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Abstract: Neurocognitive deficits have been consistently associated with a wide range of psy-
chopathology and are proposed to not only be a consequence of the development of psychopathology
but also directly involved in its aetiology. However, there is no clear understanding of what neurocog-
nitive processes are particularly important to mental health. In this paper, we explored the association
between neurocognitive abilities and the factors derived from structural models of psychopathol-
ogy. Four hundred participants from a representative community sample completed measures of
symptomology and substance use, as well as 8 neurocognitive tasks. We found a correlated-factors
model, with internalising and externalising as the higher-order factors, and a single-factor model
with only the p-factor, to be good fits for the data. Tasks that measured the speed of processing
were significantly associated with internalising, externalising, and the p-factor, and accounted for
significant amounts of unique variance in the factors after accounting for the common variance of the
other tasks. Tasks that measured working memory, shifting, and inhibition were not significantly
associated with psychopathology factors. Our findings suggest that neurocognitive abilities may not
be differentially associated with psychopathology factors, but that speed of processing is a common
correlate of the factors. We emphasise the importance of examining neurocognitive abilities and
psychopathology on the individual level.

Keywords: p-factor; internalising; externalising; psychopathology; neurocognition; executive
functioning; working memory; shifting; inhibition; speed of processing

1. Introduction

Neurocognitive abilities refer to cognitive capabilities grounded in particular neurolog-
ical properties or systems, and include both higher and lower level cognitive processes [1].
Higher level neurocognitive processes include executive functioning that is responsible for the
control of mental abilities, including the control of working memory (i.e., updating), attention
(i.e., shifting), and predominant responses (i.e., inhibition) [2]. While lower level neurocognitive
processes, such as general information processing (i.e., speed of processing), are more basic
to the system [3]. The proper functioning of neurocognitive abilities, at both higher and
lower levels, govern the ability to conduct goal-oriented activity, respond to environmental
demands in a timely and appropriate way, and are fundamental to the successful completion
of many everyday activities [1]. It is therefore understandable that deficits in neurocognitive
performance may result in adverse cognitive and behavioural experiences.

Neurocognitive deficits have been consistently associated with a wide range of psy-
chopathological disorders [4]. Neurocognitive deficits have been proposed to not only
be a consequence of the development of psychopathology but also directly involved in
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the aetiology of psychopathology, e.g., [5,6]. It has been suggested that humans are often
exposed to novel and conflicting information. To effectively deal with this information,
humans need to stop, reflect, and choose the most appropriate behaviours [6–8]. Romer
and Pizzagalli [6], Cunningham, Zelazo, Packer, and Van Bavel [7], and Zelazo [8], sug-
gested that the reflection and selection actions require proper neurocognitive performance,
including the updating of the contents of working memory, switching between mental sets,
inhibiting a predominant response, and effectively processing information. Romer and Pizza-
galli [6] also proposed that deficits in neurocognitive processes may therefore result in the
selection of inappropriate behaviours, poor adaptive ability, and poor conflict resolution,
all of which are features of many psychopathologies. Further evidence for neurocognitive
abilities being an aeitological feature of psychopathology comes from recent longitudinal
research that has found that executive functioning deficits were typically present prior
to the development of psychopathology in adolescence, and that deficits in executive
functioning predicted change in psychopathological symptoms over the following two
years [6]. Given the proposed importance of neurocognitive abilities in psychopathology,
there have been vast amounts of research attempting to uncover what particular neurocog-
nitive abilities contribute to each specific diagnosis. This line of research has had little
success. Even though neurocognitive deficits are common in most disorders, the nature of
neurocognitive deficits within disorders is extensively heterogeneous, see [9]. For example,
Martino et al. [10] and Raffard and Bayard [11] found extensively heterogeneous combi-
nations of neurocognitive deficits within their samples of people diagnosed with bipolar
disorder and schizophrenia, respectively. Furthermore, even when comparing different
disorders, particular neurocognitive deficits cannot differentiate diagnoses [12].

One possible reason for the extensive heterogeneity of the associations between neurocog-
nitive performance and psychopathology is the predominant use of the traditional nosological
approach to diagnosis [13]. Traditional nosological approaches to the diagnosis of mental dis-
order, which use tools such as the DSM, have resulted in high levels of comorbidity and poor
diagnostic stability, e.g., [14,15], making the study of any single psychopathological disorder
difficult [13]. Further, the overlapping symptoms present between different disorders, as well
as the ability for two people to be diagnosed with the same disorder and having no, or very
few, common symptoms [16,17], means that finding particular collections of neurocognitive
deficits fundamental to any particular disorder is unlikely [9,13,18].

In recent years, to mitigate the issues of comorbidity and diagnostic stability of the
traditional nosological approach, there have been calls to move towards dimensional ap-
proaches to describing and explaining psychopathology [19,20]. Rather than classifying
collections of symptoms into categories known as diagnoses, dimensional approaches typi-
cally assess symptoms and organise them into dimensional structures of psychopathology
using factor analytic approaches [19,20]. Many such structural models of psychopathology
exist. Two structures, the correlated factors model and the bifactor model, have gained
the most interest within the literature. The correlated factors model contains a range of
symptoms, serving as indicators, and a smaller collection of specific factors (such as in-
ternalising, externalising, and thought disorder) that account for the common variance
of closely related symptoms. The bifactor model contains the same fundamental compo-
nents as the correlated factors model but also incorporates a single higher-order general
factor (called the p-factor) that has been claimed to represent general psychopathology or
the propensity toward all psychopathological symptoms [21]. Other common structures
include the single-factor model that incorporates the symptom indicators and the p-factor,
but no specific factors [21].

As structural models of psychopathology do not create diagnostic categories and
instead measure dimensionally, it has been suggested that structural models will improve
our ability to find more reliable patterns of risk factors and outcomes associated with
psychopathology [13,18,20]. While it is important to note that there is a lack of consensus
on the substantive interpretation of the factors of psychopathology, in particular the p-factor,
and their applications to subgroups of a population, for further detail see [18,22,23], struc-
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tural models of psychopathology offer a useful framework for examining the associations
between neurocognitive abilities and psychopathology [13]. Previously, we suggested that
it may be possible to find, at a population level, patterns of association between neurocog-
nition and the factors of psychopathology that help explain the differentiation between
the factors. That is, factors from structural models such as internalising, externalising,
and thought disorder might have discrete patterns of neurocognitive ability associations
that differentiate the factors [13]. This finding may provide insight into what neurocog-
nitive abilities are particularly salient for the common variance of collections of different
types of symptoms. This knowledge may then inform the starting point for assessment
and treatment decisions on the individual level and direct longitudinal work exploring
the specific neurocognitive risk factors for collections of psychopathological symptoms.
However, there has been a lack of detailed examination of the associations between specific
neurocognitive processes and psychopathology factors from different types of structural
models. Previous studies of the association between neurocognitive abilities and structural
models of psychopathology have typically only reported the bivariate correlations between
the factors of psychopathology and neurocognitive tasks and composite scores [21] or used
a single neurocognitive ability score [24]. Further, other work has modelled neurocognitive
abilities as a factor within the structural models of psychopathology [18,25]. Modelling neu-
rocognition within models of psychopathology, while having several unique strengths [18],
does not allow for the exploration of the patterns of association between discreet neurocog-
nitive abilities and the different factors of psychopathology. For example, we called for
the use of S-1 bifactor models, with neurocognitive abilities modelled as the general factor,
to explore neurocognitive abilities associated with psychopathology [18]. We describe
how S-1 bifactor models, with neurocognition modelled as the general factor, offer the
unique opportunity of mitigating the issue of the unknown substantive meaning of the
p-factor. However, we also described how the S-1 bifactor approach is limited as neurocog-
nitive abilities may only be explored as a single factor, and therefore the sole use of this
approach means it is not possible to examine the associations of particular neurocognitive
abilities with each of the factors of psychopathology [18], an area that is particularly lacking
within the literature. Due to this limitation of the S-1 approach, and the complementary
information that may be obtained, we suggested that using other modelling approaches
(e.g., the correlated factors model) to examine neurocognition in psychopathology remains
important. Ultimately, to provide a starting point for assessment and treatment decisions,
as well as to inform the future assessment of neurocognitive risk factors of psychopathology,
it is important to gain a detailed understanding of the specific relations between various
neurocognitive abilities and the different factors of psychopathology found in the literature.
Yet, to date, the degree to which psychopathology factors may differ regarding patterns of
neurocognitive ability associations is unknown.

