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The geoid is the equipotential surface of the Earth’s gravity field best approximated by the 

ocean at rest. All terrestrial geodetic and engineering surveying measurements are made after 

aligning the instrument’s vertical axis orthogonal to an equipotential surface. The geoid, 

therefore, is the best candidate for a reference surface, especially for heights. Since the geoid 

is a physically meaningful surface, it responds to changes in the gravity field due to various 

geophysical and geodynamical phenomena, in turn allowing us to study them as well. A precise 

gravimetric geoid model is fundamental to both infrastructure development as well as for 

geoscientific activities. 

Geoid-related studies in India have a history of more than a century, which was started 

with astrogeodetic geoids derived from astronomical observations. After 2005, there have been 
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a few gravimetric geoid-related studies over different regions of India, but all have used 

GRAVSOFT subroutines with residual terrain modelling (RTM). Moreover, all these studies 

have been conducted only at two organisations: Survey of India and National Geophysical 

Research Institute, because these two organisations are the custodians of the Indian gravity data 

and there are national policies that restrict data sharing. Further, none of the developed geoid 

models for any region of India are available in the public domain. 

Therefore, in this thesis we have developed the first national gravimetric geoid model 

of India, which will be made available in the public domain. For this thesis, the Indian terrestrial 

gravity data has been procured from GETECH Pty. Ltd., Leeds, UK. Unlike previous studies 

in India or elsewhere (to the best knowledge of the author), three different methodologies have 

been used to compute both gravimetric geoid and quasigeoid models for the whole of the 

country encapsulating a similar varied landform consisting of the Himalayas and other hill 

ranges, the Gangetic plains, Thar desert, plateaus and a long peninsular coastline. The three 

methods used herein are those developed at i) the Curtin University of Technology (CUT), 

Australia ii) the University of New Brunswick (UNB), Canada and iii) the Royal Institute of 

Technology (KTH), Sweden, all with some modifications due to the peculiarities of Indian 

datasets. 

The major contributions in this thesis are 1) development of an efficient combined 

spatial-spectral method for calculating planar gravimetric terrain corrections, which can also 

be used in regions having slope >45º, 2) development of a numerical method that reduces the 

computation time of planar gravimetric terrain correction by almost 50% as compared to the 

literature-recognised best method of analytical mass-prism integration, 3) introducing the 

dynamic integration radius for numerical global integration using the DEMs of multiple 

resolution, 4) providing a conceptual argument and mathematical formulation of downward 

continuation of height anomalies from Earth’s topographical surface to ellipsoid for defining 
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the quasigeoid, 5) deriving exact conversion formulas for gravity, geoid undulation, dynamic 

height, orthometric height, normal height and ellipsoidal height among the three permanent 

tide systems, 6) deriving formulas for ad-hoc conversion of various ellipsoidal parameters 

among the three permanent tide systems of the solid Earth and providing the values of all the 

ellipsoidal parameters for WGS84, GRS80 and an another reference ellipsoid, in all the three 

permanent tide systems and 7) inter-model comparison of geoids and geoid-quasigeoid 

separation terms that provide new insights to the decades-long quest of a cm-precise geoid. 

Other contributions include 1) development of gravimetric geoid model for the 

mainland India using the three methodologies that have never been tested in any region of 

India, 2) development of geoid calculation packages, in MATLAB, based on the CUT and the 

UNB methods, 3) development of local gravimetric geoid models using GRAVSOFT 

subroutines (for least squares collocation) with RTM to compare the results with previous 

studies (available descriptive statistic) over regions of India, 4) use of the first order indirect 

effect for the first time in the CUT method, 5) validating geoid and quasigeoid models with the 

geometric geoid undulations involving normal-orthometric heights as an effort to investigate 

the more suitable reference surface for normal-orthometric heights in India and 6) validating 

Pizetti’s geoid gradients with Helmert’s vertical deflections noting that the curvature of the 

plumbline is neglected. 

Before using the adopted methodologies for calculating the Indian geoid and quasigeoid 

models, they have been tested over Auvergne in France to calculate ~±0.03 m precise 

quasigeoid models. The precision of the developed Indian geoid model, for India is ±0.396 m, 

but only from small localised dataset. However, on region-wise validation, the precision varies 

from a minimum of ±0.03 m in Bangalore to a maximum of ±0.158 m in Hyderabad. Since this 

study has been conducted with the available datasets of unknown quality, gravimetric geoid 

studies in India must continue with new precise and dense gravity, and GNSS/levelling data. 
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This study shows that two or more gravimetric geoid/quasigeoid models or the 

geoid/quasigeoid computation methodologies should not be compared for pre-eminence solely 

based on standard deviation of fit to GNSS/levelling or vertical deflection data. Moreover, 

there is no particular choice of a geoid computation methodology or a modification degree and 

integration radius combination that gives the smallest standard deviation (or any other 

descriptive statistic) for all regions of a country. Therefore, there is a need for a new geoid 

computation methodology that could, may be, combine several regional geoid models or 

different methods of geoid computation. As of today, geoid computation cannot be generalised 

because the geoid models with different methods can deviate up to a few metres from one 

another. Hence, we are yet far away from the goal of cm-precise geoid, at least in India.  
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Chapter 1: Introduction 

1.1 Background 

From numerous equipotential surfaces of the Earth’s gravity field, the one best 

approximated by the ocean at rest is the geoid. One should note that this is only one of the 

many definitions of the geoid available in the literature, which are summarised by Bašić 

and Varga (2018). All terrestrial geodetic and engineering survey measurements are made 

after aligning the instrument’s vertical axis orthogonal to an equipotential surface. Hence, 

an equipotential surface is the best candidate for a reference surface for heights. By 

definition, geoid is the equipotential surface and can also be theoretically calculated. 

However, it is hardly possible to calculate a national geoid model, especially, because of 

the uncertainty in the plumbline curvature (discussed later). Therefore, the best 

approximations of the geoid, i.e., the calculated so-called geoid or quasigeoid are preferred 

as a vertical reference surface.  

The geoid can be calculated using astrogeodetic observations, known as an 

astrogeodetic geoid, or using gravity observations with the Stokes (1849) and Bruns (1878) 

formula, known as a gravimetric geoid or using Global Navigation Satellite System 

(GNSS)/levelling data, known as a geometric geoid. Some have also used a combination 

of the astrogeodetic and gravimetric data to develop an astro-gravimetric geoid (e.g., Fryer, 

1972; Marti, 1997). Astrogeodetic and gravimetric geoids have their necessities and 

advantages, but the former was practised long ago before development of the portable 

gravimeters. A geometric geoid is practically meaningful only for local regions. A 

gravimetric geoid is calculated with respect to a reference ellipsoid having the following 

three properties (e.g., as given by Heiskanen and Moritz, 1967, pg. 94; but it should be 
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noted that commonly used ellipsoids (e.g., GRS80) often do not have all of these 

properties, leading to the zero-degree term (discussed later, Section 3.6)): 

i) The potential of the reference ellipsoid (U0) is equal to the potential of the geoid (W0). 

ii) The ellipsoid encloses the mass numerically equal to the Earth’s mass (including 

atmospheric mass). 

iii) The centre of the ellipsoid is coincident with the centre of mass of the Earth. 

Moreover, Stokes (1849) made the assumption that the gravity anomalies for the 

whole world are available on the geoid and there are no external masses above the geoid. 

On the contrary, gravity values are observed on or above the Earth’s topographical surface 

and are not available for the whole world. Also, there exist external masses above the 

geoid. Therefore, regional, national or continental geoid modelling is primarily about i) 

regularisation of the masses above the geoid (e.g., Helmert, 1884) and ii) applying Stokes’s 

integral with high frequency regional gravity data, which is available only in a limited 

region. 

The major concern in removing or shifting the masses external to the geoid is 

assumptions regarding the density distribution of the topographical masses (Martinec, 

1993; Pagiatakis et al., 1999; Kuhn, 2001; 2003; Huang et al., 2001). Therefore, 

Molodensky et al. (1962) introduced the theory of the quasigeoid that is a non-

equipotential surface departing not much from the geoid. They suggested use of the Earth’s 

topographical surface as the reference surface for Stokes’s integration of the gravity 

anomalies, i.e., gravity anomalies may now be available on the Earth’s topographical 

surface instead of the geoid. Thus, eliminating the need for regularisation of the 

topographical masses between the geoid and the Earth’s topographical surface.  
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Since i) none confirms (to our best information from the literature) that the 

calculated geoid is an equipotential surface (although some near-related studies have been 

conducted, e.g., Claessens and Filmer, 2020; Wang et al., 2021) and ii) the difference 

between geoid and quasigeoid is not significant (except in the mountainous regions), it has 

become a country’s specific choice to adopt quasigeoid or geoid as the national vertical 

reference surface. However, calculation of both geoid and quasigeoid still needs some 

regularisation methods and modifications/strategies to truncate Stokes’s integral to the 

region of interest.  

In India, the first geoidal study was started more than a century ago. The detailed 

information is most probably provided in the archaic Survey of India (SoI) reports, which 

are not available in the public domain. However, we try to provide concise introductory 

information as gathered from different sources. The geoidal study was started in India 

around 1901 (SoI, 1950) based on astrogeodetic observations with respect to the 

Everest1830 ellipsoid. Bomford (1967) mentions that de Graaff Hunter compiled the first 

geoid map for India in 1922 based on astrogeodetic observations referred to an 

international spheroid. According to de Graaff Hunter (1932), it was published in 1923 

excluding the Himalayan region (information on where it was published is not available) 

and published in SoI (1930) for India. The geoid map from 1923 is also provided in Daly 

(1969, pg. 228). 

SoI (1950, pg. 146) mentions that the definitions of the geoid provided in SoI 

(1930) were all incorrect and hence, they rectified the definitions of the previous report. 

The pages with the rectified definitions in SoI (1950) are provided in Appendix A. No 

geoid map is provided in SoI (1950), but SoI (1951, pg. 89) provides a hard-to-read geoid 

map, referred to an international spheroid, for India and neighbouring countries based on 

the astrogeodetic data available during 1950-1951. Other than these, Fischer (1961) 
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mentions a more refined astrogeodetic geoid of India, with dense data, published in SoI 

(1957) and also themselves had developed an Indian astrogeodetic geoid (Fischer, 1968). 

However, neither of the two are available in the public domain. 

During the 1970s to mid-1980s, a few other gravimetric and astrogeodetic geoid 

related studies were conducted for India (e.g., Bhattacharji, 1973; 1982; Gaur, 1981; 

Khosla et al., 1982; Srivastava, 1985), with respect to both Everest and GRS67 ellipsoids. 

The used gravity data was primarily from the geopotential coefficients (Rapp, 1977) and 

sometimes very coarse observed mean gravity anomaly data (1˚x1˚). None of these models 

is available in the public domain.  

From 2007 onwards, a few more gravimetric geoid-related studies over India were 

available in the literature (e.g., Singh, 2007; Singh et al., 2007; Carrion et al., 2009; 

Srinivas et al., 2012). This was probably because the proposal for a redefined vertical 

datum, in 2005, mentioned adopting a gravimetric geoid model as the new Indian Vertical 

Datum (IVD), whenever available. After 2012, to the author’s best information, there is 

only one gravimetric geoid study over India published, i.e., Mishra and Ghosh (2016). The 

results from these studies (from 2007 to 2017) are also not in the public domain.  

It is important to note that the studies from 1901 to 1957 were all conducted by 

SoI; from 1973 to 1985 by SoI or University of Roorkee in collaboration with SoI; and 

from 2007 to 2017 by SoI, Indian Institute of Technology (IIT) Roorkee (previously 

University of Roorkee) in collaboration with SoI, National Geophysical Research Institute 

(NGRI) in collaboration with SoI or NGRI (but without access to GNSS/levelling data for 

validation, the keeper of which is SoI). This shows that until today, geoid related studies 

in India are somewhat governed by SoI. Hence, several stakeholders are kept deprived of 

any developed geoid model or the geodetic data to do geoid modelling themselves. 

Moreover, despite all these efforts, no Indian national gravimetric or astrogeodetic geoid 
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model is available in the public domain. In the present thesis, we are interested only in the 

gravimetric geoid model and, therefore, will keep our further discussions limited to that 

only, though astrogeodetic data are used for validation. 

It is now over 170 years since George Gabriel Stokes published his seminal 

formula for geoid determination from gravity anomalies (Stokes, 1849); over 55 years 

since the English translation of Mikhail Sergeevich Molodensky’s book was published, 

including the formula for quasigeoid determination from gravity anomalies (Molodensky 

et al., 1962); and over 50 years since Martin Hotine’s monograph was published including 

the formula for geoid determination from gravity disturbances (Hotine, 1969). For the 

present thesis, we are only concerned with the geoid and quasigeoid using the gravity 

anomalies that require Stokes’s integration. 

Ideally, Stokes’s integral should be implemented over the entire Earth with 

continuous gravity anomalies on the geoid and with the Laplace harmonicity condition 

( )2 0T =  that there must not be any gravitating mass above it (Heiskanen and Moritz, 

1967). However, in practice, the integral is reduced to a limited area, i.e., truncated because 

gravity anomalies over the entire Earth are not available for computations due to a 

multitude of reasons, e.g., inaccessible areas or national data restriction policies. Also, 

gravity anomalies usually exist discontinuously on or above the Earth’s surface, so various 

types of regularisations and downward continuation have been proposed. The gaps 

between theoretical and practical aspects incur several kinds of errors, which geodesists 

have tried to reduce.  

Presently, based on various ideas, philosophies and numerical approaches, there are 

the following four more common techniques available for geoid computation. 
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i) Geoid/Quasigeoid computation methodology (GRAVSOFT) based largely on 

Least Squares Collocation (LSC) developed at the University of Copenhagen, 

Denmark (Forsberg, 1984, 1985; Knudsen, 1987; Forsberg and Tscherning, 2008) 

ii) The Stokes-Helmert method (SHGeo) developed at the University of New 

Brunswick (UNB), Canada (Vaníček and Kleusberg, 1987; Vaníček and Martinec, 

1994; Martinec and Vaníček, 1994a; 1994b; Vaníček et al., 1999; UNB, 2009; 

Tenzer et al., 2003; Ellmann and Vaníček, 2007; Vaníček et al., 2013). 

iii) Least Squares Modification of Stokes formula (LSMS) with Additive Corrections 

(AC) method developed at the Division of Geodesy, Royal Institute of Technology 

(KTH), Sweden (Sjöberg, 1984a; 1984b; 1991; 2000; 2003a; 2003b; Ågren, 2004). 

iv) Quasigeoid computation method developed at Curtin University of Technology 

(CUT), Australia (Featherstone, 2000; 2001; Featherstone et al., 1998; 2001; 2011; 

2018; Amos and Featherstone, 2009; Claessens et al., 2011; McCubbine et al., 

2018; 2021). 

There are of course, other approaches such as radial basis functions (e.g., Li, 2018; 

Liu et al., 2020) but perhaps not yet applied as widely as the above four. Despite a long-

elapsed time from the developed methodologies and numerous implementations, 

determination of a centimetre level precise geoid and quasigeoid still remains an ongoing 

quest (Sansò and Rummel, 1997; Foroughi et al., 2019; Ellmann et al., 2020). Hence, 

comparative studies among the different computational techniques are required to 

investigate, primarily, the scope of modifications to the existing methodologies or a need 

of precise and dense input datasets. Arguably, different approaches are necessary in 

different parts of the world due to, for instance, the peculiarities of the data holdings, e.g., 
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Goyal et al. (2022) summarises numerous geoid/quasigeoid solutions of Auvergne in 

France where researchers have tested their geoid/quasigeoid calculation methods. 

With the above background on Indian geoid-related studies, we will next discuss 

the IVDs and the height systems. 

1.2 Height systems 

Height is the vertical distance between two points. However, one could ask, what 

is the direction of the vertical distance? Therefore, a more precise definition of height 

could be, a vertical distance between two points lying on well-defined mathematical, 

physical or virtual surfaces along a specified direction. Scientifically, height is a coordinate 

that separates two points along a specified direction in a 3D space having the same 2D 

coordinates in a given reference frame. 

In the present satellite era, 3D coordinates of our position on the Earth’s surface 

are obtained using GNSS. There are multiple options for the height coordinate, including 

using GNSS itself. These options primarily depend on the direction of the vertical distance 

and the reference surface from where the distance is being measured. Heiskanen and 

Moritz (1967), Jekeli (2000), Dennis and Featherstone (2003), Featherstone and Kuhn 

(2006) and Amos (2007) have discussed different types of heights. Also see Tenzer et al. 

(2005) and Santos et al. (2006). Therefore, here we will discuss only those which are 

relevant to the present thesis: orthometric height, normal height, normal-orthometric 

height, geodetic or ellipsoidal height, geoid undulation and height anomaly. 

Figure 1.2.1 shows a schematic diagram for above mentioned different heights, and 

Table 1.2.1 explains/defines the same. 
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Figure 1.2.1: Different surfaces and heights 

Table 1.2.1: Definition of heights 

Height Height of 

a point on 

the: 

From a 

corresponding 

point on the: 

Along: 
Formula (Heiskanen and 

Moritz, 1967; Jekeli, 2000) 

Orthometric 
Earth’s 

surface 
Geoid 

Curved and 

torsioned 

plumb line 0 0

1 1
;

H H

gdH g gdH
g H

=   

Normal 

Earth’s 

surface 
Quasigeoid 

Curved 

normal plumb 

line 
* *

* *

*

0 0

1 1
;

H H

gdH dH
H

 


=   

Telluroid Ellipsoid 

Curved 

normal plumb 

line 

Normal-

orthometric 

Earth’s 

surface 

Geoid or 

Quasigeoid* 

Curved 

normal plumb 

line 0 0

1 1
;

NO NOH H

NO

NO
dH dH

H
  


=   

Geodetic or 

Ellipsoidal 

Earth’s 

surface 
Ellipsoid 

Ellipsoidal 

surface 

normal 

h  

Geoid 

undulation 
Geoid Ellipsoid 

Ellipsoidal 

normal 
0 0

0 0'P

P P

U WT

 

−
+  

Height 

anomaly 

Quasigeoid Ellipsoid 
Ellipsoidal 

normal 

0

0 0Q

S P

T U W

 

−
+  

Earth’s 

surface 
Telluroid 

Ellipsoidal 

normal 

* No unique reference surface is specified for normal-orthometric height system (e.g., 

Filmer et al., 2010; 2014) 
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The definitions in Table 1.2.1 can be read as “Column 1 height is the height of a 

point on Column 2 from a corresponding point on Column 3 along the Column 4,” e.g., 

‘Orthometric height is the height of a point on the Earth’s surface from a corresponding 

point on the geoid along the curved and torsioned plumb line’. In addition to the heights 

explained in Table1.2.1, there is also dynamic height. The dynamic heights are computed 

by dividing the geopotential number (difference between geopotential values at the geoid 

and point in consideration on the Earth’s topography) by some constant. The adopted 

constant for calculating the dynamic heights is normal gravity at 45º latitude (Heiskanen 

and Moritz, 1967, pp. 162-163).  

From Figure 1.2.1, there exists geometrical relationship between i) geodetic height 

(h), orthometric height ( )H  and geoid undulation ( )N  given by Eq. (1.2.1) and ii) 

geodetic height, normal height ( )*H  and height anomaly ( )  given by Eq. (1.2.2). Since 

no unique surface is defined for normal-orthometric height ( )NOH , H  or 
*H  in Eqs. 

(1.2.1) and (1.2.2) are sometimes replaced by 
NOH  also to calculate geometric geoid 

undulation or geometric height anomalies, respectively. 

 N h H −  (1.2.1) 

 *h H  −  (1.2.2) 

A ‘pure’ orthometric height is impossible to be realised practically, as this requires 

gravity and density information at every point on the curved and torsioned plumbline 

between the Earth’s surface and the geoid. Therefore, instead of using the integral mean 

value of Earth’s gravity along the plumbline, mean gravity is approximated using the 

Poincaré and Prey reduction (Heiskanen and Moritz, 1967, pg. 163), thus providing 

Helmert’s orthometric heights (Heiskanen and Moritz, 1967, pg. 167). Niethammer (1932) 
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and Mader (1954) heights, which include terrain corrections, are proved to be better than 

Helmert’s orthometric heights (Dennis and Featherstone, 2003).  

Molodensky (1945) proposed the use of normal heights, wherein the mean actual 

gravity is replaced by mean normal gravity between the reference ellipsoid and the 

telluroid (Heiskanen and Moritz, 1967). The distance between Earth’s topographical 

surface and the telluroid is the height anomaly, and mapping of these height anomalies on 

the corresponding points on the ellipsoidal surface gives quasigeoid. Although not a 

geopotential surface, quasigeoid is a preferred choice of the vertical reference surface in 

many countries, including Australia and Sweden. 

The main issue in the determination of orthometric heights is the computation of 

the integral mean gravity along the plumbline (Rapp, 1961). Tenzer et al. (2005) 

formulated ‘rigorous’ orthometric height by calculating the mean gravity along the 

plumbline by considering the effect of second-order correction for normal gravity, the 

gravitational attraction of topographical (Bouguer shell and terrain roughness) and 

atmospheric masses, lateral variation of topographical mass-density and the gravity 

disturbance due to the masses below the geoid surface. Santos et al. (2006) derived the 

corrections to obtain the ‘rigorous’ orthometric height (Tenzer et al., 2005) from Helmert’s 

orthometric height. An effort to modernise the existing [Helmert’s] orthometric height 

system of Canada to these ‘rigorous’ orthometric heights has been made by Kingdon et al. 

(2005).  

However, despite recent advancements in the height systems, Helmert’s 

orthometric heights (which use Poincaré and Prey reduction) are still in vogue in many 

countries, probably due to their relative ease of implementation. Also, there are many other 

countries, mainly in Eastern Europe, the former Union of Soviet Socialist Republics 

(USSR) and South America use normal heights.  
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Normal-orthometric heights are also practiced in several countries, e.g., United 

Kingdom (Penna et al., 2013), Australia (Featherstone and Kuhn, 2006), New Zealand 

(Amos, 2007), Sri Lanka (Abeyratne et al., 2010) and Uganda (Ssengendo, 2015). This 

height system is defined for the case when gravity observations are not available along the 

levelling lines and therefore, utilises spheropotential number instead of the geopotential 

numbers. The normal-orthometric correction (e.g., Burrard, 1910; Rapp, 1961; Bomford, 

1971) is applied to the levelling height differences for calculating the normal-orthometric 

heights. Moreover, unlike normal or orthometric heights, there is no unique reference 

surface defined for normal orthometric heights, though quasigeoid is sometimes preferred 

(Amos, 2007; Ssengendo, 2015).  

With so many height systems available, the discussion on the suitability of heights 

and geoid (Vaníček et al., 2012) or quasigeoid (Sjöberg, 2013) as a reference surface for 

heights has remained group/country specific. 

1.2.1 Indian vertical datum and height system 

We will start this section by depicting different major topographical landforms of India 

(Figure 1.2.2): the Himalayas, Aravalli and Vindhya ranges, Western and Eastern Ghats, 

plateaus, desert, the Gangetic plains and a long peninsular coastline of ~7500 km. To 

differentiate the heights of various landforms, we have used the bins of <300 m, 300 m – 

600 m, 600 m – 1200 m and >1200 m, because these bins are also used in the standard 

school textbook (NCERT, 2006, pg. 9).  

Different sources have different numbers attached to the highest peak, average 

elevation and length of the hill ranges in India. To provide an overview, we tabulate some 

information in Table 1.2.2, from not so reliable sources (Wikipedia and Encyclopedia). 
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Table 1.2.2: Information about different landforms in India. 

Landform/coastline 
Highest peak 

(m) 

Average 

elevation (m) 
Length/ Area 

Aravalli  1722 400-600 670 km 

Vindhya 752 300-650 1200 km 

Western Ghats 2637 900-1500 1600 km 

Eastern Ghats 1680 600 1400 km 

Himalayas (India) 8586 900-4900 500,000 km2 

Thar Desert - 150 238,254 km2 

Deccan plateau - 600 422,000 km2 

Chota Nagpur plateau 1350 - 65,000 km2 

Gangetic plains - 250 2,500,000 km2 

Coastline - - 7516 km 

 

 

Figure 1.2.2: Various landforms in India. Red italics shows the name of the Indian state 

or Union territory. 
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The information in Table 1.2.2 and Figure 1.2.2 is provided so that readers may 

appreciate the painstaking job of SoI in the high precision levelling of a country like India. 

Now, resuming the discussion on the vertical datums and height systems, according 

to Burrard (1910), the following four choices were considered and debated to establish the 

‘zero’ surface/reference for the IVD defined in 1909 (IVD1909): 

1. Any one of the benchmarks established at Delhi, Jodhpur, Raichur, Sanichari or 

Naubatpahar. 

2. Mean Sea Level (MSL) estimate determined at one tidal observatory. 

3. MSL estimates determined at all the tidal observatories. 

4. MSL from a few selected tidal observatories. 

After considering all the merits and limitations of the above four options, it was 

decided to select a few tidal observatories that would define the zero surface for the Indian 

levelling net or the IVD1909. To choose a set of tidal observatories from the then 

maintained 42 observatories by SoI, a simple rule was devised mentioning that the tidal 

observatory should be an open-coast station (not situated in any of the channels, estuaries, 

gulfs or rivers) at which successive annual determination of MSL should be consistent.  

As such, only nine tidal observatories were selected, fulfilling the above-laid 

criteria: Karachi, Bombay (Apollo Bandar), Karwar, Beypore, Cochin, Negapatam, 

Madras, Vizagapatam, and False Point (Figure 1.2.3). The first five lie in the Arabian sea, 

while the last four in the Bay of Bengal. Thus, the precise levelling net of India consisting 

of 86 main lines was terminated at the Tide Gauge Bench-Marks (TGBM) of the above 

nine tidal observatories. The heights of these TGBMs were transferred from the tidal 

observatories considering that the MSL estimate at each of these nine stations is the same, 

i.e., zero. Thereafter, these 86 lines (including nine lines from the tidal observatory to 
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TGBM) were adjusted using least-squares (with the tide gauge MSL estimates constrained 

to zero) to define the first IVD, i.e., IVD1909 (Burrard, 1910).  

 

Figure 1.2.3: Mean Dynamic Topography (DTU19MDT) along with tidal observatories 

used in IVD1909 and IVD2009 

An important fact to be mentioned here is that though the sea surface in the Bay of 

Bengal and Arabian sea were considered to be equal, various observations (e.g., levelling 

from east coast to west coast, levelling from the east coast and west coast to a centre 

location etc.) suggested that there might be a difference of almost one Indian foot between 

the two (Burrard, 1910). However, the difference (so-called error) in all the experiments 

was attributed to the possible levelling errors, and this difference of one foot was left for 

further confirmation by the future successive levelling exercises. Later, it was confirmed 
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by Ghildiyal and Kumar (1984; also see Shankar and Shetye, 2001) that the Bay of Bengal 

is on average ~320 mm higher than the Arabian sea (e.g., see difference in MDT of west 

and east coasts in Figure 1.2.3). It should be noted that some exercises for IVD1909 

showed that even the sea surface along either east or west coast is not same, but this was 

also attributed to the levelling errors. There exists a similar example of discrepancies in 

the mean sea surface (MSS) along and across the Atlantic and Pacific coastlines in North 

America (Reid, 1961; Sturges, 1967; 1974). This approach of constraining the level net to 

multiple tide-gauges is a possible cause of a north-south tilt (Fischer, 1975; 1977; 

Featherstone and Filmer, 2012) that is also confirmed from our results (Chapter 5). It is 

possible that India may have an east-west tilt also (Figure 1.2.3), but it can’t be confirmed 

because of the lack of GNSS/levelling data in the east-west extent (Section 2.2). 

The precise levelling net for IVD1909 consisting of 86 main lines was observed 

during 1858 to 1909 that covered a total of ~28922 km of double-line levelling (Burrard, 

1910) that was a practice of observing any given levelling line by two surveyors one after 

the other, immediately. A total number of 15981 benchmarks of different types (standard, 

embedded, inscribed, etc.) were connected by these main lines. In this half a century-long 

levelling exercise, 16 different levels (weighing from ~23 kg to ~12 kg) and four types of 

levelling staves (introduced in 1858, 1902, 1906 and 1907) were used. 

The spirit levelling height differences were transformed to dynamic heights by 

applying a dynamic height correction using normal gravity instead of the observed gravity 

(Burrard, 1910, pp. 100-103) because until 1909, pendulum gravity observations were not 

taken at a sufficient number of benchmarks. These dynamic heights were used for the 

adjustment of the level net. The orthometric correction (also using normal gravity) was 

then applied to compute the so-called orthometric height. However, due to the use of 
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normal gravity in place of the observed gravity, the resultant heights from IVD1909 were 

actually normal-orthometric heights (Table 1.2.1; Burrard, 1910).  

The IVD1909-based height information is sufficient for the needs of topographical 

mapping on scales of 1: 50,000 or 1: 25,000 where the contour interval is 10 m / 5 m in 

plain areas or 200 m / 100 m in hilly areas (as per SoI topographical maps). Now with the 

demand of 0.5 m to 1 m contours, the prevailing height information is not sufficient. In the 

past 100 years, due to developmental activities, like widening of roads and railways, 

construction of townships and industrial premises, most of the permanent benchmarks 

have been destroyed. The frequent seismic activity in various parts of the country and 

corresponding crustal movements have also necessitated the introduction of a new height 

system. Moreover, IVD1909 was defined as a suitable datum only for 50 years. It was 

recommended in the original report (Burrard, 1910) that the same must be revised without 

losing the values observed during 1858-1909 as they will be useful for various scientific 

studies. 

Considering the fact that the height information was almost a century ago and with 

the availability of precise relative gravimeters, the SoI started a project in 2005 to redefine 

the IVD and modernise the Indian height system. There are some improvements in IVD 

defined in 2018 (IVD2009; G&RB, 2018) compared to IVD1909, such as using double 

foresight backsight levelling lines with invar staves and observed gravity values. Also, 

rather than fixing the MSL estimates to zero at nine tidal observatories, the average of the 

local geopotential value computed at eight tidal observatories was constrained in 

IVD2009.  

The eight tidal observatories were chosen such that each has data of at least 19 

years (for 18.6 years nodal tidal cycle) without significant data gaps. We could not quantify 

the word significant as no information is available on this. For this criterion, the following 
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eight tidal observatories were chosen with their data from 1976-1994: Mumbai, 

Marmagao, Karwar and New Mangalore on the west coast, and Paradip, Vishakhapatnam, 

Chennai and Tuticorin on the east coast (Figure 1.2.3). The local geopotential value at each 

of the eight tidal observatories was calculated as the average value of six estimates using 

the same tidal data (which are not available) and Mean Dynamic Topography (MDT) 

models but varying Global Geopotential Models (GGMs).  

The difference between the chart datum and the MSS at these eight tidal 

observatories ranges from 0.62 m to 2.56 m for the tidal data used from 1976-1994. The 

average (of six) local geopotential value at these eight tidal observatories varied from 

62636856.54 m2s-2 (at New Mangalore) to 62636861.80 m2s-2 (at Karwar) with the final 

average value (of all eight observatories) as 62636859.40 m2s-2, which is taken as the local 

geopotential value for IVD2009. Though differently but on similar lines of constraining 

the MSL at nine tidal observatories to zero in IVD1909, local geopotential value is now 

taken as the same at eight tidal observatories for IVD2009. Therefore, IVD2009 may also 

be prone to a north-south slope because the difference between the final geopotential value 

(62636859.40 m2s-2) and its minimum (62636856.54 m2s-2) and maximum (62636861.80 

m2s-2) values translates to a difference of approximately 0.29 m and -0.26 m, respectively. 

We cannot discuss the reasons for choosing average of the mean value for defining 

IVD2009 because it is not available in any publication. 

The precise levelling net for IVD2009 is based on Helmert’s orthometric height 

system that consists of 42 precise levelling lines (including eight lines between the TGBM 

and tidal observatories) covering a distance of 19450 linear km. The remarkable fact is 

that the distance of 19450 km was covered in a timeframe of three years, i.e., from 2006-

2008. The levelling net was adjusted using 41 observations (one was not included as a 
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result of some unexplained trial and error exercises of adjustment) involving a total of 32 

stations, including eight fixed TGBMs. 

Not much information is available about IVD2009 in the public domain. However, 

in personal communication with Singh in (2021), it was concluded that IVD2009 had been 

defined with the best data available with SoI during that time (2017-2018), and IVD2009 

also has a significant scope of improvement after further in-depth analysis. However, due 

to the non-availability of the data and details of the IVD2009 computation, it is difficult to 

further study the merits and limitations of the IVD2009.  

When a redefined IVD was proposed, a long-term goal was also set to develop a 

precise national gravimetric geoid model to be adopted as the IVD, whenever available. 

Since then, officers and scientists from only either SoI or NGRI have made a few 

gravimetric geoid-related studies but are limited to local regions, e.g., southern India, 

central India, or western India. Only SoI and NGRI have put in the effort to develop 

regional gravimetric geoid because these two organisations are the keeper of the gravity 

data in India, which is deemed to be classified. Anyway, we will now discuss these 

regional geoid models in detail in the next section. 

1.3 Previous Indian gravimetric geoid models 

There have been only a few studies on gravimetric geoid modelling over India, which we 

have summarised in Table 1.3.1 followed by a discussion on the individual studies.  
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Table 1.3.1: Gravimetric geoid related studies in India 

 
Singh 

(2007) 

Singh et 

al. (2007) 

Carrion et 

al. (2009) 

Srinivas et 

al. (2012) 

Mishra 

and Ghosh 

(2016) 

Mishra 

and Ghosh 

(2016) 

Choudhary 

(2017) 

Singh and 

Srivastava 

(2018) 

Region 

24˚ N - 

29˚ N; 76˚ 

E - 82˚ E 

28˚ N - 

29˚ N; 76˚ 

E – 77.30˚ 

E 

6˚ N - 14˚ 

N; 74.5˚ E 

– 80.5˚ E 

12.5˚ N – 

18.5˚ N; 

75.5˚ E – 

79.5˚ E 

Dehradun 
#4 (30˚19’ 

N, 75˚4’ 

E) 

Hyderabad
#4 (17.5˚ 

N, 78.5˚ 

E) 

India 

20˚ N - 

31˚N, 71˚ 

E - 79˚ E 

Software 
GRAVSO

FT 

GRAVSO

FT 

GRAVSO

FT 

GRAVSO

FT 

GRAVSO

FT 

GRAVSO

FT 
NA 

GRAVSO

FT 

Technique FFT FFT 

Fast 

Collocatio

n 

LSC LSC LSC NA FFT 

Type Geoid Geoid Geoid Geoid Geoid Geoid Geoid Geoid 

Resolution 5’x5’ 
0.5 km x 

0.5 km 
2’x2’ NA NA NA NA 15’x15’ 

Gravity 

data 

SoI 

database 

SoI 

database 

NGRI 

database 

NGRI 

database 

SoI 

database 

SoI 

database 

SoI 

database 

SoI 

database 

GGM 
EIGEN-

GL04C 
EGM96 NA EGM2008 EGM2008 EGM2008 NA GGM05C 

0 degree NA NA NA NA NA NA NA NA 

Integratio

n radius 
2 0.5 NA NA NA NA NA NA 

Kernel 

modificati

on 

Wong and 

Gore 

(1969)  

Wong and 

Gore 

(1969) 

None None None None NA NA 

Terrain 

treatment 

TC#1 and 

RTM 
RTM#2 NA RTM#2 RTM RTM NA RTM 

DEM/ 

DSM 

GLOBE 

2’x2’, 

4’x4’ and 

6’x6’ 

Generated 

from 130 

spot 

heights 

NA GTOPO30 

1:50000 

topo map 

derived 

SRTM 

3”x3” 
NA 

SRTM 

30”x30” 

Atmosphe

ric 

correction 

Constant 

0.87 mGal 
Yes NA NA NA NA NA NA 

Ellipsoidal 

correction 
NA NA NA NA NA NA NA NA 

No fit 

stats (min, 

max, 

mean, std) 

#0 

-0.148; 

0.304; 

0.049; 

0.089 

-0.172, 

0.189, -

0.220, 

0.083 

NA 

-0.360, 

0.170,  

-0.020, 

0.090 

0.023, 

0.266, 

0.175, 

0.190#5 

-0.130, 

0.210, 

0.070, 

0.100#5  

NA 

-0.346, 

0.226,  

-0.005, 

0.136 

After fit 

stat (min, 

max, 

mean, std) 

#0 

-0.102, 

0.122,  

-0.001, 

0.044 

NA  

-1.510, 

1.080, 

0.000, 

0.220#3 

NA NA NA NA 

-0.064, 

0.125, 

0.039, 

0.072 

 

TC: Terrain Corrections 

RTM: Residual Terrain Model 

LSC: Least Squares Collocation 

FFT: Fast Fourier Transform 

DEM: Digital Elevation Model 

DSM: Digital Surface Model 

 

#0 Before and after fit statistical values (min, max, mean, STD) are given in m. 
#1 In Singh (2007), planar TC have negative values that is impossible.  
#2 In Singh et al. (2007), RTM is used synonymously with TC. 
#3 In Carrion et al. (2009), validation is done with respect to EGM2008 derived 

geoid undulations. 
#4 In Mishra and Ghosh (2016), only location is given in the article and not its extent. 
#5 In Mishra and Ghosh (2016), root mean square error (RMSE) is provided instead 

of standard deviation. 
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Before discussing the Indian gravimetric geoid studies further, we mention two things: 

i) The free-air gravity anomalies in India, either in SoI or NGRI database, are the 

free-air gravity anomalies on the geoid.  

ii) If RTM is used in GRAVSOFT, the resultant will be height anomalies for which 

free-air gravity anomalies are required on the Earth’s topographical surface. 

