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ABSTRACT 

Reliability centred maintenance (RCM) is a corporate maintenance strategy, which provides a 

structured framework to analyse the functions and potential failures of an asset, focusing mainly on 

preserving its functions. It emphasizes on the principle of ‘maximum availability vs. minimum cost’ 

of an asset. However, during its implementation, organizations are often confronted with different 

types of multiple-criteria based decision making situations such as prioritization of failure modes 

as per their risk levels, identifying their causes and effects (FMECA), diagnosing the faults at the 

earliest possible opportunity even with missing health indicators, and aiding the system with an 

appropriate maintenance strategy. The present research work is an attempt to address the 

aforementioned decision-making issues in a more abstract way and by illustrating the proposed 

solutions through a case study on a process plant gearbox.  

Several integrated multi-criteria decision-making (MCDM) frameworks are proposed to 

overcome some major shortcomings of the traditional risk priority number (RPN) based failure 

modes ranking approach. Besides, the impacts of linguistic uncertainties are gradually minimized 

on the final risk ranking results by proposing the mathematical models of modified fuzzy multi-

attributive ideal real comparative analysis (fuzzy MAIRCA), modified fuzzy measurement of 

alternative and ranking according to compromise solution (fuzzy MARCOS), extended interval 

type-2 fuzzy decision making trail and evaluation laboratory (IT2F-DEMATEL), IT2F-MAIRCA, 

IT2F-MARCOS, and modified IT2F-technique for order of preference by similarity to ideal 

solution (IT2F-TOPSIS). Apart from that, the causes and effects of different failure modes of the 

considered case study are identified from the triple bottom line (TBL) of sustainability with the aim 

of easing the implementation of sustainable manufacturing practices. The concept of half quadratic 

(HQ) minimization is utilized to address the issue of disparate risk ranking results by different 

MCDM methods through consensus index and trust level values.   

Next, a decision support system based on case-based reasoning (CBR) methodology is 

developed for the fault diagnosis of the gearboxes at the earliest possible opportunity, considering 

the situation of incomplete information about multiple health indicators. Other than that, the 

developed system advises the engineers with the best possible maintenance tasks which are required 

to be performed after fault diagnosis.   

Finally, a hybrid artificial intelligence-based framework is proposed for choosing the optimal 

maintenance strategy after identifying the key performance indicators for sustainability-based 
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maintenance strategy selection problems. This framework is developed to overcome the drawbacks 

of the principles of the MCDM methods by exploiting the advantages of both CBR and expert 

systems (ES). The outcomes of this research have culminated in the publications of four 

international refereed journal papers, one international conference paper and one book chapter. 

Another book chapter has also been communicated recently. 

Keywords  

Maintenance Decision Making, Multi-Criteria Decision Making, Fault Diagnosis, Case-Based 

Reasoning, Artificial Intelligence, Fuzzy Sets, Expert Systems, Machine Learning.  
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Chapter 1  Introduction 

uring earlier days, it was perceived that each component of a system has a specific age, and 

after that the complete overhaul of the system is compulsory to ensure safe and failure free 

operation. However, the demerits of this thought became clear in the 1960s, during the development 

of the preventive maintenance (PM) program for the Boeing 747 aircraft. The study investigated 

the failure characteristics of aircraft components, and the observations were outlined in the 

Handbook for the Maintenance Evaluation and Program Development for Boeing 747, also known 

as MSG-1 (Maintenance Steering Group – 1). Afterwards, MSG – 1 was revised and became MSG 

– 2. In 1979, the Air Transport Association (ATA) again revised the MSG – 2 to finalize the draft 

of MSG – 3, which was employed for the maintenance of Boeing 757 and Boeing 767 aircraft. In 

another project, United Airlines, funded by US Department of Defence prepared a comprehensive 

report, finding the relationships between maintenance, reliability, and safety. The report was 

prepared by Nowlan and Heap, and became popularized as Reliability Centred Maintenance (RCM) 

(Nowlan and Heap, 1978). The report found out that the periodic overhauls have impacts on 11% 

of failures, whereas 89% of the failures have occurred randomly. Therefore, new thinking was 

sought to deal with these 89% of failures. 

It is well known that assets are the centrepiece of any organization. The term ‘asset’ can refer 

to an equipment, machine, tool, vehicles, etc. However, in today’s rapidly progressing business 

scenario, industries are deeply concerned about the downtimes of these assets which can be the 

reasons for the major to minor losses (e.g., loss of production, poor quality of product leading to 

customer dissatisfactions, etc.). Although maintenance engineers put their best efforts to keep the 

assets running, businesses also try to squeeze as much value out of their assets as possible. 

Therefore, it is vital for the organizations to implement the asset management practices, which 

intends to maximize the return on investment (ROI) value of an asset during its entire lifecycle.  

Maintenance, being a significant part in the asset lifecycle (refer Figure 1.1) consists of 

multiple tasks, which are required to be performed efficiently in order to maintain it in the 

functioning state. Knezvic (Knezevic, 1993) defined maintenance tasks as “a set of activities which 

need to be performed, in specified manner, by the user in order to maintain the functionability of 

the item/system.” While, maintenance management focuses on the performance of maintenance 

activities, coordination of maintenance resources including parts, labours, budgets, etc. 

D 
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Figure 1.1. Asset lifecycle process 

From the historical timeline, the concept of maintenance has advanced from breakdown 

maintenance (BM)/run-to-failure (R2F) maintenance to PM to condition-based maintenance 

(CBM). But, now-a-days organizations prefer to perform the maintenance tasks using the just-in-

time approach, based on the current health condition of the asset, and without hampering the 

ongoing operations. This requirement has laid the foundation of CBM philosophy, which can be 

further classified into two major domains: diagnostics and prognostics. The prior one deals with 

fault detection, isolation, and identification, whereas the latter one with fault prediction before the 

occurrence. In other words, fault prediction is a practice to determine whether a fault is impending 

and to estimate how shortly and how likely the fault will occur. Thus, diagnostics is a posterior 

event, and prognostics is a prior event analysis, which is more competent than diagnostics to 

achieve zero down-time performance. However, diagnostics is required when the fault prediction 

in prognostics fails and a fault ensues.  

 Considering the financial burdens involved in each maintenance practice, now-a-days, 

organizations are emphasizing on the concept of “maximum availability vs. minimum cost”, which 

further entails into the implementation of RCM practice. This philosophy considers the 

maintenance of a system from its functional point of view, instead of the operational perspectives 

(JA1011_199908, 1999). It emphasizes the cost-effective motive of the organization by identifying 

and devising operational, maintenance policies and strategies. It is a compatible maintenance 

strategy for situations of low or limited financial resources, while preserving the critical plant 

functions (Moubray, 2001). It features the utilization of predictive maintenance (PdM) (i.e., CBM 

or prognostics and health management (PHM)), in addition to the traditional PM. Basically, RCM 

considers R2F policy as a viable option for non-critical systems, and preserves the critical 

equipment by employing the PM or PdM policy. Yet, it is not feasible for an organization to aid 
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every machine with the CBM because of its high implementation cost. Thus, engineers must think 

about the effectiveness of using the different maintenance philosophies for each machine.  

The RCM philosophy starts with defining the system, its surroundings, then its failure modes, 

their cause(s), effect(s), and criticality ranking by a comprehensive Failure Mode(s) and Effect(s) 

and Criticality Analysis (FMECA); then to detect, isolate, and classify the fault at the earliest 

possible opportunity; and lastly to support the system with the optimal maintenance strategy.  

FMEA1 is a popular methodology among the risk and reliability engineers to identify the 

failure mode(s), their cause(s), effect(s), and to rank the failure modes according to their risk levels. 

This is a proactive approach to mitigate/eliminate the occurrences of failures in a system.  The risks 

of failure modes of a system are calculated by multiplying three risk factors, namely severity (S), 

occurrence (O), and detection (D), and expressed in terms of risk priority numbers (RPN) (IEC 

60812:2018). However, the traditional RPN-based FMEA approach has multiple shortcomings as 

pointed out by the earlier researchers (Liu et al., 2013, 2019a). Some of the major drawbacks are: 

not considering the relative importance among the risk factors, linguistic/crisp evaluations of failure 

modes with respect to the risk factors without considering their inherent uncertainties and 

vagueness, improper justifications of the multiplicative formula for calculating the RPN values, 

consideration of only three risk factors without describing the hidden risk implications, etc. 

(Gargama and Chaturvedi, 2011). All of these drawbacks have made researchers to consider the 

FMECA approach as a complex multiple criteria-based decision-making task, which needs to be 

focused at the initial stage of the RCM implementation.  

Nevertheless, despite the best possible efforts to eliminate the occurrences of failures of the 

systems, they still occur. So, it is another burden to the engineers to arrest the failures at the earliest 

possible opportunity, certainly at the onset of the fault. This is usually carried out by observing the 

deviations of some specified health indicators (HIs), viz., different signals emitting from the system 

(e.g., vibrations, sounds, etc.) and/or images (e.g., thermography), etc. Initially, the signal(s) are 

collected by means of some sophisticated sensors/gadgets, and later they are analysed through some 

software to diagnose the fault. However, in case of a large and complex system2, which is 

challenging to simulate mathematically, the task of collecting the signals from each of the pre-

specified point, and further analysing them separately becomes a daunting task to the engineers. 

Besides, it is believed that the harsh environmental conditions have a considerable impact on the 

 
1 In this thesis FMECA and FMEA are used interchangeably.  
2 A complex system is a system composed of many components which may interact with each other.  
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occurrences of faults. In this way, when the considered HIs proliferate in number, it becomes a 

arduous task for the engineers to map all the HIs from the measurement space to the fault space to 

diagnose the fault. Then they are compelled to proceed with incomplete or missing data, which is 

regarded as another multiple criteria-based decision-making problem in RCM.  

Finally, the system should be supported with an optimal maintenance strategy for improving 

the system availability. In the context of sustainable manufacturing practices, it is essential that the 

associated processes are also sustainable. As the maintenance tasks are considered as an integrated 

part of the manufacturing/production system, thus, it becomes necessary to identify the pertinent 

key performance indicators (KPIs) for selecting the best maintenance strategy from the Triple 

Bottom Line (TBL) of sustainability (i.e., economic, social, and environmental perspectives). 

However, when the number of associated criteria and choices/alternatives are increased, and their 

complex interrelationships are hard to interpret, selection of the best maintenance strategy also 

becomes a complex decision-making task, which again needs to be appropriately managed.  

1.1. Decision-Making Problems in RCM  

The foregoing discussions reveal some key decision-making areas in the milieu of implementation 

of RCM, which need further research. They are summarised below:  

• Identification of the potential failure mode(s) of the item(s)/system(s), their cause(s), 

effect(s), as well as prioritizing them according to their risk levels by performing a detailed 

FMECA.   

• Diagnosing the faults of a system at the earliest possible opportunity to avoid the 

catastrophic incident.  

• Supporting the system with the best (sustainable) maintenance strategy.  

In the next sub-sections, the above decision-making areas and their related problems are 

further detailed for the completeness of the thesis.  

1.1.1. Failure Mode(s), Effect(s) and Criticality Analysis 

According to IEC 60812:2018 the FMEA is defined as:  
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“…a systematic method of evaluating an item or process to identify the ways in which it 

might potentially fail, and the effects of the mode of failure upon the performance of the 

item or process and on the surrounding environment and personnel.”  

Whereas, the FMECA is explained as: 

 “…ranking of criticality involves at least the severity of consequences, and often other 

measures of importance…” 

Before proceeding further, it is required to look through some necessary terms associated 

with FMECA.  

• Failure mode is how a failure occurs. 

• Failure effects are the consequences of a failure, within or beyond the boundary of the 

system. 

• Failure causes are the set of circumstances that lead to failure. 

• Failure mechanism is the process that leads to failure.  

• Likelihood is the chances of occurring something.  

• Severity is the relative ranking of potential or actual consequences of a failure/fault. 

• Detection method implies the means by which a failure mode or incipient failure becomes 

identified.  

• Criticality of a failure mode is the importance ranking computed by means of a definite 

evaluation criterion. 

Although FMEA can be performed at the different stages during the life cycle of the system 

or process, yet maximum benefits are achieved if it is executed at the earlier stages of the life cycle. 

For example, a preliminary analysis can be carried out during the design or planning phase, 

followed by a detailed analysis all through the operation stage of the item/process, when more 

information becomes available. In fact, in the closed loop analysis of FMEA, it allows for the 

evaluation of the effectiveness of any treatment. According to the domain of application, FMEA 

can be classified as: system FMEA, process FMEA, design FMEA, service FMEA, software 

FMEA, manufacturing FMEA, etc. 
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When FMECA is performed appropriately, it provides enhanced outcomes to the 

organizations, such as improved reliability of the system, reduced environmental effects, 

procurement costs of the spares, operating costs of the system, enhanced business reputations, etc. 

Other major reasons for conducting FMEA can be:  

• To identify the failure modes which have unwanted effects on system operation. 

• To improve the design and development of items or processes in a cost-effective manner 

by intervening at the earliest possible opportunity.  

• To identify the risks as part of the risk management process as given in ISO 31000 (Purdy, 

2010). 

• To provide a foundation for other associated tasks, such as maintenance analysis, 

troubleshooting tactics during maintenance, testability analysis, logistics support analysis, 

mission reliability analysis, availability analysis, etc.  

• To develop and support the reliability test programme. 

• A basis for implementing RCM (IEC 60300-3-11). 

• To efficiently manage the asset management program (ISO 55000:2014 (E)). 

Along with the above notable points, it is necessary to prioritize the failure modes according 

to their risk levels to effectively arrange the maintenance resources at the onset of failures. In IEC 

60812:2018, four types of approaches are mentioned for the risk ranking of the failure modes:  

a) The criticality matrix, 

b) The criticality plot, 

c) The RPN-based approach, 

d) Alternative risk priority number. 

However, among these methods, the criticality matrix, and RPN-based approaches have been 

widely adopted by the organizations. In RPN-based approach, the RPN values of failure modes are 

calculated by employing (1.1). The flowchart of traditional RPN-based FMEA approach is 

presented in Figure 1.2. 



7 

 

𝑅𝑖𝑠𝑘 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑁𝑢𝑚𝑏𝑒𝑟

= 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (𝑆) × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝑂)

× 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐷) 

(1.1) 

The RPN elements (viz., severity, likelihood of occurrence, and detectability) in (1.1) are 

evaluated either quantitatively (using scale values between 1-10), qualitatively (i.e., low, very low, 

medium, etc.), or semi-quantitatively by cross-functional experts. Yet, it is observed that instead of 

providing crisp judgements, experts generally prefer to provide their linguistic judgements while 

evaluating the failure modes. Even in some cases, the linguistic judgements are converted into crisp 

numbers by following a scale, and then they are multiplied to obtain the RPN values. However, this 

approach has some major pitfalls, which are listed below (Gargama and Chaturvedi, 2011; Liu et 

al., 2019a):   

 

Figure 1.2. Flowchart of traditional RPN-based FMEA approach 
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• Duplication of RPN values for different combinations of crisp ratings of the risk factors, 

although their hidden risk implications may be poles apart. For example, let us consider 

that for failure mode-1 the ratings are: 𝑆 = 2, 𝑂 = 7, and 𝐷 = 8, then the 𝑅𝑃𝑁 =

2 × 7 × 8 = 112. Whereas for failure mode - 2, the ratings are: 𝑆 = 7, 𝑂 = 2, and 𝐷 = 8 

, then the 𝑅𝑃𝑁 = 7 × 2 × 8 = 112. Now, it can be noticed that although the failure modes 

have the same RPN value, their severities differ to a significant extent.   

• Higher concentration of RPN values at the lower side of the histogram diagram as shown 

in Figure 1.3. 

• Small variations in the ratings of a risk factors may produce a completely different RPN 

value. For instance, consider the previous example of failure mode-1. If 𝑆 becomes 3, 

instead of 2, then 𝑅𝑃𝑁 = 3 × 7 × 8 = 168, which is totally different than the earlier RPN 

value (viz., 𝑅𝑃𝑁 =  112).  

• The weights of the risk factors are not considered during the risk ranking of failure modes.   

• In case of linguistic judgements, when they are converted into crisp values, their inherent 

uncertainties are not considered in both cases. 

• The mathematical formula to compute the RPN value as presented in (1.1) is disputed.  

• The risk factors are not explicitly defined, (i.e., S may connote different based on the 

application context).  

 

Figure 1.3. Distributions of all possible combinations of RPN values  
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• Considering only three risk factors may not reveal the hidden risks of the failure modes 

(viz, in some case studies along with 𝑆, economic consequences of failure modes have been 

explored).  

Besides the above, it is already accentuated that the main purpose of RCM is to protect the 

functionability of the critical systems by using the CBM, however it has a significant initial cost of 

implementation. Thus, it is always suggested to perform a detailed FMECA of the system and its 

components, before adopting the CBM. If it is witnessed that the system has a crucial role towards 

the overall production process, and prone to failures, then CBM is the best option. Otherwise, 

time/age-based PM can be thought of. Besides, fault diagnosis, being a part of CBM, when 

employed to a large-scale, complex, and critical to the production facility machine, has several 

complex decision-making tasks, which are further detailed in the next sub-section.  

1.1.2. System Fault Diagnosis in CBM 

Reliability has always been a significant facet in the asset management practices. Systems/products 

having robust design are less prone to failure, but at the same time, the accumulation cost increases. 

In such instance, the concept of optimal design has been developed. However, no matter how 

reliable the product design is, the performance of an asset deteriorates over time due to diversified 

reasons. Fault diagnosis is an important aspect of CBM and is required to be carried out properly 

to arrest the fault at the earliest possible opportunity. It consists of the following three sequential 

steps:  

a) Fault detection: It is a task to indicate whether something is happening wrong in the 

monitored system. 

b) Fault isolation: It is a task to pinpoint the faulty component.   

c) Fault classification: It is the task to categorize the fault of the component.  

The above steps can be performed only after sensing the current health state of the asset by 

means of data acquisition, filtering the noises & extracting the useful information by data 

processing, and finally mapping the data from the feature space to fault space (Jardine et al., 2006). 

However, the major decision-making problems arise from the final stage (viz., fault classification: 

mapping the fault features from the measurement space to fault space) of CBM.  
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Data acquisition is the process of collecting the useful health information from the targeted 

system, which is considered as a pivotal step in system fault diagnosis. Acquired data in CBM 

program can be divided into two broad categories: event data and condition monitoring data. Event 

data consists of the information about what happened (e.g., installation, causes, breakdown, and 

what the causes were) and/or what was done (e.g., minor repair, PM, oil change etc.) to the asset. 

Whereas, condition monitoring data have the measurements of different HIs, which can be further 

sub-divided into value type (e.g., oil analysis, temperature, pressure, humidity, etc.), waveform type 

(e.g., vibration and acoustic data), and multidimensional type (e.g., X-ray image, visual images, 

etc.) data. Event data are collected manually, and further shifted to the CMMS (computerized 

maintenance management system) for future utilization. The condition monitoring data are obtained 

through DAC systems (data acquisition system), portable devices, etc., and can be transferred to 

the central server (i.e., ERP, or CMMS).  

In data processing, data are initially cleaned up to discard the noises, and then further 

analysed. Waveform type data can be investigated in the time-domain, frequency domain, and / or 

time-frequency domain. Value type data are examined through different statistical tools (e.g., PCA 

(principle component analysis), ICA (independent component analysis), regression techniques, 

etc.) (Grimmelius et al., 1995; Yang et al., 2000). 

When the system is large and complex, the challenges in fault diagnosis process are further 

aggravated due to the following reasons:  

• Impacts of operating conditions: When the system is functioning in hostile environmental 

conditions, the faults are more likely to occur. However, modelling the impacts of 

environmental condition on fault occurrences require rigorous mathematical modelling, 

which is hard to comprehend and often require expert’s involvement.  

• Proper Representations of event type data: To properly infer the causes of the present fault, 

engineers often seek the help of prior event data, which are generally recorded in the 

logbook in terms of natural languages/linguistic terms. Due to lack of awareness of the 

operators, these data contain some missing and/or redundant information, which are further 

required to be carefully stored in the database through proper representation. Otherwise, it 

is obvious that when the data will be recalled in the future, misleading information will be 

given by the computer program.    
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• Considering multiple monitoring techniques: Experts opine that adopting a single 

monitoring technique may not always reveal the fault at the earliest possible opportunity. 

In (Jardine et al., 2006), the authors emphasized that “case-dependent knowledge and 

investigation are required to select appropriate signal processing tools among a number 

of possibilities” especially for waveform data analysis. Thus, industries would rather prefer 

to simultaneously consider multiple monitoring techniques. However, choosing the best 

technique require experts’ involvement.  

• Poor accessibility for continuous monitoring: When the system has a poor and/or 

inaccessible surrounding environment (e.g., high surrounding temperature), it becomes a 

difficult task to constantly monitor its health condition. In such circumstances, either 

organization should install high temperature resistant costly sensors, or they need to 

monitor it weekly or fortnightly by means of some portable devices to record the pertinent 

HIs. Later, they are analysed to detect the present health condition of the system.  

• Considerations of large set of HIs: For the considered type of systems, maintenance 

engineers need to consider numerous HIs for the accurate fault diagnosis. However, often, 

it is not possible to accumulate all of the pertinent HIs, and they diagnose the fault with 

partial information. Furthermore, mapping of incomplete HIs from measurement space to 

fault space may generate inaccurate results.   

As discussed, the next task is to facilitate the system with an optimal maintenance strategy.  

1.1.3. Optimal Sustainability-based Maintenance Strategy Selection  

The awareness of sustainability emerged from a series of discussions and reports published between 

the 1970s and 1980s. Initially, it was motivated by some disasters and accidents that happened in 

chemical plants, as well as resources depletion. The similar idea was pointed out in the 1987 

Brundtland Report (Brundtland Commission, 1987):  

“Major, united changes are occurring in the atmosphere, in soils, in waters, among plants 

and animals. Nature is bountiful but it is also fragile and finely balanced. There are 

thresholds that cannot be crossed without endangering the basic integrity of the system. 

Today we are close to many of those thresholds.” 

The same report defined the sustainable development as: 
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“…the development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs.” 

 In 2005, the United Nations World Summit further emphasized on the three significantly 

interdependent and mutually reinforcing pillars of accomplishing the sustainable development goal 

(SDG): economic development, social development, and protection of environment (United 

Nations General Assembly (60th sess.: 2005-2006), 2005). These three pillars are identified as the 

TBL of sustainability.  

Manufacturing has had a pivotal role in the global development and growth in terms of 

wealth generation, and job creations. But it also has significant roles on the environment 

degradation. For example, in 2006, the United States manufacturing sectors have accounted for 

36% of the total carbon monoxide emission (Haapala et al., 2013). In the manufacturing industries, 

sustainability related impacts arise from manufacturing operations and activities, when the systems 

are exploited to convert the raw materials and energies into marketable products. The definition of 

sustainable manufacturing as given by U.S. Department of Commerce is as follows: 

“…the creation of manufactured products that use processes that minimize negative 

environmental impacts, conserve energy and natural resources, are safe for employees, 

communities, and consumers and are economically sound.”  

Thus, when an organization is trying to implement the sustainable manufacturing, its 

supplementary processes should be sustainable. In essence, the consequences of traditional 

maintenance practices (viz., R2F, PM, CBM, PdM) are required to be considered from the TBL of 

sustainability within a sustainable maintenance philosophy. 

For large and complex systems, it is essential to prevent the repeated occurrence of failures 

during the operational phase. Catastrophic failures not only result into substantial cost of repair or 

replacement, and significant loss of production, but also disrupt the overall safety and environment. 

To circumvent such adverse impacts, it is important for the organization to assist by using an 

optimal maintenance strategy. An optimal selection not only alleviates the likelihood of 

occurrences of failures, but also curtails the maintenance cost, increases the production quantity, as 

well as the quality of product. However, the optimal maintenance strategy selection problem in the 

sustainability context can be an arduous task due to the ensuing causes:   

• To consider the conventional maintenance philosophies from the sustainability context, 

initially it is essential to properly identify the pertinent indicators, which is considered as a 

challenging job for the researchers.  
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• Thereafter, it is required to collect the data for the identified parameters. However, for some 

of them, the exact information is easily obtainable, whereas the remaining parameters 

cannot be quantified, and thus experts’ judicious thinking is considered further. 

• Selecting of the best experts is completely dependent on the top management. Wrong 

selection can lead to improper selection of maintenance practices.  

• For the non-quantifiable parameters, it is necessary to evaluate them by utilizing proper 

scale values. However, choosing the appropriate scale is also dependent on experts’ 

judicious thinking.  

• From the existing literature, it is observed that Multi-Criteria Decision Making (MCDM) 

methods have been widely adopted to solve the maintenance strategy selection problems 

(MSSPs). However, these methods fail to solve the problem in case of missing information 

and/or when the experts are not able to judge a parameter for a particular alternative. 

Furthermore, it is obvious that each criterion has a different contribution towards the 

selection of any alternative, thus, they should have different weight values. However, when 

the numbers of involved criterion are significantly large in number, then the mathematical 

complexities of the MCDM methods are intensified. 

1.2. Objectives 

Based on the preceding discussions, it is observed that during the implementation of RCM, 

organizations are confronted with multiple types of decision-making problems, out of which a 

comprehensive FMECA with a credible risk rankings of failure modes through linguistic 

judgements, fault diagnosis of the system with incomplete/missing information and different types 

of data, and identification of pertinent sustainable criteria and adopting them for choosing the 

optimal maintenance strategy are of major focus.  Besides, these decision-making problems have 

multiple conflicting criteria, which make them more complex to solve.  Thus, these problems are 

required to be researched further for ease implementation of RCM. Hence, in this research work 

the following objectives are outlined and addressed further:  

• Objective 1: To develop mathematical frameworks, which can simultaneously overcome 

the drawbacks of traditional RPN-based FMEA approach and can efficiently manage the 

uncertainties involved in experts’ linguistic judgements to compute more credible risk 

ranking results of the failure modes. Further, in the context of sustainability-based 
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manufacturing, it attempts to identify the pertinent risk factors for calculating more realistic 

risk ranking results.  

• Objective 2: To develop an automated decision-support system which can assist the 

organizations in early fault diagnosis of large-scale, and complex systems, along with 

delivering the best possible solutions, in case of missing and/or incomplete information 

about HIs. Further, the system should be capable enough to incorporate both the value and 

event type data and provide the information about the necessary maintenance tasks after 

detecting the fault.  

• Objective 3: To identify the pertinent key performance indicators (KPIs) from the TBL of 

sustainability for different conventional maintenance strategies, and finally developing a 

decision-making framework for selecting the optimal sustainable maintenance strategy for 

the machine.  

Based on the above objectives, an exhaustive literature survey is conducted and presented 

later in Chapter 2 to search for the existing solutions, if any, or to discover gaps in the existing 

solutions to devise strategies to fill those gaps. 

1.3. Thesis outline  

To manage the problems discussed in previous sections, the rest of the thesis is outlined as follows:  

• In Chapter 2, the existing solutions and approaches to overcome the decision-making 

problems in the published literatures are broadly discussed.  

• To eliminate the challenges associated with the traditional FMEA approach, two integrated 

fuzzy multi-criteria decision making (MCDM)-based mathematical frameworks are 

proposed, and their potential in risk ranking of failure modes are validated by considering 

a prior benchmark case study. These constitute the contents of Chapter 3. 

• Chapter 4 describes the system (viz., process plant gearbox) on which the proposed 

frameworks and approaches have been applied and tested. The necessary information 

before the implementation of RCM is elucidated, which include the surrounding 

environmental conditions, different failure modes, their causes, effects (especially from 

TBL of sustainability), faults, relevant HIs, their measuring instruments, etc. 
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• Based on the MCDM-based mathematical risk ranking methods proposed in Chapter 3, 

Chapter 5 utilizes them for the case study on a process plant gearbox. Unlike other 

researchers, here the severities of failure modes are considered from economic, social, and 

environmental point of views in addition to O, and D. Further, to comprehensively model 

the uncertainties in experts’ subjective assessments, the concept of interval type-2 fuzzy 

sets (IT2FSs) are explored in conjunction with the developed fuzzy MCDM methods.  

• Upon observing the results obtained and observations thereof in Chapter 3, and Chapter 5, 

Chapter 6 makes an endeavour to further sieve out the uncertainties inherent in subjective 

assessments by proposing an integrated interval type-2 fuzzy sets (IT2FSs) and half 

quadratic minimization-based MCDM framework.  

• Chapter 7 presents the development of a Case-Based Reasoning (CBR) framework to deal 

with the problems of the fault diagnosis. The proposed framework is capable enough to 

deal with incomplete information and resembles the human reasoning process. It also 

suggests alternatives to the maintenance engineers for the maintenance tasks necessary to 

be carried out after fault diagnosis. 

• Chapter 8 initially identifies the pertinent key performance indicators (KPIs) for the 

implementation of sustainability-based maintenance practices for different traditional 

maintenance philosophies. Thereafter, it proposes a hybrid Artificial Intelligence (AI)-

based framework for the selection of the optimal sustainable maintenance strategy 

explained through a hypothetical example.  

• Chapter 9 concludes the objectives achieved in this research with suggestive and possible 

directions of future research.  

----------------- 
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Chapter 2  Literature Review and Research Contributions 

he previous chapter brought out some major decision-making problems confronted by the 

organizations during the implementation of RCM.  In this chapter, detailed insights are 

provided on the adopted methods in the available literature to solve those difficulties. Then, based 

on the observations, the best methods are selected and/or further extended to achieve the objectives 

as set out in Chapter 1 / Section 1.2.  

2.1. Uses of MCDM Methods in FMEA Context 

The limitations of the traditional RPN-based risk ranking approach have already been described in 

Chapter 1 / Section 1.1.1. Some of these problems have been endeavoured to be solved in different 

ways by the previous researchers. They can be initially grouped into following five categories (Liu 

et al., 2013):  

a) MCDM methods,  

b) Mathematical programming,  

c) AI-based approaches,  

d) Integrated approaches, and  

e) Other approaches. 

MCDM is a well-recognized field of operations research, where alternatives are assessed and 

ordered from best to worst options, against the judgemental data/values of multiple conflicting 

criteria, obtained from expert(s)/field. The MCDM methods are closely related to the traditional 

single-objective optimality concept of operations research, based on a single scalar function 

maximization with respect to a priori given constraints. However, some researchers claim that 

MCDM methods belong to the group of vector optimization problem, as two or more scalar-valued 

objective functions (or criteria) are minimized over a set of feasible solutions. On a similar note, 

the risk ranking of failure modes with respect to the risk factors in FMEA resembles the main 

philosophy of the MCDM. Liu et al., (Liu et al., 2013) found out that until 2013, 22.50% of FMEA 

literature have adopted the MCDM methods to surmount the inadequacies of the traditional RPN-

based approach.  Besides, utilizations of MCDM methods have also been found in the category of 

other approaches (11.25%).  In a more recent work, Liu et al., (Liu et al., 2019a) specifically 

emphasized on the applications, developments, and/or modifications of different MCDM methods, 

T 
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which have been solely aimed at addressing the single/multiple drawbacks of the traditional FMEA.  

However, these reviews fail to bring out the advantages and disadvantages of different applied 

MCDM methods, or omitted the answer to the questions – “why the particular MCDM method has 

been chosen?”, and/or “what are the necessities to apply a particular MCDM method, where 

another MCDM method can rank the failure modes according to their risk levels?”  

Apart from the above, it has been already mentioned in Chapter 1 that due to the 

unavailability of exact numerical values of the risk factors, experts often desire to provide their 

subjective perceptions, which certainly contain uncertainties and vagueness. To deal with this 

problem, the existing literature have often been integrated the MCDM methods with different 

uncertainty handling tools, such as fuzzy sets, rough sets, Z-numbers, etc. However, it is observed 

that continuous efforts are still now being made by the research fraternity to minimize the impacts 

of linguistic uncertainties on the final ranking results, especially in a critical area like FMEA.   

To provide solutions to the above questions, in the ensuing sub-sections a detailed 

classification of the recent applications of different MCDM methods (refer Figure 2.1), their 

advantages as well as disadvantages, and the integrations with different uncertainty handling tools 

are discussed.  

 

Figure 2.1. Classification of MCDM methods for risk ranking of failure modes in FMEA 

2.1.1. Distance-based Methods 
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• Grey relational analysis (GRA), 

• Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and 

• Multi-Attributive Border Approximation Area Comparison (MABAC) 

The grey system theory was propounded by J. Deng, along with the development of the 

concept of a grey set (Deng, 1982). The advantages of this concept are as follows:  

• This theory is suitable for the data which are uncertain, have multi-inputs and are discrete 

in nature.  

• It is an efficient method to resolve uncertainty issues under partial information.  

GRA is a multi-variate statistical approach of grey theory and has been employed by many 

previous researchers for ranking of alternatives based on decision criteria. Here, the information 

about the similar features are considered as a sequence, and by utilizing the degree of grey relation 

coefficient (that varies between 0 to 1), the correlative degree of two sequences is computed. 

Finally, the alternatives are ranked based on their corresponding correlation degree. It is a viable 

option to the decision-makers while dealing with both qualitative and quantitative analyses. The 

applications of GRA in FMECA case studies are shown in Table 2.1.  

Table 2.1. Applications of GRA method FMEA  

References Mathematical tool(s) Application area(s) Other information 

(Abbasgholizadeh 

Rahimi et al., 2015) 
GRA, and fuzzy logic Healthcare sector 

- GRA was used for risk prioritization, 

- fuzzy logic dealt the linguistic 

uncertainties.  

- considered 19 risk factors, including S, 

O, and D. 

(Liu et al., 2015a) 

GRA, and interval 2-

tuple linguistic fuzzy 

sets (IT2LFSs) 

C-arm X-ray 

machine 

- GRA was employed for failure modes 

ranking. 

- S, O, D were considered as pertinent risk 

factors. 

- interval 2-tuple linguistic variables were 

utilized to handle the linguistic 

uncertainties.   

(Sharma and Sharma, 

2015) 

Fuzzy inference 

system (FIS), GRA, 

and analytic hierarchy 

process (AHP) 

Mechatronic system 

- Presented the hybrid applications of FTA 

and FMEA for accomplishing the 

reliability needs.  

- FIS was utilized to model the subjective 

uncertainties.  

- GRA was adopted to rank the failure 

modes. 

- AHP was used to compute the weights of 

the risk factors.  

(Tsai and Yeh, 2015) 
Entropy method, FIS, 

GRA 

Soldering process 

in surface mount 

assemblies 

- FIS was used to account the subjective 

uncertainties.  

- Entropy method computed the weights of 

the risk factors. 
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References Mathematical tool(s) Application area(s) Other information 

- GRA was applied for risk prioritization. 

(Lo and Liou, 2018) 

Intuitionistic grey 

value mathematics, 

interval valued best-

worst method 

(IVBWM), GRA 

- 

- Intuitionistic grey valued numbers were 

adopted to cope up with linguistic 

uncertainty. 

- IVBWM was adopted for computing the 

weights of the risk factors. 

- Expected cost was considered as 

additional risk factor. 

- Possibility concept was integrated in 

GRA for risk ranking of failure modes. 

(Kumar et al., 2018) 
Fuzzy rule-based 

system, GRA 

LPG refueling 

station 

- GRA was adopted in case of 

unavailability of specified rule for failure 

mode prioritization. 

(Panchal et al., 

2018a) 

Fuzzy rule-based 

system, GRA 

Heavy commercial 

vehicle 

- GRA was adopted in case of 

unavailability of specified rule for failure 

mode prioritization. 

(Panchal et al., 

2018b) 
GRA, fuzzy AHP 

Urea fertilizer 

industry 

- fuzzy AHP was employed to compute the 

weights of the risk factors. 

- GRA was utilized for risk ranking. 

(Li and Chen, 2019) 

Grey relational 

projection method 

(GRPM), fuzzy belief 

structure, Dempster-

Shafer (D-S) evidence 

theory 

Sheet steel 

production process 

- GRPM was proposed to address the 

limitations of GRA and used for risk 

ranking. 

- Fuzzy belief structure tackled the 

subjective uncertainties.  

- D-S evidence theory was employed to 

aggregate the team members judgements.  

TOPSIS is another well-recognized distance based MCDM method which studies a decision-

making problem having 𝑚 alternatives as a geometric system of 𝑚 points in the 𝑛-dimensional 

space. This method is based on the notion that the finest choice should have the shortest distance 

from the positive-ideal solution (PIS)/ideal solution and the longest distance from the nadir 

solution/ negative-ideal solution (NIS)/ anti-ideal solution. Thereafter it elects the best alternative 

which has the maximum similarity to the PIS (Yoon, 1980; Yoon and Hwang, 1981). When 

contrasted with GRA, the earlier one only considers either the best/worst point during the 

generation of reference sequence, while TOPSIS regards both PIS and NIS. The applications of 

TOPSIS in multiple FMEA case studies are presented in Table 2.2.  

Table 2.2. Applications of TOPSIS method in FMEA  

References Mathematical tool(s) Application area(s) Other information 

(Chang, 2015) Soft sets, and TOPSIS 

Notebook 

development 

module company 

- Soft set theory was employed to deal 

with uncertainties, imprecisions, and 

vagueness in subjective assessments.  

- TOPSIS was used for risk prioritization. 

(Vahdani et al., 

2015) 

Fuzzy belief structure, 

and TOPSIS 

Sheet steel 

production process 

- Fuzzy belief structure handled the 

subjective uncertainties. 

- fuzzy belief TOPSIS was employed for 

risk ranking of failure modes. 

(Selim et al., 2016) 
Fuzzy sets, and 

TOPSIS 

Food processing 

industry 

- Fuzzy TOPSIS was adopted for setting 

the maintenance priority of machines. 

(Tooranloo and 

Ayatollah, 2016) 

Intuitionistic fuzzy 

sets (IFSs), and 

TOPSIS 

Banking sector 
- Linguistic uncertainties were dealt by 

IFSs. 
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References Mathematical tool(s) Application area(s) Other information 

- Failure modes were prioritized by IFSs-

based TOPSIS method. 

(Bian et al., 2018) 
D-numbers, and 

TOPSIS 

Rotor blades of 

aircraft turbine 

- D-number was employed to overcome 

certain drawbacks of D-S evidence 

theory. 

- D-TOPSIS was adopted for risk 

ranking. 

(Carpitella et al., 

2018) 

AHP, fuzzy sets, and 

TOPSIS 

Street cleaning 

vehicle 

- AHP was employed to calculate the 

weights of the risk factors. 

- Fuzzy TOPSIS was used for failure 

modes ranking. 

- Considered risk factors were 

ooccurrence, time of operation, and 

modality of execution. 

(Tooranloo et al., 

2018) 
IFSs, and TOPSIS 

Oil and gas 

company 

- IFSs were adopted for dealing with 

subjective uncertainties.  

- IFS-TOPSIS was used for risk ranking 

of failure modes. 

(Wang et al., 

2018a) 

D-S evidence theory, 

and TOPSIS 

Gas insulated metal 

enclosed 

transmission line 

- D-S evidence theory was utilized to deal 

with cognitive uncertainties.  

- TOPSIS was used for failure modes 

ordering purpose. 

(Li et al., 2020) 

Interval 2-tuple 

linguistic variables 

(ITLVs), and TOPSIS 

Spindle box system 

of a CNC machine 

- ITLVs was employed to clarify 

uncertain information and improve 

analysis accuracy.  

- ITLV-TOPSIS was adopted for risk 

prioritization.  

(Mangeli et al., 

2019) 

Support vector 

machine (SVM), FIS, 

logarithmic fuzzy 

preference 

programming, fuzzy 

TOPSIS 

Occupational 

accidents in cooper 

leaching factory 

- Predicted the S, and O values using 

SVM.  

- FIS was employed to decrease the 

subjective uncertainties in S and O. 

- Logarithmic fuzzy preference 

programming was adopted to calculate 

the weights of the risk factors.  

- Revised fuzzy TOPSIS was used to rank 

the failure modes.  

(Başhan et al., 

2020) 

Single valued 

neutrosophic sets, and 

TOPSIS 

Ship navigation in 

maritime industry 

- Single valued neutrosophic sets was 

adopted to deal with linguistic 

uncertainties.  

- single valued neutrosophic set-based 

TOPSIS was used for risk ranking. 

Despite the numerous applications, the TOPSIS has the following shortcomings:  

• The weights of the distances between the optimal point and the best/worst point are not 

taken into account (Wang et al., 2018a). 

• Multiple research works have reported that TOPSIS suffers from a drastic rank reversal 

problem in the case of the dynamic decision matrix (Pamučar and Ćirović, 2015).   

Based on the limitations of TOPSIS and GRA methods, Pamučar and Ćirović recently 

devised the concept of another distance based MCDM approach:  MABAC (Pamučar and Ćirović, 

2015). The ensuing points are noteworthy related to this method: 
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• The MABAC has added benefits over other popular and established MCDM methods, like 

– simple additive weighting (SAW), VlseKriterijumska Optimizacija I Kompromisno 

Resenje (VIKOR), multi-objective optimization by ratio analysis (MOORA), complex 

proportional assessment (COPRAS), etc. in terms of ranking stability and credible rank 

order computation.  

• In the MABAC method, the values of criteria functions are computed for each of the 

alternatives and the distance of the criteria function from the border approximation area is 

defined. Based on the distances, the alternatives are ranked and the best one is chosen. 

Some applications of MABAC method in FMEA context are tabulated in Table 2.3.  

Table 2.3. Applications of MABAC method in FMEA  

References Mathematical tool(s) Application area(s) Other information 

(Delice and Can, 

2017) 
MABAC - 

- MABAC method was employed for risk 

ordering. 

(Liu, 2019a) 

Interval-valued 

intuitionistic fuzzy 

sets (IVIFSs), 

maximum cross-

entropy based linear 

programming model 

Healthcare sector 

- IVIF-MABAC was adopted to prioritize 

the failure modes.  

- IVIFSs were employed to deal with 

linguistic uncertainties. 

- Weights of the risk factors were 

computed using maximum cross-entropy 

based linear programming model.  

Even with the several benefits, in the MABAC method, the un-biased attitude of the decision-

maker for the ranking of the alternatives is not considered.  

2.1.2. Pairwise Comparison-based Methods 

Pairwise comparison-based methods have a different type of concept than the distance-based 

MCDM methods. Here, each of the alternative/criterion is pair-wisely compared either subjectively 

or objectively. Some of the major candidates in this group are:  

• AHP,  

• Analytic Network Process (ANP), and  

• Alternative Queuing Method (AQM).  

The AHP method was formerly devised by Satty (Satty, 1990), and has been adopted by 

multiple previous researchers to solve many real-world MCDM problems. Its advantages are ease 

of use, ability to structure the problem methodically, and thereafter computing the criteria weights 

and alternatives priorities.  
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For risk ordering purpose in FMEA of a TFT-LCD product, Chang (Chang, 2016) exploited 

the idea of 2-tuple linguistic fuzzy AHP.  The 2-tuple linguistic fuzzy representation model was 

adopted to minimize the impacts of linguistics uncertainties on the final ranking results. The 

weights of the risk factors were calculated by AHP. However, the major weakness of AHP is when 

the counted criteria/alternatives are increased significantly, the number of obligatory pairwise 

comparisons are also increased by following the formula 𝑛(𝑛 + 1) 2⁄ , where 𝑛 denotes the number 

of criteria.  

2.1.3. Outranking-based Methods 

Outranking-based methods are established on pairwise comparisons of alternatives against each 

other (or against a pre-defined norm), on each criterion, ensued by a procedure that aggregates and 

exploits the information to determine the strength of evidence, supporting one alternative, over 

another (Govindan and Jepsen, 2016). An outranking relation is a preference model which 

considers three types of situations: preference, indifference, and incomparability. The details about 

the mathematics involved in outranking-based methods can be found in (Bouyssou, 2009). Some 

popular candidates belong to this group are:  

• Preference Ranking Organization METHod for Enrichment of Evaluations 

(PROMETHEE),  

• QUALItative FLEXible multiple criteria method (QUALIFLEX),  

• ELimination Et Choice Translating REality (ELECTRE). 

PROMETHEE has been an extensively studied outranking method to manage intricate 

MCDM problems (Brans et al., 1986; Brans and Vincke, 1985). It is a more appropriate and flexible 

approach during the selection of a preference function. Driven by these, its utilizations in FMEA 

case studies are tabulated in Table 2.4.  

Table 2.4. Applications of PROMETHEE method and its variants in FMEA  

References Mathematical tool(s) Application area(s) Other information 

(Lolli et al., 2015) PROMETHEE 

Plastic bottle 

manufacturing 

process 

- PROMETHEE was used for sorting the 

failure modes according to their criticality 

levels.  

(Liu et al., 2017) 
Cloud mode theory, 

and PROMETHEE 
Healthcare sector 

- Cloud model theory was employed to 

deal with linguistic uncertainties.   

- PROMETHEE was used for risk 

prioritization. 

(Zhang et al., 2019) 

Z-number, and 

PROMETHEE-II, 

distance-based 

Geothermal power 

plant 

- Z-number was utilized to cope up with 

subjective vagueness, and reliability of 

the linguistic decisions.  
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References Mathematical tool(s) Application area(s) Other information 

weighting method, 

Bonferroni mean 

operator 

- Bonferroni mean operator was adopted 

to aggregate the judgements of the 

experts. 

- Distance based weighting method 

calculated the weights of the risk factors. 

- PROMETHEE-II was used for risk 

ordering. 

(Zhu et al., 2020a) 

Maximizing deviation 

method, TOPSIS, 

neutrosophic number, 

and PROMETHEE 

Supercritical water 

gasification system 

- Neutrosophic numbers were adopted to 

deal with subjective uncertainties. 

- Maximizing deviation model and 

TOPSIS methods were combinedly 

employed to calculate the weights of the 

risk factors. 

- PROMETHEE was used for risk 

ranking. 

However, the PROMETHEE method has the following limitations (De Keyser and Peeters, 

1996):  

• It can only be adopted if the decision maker can express preference between two actions 

for a given criterion on a rational scale. 

• It can only be useful if the decision maker can express the importance s/he attaches to the 

criteria on a ratio scale. 

• The weights of the criteria represent the trade-offs between them. 

• It can only be adopted with criteria, where the differences between evaluations are 

meaningful.  

• It is not feasible to consider the discordance when constructing the outrank relations in the 

PROMETHEE method.  

Whereas, the another outranking-based method, QUALIFLEX was propounded by Paelinck 

(Paelinck, 1978), and the following points are relevant to this method:   

• It is a variation of Jacquet-Lagrexe’s permutation method.  

• It is popular due to its simplicity in mathematical logic, easy computational procedure, and 

full utilization of information contained in decision analysis.  

• Its methodology is based on a metric procedure that evaluates all possible permutations of 

the considered alternatives, and recognizes the optimal permutation that reveals the greatest 

comprehensive concordance/discordance index (Liu et al., 2016b).  
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In the context of FMEA of a C-arm X-ray machine, Liu et al., (Liu et al., 2016b) presented 

an extended QUALIFLEX approach based on hesitant 2-tuple linguistic terms sets (HTLTSs). The 

later one was adopted to manage the linguistic uncertainties, and a GRA-based multi-objective 

optimization model was developed to evaluate the weights of the risk factors. Occurrence, impact 

on organization, impact on patient, detection, interdependence with other failures, cost due to 

failures, and corrective action cost, were regarded as the pertinent risk factors. Thereafter. the 

extended QUALIFLEX approach with an inclusion comparison method was suggested to determine 

the risk orders of the failure modes.  

ELECTRE being the oldest candidate in this category has several variants, and each of them 

have different application contexts, as tabularized in Table 2.5. The below points are required to be 

highlighted before discussing on ELECTRE:  

• Each variant entail two phases – aggregation and exploitation. In the aggregation phase, 

within a multi-criteria aggregation procedure (MCAP), the concordance and discordance 

concepts are employed to make pairwise comparisons of alternatives, which are being 

characterized by their performances on different criteria.  

Table 2.5. Variants of ELECTRE and their conditions for applications 

Variants and references Useful information 

ELECTRE – I (Roy, 1968) - It is applicable to ‘choice problematic’ or ‘problematic 𝛼’, 

where the objective is to select a smallest set of best 

alternatives. 

- Uses the concept of preference threshold which allows to model 

imperfect knowledge, which may be result of uncertainty, 

imprecision, and ill-determination of certain data.  

ELECTRE – II (Roy and Bertier, 1971) - Based on true criteria. 

- Objective is to order the alternatives from the best to worst – 

‘problematic 𝛾’. 