In this paper, our first aim was to (1) develop and test the fit of three of the most promi-
nent models of psychopathology within a community sample; (a) the correlated factors
model, (b) the bifactor model, and (c) the single factor model, using dimensional symptom
measures. Our second aim (2) was to explore the degree to which tasks measuring four
prominent neurocognitive components, (a) working memory, (b) shifting, (c) inhibition,
and (d) speed of processing, are associated with, and can account for, the factors of psy-
chopathology regarding each model.

2. Methods
2.1. Participants

Through Prolific, we collected data online from a representative community sample
(based on simplified census data on age, gender, and ethnicity) of 425 participants in the
USA. Exclusion criteria were (1) any condition or injury that could impact their motor
movements, thereby interfering with the participants’ ability to complete the cognitive
tasks, and (2) colour blindness or colour perception issues. This study was approved by
the Curtin University Human Research Ethics Committee (HRE2021-0105).
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2.2. Procedure

After providing consent, participants provided demographic information (i.e., age, gen-
der), psychiatric history information (i.e., diagnosis, psychiatric hospital admissions), and in-
formation of any psychotropic medication use. Participants then completed measures of
substance use (ASSIST V3.1) [26], psychiatric symptoms (the Brief Symptom Inventory) [27],
and completed eight neurocognitive tasks. Participants were instructed to complete the survey
and tasks in an environment as free from distractions as possible. Online neurocognitive data
collection does not allow for controlling the participants’ testing environment or hardware.
However, a myriad of research supports the validity and quality of online, crowd-sourced,
neurocognitive data and has found participants’ performance comparable to laboratory-
based studies [28–31]. Furthermore, Prolific recently has been shown to obtain behavioural
task data practically indistinguishable from in-person lab testing, far outperforming similar
crowd-sourcing platforms concerning quality and comparability [32].

2.3. Materials
2.3.1. Substance Use and Symptomology

To measure substance use and personal, social, and legal issues related to that use,
we used the Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST)
V3.1 [26]. The ASSIST assesses the use of tobacco products, alcoholic beverages, cannabis,
cocaine, amphetamine-type stimulants, inhalants, sedatives or sleeping pills, hallucinogens,
opioids, and other substances. Each participant indicates frequency of use, desire or urge
to use, and frequency of health, social, legal, and financial issues related to use for each sub-
stance used within the last three months. The ASSIST generates a substance involvement
score for each substance assessed. The ASSIST has shown strong reliability and validity in
general community samples [26].

Psychiatric symptoms were measured via the Brief Symptom Inventory-53 (BSI) [27].
The BSI is a psychiatric symptom measure that assesses symptoms over the past seven
days, and is valid and reliable in both clinical and community samples [33]. The measure
is comprised of 53-items, measured on a five-point Likert-type scale, that jointly assess
nine symptom dimensions based on the original factor structure. The nine symptom
dimensions are somatisation, obsession-compulsion, interpersonal sensitivity, depression,
anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism.

2.3.2. Neurocognitive Abilities

Participants completed eight neurocognitive tasks presented in randomised order.
The performance metric for each task that involved both speed of response and accuracy
was calculated using the Rate-correct Score (RCS) method [34], in which the number of
correct responses is divided by total reaction time (in milliseconds) to provide a metric
number of correct responses per millisecond. For the tasks that did not require a speed of
response aspect, we used only a metric of accuracy. All tasks were developed in JavaScript.
The details of each task are provided below.

Working Memory

Working memory was assessed via (1) a digit span task, and (2) a visual working
memory task after the visual array task described in Cowan et al. [35]. In the digit span
task, participants were presented with number sequences, in which each number remained
on screen for 1000 ms. Following the presentation of the last number in each sequence,
participants were prompted to enter the previously shown sequence, in order, using an
on-screen keypad and their PC mouse. The task was designed so that trials increased in
difficulty, starting with a 3-digit sequence and progressing to the most challenging 15-digit
sequence. Sequences across trials either increased by one digit for each correct response
or decreased in length by one digit for every two consecutive errors made. Participants
completed 12 trials of the digit span task, with a maximum digit span possible of 15.
The outcome variable used was the maximum digit span across the 12 trials.
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In the visual memory task, participants completed 84 trials showing sets of either
4, 6, 8, or 10 coloured dots. The initial presentation of dots remained on-screen for 300
ms, followed by a brief interstimulus interval of 1000 ms before a second set of dots was
presented. Participants were instructed to indicate whether a circled dot in the second
presentation was different in colour to the initial presentation. Performance was assessed
via accuracy on the number of correct responses across all 84 trials.

Shifting

Shifting was assessed using a Shape-Number switching task and the Inferring Rele-
vance shifting task [36]. The Shape-Number task was adapted from the Letter-Number
task [37]. It consisted of participants completing 96 trials in which, following familiarization
blocks, they were required to respond to either the number (i.e., 2 vs. 3 dots) or shape
(i.e., square or diamond) as stimuli were presented in a 2 × 2 grid. Stimuli appeared
sequentially and in a clockwise pattern, and participants used either the Z or M key on
their keyboard to respond. For stimuli that appeared in the top row, participants responded
based on their shape. When stimuli appeared on the bottom row, participants responded
based on the number of dots. Our outcome variable for the Shape-Number task was the
number of correct responses divided by total reaction time. Our outcome variable for the
Shape-Number task was the number of correct responses divided by total reaction time.

The Inferring Relevance task [38] was derived from the Wisconsin Card Sorting task [39]
and the Intra-Dimensional/Extra-Dimensional Shifts task [40]. This task required that partic-
ipants use their PC mouse to select one of three different on-screen stimuli, depending on
what they believed to be the dimension-to-match, in a given trial. Participants completed
200 trials whereby the dimension-to-match was either ‘shape’ (i.e., squares, triangles, and cir-
cles), ‘colour’ (i.e., shapes outlines were either red, green, or yellow), or ‘pattern’ (i.e., within
each shape was either grid lines, dots, or waves). The correct dimension-to-match changed
after 15–25 consecutive trials of one dimension. As per the WCST, correctly identifying the
dimension-to-match occurs initially via trial and error and feedback presentation. However,
to increase task difficulty, participants’ certainty of response was interfered with by providing
incorrect feedback on 25% of trials [38]. The primary outcome measure was the number of
correct responses divided by total reaction time.