Thereafter, GRAVSOFT allows computation of a geoid-quasigeoid separation 

term to calculate the geoid undulations from height anomalies. 

None of the literature from Table 1.3.1 have mentioned anything about both these 

aspects and have used free-air gravity anomalies on the geoid with RTM to compute geoid 

undulations. Though none have mentioned but to their best defence, we would say that a) 

free-air gravity anomaly on the geoid is practically equivalent to the free-air gravity 

anomaly at the Earth’s topographical surface (iff it is assumed that the Earth’s gravity 

gradient is equal to the normal gravity gradient, and normal height is equal to the 

orthometric height), and b) they have used the terms geoid-undulation and height anomaly 

synonymously. It should be noted that though free-air gravity anomalies at the Earth’s 

topography and the geoid are practically equivalent, the differences can be significant in 

view of the cm-precise geoid, primarily, due to the mentioned assumptions. Despite 

considering the above discussed two points, there are certain questions that arise from the 

studies listed in Table 1.3.1, which are as follows: 

i) Singh (2007): The topography in the study area varies from 1 m to 6918 m. The 

authors have assumed that the atmospheric correction will not be significant and 

used a constant value of 0.87 mGal for the whole gravity data set, which is equal 

to the atmospheric correction at the sea level (H = 0 m; Moritz, 2000). This 

assumption cannot be justified at least when very simple formulations for 



21 

 

To Maa 

atmospheric correction are already available in the literature (Section 3.3). Also, it 

is not practically and conceptually possible to have negative planar TCs, yet the 

authors have achieved the same. The reported TCs vary from -3.38 mGal to 36.69 

mGal with a mean and standard deviation of 0.598 mGal and 3.871 mGal, 

respectively. Their TC map also shows a large area with negative planar TCs. 

ii) Singh et al. (2007): The flowchart provided by the authors have shown the use of 

TC to compute geoid undulation. However, the formulas provided include the 

methodology involving RTM. They have shown in the flowchart that atmospheric 

correction is applied, but neither have they provided any formulation nor 

discussion. It becomes difficult to understand what methodology has been 

followed: the one shown in the flowchart or the one provided in the formulations, 

as these two are different. Also, the authors have prepared a DEM from spot 

heights, but no information is provided on the resolution or the gridding method. 

This information is very crucial for topographic corrections, either TC or RTM. 

Above all, the validation results seem intriguing because the mean value (0.220 m) 

is beyond the minimum (-0.172 m) and maximum (0.189 m) values. However, this 

might be a typographical error. 

iii) Carrion et al. (2009): We cannot comment anything on the methodology adopted 

because not much relevant information is provided in the article on the geoid 

computation. 

iv) Mishra and Ghosh (2016): It is really very hard to understand the data and 

methodology followed in their study.  

Data used: The DEM for Dehradun region was developed using a 1:50,000 

topographical map, while for Hyderabad, SRTM 3”x3” DSM is used. The authors 



22 

 

To Maa 

have not provided any rationale for this different choice of DEM in the two study 

areas. We can only speculate that they might have chosen to use the topographical 

map in and around Dehradun for the accuracy concerns of the height information 

because Dehradun is a relatively more undulating region than Hyderabad. 

However, no information is provided on either extent of the study area or the 

resolution of the developed DEM. Moreover, the provided coordinates of 

Dehradun are somewhere in the Punjab, which can only be a typographical error 

in longitude.  

Methodology: Regarding the methodology, there are several possibly-only-

typographical errors in the use of various GRAVSOFT subroutines. However, the 

major concern is the explanation of the methodology. To provide a summary of the 

author’s explanation: they have a set of free-air gravity anomalies that are being 

reduced to residual free-air anomalies by subtracting the corresponding GGM and 

RTM implied gravity anomaly, at the gravity data points. LSC is then used to 

predict the residual free-air gravity anomalies at the GNSS/levelling points to 

which the GGM and RTM implied gravity anomalies are restored to obtain the 

free-air gravity anomalies at the GNSS/levelling points. Thereafter, the geoid 

undulation (from GNSS/levelling data: ellipsoidal/geodetic height – normal 

orthometric height) and the free-air anomalies are given input in N2Zeta subroutine 

(of GRAVSOFT) to obtain height anomaly and geoid-quasigeoid separation. As 

such, it is hard to understand what is being computed in the study. Moreover, 

Bouguer anomaly (and not free-air anomaly) is required to be given as input in the 

N2ZETA subroutine that is used to compute geoid-quasigeoid separation term.  

Results: The authors talked about converting the gravity anomaly 

components (residual, GGM and RTM gravity anomalies) at each of the 
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GNSS/levelling data stations to the corresponding three height anomaly 

components and three geoid-quasigeoid separation terms (each for residual, GGM 

and RTM gravity anomalies). The corresponding terms height anomaly and geoid-

quasigeoid separation terms are added to calculate final geoid undulation. 

However, in practice, height anomaly components are added together to calculate 

the height anomaly to which geoid-quasigeoid separation term calculated using the 

Bouguer anomalies is added for obtaining the final geoid undulations. 

v) Choudhary (2017): This is based on news coverage of the INDGEOID version 1.0 

(https://www.geospatialworld.net/videos/survey-india-launches-geoid-model-

country/) announced by the Surveyor General of India in 2017. SoI claimed to have 

developed INDGEOID version 1.0 as the first national gravimetric geoid model 

for the whole of India. However, neither the model nor any scientific article has 

ever been available in the public domain to verify this. Therefore, we cannot 

comment on the merits or limitations of the methodology adopted.  

vi) Singh and Srivastava (2018): Much relevant information pertaining to geoid 

modelling is missing from this article. Therefore, we cannot comment on the 

methodology. However, the choice of 15’x15’ resolution needs a strong 

justification because though geoid is a smooth surface but is not smooth enough 

that it does not change in an area of ~ 625 km2. In fact, focal statistics tool in 

ArcGIS, with our calculated Indian geoid model, shows that there are certain 

regions in which the geoid undulation can vary up to as large as 12 m in an area of 

~625 km2. Moreover, with the availability of high-resolution DEM, the use of 

SRTM 30”x30” is in contrast to the fact that high-resolution topographical 

representation is a must for precise computation of topographical effects. 
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1.4 Research gaps 

The following are some key points from the discussion of the previous gravimetric geoid-

related studies in India: 

i) All the studies of geoid modelling in India have been done in local areas and only 

using GRAVSOFT software with RTM (including INDGEOID ver1, as per 

personal communication with an official at G&RB, SoI in (2018)). GRAVSOFT, 

as it is available, has a limitation of handling large matrices involved in calculating 

RTM or matrix inversion in GEOCOL. This is a possible reason of using a coarse 

dataset in regional geoid-modelling studies in India. 

ii) Despite all the studies in India with GRAVSOFT, there is no single study that 

reports the complete framework of the development of the gravimetric geoid model 

for India and its validation. 

iii) Though it has been accepted that a precise high-resolution DEM should be used 

for topographic effects, this has never been practiced in any geoid modelling study 

over India, even with the availability of freely available high-resolution global 

DEMs. 

iv) There is an inconsistency in reporting the methodologies and results that obstruct 

a fair and objective comparison of different geoid-related studies. The used data or 

the developed product are also never provided. 

v) India has a varying topographical landform that makes it one of the most 

challenging and best study areas to check the suitability of different existing 

algorithms or to analyse the scope of new algorithms in geoid modelling. Yet, no 

study has covered several landforms in one geoid calculation and discussed the 

results in connection with varying topography. 
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vi) A gravimetric geoid model for the whole of India has remained elusive. 

The research gaps identified above seem to be India specific. However, as we move 

forward in the thesis one may note that several other research gaps of global significance 

have also been addressed in this study. 

1.5 Objectives 

Based on the literature review and identified research gaps, we have set the following three 

objectives for this thesis: 

i) Develop a gravimetric geoid model for India using all the available gravity and 

terrain data. 

The first high-resolution gravimetric geoid model will be calculated for the  

mainland India using three different approaches, which have never been applied 

over India in any of the regions, namely, the CUT, the KTH and the UNB methods 

(Chapter 5). Inconsistencies, if any, in the reported literature of the three methods 

(CUT, UNB and KTH) will be dealt in detail to avoid the same in future (Chapters 

3 and 4). Discussions on various aspects involved in calculating the gravimetric 

geoid will be provided, keeping in mind the decades-long quest of geodesists for a 

cm-precise geoid (Chapter 3) (Sansò and Rummel, 1997; Foroughi et al., 2019).  

GEOCOL with RTM method will also be used for geoid calculation but not 

for the whole of mainland India due to the method’s limitation of large matrix 

inversion. Regional geoid models developed using GEOCOL will only be used for 

comparison and validation because one of the main motives of this study is to 

explore new methodologies over India that have never been tested.  
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ii) Analyse the use of high-resolution DEM in determining terrain effects. 

The major reasons for either not using or circumventing the use of high-resolution 

DEM for terrain effects are i) use of high-resolution DEM causes a significant 

increase in the computation time, e.g., it may take years for the computation of 

precise planar TC for India using one-arc second DEM even with a supercomputer 

and ii) high-resolution DEMs provide a better representation of the topography 

with comparatively detailed information of the undulations, therefore, certain 

algorithms may not provide a numerically convergent solution for terrain effects, 

e.g., FFT method of planar TC computation which are limited to the regions having 

gradients less than 45˚. However, terrain effects are one of the important 

computations in precise geoid development, and that is only possible with the use 

of high-resolution DEM. So, an efficient algorithm will be developed for the fast 

computation of precise TC using the high-resolution DEM (Chapter 3).  

iii) Evaluate and validate the developed gravimetric geoid and quasigeoid models. 

The reference surface for Helmert’s orthometric heights is the geoid, while no 

unique reference surface (either geoid or quasigeoid) is specified for normal-

orthometric heights. We have been provided with 119 GNSS/levelling datapoints, 

clustered in four regions of India, without any information on the height system. 

Therefore, with an assumption that the levelling heights are based on IVD1909 and 

normal-orthometric height system, we will validate (absolute and relative testing) 

our GNSS/levelling data with both geoid and quasigeoid for all the combinations 

of parameter sweeps in all the three methods (CUT, KTH and UNB) before and 

after 4-parameter fitting (Chapter 5). We will also validate Pizetti’s geoid gradients 

with Helmert’s vertical deflections noting that the curvature of the plumbline is 

neglected. The vertical deflections consist of 700 meridional components and 279 
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prime vertical components over most of India in contrast to only 119 

GNSS/levelling points clustered in four regions.  

We will also calculate the geoid model of four regions (Uttar Pradesh West, 

Uttar Pradesh East, Hyderabad and Bangalore) using GEOCOL with RTM because 

a few of the previous studies in India have used this approach. Since no detail work 

is done with GEOCOL, these geoid models have been used only for comparison 

with the i) geoid models developed using the other three approaches and ii) 

previously developed geoid models in and around these four regions. Moreover, 

we will also perform an inter-comparison of i) national geoid models computed 

using the three methods and ii) regional geoid models calculated using the four 

methods. It is to analyse the differences between the four methodologies in the 

final product (Chapter 5). The inter-comparison of geoid models will be an 

important analysis from the viewpoint of the quest of cm-precise geoid. 

1.6 Significance of the study 

A precise gravimetric geoid model is fundamental to both infrastructure developments as 

well as for geoscientific activities in India. The studies on gravimetric geoid for India either 

are not published, or those published have not provided the data and/or all the necessary 

computational details that restricts the repeatability of their research. Moreover, to date, 

no gravimetric geoid model for India is available in the public domain. Therefore, this 

study will be the first to provide a national gravimetric geoid model and also a strong 

conceptual framework using three different geoid modelling approaches (which have 

never been used in any part of India) that can be used by the competent authorities to 

develop an official geoid model using the classified gravity data. 
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The comparison of different geoid solutions will help in understanding any 

similarities or dissimilarities among different methods of geoid computation. An in-depth 

discussion (merits, limitations, inconsistencies) of the three methods (CUT, UNB and 

KTH) from the viewpoint of cm-precise geoid is provided that shall be of use to any geoid-

modeller interested in developing a precise gravimetric geoid or quasigeoid model.  

The IVD2009 based physically meaningful (Helmert’s) orthometric heights (H), 

referred to the geoid, are connected with the geodetic heights obtained from GNSS 

positioning and referred to an ellipsoid, via the geoid undulation (Eq.(1.2.1)). An 

immediate consequence of this is the conversion of elevation models (e.g., national 

CartoDEM (NRSA, 2006)) and height observations in geodetic heights to orthometric 

heights effortlessly. A freely available geoid model will allow surveyors to efficiently 

measure physical heights with GNSS positioning by replacing the costly and laborious 

differential levelling (while keeping an account of accuracy required).  

Recently, Indian Railways, Public Works Department and National High Speed 

Rail Corporation Limited have suggested using a geoid model for their infrastructural 

projects/developments. However, since no Indian gravimetric geoid model is available, all 

have mentioned using EGM2008. Therefore, all concerned organisations can now make 

use of our developed Indian gravimetric geoid model instead of EGM2008 or any other 

GGM. 

Since the geoid is a physically meaningful surface, it responds to changes in the 

gravity field due to various geophysical and geodynamical phenomena, in turn allowing 

us to study them as well (e.g., Vaníček and Christou, 1993).  Therefore, while benefiting 

a number of stakeholders: SoI, Geological Survey of India (GSI), Oil and Natural Gas 

Corporation (ONGC), Indian Oil Corporation Limited (IOCL), NGRI, National Disaster 

Management Authority (NDMA), Indian National Centre for Ocean Information Services 
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(INCOIS), Coal India Limited (CIL), the national gravimetric geoid model (and its 

intermediate results, e.g., TC) will also be invigorating sciences like geomorphometry 

(Coblentz et al., 2011), hydrography (Robin et al., 2016), oceanography (Ophaug et al., 

2015), among many other applications (Vaníček and Christou, 1993).  

1.7 Structure of the Thesis 

The thesis is divided into six chapters. Chapter one provides an introduction to the previous 

geoid-related studies in India and their limitations. Thereafter, setting up the objectives 

and discussing the significance of the present thesis work. 

Chapter two describes the dataset available to us: gravity, GNSS/levelling, 

deflections of the vertical, DEMs and GGMs.  

Chapter three discusses various corrections required in gravimetric geoid or 

quasigeoid modelling. The corrections that are discussed are: free-air gravity correction, 

topographic correction, atmospheric correction, ellipsoidal correction, downward 

continuation, and zero-degree term and tidal corrections. Free-air gravity correction, and 

zero-degree and tidal corrections are described in general to any method of geoid or 

quasigeoid computation, while the other four are discussed as are applied in the three 

methods individually, i.e., the CUT, the UNB, and the KTH methods.  

We have identified some inconsistencies in the formulas and tried to re-derive and 

resolve them. A new method of planar terrain corrections is also provided, along with a 

few new formulas for working in different solid Earth permanent tide systems, i.e., tide-

free, zero-tide and mean-tide. With the derived algorithms and formulas, we have also 

provided the values of various parameters of two existing ellipsoids (WGS84 and GRS80) 

and a new ellipsoid (not official, but based on IHRS parameters (Poutanen and Rózsa, 

2020)) in the three permanent tide-systems.   
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Chapter four is about the geoid and quasigeoid computation. The three methods of 

geoid and quasigeoid computation are discussed along with geoid-quasigeoid separation 

term. It should be noted that though we have used the names, the CUT, the UNB and the 

KTH methods, but we have not applied any method exactly in the same way as applied by 

the institutes who developed the methodologies. A discussion on the modifications and 

limitations of the methods applied as compared to the original methods is provided 

wherever found necessary.  

In chapter five, the results of external validation with respect to GNSS/levelling 

dataset and deflections of the vertical are provided. Since a few previous geoid-related 

studies in India have utilised GEOCOL with RTM, we have also calculated geoid model 

of the four regions for a comparison with Indian geoid models calculated using the three 

methods (CUT, UNB and KTH). Further, an inter-geoid comparison of the Indian and 

regional geoid models is also provided.  

Chapter six lists the conclusions and recommendations. 
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Chapter 2: Datasets 

2.0 Introduction 

Gravimetric geoid determination, irrespective of the methodology followed, 

involves three datasets, viz., gravity anomalies, Digital Elevation Model (DEM) and 

Global Geopotential Model (GGM). Additionally, either or both of Global Navigation 

Satellite System (GNSS)/levelling and deflections of vertical data are used for the 

validation study. Some researchers also use density models in geoid computation but is 

not considered in the present study because they are not available to us. Like any other 

study, precise datasets are favourable for precise determination of the geoid. Though all 

the geoid computation literature involves a brief discussion on the used datasets, many 

researchers have discussed the characteristics and subtleties of the datasets for their study 

areas, e.g., Lagios et al. (1996; Greece), Featherstone et al. (1997; Australia), Duquenne 

(2006; France), Borghi et al. (2007; Italy), McCubbine et al. (2017b; New Zealand) and 

Abd-Elmotaal et al. (2018; Africa). 

In this chapter, we will discuss the availability, characteristics and hence, our 

choice of the datasets for the geoid modelling study over India.  

2.1 [Lack of] Freely available gravity data 

Gravity data are primarily used in the 1) evaluation of the GGMs (Section 2.4), 2) Stokes’s 

integration to compute the residual geoid/quasigeoid or approximate quasigeoid (Section 

4.2), and 3) computation of geoid-quasigeoid separation term (Section 4.3). Before 

discussing the availability of gravity data for the present study, we will briefly discuss 

gravimetry in India as understood from Gulatee (1948), Sundaram et al. (2009) and Tiwari 

et al. (2014). 
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Several organisations have conducted terrestrial gravity surveys over different 

parts of India. The gravity data comprise latitude, longitude, observed gravity, and physical 

height (based on the national height system). The Survey of India (SoI) began absolute 

gravity measurements in 1865 using brass pendulums. Five hundred and sixty-four 

pendulum measurements were acquired throughout the country in two separate phases, 

i.e., 1902-1925 and 1926-1939. After the second world war, the gravity surveys were 

continued for further densification using Frost and Worden gravimeters. A gravity map of 

India was produced at a scale of 1:12,000,000 in 1956 (Gulatee, 1956). This gravity map 

was drawn with a contour interval of 20 mGal using the data from around 3000 stations. 

The gravity base-station for the Indian National Gravity Datum 1963 (INGD63) is 

situated at Dehradun. The absolute gravity value of this base station in INGD63 is 

978064.0 mGal, and 978049.09 mGal based on the International Gravity Standardization 

Net 1971 (IGSN71; Morelli et al., 1972). Hence, a correction of ~14.9 mGal (which 

originates from an error at Potsdam, e.g., Dryden, 1942) is generally applied to data 

observed in the INGD63 to obtain the corresponding value in International Gravity 

Standardization Net 1971 (IGSN71). 

During the late-1950s to the mid-1970s, other organisations, such as the Geological 

Survey of India (GSI) collected gravity data. The old and new data were compiled and 

transformed to a common datum (INGD63) to prepare the gravity map of India with a 10 

mGal contour interval (GMSI, 1975). It should be noted that there is no information 

available on how the different data were transformed to the same datum. This map was 

published in 1975 at a scale of 1:5,000,000 (GMSI, 1975).  

Later, due to the requirement of updated, precise gravity data, it was decided to 

revise the gravity map of India using the data collected by SoI, GSI, National Geophysical 

Research Institute (NGRI), Oil and Natural Gas Corporation (ONGC), and Oil India 
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Limited (OIL) under various projects. A total of 143,786 gravity data points were observed 

by these organisations, which were archived at GSI, Hyderabad. However, only 51,356 

data points were selected to maintain a uniform coverage over the entire India. These 

points were re-processed to refer to IGSN71, but the reprocessing steps are not available 

in the literature. The final output was a revised gravity map series of India (GMSI) 2006 

that comprises five sets of gravity anomaly maps, including a free-air anomaly map and 

Bouguer anomaly map, both at 1:2,000,000 scale (GSI-NGRI, 2006). These are the latest 

gravity maps computed/compiled for India.  

However, pointwise observed gravity data is confidential in India. Therefore, with 

this predicament, we obtained a grid of Indian terrestrial gravity data from GETECH 

(https://getech.com/) that is claimed to come from the GMSI. The GETECH gravity data 

comprise a 0.02˚×0.02˚ grid of simple Bouguer gravity anomalies over all of India (except 

a few regions in Jammu and Kashmir, Arunachal Pradesh, and the whole of Andaman and 

Nicobar and Lakshadweep) with an overall estimated precision of ±1.5 mGal (GETECH, 

2006). According to the GETECH manual for Indian gravity data, they used i) the normal 

gravity formula from WGS84 (NIMA, 2000),   
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FACg h h  −= + −   (2.1.2) 

iii) the following atmospheric correction (Ecker and Mittermayer, 1969) 

 

1.0470.1160.87 mGal, 0km

0.87 mGal           , 0km

H
GETECH

atm

e H
g

H


− 
= 

=
 (2.1.3) 

and iv) the simple planar Bouguer correction 

https://getech.com/
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 0.04191  mGal 0.1119  mGalGETECH

BCg H H = −  −  (2.1.4) 

where 0_ 84WGS  is normal gravity on the WGS84 ellipsoid, 
GETECH

FACg  is the free-air 

correction,   is the geodetic latitude, h  is the ellipsoidal height (in m), H  is the elevation 

(in km for Eq. (2.1.3) and in m for Eq. (2.1.4)), 
GETECH

atmg  is the atmospheric correction, 

 is the Bouguer correction and ρ is the constant topographical density of 2670 

kgm-3. We recomputed the free-air gravity anomalies ( )g  from the GETECH data using 

 
0_ 84

0_ 80

0.1119GETECH GETECH

SBA WGS FAC

GETECH CUT CUT

atm GRS FAC atm

g g H g

g g g

 

   

 =  + + − 


− − + + 

 (2.1.5) 

where from Heiskanen and Moritz (1967, pg. 78), we have  

 ( )2 2

0_ 80 2

2 3
1 2 sinCUT

FAC GRSg f m f H H
a a

  
 

= + + − − 
 

 (2.1.6) 
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1 sin
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
 



 +
 =
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 (2.1.7) 
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0.871 1.0298 10 5.3105 10 2.1642 10

9.5246 10 2.2411 10

CUT

atm
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g

H H


− − −

− −

−  +  −  +
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 −  
 (2.1.8) 

For GRS80, 
26378137 m,  0.0066943800229,  0.0034478600308,a e m= = =

 1 298.257222101f = , 978032.67715mGala =  and 0.001931851353k =   (Moritz, 

2000).  

The descriptive statistics of the differences between the free-air anomalies from 

the GETECH data and recomputed free-air anomalies (that are mostly due to the different 

free air correction) are (in mGal): min = -0.001, max = 0.188, mean = 0.002, STD = 

±0.007. It should be noted that we have used H  instead of h  in Eq. (2.1.2) because we 

believe that there might be a typographical error in the GETECH manual.  The reason 

GETECH

BCg
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being that the use of h  would have provided gravity disturbances and not gravity 

anomalies (Hackney and Featherstone, 2003). A blanket accuracy estimate of the 

reconstructed free-air anomalies from the GETECH Bouguer anomalies is ±2.4 mGal, 

calculated using the DEM error in the CUT reconstruction technique (Featherstone and 

Kirby, 2000) as per ( ) ( )
2 251.5 10 2 17.3FAA G  −=  +   (17.3 m is the accuracy 

estimate of DEM used, Section 2.5). 

The atmospheric correction (Eq. (2.1.8)) was removed from the recomputed 

gravity anomalies because i) the GETECH data was required to be merged with other 

datasets, and ii) the UNB and the KTH methods have different strategies of applying the 

atmospheric correction (Sections 3.3.2 and 3.3.3, respectively). 

We do not have gravity data from the countries neighbouring India and a well 

distributed sufficient data coverage is not available in the Bureau Gravimetrique 

International (https://bgi.obs-mip.fr/) archives either (Country: no. of gravity data points - 

Pakistan: 1270, Bangladesh: 25, Sri Lanka: 48, Myanmar: 71, Afghanistan: 1649, China: 

446, Nepal: 617 and Bhutan: 0). Therefore, we constructed a 0.02˚×0.02˚ grid of free-air 

anomalies over land using EGM2008 (Pavlis et al., 2012; 2013) up to degree-order (d/o) 

900 to fill-in the land gravity anomaly data in and around India where the GETECH data 

is not available, including Nepal, China, Pakistan, Sri Lanka, Bangladesh, Bhutan, 

Afghanistan, and Myanmar. The specific d/o 900 was chosen because EGM2008 uses 

proprietary data up to d/o 900 (Pavlis et al., 2013). 

One may argue that filling-in the data using d/o 900 may provide a wrong sign in 

residual gravity anomalies which are computed by subtracting GGM synthesised gravity 

anomalies from the observed gravity anomalies. The reason being that the observed gravity 

anomalies contain the whole spectrum from 0 to infinity and we are using only d/o up to 

https://bgi.obs-mip.fr/
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900 to infill the data. Therefore, on subtracting, for the CUT method (Section 4.2.1) that 

uses the highest d/o GGM, gravity anomalies synthesised using d/o 2159 from i) observed 

gravity anomalies and ii) infill (d/o 900) gravity anomalies, sign for the two set of residual 

anomalies should be different.  

However, we would argue that in EGM2008, proprietary gravity data has only been 

used up to d/o 900 (Pavlis et al., 2013) and RTM induced gravity anomalies from d/o 901 

to 2159. For the CUT method (which makes use of Faye and residual Faye anomalies), we 

used EGM2008 d/o 900 (fill-in) and mean planar TCs on 0.02°×0.02° grid. Therefore, we 

think that subtracting EGM2008 (d/o 900) and RTM (d/o 901 to 2159) from EGM2008 

(d/o 900) and TC should give same sign as subtracting EGM2008 (d/o 900) and RTM (d/o 

901 to 2159) from observed gravity anomalies and TC. It should be noted that sign 

confusion does not arise in the use of our in-fill data with the UNB (Section 4.2.2) and the 

KTH (Section 4.2.3) methods because both of these use satellite-only GGMs, which has 

the highest d/o significantly lesser than 900.  

We tested the above arguments over i) Auvergne and ii) a 5˚×5˚ region in India for 

both of which we have the terrestrial gravity data. A comparison was made between Faye 

anomalies involving terrestrial gravity data and Faye anomalies involving fill-in data 

(EGM2008 d/o 900). Residual Faye anomalies were constructed by subtracting EGM2008 

d/o 2190 free-air gravity anomalies. The results show that for both the study areas, more 

than 51% of the total points in the two sets of residual Faye anomalies have same sign 

(either positive or negative). We acknowledge that 51% is not a significant number to trust 

our fill-in methodology globally. However, for the present study, we work with this fill-in 

methodology that can be seen as one of the limitations. 

Therefore, we suggest that a quantification of the errors involved due to the non-

availability of data in the surrounding regions of the study area and measures to circumvent 
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the same (e.g., using some d/o GGM derived gravity anomalies or setting the gravity 

anomalies in those regions equal to zero (Featherstone et al., 2018)) should be done in 

future. 

For the oceanic regions surrounding India, we used free-air gravity anomalies from 

the Scripps Institute of Oceanography, version 28.1 (Scripps v28.1, 

https://topex.ucsd.edu/marine_grav/mar_grav.html), which has an overall root mean 

square error of ±1.23 mGal (Sandwell et al., 2021).  The Scripps data is also accompanied 

with an error grid that we have shown for our study area in Figure 2.1.1. The data contains 

a 1’x1’ grid that also covers the land, but we used the Scripps data only for the oceanic 

region because the land data, in the Scripps dataset, is from EGM2008 to avoid Gibbs 

fringing at the coasts.  We acknowledge that there exist other versions of Scripps data 

along with marine gravity data from DTU, but due to the non-availability of any ship-

borne gravity data for validation, we chose to work with Scripps v28.1. Figure 2.1.2 shows 

the regions for the three gravity anomaly datasets. 

 The gridding techniques for the gravity anomalies are not discussed because we 

already have gridded data for the present thesis work. However, it is acknowledged that 

gridding of the gravity anomalies is one of the most important steps in the computation of 

the geoid (Goos et al., 2003; Winefield, 2016; Claessens and Filmer, 2020). Since the data 

is generally collected along the roads and the streets (the highway effect; Colombo, 1991), 

gridding becomes more crucial for plateaus and the mountainous regions with rapidly 

undulating terrain where data is collected very sparsely. Both these landforms are present 

in India. Therefore, this aspect should be studied, but it will only be possible when the 

distributed gravity data will be available rather than already gridded data. The gridding 

techniques may possibly be analysed using synthetic models (Featherstone, 2002; Ågren, 

https://topex.ucsd.edu/marine_grav/mar_grav.html
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2004; Kuhn and Featherstone, 2005; Vaníček et al., 2013) to have preliminary intuitive 

conclusions, but this is not done in the present study. 

 

Figure 2.1.1: Error map of the Scripps v28.1 marine gravity-anomaly data (units in 

mGal). 

For the present study, we need to merge the three available datasets to get a uniform 

gravity anomaly grid of 0.02°×0.02° interval, avoiding the Gibbs fringing of land data 

(both GETECH and EGM2008 individually) with the marine data. 

 Several sophisticated space-domain and frequency-domain methods are available 

for merging heterogenous gravity anomaly datasets (e.g., Strykowski and Forsberg, 1998; 

Kern et al., 2003; Catalao, 2006; Olesen et al., 2002; McCubbine et al., 2018). However, 

we chose to work with a comparatively simpler space-domain method following 

Featherstone et al. (2011; 2018). The choice of this method is arbitrary because we are 
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working with the land gravity of unknown quality, and the strategy that we use has already 

been implemented in the computation of the Australian quasigeoid, which is an island 

nation and approximately 2.3 times larger than India. Other methods should also be tested, 

but it is left for the time when sufficient marine and airborne gravity data along with 

reliable terrestrial gravity data will be available over India. 

 

Figure 2.1.2: Regions for the terrestrial (GETECH and EGM2008 derived) and marine 

gravity anomalies. 

 In the adopted method, first, we overlaid the GETECH free-air anomaly grid over 

the EGM2008 (d/o 900) derived gravity anomalies. The gravity anomalies of the latter 

dataset at the overlapping grid nodes were replaced by the gravity anomalies from the 

former dataset. As a result, a 0.02°×0.02° grid of gravity anomalies on land are obtained. 
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 To concatenate the land and marine gravity anomaly data, we clipped the 1’×1’ 

gravity anomalies in the ocean from the complete Scripps dataset, i.e., on both ocean and 

land, using the GMT high-resolution shoreline (Wessel and Smith, 1996). It is then block 

averaged to the required 0.02°×0.02° grid that was overlaid with the land gravity anomaly 

grid. The former values were replaced by the latter at overlapping nodes to obtain the 

0.02°×0.02° grid of the merged gravity anomalies.  

 Figure 2.1.3 shows the merged free-air gravity anomalies at 0.02°×0.02° grid. A 

scatter plot of gravity anomalies with respect to the topographical heights and a histogram 

of the gravity anomalies are shown in Figures 2.1.4a and 2.1.4b, respectively. To check 

for any discontinuities at the edges of the merged datasets, we computed and plotted the 

arctangent (Figure 2.14a) and logarithmic (Figure 2.1.4b) values of the gradients of the 

merged data. We observe no clear visual indication of any discontinuities at the boundaries 

of the merged data, but also partially due to the ruggedness of the dataset in our study area 

that can be obscuring. This grid is used for geoid/quasigeoid computation over India.  
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Figure 2.1.3: Merged gravity anomaly data from GETECH, EGM2008 (d/o 900), and 

Scripps v28.1 data. 

 

Figure 2.1.4: a) Scatter plot of merged gravity anomalies and heights (linear regression 

fit: 0.016 30.824y x= − ); b) Histogram of the merged gravity anomalies. 
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Figure 2.1.5: Arctangent (a) and logarithmic (b) plot of gradients of merged gravity 

anomaly data to attempt to identify discontinuities at the edges of the merged 

grids. 

 Without any atmospheric corrections, the free-air gravity anomaly in the study area 

varies from -300 mGal to +513 mGal, with majority of the values being in the range [-200 

mGal, 200 mGal] (Figure 2.1.4b). This is the extreme range reported in the literature on 

geoid computation to our best knowledge, except for GGMplus (Hirt et al., 2013). The 

extreme positive is in the Himalayan belt in Nepal, near Mount Everest, while the extreme 

negative value is in the Himalayan belt in Afghanistan. From Figure 2.1.3, the free-air 

anomaly over mainland India varies from a minimum of -242 mGal to a maximum of +486 

mGal with a mean -12 mGal and a standard deviation of ±61 mGal. There are some 

unexpected rough patches of free-air anomaly observed in Figure 2.1.3 in a near-diagonal 

zone (parts of Uttarakhand, Himachal Pradesh and Jammu and Kashmir) of a region 

bounded within 29˚N - 35˚N latitude and 74˚E - 85˚E longitude. These are from the 

GETECH gravity dataset. For a clearer visualisation of this region, please see Figure 3.5.1 
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later, where we have computed the vertical gravity gradient. Though these rough patches 

can be due to the presence of mountainous terrain in those areas, smooth variation of free-

air gravity anomaly is observed in other mountainous topographical landforms of India. 

