance of these contacts leads to a 

significant overestimation of computed elastic moduli (Madonna et al., 2012). An 

alternative way is to reconstruct the contacts according to the morphology of grains 

using watershed separation algorithm (Madonna et al., 2012; Saenger, Lebedev, et al., 

2016). These approximated grain contacts can then be treated as a uniform phase with 

lower moduli in the numerical computation. Hereafter, the term “grain contact” will 

be representing the approximated composite phase with soft pores and the 

neighbouring enclosing solid. 

Saenger, Lebedev, et al. (2016) tried to take advantage of ultrasonic measurements to 

determine the value of the reduced grain contact moduli. A bigger sample and a smaller 

sample were cut from the same Bentheimer sandstone block for ultrasonic 

measurements and micro-CT imaging respectively. Ultrasonic measurements were 

conducted in dry condition at pressures from 4MPa to 20MPa. Greyscale micro-CT 
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images were segmented into three phases (pore, solid and contact zone). The 

overestimated computed moduli were first corrected to match the ultrasonic 

measurements at 20MPa by multiplying a coefficient, assuming grain contact effect 

on elastic moduli was minimum at 20MPa. Then, grain contact moduli were varied 

from 2% to 100% of quartz moduli to match the ultrasonic measurements at different 

pressures, to take into account of the effect of unresolved soft pores.  

In order to derive meaningful contact moduli with inversion, several factors need to be 

better investigated. First, because of the difficulty of segmenting minerals out of 

grayscale micro-CT images, the solid part of rock sample is usually assumed to be a 

single phase (Andrä et al., 2013a). Yet, a sandstone often contains soft clay minerals 

or stiff carbonate cements, and the amount or the distribution of them may induce 

significance difference in effective elastic moduli (Dræge et al., 2006) (also see 

Chapter 2). Moreover, the effect of a contact may depend on the specific minerals 

connected by this contact. Second, in Saenger, Lebedev, et al. (2016), to estimate the 

contact moduli, the computed moduli are corrected to match the measured velocity at 

higher pressure (20MPa), assuming the contact moduli are the same as pure quartz. 

However, soft pores might not be fully closed until several hundred MPa (de Paula, 

Pervukhina, Makarynska, & Gurevich, 2012; Sun & Gurevich, 2020), which is well 

beyond the pressure range for common laboratory ultrasonic measurement. Third, 

even when we have multi-mineral segmented labels, the choice of corresponding 

mineral moduli is uncertain. Mineral moduli from laboratory measurements on mineral 

crystals (McSkimin, Andreatch Jr, & Thurston, 1965) and those derived with 

extrapolation of ultrasonic measurements on natural rocks to zero porosity (Vernik, 

1997) are different. This uncertainty of matrix moduli will then affect the accuracy of 

the inverted grain contact moduli. Fourth, previous studies, attempted to match 

laboratory measurements, using a micro-CT image with similar porosity to that of the 

laboratory sample. Yet, the mercury porosimetry shows that up to ten percent of pores 

may be unresolved in the micro-CT images (Saenger, Lebedev, et al., 2016). This 

means that the comparison between computation and laboratory measurements is 

based on a higher porosity sample for imaging and lower porosity sample for ultrasonic 

measurements. This mismatch can cause additional errors in the estimated contact 

moduli. Due to these important factors, the grain contact moduli may be able to act as 
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fitting parameters, but may represent not just the properties of the contact (geometry, 

cementation, fluid content etc.), but also factors related to a larger area of the sample 

(such as position with respect to various mineral components and to other contacts, 

mineral moduli or unresolved porosity). As modelling contacts as flat layers of a fixed 

thickness is very idealised, the contact moduli derived in this way are still fitting 

parameters but they should be related to the properties of the contact (e.g., geometry, 

cementation, fluid), which is useful for analysis of the effect of these properties on the 

overall rock moduli. 

In this chapter, we try to overcome these limitations by deriving the grain contact 

stiffness of a Bentheimer sandstone and a natural gas reservoir sandstone named S60 

(S60 was also studied in Chapter 3). The contact stiffness will be inverted by varying 

the contact stiffness to match the computed elastic moduli based on high resolution 

micro-CT images with a full set of ultrasonic measurements at different pressures in 

dry condition. We will take advantage of a newly developed multi-mineral 

segmentation workflow which successfully segments different common minerals from 

micro-CT images (Chapter 2). To better define the mineral moduli, we will refer to 

values in recent literature and constrain them with the nano-indentation technique. 

Very importantly, we will take the micro-CT image subset with porosity reasonably 

smaller than laboratory samples to do the computation. Nuclear magnetic resonance 

(NMR) will be used to estimate the porosity that cannot be resolved in micro-CT 

images. With these efforts, the inverted contact moduli can better describe the stiffness 

of grain contacts when the cementation or pressure condition varies. More samples can 

be studied with this method to build a library of contact stiffness in different 

cementation and stress conditions. Thus, DRP is empowered with the ability to 

describe the cementation and pressure changes on the effective moduli by adjusting 

grain contact moduli within the reasonable range. 

4.2 The laboratory study 

Two sandstone samples were selected for this study: a Bentheimer sandstone and a 

reservoir sandstone named S60. According to previous studies, quartz is the main 

component of the Bentheimer sandstone matrix (mostly 90-98%) (Peksa et al., 2015). 

Even though Bentheimer sandstone is an outcrop sandstone, it has gone through 

moderate diagenesis. Quartz cement has grown around the original detrital quartz 
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grains and reduced the pore space. The accessary feldspar has been partially weathered 

to generate clay, which precipitates around the grains or fills the pores, especially the 

narrow parts around the grain contacts. When some parts of grains are coated by the 

early formed clay, the quartz cement may be difficult to precipitate, so the cement 

growth is inhibited (Ajdukiewicz & Lander, 2010). As a result, some grain contacts 

may be with lower stiffness than quartz grains (Figure 4.1). 