ELECTRE – III (Roy, 1978) - Objective is to order the alternatives from the best to worst – 

‘problematic 𝛾’. 

- Consider the concept of pseudo-criteria. 

- Consider the criteria weights.  

ELECTRE – IV (Roy and Hugonnard, 

1982) 

- Objective is to order the alternatives from the best to worst – 

‘problematic 𝛾’. 

- Does not consider the criteria weights. 

- Consider the concept of pseudo-criteria 

ELECTRE – TRI (Yu, 1992) - Consider the concept of pseudo-criteria.  

- Objective is to assign alternatives to a set of pre-defined categories 

– ‘problematic 𝛽’. 

ELECTRE – IS (Roy et al., 1986) - It is applicable to ‘choice problematic’ or ‘problematic 𝛼’, where 

the objective is to select a smallest set of best alternatives.  

ELECTRE Iv (v for veto) (Figueira et 

al., 2016) 

- It is applicable to ‘choice problematic’ or ‘problematic 𝛼’, where 

the objective is to select a smallest set of best alternatives.  

- Used when veto thresholds are taken into consideration.  



26 

 

• In methods dealing with problematic 𝛼 or problematic 𝛾, the alternatives are compared 

against themselves.  

• In problematic 𝛽 methods, the alternatives under consideration are compared against a set 

of reference alternatives characterized by norms on different criteria. These pairwise 

comparisons of the alternatives lead to build one or more outranking relations depending 

on the specific method in question.  

• The second phase comprises of an exploitation procedure specific for the ELECTRE 

method in question. The procedure is utilized to exploit the outranking relation previously 

constructed by the MCAP, and it is aimed at constructing and presenting the type of results 

that are expected for the given problematic.  

Driven by the utilities, few researchers have employed this concept in solving FMEA case 

studies, which are organized in Table 2.6.  

Table 2.6. Applications of ELECTRE and its variants in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Certa et al., 2017) ELECTRE-TRI Dairy industry 
- ELECTRE-TRI was employed for risk 

classifications.  

(Liu, 2019b) 

IT2LFSs, statistical 

distance-based 

approach, ELECTRE 

Proton beam 

radiotherapy 

- IT2LVs were adopted to manage the 

linguistic uncertainties. 

- Adopted combined weighting methods 

for computing the weights of the risk 

factors.  

- Subjective weights – given by experts, 

objective weights – statistical distance-

based approach. 

- IT2L-ELECTRE was utilized for risk 

ranking. 

(He et al., 2020) 

Probabilistic linguistic 

term sets (PLTSs), 

entropy method, 

ELECTRE - II 

Nuclear reheat 

valve 

- PLTSs were utilized to model the 

llinguistic uncertainties. 

- PLTS-based entropy method was 

employed to calculate the weights of the 

risk factors. 

- PLTS-ELECTRE – II was used for risk 

ranking of failure modes.  

 

Despite the various superiorities, the major drawback of normal ranking of ELECTRE is that 

it involves an additional threshold to be introduced, and the ranking of alternatives depends on the 

size of this threshold for which there exist no ‘correct value’ (Li and Wang, 2007).  
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2.1.4. Compromise Solution-based Methods 

The another major group of MCDM methods have been developed on the concept of  the 

compromise solution, which was established by Yu (Yu, 1973). The compromise solution is a 

feasible solution, which is closest to the ideal, and a compromise implies an agreement established 

by mutual concessions. Some key candidates in this group are: 

• VIKOR, and  

• Multi Objective Optimization by Ratio Analysis plus full Multiplicative Form 

(MULTIMOORA). 

The VIKOR method was initially developed for multi-criteria optimization of complex 

systems (Opricovic, 1998). However before discussing further, the following points should be 

mentioned: 

• The VIKOR method defines the positive and the negative ideal points in the solution space.  

• It focuses on ranking and selecting from a finite set of feasible alternatives in the presence 

of conflicting and non-commensurable (attributes with different units) criteria.  

• It evaluates a multi-criterion ranking index based on the ‘closeness’ to the ‘ideal’ solution. 

When each alternative is evaluated with respect to each criterion, the compromise ranking 

can be obtained while comparing the relative closeness measure to the ideal alternative. 

Thus, the derived compromise solution is a feasible solution, which is the closest to the 

positive ideal solution and farthest from the negative ideal solution. The term ‘compromise’ 

means an agreement established by mutual concessions made between the alternatives. 

(Opricovic and Tzeng, 2004).  

In FMEA case studies, several researchers have explored its abilities in risk ranking of failure 

modes. Few of them are presented in Table 2.7.  

Table 2.7. Applications of VIKOR method in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Liu et al., 2015d) 

Fuzzy numbers (FNs), 

fuzzy AHP, entropy, 

fuzzy VIKOR 

General anesthesia 

process 

- Fuzzy numbers were employed to cope up 

with linguistic uncertainties. 

- Combination weighting scheme of risk 

factors was adopted (subjective weights – 

fuzzy AHP, objective weights – entropy 

method). 
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References Mathematical tool(s) Application area(s) Other information 

- Fuzzy VIKOR was utilized for ranking of 

failure modes. 

(Safari et al., 2016) FNs, and VIKOR 
Enterprise 

architecture 

- Weights of the risk factors were considered 

as equal. 

- Fuzzy VIKOR was employed for risk 

ranking. 

(Mohsen and 

Fereshteh, 2017) 

Z-number, entropy 

method, fuzzy AHP, 

fuzzy VIKOR 

Geothermal power 

plant 

- Z-numbers were adopted to capture the 

inherent uncertainty in experts’ judgements.  

- Z-evaluations were converted into fuzzy 

numbers. 

- Utilized combination weighting approach 

(subjective weights – fuzzy AHP, objective 

weights – entropy method). 

- Failure modes were ranked by the fuzzy 

VIKOR method.  

(Tian et al., 2018) 

Proximity entropy 

weights, similarity 

entropy weights, 

fuzzy BWM, fuzzy 

VIKOR 

Grinding wheel 

system 

- Team members weights were computed by 

proximity entropy weight, and similarity 

entropy weight. 

- Risk factors weights were evaluated by 

fuzzy BWM.  

- Risk ranking of failure modes were done 

by fuzzy VIKOR method.  

(Wang et al., 

2018b) 

House of reliability 

(HoR), rough set 

theory, and VIKOR 

Transmission 

system of vertical 

machining center  

-  HoR was adopted to recognize the 

dependencies among the failure modes, the 

link between failure modes and the 

considered risk factors. 

- Rough VIKOR was employed to rank the 

failure modes.  

(Garg et al., 2020) 
Granularized Z-

number and VIKOR 
- 

- Granularized Z numbers handled the 

linguistic uncertainties.  

- Granularized Z-VIKOR was used to rank 

the failure modes. 

(Rathore et al., 

2020) 

Fuzzy numbers, and 

VIKOR 

Food grain supply 

chain 

- Fuzzy numbers were integrated with 

VIKOR to deal with subjective vagueness, 

and to rank the failure modes.  

However, one of the major problems with the VIKOR method is the selection of the value 

of weight of the strategy of ‘the majority of the attributes’ (𝜈) (or, ‘maximum group utility’). Its 

value lies between 0 and 1. Usually, in most earlier works, 𝜈 = 0.5 has been preferred. The 

compromise can be selected with voting by majority (𝜈 > 0.5), with consensus (𝜈 = 0.5), or with 

veto (𝜈 < 0.5). When the 𝜈 = 1, it represents a decision-making process that can adopt the strategy 

of maximizing the group utility. While 𝜈 = 0 represents a process that can adopt a minimum 

individual regret strategy, which is found among maximum individual regrets/gaps of lower-level 

criteria for each alternative. The value of 𝜈 affects the ranking of the alternatives and is usually 

determined explicitly by the decision experts. 

Another method MOORA was initially propounded by Baruers and Zavadskas (Brauers and 

Zavadskas, 2006), combining Ratio System and Reference Point Approach. Later, (Brauers and 

Zavadskas, 2010) extended and improved MOORA to MULTIMOORA by adding Full 

Multiplicative Form and adopting Dominance Theory to attain a final integrated ranking based on 
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the results of these triple subordinate methods. Ratio System and Full Multiplicative Form belong 

to Value Measurements methods, while Reference Point Approach originates from Goal or 

Reference Level models (Hafezalkotob et al., 2019). The brief details about the triplet candidates 

are presented in Table 2.8.  

Table 2.8. Descriptions of the approaches used to develop MULTIMOORA method 

Ratio system 

approach 

- It is applicable when the ‘independent criteria’ exists in a problem. 

- It is not capable to consider ‘dependent criteria’. 

- It uses arithmetic weighted aggregation operator which is also a ‘full compensatory’ model.  

- The best alternative based on ratio system has the maximum utility and the ranking of this method 

is obtained in descending order.  

- It can provide the opportunity to compensate the poor performance of an alternative on one 

criterion by the performances on another criterion.  

Reference 

point 

approach 

- It utilizes Tchebycheff Min-Max Metric, a ‘compensatory’ method useful for the cases where 

the optimal choice for decision-makers is the alternative that does not have a very bad 

performance on none of the criteria.  

- This approach, as a non-compensatory model, first finds the alternatives ratings with the worst 

performance with respect to each criterion, and finally selects the overall best value (i.e., the 

minimum value) from these worst ratings.  

- The best alternative in reference point approach has the minimum utility and the ranking is 

produced in ascending order.  

- Reference Point Approach sometimes cannot differ on two or more alternatives and leads to same 

ranking. 

Full 

multiplicative 

form 

- It uses the geometric weighted aggregation operator, is an incompletely compensatory model 

(viz., small normalized values of an alternative could not be completely compensated by the 

same degree of large values. Thus, this issue leads to the perception that an alternative with 

moderate performance may be superior to an alternative with moderate performances with 

respect to different criteria.  

- The best alternative based on this approach has the maximum utility and the ranking of this 

technique is generate in descending order.  

- In utility formulae of Full Multiplicative Form, multiplying normalized ratings with weights 

leads to the same result as the situation in which no weights are considered. Thus, weights should 

be considered as exponent in utility equation.  

Considering its capabilities, few research articles have applied it in solving FMEA case-

studies, which are tabulated in Table 2.9.  

Table 2.9. Applications of MOORA and its variants in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Zhao et al., 2017) 

IVIFSs, entropy 

method, 

MULTIMOORA 

Steel production 

process 

- IVIFSs were used to tackle the linguistic 

uncertainties. 

- Weights of the risk factors were computed 

by IVIF-continuous weighted entropy 

method.  

- Failure modes were ranked by IVIF-

MULTIMOORA method.  

(Ghoushchi et al., 

2019) 

Z-number, fuzzy 

BWM, MOORA 

Automotive spare 

parts 

- Z-numbers were adopted to handle the 

subjective uncertainties. 

- fuzzy BWM was employed to calculate the 

weights of the risk factors.  

- Z-MOORA was utilized for risk ranking of 

failure modes. 

(Wang et al., 

2019b) 

Interval type-2 fuzzy 

sets (IT2FSs), 

MULTIMOORA 

Steel company 
- IT2FSs were employed to manage the 

subjective uncertainties.  
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References Mathematical tool(s) Application area(s) Other information 

- The weights of the risk factors were 

computed by TOPSIS, in terms of crisp 

numbers.  

- IT2F-MULTIMOORA was developed for 

risk ranking of failure modes.  

(Chen et al., 2020) 

Fuzzy numbers, 

ordered weighted 

geometric averaging 

operator, Choquet 

integral, 

MULTIMOORA 

CNC grinding 

machine 

- Order weighted geometric averaging 

operator was adopted to experts’ 

evaluations. 

- Adopted trapezoidal fuzzy numbers 

(TrFNs) ranking method based on the 

preference relation was coupled with 

Choquet integral to model the interactions 

among the risk factors and to calculate their 

weight values. 

- Extended MULTIMOORA was employed 

to rank the failure modes.  

(Li et al., 2020) 

Pythagorean fuzzy 

sets (PFSs), 

maximization 

deviation model, 

MULTIMOORA 

Water diversion 

project 

- Weights of the risk factors were directly 

assigned by the experts (objectively). 

- Extended interval valued PF-

MULTIMOORA was developed for risk 

prioritization of failure modes.  

-  The IVPFPWA (interval valued 

Pythagorean fuzzy priority weight average) 

operator and IVPFPGA (interval valued 

Pythagorean fuzzy priority geometric 

average) operator were introduced into ratio 

system and the full multiplicative model to 

avoid information loss. 

-  Euclidian distance was calculated between 

the evaluation information and the reference 

point in the reference point method. 

The major drawback of MULTIMOORA method lies in the aggregation part of the ranking 

results produced by Ratio System Approach, Reference Point Approach, and Full Multiplicative 

Form. The original MULTIMOORA method uses Dominance Theory approach for this 

aggregation, which has some major weaknesses as listed below: 

• Obtaining ranks of alternatives is hard as the theory is not yet automated. 

• The theory only uses ordinal values by neglecting the relative importance of alternatives. 

• Circular reasoning happens in some cases which leads to identical ranks that is not 

desirable. 

To surmount these flaws, some other aggregation methods, like Dominance-directed graph, 

rank position method, technique of precise order preference, Borda and improved Borda rules, 

Organization, Rangement Et Synthese De Donnes Relationnelles (ORESTE) method, etc. have 

been applied, but each of them has some advantages and drawbacks. Selection of proper 
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aggregation method is explicitly reliant on the experts’ choice and improper selection may lead to 

a misleading result.  

2.1.5. Relational Analysis-based Methods 

In this group, the major candidates are:  

• DEcision MAking Trial and Evaluation Laboratory (DEMATEL), and  

• Digraph and Matrix approach.  

DEMATEL was originally developed by the Battelle Memorial Institute, Geneva Research 

Centre (Gabus and Fontela, 1973). The original DEMATEL method was aimed at the fragmented 

and antagonistic phenomenon of world societies and searched for integrated solutions. DEMATEL 

is counted as an effective technique for the identification of the cause-effect chain components of 

a complex system. It deals with evaluating interdependent relationships among factors and finding 

the critical ones through a visual structural diagram (or influential relation map) – causal diagram. 

The DEMATEL can not only be employed to determine the ranking of alternatives, but also to find 

out critical evaluation criteria, and measure their weights. When contrasted with the AHP, both can 

compute the weights of the risk factors, and rank the alternatives, but the later one presumes that 

the criteria are independent and neglects their interactions and dependencies. Meanwhile, it is worth 

mentioning that ANP, an advanced form of AHP, can deal with the dependencies, along with the 

feedback between the criteria, but the assumption of equal weight for each cluster to obtain the 

weighted super-matrix in the ANP is not reasonable in practical situations (Si et al., 2018).  

In the FMEA domain, the applications of DEMATEL method are mainly adopted to either 

find out the relationship among the failure modes, and/or for their risk ranking. The recent 

applications of this method are shown in Table 2.10.  

Table 2.10. Applications of DEMATEL method in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Chang et al., 

2018) 

Ordered weighted 

geometric operator, 

and DEMATEL 

Extreme low-k 

dielectric 

integration 

-  The ordered weights of the risk factors 

were calculated by ordered weighted 

geometric (OWG) operator.  

-  DEMATEL was used for risk ranking.  

(Liu et al., 2015c) 
Fuzzy number, and 

DEMATEL 
TFT-LCD product 

-  Fuzzy DEMATEL approach was utilized 

for the risk ranking of the failure modes.  

(X. Wang et al., 

2016) 

Entropy method, and 

DEMATEL 

CNC machining 

center 

-  Considered risk factors in their case study 

were failure mode ratio, failure effect 

probability, and failure rate. 

-  The weights of the risk factors were 

computed by combination weighting method 
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References Mathematical tool(s) Application area(s) Other information 

(entropy for objective judgements, and 

experts’ opinions for subjective evaluation).  

-  DEMATEL was employed to derive the 

causal dependencies among the failure 

modes and to prioritize them. 

Digraph and matrix approaches is another facet of relational analysis approach. The 

foundation of this approach belongs to the graph theory and matrix algebra. The matrix approach 

is a viable option during the analysis of a graph/digraph model and to compute the system function, 

& index to meet the objectives. The digraph and matrix approach can model the criteria interactions 

and generate hierarchical models. Further, representing the graph/digraph by a matrix offers ease 

in computer processing. Their applications in FMEA problems are tabulated in Table 2.11.  

Table 2.11. Applications of Digraph and Matrix approaches in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Liu et al., 2016a) 

Fuzzy numbers, 

digraph and matrix 

approach 

Steam valve system 

in a power 

generation plant 

- Triangular fuzzy numbers (TFNs) were 

adopted to deal with linguistic uncertainties, 

as they are appropriate for quantifying the 

vague information in most of the decision-

making problems for their intuitiveness and 

computational-efficient representation.  

- Fuzzy digraph and matrix approach was 

utilized to rank the failure modes.  

(Baykasoğlu and 

Gölcük, 2020) 

Fuzzy numbers, 

graph-theoretical 

matrix approach, 

fuzzy preference 

programming, and 

fuzzy cognitive 

mapping 

ERP system 

- Fuzzy preference programming was 

adopted to derive the ratings of the risk 

factors. 

- Causal dependencies among the risk 

factors were modelled by fuzzy cognitive 

mapping.  

- Fuzzy graph-theoretical matrix (GTM) 

approach was utilized for ranking of failure 

modes.  

The major disadvantages of this diagraph and matrix approach are listed below:  

• If the numbers of risk factors increase, then there is no provision of hierarchical 

representation and to calculate their relation.  

• When the numbers of risk factors increase, the visual representations among their 

interrelationships become so complex and hard to interpret.  

• When the numbers of risk factors increase, then a lot of comparisons are required to be 

made to represent their relationships in terms of matrix form.  

2.1.6. Value and Utility Functions-based Methods 

The major candidates in this group are as below:  
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• COmplex PRoportional ASsessment (COPRAS),  

• TODIM (an acronym in Portuguese for interactive multi-criteria decision making), 

• Prospect theory-based applications  

COPRAS was developed by Zavadskas et al., (Zavadskas et al., 1994), whose functions are 

similar to Simple Additive Weighting (SAW) method. SAW is one of the most straightforward and 

accepted MCDM method. However, SAW can employ just maximizing attributes, and the 

minimizing criteria must be converted into the maximizing factor before the utilization, which is 

not a trivial task, as it may cause the contradictory outcomes (Mousavi-Nasab and Sotoudeh-

Anvari, 2017). Fortunately, this inadequacy is eliminated in COPRAS, and its applications for risk 

prioritization in FMEA case-studies are presented in Table 2.12.  

Table 2.12. Applications of COPRAS method in FMEA 

References Mathematical tool(s) Application area(s) Other information 

(Wang et al., 2016) 
IVIFSs, ANP, 

COPRAS 
Healthcare facility 

- IVIFSs managed the subjective 

uncertainties. 

- IVIF-ANP derived the weights of the risk 

factors.  

- IVIF-COPRAS was adopted for risk 

ranking of failure modes. 

(Wang et al., 2017) 
Fuzzy soft set theory, 

COPRAS 

Main engine 

crankcase 

explosions  

- Fuzzy soft set theory was adopted to 

manage the linguistic uncertainties.  

- soft- COPRAS was developed to rank the 

failure modes.  

(Nie et al., 2018) 

Multi-granular 

linguistic distribution, 

BWM, maximizing 

deviation method, 

COPRAS 

Supercritical water 

gasification system 

- BWM and maximizing deviation methods 

were adopted to compute the weights of the 

risk factors. 

- COPRAS method was utilized to rank the 

failure modes. 

Karande and Chakraborty (Karande and Chakraborty, 2012) emphasized the following 

drawbacks of the COPRAS method:  

• It has a hard, and complex computation procedure,  

• The final ranking results are often changed by the normalization process,  

• It is affected largely by the criteria weights. 

TODIM method was initially propounded by Gomes and Lima (Gomes and Lima, 1992). It 

pair-wisely compares the alternatives, calculates the dominance of one alternative over another for 

each criterion by using the value function introduced by (Kahneman and Tversky, 2013). This value 

function, which has an S-shaped growth curve, allows to model the behaviour of the decision maker 
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with respect to gains and losses. Finally, the overall performance of each alternative is calculated 

by employing an additive function. Its applications in FMEA case studies are tabularized in Table 

2.13. In spite of the several applications, the traditional TODIM method is reported to be vulnerable 

when the weights of the gains/losses function are considered that may lead to inconsistent risk 

ranking results (Lee and Shih, 2016).  

Table 2.13. Applications of TODIM in FMEA case studies 

References Mathematical tool(s) Application area(s) Other information 

(Huang et al., 

2017) 

Linguistic distribution 

assessment, entropy 

method, and TODIM 

Grinding wheel of a 

CNC machine 

- Linguistic distribution assessments were 

adopted to manage the linguistic 

uncertainties. 

- Combination weighting method was 

employed (objective – entropy method, 

subjective- experts’ judgements). 

- TODIM method was utilized for risk 

ranking. 

(Huang et al., 

2019) 

PLTSs, TOPSIS, 

PLTS-TODIM 

Enterprise 

architecture, and 

information system 

- PLTSs tackled the subjective uncertainties.  

- TOPSIS based objective weighting method 

was adopted to compute the weights of the 

risk factors.  

- PLTS-TODIM was employed to rank the 

failure modes. 

(Wang et al., 

2019a) 

Generalized TrFNs 

(GTrFNs), Choquet 

integral, entropy 

method, TODIM 

Steam valve system 

in a power 

generation plant 

- GTrFNs were adopted to tackle the 

linguistic uncertainties.  

- Choquet integral with entropy method was 

adopted to measure the importance degree of 

the criteria, and their interactions. 

- GrTFN-TODIM was employed to rank the 

failure modes.  

(Wang et al., 

2019c) 

TrFNs, Fuzzy 

measure, Shapley 

index, TODIM 

Main engine 

crankcase explosion 

failures  

- TrFNs managed the linguistic uncertainties.  

- Fuzzy measure and Shapley index were 

adopted to model the relationships among 

the risk factors, and to compute their 

weights.  

- Extended TODIM was adopted to rank the 

failure modes.  

(Sagnak et al., 

2020) 

FNs, AHP, and 

TODIM 

Hot-dip galvanizing 

process 

- Fuzzy AHP was employed to calculate the 

criteria weights.  

- Fuzzy TODIM was utilized to rank the 

failure modes.  

The concept of Prospect theory was developed by Kahneman and Tversky (Kahneman and 

Tversky, 2013). It is a depictive theory to predict individual authentic decision-making behaviours 

towards risks and uncertainties. Their applications in solving FMEA problems are summarized in 

Table 2.14.   

Table 2.14. Utilizations of Prospect theory in solving FMEA problems 

References Mathematical tool(s) Application area(s) Other information 

(Liu et al., 2018) 

Hesitant linguistic 

term sets (HLTSs), 

entropy method, 

prospect theory 

Blood transfusion 

process 

- HLTSs were employed to manage the 

subjective judgements’ uncertainties.  

- Entropy method was adopted to calculate 

the weights of the risk factors.  
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References Mathematical tool(s) Application area(s) Other information 

- HLTS-based Prospect theory was used for 

risk ranking of failure modes.  

(Wang et al., 2018) 

Fuzzy numbers, 

relative preference 

relation method, 

Prospect theory, 

Choquet integral, and 

entropy method.   

Aircraft landing 

system 

- Fuzzy numbers were adopted to deal with 

linguistic uncertainties.  

- Relative preference relation was used for 

ranking of fuzzy numbers.  

- Prospect theory was adopted to determine 

the risk evaluation of the risk factors.  

- Interacting relationships among the risk 

factors were calculated by fuzzy measures, 

and Choquet integral.  

- Entropy weighting method was adopted to 

obtain the overall RPN values associated 

with each failure modes.  

The major limitation of Prospect theory-based approach is that in case of a dynamic 

environment it fails to update the reference point and is mostly dependent on the past decisions.  

2.1.7. Hybrid Approaches  

Some researchers have also been taken the endeavours to combine the previously discussed 

methods to compute risk ranking results in FMEA. Some of them are presented in Table 2.15.  

Table 2.15. FMEA research works combining different MCDM methods 

References 
Mathematical 

tool(s) 
Application area(s) Other information 

(Liu et al., 

2015b) 

Modified VIKOR, 

DEMATEL, AHP 

Diesel engine 

turbocharger 

- Modified VIKOR was employed to compute the 

effects of the failure modes on together.  

- DEMATEL was adopted to construct the influential 

relation map among the failure modes and causes of 

failures.  

- AHP was utilized to calculate the weights of the risk 

factors.  

- DEMATEL was used to calculate the risk ranking. 

(Hu et al., 

2019) 

GRA, TOPSIS, 

maximizing 

deviation method 

Healthcare sector 

- Maximizing deviation method calculated the 

weights of the risk factors,  

- GRA-based TOPSIS was adopted to compute the 

risk ranking of failure modes. 

(Liu et al., 

2019b) 

Fuzzy sets (FSs), 

AHP, fuzzy graph 

theory and matrix 

(fuzzy GTM) 

approach, 

DEMATEL 

Rotary switch 

- FSs were adopted to manage the linguistic 

uncertainties,  

- fuzzy AHP computed the weights of the risk factors,  

- fuzzy GTM was adopted to calculate the risk effect 

indexes of the failure modes,  

- DEMATEL was utilized to derive the dependencies 

among the failure modes and to rank them. 

(Lo et al., 

2020) 

DEMATEL, 

SAW, VIKOR, 

GRA, COPRAS 

CNC rotary 

machine 

- Influential relations among the failure modes were 

evaluate by DEMATEL method,  

- A TOPSIS based method comprising of SAW, 

VIKOR, GRA, and COPRAS was utilized to rank the 

failure modes.  

(Akram et al., 

2021) 

Pythagorean 

fuzzy hybrid 

(PFH) TOPSIS, 

and PFH-

ELECTRE - I 

Color super-twisted 

nematic 

- PFH-TOPSIS was adopted to compute the distances 

of the failure modes from the Pythagorean fuzzy PIS 

and NIS.  

- PFH-ELECTRE- I was used to calculate the fuzzy 

concordance and discordance matrices.  
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2.2. Fault Diagnosis by AI-based approaches  

The difficulties generally confronted with the fault diagnosis of large and complex machines have 

already been presented in Chapter 1 / Section 1.1.2, which can be managed by adopting any of the 

following approaches (Jardine et al., 2006):  

a) Statistical methods,  

b) AI-based methods, and  

c) Other methods.  

In this context, it is required to mention that when discussing about large and complex 

machines, gearboxes are considered as essential systems in most of the mechanical industries, 

especially in manufacturing and process plants. This is because of their ability to transmit the torque 

and speed from one position to another with minimal losses of power, which is quite different when 

compared with the belt drives. A large and complex gearbox consists of multiple gears (may be of 

different types, e.g., spur gears, helical gears, etc.), bearings (e.g., roller bearings, sliding bearings, 

etc.), and shafts of different dimensions. Due to their high costs, gearboxes are not readily kept in 

stock for replacement in event of catastrophic failure. Therefore, gearbox failure can potentially lay 

off the plant for months, due to the long lead time for repair and/or replacement.  

AI-based methods have been found to be more efficient while dealing with fault diagnosis 

of such type of system, as implementing these methods does not require to mathematically simulate 

the system, where the system has multiple components. Apart from this, recently, rapid progress 

has been noticed in employing the AI-based methods in solving fault diagnosis problems because 

of their capability of managing exhaustive data coming from different sources, and are of different 

types (viz., value type, waveform type, and/or event type). Additionally, they are considered as 

viable choices to the engineers, whenever the current problem does not have a pre-defined model, 

as fault diagnosis of gearboxes. These methods generally provide the solutions based on some prior 

case histories, which are typically available in the central data-server of the organizations and are 

kept unexploited.  Based on this, in Table 2.16, some applications of AI-based methods for fault 

diagnosis of gearbox, and their associated components are discussed.   

Table 2.16. Applications of AI-based approaches for fault diagnosis of gearboxes and/or their associated components 

References 
Adopted AI-

based method(s) 

Considered 

HIs 

Considered 

fault(s) 
Other information 

(Samanta, 

2004) 

Artificial Neural 

Network (ANN), 

Vibration 

signals 

Pitting failure 

of gear 

- Numbers of nodes in the hidden layer of 

ANN, radial basis function kernel 
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References 
Adopted AI-

based method(s) 

Considered 

HIs 

Considered 

fault(s) 
Other information 

Support Vector 

Machine (SVM), 

and Genetic 

Algorithm (GA) 

parameter for SVM, along with the 

selection of input features were 

optimizing using GA,  

- Classification accuracy of SVM was 

better than ANN, without employing GA,  

- Classification accuracies of SVM, and 

ANN are comparable when employed 

along with GA. 

(Rafiee et al., 

2007) 

Wavelet 

transformation, 

multi-layer 

perceptron neural 

network 

(MLPNN) 

Vibration 

signals 

Worn teeth, and 

broken teeth of 

gear 

- Proposed an intelligent condition 

monitoring approach for motor-cycle 

gearbox by calculating the standard 

deviations of the wavelet packet 

coefficients from the acquired signals,  

- Later, these signals were fed to MLPNN 

to examine the condition of the gearbox. 

(Ebersbach 

and Peng, 

2008) 

‘IF-THEN’ rule-

based expert 

systems (ESs)  

Vibration 

signals, 

wear 

debris, and 

oil analysis  

Fault of 

bearings (both 

roller and 

journal 

bearings), 

coupling, fans, 

spur gears, belt, 

and general 

faults  

- ES was developed based on the 

knowledge adopted through tri-axial 

frequency spectra, demodulated spectra, 

time domain features, and technical 

handbooks, 

- Wear debris and oil analyses are time 

consuming and are not considered as 

viable option from application point of 

view. 

- The developed ES was totally dependent 

on developed rules. 

(Wu and Chan, 

2009) 
ANN 

Acoustic 

signals  

Broken teeth of 

gear 

- Feature vectors were collected from the 

continuous wavelet transformation 

(CWT) of the acoustic signals.  

- ANN was adopted for condition 

monitoring and fault diagnosis of a three-

stage gearbox. 

(Wu et al., 

2009) 

Adaptive neuro-

fuzzy inference 

system (ANFIS) 

Vibration 

signals 

Wear teeth 

(single local 

defect, multiple 

local defect) 

- The elucidated approach combined 

DWT and ANFIS for fault identification 

and classification purposes,  

- The proposed approach utilized the 

qualitative approximation ability of FL 

and ANFIS. 

(Saravanan et 

al., 2009) 
Decision tree 

Vibration 

signals 

Broken teeth, 

crack at the root 

of the teeth, 

gear with face 

wear 

- A rule set was formed from the 

extracted features and fed to fuzzy 

classifier for discriminating fault 

condition of the gearbox.  

(Jayaswal et 

al., 2010) 
ES, ANN, and FL 

Vibration 

signals 

Antifriction 

bearing faults – 

inner race, 

outer race, and 

ball defect 

- A hybrid ES was developed using ANN, 

FL, FNs and WT to detect and diagnose 

the faults of rotating components. 

(Hajnayeb et 

al., 2011) 
MLPNN 

Vibration 

signals 

Crest removed 

gear, and 

complete 

removal of 

teeth of a gear 

- UTA, and GA algorithms was applied to 

discard the unimportant features related 

to gear faults. 

- GA provided better results than UTA 

while eliminating the nonimportant 

features than UTA.  

(Hashemi and 

Saeed 

Safizadeh, 

2013) 

FL 
Vibration 

signals 

Corrosion of 

teeth, and 

removal of 

teeth 

- The gear faults were detected by a rule-

based FL model.  

- Authors mentioned that for the early 

fault detection a lot of vibration signals 

are required to captured to increase the 

system efficiency.  
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References 
Adopted AI-

based method(s) 

Considered 

HIs 

Considered 

fault(s) 
Other information 

- Selections of membership functions for 

healthy state, semi-faulty state, and faulty 

state were completely defined by the 

experts.  

(Shao et al., 

2014) 

PCA, and kernel 

PCA 

Vibration 

signals 

Tooth root 

crack, pitch 

circle crack, 

tooth wear 

faults of gears 

- Utilized vibration signals to extract the 

features from vibration signals and used 

them in PCA and kernel PCA (KPCA) for 

fault detection and classification of 

gearbox. 

(Tyagi and 

Panigrahi, 

2017) 

Back propagation 

NN, and GA 

Vibration 

signals 

Gear with 

missing tooth, 

chipped tooth, 

and surface 

wear 

- An ANN classifier trained by a hybrid 

GA-BP method for gear fault diagnosis 

was presented.  

- Both time domain and frequency 

domain features were used,  

- DWT was employed for pre-processing 

of signals.  

(Dou and 

Zhou, 2016) 

K-nearest 

neighbor (KNN) 

algorithm, 

probabilistic NN 

(PNN), particle 

swarm 

optimization 

(PSO) optimized 

SVM, and a 

Rule-based 

method (RBM) 

Vibration 

signals 

Inner race 

defect, outer 

race defect, and 

rolling elements 

defects of 

rolling bearings 

- Seven numbers of time domain features, 

and five numbers of dimensionless 

frequency domain features were adopted 

to classify the faults from the healthy 

state.  

- PSO-based SVM can more accurately 

classify the faults,  

- RBM can trails the PSO-based SVM in 

terms of classification accuracy. 

- RBM is most user friendly.  

 

(Jing et al., 

2017) 

Convolution 

neural network 

(CNN) 

Vibration 

signals 

Case- 1: Gear: 

chipped teeth, 

and broken 

teeth;  

Bearing: Inner 

race defect, ball 

defect;  

Shaft: Bent 

shaft, 

imbalance.  

Case 2: Six 

types of defects 

of gears – 

chipped tooth, 

pitting tooth, 

chaffing tooth, 

wear root crack 

tooth, root 

crack tooth, and 

worn tooth. 

- The helical gear set was considered for 

the study,  

- Both time-domain (eight nos.), 

frequency domain (32 nos.), and wavelet 

domain features (5 nos.) were used for 

fault diagnosis,  

- 50% of data were used to train the CNN, 

and 50% for testing.  

- CNN outperforms fully connected NN 

(FNN), SVM, and random forest (RF) 

algorithm.  

(Praveenkumar 

et al., 2018) 
Decision tree 

Vibration 

signals 

Gear: tooth 

breakage,  

Bearing: Outer 

race crack 

- Both time domain and frequency 

domain features were extracted from the 

vibration data,  

- Time domain features when normalized 

outperforms the frequency domain data,  

- Normalized time domain data were used 

to train the decision tree,  

- An online condition monitoring window 

was developed for ease fault diagnosis. 

However, the major problems observed during the exploitations of these methods are:  
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• These methods are ineffective, when the exhaustive prior faulty data are unavailable with 

the organization. 

• Despite the availability of the exhaustive database, when exceptional cases occur 

frequently. 

Due to these limitations, it became necessary to explore other potential methodologies, which 

can provide a similarity-based solution to the fault diagnosis problems.  

Case-based reasoning (CBR) is an amalgamated domain of both AI and human cognitive 

process (Aamodt and Plaza, 1994). It is a powerful methodology, which mimics the human 

reasoning process, and has a computational model that is rather innate and easy to comprehend. 

This methodology has been explored successfully in various fields, such as medical applications 

(Fan et al., 2011), energy management (Faia et al., 2017), product configuration (Tseng et al., 

2005), machine tool selection (Chakraborty and Boral, 2017), material selection (Amen and 

Vomacka, 2001), etc. It has also been adopted by prior researchers to cope up with different 

difficulties in fault diagnosis process, which are presented in Table 2.17.  

Table 2.17. Utilizations of CBR methodology for fault diagnosis of different systems 

References Targeted system Other information 

(Varma, 1999) Off-board locomotive 

- Considered different types of faults and their repair 

histories.  

- Didn’t consider the faults having partial information.  

(Tsai, 2009) Injection moulding machine 

- Fault tree analysis (FTA) was combined with CBR in 

the proposed fault diagnosis approach. 

- Considered limited types of faults due to the increase in 

complexity of the model while employing FTA. 

- Computational complexity was increased due to 

combining CBR with FTA. 

(Wong, 2011) Car fault diagnosis 

- Integrated rule-based reasoning (RBR) with CBR.  

- Deducing the rules from incomplete and/or partial 

information may lead to wrong conclusions.  

(Olsson and Funk, 

2012) 

Industrial robots, welding, 

and cutting machines 

- They only used acoustic signals for fault diagnosis, 

- Didn’t consider the case of incomplete or missing 

information.  

(Dendani-Hadiby and 

Khadir, 2013) 
Steam turbine 

-  The proposed model integrated the domain knowledge 

in an ontological form and focused on similarity-based 

retrieval step,  

-  The proposed model relied on extensive experts’ 

opinions and failed to bring out the potentiality of CBR 

to deal with incomplete information. 

(Zhao, 2013) 
Numerically controlled (NC) 

machine 

- The developed work used the object-oriented method to 

represent the fault of NC machine,  

- Didn’t consider the incomplete information.  

(Deng et al., 2014) Aircraft gear landing system 
- Combined both RBR and CBR for fault diagnosis,  

- CBR was utilized as a complimentary part. 

(Xu et al., 2018) Fault diagnosis of loaders 

-  Due to the deficiency of pertinent cases, ontology 

based RBR approach was applied through building 

Semantic Web Rule Language.  
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- Extensive rule-base was developed for providing 

solutions.  

2.3. Uses of MCDM Methods in Maintenance Strategy Selection Problems  

The problems confronted with the selection of the pertinent parameters in best (sustainable) 

maintenance strategy selection have already been described in Chapter 1 / Section 1.1.3. It has also 

been pointed out that MCDM methods have been widely adopted by the prior researchers to manage 

these problems, and is evident from the review work of Shafiee (Shafiee, 2015). For the sake of the 

benefits to the readers, the available literature on the above-mentioned problem after 2015 are 

presented in tabular format in Table 2.18.  

Table 2.18. Some recent researches on maintenance strategy selection problem 

References 
MCDM 

method(s)  
Factors chosen 

Considered 

maintenance 

strategies 

Area of 

application 

(Kirubakaran 

and 

Ilangkumaran, 

2015) 

ANP, GRA-

TOPSIS 
Safety, cost, added value, feasibility 

CM, PdM, 

TBPM, CBM 

Pumps of paper 

mill 

(Joshua et al., 

2016) 
ANP 

Cost (repair cost, annual maintenance 

cost, spares inventory), safety 

(personal safety, facility, machine 

security), strategic workers and 

union’s acceptance, dispatch plan and 

training for employees) and time 

requirement (production shift, spare 

parts availability and workforce). 

Scheduled 

maintenance, 

CM, PdM, 

Reactive 

maintenance. 

Casting plant 

(Lazakis and 

Ölçer, 2016) 

Fuzzy AHP and 

TOPSIS 

Maintenance cost, maintenance type 

efficiency, system reliability, 

management commitment, crew 

training, company investment, spare 

parts inventories, minimization of 

operation loss 

CM, PM, and 

PdM 

Diesel engine 

generator of a 

vessel 

(Kirubakaran 

and 

Ilangkumaran, 

2016) 

Fuzzy AHP, 

GRA-TOPSIS 
Safety, cost, added value, feasibility 

CM, PdM, 

TBPM, CBM 

Pumps of paper 

mill 

(Özcan et al., 

2017) 

AHP, TOPSIS, 

and goal 

programming 

Warehouse backup, maintenance pre-

conditions, failure period, possible 

consequences, availability of 

measuring instrument, static, dynamic 

or electrical property of the 

equipment, troubleshooting time, 

detectability of failure, additional 

work requirement 

CM, PdM, PM, 

Revision 

maintenance 

strategy 

Machinery of 

hydroelectric 

power plant 

(Shafiee et al., 

2019) 
ANP 

Maintenance implementation costs 

and failure intensities 

Failure based, 

risk based, 

TBPM, CBM 

Wind turbine 

(Seiti et al., 

2017) 
Rough AHP 

Added values, safety, cost, reliability 

and feasibility, time, efficiency and 

damage 

CM, TBM, 

CBM, BM, 

TPM. 

Rolling mill 

company 
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References 
MCDM 

method(s)  
Factors chosen 

Considered 

maintenance 

strategies 

Area of 

application 

(Hemmati et al., 

2018) 

 

Fuzzy ANP Cost, risk, added value 

CM, TBPM, 

CBM and 

shutdown 

maintenance. 

Sulphuric acid 

production plant. 

(Emovon et al., 

2018) 

Delphi-AHP 

and Delphi-

AHP- 

PROMETHEE 

Cost (spare parts inventories, 

maintenance cost, crew training cost, 

equipment damage cost), safety 

(personnel, equipment, and 

environment), added value 

(minimization of operation loss, 

equipment reliability) and 

applicability (system failure 

characteristics, available monetary 

resources and equipment risk level). 

CM, PM, and 

CBM 

Ship machinery 

system 

(Borjalilu and 

Ghambari, 

2018) 

Fuzzy ANP 
Organization, safety, administration, 

staff and technical requirements. 

TBPM, CM, 

CBM, RCM, 

PdM. 

5-MW 

powerhouse. 

(Seiti et al., 

2018) 

Fuzzy axiomatic 

design 

Added value, safety, cost, feasibility, 

damage, efficiency, reliability, time. 

CBM, CM, BM, 

TPM, and 

TBPM. 

Rolling mill 

In the context of sustainability based MSSP, very few research works are present in the 

literature. Nezami and Yildirin (Nezami and Yildirim, 2013) first reduced the number of 

contributory factors by using the factor analysis method and applied fuzzy VIKOR approach for 

selecting the optimal maintenance strategy. The approach was validated by taking an example of a 

manufacturing plant. In (Wang et al., 2015), the authors established an evaluation index by 

considering six aspects, viz., input cost, risk of failure, fault duration, maintenance cost, social 

factors, and environmental factors. The relative importance among the factors were calculated by 

AHP whereas the final decision was made by employing the VIKOR approach. Ighravwe & Ayoola 

Oke (Ighravwe and Ayoola Oke, 2017) solved a sustainable maintenance strategy selection problem 

by using the fuzzy axiomatic design principle and fuzzy TOPSIS approach. The entropy method 

was utilized to calculate the relative importance between the sustainable factors. A cement 

producing plant in Africa was taken as a case study to show the efficacy of their approach.  

2.4. Observations   

Based on the extensive surveys presented in previous sections, the observations are outlined in the 

following sub-sections:  

2.4.1. Observations from FMEA Literature  

From the Section 2.1, it can be observed that to overcome the inadequacies of the RPN-based risk 

ranking approach, prior researchers have extensively employed the MCDM methods. The main aim 
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of these implementations is to eliminate the practice of multiplicative formula for RPN value 

computations along with overcoming the other shortcomings. Other observations are as below:  

1. Utilization of different linguistic uncertainty handling tools: To manage the uncertainties 

and vagueness involved in experts’ subjective assessments, until now, multiple approaches 

have been integrated with the MCDM methods. A year-wise applications in this context is 

depicted in Figure 2.2, and the subsequent points are noted:  

• From 2015-2020, FSs (more specifically FNs), have been mostly adopted by the 

previous researchers, which was originally proposed by Zadeh (Zadeh, 1965). 

Additionally, despite the availabilities of various types of FNs (e.g., TFNs, TrFNs, 

etc.), most of the earlier researchers have adopted the TFNs to rank the potential 

failure modes, due to their simple calculation steps, and ability to model the 

uncertainties through an abstract way.  

• The theory of FSs has been proliferated to different facets, such as IFSs (Atanassov, 

2012), HLTSs (Liu et al., 2018), PFSs (Akram et al., 2020), Z-number (Zadeh, 

2011), etc. However, most of these extended versions have higher mathematical 

complexities, when contrasted with traditional FSs.  

• Despite the several advantages of FSs, it has a crisp membership function (MF) 

value. Further, most of the variants of FSs have either crisp and/or interval number-

based MF values, which surely be another obstacle in modelling the uncertainties. 

To address this problem, Zadeh further extended the concept of FSs (or type-1 FSs) 

to type-2 fuzzy sets (T2FSs) (Zadeh, 1975), where the MFs are themselves fuzzy in 

nature. Besides, it can consider the intra and inter personnel uncertainties of human 

perceptions and is more useful in case of presence of more fuzziness in a judgement. 

However, T2FSs involve substantial computational and mathematical complexities. 

To overcome it, researchers have further improved the concept of T2FSs to IT2FSs 

(Mendel, 2009) by defining an interval-valued MF. However, it can be witnessed 

from Figure 2.2 that the utilizations of IT2FSs in combination with MCDM methods 

is very limited: only Wang et al. (Wang et al., 2019b) integrated the concept of 

IT2FSs and MULTIMOORA for risk prioritization. The major limitation of their 

work is that they directly computed the weights of the risk factors in terms of crisp 

numbers, which certainly instigated information distortions at the earlier stages of 

decision-making.  Overall, they have not properly exploited the potentials of the 
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IT2FSs, which motivates this research work to carry out further investigations 

by employing them in FMEA case studies.  

 

Figure 2.2. Use of different uncertainty handling tools in FMEA case-studies 

• The other group consists of the implementations and/or developments of rough 

numbers (Wang et al., 2018b), soft sets (Chang, 2015), Dempster-Shafer evidence 

theory (Wang et al., 2018a), D-numbers (Bian et al., 2018), etc, and their different 

properties. These theories also aimed to abate the linguistic uncertainties, but when 

compared to FS theory, these are still developing.  

2. Considerations of different risk factors: Most of prior FMEA case studies have opted for 

three conventional risk factors: 𝑆, 𝑂, and 𝐷. Yet, for more rational risk prioritization, few 

researchers have decoupled these risk factors and/or added additional risk factors. An 

overview of them are presented in Table 2.19, which reveals that in the context of 

sustainable manufacturing pratice, and when the research community is immensly 

focusing on the philosphy of Industry 4.0, none of the earlier research has judged the 

risk factors from sustainability point of view, viz., from TBL of sustainability. 
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Table 2.19. Research considering additional risk factors 

References Considered risk factors  

(Abbasgholizadeh 

Rahimi et al., 

2015) 

Severity (impact, core process, typicality, affected range, customer participation, service 

encounter, interdependency, bottleneck possibility, hardness of isolation, resource 

distribution), occurrence (frequency, repeatability, failure visibility, single point failure), 

and detection (chance of un-detection, method of systematic detection, 

customer/employee detection, hardness of proactive inspection)  

(Liu et al., 2016b) 
Occurrence, impact on organization, impact on patient, detection, interdependence with 

other failures, cost due to failure, and corrective action cost 

(Selim et al., 2016) 
Severity, occurrence, detection, current technology, substitutability, capacity utilization, 

and contribution to profit 

(Wang et al., 2016) Failure mode ratio, failure effect probability, failure rate 

(Wang et al., 2018b) 

Severity (personal security, environmental security, strength, stiffness, precision, 

stability, maintenance costs, direct losses, indirect losses, disassembly difficulty, 

maintenance time), probability, non-detectability 

(Certa et al., 2017) Severity, occurrence, and detection 

(Carpitella et al., 

2018) 
Occurrence, time of operation, and modality of execution 

(Lo and Liou, 2018) Severity, occurrence, detection, and expected cost 

3. Methods for calculating the weights of the risk factors:  Different methods have been 

adopted to calculate the weights of the risk factors as presented in Table 2.20. However, 

the following points are worth mentioning:  

• In most of the works, subjective judgements have been delivered by the experts. 

• Thereafter, the mostly employed method is either AHP and/or fuzzy AHP.  

• In the objective weighting category, most of the research has considered the directly 

given values of the weights, ensuing by the Entropy method.  

• Few of them have adopted the combination and incomplete weighting methods.   