 Figures 2.1.3 and 2.1.4a show that there exists some positive and negative pattern 

of the free-air anomalies in and around India, e.g., when moving from the Himalayas to 

the Gangetic Plains, parts of the Eastern Ghats (15˚N - 20˚N and 80˚E - 85˚E) and Western 

Ghats (8˚N - 12˚N and 75˚E - 79˚E), oceanic ridges. Geophysicists have previously studied 

the positive and negative patterns of the free-air anomalies over India and attributed the 

reason primarily to the crustal mass inequalities, i.e., isostatic compensation/under-

compensation rather than any geological features (e.g., Takin, 1966; Mathur, 1969; 

Qureshy, 1971; Subrahmanyam and Verma, 1980; Verma, 1985; Basavaiah et al., 1991). 

It can be further studied in the future with the updated data. 

2.2 GNSS/Levelling 

GNSS/levelling data comprises points with latitude, longitude, geodetic height, and 

physical height (based on a national height system from differential levelling). These are 

required for i) the evaluation of GGMs (Section 2.4), ii) calculating hybrid 

geoid/quasigeoid (Section 4.4), and iii) absolute and relative validation of the computed 

gravimetric and hybrid geoid/quasigeoid models (Chapter 5). 

A total of only 119 GNSS/levelling data points are available for the present study, 

again due to reasons of data restrictions. The distribution of the data points is shown in Figure 

2.2.1. These data points are clustered in four regions, viz., Uttar Pradesh West (UPW), Uttar 

Pradesh East (UPE), Hyderabad, and Bangalore. The data in UPW (29 points) and UPE (27 

points) were procured from the SoI, while the data in Hyderabad (56 points) and Bangalore 

(7 points) have been retrieved from Mishra (2018), who also used the SoI dataset.  
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No error estimates were provided by SoI for the procured GNSS/levelling data. 

However, Mishra (2018) mentioned that the horizontal and vertical precisions of GNSS data 

are within ±12 to ±26 mm and ±31 to ±53 mm, respectively. The vertical precision of the 

levelled heights is unknown to us, but they are from the high precision levelling net of India. 

We have not been provided a clear indication on the type of physical heights, and 

therefore, due to this anonymity of the height system, we consider the levelling heights to 

be based on IVD1909 and thus, in the normal-orthometric height system (Section 1.2). 

Hence, we chose to validate both geoid and quasigeoid models with the available 

GNSS/levelling dataset to test the representativeness of the Indian heights with respect to 

the two surfaces. Please note that we use only the terms ‘geoid undulation’ and 

‘orthometric height’ for discussing the GNSS/levelling dataset for brevity. 

In India, physical heights vary from -2 m to +8586 m, and geoid undulations vary 

from approximately -100 m to -18 m. We acknowledge that the evaluation and validation 

with 119 data points can never provide a reliable estimate for the whole of India, especially 

when there are a variety of topographical landforms (Figure 1.2.2). Since we have no other 

choice but to work with the available dataset, the aforementioned evaluations and 

validations were done for India with 119 data points and for the four regions individually 

with their corresponding number of data points. The numerical description of the dataset 

is given in Table 2.2.1. 
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Table 2.2.1: Description of the available 119 GNSS/levelling data points. 

  India UPW UPE Hyderabad Bangalore 

h  

(m) 

Min -11.64 76.37 -11.64 280.67 741.48 

Max 1006.11 1006.11 371.54 430.62 826.65 

Mean 341.66 191.82 50.51 355.57 792.19 

H  
(m) 

Min 54.70 140.18 54.7 358.05 827.31 

Max 1050.74 1050.74 429.73 506.50 911.87 

Mean 272.14 248.11 114.97 432.39 877.78 

/GNSS levN  

(m) 

Min -85.86 -63.81 -68.68 -77.85 -85.85 

Max -44.63 -44.63 -58.19 -75.84 -85.22 

Mean -69.53 -56.29 -64.45 -76.82 -85.59 

Baseline 

length 

(km) 

Min 0.61 11.94 20.45 0.61 4.80 

Max 1937.37 533.88 384.32 46.75 25.16 

Mean 713.46 197.28 169.33 18.67 14.08 

Datapoints No. 119 29 27 56 7 

 

 

Figure 2.2.1: GNSS/levelling data distribution 
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From Table 2.2.1, it is observed that for 119 data points, the approximate range of 

h  = 1018 m, H  = 996 m, /GNSS levN = 41 m and baseline length = 1937 km. The values of 

/GNSS levN  increase as we move towards north from Bangalore to UPW. Also, the data points 

in Bangalore and Hyderabad are much closer than UPW and UPE.  

2.3 Deflections of the Vertical 

Deflections (or deviations) of the vertical data comprises data points with latitude, 

longitude, east-west and north-south components of the deflection of vertical. These are 

used for i) evaluation of the GGMs (Section 2.4) and ii) absolute validation of the 

computed geoid models (Chapter 5; e.g., Featherstone and Morgan, 2007; Featherstone 

and Lichti, 2009). 

 The deflection of the vertical is the angular difference between the directions of the 

plumbline at a point and the ellipsoidal normal at that point. From Jekeli (1999), these are 

termed absolute deflections when a geocentric ellipsoid is used and relative deflections 

when a non-geocentric, that is a regional or local, ellipsoid is used. Also, as the plumbline 

is curved and torsioned, the deflection varies as a function of position and height, leading 

to more subtle definitions such as the Pizzetti deflection at the geoid, the Helmert 

deflection at the Earth’s surface, or the Molodensky deflection with respect to the normal 

plumbline, all of which are described and explained in Jekeli (1999). 

The vertical deflection is usually decomposed into north-south and east-west 

components, principally because they are determined by comparing geodetic and 

astronomic coordinates (Eq. (2.3.1)). The north-south component is also termed the 

meridional deflection ( )H  and the east-west component is termed the prime vertical 

deflection ( )H . The equations for astronomically observed deflections are: 
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( )cos

H

H

 

 

=− 


=  − 
  (2.3.1) 

where ( ),   are the astronomical latitude and longitude and ( ),   are geodetic latitude 

and longitude. 

Equation (2.3.1) is a simplified form obtained by taking small angle (in radian) 

approximations ( )( )i.e., cos 1, sin ; 1; , ,H Hx x x x x        −    in Eq. (2.3.2) 

(Torge, 2001, pg. 220) 
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H H
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  

  

= − 


=  − 

 (2.3.2) 

In the 19th century, the vertical deflections over India proved to be an important 

data for pursuing the idea of isostasy. Heiskanen and Vening Meinesz (1958, pg. 139) 

mentions: “The existence of the isostatic compensation was established in India on the 

basis of deviations of the plumb line and of gravity anomalies”. Interested readers may see 

Walker (1863; 1870), Danvers (1870), Keay (2000) for some historical aspects regarding 

the Great Trigonometric Survey (GTS) of India and Pratt (1855), Crosthwait (1912), 

Bowie (1914), Burrard (1918; 1920) and Heiskanen and Vening Meinesz (1958, pg. 125-

131) for historical development of the isostasy with the GTS observations. 

The vertical deflections over India that we have access to are in the report of 

Gulatee (1955), which is a scanned image-only pdf. Therefore, we had to digitise them 

manually and perform several closed-loop checks and datum transformation, all of which 

are explained in detail in Featherstone and Goyal (2022; provided in Appendix C.5). It 

should be noted that not all stations had both deflection components. Of the 1071 stations 

listed, 708 points are in India (7°N to 37°N and 68°E to 98°E) of which 701 have 

meridional deflections but only 280 have prime vertical deflections. Figure 2.3.1 shows 

the distribution of the stations. The meridional deflections vary from -52.7” to +24.5” 
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while prime vertical deflections from -41.1” to +19.1” with a mean value of -5.9” and 

+0.1”, respectively.  

 

Figure 2.3.1: Deflection of vertical stations in India from Gulatee (1955) 

2.4 Global Geopotential Models 

Any harmonic function that satisfies Laplace’s equation can be expanded into a series of 

spherical harmonics (e.g., Hobson, 1931). Therefore, the gravitational potential of the 

Earth, which is a harmonic function outside the gravitating masses, can also be expressed 

by a series of solid spherical harmonics (Heiskanen and Moritz, 1967, pg. 35). This 

involves the determination of the geopotential coefficients used in the harmonic expansion. 

The set of geopotential coefficients of the gravitational potential is called a GGM. These 

are determined either from satellite observations alone or a combination of satellite and 
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terrestrial observations. Accordingly, they are termed as satellite-only and combined 

GGMs, respectively.  

Rapp (1998) provides a discussion on developments of the geopotential modelling 

over several decades but for pre-Gravity Recovery and Climate Experiment (GRACE; 

Tapley et al., 2004) and Gravity Field and Steady-State Ocean Circulation Explorer 

(GOCE; Drinkwater et al., 2003). Pail et al. (2011) discussed the GOCE gravity field 

modelling using three different approaches (direct, space-wise, time-wise) while Tapley et 

al. (2007), Dahle et al. (2013) and Chen et al. (2015) provided an overview of processing 

GRACE data for gravity field models. 

The determination of the spherical harmonic coefficients (for gravitational 

potential or any other gravity field functional) is known as spherical harmonic analysis 

(SHA). The determination of the gravity field quantities or any other corresponding 

function using the spherical harmonic coefficients is known as spherical harmonic 

synthesis (SHS). Both SHA and SHS have been discussed in the literature (e.g., Kaula, 

1959; Rapp, 1968; Ricardi and Burrows, 1972; Colombo, 1981; Tscherning et al., 1983; 

Sneeuw, 1994; Bucha and Janák, 2014; Claessens, 2016 among many others) and hence, 

we will not discuss the same here, instead see the cited literature and the references therein. 

However, we have discussed some subtleties of SHS in Section 3.6. 

Briefly discussing the choice of GGM in the three methods tested (CUT, UNB, and 

KTH), it is observed that the CUT approach has consistently used the highest available 

degree of GGM, which is always a combined model. This contrasts with the KTH and the 

UNB methods that use a satellite-only GGM to avoid correlations in the terrestrial data 

when used twice (Vaníček and Sjöberg, 1991). However, it has been observed that the 

KTH method is sometimes being used with combined GGM but up to a lower degree-order 

(e.g., Ågren et al., 2009a, 2009b; Ulotu, 2009; Yildiz et al., 2012).  
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The [implicit] rationale for the CUT approach to use the highest available d/o 

GGMs is that while being fully subject to the undesirable correlation of largely the same 

terrestrial data being used, the use of high-degree GGM makes the residual 

geoid/quasigeoid smaller in magnitude. Thus, the residual geoid/quasigeoid computations 

are less subject to approximation errors, for e.g., ellipsoidal approximation error (~0.003N, 

Heiskanen and Moritz, 1967, pg. 87) for geoid undulation of 100 m is 300 mm and the 

same error for (residual) geoid undulation of 1 m would be 3 mm. 

There are numerous choices of satellite-only or combined GGMs with varying d/o, 

mostly available at International Centre for Global Earth Models (ICGEM; 

http://icgem.gfz-potsdam.de/tom_longtime; Ince et al., 2019). GGM testing must be done 

to choose the most suitable GGM for the geoid/quasigeoid computation (e.g., Amos and 

Featherstone, 2003). The availability of larger datasets in the future can be exploited for 

some more informative statistical testing also as implemented by Fotopoulos (2003) and 

Goyal et al. (2019a; provided in Appendix C.1) with the available data. 

With our datasets discussed in Sections 2.1, 2.2 and 2.3, the GGMs were evaluated 

with the i) geometric geoid undulations (geodetic height minus physical height) obtained 

from 119 GNSS/levelling points for India (Table 2.4.1) and also region-wise (Tables 2.4.2 

and 2.4.3), ii) recomputed free-air anomaly from the GETECH data at 638,625 points 

(Table 2.4.4) and iii) deflections of the vertical for India (Table 2.4.5) 

 

http://icgem.gfz-potsdam.de/tom_longtime
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Table 2.4.1: GGM validation with GNSS/levelling points over India (units in m) 

GGM Max d/o min max mean STD Reference 

EGM2008 2190 -1.162 0.452 -0.368 0.417 Pavlis et al. (2012; 2013) 

EIGEN-6C4 2190 -1.203 0.463 -0.428 0.410 Förste et al. (2014) 

GECO 2190 -1.255 0.513 -0.415 0.407 Gilardoni et al. (2016) 

XGM2016 719 -1.309 0.511 -0.407 0.407 Pail et al. (2018) 

DIR-R5 300 -1.711 0.563 -0.485 0.419 Bruinsma et al. (2013) 

TIM-R5 280 -1.584 0.633 -0.464 0.433 Brockmann et al. (2014) 

SPW-R5 330 -1.650 0.584 -0.504 0.415 Gatti et al. (2016) 

Table 2.4.2: GGM validation with GNSS/levelling points over UPW and UPE  

 UPW (units in m) UPE (units in m) 
GGM min max mean STD min max mean STD 

EGM2008 -1.162 -0.509 -0.824 0.192 -1.007 -0.047 -0.654 0.227 

EIGEN-6C4 -1.203 -0.643 -0.870 0.105 -1.034 -0.361 -0.742 0.144 

GECO -1.255 -0.723 -0.857 0.102 -1.088 -0.418 -0.712 0.135 

XGM2016 -1.309 -0.715 -0.843 0.112 -1.037 -0.453 -0.710 0.139 

DIR-R5 -1.711 -0.424 -0.920 0.277 -1.120 -0.263 -0.719 0.203 

TIM-R5 -1.584 -0.411 -0.904 0.258 -1.206 -0.230 -0.716 0.229 

SPW-R5 -1.650 -0.480 -0.917 0.255 -1.160 -0.206 -0.739 0.234 

Table 2.4.3: GGM validation with GNSS/levelling points over Hyderabad and Bangalore  

 Hyderabad (units in m) Bangalore (units in m) 
GGM min max mean STD min max mean STD 

EGM2008 -0.541 0.328 -0.093 0.153 0.372 0.452 0.418 0.029 

EIGEN-6C4 -0.612 0.258 -0.154 0.157 0.379 0.463 0.422 0.029 

GECO -0.611 0.260 -0.153 0.157 0.428 0.513 0.472 0.028 

XGM2016 -0.632 0.250 -0.142 0.171 0.387 0.511 0.449 0.039 

DIR-R5 -0.744 0.135 -0.264 0.172 0.381 0.563 0.450 0.064 

TIM-R5 -0.735 0.161 -0.238 0.176 0.472 0.633 0.534 0.056 

SPW-R5 -0.760 0.162 -0.299 0.166 0.401 0.584 0.477 0.065 

Table 2.4.4: GGM validation with free-air anomalies over India (units in mGal) 

GGM min max mean STD 

EGM2008 -381.846 355.076 -0.307 15.558 

EIGEN-6C4 -353.134 379.699 0.168 15.412 

GECO -348.027 374.494 0.205 15.355 

XGM2016 -237.671 267.468 0.073 16.278 

DIR-R5 -352.938 365.798 -0.285 22.833 

TIM-R5 -345.457 368.174 -0.304 22.835 

SPW-R5 -349.708 367.626 -0.263 22.821 
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Table 2.4.5: GGM validation with vertical deflections over India  

 Meridional (units in arc-second) Prime vertical (units in arc-second) 

GGM min max mean STD min max mean STD 

EGM2008 -21.0 13.2 -0.3 2.1 -41.5 13.9 0.1 3.7 

EIGEN-6C4 -19.8 12.3 -0.3 2.0 -41.3 11.4 0.0 3.7 

GECO -18.6 12.2 -0.3 2.0 -41.3 14.4 0.0 3.7 

XGM2016 -16.1 16.0 -0.4 2.3 -41.6 8.4 0.0 3.8 

DIR-R5 -19.7 27.4 -0.1 3.6 -40.7 15.9 0.1 4.2 

TIM-R5 -19.2 28.5 -0.1 3.6 -40.4 16.0 0.1 4.2 

SPW-R5 -20.2 26.3 -0.2 3.5 -40.2 15.3 0.1 4.2 

In Table 2.4.5, there are only two points that have a difference value of prime 

vertical deflection < -11” (i.e., -41” and -29”). Removing these two points alone causes an 

increase of ~0.3” in the mean values and a decrease of ~±1.4” in the standard deviations 

of the prime vertical validation (Table 2.4.5). 

Tables 2.4.1-2.4.5 do not comprehensibly indicate which GGM is comparatively 

more suitable among combined models and satellite-alone models, individually. This is 

because there is no significant variation in the mean and standard deviations from different 

GGMs. Moreover, we do not have any authoritative accuracy estimates of our datasets. 

So, our choice of EIGEN-6C4 for the CUT method and DIR_R5 for the UNB and the KTH 

methods are arbitrary rather than based on any rigorous quantitative argument.  

EGM2008 is used for filling in the gravity data (Section 2.1) and GECO and 

EIGEN-6C4 both include EGM2008 data in addition to other datasets. GECO and EIGEN-

6C4 have provided comparable results, and we cannot claim the priority of one over the 

other. Therefore, the choice of EIGEN-6C4 is completely arbitrary. However, for the 

satellite-only models, we have chosen DIR-R5 GGM because it has been used in the 

literature on geoid/quasigeoid computation (e.g., Abdalla and Mogren, 2015; Işık and Erol, 

2016; Foroughi et al., 2017a; 2019) as compared to other satellite-only models. 
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2.5 Digital Elevation Models 

A DEM, sometimes known as a digital terrain model (DTM), is a bare-Earth model, i.e., 

it represents the solid topographic surface. We deliberately distinguish between a DEM 

and a Digital Surface Model (DSM) that represents the shape of the Earth’s surface, 

which includes the height of vegetation canopy and man-made structures (e.g., Hirt, 

2014). Several near-global DSMs have been produced from satellite-borne platforms 

from either radar, e.g., SRTM (Farr et al., 2007), or stereoscopic optical imagery, e.g., 

ASTER (Meyer et al., 2011). A satellite-derived DSM should be treated for speckle 

noise (Gallant, 2011) and stripe noise (Tarekegn and Sayama, 2013), and then it can be 

converted to a DEM by accounting for absolute biases (Crippen et al., 2016) and tree-

height biases (O’Loughlin et al., 2016). Yamazaki et al. (2017) have treated the SRTM 

v2.1 DSM for all these four sources to produce a freely available 3”×3” global DEM, 

i.e., the MERIT DEM. 

DEMs and DSMs are used synonymously in several applications, such as mapping 

soil and vegetation (e.g., Dobos and Hengl, 2009; Cavazzi et al., 2013), studying natural 

hazards (e.g., Gruber et al., 2009; Demirkesen, 2012), catchment geomorphology and 

hydrology (e.g., Barnes et al., 2014; Zhao et al., 2019), watershed modelling (e.g., Park et 

al., 2011; Li et al., 2019), floodplain mapping (e.g., Jafarzadegan and Merwade, 2017; 

Nardi et al., 2019), weather and flood forecasting (e.g., Truhetz, 2010), and gravity-field 

forward modelling (e.g., Banerjee and Gupta, 1977; Forsberg, 1984). However, 

researchers have started analysing the effect of using a DSM and not the ‘required’ DEM 

for their respective applications, such as done by Yang et al. (2019) for gravity forward 

modelling. With the experiments involving MERIT DEM and SRTM DSM, Yang et al. 

(2019) suggested that DEM should always be preferred over DSM to reduce or avoid the 

tree-canopy effect in gravity forward modelling. 
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For the geoid and quasigeoid computations, we are interested in the DEMs, in both 

spatial and spectral forms. A precise high-resolution DEM is a crucial input primarily for 

calculating topographical effects (Section 3.2), atmospheric gravity corrections (Section 

3.3), and analytical continuations (downward or upward) of gravimetric quantities between 

different surfaces/levels (Section 3.5). However, obtaining a precise DEM is still 

challenging, especially in the mountainous regions.  

Vaníček et al. (n.d.), Varga and Bašić (2018), and Varga et al. (2019) have analysed 

the effect of different DEM (and DEM resolutions) on the topographic effects. It should 

be noted that the latter two studies included the freely available global DSMs in their 

computations, while Vaníček et al. (n.d.) used only DEMs. Though their study areas did 

not comprise a complex terrain such as that of India, all have reported significant 

disparities in the results with different DEMs. Thus, the choice of a precise high-resolution 

DEM becomes more crucial in the mountainous or rapidly undulating regions, where the 

problem due to the horizontal shifts among DEMs (Rodriguez et al., 2005; Denker, 2005) 

also becomes enormous (e.g., for India, see Goyal et al., 2021a). 

Since a DEM is required for the present study, we have chosen to work with the 

MERIT DEM (Yamazaki et al., 2017) because this is the only DEM (to the authors best 

information) available over India. It should be noted that the Indian CartoDEM derived 

from the Cartosat mission using stereoscopic optical imagery (NRSA, 2006) is a DSM. 

Moreover, unlike other DSMs, it provides the geodetic heights that are referenced to the 

WGS84 ellipsoid (NIMA, 2000). We would like to mention that our DEM/DSM 

analysis (Goyal et al., 2021a; provided in Appendix C.3) has shown MERIT as the best 

candidate among all the tested models. The MERIT DEM for the study area is shown 

in Figure 2.5.1. 
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Figure 2.5.1: MERIT DEM over study area at 3”×3” resolution 

The CUT method requires only the spatial form of a DEM. However, the UNB and 

the KTH methods also require one or all of the height, height-squared, and height-cubed 

spherical harmonic coefficients in addition to the spatial form of DEM. The KTH method 

calculates the atmospheric effects while the UNB method computes reference 

topographical effects using the height coefficients. Since the topographical effects in the 

UNB method involve global numerical integration, different resolution DEMs are required 

(Section 3.2). Therefore, to have consistency among the DEMs, we downloaded the whole 

of global 3”×3” MERIT DEM and block averaged it into grids of various resolutions, i.e., 

30”×30”, 5’×5’, and 1˚×1˚. 
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Since we worked with the KTH method before starting with the UNB method, the 

global DEM was downloaded at a later stage. Therefore, we followed the KTH strategy 

for developing the spectral form of DEM wherein a global DEM is constructed with the 

block-averaged 15’×15’ DTM2006 (d/o 2190) heights augmented with block-averaged 

15’×15’ MERIT DEM over the study area, i.e., 2˚N to 42˚N latitude and 63˚E to 103˚E 

longitude. Spherical harmonic coefficients for the heights to a maximum d/o of 720 are 

then estimated using a FORTRAN based SHA subroutine, analyfft_grd.f (subroutine in 

GEOLAB package). For height-squared and height-cubed coefficients, the heights from 

the constructed 15’×15’ global DEM were squared and cubed, respectively, before 

estimating the corresponding coefficients.  

Degree-order 720 has been chosen because the geoid/quasigeoid models developed 

using the KTH method also construct the height coefficients up to d/o 720 (Ågren, 2004; 

Ågren et al., 2009a, 2009b; Yildiz et al., 2012). It was also possible to construct the 

spherical harmonic coefficients using block-averaged global 15’×15’ MERIT DEM alone, 

but this was not done because we already computed the harmonic coefficients following 

the KTH approach. We acknowledge that more in-depth quantitative testing should be 

done with different d/o to analyse the included effects with the height coefficients in both 

the UNB and the KTH method from the viewpoint of the cm-level precise geoid.  

2.6 Summary 

We discussed the availability and the characteristics of the five datasets over India and 

finalised the following to be used in Indian geoid and quasigeoid modelling:  

i) GETECH’s terrestrial gravity anomaly data for India, EGM2008 (d/o 900) derived fill-

in terrestrial gravity anomaly data for land areas surrounding India and oceanic gravity 

anomaly data from Scripps Institute of Oceanography were merged using concatenated 
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to construct a 0.02˚×0.02˚ grid of free-air gravity anomalies for Indian 

geoid/quasigeoid computations. Gradient testing was performed to identify any 

discontinuities at the edges of the merged gravity anomaly dataset. We have not 

observed clear visual indication of any discontinuities at the boundaries of the merged 

gravity anomaly dataset. 

ii) 119 GNSS/levelling data points are available over India, distributed in four regions: 

Uttar Pradesh West (UPW), Uttar Pradesh East (UPE), Hyderabad, and Bangalore. No 

information is provided on the height system of the levelling heights. Therefore, we 

considered them to be based on normal-orthometric height system referring to 

IVD1909. Since there is no uniquely defined reference surface for normal-orthometric 

heights, it is decided to validate both geoid and quasigeoid models with the 

GNSS/levelling data. 

iii) Vertical deflections have been digitised from Gulatee (1955) that included 701 

meridional deflections and 280 prime vertical deflections in India. The meridional 

deflections vary from -52.7” to +24.5” while prime vertical deflections from -41.1” to 

+19.1” with a mean value of -5.9” and +0.1”, respectively. These are used to validate 

geoid models. 

iv) GGMs were evaluated with the gravity anomalies, GNSS/levelling and vertical 

deflections datasets. There is no clear choice of the preferred GGM from the 

descriptive statistics of the evaluation results. Therefore, rather based on any 

quantitative argument, we have arbitrarily chosen EIGEN-6C4 (max d/o 2190) for the 

CUT method, and DIR-RL05 (max d/o 300) for the UNB and the KTH methods. 

EGM2008 has been used up to d/o 900 for calculating the fill-in gravity anomaly data 

for the areas where we do not have access to the terrestrial gravity data. Degree-order 

900 is chosen because EGM2008 uses proprietary gravity data up to d/o 900. 
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v) The global freely available DEM is MERIT DEM and hence, it is used in Indian 

geoid/quasigeoid computations. The CUT and the KTH methods use MERIT 3” ×3”. 

The UNB Method includes global integration and requires DEMs of different 

resolutions.  Therefore, MERIT 3” ×3” and block-averaged MERIT 30”×30”, 5’×5’, 

1˚×1˚ DEMs are used in the UNB method. Additionally, for the KTH and the UNB 

methods, spherical harmonic coefficients of height, height-squared and height-cubed 

are also constructed. 
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Chapter 3: Systematic effects in geoid determination  

3.0 Introduction 

There are various corrections and reductions that need to be applied to the datasets for the 

use of Stokes’s formula for geoid/quasigeoid computation. These corrections, though 

conceptually identical, are realised using different strategies in the three methods: CUT, 

UNB, and KTH. Another aspect is that there have been various approximations in terms 

of some assumptions, truncations, and certain inconsistencies in the involved formulations 

that have been carried forward for decades under the umbrella of them being negligible. 

However, from the viewpoint of cm-level precise geoid (Sansó and Rummel, 1997), these 

need a revisit because any mm-level error emanating from the approximations is liable to 

deviate from achieving the goal significantly. That is, one-millimetre systematic error is a 

10% deviation from the desired centimetre accurate geoid. Furthermore, any systematic 

error will not be reflected in the error propagation, thus, one may obtain centimetre or sub-

centimetre precise geoid/quasigeoid but shifted by an amount equal to the systematic 

errors.  

In this chapter, we have tried to provide our discussions on the following in view 

of the cm-level precise geoid/quasigeoid: 

i) Different choices for calculating normal gravity at any arbitrary height for 

computation of the gravity anomaly at the Earth’s surface. 

ii) The topographic and the atmospheric corrections required to account for the 

masses above the geoid because Stokes’s solution does not permit the masses 

above the geoid (i.e., the Laplace harmonic condition must be valid). 

iii) Ellipsoidal corrections required to compensate for the spherical approximation 
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used in formulating Stokes’s solution. 

iv) Downward continuation of gravity anomalies from the Earth’s surface to the geoid.  

v) Analytical continuation of the gravity anomalies from the Earth’s surface to the 

computation point-level surface for quasigeoid calculation. 

vi) Consistent use of the zero-degree term.  

vii) Effect of solid Earth permanent tide systems on physical Earth and parameters of 

normal ellipsoid. 

In the following sections, we will discuss free-air gravity anomalies only, but we 

use a cryptic term ‘gravity anomaly’ for brevity. Otherwise, we will mention specifically 

the type of gravity anomaly being discussed. 

3.1 Gravity anomalies 

Actual gravity is observed on or above the Earth’s topographical surface, therefore, the 

computation of gravity anomaly requires either of the following: 

i) Upward continuation of normal gravity from the ellipsoid to the telluroid: For this, 

normal heights are required. In case normal heights are not available, they are 

approximated by normal orthometric heights or Helmert orthometric heights 

(Though it is commonly done, geoid-quasigeoid correction can be applied to avoid 

this approximation (Eq. 3.1.24)). By subtracting this upward continued normal 

gravity at the telluroid from the corresponding observed gravity at the Earth’s 

surface, we obtain the free-air gravity anomaly at the Earth’s surface (or sometimes 

known as Molodensky-type free-air gravity anomaly). It is conspicuous that the 

corresponding points on the Earth’s topography and the telluroid lie along the 

ellipsoidal normal through the point on the Earth’s topography.   
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ii) Downward continuation of observed gravity from the Earth’s surface to the geoid: 

For this, orthometric heights are required and density of the masses between the 

Earth’s topographical surface and the geoid. The downward continuation of the 

Earth’s gravity makes things a little complicated, but the difficulties are alleviated 

by using Helmert’s second method of condensation (see Section 3.2). Therefore, 

on subtracting the normal gravity at the ellipsoid from the corresponding 

downward continued observed gravity at the geoid, we obtain the free-air gravity 

anomaly on the geoid.  

As such, upward continuation of normal gravity requires normal gravity gradient 

while downward continuation of the Earth’s gravity requires actual gravity gradient 

through the topography. Since the actual gravity gradient is less precisely known as 

compared to the normal gravity gradient (which is in fact exactly known), a common 

practice is to compute gravity anomalies on the Earth’s surface and further process as is 

needed in the geoid/quasigeoid computation strategy.  

Next, we discuss computing normal gravity at the telluroid (in general, at any 

height of interest). This involves some expressions of normal gravity gradient and a direct 

or exact method of computing normal gravity at any height using the concept of confocal 

ellipsoids (Heiskanen and Moritz, 1967, pg. 65). 

3.1.1 Gradient method of calculating normal gravity at any height 

Normal gravity at any height can be obtained by using a Taylor series expansion 

(Heiskanen and Moritz, 1967, pg. 78) 

 
2 3

2 3

0 2 3

1 1
...

2 6
h h h h

h h h

  
 
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= + + + +

  
  (3.1.1) 

It is observed that the above expression has been used in the literature with only the first-

order term or also including a second-order term (e.g., Hackney and Featherstone, 2003). 



62 

 

To Maa 

That is, higher than second-order terms are generally neglected. 

There can be different expressions for the normal gravity gradient of first- and 

second-order. The more conventional formulas are given as (Heiskanen and Moritz, 1967, 

pg. 78) 
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 Thus, substituting Eqs. (3.1.2) and (3.1.3) in Eq. (3.1.1), normal gravity at any 

geodetic height (h) can be obtained using:  

 ( )2 2
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a a
  

 
= − + + − + 

 
  (3.1.4) 

A simple spherical approximation of Eq. (3.1.2), which is generally used in geophysics 

(e.g., Hackney and Featherstone, 2003) and sometimes in geodesy as well (e.g., Mishra 

and Ghosh, 2016) is  

 0.3086 mGal/m
h


 −


  (3.1.5) 

Another expression for the first- and second-order terms are derived using Bruns’s 

formula (Heiskanen and Moritz, 1967, pg. 78) that gives the first-order term as 
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where J is the mean curvature of the ellipsoid,   is the angular velocity of Earth’s rotation, 

μ and   are the principal radii of curvature in the meridian and prime vertical directions, 

respectively and are given as (on the reference ellipsoid) 
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Substituting Eqs. (3.1.7) and (3.1.8) in Eq. (3.1.6) gives 
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The second-order term is now obtained by differentiating Eq. (3.1.9) with respect to h and 

substituting values of μ and   from Eqs. (3.1.7) and (3.1.8). 
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Substituting Eqs. (3.1.9) and (3.1.12) in Eq. (3.1.1) gives the second expression for 

computing normal gravity at any height h. 

3.1.2 Exact method of calculating normal gravity at any height 

The exact method is based on computation of normal gravity on the surface of an ellipsoid 

constructed confocally and concentrically with the reference ellipsoid passing through the 

point at height equal to the height of interest (for our case normal height). The normal 

potential of any such confocal ellipsoid is given as (Heiskanen and Moritz, 1967, pg. 67): 
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where ,u   are the semi-minor axis of the confocal ellipsoid and reduced latitude, 

respectively; E is linear eccentricity. We have omitted  from the ellipsoidal coordinates 

because normal potential is independent of longitude. In Eq. (3.1.13), the other terms are 
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It should be noted that Eq. (3.1.15) holds if   is the geodetic latitude with respect to the 

confocal ellipsoid through the point at altitude. For a more general relation for   and   

see Claessens (2006, Chapter 2). 
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The gradient of the normal gravity potential (Eq. (3.1.13)) along the 

lines/directions of the ellipsoidal coordinates gives normal gravity as 
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where ( ), ,us s s   is the triplet of the line elements of ellipsoidal coordinates. So, any arc 

element on the ellipsoid is calculated as (Heiskanen and Moritz, 1967, pg. 41) 

 ( ) ( )
2 2 2

2 2 2 2 2 2 2 2 2 2

2 2

sin
sin cos

u E
ds du u E d u E d

u E


   

+
= + + + +

+
  (3.1.20) 

From Eq. (3.1.13), 0
U




=


, therefore, Eq. (3.1.19) can be evaluated as  

 

2 2
2 2

2 2 2 2 2 2

1

sin sin

u E U U

u E u u E


  

   +  
= +     +  +   

  (3.1.21) 

Equation (3.1.21) can be used to calculate the normal gravity at any height without using 

the gravity gradient terms of any order and that is the reason we call it the exact method. 

All the above-provided formulas for normal gravity at any height are dependent on 

latitude and height. Hackney and Featherstone (2003) show that the difference in using 

Eqs. (3.1.4) and (3.1.5) can reach 5.7 mGal at the summit of Mt. Everest. We show the 

variation of the differences in the gravity anomaly between the conditions when normal 

gravity is computed using the exact formula (Eq.(3.1.21)) and i) an approximate 

conventional (what we call here) second-order formula (Eq. (3.1.4), Figure 3.1.1), ii) 

Bruns’s formula (Eqs. (3.1.9) and (3.1.12), Figure 3.1.2, and iii) linear term (Eq. (3.1.5), 

Figure 3.1.3).  

 

Figure 3.1.1: Difference in gravity anomaly using exact solution v/s second-order formula (mGal) 
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Figure 3.1.2: Difference in gravity anomaly using exact solution v/s solution derived 

using Bruns’s formula (mGal) 

 

Figure 3.1.3: Difference in gravity anomaly using exact solution v/s linear formula 

(mGal) 

Figures 3.1.1 - 3.1.3 show that, as expected, all the solutions give identical results 

on the ellipsoid (h = 0 m) and minor differences at small heights (~100 m) above the 

ellipsoid. The best approximative formula for h  is the conventional second-order formula. 

However, given the precision of present-day gravimeters (μGal), the use of exact method 

for h  is suggested. Therefore, any of the above discussed formula for h  can be used for 

computing gravity anomalies on the geoid because that require normal gravity on the 

ellipsoid. However, for gravity anomalies on the Earth’s surface, either, preference-wise, 

the exact method or the conventional second-order formula must be used. 
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The three methods, CUT, UNB and KTH use Eq. (3.1.4) to compute normal gravity 

at any height and hence, the gravity anomaly at the Earth’s surface. Unlike the CUT and 

the KTH methods, the UNB method takes it a little further. It applies a correction for using 

orthometric height as an approximation to the normal heights for upward continuing the 

normal gravity (UNB, 2009), i.e., our normal gravity is not at the, required surface, 

telluroid but a surface that is telluroid plus geoid-quasigeoid separation. The planar 

approximation of the geoid-quasigeoid separation is given as (Heiskanen and Moritz, 

1967, pg. 327; Martinec, 1993) 

 
*

0

SBg
H H N H




− = −    (3.1.22) 

where SBg is simple planar Bouguer gravity anomaly.  