S60 is a Jurassic sandstone from an Australian natural gas reservoir. According to the 

analysis on a polished thin section with TESCAN integrated mineral analyser (TIMA) 

(Figure 4.2), S60 has more mineral complexity than Bentheimer sandstone. The most 

abundant mineral is quartz (76.4% of the total minerals), with 11.6% of feldspar, 3.7% 

of clay, as well as other accessary minerals. The more abundant feldspar and clay may 

inhibit the quartz overgrowth more considerably than that in the Bentheimer sandstone, 

resulting in possibly weaker grain contact in S60. 

 

Figure 4.1 Scanning Electron Microscope (SEM) image of a Bentheimer sandstone. 
The location of the high-magnification image (b) is marked with a yellow dashed 
square within the low-magnification image (a).  

4.2.1 Ultrasonic and porosity measurements 

A cylindrical part (~38mm in diameter, ~50 mm in length) of each sample was 

extracted from block or core for porosity and ultrasonic (~1MHz) velocity 

measurements. Samples were cooled with frequently sprinkled water when cutting. 

For ultrasonic velocity measurement, samples were kept in a drying chamber at 50°C 

for 24 hrs. Then, velocities were measured in dry condition at different hydrostatic 
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confining pressures. The elastic moduli derived from the measured ultrasonic 

velocities are shown in Figure 4.3. The measured velocity in S60 shows much stronger 

pressure dependency than in the Bentheimer, probably due to differences in the grain 

contact cementation. For porosity measurements, samples were dried for 24 hrs at 

105°C in a vacuum oven. After measurement of the mass (����) of a dry sample, the 

sample was fully saturated with brine (NaCl 3.5%) under vacuum. The mass of sample 

was measured again (�� ) and the porosity was determined as ��� −����� ��⁄ , 

where �� stands for the bulk volume of the sample and the density of the water is 

assumed to be 1000 kg/m3. The porosities of Bentheimer and S60 sample were 

measured to be 0.2381 and 0.2105.  

4.2.2 Micro-CT imaging 

A cylindrical mini-plug (5 mm in diameter, 20 mm in length) was then extracted for 

micro-CT scanning from the larger sample used in the previous measurements. These 

two mini-plugs were scanned with 3D X-ray microscope VersaXRM 500 (XRadia-

Zeiss) with consistent scanning parameters (Figure 4.4). The voxel size length and 

voxel number of Bentheimer sandstone micro-CT image is 1.0000µm and 

1984×2028×1998 voxels, while the parameters for S60 micro-CT image are 1.0042µm 

and 1980×2028×1991 voxels. The choice of scanning parameters is based on the study 

in Chapter 2. The scanning parameter evaluation for Bentheimer sandstone showed 

that theoretical representative volume element criteria could not be fulfilled even with 

lower resolution setting. However, sample size with ~1.25mm edge length seemed to 

be able to provide a locally stable image set for elastic moduli estimation. The voxel 

edge length of ~1µm is the highest resolution that can be achieved with the selected 

sample size, considering the limitation of the scanning apparatus. 
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Figure 4.2 The optical microscopy (top) and TIMA (bottom) images of a thin section 

from S60. The image consists of quartz (shown in grey), feldspar (shown in orange) 

and other accessory minerals. 

 

Figure 4.3 Elastic moduli of Bentheimer and S60 sample derived from ultrasonic 
measurements under different pressures in dry condition.  
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Figure 4.4 Micro-CT images of Bentheimer (left) and S60 sample (right). Only one 
slice of each set of image is shown here. 

4.2.3 Nuclear Magnetic Resonance for pore size distribution estimation 

Compared with the SEM image (Figure 4.1), micro-CT images cannot resolve most of 

the minor pores at grain contact, even with 1µm voxel size length. To quantify the 

unresolved soft pores, Nuclear Magnetic Resonance (NMR) measurements were used 

to estimate the pore size distribution of two samples. The measured NMR �� relaxation 

time distributions (Figure 4.5) indicates that there are three groups of pores, which are 

filled with bound water within the clay clusters, weak bound water at grain contacts 

and free water in the big pores. 

 

Figure 4.5 The NMR �� relaxation time distributions of Bentheimer and S60 sample. 
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�� can be correlated with surface to volume ratio (� �⁄ ) of pores by equation (4.1), if 

the surface relaxivity � is known (Zhang, Kruschwitz, Weller, & Halisch, 2018),  

 
1

��
= � �

�

�
�. (4.1) 

Assuming the pore is cylindrical with radius �, � �⁄  equals 2 �⁄ . Then, pore radius � 

can be calculated as 

 � = 2���. (4.2) 

The surface relaxivity parameter of Bentheimer sandstone was measured to be 9.5 

µm/s using the laser-induced breakdown spectroscopy (Washburn, Sandor, & Cheng, 

2017). We can understand that micro-CT with 1µm voxel length cannot resolve the 

pores of Bentheimer sample with relaxation time lower than ~50ms, which is 

approximately the separation point between pores filled the free water and bound 

water. Thus, we assume only the pores filled with free water can be resolved in micro-

CT with 1 µm voxel length. Combining the total measured porosity, the resolved 

porosity is 20.81% for Bentheimer sample and 17.64% for S60 sample. In the 

following study, we will choose the image set with the porosity similar to the resolved 

porosity instead of the total porosity. It should be noted that if the image set with the 

resolved porosity matching the total porosity of sample for ultrasonic measurement is 

selected, the unresolved pores in image set are overlooked. 