Table 2.20. Use of different methods to calculate the weights of the risk factors 

Classification Method(s) References Count 

Subjective 

weighting 

methods 

Expert judgement 

(Abbasgholizadeh Rahimi et al., 2015; Başhan et al., 

2020; Bian et al., 2018; Chen et al., 2020; Li et al., 

2020; Liu et al., 2015a, 2015c; Rathore et al., 2020; 

Safari et al., 2016; Selim et al., 2016; Tooranloo et 

al., 2018; Tooranloo and Ayatollah, 2016; Wang et 

al., 2019b; Wang et al., 2018a) 

14 

AHP 
(Carpitella et al., 2018; Chang, 2016; Liu et al., 

2019b; Sharma and Sharma, 2015) 
4 

Grey interval based BWM (Lo and Liou, 2018) 1 

Fuzzy AHP (Panchal et al., 2018a, 2018b; Sagnak et al., 2020) 3 

Fuzzy AHP and Logarithmic 

fuzzy preference programming 
(Mangeli et al., 2019) 1 

Z-TOPSIS (Zhang et al., 2019) 1 

Fuzzy BWM (Ghoushchi et al., 2019; Tian et al., 2018) 2 

Fuzzy digraph  (Liu et al., 2016a) 1 

Fuzzy preference 

programming 
(Baykasoğlu and Gölcük, 2020) 1 



45 

 

Classification Method(s) References Count 

ANP (Wang et al., 2016) 1 

Fuzzy measure and Shapley 

index 
(Wang et al., 2019c) 1 

Objective 

weighting 

methods 

Entropy 
(He et al., 2020; Liu et al., 2018; Tsai and Yeh, 2015; 

Wang et al., 2018; Zhao et al., 2017) 
5 

Directly given 

(Certa et al., 2017; Chang, 2015; Kumar et al., 2018; 

Li and Chen, 2019; Liu et al., 2017, 2015b; Lolli et 

al., 2015; Vahdani et al., 2015; Wang et al., 2018b) 

9 

Randomly generated  (Delice and Can, 2017) 1 

Maximum deviation model (Hu et al., 2019b; Li et al., 2020; Zhu et al., 2020b) 3 

Ordered weighted geometric 

operator 
(Chang et al., 2018) 1 

Choquet integral (Wang et al., 2017) 1 

TOPSIS based method (Huang et al., 2019) 1 

DEMATEL (Lo et al., 2020) 1 

Combination 

weighting 

Experts’ linguistic judgements 

and statistical distance 
(Liu, 2019b) 1 

Fuzzy AHP and entropy (Liu et al., 2015d; Mohsen and Fereshteh, 2017) 2 

Experts’ judgements and 

Entropy method 
(Huang et al., 2017; Wang et al., 2016) 2 

BWM method and maximizing 

deviation method 
(Nie et al., 2018) 1 

Choquet integral and Entropy 

method 
(Wang et al., 2019a) 1 

Experts’ judgements and 

normal distribution based 

ordered ratings  

(Akram et al., 2020) 1 

Incomplete 

weighting 

Maximum cross-entropy based 

linear programming model  
(Liu, 2019a) 1 

GRA based multi-objective 

optimization model 
(Liu et al., 2016b) 1 

4. Utilizations of MCDM methods for risk prioritizations: Until now, numerous MCDM 

methods have been explored and their potentials have been examined in the risk ranking of 

failure modes. A graphical analysis of them is presented in Figure 2.3. It can be observed 

that TOPSIS and GRA are widely adopted methods (belongs to distance based MCDM 

method), followed by VIKOR, MULTIMOORA (belongs to compromise-solution 

based MCDM method), TODIM, hybrid methods, and so on.  

5. Application areas: From Figure 2.4, it can be observed that most of the previous FMEA 

case studies pertain to the mechanical sector (16 papers). However, as mentioned earlier, 

gearboxes being an important asset in most of the manufacturing and processing 

plants, have not been considered for detailed FMECA, especially from sustainability 

context. 
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Figure 2.3. Use of MCDM methods for failure modes ranking 

 

Figure 2.4. Areas of applications for FMECA case studies 

2.4.2. Observations from Literature Related to AI-based Fault Diagnosis Approaches 

Based on the survey presented in Section 2.2, the following points are observed:  

1. Effects of environmental conditions on fault initiation: Most of the previous research works 

have been performed in the laboratory, without considering to the effects of environmental 

parameters (viz., high humidity, high dust level, high temperature, etc.) on fault initiation.   
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2. Considerations of multiple monitoring approaches: Most of the prior researches have adopted 

single type of monitoring technique (i.e., vibration signal). However, the fault propagation 

graph confirms that at different stages of the fault, distinct types of signals become prominent. 

Thus, engineers always desire to rely upon multiple types of monitoring techniques.  

3. Dealing with bottom-up concept: Earlier researches have implemented the ‘top-down’ 

approach of fault diagnosis (i.e., fault is induced in a part of a system, then the resultant effects 

are collected). Whereas, in industries it is impractical to follow this policy. Instead, engineers 

are frequently confronted with the ‘bottom-up’ approach (i.e., based on the detected 

parameters and/or signals, fault diagnosis is performed).  

4. Experts’ involvement to interpret the vibration signals: Vibration signal analysis techniques 

are case-specific, and often require experts’ involvements for the suitable interpretation. For 

example, by performing Fast Fourier Transform (FFT) of vibration signals, hardly any 

information can be extracted in case of any gear fault, because several sidebands usually 

appear around the gear mesh frequency (GMF). In such circumstances, experts generally 

prefer to adopt another analysis technique, such as Wavelet analysis or Cepstrum analysis.  

5. Capturing signals from pre-defined locations: For a large and complex system (e.g., gearbox), 

if the vibration signal is captured from a single point, it may not reveal the exact location and 

type of fault. This problem is further intensified when the system is functioning in a condition 

of lots of surrounding noises. So, engineers must collect the vibration signals from the pre-

defined locations. Thereafter, these captured signals are either analysed by some sophisticated 

software or by some high-valued gadgets incorporated with different analysis techniques. This 

is also a tedious and time-consuming task. 

6. Dealing with large numbers of HIs: Mapping of large numbers of HIs from the measurement 

space to fault space require experts’ intervention. However, in industry, experts are not 

available all the time. 

7. Considerations of multiple types of data: Earlier research work either considered the waveform 

data, or event data, or value type data separately. However, engineers often desire the 

combination of these (i.e., after identification of type and location of fault, what will be the 

necessary tasks to be carried out?).  
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8. Dealing with incomplete and/or missing information: Earlier CBR-based fault diagnosis 

researches have not considered the situation of dealing with the incomplete information, which 

frequently happens during the fault diagnosis of large-scale and complex systems. 

2.4.3. Observations from Maintenance Strategy Selection Problems Literature 

From the discussions carried out in Section 2.3, it can be remarked that the MSSP has been 

thoroughly studied by earlier researchers. Very few researchers have taken the endeavour and 

studied the sustainable MSSP. However, none of them have broadly identified the pertinent KPIs 

from the perspective of sustainability’s TBL.   

Apart from that, earlier contributors have solved the MSSP through employing MCDM 

methods, which basically deals with a set of data, and each of the time new alternatives/criteria are 

added to the list of consideration, either experts need to re-evaluate the weights of the criteria or 

they need to re-evaluate the new alternative with respect to criteria. This makes the process a tedious 

one. Furthermore, in case of qualitative KPIs, each time the experts’ judgement may not be 

consistent or available, and thus lead to improper selection of the maintenance strategy which 

subsequently become a financial burden for the organization.  

2.5. Selection of Method(s)/Tool(s) for Utilization and/or Development 

From the observations presented in the previous sections, the following method(s)/tool(s) are 

chosen for further implementations and/or developments. 

2.5.1. Method(s)/Tool(s) Adopted and/or Developed in FMECA 

• Tools to deal with linguistic uncertainties: The capabilities of FSs and IT2FSs to manage 

the uncertainties in linguistic opinions have already been presented in Section 2.4.1. 

Additionally, it has been also witnessed that most of the FMEA literatures have adopted 

the FSs in their FMEA case studies. Thus, initially in this thesis work, FSs (more 

specifically, TFNs) have been chosen as the potential candidate to deal with linguistic 

uncertainties. However, despite the profound abilities of FSs, as mentioned earlier, it has 

been criticized in prior literatures. To further refine the subjective vagueness, the 

applications of IT2FSs are thereafter examined in this thesis. The motivation behind using 

the IT2FSs is as follows:  
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a) Ranking of Failure modes according to their criticality levels is a sensitive 

application area from the organization’s point of view. Thus, it is always desired 

to minimize the linguistic uncertainties to the utmost level, such that failure modes 

can be properly ordered.   

b) Only a single research work has employed the IT2FSs in combination with MCDM 

method for risk ranking. However, in that work, the information distortions 

happened at the preliminary stages, which necessitated the further investigations.  

• MCDM methods to calculate the weights of the risk factors: Initially, in this thesis work 

the concept of AHP method is adopted to compute the weights of the risk factors. The 

reasons behind this selection are:  

a) It has been widely adopted in prior literatures to compute the risk factors’ weights 

by subjective weighting approach.  

b) It can consider the consistency ratio of the experts’ evaluations and can consider 

the judgements of multiple experts in a group decision making scenario.  

However, the proposed scale in the original AHP method is crisp in nature (i.e., 

linguistic judgements are converted into crisp numbers), and are not capable to consider 

human’s vague thoughts (Kutlu and Ekmekçioğlu, 2012). To improve that, different 

versions of fuzzy AHP have been developed by the earlier researchers (Buckley, 1985; 

Chang, 1996; Van Laarhoven and Pedrycz, 1983). Although, Chang’s extent analysis-

based fuzzy AHP method has been extensively applied to solve different FMEA problems 

(Kutlu and Ekmekçioğlu, 2012), it has received a lot of criticism. Wang et al., (Wang et 

al., 2008) specifically mentioned that “extent analysis method cannot estimate the true 

weights from a fuzzy comparison matrix and has led to quite a number of misapplications 

in the literature”.  Whereas, Buckley’s fuzzy AHP has not received any criticism till date 

and to the best knowledge, its application in FMEA literature is very limited. Thus, it is 

further utilized in this thesis to compute the weights of the risk factors, considering the 

subjective judgements.   

Conversely, when the number of risk factors are increased in numbers (i.e., above 11 

in numbers), it is difficult to compute the criteria weights by employing AHP. Further, 

decision-makers always attempt to classify the cause and effects groups of criteria (viz., 

causal dependency), along with their weights.  To deal with these, two such viable options 
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are Choquet integral and ANP methods. However, for the earlier one, identification of 

fuzzy measures is an arduous task for the decision-makers. For example, suppose that there 

are 𝑛 number of criteria, and then the Choquet integral requires (2𝑛 − 2) coefficients to be 

defined. Whereas, for the latter one, it requires too many comparisons, and in some 

situations the pairwise comparison questions might be difficult to intercept. Further, in 

ANP the network structure of the decision problem is to be known a priori.  

As previously mentioned, DEMATEL is a popular relational analysis MCDM 

method, and has been mainly adopted in the FMEA literature to derive the relationships 

among the failure modes, and to rank them according to their risk levels. But in this 

context, the reasons for choosing DEMATEL as a viable option are presented below: 

a) It can simultaneously depict the causal dependencies among the risk factors and 

calculate their weights,   

b) Until now, none of the FMEA case studies have reported the depiction of the causal 

dependencies among the risk factors, by utilizing the DEMATEL method.  

• MCDM methods to prioritize the failure modes: From Figure 2.3, it can be seen that 

whenever a new MCDM method is developed by the researchers, its abilities in solving 

diversified decision-making problems are examined. Obviously, the developed method 

should have some advantages over the earlier ones and must be capable of computing more 

credible and robust ranking results.  

MAIRCA (Multi-Attributive Ideal Real Comparative Analysis) is a newly 

developed distance-based MCDM method, originally proposed by Pamucar et al., 

(Pamučar et al., 2014). It has proved its superiority over other well-established MCDM 

methods, like TOPSIS, ELECTRE, etc. because of its linear normalization method, 

characterized by a simple mathematical apparatus, and solution stability. In this method, 

the decision maker is unbiased from the very initial stage towards the ordering of 

alternatives. Later, based on the minimum distance between the matrix of theoretical 

ponder and actual ponder the best alternative (or the most critical failure mode) is chosen 

and other failure modes are ranked.  

MARCOS (Measurement of Alternatives and Ranking according to COmpromise 

Solution) is a compromise solution-based MCDM method recently developed by Stević 
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et al., (Stević et al., 2020). It is based on defining the relationship between alternatives 

and reference values (ideal and anti-ideal alternatives). Based on the defined relationship, 

the utility functions of alternatives are determined, and compromise ranking is made in 

relation to ideal and anti-ideal solutions. The utility function represents the position of an 

alternative about an ideal and anti-ideal solution. The best alternative is the one that is 

closest to the ideal and at the same time furthest from the anti-ideal reference point. 

Authors have proven that it has a better ranking stability than other popular MCDM 

methods (i.e., TOPSIS, ELECTRE, etc.).  

The above two methods, along with the well-established TOPSIS are opted in this 

thesis work at different chapters for the risk ranking purpose. The specific reasons of 

utilizing them are as follows:  

a) Distance-based and Compromise-ranking based MCDM methods have been 

mostly adopted by the former researchers to rank the failure modes. Similarly, 

MAIRCA and TOPSIS belongs to the first group, and MARCOS belongs to the 

latter group. 

b) Until now, none of the earlier research works have examined the capabilities of 

MAIRCA and MARCOS methods for failure modes’ risk ranking in FMECA.  

2.5.2. Method(s)/Tool(s) Adopted for Fault Diagnosis 

The observations from the literature review (refer Section 2.4.2) reveals that multiple AI-based 

methods have been exploited during fault classification (e.g., ANN and/or their variants, SVM, 

ESs, FL, etc.). However, each of them has their own benefits and limitations as presented in Table 

2.21.  

Table 2.21. Comparisons of different AI-based approaches for fault diagnosis of gearbox 

Method 
by 

Advantages Drawbacks 
Computational 

time 

Complexity 

of the 

method 

Decision 

maker’s 

involvement 

ANN 

- Model the structure of 

reasoning of human brain. 
- Ability to learn and detect 

the relationships between 

several inputs and outputs. 

- Requires extensive training for 

accurate result. 

- Perform like a black box. 
- Selection of number of hidden 

layers requires expert knowledge. 

- Weightages between parameters 
are given by experts. 

Moderate 

Moderate 

(increases 
with 

number of 

parameters) 

High 

ESs 

- Decision making problems 

become simplified. 

- Decision are taken by 
several ‘IF-THEN’ rules. 

- Constructing several ‘IF-

THEN’ rules are tedious task and 

it is necessary to extract 
knowledge from cases. 

Very low 

 
Moderate High 
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Method 

by 
Advantages Drawbacks 

Computational 

time 

Complexity 
of the 

method 

Decision 
maker’s 

involvement 

- Unable to handle with novel 
cases. 

FL 

- Efficiently deal with 

imprecise data. 
-Relationship between the 

parameters are taken into 

consideration for decision 
making.  

- Creating a rule-base for final 

decision making requires expert’s 

involvement.  
- Unable to deal with incomplete 

data. 

Moderate High Moderate 

BN 

- Can handle complex and 

non-linear problems.  
- Can handle missing data 

and allows combination of 

data with domain knowledge 
(Uusitalo, 2007). 

- Can avoid over-fitting of 

data.   
-Can provide good decisions 

with small sample size. 

-Decisions are taken by prior 

distributions. When the prior 

distributions are violated then 
improper outcomes are provided. 

- To calculate probability of any 

branch of the network, all 
branches must be calculated 

previously. 

- It is useful, when prior 
knowledge is reliable.  

-Ability to deal with continuous 

data is limited. 

High High High 

SVM 

- Efficiently handle data with 

unknown distributions.(Auria 

and Moro, 2008), 
- Can provide an efficient out 

of sample generalization, 

- Can provide a unique 
solution, when optimality 

problem is convex. 

- Lack of transparency of result. 
- Choice of kernel is considered 

as a major problem. 

- Not able to handle efficiently 
with discrete data. 

-high algorithmic complexity and 

extensive memory requirements. 

High Very High High 

CBR 

system 

- Can perform efficiently in 
unstructured domain. 

- Can able to provide 

decisions with incomplete 
information, and able to 

replace human experts. 

- No requirement to derive 
knowledge by inductive 

rules. Inferences are provided 

directly from cases. 
-Superior ability of 

adaptation and learning over 

time. 

- Accuracy depends on the size 

of case-base.  

- Case-base maintenance is a 
major issue. 

 

Moderate 

(depends on 

the volume of 

case-base) 

Very low  Low  

On the contrary, The CBR methodology is well-suited in the following instances: 

• Historical cases are available and easily accessible. References to historical cases are 

beneficial while dealing with recurrent problems. 

• If a domain does not have a basic model or has a model that is impossible to comprehend 

and to model mathematically, the CBR approach becomes flexible in that area. Prior 

experiences are ample to develop a CBR model without a profound understanding of the 

problem state (Chakraborty and Boral, 2017).  

• When exceptional cases are frequently encountered for solving a problem. Incremental 

learning and adaption qualities are two major significant features those incorporated in the 

process model of CBR (Kolodner and Riesbeck, 2014). 
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Further, from the prior applications of CBR in fault diagnosis problems, it is perceived that 

the benefits of the methodology have not been properly explored, which motivates to further 

employ it in a methodical way in this thesis work.  

2.5.3. Method(s)/Tool(s) Adopted for Optimal Sustainable Maintenance Strategy Selection 

The recent developments of computerized programmes and different philosophies of data-driven 

AI-based approaches can sort out this problem in a well-structured manner. In an organization, it 

is a common practice to store all the maintenance related information in the centralized database, 

which can be a valuable input to the computerized maintenance management system (CMMS). So, 

it is always preferable to consider these data for any decision-making purpose. However, in case, 

when the exact data are not available, then AI-based approaches outperform the MCDM methods 

to provide an approximate reasoning.  

Besides, the potential of CBR approach, and ES have already been explained in Table 2.21. 

It can be clearly observed that ES performs well in the case of presence of exact matches, whereas 

CBR system performs well when there is no exact match in the database. Thus, both of their 

advantages can be further explored in the context of sustainable maintenance strategy selection 

problem by overcoming the drawbacks of MCDM methods. 

2.6. Research Contributions  

Based on the preceding discussions the contributions of this research are summarised as:  

1. To develop and devise integrated MCDM-based frameworks to overcome the drawbacks of the 

traditional RPN-based FMEA approaches, along with managing the uncertainties involved in 

subjective judgements. This is further sub-categorized as follows:  

a) Initially, two integrated fuzzy MCDM decision-making frameworks are proposed for the 

risk ranking of failure modes in a benchmark FMEA case-study. In the first framework, 

Buckley’s fuzzy AHP is integrated with the developed fuzzy MAIRCA, and in second 

framework, fuzzy AHP is integrated with the proposed modified fuzzy MARCOS method 

for the risk ranking of failure modes.  

Alike the previous literature, where the weights of the risk factors have been calculated 

in terms of crisp numbers and can cause early information distortion, Buckley’s fuzzy AHP 
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is here adopted to determine the fuzzy weights of the risk factors, and the developed fuzzy 

MAIRCA and modified fuzzy MARCOS are employed for risk ranking of failure modes 

individually.  

b) Then, a real time FMEA case-study of large-scale process plant gearbox is performed. The 

failure modes are ranked by proposing two mathematical frameworks consist of IT2F-

DEMATEL – fuzzy MAIRCA and IT2F-DEMATEL – fuzzy MARCOS methods.  

In the context of sustainable development, the severities of failure modes are 

considered from the TBL of sustainability by identifying the pertinent KPIs. Then the 

causal dependencies and weights of the risk factors are determined by IT2F-DEMATEL 

method. Finally, the risk prioritization of failure modes is carried out by fuzzy MAIRCA 

and modified fuzzy MARCOS, individually. Validations of the risk ranking results are 

carried out and sensitivity analyses of the integrated approaches are performed.  

c) Proposing an integrated IT2FSs and multiplicative half quadratic programming based 

MCDM framework for computing the aggregated risk ranking of failure modes in FMEA.  

Here, initially the IT2F-DEMATEL method is further extended to obtain the IT2FNs-

based weights of the risk factors. Then the mathematical models of IT2F-MAIRCA, IT2F-

MARCOS, and modified IT2F-TOPSIS are developed. After that, half quadratic 

minimization-based approach is adopted to compute final aggregated risk rankings of the 

failure modes, along with the consensus index and trust level. The case-study of process 

plant gearbox is utilized to validate the suitability of the integrated framework.  

2. To develop a CBR-based system and exploit its ability in fault diagnosis of the considered 

gearbox. The system is capable to address the problems as mentioned in the Section 2.4.2.   

Further, the developed system can provide the approximate location and type of fault while 

dealing with incomplete data. After fault diagnosis, it can provide information about the most 

appropriate maintenance tasks to be carried out to minimize the downtime of the production 

facility.  

3. Initially to identify the pertinent KPIs for each available maintenance strategy. Then, using 

those KPIs, a hybrid AI-based framework by integrating the concepts of CBR and ESs is 

developed. This hybrid framework will aid the organization in selecting the optimal sustainable 

maintenance strategy while dealing with incomplete information.  
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As mentioned previously, the next Chapter develops the mathematical models for the risk 

ranking of failure modes of a popular FMEA example.     

------------------ 
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Chapter 3  Integrated Fuzzy MCDM Frameworks for Risk 

Prioritization in FMEA 

ased on the discussions carried out in the previous two chapters, the following contributions 

are made here3:  

1. Proposing the mathematical model of modified fuzzy MAIRCA, and thereafter developing 

an integrated fuzzy MCDM framework by combining Buckley’s fuzzy AHP and modified 

fuzzy MAIRCA.  

2. Suggesting the mathematical model of modified fuzzy MARCOS, and then developing an 

integrated fuzzy MCDM framework by combining Buckley’s fuzzy AHP and modified 

fuzzy MARCOS.  

3. Validating the capabilities of the proposed frameworks for the risk ranking of failure modes 

by considering a popular FMEA case study as given in (Kutlu and Ekmekçioğlu, 2012).  

4. Comparisons of performances between the two developed frameworks in terms of ranking 

stability and robustness. Thereafter, performance of each developed framework is 

compared with the original approach (viz., fuzzy AHP-fuzzy TOPSIS), as developed by 

Kutlu and Ekmekçioğlu (Kutlu and Ekmekçioğlu, 2012) .  

3.1. Preliminaries 

The necessary terms, definitions, and arithmetic operations required to develop the mathematical 

models are presented below for the sake of completeness.  

Fuzzy Set: A FS �̃� can be defined mathematically by a membership function 𝜇�̃�(𝑥), which assigns 

each element 𝑥 in the universe of discourse 𝑋 to a real number in the interval [0,1].  

 
3 The contributions of this chapter can be found in the following two published papers: 

a) Boral, S., Howard, I., Chaturvedi, S.K., McKee, K., Naikan, V.N.A., 2020. An integrated approach for fuzzy 

failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Engineering Failure Analysis 108, 

104195. 

b) Boral, S., Chaturvedi, S.K., Howard, I., McKee, K., Naikan, V.N.A. 2020. An Integrated Approach for Fuzzy 

Failure Mode and Effect Analysis Using Fuzzy AHP and Fuzzy MARCOS. In Proceedings of IEEE 

International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore. pp. 

395-400.  

B 

https://www.sciencedirect.com/science/article/pii/S1350630719309094?casa_token=3UedWwqJyJkAAAAA:VSDIwuOZV-bXcHY8KxUXFbRRuLIbZEtFWfxT6KEiEZMQsw3JxvRnONb82_6dDNGvSMMxZkpd
https://www.sciencedirect.com/science/article/pii/S1350630719309094?casa_token=3UedWwqJyJkAAAAA:VSDIwuOZV-bXcHY8KxUXFbRRuLIbZEtFWfxT6KEiEZMQsw3JxvRnONb82_6dDNGvSMMxZkpd
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Fuzzy Number: A FN is a fuzzy subset in the universe of discourse 𝑋, which is both convex and 

normal. A fuzzy set �̃� in the universe of discourse 𝑋 is convex if and only if for all 𝑥1, 𝑥2  

in 𝑋, 𝜇�̃�(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ min (𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2)), where 𝜆 ∈ [0,1]. The similar fuzzy set �̃� is 

called a normal fuzzy set if ∃𝑥𝑖 ∈ 𝑋, 𝜇�̃�(𝑥𝑖) = 1.  

Triangular Fuzzy Number:  A TFN is represented by a triplet �̃� = [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢], and is depicted in 

Figure 3.1. Membership function of a TFN is defined as:  

𝜇�̃�(𝑥) =

{
 
 

 
 
𝑥 − 𝑎𝑙
𝑎𝑚 − 𝑎𝑙

  , 𝑎𝑙 ≤ 𝑥 ≤ 𝑎𝑚

𝑥 − 𝑎𝑢
𝑎𝑚 − 𝑎𝑙

   , 𝑎𝑚 ≤ 𝑥 ≤ 𝑎𝑢 

0             , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (3.1) 

 

Figure 3.1 Graphical representation of a TFN 

The TFNs can be applied in a situation, where the decision maker is not sure about the type 

of MF associated with a FN. 

Arithmetic Operations: Most commonly used arithmetic operations on two FNs �̃� = [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢] , 

and �̃� = [𝑏𝑙 , 𝑏𝑚, 𝑏𝑢] , where 𝑎𝑙 ≤ 𝑎𝑚  ≤ 𝑎𝑢 and 𝑏𝑙 ≤ 𝑏𝑚 ≤ 𝑏𝑢 are provided in (3.2)-(3.6):  

Addition:  �̃�⨁�̃�  =  [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢]⨁[𝑏𝑙 , 𝑏𝑚, 𝑏𝑢]
= [𝑎𝑙 + 𝑏𝑙 , 𝑎𝑚 + 𝑏𝑚, 𝑎𝑢 + 𝑏𝑢 ]   

(3.2) 

Subtraction:  �̃� ⊝ �̃�  =  [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢] ⊝ [𝑏𝑙 , 𝑏𝑚, 𝑏𝑢]
= [𝑎𝑙 − 𝑏𝑢, 𝑎𝑚 − 𝑏𝑚, 𝑎𝑢 − 𝑏𝑙  ]   

(3.3) 

Multiplication:  �̃�⨂�̃�  =  [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢]⨂[𝑏𝑙 , 𝑏𝑚, 𝑏𝑢] = [𝑎𝑙 × 𝑏𝑙 , 𝑎𝑚 × 𝑏𝑚, 𝑎𝑢 ×
𝑏𝑢 ]  , if 𝑎𝑙 ≥ 0 𝑎𝑛𝑑 𝑏𝑙 ≥ 0. 

(3.4) 
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Division:  �̃� ⊘ �̃�  =  [𝑎𝑙 , 𝑎𝑚, 𝑎𝑢] ⊘ [𝑏𝑙 , 𝑏𝑚, 𝑏𝑢] = [
𝑎𝑙

𝑏𝑢
,
𝑎𝑚

𝑏𝑚
,
𝑎𝑢

𝑏𝑙
 ], if 𝑎𝑙 ≥ 0 

and 𝑏𝑙 > 0 

(3.5) 

Multiplication by 

a scalar, 𝑘:  
𝑘 ⊗ �̃� = {

(𝑘𝑎𝑙 , 𝑘𝑎𝑚, 𝑘𝑎𝑢) , 𝑖𝑓 𝑘 > 0
(𝑘𝑎𝑢, 𝑘𝑎𝑚, 𝑘𝑎𝑙), 𝑖𝑓 𝑘 < 0

 
(3.6) 

A TFN can be considered as a special case of a TrFN, and is defined by a quadruplet  �̃� =

(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑢). Arithmetic operations of two TrFNs are almost similar to that of TFNs and 

interested readers may refer any textbook on FST.   

Defuzzification: The process of converting a fuzzy number to its crisp value is known as 

defuzzification. A crisp number is needed for several purposes, such as comparison, ranking, etc. 

There are several popular methods available to accomplish this purpose, and among them the 

graded mean average (equations (3.7) and(3.8) is the most popular one due to its simple calculation 

step and robust mathematical foundation.  

𝐴 =
𝑎𝑙+4𝑎𝑚+𝑎𝑢

6
 (for TFNs) (3.7) 

𝐴 =
𝑎𝑙+4𝑎𝑚+𝑎𝑢

6
 (for TrFNs) (3.8) 

3.2. Criteria Weights Calculation by Fuzzy AHP 

The steps for computing the criteria weights in terms of TFNs are as follows: 

Step 1: Construct the pairwise comparison matrices for 𝑛 number of criteria/sub-criteria by 

converting the linguistic judgements to the corresponding TFNs, utilizing Table 3.1. If 𝐾 cross-

functional experts participate in the decision-making process, then each element �̃�𝑖𝑗
𝐾  of the pairwise 

comparison matrix �̃�𝐾 is a TFN. The mathematical representation of this step is given in (3.9).  

�̃�𝐾 =

[
 
 
 
1 �̃�12

𝐾

�̃�21
𝐾 1

⋯
�̃�1𝑛
𝐾

�̃�2𝑛
𝐾

⋮ ⋱ ⋮
�̃�𝑛1
𝐾 �̃�𝑛2

𝐾 ⋯ 1 ]
 
 
 

 (3.9) 

where, ãij
K = (alij

K , amij
K , auij

K ), and K = 1,2, … , k.  
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Table 3.1. Fuzzy evaluation scores for the weight vectors 

Linguistic terms Triangular fuzzy numbers 

Absolutely strong (AS) (2,5/2,3) 

Very strong (VS) (3/2,2,5/2) 

Fairly strong (FS) (1,3/2,2) 

Slightly strong (SS) (1,1,3/2) 

Equal (E) (1,1,1) 

Slightly weak (SW) (2/3,1,1) 

Fairly weak (FW) (1/2,2/3,1) 

Very weak (VW) (2/5,1/2,2/3) 

Absolutely weak (AW) (1/3,2/5,1/2) 

Step 2: Compute the aggregated fuzzy pairwise comparison matrix by employing (3.10). 

�̃� =

[
 
 
 
 
 
 
 1
�̃�21
1 ⊕…⊕ �̃�21

𝑘

𝐾

�̃�12
1 ⊕…⊕ �̃�12

𝑘

𝐾
1

⋯
…

�̃�1𝑛
1 ⊕…⊕ �̃�1𝑛

𝑘

𝐾
�̃�2𝑛
1 ⊕…⊕ �̃�2𝑛

𝑘

𝑘
⋮                               ⋮ ⋱ ⋮

�̃�𝑛1
1 ⊕…⊕ �̃�𝑛1

𝑘

𝐾

�̃�𝑛2
1 ⊕…⊕ �̃�𝑛2

𝑘

𝐾
⋯ 1

]
 
 
 
 
 
 
 

 

Or,  

�̃� =

[
 
 
 
 1
(𝑎𝑙21 , 𝑎𝑚21

, 𝑎𝑢21)
(𝑎𝑙12 , 𝑎𝑚12

, 𝑎𝑢12)

1

⋯
…

(𝑎𝑙1𝑛 , 𝑎𝑚1𝑛
, 𝑎𝑢1𝑛)

(𝑎𝑙2𝑛 , 𝑎𝑚2𝑛
, 𝑎𝑢2𝑛)

⋮                                   ⋮ ⋱ ⋮

(𝑎𝑙𝑛1 , 𝑎𝑚𝑛1
, 𝑎𝑢𝑛1) (𝑎𝑙𝑛2 , 𝑎𝑚𝑛2

, 𝑎𝑢𝑛2) ⋯ 1 ]
 
 
 
 

 

(3.10) 

Step 3: Check the consistency4 of the fuzzy aggregated pairwise comparison matrix as obtained in 

Step 2. To check the consistency of fuzzy pairwise comparison matrix, elements of the pairwise 

comparison matrix are de-fuzzified by employing  (3.7).  

Step 4: Compute the fuzzy geometric mean for each row of the matrix as shown in (3.11). The 

fuzzy geometric means of the first parameters of the triangular fuzzy numbers in each row are 

calculated as follows: 

𝑎𝑙1 = [1 × 𝑎𝑙12 × …× 𝑎𝑙1𝑛]
1
𝑛 

𝑎𝑙2 = [𝑎𝑙21 × 1 × …× 𝑎𝑙2𝑛]
1
𝑛 

𝑎𝑙𝑛 = [𝑎𝑙𝑛1 × 𝑎𝑙𝑛2 × …× 1]
1
𝑛 

(3.11) 

 
4 If  �̃� = [�̃�𝑖𝑗] is a fuzzy positive reciprocal matrix, and 𝐴 = [𝑎𝑖𝑗] is the defuzzified positive reciprocal matrix, then �̃� is 

said to be consistent 𝑖𝑓𝑓 𝐴 is consistent (Buckley, 1985). The general procedures for measuring the consistency ratio in 

AHP is given in (Gugaliya et al., 2019). If, in case, the result is not consistent, experts need to re-evaluate the pairwise 

comparisons. 
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Similarly, compute the geometric means of second and third parameters of the TFNs in each 

row.  

Step 5: Assuming that the sums of the geometric mean values in the row are 𝑎𝑙𝑠,𝑎𝑚𝑠
, and 𝑎𝑢𝑠, 

respectively, then fuzzy criteria weights are calculated as (3.12). 

�̃� = [

�̃�1
�̃�2
⋮
�̃�𝑛

] =

[
 
 
 
 
 
 
 (
𝑎𝑙1
𝑎𝑢𝑠

,
𝑎𝑚1

𝑎𝑚𝑠

,
𝑎𝑢1
𝑎𝑙𝑠
)

(
𝑎𝑙2
𝑎𝑢𝑠

,
𝑎𝑚2

𝑎𝑚𝑠

,
𝑎𝑢2
𝑎𝑙𝑠
)

(
𝑎𝑙𝑛
𝑎𝑢𝑠

,
𝑎𝑚𝑛

𝑎𝑚𝑠

,
𝑎𝑢𝑛
𝑎𝑙𝑠
)
]
 
 
 
 
 
 
 

 (3.12) 

3.3. Ranking of Alternatives by Modified Fuzzy MAIRCA Method  

Ranking results of alternatives are computed by employing the ensuing steps:   

Step 1: Construct the initial linguistic decision matrix (𝐷𝐿) based on the linguistic evaluation of 

alternatives with respect to the considered criteria. Let 𝐾 numbers of experts be involved to judge 

𝑚 alternatives with respect to 𝑛 numbers of criteria. The decision matrix is shown in (3.13): 

𝐷𝐿 = 

(

  
 

𝐿11
1 , … 𝐿11

𝑘 𝐿12
1 , … 𝐿12

𝑘 … 𝐿1𝑛
1 , … 𝐿1𝑛

𝑘

𝐿21
1 , … 𝐿21

𝑘 𝐿22
1 , … 𝐿22

𝑘 … 𝐿2𝑛
1 , … 𝐿2𝑛

𝑘

⋮
⋮

𝐿𝑚1
1 , … 𝐿𝑚1

𝑘

⋱
⋱

𝐿𝑚2
1 , … 𝐿𝑚2

𝑘 …

⋮
⋮

𝐿𝑚𝑛
1 , … 𝐿𝑚𝑛

𝑘 )

  
 

 (3.13) 

Here, 𝐿𝑚𝑛
𝑘  implies that the 𝑚− 𝑡ℎ alternative is linguistically evaluated with respect to the 

𝑛 − 𝑡ℎ criterion by the 𝑘 − 𝑡ℎ expert, and 𝐾 = 1,2,… , 𝑘. 

Step 2: Following the scale for converting the linguistic judgements into corresponding TFNs (e.g.,  

Table 3.2), replace each of the linguistic decision as in (3.14):   

�̃�(𝐾) = 

(

 
 

�̃�11
(𝐾)

�̃�21
(𝐾)

�̃�12
(𝐾)

�̃�22
(𝐾)

⋯
�̃�1𝑛
(𝐾)

�̃�2𝑛
(𝐾)

⋮ ⋱ ⋮

�̃�𝑚1
(𝐾)

�̃�𝑚2
(𝐾) ⋯ �̃�𝑚𝑛

(𝐾)
)

 
 

 (3.14) 
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Table 3.2 Fuzzy evaluation scores to rate the alternatives 

Linguistic terms Fuzzy score 

Very poor (VP) (0,0,1) 

Poor (P) (0,1,3) 

Medium poor (MP) (1,3,5) 

Fair (F) (3,5,7) 

Medium good (MG) (5,7,9) 

Good  (7,9,10) 

Very good (VG) (9,10,10) 

Step 3: Using (3.2) and (3.6), construct the fuzzy aggregated decision matrix which is represented 

by (3.15).   

�̃� =

(

 

�̃�11
�̃�21

�̃�12
�̃�22

⋯
�̃�1𝑛
�̃�2𝑛

⋮ ⋱ ⋮
�̃�𝑚1 �̃�𝑚2 ⋯ �̃�𝑚𝑛)

  (3.15) 

where, �̃�11 =
�̃�11
(1)
+�̃�11

(2)
+⋯+�̃�11

(𝑘)

𝐾
, and �̃�𝑖𝑗 = (𝑎𝑙𝑖𝑗 , 𝑎𝑚𝑖𝑗

, 𝑎𝑢𝑖𝑗).  

Step 4: Since any alternative 𝑃𝐴𝑖 can be chosen with equal probability, the preferences for each of 

them can be represented by (3.16). This step implies that the decision maker is un-biased towards 

the selection of an alternative.   

𝑃𝐴𝑖 =
1

𝑚
; ∑𝑃𝐴𝑖 = 1

𝑚

𝑖=1

 (3.16) 

Step 5: Compute and determine the elements of the fuzzy theoretical evaluation matrix (�̃�𝑃𝐴) by 

multiplying preferences according to alternatives 𝑃𝐴𝑖, and fuzzy criteria weights as obtained by 

fuzzy AHP. This step is mathematically represented in (3.17). 

�̃�𝑃𝐴 = 

(

 
 
 
 

1

𝑚
�̃�1

1

𝑚
�̃�2

1

𝑚
�̃�1

1

𝑚
�̃�2

⋯

1

𝑚
�̃�𝑛

1

𝑚
�̃�𝑛

⋮ ⋱ ⋮
1

𝑚
�̃�1

1

𝑚
�̃�2 ⋯

1

𝑚
�̃�𝑛)

 
 
 
 

=

(

 
 

�̃�𝑝11 �̃�𝑝12
�̃�𝑝21 �̃�𝑝22

⋯
�̃�𝑝1𝑛
�̃�𝑝2𝑛

⋮ ⋱ ⋮
�̃�𝑝𝑚1 �̃�𝑝𝑚2 ⋯ �̃�𝑝𝑚𝑛)

 
 

 (3.17) 

where, �̃�𝑝𝑖𝑗 = (𝑡𝑙𝑝𝑖𝑗 , 𝑡𝑚𝑝𝑖𝑗
, 𝑡𝑢𝑝𝑖𝑗) , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.  
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Step 6: Normalize5 the fuzzy aggregated decision matrix, obtained in Step 3 to compute the fuzzy 

normalized decision matrix �̃� = [�̃�𝑖𝑗]𝑚×𝑛. Where, �̃�𝑖𝑗 = (𝑛𝑙𝑖𝑗 , 𝑛𝑚𝑖𝑗
, 𝑛𝑢𝑖𝑗) is computed by (3.18)6.  

𝑛𝑙𝑖𝑗 =
𝑎𝑙𝑖𝑗

√∑ [(𝑎𝑙𝑖𝑗)
2
+ (𝑎𝑚𝑖𝑗

)
2
+ (𝑎𝑢𝑖𝑗)

2
]𝑚

𝑖=1

 

𝑛𝑚𝑖𝑗
=

𝑎𝑚𝑖𝑗

√∑ [(𝑎𝑙𝑖𝑗)
2
+ (𝑎𝑚𝑖𝑗

)
2
+ (𝑎𝑢𝑖𝑗)

2
]𝑚

𝑖=1

 

𝑛𝑢𝑖𝑗 =
𝑎𝑢𝑖𝑗

√∑ [(𝑎𝑙𝑖𝑗)
2
+ (𝑎𝑚𝑖𝑗

)
2
+ (𝑎𝑢𝑖𝑗)

2
]𝑚

𝑖=1

 

(3.18) 

Step 7: Calculate the fuzzy elements of the actual ponder matrix (�̃�𝑟𝐴) . This step is executed by 

multiplying the elements of the normalized decision matrix (refer (3.18) to the elements of the 

matrix of actual ponder (refer (3.17) by employing (3.19). 

�̃�𝑟𝐴 = (

�̃�𝑟11 �̃�𝑟12
�̃�𝑟21 �̃�𝑟22

⋯
�̃�𝑟𝑛1
�̃�𝑟𝑛2

⋮ ⋱ ⋮
�̃�𝑟𝑚1 �̃�𝑟𝑚2 ⋯ �̃�𝑟𝑚𝑛

)

=

(

 
 

�̃�11 × �̃�𝑝11 �̃�12 × �̃�𝑝12

�̃�21 × �̃�𝑝21 �̃�22 × �̃�𝑝22
⋯

�̃�𝑛1 × �̃�𝑝𝑛1
�̃�𝑛2 × �̃�𝑝𝑛2

⋮ ⋱ ⋮
�̃�𝑚1 × �̃�𝑝𝑚1 �̃�𝑚2 × �̃�𝑝𝑚2 ⋯ �̃�𝑛𝑚 × �̃�𝑝𝑚𝑛)

 
 

 

(3.19) 

where, �̃�𝑟𝑖𝑗 = (𝑡𝑙𝑟𝑖𝑗 , 𝑡𝑚𝑟𝑖𝑗
, 𝑡𝑢𝑟𝑖𝑗) , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.  

Step 8: Compute the gap between the theoretical and actual evaluation of each alternative with 

respect to each criterion, by computing the total gap matrix �̃� (refer (3.20)7). Although, in other 

works (Chatterjee et al., 2018; Gigović et al., 2016; Pamučar et al., 2017, 2014, 2019; Pamucar et 

al., 2018), the authors suggested to perform the simple fuzzy subtraction operation between �̃�𝑃𝐴and 

�̃�𝑟𝐴 , however in some cases it has been examined that in the output, the upper bound of the TFN 

 
5 The normalization procedure of the decision matrix is carried out to increase its comparable capability. 
6 A normalization technique, in fuzzy MAIRCA is used to reduce the complexity involved in hard computation as well 

as to improve the accuracy of numeration. Another benefit of using this procedure is that the decision-maker need not be 

concerned about the nature of the criteria (i.e., benefit or cost criteria). Generally, these types of situations are frequently 

encountered when the decision-maker is dealing with a large set of criteria. 
7 The distance measurement formulae between two fuzzy numbers as given in (Kutlu and Ekmekçioğlu, 2012) is used 

here. The reason for using this may be supplemented as it is a well-established technique in MCDM approaches (e.g., 

Fuzzy TOPSIS). 
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tends to very high value, which further leads to a very high de-fuzzified crisp number, and attaining 

the wrong ordering of alternatives. In this work, the chosen procedure not only reduces the 

computational complexity, but also helps in computing the values without the requirement of de-

fuzzification process.  

𝑔𝑖𝑗 = √
1

3
[(𝑡𝑙𝑝𝑖𝑗 − 𝑡𝑙𝑟𝑖𝑗)

2
+ (𝑡𝑚𝑝𝑖𝑗

− 𝑡𝑚𝑟𝑖𝑗
)
2
+ (𝑡𝑢𝑝𝑖𝑗 − 𝑡𝑢𝑟𝑖𝑗)

2
] (3.21) 

Step 9: Sum up the gap values for each alternative to obtain the final criteria function value by 

utilizing (3.22). These values are further arranged in ascending order to find the final ranking results 

of the alternatives. 

𝑄𝑖 =∑𝑔𝑖𝑗

𝑛

𝑗=1

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,… ,𝑚 (3.22) 

3.4. Ranking of Alternatives by Modified Fuzzy MARCOS Method 

In this section the mathematical steps involved in developing the modified fuzzy MARCOS method 

are presented.  

Steps 1-3: Same as described for fuzzy MAIRCA in Section 3.3.  

Step 4: Generate the extended fuzzy initial decision matrix from the fuzzy aggregated decision 

matrix. In this step, the fuzzy ideal (ID) and fuzzy anti-ideal (AID) solutions are determined8. The 

matrix is represented as in (3.23). 

�̃� =

(

 
 
 
 

�̃�11
�̃�21

�̃�12
�̃�22

⋯
�̃�1𝑛
�̃�2𝑛

⋮      ⋮ ⋱ ⋮
�̃�𝑚1

�̃�𝑖1
(𝐼𝐷)

�̃�𝑖1
(𝐴𝐼𝐷)

�̃�𝑚2

�̃�𝑖2
(𝐼𝐷)

�̃�𝑖2
(𝐴𝐼𝐷)

⋯…
…

�̃�𝑚𝑛

�̃�𝑖𝑛
(𝐼𝐷)

�̃�𝑖𝑛
(𝐴𝐼𝐷)

)

 
 
 
 

 (3.23) 

where, �̃�11 = (𝑎𝑙𝑖𝑗 , 𝑎𝑚𝑖𝑗
, 𝑎𝑢𝑖𝑗),  

 
8 This is similar to the determination of the best and worst alternative respectively using the distance minimization based 

ranking method (Asady and Zendehnam, 2007) 



65 

 

�̃�𝑖𝑗
(𝐼𝐷)

= (𝑎𝑙𝑖𝑗
(𝐼𝐷)

, 𝑎𝑚𝑖𝑗

(𝐼𝐷)
, 𝑎𝑢𝑖𝑗
(𝐼𝐷)

 ) = 𝑚𝑎𝑥{𝑟𝑎𝑛𝑘 𝑣𝑎𝑙𝑢𝑒(�̃�𝑖𝑗)}, ∀𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑗 ∈ 𝐶𝐵, 

�̃�𝑖𝑗
(𝐼𝐷)

= (𝑎𝑙𝑖𝑗
(𝐼𝐷)

, 𝑎𝑚𝑖𝑗

(𝐼𝐷)
, 𝑎𝑢𝑖𝑗
(𝐼𝐷)

 ) = 𝑚𝑖𝑛{𝑟𝑎𝑛𝑘 𝑣𝑎𝑙𝑢𝑒(�̃�𝑖𝑗)}, ∀𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑗 ∈ 𝐶𝐶, 

�̃�𝑖𝑗
(𝐴𝐼𝐷)

= (𝑎𝑙𝑖𝑗
(𝐴𝐼𝐷)

, 𝑎𝑚𝑖𝑗

(𝐴𝐼𝐷)
, 𝑎𝑢𝑖𝑗
(𝐴𝐼𝐷)

 ) = 𝑚𝑖𝑛{𝑟𝑎𝑛𝑘 𝑣𝑎𝑙𝑢𝑒(�̃�𝑖𝑗)}, ∀𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑗 ∈ 𝐶𝐵, 

�̃�𝑖𝑗
(𝐼𝐷)

= (𝑎𝑙𝑖𝑗
(𝐴𝐼𝐷)

, 𝑎𝑚𝑖𝑗

(𝐴𝐼𝐷)
, 𝑎𝑢𝑖𝑗
(𝐴𝐼𝐷)

 ) = 𝑚𝑎𝑥{𝑟𝑎𝑛𝑘 𝑣𝑎𝑙𝑢𝑒(�̃�𝑖𝑗)}, ∀𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑗 ∈ 𝐶𝐶, 

𝐶𝐵 represents beneficial criterion, and 𝐶𝐶 represents cost criterion.  

Step 5: Normalize the extended fuzzy initial decision matrix by employing (3.24) and (3.25).  

�̃�𝑖𝑗 = (𝑛𝑙𝑖𝑗 , 𝑛𝑚𝑖𝑗
, 𝑛𝑢𝑖𝑗) = (

𝑎𝑙𝑖𝑗

𝑎𝑢𝑖𝑗
(𝐼𝐷) ,

𝑎𝑚𝑖𝑗

𝑎𝑚𝑖𝑗
(𝐼𝐷) ,

𝑎𝑢𝑖𝑗

𝑎𝑙𝑖𝑗
(𝐼𝐷))  𝑖𝑓 𝑗 ∈ 𝐶𝐵, (3.24) 

�̃�𝑖𝑗 = (𝑛𝑙𝑖𝑗 , 𝑛𝑚𝑖𝑗
, 𝑛𝑢𝑖𝑗) = (

𝑎𝑙𝑖𝑗
(𝐴𝐼𝐷)

𝑎𝑢𝑖𝑗
,
𝑎𝑚𝑖𝑗
(𝐴𝐼𝐷)

𝑎𝑚𝑖𝑗
,
𝑎𝑢𝑖𝑗
(𝐴𝐼𝐷)

𝑎𝑙𝑖𝑗
)  𝑖𝑓 𝑗 ∈ 𝐶𝐶 , (3.25) 

where, 1 ≤ 𝑖 ≤ 𝑛, and 1 ≤ 𝑗 ≤ 𝑚. 

Step 6: Compute the elements of the weighted normalized decision matrix (�̃� = (�̃�𝑖𝑗)𝑚×𝑛
) (3.26). 

The fuzzy criteria weights obtained from (3.12) are utilized here.  

�̃�𝑖𝑗 = �̃�𝑗⊗ �̃�𝑖𝑗 (3.26) 

Step 7: Calculate the sum of row elements of fuzzy weighted normalized decision matrix by using 

(3.27). Similarly, �̃�(𝐼𝐷) and �̃�(𝐴𝐼𝐷) are also calculated.  