Therefore, the geoid-quasigeoid correction to the gravity anomaly ( )*H Hg −  is computed 

as 

 
*

0

SB
H H g

g H
h





−   
 = −  

  
  (3.1.23) 

Equation (3.1.23)  in spherical approximation can be written as 

 
* 2 SB

H H H g
g

R H

− 
 

+
 (3.1.24) 

Equation (3.1.24) never exceeds 1.67 mGal (computed for the summit of Mt. Everest i.e., 

H = 8848 m and SBg  = 600 mGal), which is a value that may cause perceptible deviation 

from the quest of a cm-precise geoid. 

Therefore, the UNB method of computing gravity anomalies is (unless normal 

heights are used) 
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 ( )
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UNBg g H H g
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 
 −  

 =  − + + +  
  

  (3.1.25) 

where 'UNBg  is the free-air gravity anomaly on topography in the UNB method and 

'g  is the free-air gravity anomaly on topography in the CUT and the KTH methods. 

3.2 Topographic corrections 

Stokes’s formula for geoid computation requires that there be no masses outside the geoid 

and the gravity anomalies should refer to the geoid. However, topographical masses exist, 

i.e., the masses between the geoid and the Earth’s topographical surface. There do exist 

atmospheric masses also, which will be dealt with in Section 3.3. The major argument on 

the limitation in the geoid computation has always been that the topographical density is 

less-precisely known (Heiskanen and Moritz, 1967, pg. 127). This has been attached to the 

problem/biases that would occur in downward continuation of the gravity values from 

Earth’s surface to the topography. In view of this, the solution given by Molodensky et al. 

(1962) has been endorsed by many as an alternative to compute a quasigeoid without 

worrying about topographical density and the downward continuation of gravity. 

However, the quasigeoid is a non-equipotential surface but can always be transformed to 

the geoid using geoid-quasigeoid separation term (see Section 4.3). 

Thus, we can say that topographic corrections are not required for the quasigeoid 

computation while they are mandatory for computation of the geoid (if not routed through 

quasigeoid). However, among different solutions to Molodensky’s problem (Molodensky 

et al., 1962; used for quasigeoid), Moritz (1968) has shown that the involved G1 term can 

be approximated by the planar Terrain Correction (TC) and a term equal to the First Order 

Indirect Effect (FOIE). 
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In geoid computation, topographic masses are handled by applying three 

corrections (Vaníček and Kleusberg, 1987; Wang and Rapp, 1990; Heck, 1993a) before or 

after the gravity or gravity anomaly is downward continued to the geoid: Direct 

Topographical Effect (DTE) and Secondary Indirect Topographical Effect (SITE) on 

gravity, and Primary Indirect Topographical Effect (PITE) on the gravity potential. These 

three are discussed in detail in Section 3.2.2 because the UNB method strictly follows this 

approach.  

For applying any topographic correction, the height information is the paramount 

information that is available from DEMs. It is known that the higher resolution DEMs 

provide better (detailed) information of the Earth’s topography. Hence, precise DEMs of 

higher resolution are the key inputs for the computation of any precise topographical 

effect. However, with an increase in the DEM resolutions, there is an increase in the 

number of computation points and the attached roving points for the integration (see 

formulations in this Section). For a regional quantification, in an area of just 1˚×1˚, the 

number of computation points for a 1”×1” DEM (12,960,000) increases nine-fold 

compared to a 3”×3” DEM (1,440,000) and the number of roving points will increase ~36 

times for an integration radius of 1˚. Therefore, it is important that we use the methods that 

are conceptually defendable and not resource-heavy. Further discussions in this section 

will be around this argument.  

In the following three sub-sections, we will discuss about handling the topography 

in the CUT, the UNB and the KTH methods. A constant topographical density of 2,670 

kgm-3 is assumed in the following discussions and the formulations, although use of 

topographical density models is suggested (Martinec, 1993; Huang et al., 2001; Kingdon 

et al., 2009; Sheng et al., 2019). 
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3.2.1 Topographic corrections in the CUT method 

The CUT method uses Molodensky’s principle for the determination of the quasigeoid. 

The Molodensky’s G1 term is approximated by the planar TC (Moritz, 1968, 1980, 

McCubbine et al., 2018). However, deviating from the Moritz (1968, 1980) solution, the 

FOIE term is omitted in the CUT method based quasigeoid computations (Featherstone et 

al., 2011, 2018).  The TCs are mainly used for reconstruction of Faye anomalies on the 

topography (Featherstone and Kirby, 2000). As of here and in general, though the CUT 

method makes use of the planar TC, it will not be correct to say that it applies direct or 

indirect topographical effect. This has been briefly revisited in Section 3.5 with a slightly 

different point of view. In the present section, we will discuss the method used for planar 

TC computation. 

As discussed above, the availability of high resolution DEMs causes a drastic 

increase in the computation-roving point pairs. Therefore, the use of spectral methods 

becomes attractive. The CUT method has always used only the FFT alone method for TC 

computations (e.g., Kirby and Featherstone, 1999; 2001; 2002; McCubbine et al., 2017a) 

in the AUSGeoid models (Featherstone et al., 2001; 2011; 2018) and New Zealand 

quasigeoid models (Amos and Featherstone, 2009; Claessens et al., 2011). 

Spectral methods provide significant computational efficiency, but there are two 

principal restrictions attached to the use of discrete/fast Fourier transforms (D/FFTs). First, 

a convergence criterion because, use of a binomial expansion restricts D/FFT method to 

the regions where terrain gradients are <45° (cf. Sideris, 1984; Forsberg, 1985; Martinec 

et al., 1996; Sampietro et al., 2016). Secondly, a decision is needed on the truncation limit 

of the binomial expansion to obtain a convergent TC solution. Some existing strategies to 

address the above restrictions are summarised in Goyal et al. (2020) from where it is 
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observed that a guaranteed convergent TC solution had never been pursued in a 

satisfactory and optimal way.  

We envisaged that the combined spatial-spectral approach for planar TC 

computation (Tsoulis, 1998; 2001) could be a reliable approach for convergent TC 

computation in regions with gradients >45°. The spatial-spectral combined method uses 

D/FFT in the outer zone and mass-prism integration in the inner zone. Therefore, if we 

divide the integration domain such that the terrain having gradient >45° are confined to 

the inner zone, we can avoid using the D/FFT, i.e., avoid divergence emanating from those 

areas. However, there are two issues with this method when using high-resolution DEMs. 

First, there exists no defining rule to determine the radius that separates inner and outer 

zones and hence, it is decided using the “brute force” method (e.g., Tsoulis, 1998). Second, 

due to the increase in the computation points, mass-prism analytical integration in the inner 

zone (cf. Forsberg, 1984; Tsoluis, 1998; Heck and Seitz, 2007; Tsoulis et al., 2009) is still 

resource-heavy and time-consuming.  

Therefore, as a complete solution package for local planar TC, we modified the 

spatial-spectral approach of Tsoulis (1998; 2001) and provided i) rules for defining the 

radius that separates inner and outer zones to guarantee convergence; ii) the number of 

terms in the binomial expansion to be used in D/FFT for including non-negligible terms 

(contribution >1μGal), and iii) a new numerical approach/solution to analytical mass-

prism integration. These three points are discussed below, but first, we show the source of 

convergence/divergence criterion mathematically. 

The planar TC is given by (Forsberg 1984): 

 

( ) ( )

22 2 2

1 1 1 1

3 3
2 2 2 2 2 2

0

p iz H Hx y z

x y z E z

z z
TC G dxdydz G dxdydz

x y z x y z

 

= −

=

= =

+ + + +
       (3.2.1) 
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On integrating Eq. (3.2.1) with respect to z, we get 

 

1/2
2

21
1 1

E E

z
TC G dydx

l l


−       = − +          


  (3.2.2) 

Where G is the universal gravitational constant, ρ is the constant bulk topographic density, 

( ) ( )
2 2

E p i p il x x y y= − + −  is the horizontal Euclidean distance between the 

computation and the roving points; ( ), ,P P Px y H  and ( ), ,i i ix y H  are the coordinates of 

computation point and roving point, respectively. pH  is the height of the computation 

point and iH  the height of the roving point. We can write
2 P iz z H H=  = −  

Making use of the binomial expansion of
1/2(1 )x −+  according to 

 
1/2 2 3 4 51 1.3 1.3.5 1.3.5.7 1.3.5.7.9

(1 ) 1 ... for 1
2 2.4 2.4.6 2.4.6.8 2.4.6.8.10

x x x x x x x−+ = − + − + − +    (3.2.3) 

we expand 

1/2
2

1
z

l

−

  
+     

in Eq. (3.2.2). After rearranging the obtained terms, Eq. (3.2.2)

can be written as 

 
2 2

1 1
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3 5 35 63 231
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2 8 16 128 256 1024
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TC G dxdy

l l l l l l


      
 − + − + − + 

 
    (3.2.4) 

where we abbreviate each as 

 1 2 3 4 5 6 ....TC TC TC TC TC TC TC + + + + + +  (3.2.5) 

Each term retains the appropriate sign according to Eq. (3.2.4). This formulation is a 

convolution, so can be solved numerically efficiently using the D/FFT (e.g., Schwarz et 

al., 1990). 
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Since Eq. (3.2.3) is valid for 1x  , the planar TC can be computed using Eq. 

(3.2.4) iff when the condition  

 1       
z

l
l


    (3.2.6) 

is met. Equation (3.2.6) is referred to as the convergence criterion. The condition  l  in 

Eq. (3.2.6) generally corresponds to the requirement that the slope of the terrain 

immediately surrounding the computation point should not exceed 45° (e.g., Forsberg, 

1985; Sideris, 1985; Klose and Ilk, 1993). However, conceptually, Eq. (3.2.6) must be 

satisfied for each and every combination of computation and roving points in the whole 

integration domain, i.e., the region covered by the integration/bounding radius (BR, Figure 

3.2.1), of Eq.(3.2.4). 

Therefore, we need to separate our inner and outer zones such that the condition 

given by Eq. (3.2.6) is satisfied for all the computation-rover point pairs in the outer zone, 

where the D/FFT is to be used. 

Now we discuss our solution of calculating planar TC using an efficient spatial-

spectral combined method. This has been taken from Goyal et al. (2020), which is provided 

in Appendix C.2. 

i) Rules for defining inner and outer zones separating radius 

In the following discussion, the inner and outer zones separating radius will be 

interchangeably referred with the inner radius because, along with separating the study 

area into zones, it also defines the radius of the inner zone. 

We consider three scenarios to select the radius that separates inner and outer zones 

(Figure 3.2.1). We term them: height-defined separating radius (HSR), exact separating 

radius (ESR), and optimal separating radius (OSR) as follows.   
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a) HSR follows directly from Eq. (3.2.6), which is a radius equal to the magnitude of 

the maximum height difference in the study area, i.e.,  

 
maxHSR z=   (3.2.7) 

b) ESR is calculated from the magnitude of the maximum height difference among 

all the pairs of computation (P) and roving (R) points in the area bounded by a 

circle of radius equal to the HSR. This gives the ESR. The TC solution with any 

radius less than the ESR will always diverge. Computation of the ESR is time-

consuming, especially when the maximum height difference is large, the size of 

the study area is large, and a high-resolution DEM is used. We thus define the ESR 

as 
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  (3.2.8) 

c) OSR is the upper range in the study area. The range is computed by taking the 

difference between the maximum and minimum height values in an area around 

each cell, bounded by a circle of radius equal to the HSR. The upper range is the 

maximum of these range values in the entire study area. OSR can be computed 

faster than the ESR as 
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 (3.2.9) 
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Figure 3.2.1: The four integration domains. BR is the bounding radius of the whole 

integration area that defines the integration radius.  HSR, OSR and ESR are the height-

dependent, optimal and exact separating radii, respectively. 

ii) Truncation of the binomial expansion of TC solution 

To test the convergence of the TC solution using the proposed choices of separating radii 

(HSR, ESR, OSR), we conducted the computations over five rugged topographies in the 

Himalayas with the SRTM 1”×1” DEM. The most rugged region was bounded within 

27°N to 28°N latitude and 86°E to 87°E longitude where the height varies from 190 m to 

8748 m. HSR, ESR, and OSR for this area are computed as 8558 m, 4261 m, and 5456 m, 

respectively. The same information about the other four study areas can be found in Goyal 

et al. (2020).  

We used D/FFT in a tenth-order binomial expansion to compute TC with an 

integration radius of 111,320 m (BR) minus the three separating radii (HSR, ESR and 

OSR). This is done because we use D/FFT only in the outer zones. Table 3.2.1 shows the 

value of each TC term for the study area mentioned in the preceding paragraph. 
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Table 3.2.1: Descriptive statistics of planar TCs (in mGal) in the outer zone up to the 

tenth order with the separating radii of HSR = 8558 m, ESR = 4261 m and OSR = 

5456 m and BR = 111320 m 

TC 

term 

Separating 

radius 
Min Max Mean STD 

1TC
 

HSR 1.237 76.047 9.195 5.393 

ESR 1.299 124.770 12.648 7.717 

OSR 1.278 107.603 11.361 6.865 

2TC
 

HSR –2.45 –8.71×10-4 –7.07×10-2 1.00×10-1 

ESR –11.399 –8.95×10-4 –2.01×10-1 3.19×10-1 

OSR –7.402 –8.8×10-4 –1.40×10-1 2.16×10-1 

3TC
 

HSR 1.10×10-6 1.73×10-1 1.74×10-3 4.30×10-3 

ESR 1.11×10-6 2.299 1.19×10-2 3.58×10-2 

OSR 1.10×10-6 1.128 6.15×10-3 1.75×10-2 

4TC
 

HSR -1.69×10-1 -1.84×10-9 -7.84×10-5 2.89×10-4 

ESR -6.50×10-1 -1.85×10-9 -1.32×10-3 6.66×10-3 

OSR -2.27×10-1 -1.84×10-9 -5.00×10-4 2.31×10-3 

5TC
 

HSR 3.61×10-12 1.92×10-3 4.95×10-6 2.54×10-5 

ESR 3.58×10-12 2.30×10-1 2.11×10-4 1.67×10-3 

OSR 3.60×10-12 5.32×10-2 5.78×10-5 4.00×10-4 

6TC
 

HSR -2.40×10-4 -7.88×10-15 -3.90×10-7 2.66×10-6 

ESR -8.97×10-2 1.51×10-13 -4.34×10-5 5.06×10-4 

OSR -1.36×10-2 -4.70x10-15 -8.45×10-6 8.27×10-5 

7TC
 

HSR -7.23×10-18 3.48×10-5 3.60×10-8 3.15×10-7 

ESR -2.52×10-9 3.71×10-2 1.07×10-5 1.74×10-4 

OSR -5.5×10-11 3.76×10-3 1.46×10-6 1.92×10-5 

8TC
 

HSR -5.31×10-6 7.60×10-13 -3.74×10-9 4.08×10-8 

ESR -1.61×10-6 9.71×10-8 -3.05×10-6 6.60×10-5 

OSR -1.08×10-3 1.70×10-9 -2.86×10-7 4.88×10-6 

9TC
 

HSR -2.97×10-12 8.45×10-7 4.26×10-10 5.67×10-9 

ESR -1.96×10-6 7.24×10-3 9.71×10-7 2.66×10-5 

OSR -1.51×10-8 3.28×10-4 6.17×10-8 1.31×10-6 

10TC
 

HSR -1.39×10-7 1.19×10-11 -5.24×10-11 8.32×10-10 

ESR -3.33×10-3 3.50×10-6 -3.37×10-7 1.13×10-5 

OSR -1.02×10-4 1.67×10-7 -1.44×10-8 3.74×10-7 

Table 3.2.1 shows that fewer TC terms are needed to achieve convergence (of <1 

µGal) with the HSR. However, the HSR makes the inner zone larger (cf. Figure 3.2.1), 

increasing the computation time for the mass-prism integration. Conversely, the ESR 

makes the inner zone smallest but needs the largest number of TC terms that will require 

more computer memory. Also, it takes a longer time to compute the ESR value. The OSR 

offers a compromise that balances the computation of its radius, the number of TC terms 
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required to achieve convergence, and computation time of the inner zone by mass prisms. 

We acknowledge that the exact number of TC terms required will vary depending on the 

study area, but we have deliberately chosen the extreme example of a 30 m DEM over 

Mount Everest, where convergence is achieved using six binomial terms with HSR and 

nine terms with OSR. 

Since the above condition of the number of binomial terms is devised from the 

experiments in one of the most rugged topographies on the planet, it can be taken true at 

all times. So, we prefer and suggest working with OSR and nine terms of the binomial 

expansion. 

iii) Numerical approach to analytical mass-prism integration 

The mass-prism integration method assumes that the DEM grid cells define right-

rectangular prisms with length and width given by the DEM resolution in the x and y 

directions, respectively. The height of the prism is defined by the height difference of the 

computation and roving points ( )z . 

The analytical solution of Eq. (3.2.1) is  
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  (3.2.10) 

which is a simplified, efficient and accurate version (Banerjee and Gupta 1977; Forsberg 

1984) of the solution given by Nagy (1966). Expanding Eq. (3.2.10) with respect to its 

limits gives  
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 (3.2.11) 

where 1 20;  p iz z H H= = − ; 1 2 1 2, , ,x x y y  are the planar coordinates of a prism assuming the 

computation point to be at the origin of the planar coordinate system. The order of 

subscripts of 2 2 2r x y z= + +  represents the order of coordinates ( , , )x y z , and the subscript 

value represents the lower or upper bound of that coordinate. For example, 122r  represents

2 2 2

1 2 2x y z+ + . 

Rearranging the terms in Eq. (3.2.11), the analytical formula for the TC using right-

rectangular mass prisms (TCM) is  
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  (3.2.12) 

Solving the TC integral Eq. (3.2.1) with respect to z is convenient compared to x 

and y. Therefore, we extended the trapezoidal rule for single integration to double 

integration for solving the surface integral achieved after analytical linear integration of 

Eq. (3.2.1) with respect to z. According to the trapezoidal rule for single integration with 

n = 2 subintervals, we have (for any function in variable x) 
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Extending Eq. (3.2.13) to solve double integration gives 
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where 1,  2,  3TT TT TT  represent the three integral terms in Eq. (3.2.14). By applying the 

trapezoidal rule for n = 2 to these three terms individually, we get 
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The analytical linear integral solution of the TC with respect to z is 
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Using the following substitutions of Eq. (3.2.18) in Eq. (3.2.16) 
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  (3.2.18) 

and rearranging the terms, the TC with the trapezoidal rule (TCT) can be calculated using 
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(3.2.19) 

We also derived the TC formula using the Simpson’s rule (TCS), which is given by 
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 (3.2.20) 

Both the derived formulas (Eqs. (3.2.19) and (3.2.20)) were tested on two DEMs 

(1-arc-second and 3-arc-second) in three different types of topographies (plains, 

undulating and mountainous). These were compared with the mass-prism analytical 

integration solution (Eq. (3.2.12)). Both the proposed methods (TCT and TCS) decrease 

the computation time by ~50%. Detailed results on this comparison can be found in Goyal 

et al. (2019b, 2020), from where we deduce that TCT is comparatively equivalent to TCM. 

In the trapezoidal and Simpson’s rules of integration (TCT and TCS), the numerical 

results can be improved by increasing the number of subintervals, but at additional 

computational cost. TCT and TCS were re-derived using a combination of n = 2 subintervals 

for the inner limit and n = 4 for the outer limit. This was done because only an even number 

of subintervals can be used in Simpson’s rule. On comparison, a marginal improvement was 

observed in the results from TCT and TCS with respect to the analytical mass-prism 

integration. However, the time taken for these computations became equivalent to the 

analytical integration, thus defeating the purpose of the new method. Hence, it is 

recommended to use TCT with n = 2 subintervals only, as is given in Eq. (3.2.19). 
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The CUT method requires a high-resolution TC grid for gridding the anomalies or 

so-called re-construction of the Faye anomalies (Featherstone and Kirby, 2000). 

Therefore, we computed the planar TC at 3”×3” resolution for India and adjacent regions 

using MERIT DEM (Yamazaki et al., 2017). The whole region was divided into 95 tiles 

each covering 8°×8° area. All these tiles have an overlap of 4° on all the sides to avoid the 

windowing effect (Sideris, 1984; Bracewell, 1986). The BR or the integration radius is 

kept equal to 111320 m based on the change in the values of planar TC with varying BR 

(5500 m to 166980 m), for a few tiles. The inner and outer zones were separated using the 

OSR. The inner zone computations were done with TCT method and outer zone 

computations with D/FFT having nine terms of the binomial expansion. The 3”×3” and 

block-averaged 0.02˚×0.02˚ planar TC maps for India and adjacent regions are shown in 

Figures 3.2.2 (a) and (b), respectively. The scatter plot of the 0.02˚×0.02˚ TCs with respect 

to the heights is shown in Figure 3.2.3 (a), and the histogram is given in Figure 3.2.3 (b).  

Figure 3.2.2 shows that larger values of TCs are obtained in the regions with high 

peaks and rapidly undulating terrain, as expected. In the plateau regions where we have 

high elevation but relatively lesser undulating terrain, TCs have smaller values. Figure 

3.2.3a shows that TCs can have a long-range (~1 mGal to 50 mGal) for the areas having 

considerable heights (~4000 m to 6500 m). Thus, TC vary noticeably in the regions with 

the undulating terrain compared to the regions only having higher elevations. 



82 

 

To Maa 

    
(a) (b) 

Figure 3.2.2: Local planar TC over India and adjacent countries at a) 3”×3” grid, b) 

0.02°×0.02° grid using spatial-spectral combined approach. 

 
(a) (b) 

Figure 3.2.3: a) Scatter plot of 0.02°×0.02° grid TCs with respect to the heights, b) 

histogram of 0.02°×0.02° grid TCs. 
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3.2.2 Topographic corrections in the UNB method 

The topographical corrections in the UNB method originate from the use of Helmert’s 

(1884) second method of condensation, where all the topographical masses (and 

atmospheric masses, Section 3.3) outside the geoid are condensed as a thin layer on the 

geoid. The gravitational potential of the topographical masses and their corresponding 

condensation layer will not be exactly the same. However, it has two advantages. Firstly, 

condensing the topographical masses will achieve the desired harmonicity of the 

topographical potential above geoid (to be more precise, it should be co-geoid or 

compensated geoid). Secondly, instead of working with the topographical masses between 

the geoid and the Earth’s surface that can cause a geoid undulation value as large as 1000 

m (Martinec and Vaníček, 1994a), we can work with residual topographical masses. These 

residual topographical masses are the difference between the actual masses and the 

condensed layer. The gravitational potential generated from these residual topographical 

masses causes a substantially smaller effect on the geoid undulation values (of the order 

of 2 m, Martinec and Vaníček, 1994a) as compared to the topographical potential of the 

actual masses.  

In Helmert’s second method of condensation, the following three things have to be 

dealt with:  

i) The gravitational attraction of the residual topographic masses. In the literature, 

there are three names given to this: attraction change effect (Wichiencharoen, 

1982), topographical attraction effect (Vaníček and Kleusberg, 1987), and the most 

common term, DTE (Martinec and Vaníček, 1994a). 

ii) The difference between the potentials of the actual topographical masses and the 

condensed topographical layer at any point on the geoid is known as residual 
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topographical potential. This means, with the condensed topographical masses as 

a surface layer, we are not computing the geoid but a different surface, known as 

the co-geoid (compensated geoid). Therefore, a correction term for the effect of 

residual topographical potential on the geoid needs to be applied. This is termed as 

either separation of geoid and co-geoid, or indirect effect of topography or, more 

precisely, the PITE. 

iii) Residual topographical potential indicates that the computation point or gravity 

anomaly does not correspond to the computed co-geoid but to the geoid (due to the 

use of orthometric heights). Thus, another correction is required that ensures that 

the gravity anomaly is on the co-geoid. This is realised by computing the 

gravitational acceleration of the masses between the co-geoid and the geoid, which 

is too small that there is a common practice of neglecting it. This is known as the 

SITE. Sjöberg (2015) discussed that the SITE could reach a maximum of -0.6 mGal 

with Helmert’s second method of condensation and this translates to a -0.07 m 

effect on the geoid undulation (calculated using Featherstone and Olliver, 1997, 

Eq. 14). Therefore, SITE should not be neglected from the viewpoint of cm-level 

precise geoid. 

Vaníček and Kleusberg (1987) apply the DTE and SITE on the gravity anomaly at 

the topographical surface. On the contrary, Wang and Rapp (1990) suggested applying the 

two corrections on the downward continued gravity anomaly. Here, we are dealing with 

the UNB’s approach and hence, will discuss the DTE and SITE as applied to the gravity 

anomaly at the Earth’s surface while PITE is applied on the geoid (~co-geoid) undulations, 

as per UNB. 

We will now try to formulate the above discussions using some equations. Before 

this, we remark that there exist many dissimilarities regarding the formulation of the above 
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three terms. It is due to the choices of combining downward continuation with the 

topographic correction (Wang and Rapp, 1990) and/or the spherical (Martinec and 

Vaníček, 1994a; 1994b) versus a planar approximation (Wichiencharoen, 1982; Vaníček 

and Kleusberg, 1987). Here, we will not provide all the formulations instead, see the cited 

references. We will use spherical approximation in the following discussions. 

Equations (3.2.21) and (3.2.22) give the potential of the topographical masses ( )tV  

and the condensed topographical surface layer ( )ctV , respectively (Martinec and Vaníček, 

1994a) 
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where ψ is the spherical angular distance between two points on the sphere, t  is the 

surface density of the condensed topographical layer and is given by (Wichiencharoen, 

1982) 
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In this study, we use Eq. (3.2.23) that is a condensation density function with the 

mass-conservation scheme, i.e., the mass of the Earth is not changed. A disadvantage 

attached with the use of Eq. (3.2.23) is that there will be a change in the geocentre and 

hence, degree-one terms will come into play (Hörmander, 1976; Novák, 2000). There 

could be other choices of condensed density functions (Martinec, 1993; 1998), such as i) 

geocentre-conservation scheme or ii) more complicated mass and geocentre conservation 

scheme. 
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Both 
tV  and 

ctV  can be divided into a spherical shell part and its corresponding 

roughness part. This is something like a Bouguer correction and TC in spherical 

approximation (Kuhn et al., 2009). Therefore, the topographical potential (Eq. (3.2.21)) at 

any point is written as 
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  (3.2.24) 

The linear integral in Eq. (3.2.24) can be computed as (Gradshteyn and Ryzhik, 1980) 
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 (3.2.25) 

Similarly, the gravitational potential of the condensed topographical surface layer at any 

point (Eq. (3.2.22)) can be written as 
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  (3.2.26) 

In Eqs. (3.2.24), (3.2.25) and (3.2.26) 
cpr  is the computation point i.e., 

cpr R H= +  for 

computation at the Earth’s surface and 
cpr R=  for computation at the geoid. 
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Subtracting Eq. (3.2.26) from Eq. (3.2.24) the residual topographical potential 

( )t t ctV V V = −   on the Earth’s topography is obtained by 
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Therefore, the PITE is calculated using (Martinec and Vaníček, 1994b; Novák, 2000) 

 
( )

0

,tV R
PITE






=   (3.2.28) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 3

0

22

2
22 2

22

22

2

4
2 3

' 3 cos
' 2 ' cos

2

3 cos
2 cos 3cos 1

2 2

' cos ' 2 ' cos
log

cos 2 cos

3

G H H
PITE

R

R H R
R R H R R H

R H R R
R R H R R H

R H R R R H R R H

R H R R R H R R H

R










 

 

 

   
= − + +  

    

 + + 
+ + − + − 

 

+ + 
+ + − + + −  

 


+ − + + + − + 


+ − + + + − +


−



( ) ( ) ( )2 2 3 3

2 2

' 3 ' '

3 2 cos

H H R H H H H

R R RR
 



















   − + − + −      
   + −    

 (3.2.29) 

and the SITE is given by (Novák, 2000) 
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where, ( ),tV R H +  comes from Eq. (3.2.27). 

The DTE is evaluated as (Martinec and Vaníček, 1994a; Novák, 2000) 
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 (3.2.32) 

These topographic corrections (Eqs. (3.2.29), (3.2.30) and (3.2.32)) can be 

practically computed in two ways: i) global integration (brute force summation), or ii) 

dividing the integration area into two parts i.e., near and far zone contributions. The near-

zone contribution is computed using the equations derived above and spherical harmonics 

are used for the far-zones (cf. Novák, 2000). In this study, we have evaluated the formulas 

for the topographic corrections using the global integration (summation) approach that 

utilises DEMs of different resolutions (e.g., Kuhn et al., 2009 for spherical Bouguer 

anomalies and spherical TCs).  

The strategy for practical realisation of global integration is to use varying pre-

decided integration radii for different (resolution) DEMs, i.e., different ‘fixed’ radii for 

innermost, near, far, and far-most zones. In the case of these fixed-type integration radii, 
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the roving point DEM cells for some computation points will overlap. Therefore, we 

cannot use a fixed radius for our computations. We can only speculate that the researchers 

might be taking this into account already, but an explicit mention of this issue is missing 

in the literature to the author's best knowledge. Hence, for working with cascading grids 

or multiple resolution DEM grids, we must use what we call a ‘dynamic integration 

radius’.  

This type of radius takes care of any overlapping/missing mass elements on moving 

the bounding box (integration domain) by one element of the finer resolution DEM. In 

simple words, dynamic integration radius for a given finer resolution DEM makes use of 

the ‘extensions’ (to the pre-defined fixed radii) that are adapted according to the relation 

between the location of the computation point and the resolution of the next coarser grid. 

Though the overlapping of a few DEM cells (mostly in the transition boundaries 

of the different zones) might not affect the overall topographic correction value, this 

dynamic integration radius ensures that overlapping of the mass elements does not occur. 

The use of dynamic integration radius is essential not only in the global integration but 

also for the planar TCs where researchers use different resolution DEMs with pre-fixed 

integration radii (e.g., Gomez et al., 2013). 

Another point is that the UNB method uses mean values of the computed 

topographic correction term. On the contrary, we think that the mean values should not be 

used as we are already working with the mean DEMs i.e., the coarse DEMs that are 

constructed by block averaging the high-resolution DEMs. Therefore, unlike the UNB 

strategy, we do not use, what we call, the mean of the mean values, instead the point values 

of the topographic correction terms computed at the gravity anomaly grid-nodes. These 

point values are considered to be already a mean value. 
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In addition to the above two modifications to the UNB strategy to compute the 

topographic effects, we make one more change in our computations. In the provided 

formulas, the radius of the geoid is approximated by the radius of the reference sphere. 

The UNB strategy uses a constant value of the radius, but Martinec (1993) suggests that 

this spherical approximation causes a maximum error of 30 mm (i.e., 0.3% ellipsoidal 

approximation error for N = 100 m) in the geoid undulation. Therefore, we use the 

geocentric radius to the surface of the GRS80 ellipsoid computed for each parallel of the 

latitude (Claessens, 2006, Chapter 6). Though not checked in this thesis, using the 

geocentric radius to the surface of the GRS80 ellipsoid may change the formulas for the 

ellipsoidal correction that are employed in the UNB method. 

The DTE (Figure 3.2.4), SITE (Figure 3.2.6) and PITE (Figure 3.2.8) for India and 

adjacent regions are computed on a 0.02°×0.02° grid using MERIT 3”×3” DEM and block 

averaged to 30”×30”, 5’×5’ and 1°×1° resolutions. Figures 3.2.5, 3.2.7, and 3.2.9 show 

the scatter plots with respect to the heights and histograms of DTE, SITE, and PITE, 

respectively. 

Figures 3.2.4 and 3.2.5 show that though the maximum and minimum DTE values 

reach -119.45 mGal and 340.66 mGal, respectively, ~99% of the total points have the value 

within [-50 mGal, +50 mGal] (and ~95% of the points within [-20 mGal, +20 mGal]). The 

DTE (Figure 3.2.5a) does not vary depending on the elevation as compared to the SITE 

(Figure 3.2.7a) and PITE (Figure 3.2.9a), both of which have a clear pattern of increasing 

absolute values with an increase in the elevation. Therefore, over India, SITE (Figure 3.2.6 

and PITE (Figure 3.2.8) have larger values in the Himalayan belt followed by the Western 

ghats. 
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Figure 3.2.4: DTE over India and adjacent regions 

 
(a) (b) 

Figure 3.2.5: a) Scatter plot of DTE versus height; b) histogram of DTE 
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Figure 3.2.6: SITE over India and adjacent regions 

 
(a) (b) 

Figure 3.2.7: a) Scatter plot of SITE versus height; b) histogram of SITE 
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Figure 3.2.8: PITE over India and adjacent regions 

 
(a) (b) 

Figure 3.2.9 a) Scatter plot of PITE versus height; b) histogram of PITE 
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3.2.3 Topographic corrections in the KTH method 

In the KTH method, SITE is not applied as a correction to account for gravity anomaly on 

the geoid instead of co-geoid but, it comes as a term in the derivation of topographic 

gravity anomaly (Sjöberg, 2014), which is termed DTE.  Therefore, topographic 

corrections in the KTH method are divided into two effects: direct and indirect. The direct 

effect includes DTE and SITE, while the indirect effect is the PITE. The direct and indirect 

topographic effects have been studied in detail by the KTH group and hence derived 

several formulas (e.g., Sjöberg, 2000, 2001, Nahavandchi 1998; Nahavandchi and Sjöberg, 

2001). The direct and indirect topographical effects in the KTH method are combinedly 

applied as the total topographical effect to the (approximate) geoid undulations.  

Their strategy shows that the combined topographical effect cancels the complete 

gravitational attraction of the condensed topographical surface layer (Sjöberg and 

Bagherbandi, 2017). As such, they do not use the concept of Helmert’s second method of 

condensation in the formulation of the topographical corrections. Instead, the reciprocal 

distance in the topographical potential (Eq. (3.2.21)) at the Earth’s surface is expanded as 

an external-type series to give 
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where n is the spherical harmonics degree and nP  is the Legendre polynomials of the first 

kind for degree n. 

Expanding 
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in the Taylor series, they obtain 
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Using spherical approximation of the boundary condition of physical geodesy 

(Heiskanen and Moritz, 1967, pg. 88) with topographical potential gives (Sjöberg, 2014, 

pg. 132)   
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where tg  is the topographical gravity anomaly (it should not be confused with free-air 

gravity anomaly on the topography).  

Therefore, from Eqs. (3.2.34) and (3.2.35) 
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  (3.2.36) 

Equation (3.2.35) shows that the ( )DTE tg= −  in the KTH technique is equivalent to the 

combination of DTE and SITE with the difference being that Eq. (3.2.35) uses the 

topographical potential and not the residual topographical potential. 

Since the topographical effect will be added to the geoid undulation in the KTH 

method, we need to have the gravity anomaly (in this case topographical, Eq. (3.2.36)) on 

the geoid. Therefore, considering cpr R  and using Stokes’s formula with Stokes’s 

function in spectral form, the DTE on the approximate geoid ( )T

dirN  is given by (Sjöberg 

and Bagherbandi, 2017) 
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Similarly, for computing the indirect topographical effect, the topographical 

potential (Eq. (3.2.21)) is expanded in surface harmonic series to obtain 
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where 
T

IndirN  is the indirect topographical effect on approximate geoid undulations. 