Inhibition

Inhibition was assessed via computerized versions of (1) the Stroop Task [41] and (2) the
Go/NoGo task [42]. The Stroop task comprised a total of 48 trials, with 16 trials each for
neutral (four “X”s appeared in one of three colours: blue, red, or green), congruent (words
“BLUE”, “RED”, or “GREEN” appeared in colours that matched the meaning of the word
presented; i.e., the word “BLUE” appeared in the colour blue), and incongruent (words
“BLUE”, “RED”, or “GREEN” appeared in colours that did not match the meaning of the
word presented; i.e., the word “RED” appeared in the colour green) conditions. In all trials,
participants were required to indicate the colour of letters presented on screen, using their
mouse to select one of three corresponding buttons on-screen (“Blue”, “Red”, or “Green”).
Participants were asked to select, as quickly as possible, the box that corresponded to the
colour of the text presented. Therefore, in the incongruent condition, participants had to
inhibit selecting the box that corresponded to the text rather than the colour [41]. The primary
outcome variable was the number of correct responses for congruent stimuli divided by the
total reaction time for those stimuli, subtracted from the number of correct responses for
incongruent stimuli divided by the total reaction time for those stimuli.

The Go/NoGo task [42] used consisted of 120 trials. One of two stimuli, either an “M”
or a “W”, was presented on-screen, and participants were instructed to press the space bar
as quickly as possible when presented with the “M” (the “Go” stimuli) but not to press
the space bar when presented with the “W” (the “NoGo” stimuli). Out of the 120 stimuli,
the “Go” stimuli accounted for 80%, while the “NoGo” accounted for 20%. This weighting
of “Go and “NoGo” stimuli has been shown to provide adequate variability of errors [38].
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Stimuli were presented between 1000 ms and 1550 ms apart, and participants were given
1200 ms to respond. As 80% of the stimuli were “Go” stimuli, when presented with a
“NoGo” stimuli, participants were required to actively inhibit the predominant response of
pressing the space bar. Our primary outcome variable of the Go/NoGo was the number of
correct NoGo omissions divided by the total reaction time of responses.

Speed of Processing

Speed of processing was assessed via two tasks, (1) a simple reaction time task and
(2) the Inspection Time (IT) task [43]. For the simple reaction time task, participants were
instructed to respond to the on-screen presentation of a blue “circle” by pressing the space
bar on their keyboard as quickly as possible. Participants completed a total of 40 trials,
with each trial separated by an interval of between 1000 ms and 1750 ms (this was to avoid
participants preempting responses). The outcome variable for the simple reaction time task
was the number of correct responses divided by the total reaction time.

On the IT task, participants were presented with images depicting an alien with
two antennae [43]. Four variations of this stimulus were used, showing (1) both short
antennae, (2) both long antennae, (3) the left antennae being longer than the right antennae,
and (4) the right antennae being longer than the left. The exposure duration of stimuli was
manipulated so that stimuli were tested at 4 ms increments, between 6 ms and 62 ms a total
of 4 times each, thus comprising a total of 60 trials. After each presentation, a mask was
presented on screen, and participants were required to indicate whether the previously
shown antennae were the same (via pressing the “Z” key) or were different (via pressing
“M”) in length. Our outcome variable was a + b where: a = the lowest exposure duration for
two consecutive blocks where accuracy was at 75% or higher. And b = a growing sum of
exposure duration blocks with greater than 75% accuracy, divided by the number of blocks
over 75%. Lower scores, therefore, reflected better performance.

2.4. Analysis

The analysis of this data occurred in multiple steps. Step one was to confirm the
factor structure of the Brief Symptom Inventory (BSI). We used confirmatory factor analysis
(CFA) to test two structures of the BSI from the literature. (1) the original Derogatis and
Melisaratos [27] nine-factor/49-item structure, and (2) a more recent six-factor, 40-item
structure found by Schwannauer and Chetwynd [44]. Step two of the analysis was used
to create the subscale scores for the choice of BSI factor structure, and to examine the
bivariate correlations between the demographic, BSI, and ASSIST variables. Step two
of the analysis used exploratory factor analysis (EFA), among the BSI subscales and the
ASSIST variables, to support the development of the models of psychopathology. Step three
consisted of choosing the specific psychopathology factors by devising correlated factors
models based on the EFA and conceptual interpretation and using CFA to test the models’
fit. In step four, the four structural models of neurocognition were tested; a correlated
factors model, two versions of a bifactor model, and a single-factor model. Finally, step five
consisted of assessing partial bivariate correlations (accounting for covariates) between the
neurocognition and the factors of psychopathology, and a multivariate multiple regression
analysis to examine the degree to which the participants’ performance on the neurocognitive
tasks could account for the factors of psychopathology after accounting for covariates and
the common variance of the tasks.

For our CFIs, we applied less stringent rules of thumb to indicate a good fitting model,
and used these rules in combination with conceptual interpretation when choosing a model
from alternatives. This approach was taken due to a smaller sample size with an initial
large number of observed variables in [45]: and Greene et al. [46,47] emphasises the use
of conceptual interpretation and the minimisation of the reliance on fit measures when
choosing models. For our CFAs, an RMSEA of <0.05 indicated a good fit, <0.08 indicated
a reasonably good fit, and <0.10 indicated a mediocre fit [48]. An SRMR of <0.09 indi-
cated a good fit [49], while the earlier convention of the TFI and the CFI of =>0.9 was
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used to indicate a good fit, rather than using the later convention of =>0.95 due to the
tendency of a =>0.95 cut off to over reject true-population models with smaller sample
sizes (<N = 500; [49]). All factor loadings were required to be significant at the alpha level
of <0.05. For all models, the MLR estimator with robust test statistics was used.

Regarding the EFA, an oblique (GeominQ) rotation was used, with an ML estima-
tor, and a model was chosen from alternatives based on information derived from the
EFAs, as well as the subsequent CFAs, in combination with theoretical and conceptual
interpretation. Therefore, models were chosen based upon an exploratory-confirmatory
continuum [47], incorporating the importance of conceptual interpretation of the models.

3. Results

After cleaning the data, 25 of the 425 participants were removed due to incomplete
data for one or more of the neurocognitive tasks, leaving a final sample of N = 400. The de-
mographic and clinical variables for our final sample can be found in Table 1.

Table 1. Participant Characteristics.

