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Abstract

In this paper, we propose two manifold regularization (MR) based distributed semi-supervised learning (DSSL) algorithms using
the random vector functional link (RVFL) network and alternating direction method of multipliers (ADMM) strategy. In DSSL
problems, training data consisting of labeled and unlabeled samples are often large-scale or high-dimension and split across samples
or features. These distributed data separately stored over a communication network where each node has only access to its own
data and can only communicate with its neighboring nodes. In many scenarios, centralized algorithms cannot be applied to solve
DSSL problems. In our previous work, we proposed a MR based DSSL algorithm, denoted as the D-LapWNN algorithm, to
solve DSSL problems with distributed samples. It has been proved that the D-LapWNN algorithm, combining the wavelet neural
network (WNN) with the zero-gradient-sum (ZGS) strategy, is an efficient DSSL algorithm with distributed samples or horizontally
partitioned data. The drawback of the D-LapWNN algorithm is that the loss function of each node or agent over the communication
network must be twice continuously differentiable. In order to extend our previous work and settle the corresponding drawback, we
propose a horizontally DSSL (HDSSL) algorithm to solve DSSL problems with distributed samples. Then, we novelly propose a
vertically DSSL (VDSSL) algorithm to solve DSSL problems with distributed features or vertically partitioned data. As far as we
know, the VDSSL algorithm is the first work focusing on DSSL problems with distributed features. During the learning process of
the proposed algorithms, nodes over the communication network only exchange coefficients rather than raw data. It means that the
proposed algorithms are privacy-preserving methods. Finally, some simulations are given to show the efficiency of the proposed
algorithms.

Keywords: Distributed learning (DL); Semi-supervised learning (SSL); Manifold regularization (MR); Alternating direction
method of multipliers (ADMM); Random vector functional link (RVFL); Distributed features.

1. Introduction

Up to now, many supervised learning (SL) algorithms have
been proposed to learn from labeled training samples. Usual-
ly, the labels of these samples are costly or difficult to get and
should be artificially added. As a result, the amount of unla-
beled data is much more than labeled data in the real world. To
make better use of unlabeled samples, semi-supervised learning
(SSL) methods have been well developed. In [1] and [2], the
semi-supervised support vector machine (S3VM) and Lapla-
cian regularization least square (LapRLS) algorithms are de-
rived from the manifold regularization (MR) framework which
is based on the assumption that similar samples have simi-
lar outputs. At the same time, the transductive support vec-
tor machine (TR-SVM) and transductive random vector func-
tional link (TR-RVFL) algorithms, based on the transductive
learning (TL) framework, are proposed in [3] and [4], respec-
tively. Compared with MR based approaches, TL based SSL
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algorithms regard unknown labels as additional variables in op-
timization problems and perform better when labels are only
required for a given test set. In addition, there are many other
SSL algorithms [2, 5, 6]. These algorithms have been widely
used in many practical applications such as text classification
[7], scene recognition [8], financial fraud detection [9], visu-
al location recognition [10], feature analysis for video seman-
tic recognition [11], image-to-video adaptation for video action
recognition [12], and so on. In this paper, we focus on the MR
framework because its concise form and outstanding effect.

However, traditional centralized algorithms, such as [13–15],
can not be used in many distributed scenarios where training
data are located on distributed nodes and unable or costly to be
transmitted over communication networks. Moreover, each n-
ode has only access to its own data and can only communicate
with its neighboring nodes. For example, each node of a wire-
less sensor network (WSN) can only transfer a small amount
of information limited by bandwidth [16] and medical informa-
tion of each community hospital cannot be shared or centrally
processed due to privacy protection [17]. For such distribut-
ed learning (DL) problems, traditional SL and SSL algorithms
become useless. In order to solve these DL problems, many
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distributed SL (DSL) and SSL (DSSL) algorithms have been
proposed. In [18], the authors propose a DSL algorithm based
on the random vector functional-link (RVFL) network and alter-
nating direction method of multipliers (ADMM) strategy [19].
The authors in [20] propose a DSL algorithm based on the feed-
forward neural network with random weights (FNNRW) and
zero gradient sum (ZGS) strategy [21], which is denoted as
the ZGS-FNNRW algorithm. In order to reduce communica-
tion times of each node over the communication network, the
authors in [22] apply the event-triggered (ET) communication
scheme to the ZGS-FNNRW algorithm. In [23], the authors50

propose two DSL algorithms based on the ZGS strategy, name-
ly a continuous-time one and a discrete-time one. Moreover,
the authors of [24] propose a diffusion adaptation framework
for DL problems.