Adding Eqs. (3.2.37) and (3.2.38) gives the combined total topographical effect  
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Unlike the UNB method, this method has not used the condensation scheme, and therefore, 

both zero- and first-degree terms will come into play. 

Moreover, there has been no discussion on the upper limit of the degree-order of 

the height (height-squared or height-cubed) coefficients. Sjöberg and Bagherbandi (2017, 

pg. 154) show that after adding zero- and first- degree terms to Eq. (3.2.40), the combined 

total topographical effect is simplified to 
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  (3.2.41) 

Following are the two observations regarding the KTH approach of computing 

topographical corrections: 

i) The intermediate steps of the above formulation (Eqs. (3.2.33) – (3.2.40)) cannot 

be realised practically with either a high-resolution DEM or with a combination of 

multiple resolution DEMs. It is because the spherical harmonic coefficients of 
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height (height-squared or height-cubed) have to be determined using a DEM only. 

Given the computer resources, it is not feasible to compute these height coefficients 

with a high-resolution global DEM. Moreover, this contrasts with the final 

expression of the total topographical effect (Eq. (3.2.41)) that can be evaluated 

using any available highest resolution DEM. 

ii) Equation (3.2.41) that gives the combined direct and indirect effect on the geoid 

undulation is equivalent to the first term of the PITE computed in the UNB method 

(Eq. (3.2.29)). However, this term in the UNB’s PITE is due to the potential 

difference of the actual and the condensed topographical shells (with a mass-

conservation condensation scheme) on the geoid, but the KTH method does not 

use Helmert’s second condensation scheme. 

One interpretation can be that the topographical correction in the KTH method is 

just a term from the PITE (Eq. (3.2.29)). However, there arises a few questions that need 

to be answered: 1) If the combined topographical effect is just a term of PITE then what 

is the actual topographical effect on the geoid? 2) Does the effect of DTE, SITE (effect on 

the geoid undulation) and remaining PITE term in the UNB method cancel each other out? 

3) Which of the two methods (UNB or KTH) of topographic treatment is more 

approximate, and which one is more exact given that both exclude downward continuation 

and use spherical approximation in their expressions. This is important because the 

discrepancy in the two formulas might cause a substantial effect concerning the quest of 

cm-level precise geoid. 

Moreover, suppose by any chance both methods are equivalent. In that case, the 

KTH method should be preferred over the UNB method simply because the latter is 

computer resource-heavy and time-consuming as compared to the former. Nahavandchi 

and Sjöberg (2001) have analysed the two methods and concluded that the UNB method 
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fits better in Sweden compared to the KTH method, but the marginally rigorous formulas 

as presented in this thesis were not tested. They further suggested repeating the exercise 

in other regions. 

Figure 3.2.10 shows the total topographical effect over India and adjacent countries 

computed from Eq. (3.2.41) with the block averaged MERIT 3”×3” DEM to the grid 

resolution of the gravity anomaly data i.e., 0.02˚×0.02˚. The corresponding scatter plot 

and histogram are shown in Figures 3.2.11a and 3.2.11b, respectively.  

The total topographic effect in the KTH method is a function of only the 

computation point’s height (Eq. (3.2.41)). Therefore, as shown in Figure 3.2.10, 

distribution of the total topographic effect follows the topography (DEM). Moreover, its 

scatter plot (Figure 3.2.11a) is not scattered as compared to the topographic effects in the 

other two methods (CUT and UNB). 
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Figure 3.2.10: Total topographic effect using KTH method over India and adjacent  

regions. 

 
(a) (b) 

Figure 3.2.11: a) Scatter plot of total topographic effect versus height; b) histogram of 

total topographic effect in the KTH method. 
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3.3 Atmospheric Correction 

The parameters used to define the normal ellipsoid come primarily from the satellite-

derived geodetic data and hence, include the effect of the atmospheric masses. For WGS84 

(NIMA, 2000, pg. 3-3), geocentric gravitational constant for the Earth, Earth’s atmosphere 

and Earth with atmosphere excluded are ( ) 8 3 -23986004.418 10 m sGM =  ,

( ) 8 3 -23.5 0.1 10 m sAtmGM =    and ( ) 8 3 -2' 3986000.9 0.1 10 m sGM =   , respectively. 

This implies that the even degree zonal harmonic coefficients of the normal 

ellipsoid include effect of the atmosphere. Moreover, as a necessary condition to use 

Stokes’s formula atmospheric masses also must be moved inside the geoid or condensed 

onto it. Therefore, atmospheric correction is applied to gravity anomalies to account for i) 

gravitating atmospheric mass outside the geoid and ii) atmospheric mass included in the 

normal ellipsoid. It is applied as always additive correction to the observed gravity. The 

handling of the atmospheric correction in different geoid computation methods is 

discussed in the following sub-sections. 

3.3.1 Atmospheric correction in the CUT method 

Only the direct atmospheric effect (DAE) is applied in the CUT method on the assumption 

that its associated indirect effects are small. It does not make use of any atmospheric 

density model but uses the fifth-degree polynomial fit (Featherstone, 1992) to the values 

given in U.S. standard atmosphere (NOAA et al., 1976), and is given by 
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 −  
  (3.3.42) 

We acknowledge that there also exist other polynomial functions or other variants 

of Eq. (3.3.42), e.g., quadratic functions given by Wichiencharoen (1982) and Wenzel 

(1985; also see Ecker and Mittermayer, 1969).  
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It is also noted that researchers use DAE in Eq. (3.3.42) with different truncated 

degree polynomial (e.g., Featherstone and Dentith, 1997; Amos, 2007; Kuhn et al., 2009). 

Figure 3.3.1 shows the variation of the atmospheric effect with different heights and Eq. 

(3.3.42) truncated to different degree polynomials. Use of only degree one polynomial for 

atmospheric effect may cause a substantial effect to the final geoid computation in high 

mountainous regions. For some quantification, from Featherstone and Olliver (1997, Eq. 

14) a difference of 0.2 mGal in gravity anomaly translates to 24 mm effect on the geoid. 

It is, therefore, recommended that the full expression with a fifth-degree polynomial fit 

must be used to reduce the gravity anomalies in the CUT method, unless the maximum 

height in the area of interest is less than 1000 m.  

Moreover, we would like to emphasise that Eq. (3.3.42) is obtained after fitting a 

five-degree polynomial to the values and hence, it would not be conceptually strong to use 

any truncation in the formula. To use a truncated formula (2-, 3- or 4-degree), the 

corresponding degree polynomial must be fitted to the U.S. standard atmosphere values.  

Sjöberg  (1999; 2001) formulated that the use of Eq. (3.3.42) introduces a 

significant bias when used in practical Stokes’s integration (i.e., truncated to a limited 

region). Their observations are recognised but we use Eq. (3.3.42) with the CUT method, 

as it has also been adopted by IAG and used in numerous CUT geoid/quasigeoid 

computations (e.g. Amos, 2007; Claessens et al., 2011; Featherstone et al., 2018; 

McCubbine et al., 2018). 
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Figure 3.3.1: Atmospheric correction with different truncated degrees in Eq. (3.3.42) 

3.3.2 Atmospheric correction in the UNB method 

The UNB method applies DAE and Secondary Indirect Atmospheric Effect (SIAE) on 

gravity and Primary Indirect Atmospheric Effect (PIAE) on the geoid, similarly to the 

topographic effects (Section 3.2). They make use of Anderson et al. (1975) quadratic-

polynomial approximation of the atmospheric density model (NOAA et al., 1976) and is 

given as 

 ( ) ( ) ( )2

0,a a

UNB H H H    = +  +    (3.3.43) 

where ( )-3

0 1.2227 kgma =  is the mean bulk density of the atmosphere at sea level, 

( )4 -41.1436 10 kgm −= −  is the linear coefficient and ( )9 -53.4057 10 kgm −=   is the 

quadratic coefficient.  

Hildenbrand et al. (2002; also see Moritz, 2000) have mentioned that the 

atmospheric correction goes to zero at a height of ~34 km, however, the UNB method 

considers the atmosphere up to an arbitrary height of 50 km from sea-level. After the first 

9 km, which is generally taken as the height of the troposphere, the remaining height is 
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divided into several spherical sub-shells of constant height (possibly for simplifying the 

computations). 

Like UNB’s topographical correction (Section 3.2), the building block of all the 

atmospheric corrections (DAE, PIAE, SIAE) is the residual atmospheric potential. This 

can be calculated by subtracting the potential of condensed atmospheric mass layer from 

the actual atmospheric masses. As such, both the actual and the condensed atmospheric 

masses can also be divided into their corresponding rough ( ),ar cr

atm atmV V   and smooth 

( ),as cs

atm atmV V  parts. The residual atmospheric potential is given by (e.g., Novák 2000) 

 ( ) ( ) ( )( ) ( ) ( )( ), , , , ,a ar as cr cs

cp atm cp atm cp atm cp atm cpV r V r V r V r V r  =  +  −  +    (3.3.44) 
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  (3.3.45) 

The DAE and SIAE are computed at the Earth’s surface, while the PIAE is 

computed at the co-geoid. Therefore, ( )cpr R H= +   for DAE and SIAE, and cpr R=  for 

PIAE. Like the topographic corrections, DAE is the radial derivative of the residual 

potential of the atmospheric masses: 
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  (3.3.46) 

It is known that the i) attraction of the atmospheric shell is zero at the inner points, 

i.e., first term in Eq. (3.3.46) will be zero, and ii) attraction of the condensed layer of the 

atmospheric shell is equal to a constant at the outer points, i.e. third term in Eq. (3.3.46) 

will be a constant (cf. Blakely, 1996). 

A more detailed formulation on the practical evaluation of the above formula is 

given in Novák (2000, Section 4.4). SIAE is computed as 
2 aV
r
  and PIAE is computed as 

( )0

aV

 
. 

On the use of the atmospheric effect in the UNB method, some inconsistency 

regarding ‘signs’ has been observed in the literature.  For example, Janák et al. (2017) have 

computed DAE over Auvergne ranging between -0.84 mGal and -0.71 mGal; also, see Klu 

(2015). These values would have been accepted if they are being added to the normal 

gravity, but they are reported to be added to the gravity anomalies in the respective studies. 

However, Novák (2000) reported the atmospheric correction (spherical direct effect) over 

Canada ranging from +0.559 mGal to +0.870 mGal. From the CUT method, we see that 

the effect of atmospheric masses is positive. We can only speculate about the origin of this 

difference in sign as the formulation done using the potential of actual masses subtracted 
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from the potential of the condensed atmospheric mass layer, i.e., change in sign in Eq. 

(3.3.44). However, DAE is added to the gravity anomaly and hence, it will introduce a bias 

due to the use of incorrect sign convention. We suggest using the formulas presented 

herein for atmospheric effects in the UNB method. 

3.3.3 Atmospheric correction in the KTH method 

The KTH method of atmospheric correction uses spherical harmonics with the inverse 

distance in the atmospheric potential formula, extended as an internal-type of series 

(Sjöberg and Bagherbandi, 2017). The atmospheric potential at any point on geoid is then 

given by 

 ( ) * 2

0

0

1 1
, 4

2 2 1

n

a n
KTH

n

Hr
V r R

w n R R




=

  
 = −  

− +    
   (3.3.47) 

where 
*

0

a

KTHG =  (gravitational constant times atmospheric bulk density at sea level), w 

is an arbitrary constant in the atmospheric density function used in KTH method, i.e.,  

 0

w

a a

KTH

R

r
 

 
=  

 
  (3.3.48) 

Similar to the topographic gravity anomaly in the KTH method (Section 3.2.3), Eq. 

(3.3.47) is used in the boundary condition (spherical approximation) of physical geodesy 

to obtain the atmospheric gravity anomaly ( )ag  as 

 
2a a

KTHg V
r r

 
 = − + 

 
  (3.3.49) 

and therefore, direct atmospheric effect is 

 
2a a

KTHDAE g V
r r

 
= − = + 

 
  (3.3.50) 

Equation (3.3.50) is inserted in the spectral form of Stokes’s formula to obtain the direct 
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effect of atmosphere on the geoid. Similarly, the indirect atmospheric effect on the geoid 

( )a

KTHV   is also computed. The summation of the two terms provides the total 

atmospheric effect on the geoid. 

We observe that there are somewhat different formulas reported in the literature 

from the KTH group and we present a few in Table 3.3.1 

Table 3.3.1: Formulas for different atmospheric effect in the KTH literature. 

 

Direct 

atmospheric 

gravity anomaly 

Direct atmospheric 

effect on geoid 

Indirect 

atmospheric effect 

on geoid 
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atmospheric 
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Following are a few observations on atmospheric effects in the KTH method: 

i) Since no atmospheric mass reduction/condensation strategy is being used in the 

KTH method, it will not be correct to say that Eq. (3.3.49) is a combination of 

direct and secondary indirect atmospheric effects. However, for the time being we 

assume that the first term in Eq. (3.3.50) resembles the direct effect, while second 

term gives the secondary indirect effect. Therefore, from Table 3.3.1 and Eq. 

(3.3.50), the globally accepted 0.87 mGal atmospheric effect on gravity anomaly 

at sea level can be interpreted as not a direct effect, but instead a combined direct 

and secondary indirect effect. This is because the first term in ag , i.e., 

a

KTHV
r

 
− − 

 
goes to zero at sea level (H = 0 m). Therefore, the contribution to 

0.87 mGal at sea level originates from the second term, i.e., 
2 a

KTHV
r

 
− − 
 

. We 

envisage that this may not have numerical problem because the two terms are used 

together, but it can be worth looking in future. We would also like to mention that 

this observation might not hold true because it goes against the UNB method who 

reports a SIAE range of only -0.002 mGal to -0.001 mGal over Canada (Novák, 

2000), while the major contribution is from their direct atmospheric effect. 

ii) In Table 3.3.1, while there is no change in the expression of 
0

aV  on substituting n 

= 0 in Eq. (3.3.47), we get a different 
1

aV  on substituting n = 1 in the same equation. 

 
* 2 1

1 0

1 1
4

2 3

a H
V R

w R


 
= − − 

  (3.3.51) 

It seems that the expression for 
1

aV in Table 3.3.1 is obtained by neglecting the first 

term in Eq. (3.3.51) which further seems unguaranteed given that the first term has 

been retained in 
0

aV  (Table 3.3.1). 
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iii) In the literature, we were unable to find a value for w (an arbitrary constant in the 

involved KTH atmospheric density function) used in Eq. (3.3.47). It is most 

probably because the KTH method applies the total atmospheric effect on the geoid 

and omits w in its final formula (Table 3.3.1). However, we computed the arbitrary 

value of 1514w =  by setting 0.87 mGalDAE =  and 0 mH =  in Eq. (3.3.50). It 

is important to note here that, 1514w =  does not provide atmospheric densities 

comparable to those obtained using the density function used in the UNB method 

(Eq. (3.3.43)). Thus, a validation study of different atmospheric density function is 

required. Using a trial and error approach for different values of w and comparing 

the graphs of UNB’s and KTH’s atmospheric density function with respect to 

heights, we estimated that the most probable value of w can range from 655 to 665. 

The w value in this range provides a difference between the two density functions 

(Eqs. (3.3.43) and (3.3.48)) not beyond [-0.016 kgm-3, 0.016 kgm-3]. We can only 

speculate that the formula for DAE  in the KTH method may suffer from some 

approximations. We will not derive a more rigorous formula here because of the 

possibly better alternatives to apply atmospheric corrections (the CUT and the 

UNB method). 

iv) We anticipate that the use of the harmonic coefficients of heights in the 

atmospheric correction can be a potential cause of errors. We are working with a 

0.02°×0.02° grid of gravity anomalies. We have developed spherical harmonic 

coefficients for a global DEM of 0.25°×0.25° resolution (Section 2.5). There can 

be two cases, either we do SHA on a global DEM with same working resolution 

(e.g., 0.02°×0.02° for our case) which will be computationally challenging, or we 

accept the, maybe, negligible errors emanating from the use of different resolutions 

(spatial DEM of 0.02°×0.02° resolution versus spectral DEM with d/o 720). 
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However, as mentioned in the earlier point, we have possibly better alternatives for 

DAE, so we will restrict ourselves from further discussion on using SHA/SHS for 

DAE. 

3.4 Ellipsoidal Correction 

Stokes’s formula used to compute the geoid undulations from gravity anomalies is the 

solution of the fundamental equation of geodesy in spherical approximation (Heiskanen 

and Moritz, 1967, pg. 88): 

 
2T

g T
r R


 = − −


  (3.4.1) 

where T is the disturbing potential. 

However, the Earth is ellipsoidal in shape (flattening ≈ 1/300). The correction applied to 

account for this spherical approximation is known as the ellipsoidal correction. The first 

term in Eq. (3.4.1) comes from the definition of the gravity disturbance ( )g   

 
W U

g
H h


  

= − − 
  

  (3.4.2) 

where W is the geopotential and U is the potential of the reference ellipsoid. 

For practicality, we approximate 
H h

 
 

 to obtain 

W U T T
g

h h h r


    
= − − = − = − 

    
  

The error introduced due to the assumption of equivalence in the derivatives with 

respect to the plumbline and the ellipsoidal normal is accounted for by applying the 

ellipsoidal correction to the gravity disturbance ( )g ; this can be written as 



110 

 

To Maa 

 
g

W W

H h


 
= −
 

  (3.4.3) 

The second term on the R.H.S. of Eq. (3.4.1) is the spherical approximation of 
1

T
h









(Heiskanen and Moritz, 1967, Section 2.14). Therefore, the correction applied to account 

for this part of spherical approximation is known as ‘ellipsoidal correction for spherical 

approximation’ ( )n  and can be written as 

 
1 2

n T T
h R






  
= − − 

  
  (3.4.4) 

Equations (3.4.3) and (3.4.4) together are termed as the ellipsoidal correction to the 

gravity anomalies. These two equations have been studied in detail by many, e.g., 

Molodensky et al. (1962), Bjerhammar (1966), Koch (1968), Moritz (1974), Jekeli 

(1981b), Cruz (1986), Martinec and Grafarend (1997), Martinec (1998), Fei and Sideris 

(2000, 2001), Brovar et al. (2001), Heck and Seitz (2003), Hipkin (2004), Najafi-Alamdari 

et al. (2006) among others whom are cited later in this section. Huang et al. (2003b) and 

Ellmann (2005a) have conducted individual comparisons of various studies on ellipsoidal 

corrections, and they reported that many of the methods disagree among themselves. The 

effect of ellipsoidal corrections in the final geoid can be of decimetre level and hence, 

some standardisation is required from the viewpoint of cm-level precise geoid. 

Next, we will discuss the treatment/derivation or any possible improvement in the 

handling of the ellipsoidal correction in the three methods (CUT, UNB, KTH). 

3.4.1 Ellipsoidal correction in the CUT method 

The CUT method does not talk explicitly about the ellipsoidal corrections to the gravity 

anomalies. Ellipsoidal gravity anomalies are computed from GGM, which are subtracted 

from the observed gravity anomalies to obtain the residual gravity anomalies (e.g., 
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Featherstone et al., 2018). Then R is replaced by the radius of the ellipsoid (Claessens, 

2006, Chapter 6) in Stokes’s formula, and is computed separately for each latitude parallel. 

As such, it is claimed that no further ellipsoidal correction is required. An important point 

to note here is that these ellipsoidal gravity anomalies (Eq. (3.4.5)) are computed on the 

topography because in the CUT method, we work with the gravity anomalies on the 

Earth’s surface (Featherstone et al., 2018; Claessens and Filmer, 2020) as required in the 

Molodensky theory.  

 ( )
( )

( )

( ), ,
,GGM

e

T r T r
g r

h h h





  
  = −

 
  (3.4.5) 

where 
GGM

eg  is the ellipsoidal gravity anomaly on the Earth’s surface calculated using a 

GGM.  

This can also be written as 

 ( )
( )

( )

( ) ( ), , ,
,GGM

e

T r T r T rr
g r

h h h r h

 

 

       
  = − + 

     

  (3.4.6) 

Using the spherical approximation, we have 

 
( )

( ) ( )
,

,H

T r
r h r 



 
= − 


 (3.4.7) 

 
( )

( )
,

,
T r

g r
r


 

= − 


 (3.4.8) 

Substituting Eqs. (3.4.7) and (3.4.8) in Eq. (3.4.6), ellipsoidal gravity anomaly on 

topography is 

 ( )
( )

( )
( ) ( ) ( )

,
, , ,GGM

e

T r r
g r g r r h r

h h h h

 
  



    
  = +  −  

   
  (3.4.9) 

where  
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( )2 21 sine hr

h r

 − +
=


  (3.4.10) 

 

( )( ) ( )

2

2 22 2

cot

1 cot

e

h e h h

  

  


= −

 − + + +

  (3.4.11) 

 
2 21 sin

a

e



=

−
  (3.4.12) 

Some important points to be noted in the practical evaluation of the above formula are: 

i) Equation (3.4.9) uses the second-order approximate normal gravity gradient, given 

by 

 ( )22
1 2 sina f m f

h a





 − + + −


  (3.4.13) 

A more rigorous formula can be derived by differentiating Eq. (3.1.21) with respect 

to height. 

ii) ( )h  in Eq. (3.4.9) is the normal gravity on the Earth’s topographical surface, 

which is computed using Eq. (3.1.4) in the CUT method (Featherstone et al., 2018, 

pg. 153). A more robust formula given by Eq. (3.1.21) can also be utilised. 

iii) The height involved in the computation of GGM-derived gravity anomaly at the 

Earth’s surface must be the ellipsoidal height and should not be approximated with 

the orthometric height. A general way to obtain the ellipsoidal height in a regular 

grid is to compute geoid undulations from GGM and adding them to the block 

averaged DEM. The resultant will be the grid of required ellipsoidal heights. This 

is iterated until the difference between the current and previous ellipsoidal heights 

becomes imperceptible. The iteration is required because the computation of geoid 
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undulation from GGM itself requires ellipsoidal heights, which are approximated 

with orthometric heights (from DEM) in the first run (Rapp, 1997). 

3.4.2 Ellipsoidal correction in the UNB method 

From Vaníček et al. (1999, Eq. 11), the ellipsoidal correction to the gravity disturbance is 

given by 

 ( )
2

2 2

2 2
g

g
g g



 


     = + + +  (3.4.14) 

where ( )sin 2f =  is the difference between geodetic latitude and geocentric latitude 

(Bomford, 1971), ( )2 2 2 + =  is the square of the total deflection of the vertical and g 

is the gravity. 

Vaníček et al. (1999) show that first and third terms in the R.H.S. of Eq. (3.4.14) 

can be neglected to obtain the ellipsoidal correction to gravity disturbance up to an 

accuracy of 10 μGal. Therefore, Eq. (3.4.14) is now written as 

 g g   =  (3.4.15) 

We substitute ( )sin 2f =  in Eq. (3.4.14) to get a comparatively more robust 

formula for ellipsoidal correction to the gravity disturbance 

 
2 2 2 22 sin cos 2 sin cos

2
g

g
g f g f     = − +   (3.4.16) 

Further substituting 
1 T

r


 


= −


 and r  in geodetic coordinates (Claessens, 2006) 

 
( )2 2 2

_ 2 2

1 2 sin

1 sin
e geod

e e
r r a

e





− −
= =

−
  (3.4.17) 

in Eq. (3.4.16), we get 
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( )

2 2
2 2 2 2

2 2 2

1 sin
2 sin cos 2 sin cos

21 2 sin
g

g f e T g
g f

a e e



     

 

 − 
 = − + 
  − −
 

 (3.4.18) 

It should be noted that 
4e  term in Eq. (3.4.17) must not be omitted, as it can cause a 

difference of approximately 145 m in r .  

To simplify Eq. (3.4.18), g   can be approximately taken as unity. Implementing 

this condition ( )1g  =  causes a maximum error of less than 2 μGal that is five times 

smaller than what has been allowed in the original study (~10 μGal). Therefore, the 

ellipsoidal correction to the gravity disturbance up to an accuracy of 2 μGal is given as 

 
( )

2 2
2 2 2 2

2 2 2

1 sin
2 sin cos 2 sin cos

21 2 sin
g

f e T
g f

a e e


 
     



 − 
 = − + 
  − −
 

 (3.4.19) 

The first term on the R.H.S. of Eq. (3.4.19) can never get greater than 5 μGal; 

hence, it can be omitted for further simplification, but we do not suggest omitting it. The 

third term in the R.H.S. of Eq. (3.4.19) is the deflection correction and is exactly the same 

as derived by Claessens (2006).  

Regarding the deflection correction, Vaníček et al. (1999) reported that the 

maximum vertical deflection could reach a value of 30” and as such, the maximum 

correction cannot exceed 10 μGal while Claessens (2006) suggested 70” as the maximum 

vertical deflection and gets a maximum value of 56 μGal for the deflection correction. 

Both suggested neglecting the same. We can only speculate that this small value was not 

of much significance during those times especially when there were larger error sources 

to be considered. However, the maximum vertical deflections can reach ~109” (as in 

GGMplus, Hirt et al., 2013) in the steep Himalayan peaks, which translates to a deflection 

correction of 139 μGal. Indian vertical deflections from Gulatee (1955) that were re-
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processed by Featherstone and Goyal (2022) can be used in future geoid computations 

over India.  

For some quantification, we can have a rough estimate from Vaníček et al. (1999). 

They computed the ellipsoidal correction to the gravity disturbance in the Canadian Rocky 

Mountains that ranges from -118 μGal to +157 μGal. It was reported that on Stokes’s 

integration, this correction translates to a geoidal effect of -70 mm to +140 mm. Thus, the 

deflection correction (max ~139 μGal), which is a term in ellipsoidal correction to the 

gravity disturbance (third term in the R.H.S. of Eq. (3.4.19)), must not be omitted 

especially when working in mountainous regions. 

Next is the ellipsoidal error due to spherical approximation that is given by 

(fundamental equation of physical geodesy minus its spherical approximation) 

 
1 2

n T
n R






 
= − − 

 
 (3.4.20) 

The UNB method uses R as the mean radius of the Earth that can be rearranged as  

 ( ) ( )
1

1 1
2 3 31 1 1

3 3

f f
R a b a f a a R

−

   
= = −  −  = −   

   
 (3.4.21) 

Substituting the normal gravity gradient (Eq. 3.1.2) with a from Eq. (3.4.21) in Eq. (3.4.20) 

gives 

 ( )2 22 2 2
1 1 2 sin 2 sin

3 3
n

f f
f m f T f m f T

R R R
  

    
= − + + − −  + − −    

    
  (3.4.22) 

This is the same equation as given in Vaníček et al. (1999). 

It should be noted here that use of any other normal gravity gradient (Section 3.1) 

in Eq. (3.4.20) will not provide any improvement in Eq. (3.4.22). It is simply because, in 
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the UNB method, the ellipsoidal corrections are applied at the geoid level (e.g., Wong, 

2001) and all the expressions of the normal gravity gradient will provide the same result. 

There is literature from the UNB group (e.g., Vaníček and Martinec, 1994; Tenzer 

and Janák, 2002; Ellmann and Vaníček, 2007) that suggest using Eqs. (3.4.15) and (3.4.22) 

for the ellipsoidal corrections. However, in the recent manual (UNB, 2009), the following 

formulas have been used to apply the ellipsoidal corrections (Jekeli, 1981b; Cruz, 1986): 

 
2

sin cosg

e T

R
  




= −


 (3.4.23) 

 ( )
2

23cos 2n

e
T

R
 = − −  (3.4.24) 

The gravity anomalies with ellipsoidal correction ( )ell

UNBg  are calculated using 

 ( )
2 2

2sin cos 3cos 2ell DWC

UNB UNB

e T e
g g T

R R
  




 =  − + −


 (3.4.25) 

where 
DWC

UNBg  is the gravity anomaly on the geoid corrected for topographical and 

atmospheric masses. This follows from Jekeli (1981b, Eq. 4.21) 

 ( )
2 2 2

2 2

2 23

2 3
sin cos 6 cos sin

T T a r
g T e J P T

r r r r GM


   



  
 = − − − + − 

   
 (3.4.26) 

where the ellipsoidal correction for the spherical approximation can be obtained by 

rearranging the fourth term on the R.H.S. of Eq. (3.4.26) using some approximations based 

on a fortunate similarity in the numerical values of various parameters 

2 2 2

e.g.,
2

a b e

GM

 
 

 
. Figure 3.4.1 shows the two ellipsoidal corrections used in Eq. 

(3.4.25). 
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(a) (b) 

Figure 3.4.1: Ellipsoidal correction to (a) gravity disturbance and (b) spherical 

approximation as applied in the UNB method. 

3.4.3 Ellipsoidal correction in the KTH method 

The KTH method applies ellipsoidal corrections in two parts: 

i) Ellipsoidal correction due to the use of spherical boundary condition (Sjöberg, 

2003c; 2004). 

 ( )
2 2

2

_ 1 cos sin 3cos 2ell cor

e T e
g g T

a a
  




 =  − − −


 (3.4.27) 

Equation (3.4.27) resembles Eq. (3.4.25) used in the UNB method. However, on a 

closer look, there is a ‘sign’ difference between the two formulas. Following Jekeli (1981b, 

Section 4), the signs followed in the UNB method seem more appropriate (Eq. (3.4.26)) 

but needs further investigation. However, in this study with the KTH method, we use Eq. 

(3.4.27) as is used by the KTH group.  

ii) Upward continuation of the corrected gravity anomaly from reference ellipsoid of 

radius ( )2 21 coser a e = −  to the sphere of radius a. 



118 

 

To Maa 

 ( ) _ 1

_ 1

ell corell

KTH ell cor e

r a

g
g g a r g G

r


=

 
 =  + − =  + 

 
 (3.4.28) 

where G  is the total ellipsoidal correction that needs to be applied to the gravity anomaly 

and is given by (cf. Sjöberg, 2003c, Eq. 16) 

 ( )2 2 2cos cos sin 3cos 2
2 r a

a g T T
G e

r a a
    

=

   
= − − −  

   
 (3.4.29) 

Therefore, the ellipsoidal effect on geoid is (Sjöberg and Bagherbandi, 2017) 

 ( ) ( )
2 2cos

4 4 2

ell

r a

a R R a e a T
N S gd S Gd

R r
 


     

   =

 −    
=  + −    

    
   (3.4.30) 

The first term on the R.H.S. of Eq. (3.4.30) is for geometrical scaling of the geoid 

undulation, while the third term is due to the change in disturbing potential between 

spheres with radii a  and er .  

The above formula (Eq. (3.4.30)) has also been given in terms of spherical 

harmonics. For details, refer to Sjöberg (2004), Sjöberg and Bagherbandi (2017). 
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3.5 Downward continuation 

The term downward continuation is strictly meant for geoid computation using Stokes’s 

integration, where we need the gravity anomalies on the geoid. That is, either the observed 

gravity or computed gravity anomalies need to be brought down from the Earth’s surface 

to the geoid level. Please note that the geoid undulation can also be calculated using the 

height anomalies computed on the Earth’s surface plus the geoid-quasigeoid separation 

term in which we do not downward continue the gravity anomalies to the geoid. This will 

be discussed in Section 4.3.  

However, in the computation of height anomaly using the analytical continuation 

solution (Moritz, 1971; Pellinen, 1972) of the Molodensky’s problem, we have to either 

upward continue or downward continue the gravity anomalies from all the points on the 

Earth’s surface to the level of the computation point. This analytical continuation is 

discussed in Section 3.5.1. It should be noted here that Heiskanen and Moritz (1967, pg. 

324) describe the computation of height anomalies using the downward continued gravity 

anomalies at the geoid/sea-level. However, this is not a usual practice to be followed as it 

somewhat defeats the purpose of the Molodensky’s theory of determining the shape of the 

Earth, and hence, will not be discussed. 

3.5.1 Downward continuation in the CUT method 

The concept of downward continuation of gravity anomaly is also not forthright in the 

CUT method. Although Pellinen (1972) has shown that all the available solutions of 

Molodensky’s problem (Molodensky et al., 1962; Brovar, 1964; Moritz, 1971) are 

equivalent, the CUT method makes use of the ‘solution by analytical continuation’, as 

termed by Moritz (1971). In terms of gravity anomalies, the analytical continuation method 

uses the Taylor series expansion to connect the gravity anomalies in the interior or exterior 
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of the computation point-level surface to the corresponding gravity anomaly at the 

computation point-level surface. This involves the use of downward or upward 

continuation of the gravity anomalies in the CUT method (e.g., Moritz, 1980, Section 45). 

To the first-order of the Taylor series, it is given by 

 ' P

g
g g z

z


 =  + 


  (3.5.1) 

where Pg  is the gravity anomaly at any fixed point P on the Earth’s surface and 'g  is 

the corresponding gravity anomaly at the level surface passing through the computation 

point. 

The second term on the R.H.S. of Eq. (3.5.1) is the gradient of the gravity anomaly 

times the height difference between the two point-levels. It will not be correct to call it a 

downward continuation because it is also used for upward continuation. As such, we will 

call it here an analytical continuation operator.  

 In spherical approximation, we have 
g g g

z r h

  
= =

  
. Thus, the gradient can 

be written as (Heiskanen and Moritz, 1967, pg. 115) 

 
2

3

2

2

P Pg g gg R
d

r R l





  −
= − +

    (3.5.2) 

In the planar approximation, the first term on the R.H.S. of Eq. (3.5.2) is neglected, and 

the same is written as 

 
2

32

Pg gg R
d

r l





 −


    (3.5.3) 

It is shown that the 1G  term in the solution of Molodensky’s problem reduces to (Heiskanen 

and Moritz, 1967, pg. 312)  
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 ( ) ( )1 P P

g g
G H H H H

h r

 
= − − = − −

 
  (3.5.4) 

We recommend the readers to see Moritz (1980, pg. 387-388) for some insights into this 

analytical continuation solution. 

The CUT method involves the use of 1G  term (Eq. (3.5.4)), i.e., analytical 

continuation of gravity anomaly (downward or upward). However, it does not make use 

of the gradient operator (Eq. (3.5.3)) rather, approximates the 1G  term with the planar TCs 

(Moritz, 1980, Eq. 48-31; McCubbine et al., 2019). 

 ( )
( )

2

2

1 3

1

2

P

P

H Hg
G H H G R d

h l


 
−

= − − 
    (3.5.5) 

Equation (3.5.5) is derived assuming that the free-air gravity anomalies on the 

Earth’s surface are linearly correlated with the elevation, i.e., ( )' 2g g G z  − =  . Also 

see Moritz (1980, Eqs. 48-12 and 48-13), and Heiskanen and Moritz (1967, Eqs. 7-96 and 

7-97). 