4.2.4 Nano-indentation as a reference for mineral moduli 

The moduli of mineral are important input parameters for effective elastic moduli 

estimation (Amini, 2019), yet these parameters are uncertain. These moduli can be 

obtained from laboratory measurements on mineral crystal or derived by extrapolation 

of ultrasonic measurements on natural rocks to zero porosity (Table 4.1). The values 

from different sources are quite different and the best choice is not clear. Also, 

sandstones can have different variants of the same mineral, so it is best to obtain 

mineral properties from direct measurements on the same rock (even on a different 

scale). To help resolve this uncertainty, the stiffness (Young’s modulus) was measured 

with nano-indentation tests on single grains in S60 at the micrometre scale. For that 

purpose, a billet size piece of S60 was prepared as a polished, blue resin impregnated, 

section on slide by Adelaide Petrographic Ltd. The apparatus used was an IBIS nano-
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indentation system (Model B, Fisher-Crips Laboratories Pty. Ltd.), equipped with a 

diamond, Berkovich-type indenter, which was used in the static mode (Lebedev, 

Wilson, & Mikhaltsevitch, 2014). The tests consist in recording the applied 

incremental load P and the displacement h of the indenter as it pushes into and 

withdraws from the surface of the polished thin section. A constant maximum loading 

force of 10mN and an initial contact force of 0.15mN were used. In total, 961 (31×31) 

measurements were performed on a 150×150µm surface with a spacing of 5µm 

between the measurement points as in Saenger, Vialle, et al. (2016). Elastic properties, 

namely indentation moduli, were computed from the P-h curves, assuming a 

continuum scale mechanical model and a purely elastic material. The nano-indentation 

system was calibrated using a standard of fused silica (Young’s modulus of 72.5GPa) 

and data were further corrected from deviation of the indenter tip from ideal geometry, 

initial penetration into the rock below a load threshold and compliance of the loading 

column. Uncertainty of the apparatus is estimated to be about 2GPa based on a large 

number of measurements performed on the silica standard. 

Table 4.1 Moduli of common minerals of sandstone matrix from different sources 

 
Bulk modulus  

(GPa) 
Shear modulus  

(GPa) 
Young’s modulus 

(GPa) 
Source 

Quartz 37 44 94.5 
McSkimin et al. (1965),  
mineral measurement 

Microcline 59.5 30.3 77.7 
Waeselmann et al. (2016), 

mineral measurement 

Albite 59.4 35.5 88.8 
J. M. Brown, Abramson, and 

Angel (2006),  
mineral measurement 

Oligoclase 66.8 35.3 90.0 
J. M. Brown, Angel, and Ross 
(2016), mineral measurement 

”Average” 
matrix 

35.7 33 75.7 Vernik (1997), empirical 

”Average” 
feldspar 

37.5 15 39.7 Mavko et al. (2009), empirical 

 

The indentation modulus is related to the S the is unloading indentation stiffness � =

(�� �ℎ⁄ ) by the equation 

 � ≝
√�

2
	
�

���
	, (4.3) 



60 

 

where Ac is the contact area, extrapolated from the maximum penetration depth hmax 

using the relation �� = 24.5ℎ���
�  adapted to the geometry of Berkovitch-type 

indenters (Fischer-Cripps & Nicholson, 2004). 

Young's moduli E can then be calculated from the indentation moduli according to 

 
1

�
=
1 − ��

�
+
1 − ��

�

��
. (4.4) 

In this study we took �� 	= 	1220GPa and �� = 0.06, for the indenter properties, 

according to Klein and Cardinale (1992) and Fischer-Cripps and Nicholson (2004) for 

diamond material. Calculation of E from M requires the knowledge of the mineral 

Poisson’s ratio, which cannot be obtained from indentation tests. We assumed a 

constant Poisson’s ratio of 0.10 for quartz (Pabst & Gregorová, 2013), 0.28 for albite 

(Christensen, 1996) and 0.29 for microcline and oligoclase (Christensen, 1996), even 

though this value will likely vary from measurement to measurement even within a 

single mineral phase. 

Localisation of the grains and mineral of interest was performed using the optical 

images (that allows choosing grains without cracks) and the TIMA maps (that allows 

choosing grain with mineralogy of interest, namely quartz and three different types of 

feldspar identified: albite, oligoclase and microcline). Then, an optical microscope 

used in reflection mode and synchronised with the nano-indenter, helped focus the 

nano-indentation tip on the chosen zone of interest (Figure 4.6). Young’s modulus map 

shows that the mineral moduli of grains in S60 are very similar to the values measured 

with mineral crystal, and higher than the empirical values. In the effective elastic 

moduli estimation, we will use the mineral moduli measured on crystals from 

literatures. For quartz, we will use bulk and shear moduli 37 and 44GPa, respectively. 

The feldspar moduli of Bentheimer is chosen to be the moduli of microcline in Table 

4.1. The feldspar moduli of S60 are averaged using Voigt-Reuss-Hill model (Hill, 

1952) based on the percentage of different kinds of feldspar from TIMA in Figure 4.2 

and the crystal moduli in Table 4.1.  

The application of nano-indentation to clay and pyrite is challenging due to their small 

particle size compared to the indenter, and thus we will use literature mineral moduli 

for simulations. Clay in Bentheimer sandstone is mainly kaolinite (Peksa et al., 2015), 
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and the moduli of clay are set to the values from laboratory measurements on kaolinite 

in Vanorio et al. (2003) (12GPa for bulk modulus and 6GPa for shear modulus). Clay 

minerals in S60 are more diverse, and empirical “mixed clay” values (bulk modulus 

21GPa, shear modulus 7GPa) will be used (Tosaya, 1982). The pyrite moduli are 

chosen to be 147.4GPa for bulk modulus and 132.5GPa for shear modulus (Simmons 

& Birch, 1963). 

 

Figure 4.6 Young’s modulus map derived from nano-indentation (third row), guided 
by optical microscopy images (first row) and TIMA maps (second row) of S60. 