As for DSSL problems, there are some algorithms proposed.
In [25], the authors propose two asynchronously distributed ap-
proaches for graph-based SSL. The first approach is based on
stochastic approximation and the second one uses randomized
Kaczmarz algorithm. The authors in [26] provide an error anal-
ysis for DSSL with kernel ridge regression based on a divide-
and-conquer strategy. The authors in [27] propose two frame-
works for distributed semi-supervised metric learning, which
are based on the diffusion and ADMM strategies, respectively.
The authors in [28] investigate the problem of learning a semi-
supervised SVM with distributed data over a network of inter-
connected agents and propose a DSSL algorithm based on the
in-network successive convex approximation (NEXT) frame-
work [29]. In [30], the authors propose a MR based DSSL
algorithm and denote it as the D-LapRLS algorithm. This al-
gorithm, known as the best MR based DSSL algorithm at the
time, uses the kernel method and distributed average consen-
sus (DAC) strategy [31].. However, the D-LapRLS algorithm
had the common drawback of kernel based methods namely the
calculation of Euclidian distance matrix (EDM) with respec-
t to total samples over the communication network. To solve
DSSL problems and overcome the common drawback of kernel
based algorithms, we proposed a novel MR based DSSL algo-
rithm, denoted as D-LapWNN, in our previous work [32]. The
D-LapWNN algorithm combines the wavelet neural network
(WNN) with the ZGS strategy and works in a fully distribut-
ed fashion. It has been proved that the D-LapWNN algorithm
is an efficient and privacy-preserving method. But there’s a lim-
itation to the D-LapWNN algorithm, namely the loss function
of each node or agent over the communication network must be
twice continuously differentiable.

In DL problems, distributed samples are often large-scale and
high-dimension. However, the aforementioned DL algorithms
only focus on large-scale data which are split across samples or
horizontally partitioned. In other words, these algorithms only
care about the amount rather than the dimension of training da-
ta. In practice, there are many applications in which data is split
across features. For example, different commercial organiza-
tions possess some information of users, but these data cannot
be shared due to personal privacy. However, only a few re-
searchers have paid attentions to the distributed features, which
is also called vertically partitioned data. The authors in [33] ad-

dress the problem of association rule mining in vertically par-
titioned data where transactions are distributed across sources.
In [34], the authors propose a DSL algorithm to learn an RVFL
network from vertically partitioned data sources based on the100

ADMM strategy. As far as we know, no DSSL algorithms with
vertically partioned data has been proposed yet.

In order to extend our previous work [32], we propose a hori-
zontally DSSL (HDSSL) algorithm in this paper to solve DSSL
problems with distributed samples. The HDSSL algorithm is
based on RVFL network and the ADMM strategy. Owing to
the ADMM strategy, the loss function of each node over the
communication network does not require to be differentiable.
As an extension of D-LapWNN, the HDSSL algorithm takes
all advantages of the D-LapWNN algorithm and becomes more
flexible. For DSSL problems with distributed features or ver-
tically partitioned data, we propose a novel DSSL algorithm
with the distributed data splitting across features. We denote
this algorithm as the vertically DSSL (VDSSL) algorithm. The
proposed HDSSL and VDSSL algorithms are based on RVFL
networks and the ADMM strategy. During the learning process
of the proposed algorithms, each node over the communication
network only exchanges the updated coefficients rather than raw
data. In addition, the efficiency of the proposed algorithms are
proved by some illustrative simulations.

The contributions of this paper are summarized as follows.

• The HDSSL algorithm is proposed to extend the D-
LapWNN algorithm. It focus on solving DSSL problems
with large-scale dataset splitting across samples or hori-
zontally partitioned data.

• The VDSSL algorithm is novelly proposed for solving
DSSL problems with vertically partitioned data. In these
problems, training data is high dimension and distributed
across features over the communication network.

• The proposed algorithms are based on the RVFL network
and the MR framework rather than kernel method, which
avoid them to calculate the global EDM with respect to
total samples.

• The proposed algorithms work in fully distributed fashion-
s, where each node over the communication network only
has access to its own data and communicates the updated
coefficients rather than raw data. It means that the pro-
posed algorithms are privacy preserving methods.

• Owing to the ADMM strategy, the proposed algorithms
can be improved more easily by changing the loss func-
tion. Compared with the ZGS strategy used in the D-
LapWNN algorithm, the ADMM is more flexible.

The rest of this paper is organized as follows. Firstly, some
preliminaries are introduced in Section 2. In Section 3, we for-
mulate the DSSL problems with the distributed training data
splitting across samples and features. Then, we propose two
novel algorithms to solve the corresponding DSSL problems.
Section 4 provides some illustrative simulations to show the
efficiency and advantages of the proposed algorithms. Then,
some conclusions are drawn in Section 5.150
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2. Preliminaries

In this section, we will introduce some basic knowledge
of this paper in 4 parts. Part 1 shows some definitions and
conclusions of RVFL networks. In Part 2, some conceptions
and conclusions of SSL are introduced. Then, the ADMM and
DAC strategy are described in Part 3 and 4, respectively.