Following are a few observations over this method that should be investigated 

further: 

i) The expression of 1G  (Eq.(3.5.4)) in terms of gravity gradient neglects the term 

( )2 P

g
H H

R


− −  (Eq. (3.5.2)) or ( )P

g
H H

R


− −  (Moritz, 1980, Eq. 45-29). For 

the Himalayan belt, where the gravity anomalies can reach 600 mGal, and height 

difference in an area of 1°×1° can reach up to 7000 m, this neglected term can reach 

a maximum value of ~1.30 mGal or ~0.65 mGal, depending on which formula is 

being used.  
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ii) Following the derivation in Moritz (1980, pg. 416), we can approximate the 1G  term 

by the planar TC iff the gravity anomalies on the Earth’s surface are linearly (or near 

linearly) correlated with the elevations. This assumption seems not to be strictly 

valid in various regions (e.g., Figure 2.1.5a) with varying heights. Moreover, with 

the use of the second-order approximate formula (Eq. 3.1.4) in the computation of 

free-air gravity anomalies on the Earth’s surface, they should not be assumed as 

linearly correlated with the elevation. Therefore, it is possible that Eq. (3.5.5) might 

not be valid from a theoretical point of view and a numerical test should be 

developed to quantify the error, if any, being introduced due to this. 

iii) 1G  is not equal to but approximated by the planar TC (Eq. (3.5.5); also see Section 

3.2.1; Featherstone et al., 2018; McCubbine et al., 2019). The difference between 

Stokes’s integrated 1G  ( )( )1S G  and Stokes’s integrated TC ( )( )S TC  is equivalent 

to the FOIE (Moritz 1980 Eq. 48-29), i.e., 

 ( ) ( )
2

1

G H
S G S TC

 


= −   (3.5.6) 

It should be noted that negative sign in Eq. (3.5.6) is sometimes omitted (e.g., 

Sjöberg, 2000; Hwang et al., 2020) and Eq. (3.5.7) is used  

 ( ) ( )
2

1

G H
S G S TC

 


= +   (3.5.7) 

We now provide a short interpretation on the quasigeoid from height anomalies 

that may require further speculation (also see Section 4.3). Following the CUT method, 

we calculate height anomalies on the Earth’s surface. Therefore, the surface developed 

using these computed height anomalies will be telluroid and not the required quasigeoid. 

To obtain the quasigeoid, we think that the height anomalies should probably be downward 
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continued to the ellipsoid along the ellipsoidal normal. One can argue that the height 

anomalies are not any physical quantity but only a mathematical term and therefore, there 

is no need to downward continue them using the gradient of height anomaly. Instead, we 

can simply consider them to be on the ellipsoid.  

In our support, we would like to mention that the height anomalies are computed 

using gravity anomalies, so they form some physical basis. Moreover, height anomaly 

gradients have been used for the analytical continuation of the height anomalies in the 

literature. For example, Eq. 8-68 in Heiskanen and Moritz (1967), but it was simplified to 

a more general case where the height anomaly gradient term vanishes (Heiskanen and 

Moritz, 1967, Eq. 8-71). Also, see Ågren (2004, Eq. 5.43), where they used height anomaly 

gradient in the derivation of downward continuation effect on geoid undulation. Another 

example comes from the spherical harmonic synthesis of geoid undulation. Rapp (1997), 

Hirt (2012) and Goyal et al. (2019a) upward continued the height anomaly computed on 

the ellipsoid to the Earth’s surface for converting the height anomaly to the geoid 

undulation. Therefore, we reiterate that the height anomalies may be downward continued 

from the Earth’s surface to the ellipsoid to define the quasigeoid, or there must be a 

convention on the interpretation of the quasigeoid.  

A possible derivation for the downward continuation of height anomalies follows 

differentiating 
PT




=  with respect to h or r (in spherical approximation) 

 
2

1 1 PgT T T T

h h h h h

  

    

      
= − = − = − 

     
  (3.5.8) 

This implies 
Pg

h






= −


. Therefore, the height anomalies can be downward continued 

using 
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 Pg
h h

h






= −


 (3.5.9) 

where h is the ellipsoidal height.  

3.5.2 Downward continuation in the UNB method 

The UNB method follows Stokes’s solution that requires the gravity anomalies on the 

geoid. That is, the gravity anomalies on the Earth’s surface need to be downward continued 

onto the geoid. This is done after Helmert’s second condensation of the topographical and 

atmospheric masses (Section 3.2.2 and 3.3.2) 

The UNB method predominantly uses inverse Poisson’s integral for downward 

continuation and usually mentions a warning regarding its limitations in the rapidly 

undulating regions and/or higher than 5’×5’ resolution of the computation grid (e.g., 

Vaníček et al., 1995). There are several papers that report on the stability and instability 

of inverse Poisson’s integral (Martinec, 1996, 1998; Sun and Vaníček, 1998; Kingdon and 

Vaníček, 2011; Vaníček and Santos, 2010) and other methods (Hunegnaw, 2001; Huang, 

2002; Huang et al., 2003a) for downward continuation of gravity anomalies. Despite 

different solutions to the inverse Poisson’s integral, two common arguments that can be 

extracted from these studies (except Vaníček and Santos, 2010) are: i) the inverse 

Poisson’s integral method is stable for Canadian rocky mountains and hence, it is stable 

for the rest of the world except perhaps for the Himalayas, and ii) the method is either 

unstable or convergence is slow if a grid higher than 5’×5’ resolution is used.  

In this study, we work in the study area having diverse topographical features 

varying from the Gangetic plains to the Himalayas with a computation grid of 0.02°×0.02° 

(=1.2’×1.2’). Thus, we have not used the inverse Poisson’s integral but the analytical 

downward continuation (Heiskanen & Moritz, 1967, pg. 115).  Though India provides the 
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best topography to test the extremities of any methods, an objective comparison between 

the two methods remains one of the limitations of the present study. 

We have used the exact analytical expression as given in Heiskanen and Moritz 

(1967, pg. 115) without neglecting any term. To downward continue the gravity anomaly 

at point P on the Earth’s surface, we compute the gravity gradient using Eq. (3.5.2), with 

0 2 sin
2

l R


= .  

The integrand in the second term on the R.H.S. of Eq. (3.5.2) contains the inverse 

of distance cubed; hence, the term will not be affected significantly with the increase in 

distance (only after some considerable distance). We did the integration using the gravity 

anomaly, corrected for topographical and atmospheric masses, with an integration radius 

of 2º. Figure 3.5.1 shows the calculated gravity gradient used for the downward 

continuation of the gravity anomalies. A scatter plot and a histogram of the gravity 

gradients are shown in Figures 3.5.2 (a) and (b), respectively. Though most values are 

within [-0.03 mGal/m, +0.03 mGal/m], the large values are observed in those regions 

where we suspect not good quality of the GETECH gravity data, i.e., regions in 

Uttarakhand, Himachal Pradesh and Jammu and Kashmir, along the Himalayan belt. We 

suggest that a more meticulous comparison study is required for the downward 

continuation methodologies over the Himalayan belt with a higher than 5’×5’ resolution 

computation grid.  
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Figure 3.5.1: Vertical gravity gradient. 

 
(a) (b) 

Figure 3.5.2: (a) Scatter plot and (b) Histogram of gravity gradient. 
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3.5.3 Downward continuation in the KTH method 

The KTH method applies the effect of DWC directly on the approximate geoid undulations 

( )DWCN  and, therefore, can be written as 

 ( )( )
0

'
4

DWC DWC

KTH

R
N S g g d



  


=  −   (3.5.10) 

where DWC

KTHg  is the downward continued gravity anomaly and 'g  is the gravity anomaly 

on the Earth’s topography as is required in the KTH method for (modified) Stokes’s 

integration. 

Using a concept similar to dividing the topography in the smooth shell and the 

rough parts, Eq. (3.5.10) can be written as  

 ( ) ( ) ( ) 
0

'
4

DWC DWC S SR
N S g g g g d



  


=  − +  −   (3.5.11) 

 
1 2

DWC DWC DWCN N N  = +  (3.5.12) 

where Sg is the gravity anomaly of smooth shell.  

Sjöberg  (2003b), Ågren (2004), and Sjöberg and Bagherbandi (2017) in their solution to 

Eq. (3.5.11) gives the same expression for the second term on the R.H.S of Eq. (3.5.11) 

 ( ) ( ) ( )( )2

0

'
4

DWC R g
N S H H d

r


  



=  − 

   (3.5.13) 

However, somewhat different expressions for the first term on the R.H.S. of Eq. (3.5.11) 

are observed, and are listed in Table 3.5.1. 
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Table 3.5.1: Three solutions for first term on the R.H.S of Eq. (3.5.11) 

Reference Solution 

Sjöberg (2003b) 
( ) ( )

2 2 2

2

3 2

2

H g H H g H g H

R H H R H R H




  

  
+ − − −

+  + +
 (3.5.14) 

Ågren (2004)  
( ) ( )

2 2 2

2

3 3

2

H g H H g H g H

R H H R H R H

 

  

  
+ − + +

+  + +
  (3.5.15) 

Sjöberg and 

Bagherbandi 

(2017) 

 
( ) ( )

2 2 2

2

3 3

2

H g H H g H g H

R H H R H R H

 

  

  
+ − − +

+  + +
  (3.5.16) 

A typographical error in Eq. (3.5.14) (Sjöberg, 2003b) has already been mentioned 

in the other two literatures (Table 3.5.1). Our derived expression for 
1

DWCN  is the same 

as Eq. (3.5.15) (Ågren, 2004). The KTH method makes use of only first three terms in Eq. 

(3.5.15) and ignores the last two terms in the computation of 
1

DWCN . A quantification of 

the five terms is given in Sjöberg (2003b) but we observe that the values assumed for a 

few quantities do not match with the observations/computations of the present study. 

Therefore, we recomputed the five terms in Eq. (3.5.15) with the values i) used in Sjöberg 

(2003b) and ii) observed (approximately) in the present study. Both are listed in Table 

3.5.2, keeping the same values for height. From Table 3.5.2, along with substantial 

differences obtained in the first and the third terms, we believe that the fourth term cannot 

be ignored in mountainous regions.  
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Table 3.5.2: Approximate maximum values for the five terms in Eq. (3.5.15) [parametric 

values in the first row are from Sjöberg (2003b) and in the second row are from this 

study; units are in m] 

 H g




 

3H

R H



+
 

2

2

H g

H




 

( )

2H g

R H



+
 

( )

2

2

3H

R H



+
 

100m, 200mGal,

0.03mGal/m, 5000(8800)m

g

g
H

r

   


 =



 
1.019 

(1.794) 

0.235 

(0.413) 

0.382 

(1.184) 

7.98e-4 

(2.47e-3) 

1.84e-4 

(5.69e-4) 

105m, 600mGal,

0.12mGal/m, 5000(8800)m

g

g
H

r

   


 =



 
3.058 

(5.382) 

0.247 

(0.434) 

1.529 

(4.736) 

2.39e-3 

(7.42e-3) 

1.93e-4 

(5.98e-4) 

The DWC effect on height anomaly can be derived from Eq. (3.5.11) and using the 

analytical solution of Molodensky’s problem with the involved 1G  term (Eq. (3.5.4)). Since 

the gravity anomalies have to be analytically continued to the computation point-level 

surface, the first term in Eq. (3.5.11) vanishes. Now to get the DWC effect on height 

anomaly, Eq. (3.5.13) is modified to be computed on the Earth’s surface, i.e.,  

 ( ) ( ) ( )( )'
4

cpDWC
r g

S H H d
r



  



=  − 

   (3.5.17) 

Comparing Eqs. (3.5.13) and (3.5.17), R  is replaced by ( )cpr R H= +  and normal 

gravity is now computed on the telluroid instead of on the ellipsoid. Also see Sjöberg and 

Bagherbandi (2017, Eq. 6.6b). From Ågren (2004, Eqs. 5.45 and 5.46), we have 

 
0

1 1 2
1

cp

H

r 

 
= −  

 
  (3.5.18) 

 
1 1

1
cp cp

H

R r r

 
= +  

 
  (3.5.19) 
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Using Eqs. (3.5.18) and (3.5.19), an approximate relation between ( ),cpr   and ( )0,R   can 

be written as 

 
0

3
1

cpr R H

R H 

 
= + 

+ 
  (3.5.20) 

Substituting Eq. (3.5.20) in Eq. (3.5.17), the DWC effect on height anomaly can be 

calculated as 

 

( ) ( ) ( )( )

( )
( ) ( ) ( )( )

0

0

'
4

3
'

4

DWC

cp

R g
S H H d

r

H R g
S H H d

r r





  


 


 
=  −  +  


   − 

 





 (3.5.21) 

Please note that the second term on the R.H.S. of Eq. (3.5.21) is not seen in KTH’s DWC 

literature, instead 
03

cp

H

r


is used (e.g., Ågren, 2004; Ågren et al., 2009b). We believe 

03

cp

H

r


 is not just the part of DWC. This term, with approximate height anomaly ( )0 , 

arises due to the use of scaling (Eq. (3.5.20)) that is done because for height anomalies, 

computations are done on the Earth’s surface with normal gravity on the telluroid. 

Therefore, 03

cp

H

r


 arises from the formulation of approximate height anomaly, and similar 

terms may also arise for all the additive corrections in the KTH method of height anomalies 

due to the scaling factor. One can always avoid this by simply using 
cpr  and normal gravity 

on telluroid in their formulations, i.e., by not using any scaling. 

3.6 Zero-degree term and tidal corrections 

Bruns’s solution (ungeneralised; Heiskanen and Moritz, 1967, pg., 84-85) is valid based 

on the assumptions that i) the potential of the normal ellipsoid ( )0U  and the geoid ( )0W  
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are same and ii) normal ellipsoid encloses the mass same as that of the Earth, i.e. 

Ellipsoid EarthGM GM= . There is one more assumption, i.e., the centre of the normal ellipsoid 

coincides with the Earth's centre of mass (this makes degree-one harmonic coefficients 

inadmissible). Practically, none of these assumptions are warranted. Therefore, along with 

Stokes’s integration, one must account for any systematic bias (if any) emanating due to 

these three assumptions. Non-fulfilment of the first two assumptions is attached with what 

is known as zero-degree term while the failure of third assumption relates to the first-

degree term. Here we will discuss the zero-degree term only because it has been reported 

inconsistently in the literature (e.g., Goyal et al., 2022). 

Another important aspect is the tidal corrections for the effect of tide-generating 

forces of the Sun and the Moon. Here, we restrict ourselves from the discussions on the 

tidal potential, tidal forces, and tidal deformation (see Melchior, 1958, 1974, 1978; 1983; 

Vaníček, 1973; Heikkinen, 1978; among others). Instead, we discuss the effect of different 

permanent tide systems in relation to geoid modelling. There are mainly three types of 

permanent tide-system: tide-free, zero-tide and mean tide. Their definition, in short, is 

(Groten, 2004): (i) tide-free is the quantity from which all tidal effects have been removed, 

(ii) zero-tide includes the indirect tidal distortion, but not the direct distortion, and (iii) 

mean-tide includes both direct and indirect permanent tidal distortions.  For more detailed 

definitions and distinctions among them, see, e.g., Ekman (1989), Mäkinen and Ihde 

(2009) or Mäkinen (2021).  

In spherical harmonic synthesis (SHS) of the gravity field, the permanent tide 

affects the value of the dynamical form factor ( )2J   and hence, the fully normalised 

degree-two order-zero Stokes coefficient. This further causes change in geometrical and 

physical parameters of the normal ellipsoid in use. 



132 

 

To Maa 

It should be noted that the changes in the normal ellipsoid due to change in the 

solid Earth permanent tide-system are not compulsory. It depends on how we choose to 

define the normal ellipsoid, i.e., a changing or an unchanging/fixed reference ellipsoid. 

Though it seems like the latter is the current practice, the former has also been mentioned 

in the literature (e.g., Vermeer and Poutanen, 1997; Smith, 1998; Lemoine et al., 1998, 

Section 11.1; Mäkinen, 2017; QPS, 2020). However, discussions on geodetic quantities in 

different tide-systems are almost always presented with respect to a fixed reference 

ellipsoid. Also, if there is no concern about the tide-system of an ellipsoid (i.e., for ‘the 

fixed ellipsoid’ case), then one can always question the use of mentioning tide-system of 

the ellipsoidal parameters (e.g., Moritz, 2000; Ihde et al., 2017; Drewes and Hornik, 2013; 

Kotsakis and Katsambalos, 2010; Angermann et al., 2016). 

Therefore, in this section we discuss the change in physical Earth and also 

parameters of the normal ellipsoid due to change in the solid Earth permanent tide-system.  

We provide numerical examples for both the cases: change and no-change in 

ellipsoidal parameters due to different tide-systems. It is shown that the geoid is 

independent of the permanent tide-system if we consider that there is a change in the 

ellipsoidal parameters for different tide-systems. The results recommend towards a 

required convention on: if we want 1. geoid undulations independent of permanent tide-

system or 2. a single reference ellipsoid independent of tide-system. 

Both, zero-degree term and tidal corrections are common to all the methods yet 

handled inconsistently in the literature on geoid computation. Like Section 3.1, we will 

discuss both these corrections in general rather than method-wise. 
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3.6.1 Zero-degree term 

The geoid undulation N (without topographical biases e.g., Rapp, 1997) in spherical 

harmonics is given by (subscript G is for GGM and subscript E is for the normal ellipsoid) 

00

_ _ _

0

( , , )
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  (3.6.2) 

 0 1

2

n

n

N N N N


=

= + +   (3.6.3) 

We assume that the centre of mass of the Earth is coinciding with centre of the 

normal ellipsoid, therefore, degree-one terms are inadmissible. Please note that this is just 

an assumption, which need not be true and necessary corrections are required (e.g., 

Heiskanen and Moritz, 1967, pg. 99; Kirby and Featherstone, 1997). Now, if the second 

assumption of Bruns’s solution is not valid then from Eq. (3.6.2) zero-degree term comes 

into play. The freely available SHS software, like isGraflab (Bucha and Janák, 2014) or 

online services, like ICGEM (Ince et al., 2019) applies this zero-degree term (N0) i.e., 

 0

0

G EGM GM
N

r

−
=   (3.6.4) 
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We know that the first assumption is also not valid in real world especially when 

there are numerous choices of geopotential values both, local (e.g., Grafarend and Ardalan, 

1997; Burša et al., 2004; Kotsakis et al., 2012; Tenzer et al., 2012; He et al., 2017) and 

global (e.g., Petit and Luzum, 2010; Dayoub et al., 2012; Sánchez et al., 2016; Amin et 

al., 2019; Poutanen and Rózsa, 2020). However, Eq. (3.6.4) does not consider difference 

in the values of geopotential and equipotential of the normal ellipsoid. 

As such, a complete zero-degree term for the geoid can be computed using the 

generalised Bruns’s formula that can be obtained as (Heiskanen and Moritz, 1967, Section 

2-19; Smith, 1998) 

 
0 0

0

0 0

G EGM GM W U
N

r 

− −
= −  (3.6.5) 

which we abbreviate as 

 0 1 2N ZT ZT= −   (3.6.6) 

This zero-degree term is one of the most inconsistently reported corrections in the 

geoid modelling publications. Different geoid solutions in phase-1 of the Colorado geoid 

experiment varied substantially, and the leading cause was the inconsistent use of the zero-

degree term (Wang et al., 2018; Wang and Forsberg, 2019). However, standardisation on 

the zero-degree term was then decided for further computations (e.g., Jiang et al., 2020; 

Claessens and Filmer, 2020; Wang et al., 2021). 

The computations of geoid and quasigeoid over Auvergne using various 

approaches (e.g., Ågren et al., 2009a; Valty et al., 2012; Janák et al., 2017) and their 

comparison with our test computations using the CUT and the KTH methods over the same 

region (Goyal et al., 2022; provided in Appendix C.4) indicate that previously reported 

studies applied only the first term in Eq. (3.6.5). That makes ~730 mm difference in the 
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final geoid solutions. Further, Foroughi et al. (2019) and Ellmann et al. (2020) claim to 

have computed sub-centimetre geoid. However, the limited reported information on the 

zero-degree term is inadequate to appreciate if it is a sub-centimetre precise geoid or a sub-

centimetre geoid shifted by an amount equal to the numerical value of the second term in 

Eq. (3.6.5). Moreover, since this forms a systematic error, its effect is not seen in error 

propagation. 

Speaking collectively, none of the computations with the methods those we are 

working with (i.e., CUT, UNB and KTH) seem to have consistently reported the zero-

degree term in all the computations. That is, it might be plausible that some computations 

might have involved the zero-degree term, while others may not. The fitting to 

GNSS/levelling also clouds the matter. 

Now, revisiting Eq. (3.6.5)  to be used with SHS of geoid undulations, the most 

commonly used normal ellipsoids in geoid computation are WGS84 (NIMA, 2000) and 

GRS80 (Moritz, 2000). Therefore, with some global 0W  values (Table 3.6.1), a 

quantification of Eq. (3.6.5) is provided in Table 3.6.2 using GRS80 and WGS84 

ellipsoids. The value of GGM  in the computations of Table 3.6.2 is taken as 

3986004.415×108 m3s-2 (Ries et al., 1992), which includes atmospheric masses. 

Table 3.6.1: Values of the equipotential of normal ellipsoid (U0) and global geopotential 

(W0)  

Potential Value (m2s-2) Reference 

0W  
62636856.00 IERS/IAU (Petit and Luzum, 2010) 

62636855.69 Burša et al. (1999) 

62636853.40 IHRS (Sánchez et al., 2016; Poutanen and Rózsa, 2020) 

0U  
62636860.8500 GRS80 (Moritz, 2000) 

62636851.7146 WGS84 (NIMA, 2000) 
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Table 3.6.2: Individual terms of Eq. (3.6.5) i.e., generalised Bruns’s formula implied 

zero-degree term. 

0W  0U    1ZT  (m) 2ZT  (m) 0N  (m) 

IHRS GRS80 
min -0.9378 -0.7617 -0.1783 

max -0.9360 -0.7577 -0.1761 

EGM2008 GRS80 
min -0.9378 -0.5276 -0.4112 

max -0.9360 -0.5248 -0.4102 

IERS/IAU GRS80 
min -0.9378 -0.4959 -0.4427 

max -0.9360 -0.4933 -0.4419 

IHRS WGS84 
min -0.0048 0.1714 -0.1771 

max -0.0048 0.1723 -0.1762 

EGM2008 WGS84 
min -0.0048 0.4043 -0.4113 

max -0.0048 0.4065 -0.4091 

IERS/IAU WGS84 
min -0.0048 0.4359 -0.4407 

max -0.0048 0.4382 -0.4430 

 Table 3.6.2 shows a large systematic bias that can enter into the geoid solution if 

the zero-degree term is not handled appropriately. We further see that the overall zero-

degree term ( )0N   for the two different ellipsoids does not vary much compared to the 

significant variations in the ZT1 and ZT2 terms, individually. Therefore, use of both the 

terms in Eq. (3.6.5) is suggested.  In the computation of the zero-degree term, 0  and r 

depend on latitude, so 0N  will differ by a few millimetres from equator to pole (Table 

3.6.2). 

 It should be noted here that a few researchers (e.g., Schettino, 2015, pg. 369) 

provided EGM  value from WGS84 (NIMA, 2000) but 0U  value from the older version 

of WGS84 (Macomber, 1984), i.e., 62636860.8497 m2s-2. This can cause a further 

error/shift of ~900 mm in the geoid solution.  

Then, there is tide-system that also enters into the computations. For example, 

almost all the GGMs are in the tide-free system (with a few in the zero-tide system), but 

there is an inconsistency in reporting the tide-system of GRS80. Rapp et al. (1991) and 
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Ihde et al. (2017) mentioned GRS80 to be in tide-free system, Drewes and Hornik (2013, 

pg. 262) report that semi-major axis and flattening of GRS80 are in zero-tide system, 

Kotsakis and Katsambalos (2010) use GRS80 as being defined in zero-tide system and 

Angermann et al. (2016, Table 3.1) mentioned that semi-major axis is in tide-free system 

while J2 is in zero-tide system.  

However, we interpret that the GRS80 is in the tide-free system. The rationale 

behind this is the explicit mention in Moritz (2000) that the dynamical form factor of 

GRS80 is “excluding the permanent tidal deformation”.  Accordingly, we also interpret 

that the WGS84-older version (Macomber, 1984) and WGS84 (NIMA, 2000) both are in 

the tide-free system because they use, directly or indirectly, the same value of 2J  from 

GRS80.  

Proof for our speculation on the similarity of WGS84 and GRS80 follows from 

Table 3.6.3, which tabulates their respective defining parameters. 

Table 3.6.3: Defining parameters of the three normal ellipsoids. 

Ellipsoid Defining Parameters Reference 

WGS84-

older 

version 

a (m) 2,0 C    (s-1) GM (m3s-2) Macomber 

(1984) 6378137 -4.8416685×10-4 7.292115×10-5 3.986005×1014 

WGS84  
a (m) 1/ f    (s-1) GM (m3s-2) NIMA 

(2000) 6378137 298.257223563 7.292115×10-5 3.986004418×1014 

GRS80 
a (m) 2 J    (s-1) GM (m3s-2) Moritz 

(2000) 6378137 1.08263×10-3 7.292115×10-5 3.986005×1014 

From Table 3.6.3, the older WGS84 had the parameters exactly the same as that of 

the GRS80 (with 84_

2,0

WGS oldC  truncated to eight significant digits). 

80 3 80 80 4 84_

2 2,0 2,0 2,01.08263 10 5 4.8416685489 10GRS GRS GRS WGS oldJ C C C− −=  = −  = −  =  

Using 2 2,05J C= − , we also have 
2_ 84_ 0.0010826299WGS oldJ =  
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Using the Newton-Raphson (NR) solution for ellipsoids (see Section 3.6.3) f  and 

0U  are computed to be 84_1  298.257223563WGS oldf =  and 

_

2

_

-

0

2

84 62636860.8497 m sWGS oldU = . It should be noted that the computed 84_1 WGS oldf  is 

same as the defining parameter of WGS84 (
841 WGSf , Table 3.6.3).  

Furthermore, utilising the parameters of WGS84, we computed 

2_ 84 0.0010826298WGSJ =  and 8

2 -2

0_ 4 62636851.7146m sWGSU = . On truncating 
2_ 84WGSJ  to 

eight significant digits, we have 2_ 84_ 2_ 84 2_ 80WGS old WGS GRSJ J J= =  (NIMA, 2000, pg. 7-2). 

The difference in the normal potential of the two versions of WGS84 ellipsoid is only due 

to a change in the GM value (
143.986005 10  m3s-2 versus 

143.986004418 10  m3s-2). 

However, a difference in 1 f  of the three ellipsoids should not have been there but is due 

to only truncation and rounding errors.  

 However, under the framework of the International Height Reference System 

(IHRS) it has been now suggested to use the mean-tide system for all geodetic 

observations, and this has been adopted as the International Association of Geodesy (IAG) 

convention (Poutanen and Rózsa, 2020). Therefore, if using a GGM in IHRS, there is a 

need to i) convert the Stokes coefficients and other ellipsoidal parameters (Section 3.6.3), 

among tide-systems, and ii) account for the difference between 0W  and 
0

IHRSW .  

Using the condition that 0U  and 0W  are invariant to the permanent tide systems 

(Burša, 1995), the zero-degree term for EGM2008 with respect to IHRS, staged via GRS80 

(with 0 a = ) simplifies to  
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If we need to transform the regional/national vertical datums to the IHRS, then 

local 0W  values might have to be re-computed. In the literature, we were unable to find 

any local 0W  value computed in the mean-tide system. The input quantities for the 

computation of geopotential value are dependent on the choice of tide-systems. Therefore, 

these 0W  values in the mean-tide system might differ (e.g., Sánchez et al., 2016) from the 

present values and hence, would have to be re-computed in the mean-tide system and with 

respect to the IAG-adopted IHRS value of 
0

IHRSW  (Sánchez et al., 2021).   

3.6.2 Tidal corrections to the physical Earth  

In many aspects of geodesy, conversions need to be made among different permanent tide 

systems (zero-tide, tide-free, mean tide) because of different conventions adopted in sub 

disciplines.  For instance, gravimetric geoid heights are recommended to be in the zero-

tide system (e.g., Vatrt, 1999; IAG Resolution 16 Hamburg 1983) though several are 

computed in the tide-free system, GNSS positioning with respect to the International 

Terrestrial Reference Frame (ITRF) is in the conventional tide-free system (Poutanen et 

al., 1996), and levelled heights are often in the mean-tide system (Heck, 1993b; Mäkinen 

and Ihde, 2009; Tenzer et al., 2012), though zero-tide has been implemented in some 

European countries (Sacher at al., 2009).   

For IGSN71 (Morelli et al., 1972) gravity network, it was suggested to use the tidal 

correction (Heikkinen, 1979) and Honkasalo (1964) term. This gives gravity values in 
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mean-tide system. However, it was followed by the suggestions from Heikkinen (1979) 

and Ekman (1980), which caused IAG in its resolution no. 15 adopted in IUGG General 

Assembly (1979) to recommend use of tide-free gravity values (Mueller, 1980; Uotila, 

1980). Meanwhile, Groten (1980) and Ekman (1981) point out the problems with the use 

of tide-free system, and they independently suggested using zero-tide gravity observations. 

Following these studies, IAG in its resolution no. 9 adopted in IUGG General Assembly 

in Hamburg in 1983 recommended using the zero-tide system for the potential field 

quantities. 

However, recently under the aegis of IHRS, IAG has recommended the use of 

mean tide system for all the geodetic observations (Poutanen and Rózsa, 2020). Therefore, 

we revisit Ekman’s (1989) equations (Eqs. (3.6.8) - (3.6.11)) for the conversion of gravity, 

geoid undulation, orthometric height and ellipsoidal height among the three tide-systems 

(gravity in μGal and heights in mm). 
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where WT is the tidal potential, h2 and k2 are second-degree load Love numbers. Ekman 

(1988) mentions that h2 describes the vertical tidal displacement of the crust relative to the 

ellipsoid and k2 describes the additional potential due to the deformation. ( )2 2 21 k h = + −  

and 2 2 2

3
1

2
h k

 
= + − 
 

 are the factors that come up in the derivations of vertical 

displacement of the geoid relative to the crust and tidal gravitation as observed on the 

surface of the deformed crust, respectively.  

It is not clear from Ekman (1989) where these numerical values come from, which 

makes it difficult to understand any approximations/assumptions involved in deriving 

these equations and rederive the same from the viewpoint of cm-precise geoid. However, 

Mäkinen (2021) provides more rigorous formulations for the conversion of gravity and 

orthometric height among mean-tide and zero-tide systems. The building block is the tidal 

potential (Eq. (3.6.12)), which is transformed in terms of the geodetic coordinates (Eq. 

(3.6.13)) 
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0H  = −0.31460 m is the zero-frequency tidal displacement amplitude, and 

eR  = 6378136.55 m is the Earth’s equatorial radius and eg  = 9.79828685 ms-2 

 ( )2 42
1 0.9722 2.8841sin 0.0195sinT

h
W

a
 

 
= + − − 
 

 (3.6.13) 

Thus, the derived conversion formula for gravity and orthometric height are (Mäkinen, 

2021) 

 430.49 90.95sin 0.31sinMT ZTg g  − = − + +  (3.6.14) 
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To our disposal, we tried to derive relatively more exact formulas for the 

conversion of gravity (Eq. (3.6.17)), geoid undulation (Eq. (3.6.18)), dynamic height (Eq. 

(3.6.19)), orthometric height (Eq. (3.6.20)), normal height (Eq. (3.6.21)) and ellipsoidal 

height (Eq. (3.6.22)) among different solid Earth permanent tide systems. Initially, unlike 

Mäkinen (2021) and Ekman (1989), we made use of exact transformation of tidal potential 

(Eq. (3.6.12)) in terms of geodetic coordinates (Eq. (3.6.16); Claessens, 2021)  
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where A = −2.9166 m2s−2. 

The derived conversion formulas are (gravity in μGal and heights in mm) 
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Considering 0 g   in Eq. (3.6.22), we get equation for conversion of the ellipsoidal 

height, which is comparable to Ekman (1989), i.e.,  
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Table 3.6.4 provides a comparison of Ekman (1989) and our conversion formula 

for gravity, geoid undulation, orthometric height and ellipsoidal height over φ = [0º, 90º]. 

From Table 3.6.4, it is seen that the difference in the two formulas for heights can reach 

>1 mm. Hence, our equations should be used because they are relatively more exact as 

compared to Ekman (1989), although these differences (>≈1 mm) are mainly due to the 

different second-degree load Love numbers as compared to the different equations. For 

gravity, the difference is <1 μGal for all the conversions, and hence, as of today we can 

use any of the two equations but in future when portable gravimeters will be of <1 μGal 

precision, our formulas must be used. 
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Table 3.6.4: Difference between Ekman (1989) and our conversion formula 

  min max mean STD 

Gravity MT-ZT -0.32 -0.09 -0.24 0.08 

(μGal) ZT-TF -0.34 0.14 -0.11 0.17 

 MT-TF -0.58 0.06 -0.35 0.24 

Geoid Undulation MT-ZT 0.40 0.57 0.51 0.06 

(mm) ZT-TF -0.22 0.31 0.06 0.19 

 MT-TF 0.30 0.72 0.57 0.15 

Orthometric* MT-ZT -0.55 -0.36 -0.48 0.06 

(mm) ZT-TF -1.29 2.93 0.84 1.51 

 MT-TF -1.65 2.43 0.35 1.46 

Ellipsoidal height* MT-ZT 0.00 0.00 0.00 0.00 

(mm) ZT-TF -0.96 2.72 0.91 1.32 

 MT-TF -0.96 2.72 0.91 1.32 

* Assumed ( ) ( )0g =    in our equations. 

It is important to note here that Ekman (1989) used the second-degree load Love 

numbers of 2 2 2 2 2 2 2 20.3, 0.62, 1 0.68, 1 3 2 1.16k h k h h k = = = + − = = + − = ,  and we 

have used 2 20.30190, 0.60780k h= =  (Petit and Luzum, 2010) 2 2 21 0.69410,k h = + − =  

2 2 21 3 2 1.15495h k = + − =  in our equations.  

3.6.3 Tidal corrections to the ellipsoidal parameters 

Before discussing the conversions of the ellipsoidal parameters in different tide systems, 

we distinguish among defining parameters and derived parameters (Kinoshita, 1994) in 

relation to the permanent tide. In principle, defining parameters of an ellipsoid are 

observed/calculated independently. Hence, with the change in one defining parameter (due 

to permanent tide) there should be no change in other defining parameters. Semi-major 

axis is the defining parameter of both GRS80 and WGS84. Therefore, its value should 

remain unaffected due to different permanent tide-system (e.g., change in 2J ).  

However, with the variation in 2J  the flattening must change but, if the flattening 

changes and the semi-major axis does not change, then we have changes only in the semi-

minor axis. As such, the volume of the Earth will alter. However, the mass of the Earth 
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must not vary due to a different permanent tide system. So, a variation in the Earth's 

volume without any deviation in its mass implies a change in the Earth’s density due to 

the different tide system, which is physically unlikely. Therefore, the Earth's volume must 

not change and that is possible iff the defining parameter- semi-major axis also changes 

with the change in 2J . Hence, deviating from the meaning of the term ‘defining parameter’. 

As such, we recommend that any new normal ellipsoid should not have semi-major axis 

and flattening as the defining parameters but follow the mean earth ellipsoid (Heiskanen 

ad Moritz, 1967, pg. 109) with defining parameters being ( )2 0 0, ,GM J U W=  and  .  

Looking into the SHS of gravity field functions, we see that the effect of different 

permanent tide system can primarily enter in: 

i) Even-degree zonal harmonic coefficients of the ellipsoid ( )_ 2 ,0E nC  

 
_ 2

_ 2 ,0
4 1

E n

E n

J
C

n

−
=

+
 (3.6.24) 

where  

 ( )
( )( )

2
1 _ 2

_ 2 2

3
1 1 5

2 1 2 3

n
n EE

E n

E

Je
J n n

n n e

+  
= − − + 

+ +  
  (3.6.25) 

Or only in terms of flattening, 
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ii) The scaling of the _ 2 ,0E nC  (Eq. (3.6.2)) 
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iii) Normal gravity 

We need to find the conversion formulas for 2J , or the flattening for different 

permanent tide system because, all other parameters of an ellipsoid are a function of these 

two terms and, GM and  .  However, the latter two do not change with the change in the 

permanent tide system. We will also work on the conversion formula of semi-major axis 

because other studies (Heiskanen and Moritz, 1967, pg. 111; Burša, 1995; Groten, 2004) 

have provided formulas for it in addition to the conversion formula for flattening. 