�̃�𝑖 = ∑ �̃�𝑖𝑗
𝑛
𝑗=1  for all 1 ≤ 𝑖 ≤ 𝑚 (3.27) 

Step 8:  De-fuzzify9 the elements �̃�𝑖, �̃�
(𝐼𝐷), and �̃�(𝐴𝐼𝐷) using (3.7). The de-fuzzified values of them 

are represented as 𝑆𝑖, 𝑆
(𝐼𝐷), and 𝑆(𝐴𝐼𝐷), respectively. Then, compute the utility degree of the 

alternatives in relation to the ID and AID by (3.28) and (3.29):  

 
9 It is observed that when the alternatives are evaluated according to the TFN values given in  

Table 3.2, and the steps presented in (Stanković et al., 2020), the upper bound of the TFNs tend to infinity. 
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𝑈𝐷𝑖
(𝐼𝐷)

=
𝑆𝑖
𝑆(𝐼𝐷)

 (3.28) 

𝑈𝐷𝑖
(𝐴𝐼𝐷)

=
𝑆𝑖

𝑆(𝐴𝐼𝐷)
 

(3.29) 

Step 9: Compute the utility function values of the alternatives in relation to the ID (𝑈𝐹𝑖
(𝐼𝐷)

) and 

AID (𝑈𝐹𝑖
(𝐴𝐼𝐷)

) solutions by adopting (3.30) and (3.31).  

𝑈𝐹𝑖
(𝐼𝐷)

=
𝑈𝐷𝑖

(𝐴𝐼𝐷)

𝑈𝐷𝑖
(𝐼𝐷)

+ 𝑈𝐷𝑖
(𝐴𝐼𝐷)

 (3.30) 

𝑈𝐹𝑖
(𝐴𝐼𝐷)

=
𝑈𝐷𝑖

(𝐼𝐷)

𝑈𝐷𝑖
(𝐼𝐷)

+ 𝑈𝐷𝑖
(𝐴𝐼𝐷)

 (3.31) 

Step 10: Determine the utility function values of the alternatives by employing (3.32).  

𝑈𝐹𝑖 =
(𝑈𝐷𝑖

(𝐼𝐷)
+ 𝑈𝐷𝑖

(𝐴𝐼𝐷)
)

1 + (
𝑈𝐷𝑖

(𝐼𝐷)

𝑈𝐷𝑖
(𝐴𝐼𝐷)) + (

𝑈𝐷𝑖
(𝐴𝐼𝐷)

𝑈𝐷𝑖
(𝐼𝐷) )

 
(3.32) 

Step 11: Rank the alternatives based on the final values of the utility function. It is preferred that 

the best alternative has the maximum utility and the worst alternative has the least utility.  

3.5. Proposed Integrated Fuzzy MCDM Frameworks for Risk Prioritization 

Based on the mathematical steps presented for fuzzy AHP, modified fuzzy MAIRCA, and modified 

fuzzy MARCOS in the earlier sections, here two integrated MCDM frameworks are developed, 

and are highlighted below.  

3.5.1. Framework-I: Integrated MCDM Framework Using Fuzzy AHP-Modified Fuzzy 

MAIRCA  

The integrated framework for the risk prioritization of failure modes by using fuzzy AHP and fuzzy 

MAIRCA methods is depicted in Figure 3.2. The procedural steps for calculating the weights of 

the risk factors, and the ranking of failure modes are already discussed Section 3.2, and Section 3.3, 

respectively.  
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Figure 3.2 Proposed framework by integrating fuzzy AHP and modified fuzzy MAIRCA  

3.5.2. Framework-II: Integrated MCDM Framework Using Fuzzy AHP-Modified Fuzzy 

MARCOS  

Like the previous section, here also the weights of the risk factors are computed by the fuzzy AHP 

method (refer Section 3.2), and the failure modes are ranked by the modified fuzzy MARCOS 

method (refer Section 3.4). The framework, along with its steps are further portrayed in Figure 3.3.  

3.6. FMEA Case Study of Automotive Industry  

To examine the potential of the developed frameworks, as presented in Section 3.6, a popular 

FMEA case study of automotive industry is reconsidered here from the work of Kutlu and 

Ekmekçioğlu (Kutlu and Ekmekçioğlu, 2012). The potential failure modes were:  

• non-conforming material (FM1),  • wrong process (FM5),  

• wrong die (FM2),  • damaged goods (FM6),  

• wrong program (FM3),  • wrong part (FM7), and  

• excessive cycle time (FM4),  • incorrect forms (FM8). 
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Figure 3.3 Proposed framework by integrating fuzzy AHP and modified fuzzy MARCOS 

Three participating experts (DM1, DM2, and DM3) provided their linguistic judgements in 

the decision-making process. The pairwise comparisons data among the risk factors through the 

linguistic terms are presented in Table 3.3. Linguistic evaluations of the failure modes in relation 

to the risk factors are replicated in Table 3.4.  

Table 3.3 Linguistic evaluations for obtaining criteria weights 

Risk factors 
Severity Occurrence Detection 

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

Severity E E E FS FS VS SS SS SS 

Occurrence - - - E E E SS FW E 

Detection - - - - - - E E E 

Table 3.4. Linguistic evaluations of failure modes with respect to the risk factors 

Failure 

Modes 

Severity Occurrence Detection 

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

FM1 F F MP F MG MG G MG G 

FM2 P MP MP VG G VG MP MP P 

FM3 MP P MP VG G G VP MP P 

FM4 MP F MP F MG MG G MG G 

FM5 F F MP MG MG G G VG G 

FM6 MG MG F MG G MG MP MP F 

FM7 P MP VP VG VG VG VP MP P 
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Failure 

Modes 

Severity Occurrence Detection 

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

FM8 VP VP P VP VP VP VP VP VP 

3.6.1. Risk Ranking of Failure Modes by Framework - I 

Employing the mathematical steps as presented in Section 3.2, & Section 3.3, the fuzzy weights of 

the risk factors are computed (refer Table 3.5) and the failure modes are ranked (refer Table 3.6).   

Table 3.5 Fuzzy weights of the risk factors 

Criteria Fuzzy weights 

Severity (0.293,0.388,0.565) 

Occurrence (0.203,0.267,0.386) 

Detection (0.234,0.345,0.420) 

The computed consistency ratio (CR) of the aggregated pairwise comparison matrix in fuzzy 

AHP method is 0.050 (which is <0.10). In Table 3.6 the computed ranking results are compared 

with the original work.  

Table 3.6 Risk ranking results of failure modes by framework-I 

Failure 

modes 
Severity Occurrence Detection 

Value of criteria 

functions  

Ranking by 

framework-I 

Ranking obtained by(Kutlu 

and Ekmekçioğlu, 2012) 

FM1 0.040 0.030 0.029 0.0986 2 2 

FM2 0.045 0.027 0.038 0.1103 5 5 

FM3 0.045 0.028 0.040 0.1121 6 7 

FM4 0.041 0.030 0.029 0.1004 4 4 

FM5 0.040 0.029 0.028 0.0963 1 1 

FM6 0.034 0.029 0.036 0.0986 3 3 

FM7 0.048 0.027 0.040 0.1147 7 6 

FM8 0.051 0.036 0.042 0.1291 8 8 

It can be observed from Table 3.6 that the proposed Framework-I ranks the failure modes in 

the following order: 𝐹𝑀5 > 𝐹𝑀1 > 𝐹𝑀6 > 𝐹𝑀4 > 𝐹𝑀2 > 𝐹𝑀3 > 𝐹𝑀7 > 𝐹𝑀8.  

3.6.2. Risk Ranking of Failure Modes by Framework-II 

Here, the risk ranking of the failure modes for the considered case study are computed (refer Table 

3.7) by employing the methods proposed in Section 3.2, Section 3.4.  

Table 3.7 Risk ranking results of failure modes by framework-II 

Failure 

modes 
𝑺𝒊 𝑼𝑫𝒊

(𝑰𝑫)
 𝑼𝑫𝒊

(𝑨𝑰𝑫)
 𝑼𝑭𝒊

(𝑰𝑫)
 𝑼𝑭𝒊

(𝑨𝑰𝑫)
 𝑼𝑭𝒊 

Ranking by 

framework-II 

FM1 0.685 16.069 0.758 0.0450 0.955 21.2028 2 
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Failure 

modes 
𝑺𝒊 𝑼𝑫𝒊

(𝑰𝑫)
 𝑼𝑫𝒊

(𝑨𝑰𝑫)
 𝑼𝑭𝒊

(𝑰𝑫)
 𝑼𝑭𝒊

(𝑨𝑰𝑫)
 𝑼𝑭𝒊 

Ranking by 

framework-II 

FM2 0.477 11.185 0.528 0.0450 0.955 21.2028 5 

FM3 0.435 10.204 0.481 0.0450 0.955 21.2028 6 

FM4 0.652 15.314 0.722 0.0450 0.955 21.2028 4 

FM5 0.750 17.599 0.830 0.0450 0.955 21.2028 1 

FM6 0.662 15.546 0.733 0.0450 0.955 21.2028 3 

FM7 0.403 9.460 0.446 0.0450 0.955 21.2028 7 

FM8 0.043 1.000 0.047 0.0450 0.955 21.2028 8 

𝑺(𝑰𝑫) 0.043  

𝑺(𝑨𝑰𝑫) 0.903 

From Table 3.7, it can be observed that the proposed Framework-II generates the same results 

as in proposed Framework-I, and are quite similar to the original work  Thus, it can be said that the 

developed methods produce credible ranking results.  

3.7. Validation of the Ranking Results 

This section presents twofold validations to examine the sensitivities of the suggested frameworks.  

3.7.1. Validation 1: Comparisons with Other Fuzzy MCDM Methods 

Here, initially the same case study is solved by other popular fuzzy MCDM methods: fuzzy VIKOR 

(Opricovic, 2011), fuzzy COPRAS (Zarbakhshnia et al., 2018), fuzzy MOORA (Akkaya et al., 

2015), fuzzy MABAC (Bozanic et al., 2018), fuzzy TOPSIS (Kutlu and Ekmekçioğlu, 2012), 

original fuzzy MAIRCA (Pamučar et al., 2014), fuzzy MARCOS (Stanković et al., 2020), and the 

outputs are compared with the ranking results obtained by the proposed Framework-I and 

Framework-II (refer Table 3.8) to examine that feasibility of the outcomes.  

Table 3.8 Risk ranking of failure modes generated by other fuzzy MCDM methods 

Failure 

modes 

Fuzzy 

VIKOR  

Fuzzy  

COPRAS 

Fuzzy 

MOORA 

Fuzzy 

MABAC 

Fuzzy 

TOPSIS 

Fuzzy 

MAIRCA  

Fuzzy 

MARCOS 
Framework-I 

Framework-

II 

FM1 2 2 2 2 2 2 
Do not able 

to rank the 

failure 

modes. 

Algorithm 

got stuck in 

Step 8 as 

pointed out 

in section 

3.4 

2 2 

FM2 5 5 5 5 5 5 5 5 

FM3 6 6 6 6 7 6 6 6 

FM4 3 4 4 4 4 4 4 4 

FM5 1 1 1 1 1 1 1 1 

FM6 4 3 3 3 3 3 3 3 

FM7 7 7 7 7 6 7 7 7 

FM8 8 8 8 8 8 8 8 8 

The following observations are made from the results presented in Table 3.8: 
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• The approach given in (Kutlu and Ekmekçioğlu, 2012) computes slightly different risk 

ranking results when compared with the proposed frameworks. This is probably due to 

adopting the unlike criteria weight calculation method. In the original work Chang’s extent 

analysis method (Chang, 1996) was employed, but in the proposed frameworks Buckley’s 

fuzzy AHP method is exploited (Buckley, 1985). The reasons for not using extent analysis 

method have already been discussed in Chapter 2 / Section 2.5.1.  

• All fuzzy MCDM methods rank FM5 as the most critical failure mode, followed by FM1.  

• Fuzzy VIKOR method ranks FM4 as the third critical failure mode, and FM6 as the fourth 

critical failure mode. This is probably due to the chosen value of 𝑣 = 0.5, a weight for the 

strategy of maximum group utility. Otherwise, all other fuzzy MCDM methods rank FM6 

as the third critical failure mode and FM4 as the fourth critical failure mode. Fuzzy 

COPRAS and Fuzzy MOORA produce the same risk ranking results when compared with 

the proposed approaches.  

• Although the Fuzzy COPRAS method does not need a distinct transformation of the values 

of the beneficial/cost attribute in the normalized matrix and the total ranking index of each 

alternative is computed using proportional evaluation, the fuzzy COPRAS method has a 

more complicated procedure of combination of the values of the alternatives.  

• In some circumstances, Fuzzy COPRAS method shows some degree of contradiction. For 

example, if the value of the dominant attribute for the non-beneficial criterion is the 

smallest and the highest weight of the criteria relates to that criterion, then the aggregation 

of weighted values is found in the denominator of the aggregated function. This can lead 

to erroneous decisions (Stević et al., 2020).  

• In the MOORA method, the ratio system and reference point approaches are combined to 

obtain the best alternative. Ratio system employs arithmetic weighted aggregation operator, 

and it is useful in applications where the attributes are independent to each other. However, 

it has the defect when the dependent attributes are considered for the decision-making 

process. The reference point approach uses the Min-Max metric which is useful for the 

cases where the optimal choice for decision-makers is the alternative that does not show 

bad performance on any of the attributes (Brauers and Zavadskas, 2006).  
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• For Fuzzy MOORA, it is assumed that the criteria are independent, which is not feasible in 

this considered FMEA example, and such assumption can lead to a wrong ranking result. 

Although the fuzzy version of the original MAIRCA method and the proposed fuzzy 

MAIRCA method generate the same risk ranking results, the ensuing salient features highlight the 

superiority of the proposed Framework-I:  

• It incorporates a normalization technique which helps in reducing the hard computation 

complexity and increases calculation accuracy. When the number of criteria increases, it 

becomes quite difficult for the decision maker to identify the benefit and cost criteria. 

However, in the adopted normalization technique, there is no such requirement of that 

identification.  

• Secondly, the step of de-fuzzification after obtaining the total gap matrix is eliminated. To 

do that, the fuzzy Euclidian distance between elements of the matrix of theoretical and 

actual ponder are calculated, which is no doubt more realistic than the simple fuzzy 

subtraction operation. 

When comparisons are made between the fuzzy MARCOS method presented in (Stanković et 

al., 2020), and the proposed modified fuzzy MARCOS method, it is observed that the original work 

was not able to rank the failure modes, as it got stuck in step 8, as pointed out in Section 3.4. While 

the proposed fuzzy MARCOS method properly ranks the failure modes, which also shows a good 

uniformity with the other fuzzy MCDM methods. Although, a drastic rank variation between the 

original work and the proposed approaches are not noticed, it can be asserted that the applications 

of these hybrid approaches are new in the FMEA domain, mathematically easier, easy to interpret, 

and require less computational steps. 

3.7.2. Validation 2: Effects of Changing of Risk Factors Weights  

In practical scenarios, it is often required to change the risk factors’ weights according to the 

application need and the MCDM method should be robust enough to prevent the drastic rank 

reversals.  Therefore, here the weights of the risk factors are interchanged to visualize their 

subsequent impacts on the risk ranking results (refer Table 3.9). Additionally, the Spearman’s rank 

correlation coefficients of the generated ranking results after changing the criteria weights are 

computed and contrasted with the original work of Kutlu and Ekmekçioğlu (Kutlu and 

Ekmekçioğlu, 2012) and the fuzzy version of MAIRCA (Pamučar et al., 2014).  
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Table 3.9 Set of criteria weights for sensitivity analysis 

𝑊𝑆𝑂𝐷 
  

Weight set - 1 

Severity (0.293, 0.388, 0.565) 

CR = 0.05<0.10 Occurrence (0.203, 0.267, 0.386) 

Detection (0.234, 0.345, 0.420) 

𝑊𝑆𝐷𝑂 
  

Weight set - 2  

Severity (0.293, 0.388, 0.565) 

CR = 0.05<0.10 Occurrence (0.234, 0.345, 0.420) 

Detection (0.203, 0.267, 0.386) 

𝑊𝑂𝐷𝑆 
  

Weight set - 3  

Severity (0.203, 0.267, 0.386) 

CR = 0.05<0.10 Occurrence (0.234, 0.345, 0.420) 

Detection (0.293, 0.388, 0.565) 

𝑊𝑂𝑆𝐷 
  

Weight set - 4 

Severity (0.203, 0.267, 0.386) 

CR = 0.05<0.10 Occurrence (0.293, 0.388, 0.565) 

Detection (0.234, 0.345, 0.420) 

𝑊𝐷𝑆𝑂 
  

Weight set - 5 

Severity (0.234, 0.345, 0.420) 

CR = 0.05<0.10 Occurrence (0.293, 0.388, 0.565) 

Detection (0.203, 0.267, 0.386) 

𝑊𝐷𝑂𝑆 
  

Weight set - 6 

Severity (0.234, 0.345, 0.420) 

CR = 0.05<0.10 Occurrence (0.203, 0.267, 0.386) 

Detection (0.293, 0.388, 0.565) 

The computed ranking results of the failure modes by adopting the different criteria weights 

are presented in Table 3.10. It is noteworthy that the changes produce the same results for both 

proposed frameworks (viz., Framework-I, and Framework-II). The average of Spearman’s rank 

correlation coefficient for different ranking results generated by the proposed frameworks is 96.3%. 

whereas, the average spearman’s rank correlation coefficient of the results presented in (Kutlu and 

Ekmekçioğlu, 2012) was 94.2%. Thus, it can be said that the proposed approaches are superior to 

the integrated fuzzy AHP-fuzzy TOPSIS approach. 

Table 3.10 Variations in ranking results by changing the risk factors weights (both Framework-I and Framework-II) 

Failure modes 𝑊𝑆𝑂𝐷 𝑊𝑆𝐷𝑂 𝑊𝑂𝐷𝑆 𝑊𝑂𝑆𝐷 𝑊𝐷𝑆𝑂 𝑊𝐷𝑂𝑆 

FM1 2 3 2 2 3 2 

FM2 5 5 5 5 5 5 

FM3 6 6 6 6 6 6 

FM4 4 4 3 3 4 3 

FM5 1 1 1 1 1 1 

FM6 3 2 4 4 2 4 

FM7 7 7 7 7 7 7 

FM8 8 8 8 8 8 8 
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Further, it can be observed from Table 3.10 that when the risk factors’ weights are altered, 

there are little variations in preferences ranking. Hence, the proposed methods are sensitive to the 

changes, but not much. FM5 is consistently ranked as the most critical failure mode. There are 

changes in ranking positions of FM1, FM4 and FM6. However, any changes in ranking positions 

of FM2, FM3, FM7 and FM8 are not witnessed. In fact, stability of the ranking results are better 

than the method in (Kutlu and Ekmekçioğlu, 2012). Hence, it can be said that the ranking result 

obtained by our proposed approach is confirmed, credible and robust.  

3.8. Chapter Summary 

In this chapter, at first two fuzzy MCDM methods have been developed in the group decision 

making environment: one is modified fuzzy MAIRCA and another one is modified fuzzy 

MARCOS. Then to address the shortcomings of the traditional RPN-based FMEA approach, each 

of these two methods has been combined with Buckley’s fuzzy AHP method to develop two 

integrated frameworks: fuzzy AHP- modified fuzzy MAIRCA, and fuzzy AHP-modified fuzzy 

MARCOS. To validate the potentiality of the proposed integrated frameworks a benchmark 

example of FMEA has been considered which was earlier solved by the fuzzy AHP-fuzzy TOPSIS 

method. In that approach, fuzzy AHP (based on extent analysis method) was considered to calculate 

the relative importance of the risk factors. However, the extent analysis based fuzzy AHP has 

received several criticisms as discussed in Chapter 2 /Section 2.5.1. In this work, using the same 

pairwise comparison matrix and linguistic scale, Buckley’s geometric mean based fuzzy AHP has 

been considered to calculate the weights of the risk factors. Next, to reduce the hard-computational 

complexity of the fuzzy extension of the traditional MAIRCA method, a modified fuzzy MAIRCA 

method has been proposed. Further, in the next work, after observing the inability of the fuzzy 

MARCOS method developed in (Stanković et al., 2020) for risk ranking of failure modes in the 

considered FMEA problem, a modified fuzzy MARCOS method has been developed. When the 

obtained results have been compared with the fuzzy AHP-fuzzy TOPSIS approach, it has been 

observed that both developed integrated approaches produce more stable ranking results than the 

original one. Apart from that, when the number of risk factors and failure modes are increased, 

proposed approaches are capable of handling that situation and are still able to provide credible 

ranking results.  

----------------- 
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Chapter 4  System Description  

4.1. Schemes for Selecting the System  

s discussed in 0 / Section 1.1 that during the RCM implementation, the first task is to select 

the appropriate system. To do that, the next questions to confront are to choose which system 

and on what basis? One possible solution is to choose all the systems inside the plant, but this 

contradicts with the main philosophy of RCM (viz., cost effectiveness). It is observed from the 

practical experience that many of the system rarely fail in their whole operating cycle, while others 

fail randomly, and some have predefined failure patterns, which can easily fit a statistical 

distribution. These random failures have serious consequences on the plant operation and incur a 

significant maintenance cost. Thus, the following schemes may be adopted in this thesis work while 

selecting the system: 

• Due to the random failures, the system has undergone many CM tasks in recent times, 

• The system with repeated PM tasks or associated costs in recent years, 

• Combination of above two points, 

• The system has high cost of CM tasks in recent years, 

• Catastrophic failure of the system can lead to stoppage of the total production process and 

production flow, 

• Catastrophic failure of the system can affect the safety of the operator, 

• Hazardous wastes are generated after failure or during maintenance tasks of the system. 

Apart from the above points, it is also mandatory to discuss with the experts and shop floor 

engineers regarding the feasibility of the study while implementing the RCM program. Next, the 

considered systems in this thesis work are illustrated.  

A 
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4.2. The System for the Study – Gearboxes of a Steel Rolling Mill 

After consulting with the experts and utilizing the previously mentioned schemes, the gearboxes 

installed in the light and medium merchant mill (LMMM) section of a leading steel processing 

plant are considered for further study in this thesis.  

A typical integrated steel plant has several sections, such as coke-oven plant and coal 

chemical plant, sinter plant, blast furnace, steel melt shop, continuous casting department, etc. The 

cast blooms from the continuous casting department are heated and rolled in the two high speed 

and fully automated rolling mills namely LMMM and medium merchant and structural mill 

(MMSM). The billets produced in LMMM are further rolled in the bar mill or wire rod mill. The 

finished products include wire rods and long products like reinforcement bars, rounds, squares, 

flats, angles, channels, billets, etc.  

In the LMMM section, a total of seven gearboxes are operating, each having a set of attached 

rollers for the compression of hot steel billets, coming from the continuous casting department. 

This section is very much critical in terms of providing final shape, size and surface quality to the 

hot steel billets. Each of the gearbox is driven by an DC induction motor. Generally, two types of 

gearboxes are installed there, one for vertical compression and another for horizontal compression 

of the hot steel billets. The block diagrams of the gearboxes are shown in Figure 4.1 and Figure 

4.2.  

From the figures, it is clearly observed that these gearboxes are quite large, and complex. 

The gearbox shown in Figure 4.1 comprised of a single gearbox, whereas, in Figure 4.2 it is 

highlighted that there are two gearboxes – bottom gearbox, and top gearbox. Additionally, all the 

schemes described in Section 4.1 has been observed to be relevant for these gearboxes. Thus, after 

consulting the experts and engineers, it was decided to implement the RCM for these gearboxes.  

4.3. System Boundary and Surrounding Environment 

During the visit to the LMMM section of the steel plant, it was observed that the gearboxes were 

covered by metal covers. So, in this study, all the components inside the gearbox cover will be 

focused to address the objectives. Apart from that, other noticeable things about the surrounding 

environment are as follows:  
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Figure 4.1. Gearbox for horizontal compression of the steel billets 

 

Figure 4.2. Gearbox for vertical compression of the steel billets 
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• These gearboxes are being operated in a hostile operating condition (refer Table 4.1), where 

the surrounding dust level, humidity and temperature are high. The dust and humidity once 

entrapped in the gear oil can initiate the faults which can further lead to failures.  

Table 4.1 Specifications of environmental conditions 

Environmental Parameter Normal Marginal Hostile 

Relative humidity (%) <80.0 80.0-90.0 >90.0 

Ambient temperature (°C) <35.0 35.0-45.0 >45.0 

Dust level (R-scale) Very very low (1) – 

Low (3) 

Moderate (4)-High (5) Very high(6)- Very  

very high(7) 

Duty cycle Constant Varying Shock 

Surrounding vibration Low Moderate Severe 

Ease of maintenance Good Restricted Very complicated 

• The surrounding vibration level is very high. This is because several gearboxes are being 

operated in the surrounding area, and each of them has its own vibration level.  

• As the hot cast blooms are being passed through the rollers attached to the gearboxes, it is 

almost impossible for the operators to stand by the side of the gearboxes for a long time.   

4.4. Different Failure Modes, Causes and Effects of the Components of the Gearboxes 

To identify the most pertinent failure modes of the considered gearboxes, a team of cross-functional 

experts are formed consisting of a deputy manager (DE1), an assistant manager another (DE2), and 

an operator (DE3). They have different level of expertise based on their level of knowledge and the 

tenure of service. To carry out the FMEA, the failure modes are initially identified, along with their 

causes, and effects from the TBL of sustainability (viz., economic, social, and environmental 

effects) (refer Table 4.2).  

Table 4.2 Different failure modes of the components of the gearbox, their causes and effects 

Components Notations 
Failure 

Modes 
Failure causes Failure effects 

Gears FM1 
Wear of 

Teeth 

- Due to excessive 

load on tooth 

profile. This load is 

larger than the 

endurance limit of 

the material, 

- improper 

mounting of gears,  

- poor lubricating 

condition, 

- improper heat 

treatment of gear 

material, 

Economical 

- Delay in timely delivery of the 

final product, 

- Production of out-of-design 

final product,  

- For excessive wear, other costs 

are incurred, like procurement 

cost, ordering cost, lost 

production, etc. 

Social 

- Excessive wear leads to 

increased noise and vibration, 

increase of smear by lubricant, 

which can harm the operators 

physically, 
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Components Notations 
Failure 

Modes 
Failure causes Failure effects 

-impurities in the 

lubricating oil. 

- Lost production time is 

compensated with excess labour 

hours to meet the output target, 

- Worker’s mind-set is changed 

due to repetitive failure and 

interruption.  

Environmental 

- Produce harmful and toxic 

gases due to burning of 

lubricants,  

- Proper disposal of burnt 

lubricating oil, waste material 

and their recycling are a major 

problem.  

FM2 
Broken 

Teeth 

- Unexpected 

heavy load on 

gears. 

- fatigue breakage 

from cyclic 

loading, 

- excessive wear of 

teeth and thinning 

of teeth, etc.  

Economical 

Excessive lead time, out-of-

design final product preparation, 

and other procurement and 

installation related costs.  

Social 

- Can obstruct the smooth 

movement of red-hot cast bloom 

and subsequently those blooms 

can fall out of the pathway, 

which will harm the operator,  

- excess working hours for the 

operators, and change of their 

mind-set, etc. 

Environmental - Same as FM1. 

FM3 
Pitting of 

Gear 

- Improper 

consideration of 

hardness, texture 

and load. Actual 

born load generally 

exceeds the 

endurance limit,  

- excessive 

hardening or 

crispiness of gear 

surface, 

- use of improper 

lubricating oil, etc. 

Economical -Same as FM1 and FM2 

Social -Same as FM1 and FM2 

Environmental -Same as FM1 and FM2 

FM4 
Axial Shift 

of Gear 

- Improper 

mounting due to 

lack of knowledge 

of the operator,  

- sudden excessive 

load, 

-improper design of 

teeth profile, etc. 

Economical 

-It can incur huge economic 

losses, in terms of lost 

production, higher lead time, 

damage of final product, etc. 

Social 

- Can harm the operator 

physically and fatal accident 

may occur. 

Environmental 

- Same as FM1, 

- at the initial stage, more 

energies are required to move 

the other meshing gears, etc. 

FM5 
Scoring of 

gears 

- poor quality of 

lubricating oil, with 

improper viscosity,  

- poor matching of 

material,  

-improper cooling 

of lubricating oils, 

larger loads, etc. 

Economical - Same as FM1 

Social 

- Scoring of gear can lead to 

other types of failures, like 

wear, breakage of teeth or axial 

shifts and can cause similar 

types of damages as mentioned 

above. 
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Components Notations 
Failure 

Modes 
Failure causes Failure effects 

Environmental - Same as FM1 and FM4. 

Bearings 

FM6 Brinelling 

- shock or 

excessive loads due 

to improper 

mounting, 

- excessive static or 

impact load during 

operation,  

- improper 

installation and 

handling, etc. 

Economical 

- Can damage other components 

of the bearing which will lead to 

total replacement,  

- excessive vibration can 

damage the final dimension of 

the cast blooms, etc. 

Social 

- At the later stage, due to 

excessive vibration, can lead to 

fatal accident,  

- replacement of bearing will 

cause increased lead-time, 

affects the worker’s mind-set to 

a great extent, etc.  

Environmental 

- Can damage the lubrication oil, 

which in turns damage the other 

parts, and can produce some 

toxic gases at the burnt 

condition, 

- draw excessive energy for 

operation, etc. 

FM7 
Cage 

defect 

- Excessive 

vibration caused 

due to damage of 

other components,  

- contamination 

and insufficiency 

of lubricating oil,  

- fluctuation in the 

rotating speed due 

to shocks coming 

from cast blooms,  

- improper 

alignment of balls, 

etc. 

Economical - Same as FM6 

Social - Same as FM6 

Environmental - Same as FM6 

FM8 
Crack on 

raceways 

- Excessive 

interference,  

- excessive load 

and shock load,  

- flaking 

progression,  

- generation of heat 

due to creep,  

- poor taper angle 

of tapered shaft, 

etc. 

Economical - Same as FM6  

Social - Same as FM6 

Environmental - Same as FM6 

FM9 
Crack of 

rollers 

- Almost similar 

causes like FM8 

Economical - Same as FM6  

Social - Same as FM6 

Environmental - Same as FM6 

Shafts FM10 Bent shaft 

- Mostly due to 

improper 

installation and 

setup activities,  

- heavy shock loads 

during operation,  

Economical 

- Can lead to replacement of the 

shaft, which will take severe 

delay in production, huge 

monetary losses to the 

organization, 

- affect the final dimension of 

the output product, etc. 
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Components Notations 
Failure 

Modes 
Failure causes Failure effects 

- thermal expansion 

or contraction 

caused due to other 

reasons, etc.  
Social 

- can lead to fatal accidents of 

the operators,  

- affects the working mentality 

of the operator,  

- overtime work to meet the 

output target, etc. 

Environmental 

- Generates a lot of waste 

material which in turn creates a 

proper disposal problem, 

- creates excessive heat and 

burns the lubricating oil. Burnt 

lubricating oil generates toxic 

gases, etc.  

FM11 
Crack of 

shaft 

- metallurgical 

abnormalities,  

- cyclic fatigue,  

- excessive torque,  

- increased stress 

due to 

misalignment, etc. 

Economical - Same as FM10 

Social - Same as FM10 

Environmental - Same as FM10 

FM12 
Fracture of 

shaft 

- Heavy loads,  

- cyclical stress,  

- poor design, etc. 

Economical - Same as FM10 

Social - Same as FM10 

Environmental - Same as FM10 

4.5. Major Faults, Symptoms, Health Indicators, and Measuring Instruments 

Some frequently occurring faults, and their symptoms are presented in Table 4.3. In Table 4.4 the 

useful HIs to identify those faults and the measuring instruments are presented. All this information 

is collected either from the experts, or from the previous data stored in the central database of the 

organization. Based on this information, the remaining part of the work is developed.  

Table 4.3 Major faults along with their notable symptoms 

Type of faults 
Symptoms 

Component Mode 

Gear 

Teeth wear (abrasive) Abnormal sound and vibration or both. 

Breakage of teeth 
Abnormal vibration, abnormal sound, or both, with 

rise in temperature of bearing housing. 

Pitting Abnormal vibration or sound. 

Improper meshing 
Abnormal sound and vibration with rise in 

temperature of bearing housing. 

Axial shift of gear 
Abnormal sound, abnormal vibration, or 

combination of them. 

Bearing 

Fatigue failure (flaking, 

pitting and surface erosion) 
Abnormal sound, vibration, or both. 

Improper mounting and 

installation 

Abnormal vibration, leading to abnormal sound and 

temperature rise of bearing housing. 

Lubrication failure 
Abnormal temperature rise at first, then abnormal 

vibration and sound.  

Cage defect 
Abnormal vibration, sound and temperature or 

combination of them. 
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Race defect (both inner and 

outer) 

Abnormal vibration level with abnormal temperature 

of housing. 

Shaft 

Bent shaft 
Abnormal sound, vibration and temperature or 

combination of them. 

Mild and severe crack 
Abnormal vibration and sound, later rise in 

temperature of bearing housing. 

Fretting corrosion Abnormal vibration or sound. 

Table 4.4 HIs, their relevance with different types of faults and respective measuring instruments 

Considered health indicators Relevance with different types of faults 
Measuring 

instrument 

RMS value of vibration in 

vertical direction taken from 

bearing housing (mm/sec) 

High value of this indicator generally represent 

shock originating due to improper meshing of gear, 

tooth breakage, different types of bearing defects 

and looseness of components. 

Tri-axial 

accelerometer. 

RMS value of vibration in 

horizontal direction taken 

from bearing housing 

(mm/sec) 

High value of this indicator represents unbalance 

cause due to bent shaft, improper fitting of gears or 

bearings etc. 

RMS value of vibration in 

axial direction taken from 

bearing housing (mm/sec) 

High value of this indicator represents misalignment 

of several components, like gears, bearings etc. 

RMS value of foundation 

vibration (mm/sec) 

This indicator is greatly affected by looseness of 

several parts of the gearbox. However, vibration at 

foundation do originate from all moving 

components in the gearbox. 

Uniaxial 

Accelerometer. 

Oil flow rate (litre/min) 

Significant reduction of this indicator from its 

threshold range implies improper meshing of gears, 

severe bearing defects, or broken teeth etc. 

Sometimes, faults may present in the lubricating 

system. 

Flow meter. 

Oil temperature (˚C)  

Major increase of this indicator implies improper 

bearing function, pitting and breakage of gear teeth 

etc. 

Manually. 

Temperature of bearing 

housing (˚C) 

For such gearboxes, operating in a hostile 

environment, if an operator touches the casing 

nearer to bearing housing and feels uncomfortable, 

then it is assumed that it is in unhealthy state. 

Increased value of this indicator generally indicates 

slipping of races of bearings, improper lubrication 

etc. 

Infrared 

thermometer / 

Laser gun. 

4.6. Chapter Summary 

In this chapter, the systems considered to address the major decision-making problems as discussed 

in Chapter 1 are described. According to RCM philosophy, at first the block diagrams of the 

considered gearboxes have been presented. Thereafter, a detailed description about the system 

boundary and surrounding environment are presented. Next, major failure modes, their causes, and 

effects have been highlighted from the TBL of sustainability. After that, frequently occurring faults, 

their symptoms, measuring instruments are listed out. These data are further utilized in the next 

chapters for analyses purposes.  

------------------ 
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Chapter 5  Integrated MCDM Frameworks for Risk Ranking of 

Failure Modes of a Gearbox using Linguistic Data 

5.1. Introduction 

he drawbacks of the traditional RPN-based approach have also been elicited in Chapter 1 / 

Section 1.1.1. There, it has been discussed that to implement the sustainability-based 

manufacturing practices in the industry, its associated processes should also be made sustainable. 

For the past two decades or so, manufacturing industries have been heavily pushed to consider 

sustainability aspects as a major point of concern to save the planet. The Governments have started 

formulating and enforcing the statutory regulations (e.g., Clean Air Act (1970) (Rogers, 1970), 

Resource Conservation and Recovery Act (1976) (Andersen, 1978), and Toxic Substance Control 

Act (1976) (McRae et al., 1978)). These acts are mainly aimed at reducing the environmental 

impacts of hazardous waste produced by systems/machinery during their operational, maintenance 

phases or after their failure. Apart from these regulations, there are several other standards like ISO 

45001 (related to health and safety), ISO 37001 (anti-bribery management systems), ISO 14064 

(greenhouse gases),  and TS 14067 (carbon footprint of products) that have also broadened the 

concept of sustainable development to include economic, social and environmental aspects 

(Silvestre and Ţîrcă, 2019).  

During the RCM study of the process plant gearboxes, it was observed that in its maintenance 

phase & operating phases, and/or in case of catastrophic failures, different types of hazardous waste 

(e.g., burnt oil, grease, hazardous gases) are produced, which have significant impacts on the 

working surroundings. Besides, when the gearboxes are operated in degraded conditions, excess 

energy is consumed, and sometimes toxic substances are also produced, thereby, adversely 

affecting the environment. Additionally, the degraded state causes a significant economic and 

ecological loss by producing poor quality products and a substantial amount of scrap. Socially, this 

state also intensifies the chances of occurrence of fatal accidents affecting the workers’ moral, 

besides causing delays and frustration in completing other assigned and related tasks. Detailed 

descriptions of the different potential failure modes of the gearbox, their cause(s), and effect(s) 

from TBL of sustainability have been described in Chapter 4 / Table 4.2.  

System FMEA being an integrated part of design/manufacturing process should be 

considered from a holistic and sustainability point of view. Therefore, initially, it is essential to 

decouple the severities of failure modes from the Triple Bottom Line (TBL) of sustainability. By 

T 
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considering the severities with respect to TBL of sustainability, many risk factors/sub risk factors 

are emanated and required to be considered simultaneously to accurately estimate the associated 

risks of failure modes. However, for most of these risk factors, exact numerical data are not 

obtainable within the organization, and thus they are linguistically evaluated by the experts. 

Besides, computation of weights of risk factors needs the elimination of subjective uncertainties 

and/or manage them in a much abstract way, such that they have minimal impacts on the outcome 

(viz., final ranking results). Additionally, when the involved criteria in a decision-making process 

are increased in number, the following problems are further developed:  

• Organizations often wish to categorize the risk factors into cause and effect groups. 

• If the previously described fuzzy AHP based weight calculation method is adopted (refer 

Chapter 3 / Section 3.2), then a lot of pairwise comparisons are required to be performed. 

For example, if 𝑛 represents the number of involved criteria in a decision-making process, 

then in AHP total 
𝑛(𝑛+1)

2
 pairwise comparisons are required to be made, which become an 

arduous task to the decision experts. 

Based on the above discussions, this chapter makes the following contributions10:    

a) Identifying the pertinent risk factors of the failure modes from the TBL of sustainability by 

considering a case study of process plant gearbox (refer Chapter 4).  

b) Applying IT2F-DEMATEL method to assess the causal dependencies among the risk 

factors, by considering the subjective assessments of the experts. This method is also 

utilized to compute the weights of the identified risk factors.  

c) Employing the proposed modified fuzzy MAIRCA (refer Section 3.3) and modified fuzzy 

MARCOS (refer Section 3.4) methods, to obtain the risk ranking of failure modes.  

d) Performing the detailed comparative analyses between the modified fuzzy MAIRCA and 

the modified fuzzy MARCOS methods in terms of their ranking stability and robustness.  

 
10 The publication from this work can be found in the following paper:  

a) Boral, S., Howard, I., Chaturvedi, S.K., McKee, K., Naikan, V.N.A., 2020. A novel hybrid multi-criteria group 

decision making approach for failure mode and effect analysis: An essential requirement for sustainable 

manufacturing. Sustainable Production and Consumption 21, 14-32. 
b) Boral. S., Chaturvedi, S.K., Liu. Y., Howard, I. (2021). Integrated fuzzy MCDM frameworks in risk 

prioritization of failure modes. In Advances in Performability Engineering. (Communicated). 



85 

 

5.2. Interval Type-2 Fuzzy Sets: Definitions and Arithmetic Operations 

5.2.1. Type-2 Fuzzy Set  

Definition 1 (Baykasoğlu and Gölcük, 2017): A Type-2 Fuzzy Set (T2FS) 𝐴 ̃̃in the universe of 

discourse 𝑋 is represented by ((5.1).  

�̃̃� =  {((𝑥, 𝑢), 𝜇�̃̃�(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥  ⊆ [0,1], 0 ≤ 𝜇
�̃̃�
(𝑥, 𝑢) ≤ 1 } (5.1) 

where,  𝜇
�̃̃�

 is a type-2 membership function, and  𝐽𝑥 denotes an interval in[0,1].  

A type-2 fuzzy set �̃̃� can also be represented as in ((5.2). 

�̃̃� = ∫ ∫ 𝜇
�̃̃�
(𝑥, 𝑢)/(𝑥, 𝑢)

𝑢∈𝐽𝑥𝑥∈𝑋

 (5.2) 

where 𝐽𝑥  ⊆ [0,1] and ∬  denotes union over all admissible 𝑥 𝑎𝑛𝑑 𝑢. 

Definition 2 (Baykasoğlu and Gölcük, 2017): Let �̃̃� be a T2FS in the universe of discourse 𝑋, 

represented by the type-2 membership function 𝜇
�̃̃�

. If all 𝜇
�̃̃�
(𝑥, 𝑢) = 1, then �̃̃� is called an IT2FS. 

An IT2FS �̃̃� can be interpreted as a special case of a type-2 fuzzy set, represented as follows: 

�̃̃� = ∫ ∫ 1/(𝑥, 𝑢)
𝑢∈𝐽𝑥𝑥∈𝑋

 (5.3) 

where 𝐽𝑥  ⊆ [0,1]. In other words, if all the secondary grades are equal to 1, then T2FS is 

known as IT2FS.  

Definition 3 (Baykasoğlu and Gölcük, 2017): The upper and lower MF of an IT2FS are T1FSs. 

Figure 5.1 graphically represents a trapezoidal IT2FS �̃̃�, and its mathematical representation is 

given by (5.4). In other words, when the upper MF and lower MF of an IT2FS are of linear type, 

it is considered as the trapezoidal IT2FS.  
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�̃̃� = (�̃�𝑖
𝑈, �̃�𝑖

𝐿)

= ((𝑎𝑖1
𝑈 , 𝑎𝑖2

𝑈 , 𝑎𝑖3
𝑈 , 𝑎𝑖4

𝑈 ;  𝐻1(�̃�𝑖
𝑈), 𝐻2(�̃�𝑖

𝑈), (𝑎𝑖1
𝐿 , 𝑎𝑖2

𝐿 , 𝑎𝑖3
𝐿 , 𝑎𝑖4

𝐿 ;  𝐻1(�̃�𝑖
𝐿),𝐻2(�̃�𝑖

𝐿)  ) 11 
(5.4) 

 

Figure 5.1 A trapezoidal interval type-2 fuzzy set 

5.2.2. Basic Arithmetic Operations  

Let there be two TrIT2FSs, i.e.,  

�̃̃�1 = ((𝑎11
𝑈 , 𝑎12

𝑈 , 𝑎13
𝑈 , 𝑎14

𝑈 ;  𝐻1(�̃�1
𝑈),𝐻2(�̃�1

𝑈), (𝑎11
𝐿 , 𝑎12

𝐿 , 𝑎13
𝐿 , 𝑎14

𝐿 ;  𝐻1(�̃�1
𝐿),𝐻2(�̃�1

𝐿)) , and 

�̃̃�2 = ((𝑎21
𝑈 , 𝑎22

𝑈 , 𝑎23
𝑈 , 𝑎24

𝑈 ;  𝐻1(�̃�2
𝑈), 𝐻2(�̃�2

𝑈), (𝑎21
𝐿 , 𝑎22

𝐿 , 𝑎23
𝐿 , 𝑎24

𝐿 ;  𝐻1(�̃�2
𝐿),𝐻2(�̃�2

𝐿)). 

Addition (Baykasoğlu and Gölcük, 2017):  

�̃̃�1⨁�̃̃�2 = ((𝑎11
𝑈 + 𝑎21

𝑈 , 𝑎12
𝑈 + 𝑎22

𝑈 , 𝑎13
𝑈 + 𝑎23

𝑈 , 𝑎14
𝑈

+ 𝑎24
𝑈 ;min (𝐻1(�̃�1

𝑈);𝐻1(�̃�2
𝑈)) ,min(𝐻2(�̃�1

𝑈);𝐻2(�̃�2
𝑈))), (𝑎11

𝐿

+ 𝑎21
𝐿 , 𝑎12

𝐿 + 𝑎22
𝐿 , 𝑎13

𝐿 + 𝑎23
𝐿 , 𝑎14

𝐿

+ 𝑎24
𝐿 ;  min (𝐻1(�̃�1

𝐿);𝐻1(�̃�2
𝐿)) ,min(𝐻2(�̃�1

𝐿);𝐻2(�̃�2
𝐿))))   

(5.5) 

Subtraction (Baykasoğlu and Gölcük, 2017):  

�̃̃�1⊖ �̃̃�2 = ((𝑎11
𝑈 − 𝑎24

𝑈 , 𝑎12
𝑈 − 𝑎23

𝑈 , 𝑎13
𝑈 − 𝑎22

𝑈 , 𝑎14
𝑈

− 𝑎21
𝑈 ;min (𝐻1(�̃�1

𝑈);𝐻1(�̃�2
𝑈)) ,min(𝐻2(�̃�1

𝑈);𝐻2(�̃�2
𝑈))), (𝑎11

𝐿

− 𝑎24
𝐿 , 𝑎12

𝐿 − 𝑎23
𝐿 , 𝑎13

𝐿 − 𝑎22
𝐿 , 𝑎14

𝐿

− 𝑎21
𝐿 ;  min (𝐻1(�̃�1

𝐿);𝐻1(�̃�2
𝐿)) ,min(𝐻2(�̃�1

𝐿);𝐻2(�̃�2
𝐿))))   

(5.6) 

 
11 �̃�𝑖

𝑈 and �̃�𝑖
𝐿 are type-1 fuzzy sets, 𝑎𝑖1

𝑈 , 𝑎𝑖2
𝑈 , 𝑎𝑖3

𝑈 , 𝑎𝑖4
𝑈 , 𝑎𝑖1

𝐿 , 𝑎𝑖2
𝑈 , 𝑎𝑖3

𝑈  and 𝑎𝑖4
𝐿  are the reference points of IT2FS 𝐴�̃�

̃ . 𝐻𝑗(�̃�𝑖
𝑈) 

denotes the membership value of the element 𝑎𝑗(𝑗+1)
𝑈  in the upper trapezoidal membership function (�̃�𝑖

𝑈), where 1 ≤ 𝑗 ≤

2. 𝐻𝑗(�̃�𝑖
𝐿) denotes the membership value of the element 𝑎𝑗(𝑗+1)

𝐿  in the lower trapezoidal membership function (�̃�𝑖
𝐿), where 

1 ≤ 𝑗 ≤ 2. 𝐻1(�̃�𝑖
𝑈) ∈ [0,1], 𝐻2(�̃�𝑖

𝑈) ∈ [0,1], 𝐻1(�̃�𝑖
𝐿) ∈ [0,1], 𝐻2(�̃�𝑖

𝐿)  ∈ [0,1] and 1 ≤ 𝑖 ≤ 𝑛.  
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Multiplication (Baykasoğlu and Gölcük, 2017):  

�̃̃�1⨂�̃̃�2 ≅ ((𝑎11
𝑈 × 𝑎21

𝑈 , 𝑎12
𝑈 × 𝑎22

𝑈 , 𝑎13
𝑈 × 𝑎23

𝑈 , 𝑎14
𝑈

× 𝑎24
𝑈 ;min (𝐻1(�̃�1

𝑈);𝐻1(�̃�2
𝑈)) ,min(𝐻2(�̃�1

𝑈);𝐻2(�̃�2
𝑈))), (𝑎11

𝐿

× 𝑎21
𝐿 , 𝑎12

𝐿 × 𝑎22
𝐿 , 𝑎13

𝐿 × 𝑎23
𝐿 , 𝑎14

𝐿

× 𝑎24
𝐿 ;  min (𝐻1(�̃�1

𝐿);𝐻1(�̃�2
𝐿)) ,min(𝐻2(�̃�1

𝐿);𝐻2(�̃�2
𝐿))))   

(5.7) 

Scaling (Baykasoğlu and Gölcük, 2017): Multiplication and division of a TrIT2FN with a crisp 

value 𝑘 can be calculated as:  

�̃̃�1 × 𝑘 = ((𝑎11
𝑈 × 𝑘 , 𝑎12 

𝑈 × 𝑘, 𝑎13
𝑈  × 𝑘, 𝑎14

𝑈  × 𝑘; 𝐻1(�̃�1
𝑈), 𝐻2(�̃�1

𝑈), (𝑎11
𝐿  × 𝑘, 𝑎12

𝐿

× 𝑘, 𝑎13
𝐿 × 𝑘, 𝑎14

𝐿  × 𝑘; 𝐻1(�̃�1
𝐿), 𝐻2(�̃�1

𝐿)) 

 

(5.8) 

�̃̃�1
𝑘
 =  ((𝑎11

𝑈 ×
1

𝑘
 , 𝑎12 

𝑈 ×
1

𝑘
, 𝑎13
𝑈  ×

1

𝑘
, 𝑎14
𝑈  ×

1

𝑘
; 𝐻1(�̃�1

𝑈) , 𝐻2(�̃�1
𝑈), (𝑎11

𝐿  ×
1

𝑘
, 𝑎12
𝐿

×
1

𝑘
, 𝑎13
𝐿 ×

1

𝑘
, 𝑎14
𝐿  ×

1

𝑘
; 𝐻1(�̃�1

𝐿) , 𝐻2(�̃�1
𝐿)) 

 

(5.9) 

Expected value of an IT2FN (Baykasoğlu and Gölcük, 2017):  

𝐸 (�̃̃�) =  
1

2
(
1

4
∑(𝑎𝑖

𝐿 + 𝑎𝑖
𝑈))  × 

1

4
(∑(𝐻𝑖(𝐴

𝐿) + 𝐻𝑖(𝐴
𝑈)))

2

𝑖=1

4

𝑖=1

 (5.10) 

where, �̃̃� = ((𝑎1
𝑈, 𝑎2

𝑈, 𝑎3
𝑈, 𝑎4

𝑈;  𝐻1(�̃�
𝑈),𝐻2(�̃�

𝑈)) , (𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿;  𝐻1(�̃�
𝐿),𝐻2(�̃�

𝐿))). 