Variable Mean
(SD/%)/Count Min Max

Age 44.47 (16.35) 18 83

Gender
Male 194 (48.5%) - -

Female 206 (51.5%) - -
Diagnosis (Yes/No)

Yes 114 (28.5%) - -
No 286 (71.5%) - -

Diagnoses a

Depression 66 (16.5%) - -
Generalised Anxiety 57 (14.2%) - -

Agoraphobia 2 (0.5%) - -
Social Anxiety 7 (1.8%) - -
Panic Disorder 4 (1.0%) - -
Schizoaffective 1 (0.3%) - -

Psychosis 2 (0.5%) - -
Eating Disorder 1 (0.3%) - -

Cyclothymia 1 (0.3%) - -
Bipolar 17 (4.3%) - -
OCD 3 (0.8%) - -

Impulse Control 1 (0.3%) - -
BPD 3 (0.8%) - -

PTSD 19 (4.8%) - -
Substance Use 3 (0.8%) - -

Trichotillomania 1 (0.3%) - -

Year of First Diagnosis 2007.69 (10.71) 1980 2021

Admitted to a Mental Health
Facility (Yes/No)

Yes 26 (6.5%) - -
No 374 (93.5%) -

Year of First Admission 2003.31 (13.14) 1980 2020

Using Psychotropic Medication
(Yes/No)

Yes 60 (15.0%) - -
No 340 (85.0%) - -

a counts add to over the total sample due to comorbid diagnoses. OCD = Obsessive-Compulsive Disorder.
BPD = Borderline Personality Disorder. PTSD = Post-Traumatic Stress Disorder.
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3.1. Step-One

First, we confirmed the structure of the BSI by testing the original nine-factor
model [27] and the newer six-factor model [44]. The original, nine-factor, BSI structure
did not fit the data well, with the CFI and the TLI not meeting the criteria for a good fit
(χ2 (1091, N = 400) = 2350.07, CFI = 0.867, TLI = 0.857, SRMR = 0.064, RMSEA = 0.066, 90%
CI = [0.051, 0.056]), and had multiple non-positive definite identification issues. This sug-
gested that there were multiple redundant items within the factor structure. However,
the Schwannauer and Chetwynd [44] six-factor structure provided a “reasonably good fit”,
with regards to RMSEA, a “good fit” regarding the SRMR, and bordering on a good fit for
the TFI and the CFI (χ2 (725, N = 400) = 1518.41, CFI = 0.891, TLI = 0.885, SRMR = 0.058,
RMSEA = 0.064, 90% CI = [0.049, 0.055]). The six-factor structure also had no identification
issues and very good-to-excellent internal consistency (Cronbach’s Alpha’s ranging from
0.858 to 0.940). Therefore, we concluded that, overall, the six-factor structure provided an
adequate fit for the data while offering clearly conceptually interpretable factors. The six-
factors, with names devised from examining the contents of each factor, their associated
BSI item numbers, the original factor they were placed within the nine-factor solution,
and their Cronbach’s Alpha’s, can be found in Table 2. Although the factor named “mental
fog” contained only items from the BSI aimed at measuring distress related to obsessive-
compulsive symptoms, it was named as such due to the subset of items retained reflecting
perceived mental performance in daily life, just one aspect of the obsessive-compulsive
phenotype. Example items included “Having to check and double-check what you do” and
“Your mind going blank” [27].

Table 2. The Six-Factor Model.

Factor Name Item Numbers Original Factor Cronbach’s Alpha

Depression 0.940
17 Depression
18 Depression
16 Depression
14 Psychoticism
35 Depression
50 Depression
44 Anxiety

Agoraphobia 0.865
8 Phobic Anxiety
43 Phobic Anxiety
28 Phobic Anxiety
31 Phobic Anxiety
45 Anxiety

Hostility 0.832
13 Hostility
46 Hostility
41 Hostility
40 Hostility
6 Hostility

Mental Fog 0.909
36 Obsessive-Compulsive
5 Obsessive-Compulsive
26 Obsessive-Compulsive
32 Obsessive-Compulsive
27 Obsessive-Compulsive
15 Obsessive-Compulsive
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Table 2. Cont.

Factor Name Item Numbers Original Factor Cronbach’s Alpha

Interpersonal
Anxiety 0.904

21 Interpersonal Sensitivity
22 Interpersonal Sensitivity
51 Paranoid Ideation
20 Interpersonal Sensitivity
42 Interpersonal Sensitivity
48 Somatisation
24 Paranoid Ideation
4 Paranoid Ideation
10 Paranoid Ideation

Somatisation 0.858
7 Somatisation
30 Somatisation
33 Somatisation
29 Somatisation
23 Somatisation
2 Somatisation
37 Somatisation
1 Anxiety

3.2. Step-Two

Following the choice of the six-factor BSI solution, scores for each of the six factors
were created from the relevant BSI items using the original scoring procedure. An “other
substances” ASSIST variable was also created by adding together scores from the cocaine,
amphetamine, inhalants, sedatives, and hallucinogens categories, as there was little vari-
ation within these substances. The combination of less commonly used substances is
standard amongst the literature, e.g., [21]. The bivariate associations between the six BSI
and the four ASSIST variables were explored. This was done to test for the appropriateness
of using each BSI and ASSIST variable in developing our models of psychopathology.
The bivariate correlations can be found in Table 3. All BSI and ASSIST variables had
significant positive correlations, except for tobacco, which was only significantly associated
with one of the six BSI variables (Somatisation). As the development of structural models
of psychopathology is grounded in significant positive associations between the variables,
tobacco use was not included in the development of the models of psychopathology or any
other subsequent analyses.

Table 3. Symptom and Substance Bivariate Correlations.

Dep Agor Host Fog Inter. Anx Somat Tob Alc Cann Other

Depression 1 0.627 ** 0.620 ** 0.761 ** 0.808 ** 0.690 ** 0.040 0.132 ** 0.262 ** 0.185 **
Agoraphobia 0.627 ** 1 0.534 ** 0.621 ** 0.667 ** 0.718 ** 0.070 0.133 ** 0.244 ** 0.211 **

Hostility 0.620 ** 0.534 ** 1 0.668 ** 0.698 ** 0.655 ** 0.022 0.206 ** 0.193 ** 0.227 **
Mental Fog 0.761 ** 0.621 ** 0.668 ** 1 0.765 ** 0.745 ** 0.070 0.138 ** 0.275 ** 0.223 **

Inter. Anxiety 0.808 ** 0.667** 0.698 ** 0.765 ** 1 0.723 ** 0.076 0.150 ** 00.257 ** 0.233 **
Somatisation 0.690 ** 0.718 ** 0.655 ** 0.745 ** 0.723 ** 1 0.124 * 0.195 ** 0.302 ** 0.262 **

Tobacco 0.040 0.070 0.022 0.070 0.076 0.124 * 1 0.303 ** 0.257 ** 0.279 **
Alcohol 0.132 ** 0.133 ** 0.206 ** 0.138 ** 00.150 ** 0.195 ** 0.303 ** 1 0.279 ** 0.201 **

Cannabis 0.262 ** 0.244 ** 0.193 ** 0.275 ** 0.257 ** 0.302 ** 0.257 ** 0.279 ** 1 0.349 **
Other Drugs 0.185 ** 0.211 ** 0.227 ** 0.223 ** 0.233 ** 0.262 ** 0.279 ** 0.201 ** 0.349 ** 1

*. Correlation is significant at the 0.05 level (two-tailed). **. Correlation is significant at the 0.01 level (two-tailed).
Dep = Depression. Agor = Agoraphobia. Host = Hostility. Fog = Mental Fog. Inter. Anx = Interpersonal Anxiety.
Somat = Somatisation. Tob = Tobacco. Alc = Alcohol. Cann = Cannabis. Other = Other Substances

3.3. Step-Three

In step three, we used EFA to inform the development of the specific, second-order
factors of psychopathology. Given we had nine observed variables, six BSI variables,
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and three ASSIST variables, we started by examining a four-factor structure, which is the
largest structure with the possibility of at least two observed variables loading onto each
factor. The EFAs can be found in table four. For the four-factor EFA, a factor emerged
consisting of depression, mental fog, and interpersonal anxiety. This factor also showed a
cross-loading between factor two for agoraphobia. Furthermore, a second factor emerged
consisting of the cross-loaded agoraphobia variable and somatisation, and a third factor
consisting of a single loading > 0.3 in hostility. Finally, a fourth factor emerged consisting
of the three substance use variables. Next, we assessed a 3-factor structure. The three-factor
structure revealed similar results when compared to the four-factor structure. A factor still
emerged consisting of depression, hostility, mental fog, and interpersonal anxiety, but now
also included hostility, which was moved from its own factor. Factor two emerged still
consisting of somatisation and the agoraphobia cross-loading with factor 1. The third
factor contained the three substance use variables. Finally, we tested a two-factor solution.
The two-factor solution consisted of a factor accounting for the BSI items and for the ASSIST
items. The results of the EFAs are presented in Table 4.