Notation: In this paper, we give the following notation: R de-
notes the set of real numbers, x ∈ Rn stands for a n × 1 real
vectors, A ∈ Rn×n represents an n × n real matrix, AT is the
transpose of A, ‖ · ‖ denotes the Euclidean norm, Tr(A) stands
for the trace of A and ‖x‖2A denotes xT Ax.

2.1. Random Vector Functional-Link

Given the training dataset S = {(xi, yi)}Ni=1. For each sample
xi ∈ Rd, its output or label is known as yi ∈ R, i = 1, ...,N. The
SLFNN is applied to approximate the mapping of the training
dataset S.

According to [35], an functional-link network (FLN) is a
special kind of SLFNN. An FLN can be regarded as a weight-
ed sum of L non-linear transformations of the training sample,
which can be modeled as

f (x) =

L∑
l=1

wlh(x;Θl) , wT h(x) (1)

where the lth transformation h(x;Θl) is the base function h
parametrized by a parameter set Θl, wl is the weight coefficient
of the lth hidden node, h(x) = [h(x;Θ1), h(x;Θ2), ..., h(x;ΘL)]T

and w = [w1,w2, ...,wL]T .
As for the RVFL network, each parameter set Θi of the ith

hidden neuron is randomly chosen from a probability distribu-
tion and then fixed [36, 37]. Thus, the task of RVFL network is
to minimize the loss of the learning errors, which is formulated
as

w∗ = arg min
w∈RL

1
2

∥∥∥y −Hw
∥∥∥2

+
λ

2
‖w‖2, (2)

where λ is a positive parameter and H = [h(x1),h(x2),...,h(xN)]T

is an N × L hidden matrix.
In this paper, we use the sigmoid function as the base func-

tion. Given the parameters a and b, the expression of the sig-
moid function is given as

h(x; a, b) =
1

1 + e−(aT x+b)
, (3)

It is obvious to get the solution of the optimization problem
(2) as the following expression

w∗ =
(
HT H + λIL

)−1
HT y. (4)

When N < L, the solution of the optimization problem (2)
can be rewritten as

w∗ = HT
(
HHT + λIN

)−1
y. (5)

2.2. Semi-Supervised Learning
As extensions of traditional SL techniques, SSL approach-

es succeed in making use of the unlabeled data. In the SSL
problem, the dataset S = Sl

⋃
Su contains two subsets, name-

ly a labeled dataset Sl = {(xli, y
l
i)}

N l
i=1 and an unlabeled dataset

Su = {xuj }
Nu
j=1. Obviously, N l + Nu = N. Thus, the task of SSL is

to learn mappings from labeled and unlabeled training samples.
In this part, we will introduce a general MR based SSL

framework derived from [38] and [4]. In the MR framework,
samples in S are assumed to satisfy the following two assump-
tions.

Assumption 1 ([2]). Both the labeled data xl ∈ S
l and the un-

labeled data xu ∈ S
u are drawn from the same marginal distri-

bution PX .

Assumption 2 ([2]). If two input samples x1, x2 ∈ S in a high-
density region are close, then so should be the corresponding
conditional probabilities P(y|x1),P(y|x2).

Under Assumptions 1 and 2, unlabeled samples carry infor-
mation owing to the labeled samples which are similar to them.
The main idea of the MR framework is to add a manifold regu-
larization item, which is described as

rMR =
1
2

∑N

i, j=1
Wi j

∥∥∥P(y|xi) − P(y|xj)
∥∥∥2
, (6)

where W = [Wi j]N×N is a weight matrix to measure similari-
ties among each pair of samples in S. According to [4], the
definition of W can be given as

Wi j = e−
‖xi−xj‖

2

2σ2 , (7)

where σ > 0 is a tunable parameter.
In fact, it is difficult to calculate the conditional probability

P(y|xi) and P(y|xj). Therefore, the manifold regularization item
rMR is generally rewritten as

rMR =
1
2

∑N

i, j
Wi j

∥∥∥ŷi − ŷ j

∥∥∥2
, (8)

where ŷi = wT h(xi) and ŷ j = wT h(xj) are the predictions of the
outputs of the samples xi and xj, respectively.

Defining ŷ = [ŷ1, ..., ŷN]T and L = D−W, rMR can be rewrit-
ten in a matrix form as

rMR = Tr
(
ŷT Lŷ

)
, (9)

where L is known as the Laplacian matrix and D is a diagonal
matrix with the ith element D[ii] =

∑
j Wi j.