5.3. Interval Type-2 Fuzzy DEMATEL  

The IT2F-DEMATEL comprises of the ensuing steps (Baykasoğlu and Gölcük, 2017):  

Step 1: Let 𝑘 number of cross-functional experts provides their subjective judgement to fill-out the 

influence matrices, which are further converted to respective IT2FNs by using any scale. Table 5.1 

provides a typical translation from linguistic to TrIT2FN. The generated IT2FNs-based influence 

matrices are denoted as �̃̃�(1), �̃̃�(2), �̃̃�(3), … , �̃̃�(𝑘). 

Table 5.1. Linguistic judgements and their corresponding IT2FNs to rate the risk factors 

Linguistic variable Corresponding TrIT2FNs 

Very-very low (VVL) ((0,0.1,0.1,0.2;1,1), (0.05,0.1,0.1,0.15;0.9,0.9)) 

Very low (VL) ((0.1,0.2,0.2,0.35;1,1), (0.15,0.2,0.2,0.3;0.9,0.9)) 

Low (L) ((0.2,0.35,0.35,0.5;1,1), (0.25,0.35,0.35,0.45;0.9,0.9)) 
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Linguistic variable Corresponding TrIT2FNs 

Medium (M) ((0.35,0.5,0.5,0.65;1,1), (0.4,0.5,0.5,0.6;0.9,0.9)) 

High (H) ((0.5,0.65,0.65,0.8;1,1), (0.55,0.65,0.65,0.75;0.9,0.9)) 

Very high (VH) ((0.65,0.8,0.8,0.9;1,1), (0.7,0.8,0.8,0.85;0.9,0.9)) 

Very-very high (VVH) ((0.8,0.9,0.9,1;1,1), (0.85,0.9,0.9,0.95;0.9,0.9)) 

Step 2: Compute the average IT2F influence matrix by (5.11). 

where, �̃̃� is known as initial direct relation matrix and represented by (5.12),  

�̃̃� =  

[
 
 
 
0 �̃̃�12 ⋯ �̃̃�1𝑚
�̃̃�21
⋮

⋱ ⋮

�̃̃�𝑚1 �̃̃�𝑚2 ⋯ 0 ]
 
 
 

 (5.12) 

where, �̃̃�𝑖𝑗 = ((𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 , 𝑑𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝑈), 𝐻2(�̃�𝑖𝑗

𝑈)) , (𝑒𝑖𝑗, 𝑓𝑖𝑗, 𝑔𝑖𝑗 , ℎ𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 ))). 

Step 3: Calculate the normalized direct relation matrix by reorganizing the IT2F-initial direct 

relation matrix as shown in (5.13)12. Thus, a total of eight 𝑚×𝑚 matrices are constructed.  

𝑌𝑎′ = [

0 𝑎12
′ ⋯ 𝑎1𝑚

′

𝑎21
′

⋮
⋱

𝑎2𝑚
′

⋮
𝑎𝑚1
′ 𝑎𝑚2

′ ⋯ 0

], 𝑌𝑏′ = [

0 𝑏12
′ ⋯ 𝑏1𝑚

′

𝑏21
′

⋮
⋱

𝑏2𝑚
′

⋮
𝑏𝑚1
′ 𝑏𝑚2

′ ⋯ 0

], …, 

𝑌ℎ′ = [

0 ℎ12
′ ⋯ ℎ1𝑚

′

ℎ21
′

⋮
⋱

ℎ2𝑚
′

⋮
ℎ𝑚1
′ ℎ𝑚2

′ ⋯ 0

] 

(5.13) 

As 𝑌𝑑′  contains the greatest element, it is further utilized to calculate the normalization 

coefficient. The normalized direct relation matrix is represented by (5.14): 

 
12 It is observed that heights of IT2FNs do not affect the results and hence they are omitted from the subsequent 

calculations. 

�̃̃� =
�̃̃�(1)⊕ �̃̃�(2)⊕ �̃̃�(3)⊕. . .⊕ �̃̃�(𝑘)

𝑘
 (5.11) 

�̃̃� =  

[
 
 
 
�̃̃�11 �̃̃�12 ⋯ �̃̃�1𝑚
�̃̃�21
⋮

⋱ �̃̃�2𝑚
⋮

�̃̃�𝑚1 �̃̃�𝑚2 ⋯ �̃̃�𝑚𝑚]
 
 
 

 (5.14) 
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Elements of the normalized direct-relation matrix are calculated as follows: 

�̃̃�𝑖𝑗 =
�̃̃�𝑖𝑗

𝑣
= ((

𝑌𝑎𝑖𝑗
′

𝑣
,
𝑌𝑏𝑖𝑗

′

𝑣
,
𝑌𝑐𝑖𝑗

′

𝑣
,
𝑌𝑑𝑖𝑗

′

𝑣
; 𝐻1(�̃�𝑖𝑗

𝑈),𝐻2(�̃�𝑖𝑗
𝑈)) 

× (
𝑌𝑒𝑖𝑗

′

𝑣
,
𝑌𝑓𝑖𝑗

′

𝑣
,
𝑌𝑔𝑖𝑗

′

𝑣
,
𝑌ℎ𝑖𝑗

′

𝑣
; 𝐻1(�̃�𝑖𝑗

𝐿 ), 𝐻2(�̃�𝑖𝑗
𝐿 )) ) 

(5.15) 

The normalization coefficient 𝑣 is calculated as follows: 

𝑣 = 𝑚𝑎𝑥 (
𝑚𝑎𝑥

1 ≤ 𝑖 ≤ 𝑚
∑ 𝑌𝑑𝑖𝑗  

′ ,
𝑚

𝑗=1

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑚∑ 𝑌𝑑𝑖𝑗

′

𝑚

𝑖=1
) (5.16) 

Step 4: Compute the total relation matrix like in Step 3.  The IT2F-normalized direct-relation matrix 

can be represented by eight crisp matrices as below: 

𝑁𝑎′′ = [

0 𝑎12
′′ ⋯ 𝑎1𝑚

′′

𝑎21
′′

⋮
⋱ 𝑎2𝑚

′′

⋮
𝑎𝑚1
′′ 𝑎𝑚2

′′ ⋯ 0

], 𝑁𝑏′′ = [

0 𝑏12
′′ ⋯ 𝑏1𝑚

′′

𝑏21
′′

⋮
⋱ 𝑏2𝑚

′′

⋮
𝑏𝑚1
′′ 𝑏𝑚2

′′ ⋯ 0

],…, 

𝑁ℎ′′ = [

0 ℎ12
′′ ⋯ ℎ1𝑚

′′

ℎ21
′′

⋮
⋱

ℎ2𝑚
′′

⋮
ℎ𝑚1
′′ ℎ𝑚2

′′ ⋯ 0

] 

(5.17) 

The total relation matrix �̃̃� is denoted as follows: 

�̃̃� =  

[
 
 
 
 �̃̃�11 �̃̃�12 ⋯ �̃̃�1𝑚

�̃̃�21
⋮

⋱ �̃̃�2𝑚
⋮

�̃̃�𝑚1 �̃̃�𝑚2 ⋯ �̃̃�𝑚𝑚]
 
 
 
 

 (5.18) 

where, �̃̃�𝑖𝑗 = ((𝑎𝑖𝑗
′′′, 𝑏𝑖𝑗

′′′, 𝑐𝑖𝑗
′′′, 𝑑𝑖𝑗

′′′; 𝐻1(�̃�𝑖𝑗
𝑈), 𝐻2(�̃�𝑖𝑗

𝑈)) , (𝑒𝑖𝑗
′′′, 𝑓𝑖𝑗

′′′, 𝑔𝑖𝑗
′′′, ℎ𝑖𝑗

′′′; 𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 ))). 

The elements of the matrix in (5.18) are computed as below:  

[𝑎𝑖𝑗
′′′] =  𝑁𝑎′′ × (𝐼 − 𝑁𝑎′′)

−1 

[𝑏𝑖𝑗
′′′] =  𝑁𝑏′′ × (𝐼 − 𝑁𝑏′′)

−1 

⋮ 

[ℎ𝑖𝑗
′′′] =  𝑁ℎ′′ × (𝐼 − 𝑁ℎ′′)

−1 

(5.19) 
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Step 5: Utilize the elements of the total-relation matrix �̃̃�𝑖𝑗 to accomplish the structural correlational 

analysis by using (5.20) and (5.21), respectively. 

�̃̃�𝑗 = ∑ �̃̃�𝑖𝑗
𝑚

𝑖=1
 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3,… ,𝑚 (5.20) 

�̃̃�𝑖 = ∑ �̃̃�𝑖𝑗
𝑚

𝑖=1
 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3,… ,𝑚 

(5.21) 

To portray the causal dependencies among the risk factors, expected values of the ordered 

pairs (�̃̃�𝑖⨁�̃̃�𝑖) 𝑎𝑛𝑑 (�̃̃�𝑖⊝ �̃̃�𝑖) are calculated. 

Step 6: Compute the importance of each criterion by employing (5.22):  

𝑤𝑖 = √(𝐸 (�̃̃�𝑖⨁�̃̃�𝑖))
2

+ (𝐸 (�̃̃�𝑖⊝ �̃̃�𝑖))
2

 (5.22) 

𝐸 (�̃̃�𝑖⨁�̃̃�𝑖) = Expected prominence and 𝐸 (�̃̃�𝑖⊝ �̃̃�𝑖)= expected relation. Finally, the 

normalized importance degree of each criterion is computed as in (5.23):  

𝑛𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑚
𝑖=1

 (5.23) 

Local weights of the sub-risk factors are computed in a similar way as presented above. Then 

to calculate their global weights, the local weight of the main risk factor is multiplied with the local 

weight of the sub-risk factor.  

5.4. Proposed Frameworks 

5.4.1. Framework-I: Integrating IT2F-DEMATEL and Modified Fuzzy MAIRCA  

The following four steps are involved in proposed the integrated MCDM framework:  

i) Structuring of the problem, 

ii) Modelling interactions among the risk factors by IT2F-DEMATEL (refer Section 5.3), 

iii) Computing the weights of the risk factors by IT2F-DEMATEL (refer Section 5.3), 

iv) Risk ranking of failure modes by modified fuzzy MAIRCA (refer Chapter 3 / Section 3.3). 
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The workflow diagram of the proposed integrated approach is depicted in Figure 5.2. The 

framework is further utilized for risk ranking of failure modes of the considered gearbox. 

Start
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makers

Determination of 
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affecting the final 

objective

Selecting the 
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and alternatives

2. IT2FS-DEMATEL

Step 3: Normalization of direct 

relation matrix

Step 1: Fill-out IT2F influence 

matrix from a group of DMs

Step 2: Aggregate the decisions 

and form the average IT2F 

influence matrix and generate 

direct relation matrix

Step 4: Determine total-

influence matrix

Step 5: Structural correlation 

analysis

Step 6: Calculate expected 

prominence and relation value 

and determine criteria weights

Are there sub-

criteria?

3. Fuzzy MARICA

Step 1: Form decision matrices from different DMs

Step 2: Generate average initial decision matrix

Step 3: Normalize the decision matrix

Step 4: Determine preferences of alternatives

Step 5: Determine matrix of theoretical ponder

Step 6: Calculation of matrix of actual ponder

Step 7: Calculation of total gap matrix

Step 8: Calculate criteria function values and 

rank the alternatives

Stop

Yes No

 

Figure 5.2 Workflow diagram of the proposed framework - I 

5.4.2. Framework-II: Integrating IT2F-DEMATEL and Modified Fuzzy MARCOS  

Here, the framework for the risk ranking of the failure modes is developed and proposed by 

combining IT2F-DEMATEL (refer Section 5.3) and modified fuzzy MARCOS (refer Chapter 3 / 

Section 3.4) methods. All the steps are like the earlier section, except replacing Step iv) to obtain 

the risk ranking by employing modified fuzzy MARCOS method rather than modified fuzzy 

MAIRCA. The workflow diagram of the proposed approach is depicted in Figure 5.3.  

5.5. Case Study: FMEA of Process Plant Gearbox 

The detailed descriptions of the gearboxes, their potential failure modes, cause(s), and effect(s) 

identified by a team of three cross functional experts (viz., DE1, DE2, and DE3), from economic, 

social, and environmental point of view have been discussed in Table 4.2 of Chapter 4. Now it is 
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required to rank the failure modes as per their criticality levels by employing the frameworks 

developed in Section 5.4. In this chapter, it is assumed that the experts have equal expertise and 

thus are assigned the same weights, however, this is not a limitation of the proposed methods. 

Start
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problem
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final objective

Determination of 

relevant RFs 

affecting the final 

objective
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Step 1: Fill-out IT2F influence 

matrix from a group of DMs

Step 2: Aggregate the decisions 

and form the average IT2F 

influence matrix and generate 

direct relation matrix

Step 4: Determine total-

influence matrix
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3. Fuzzy MARCOS

Step 1: Obtain the linguistic judgements for each failure 

mode from experts 

Step 2: Convert the linguistic judgements into corresponding 

TFNs 

Step 3: Obtain the fuzzy aggregated decision matrix

Step 4: Determine the fuzzy ideal and anti-ideal solutions

Step 5: Obtain the extended fuzzy initial decision matrix

Step 6: Normalize the fuzzy aggregated decision matrix

Step 7: Calculate fuzzy weighted normalized decision matrix

Step 8: Calculate the sum of row elements

Stop

Yes No

Step 9: Defuzzify the sum of row elements

Step 10: Calculate the utility degrees of the failure modes

Step 11: Calculate the utility functions of failure modes in 

relation to ideal and anti-ideal solutions

Step 12: Calculate the utility functions of failure modes and 

rank them

 

Figure 5.3 Workflow diagram of the proposed framework - II 

5.5.1. Structuring the problem 

The hierarchical structure of the identified risk factors is shown in Figure 5.4. The experts 

fill out the influence matrices by their linguistic judgements for the considered risk factors, and are 

shown in Table 5.2- Table 5.6. The linguistic judgements of the failure modes with respect to the 

risk factors are presented in Table 5.7. The scales adopted to convert the linguistic judgements to 

the corresponding of IT2FNs are shown in Table 5.1 (for IT2F-DEMATEL), and  

Table 3.2 (for modified fuzzy MAIRCA and modified fuzzy MARCOS), respectively.  
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FMEA evaluation 

criteria

Severity (C1)
Probability of 

occurrence (C2)

Probability of 

detection (C3)
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(C13)
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Miscellaneous 

environmental 

factors(C133)
 

Figure 5.4 Hierarchy of risk factors identified from TBL of sustainability 

Table 5.2 Dependency degrees among severity, occurrence and detection  

Risk factors 
Domain 

experts 
Severity Occurrence Detection 

Severity 

DE1 - M VH 

DE2 - VL VVH 

DE3 - L VH 

Occurrence 

DE1 L - - 

DE2 M - - 

DE3 VL - - 

Detection 

DE1 H - - 

DE2 VH - - 

DE3 H - - 

Table 5.3. Dependency degrees among economic, social, and environmental severity  

Risk factors 
Domain 

experts 

Economic 

severity 

Social 

severity 

Environmental 

severity 

Economic 

severity 

DE1 - H M 

DE2 - M H 

DE3 - H M 

Social severity 

DE1 M - VH 

DE2 VH - - 

DE3 H - - 

Environmental 

severity 

DE1 H M - 

DE2 M H - 

DE3 H M - 

Table 5.4. Dependency degrees among cost of unreliability, cost of quality loss, and miscellaneous cost factors  

Risk factors 
Domain 

experts 

Cost of 

unreliability 

Cost of 

quality 

loss 

Miscellaneous 

cost factors 

Cost of 

unreliability 

DE1 - VH M 

DE2 - H H 

DE3 - M VH 

Cost of 

quality loss 

DE1 L - - 

DE2 H - - 

DE3 M - - 

Miscellaneous 

cost factors 

DE1 H - - 

DE2 VH - - 

DE3 H - - 
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Table 5.5. Dependency degrees among chances of accident, overtime due to failure, and effects on workers’ mind-set  

Risk factors 
Domain 

experts 

Chances of 

accident 

Overtime due 

to failure 

Effects on 

workers’ 

mind-set 

Chances of 

accident 

DE1 - - VH 

DE2 - - H 

DE3 - - M 

Overtime due 

to failure 

DE1 VL - H 

DE2 H - M 

DE3 L - M 

Effects on 

workers’ 

mindset 

DE1 M H - 

DE2 H M - 

DE3 VL L - 

Table 5.6. Dependency degrees among generation of waste material, excess energy consumption, and miscellaneous 

environmental factors  

Risk factors 
Domain 

experts 

Generation 

of waste 

material 

Excess 

energy 

consumption 

Miscellaneous 

environmental 

factors 

Generation of 

waste 

material 

DE1 - VH M 

DE2 - H H 

DE3 - VH M 

Excess energy 

consumption 

DE1 M - L 

DE2 L - M 

DE3 H - H 

Miscellaneous 

environmental 

factors 

DE1 M - - 

DE2 H - - 

DE3 L - - 

Table 5.7 Linguistic evaluations of the failure modes with respect to the risk factors 

Failure 

modes 

Domain 

experts 
C111 C112 C113 C121 C122 C123 C131 C132 C133 C2 C3 

FM1 

DE1 MG MP P P F G F F F P MG 

DE2 G P P VP MP MG F MP P MP F 

DE3 MG MP VP P MP G F P P F MG 

FM2 

DE1 G P P P G G F MP P F VG 

DE2 VG MP MP P VG MG MG F P MP G 

DE3 G P P MP G MG F F MP MP G 

FM3 

DE1 F VP F P MG G MP MP P F G 

DE2 MP P MP P MG G F P P F MG 

DE3 MG MP P MP G G P MP MP MP G 

FM4 

DE1 VG F P F MP MG P G P P MP 

DE2 G MG F MP MP F VP G F MP F 

DE3 VG F MP F P F P F P F MP 

FM5 

DE1 P P P P G MG P MP P F F 

DE2 MP P P P G G P P MP MP F 

DE3 P MP MP MP MG G F P MP MP MG 

FM6 

DE1 MG MP P P F G F MP P F MP 

DE2 F F P P MG MG F P F MG MP 

DE3 F MP P MP MG F P P MP MG F 
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Failure 

modes 

Domain 

experts 
C111 C112 C113 C121 C122 C123 C131 C132 C133 C2 C3 

FM7 

DE1 G F G F P P VG G F P VG 

DE2 VG MG G P F P VG F F MP VG 

DE3 G F VG MP F MP G MG P P G 

FM8 

DE1 VG MG G P P MP MP G MP G VG 

DE2 VG F F P MP F MP MG P G VG 

DE3 G F G MP P MP P G P VG VG 

FM9 

DE1 G MG F P P MP VG G F F G 

DE2 VG G F P P P VG G P MP MG 

DE3 G F G MP F P G G F F VG 

FM10 

DE1 G G F MG P P F G F MP F 

DE2 MG MG MP MG P P F VG P F F 

DE3 G G MP F MP VP P G F MP MG 

FM11 

DE1 MG G G F MP F F G MP MP F 

DE2 G G VG MG P F MP G F P F 

DE3 VG F G F MP F F G F P MG 

FM12 

DE1 VG VG P VG P F VG VG F P VG 

DE2 VG G P G P MG G G G VP VG 

DE3 G G MP VG MP F G VG G P G 

5.5.2. IT2F-DEMATEL: Computing Causal Dependencies and Weights of the Risk Factors  

Employing the steps presented in Section 5.3, the expected prominence and expected relation values 

of the risk factors are computed and are shown Table 5.8. Based on these values the causal 

dependency diagrams of the risk factors can be portrayed.  

Table 5.8 Expected prominence and expected relation values of the RFs 

Risk factors 
Expected prominence 

value [𝐸 (�̃̃�𝑖⨁�̃̃�𝑖)] 

Expected relation 

value [𝐸 (�̃̃�𝑖⊖ �̃̃�𝑖)] 
Nature of the 

risk factor 

Severity (C1) 3.231 0.131 Cause 

Occurrence (C2) 1.303 0.032 Cause 

Detection (C3) 2.716 -0.163 Effect 

Economic severity (C11) 5.388 -0.161 Effect 

Societal severity (C12) 4.814 -0.475 Effect 

Environmental severity 

(C13) 
4.654 0.636 Cause 

Cost of unreliability (C111) 3.074 0.086 Cause 

Cost of quality loss (C112) 1.831 -0.206 Effect 

Misc. cost factors (C113) 2.139 0.119 Cause 

Chances of accident (C121) 2.418 -0.311 Effect 
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Risk factors 
Expected prominence 

value [𝐸 (�̃̃�𝑖⨁�̃̃�𝑖)] 

Expected relation 

value [𝐸 (�̃̃�𝑖⊖ �̃̃�𝑖)] 
Nature of the 

risk factor 

Overtime due to failure 

(C122) 
2.390 0.579 Cause 

Effects on workers’ mindset 

(C123) 
3.173 -0.268 Effect 

Generation of waste material 

(C131) 
3.330 0.337 Cause 

Excess energy consumption 

(C132) 
2.674 0.356 Cause 

Misc. environmental factors 

(C133) 
2.470 -0.693 Effect 

The causal relationships among severity (C1), occurrence (C2) and detection (C3) are 

depicted in Figure 5.5. Note that the cause group is known as the influencing factors and the effect 

group is known as the influenced factors. From Figure 5.5, it is recommended that the decision 

makers should concentrate on the cause group elements, which will successively control the effect 

group elements. The following remarks/suggestions could be drawn from the above analysis and 

for this case study. 

• Utmost priority to be given to control the severity (C1) and occurrence (C2) factors. Again, 

severity (C1) is decoupled into multiple sustainable indices: economical (C11), societal 

(C12) and environmental (C13), which should be further taken up for the improvement of 

the system.  

• The chances of occurrence (C2) of a failure mode could be decreased if suitable 

maintenance measures are taken up at this stage or address them in future designs. Thus, it 

can be recommended to explore the possibility of equipping the gearbox with 

technologically advanced and cost-effective modern fault detection instruments aiming at 

automated fault diagnosis.  

• Further, it is observed from Table 5.8 that severity (C1) has the highest prominence (3.231), 

and relation value (0.1309). It suggests that severity (C1) is the most influencing factor in 

comparison to the other two factors.  

• A high relation value implies that it is not affected by other factors and sub-factors. In this 

situation, it is always better to pay attention to other factors for overall system 

improvement. The only member in the effect group is detection (C3), whose (𝐷 − 𝑅) value 

is quite low (-0.1632). This implies that chances of improvement with this factor are the 

highest.  
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Similarly, the causal dependencies among other risk factors under severity (C1) are 

computed and shown in Figure 5.6 - Figure 5.9. Like previous analysis, C1 is decoupled and as it 

also belongs to the cause group (or influencing factor), it is required to analyse it further. From 

Figure 5.6, it is observed that: 

• The economical aspect (C11) has the highest prominence value (5.388), but a lower relation 

value (-0.1607). Furthermore, it belongs to the effect group along with the social aspects 

(C12), which is obviously influenced by the environmental aspects (C13), whose 

prominence value (4.654) is lower that the economic aspects but has the highest relation 

value (0.6359). In such a scenario, the utmost importance should be given to environmental 

aspects (C13), as it is the strongest influencing one. 

As environmental aspects belong to the cause group, it is further analysed for better 

inferences. From Figure 5.7, it can be remarked that, 

• The generation of waste material (C131) has the highest prominence value (3.330) and 

lower relation value (0.3367). It also belongs to the cause group along with excess energy 

consumption (C132), which has less prominence value (2.674) and highest relation value 

(0.3557). These imply that generation of waste material (C131) is the most worrying sub-

factor rather than excess energy consumption (C132), when the severity is considered from 

environmental point of view.  

• Other miscellaneous environmental factors (C133) include generation of toxic gases, 

fumes, dusts, etc.   

Figure 5.8 (viz., societal point of view) reflects that:  

• The effects on workers’ mind-set due to failure (C123) have the largest prominence value 

(3.173) with largest local priority (0.394), although it belongs to the effect group. It is due 

to that fact that each worker is normally allocated with a set of tasks during their working 

hours. However, when a gearbox encounters a catastrophic failure, their mind-set and 

efficiency change.  

• Overtime due to failure (C122) belongs to the cause group, as it influences the chances of 

accidents due to improper vigilance and system failure. Chances of accidents has the least 

relation value (-0.3112) and implies that it can be further improved by preventing failure 

of the system.  
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Figure 5.5 Causal dependency diagram of severity-occurrence-

detection 

 

Figure 5.6 Causal dependency diagram of economic-social-

environmental severity 

 

Figure 5.7. Causal dependency diagram of generation of waste 

material-excess energy consumption-miscellaneous environmental 

factors 

 
 

Figure 5.8. Causal dependency diagram of chances of 

accident - overtime due to failure - effects on workers' mind-

set 
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From an economical point of view:  

• Cost of unreliability (C111) and miscellaneous cost (C113) belongs to the cause group and 

have local priorities of 43.6% and 30.3 %, respectively, as shown in Figure 5.9. Cost of 

unreliability (C111) is increased with number of failures, which can be controlled if the 

detection level is high enough and complemented by proactive maintenance efforts.  

• Miscellaneous cost includes several factors such as inventory costs, procurement costs, etc. 

whose data are usually difficult to get, hence they are depicted linguistically.  

• The only factor that belongs to the effect group is cost of quality loss of final product 

(C112), whose (𝐷 − 𝑅) value is least (-0.2056) and can only be improved if the other two 

indices, C11 and C113 are improved.  

 

Figure 5.9. Causal dependency diagram of cost of unreliability-cost of quality loss of 

final product-miscellaneous cost factors 

After providing insights about the causal dependencies among the risk factors, their weights 

are shown in Table 5.9 which are calculated by using (5.22), and (5.23).  

Table 5.9. Crisp weights of the risk factors computed by IT2F-DEMATEL 

Factors 

Crisp 

Weight 

values 

Sub factors 

Crisp sub-

factors weight 

values 

Sub-sub factors 

Crisp sub-sub 

factors weight 

values 

Crisp 

weights 

Severity 0.446 

Economical 0.361 

Cost of 

unreliability 
0.436 0.070 

Cost of quality 

loss 
0.261 0.041 

Miscellaneous 

cost 
0.303 0.049 

Social 0.324 

Chances of 

accidents 
0.302 0.044 

Overtime due to 

failure 
0.304 0.044 
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Factors 

Crisp 

Weight 

values 

Sub factors 

Crisp sub-

factors weight 

values 

Sub-sub factors 

Crisp sub-sub 

factors weight 

values 

Crisp 

weights 

Effects on 

workers mind-set 
0.394 0.057 

Environmental 0.315 

Generation of 

waste material 
0.389 0.055 

Excess energy 

consumption 
0.313 0.044 

Miscellaneous 

environmental 

factors 

0.298 0.042 

Occurrence 0.180 ---- ---- ---- ---- 0.180 

Detection 0.375 ---- ---- ---- ---- 0.375 

The next section utilizes these weights for the risk ranking of failure modes according to the 

proposed modified fuzzy MAIRCA and modified fuzzy MARCOS methods, and to examining their 

potential further in terms of ranking stability.  

5.5.3. Risk Ranking of the Failure Modes by Framework-I  

Following the mathematical steps of modified fuzzy MAIRCA, (refer Section 3.3) and utilizing the 

weight values of the risk factors as computed by IT2F-DEMATEL, the de-fuzzified gap values and 

the ranking orders of the failure modes are obtained and are presented in Table 5.10.  

Table 5.10 Risk ranking results of failure modes by using Framework-I 

Failure Modes Notations 
Criteria function 

values 
Ranking by Framework-I  

Wear of Teeth FM1 0.0732 9 

Broken Teeth FM2 0.0700 5 

Pitting of Gear FM3 0.0711 6 

Axial Shift of Gear FM4 0.0744 12 

Scoring of gears FM5 0.0738 11 

Brinelling FM6 0.0733 10 

Cage defect FM7 0.0696 4 

Crack on raceways FM8 0.0669 1 

Crack of rollers FM9 0.0693 3 

Bent shaft FM10 0.0722 8 

Crack of shaft FM11 0.0719 7 

Fracture of shaft FM12 0.0688 2 

Thus, the Framework-I identifies crack on raceways (FM8) as the most critical failure mode, 

followed by fracture of shaft, crack on rollers, cage defects, and so on. Next, these ranking results 

are again cross-examined by the modified fuzzy MARCOS approach.   
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5.5.4. Risk Ranking of Failure Modes by Framework-II  

Like the previous section, here, again the identified failure modes are ranked according to their risk 

levels, but by using the Framework-II. The weights of the risk factors are obtained from the outputs 

of IT2F-DEMATEL method. The computed risk ranking results are presented in Table 5.11, from 

which it can be discerned that Framework-II also identified the crack on raceways (FM8) as the 

most critical one, followed by fracture of shaft (FM12). However, the Framework-II identified cage 

defect (FM7) as the third critical failure mode and crack on rollers (FM9) as the fourth critical 

failure mode, which are just opposite to Framework-I.  

Table 5.11. Ranking of failure modes by the proposed Framework-II 

Failure 

Modes 
�̃�𝑖 𝑆𝑖 𝑈𝐷𝑖

(𝐴𝐼𝐷)
 𝑈𝐷𝑖

(𝐼𝐷)
 𝑈𝐹𝑖

(A𝐼𝐷)
 𝑈𝐹𝑖

(𝐼𝐷)
 𝑈𝐹𝑖 

Ranking by 

Framework-II 

FM1 (0.299, 0.476, 0.668) 0.4787 2.259 0.507 0.183228 0.817 0.4868 9 

FM2 (0.474, 0.646, 0.780) 0.6400 3.020 0.678 0.183228 0.817 0.6508 5 

FM3 (0.387, 0.573, 0.740) 0.5695 2.688 0.603 0.183228 0.817 0.5791 6 

FM4 (0.230, 0.407, 0.592) 0.4083 1.927 0.432 0.183228 0.817 0.4152 12 

FM5 (0.248, 0.428, 0.622) 0.4302 2.030 0.455 0.183228 0.817 0.4375 10 

FM6 (0.241, 0.428, 0.627) 0.4297 2.028 0.455 0.183228 0.817 0.4370 11 

FM7 (0.519, 0.667, 0.779) 0.6607 3.118 0.699 0.183228 0.817 0.6719 3 

FM8 (0.622, 0.764, 0.849) 0.7547 3.562 0.799 0.183228 0.817 0.7674 1 

FM9 (0.494, 0.665, 0.803) 0.6594 3.112 0.698 0.183228 0.817 0.6706 4 

FM10 (0.321, 0.506, 0.692) 0.5063 2.390 0.536 0.183228 0.817 0.5149 8 

FM11 (0.344, 0.528, 0.708) 0.5272 2.488 0.558 0.183228 0.817 0.5361 7 

FM12 (0.568, 0.700, 0.791) 0.6934 3.273 0.734 0.183228 0.817 0.7052 2 

�̃�(𝐴𝐼𝐷) (0.071, 0.203, 0.390) 0.2119       

�̃�(𝐼𝐷) (0.822, 0.961, 1.00) 0.9445       

Thus, this necessitated to further analyse the results by comparing them with other popular 

fuzzy MCDM methods and through sensitivity analysis.  

5.6. Validations and Discussions on the Ranking Results 

This section deals with the following two aspects:  

i) Comparing the ranking result with other existing and popular fuzzy MCDM methods 

available in FMEA literature.  

ii) Performing a sensitivity analysis by changing the values of criteria weights to different 

levels and observing the subsequent effects on the ranking results. 
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5.6.1. Comparisons with Other Fuzzy MCDM Methods 

In the FMEA domain, to reach at a consensus about the ranking positions of the failure modes, it is 

often favoured to relate the results with other established methods or validated through the historical 

evidences.  Liu et al., (Liu et al., 2019a) observed that the most frequently used fuzzy MCDM 

methods in FMEA context are fuzzy extensions of TOPSIS, VIKOR, COPRAS, MOORA, and 

MABAC. Thus, the ranking results obtained in this work are compared with them, along with the 

fuzzy extension of the MAIRCA method proposed by (Pamučar et al., 2014), fuzzy MARCOS 

method developed by Stanković et al. (Stanković et al., 2020). The results are shown in Table 5.12 

and the following points are noted:  

Table 5.12. Comparisons of results with other fuzzy MCDM methods 

 Failure 

modes 

Fuzzy 

TOPSIS 

Fuzzy 

VIKOR 

Fuzzy 

MABAC 

Fuzzy 

COPRAS 

Fuzzy 

MOORA 

Fuzzy 

MAIRCA  
Framework-I  

Fuzzy 

MARCOS  
Framework-II 

FM1 7 7 9 7 7 7 9 

Do not able 

to provide 

outputs.   

9 

FM2 4 3 5 3 3 4 5 5 

FM3 6 5 6 6 6 6 6 6 

FM4 12 12 12 12 12 12 12 12 

FM5 10 10 10 8 8 10 11 10 

FM6 11 11 11 9 9 11 10 11 

FM7 3 4 3 4 4 3 4 3 

FM8 1 1 1 1 1 1 1 1 

FM9 5 2 4 5 5 5 3 4 

FM10 9 9 8 10 10 9 8 8 

FM11 8 8 7 11 11 8 7 7 

FM12 2 6 2 2 2 2 2 2 

• Every method identified the cracks on raceways (FM8) as the most critical failure mode.  

• The fracture of the shaft (FM12) is identified as the second critical failure mode by all other 

fuzzy MCDM methods, except fuzzy VIKOR (Opricovic, 2011), where it is ranked as the 

sixth critical failure mode. This is probably due to choosing the value of  𝜈 (0.5 in this case). 

A detailed description about this concept has been delivered in Sub-Section 2.1.4.  

Thus, it can be said that the results obtained by the proposed integrated approaches are almost 

similar with the other fuzzy MCDM methods and produces credible results. However, further 

validations are still needed to compare the performances of the proposed approaches, which are 

presented in the next section.  
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5.6.2. Sensitivity Analyses by Varying the Risk Factors’ Weights 

In this section, the weights of the risk factors are varied to different levels, and their effects on the 

final ranking results are examined. As FMEA is an iterative and ongoing task, the weights of the 

risk factors may often vary. A good MCDM method should compute the ranking results in such a 

way that changing the risk factors’ weights should not significantly alter the ranking order of failure 

modes. The superiority of any approach is determined through calculating the inter-Spearman’s 

rank correlation coefficient, which is nothing but the Spearman’s rank correlation coefficient 

between the ranking results generated by changing a particular criterion’s weight to 20%, 40%, 

60%, and 80% of its originally computed crisp weight.  

While varying the risk factors’ weights, a total of 44 scenarios are generated, which are 

further divided into four equal parts (as there are total 11 numbers of criteria included in this work). 

For each scenario, the relative importance of each criterion is increased to different levels (e.g., 

20%, 40%, 60%, and 80%), while the other criteria are decreased by the same level. Additionally, 

∑ 𝑤𝑖 = 1
𝑛
𝑖=1  condition is satisfied for each instance. Further, the overall Spearman’s rank 

correlation coefficients are calculated for the ranking results generated in the 44 scenarios.  

• For the sub-risk factor, cost of unreliability (C111), the changes in risk ranking results are 

portrayed in Figure 5.10 (for framework-I), Figure 5.11 (for framework-II), respectively. 

The inter-Spearman’s rank correlation coefficient for the first integrated approach is 

96.7%, while for the second integrated approach it is 97.4%. Thus, it can be observed that 

for changing the cost of unreliability (C111), the first integrated approach generates more 

robust result than the latter one.  

• For cost of quality loss of the final product (C112), the changes in the ranking results are 

displayed in Figure 5.12 (framework-I), and Figure 5.13 (framework-II), respectively. The 

earlier one generates an inter-Spearman’s rank correlation coefficient of 95.7%, while the 

latter one produces the value of 96.5%. Thus, in case of C112, the second approach 

demonstrates more stability than the first one.  

• Similar for miscellaneous cost factors (C113), the changes are shown in Figure 5.14 

(framework-I) Figure 5.15 (framework-II), respectively. The first one has less ranking 

stability (inter-Spearman’s rank correlation coefficient 94.9%), than the second one (inter-

Spearman’s rank correlation value 96.8%). Hence, for C113, fuzzy MAIRCA shows less 

stability than the fuzzy MARCOS.  
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Figure 5.10. Variations in risk ranking results by changing the weights 

of C111 in framework - I 

 

Figure 5.11. Variations in risk ranking results by changing the 

weights of C111 in framework-II 

 

Figure 5.12. Variations in risk ranking results by changing the weights 

of C112 in framework-I 

 

Figure 5.13. Variations in risk ranking results by changing the 

weights of C112 in framework-II 
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Figure 5.14. Variations in risk ranking results by changing the weights 

of C113 in framework-I 

 

Figure 5.15. Variations in risk ranking results by changing the 

weights of C113 in framework-II 

 

Figure 5.16. Variations in risk ranking results by changing the weights 

of C121 in framework-I 

 

Figure 5.17. Variations in risk ranking results by changing the 

weights of C121 in framework-II 
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Figure 5.18. Variations in risk ranking results by changing the weights 

of C122 in framework-I 

 

Figure 5.19. Variations in risk ranking results by changing the 

weights of C122 in framework-II 

 

Figure 5.20. Variations in ranking results by changing the weights of 

C123 in framework-I 

 

Figure 5.21. Variations in risk ranking results by changing the 

weights of C123 in framework-II 
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Figure 5.22. Variations in risk ranking results by changing the weights 

of C131 in framework-I 

 

Figure 5.23. Variations in risk ranking results by changing the 

weights of C131 in  framework-II 

 

Figure 5.24. Variations in risk ranking results by changing the weights 

of C132 in framework-I 

 

Figure 5.25. Variations in risk ranking results by changing the 

weights of C132 in framework-II 
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Figure 5.26. Variations in risk ranking results by changing the weights 

of C133 in framework-I 

 

Figure 5.27. Variations in risk ranking results by changing the 

weights of C133 in framework-II 

 

Figure 5.28. Variations in risk ranking results by changing the weights 

of C2 in framework-I 

 

Figure 5.29. Variations in risk ranking results by changing the 

weights of C2 in framework-II 
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• In case of chances of accident (C121), the similar variations are presented in Figure 5.16 

(framework -I), and Figure 5.17 (framework -II). In this case, fuzzy MARCOS (inter-

Spearman’s rank correlation coefficient 95.1%) outperforms fuzzy MAIRCA (inter-

Spearman’s rank correlation coefficient 92.5%) in terms of ranking stability.  

• Similarly, for overtime due to failure (C122), the consequences in ranks variations are 

displayed in Figure 5.18 (framework -I), and Figure 5.19 (framework -II), respectively. In 

this case also the latter one (92.2.%) outperforms the first one (inter-Spearman’s rank 

correlation coefficient 88.7%), in terms of stability.  

• In case of effects on workers’ mindset (C123), the changes observed in framework-I and 

framework-II are presented in Figure 5.20, and Figure 5.21, with an inter-Spearman’s rank 

correlation coefficients of 84.1%, and 85.3%, respectively. Here also the later one shows 

higher ranking stability.  

• For excess energy consumption (C132), the changes are exhibited in Figure 5.24 

(framework-I), and Figure 5.25 (framework-II), with inter-Spearman’s rank correlation 

coefficients of 96.6%, and 96.4%, respectively.  Surprisingly, in this case, the earlier one 

shows better ranking stability.  

• For miscellaneous environmental factors (C133), the criterion weight value changing 

effects are described through Figure 5.26 (framework-I), and Figure 5.27 (framework-II), 

with  inter-Spearman’s rank correlation coefficients of 97.9%, and 98.3%, respectively. In 

this case, the later one is showing higher ranking stability.  

• In case of occurrence (C2), the effects are presented in Figure 5.28 (framework-I), and 

Figure 5.29 (framework-II), with inter-Spearman’s rank correlation coefficients of 82.0%, 

and 80.6.%, respectively. Here also, the proposed integrated method-1 is noticed to be 

superior than the second one in terms of ranking stability.  

• For the criterion – detection (C3), the effects are showed in Figure 5.30 (framework-I), and 

Figure 5.31 (framework-II), with inter-Spearman’s rank correlation coefficient values  

98.9%, and 99.2%, respectively. In this case, the latter one outperforms the earlier one by 

means of ranking stability.  
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Figure 5.30. Variations in risk ranking results by changing the weights of C3 in framework-I 

 

Figure 5.31. Variations in risk ranking results by changing the weights of C3 in framework-II 

5.6.3. Concluding Remarks on the Results of Sensitivity Analysis 

From the sensitivity analyses the following critical points are noted:  

• The statement observed in Chapter 3, where both the modified fuzzy MAIRCA and 

modified fuzzy MARCOS have presented the same ranking stability, is found to be 

misleading. 

• In terms of ranking stability, the Framework-II is found to be superior than Framework-I 

on most of the occasions. The reasons for this superiority could be the consideration of 

ideal and anti-ideal solutions from the very beginning of the decision-making process, 

which is not present in the mathematical framework of modified fuzzy MAIRCA method. 

• Further, it is observed that the average of inter-Spearman’s Rank correlation coefficient 

for Framework-II is 94.1% and for Framework-I is 93.2%.  
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• Again, considering all 44 scenarios, the fuzzy MARCOS (rank correlation coefficient 

84.65%) is observed to be superior than the fuzzy MAIRCA (rank correlation coefficient 

81.95%).  

• The results of this chapter indicate that when the number of criteria and alternatives are 

increased, fuzzy MARCOS provides more ranking stability than the fuzzy MAIRCA 

method.  

Another comparative analysis is performed from the consequences produced by changing 

the weights of the risk factors. Here, the number of times a method is able to retain its original 

ranking position is examined, and the results are presented in Table 5.13.  

Table 5.13. Comparisons of rank retention frequency 

Ranking 

IT2F-DEMATEL - 

Fuzzy extension of 

MAIRCA (Pamučar 

et al., 2014) 

IT2F-DEMATEL – 

fuzzy TOPSIS 

Proposed 

framework-I 

Proposed 

framework-II 

1st critical FM 

FM8: 35 times. 

FM12: 7 times 

Others: 2 times 

FM8: 33 times. 

FM12: 8 times 

Others: 2 times 

FM8: 35 times. 

FM12: 7 times 

Others: 3 times 

FM8: 34 times. 

FM12: 8 times 

Others: 2 times 

2nd critical FM 
FM12: 28 times, 

FM8: 5 times 

FM12: 25 times, 

FM8: 6 times 

FM12: 27 times, 

FM8: 5 times 

FM9: 5 times 

FM12: 28 times, 

FM7: 6 times 

FM8: 5 times 

3rd critical FM 
FM7: 24 times 

FM9: 11 times 

FM7: 22 times 

FM9: 11 times 

FM9: 26 times 

FM7: 7 times 

FM7: 20 times 

FM9: 14 times 

4th critical FM 

FM9: 21 times 

FM7: 9 times, 

Others: 14 times 

FM9: 20 times 

FM7: 11 times, 

Others: 13 times 

FM7: 25 times, 

FM9: 6 times, 

FM2: 5 times 

FM9: 18 times, 

FM7: 13 times, 

FM2: 4 times 

The ensuing observations are noted from Table 5.13:  

• By employing the modified fuzzy MARCOS approach, FM7 is ranked as 3rd critical failure 

mode for 20 times, and FM9 is ranked as the 4th critical failure mode for 14 times. Whereas, 

FM9 is ranked as 4th critical for 18 times, FM7 as 4th critical for 13 times, and FM2 as 4th 

critical for 2 times.  

• In modified fuzzy MAIRCA based approach, FM9 is ranked as the 3rd critical failure mode 

for 26 times, and FM7 is ranked as the 4th critical failure mode for 7 times. Similarly, for 

the 4th critical failure mode, FM7 retains the position for 25 times, FM9 for 6 times, and 

FM2 for 5 times.  

Thus, it is obvious that although modified fuzzy MARCOS has greater inter-Spearman’s 

rank correlation than modified fuzzy MAIRCA, for some critical failure modes, the earlier one has 
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the lower rank retention capability than the latter one. However, as both the integrated approaches 

have the rank correlation values greater than 80%, the solutions provided by them can be 

acceptable. On the contrary, as the modified fuzzy MARCOS based approach has greater rank 

correlation coefficient value, it is suggested that the results obtained by that approach are more 

credible than the modified fuzzy MAIRCA based approach. 

5.7. Chapter Summary 

In this chapter, at first the severity of a failure mode has been decoupled from the TBL of 

sustainability, and then two integrated MCDM frameworks have been developed and applied for 

risk ranking of failure modes in a FMEA problem. With the increasing number of indices available 

for describing the severity, it becomes difficult for organizations to manage their exact values. In 

such circumstances, subjectively assessed experts’ opinions are often utilized, but they themselves 

bear a vagueness that can lead to erroneous selection of critical failure mode(s). To overcome such 

eventualities, this study has used the concept of IT2FSs and integrated it with DEMATEL method 

for depicting the causal dependencies among the risk factors, as well as to calculate their weight 

values. Further, previously developed modified fuzzy MAIRCA and modified fuzzy MARCOS 

methods are separately utilized to rank the failure modes. The proposed frameworks have been 

implemented for the considered case study of the process plant gearbox. 

During the sensitivity analyses, it has been observed that although the fuzzy MARCOS 

provides better rank correlation than the fuzzy MAIRCA, the earlier one has poor rank retention 

capability. This contradictory situation initiates the necessitates for further investigations, possibly 

by modelling the linguistic uncertainties in more abstract way and computing the weights of the 

risk factors in terms of IT2FNs.  Furthermore, another generated problem is that different fuzzy 

MCDM methods produce unlike ranking results, which may perplex the decision makers. Thus, 

focus must be given to compute an aggregated ranking results with a certain percentage of 

reliability.  These investigations are carried out in the next chapter.  

----------------------- 
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Chapter 6  An Integrated IT2FSs-based MCDM Framework for 

Calculating the Ensemble Risk Ranking Results in FMECA  

6.1. Introduction 

he outcomes of the Chapter 5 revealed the following points:  

• IT2F-DEMATEL has been utilized to compute the crisp weights of the risk factors, which 

have further been adopted in modified fuzzy MAIRCA and fuzzy MARCOS methods for 

the risk ranking of the failure modes. However, these crisp values can be the cause of 

information loss at the very beginning stage of the decision-making process, which further 

impacts on the ranking results. Thus, it is better to calculate these weights in terms of 

IT2FNs.  

• Although modified fuzzy MARCOS has the higher inter-Spearman’s rank correlation 

coefficient value than the modified fuzzy MAIRCA, the rank retention capability of this 

approach is poorer than the latter one. Thus, it is felt to further improve the linguistic 

uncertainty modelling approach.   