Table 4. EFA Factor Loadings.

Number of
Factors Item Factor 1 Factor 2 Factor 3 Factor 4

4
Depression 0.936

Agoraphobia 0.398 0.418
Hostility 0.960

Mental Fog 0.617
Interpersonal Anxiety 0.797

Somatisation 0.975
Alcohol 0.376

Cannabis 0.712
Other Substances 0.450

3
Depression 0.903 -

Agoraphobia 0.396 0.400 -
Hostility 0.604 -

Mental Fog 0.699 -
Interpersonal Anxiety 0.931 -

Somatisation 0.981 -
Alcohol 0.401 -

Cannabis 0.685 -
Other Substances 0.489 -

2
Depression 0.900 - -

Agoraphobia 0.711 - -
Hostility 0.739 - -

Mental Fog 0.862 - -
Interpersonal Anxiety 0.920 - -

Somatisation 0.772 - -
Alcohol 0.429 - -

Cannabis 0.595 - -
Other Substances 0.524 - -

Factor loadings < 0.3 are hidden.

The three and two-factor models provided the most parsimonious solutions, and were
chosen to be further explored using CFAs. First, we tested two different three-factor models
and two different two-factor models. The first three-factor model tested (a), following the
exact structure as the three-factor EFA, and loading agoraphobia onto factor two, due to its
slightly stronger loading, and its conceptual relationship to somatisation. The second three-
factor CFA tested (b) was the same as the first. However, hostility was loaded onto factor
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three, with the substance use variables. All of the three factors were allowed to correlate.
The first two-factor solution tested (c) was derived directly from the two-factor EFA, but the
second two-factor model tested (d), like the three-factor model (b), had hostility loaded on
as a factor with the substance use variables. We tested the alternative two and three-factor
models for two reasons; the four-factor solution showed hostility loading on a separate
factor, not on factor one, and hostility or conduct issues is primarily conceptualized with
substance use as an “externalising” factor within the literature, e.g., see [21]. Furthermore,
regarding the alternative two-factor solution, by having hostility loading onto a factor with
substance use, we tested a model with “Internalising” and “Externalising” factors. These
factors have been repeatedly validated and received a great amount of interest throughout
the literature [13,21,23,50,51]. For all models, the factors were allowed to correlate.

The two three-factor solutions showed to be a “reasonably good” and “mediocre”
fit, respectively. The first model (a) (χ2 (24, N = 400) = 34.00, CFI = 0.993, TLI = 0.989,
SRMR = 0.020, RMSEA = 0.032, 90% CI = [0.000, 0.052]), with hostility loaded onto factor
one provided a marginally better fit than the second model (b) (χ2 (24, N = 400) = 73.34,
CFI = 0.963, TLI = 0.945, SRMR = 0.057, RMSEA = 0.072, 90% CI = [0.057, 0.087]), with hos-
tility loaded onto factor three with the substance use variables.

Next, we tested the fit of the two variations of the two-factor model. The first two-
factor model tested (c), with hostility loading onto factor one, was a “reasonable” fit
for the data with regards to the RMSEA, and a good fit for the CFI, TLI, and SRMR
(χ2 (26, N = 400) = 96.73, CFI = 0.975, TLI = 0.966, SRMR = 0.027, RMSEA = 0.057, 90%
CI = [0.042, 0.073]). The alternative two-factor solution tested (d) was a “mediocre”-to-
“reasonable” fit for the data with regards to the RMSEA, and a good fit for the CFI,
TLI, and the SRMR (χ2 (26, N = 400) = 96.73, CFI = 0.942, TLI = 0.926, SRMR = 0.059,
RMSEA = 0.081, 90% CI = [0.068, 0.097]).

Given that all of the four CFAs tested provided a fit for the data, each model may
have been acceptable to select. However, given that a two-factor “Internalising” and
“Externalising” model fitted the data and that there is a large amount of conceptual and
empirical evidence supporting the use of these factors, we selected this model as our
correlated factors model [13,18,21,23,51].

Next, after developing the choice of the correlated-factors model, we tested the fit of
two different bifactor models. Each model tested consisted of the same observed variables
and the same specific factors (Internalising and Externalising) as in the correlated factors
model, but included a higher-order p-factor. Each of the nine observed variables loaded
onto the p-factor as well as either Internalising or Externalising. What differentiated the
models was whether the specific factors were allowed to correlate. In the first model
tested (a), the specific factors were not allowed to correlate, but in the second model (b),
the specific factors were allowed to correlate. We tested both of these versions of the bifactor
model as previous research has applied both types successfully [21,52]

The first bifactor model tested (a), without correlated specific factors fit the data well
(χ2 (18, N = 400) = 23.82, CFI = 0.996, TLI = 0.992, SRMR = 0.020, RMSEA = 0.029, 90%
CI = [0.000, 0.053]). However, none of the three observed variables retained significant
loadings on the Internalising specific factor, and hostility did not retain its significant
loading on the Externalising factor. Finally, there was also a Heywood case, an observed
variable with negative variance (somatisation). These findings are thought to be due to the
higher-order p-factor subsumed the Internalising specific factor, as well as the variance in
hostility accounted for by the Externalising factor. The second bifactor model tested (b),
that contained correlated specific factors, also fit the data well (χ2 (17, N = 400) = 21.18,
CFI = 0.997, TLI = 0.993, SRMR = 0.017, RMSEA = 0.025, 90% CI = [0.000, 0.051]). However,
the second model (b) shared many of the same issues as the first (a). For model two (b),
none of the observed variables retained significant loadings on Internalising. Hostility
also did not retain its significant loading on Externalising. Furthermore, somatisation was
also a Heywood case within this model. Overall, for both bifactor models, the p-factor
subsumes the Internalizing factor. A specific factor being subsumed is relatively common
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in bifactor models of psychopathology, and previous research has removed the factor
subsumed [21]. However, this is now known to be poor practice, as if the subsumed factor
is removed, the p-factor becomes defined by that removed factor, changing its interpretation,
see [18,53]. Therefore, the bifactor model is not appropriate to explore further within this
data. The results do, however, suggest a single-factor model may be a good fit for the data.