According to [2], we can replace L with a normalized matrix,
which is defined as L̃ = D−1/2LD−1/2.

By modifying the formulation of RVFL (2), the formulation
of SSL-RVFL is defined as follows

w∗ = arg min
w∈RL

1
2

∥∥∥Hw − ỹ
∥∥∥2

C +
λ

2
‖w‖2 +

η

2
Tr

(
ŷT L̃ŷ

)
, (10)

where λ and η are the positive parameters, ỹ is the augmented
output of the training data with the rows corresponding to the
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labeled samples equal to y and the rest equals to 0, C = [Ci j] is200

an N ×N diagonal binary matrix with the element Cii = 1 when
the ith training sample is labeled and the rest equals to 0.

By calculating the gradient of (10) and set it to 0, we can
easily get the corresponding solution as follows

w∗ =
(
HT CH + ηHT L̃H + λIL

)−1
HT Cỹ. (11)

According to [4], this algorithm can be denoted as the Lap-
RVFL algorithm. When N < L, the solution (11) can be equiv-
alently rewritten as

w∗ = HT
(
CHHT + ηL̃HHT + λIN

)−1
Cỹ. (12)

2.3. Alternating Direction Method of Multipliers
The ADMM strategy proposed in [19] is an optimization pro-

cedure, which breaks the optimization problem into smaller
pieces which are easier to handle. It focuses on solving opti-
mization problems with variables x ∈ RD1 and z ∈ RD2 , shown
as min f (x) + g(z),

s.t. Ax + Bz + c = 0,
(13)

where f and g are convex functions, A ∈ Rp×D1 , B ∈ Rp×D2 ,
and c ∈ Rp.

To solve the optimization problem (13), we rewrite the ex-
pression as the following augmented Lagrangian form

Lρ = f (x) + g(z) + rT (Ax + Bz + c) +
ρ

2
‖As + Bz + c‖2, (14)

where ρ > 0 is a tunable parameter and r ∈ Rp is the Lagrange
multipliers vector.

In order to solve the problem (13), the iteration procedure of
the ADMM strategy is given by

x(k + 1) = arg min
x
{Lρ(x(k), z(k), r(k))},

z(k + 1) = arg min
z
{Lρ(x(k + 1), z(k), r(k))},

r(k + 1) = r(k) + ρ(Ax(k + 1) + Bz(k + 1) + c).

(15)

2.4. Distributed Average Consensus
The DAC strategy is designed to compute the global average

of the local vectors over the communication network [31]. The
kth iteration of node i is shown as

xi(k) =
∑V

j=1
Di jx j(k − 1). (16)

where D the connectivity matrix.
If the communication network is connected and D is ap-

propriately chosen, the iterative sequence with expression (16)
converges to the global average.

According to [31], the connectivity matrix D can be defined
as follows

Di j =


1

d+1 , j ∈ Ni,

1 − d j

d+1 , i = j,
0, otherwise,

(17)
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Figure 1: An illustration of DSSL problems. Training data
consisting of labeled and unlabeled samples are separately dis-
tributed on each node over the communication network. More-
over, each node is individually assigned an RVFL network to
learn mapping from training data. Thus, the task of DSSL algo-
rithms are to learn the global coefficients of the RVFL network.

whereNi stands for the index set of node i’s neighboring nodes,
d j denotes the degree of node j in the graph G corresponding
to the communication network and d represents the maximum
degree of all nodes.

3. Distributed Semi-Supervised Learning Algorithms

In DSSL problems, training data consisting of labeled and
unlabeled samples are often extremely large-scale or high-
dimension and separately stored over the communication net-
work. For an communication network including V nodes, it
can be modeled as a graph G = {V,E,A}, in which V =

{v1, v2, ..., vV } is a finite nonempty node set.
In this section, we aim to solve DSSL problems illustrated

in Fig.1. In this section, two DSSL frameworks, based on the
ADMM strategy and RVFL networks, are proposed to solve
DSSL problems with distributed data splitting across samples
and features in Subsection 3.1 and 3.2, separately.

3.1. Horizontally Distributed Semi-Supervised Learning
In this part, we firstly consider traditional DSSL problem-

s with distributed data splitting across samples. It means that
a part of training samples are stored on each node over the
communication network. Then, we propose the corresponding
framework to solve DSSL problems with horizontally split da-
ta.

3.1.1. Problem Formulation
As shown in Fig.1, the goal of horizontally DSSL (HDSSL)

is to learn a global mapping using the RVFL network and hor-
izontally partioned data on each node over the communication
network.