From Petit and Luzum (2010, Sections 6 and 7), we have (for brevity, we have 

omitted the subscript in the following discussions) for normal ellipsoid 
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where 2k  = 0.30190 is the degree-two Love number for an anelastic Earth (Petit and 

Luzum, 2010, pg. 83), 0H  = −0.31460 m is the zero-frequency tidal displacement 

amplitude, and eR  = 6378136.55 m is the Earth’s equatorial radius. Normalising Eq. 

(3.6.28)  by 5−  gives 
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Values in Eqs. (3.6.28) and (3.6.29) differ slightly from some of the values given 

in McCarthy and Petit (2003) and Petit and Luzum (2010), which is due to numerical 

rounding at each stage of their calculations. For instance, their term ( )0 1 4eA R =  is 

rounded to 4.4228×10-8 m-1, and for EGM96 and EGM2008, the term 0 0A H  is rounded to 

-1.391×10-8, and 2k  is rounded to 0.3.  

Heiskanen and Moritz (1967, pg. 111) used approximate formulas for GM , 0U  

and 2J  (Heiskanen and Moritz, 1967, pgs. 77-78) to derive the formulas (in spherical 

approximation) for calculating the changes in the flattening ( )f  and the semi-major axis 

( )a  due to the change in 2J  ( )2J , which are given by 
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Burša (1995) and Groten (2004) derived similar formula using scale factor for 

length 0 0R GM U=  (Rapp, 1974), which is also considered independent of the permanent 

tide system (Burša, 1995).  They also used the approximate formulas for GM, 0U  and 2J

, to provide f  same as Eq. (3.6.30) but a  as  

 0
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We instead use the exact equation of 2J  from Moritz (2000) to derive the formulas 

for f  and a            
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where 
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Using Eq. (3.6.34) and other various geometrical relationships among the ellipsoidal 

parameters (Moritz, 2000), Eq. (3.6.33) is re-written as 

( )

( ) ( )

3/2
2 3 22

2
2

2 1 2

4 22
1

3 2
15 2 4 3 tan 45 2 1

1

a f ff f
J

f f
GM f f GM f f f

f



−

 
 

−  −
= −  

   − 
 − + − − −   −
  

  (3.6.35) 

The total differentiation of Eq. (3.6.34) gives 

 
( )2 2 2 33 1a f a

m a f
GM GM

 −
 =  −   (3.6.36) 

Inserting the values for GRS80 and approximated values of f and a  from Eqs. 

(3.6.30) and (3.6.31) in Eq. (3.6.36), m  is of the order 
1010−

, which is two orders of 

magnitude less than the largest 2J  in Eq. (3.6.29).  Although f and m are of similar value 

(~0.003), f is of the order 
810−
 and m  is of the order 

1010−
.  Therefore, we can assume 

that there is no change in m  and, therefore, from Eq. (3.6.36) 

 
( )3 1

a
a f

f
 = 

−
  (3.6.37) 

Taking the total differentiation of Eq. (3.6.35) and inserting Eq. (3.6.37) gives 

 2

1

Jf

f J
D

 =    (3.6.38) 

 
( )

2
3 1Jf

a
a J

D f
 = 

−
  (3.6.39) 
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where 
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
−
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

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 
  − 
  − − + − − −  −    

 (3.6.40) 

Therefore, as required in SHS, the higher than second-degree zonal harmonic 

coefficients of the ellipsoid can be computed by using Eqs. (3.6.24), (3.6.26), (3.6.29) and 

(3.6.38) or a direct formula that we derive by taking total differentiation of Eq. (3.6.26) 

given by 

 
( ) ( )

( )( )
( )

2 11

2
2 ,0 22

1 3 2 2 2
1 5 5 5

22 1 2 3 4 1

n nn

n

Jf

n f f Jf
C n n J

D f fn n n

+ −−  − −  −
 = − + − +   

−+ + +    
  (3.6.41) 

Burša (1995) proved that the potential is invariant to the choice of tide system, i.e., 

change in the 2J , but to cross-check, we derived a formulation to compute the changes (if 

any) in the normal potential due to change in 2J . We use the exact formula for normal 

potential of a reference ellipsoid (Heiskanen and Moritz, 1967, pg. 67) 

 ( )
2 2

1

0 tan '
3

GM a
U e

E

−= +   (3.6.42) 

Writing Eq. (3.6.42) in terms of the semi-major axis and the flattening gives 

 
2 2 2

1

0
2

2
tan

1 32

f fGM a
U

fa f f

−
 −
 = +
 −−  

 (3.6.43) 

Equation (3.6.43) can also be re-arranged in terms of GM as 
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  (3.6.44) 

However, taking the total differentiation of Eq. (3.6.43) gives 
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  (3.6.45) 

and using Eqs. (3.6.38) and (3.6.39), we have 

 0 2
JU

Jf

D
U J

D
 =   (3.6.46) 

where 
JfD  is same as Eq. (3.6.40) and  
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1
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2 2
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tan
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 (3.6.47) 

Another option is to solve Eqs. (3.6.35) and (3.6.43) or (3.6.44) as system of non-

linear equations using NR method with variables being a and f, keeping 0 ,U GM  and   

constant for each tidal 2J  (following the definition of mean Earth ellipsoid, Heiskanen and 

Moritz, 1967, pg. 109). We provide some quantification of the above-discussed formulas 

for GRS80 in Table 3.6.5 
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Table 3.6.5: Conversion values of parameters for different tide-systems (for 

GRS80) [ZT = zero-tide; TF = tide-free; MT = mean-tide] 

* Equation (3.6.45) can be used to compute 0U , but for Table 3.6.5 (all three 

methods) we have computed 0U  using Eq. (3.6.43) with a and f for different values of 2J  

and then took the differences. 

From Table 3.6.5, there are minimal differences in the existing approximate 

solutions and our rigorous formulas (along with NR solution). 0U  can be considered to be 

invariant to the choice of tide-system, but on a closer look, the approximate formula by 

Burša (1995) can cause an error of ~1 mm in the geoid solution due to the change in 0U  

using their formulas. Therefore, it is suggested that to remove all the possible systematic 

errors in geoid computation one should use as exact as possible formulas, i.e., in this case, 

the best choice would be the NR’s solution followed by our nearly exact formulas (Eqs. 

(3.6.38) and (3.6.39)).  

Now, we derive the formula for conversion of normal gravity between different 

permanent tide-systems using normal gravity formula (Heiskanen and Moritz, 1967, pg. 

77).  

 Burša (Eqs. 

(3.6.30) and 

(3.6.32)) 

Ours (Eqs. 

(3.6.38) and 

(3.6.39)) 

NR solution 

( )9

2 10J −   

ZT-TF 9.39308 9.39308 9.39308 

MT-ZT 31.11320 31.11320 31.11320 

MT-TF 40.50630 40.50630 40.50630 

( )810f −   

ZT-TF 1.40896 1.41301 1.41301 

MT-ZT 4.66698 4.68038 4.68039 

MT-TF 6.07595 6.09339 6.09339 

( )210a −   

(in m) 

ZT-TF 2.98872 3.01422 3.01578 

MT-ZT 9.89971 9.98417 9.98933 

MT-TF 12.88844 12.99840 13.00511 

( )4

0 10U −  * 

(in m2s-2) 

ZT-TF 18.02612 1.52015 0.0000 

MT-ZT 59.70889 5.03527 0.0000 

MT-TF 77.73506 6.55543 0.0000 
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where 
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and 
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a q
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 
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 
 (3.6.50) 

From Eqs. (3.6.49) and (3.6.50), we derive conversion formulas for normal gravity at 

equator and poles 
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 (3.6.51) 

Taking total differentiation of Eq. (3.6.48) and using Eqs. (3.6.51) and (3.6.38), the 

conversion formula for normal gravity is 

 
( )2 2

2

3.1548 9.7025sin 0.0129sin 2
μGal

Jf

J
D

 


− −
 =   (3.6.52) 

There is another constant k provided in Moritz (2000) that is given by 

 1b

a

b
k

a




= −  (3.6.53) 

for which the conversion formula becomes 

 2

4.83346787

Jf

k J
D

−
 =   (3.6.54) 
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Before discussing SHS, we provide simplified conversion formulas for flattening 

(Eq. (3.6.55)), semi-major axis (Eq. (3.6.56)), semi-minor axis (Eq. (3.6.57)), first 

eccentricity (Eq. (3.6.58)), normal gravity at equator (Eq. (3.6.59)), normal gravity at poles 

(Eq. (3.6.60)), normal gravity on ellipsoid (Eq. (3.6.61)) and constant k (Eq. (3.6.62))  
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3.6.4 Numerical test for tide-system in SHS 

We provide some numerical analysis of degree-two geoid undulation (precisely height 

anomaly) and free-air anomaly using SHS of EGM2008 with GRS80 ellipsoid. Table 3.6.6 

and Figure 3.6.1 show the difference of height anomalies among tide-systems calculated 

by only converting the second-degree zonal Stokes coefficient of EGM2008 (using Eq. 

(3.6.28)), i.e., without touching any parameter of GRS80. Results from Ekman’s (1989) 

geoid conversion formula are also provided in Table 3.6.6. Figure 3.6.2 provides the plot 

for the difference in the SHS and Ekman’s (1989) values. 

Table 3.6.6: Difference in degree-two geoid in three tide systems. Computations are done 

by considering GRS80 in tide-free system and only changing 
2,0C  term of EGM. No 

changes to any parameter of GRS80 ellipsoid. 

 

 

 

 

 

  Geoid (mm) 

  min max mean STD 

MT-ZT 

SHS -199.763 99.405 -49.567 105.796 

Ekman 

(1989) 
-197.000 99.000 -49.068 104.700 

ZT-TF 

SHS -60.308 30.010 -14.964 31.940 

Ekman 

(1989) 
-59.100 29.700 -14.721 31.410 

MT-TF 

SHS -260.072 129.415 -64.532 137.735 

Ekman 

(1989) 
-256.100 128.700 -63.789 136.110 
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Figure 3.6.1: Variation in geoid undulation for GRS80 in tide-free system and 
2,0C  of 

EGM2008 in different tide system. 

   

Figure 3.6.2: Difference in Ekman (1989) formula and the calculated value of geoid 

undulation in different tide-system. (left: k2 = 0.3 in Ekman (1989) and right: k2 = 

0.30190 in Ekman (1989) 

It should be noted that the absolute difference value of ~3 mm for MT-ZT in Figure 

3.6.2 is in some accordance with the explanation of Mäkinen (2021, pg. 6) which suggests 

that an error of +3.3 mm can be observed if we use second-degree zonal term of the GGM 

converted in the mean-tide system using conversion formulas (Eq. (3.6.28)). 

This type of geoid undulations that involves no change in the parameters of 

ellipsoid (defined in tide-free system) can be perceived as the separation between mean-

tide geoid and tide-free ellipsoid or zero-tide geoid and tide-free ellipsoid or tide-free geoid 

and tide-free ellipsoid. We think that geoid undulation should be the separation between 

the geoid and ellipsoid, both in the same tide-system. Therefore, only the last choice, i.e., 

distance between tide-free geoid and tide-free ellipsoid provides the required geoid 

undulation.  
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To check the variation of geoid undulations between: mean-tide geoid – mean-tide 

ellipsoid, tide-free geoid – tide-free ellipsoid and zero-tide geoid – zero-tide ellipsoid, 

geoid undulations have also been computed with changed parameters of GRS80. The 

results are provided in Table 3.6.7 and Figure 3.6.3. 

Table 3.6.7: Difference in degree-two geoid undulation computed using EGM2008 and 

GRS80 (both in same tide system) 

 Geoid (mm) 

 min max mean STD 

MT-ZT -0.056 0.108 0.027 0.057 

ZT-MT -0.017 0.033 0.008 0.017 

TF-MT -0.073 0.141 0.035 0.075 

 

Figure 3.6.3: Variation of the difference in degree-two geoid undulation computed using 

EGM2008 and GRS80 (both in same tide system). 

Table 3.6.7 and Figure 3.6.3 show that though geoid may deform under tidal 

potential (Table 3.6.6), geoid undulation is independent of the tide-system provided that 

geoid undulation is defined as the difference between geoid and normal ellipsoid, both in 

same permanent tide-system. 

We also performed similar exercises for SHS of free-air gravity anomalies (FAA) 

using EGM2008 and GRS80. Table 3.6.8 provides the difference in FAA among three 

tide-systems computed only by changing the second-degree zonal term of EGM2008 and 

no change in GRS80 parameters. The variation of these differences is shown in Figure 

3.6.4. Table 3.6.9 and Figure 3.6.5 depict the difference and their variation (among three 
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tide-systems) of FAA computed by considering EGM2008 and GRS80 in same tide-

systems, i.e., changing the ellipsoidal parameters. 

Table 3.6.8: Difference in degree-two FAA. Computations are done by considering the 

GRS80 in tide-free system and only changing 
2,0C  term of EGM2008. No changes to 

any parameter of GRS80 ellipsoid. 

 

 

 

Figure 3.6.4: Variation in FAA for GRS80 in tide-free system (as is) and 
2,0C  of 

EGM2008 in different tide system. 

Table 3.6.9: Difference in degree-two FAA with EGM2008 and GRS80 in same tide system 

 FAA (μGal) 

 min max mean STD 

MT-ZT -0.009 0.017 0.004 0.009 

ZT-MT -0.003 0.005 0.001 0.003 

TF-MT -0.011 0.022 0.005 0.012 

 

Figure 3.6.5: Variation of FAA when EGM2008 and GRS80 are in same tide system. 

 FAA (μGal) 

 min max mean STD 

MT-ZT -30.898 15.243 -7.683 16.317 

ZT-TF -9.328 4.602 -2.320 4.926 

MT-TF -40.226 19.845 -10.003 21.243 
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From Table 3.6.8, the difference values of FAA are in accordance (<1 μGal) with 

the variation of normal gravity (Eq. (3.6.61)) in different tide-systems. This might be 

because in SHS we have used ellipsoidal parameters as defined in GRS80 (i.e., in tide-free 

system). Therefore, from the re-computation of the FAA with ellipsoidal parameters and 

EGM2008 in same tide-system, Table 3.6.9 and Figure 3.6.5 show that FAA is also 

acceptably independent (<1 μGal) of the tide-system provided that EGM2008 and normal 

ellipsoid are in the same tide system. 

As discussed in Section 3.6.2, there is some inconsistency (in the literature) on the 

tide-system of GRS80. Therefore, in Table 3.6.10 and Figure 3.6.6, we provide 

quantification of the possible error involved in SHS of geoid undulations and FAA if the 

tide system of GRS80 is mistaken as zero-tide instead of tide-free. In the computations, 

we have kept EGM2008 and GRS80 in same tide system. 

Table 3.6.10: Difference in degree-two geoid undulations and FAA for an inconsistency 

in the tide-system of GRS80 (tide-system or zero-tide as per literature). 

  Geoid undulation (mm) FAA (μGal) 

EGM

2008 
GRS min max mean STD min max mean STD 

TF TFGRSTF- 

ZTGRSTF* -30.027 60.341 14.973 31.957 -4.604 9.333 2.321 4.929 

ZT TFGRSZT**- 

ZTGRSZT 
-30.027 60.341 14.973 31.957 -4.604 9.333 2.321 4.929 

MT TFGRSMT#- 

ZTGRSMT## -30.027 60.341 14.973 31.957 -4.604 9.333 2.321 4.929 

* ZTGRSTF = GRS80 is in zero-tide system and converted to tide-free system 
** TFGRSZT = GRS80 is in tide free system and converted to zero-tide system 
#  ZTGRSMT = GRS80 is in zero-tide system and converted to mean-tide system 
## TFGRSMT = GRS80 is in tide-free system and converted to mean-tide system 
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Figure 3.6.6: Variation of differences in degree-two geoid undulation and free-air 

anomaly for EGM2008 in ZT and GRS80 (TFGRSZT- ZTGRSZT) 

Table 3.6.10 and Figure 3.6.6 show that a confusion/inconsistency in the tide-

system of GRS80 ellipsoid (tide-free or zero-tide) can cause a maximum difference of ~60 

mm in geoid undulation and ~9 μGal in free-air anomaly synthesised from EGM2008. This 

will also be true for WGS84 ellipsoid, which is also in tide-free system. 

For the IAG resolution of all the geodetic quantities in mean-tide system, including 

coordinates, Mäkinen (2021) provides the formulas for converting geodetic latitude (Eq. 

(3.6.63)) and ellipsoidal height (Eq. (3.6.64)) from tide-free system to mean-tide system, 

derived from Petit and Luzum (2010, Section 7) 

 0.814sin 2 0.004sin 4 masMT TF   − = − −  (3.6.63) 

 2 460.34 179.01sin 1.82sin mmMT TFh h  − = − −  (3.6.64) 

In our view, these formulas are for coordinate transformation from tide-free system 

to mean-tide system but with GRS80 in ‘as-is’ tide-system, i.e., tide-free system. The 

ellipsoidal height formula above is derived from Petit and Luzum (2010, Eq. 7.14) and is 

comparable with the ellipsoidal height conversion formulas derived using 

( ) ( )MT TF MT TFH H N N− + − , i.e., Eq. (3.6.11) or Eq. (3.6.23). This is because these are 

also derived considering that there is no change in the tide-system of the ellipsoid. 

Therefore, with these conversion formulas (Eqs. (3.6.63) and (3.6.64)) mean-tide geodetic 
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coordinates are obtained with respect to the tide-free ellipsoid. 

However, if we want mean-tide coordinates with respect to mean-tide ellipsoid, 

Molodensky transformation (NIMA, 2000, pg. 7-3) should be used, which are simplified 

to 

 

2(2 )sin 2
" (1 )

2( )sin1" (1 )

f f
a f f

h a f

 
 



    − 
 =  +  + −    

+ −    
 (3.6.65) 

 
2(1 ) sin

a
h a f f  



 
 = − + − 

 
 (3.6.66) 

where anda f   are change in semi-major axis and flattening of the ellipsoid in 

different tide-systems provided by Eqs. (3.6.56) and (3.6.55), respectively;   and   are 

the radius of curvature in prime vertical and meridional directions, respectively. 

Therefore, there should be some consensus on the choice (conversion/no 

conversion) of ellipsoid parameters. The formulas given by, e.g., Ekman (1989) or 

Mäkinen (2021) are based on calculating the quantities in any tide-system but with respect 

to the tide-free ellipsoid (for GRS80 or WGS84). However, we think a better option is to 

also convert the ellipsoidal parameters in the working tide-system, i.e., using our formulas 

of conversion of ellipsoidal parameters and use them in SHS or coordinate transformation. 

In case our suggestion of using GGM and normal ellipsoid in same tide-system is 

opted, we have computed and provided all the parameters (Table B.1) of GRS80 and 

WGS84 in the three-tide systems in Appendix Table B.2 and B.3, respectively. The values 

can be directly utilised in the SHS of the gravity field functions. The conversion formulas 

of various ellipsoidal parameters can also be included in the SHS subroutines.  In Table 

B.4, we also provide the parameters of a possibly new normal ellipsoid that is consistent 
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with the IHRS parameters (Poutanen and Rózsa, 2020, pg. 275). Please note that the values 

in Table B.4 are not official. 

3.7 Summary 

In this chapter we have discussed various corrections and reductions involved in geoid 

computation as handled in the three different methods viz. CUT, KTH and UNB. We also 

discussed about the important yet loosely handled zero-degree term and solid Earth 

permanent tide systems. Below are some summarising comments from the discussions in 

the six sub-sections of this chapter: 

i. Either for geoid or quasigeoid computation, gravity anomalies should be initially 

computed at the Earth’s surface using the normal gravity from the exact method (Eq. 

(3.1.21)). If the required normal height is approximated by orthometric height or 

normal-orthometric height, a geoid-quasigeoid correction term (Eq. (3.1.24)) for 

gravity anomalies should be used.  

ii. The CUT method does not apply any topographic correction but approximates 

Molodensky’s G1 term by the planar TC. The UNB method is theoretically the most 

rigorous method for handling the topography in geoid computation. However, it seems 

that their present approach uses an average of the mean values for the various 

topographic corrections due to the use of mean topographic correction values from 

already block-averaged DEM. We have also explicitly introduced the preferred use of 

dynamic integration radius instead of a fixed integration radius that may cause some 

overlapping of the DEM grid cells. A rigorous quantitative analysis is required to 

compare the formulation of topographic corrections in the KTH method and the UNB 

method. The effect of total topographic correction to the geoid in the KTH method is 

equal to a part of only indirect effect in the UNB method. 
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iii. The most general method of direct atmospheric effect (DAE) is to use a polynomial 

function as included in the CUT method. We have shown that one should not use a 

truncated polynomial function to compute DAE. A similar formula has also been 

adopted by the International Association of Geodesy (IAG) for DAE. However, 

Sjöberg (1999) and Sjöberg and Nahavandchi (2000) had discussed some of its 

limitations. The primary parameter in the DAE is the atmospheric density function 

which differs among all the three methods. Moreover, only the UNB method considers 

the atmospheric height up to an arbitrarily chosen 50 km. Also, we discourage the use 

of height coefficients in DAE (as used in the KTH method) unless they are constructed 

using the global DEM of working resolution, i.e., resolution of the geoid (0.02˚×0.02˚ 

for our case). Though the DAE difference among the different methods may be 

negligible, some standardisation is needed. 

iv. There exist several different approaches of ellipsoidal correction which are 

significantly different to each other, but we had restricted the discussions to the three 

strategies as adopted in the CUT, UNB and KTH methods. We have given some more 

rigorous formulas at some junctures. There exists some discrepancy in the ‘signs’ in 

the formulas for ellipsoidal correction used in the UNB and the KTH methods. 

Although we have provided our reasons for preference to the ‘signs’ used in the UNB 

method, it may need some further investigation. All formulas, irrespective of the 

method, are realised using the Global Geopotential Model (GGM). Hence, ellipsoidal 

corrections will vary due to the methodology as well as the different choices of GGMs. 

The CUT method uses full d/o GGM to compute the residual gravity anomaly, i.e., 

they use the full d/o GGM for ellipsoidal correction (along with geocentric ellipsoidal 

radius of the computation point). The UNB and the KTH methods uses satellite-only 
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GGMs. Therefore, though presumably negligible, this effect needs to be quantified in 

the future.  

v. Downward continuation (DWC) of gravity anomalies is not applied in the CUT method 

because it computes the quasigeoid. However, a different viewpoint is provided where 

DWC is applied as the analytical continuation in the CUT method which also follows 

the DWC effect for calculating the height anomalies in the KTH method. A conceptual 

need for DWC of height anomalies from the Earth’s topography to the ellipsoid is also 

introduced to obtain the quasigeoid. A different interpretation of the DWC effect in the 

quasigeoid computation of the KTH method (Eq. (3.5.17)) has been provided that may 

require some modifications in their additive corrections to the approximate quasigeoid. 

vi. The quantification of the significant biases introduced due to the inconsistent use of 

the zero-degree term has been demonstrated. Expressions/relations have been provided 

for the conversion of observed gravity, geoid undulation, orthometric, dynamic, 

normal-orthometric and ellipsoidal heights and various ellipsoidal parameters among 

the three permanent tide systems (tide-free, zero-tide and mean-tide). The numerical 

values of the defined and derived parameters of GRS80, WGS84 and an International 

Height Reference System (IHRS)-based possibly new normal ellipsoid have been 

computed in the three tide systems and are provided in Appendix A1. 

Having discussed the systematic corrections, the next chapter will deal with 

geoid/quasigeoid computation strategies of the three methods that will also involve the 

order in which the above discussed corrections are applied. 
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Chapter 4: Computation of the Indian gravimetric geoid and 

quasigeoid models 

4.0 Introduction 

In previous chapters, we have discussed the datasets and various corrections or data 

handling (with some results) in the three geoid computation methodologies (CUT, UNB, 

KTH). In the present Chapter, we use those discussions and results to overview the geoid 

computation methodologies. An introduction to Stokes’s integration and modification of 

Stokes’s kernel is also provided. Since we are interested in both geoid and quasigeoid, a 

geoid-quasigeoid separation term is discussed to convert geoid undulations to height 

anomalies or vice-versa. Further, some parametric fitting of gravimetric geoid/quasigeoid 

on the geometric geoid undulation is discussed that helps in reducing the systematic biases 

among geodetic datums.  

4.1 Stokes’s integration and kernel modification 

The gravimetric geoid or quasigeoid computation is basically the conversion of observed 

gravity values into geoid undulations or height anomalies. This is mainly achieved by 

using Stokes’s and Bruns’s formulas under two main assumptions: i) gravity data is 

available all around the globe on the surface of the geoid, and ii) there should be no masses 

above the geoid. The handling of the second assumption has been dealt with in Chapter 3. 

Contrary to the first assumption, the data of the entire globe is not available, and we use 

gravity data only for a region. Therefore, integration over the whole globe is compelled to 

be truncated to a limited region around the computation point. Hence, truncation error or 

bias is introduced in the geoid and quasigeoid (quasi/geoid) solution, but it is reduced by 

using a Global Geopotential Model (GGM) in a remove-compute-restore approach.  
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Molodensky et al. (1962) presented, for the first time, modification to the original 

Stokes’s kernel with the main idea of reducing the truncation error. Presently, there are 

several kernel modifications available that can be broadly classified as either deterministic 

or stochastic modifiers. 

In this chapter, we provide a basic overview of Stokes’s integration and kernel 

modification without going into details, mainly due to the following two reasons: 

i) There is much literature available on these topics, and we cannot explain them any 

better than what is already documented. 

ii) We have not modified the existing formulas or the methodologies of Stokes’s 

integration or kernel modifications. 

Therefore, we thought it wise enough to provide only the basic equations and the most 

relevant references. 

4.1.1 Stokes’s Integration 

George Gabriel Stokes, in 1849, published his formula that demonstrated for the first time 

the use of gravity measurements to determine the geoid (Stokes, 1849). The formula is a 

solution to the third geodetic boundary value problem (GBVP). In the third GBVP, gravity 

anomaly is modelled as a linear combination of disturbing potential and its normal 

derivative through the fundamental equation of physical geodesy. Also, it is given that 

disturbing potential is harmonic in space outside the geoid (i.e., satisfying Laplace’s 

equation). Therefore, disturbing potential is solved on the geoid and space outside the 

geoid. This can be mathematically written as (e.g., Heiskanen and Moritz, 1967, pg. 86) 

 

0,     in space outside geoid

: 2
,          on geoid

: ?, on geoid and in space outside geoid

T

Given T
T g

n r

Sought T

 =



+ = − 

=

  (4.1.1)    
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Stokes (1849) derived the solution to the third GBVP (under the assumptions that 
n r

 
=

 
 

and r R= ; Heiskanen and Moritz, 1967, pg. 87-88, 92-93) as  
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and    is the spherical distance given by 

 ( )( )1cos sin sin ' cos cos 'cos '      −= + −   (4.1.5) 

The use of Bruns’s formula (Eq. (4.1.6)) in Eq. (4.1.2) gives the famous Stokes 

formula (Eq. (4.1.7)) that is used to calculate geoid height from gravity anomalies. 
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The same formula is also used to compute the height anomalies using 

Molodensky’s problem, where geoid undulation is replaced with height anomalies. 

Gravity anomalies on the geoid are replaced by gravity anomalies on the Earth’s surface, 

and normal gravity at ellipsoid is replaced by normal gravity at the telluroid. Another 

critical yet inconsistently reported replacement would be R by R+H.  From Eq. (4.1.7), the 

use of R instead of R+H can cause a difference of ~15 mm for a region/point with a geoid 

undulation value of 50 m and a height of 2000 m, but much less when remove-compute-

restore is used. 

Stokes’s integral (Eq. (4.1.7)) can be evaluated using various methods such as 

‘brute force’ numerical integration (Heiskanen and Moritz, 1967, pg. 117), quadrature-

based numerical integration (e.g., Hirt, 2011), ring integration (Kearsley, 1986; Tsen, 

1992), 1D-FFT on sphere (Haagmans et al., 1993), 2D-FFT on sphere (Strang van Hees, 

1990; Forsberg and Sideris, 1993), 2D-FFT on a plane (Schwarz et al., 1990; Sideris and 

Li, 1993) or Least Squares Collocation (Krarup, 1969; Tscherning, 1977; Moritz and 

Sünkel, 1978; Moritz, 1980). Interested readers should also see Tziavos (1996) and Zhang 

(1997) for numerical comparisons of the spectral methods for Stokes’s integration.  

It is well advocated and numerically shown in the literature that solution with 1D-

FFT is significantly faster than and exactly the same as numerical integration (e.g., 

Haagmans et al., 1993). Therefore, the use of 1D FFT in evaluating Stokes’s integral is 

widespread in the literature on geoid computation (e.g., Ågren et al., 2009a; 2009b; 

Featherstone et al., 2018; Claessens and Filmer, 2020; Grigoriadis et al., 2021, among 

numerous others). However, Huang et al. (2000) presented a modified numerical 

integration that is claimed to be faster than the 1D-FFT method (e.g., Janak et al., 2017). 

It makes use of the symmetrical property of Stokes’s and modified Stokes’s kernels 

(Section 4.1.2) with respect to the meridian of the computation point. As such, only half 
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of the kernel values are required to be evaluated. This modified method is realised by 

shifting the ‘evaluation of kernel’ from the longitudinal loop to the latitudinal loop, which 

causes computation of the kernel values only once for a given latitude. Huang et al. (2000) 

have shown that, on their computing system (Dell Optiplex GS1p PC with 400MHz CPU), 

their method is ~45 times faster than the brute force numerical integration method with a 

modified Stokes’s kernel. 

In this study, we have used this modified numerical integration (Huang et al., 2000) 

for evaluating Stokes’s integral, coded in MATLAB. The geoid height at any point can be 

obtained using the discrete version of Stokes’s integral (Eq. (4.1.8)). 
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4.1.2 Kernel modification 

Due to the availability of limited gravity anomaly data, Stokes’s integral cannot be 

extended over the entire Earth. Instead, it has to be truncated to a limited area ( )0  where 

gravity data is available. Therefore, Stokes’s formula can be re-written as 
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where N̂  is an estimate of geoid height due to truncation of the integral. The difference 

between Eqs. (4.1.7) and (4.1.9) is the truncation error and is given by 
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0 −  is the area where gravity data are not available. Molodensky et al. (1962) 

demonstrated that the truncation error could be minimised by modifying Stokes’s kernel 

(minimising L2 norm of the error kernel; Vaníček and Sjöberg, 1991).  
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There have been several kernel modifications that are based on reducing the 

truncation error (Molodensky et al., 1962; de Witte, 1967; Wong and Gore, 1969; Vaníček 

and Kleusberg, 1987), accelerating the convergence of the truncation error (Meissl, 1971; 

Heck and Grüninger, 1987), and reducing the truncation error with simultaneously 

accelerating its convergence (Featherstone et al., 1998). These all are categorised as 

deterministic modifiers. There are other modifiers that aim to reduce the errors in either 

one or both of the potential coefficients and terrestrial gravity data along with the 

truncation error using least squares solution (Sjöberg, 1984a; 1984b; 1991). These are 

categorized as stochastic modifiers. Other stochastic modifiers also exist, but which do not 

aim to reduce the truncation error, rather do the weighting of the kernel based on the errors 

in potential coefficients and terrestrial gravity data (Wenzel, 1981; 1983). 

In this study, the geoid is computed using the three methods (CUT, UNB, KTH), 

therefore, only their preferred choice of modifications are discussed and used. The name 

and seminal references to the kernel modifications in the three methods are listed in Table 

4.1.1. 

Table 4.1.1: References of the three modifications to Stokes’s kernel. 

Method Kernel modification Key references 

CUT 
Featherstone, Evans, 

Olliver (FEO) 

Featherstone et al. (1998) 

UNB 
Vaníček and Kleusberg 

(VK) 

Vaníček and Kleusberg (1987); Vaníček and 

Sjöberg (1991); Vaníček et al. (1995) 

KTH 

Least Squares 

Modification of Stokes’s 

kernel (LSMS) 

Sjöberg (1980; 1981; 1984a; 1984b; 1986; 

1990; 1991; 2003; 2005); Sjöberg and 

Hunegnaw (2000) 

In addition to the references in Table 4.1.1, there have been review articles with 

the involved formulations on deterministic modifiers (Vaníček and Featherstone, 1998; 

Featherstone, 2003; 2013; Šprlák, 2010; Rabehi et al., 2012) and stochastic modifiers 

(Ellmann, 2005b; Rahebi, 2012; Featherstone, 2013). The detailed formulas for kernel 
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modifications can also be seen in various theses on geoid modelling, e.g., Novák (2000), 

Kern (2003), Ågren (2004), Ellmann (2004), Singh (2007), Amos (2007), Daras (2008), 

Abdalla (2009), Ulotu (2009) among many others. Also see Jekeli (1980, 1981a), Martinec 

(1993) and Sjöberg and Bagherbandi (2017). 

Therefore, without duplicating the detailed derivations of each of the three 

modifiers, we write a general equation (Eq. (4.1.11), with 2c R = ) for Stokes’s 

integration that uses modified Stokes’s kernel and GGM. This can take the form of 

remove-compute-restore (RCR) formulation as required in the CUT and the UNB 

methods, and also the non-RCR formulation as used in the KTH method. 
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M

nQ  and ,n nt s  are truncation coefficients and modification parameters, respectively, that 

need to be computed for determining the modified Stokes’s kernel. The formulas are 

available in almost all the above-cited literature, also see Hagiwara (1972; 1976) and Paul 

(1973) for auxiliary coefficients.  

4.2 Different techniques of geoid and quasigeoid calculation 

The gaps between theoretical and practical aspects in quasi/geoid computation arising 

from the various assumptions and approximations (Chapter 3; Section 4.1) incur several 

errors, which geodesists have tried to reduce for the ongoing quest of cm-precise geoid 

(e.g., Sansó and Rummel, 1997; Tóth et al., 2000). Also, there are two choices of reference 

surface: geoid or quasigeoid. As such, there are several methods available for quasi/geoid 

computation (Goyal et al., 2022, Table A1). 

A brief overview of the CUT, the UNB, and the KTH geoid computation 

methodologies are presented in this section. However, it is important to note here again 

that the methodology adopted and discussed under the names: CUT, UNB, and KTH do 

not strictly follow the methodology depicted in their research articles or manuals. We have 

mentioned a few differences between the strict and our adopted methodologies because of 

different aspects of the Indian data (Chapter 2). 

Table 4.2.1 lists a few study areas where these three methods have been 

implemented, although a combination of the methods is also used and reported in the 

literature (e.g., Matsuo and Kuroishi, 2020). The CUT method is primarily used for 

quasigeoid computation. The UNB method is for geoid computation. The KTH method 

was initially developed to compute the geoid but later modified to calculate the quasigeoid. 

A geoid-quasigeoid separation term is needed to convert geoid to quasigeoid (or vice-
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versa) so that both can be computed using all three methods. This separation term is dealt 

with in Section 4.3.  

Table 4.2.1: Examples of implementation of geoid/quasigeoid computation 

methodologies. 