Lastly, we tested the fit of the single-factor model of psychopathology within our
sample. The single-factor model consists of the same nine observed variables used in
the other models, however, containing one higher-order p-factor and no specific factors.
The single factor provided a “mediocre”-to-“reasonably” good fit for with regards to the
RMSEA, and a good fit for the CFI, TLI, and SRMR (χ2 (27, N = 400) = 98.12, CFI = 0.946,
TLI = 0.928, SRMR = 0.062, RMSEA = 0.081, 90% CI = [0.067, 0.095]). All of the nine-
observed variables loaded significantly of the p-factor. Therefore, we decided to use the
(A) correlated factors model and (B) the single-factor model for our examination of the
utility of neurocognitive abilities in accounting for the factors of psychopathology. Figure 1
displays two final models.
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Figure 1. Final Structural Models of Psychopathology. Pictured is the Correlated Factors Model (A)
and Bifactor Model (B). DEP = Depression. AGOR = Agoraphobia, FOG = Mental Fog, IN-
TER ANXI = Interpersonal Anxiety. SOM = Somatisation, HOSTI = Hostility. ALC = Alcohol.
CANN = Cannabis. OS = Other Substances.

The factor loadings for both the final correlated factors model and the single-factor
model can be found in Table 5. As specified by Caspi et al. [21], we standardised the p-factor
scores to a mean of 100 and a standard deviation of 15. The internalising and externalising
factors were mildly-to-moderately correlated (r = 0.743), while the correlations between
the p-factor in the single factor model and specific factors in the correlated factors model
were strong (p and Internalising, r = 0.996; p and Externalising, r = 0.799). The p-factor and
Internalising correlated almost perfectly, indicating the p-factor in the single-factor model
largely represented Internalising symptoms.
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Table 5. CFA for the Final Two Models.

Model Factor Depr Agor Fog Int.
Anx. Soma Host Alc Cann Other Int~Ext

Correlated Factors 0.743 **
Internalising 0.862 0.750 0.867 0.896 0.842
Externalising 0.806 0.227 0.328 0.300

Single-Factor
p 0.861 0.750 0.867 0.896 0.842 0.758 0.192 0.316 0.272

** Correlation is significant at the 0.01 level (two-tailed). Depr = Depression. Agor = Agoraphobia. Fog = Mental
fog. Int. Anx. = Interpersonal Anxiety. Soma = Somatisation. Host = Hostility. Alc = Alcohol. Cann = Cannabis
Other = Other Substances. Int = Internalising. Ext = Externalising. ~ = correlation.

3.4. Step-Four

After The choice of structural models of psychopathology, we examined the fit of three
different structural models of neurocognition; (a) a correlated factors model, (b) a bifactor
model with correlated specific factors, (c) a bifactor model without correlated specific
factors, and (d) a single factor model. Figure 2 depicts the four models. Unlike our approach
to developing the models of psychopathology, we did not precede the confirmatory with
exploratory factor analyses. This is because, unlike the components from our measure of
psychopathology, we actively chose two specific tasks to measure each theoretically driven
neurocognitive component. Therefore, it would be inappropriate to conduct exploratory
factor analyses as any alternative structures would forgo the conceptual interpretation and
theoretical foundations of the neurocognitive components.
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Figure 2. Neurocognitive Structural Models Tested. The Correlated Factors Model (A), Correlated
Bifactors Model (B), Bifactor-Model (C), and Single-Factor Model (D) Tested. Rele = Inferring
Relevance task. WM = Working Memory. RT = Reaction Time. IT = Inspection Time.

All of the four tested models failed to converge. This may be expected based on
the generally low correlations amongst the neurocognitive components. These results
suggested it would be most appropriate to examine each neurocognitive test independently
within our remaining analyses. Descriptive statistics for the neurocognitive tests are
presented in Table 6.
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Table 6. Neurocognitive Task Descriptive Statistics.

Minimum Maximum Mean Std. Deviation

Digit Span 4 14 7.82 1.79
Visual WM 27 74 57.09 8.76

Inferring Relevance 0.0002761 0.0019141 0.0008937 0.0002978
Shape-Number 0.0000799 0.0016144 0.0006979 0.0002565

Stroop −0.0002305 0.0008982 0.0002402 0.0001444
Go/NoGo 0.0001582 0.0005083 0.0003417 0.0000592
Simple RT 0.0002084 0.0003973 0.0003921 0.0000206

IT 28.67 112.00 67.53 22.08

3.5. Step-Five

In Step Five we examined the partial (controlling for age and gender) correlations
between the neurocognitive tasks and internalising, externalising and the p-factor. We con-
trolled for age and gender as both demographic variables were significantly associated
with one or more of the factors of psychopathology. Higher age being associated with
lower internalising, externalising and p-factor scores (internalising, r = −0.422, p < 0.001;
externalising, r = −0.348, p < 0.001; p-factor, r = −0.424, p < 0.001), and females (males = 1,
females = 2) tended to have higher scores on internalising and the p-factor each factor
(internalising, r = 0.201, p < 0.001; externalising, r = 0.006, p = 0.910; p-factor, r = 0.182,
p < 0.001). Table 7 shows the bivariate correlations between the neurocognitive tasks and
the factors of psychopathology after accounting for age and gender.

Of the eight neurocognitive tasks, after accounting for age and gender, only the two
tasks designed to measure the speed of processing were significantly associated with one
or more of the factors of psychopathology. Specifically, performance on the simple reaction
time task was significantly negatively associated with internalising, externalising, and the
p-factor. This finding indicates that better performance on the simple reaction time task
is significantly associated with lower internalising and externalising symptoms, as well
as the p-factor score. The Inspection Time task was significantly positively associated
with internalising and the p-factor, indicating that better performance on the Inspection
Time task was associated with lower internalising symptoms and lower p-factor scores.
Combined, these results indicate that within our data, speed of processing is the primary
neurocognitive correlate with higher-order psychopathology.

Next, we used a multivariate multiple regression analysis to examine the degree to
which each neurocognitive task could account for unique variance in the psychopathology
factors, accounting for age and gender, as well as the common variance amongst the tasks.
The model accounted for a significant 23.8% of variance in internalising (F(10, 389) = 12.17,
p < 0.001, R2 = 0.238), a significant 15.6% of variance in externalising (F(10, 389) = 8.37,
p < 0.001, R2 = 0.156), and a significant 23.6% of variance in the p-factor (F(10, 389) = 12.05,
p < 0.001, R2 = 0.236). Table 8 provides the results of the regression analysis.

Regarding internalising, the simple reaction time task and the Inspection Time task
remained significant predictors after accounting for the variance of age and gender, as well
as the common variance of the neurocognitive tasks. Simple reaction time performance
uniquely accounted for 0.9%, and the inspection time task accounted for 0.8% of the variance
in internalising, respectively. This indicates that our tasks assessing the speed of processing
are not only significantly associated with internalising after accounting for age and gender
but can also account for a significant amount of unique variance in internalising after
accounting for age and gender in addition to the common variance from the neurocognitive
tasks. However, it is important to acknowledge that combined the unique variance in
internalising accounted for by the speed of processing tasks was just 1.7%.
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Table 7. Partial Bivariate Correlations Between Neurocognition and Psychopathology.