In HDSSL problems, training samples are horizontally dis-
tributed on V nodes over the communication network. The
dataset used in the HDSSL problem can be described as

S =
⋃

i∈V
S=

i ,
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Figure 2: An illustration of distributed samples or horizontally
partitioned data. Training samples are horizontally split across
samples and separately distributed on each node over the com-
munication network.

where S=
i = {(x j, y j)}

Ni
j=1 denotes the subset stored on node i,

Ni is the number of training samples in node i,
∑

i∈V Ni = N
and N denotes the total number of training samples over the
communication network. An illustration of the training data of
HDSSL problems is shown in Fig.2.

The task of HDSSL is to compute the global coefficients of
the RVFL network of each node over the communication net-
work by minimize the global cost function. Thus, the HDSSL
problem can formulated as the following expression,

w∗ = arg min
w∈RL

1
2

∑V

i=1

∥∥∥Hiw − ỹi

∥∥∥2
Ci

+
λ

2
‖w‖2

+
η

2

∑V

i=1
Tr

(
wT HT

i L̃iHiw
)
, (18)

where the definitions of ỹi, Hi, Ci, and L̃i are similar to the
centralized SSL problems.

3.1.2. Horizontally DSSL Algorithm
Since training samples are separately stored over the com-

munication network and cannot be centrally processed, the op-
timization problem (18) cannot be solved using traditional SSL
algorithms. Thus, we rewrite the problem (18) as the following
form,min 1

2
∑V

i=1

∥∥∥ŷi − ỹi

∥∥∥2
Ci

+ λ
2 ‖z‖

2 +
η
2
∑V

i=1 Tr
(
ŷT

i L̃iŷi

)
,

s.t. wi − z = 0, i = 1, ...,V,
(19)

where ŷi = Hiwi.
Obviously, the equivalent problem (19) is a specific instance

of the optimization problem (13) which can be solved by using
the ADMM strategy. Moreover, the corresponding augmented
Lagrangian form of the problem (19) is given by

Lρ =
1
2

∑V

i=1

∥∥∥ŷi − ỹi

∥∥∥2
Ci

+
λ

2
‖z‖2 +

η

2

∑V

i=1
Tr

(
ŷT

i L̃iŷi

)
+

∑V

i=1
rT (wi − z) +

ρ

2

∑V

i=1
‖wi − z‖2, (20)

where ρ > 0 is a tunable parameter and r ∈ Rp is the Lagrange250

multipliers vector.

Algorithm 1 HDSSL

1: Choose the parameters λ, η, ρ, the accuracy parameter ε for
early termination and the iteration number K. Initialize z(0)
and ri(0) to 0,

2: for i ∈ V do
3: Calculate Hi and L̃i,
4: Pi ← HT

i CiHi + ηHT
i L̃iHi + λIL,

5: end
6: for k ← 0 to K − 1 do
7: for i ∈ V do
8: wi(k + 1)← P−1

i
(
HT

i Ciỹi − ri(k) + ρz(k)
)
,

9: end
10: w̄← 1

V
∑V

i=1 wi(k + 1) using the DAC strategy,
11: r̄← 1

V
∑V

i=1 ri(k) using the DAC strategy.
12: z(k + 1)← V

λ+Vρ
(
ρw̄ + r̄

)
,

13: for i ∈ V do
14: ri(k + 1)← ri(k) + ρ(wi(k + 1) − z(k + 1)),
15: end
16: if ‖w(k) − z(k)‖ < ε then
17: break,
18: end
19: end
20: return z(k).

According to the iterative format of (15), the problem of
HDSSL is rewritten as follows

wi(k + 1) = arg min
wi

{
1
2

∥∥∥ŷi − ỹi

∥∥∥2
Ci

+
η
2Tr

(
ŷT

i L̃iŷi

)
+ rT (wi − z) +

ρ
2 ‖wi − z‖2

}
,

z(k + 1) = arg min
z

{
λ
2 ‖z‖

2 +
∑V

i=1 rT (wi(k + 1) − z)

+
ρ
2
∑V

i=1 ‖wi(k + 1) − z‖2
}
,

ri(k + 1) = ri(k) + ρ(wi(k + 1) + z(k + 1)).

(21)

Thus, the HDSSL algorithm is designed as the following ex-
pression.

wi(k + 1) = P−1
i

(
HT

i Ciỹi − ri(k) + ρz(k)
)
,

z(k + 1) = V
λ+Vρ

(
ρw̄ + r̄

)
,

ri(k + 1) = ri(k) + ρ(wi(k + 1) − z(k + 1)),
(22)

where Pi = HT
i CiHi +ηHT

i L̃iHi +λIL, the initial value of ri and
z can be chosen as 0, w̄ = 1

V
∑V

i=1 wi(k + 1) and r̄ = 1
V

∑V
i=1 ri(k)

are globally average values over the communication network,
which can be calculated using the DAC strategy.