4.3 Micro-CT image processing, segmentation and grain contact reconstruction 

Micro-CT images (Figure 4.4) were imported into AVIZO software for the following 

processing. The dimension of the original micro-CT image is around 20003 voxels, 

which needs to be further reduced to 12003 when the cylindrical scan is cut into cube 

for processing and computation (Figure 4.7). We used the processing and multi-

mineral segmentation workflow developed in Chapter 2 to suppress noise, segment 

clay and feldspar from the image. Pyrite in S60 appears in very bright colour due to 
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the high density, which can be segmented with greyscale thresholding with manually 

picked threshold value. Watershed separation was used to generate grain contact of 

one voxel thick (Saenger, Lebedev, et al., 2016). Contact thickness can be controlled 

by first resampling image to low resolution (larger voxel size), and reconstructing the 

contact with watershed separation. The contact phase was then resampled back to the 

original resolution and included as a separate phase in the processed labels. Here, we 

used 2µm thick contact resulting in the contact volume fraction similar to the weak 

bound water percentage from the NMR measurements. Finally, we have a five-phase 

label (pore, quartz, clay, feldspar and contact) for Bentheimer sample and six-phase 

label (pore, quartz, clay, feldspar, pyrite and contact) for S60 sample (Figure 4.7).  

The porosity values estimated from the segmented labels are 24.58% for Bentheimer 

sample and 16.56% for S60 sample, which are very different from the estimated 

resolvable porosity from the laboratory measurements on core plugs (20.81% for 

Bentheimer sample and 17.64% for S60 sample). This is due to the scale difference 

and heterogeneity of the samples. To achieve a reasonable match between the image 

and the laboratory sample, we select a 6003 voxel subsample from the 12003 voxel label 

with the porosity of 20.81% for Bentheimer sample and 17.64% for S60 sample. The 

selection is conducted by iterating the 12003 voxel sample with a 6003 voxel fixed 

boundary until the subsample with the required porosity is located. This subsample 

will be used for the following study. 

4.4 Grain contact moduli inversion 

We used the combination of a range of contact bulk moduli (0.1, 1, 5, 20 and 50GPa) 

and shear moduli (0.1, 1, 5, 20 and 50GPa) to do 5×5 effective elastic moduli 

computation using the 6003 voxel image set of Bentheimer and S60 sample. Effective 

elastic moduli were computed using finite-element method, treating each voxel as a 

trilinear finite element (Arns et al., 2002). The computed results gave a 5×5 grid of the 

mapping from the contact moduli to effective moduli. To compensate for the 

incapability of limited mesh density to describe the rapid stress changes at grain 

contact (Liang, Glubokovskikh, Gurevich, Lebedev, & Vialle, 2020b), the labels of 

two samples were resampled from 6003 to 12003 voxel (voxel edge length from ~1µm 

to ~0.5 µm) and the effective moduli grid was computed again based on the 12003 

voxel image set. Then, a linear extrapolation of each corresponding grid point to zero 
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voxel edge length was conducted to compensate for the mesh density limitation. The 

extrapolated computed effective elastic moduli are shown in Figure 4.8. 

 

Figure 4.7 Greyscale micro-CT images (left) and processed labels (right). Bentheimer 
and S60 sample images are shown in each row. In the processed label images, pore, 
quartz, clay, feldspar, pyrite and reconstructed grain contacts are labelled in black, blue, 
grey, red, green and yellow, respectively. 
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Figure 4.8 Effective moduli of Bentheimer and S60 sample based on the varying 
contact moduli. The effective moduli are extrapolated to zero voxel edge length using 
computed moduli from image set with the voxel edge length of  ~1µm and ~0.5 µm. 

We further interpolate the effective moduli surface with 0.1×0.1GPa contact bulk and 

shear moduli grid using “Modified Akima piecewise cubic Hermite” method (Akima, 

1970). Then, we are able to search for the contact stiffness that leads to the effective 

moduli matching each ultrasonic measurement as an inversion process. The criteria is 

to minimise (����� − ��������)
� 	+	(����� − ��������)

�  (Figure 4.9). The results 

expressed as stiffness values of contact for two samples in different pressure conditions 

shown in Figure 4.10. The inverted contact stiffness values are significantly smaller 

than the sandstone matrix for both samples. Also, Bentheimer has stiffer contact and 

shows less pressure dependency compared with S60.  
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Figure 4.9 The correspondence between elastic moduli derived from laboratory 
measurements and the best-matching interpolated computed effective moduli. 

 

Figure 4.10 Inverted contact stiffness from ultrasonic measurements.  

4.5 Discussion 

In this chapter, a well-constrained DRP workflow was applied to understand the grain 

contact stiffness. It should be noted that this workflow assumes that millimetre scale 

sample used for micro-CT image scanning are representative of the centimetre scale 

sample used for ultrasonic measurements. In the selection of the matching image set, 

resolvable porosity of the image set was used as a reference to select a subsample from 

the larger image. It can be expected that the computed elastic moduli of subsamples 

with similar porosity still vary within a certain range, even for Bentheimer sandstone, 

which is relatively homogeneous and with simple mineralogy (see Chapter 2). The 

variance could result from the mineralogy difference in subsamples. This uncertainty 

can be reduced by using more subsamples of large image to generate a trend of 
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computed elastic moduli to compare with ultrasonic measurements. However, it will 

be very computational expensive to compute an effective moduli grid with varying 

contact stiffness for many subsamples. 

Nano-indentation showed that the local grain stiffness was closer to the elastic moduli 

measured from pure mineral crystal. However, nano-indentation is limited by the 

accuracy and the nature of providing only one of the two necessary elastic parameters.  

Thus, the mineral moduli from nano-indentation were not used for the DRP 

computation but used as a guide. We also note that there may be some nanoscale flaws 

inside grains, which may distort the mineral moduli, but it cannot be quantified with 

nano-indentation. This uncertainty of the mineral stiffness may have been included in 

our inverted grain contact moduli. 

In the DRP workflow, the computed moduli should be independent of boundary 

conditions, that is, the parts near the boundary should be small compared to the whole 

sample volume. As the computation tests in Chapter 2 show, the boundary effect may 

increase the computed moduli by 1-2 percent, which is a minor effect. Hence, the 

boundary effect has not been corrected in this study. 