• Different MCDM methods compute dissimilar risk ranking results of failure modes, as each 

of them follows different mathematical treatment. However, these dissimilar results 

generally confuse a researcher and/or the decision-makers, if two or more methods are 

applied for a given problem. 

Based on the above points, this chapter extends the work presented in the Chapter 5 and an 

attempt is made to lessen the dilemma or confusion of the researchers. More specifically, the 

contributions of this chapter are13:  

a) Modelling the linguistic uncertainties more accurately by using the concept of IT2FSs 

throughout this chapter. The motivations for employing IT2FSs have been described in 

Chapter 2 / Section 2.5.1.  

 
13 The contribution of this work can be found in the below published paper:  

a) Boral, S., Chaturvedi, S.K., Howard, I., Naikan, V.N.A., McKee, K., 2021. An integrated interval type-2 fuzzy 

sets and multiplicative half quadratic programming-based MCDM framework for calculating aggregated risk 

ranking results of failure modes in FMECA. Process Safety and Environmental Protection 150, 194-222. 

T 
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b) The mathematical model of extended IT2F-DEMATEL method is proposed to compute the 

weights of the risk factors in terms of IT2FNs.  

c) For the risk prioritization of failure modes, the concepts of IT2F-MAIRCA, and IT2F-

MARCOS are proposed.  Further, for the same purpose, a modified IT2F-TOPSIS method 

is developed.  

d) After noticing that each of the IT2F-based MCDM method (viz., IT2F-MAIRCA, IT2F-

MARCOS, and IT2F-TOPSIS) produces dissimilar ranking results for the same case study 

(viz., FMECA of the process plant gearbox), multiplicative HQ programming approach is 

adopted to compute the ensemble risk ranking results of the failure modes. The results are 

supplemented with a consensus index (CI) and trust level (TL) to aid the decision makers 

in making a confident decision.  

e) By means of sensitivity analyses, the stability and rank retention capabilities of each 

developed method is compared and highlighted.  

6.2. Proposed Framework 

The essential definitions and arithmetic operations of T2FS and/or IT2FSs can be referred to 

Chapter 5 / Section 5.2. This section details the proposed framework and its associated steps for 

the risk ranking of failure modes.  The workflow diagram of the proposed framework is depicted 

in Figure 6.1. The framework is divided into five blocks as described in the below sub-sections: 

6.2.1. Block I: Organizing the Problem 

Here, the goal of the study is set out, which is obviously the risk ranking of the failure modes in 

FMEA. Additionally, participating cross-functional experts are chosen, who further identify the 

relevant alternatives (viz., failure modes), and the criteria (viz., risk factors). The linguistic terms 

along with their corresponding TrIT2FNs values are identified and/or selected, to compute the 

criteria weights (e.g., refer Table 5.1), and finally rank the alternatives (e.g., refer Table 6.1).    

Table 6.1. Linguistic variables for rating of alternatives and their corresponding TrIT2FNs 

Linguistic terms Trapezoidal interval type-2 fuzzy number 

Very poor (VP) ((0,0,0,0.1;1,1),(0.050,0,0,0.050,0.9,0.9)) 

Poor (P) ((0,0.1,0.1,0.3;1,1),(0.05,0.1,0.1,0.25;0.9,0.9)) 

Medium poor (MP) ((0.1,0.3,0.3,0.5;1,1),(0.15,0.3,0.3,0.45;0.9,0.9)) 
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Fair (F) ((0.3,0.5,0.5,0.7;1,1),(0.35,0.5,0.5,0.65;0.9,0.9)) 

Medium good (MG) ((0.5,0.7,0.7,0.9;1,1),(0.55,0.7,0.7,0.85;0.9,0.9)) 

Good (G) ((0.7,0.9,0.9,1;1,1),(0.75,0.9,0.9,0.95;0.9,0.9)) 

Very good (VG) ((0.9,1,1,1;1,1),(0.95,1,1,0.95;0.9,0.9)) 

6.2.2. Block II: Extended Interval Type-2 Fuzzy DEMATEL Method 

The initial steps to calculate the IT2FNs-based weights of the risk factors are the same as mentioned 

in Chapter 5 / Section 5.3, (i.e., Step 1-5).  The additional steps are shown below:   

Step 6: Represent the elements of the matrices �̃̃�𝑖⨁�̃̃�𝑖 and �̃̃�𝑖⊝ �̃̃�𝑖 by (6.1).  

�̃̃�𝑖⨁�̃̃�𝑖 = [�̃̃�𝑖1]𝑚×1, and �̃̃�𝑖⊝ �̃̃�𝑖 = [�̃̃�𝑖1]𝑚×1 (6.1) 

where, 

�̃̃�𝑖1 = (�̃�𝑖1
𝑈 , �̃�𝑖1

𝐿 ) = (
(𝑎𝑖1

𝐷+𝑅 , 𝑏𝑖1
𝐷+𝑅 , 𝑐𝑖1

𝐷+𝑅 , 𝑑𝑖1
𝐷+𝑅; 𝐻1(�̃�𝑖1

𝑈 ),𝐻2(�̃�𝑖1
𝑈 )) ,

(𝑒𝑖1
𝐷+𝑅 , 𝑓𝑖1

𝐷+𝑅 , 𝑔𝑖1
𝐷+𝑅 , ℎ𝑖1

𝐷+𝑅; 𝐻1(�̃�𝑖1
𝐿 ),𝐻2(�̃�𝑖1

𝐿 ))
), and 

�̃̃�𝑖1 = (�̃�𝑖1
𝑈 , �̃�𝑖1

𝐿 ) = (
(𝑎𝑖1

𝐷−𝑅 , 𝑏𝑖1
𝐷−𝑅 , 𝑐𝑖1

𝐷−𝑅 , 𝑑𝑖1
𝐷−𝑅; 𝐻1(�̃�𝑖1

𝑈),𝐻2(�̃�𝑖1
𝑈)) ,

(𝑒𝑖1
𝐷−𝑅 , 𝑓𝑖1

𝐷−𝑅 , 𝑔𝑖1
𝐷−𝑅 , ℎ𝑖1

𝐷−𝑅; 𝐻1(�̃�𝑖1
𝐿 ),𝐻2(�̃�𝑖1

𝐿 ))
) 14 

Generate the combination matrix (�̃̃�) as in (6.2).  

�̃̃� = [�̃̃�𝑖1]𝑚×1 =

[
 
 
 
 
 
 
 √(�̃̃�11⨂�̃̃�11)⨁(�̃̃�11⨂�̃̃�11)

√(�̃̃�21⨂�̃̃�21)⨁(�̃̃�21⨂�̃̃�21)

⋮

√(�̃̃�𝑚1⨂�̃̃�𝑚1)⨁(�̃̃�𝑚1⨂�̃̃�𝑚1)]
 
 
 
 
 
 
 

 (6.2) 

where,�̃̃�𝑖1 = (�̃�𝑖1
𝑈 , �̃�𝑖1

𝐿 ) =  (
(𝑎𝑖1

𝑜 , 𝑏𝑖1
𝑜 , 𝑐𝑖1

𝑜 , 𝑑𝑖1
𝑜 ; 𝐻1(�̃�𝑖1

𝑈),𝐻2(�̃�𝑖1
𝑈)) ,

(𝑒𝑖1
𝑜 , 𝑓𝑖1

𝑜, 𝑔𝑖1
𝑜 , ℎ𝑖1

𝑜 ; 𝐻1(�̃�𝑖1
𝐿 ),𝐻2(�̃�𝑖1

𝐿 ))
). 

 
14 The superscripts D + R and D − R used above are for notation purposes only. 
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Figure 6.1. Workflow diagram of the proposed integrated framework 
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Then, perform the normalization operation of �̃̃� to compute the IT2FNs-based weights of the 

risk factors as given in (6.3)15.  

�̃̃� = [�̃̃�𝑖1]𝑚×1 (6.3) 

where,    

�̃̃�𝑖1 =

(

 
 
(

𝑎𝑖1
𝑜

∑ 𝑑𝑖1
𝑜𝑚

𝑖=1

,
𝑏𝑖1
𝑜

∑ 𝑐𝑖1
𝑜𝑚

𝑖=1

,
𝑐𝑖1
𝑜

∑ 𝑏𝑖1
𝑜𝑚

𝑖=1

,
𝑑𝑖1
𝑜

∑ 𝑎𝑖1
𝑜𝑚

𝑖=1

; 𝐻1(�̃�𝑖1
𝑈), 𝐻2(�̃�𝑖1

𝑈)) ,

(
𝑒𝑖1
𝑜

∑ ℎ𝑖1
𝑜𝑚

𝑖=1

,
𝑓𝑖1
𝑜

∑ 𝑔𝑖1
𝑜𝑚

𝑖=1

,
𝑔𝑖1
𝑜

∑ 𝑓𝑖1
𝑜𝑚

𝑖=1

,
ℎ𝑖1
𝑜

∑ 𝑒𝑖1
𝑜𝑚

𝑖=1

; 𝐻1(�̃�𝑖1
𝐿 ),𝐻2(�̃�𝑖1

𝐿 ))
)

 
 

. 

In case of clustered representation of the risk factors, at first the local weights to them and 

their sub-risk factors are calculated. The local weights of the sub-risk factors are multiplied 

thereafter with the local weight of the main factor to determine the global weights of the sub-risk 

factors.  

6.2.3. Block III: Risk Ranking of Failure Modes by the Proposed IT2F-MAIRCA Method 

This section presents the mathematical steps associated with the development of the IT2F-

MAIRCA method.  

Assume that a set of 𝑛 failure modes [𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛}] are to be prioritized with respect 

to 𝑚 numbers of risk factors [𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚}]. If 𝐶𝐵 denotes the set of benefit criteria, 𝐶𝑐 

denotes the set of cost criteria, then 𝐶𝐵 ∩ 𝐶𝐶 = ∅, and 𝐶𝐵 ∪ 𝐶𝐶 = 𝐶, then the major steps in IT2F-

MAIRCA are as below:  

Step 1: Linguistically assessed failure modes for each of the risk factor are converted into respective 

IT2FNs by using any standardized or customized scale (e.g., for instance Table 6.1). For 𝑙 experts 

(where 𝑙 = 1,2,… , 𝑘), a total of 𝑘 initial decision matrices are generated, denoted 

by �̃̃�(1), �̃̃�(2), … , �̃̃�(𝑘) , respectively. Also, each expert is given a weight value 𝜆𝑙 based on their level 

of expertise and job tenure. 

Step 2: Calculate the IT2F-average initial decision matrix (�̃̃�)as in (6.4).  

 
15 Here also the heights of the IT2FNs are remain unchanged.  
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�̃̃� = (𝜆1 ×  �̃̃�
(1)) + (𝜆2 ×  �̃̃�

(2)) +⋯+ (𝜆𝑘 ×  �̃̃�
(𝑘)) (6.4) 

The matrix �̃̃� would be like ((6.5), where, �̃̃�𝑖𝑗 represents the IT2F rating of 𝑖 − 𝑡ℎ alternative, 

with respect to 𝑗 − 𝑡ℎ criteria, and 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. To maintain the similarity with the earlier 

notations, let us assume that: 

 �̃̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑈, �̃�𝑖𝑗

𝐿 ) =

((𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 , 𝑑𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝑈),𝐻2(�̃�𝑖𝑗

𝑈)) , (𝑒𝑖𝑗, 𝑓𝑖𝑗, 𝑔𝑖𝑗 , ℎ𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 ))).  

�̃̃� = [�̃̃�𝑖𝑗]𝑛×𝑚
 (6.5) 

Step 3: Normalize the IT2F-average initial decision matrix.  For each risk factor, 

calculate( 𝑟𝑎𝑛𝑔𝑒𝑗 = [max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − min
1≤𝑖≤𝑛

𝑎𝑖𝑗]), and 1 ≤ 𝑗 ≤ 𝑚. If the criterion belongs to 𝐶𝐵, then 

perform the normalization operation as in (6.6), and for 𝐶𝐶 follow (6.7). The normalized IT2F 

matrix is represented as �̃̃� = [�̃̃�𝑖𝑗]𝑛×𝑚.   

�̃̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑈 , �̃�𝑖𝑗

𝐿 )

=

(

 
 
 
 
 (

𝑎𝑖𝑗 − min
1≤𝑖≤𝑛

𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
𝑏𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
𝑐𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
𝑑𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
;

𝐻1(�̃�𝑖𝑗
𝑈),𝐻2(�̃�𝑖𝑗

𝑈)

) ,

(

𝑒𝑖𝑗 − min
1≤𝑖≤𝑛

𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
𝑓𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
𝑔𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
ℎ𝑖𝑗 − min

1≤𝑖≤𝑛
𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
;

𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 )

)

)

 
 
 
 
 

 
(6.6) 

�̃̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑈 , �̃�𝑖𝑗

𝐿 )

=

(

 
 
 
 
 (

max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑎𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑏𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑐𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑑𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
;

𝐻1(�̃�𝑖𝑗
𝑈),𝐻2(�̃�𝑖𝑗

𝑈)

) ,

(

max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑒𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑓𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − 𝑔𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
,
max
1≤𝑖≤𝑛

𝑑𝑖𝑗 − ℎ𝑖𝑗

𝑟𝑎𝑛𝑔𝑒𝑗
;

𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 )

)

)

 
 
 
 
 

 
(6.7) 
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Step 4: Calculate the preferences of alternative selection 𝑃𝑋𝑖 employing (6.8)16. 

𝑃𝑋𝑖 =
1

𝑛
; ∑𝑃𝑋𝑖

𝑛

𝑖=1

= 1 (6.8) 

Step 5: Derive the matrix of theoretical ponder (�̃̃�𝑝) as in (6.9)17  

�̃̃�𝑝 =

[
 
 
 
 
 
 �̃̃�𝑝11 �̃̃�𝑝12 … �̃̃�𝑝1𝑚

�̃̃�𝑝21 �̃̃�𝑝21 … �̃̃�𝑝2𝑚

�̃̃�𝑝31 �̃̃�𝑝32 … �̃̃�𝑝3𝑚
⋮ ⋮ ⋮ ⋮

�̃̃�𝑝𝑛1 �̃̃�𝑝𝑛2 … �̃̃�𝑝𝑛𝑚]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑃𝑋1 × �̃̃�11 𝑃𝑋1 × �̃̃�21 … 𝑃𝑋1 × �̃̃�𝑚1

𝑃𝑋2 × �̃̃�11 𝑃𝑋2 × �̃̃�21 … 𝑃𝑋2 × �̃̃�𝑚1

𝑃𝑋3 × �̃̃�11 𝑃𝑋3 × �̃̃�21 … 𝑃𝑋3 × �̃̃�𝑚1
⋮              ⋮             ⋮             ⋮

𝑃𝑋𝑛 × �̃̃�11 𝑃𝑋𝑛 × �̃̃�21 … 𝑃𝑋𝑛 × �̃̃�𝑚1]
 
 
 
 
 

 (6.9) 

where, 

�̃̃�𝑝𝑖𝑗 = (�̃�𝑝𝑖𝑗
𝑈 , �̃�𝑝𝑖𝑗

𝐿 ) =

(

 
 
(𝑎𝑡𝑝𝑖𝑗

, 𝑏𝑡𝑝𝑖𝑗
, 𝑐𝑡𝑝𝑖𝑗

, 𝑑𝑡𝑝𝑖𝑗
; 𝐻1 (�̃�𝑝𝑖𝑗

𝑈 ) , 𝐻2 (�̃�𝑝𝑖𝑗
𝑈 )) ,

(𝑒𝑡𝑝𝑖𝑗
, 𝑓𝑡𝑝𝑖𝑗

, 𝑔𝑡𝑝𝑖𝑗
, ℎ𝑡𝑝𝑖𝑗

; 𝐻1 (�̃�𝑝𝑖𝑗
𝐿 ) , 𝐻2 (�̃�𝑝𝑖𝑗

𝐿 ))
)

 
 

 

Step 6: Calculate the matrix of actual ponder (�̃̃�𝑟)as in (6.10). 

�̃̃�𝑟 =

[
 
 
 
 
 
 �̃̃�𝑟11 �̃̃�𝑟12 … �̃̃�𝑟1𝑚

�̃̃�𝑟21 �̃̃�𝑟21 … �̃̃�𝑟2𝑚

�̃̃�𝑟31 �̃̃�𝑟32 … �̃̃�𝑟3𝑚
⋮ ⋮ ⋮ ⋮

�̃̃�𝑟𝑛1 �̃̃�𝑟𝑛2 … �̃̃�𝑟𝑛𝑚]
 
 
 
 
 
 

=

[
 
 
 
 
 
 �̃̃�𝑝11 ⊗ �̃̃�11 �̃̃�𝑝12 ⊗ �̃̃�12 … �̃̃�𝑝1𝑚 ⊗ �̃̃�1𝑚

�̃̃�𝑝21 ⊗ �̃̃�21 �̃̃�𝑝22 ⊗ �̃̃�22 … �̃̃�𝑝2𝑚 ⊗ �̃̃�2𝑚

�̃̃�𝑝31 ⊗ �̃̃�31 �̃̃�𝑝32 ⊗ �̃̃�32 … �̃̃�𝑝3𝑚 ⊗ �̃̃�3𝑚
⋮              ⋮             ⋮             ⋮

�̃̃�𝑝𝑛1 ⊗ �̃̃�𝑛1 �̃̃�𝑝𝑛2 ⊗ �̃̃�𝑛2 … �̃̃�𝑝𝑛𝑚 ⊗ �̃̃�𝑛𝑚]
 
 
 
 
 
 

 (6.10) 

where, 

�̃̃�𝑟𝑖𝑗 = (�̃�𝑟𝑖𝑗
𝑈 , �̃�𝑟𝑖𝑗

𝐿 ) =

(

 
 
(𝑎𝑡𝑟𝑖𝑗

, 𝑏𝑡𝑟𝑖𝑗
, 𝑐𝑡𝑟𝑖𝑗

, 𝑑𝑡𝑟𝑖𝑗
; 𝐻1 (�̃�𝑟𝑖𝑗

𝑈 ) , 𝐻2 (�̃�𝑟𝑖𝑗
𝑈 )) ,

(𝑒𝑡𝑟𝑖𝑗
, 𝑓𝑡𝑟𝑖𝑗

, 𝑔𝑡𝑟𝑖𝑗
, ℎ𝑡𝑟𝑖𝑗

; 𝐻1 (�̃�𝑟𝑖𝑗
𝐿 ) , 𝐻2 (�̃�𝑟𝑖𝑗

𝐿 ))
)

 
 

 

 
16 It basically enumerates that the decision-maker is unbiased towards selection of a failure mode and each of the failure 

mode has the equal probability of selection as the most critical one. 
17 The IT2FNs-based criteria weights are adopted from the output of IT2F-DEMATEL method. 



120 

 

Step 7: Calculate the total gap matrix (𝐺) by de-fuzzifying, and later on subtracting the �̃̃�𝑝18 and 

�̃̃�𝑟19  matrices (refer (6.11)). The ranking-based defuzzification method is reproduced in (6.12)20 

(Kahraman et al., 2014).   

𝑡𝑟𝑖𝑗

=

[
(𝑑𝑡𝑟𝑖𝑗

− 𝑎𝑡𝑟𝑖𝑗
) + (𝐻1 (�̃�𝑟𝑖𝑗

𝑈 ) × 𝑏𝑡𝑟𝑖𝑗
− 𝑎𝑡𝑟𝑖𝑗

) + (𝐻2 (�̃�𝑟𝑖𝑗
𝑈 ) × 𝑐𝑡𝑟𝑖𝑗

− 𝑎𝑡𝑟𝑖𝑗
)

4
+ 𝑎𝑡𝑟𝑖𝑗

] +

[
(ℎ𝑡𝑟𝑖𝑗

− 𝑒𝑡𝑟𝑖𝑗
) + (𝐻1 (�̃�𝑟𝑖𝑗

𝐿 ) × 𝑓𝑡𝑟𝑖𝑗
− 𝑒𝑡𝑟𝑖𝑗

) + (𝐻2 (�̃�𝑟𝑖𝑗
𝐿 ) × 𝑓𝑡𝑟𝑖𝑗

− 𝑒𝑡𝑟𝑖𝑗
)

4
+ 𝑒𝑡𝑟𝑖𝑗

]

2
 

(6.12) 

𝐺 = [𝑔𝑖𝑗]𝑛×𝑚 = [𝑇𝑝 − 𝑇𝑟] (6.13) 

Step 8: Evaluating the criteria function values (𝑄𝑖)for each failure mode as in (6.14).  

𝑄𝑖 =∑𝑔𝑖𝑗

𝑚

𝑗=1

; 𝑖 = 1,2,… , 𝑛 (6.14) 

The failure modes are prioritized according the ascending order values of criteria functions21.  

6.2.4. Block IV: Risk Ranking of Failure Modes by the Proposed IT2F-MARCOS Method 

The steps associated in the IT2F-MARCOS method are described below:  

Step 1: Calculate the extended IT2F initial matrix by using the IT2F average initial decision matrix 

(refer (6.5)), as shown in (6.15). The ideal (ID) and anti-deal (AID) solutions are computed by 

using (6.12), and are shown in (6.16) - (6.17)22.  

 
18 𝑇𝑝 = [𝑡𝑝𝑖𝑗]𝑛×𝑚

 

19 𝑇𝑟 = [𝑡𝑟𝑖𝑗]𝑛×𝑚
 

20 The defuzzification method is explained by utilizing the notations of �̃̃�𝑟𝑖𝑗 .  
21 It is always desirable that the gap between the theoretical ponder and actual ponder tends to zero, because the failure 

mode having the smallest difference is identified as the most critical one. 
22 The anti-ideal solution implies worst alternative/least critical failure mode, and ideal solution denotes the best 

alternative/most critical failure mode.  
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�̃̃� = [�̃̃�𝑖𝑗]𝑛×𝑚
=

𝑋1
𝑋2
𝑋3
⋮
𝑋𝑛
𝑋𝐴𝐼𝐷
𝑋𝐼𝐷 [

 
 
 
 
 
 
 
�̃̃�11 �̃̃�12 … �̃̃�1𝑚
�̃̃�21 �̃̃�22 … �̃̃�2𝑚
�̃̃�31 �̃̃�32 … �̃̃�3𝑚

⋮ ⋮ ⋮ ⋮ 
�̃̃�𝑛1
�̃̃�1
𝐴𝐼𝐷

�̃̃�1
𝐼𝐷

�̃̃�𝑛2
�̃̃�2
𝐴𝐼𝐷

�̃̃�2
𝐼𝐷

……
…

�̃̃�𝑛𝑚
�̃̃�𝑚
𝐴𝐼𝐷

�̃̃�𝑚
𝐼𝐷 ]
 
 
 
 
 
 
 

 (6.15) 

�̃̃�𝑗
𝐴𝐼𝐷 = min

1≤𝑖≤𝑛
[rank value(𝑧𝑖𝑗)] , 𝑖𝑓 𝑗 ∈ 𝐶𝐵;  �̃̃�𝑗

𝐴𝐼 = max
1≤𝑖≤𝑛

[rank value(𝑧𝑖𝑗)] , 𝑖𝑓 𝑗 ∈ 𝐶𝐶   (6.16) 

�̃̃�𝑗
𝐼𝐷 = max

1≤𝑖≤𝑛
[rank value(𝑧𝑖𝑗)] , 𝑖𝑓 𝑗 ∈ 𝐶𝐵;  �̃̃�𝑗

𝐼 = min
1≤𝑖≤𝑛

[rank value(𝑧𝑖𝑗)] , 𝑖𝑓 𝑗 ∈ 𝐶𝐶 (6.17) 

where,  

�̃̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑈, �̃�𝑖𝑗

𝐿 ) = ((𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 , 𝑑𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝑈),𝐻2(�̃�𝑖𝑗

𝑈)) , (𝑒𝑖𝑗 , 𝑓𝑖𝑗, 𝑔𝑖𝑗, ℎ𝑖𝑗; 𝐻1(�̃�𝑖𝑗
𝐿 ), 𝐻2(�̃�𝑖𝑗

𝐿 ))), 

�̃̃�𝑗
𝐴𝐼𝐷 = (�̃�𝑗

𝐴𝐼𝐷𝑈 , �̃�𝑗
𝐴𝐼𝐷𝐿) =

((𝑎𝑗
𝐴𝐼𝐷, 𝑏𝑗

𝐴𝐼𝐷, 𝑐𝑗
𝐴𝐼𝐷, 𝑑𝑗

𝐴𝐼𝐷; 𝐻1 (�̃�𝑗
𝐴𝐼𝐷𝑈) , 𝐻2 (�̃�𝑗

𝐴𝐼𝐷𝑈)) , (𝑒𝑗
𝐴𝐼𝐷, 𝑓𝑗

𝐴𝐼𝐷, 𝑔𝑗
𝐴𝐼𝐷 , ℎ𝑗

𝐴𝐼𝐷; 𝐻1 (�̃�𝑗
𝐴𝐼𝐷𝐿) , 𝐻2 (�̃�𝑗

𝐴𝐼𝐷𝐿)))

, and 

�̃̃�𝑗
𝐼𝐷 = (�̃�𝑗

𝐼𝐷𝑈 , �̃�𝑗
𝐼𝐷𝐿) =

((𝑎𝑗
𝐼𝐷, 𝑏𝑗

𝐼𝐷 , 𝑐𝑗
𝐼𝐷 , 𝑑𝑗

𝐼𝐷; 𝐻1 (�̃�𝑗
𝐼𝐷𝑈) , 𝐻2 (�̃�𝑗

𝐼𝐷𝑈)) , (𝑒𝑗
𝐼𝐷, 𝑓𝑗

𝐼𝐷, 𝑔𝑗
𝐼𝐷 , ℎ𝑗

𝐼𝐷; 𝐻1 (�̃�𝑗
𝐼𝐷𝐿) , 𝐻2 (�̃�𝑗

𝐼𝐷𝐿))). 

Step 2: Normalize the IT2F-extended initial decision matrix. Elements of the IT2F normalized 

matrix �̃̃� = [�̃̃�𝑖𝑗]𝑛×𝑚  are obtained by employing (6.18)-(6.19).  

�̃̃�𝑖𝑗 =

(

 
 
 
 (

𝑎𝑖𝑗

𝑑𝑗
𝐼𝐷 ,

𝑏𝑖𝑗

𝑐𝑗
𝐼𝐷 ,

𝑐𝑖𝑗

𝑏𝑗
𝐼𝐷 ,

𝑑𝑖𝑗

𝑎𝑗
𝐼𝐷 ; 𝑚𝑖𝑛 (𝐻1(�̃�𝑖𝑗

𝑈),𝐻1 (�̃�𝑗
𝐼𝐷𝑈)) ;𝑚𝑖𝑛 (𝐻2(�̃�𝑖𝑗

𝑈),𝐻2 (�̃�𝑗
𝐼𝐷𝑈))) ,

(
𝑒𝑖𝑗

ℎ𝑗
𝐼𝐷 ,

𝑓𝑖𝑗

𝑔𝑗
𝐼𝐷 ,

𝑔𝑖𝑗

𝑓𝑗
𝐼𝐷 ,

ℎ𝑖𝑗

𝑒𝑗
𝐼𝐷 ;𝑚𝑖𝑛 (𝐻1(�̃�𝑖𝑗

𝐿 ), 𝐻1 (�̃�𝑗
𝐼𝐷𝐿)) ;𝑚𝑖𝑛 (𝐻2(�̃�𝑖𝑗

𝐿 ), 𝐻2 (�̃�𝑗
𝐼𝐷𝐿)))

)

 
 
 
 

 

 𝑖𝑓 𝑗 ∈ 𝐶𝐵 

(6.18) 
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�̃̃�𝑖𝑗 =

(

 
 
 
 (

𝑎𝑗
𝐼𝐷

𝑑𝑖𝑗
,
𝑏𝑗
𝐼𝐷

𝑐𝑖𝑗
,
𝑐𝑗
𝐼𝐷

𝑏𝑖𝑗
,
𝑑𝑗
𝐼𝐷

𝑎𝑖𝑗
;𝑚𝑖𝑛 (𝐻1(�̃�𝑖𝑗

𝑈),𝐻1 (�̃�𝑗
𝐼𝐷𝑈)) ,𝑚𝑖𝑛 (𝐻2(�̃�𝑖𝑗

𝑈),𝐻2 (�̃�𝑗
𝐼𝐷𝑈))) ,

(
𝑒𝑗
𝐼𝐷

ℎ𝑖𝑗
,
𝑓𝑗
𝐼𝐷

𝑔𝑖𝑗
,
𝑔𝑗
𝐼𝐷

𝑓𝑖𝑗
,
ℎ𝑗
𝐼𝐷

𝑒𝑖𝑗
; 𝑚𝑖𝑛 (𝐻1(�̃�𝑖𝑗

𝐿 ), 𝐻1 (�̃�𝑗
𝐼𝐷𝐿)) ,𝑚𝑖𝑛 (𝐻2(�̃�𝑖𝑗

𝐿 ), 𝐻2 (�̃�𝑗
𝐼𝐷𝐿)))

)

 
 
 
 

  

𝑖𝑓 𝑗 ∈ 𝐶𝐶 

(6.19) 

Step 3: Calculate the IT2F-weighted normalized decision matrix as in (6.20)23.  

�̃̃� = [�̃̃�𝑖𝑗]𝑛×𝑚
=

𝑋1
𝑋2
𝑋3
⋮
𝑋𝑛
𝑋𝐴𝐼𝐷
𝑋𝐼𝐷 [

 
 
 
 
 
 
 
�̃̃�11 �̃̃�12 … �̃̃�1𝑚
�̃̃�21 �̃̃�22 … �̃̃�2𝑚
�̃̃�31 �̃̃�32 … �̃̃�3𝑚

⋮ ⋮ ⋮ ⋮ 
�̃̃�𝑛1
�̃̃�1
𝐴𝐼𝐷

�̃̃�1
𝐼𝐷

�̃̃�𝑛2
�̃̃�2
𝐴𝐼𝐷

�̃̃�2
𝐼𝐷

……
…

�̃̃�𝑛𝑚
�̃̃�𝑚
𝐴𝐼𝐷

�̃̃�𝑚
𝐼𝐷 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
�̃̃�11⨂�̃̃�11 �̃̃�12⨂�̃̃�21 … �̃̃�1𝑚⨂�̃̃�𝑚1
�̃̃�21⨂�̃̃�11 �̃̃�22⨂�̃̃�21 … �̃̃�2𝑚⨂�̃̃�𝑚1
�̃̃�31⨂�̃̃�11 �̃̃�32⨂�̃̃�21 … �̃̃�3𝑚⨂�̃̃�𝑚1

⋮ ⋮ ⋮ ⋮ 
�̃̃�𝑛1⨂�̃̃�11
�̃̃�1
𝐴𝐼𝐷⨂�̃̃�11
�̃̃�1
𝐼𝐷⨂�̃̃�11

�̃̃�𝑛2⨂�̃̃�21
�̃̃�2
𝐴𝐼𝐷⨂�̃̃�21
�̃̃�2
𝐼𝐷⨂�̃̃�21

……
…

�̃̃�𝑛𝑚⨂�̃̃�𝑚1
�̃̃�𝑚
𝐴𝐼𝐷⨂�̃̃�𝑚1
�̃̃�𝑚
𝐼𝐷⨂�̃̃�𝑚1 ]

 
 
 
 
 
 
 

 

(6.20) 

Step 4: Calculate the sum of elements for each alternative as in (6.21). 

�̃̃� = [�̃̃�𝑖]𝑛×1 =

𝑋1
𝑋2
𝑋3
⋮
𝑋𝑛
𝑋𝐴𝐼𝐷
𝑋𝐼𝐷 [

 
 
 
 
 
 
 
�̃̃�1
�̃̃�2
�̃̃�3
⋮
�̃̃�𝑛
�̃̃�𝐴𝐼𝐷

�̃̃�𝐼𝐷 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
�̃̃�11⊕ �̃̃�12 ⨁… ⨁�̃̃�1𝑚
�̃̃�21⊕ �̃̃�22 ⨁… ⨁�̃̃�2𝑚
�̃̃�31⊕ �̃̃�32 ⨁… ⨁�̃̃�3𝑚

⋮
�̃̃�𝑛1⊕ �̃̃�𝑛2 ⨁… ⨁�̃̃�𝑛𝑚

�̃̃�1
𝐴𝐼𝐷⊕ �̃̃�2

𝐴𝐼𝐷 ⨁… ⨁�̃̃�𝑚
𝐴𝐼𝐷

�̃̃�1
𝐼𝐷⊕ �̃̃�2

𝐼𝐷 ⨁… ⨁�̃̃�𝑚
𝐼𝐷 ]

 
 
 
 
 
 
 

 (6.21) 

Step 5: Employ the defuzzification method (refer (6.12)) to the matrix shown in (6.21) to de-fuzzify 

each element. The utility degree of alternatives in relation to the ID and AID solution is evaluated 

as in (6.22)-(6.23). 

 
23 The IT2FNs-based weights of the risk factors as computed in IT2F-DEMATEL method are utilized here. 
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𝐾𝑖
+ =

𝑠𝑖
𝑠𝐼𝐷

 (6.22) 

𝐾𝑖
− =

𝑠𝑖
𝑠𝐴𝐼𝐷

 (6.23) 

Step 6: Determine the utility function in relation to the ideal solution and anti-ideal solution by 

adopting (6.24) - (6.25). Then calculate the utility function of the failure modes as in (6.26), which 

basically represents the compromise of the failure modes with respect to ID and AID solutions. 

𝑓(𝐾𝑖
−) =

𝐾𝑖
+

𝐾𝑖
+ + 𝐾𝑖

− (6.24) 

𝑓(𝐾𝑖
+) =

𝐾𝑖
−

𝐾𝑖
+ + 𝐾𝑖

− (6.25) 

𝑓(𝐾𝑖) =
𝐾𝑖
+ + 𝐾𝑖

−

1 +
𝐾𝑖
+

𝐾𝑖
− +

𝐾𝑖
−

𝐾𝑖
+

 
(6.26) 

Step 7: Rank the failure modes based on the descending order values of the utility function. The 

failure mode having the highest utility function value is identified as the most critical one. 

6.2.5. Block V: Risk Ranking of Failure Modes by Modified IT2F-TOPSIS 

Here, the modified IT2F-TOPSIS method is proposed, which is a modified version of the work 

presented in (Chen and Lee, 2010).  

Step 1: Utilize the same IT2F-average initial decision matrices (refer (6.5)), to calculate the IT2F-

weighted decision matrix, as in (6.27).  

𝐾 = [�̃̃�𝑖𝑗]
𝑛×𝑚

=

𝑋1
𝑋2
𝑋3
⋮
𝑋𝑛
[
 
 
 
 
 
 �̃̃�11 �̃̃�12 … �̃̃�1𝑚

�̃̃�21 �̃̃�22 … �̃̃�2𝑚

�̃̃�31 �̃̃�32 … �̃̃�3𝑚
⋮ ⋮ ⋮ ⋮

�̃̃�𝑛1 �̃̃�𝑛2 … �̃̃�𝑛𝑚]
 
 
 
 
 
 

=

[
 
 
 
 
 
�̃̃�11⨂�̃̃�11 �̃̃�12⨂�̃̃�21 … �̃̃�1𝑚⨂�̃̃�𝑚1
�̃̃�21⨂�̃̃�11 �̃̃�22⨂�̃̃�21 … �̃̃�2𝑚⨂�̃̃�𝑚1
�̃̃�31⨂�̃̃�11 �̃̃�32⨂�̃̃�21 … �̃̃�3𝑚⨂�̃̃�𝑚1

⋮ ⋮ ⋮ ⋮

�̃̃�𝑛1⨂�̃̃�11 �̃̃�𝑛2⨂�̃̃�21 … �̃̃�𝑛𝑚⨂�̃̃�𝑚1]
 
 
 
 
 

 (6.27) 

Step 2: Calculate the ranking values of each element of the matrix �̃̃� using the ranking based 

defuzzification method, as presented in (6.12). 

Step 3: Determining the ID and AID solutions, as in (6.28) – (6.29).  
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𝑘𝑗
𝐼𝐷 = {

max
1≤𝑗≤𝑚

{𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗)} , 𝑖𝑓 𝑗 ∈ 𝐶𝐵

min
1≤𝑗≤𝑚

{𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗)} , 𝑖𝑓 𝑗 ∈ 𝐶𝐶
 (6.28) 

𝑘𝑗
𝐴𝐼𝐷 = {

min
1≤𝑗≤𝑚

{𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗)} , 𝑖𝑓 𝑗 ∈ 𝐶𝐶

max
1≤𝑗≤𝑚

{𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗)} , 𝑖𝑓 𝑗 ∈ 𝐶𝐵
 (6.29) 

Step 4: Calculate the distance between each failure mode and ID solutions 𝑑𝐼𝐷(𝑥𝑖) as well as AID 

solution 𝑑𝐴𝐼𝐷(𝑥𝑖) by employing (6.30)-(6.31).  

𝑑𝐼𝐷(𝑥𝑖) = √∑(𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗) − 𝑘𝑗
𝐼𝐷)

2
𝑚

𝑗=1

; for 1 ≤ 𝑖 ≤ 𝑛 (6.30) 

𝑑𝐴𝐼𝐷(𝑥𝑖) = √∑(𝑟𝑎𝑛𝑘 (�̃̃�𝑖𝑗) − 𝑘𝑗
𝐴𝐼𝐷)

2
𝑚

𝑗=1

; for 1 ≤ 𝑖 ≤ 𝑛 (6.31) 

Step 5: Compute the degree of closeness of each failure mode with respect to ID and AID solution 

by adopting (6.32). 

𝐶𝐶(𝑥𝑖) =
𝑑−(𝑥𝑖)

𝑑+(𝑥𝑖) + 𝑑
−(𝑥𝑖)

 (6.32) 

Step 6: Sort the values of 𝐶𝐶(𝑥𝑖) in descending order. The most critical failure mode has the highest 

value of 𝐶𝐶(𝑥𝑖).  

6.2.6. Final Ensemble Risk Ranking of Failure Modes 

In the least square fitting regression technique, the Euclidian norm is exploited as the loss function. 

Although it is simple and produces a closed form solution, it is extremely sensitive to outliers and 

displays poor performance in noisy environments. Further, the outliers from the tails of the 

distribution are heavily weighted, and bad data points can make the regression result insignificant.  

Recently, in (Mohammadi and Rezaei, 2020) the authors adopted the concept of HQ 

programming approach in MCDM theory, and proposed a compromise ensemble method to 

compute the ensemble ranking results of the alternatives. HQ functions belong to the family of 

robust estimators, more specifically M-estimators, which are not convex, but their optimum can be 
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obtained by HQ minimization with an assured convergence. There are several approaches of M-

estimator available in the literature, like Huber, Cauchy, Welsch, Tukey, etc. (Zhang, 1996). 

Literature also indicates that the influence of large errors linearly decreases with respect to their 

size in case of Huber and Cauchy functions. However, the Welsch function is free from this error 

and has been used extensively in diversified domains, like image processing, signal processing, etc. 

for noise reduction purpose. Apart from that, it provides the CI and TL that helps the decision 

makers to make a rational decision.  

Assume that there are 𝐻 MCDM methods (where 𝐻 = 1,2,3,… , ℎ), and each of them are 

utilized to compute the ranking positions of 𝑛 failure modes with respect to 𝑚 risk factors for the 

same FMECA case study. The ranking result produced by the ℎ − 𝑡ℎ MCDM method is represented 

by 𝑅ℎ; and the final ranking is denoted by 𝑅𝜃. The optimization problem to compute the final 

ranking results is given by (6.33).  

𝑚𝑖𝑛
𝑅𝜃

1

2
∑𝑔(||𝑅ℎ − 𝑅𝜃||2)

𝐻

ℎ=1

 (6.33) 

where, 𝑔(. ) denotes the HQ function of the M-estimator.  

The HQ function and the minimizer function of the Welsch M-estimator are displayed in 

(6.34)-(6.35). 

𝑔(𝑙𝑖) = 1 − 𝑒𝑥𝑝 (−
𝑙𝑖
2

𝜎2
) (6.34) 

𝛿(𝑙𝑖) = 𝑒𝑥𝑝 (−
𝑙𝑖
2

𝜎2
) (6.35) 

where, 𝑙𝑖 denotes the 𝑖 − 𝑡ℎ element of a vector 𝑙, and 1 ≤ 𝑖 ≤ 𝑛.  

Although (6.33) is not convex but can be solved by the HQ programming approach. Adopting 

the HQ multiplicative form, (6.33) can be written as (6.36). 

𝑚𝑖𝑛
𝑅𝜃,𝛼

𝐽(𝑅𝜃, 𝛽) =∑𝛽ℎ(||𝑅
ℎ − 𝑅𝜃||2

2) + 𝜓(𝛽ℎ)

𝐻

ℎ=1

 (6.36) 

Where 𝛽 ∈ 𝑅𝐻 is the HQ auxiliary variable, and  𝜓(. ) is the complex conjugate of 𝑔(. ). The 

following steps are to be iterated until the convergence is reached. 
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𝛽ℎ = 𝛿(||𝑅
ℎ − 𝑅𝜃||2), ℎ = 1,2,… ,𝐻 (6.37) 

𝑅𝜃 = argmin
𝑅𝜃

∑𝛽ℎ||𝑅
ℎ − 𝑅𝜃||2

2

𝐻

ℎ=1

 (6.38) 

The solution of (6.37) can be obtained by using the minimizer function shown in (6.36) and 

the optimum for (6.38) is obtained by setting the derivative to zero. Thus, the final rankings of the 

alternatives are obtained, and the weights assigned to each MCDM method are shown in (6.39)-

(6.40).  

𝑅𝜃 = ∑𝑤ℎ𝑅
ℎ

𝐻

ℎ=1

 (6.39) 

𝑤ℎ =
𝛽ℎ

∑ 𝛽𝑗
𝐻
𝑗=1

 (6.40) 

where 𝑗 denotes the respective column of MCDM ranking, and  𝑤ℎ > 0.  

6.2.6.1. Degree of Similarity: The Consensus Index 

Next, it is required to find the degree to which the MCDM methods agree upon the final ranking 

result24. The CI of a given final ranking 𝑅𝜃, with respect to ranking 𝑅ℎ is calculated as in (6.41).  

𝐶𝐼(𝑅𝜃) =
1

𝑛𝐻
∑∑𝑞𝑖ℎ

𝐻

ℎ=1

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑞𝑖ℎ =
𝒩𝜎(𝑅𝑖

𝜃 − 𝑅𝑖
ℎ)

𝒩𝜎(0)
 (6.41) 

where, 𝒩𝜎(. ) is the 𝑝𝑑𝑓 of the Gaussian distribution having a mean of zero and standard 

deviation of 𝜎, and 𝒩𝜎(0) is used for normalizing the similarity computation. Thus, 𝐶𝐼(𝑅𝜃) ∈

[0,1]. If there is a complete agreement between the different ranking, then 𝐶𝐼(𝑅𝜃) = 1.  

6.2.6.2. Reliability of Final Ranking Result: The Trust Level  

The TL indicates the reliability of the final ranking result. If ranking produced by any MCDM 

method deviates significantly from other MCDM methods, it takes the lower weights and has a less 

 
24 It is the similarity between the individual ranking results with the final ranking result. 
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impact on the final ranking result. Hence, it has a lower impact on the TL. It can be computed by 

(6.42)25.  

𝑇𝐿(𝑅𝜃) =
1

𝑛
∑∑𝑤ℎ𝑞𝑖ℎ

𝐻

ℎ=1

𝑛

𝑖=1

 (6.42) 

6.3. Case Study: FMEA of a Gearbox 

The case study of the gearbox dealt in Chapter 4 is re-produced here to demonstrate the proposed 

integrated framework.  

6.3.1. Block I: Structuring the Problem 

• Goal: Risk ranking of failure modes of the gearbox. 

• Selecting the experts: Three cross-functional experts (DE1: deputy manager, DE2: assistant 

manager, and DE3: operator) participated in the FMEA. The assigned weights of them are 

𝜆1 = 0.4, 𝜆2 = 0.35, and 𝜆3 = 0.25. 

• Determining the failure modes, their cause(s), and effect(s): Refer Table 4.2 

• Determining the pertinent risk factors:  Refer Figure 5.4.  

• Determining and/or choosing the linguistic variables and their respective TrIT2FNs: Refer 

Table 5.1 and Table 6.1, respectively.  

6.3.2. Block II: Results by IT2F-DEMATEL method 

The linguistic evaluations made by domain experts to depict the causal dependencies among the 

risk factors and to calculate their IT2FNs-based weights have already been presented in Table 5.2 

– Table 5.6. Utilizing the steps presented in Section 5.3, the expected prominence and expected 

relation values for the risk factors are computed (refer Table 5.8), and their causal dependencies 

have been depicted (refer Figure 5.5 - Figure 5.9). Using the step presented Section 6.2.2, the 

weights of the risk factors are computed as given in Table 6.2.  

 
25 If the weights of the MCDM methods are identical then the TL is equivalent to CI. 
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Table 6.2. IT2FNs-based weights of the risk factors 

Risk factors IT2F local weights IT2F global weights 

C1 
((0.1902,0.4469,0.4469,0.9771;1,1), 

(0.2389,0.4469,0.4469,0.8098;0.9,0.9)) 
- 

C2 - 
((0.0851,0.1770,0.1770,0.4724;1,1), 

(0.0942,0.1770,0.1770,0.3738;0.9,0.9)) 

C3 - 
((0.1717,0.3762,0.3762,0.7874;1,1), 

(0.2108,0.3762,0.3762,0.6550;0.9,0.9)) 

C11 
((0.1519,0.3567,0.3567,0.8590;1,1), 

(0.1619,0.3567,0.3567,0.8043,0.9,0.9)) 
- 

C12 
((0.1477,0.3265,0.3265,0.7695;1,1), 

(0.1557,0.3265,0.3265,0.7212;0.9,0.9)) 
- 

C13 
((0.1148,0.3167,03167,0.7849;1,1), 

(0.1251,0.3167,0.3167,0.7333;0.9,0.9)) 
- 

C111 
((0.1902,0.4360,0.4360,0.9546;1,1), 

(0.2337,0.4360,0.4360,0.7973;0.9,0.9)) 

((0.0055,0.0695,0.0695,0.8012;1,1), 

(0.0090,0.0695,0.0695,0.5193;0.9,0.9)) 

C112 
((0.1347,0.2637,0.2637,0.5883;1,1), 

(0.1538,0.2637,0.2637,0.4848;0.9,0.9)) 

((0.0039,0.0420,0.0420,0.4938;1,1), 

(0.0059,0.0420,0.0420,0.3158;0.9,0.9)) 

C113 
((0.1262,0.3003,0.3003,0.6741;1,1), 

(0.1559,0.3003,0.3003,0.5583;0.9,0.9)) 

((0.0036,0.0479,0.0479,0.5658;1,1), 

(0.0060,0.0479,0.0479,0.3636;0.9,0.9)) 

C121 
((0.1482,0.3024,0.3024,0.6976;1,1), 

(0.1644,0.3024,0.3024,0.5989;0.9,0.9)) 

((0.0042,0.0441,0.0441,0.5245;1,1), 

(0.0061,0.0441,0.0441,0.3497;0.9,0.9)) 

C122 
((0.0974,0.2998,0.2998,0.7456;1,1), 

(0.1242,0.2998,0.2998,0.6369;0.9,0.9)) 

((0.0027,0.0437,0.0437,0.5606;1,1), 

(0.0046,0.0437,0.0437,0.3720;0.9,0.9)) 

C123 
((0.1793,0.3978,0.3978,0.9099;1,1), 

(0.2063,0.3978,0.3978,0.7849;0.9,0.9)) 

((0.0050,0.0580,0.0580,0.6842;1,1), 

(0.0077,0.0580,0.0580,0.4584;0.9,0.9)) 

C131 
((0.1511,0.3925,0.3925,0.9216;1,1), 

(0.1830,0.3925,0.3925,0.7893;0.9,0.9)) 

((0.0033,0.0556,0.0556,0.7068;1,1), 

(0.0055,0.0556,0.0556,0.4687;0.9,0.9)) 

C132 
((0.1148,0.3106,0.3106,0.7414;1,1), 

(0.1418,0.3106,0.3106,0.6307;0.9,0.9)) 

((0.0025,0.0440,0.0440,0.5686;1,1), 

(0.0042,0.0440,0.0440,0.3745;0.9,0.9)) 

C133 
((0.1632,0.2970,0.2970,0.6672;1,1), 

(0.1776,0.2970,0.2970,0.5705;0.9,0.9)) 

((0.0036,0.0420,0.0420,0.5117;1,1), 

(0.0053,0.0420,0.0420,0.3388;0.9,0.9)) 

Next, using these weights, failure modes are prioritized.  