Remark 1. The ZGS strategy used in the D-LapWNN algo-
rithm is proposed to solve unconstrained, separable and con-
vex optimization problems, which can be described as x∗ =

arg minx f (x) = arg minx
∑V

i=1 fi(x), where fi is a twice contin-
uously differentiable and strongly convex function. These prob-
lems can be solved by using the ADMM strategy, either. More-
over, the ADMM strategy works even when fi is not differen-
tiable. For example, the ADMM strategy can solve the problem
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Figure 3: An illustration of distributed features or vertically
partitioned data. Training data consisting of labeled and unla-
beled samples are split across the features. Then, each part of
features is stored on the corresponding node over the commu-
nication network.

(18) when the L2 norm used in the regular item is substituted
to the L1 norm in some scenarios, but the ZGS strategy become
useless. Thus, the proposed HDSSL algorithm is more flexible
than the D-LapWNN algorithm.

The pseudo code of the HDSSL algorithm is shown in Algo-
rithm 1.

3.2. Vertically Distributed Semi-Supervised Learning
In this part, we consider another kind of DSSL problems

where training samples are high-dimension and vertically split
across features. It means that partial features of the total train-
ing data are separately stored on each node over the communi-
cation. Based on the ADMM strategy and RVFL networks, we
propose another framework to solve vertically DSSL (VDSSL)
problems with vertically split data.

3.2.1. Problem Formulation
Similar to the definition of the distributed data used in HDSS-

L problems, dataset in VDSSL problems can be described as

S =
⋃

i∈V
S
‖

i ,

where S‖i = {(xdi
j , y j)}Nj=1, x j = [xd1

j |x
d2
j |...|x

dV
j ], d =

∑V
i di and d

denotes the dimension of each training sample. An illustration
of the training data of VDSSL problems is shown in Fig.3.

Similarly, the VDSSL problem can formulated as the follow-
ing expression

w∗ = arg min
w∈RV

1
2

∥∥∥∥∑V

i=1
Hiwi − ỹ

∥∥∥∥2

C
+
λ

2

∑V

i=1
‖wi‖

2

+
η

2

∑V

i=1
Tr

(
wT

i HT
i L̃iHiwi

)
. (23)

Algorithm 2 VDSSL

1: Choose the parameters λ, η, ρ, ε,K, and initialize u(0), z̄(0),
w(0), ȳ(0) to 0,

2: for i ∈ V do
3: Calculate Hi and L̃i,
4: Qi ← HT

i Hi +
η
ρ
HT

i L̃iHi + λ
ρ
IL,

5: end
6: for k ← 0 to K − 1 do
7: for i ∈ V do
8: wi(k + 1)← Q−1

i HT
i

(
Hiwi(k) + z̄(k) − ȳ(k) − u(k)

)
,

9: end
10: ȳ(k + 1)← 1

V
∑V

i=1 Hiwi(k + 1) using the DAC strategy,
11: z̄(k + 1)← (VC + ρIN)−1(Cỹ + ρȳ(k + 1) + ρu(k)

)
,

12: u(k + 1)← u(k) + ȳ(k + 1) − z̄(k + 1),
13: if ‖z̄(k + 1) − ȳ(k + 1)‖ < ε then
14: break,
15: end
16: end
17: return w(k + 1).

3.2.2. Vertically DSSL Algorithm
Since training samples are separately stored over the com-

munication network and cannot be centrally processed, the op-
timization problem (23) cannot be solved using traditional SSL
algorithms. Thus, we rewrite the problem (23) as the following
form,min 1

2

∥∥∥∥ V∑
i=1

zi − ỹ
∥∥∥∥2

C
+ λ

2

V∑
i=1
‖wi‖

2 +
η
2

V∑
i=1

Tr
(
ŷT

i L̃iŷi

)
,

s.t. ŷi − zi = 0, i = 1, ...,V,
(24)

where ŷi = Hiwi.
Similarly, the corresponding augmented Lagrangian form of

the problem (24) is

Lρ =
1
2

∥∥∥∥ V∑
i=1

zi − ỹ
∥∥∥∥2

C
+
λ

2

V∑
i=1

‖wi‖
2 +

η

2

∑V

i=1
Tr

(
ŷT

i L̃iŷi

)
+

∑V

i=1
rT (ŷi − zi) +

ρ

2

∑V

i=1
‖ŷi − zi‖

2. (25)

By substituting u = 1
ρ
r, we have∑V

i=1
rT (ŷi − zi) +

ρ

2

∑V

i=1
‖ŷi − zi‖

2

=
ρ

2

∑V

i=1
‖ŷi − zi + u‖2 −

ρ

2

∑V

i=1
‖u‖2 (26)