4.6 Conclusions 

By treating grain contact as a separate phase, DRP workflow was used to infer the 

stiffness of grain contact of a Bentheimer sandstone and a real reservoir sandstone in 

different pressures. Every step of our DRP workflow was carefully constrained to 

derive the grain contact moduli representing more about the properties of the contact, 

instead of incorporating the uncertainties of digital rock physics setups. To achieve 

this, we investigated the unresolved soft pores with Nuclear Magnetic Resonance 

measurements, as well as constrained mineral moduli with nano-indentation and 

TIMA. The more appropriate mineral moduli were assigned to the multi-mineral labels 

segmented with the advanced segmentation workflow. The stiffness differences of 

grain contact in different cementation and pressure condition are now quantified. The 

inverted contact moduli can be used as a reference for setting up the grain contact 

stiffness in DRP study of other sandstone samples to include the cementation and 

pressure effect in elastic properties estimation, so the predictive power of DRP is 

strengthen. 
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Chapter 5 Multi-mineral segmentation of micro-CT images using a 
convolutional neural network 

5.1 Introduction 

The volume fractions and spatial distributions of different rock constituents are critical 

information for estimating effective properties of rocks (Dræge et al., 2006; Torquato 

& Haslach Jr, 2002). Micro X-ray-Computed Tomographic (micro-CT) can provide 

3D representation of rocks in greyscale values, which result from the X-ray absorption 

coefficients of each component (Bultreys et al., 2016; Maire & Withers, 2014). 

Volume fractions and spatial distributions of different rock constituents can be 

potentially extracted from micro-CT images through the segmentation process. 

However, this is a challenging task and even considered ‘notorious’ (Schlüter et al., 

2014). 

The most obvious method of segmentation is through setting global threshold values 

on the greyscale histogram of the whole micro-CT image. However, greyscale values 

of different minerals can often overlap. First, the greyscale values of a mineral are 

distributed within a range. This range may be larger than the difference between mean 

greyscale values of two minerals. Second, the random noise, which is very common in 

micro-CT images, makes the greyscale value of some small dotted parts inside a phase 

fall into the range of another mineral. Third, due to limited resolution, voxels on grain 

boundaries may include more than one phase, so that the effective greyscale value may 

fall into the greyscale range of another mineral. As a result, the segmentation of micro-

CT images with global greyscale thresholds are not able to generate satisfactory multi-

mineral labels (Liang, Gurevich, et al., 2020). 

In contrast to the global thresholding method, local adaptive methods can further 

account for the local variations of greyscale value. In a popular local adaptive method 

named watershed (Roerdink & Meijster, 2000), only zones with the most distinctive 

greyscales are selected as markers with global thresholding method, leaving the more 

ambiguous areas undefined. Then, markers grow like water emerging until they meet 

at the zones with high greyscale gradient, then the whole image is segmented. 

However, with the complexity of natural rocks and the artefacts of micro-CT scanning, 

it is even challenging to select appropriate markers (Liang, Gurevich, et al., 2020). 

Due to these challenges, micro-CT image analysis is often restricted to two-phase 
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segmentation, lumping all the mineral phases into one solid phase. This simplification 

can induce significant systematic errors in the subsequent effective property estimation 

(Ahmed et al., 2017; Ahmed et al., 2019; Andrä et al., 2013a; Saenger, Lebedev, et al., 

2016; Shulakova et al., 2013). 

In Chapter 2, we developed a robust segmentation workflow that effectively detected 

quartz, feldspar and clay minerals from micro-CT images of Bentheimer sandstones, 

taking advantage of both X-ray density and morphology features of different minerals 

(Figure 5.1). This workflow combines the benefits of different methods, such as 

mathematical morphology filters, global thresholding and watershed segmentation 

algorithms. However, this workflow is time-consuming, as some of its components 

require interactive parameter adjustments. 

Several recent studies suggest that multi-mineral segmentation can be automated using 

convolutional neural networks (CNN) (Karimpouli & Tahmasebi, 2019; Wang et al., 

2020). In any applications of neural network, a critical part is “ground truth” or labeled 

data. In previous applications of CNN on micro-CT segmentation, significant efforts 

were devoted to prepare the labeled data. Karimpouli and Tahmasebi (2019) semi-

manually segmented only 20 slices of micro-CT images of a sandstone, because the 

segmentation of each slice required a long time. Then, they augmented the manually 

segmented images with stochastic image generator algorithm. However, the generated 

images are very similar to the original ones with limited new mineral features included, 

which limits the amount of information to be learnt by their CNN. Wang et al. (2020) 

scanned a mini-plug for micro-CT images and then selected the middle part of the 

image to create two surfaces. Then, they scanned one surface with Quantitative 

Evaluation of Minerals by SCANning electron microscopy (QEMSCAN) to 

automatically generate a mineral map. After that, this 2D QEMSCAN image was used 

to guide the multi-mineral segmentation of 3D micro-CT using a local adaptive 

segmentation method. The 3D labels offered more realistic varieties of mineral phases 

for training than stochastic images generated from 20 slices. However, this label 

inherited the segmentation errors from QEMSCAN and the local adaptive 

segmentation method. Moreover, these studies tested the prediction of the CNN 

models based on sub-images from the same dataset. Ideally, trained CNN models 
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should show effectiveness and robustness on a separate dataset (creating the so-called 

blind test).  

In this chapter, we combine the advantages of the effective but laborious multi-mineral 

segmentation workflow developed in Chapter 2 and the intelligence of a CNN model. 

We segment micro-CT images of three Bentheimer sandstone samples with the multi-

mineral segmentation workflow developed in Chapter 2. Based on two micro-CT 

images and the corresponding segmented labels, we train a CNN model with U-net 

architecture. Then, the trained model is used to segment all three sets of micro-CT 

images automatically, including the third one, which has not been used in the training 

process. The segmented labels with segmentation workflow and CNN model are 

compared and evaluated. For the third set of micro-CT images, the segmented multi-

mineral labels with CNN model can achieve an accuracy of ~97% and the process 

takes only ~10 minutes. 