6.3.3. Block III: Risk Ranking of Failure Modes by IT2F-MAIRCA method 

Using the same linguistic judgements (refer Table 5.7), and adopting the steps presented in Section 

6.2.3, the total gap matrix (𝐺) is obtained, as shown in Table 6.3. The criteria function values (𝑄𝑖), 

and the corresponding ranking results of the failure modes are shown in Table 6.4.  

Table 6.3. Total gap matrix obtained from IT2F-MAIRCA method 

FMs C111 C112 C113 C121 C122 C123 C131 C132 C133 C2 C3 

FM1 0.0019 0.0065 0.0093 0.0089 0.0055 0.0011 0.0051 0.0063 0.0058 0.0116 0.0124 

FM2 0.0005 0.0072 0.0080 0.0078 0.0003 0.0024 0.0041 0.0055 0.0072 0.0110 0.0024 

FM3 0.0064 0.0081 0.0061 0.0077 0.0014 0.0005 0.0077 0.0075 0.0072 0.0085 0.0056 

FM4 0.0004 0.0030 0.0066 0.0046 0.0071 0.0039 0.0118 0.0014 0.0061 0.0116 0.0228 

FM5 0.0118 0.0073 0.0082 0.0077 0.0007 0.0012 0.0094 0.0081 0.0063 0.0097 0.0156 

FM6 0.0047 0.0050 0.0088 0.0077 0.0027 0.0022 0.0065 0.0081 0.0055 0.0055 0.0236 
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FMs C111 C112 C113 C121 C122 C123 C131 C132 C133 C2 C3 

FM7 0.0005 0.0030 0.0004 0.0059 0.0060 0.0101 0.0003 0.0021 0.0041 0.0133 0.0014 

FM8 0.0004 0.0029 0.0017 0.0077 0.0080 0.0069 0.0087 0.0009 0.0068 0.0011 0.0007 

FM9 0.0005 0.0017 0.0032 0.0077 0.0077 0.0096 0.0003 0.0004 0.0046 0.0088 0.0049 

FM10 0.0013 0.0008 0.0055 0.0022 0.0083 0.0114 0.0065 0.0003 0.0046 0.0099 0.0156 

FM11 0.0013 0.0012 0.0003 0.0031 0.0073 0.0050 0.0061 0.0004 0.0039 0.0131 0.0156 

FM12 0.0004 0.0003 0.0082 0.0003 0.0083 0.0040 0.0004 0.0003 0.0005 0.0153 0.0014 

Table 6.4. Criteria function values and ranking result obtained by IT2F-MAIRCA method 

FMs Criteria function values Ranking result 

FM1 0.07454 9 

FM2 0.05633 5 

FM3 0.06672 8 

FM4 0.07918 10 

FM5 0.08612 12 

FM6 0.08033 11 

FM7 0.04705 3 

FM8 0.04586 2 

FM9 0.04944 4 

FM10 0.06651 7 

FM11 0.05746 6 

FM12 0.03935 1 

The ranking results generated by IT2F-MAIRCA are as follows: 𝐹𝑀12 > 𝐹𝑀8 > 𝐹𝑀7 >

𝐹𝑀9 > 𝐹𝑀2 > 𝐹𝑀11 > 𝐹𝑀10 > 𝐹𝑀3 > 𝐹𝑀1 > 𝐹𝑀4 > 𝐹𝑀6 > 𝐹𝑀5.   

6.3.4. Block IV: Risk Ranking of Failure Modes by IT2F-MARCOS method 

Utilizing the steps given in Section 6.2.4 the sum of elements matrix (�̃̃�), and their de-fuzzified 

values (𝑠𝑖) are given in Table 6.5.  

Table 6.5. Sum of elements matrix and their de-fuzzified values 

FMs Sum of elements (�̃̃�𝑖) 
De-fuzzified 

values (𝑠𝑖) 
FM1 ((0.092,0.490,0.490,5.251;1,1),(0.140,0.490,0.490,3.127;0.9,0.9)) 1.3093 

FM2 ((0.161,0.670,0.670,5.954;1,1),(0.230,0.670,0.670,3.598;0.9,0.9)) 1.5612 

FM3 ((0.138,0.592,0.592,5.386;1,1),(0.197,0.592,0.592,3.247;0.9,0.9)) 1.4019 

FM4 ((0.050,0.423,0.423,5.315;1,1),(0.087,0.423,0.423,3.120;0.9,0.9)) 1.2722 

FM5 ((0.081,0.438,0.438,4.709;1,1),(0.124,0.438,0.438,2.792;0.9,0.9)) 1.1713 

FM6 ((0.070,0.444,0.444,5.226;1,1),(0.107,0.444,0.444,3.096;0.9,0.9)) 1.2731 

FM7 ((0.164,0.689,0.689,6.327;1,1),(0.236,0.689,0.689,3.796;0.9,0.9)) 1.6426 
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FMs Sum of elements (�̃̃�𝑖) 
De-fuzzified 

values (𝑠𝑖) 
FM8 ((0.230,0.788,0.788,6.042;1,1),(0.312,0.788,0.788,3.669;0.9,0.9)) 1.6561 

FM9 ((0.150,0.678,0.678,6.245;1,1),(0.216,0.678,0.678,3.761;0.9,0.9)) 1.6186 

FM10 ((0.087,0.521,0.521,5.713;1,1),(0.134,0.521,0.521,3.397;0.9,0.9)) 1.4136 

FM11 ((0.079,0.544,0.544,6.401;1,1),(0.127,0.544,0.544,3.805;0.9,0.9)) 1.5598 

FM12 ((0.166,0.726,0.726,6.843;1,1),(0.241,0.726,0.726,4.111;0.9,0.9)) 1.7649 

𝐹𝑀𝐼𝐷 ((0.245,1,1,8.503;1,1),(0.338,1,1,5.194;0.9,0.9)) 2.2601 

𝐹𝑀𝐴𝐼𝐷 ((0.026,0.2,0.2,2.757;1,1),(0.053,0.2,0.2,1.522;0.9,0.9)) 0.6400 

The calculated utility degree of alternatives in relation to ideal and anti-ideal 

solution (𝐾𝑖
+, 𝐾𝑖

−), utility function in relation to ideal and anti-ideal solution [𝑓(𝐾𝑖
+), 𝑓(𝐾𝑖

−)], 

utility function of alternatives [𝑓(𝐾𝑖)], and ranking results of failure modes are highlighted in Table 

6.6.  

Table 6.6. Ranking results obtained by using IT2F-MARCOS method 

FMs 𝐾𝑖
+ 𝐾𝑖

− 𝑓(𝐾𝑖
+), 𝑓(𝐾𝑖

−) 𝑓(𝐾𝑖) Ranking result 

FM1 0.5793 2.0458 0.7793 0.2207 0.5452 9 

FM2 0.6908 2.4394 0.7793 0.2207 0.6501 5 

FM3 0.6203 2.1905 0.7793 0.2207 0.5838 8 

FM4 0.5629 1.9879 0.7793 0.2207 0.5298 11 

FM5 0.5183 1.8303 0.7793 0.2207 0.4878 12 

FM6 0.5633 1.9893 0.7793 0.2207 0.5302 10 

FM7 0.7268 2.5667 0.7793 0.2207 0.6841 3 

FM8 0.7328 2.5877 0.7793 0.2207 0.6897 2 

FM9 0.7162 2.5291 0.7793 0.2207 0.6740 4 

FM10 0.6255 2.2088 0.7793 0.2207 0.5887 7 

FM11 0.6901 2.4372 0.7793 0.2207 0.6496 6 

FM12 0.7809 2.7577 0.7793 0.2207 0.7350 1 

The ranking results generated by the IT2F-MARCOS method are as follows: 𝐹𝑀12 >

𝐹𝑀8 > 𝐹𝑀7 > 𝐹𝑀9 > 𝐹𝑀2 > 𝐹𝑀11 > 𝐹𝑀10 > 𝐹𝑀3 > 𝐹𝑀1 > 𝐹𝑀6 > 𝐹𝑀4 > 𝐹𝑀5. When 

a comparison is made between the outputs of IT2F-MAIRCA, and IT2F-MARCOS, it is observed 

that ranking positions of 𝐹𝑀4 and 𝐹𝑀6 are changed in the current approach. This necessitates 

further examinations, probably with a well-adopted MCDM method - modified IT2F-TOPSIS.  

6.3.5. Block V: Risk Ranking of Failure Modes by IT2F-TOPSIS Method 

Employing the steps elucidated in Section 6.2.5, the ranking values of each failure mode, along 

with the ideal and anti-ideal solution values for each risk factor is computed as shown in Table 6.7.  
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Table 6.7. Ranking values of failure modes in IT2F-TOPSIS method 

FMs C111 C112 C113 C121 C122 C123 C131 C132 C133 C2 C3 

FM1 0.1776 0.0463 0.0285 0.0243 0.0734 0.1589 0.1135 0.0672 0.0521 0.0731 0.2800 

FM2 0.1941 0.0389 0.0447 0.0393 0.1344 0.1539 0.1257 0.0797 0.0381 0.0956 0.3828 

FM3 0.1254 0.0276 0.0670 0.0393 0.1216 0.1659 0.0821 0.0532 0.0381 0.1104 0.3496 

FM4 0.1952 0.0878 0.0614 0.0760 0.0554 0.1252 0.0326 0.1239 0.0496 0.0731 0.1742 

FM5 0.0636 0.0365 0.0419 0.0393 0.1296 0.1579 0.0612 0.0463 0.0470 0.0956 0.2475 

FM6 0.1454 0.0633 0.0349 0.0393 0.1066 0.1453 0.0961 0.0463 0.0559 0.1465 0.1661 

FM7 0.1941 0.0878 0.1359 0.0603 0.0679 0.0513 0.1707 0.1155 0.0699 0.0525 0.3924 

FM8 0.1956 0.0890 0.1197 0.0393 0.0444 0.0891 0.0699 0.1293 0.0420 0.1986 0.3992 

FM9 0.1941 0.1026 0.1019 0.0393 0.0486 0.0565 0.1707 0.1350 0.0649 0.1062 0.3565 

FM10 0.1846 0.1131 0.0740 0.1049 0.0416 0.0350 0.0961 0.1358 0.0649 0.0935 0.2475 

FM11 0.1844 0.1084 0.1361 0.0944 0.0527 0.1114 0.1013 0.1350 0.0725 0.0545 0.2475 

FM12 0.1956 0.1190 0.0419 0.1284 0.0416 0.1235 0.1697 0.1364 0.1068 0.0280 0.3924 

𝑘𝑗
𝐼𝐷 0.1956 0.1190 0.1361 0.1284 0.1344 0.1659 0.1707 0.1364 0.1068 0.1986 0.3992 

𝑘𝑗
𝐴𝐼𝐷 0.0636 0.0276 0.0285 0.0243 0.0416 0.0350 0.0326 0.0463 0.0381 0.0280 0.1661 

The distance between each failure mode and ideal as well as anti-ideal solutions, closeness 

coefficients and risk ranking of failure modes are presented in Table 6.8.  

Table 6.8. Distance of each failure mode from ID and AID solutions, their closeness coefficients and ranking results 

FMs 𝑑𝐼𝐷(𝑥𝑖) 𝑑𝐴𝐼𝐷(𝑥𝑖) 𝐶𝐶(𝑥𝑖) Ranking results 

FM1 0.2699 0.2278 0.4578 9 

FM2 0.2091 0.3189 0.6040 5 

FM3 0.2364 0.2684 0.5317 6 

FM4 0.3257 0.2032 0.3843 11 

FM5 0.3138 0.1882 0.3748 12 

FM6 0.3136 0.2074 0.3980 10 

FM7 0.2153 0.3334 0.6075 4 

FM8 0.1938 0.3527 0.6454 1 

FM9 0.2022 0.3143 0.6086 3 

FM10 0.2679 0.2327 0.4649 8 

FM11 0.2467 0.2543 0.5076 7 

FM12 0.2201 0.3570 0.6187 2 

In this method, the ranking positions of the failure modes are as follow:  𝐹𝑀8 > 𝐹𝑀12 >

𝐹𝑀9 > 𝐹𝑀7 > 𝐹𝑀2 > 𝐹𝑀3 > 𝐹𝑀11 > 𝐹𝑀10 > 𝐹𝑀1 > 𝐹𝑀6 > 𝐹𝑀4 > 𝐹𝑀5. The IT2F-

TOPSIS identifies FM8 as the most critical one, instead of FM12, which is identified as the most 

critical one by earlier two proposed methods.  

At this stage, it is necessary to compute the ensemble risk ranking results of failure modes, 

as different methods produce different ranking results.  
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6.3.6. Ensemble Risk Ranking Results of the Failure Modes 

Adopting the steps presented in Section  6.2.6, ensemble risk ranking results, along with CI and TL 

are computed, and are shown in Table 6.9.  

Table 6.9. Aggregated ranking results of failure modes along with consensus index and trust level 

FMs 
Risk ranking by 

IT2F-MAIRCA 

Risk ranking by 

IT2F-MARCOS 

Risk ranking by 

IT2F-TOPSIS 

Ensemble risk 

ranking by HQ 

programming 

Consensus 

index 
Trust level 

FM1 9 9 9 9 

0.819 0.980 

FM2 5 5 5 5 

FM3 8 8 6 8 

FM4 10 11 11 11 

FM5 12 12 12 12 

FM6 11 10 10 10 

FM7 3 3 4 3 

FM8 2 2 1 2 

FM9 4 4 3 4 

FM10 7 7 8 7 

FM11 6 6 7 6 

FM12 1 1 2 1 

6.4. Discussions and Sensitivity Analyses  

In the previous chapter, the FMEA case study was solved by using two integrated MCDM 

approaches: IT2F-DEMATEL-modified fuzzy MAIRCA, and IT2F-DEMATEL-modified fuzzy 

MARCOS. The current proposed work has fourfold differences, in contrast to the methods 

proposed in previous chapter, as below:  

a) Although the provision of participation of multiple experts have been considered in the 

earlier proposed methods, but their expertise levels (i.e., weights) have been ignored, which 

has been taken into account in the method proposed in this Chapter, i.e., participations of 

multiple experts are considered along with their weight values.  

b) Although IT2F-DEMATEL method has been adopted to compute the weight values of the 

risk factors, but those values are crisp in nature. Whereas, in this chapter, the modified 

IT2F-DEMATEL method is proposed to calculate the IT2F-weights of the risk factors.  

c) Thirdly, to model the linguistic uncertainties in more abstract way, this chapter proposes 

the concepts of IT2F-MAIRCA, IT2F-MARCOS, and modified IT2F-TOPSIS, instead of 

fuzzy MAIRCA, fuzzy MARCOS, and fuzzy TOPSIS.   
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d) Finally, after observing that each combination of IT2FSs-based MCDM method produces 

different risk ranking results, the compromise ensemble method based on HQ theory is 

adopted to compute the final aggregated risk ranking results of the failure modes. These 

aggregated ranking results are supplemented with a CI and TL.  

6.4.1. Sensitivity Analysis - I 

To validate the robustness of the proposed integrated framework, in this sensitivity analysis 

different weight sets (WSs) are generated as given in Table 6.10. Here, WSs are generated by 

interchanging their values at the same level, while other global weights are automatically generated 

at subsequent levels. For example, when the weight value of severity at level 1 is changed, then 

global weights of risk factors are generated automatically, considering the new IT2F local weight 

of severity. Following this way, a total of 30 number of weight sets are generated. However, it is 

noteworthy that WS-1, 7, 13, 19, and 25 generate the same global weights as in Table 6.2.  

Table 6.10. Generated weight sets 

Weight sets Risk factors IT2F weights 

WS-1 

Severity ((0.1902,0.4469,0.4469,0.9771;1,1),(0.2389,0.4469,0.4469,0.8098;0.9,0.9)) 

Occurrence ((0.0851,0.1770,0.1770,0.4724;1,1),(0.0942,0.1770,0.1770,0.3738;0.9,0.9)) 

Detection ((0.1717,0.3762,0.3762,0.7874;1,1),(0.2108,0.3762,0.3762,0.6550;0.9,0.9)) 

⋮ 
⋮ ⋮ 
⋮ ⋮ 
⋮ ⋮ 

WS-6 

 

Severity ((0.1717,0.3762,0.3762,0.7874;1,1),(0.2108,0.3762,0.3762,0.6550;0.9,0.9)) 

Occurrence ((0.0851,0.1770,0.1770,0.4724;1,1),(0.0942,0.1770,0.1770,0.3738;0.9,0.9)) 

Detection ((0.1902,0.4469,0.4469,0.9771;1,1),(0.2389,0.4469,0.4469,0.8098;0.9,0.9)) 

WS-7 

Economic severity ((0.1519,0.3567,0.3567,0.8590;1,1),(0.1619,0.3567,0.3567,0.8043,0.9,0.9)) 

Social severity ((0.1477,0.3265,0.3265,0.7695;1,1),(0.1557,0.3265,0.3265,0.7212;0.9,0.9)) 

Environmental 

severity 
((0.1148,0.3167,03167,0.7849;1,1),(0.1251,0.3167,0.3167,0.7333;0.9,0.9)) 

⋮ 
⋮ ⋮ 
⋮ ⋮ 
⋮ ⋮ 

WS-12 

Economic severity ((0.1148,0.3167,03167,0.7849;1,1),(0.1251,0.3167,0.3167,0.7333;0.9,0.9)) 

Social severity ((0.1477,0.3265,0.3265,0.7695;1,1),(0.1557,0.3265,0.3265,0.7212;0.9,0.9)) 

Environmental 

severity 
((0.1519,0.3567,0.3567,0.8590;1,1),(0.1619,0.3567,0.3567,0.8043,0.9,0.9)) 

WS-13 

Cost of 

unreliability 
((0.1902,0.4360,0.4360,0.9546;1,1), (0.2337,0.4360,0.4360,0.7973;0.9,0.9)) 

Cost of quality 

loss 
((0.1347,0.2637,0.2637,0.5883;1,1), (0.1538,0.2637,0.2637,0.4848;0.9,0.9)) 

Miscellaneous 

cost factors 
((0.1262,0.3003,0.3003,0.6741;1,1), (0.1559,0.3003,0.3003,0.5583;0.9,0.9)) 

⋮ 
⋮ ⋮ 
⋮ ⋮ 
⋮ ⋮ 

WS-18 
Cost of 

unreliability 
((0.1262,0.3003,0.3003,0.6741;1,1), (0.1559,0.3003,0.3003,0.5583;0.9,0.9)) 
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Weight sets Risk factors IT2F weights 

Cost of quality 

loss 
((0.1347,0.2637,0.2637,0.5883;1,1), (0.1538,0.2637,0.2637,0.4848;0.9,0.9)) 

Miscellaneous 

cost factors 
((0.1902,0.4360,0.4360,0.9546;1,1), (0.2337,0.4360,0.4360,0.7973;0.9,0.9)) 

WS-19 

Chances of 

accident 
((0.1482,0.3024,0.3024,0.6976;1,1),(0.1644,0.3024,0.3024,0.5989;0.9,0.9)) 

Overtime due to 

failure 
((0.0974,0.2998,0.2998,0.7456;1,1),(0.1242,0.2998,0.2998,0.6369;0.9,0.9)) 

Effects on 

workers’ mind-set 
((0.1793,0.3978,0.3978,0.9099;1,1),(0.2063,0.3978,0.3978,0.7849;0.9,0.9)) 

⋮ 
⋮ ⋮ 
⋮ ⋮ 
⋮ ⋮ 

WS-24 

Chances of 

accident 
((0.1793,0.3978,0.3978,0.9099;1,1),(0.2063,0.3978,0.3978,0.7849;0.9,0.9)) 

Overtime due to 

failure 
((0.0974,0.2998,0.2998,0.7456;1,1),(0.1242,0.2998,0.2998,0.6369;0.9,0.9)) 

Effects on 

workers’ mind-set 
((0.1482,0.3024,0.3024,0.6976;1,1),(0.1644,0.3024,0.3024,0.5989;0.9,0.9)) 

WS-25 

Generation of 

waste material 
((0.1511,0.3925,0.3925,0.9216;1,1),(0.1830,0.3925,0.3925,0.7893;0.9,0.9)) 

Excess energy 

consumption 
((0.1148,0.3106,0.3106,0.7414;1,1),(0.1418,0.3106,0.3106,0.6307;0.9,0.9)) 

Miscellaneous 

env. factors 
((0.1632,0.2970,0.2970,0.6672;1,1),(0.1776,0.2970,0.2970,0.5705;0.9,0.9)) 

⋮ 
⋮ ⋮ 
⋮ ⋮ 
⋮ ⋮ 

WS-30 

Generation of 

waste material 
((0.1632,0.2970,0.2970,0.6672;1,1),(0.1776,0.2970,0.2970,0.5705;0.9,0.9)) 

Excess energy 

consumption 
((0.1148,0.3106,0.3106,0.7414;1,1),(0.1418,0.3106,0.3106,0.6307;0.9,0.9)) 

Miscellaneous 

env. factors 
((0.1511,0.3925,0.3925,0.9216;1,1),(0.1830,0.3925,0.3925,0.7893;0.9,0.9)) 

Based on the generated weight sets, the failure modes are again ranked by IT2F-MAIRCA, 

IT2F-MARCOS, and modified IT2F-TOPSIS methods. The variations in risk ranking results are 

depicted in Figure 6.2 - Figure 6.4. The variations in the compromise ensemble risk ranking results 

are depicted in Figure 6.5. The results are further summarized in Table 6.11 and Figure 6.6.    

From Table 6.11 and Figure 6.6, the following observations can be made:  

• With both IT2F-MAIRCA and IT2F-MARCOS, FM12 retains the most critical failure 

mode position 26 times. While in the IT2F-TOPSIS method, FM8 retains this position for 

all scenarios. In case of aggregated risk ranking, the results are obtained same as the IT2F-

MAIRCA, and IT2F-MARCOS.  

• While selecting the second critical failure mode, IT2F-MAIRCA shows greater rank 

stability than IT2F-MARCOS, and IT2F-TOPSIS. However, the obtained aggregated risk 

ranking results are like IT2F-MAIRCA.  
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• Apart from these two failure modes, in all other cases, IT2F-MARCOS shows greater rank 

stability than IT2F-MAIRCA, and IT2F-TOPSIS methods. However, the aggregated 

rankings are like that produced by the IT2F-MAIRCA method.  

 

Figure 6.2. Variations in risk ranking results by 

IT2F-MAIRCA 

 

Figure 6.3. Variations in risk ranking results 

by IT2F-MARCOS 

 

Figure 6.4. Variations in risk ranking results by 

IT2F-TOPSIS 

 

Figure 6.5. Variations in risk ranking results 

by HQ theory-based compromise ensemble 

method 

Table 6.11. Number of times failure modes retain their rank 

Position IT2F-MAIRCA IT2F-MARCOS IT2F-TOPSIS Aggregated ranking 

1st critical 
FM12: 26 times, 

FM4: 4 times. 

FM12: 26 times, 

FM4: 4 times. 
FM8: 30 times. 

FM12: 26 times, 

FM4: 4 times. 

2nd critical 

FM8: 24 times, 

FM9: 3 times, 

FM7: 2 times, 

FM12: 1 time. 

FM8: 22 times,  

FM7: 4 times, 

FM9: 3 times, 

FM12: 1 time. 

FM12: 21 times,  

FM7: 4 times,  

FM9: 3 times,  

FM2: 1 time, 

FM6: 1 time.  

FM8: 24 times, 

FM9: 3 times, 

FM7: 2 times, 

FM12: 1 time. 

3rd critical 
FM7: 25 times, 

FM8: 2 times, 

FM7: 22 times,  

FM8: 4 times, 

FM9: 20 times, 

FM7: 5 times, 

FM7: 24 times, 

FM8: 2 times,  



136 

 

Position IT2F-MAIRCA IT2F-MARCOS IT2F-TOPSIS Aggregated ranking 

FM12: 2 times, 

FM9: 1 time. 

FM2: 2 times, 

FM9: 1 time, 

FM12: 1 time. 

FM2: 3 times, 

FM3: 1 time, 

FM6: 1 time. 

FM12: 2 times,  

FM2: 1 time,  

FM9: 1 time. 

4th critical 

FM9: 26 times, 

FM7: 3 times, 

FM12: 1 time. 

FM9: 26 times,  

FM12: 2 times,  

FM2: 1 time,  

FM7: 1 time. 

FM7: 17 times, 

FM9: 5 times, 

FM12: 4 times, 

FM2: 2 times, 

FM3: 2 times. 

FM9: 26 times, 

FM7: 2 times,  

FM2: 1 time, 

FM12: 1 time. 

5th critical 
FM2: 18 times, 

FM11: 12 times. 

FM2: 15 times, 

FM11: 12 times, 

FM7: 3 times. 

FM2: 24 times,  

FM9: 2 times,  

FM3: 1 time,  

FM6: 1 time,  

FM7: 1 time,  

FM12: 1 time. 

FM2: 17 times, 

FM11: 11 times, 

FM7: 2 times. 

6th critical 

FM11: 16 times, 

FM2: 12 times, 

FM3: 2 times. 

FM11: 16 times, 

FM2: 12 times,  

FM3: 2 times. 

FM3: 22 times, 

FM11: 4 times,  

FM7: 2 times, 

FM10: 1 time, 

FM12: 1 time. 

FM11: 17 times, 

FM2: 11 times,  

FM3: 2 times. 

7th critical 
FM10: 23 times, 

FM3: 7 times. 

FM10: 23 times,  

FM3: 4 times, 

FM6: 2 times, 

FM11: 1 time. 

FM11: 22 times, 

FM3: 4 times, 

FM6: 1 time, 

FM7: 1 time, 

FM10: 1 time, 

FM12: 1 time. 

FM10: 22 times, 

FM3: 7 times, 

FM6: 1 time. 

8th critical 

FM3: 21 times, 

FM10: 7 times, 

FM11: 2 times. 

FM3: 22 times,  

FM10: 7 times,  

FM6: 1 time. 

FM10: 25 times, 

FM1: 3 times, 

FM5: 1 time,  

FM12: 1 time. 

FM3: 19 times, 

FM10: 8 times, 

FM6: 2 times,  

FM11: 1 time. 

9th critical 
FM1: 27 times, 

FM6: 3 times. 

FM1: 25 times, 

FM3: 2 times,  

FM4: 1 time, 

FM6: 1 time,  

FM11: 1 time. 

FM1: 24 times, 

FM10: 3 times, 

FM5: 1 time, 

FM11: 1 time, 

FM12: 1 time. 

FM1: 26 times, 

FM3: 2 times, 

FM6: 1 time, 

FM11: 1 time. 

10th 

critical 

FM4: 26 times, 

FM1: 2 times, 

FM6: 2 times. 

FM6: 19 times, 

FM4: 8 times, 

FM1: 3 times. 

FM6: 21 times,  

FM4: 4 times,  

FM1: 2 times,  

FM5: 2 times,  

FM11: 1 time. 

FM6: 18 times, 

FM4: 9 times, 

FM1: 3 times. 

11th 

critical 

FM6: 25 times, 

FM4: 2 times, 

FM5: 2times, 

FM1: 1 time. 

FM4: 19 times, 

FM6: 7 times, 

FM1: 2 times,  

FM5: 2 times. 

FM4: 15 times,  

FM5: 7 times,  

FM6: 5 times,  

FM11: 2 times,  

FM1: 1 time. 

FM4: 19 times, 

FM6: 8 times,  

FM5: 2 times, 

FM1: 1 time. 

12th 

critical 

FM5: 28 times, 

FM4: 2 times. 

FM5: 28 times, 

FM4: 2 times. 

FM5: 19 times, 

FM4: 11 times. 

FM5: 28 times,  

FM4: 2 times. 

• Figure 6.6 depicts the values of rank correlation coefficients obtained for different WSs. 

For WS-1 to WS-6, IT2F-MAIRCA shows greater rank stability than IT2F-MARCOS, 

IT2F-TOPSIS, and aggregated ranking results. Basically, when the weights of the risk 

factors are changed at level-1, drastic rank reversals are expected. This is because the 

changes at level-1 will affect the weights of all the sub-risk factors. When the rank 

correlation coefficients are calculated for all the WSs (viz., WS-1 to WS-30), the stability 

of the ranking results shows the following order: IT2F-MAIRCA>aggregated ranking 

approach> IT2F-MARCOS> IT2F-TOPSIS. However, as the aim of this study is to propose 



137 

 

aggregated risk ranking results of failure modes, and as the correlation coefficient of each 

method is above 80%, the stability of the final results is credible and can be accepted by 

the decision makers.   

 

Figure 6.6. Performance analysis of each IT2F-MCDM method and aggregated risk ranking  

6.4.2. Sensitivity Analysis - II 

This analysis has two motivations: (a) understanding the robustness of the ranking results in 

uncertain conditions, (b) the analysis of performances of the IT2F-MCDM methods in the 

conditions of a dynamic IT2F-intial decision matrix of decision-making. 

This Section discusses the effects of eliminating the failure modes from the decision matrix. 

For each of the IT2F-MCDM method (viz., IT2F-MAIRCA, IT2F-MARCOS, and modified IT2F-

TOPSIS), the alternatives are deliberately deleted according to their criticality level (both from 

most critical failure mode to least critical failure mode, and vice versa), and the effects on the final 

ranking results are observed.  

In Figure 6.7, the rank reversals in IT2F-MARICA method are depicted, when the failure 

modes are eliminated from most critical to least critical order. Here, the ranks of FM12, FM8, FM7, 

FM9, FM11 and FM16, are steadily decreased. While for other failure modes, irregular changes 

are observed in the ranking results.  

Similarly, it can be observed from Figure 6.8 that when the failure modes are removed from 

the decision matrix (least critical to most critical order), only FM10 and FM3 show abnormal 

variations in their ranking positions.  
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Figure 6.9 portrays the rank alterations resulting from the IT2F-MARCOS method, when the 

failure modes are deleted from the decision matrix from most critical to least critical order. It is 

observed that only FM9, FM10 and FM3 follow a steady decrease in their ranking positions. 

However, for the same situation, when IT2F-MAIRCA is contrasted with IT2F-MARCOS, the 

earlier one shows better robustness.  

 

Figure 6.7. Effects on risk ranking in IT2F-MAIRCA (deleting failure modes from decision 

matrix – most critical to least critical order) 

 

Figure 6.8. Effects on risk ranking in IT2F-MAIRCA (deleting failure modes from decision 

matrix – least critical to most critical order) 

 

Figure 6.9. Effects on risk ranking in IT2F-MARCOS (deleting failure modes from decision 

matrix – most critical to least critical order) 
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Likewise, when the failure modes are eliminated from the decision matrix in IT2F-MARCOS 

(least critical to most critical sequence), abnormal variations are observed in the ranking positions 

of FM7 and FM8, as shown in Figure 6.10. Comparing Figure 6.8 with Figure 6.10, it seems like 

both IT2F-MAIRCA and IT2F-MARCOS have the same robustness. However, in IT2F-MARICA, 

variations are observed for FM10 (7th critical), and FM3 (8th critical); whereas, in IT2F-MARCOS, 

the variations are observed for FM8 (2nd critical), and FM7 (3rd critical), which is not desirable. 

This is because the 2nd and 3rd critical failure modes possess higher risks when compared with 7th 

and 8th critical failure modes.   

 

Figure 6.10. Effects on risk ranking in IT2F-MARCOS (deleting failure modes from decision 

matrix – least critical to most critical order) 

 

Figure 6.11. Effects on risk ranking in IT2F-TOPSIS (deleting failure modes from decision 

matrix – most critical to least critical order) 
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Figure 6.12. Effects on risk ranking in IT2F-TOPSIS (deleting failure modes from decision 

matrix – least critical to most critical order) 

Figure 6.11 displays the rank variations in the IT2F-TOPSIS method, while eliminating 

failure modes from the decision matrix in the most critical to least critical sequence. FM8, FM12, 

and FM4 portray steady decrease in their ranking positions. When Figure 6.9 and Figure 6.11 are 

compared with each other, it can be observed that in the case of IT2F-MARCOS, some failure 

modes change their ranking position sharply (e.g., FM8, FM14), whereas in later situations, this 

does not occur. Thus, it can be said that although IT2F-MARCOS has greater average rank 

correlation than IT2F-TOPSIS, here it shows poor rank stability.  

However, as shown in Figure 6.12, when the failure modes are eliminated from the decision 

matrix in least critical to most critical order, FM2, FM7, FM9 and FM12 show irregular changes in 

the ranking position. Thus, in such a scenario, IT2F-MARCOS shows greater robustness than IT2F-

TOPSIS.  

6.5. Chapter Summary  

Considering the potential of IT2FSs in precisely modelling the linguistic uncertainty in a decision-

making problem, an integrated IT2FSs and HQ minimization-based decision-making framework 

has been proposed in this chapter. At first, an extended IT2F-DEMATEL method has been 

developed to depict the causal dependencies among the RFs as well as to calculate their weights. 

Then, the mathematical models of IT2F-MAIRCA, IT2F-MARCOS, and modified IT2F-TOPSIS 

have been proposed and adopted for the risk ranking of failure modes. After observing that each of 

the proposed method produces unlike ranking results, HQ minimization-based approach has been 
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used to generate the ensemble ranking results of the failure modes along with CI and TL. Finally, 

sensitivity analyses of each of the developed ranking method are carried out to examine their 

ranking stability and robustness. 
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Chapter 7  A Case-Based Reasoning System for Fault Diagnosis 

of Gearboxes with Incomplete Information 

7.1. Introduction  

he challenges confronted with the fault diagnosis process of large and complex machines have 

been presented in Chapter 1, Section 1.1.2. To address these challenges, Chapter 2, Section 

2.2 has elaborated the utilizations of different AI-based methods, with the selection of the Case-

Based Reasoning (CBR) as a viable solution. Here, the proposed approach is illustrated by taking 

the process plant gearbox as a case study. The gearbox details and its environmental and operating 

conditions, commonly observed faults, their symptoms, relevant HIs, and their correlations with 

the faults, and the measuring instruments have been described in Chapter 4.  This research work 

carried out and presented in this Chapter complement & augments the research presented in earlier 

Chapters, with the following significant contributions26:   

a) Proposition and development of a CBR-based decision-support system to automate the 

fault diagnosis process with minimal human interventions.  

b) Considering the case of incomplete/missing information and simultaneously using the 

value type, event type as well as the features obtained from waveform type data during the 

fault diagnosis process. 

c) Assisting the maintenance engineers by informing them about the necessary maintenance 

tasks that are needed to be carried out after diagnosing the fault.  

The proposed approach explores the power of CBR which has been mentioned vaguely in 

earlier published research but not explored, and thus is being highlighted below:  

• With the partial number of attributes, it has the potential to solve the current problem, by 

retrieving the past case with greatest similarity, which makes it superior to several variants 

of ANN. Further, in case of addition of new case in the case-base, there is no need to train 

the system again, when contrasted with ANN.  

 
26 The contributions of this chapter can be further referred to the below mentioned paper:  

a) Boral, S., Chaturvedi, S.K., Naikan, V.N.A., 2019. A case-based reasoning system for fault detection and 

isolation: A case study on complex gearboxes. Journal of Quality in Maintenance Engineering 25(2), 213-235.  

 

T 

https://www.emerald.com/insight/content/doi/10.1108/JQME-05-2018-0039/full/html?casa_token=rfGjtjqqszIAAAAA:k7SO7ToKmLDSpXf3LZVzWjL6hXPS3yTP79Ca4WTq21pIsAKlZTY5uk6lQPvSJEOmERYqWBThZnsPzl4ZElH8GDSdUwuMC0q0YuTywdw7yG9zdINvPog
https://www.emerald.com/insight/content/doi/10.1108/JQME-05-2018-0039/full/html?casa_token=rfGjtjqqszIAAAAA:k7SO7ToKmLDSpXf3LZVzWjL6hXPS3yTP79Ca4WTq21pIsAKlZTY5uk6lQPvSJEOmERYqWBThZnsPzl4ZElH8GDSdUwuMC0q0YuTywdw7yG9zdINvPog
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• It is not necessary to exactly match the numerical or textual attributes, which differentiate 

its capability with the principle of ES. 

For the sake of completeness, the ensuing section presents a brief overview of CBR 

methodology.   

7.2. Working Principle of CBR Methodology  

The fundamental idea of the CBR methodology is to amalgamate the concepts of both AI and 

human cognitive process. Since its development, it has been considered as a powerful and 

intelligent decision-making tool, which can proficiently handle imprecise, uncertain and ill-

structured decision making problems (Kolodner, 1992). 

CBR consists of three basic terms, namely - case, based and reasoning. Case is a 

contextualized experience of some previously solved problems, which are stored in case-base. 

Based implies that the reasoning is directly specified from the prior cases, and no initiatives are 

taken to extract knowledge from the cases. Whereas, reasoning is the procedure to provide solutions 

to the problem in hand, by exploiting the information stored in the prior cases. Undoubtedly, it has 

a memory model, which is adopted to represent, index and organize the cases in the case-base, and 

a process model which is employed to provide reasoning to the current problem. The existing 

literature suggests two types of process models, namely 4-R model (Retrieve, Reuse, Revise and 

Retain) (Aamodt and Plaza, 1994) and Leake’s model (Leake, 1996). However, the 4-R model is 

much more popular and has found a niche in the literature and is illustrated in Figure 7.1. 

Case-base

Problem

New case
New case

Similar 

cases

Most similar 

case

Retrieve

Reuse

Acceptable 

solution?

Proposed 

solution

Additional 

information to narrow 

down the search

Yes

Repaired 

case

Revise

No

Learned case

Retain

Retrieve

 

Figure 7.1. ‘4-R’ cycle or CBR cycle 
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7.2.1. Retrieval of similar cases 

Based on the richness of features, CBR primarily retrieves a set of similar cases where attention is 

directed towards the case(s) with highest similarity for solving the present problem. For instance, 

let a case-base have N cases, 𝐶𝐵 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑁}| (𝑖 = 1,2,3,… ,𝑁); where 𝑁 = total number 

of cases in the case-base. Each case has some associated features and solutions, i.e.,{𝐹𝑗(𝑗 =

1, 2, 3,… , 𝑛)} and {𝑆𝑘 (𝑘 = 1,2,3,…𝑚)}. An 𝑖 − 𝑡ℎ 𝑐𝑎𝑠𝑒 in the case-base can be considered as a 

(𝑛 +𝑚) dimensional vector, and is represented as 𝐶𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛 , 𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3, … , 𝜃𝑖𝑚}. 

Where, 𝑥𝑖𝑗 are the values of features and 𝜃𝑖𝑘 are the solutions associated with 𝑖 − 𝑡ℎ 𝑐𝑎𝑠𝑒.  

Suppose, for each feature 𝐹𝑗, a weight 𝑤𝑗  has been assigned, such that ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 and 

𝑤𝑗 𝜖 (0,1), to indicate the importance of 𝑗 − 𝑡ℎ feature, then for any pair of (stored and input) case, 

𝐶𝑆and 𝐶𝐼, respectively, the weighted distance metric is calculated by (7.1). 

𝑑𝐼𝑆
𝑤 = 𝑑𝑤(𝐶𝑆, 𝐶𝐼)=  ∑ 𝑤𝑗 

𝑎𝑏𝑠 (𝐶𝐼𝑗 −𝐶𝑆𝑗)

(𝑚𝑎𝑥𝑆𝑗−𝑚𝑖𝑛𝑆𝑗)

𝑛

𝑗=1

 (7.1) 

If all features are assigned with equal weightages then 𝑑𝐼𝑆
1  is calculated, where 𝑑𝐼𝑆

1  implies 

that all features are equally weighted. Ultimately similarity measure in percentage is calculated as 

in (7.2).  

𝑆𝑖𝑚(𝐶𝑆, 𝐶𝐼)= (1 − 𝑑𝐼𝑆
𝑤) × 100 (7.2) 

For symbolic attributes distance is measured as in ((7.3). 

𝑑𝑠𝑦𝑚𝑏(𝑎, 𝑏) = {
0 [if a =  b]
 1 [if a ≠  b]

  (7.3) 

To classify an input case, the k-NN  algorithm is adopted to search the k- nearest cases related 

to the problem in hand, and delineated to the CBR system, using some distance measuring 

techniques, such as Hamming distance as shown in (7.1) (Pal and Shiu, 2004).  

7.2.2. Reuse, Revision and Retention of Case 

After retrieving the most similar case from the case-base, it can be directly used to provide solution 

or phase of revision and retain occur. If the proposed solution is not suitable to the current problem, 
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then it is revised with the advice of experts. After revision of the case, it is stored in the case-base 

for solving future problems.  

7.3. Proposed CBR System for Fault Diagnosis of Gearbox 

A systematic flow chart of the proposed decision-making framework is depicted in Figure 7.2. 

However, it is important and reiterated that the selection of HIs with relevant and respective 

symptoms, identification of operating and environmental parameters impacting the occurrence of 

faults and to structure them with prior fault cases (refer Figure 7.3) entails judicious thinking, 

judgement and experts’ interference(s) before building an efficient and effective CBR system.  The 

ensuing discussions elaborate on the proposal. After observing any abnormal symptom(s) (may be 

either noticeable by the operator, or by instruments/gadgets) from the system, the CBR system 

starts functioning.   

In the proposed CBR system, case retrieval process, and consequent inferences can be carried 

out in two phases for operational simplicity and proper understanding of an end-user. Following 

this, the CBR system is developed whose stepwise operational procedures are presented hereunder: 

a) In the primary selection window (refer Figure 7.4 later), the end-user can choose the 

observed symptom(s) originating from the machine. Then, the proposed system primarily 

retrieves a list of probable causes of faults from the case-base by employing (7.3). After 

that, the system guides the end-user to the final selection window. In the present context, it 

is noteworthy that the traditional indexing method is adopted for its simplicity of operation 

and ease of computation. The applied case organization technique is commonly referred to 

as flat memory structure in the literature of CBR.  

b) In the final selection window (refer Figure 7.5 later), the end-user can choose the available 

HIs from the lists. Here, an option to provide a range of the selected HIs is also 

incorporated, considering the principle of time-varying degradation of the observed system, 

and possibilities of sensors and human observational errors. This proposed system takes 

these ranges intelligently, because it is obvious that for some HIs, maximum values are 

more pertinent to diagnose the fault whereas minimum values are considered for oil flow 

rate, oil pressure, etc.  
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c) The observed values of different sensors are provided as input parameters to the CBR 

system by the end-user. After that the system retrieves the best possible cause of fault from 

its case-base by using Equations (7.1) - (7.3), respectively.  

 

Figure 7.2. Proposed CBR-based fault diagnosis approach 
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Figure 7.3. Structure of cases in the case-base 

It is worth to highlight that k-NN is adopted in this work for classification purposes only. It 

is a single part of the CBR system, while other dimensions of CBR make it a promising tool while 

solving data intensive fault diagnosis problems.  

Though all possible combinations are included in the developed CBR system, however, for 

some worst cases wherein in absence of previous experiences or solution with considerable 

similarity score, an option is also incorporated to incrementally augment those cases along with 

their features in the case-base in consultation with the experts for future use.  

7.4. Fault Diagnosis and Suggesting the Maintenance Tasks for the Gearbox 

In order to demonstrate the efficacies of the proposed framework in fault diagnosis, the case study 

of gearboxes is adopted, along with developing a Graphical User Interface (GUI) in Microsoft 

Visual Basic 6.0, running on a desktop with Intel® Dual Core processor, CPU G4400 @3.30 GHz, 

4.00 GB RAM, and Windows® 10 as OS.  

7.4.1. Steps Involved in Building the CBR System for Fault Diagnosis  

Referring to the procedural flowchart as shown in Figure 7.2, the ensuing steps are required to be 

carried out to develop the CBR system.  

Step 1: Collect the technical and operational details of system and its components. Numbers of 

teeth in each gear, their rotational speeds, specifications about fault frequencies of bearings, 

materials of components, dimensions of shafts etc. can also be included in the case-base for future 

use. 
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Step 2: Consult with the experts and process engineers, and collect the information about frequently 

observed faults, their symptoms (refer Table 4.3). For this case study, among the several HIs, the 

most pertinent six HIs are identified in consultation with the experts and are described below: 

• RMS value of vibration level (mm/sec) at vertical, horizontal and axial directions in time-

domain: It has been suggested by experts and technical handbooks (Taylor, 2005) that 

vibration can be measured in units of displacement (peak to peak movement in mm.), 

velocity (zero to peak in mm/sec), and acceleration (zero to peak in multiple of ‘g’). 

Acceleration emphasizes on high frequencies, displacement on low frequencies and 

velocity gives equal emphasize on all frequencies. For measuring vibration by means of 

portable accelerometer (range: 2Hz-20 KHz) from the bearing housings of gearboxes, it 

was advised by the experts to consider the RMS of vibration in velocity unit in time domain. 

Significance of measuring vibration along each direction has been presented earlier in 

Table 4.4. 

• RMS value of foundation vibration (mm/sec): As a gearbox is mounted on a foundation, 

this parameter is considered as a major indicator in fault diagnosis. Any anomaly found in 

the vibration level taken from the foundation simply implies the presence of abnormalities 

in the gearbox. 

• Oil flow rate (lt/min): It is a significant indicator of presence of fault in any gearbox. 

Lubricating oil are used for smooth functioning of the components by preventing direct 

metal to metal contact as well as to dissipate the generated heat. Generally, two types of 

lubrication systems are used in the gearbox. Either all components are immersed to a certain 

level in the lubricating oil or flashed from the top of the gearbox, and directed towards 

different prime locations such as the contact region of gear and pinion, shaft and bearings 

etc. If any fault is occurred in any of its component, at first temperature of the lubricating 

oil is increased. However due to immense localized heat, some amount of lubricating oil is 

evaporated causing flow rate to decrease from the threshold level. 

• Rise in oil temperature (°C): Any fault in the gearbox will produce some amount of heat, 

which in turn affects the overall rise in temperature of the lubricating oil. This temperature 

can be easily detected from the outlet point. 

• Rise in temperature of bearing housing (°C): Shafts are usually mounted over bearings and 

when some thrust load is impinged on the gears, it is directly transmitted to the bearings. 
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If they are unable to withstand these loads, then some faults will be developed. If the causes 

are not eliminated, then a sudden rise in the temperature of bearing housing will be noticed. 

• Significant reduction in the gearbox oil pressure (in bar) also indicates the presence of 

faults. Generally, at the top of each gearbox, an oil pressure measuring gauge is mounted 

to measure it properly. 

Step 3: Along with these HIs, environmental temperature, dust level and humidity are also 

considered. Values of these parameters are continuously monitored and when a fault is observed, 

average values of these parameters can be taken from last few days’ history (expert’s suggested it 

for two-days for the current CBR system), as the average value of them is enough to highlight their 

impact on the occurrence of the fault.  

Step 4: Collection of the past recommended maintenance actions and preventive actions carried out 

from ERP section of the organization. 

After collecting all these details, cases are developed, and then indexed and organized in a 

separate schema file using MS Access (in RDBMS form) (refer Figure 7.3). Then, exploiting those 

cases, a user friendly and easy to operate GUI is developed to automate the decision-making 

process.  

7.4.2. A Sample Case: Abnormal Sound and Vibration from 1st Rolling Stand  

This case is taken from an occurrence history of a similar fault to confirm the capability of the CBR 

system (refer Figure 4.1).  

 

Figure 7.4. Primary input selection window of the developed CBR system 
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In this case study, abnormal sound and vibration are noticed by the process engineers during 

their regular visit at the rolling mill. When the specified symptoms along with rolling stand number 

is proffered to the CBR system, the CBR system provided a set of probable causes of fault as shown 

in Figure 7.4. When the ‘Next’ functional key is pressed, the user is guided to the final selection 

window as shown in Figure 7.5. Here, the end-user can select the most pertinent HIs from the list-

boxes to properly identify and isolate the fault.  

For this example, twenty HIs are chosen (refer Figure 7.5) from the entire set of HIs 

considered during the development of the CBR. After providing the ranges of selected HIs in those 

activated text boxes shown in green colour, pressing the ‘Best possible cause of fault’ key renders 

‘Breakage of teeth G2’ as the best retrieved past case, which is almost identical to the current 

problem. Along with the available HIs provided by the end-user, other unavailable HIs are also 

shown to make the decision properly. After isolating the fault, it is necessary to get the 

recommended actions at the present scenario, which is also provided when ‘Recommended actions’ 

key is pressed. It is also necessary to mention that if the retrieved best case is not acceptable with 

the current problem, ‘Edit’ and ‘Save’ options are also provided to modify the present case (Revise 

and Retain of CBR), and to store it in the case-base for further use. 