According to [19], the iterative expressions of this special
ADMM problem can be rewritten as follows

wi(k + 1) = arg min
wi

{
λ
2 ‖wi‖

2 +
η
2Tr

(
ŷT

i L̃iŷi

)
+
ρ
2

∥∥∥ŷi − ŷi(k) − z̄(k) + ȳ(k) + u(k)
∥∥∥2}
,

z̄(k + 1) = arg min
z̄

{
Vρ
2

∥∥∥z̄ − ȳ(k + 1) − u(k)
∥∥∥2

+ 1
2

∥∥∥V z̄ − ỹ
∥∥∥2

C

}
,

u(k + 1) = u(k) + ȳ(k + 1) − z̄(k + 1),

(27)
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Network with 4 nodes Network with 8 nodes Network with 12 nodes

Network with 16 nodes Network with 20 nodes Network with 24 nodes

Figure 4: Randomly generated communication networks with different number of nodes.

Table 1: Description of the datasets used in the D-LapWNN and HDSSL algorithms. These data will be horizontally partitioned or
splitting across samples.

Dataset Instance Labeled Features Task Source

SinC 4000 400 1 Regression Artificial
2-Moon 800 32 2 Classification Artificial [1]
Concrete 1027 410 8 Regression UCI Repository
WDBC 569 56 30 Classification UCI Repository

Table 2: Parameters used in the simulations. The parameter γ is used in the D-LapWNN algorithm. And the parameter ρ is used in
the HDSSL algorithm.

Dataset λ η γ ρ L

SinC 10−2 10−4 10−3 10−3 50
2-Moon 10−3 10−5 10−3 10−3 50
Concrete 10−4 10−5 10−4 10−4 50
WDBC 10−3 10−4 10−3 10−3 50

where ŷi = Hiwi, ŷi(k) = Hiwi(k), z̄(0) = 1
V

∑V
i=1 zi(0) and

ȳ(k) = 1
V

∑V
i=1 ŷi(k).

Thus, the corresponding VDSSL algorithm is designed as the
follows

wi(k + 1) = Q−1
i HT

i

(
ŷi(k) + z̄(k) − ȳ(k) − u(k)

)
,

z̄(k + 1) =
(
VC + ρIN

)−1(
Cỹ + ρȳ(k + 1) + ρu(k)

)
,

u(k + 1) = u(k) + ȳ(k + 1) − z̄(k + 1),

(28)

where Qi = HT
i Hi +

η
ρ
HT

i L̃iHi + λ
ρ
IL, the initial value of wi, u

and z̄ can be chosen as 0.

Remark 2. The VDSSL algorithm is novelly proposed to solve
DSSL problems with vertically partitioned data or distributed
features. Data in these problems are often high-dimension. In
some scenarios, distributed features are separately stored over

communication networks and can not be collected due to pri-
vacy protection or environment limitation. According to the
VDSSL algorithm described in (28), nodes over the communi-
cation network exchange updated coefficients rather than raw
data during the learning process. It means that the VDSSL al-
gorithm is a privacy-preserving method. In the consensus step,
the ȳ(k) = 1

V
∑V

i=1 Hiwi(k) can be calculated by using the DAC
strategy.

The pseudo code of the VDSSL algorithm is shown in Algo-300

rithm 2.

4. Simulations

In order to verify the efficiency of the proposed algorithm-
s, some simulations are shown in this section. In Part 1, we
compare the proposed HDSSL algorithm with the D-LapWNN
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(b) 2-Moon Dataset.
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(c) Concrete Dataset.
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(d) WDBC Dataset.

Figure 5: Training error of the aforementioned algorithms using different datasets listed in Table 1 over the communication networks
shown in 4.
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(b) 2-Moon Dataset.
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(c) Concrete Dataset.
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Figure 6: Average training time of the HDSSL, local Lap-RVFL and centralized RVFL algorithms using distributed samples over
the communication networks shown in 4.

algorithm and centralized Lap-RVFL network with total data.
We choose the Gaussian wavelet function as the mother wavelet
function in the D-LapWNN algorithm. Then, some simulations
of the centralized Lap-RVFL and VDSSL algorithms with dis-
tributed features are provided in Part 2.

For simplicity, samples or features of each dataset are aver-
agely allocated over the communication network. To indicate

the accuracy of the algorithms, the mean squared error (MSE)
is introduced in regression tasks. For classification tasks, we
use the percentage of misclassification.

4.1. Horizontally DSSL Algorithm

In this part, some simulations are given to verify the efficien-
cy of the proposed HDSSL algorithm. The HDSSL algorithm
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Table 3: Description of the datasets used in the VDSSL algorithm. These data will be vertically partitioned or split across features
over the communication network.