5.2 Micro-CT images of a Bentheimer sandstone 

Three cylindrical mini-plugs of Bentheimer samples (named sample A, B and C) were 

scanned with 3D X-ray microscope VersaXRM 500 (XRadia-Zeiss) with the similar 

scanning settings. In micro-CT images of sample A (Figure 5.1), quartz can be clearly 

recognized as the most abundant grain. Also, feldspar is distinguishable by a slightly 

brighter colour than quartz, as well as possibly corroded and fractured structure. Clay 

appears as much smaller particles around bigger grains or gathering as clusters in the 

pore space. Although these minerals have clear visual patterns according to the 

greyscale or morphology characteristics, the greyscale histogram of the 3D micro-CT 

images can only show two categories: pore and solid. The segmentation of greyscale 

micro-CT images into multi-mineral labels appears a formidable task. 
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Figure 5.1 The cylindrical Bentheimer sandstone sample A is scanned (a) and the 
image is then cut into cube with the dimension of 624×624×624 voxels (b) (only one 
slice is shown here). The greyscale histogram (c) of (b) only show two categories (pore 
with lower greyscale value and solid with higher greyscale value). 

5.3 Multi-mineral segmentation through a workflow 

The multi-mineral segmentation of micro-CT images from sandstones has recently 

been accomplished with a workflow developed in Chapter 2. This workflow takes 

advantage of a series of image processing and segmentation modules. For example, 

the greyscale values of clay particles are similar with other solid components (Figure 

5.1). However, clay has a distinct feature in morphology. Clay particles are mixed with 

pores which are with lower greyscale value. By applying strong local averaging 

median filter, the greyscale of the blurred clay clusters will be lower than the other 

solid and higher than the pore. Thus, the clay parts can be separated with an Otsu 

global greyscale three-phase segmentation (Otsu, 1979), with other two phases as pore 

and other solid. Yet, the segmented clay part is mixed with the grain boundries because 

grain boundaries were also blurred by median filter and now in medium greyscale. An 

opening algorithm (Haralick et al., 1987) is applied here to remove the grain 

boundaries according to their characteristics of disc shape. After this step, only the 

blurred clay part is reserved. Then, clay part is used as a mask for the unsmoothed Otsu 

two-phase labels to retrieve back the clay particles and micro pores. Furthermore, 

feldspar can also be segmented with a well-designed combination of image processing 

and segmentation modules. The whole segmentation workflow can be implemented in 

a commerial software called Avizo (Liang, Gurevich, et al., 2020). 

As Figure 5.2 shows, different minerals are segmented as separate phases after an 

effective but laborious multi-mineral segmentation workflow. With the same 

workflow, we segment all the three sets of micro-CT images. In the next section, two 

sets of micro-CT greyscale images (sample A and B) and the corresponding segmented 

labels will be used to train a CNN model.  
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Figure 5.2 Original greyscale micro-CT image of Bentheimer sandstone sample A and 
the corresponding multi-mineral labels segmented with the workflow in Chapter 2 
(only one slice is shown here). In the segmented images, pore, quartz, clay and feldspar 
are labelled in black, blue, grey and green, respectively. 

5.4 Convolutional neural network setup 

CNN is especially successful in tasks involving images, because covolution filtering 

significantly reduces the number of neurons while keeping the spatial structures in the 

image. CNN was first applied for image classfication, where the image is processed to 

generate a single class label (Simonyan & Zisserman, 2014). By contrast, image 

segmentation tasks require localization, which means labelling each pixel or voxel. 

One popular CNN model, U-net (Ronneberger, Fischer, & Brox, 2015), was 

specifically developed for semantic segmentation of cells in images of biological 

tissues. U-net proposed to pass the input images through a contracting path - encoder, 

where the dimensionality of the images is reduced by building a deep representation 

for the context at each pixel, and an almost symmetric expanding path, decoder, that 

unravels the deep representation into the segmented image of the same size as the 

input. Moreover, long skip-connections allow the preservation of fine-scale features 

(Wang et al., 2020). 

A U-net architecture for micro-CT segmentation is implemented using Keras (Chollet, 

2015) with Tensorflow (Abadi et al., 2016) as the backend (Figure 5.3). Furthermore, 

the network is trained with Adam optimisation  algorithm (Kingma & Ba, 2014) and 

categorical cross entropy as the loss function (Janocha & Czarnecki, 2017).  
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To prepare the data, we take the 3D greyscale images of three samples (each with 

624×624×624 voxels) and pre-process them in AVIZO. The greyscale images are first 

processed with non-local means filter to suppress the random noise (Buades et al., 

2005). Then, unsharp masking is applied to recover the micro pores and cracks that 

are slightly blurred in the denoising process (Badamchizadeh & Aghagolzadeh, 2004). 

Normalize greyscale further reduces the greyscale difference of three datasets. More 

specifically, it ignores the 0.5 percent both at the beginning and the end of the greyscale 

histogram, as well as casting the medium part to the same updated greyscale range. 

For the model training, we take the preprocessed 3D greyscale images of sample A 

and B, as well as the corresponding labels segmented with multi-mineral segmentation 

workflow. Each cube generates 624 2D slices with each combination of two 

coordinates, so the total number of 2D images for training from sample A and B is 

3744 (624 slices ×3 combinations of coordinates×2 datasets). To avoid overfitting, 

randomly selected 20% of training images are used as the validation dataset. The 

training dataset is further augmented with image rotation, shearing, zooming and 

flipping to increase the variety of mineral morphology (Shorten & Khoshgoftaar, 

2019). The preprocessed 3D greyscale image of sample C is divided into 624 slices of 

2D images for the testing the trained model afterwards.  

We set the training stopping criteria as the validation loss not decreasing in 10 epochs. 

In a random sequence, ten slices of greyscale images and the corresponding labels are 

fed into the network as a batch. After 37 epochs, the training process is stopped (Figure 

4) and the trained model is saved as a file in the disk. The training computation does 

not require advanced hardware, and is done on a common CPU (Intel Xeon W-2123). 