Control
Variables

Digit
Span

Vis
WM

Infer.
Rel. Shape-Num Stroop Go/No

Go Simple RT IT Int Ext p

Age & Gender

Digit Span 1.000 0.045 0.020 0.020 −0.020 0.050 0.060 −0.042 −0.060 0.038 −0.048
Visual WM 0.045 1.000 0.187 ** 0.160 ** 0.064 0.122 * 0.203 ** −0.051 −0.053 −0.066 −0.056
Infer. Rel. 0.020 0.187 ** 1.000 0.359 ** 0.177 ** 0.077 0.014 0.003 −0.016 −0.005 −0.015
Shape-Number 0.020 0.160 ** 0.359 ** 1.000 0.100 * 0.107 * 0.078 0.021 −0.016 0.010 −0.013
Stroop −0.020 0.064 0.177 ** 0.100 * 1.000 0.013 −0.017 −0.044 −0.032 0.031 −0.024
Go/NoGo 0.050 0.122 * 0.077 0.107 * 0.013 1.000 0.223 ** −0.048 −0.088 −0.061 −0.087
Simple RT 0.060 0.203 ** 0.014 0.078 −0.017 0.223 ** 1.000 −0.023 −0.130 ** −0.226 ** −0.148 **
IT −0.042 −0.051 0.003 0.021 −0.044 −0.048 −0.023 1.000 0.112 * 0.089 0.113 *
Internalising −0.060 −0.053 −0.016 −0.016 −0.032 −0.088 −0.130 ** 0.112 * 1.000 0.719 ** 0.995 **
Externalising 0.038 −0.066 −0.005 0.010 0.031 −0.061 −0.226 ** 0.089 0.719 ** 1.000 0.782 **
p-Factor −0.048 −0.056 −0.015 −0.013 −0.024 −0.087 −0.148 ** 0.113 * 0.995 ** 0.782 ** 1.000

**. Correlation is significant at the 0.01 level (two-tailed). *. Correlation is significant at the 0.05 level (two-tailed). Vis WM = Visual Working Memory. Infer. Rel. = Inferring Relevance.
Shape-Num = Shape-Number RT = Reaction Time. IT = Inspection Time. Int = Internalising. Ext = Externalising. p = p-factor.

Table 8. Multivariate Multiple Regression Analysis.

Predictors
Internalising Externalising p-Factor

B β p Partial Sr 2 B β p Partial Sr 2 B β p Partial Sr 2

Age −0.027 −0.433 <0.001 ** −0.404 0.148 −0.026 −0.346 <0.001 ** −0.321 0.095 −0.398 −0.434 <0.001 ** −0.404 0.149
Gender 0.360 0.174 <0.001 ** 0.188 0.028 0.007 0.003 0.951 0.003 <0.001 4.68 0.156 0.001 ** 0.170 0.023
Digit Span −0.024 −0.041 0.360 −0.046 0.002 0.036 0.054 0.249 0.058 0.003 −0.251 −0.030 0.505 −0.034 0.001
Vis WM −0.002 −0.013 0.783 −0.014 0.001 −0.003 −0.022 0.669 −0.022 <0.001 −0.026 −0.015 0.758 −0.016 <0.001
Infer. Rel. 13.03 0.003 0.950 0.003 <0.001 149.99 0.032 0.555 0.030 0.001 415.57 0.007 0.891 0.006 <0.001
Shape-
Num −9.37 −0.003 0.958 −0.003 <0.001 −61.02 −0.015 0.778 −0.014 <0.001 −214.33 −0.004 0.934 −0.004 <0.001

Stroop −182.03 −0.025 0.578 −0.028 0.001 264.25 0.031 0.664 0.034 0.001 −1916.14 −0.018 0.686 −0.020 <0.001
Go/NoGo −840.70 −0.048 0.297 −0.053 0.002 −203.95 −0.010 0.835 −0.011 <0.001 −11229.51 −0.044 0.336 −0.049 0.002
Simple RT −4973.28 −0.099 0.034 * −0.107 0.009 −12291.50 −0.209 <0.001 ** −0.214 0.040 −84882.76 −0.117 0.012 * −0.126 0.012
IT 0.004 0.094 0.040 * 0.104 0.008 0.005 0.082 0.083 0.088 0.006 0.064 0.095 0.037 * 0.105 0.009

*. is significant at the 0.05 level. **. is significant at the 0.01 level. Vis WM = Visual Working Memory. Infer. Rel. = Inferring Relevance. Shape-Num = Shape-Number RT = Reaction Time.
IT = Inspection Time.
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Regarding externalising, simple reaction time performance was a significant predictor
of externalising in our model after accounting for age, gender, and the common variance of
the remaining neurocognitive tasks. Simple reaction time accounted for a significant 4.0%
of unique variance in externalising that could not be explained by age and gender or the
common variance of the remaining neurocognitive tasks. However, unlike internalising,
our other measure of the speed of processing, the inspection time task, did not account for
a significant amount of unique variance in externalising.

Even though the internalising and the p-factor were highly correlated, to ensure a full
investigation of the study aims and psychopathology factors, it was still important to exam-
ine the relations between neurocognitive performance and the general factor. Further, as the
internalising and p-factor are highly, but not perfectly, correlated, the analyses remained
important. Both simple reaction time and inspection time task performance accounted
for a significant amount of unique variance in the p-factor over and above age, gender,
and the common variance of the neurocognitive tasks. Simple reaction time performance
accounted for a significant 1.2% of unique variance in the p-factor, while performance
on the inspection time task accounted for a significant 0.9% of unique variance in the
p-factor. Overall, our findings suggest that the tasks measuring the speed of processing
were the most efficacious when compared to tasks measuring working memory, shifting,
and inhibition, in accounting for higher-order psychopathology within our sample.

4. Discussion

Strong evidence suggests that deficits in neurocognitive abilities play a role in the
aetiology of psychopathology, e.g., [6]. In recent years, evidence has grown for the util-
ity of dimensional structural models of psychopathology as an alternative to traditional
nosological diagnostic approaches. However, there is a lack of understanding of how neu-
rocognitive abilities are associated with factors of psychopathology derived from structural
models. The aim of this paper was to (1) develop and test the fit of three popular models
of psychopathology within a community sample; (a) the correlated factors model, (b) the
bifactor model, and (c) the single factor model, using dimensional symptom measures.
Our second aim (2) was to explore the degree to which tasks measuring four prominent
neurocognitive components, (a) working memory, (b) shifting, (c) inhibition, and (d) speed
of processing, are associated with, and can account for, the factors of psychopathology from
each model.

Within our sample, only the correlated-factors model and the single factors model
fit our data well. The correlated factors model consisted of an internalising factor and an
externalising factor. The internalising factor had loadings from depression, agoraphobia,
mental fog, interpersonal anxiety, and somatisation, while the externalising factor had
loadings from hostility, alcohol use, cannabis use, and other drug use. Our correlated factors
model parallels many other correlated factors models found within the literature, e.g., [51].
However, we did not find a third factor, namely “thought disorder”, that is commonly found
within the literature. Thought disorder is commonly defined by psychotic symptoms [21],
and the absence of thought disorder factors from our models may be explained by the use
of the six-factor BSI model over the original nine-factor model. The original nine-factor BSI
model, which included a psychoticism factor, did not fit our data well, so the alternative
six-factor model, which only included a single psychosis item amongst its factors, was used.
Therefore, our six observed variables used to develop the models did not include strong
indicators of psychoticism. The bifactor models fit our data well, although they had several
non-significant factor loadings and a Heywood case. The good fit of the bifactor models is
not surprising given that fit indices bias bifactor models over correlated factors models [46].
However, the single-factor model also fit the data well. The p-factor from the single factor
model, however, was almost perfectly correlated with the internalising factor from the
correlated factors model. This suggests, along with the Heywood cases, that the bifactor
models were a poor structure for the data because the p-factor primarily represented
internalising. The issue of the p-factor being malleable and primarily representing a
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specific factor has been discussed previously in the literature [13,18,23,54]. This represents
a limitation of developing an understanding of the substantive meaning of p.