Dataset Instance Labeled Features Task Source

g241c 1500 150 241 Classification Artificial [2]
BCI 400 40 117 Classification Artificial [2]
Ozone 1848 180 72 Classification UCI Repository
WDBC 569 56 30 Classification UCI Repository
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Figure 7: The influence of the number of basis functions on the performance of the VDSSL algorithm using different dataset.
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Figure 8: The influence of the number of basis functions on the training time of the VDSSL algorithm using different dataset.
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is used for regression and classification using the datasets de-
scribed in Table 1. These data are horizontally partitioned and
averagely distributed over the communication networks with d-
ifferent number of nodes, which are shown in Fig.4. To make
the results more convincing, we compare the proposed HDSS-
L algorithm with the previously proposed D-LapWNN, local
Lap-RVFL, and centralized Lap-RVFL algorithms.

The parameters used in this part are listed in Table 2. In or-
der to show the influence of varying the number of nodes in the
communication networks, we record the simulation results of
the D-LapRLS and proposed algorithms in different communi-
cation network with different number of nodes shown in Fig.4.
We vary the number of nodes from 4 to 24 and repeat each sim-
ulation for 10 times. Simulation results are shown in Fig.5 and
Fig.6.

Simulation results show that the proposed HDSSL algorithm
is efficient enough in solving DSSL problems with regression
and classification tasks. Compared with the D-LapWNN algo-
rithm, the HDSSL algorithm achieves the higher accuracy but
costs a few more time. This is caused by the iterative process-
es owing to the DAC strategy. Moreover, the accuracy of the
HDSSL does not decrease with the increase of the number of
nodes in the communication network.

4.2. Case 2: Vertically DSSL Algorithm

In this part, the proposed VDSSL algorithm is applied to
classify the data listed in Table 3. These data are vertically par-
titioned or split across features and averagely distributed over
the communication network with 8 nodes shown in Fig.4. In
addition, we compare the proposed VDSSL algorithm with the
centralized Lap-RVFL algorithm with the total features. In or-
der to analyze the influence of the number of basis functions
used in the RVFL network on the performance of the VDSSL350

algorithm, we apply the VDSSL algorithm to the “BCI” dataset
and vary the number of basis functions from 1 to 51. Then,
we repeat each simulation for 10 times and show the results in
Fig.7 and 8. For simplicity, all data sets use the same parame-
ters, where λ = 10−2, η = 10−4, ρ = 10−3 and L = 50.

The results show that the proposed VDSSL is efficient in
solving DSSL problems with vertically partitioned data. For the
“Ozone” and “BCI” datasets, the VDSSL algorithm performs
better than the centralized Lap-RVFL algorithm when the num-
ber of basis functions is increased. As for the “g241c” dataset,
neither the VDSSL algorithm nor the centralized Lap-RVFL al-
gorithm performs very well. It means that the performance of
the proposed VDSSL algorithm depends on the SSL algorith-
m used in the VDSSL algorithm. Moreover, we applied the
VDSSL algorithm on the “WDBC” dataset to prove the efficien-
cy of the proposed VDSSL algorithm on the dataset with less
features. But the results show that the accuracy of the VDSSL
algorithm does not change when the number of basis functions
is changed.

Besides, it can be seen that the VDSSL and centralized Lap-
RVFL algorithms performs better when the number of basis
functions increase. However, the change of the number of basis
functions does not affect the training time.

5. Conclusions

In this paper, we extend the previously proposed D-LapWNN
algorithm and propose the HDSSL algorithms to solve DSSL
problems with horizontally partitioned data. Then, we novelly
propose the VDSSL algorithm to sovle DSSL problems with
vertically partitioned data. These two algorithms are based on
the RVFL network and the ADMM strategy. Owing to the AD-
MM strategy, the proposed algorithms only exchange coeffi-
cients during learning processes, which means they are privacy-
preserving methods.

The simulation results show that the proposed algorithms are
efficient enough in DSSL problems with large-scale or high-
dimension data, which is distributed over the communication
network. The HDSSL and VDSSL algorithms are fully dis-
tributed algorithms. Compared with the previously proposed
D-LapWNN algorithm with distributed samples, the HDSSL
algorithm achieves the higher accuracy. As for distributed fea-
tures, the VDSSL is efficient and gets the similar results to the
centralized Lap-RVFL network using total data over the com-
munication network.

In the end, it is worth providing some future works. the pro-
posed HDSSL and VDSSL algorithms can be developed into
the case of directed and the time-varying communication net-
works, which are more practical in applications. Besides, it
worth to extend the proposed algorithms to finite-time algo-
rithms in order to meet engineering requirements.
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