The whole process takes ~68 hours, but can be significantly accelerated with a modern 

GPU. 
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Figure 5.3 U-net architecture. The feature channel number is denoted on top of each 
box, and the dimension of image is shown on the left side of the box. The total 
parameter number in this structure is 2,164,356, with 2,161,412 of them trainable. 

 

Figure 5.4 Learning process of CNN model for multi-mineral segmentation. 

5.5 Results 

The trained model is used to segment all the 2D slices of micro-CT images from three 

samples (Figure 5.5). We measure the consistency between labels segmented with 

multi-mineral workflow and the CNN model. As previous studies (Karimpouli & 

Tahmasebi, 2019; Wang et al., 2020), we estimate the accuracy, which is defined as 

the ratio of the number of correct labels to the total number of voxels. However, 

accuracy has a tendency to overlook the phase with a small percentage. For example, 
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if a rock consists of 99% quartz and 1% clay, labelling all pixels as quartz will achieve 

an accuracy of 99%. In our dataset, the percentages of clay and feldspar are 

significantly lower than those of quartz and pores, so accuracy is not very informative. 

We will also use another metric called F1-score, which is more suited for unbalanced 

datasets (Goutte & Gaussier, 2005).  

The accuracy and F1-score values of the whole image and each mineral phase are 

shown in Table 5.1a. The consistency between labels of sample C from the 

segmentation workflow and CNN model is mostly only slightly lower than those of 

sample A and B, which were used in the model training and validation process. Also, 

for all three samples, phase percentages from the segmentation workflow and CNN 

model are consistent (Table 5.1b). This indicates that the CNN model successfully 

replicates the segmentation workflow. 
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Figure 5.5 Comparison between labels from segmentation workflow and CNN model. 
Micro-CT images of three samples are shown in each row respectively. In the 
segmented images, the clay (grey) segmented by the CNN model is more consistent 
with human judgement. Also, the CNN model supresses random errors in the labels 
from the segmentation workflow, especially for feldspar (red rectangles). However, a 
possible small feldspar grain is recognized by the segmentation workflow, but 
overlooked by the CNN model (yellow rectangle) . 

5.6 Discussion 

The advantage of an effective but laborious segmentation workflow and CNN model 

are combined in this study. It should be noted that the labels from the segmentation 

workflow are not perfect, so that the metrics in Table 5.1 quantifies the agreement 

between the CNN labeled images, not with the exact distribution of the minerals. We 

found that the predicted labels even outperform the training labels in certain situations. 
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First, the clay segmented by the CNN model is more consistent with the human 

judgement. Secondly, the CNN model supresses random errors in the labels from the 

segmentation workflow, especially for feldspar (Figure 5.5). The improvement means 

that the CNN model has the ability to learn the statistic characteristics of minerals from 

imperfect labels and does not stick to the random errors in the traning labels. The 

minerals with smaller percentages show higher accuracy but lower F1-score. From the 

demonstration in Figure 5.5, it is clear that the F1-score provides better quantification 

of the difference between segmented labels from the segmentation workflow and CNN 

model. 

Table 5.1 CNN model segmentation statistics 

a) CNN model performances measured with accuracy (left) and F1-score (right). 

 Sample A Sample B Sample C 

Pore 0.975/0.932 0.979/0.952 0.977/0.952 

Quartz 0.978/0.985 0.979/0.985 0.974/0.982 

Clay 0.986/0.687 0.996/0.658 0.993/0.604 

Feldspar 0.997/0.927 0.997/0.910 0.997/0.849 

Overall 0.965/0.881 0.974/0.876 0.969/0.846 

b) Phase percentage from segmentation workflow (left) and CNN model (right). 

 Sample A Sample B Sample C 

Pore 0.1958/0.1967 0.2336/0.2341 0.2531/0.2538 

Quartz 0.7540/0.7537 0.7390/0.7387 0.7236/0.7246 

Clay 0.0280/0.0275 0.0080/0.0074 0.0099/0.0105 

Feldspar 0.0222/0.0222 0.0194/0.0199 0.0134/0.0110 

The segmentation of CNN model is not always outperforming the segmentation 

workflow. For example, in the lower-right part of sample B (Figure 5.5), a possible 

small feldspar grain is recognized by the segmentation workflow, but overlooked by 

the CNN model. This error may be due to the large variety of feldspar morphology and 

the lack of training data due to the small percentage of the feldspar. 

The segmentation workflow is conducted in 3D, while CNN model is working on 2D 

slices. In 2D, a tip of quartz of feldspar can be similar to a clay particle in morphorlogy. 
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However, the slight greyscale differences are successfully captured by the CNN 

model, so the 2D artifects are not obvious in the segmentation results (Figure 5.5).  

The segmentation workflow requires several hours of interactive processing, while 

running a trained CNN model takes only ~10 minutes for the whole micro-CT images 

of a sample. Furthermore, the segmentation results from CNN model can be less 

affected by human bias, which is a significant advantage for reliable physical 

properties estimation in a systematic study (Cui, Cao, Liu, Zhu, & Jia, 2021; Saxena 

et al., 2017).  

5.7 Conclusions 

This study shows a very encouraging result in a multi-mineral micro-CT segmentation 

area. It demonstrates that minerals that can be visually identified may also be 

successfully segmented automatically with artificial intelligence. The prerequisite of 

this success is an elaborately designed interactive segmentation workflow, which takes 

advantage of the features of a mineral in greyscale and morphology at the same time. 

This multi-mineral segmentation workflow appears to provide more accurate and 

abundant labeled data for the training of a CNN model than previous studies. After the 

CNN model was trained with the segmented labels from this workflow, it learned the 

statistical greyscale and morphology features of different minerals. Moreover, the 

CNN model even improved the segmentation by suppressing random errors in the 

training labels. The application of the trained model on a new set of micro-CT images 

showed the effectiveness and efficiency of CNN model in the multi-mineral 

segmentation task. In summary, the results are very promising but obviously three 

samples are insufficient to produce definitive conclusions. Future work on many 

samples of different rocks is required to validate these conclusions and establish 

quantitative measures of segmentation accuracy. 
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Chapter 6 Conclusions and future work 

6.1 Conclusions 

In this thesis, we built and improved a digital rock physics workflow for estimation of 

elastic moduli based on micro-CT images of sandstones, and used this workflow to 

help understand the relation between pore scale characteristics and macroscale 

effective elastic moduli.  