 

Figure 7.5. Output window for fault diagnosis and recommending the maintenance tasks 
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7.4.3. Discussions on Output 

Decision making related to the fault diagnosis of complex gearboxes are not well understood and 

experts’ interventions are often required to discern such problems. The presented case-study 

highlights the following noticeable points: 

• Whenever there are vague information and scarcity of expert knowledge, previous cases 

with a well-documented and automated form may be utilized to solve the present problems.  

• Although the system may not provide the exact matching of cases due to missing 

information, it can retrieve the most similar cases from the history (89.2%, refer Table 7.1).  

• The values provided to the CBR system need not to belong in the exact ranges of the 

retrieved case. It can provide approximate solution to the current problem, that’s why it is 

also known as case-based approximate reasoning method (Aamodt and Plaza, 1994).  

• Additionally, it can provide results with the least amount of available knowledge with the 

inexperienced process engineer without knowing all the details of the monitored system.  

• In the present study, the teeth of the second gear (G2) mounted on the first intermediate 

shaft were found to have broken resulting in a large rise in the RMS value of vibration 

level.  

• Second gear is meshed with the first gear causing a rise in the vibration level when being 

monitored from the nearest bearing housing.  

• Vibration parameters of other locations have somehow changed from the threshold values, 

monitored during healthy condition as given in Table 7.2-Table 7.3.  

• Bearing housing temperature near to G2 has also changed e.g., breakage of teeth gives a 

shock loads to other meshing components such as bearings and shaft.  

Table 7.1. Input case and best retrieved case 

Name of HIs Input range 
Retrieved 

value 

Input drive end shaft vibration [mm/sec] 

Vertical 4.60 4.64 4.63 

Horizontal 3.60 3.65 3.62 

Axial 1.48 1.54 1.52 

First intermediate shaft drive end vibration 

[mm/sec] 

Vertical 4.26 4.32 4.56 

Horizontal 3.50 3.53 3.51 
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Axial 1.02 1.12 1.26 

First intermediate shaft non-drive end vibration 

[mm/sec] 

Vertical 5.50 5.62 5.62 

Horizontal 3.58 3.66 3.65 

Axial 2.44 2.48 2.45 

Second intermediate shaft drive end vibration 

[mm/sec] 

Vertical NK NK 2.21 

Horizontal NK NK 1.89 

Axial NK NK 1.42 

Second intermediate shaft non-drive end vibration 

[mm/sec] 

Vertical NK NK 1.47 

Horizontal NK NK 1.22 

Axial NK NK 1.09 

Output shaft non-drive end vibration [mm/sec] 

Vertical NK NK 1.54 

Horizontal NK NK 1.22 

Axial NK NK 1.01 

Output shaft drive end (top) vibration [mm/sec] 

Vertical NK NK 1.2 

Horizontal NK NK 1.05 

Axial NK NK 0.56 

Output shaft drive end (bottom) vibration [mm/sec] 

Vertical NK NK 0.98 

Horizontal NK NK 0.56 

Axial NK NK 0.48 

Foundation vibration [mm/sec] 5.60 5.65 5.63 

Oil flow rate [liter/min]  62 64 62 

Oil temperature [°C] 66 70 68 

Temperature of bearing housing, input shaft drive end[°C] 62 68 66 

Temperature of bearing housing, first intermediate shaft drive end[°C] 62 64 58 

Temperature of bearing housing, first intermediate shaft non-drive end[°C] 52 56 62 

Temperature of bearing housing, second intermediate shaft drive end[°C] 56 58 58 

Temperature of bearing housing, second intermediate shaft non-drive end[°C] NK NK 52 

Temperature of bearing housing, output shaft non-drive end[°C] NK NK 62 

Temperature of bearing housing, output shaft drive end (top)[°C] NK NK 60 

Temperature of bearing housing, output shaft drive end (bottom)[°C] NK NK 61 

Ambient temperature[°C] 38 40 38 

Ambient humidity [%] 76 78 78 

Ambient dust level [R-scale] 5 7 5 

Oil pressure in gearbox [bar] 2.3 2.5 2.3 

Best possible cause of fault = breakage of teeth G2 [Similarity = 89.2% ≥ 80%(acceptable)] 

NK- Missing or unknown Values 

Clearly, it is hard to extract an exact relationship between these HIs without knowing the 

details of several analysis techniques and technical details of the gearbox. However, as the aim of 

this study is to aid the novice process engineers for making an instant decision regarding the fault 

diagnosis, CBR is a more suitable methodology other than other available AI methods. Also, 

similarity of retrieved case is 89.2% with the previous case, which indicate that the solution can be 

taken into consideration. If the similarity score is decreased to a very lower level, a fine tuning of 

the HIs and a greater number of HIs are required to be provided for better accuracy. The 

computational time of the developed system is almost less than one second, which makes it to be 

appropriate for providing solution to current decision-making problem.  
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Table 7.2. Average and standard deviation of vibrations from different locations in healthy state 

Location 
Direction of 

measurement 

Average and standard deviation values of amplitude 

(RMS value) in time domain (2Hz-20KHz) [mm/sec] 

 Average of RMS values Standard deviation 

Input shaft drive-end bearing 

housing 

Vertical 0.398 0.114 

Horizontal 0.343 0.290 

Axial 0.318 0.083 

First intermediate shaft drive 

end 

Vertical 0.374 0.236 

Horizontal 0.276 0.145 

Axial 0.380 0.144 

First intermediate shaft non-

drive end 

Vertical 0.393 0.180 

Horizontal 0.514 0.286 

Axial 0.368 0.103 

Second intermediate shaft 

drive end 

Vertical 0.321 0.187 

Horizontal 0.362 0.180 

Axial 0364 0.165 

Second intermediate shaft 

non-drive end 

Vertical 0.531 0.420 

Horizontal 0.570 0.249 

Axial 0.415 0.104 

Output shaft non-drive end Vertical 0.378 0.366 

Horizontal 0.456 0.285 

Axial 0.327 0.115 

Output shaft (top) drive-end Vertical 0.365 0.155 

Horizontal 0.425 0.221 

Axial 0.447 0.127 

Output shaft (bottom) drive-

end 

Vertical 0.310 0.092 

Horizontal 0.291 0.165 

Axial 0.430 0.421 

Foundation vibration - 4.889 1.080 

Table 7.3. Average and standard deviation values of other HIs in healthy condition 

HIs Average value Standard deviation 

Oil flow rate [liter/min] 60.667 1.341 

Oil temperature [°C] 68.265 2.561 

Input shaft drive end bearing housing 

temperature [°C] 

52.612 3.142 

First intermediate shaft drive end bearing 

housing temperature [°C] 

56.321 2.121 

First intermediate shaft non-drive end bearing 

housing temperature [°C] 

53.362 2.625 

Second intermediate shaft drive end bearing 

housing temperature [°C] 

55.965 1.982 

Second intermediate shaft non-drive end bearing 

housing temperature[°C]  

54.263 2.125 

Output shaft non-drive end bearing housing 

temperature [°C] 

56.326 1.569 

Out shaft drive end (top) bearing housing 

temperature [°C] 

59.632 1.236 

Out shaft drive end (bottom) bearing housing 

temperature [°C] 

58.965 1.856 

Oil pressure in the gearbox [bar] 2.2 0.385 
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7.5. Chapter Summary 

In this chapter, a generalized framework for fault diagnosis of large-scale gearbox using the data 

fusion technique in combination with CBR methodology has been proposed. The proposed CBR 

system can aid engineers to easily detect and isolate the faults without in-depth knowledge of 

various vibration signal processing techniques and system structure. The complications of 

analysing complex and noisy vibration signals have been eliminated by measuring it simply in the 

time-domain through portable accelerometers. As noted, the time-domain analysis is still 

commonly performed by analysts in industries to detect several faults of gearboxes such as 

imbalance or tooth cracks (Rafiee et al., 2007).  The proposed approach has not relied just on single 

vibration signals but has considered other HIs along with environmental parameters for carrying 

out such complex decision-making task. In the proposed CBR system, hamming distance has been 

utilized for measuring the similarity along with the principle of k-NN. The system has presumed an 

equal weightage to each of the HIs as detailed inter-relationship among them might not be predicted 

at the earlier stage. After detecting and isolating the faults, the possible recommended actions such 

as corrective and preventive measures, have also been suggested by the system to the engineers for 

the ease of decision making. From the reliability point of view, the solution provided by this CBR 

system is totally dependent on the volume of the case-base. As the volume of case-base is increased, 

more accurate solutions could be rendered to the current problem(s).  

--------------- 
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Chapter 8  A Hybrid AI-Based Conceptual Decision-Making 

Framework for Sustainable Maintenance Strategy Selection  

8.1. Introduction  

ver the decades, the concept of manufacturing has been evolved from mass production to the 

lean manufacturing, to green manufacturing, up to the recent concept of sustainable 

manufacturing.  Sustainable manufacturing is one of the key contributors in the sustainable 

development since it allows creating products through the rational use of resources and with new 

cleaner technologies focused to preserve the environment and ensure peoples’ safety and health. 

Further, sustainable manufacturing involves the need to move from the linear economy to the 

circular economy based on reducing waste through recycle, reuse, remanufacturing, and recovering 

the material. In other words, the goal of integrating the sustainability concept in the traditional 

maintenance process is to eliminate and/or mitigate the breakdown, energy waste, and reducing the 

internal and external costs. 

As emphasized in Chapter 1/ Section 1.1.3, to progress towards economic, environmental, 

and social developments of any organization, it is necessary that all the business processes should 

be sustainable, ensuring the availability and reliability of the systems’ components, guaranteed 

safety of employees and community, and minimizing the environmental impact.  

Maintenance, being a key component of the manufacturing/production process, plays a 

pivotal role for the uninterrupted and/or trouble-free operations. Thus, to successfully implement 

the sustainable manufacturing philosophy, it is required that the associated maintenance practices 

should also be sustainable.  

Recently, Tornese et al. (Tornese et al., 2014) proposed a framework for selecting the most 

favourable environmental performance measurement methodology, where maintenance was noted 

to be a significant contributing factor. Authors also emphasized that it should be sustainable with 

the development of new maintenance services in line with the circular economy and sustainable 

manufacturing. In a similar note, Pires et al. (Pires et al., 2015) argued that new researches must 

discuss the impact of industrial maintenance on organizational sustainability and vice-versa. More 

recently, similar ideas have also been propagated in (Ejsmont et al., 2020; Holgado et al., 2020; 

Jasiulewicz-Kaczmarek et al., 2020).  

O 
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Based on the above and observation from the literature survey as outlined  in Chapter 2/ 

Section 2.3, it is obvious that although the earlier researchers have identifies multiple types of KPIs 

for different maintenance practices, recent trends suggest to consider them from the TBL of 

sustainability without compromising on technical criteria. Besides, the difficulties experienced by 

the decision makers during the selection of optimal maintenance practice by employing different 

MCDM methods have also been highlighted in Chapter 2/ Section 2.4.3. Considering these, the 

novelties of the work presented in this chapter could be 27:  

a) To identify the pertinent KPIs of different maintenance philosophies from the TBL of 

sustainability, with a special highlight to the case study of process plant gearboxes (refer 

Chapter 4 for more details about the gearboxes).  

b) Integrating the ES (Expert System) in the model of CBR (Case Based Reasoning) in a new 

approach for the selection of optimal maintenance strategy. This integration helps in 

exploiting the benefits of both CBR and ES. However, the proposal is illustrated with a 

hypothetical example due to unavailability of data at the time of finishing this research.  

8.2. Preliminary Ideas  

A brief overview about CBR has already been presented in the previous chapter, here only the brief 

descriptions on sustainability with the pertinent notions of ESs are presented.  

8.2.1. Sustainability  

Sustainability is a complex issue, and an elusive one. It is very significant since it has to do with 

the chances of humankind surviving on this planet. At the rate at which the 

individuals/groups/nations are exploiting the scarce resources it seems that unless measures are 

taken now, and if there is still time, the upcoming civilization, at least as it is understandable now, 

is uncertain to say the least. It follows that such a complex subject has no simple and straightforward 

treatment, especially when one must understand that sustainability is not a goal but an endless 

 
27 The contributions of this chapter can be found in the below published book-chapter:  

a) Boral, S., Chaturvedi, S. K., Naikan, V. N. A., & Howard, I. M. (2019). A Hybrid AI-Based Conceptual 

Decision-Making Model for Sustainable Maintenance Strategy Selection. In Advanced Multi-Criteria Decision 

Making for Addressing Complex Sustainability Issues (Ed.), Chapter 4, pp. 63-93. DOI: 10.4018/978-1-5225-

8579-4, IGI Global.  
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process. It leads to a better life for the present generation and survival for generations in years to 

come by enhancing their ability to cope with the world that they will inherit from the present.  

The terms sustainability and sustainable developments are often used interchangeably and 

since 1980, it has gradually turned into an emerging area of research in R&D groups of government 

and industrial sectors with the theme - “sustainable development is a kind of development that 

fulfils the needs of the present generation without compromising the ability of future generations 

to meet their needs.” This theme consists of three prime terms, viz., development, present and 

future.  

After looking at the word ‘development’, one instinctively thinks about economic 

development, however, from the sustainable perspective, it means the advancement in every area, 

viz., from industrial innovations to economic development knitted with  ethics and societal progress, 

without damaging the environment of the Earth we inhabited. ‘Present’ refers to acting in a 

structured way with a view of achieving growth not only in the economical context, but also in 

social and environmental contexts. The term ‘future’ does not refer to the immediate future, but to 

the long-term future which will be inhabited by future generations.   

8.2.2. Expert System  

An ES differs from the conventional programs in several ways, for instance: 

• It is knowledge intensive, highly interactive, and divides the experts’ knowledge into 

separate rules.  

• An ES consists of a knowledge base, a working memory, an inference engine, system 

analysis and graphical software and a user interface, as shown in Figure 8.1.  

• The knowledge contained in the knowledge base can be either prior knowledge or posterior 

knowledge. This knowledge can be represented as rules, semantic nets, frames, scripts, 

object-oriented structures, conceptual graphs and so on.  

• An inference engine examines the knowledge base and reasons the answer (how and why) 

to the end-user, which is also known as pruning. This task is carried out by following any 

of the methods, viz., production rules, structured objects and predicate logic. Production 

rules consists of a rule set, a rule interpreter that specifies when and how to apply the rules 

and a working memory which holds the data, goals and intermediate results. Structured 
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objects use vector representation of essential and accidental properties; whereas, predicate 

logic uses propositional and predicate calculi.  

 

Figure 8.1. Architecture of an expert system 

The process of building an ES/knowledge-based system is known as knowledge engineering, 

wherein knowledge engineers embed the knowledge of human experts in it. This embedding 

process is carried out by decoding the linguistic terms given by the experts into suitable 

programming codes, and in the absence of such experts, the ES provides decisions to a problem 

domain with which it has been constructed. Generally, ES provides solutions, which are derived 

from its knowledge base and contains declarative facts, as well as procedural (or heuristic rules) 

knowledge about the problem domain by using a reasoning process embedded in its inference 

engine, the ‘thinking part’ of the system. It uses any of these three methods, viz., backward chaining 

(top-down reasoning), forward chaining (bottom-up reasoning) or abduction as the basis of 

inference. At first, it looks for the ‘most likely’ hypothesis and then searches for the evidence for 

the hypothesis. If after receiving all the relevant information from the end-user, the initial 

hypothesis cannot be supported then it looks for the ‘next most likely hypothesis’ and so on (Lucas 

and Van Der Gaag, 1991).  

Usually, to develop a Graphical User Interface-based ES in an industry, the following broad 

steps could be adopted:  

• Define the deliverable or the outputs which are expected from an ES. 

• Several interviews are conducted with the active participation of knowledge engineers.  

• Store the Acquired knowledge in the knowledgebase.  

• Several rules are derived by exploiting these knowledges.  
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• Store the problems and their associated solutions in the inference engine. 

• Develop a GUI by using any graphics enabled software or alike (e.g., Microsoft Visual 

Basic 6.0) to exploit the knowledge base and to interact with end-user.    

ES is a useful tool in a decision-making process when the following bottlenecks are observed:  

• When there is a scarcity of experts’ knowledge in an organization for a decision-making 

purpose.  

• When enough prior cases are available, but they are unexploited and simply stored in the 

database.  

In other words, the concept of ES is useful when there are enough cases available. In most 

of the instances, an ES deduces solutions from these stored cases and from an exhaustive ‘IF-

THEN’ rule-base. Despite its several advantages, the major problems associated with ES are: 

• Knowledge acquisition barrier, linguistic barrier, cognitive barrier, representation barrier.  

• It works on the principle of direct matching. 

• A rule-base model becomes unviable, when the number of rules is increased. This not only 

creates the problem of assessment of rules by experts, but also for many of the 

combinations, it becomes difficult to assess the consequent part of certain rule(s) even by 

the best expert available. This necessitates incorporation of an appropriate rule-reduction 

technique. 

8.3. KPIs Considerations in Sustainable Maintenance  

KPIs involved in a sustainable maintenance strategy selection problem can be initially divided into 

qualitative and quantitative components, which in turn have their own sub-factors, viz., economic, 

technical, social and environmental. Table 8.1 provides a summary of the factors that may be 

considered for a sustainable maintenance strategy selection problem. 

Table 8.1. Sustainability-based criteria, sub-criteria, and their desired nature 

Qualitative 

factors 

Factors Sub-factors Desired nature 

Economic 
Quality of output product after maintenance ↑ 

Ease of maintenance ↑ 

Technical 
Technical feasibility ↑ 

Technical complexity ↓ 
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Flexibility of maintenance program ↑ 

Social 

Worker’s safety ↑ 

Acceptance by workers ↑ 

Compliance with government regulations ↑ 

Environment 
Compliance with environmental standards ↑ 

Toxicity of generated wastes ↓ 

Quantitative 

factors 

Economic 

Hardware cost ↓ 

Spare parts cost ↓ 

Software cost ↓ 

Manpower cost ↓ 

Training cost ↓ 

Cost of production loss ↓ 

Return on investment ↑ 

Cost of cleaning the waste ↓ 

Technical 

Mean time between failures ↑ 

Mean time to repair ↓ 

Availability of spare machinery ↑ 

Risk level of system/machinery ↓ 

Social Level of performance of employees ↑ 

Environment 
Amount of toxic substance emission ↓ 

Amount of waste material generated ↓ 

[↑ = higher the better, ↓ = lower the better] 

In fact, many factors, qualitative or quantitative falls under the gamut of maintainability 

engineering and are briefly outlined below:  

8.3.1. Qualitative KPIs 

These type of KPIs are either assessed linguistically or by ordinal values28 by the domain experts. 

The identified candidates of KPIs in this category are grouped and presented below: 

8.3.1.1. Economic criteria 

• Quality of output product after maintenance: Maintenance of a complex system/machine 

is carried out by repairing, replacing or carrying even minor maintenance tasks such as 

cleaning or adjustment. The repair actions may be perfect (viz., as good as new/renewed), 

minimal (viz., as bad as old), and/or in-between these two extremities (Doyen and Gaudoin, 

2004). Generally, after performing any type of maintenance, it is usually expected that the 

output of the machine should be improved from the previous state (viz., just before the 

maintenance). This can be measured in terms of improvement of rejection rate through 

some identified and indicative parameter of performance.  

 
28 Usually employing any well-established scale (e.g., Liker scale), where very high = 9, high =7, medium = 5, low =3, 

very low =1. 
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• Ease of maintenance: It is the way of maintaining a system/machine and mitigate faults 

and/or failures. It can be measured by considering different factors: design of the machine, 

condition of maintenance platform, time on the maintenance platform, ergonomics & 

human factors and workforce needed on the maintenance platform.  

8.3.1.2. Technical criteria 

• Technical feasibility: It is necessitated sometimes that the system cannot be considered 

under a specific maintenance strategy due to either cost or technical infeasibility. This 

infeasibility might be due to space impediment, climatic conditions and/or maintenance 

platform. In such a situation, experts usually suggest the next feasible strategy for the 

considered machine.  

• Technical complexity: Each maintenance strategy has its own technical complexity in terms 

of prior knowledge requirements, employing the software, etc. It further affects the 

judicious and optimal utilization of the needed resources. Such resources are maintenance 

supply support, maintenance test and support equipment, maintenance personnel, 

maintenance facility, maintenance technical data and maintenance computer resources 

(Knezevic, 1997, 1993).  

• Flexibility of maintenance: It measures the readiness of response of a maintenance strategy 

to unwarranted incidents of a critical system/machine. It is desirable that the chosen optimal 

strategy must be flexible enough (viz., adaptive, responsive and agile) in terms of response 

time and needed efforts (Garg and Deshmukh, 2009). Further, the elapsed time are 

influenced by the personnel factors (e.g., motivation, skill, physical, attitude), conditional 

factors influencing the operating environment and consequence of failure on the 

component, and environmental factors (viz., humidity, noise, vibrations, time of the day, 

etc.). It can also be measured in terms of maintenance capacity, maintenance facility, 

vertical integration, managerial flexibility, etc. There are also different techniques for 

flexible maintenance, such as distribution integration, risk pooling, multifunctional staffs, 

maintenance outsourcing, etc.  

8.3.1.3. Social criteria  

• Workers’ safety: It is major concern while selecting the optimal maintenance strategy for a 

system/machine. For instance, a pressurized boiler cannot be facilitated with CM or R2F, 
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as each failure of such critical system can lead to severe fatalities of the operator. Hence, 

CBM or PdM should be adopted for failure free operation. 

• Acceptance by workers: Workers are the primary drivers of the observation of any 

abnormalities in the system/machinery. The chosen maintenance strategy should therefore 

be accepted by the workers or the operators operating the system/machinery as well. 

Sometimes, it might be possible that a complicated maintenance strategy is not well-

accepted by the workers. In this situation, management must train workers to help them 

understand, through training programs/simulators/brainstorming events from time to time, 

its advantages.  

• Compliance with government regulations: Apart from the above, the organization must 

follow the statutory regulations set out by government regulatory bodies to avoid 

unwarranted litigations.  

8.3.1.4. Environmental criteria 

• Compliance with environmental standards: The sustainability needs that an organization’s 

liability and responsibility must have to protect the environment through recycling or safe 

disposal of the worn-out item. There are standards, e.g., ISO 14001, that specify the 

requirement of an environmental management system for small- and large-scale 

organizations. For each of the considered strategies, this standard should be followed by 

the organization. 

• Toxicity of generated waste: During the maintenance activities multiple types of 

hazardous/non-hazardous wastes are generated. Their level of toxicities must be considered 

while opting a maintenance strategy.  

8.3.2. Quantitative KPIs 

Some identified KPIs under this category are:   
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8.3.2.1. Economic Criteria 

• Hardware cost: Usually, it includes cost of electrical/electronic/computer hardware 

components, e.g., sensors used to detect the condition of the system to determine the overall 

health.  

• Spare parts cost: Cost of spares, tools, special supplies and related inventories needed to 

support the maintenance process used during the maintenance procedure.  

• Software cost: This includes the cost of different computerized systems or diagnostic 

software employed to detect the faults and/or determine the health conditions of the 

system/machine.   

• Manpower cost: Costs of labour/workers, technicians/engineers to bring the system back 

to an operative condition.   

• Training cost: Cost for training the operators to make them acquainted with the tools and 

their handling techniques (e.g., signal processing in CBM) used in monitoring and 

maintenance procedures.  

• Cost of production loss: Due to failure of a critical equipment/machinery in a system or 

production line, the total system/production line may be shut down, causing significant 

revenue/production loss.  

• Return on investment: It is the ratio of net profit gained from that critical system/machinery 

and cost of investment made on them.   

• Cost of cleaning the waste: In each maintenance practice, the careful extraction, storage 

and recycling of waste entails cost, which might be substantial. Now-a-days, in most of the 

world-class organizations, to comply with the industrial regulations, toxic wastes are 

cleaned by robots or automated machines.  

8.3.2.2. Technical Criteria 

• Mean time between failures: This is the arithmetic mean time between successive failures 

of a repairable system. Usually, failures of a repairable system are measured in global time, 

if the failure times are recorded as time since the initial start-up of the system. Whereas, 
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the same are measured in terms of local time if the failure times are recorded as time since 

previous failure. For a chosen maintenance strategy, the mean time between failures should 

tend to increase rather than get worse (Rigdon and Basu, 2000) for the optimal strategy.   

• Mean time to repair: It measures the average time required to bring back a failed 

system/machinery to the working condition. In other words, repair time of a 

system/machinery is the quantification of time that it is out of production due to some 

occurred faults and/or failures. For a good maintenance practice, this criterion should be 

understood as the lower the better.  

• Availability of spare machine: Availability is considered as an important metric for 

repairable system performance and combines both reliability and maintainability. It is 

defined as the probability that the system is available for use when demanded. In the worst 

situations of maintenance (e.g., breakdown maintenance), it is required to replace the 

system/machinery with the redundant one, which should be in good working condition or 

available on demand.   

• The risk level of the system/machine: ISO 9000:2015 defines risk as the “effects of 

uncertainty on an expected result.” For a system/machine, risk of a failure can be 

considered from aspects, such as financial, technical, operational, environmental, health, 

safety, and impact on business and social objectives. While selecting a maintenance 

strategy for a system/machine, the level of risk on the total production process must be 

considered, which may be extended to the system and/or component level.  

8.3.2.3. Social Criteria 

• Performance levels of employees: Operators and/or employees are primarily responsible to 

carry out maintenance tasks. Their level of performance would be a major concern for 

selecting the optimal maintenance strategy for the system/machine. Multiple scales are 

available to measure their performance, such as Global Vigor and Affect (GVA) scale, 

NASA TLX scale and the Subjective Workload Assessment Technique (SWAT) scale.  

8.3.2.4. Environmental Criteria 

• Amount of toxic substance emissions: Toxic substances (i.e., lubricating oils and their 

fumes, different harmful gases, like carbon monoxide, sulphur di-oxides, etc.) are produced 
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when the system/machine operates in poor health condition or at faulty condition. For 

instance, this toxicity can be produced during the task of preventively changing the 

lubricating oils from gearboxes, or through the generation of harmful gases due to oil-

evaporation during a bearing failure of a gearbox.  

• Amount of waste materials generated in a maintenance strategy: In each maintenance 

practice, various waste materials are generated. For example, during PM of a 

system/machine, multiple components are replaced with a new one to mitigate the 

associated risks. Whereas, in CBM, components can run just prior to failure, and after than 

generally discarded/scraped/repaired, which generates wastes.  

Now, employing the above KPIs, two examples are provided initially, to move forward to 

the development of the decision-making framework. In these examples, the various factors in the 

groups are deliberately kept generic to assist in the illustration and to make the process easier to 

comprehend. 

8.4. Illustration of the Proposed Framework  

For the considered case study of gearbox, as presented in Chapter 4, management sought to adopt 

the sustainable maintenance practice. To do that, initially, experts selected six sustainable factors, 

say, A, B, C, D, E and F. As per the requirement, a higher value of factors, A, B and F, whereas a 

lower value of C, D and E is an indication of rendering benefits. A, B, and C are assumed to be 

quantitative factors. For instance, A is the mean time between failures of the gearbox, B is 

availability of a spare gearbox, and C is the cost of production loss due to the shutdown of the 

gearbox; whereas, D, E and F are supposed to be qualitative factors. Here, D represents technical 

complexity, E is toxicity of generated waste, and F is ease of maintenance. It is noteworthy that the 

qualitative factors were initially assessed subjectively (linguistically), and then were translated back 

to problem specific designed, customized and agreed scale values29. It is assumed that all these data 

are previously stored in the central database of the organization according to the structure shown 

in Table 8.2. Here, the Case ID represents the ‘primary key’ associated with each case.  

 
29 Absolutely high = 9, very very high = 8, very high = 7, high = 6, medium = 5, low = 4, very low = 3, very very low = 

2, absolutely low = 1.  
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Table 8.2. Stored cases in database 

 Antecedent factors 
Consequent 

output 

Case 

ID 

Machine 

ID 
A (Hrs.) 

B 

(dimensio

nless) 

C 

(Dollars) 

D 

(scale)  

E 

(scale) 

F 

(scale) 

Maintenance 

strategy 

1 A03 130-140 0.80-0.82 100-112 2-3 5-6 2-3 TBPM 

2 A05 97-102 0.90-0.92 45-50 8-9 2-3 7-8 CBM 

3 A04 170-175 0.75-0.78 198-206 3-4 7-8 5-6 CM 

4 A02 150-154 0.84-0.86 112-118 4-5 5-6 2-3 Age based PM 

: : : : : : : : : 

: : : : : : : : : 

N-1 A01 110-115 0.94-0.96 78-88 7-8 3-4 8-9 CBM 

N A07 98-102 0.81-0.83 96-104 1-2 8-9 4-5 CM 

8.4.1. Input Case - 1  

Now suppose, the gearbox is to be supported with this sustainable maintenance strategy, and the 

decision-maker has requirements of the following values for each selected factor as shown in Table 

8.3.   

Table 8.3. Data for input case - 1 

 

 

This example can be solved from the inputs by using a hypothetical rule-based ES-1:  

a. The ES-1 builds an initial rule in the following manner: 

"𝐼𝐹 𝐴 𝑖𝑠 132 𝐴𝑁𝐷 𝐵 𝑖𝑠 0.81 𝐴𝑁𝐷 𝐶 𝑖𝑠 112 𝐴𝑁𝐷 𝐷 𝑖𝑠 3 𝐴𝑁𝐷 𝐸 𝑖𝑠 5 𝐴𝑁𝐷 𝐹 𝑖𝑠 2" 

b. The built-up rule is then forwarded to the knowledge base and then the knowledge 

base finds the most similar rule in it, which is stored in the following manner:  

"𝐼𝐹 𝐴 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (130 𝑎𝑛𝑑 140) 𝐴𝑁𝐷 𝐵 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (0.80 𝑎𝑛𝑑 0.82)  

𝐴𝑁𝐷 𝐶 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (110 𝑎𝑛𝑑 112)𝐴𝑁𝐷 𝐷 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (2 𝑎𝑛𝑑 3) 𝐴𝑁𝐷  

𝐸 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (5 𝑎𝑛𝑑 6)𝐴𝑁𝐷 𝐹 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁  (2 𝑎𝑛𝑑 3) " 

c. Thereafter, the knowledge base triggers the inference engine for getting the attached 

solution with the above rule. As shown in Table 8.2, the solution is attached in the 

following manner:  

Case-input 

Factors A B C D E F 

Input values  132 0.81 112 3 5 2 
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"𝐼𝐹 𝐴 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (130 𝑎𝑛𝑑 140) 𝐴𝑁𝐷 𝐵 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (0.80 𝑎𝑛𝑑 0.82)  

𝐴𝑁𝐷 𝐶 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (110 𝑎𝑛𝑑 112)𝐴𝑁𝐷 𝐷 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (2 𝑎𝑛𝑑 3) 𝐴𝑁𝐷  

𝐸 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 (5 𝑎𝑛𝑑 6)𝐴𝑁𝐷 𝐹 𝑖𝑠 𝐵𝐸𝑇𝑊𝐸𝐸𝑁  (2 𝑎𝑛𝑑 3) " 𝑇𝐻𝐸𝑁 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 "𝑇𝐵𝑃𝑀". 

Clearly, the ES-1 advices to opt for TBPM. 

8.4.2. Input Case- 2 

Now suppose the decision maker sought the solution for the values given in Table 8.4.  It can be 

observed by comparing the values in Table 8.2 and Table 8.4 that none of the stored cases are 

matching with the given input, e.g., for factor A, the input value is 145, but there is no value range 

in the stored cases between which 145 can fall. Similarly, for criterion B, 0.94 matches with Case-

ID (N-1), C matches with none, D matches with Case-ID 1 & 3, etc. The ES-1 module will then fail 

to provide any feasible solution. Note that these types of situations are usually encountered in the 

real world. To solve this problem, an AI based hybrid decision-making model is described in the 

next section.  

Table 8.4. Data for input case -2 

 

 

 

8.5. Proposed AI-Based Hybrid Decision-Making Model 

A generic flowchart of the suggested model is proposed and shown in Figure 8.2. The model 

consists of mainly two modules, viz., ES-1 plus a CBR module. Within CBR, there is another ES-2 

whose purpose is to carry out the refinement on the outcome at the retrieval phase of the CBR 

module.  The steps are: 

Step 1: Referring to the previously mentioned example, when a new problem case arrives, the end-

user initially provides inputs like number of gears in a gearbox, their diameters, module of gears, 

etc. to seek for the machine which has almost the same technical specifications with the new one 

and is already available within this model as global input data. After that the end-user selects the 

relevant criteria to be used in the decision-making process.  

Case-input-2 

Factors A B C D E F 

Factor weight 0.18 0.22 0.1 0.2 0.16 0.14 

Input values 145 0.94 62 3 4 2 
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Figure 8.2. Workflow diagram of the hybrid model 

Step 2: Since several factors/criteria are given as input to the system, it is required to compute their 

weight values, as they have varied impact on the outcome. These can be accomplished by any 

popular approach highlighted in Chapter 2, Section 2.1.1, or can be provided by the experts directly.   

Step 3: The model now triggers the ES-1 module that searches its knowledge base for the closest 

similarity with the input. It is worth mentioning that ES-1 makes the final decision based on a 

backward reasoning (top-down approach) approach. Thereafter, the best matched rule is forwarded 

to the inference engine for finding its associated solution.  In the worst situation, when the ES-1 is 

unable to provide a solution to the end-user as confronted in case-input-2, it may prompt for fine-
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tuning of the factors, or it will enter into the CBR module for providing an approximate solution to 

the complex problem. 

Step 4: The CBR module of the model searches for the best matched case from the case-base (flat 

memory, serial search process), without extracting any knowledge from them. A set of prior similar 

cases are presented to the end-user along with their similarity score values with the input. However, 

it is noteworthy that the CBR module may not deliver exactly matching solutions with the stored 

cases, rather it may provide solutions relevant to other installed machines in that organization 

having similar technical specifications.  

Step 5: If the solution provided by the previous step has attained the desired similarity score value, 

then it can be accepted by the end-user. However, there are situations when the end-user disagrees 

on the solution and it becomes necessary to fine-tune the criteria for a better similarity match. This 

fine-tuning process may be carried out by selecting additional criteria and providing their values. 

Additionally, based on the output, there may be a requirement to adjust the values of input 

parameters to arrive at the optimal decision. If after fine-tuning the system is still not able to provide 

a level of similarity (e.g., a threshold similarity score) then it is required to modify the output (viz., 

Revision step of CBR).  

Step 6: The revision can be carried out either by means of ES-2, experts’ opinions and/or by 

machine learning algorithms. However, in this work, it is carried out by building an ES-2. Mainly, 

in ES-2 knowledge from knowledge engineers are incorporated to carry out the revision process of 

a retrieved case. Based on the output, provided by retrieve phase of a CBR system, different ‘IF-

THEN’ rules are formed to carry out the revision task and to arrive at the optimal decision.  

Step 7: After this revision phase, the final decision is suggested to the end-user, and is stored in the 

case-base for its future use (viz., Retain phase of CBR).  

Now, the previously presented case-inputs are again solved by the developed model.  

8.6. Illustrative Cases of the Proposed Hybrid Model 

8.6.1. Input Case - 1 

The proposed and developed model solves the problem by exploiting the ES-1 module only. Hence, 

there is no necessity to enter the CBR module, and the final outcome is the same as previous.  
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8.6.2. Input Case – 2  

When the input query is provided to the model, the model works as follows: 

a. Step 1: ES-1 of the model will fail to offer a solution as already explained earlier and 

therefore, the input is passed to the CBR module. It is assumed here that criteria have 

weight values of:  𝐴 =  0.18, 𝐵 =  0.22, 𝐶 =  0.1, 𝐷 =  0.2, 𝐸 =  0.16 and 𝐹 =

 0.14.  

b. Step 2: the CBR system calculates the hamming distances (refer Chapter 7, Section 

7.2.1) between each of the stored cases and the current case, for each of the considered 

factor (refer Table 8.5). Thereafter, it calculates the weighted similarity score for all the 

prior cases (refer Table 8.6)30. 

Table 8.5. Hamming distances between input and stored cases. 

Case ID A B C D E F 

1 0.064 0.571 0.236 0.125 0.143 0.143 

2 0.551 0.095 0.106 0.625 0.286 0.857 

3 0.385 0.762 0.845 0.000 0.429 0.571 

4 0.115 0.381 0.311 0.125 0.143 0.143 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

N-1 0.385 0.095 0.099 0.500 0.143 1.000 

N 0.551 0.524 0.211 0.250 0.571 0.429 

Table 8.6. Similarity scores after considering criteria weights 

Case 

ID 
A B C D E F 

Weighted 

sum 

Similarity score = (1- 

weighted sum) 

1 0.012 0.126 0.024 0.025 0.023 0.020 0.229 0.771 

2 0.099 0.021 0.011 0.125 0.046 0.120 0.421 0.579 

3 0.069 0.168 0.084 0.000 0.069 0.080 0.470 0.530 

4 0.021 0.084 0.031 0.025 0.023 0.020 0.203 0.797 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

N-1 0.069 0.021 0.010 0.100 0.023 0.140 0.363 0.637 

N 0.099 0.115 0.021 0.050 0.091 0.060 0.437 0.563 

In this example, let the threshold value of similarity score be 75%. The best similarity score 

provided by the CBR module belongs to case-ID 4. The solution attached to this score outputted 

 
30 In this context, it is to be noted that for calculating the weighted distance, higher/lower values are taken from the prior 

cases for ‘higher the better/lower the better’ factors.  
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by the model is Age based PM (similarity score = 79.7%). If the similarity score was less than 75%, 

then there exists a need for case-revision that can be carried out either by experts’ opinion, or by 

ES-2. 

8.7. Chapter Summary 

In this chapter, a scalable hybrid AI-based conceptual decision-making model has been proposed 

for a sustainable maintenance strategy selection. The model utilized the benefits of ES and CBR 

techniques. Several influencing and indicative criteria (economic, social, technical and 

environmental) have also been provided. The model is relevant in any industrial decision-making 

problem wherein the end-user/decision makers are forced to arrive at an optimal decision with the 

available information/data- structured or unstructured, complete or incomplete. Moreover, keeping 

in mind the recent trend of moving towards sustainable-based approaches, the proposed hybrid 

maintenance strategy selection model would serve a handy tool for decision-maker to narrow the 

gap and would help choosing a better, perhaps closer to an optimal one, sustainable maintenance 

strategy in a timely manner with much rapidity and ease.  

------------------ 
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Chapter 9  Conclusions and Future Scope of Study 

9.1. Conclusions  

CM is a well-known cost-constrained maintenance philosophy, which is always preferable 

by organizations. In this research, an attempt has been made to address some of the problems 

in making maintenance decisions following the RCM philosophy. However, during the 

implementation process, several decision-making problems arise as highlighted below:  

• There may exist numerous types of machine installed in an organization. The question may 

arise: What will be the scheme for selecting a set of machines for implementing the RCM 

philosophy? Others are, 

• What are the different types failure modes, their causes, and effects associated with the 

RCM aided machine? Further, which failure modes are critical? Which risk factors are to 

be considered during the risk rankings of failure modes?  

These questions can be answered by performing a comprehensive FMEA. However, FMEA 

is a task, where cross functional experts participate during the process. Then, the next questions are 

who are those experts, and what are their expertise level? Again, these experts always prefer to 

evaluate the failure modes with respect to the risk factors linguistically, and each linguistic 

evaluation contains some uncertainty, which surely affects the decision outcome, that is risk 

ranking of the failure modes. How to address these uncertainties? Apart from that, the RPN-based 

traditional FMEA approach has been criticized for many other drawbacks. How can the 

organization overcome those drawbacks?  

Despite taking all possible precautionary measures to prevent the failures of the machine, 

development of faults is inevitable. The only cost-effective way to detect the fault at the earliest 

possible opportunity of the large-scale, complex, and critical machine is to adopt the condition 

monitoring techniques based CBM approach. However,  

• when the machine is large and complex, mathematical modelling becomes difficult, if not 

impossible, with added assumptions.  

R 
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• Most often, an equipment internal details are covered by an enclosure, upon observing fault 

symptom(s), engineers become perplexed about the exact location of the fault, type of fault, 

etc.  

• Moreover, the impacts of surrounding environment on the occurrence of fault is most often 

unknown and require rigorous mathematical modelling. In these circumstances, engineers 

generally collect information about multiple HIs from different location of the machine 

(i.e., bearing housings, machine foundation, etc.). This information may be vibration 

signals, oils, temperature at different part of the machine. However, to know about the 

location, and type of the fault, each of these data are required to be analyzed by 

sophisticated information processing techniques, such as vibration signal analysis, oil 

analysis, etc. which are case-specific and often require experts’ intervention.  

• Furthermore, for a large-scale machine, it is not possible to collect the HIs from each point, 

and thus engineers often proceed with incomplete data to analyze the fault. In this scenario, 

to map the fault information from the measurement space to fault space is considered as a 

daunting and a pivotal decision-making task in fault diagnosis of such machines.  

• The next decision-making problem associated with such machines, is to choose which 

maintenance strategy is viable in some optimal sense to mitigate the occurrence of failures 

and to aid the sustainable manufacturing practices? It is thus required to carefully identify 

those pertaining sustainable parameters from the TBL of sustainability that could aid the 

sustainable manufacturing practice. Furthermore, using these parameters, and their ordinal 

and/or cardinal values, selecting the optimal maintenance strategy from a set of alternatives 

is another critical decision-making task.   

A point-wise listing of the novelties and contributions of the work contained in this thesis 

can be summarized as below:  

1. Different MCDM problems during the RCM implementation has been addressed by 

considering a case study of process plant gearboxes installed in the rolling mill of a steel 

plant. 

2. MCDM-based frameworks have been developed for risk ranking of failure modes in a 

FMEA problem.  
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• To deal with the imprecisions and vagueness associated with linguistic judgements 

while calculating the relative importance among the risk factors, and risk ranking 

of failure modes, two integrated fuzzy MCDM approaches have been proposed. In 

the first approach, Buckley’s fuzzy AHP method has been integrated with the 

developed fuzzy MARICA method. Fuzzy AHP has been used to calculate the 

relative importance of the risk factors, and fuzzy MAIRCA for risk ranking of 

failure modes. While in the second approach, Buckley’s fuzzy AHP has been 

integrated with the developed modified fuzzy MARCOS method. In this work, 

only the potential of these integrated approaches in risk ranking of failure modes 

in a FMEA problem have been verified. To do that, the benchmark example given 

in (Kutlu and Ekmekçioğlu, 2012) has been used. It has been observed that the 

ranking stability of the proposed approaches is greater than the original work. 

Further, for this example, it has been observed that the ranking stability of 

both the developed approaches are same. A detailed discussion on this work can 

be found in Chapter 3. 

• The factor ‘severity’ of a failure mode in RPN methodology have been considered 

from the TBL of sustainability perspective, thus, 11 risk factors have been 

generated. Two integrated MCDM approaches have been proposed for the risk 

ranking of the failure modes by combining the concepts of IT2F-DEMATEL, 

fuzzy MAIRCA, and modified fuzzy MARCOS. The proposed methods are well 

illustrated by a case study on a process plant gearbox. Based on the linguistic 

judgements of risk factors for the chosen failure modes, IT2F-DEMATEL has been 

used to depict the causal dependencies among the failure modes, and to calculate 

their relative importance in terms of crisp values. Then fuzzy MAIRCA and 

modified fuzzy MARCOS have been separately used for risk ranking of failure 

modes. It has been observed that when the number of risk factors has been 

increased in number, then fuzzy MARCOS has the greater ranking stability 

than fuzzy MAIRCA. A detailed discussion on this work can be found in Chapter 

5. 

• To further improve the associated imprecision and vagueness in linguistic 

judgements, and to deal with the phenomenon of production of different risk 

ranking results by different MCDM methods, a hybrid IT2Fs and half quadratic 

minimization based MCDM framework has been proposed and developed. The 



178 

 

same case-study of gearbox FMEA has been reconsidered here, and the relative 

importance of the risk factors were calculated in terms of IT2FNs by a modified 

IT2F-DEMATEL method. This IT2F-DEAMTEL has been modified to prevent 

the early information distortion while calculating the risk factors’ weights in terms 

of crisp numbers. Then for the risk ranking of failure modes, IT2F-MAIRCA, 

IT2F-MARCOS, and modified IT2F-TOPSIS have been proposed. After observing 

that each of these developed IT2F-based MCDM approaches produce different 

ranking results, the concept of half-quadratic minimization has been used to 

generate an aggregated ranking result, along with the consensus index and 

trust level. Further, it has been observed that in IT2F-domain the ranking 

stability of IT2F-MARICA is greater than IT2F-MARCOS, and modified 

IT2F-TOPSIS. A detailed discussion on this work can be found in Chapter 6. 

3. A CBR-based framework has been developed for the fault diagnosis of the identified case 

of gearboxes. This CBR-based framework has used the information of different HIs stored 

in the central database. Different types of HIs have been considered for accurate fault 

diagnosis, based on the generated symptom(s). Both event type and value type data have 

been considered. This proposed system has the potential to diagnose the fault with 

incomplete information, which is considered as an added advantage over other AI-

based approaches (i.e., ANN, SVM, ESs, etc.) present in the literature. Further, after 

diagnosing the fault, this system has also aided the maintenance engineers with the 

suggested maintenance actions. It has been observed that the developed CBR-system 

was able to diagnose the fault with 89.2% similarity. A detailed discussion on this work 

can be found in Chapter 7.  

4. A hybrid AI-based framework, integrating the concept of ESs and CBR has been proposed 

and developed for optimal sustainable maintenance strategy selection of the gearboxes. 

Before doing that, the criteria for this selection process has been selected from TBL of 

sustainability. The desired nature of these criteria has also been highlighted in Chapter 8. 

Due to the unavailability of real time data, this framework has considered two 

hypothetical examples, and it has been observed that the developed framework was 

able to approximately select the optimal sustainability-based maintenance strategy 

for the problem scenarios.  
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9.2. Future Scope of Research  

The research work carried out in and presented in this thesis can be further extended which are 

likely to be carried out in the near future. The possible future scopes are:  

• During addressing the drawbacks of traditional RPN-based FMEA approach the following 

improvements can be done: 

▪ To extend the developed frameworks into other uncertainty handling tools like 

spherical fuzzy sets, Pythagorean fuzzy sets, Fermatean fuzzy sets, etc. may be 

explored. 

▪ In the developed frameworks, participations of only three experts have been 

considered. However, if a lot more experts participate, which may be 40 or 50 in 

number, AI-based approaches can be integrated for clustering purposes. Further, 

while considering these large group of experts, a better consensus reaching model 

can be developed. 

▪ A more developed FMEA approach can consider simultaneously the relative 

importance among the failure modes as well as the risk factors.  

▪ Further investigations are needed to decouple the risk factors from the TBL of 

sustainability. It is worth mentioning that in Industry 4.0, sustainable 

manufacturing is a key concept to achieve sustainable development goal (SDG) by 

2030.   

▪ The outputs of FMEA can be further used in other analysis, like reliability, 

availability analysis and maintenance modelling. 

• From the CBR-based fault diagnosis approach the following future research areas are 

possible:  

▪ Although the developed CBR system has dealt with an exhaustive case-base, now-

a-days, in the era of big data, industries are compelled to deal with a stream and 

variety of data. Data from other fault analysis techniques (e.g., image processing 

in thermography, music analysis, etc.) can be incorporated. 
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▪ Thus, this framework can be extended into the big-data environment.  

▪ The revision and retention capability of the CBR system has not been considered 

during the development of the framework, which can be incorporated by future 

researchers, exploring other tools.  

▪ When the number of cases increases in the case-base, it has been observed that in 

many cases, the best matched case can be overlooked due to poor indexing 

structure. Thus, other indexing structure, apart from the considered ‘flat-memory’ 

can be explored.  

▪ This system can be extended for other similar types of decision-making problems, 

such as supplier selection, personnel selection, etc.  

• From the optimal sustainable maintenance strategy selection work, the following future 

research work can be a possibility:  

▪ In this thesis, only a few of the parameters from TBL of sustainability have been 

identified for the optimal sustainable maintenance strategy selection. However, the 

research is still needed to incorporate other parameters to be incorporated in the 

framework. 

▪ CBR can be combined with other AI-based approaches, like ANN, SVM for better 

classification accuracy.  

Last but not the least, all these decision-making frameworks can be integrated with the 

CMMS for ease in strategy making.  

---------------------- 
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