We also attempted to fit different structural models of neurocognitive abilities. None of
the models fit our data. This was unexpected as previous research generally finds similar
models to be a good fit [55]. However, we chose neurocognitive tasks that assessed
different aspects of each neurocognitive domain. For example, to measure the speed of
processing, we used a simple reaction time task that required participants to respond to a
stimulus as quickly and as accurately as possible, as well as an Inspection Time task that
did not involve any response speed but instead involved high-speed image processing.
Furthermore, to measure shifting, we used a more traditional switching task, the shape-
number task, that required participants to switch mental set in response to a known, defined
rule (top or bottom of the grid), as well as a less traditional Inferring Relevance switching
task [38], that required participants to switch mental set in a probabilistic, more real-world,
context. Therefore, given that we measured the breadth of each neurocognitive domain, it is
understandable that performance heterogeneity resulted in the models of neurocognition
not being a good fit.

We found that, after controlling for age and gender, simple reaction time performance
was significantly associated with the internalising and externalising factors concerning the
correlated factors model, as well as the p-factor regarding the single factors model. We also
found additionally, after controlling for age and gender, the IT task performance was
significantly associated with internalising and the p-factor. However, tasks that measure
working memory, shifting, and inhibition were not significantly associated with any of
the factors of psychopathology. Furthermore, after accounting for age, gender, and the
common variance of the neurocognitive tasks, the simple reaction time task accounted for
a significant 0.9%, 4.0%, and 1.2% of the variance in internalising, externalising, and the
p-factor, respectively. After accounting for age, gender, and the common variance of
the neurocognitive tasks, the IT task accounted for a unique 0.8% and 0.9% variance
in internalising and the p-factor. This suggests that, in our data, tasks that measured
speed of processing had the greatest predictive utility, although limited to a combined
predictive utility of 1.7%. The lack of predictive utility of working memory, shifting,
and inhibition tasks regarding the factors of psychopathology both conflicts and supports
findings from the limited research in this area. Caspi et al. [21] found working memory to
be significantly associated with internalising and externalising in their correlated factors
model as well as to the p-factor in their bifactor model. However, paralleling our findings,
Caspi et al. [21] also found that a shifting task (i.e., the Trail-Making-Test-B) was not
significantly associated with externalising within their correlated factors model but did
find it was significantly associated with internalising. Finally, our findings also parallel
previous findings [21] in that speed of processing was significantly associated with both
internalising and externalising, as well as the p-factor. Previously, we suggested that factors
from structural models such as internalising, externalising, and the p-factor may have
discrete patterns of neurocognitive ability associations that differentiate the factors [13].
However, our results suggest that internalising, externalising, and the p-factor may not
be clearly differentiated by neurocognitive performance, and that processing speed is a
common correlate.

The importance of processing speed has been primarily studied in relation to age-
ing [56,57]. However, there has been growing interest in the role speed processing in
psychopathology plays in internalising and externalising disorders and symptoms. For ex-
ample, a recent systematic review has found that people with major depressive disorder
typically have processing speed deficits, and provided evidence that, to compensate for this
deficit, people with major depressive disorder are required to use greater cognitive effort to
perform daily tasks [58]. Nuño, Gómez-Benito, Carmona, and Pino [58] also suggest that
if a task requires a high cognitive demand, deficits in the speed of processing cannot be
compensated for by higher cognitive effort, and therefore task performance is poor. Deficits
in the speed of processing in depression, therefore, have been suggested to negatively
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impact occupational performance [58], and this may perpetuate depressive symptoms.
Further evidence for the importance of speed of processing in psychopathology is that
there is evidence for speed of processing being a reliable cognitive endophenotype for
bipolar disorder, with not only people with bipolar disorder experiencing speed of pro-
cessing deficits, but also significant proportions of relatives of those with bipolar disorder
experiencing deficits in speed of processing [59]. Furthermore, it has been found that an
intervention designed to train speed of processing in the elderly resulted in a significant
reduction in the risk of experiencing depressive symptoms 1 and 5 years post-intervention,
while training in perceptual reasoning, or working memory, had no impact [60]. Regarding
externalising behaviours, there is a reliable association between alcohol use disorder and
speed of information processing deficits [61,62], and speed of processing may not only be a
consequence of externalising behaviours but may also be involved in the aetiology of those
behaviours. Durazzo et al. [63] found that processing speed deficits significantly predicted
relapse in people treated for alcohol dependence after accounting for demographic, psychi-
atric, metabolic, and clinical covariates. Furthermore, there is evidence that deficits in speed
of processing are related to an earlier onset of conduct disorder [64]. Our findings, there-
fore, parallel previous research proposing the importance of speed of processing within
psychopathology. However, our results extend the literature by employing dimensional
structures of psychopathology in a representative community sample, showing that deficits
in speed of processing are not only related to nosologically defined disorders but also
statistically derived dimensions in the general population.

Limitations of the Research and Directions for Future Research

The data for this study was collected online through Prolific. Therefore, we had little
experimental control over the context in which participants completed the survey and
tasks and the devices and settings used. However, the range of evidence suggests that the
quality of task data collected online through crowd-sourcing platforms, such as prolific,
is comparable to in-lab studies [28–31], and we used the most valid crowd-sourcing plat-
form for this context [32]. Further, we only explored neurocognitive ability’s associations
with the factors of psychopathology on the sample and not the individual level. Previously
we provided evidence for compensatory neurocognitive profiles on the individual level
that can explain the heterogeneous findings between specific neurocognitive abilities and
psychopathology [9,13]. Even though at the sample level, measures of working memory, in-
hibition, and shifting were not significantly associated with the factors of psychopathology,
at the individual level, explanatory heterogeneous profiles of neurocognitive performance
may exist. For example, there are two individuals with the same high p-factor score of
140. Individual One may have a pervasive deficit in working memory while having good
shifting, inhibition, and speed of processing ability. However, Individual Two may have a
good working memory, shifting, and inhibition ability, but a pervasive deficit in speed of
processing. For each individual, their neurocognitive strength and weakness profile may
explain their high level of p, however, on the sample level (N = 2), no associations would
exist between any neurocognitive ability and their level of p due to the heterogeneity.

Future research should validate our findings in a laboratory setting to limit potential
confounding variables. Future research should also examine the associations between
neurocognitive abilities and psychopathology factors on the individual level, exploring
potential compensatory neurocognitive profiles and multidimensional explanations.

5. Conclusions

In this paper, we explored the associations between neurocognitive abilities and struc-
tural models of psychopathology. We found a correlated factors model and single factor
model to best fit our psychopathology data. We found tasks measuring speed of processing
had the most predictive utility for internalising, externalising, and the p-factor. Specifically,
poorer performance on the simple reaction time task was significantly associated with
higher scores of internalising, externalising, and the p-factor, and poorer performance on
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the Inspection Time Task was significantly associated with higher scores of internalising
and the p-factor. Tasks that measured working memory, shifting, and inhibition were not
significantly associated with psychopathology factors. We found neurocognitive abilities
were not differentially associated, but that speed of processing was a common correlate of
psychopathology factors.
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