First, we tried to build a DRP workflow based on Bentheimer sandstone, which is 

relatively homogeneous and with simple mineralogy. We performed a set of 

simulations for images segmented into solid and pore constituents. We found that the 

boundary conditions induced size dependence into the computed effective moduli, 

which could be removed by an exponential correcting function. The insufficient 

resolution could be fixed by linear extrapolation to a desired voxel size based on the 

computations for images scanned with different resolution. Then, we developed a 

multi-stage four-phase segmentation graph that targets feldspar and clay minerals. In 

order to do so, we applied a combination of mathematical morphology filters, Otsu 

and watershed segmentation algorithms. Numerical simulations indicated that the 

appropriate segmentation graph and compensation for scanning parameters might 

reduce significantly the discrepancy between the measurements and computed moduli. 

Eventually, the computed bulk modulus for multi-mineral matrix agreed well with the 

ultrasonic measurements at 40MPa, where the effect of unresolved compliant pores 

was small. The shear modulus remained overestimated. The discrepancy was corrected 

with an empirically determined matrix moduli. This DRP workflow provided accurate 

velocity trends with porosity and clay content based on two samples of Bentheimer 

sandstone. Traditionally, such a relationship for quantitative interpretation would 

require ultrasonic measurements on dozens of samples and thin sections/XRD.  

Secondly, we investigated the pressure effect on high-resolution micro-CT images of 

a reservoir sandstone and on elastic properties computed from these images. The X-

ray transparent pressure cell allowed micro-CT scanning at confining pressures of up 

to 36MPa. The images produced at different pressures were very close to each other 

and the differences were almost invisible to a naked eye. To detect these differences, 

we designed a slice matching workflow. Application of this workflow to our images 

showed that the same physical part of the studied sample occupied the space of 
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1255×1021×1620 voxels at 0MPa (without residual stress), 1253×1019×1616 voxels 

at 0MPa (with residual stress), 1250×1017×1613 at 20MPa, and 1252×1017×1613 at 

36MPa. The detected deformation was larger from 0MPa to 20MPa, than from 20MPa 

to 36MPa. The effect of stress release was also detected by comparing the images at 

0MPa with and without residual stress. The derived static bulk modulus from 

deformation from 0MPa to 20MPa is 2.78GPa, which was consistent with literature 

values. The porosity change detected from segmented labels was consistent with the 

value derived from static modulus using poroelastic theory. The images scanned at 

different pressures were used to compute the effective elastic moduli. The difference 

between the computed moduli was much smaller than the difference between the 

ultrasonic measurements. This showed, consistent with previous studies, that micro-

CT imaging could not resolve the geometry of grain contacts responsible for the 

pressure effect on the elastic properties. The accuracy improvement of the estimated 

elastic properties from images scanned at higher pressures was negligible. One way to 

overcome this limitation is to parameterize the pressure dependency of the contact 

stiffness indirectly.  

Thirdly, by treating grain contact as a separate phase, DRP workflow was used to infer 

the stiffness of grain contact of a Bentheimer sandstone and a real reservoir sandstone 

in different pressures. Every step of our DRP workflow was carefully constrained to 

derive the grain contact moduli representing more about the properties of the contact, 

instead of incorporating the uncertainties of digital rock physics setups. To achieve 

this, we investigated the unresolved soft pores with Nuclear Magnetic Resonance 

measurements, as well as constrained mineral moduli with nano-indentation and 

TIMA. The more appropriate mineral moduli were assigned to the multi-mineral labels 

segmented with the advanced segmentation workflow. The stiffness differences of 

grain contact in different cementation and pressure condition are now quantified. The 

inverted contact moduli can be used as a reference for setting up the grain contact 

stiffness in DRP study of other sandstone samples to include the cementation and 

pressure effect in elastic properties estimation, so the predictive power of DRP is 

strengthen. 

Fourthly, we presented a very encouraging result in a multi-mineral micro-CT 

segmentation area. It demonstrated that minerals that can be visually identified, might 
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also be successfully segmented automatically with artificial intelligence. The 

prerequisite of this success was an elaborately designed interactive segmentation 

workflow, which took advantage of the features of a mineral in greyscale and 

morphology at the same time. This multi-mineral segmentation workflow provided 

more accurate and abundant labeled data for the training of a CNN model than previous 

studies. After the CNN model was trained with the segmented labels from this 

workflow, it learned the statistical greyscale and morphology features of different 

minerals. Moreover, the CNN model even improved the segmentation by suppressing 

random errors in the training labels. The application of the trained model on a new set 

of micro-CT images proved the effectiveness and efficiency of CNN model in the 

multi-mineral segmentation task.  

6.2 Future work 

Digital rock physics can give effective elastic moduli based on realistic microscopic 

information. Where there is no core available for producing micro-CT images, 

theoretical rock physics models are still valuable for modelling the relationship 

between elastic moduli and petrophysical properties. Our well-developed digital rock 

physics workflow can be used as a reference for evaluating and improving rock physics 

models, as well as investigating how to constrain the input parameters of these models. 

The natural heterogeneity of rock may affect the correspondence of the elastic 

properties estimated based on millimetre scale samples for micro-CT scanning and 

seismic data at metre scale. It will be very interesting to conduct a more extensive 

digital rock physics study with more samples from a reservoir to understand the 

strategy to upscale the digital rock physics results. Moreover, thin sections are more 

common and cost-effective in the industry, and how to estimate elastic properties from 

thin section images will be an interesting study. 

To establish applicability and accuracy of the convolutional neural network approach 

for micro-CT image segmentation, this technique should be tested on several different 

sandstone samples and samples of other rock types. 
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