Method Region/Country Reference 

CUT 

Australia 

New Zealand 

Colorado 

India 

Auvergne 

Featherstone et al. (2001; 2011; 2018) 

Claessens et al. (2011); McCubbine et al. (2018) 

Claessens and Filmer (2020) 

Goyal et al. (2021b) 

Goyal et al. (2022) 

UNB 

Canada 

 

Brazil 

Iran 

Mexico 

 

Ghana 

Auvergne 

Vaníček and Kleusberg (1987); Vaníček et al. (1995); 

Huang and Véronneau (2013) 

Guimarães et al. (2014) 

Najafi-Alamdari (2004) 

Hernández-Navarro (2004); Avalos Naranjo et al. 

(2006) 

Klu (2015) 

Foroughi et al. (2017a; b; 2019) 

KTH 

Sweden 

Baltic countries 

Iran 

Tanzania 

Greece 

Kazakhstan 

Sudan 

New Zealand 

Turkey 

Uganda 

Poland 

Malaysia 

Jilin province in 

China 

Auvergne 

Ågren et al. (2009b) 

Ellmann (2004); Ellmann et al. (2020) 

Kiamehr (2006) 

Ulotu (2009) 

Daras et al. (2010) 

Inerbayeva (2010) 

Abdalla and Fairhead (2011) 

Abdalla and Tenzer (2011) 

Abbak et al. (2012) 

Ssengendo (2015) 

Kuczynska-Siehien et al. (2016) 

Pa’suya et al. (2019) 

Wu et al. (2020) 

 

Ågren et al. (2009a); Yildiz et al. (2012); Goyal et al. 

(2022) 

4.2.1 CUT method of geoid/quasigeoid calculation 

The CUT method uses a simplified Molodensky theory with the Moritz (1971) solution, 

where Molodensky’s G1 term is approximated by the planar terrain correction (TC) 

(Moritz, 1971; 1980; McCubbine et al., 2019). A flowchart of the CUT methodology for 

calculating the height anomalies/geoid undulations is shown in Figure 4.2.1.  



174 

 

To Maa 

 

Figure 4.2.1: Flowchart of the CUT methodology of geoid/quasigeoid computation. 

A brief description of Figure 4.2.1 is as follows: 

With the available gravity data, free-air anomalies are calculated on the Earth’s 

topography by subtracting normal gravity at the telluroid (Section 3.1) from the observed 

gravity at the Earth’s surface. Atmospheric corrections (Section 3.3.1) are also added to 
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these free-air anomalies. TCs (Section 3.2.1) are computed using the best-available Digital 

Elevation Model (DEM) (Section 2.5) and block-averaged to the grid size of the gravity 

anomaly data. Block-averaged TCs are added to the free-air anomalies to obtain a grid of 

mean Faye anomalies (Figure 4.2.2a) on the Earth’s topographical surface. It should be 

noted that if we had randomly distributed gravity data, mean Faye anomalies would have 

been obtained using the reconstruction technique of gridded Bouguer anomaly as 

discussed by Featherstone and Kirby (2000) and Goos et al. (2003).  

Ellipsoidal free-air anomalies are synthesised on the topography at a grid of 3”×3” 

using the highest available GGM (EIGEN-6C4 in our case), which are then block-averaged 

to 0.02°×0.02° grid to obtain the area-mean reference gravity anomalies. Residual Faye 

anomalies on the topography are then calculated by subtracting the mean reference gravity 

anomalies from the mean Faye anomalies. The residual Faye anomalies are shown in 

Figure 4.2.2b. These are Stokes-integrated using the FEO kernel modification (Section 

4.1.2) to obtain a grid of residual height anomalies. Please recall from Section 3.4.1 that 

the reference radius in the Stokes integration is set equal to the ellipsoidal radius of the 

computation point, and this negates the need for further ellipsoidal corrections (Claessens, 

2006, Chapter 6). 

The residual height anomalies were computed using the following combinations 

(parameter sweeps) in Eq. (4.1.11): L = 2190, M = 40, 80, 120, 160, 200, 240, 280, 300, 

and 0  = 0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°. The residual height anomalies for M = 80 and   

= 1.5˚ are shown in Figure 4.2.3. The reference height anomalies on the topography are 

computed using GGM (EIGEN-6C4) with a zero-degree term from the generalised Bruns 

formula (Section 3.6.1) calculated for each latitude parallel. We used normal potential 

( )2 -2

0 62636860.85 m sU =  from GRS80 and the geopotential ( )2 -2

0 62636853.4 m sW =  



176 

 

To Maa 

from IHRS (Sánchez et al., 2016). The reference height anomalies and, unlike the CUT 

application, the first-order indirect effect (FOIE, Section 3.5.1) are added to the residual 

height anomalies to obtain the height anomalies. 

The geoid-quasigeoid separation (Flury and Rummel, 2009) term is applied to the 

height anomalies to obtain the corresponding geoid undulations. Parametric fitting of 

geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid 

geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The 

gravimetric geoid and quasigeoid models (before and after fit) are then validated with the 

available GNSS/levelling data. The gravimetric geoid is also validated with Indian vertical 

deflections (Section 2.3).  

Figure 4.2.2: a) Faye gravity anomalies and b) residual Faye gravity anomalies as 

required in the CUT method. 
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Figure 4.2.3: Residual height anomalies after Stokes integrating residual Faye gravity 

anomalies with FEO kernel modification (M = 80 and   = 1.5˚) 

The following are the major differences from the original CUT method: 

i) Due to the availability of already gridded Bouguer anomalies data, a different 

approach is used to calculate Faye anomalies on the Earth’s topographical surface. 

ii) A different method is used to compute the planar TC (Section 3.2.1). 

iii) FOIE is applied in this study. 

iv) The zero-degree term based on generalised Bruns’s formula is used and explicitly 

mentioned. 

v) The geoid-quasigeoid separation term is computed using the Flury and Rummel 

(2009) method. 
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vi) The numerical method (Huang et al., 2000) has been used instead of 1D-FFT 

(Haagmans et al., 1993) for Stokes’s integration. 

4.2.2 UNB method of geoid/quasigeoid calculation 

The UNB method generally talks about two spaces, i.e., the real space and Helmert’s space. 

The difference between the two is that in Helmert’s space, all the masses above the geoid 

(topographic and atmospheric), present in the real space, are condensed as a thin surface 

layer on the geoid (Helmert’s second condensation). This makes the space between the 

geoid and the Earth’s surface harmonic (Martinec, 1993), i.e., it satisfies Laplace’s 

equation. 

The method starts with formulating the spherical fundamental equation of physical 

geodesy on the Earth’s surface and thus calculating the free-air anomaly on the topography 

in the real space (Section 2.1). However, for geoid determination, gravity anomalies are 

desired on the geoid. Since there are masses above the geoid, the gravity anomalies are 

transformed from the real space to Helmert’s space, but still referring to the Earth’s 

surface. This transformation is done by applying direct (DTE) and secondary indirect 

(SITE) topographical (Section 3.2.2) and direct (DAE) and secondary indirect (SIAE) 

atmospheric effects (Section 3.3.2).  

These Helmert’s gravity anomalies are downward-continued (DWC; Section 3.5.2) 

from the Earth’s surface to the geoid, or more precisely the Helmert co-geoid. Ellipsoidal 

corrections are then applied to Helmert’s gravity anomalies at the geoid level (Section 

3.4.2). 

The so-obtained Helmert’s gravity anomalies on the geoid in the UNB approach 

are decomposed into the low- and high-frequency of the gravity field. The latter is achieved 

by removing reference Helmert’s gravity anomaly, i.e., reference gravity anomaly (GGM 
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derived, DIR-RL05 in this case) along with reference topographical effects (DEM SHC 

d/o 300 derived; Novák, 2000, pgs. 51-56; Table 4.2.2). The result is residual (high-

frequency) Helmert’s gravity anomalies (Figure 4.2.5) that are Stokes-integrated using the 

VK kernel modification (Section 4.1.2) to obtain residual (high-frequency) co-geoid.  

The residual co-geoid is computed using the following combinations (parameter 

sweeps) in Eq. (4.1.11): L = 300, M = 0, 40, 80, 120, 160, 200, 240, 280, 300, and 0  = 

0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°. The residual height anomalies for M = 80 and   = 1.5˚ is 

shown in Figure 4.2.6. The reference spheroid (GGM (DIR-RL05) derived geoid 

undulations and reference primary indirect topographic effect (PITE)) are added to the 

residual co-geoid. GGM-derived geoid undulations are computed with a zero-degree term 

from the generalised Bruns’s formula (Section 3.6.1) calculated for each latitude parallel. 

We used normal potential ( )2 -2

0 62636860.85 m sU =  from GRS80 and the geopotential 

( )2 -2

0 62636853.4 m sW =  from IHRS (Sánchez et al., 2016). Finally, the geoid from 

Helmert’s space (co-geoid) is transformed to the required geoid in the real space by 

applying PITE and primary indirect atmospheric effects (PIAE). 

The geoid-quasigeoid separation term (Flury and Rummel, 2009) is applied to the 

geoid undulations to obtain the corresponding height anomalies. Parametric fitting of 

geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid 

geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The 

gravimetric geoid and quasigeoid models (before and after fit) are then validated with the 

available GNSS/levelling data. The gravimetric geoid is also validated with vertical 

deflections (Section 2.3). 
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Figure 4.2.4: Flowchart of the UNB methodology of geoid/quasigeoid computation. 

Table 4.2.2: Topographical effects (in mGal) from spherical harmonic coefficients of the 

DEM. 

 
d/o min max mean STD 

DTE 
160 -13.557 9.627 -0.168 ±2.289 

300 -25.733 23.174 -0.161 ±3.344 

SITE 
160 -0.554 0.084 -0.056 ±0.136 

300 -0.617 0.082 -0.056 ±0.137 
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Though we have used d/o 300 for our computations, corresponding values 

calculated with d/o 160 are also depicted in Table 4.2.2 only to emphasise that there can 

be substantial absolute differences (~10 mGal to ~15 mGal) in the reference topographical 

effects. These differences will have equivalent effect (~10 mGal to ~15 mGal) on 

Helmert’s residual gravity anomalies, affecting the final geoid solution. Therefore, from 

the viewpoint of cm-precise geoid model, we suggest to study the effects of different d/o 

of DEM for calculating Helmert’s residual gravity anomaly.  

 

Figure 4.2.5: Residual Helmert’s anomaly calculated with the DIR-RL05 GGM d/o 300. 
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Figure 4.2.6: Residual co-geoid after Stokes-integrating residual Helmert’s gravity 

anomaly with the VK kernel modification (M = 80 and   = 1.5˚) 

The large residual Helmert’s gravity anomalies (Figure 4.2.5) are possibly due to 

the large gravity gradients (Figure 3.5.1) in the regions where we suspect poor quality of 

the GETECH gravity data (Section 2.1). 

The following are the major differences from the original UNB method: 

i) The computed topographic effects are considered as the mean value, which 

contrasts with the UNB method, where the mean value is calculated by averaging 

the topographic effect computed using DEMs with different resolutions (Section 

3.2.2). 
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ii) For the present study, we have not used the formulas used in the UNB method for 

atmospheric effects. We have only applied direct atmospheric effect as discussed 

in Section (3.3.1) and do not apply primary and secondary indirect atmospheric 

effect, and reference atmospheric effects. As discussed in Section 3.3, though 

atmospheric correction may not be significant but needs to be studied meticulously 

to have some consensus on the same among different methods. 

iii) For DWC, we have used the gravity gradient method instead of inverse Poisson’s 

integration (Section 3.5.2). 

iv) We have not used the ‘distant zone contribution’ (Novák, 2000, pg. 62) in the final 

geoid solution and have utilised GGM with d/o 300 to remove the reference gravity 

anomalies and restore the reference geoid undulations. This contrasts with the idea 

of a satellite-only reference spheroid in the UNB method (e.g., Vaníček and 

Martinec, 1994; Vaníček et al., 1995). 

v) The zero-degree term based on the generalised Bruns formula is used and explicitly 

mentioned. 

vi) The geoid-quasigeoid separation term is computed using the Flury and Rummel 

(2009) method. 

4.2.3 KTH method of geoid/quasigeoid calculation 

The primary uniqueness of the KTH method lies in the stochastic modification of Stokes’s 

kernel and additive corrections to the gravity data. Unlike the other methods tested (CUT, 

UNB, LSC), the direct and indirect effects needed to make the observations accordant with 

the geodetic boundary value problem are added as separate combined corrections to the 

approximate geoid estimates obtained using Stokes’s integration with un-reduced gridded 

terrestrial gravity data.  
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Firstly, in the KTH method, approximate values of geoid undulations are computed 

from the un-reduced gridded gravity anomalies and GGM using the unbiased least-squares 

geoid estimator (Eq. (4.1.11), with L = M). One of the most important steps in calculating 

approximate geoid is determining a priori estimates of signal and error degree variances. 

These are necessary to compute a better choice of modification parameters to be used in 

the least-squares modification method (Ågren, 2004; Ågren et al., 2009b). 

We have used KTH’s preferred Tscherning and Rapp (1974) model to compute the 

gravity signal degree variance. The error degree variance of the GGM gravity is computed 

from the published error estimates that accompany the GGM coefficients (Rapp and 

Pavlis, 1990). The error degree variance of terrestrial gravity anomalies is assumed to be 

a combination of white noise and a reciprocal distance covariance model (Ågren, 2004; 

Ågren and Sjöberg, 2014). The signal and the GGM error degree variances are further 

rescaled by an empirically determined factor to best depict the ‘reality’ of the study area. 

Next are the additive corrections. The basic equation for geoid modelling using the 

KTH method is  

 ˆ T DWC atm Ell

comb combN N N N N N   = + + + +   (4.2.1) 

The various additive corrections (atmospheric, ellipsoidal, and downward continuation) 

discussed in Chapter 3 are reformulated using the modified Stokes kernel for practical 

geoid computation. Only the combined topographic effect remains the same (Eq. (3.2.41)) 

(Sjöberg, 2000; Ågren, 2004). However, we would mention that there exists some 

discrepancy in the expression of combined topographical effect on geoid emanating from 

the use of R  (e.g., Sjöberg and Bagherbandi, 2017) versus PR H+  (e.g., Ågren et al., 

2009b) in the second term of Eq. (3.2.41). 
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In addition to the total combined topographical effects, other three corrections in 

Eq. (4.2.1) are given as: 

i) Downward continuation effect on geoid ( )DWCN  (Sjöberg, 2003b) 
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ii) Atmospheric correction (Sjöberg, 1999; 2001; Sjöberg and Nahavandchi, 2000) 
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iii) Ellipsoidal correction to the geoid height (Sjöberg, 2003c; 2004) 
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where *
, 2

0,

n

n

s if n M
s

otherwise

 
= 


  

nmT  are spherical harmonic coefficients of disturbing potential and , ,nm nmE F  and nmG  are 

ellipsoidal coefficients arising in the derivations (e.g., Sjöberg, 2003a; 2003d). 

We have not duplicated the derivations because they are provided in detail in the 

cited references, almost all doctoral and master dissertations from the KTH on geoid 

modelling, and the book by Sjöberg and Bagherbandi (2017). 
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The above four corrections are collectively known as additive corrections, and 

these are applied to the approximate geoid height to obtain the final geoid height. The 

geoid-quasigeoid separation term is applied to convert the geoid height to the height 

anomalies (Section 4.3). This procedure is shown as a flowchart in Figure 4.2.7. 

 

Figure 4.2.7: Flowchart of the KTH methodology of geoid followed by quasigeoid 

computation. 

The KTH method has been designed primarily to compute a gravimetric geoid, 

which is then converted to quasigeoid by adding the geoid-quasigeoid separation term. 

However, Sjöberg (2000) and Ågren et al. (2009b) show that if the combined topographic 

effects are not applied in the computations using the KTH method and if the downward 

continuation is also adjusted accordingly, the result will be a quasigeoid. The modification 

to the downward continuation is based on the analytical continuation solution using 
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Molodensky’s G1 term. This eliminates the need for computing the topographic effects 

and further correction terms to convert the geoid to quasigeoid. It has been discussed in 

Section 3.5.3. For practical computations, the stochastically modified Stokes’s kernel is 

used in the modified DWC effect for quasigeoid, which is then given by 
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  (4.2.5) 

Atmospheric and ellipsoidal corrections remain the same i.e., atm atm

comb combN =  and 

Ell EllN = (Ågren et al., 2009b). An overview of the direct quasigeoid computation 

using the KTH method is given in Figure 4.2.8. 

 

Figure 4.2.8: Flowchart of the KTH methodology for quasigeoid followed by geoid 

computation. 
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For our computations with the KTH method, we used the latter method with DIR-

RL05 GGM and following combinations (parameter sweeps): L = M = 40, 80, 120, 160, 

200, 240, 280, 300, and 0  = 0.2°, 0.5°, 0.75°, 1°, 1.5°, 2° in Eq. (4.1.11). The reference 

height anomalies on the topography are computed using GGM with a zero-degree term 

from the generalised Bruns’s formula (Section 3.6.1) calculated for each latitude parallel. 

We used normal potential ( )2 -2

0 62636860.85 m sU =  from GRS80 and the geopotential 

( )2 -2

0 62636853.4 m sW =  from IHRS (Sánchez et al., 2016). 

The geoid-quasigeoid separation (Flury and Rummel, 2009) term is applied to the 

height anomalies to obtain the corresponding geoid undulations. Parametric fitting of 

geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid 

geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The 

gravimetric geoid and quasigeoid models (before and after fit) are then validated with the 

available GNSS/levelling data. The gravimetric geoid is also validated with vertical 

deflections (Section 3.3). 

Only for illustration purposes, the atmospheric, ellipsoidal, and the DWC effect are 

shown in Figures 4.2.9, 4.2.10, and 4.2.11, respectively, computed with LSMS kernel 

modification (M = 80 and   = 1.5˚). 
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Figure 4.2.9: Combined atmospheric effect for the height anomalies/geoid undulations in 

the KTH method with LSMS kernel modification (M = 80 and   = 1.5˚) 



190 

 

To Maa 

 

Figure 4.2.10: Ellipsoidal effect for the height anomalies/geoid undulations in the KTH 

method with LSMS kernel modification (M = 80 and   = 1.5˚) 
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Figure 4.2.11: Combined downward continuation effect for the height anomalies in the 

KTH method with LSMS kernel modification (M = 80 and   = 1.5˚) 

The following are the major differences from the original KTH method: 

i) We could not follow the remove-compute-restore method for gridding the gravity 

anomalies because we already had the gridded gravity anomalies. 

ii) The zero-degree term based on generalised Bruns’s formula is used and explicitly 

mentioned. 

iii) The geoid-quasigeoid separation term is computed using the Flury and Rummel 

(2009) method. 
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4.3 Geoid-quasigeoid separation 

Primarily there are three choices of height systems (Featherstone and Kuhn, 2006): 

orthometric heights (either Helmert (1884) or rigorous (Tenzer et al., 2005; Santos et al., 

2006)) referred to the geoid, normal heights referred to the quasigeoid (Molodensky et al., 

1962), and normal-orthometric heights referred to a non-explicitly mentioned surface 

(Filmer et al., 2010; 2014). There have been discussions on the choice of geoid vs. 

quasigeoid (Vaníček et al., 2012; Sjöberg, 2013; 2018; Penna et al., 2013; Foroughi et al., 

2017b; Popadyev, 2019; Santos et al., 2021) as a reference surface for physical heights. 

Since both have their respective advantages and disadvantages, no consensus has been 

attained. Therefore, different countries have their individual preference of one surface over 

the other. A ‘bridge’ term connecting the two surfaces without an intensive 

independent/separate computation of geoid and quasigeoid is the geoid-quasigeoid 

separation (GQS) term.  

The major motivations for pursuing GQS term are: 

i) Avoiding the re-computations for the countries that are shifting from one height 

system to another. 

ii) Use of consistent height system in the whole of the country or adjacent countries. 

iii) Investigate the suitable representative surface for the normal-orthometric height 

system and thereafter calculate hybrid geoid or hybrid quasigeoid. 

iv) An aid to geophysical studies (e.g., Mehramuz et al., 2011) 

The third point is the motivation to calculate GQS term for the present study. The 

CUT and the KTH methods provide height anomalies (KTH method can also provide 

geoid undulations, Section 4.2.3), while the UNB method provides geoid undulations. 

Therefore, to convert among geoid undulations and height anomalies, the GQS term is 
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required. 

The background for GQS term is the relation between geodetic height and i) 

orthometric height and geoid undulation (Eq. (4.3.1)), and ii) normal height and height 

anomaly (Eq. (4.3.2)) 

 h H N +   (4.3.1) 

 *h H  +   (4.3.2) 

From Eqs. (4.3.1) and (4.3.2),  

 * *H N H N H H +  +  −  −   (4.3.3) 

From the relations of H  and 
*H  with the geopotential number ( )C , i.e., 

C
H

g
=   and 

* C
H


=  we have 

 
* g

H H H




−
−    (4.3.4) 

Therefore, substituting Eq. (4.3.4) in Eq. (4.3.3), the relation between geoid undulation 

and height anomaly is given by 

 
g

N H





−
−    (4.3.5) 

where g  is the mean gravity along the curved and torsioned plumb line and   is the mean 

normal gravity along the curved normal plumb line. If we consider   as the separation 

between the ellipsoid and the quasigeoid, Eq. (4.3.5) can also be regarded as the GQS. 

Therefore, the problem of GQS has now reduced mainly to the determination of 

mean gravity g  along the curved and torsioned plumb line. The treatment of g is the 
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principal source of various available formulas for GQS term. Table 4.3.1 lists a few of the 

GQS term formulas available in the literature. We have not discussed their detailed 

methodology, instead see the literature cited.  

Table 4.3.1: Various formulas for calculating GQS term. 

Reference GQS term 

Heiskanen and Moritz 

(1967, pg. 327) 
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(2009) 
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There also exist formulas for GQS that include density contribution (e.g., Tenzer 

et al., 2006; 2015; Foroughi and Tenzer, 2017) but are not provided here because no 

national Digital Density Model (DDM) is available for India. 

The formulas presented by Flury and Rummel (2009) and Sjöberg (2010) do not 

vary more than a centimetre anywhere on the Earth (Sjöberg, 2010; Flury and Rummel, 

2011). In addition to the several available GQS formulas, there has been a mild 

inconsistency in the use of simple or refined Bouguer anomalies in the formulas in Table 

4.3.1. Heiskanen and Moritz (1967) and Ågren (2004) use simple planar Bouguer 

anomalies, while others (in Table 4.3.1) have used refined Bouguer anomalies. Ádám 
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(1999), Lasagna (2017) and Wang et al. (2020) preferred using simple Bouguer anomalies, 

while Hwang et al. (2020) have worked with refined Bouguer anomalies with the formulas 

in Heiskanen and Moritz (1967, pg. 327). From the derivations in the cited literature, it 

can be observed that the use of simple versus refined Bouguer anomalies is dependent on 

the choice of formulating g  (e.g., Rapp, 1961, pg. 39-69; Hesikanen and Moritz, 1967, 

pg. 166-167). 

We now provide our interpretation of GQS (without density considerations). 

Recalling from Section 3.5.1, height anomaly calculated by formulating the boundary 

condition at the Earth’s surface will provide the telluroid. Therefore, height anomalies 

should be downward continued to the ellipsoid to construct the quasigeoid.  As such, the 

difference between geoid undulations and downward continued height anomalies should 

be called GQS. Hence, the difference between geoid undulation and height anomaly should 

not be stated as equal to the difference between geoid and quasigeoid.  

We acknowledge that quasigeoid is interpreted and defined as a surface generated 

by plotting the computed height anomalies (at Earth’s topography) on the reference 

ellipsoid. We also recall sentences regarding quasigeoid by 1. Vaníček (1974): “The height 

anomaly can be – and very often is – interpreted as height above the reference ellipsoid. 

The locus of such interpreted height anomalies is surface known as quasigeoid” and 2. 

Moritz (2011): “The height anomalies are similar in magnitude to the geoid height, but 

have quite a different geometric interpretation….Molodensky introduced an artificial 

“quasigeoid” by plotting the height anomaly above the ellipsoid.” In such a case, if height 

anomalies are downward continued to the ellipsoid, the height of a point above the 

quasigeoid should not be a normal height. However, next we provide a mathematical 

formulation involving downward continuation of height anomalies to the ellipsoid that 

recommend towards a convention for defining/interpreting quasigeoid.  
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Since the major difference in the computational theory of geoid and quasigeoid is 

the required treatment of topographical effects in the former surface, the GQS should 

comprise the terms related to topographical effects. Therefore, GQS can be given by 
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The third term on the L.H.S. of Eq. (4.3.14) is the gradient of height anomalies 
h

 
 
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(Section 3.5.1). Eq. (4.3.14) can be rearranged to a more general term that is given as 
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−  + = +   (4.3.15) 

where BCg  and RBAg  are the planar Bouguer correction and refined planar Bouguer 

anomalies, respectively. 

We have used h because the height anomalies are downward-continued from the 

Earth’s topography to the ellipsoid. Our Eq. (4.3.15) is comparable with Flury and 

Rummel’s (2009) formula (Table 4.3.1). Therefore, our interpretation of GQS as the 

separation between geoid undulations and downward-continued height anomalies is valid. 

However, for the present study, we have computed the GQS term using Flury and 

Rummel’s (2009) formula, which is shown in Figure 4.3.1. We also calculated the GQS 

term using Heiskanen and Moritz’s (1967, pg. 327) formula (Figure 4.3.2) to compare the 

values obtained using the two formulas. The differences in the GQS term with the two 

formulas are shown in Figure 4.3.3. It should be noted that the refined planar Bouguer 

anomalies have been used in implementing both formulas.  



197 

 

To Maa 

 

Figure 4.3.1: GQS term calculated using Flury and Rummel’s (2009) method. 
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Figure 4.3.2: GQS term calculated using Heiskanen and Moritz’s (1967) method. 
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Figure 4.3.3: Difference in the GQS term calculated using the methods given in Flury 

and Rummel (2009) and Heiskanen and Moritz (1967). 

Large values (>4 m) of the GQS term are achieved using different methods 

(Figures 4.3.1 and 4.3.2). For our study area, there is a significant difference (Figure 4.3.3) 

in the GQS term calculated using the Flury and Rummel (2009) and Heiskanen and Moritz 

(1967) methods. The differences in the GQS term from the two methods vary from -2.75 

m to +1.45 m with a mean of -0.12 m and standard deviation of ±0.24 m. These large 

differences among GQS terms with different methods are a caution for geoid modellers 

who seek either a cm-precise geoid calculated using the quasigeoid and the GQS term or 

cm-precise quasigeoid calculated using the geoid and the GQS term. 

Furthermore, we have computed the GQS term at a grid spacing of 0.02˚×0.02˚ 

that may possibly omit some values in regions within/between these nodes. For example, 
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Jiang et al. (2021) show a value of GQS as -1.30 m calculated using the Flury and Rummel 

(2009) method for the summit of Mt. Everest.  

4.4 Hybrid geoid/quasigeoid 

Ideally, the following geometrical relation between the geodetic height, orthometric height 

and geoid undulation must hold true. 

 0h H N− − =   (4.4.1) 

However, due to, primarily, following factors Eq. (4.4.1) is never satisfied 

(Rummel and Teunissen, 1988; Kearsley et al., 1993; Featherstone, 1998; Kotsakis and 

Sideris, 1999, among many others):  

i) The reference surfaces for the three heights are entirely different: ellipsoid for h , 

tide gauge station(s) based local vertical datum for H , and gravity and GGM-based 

reference surface for N . 

ii) There are numerous datum inconsistencies (e.g., different permanent tide systems, 

long-wavelength errors in N , over-constrained adjustment of levelling networks, 

zero-degree term offsets in local vertical datums), theoretical approximations and 

assumptions in calculating H , N  or vertical deflections (e.g., use of approximate 

formulas and negligence of density, sea surface topography, curved and torsioned 

plumb line at each point is along a different path, etc.) 

iii) Observations at different epochs, non-consideration of vertical land motion and/or 

use of different GNSS data processing softwares (e.g., Featherstone et al., 2019). 

iv) Eq. (4.4.1) does also not hold for a theoretical reason, that is, h is measured along 

the ellipsoidal normal, while H is measured along the curved and torsioned plumb 

line. 
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The requirement and methods of fitting a gravimetric geoid to the GNSS/levelling 

dataset have been studied by many (e.g., Jiang and Duquenne, 1996; Kotsakis and Sideris, 

1999; Denker et al., 2000; Fotopoulos, 2003, among many others). A geoid model obtained 

after fitting to the GNSS/levelling data is often known as hybrid geoid. Several researchers 

have computed the national hybrid geoid/quasigeoid models (e.g., Erol and Erol, 2013; 

Lee et al., 2013; Miyahara et al., 2014; Brown et al., 2018; Roman and Ahlgren, 2019; 

Borghi et al., 2020; Yildiz et al., 2020; Hwang et al., 2020). 

There are two common approaches of constructing a hybrid geoid: i) finding the 

offsets between the gravimetric ( )N  and geometric ( )h H−  undulations, which are then 

interpolated on a regular grid to be added to the gravimetric geoid model, and ii) least-

squares fitting of gravimetric and geometric undulations using some parametric model, 

thereby reducing the offsets for some biases and tilts in different reference surfaces, which 

are then interpolated to be added to the geoid model. The interpolation methods include 

polynomial surfaces (Featherstone, 2000; Fotopoulos et al., 2002) and least-squares 

collocation (e.g., Moritz, 1980, Fukuda et al., 1997; Featherstone, 2000; Featherstone and 

Sproule, 2006; Miyahara et al., 2014; Al-Kherayef et al., 2020). 

The basic model to compute geoid offset along with minimising the effect of 

vertical datum inconsistencies using parametric equations is (Heiskanen and Moritz, 1967, 

pg. 206) 

 
T

/GNSS lev i i i iN N N h H N = − = − − = +a x v   (4.4.2) 

where x is a 1m  vector of unknown parameters in the parametric model, a  is a 1m  

vector of known coefficients and v is a 1n  vector of residuals, n is the number of 

observations, and m is the number of parameters in the model. All the possible datum 

inconsistencies and systematic bias in the data are described by the parametric part 
T

a x . 
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The choices of multi-parametric models (Heiskanen and Moritz, 1967; Kotsakis et 

al., 2001; Sjöberg and Bagherbandi, 2017) viz. three-, four-, five- and seven-parameter 

transformation models are given by 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3
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(4.4.3) 

As an example, for a four-parameter model and one observation ( )h H N− − , vectors 

 and a x  are given by  

 

1

2

3

4

cos cos

cos sin
 and 

sin

1

x

x

x

x

 

 


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  = =
  
    

   

a x   (4.4.4) 

where x can be solved using 

 ( ) ( )
1−

= T T
x A A A l   (4.4.5) 

with A being the design matrix of size n m , 
T

A  is the transpose of matrix A  and l is a 

1n  vector of the observations obtained using Eq. (4.4.2).  

Thereafter, adjusted N  ( )aN  can be obtained, which represents the gravimetric-

geometric geoid offset treated for biases, tilts, or any other type of systematic differences 

between the two data sets (N and /GNSS levN ). These aN  values are interpolated at a grid 
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of the size and resolution of the gravimetric geoid using some interpolation technique, 

which is then applied to the gravimetric geoid.  

Due to the availability of several parametric models, the choice of one over others 

is sometimes based on i) arbitrary choice, ii) least standard deviation on validation with 

the GNSS/levelling data or iii) some other statistical testing (e.g., k-fold cross validation 

(Stone, 1974; 1977; Shao, 1993)). With the seven-parameter model, we almost always get 

the results with the smallest standard deviation (e.g., Abdalla, 2009; Goyal et al., 2019a). 

Still, under certain conditions, it is possible that the seven-parameter model cannot be used 

(e.g., not sufficient datapoints) or suffer from over-parametrisation. Therefore, a 

meticulous statistical study is required in this direction. Though not covered in this thesis, 

we would like to direct towards a starting point where i) Fotopoulos (2003) has used 

descriptive statistics, goodness of fit and adjusted goodness of fit, cross-validation, and 

three tests for parameter significance (forward elimination, backward elimination, 

stepwise procedure), and ii) Goyal et al. (2019a) demonstrated the use of Akaike's 

information criterion (Akaike, 1974) and Bayesian information criterion (Schwarz, 1978) 

for testing parameter significance. It should be noted that there is a typographical error in 

Eqn. 9 of Goyal et al. (2019a); the denominator should read 
2r  instead of r .  

4.5 Summary 

In this chapter, we discussed the three methodologies (CUT, UNB and KTH) of calculating 

geoid and quasigeoid models. The three methods are significantly different from each 

other. The CUT method uses Moritz’s analytical solution of the Molodensky’s problem to 

calculate the height anomalies. The UNB method uses Helmert’s second condensation 

scheme to account for the gravitating masses above the geoid for the calculation of geoid 

undulations. The CUT and the UNB methods apply the Stokes integration on residual 
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gravity anomalies with deterministically modified (but different) Stokes’s kernel. The 

KTH method applies the Stokes integration on the un-reduced gravity anomalies with 

stochastically modified Stokes’s kernel. The KTH method uses least squares modification 

of Stokes’s kernel with additive corrections to the approximate height anomalies for 

calculating the height anomalies. 

We have explicitly mentioned the differences between the methodologies strictly 

followed by the respective developers of the three methods and our application due to the 

unique aspects of the Indian data.  

Since the CUT and the KTH methods provide height anomalies and the UNB 

method provides geoid undulation, a discussion on the geoid-quasigeoid separation (GQS) 

term is provided that is used to calculate geoid undulations from height anomalies or vice-

versa. This is important because we aim to compare our GNSS/levelling data with both 

geoid and quasigeoid.  

We have provided a list of different formulas available in the literature for GQS 

term. It is shown that the difference in the GQS term calculated with two more commonly 

used formulas (Heiskanen and Moritz, 1967; Flury and Rummel, 2009) can range from -

2.75 m to +1.45 m, which is substantial from the viewpoint of cm-precise geoid calculated 

using quasigeoid modelling technique and the GQS term or cm-precise quasigeoid 

calculated using geoid modelling technique and the GQS term. 

 A discussion is provided that the difference between the geoid undulations and the 

height anomalies should not be called GQS. However, GQS should be defined as the 

difference between the geoid undulations and the downward-continued height anomalies. 

A mathematical proof has also been provided for the latter definition, which is comparable 

to the GQS formula derived by Flury and Rummel (2009). 
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 Finally, we have presented the method of calculating hybrid geoid and hybrid 

quasigeoid models using three-, four-, five-, and seven-parameter fitting, which are 

generally used to account (remove) for tilts and biases in the vertical datum. 
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Chapter 5: Geoid and quasigeoid: results and validations 

5.0 Introduction 

This chapter presents the results of the geoid and quasigeoid models of i) the whole of 

mainland India calculated using the three methods as discussed in Sections 4.2.1, 4.2.2, 

and 4.2.3 and ii) four regions (UP West, UP East, Hyderabad and Bangalore) calculated 

using GRAVSOFT with LSC (GEOCOL) and RTM as described in Forsberg and 

Tscherning (2008). The geoid and quasigeoid models are validated with the available 

GNSS/levelling data in an absolute and relative sense. Since we do not have a well-

distributed dataset, the validation has been done using the whole of GNSS/levelling data 

(for India) and using the datasets from the four clusters/regions (UP West, UP East, 

Hyderabad and Bangalore, Figure 2.2.1). Moreover, we have validated the gravimetric 

geoid models with the north-south and east-west components of the vertical deflections. 

Since the quasigeoid is not an equipotential surface, the quasigeoid models are not 

validated with the vertical deflections. The gravimetric geoid models of India based on the 

CUT, the UNB and the KTH methods and an inter-model comparison are also provided in 

this chapter. 

5.1 Validation of the developed geoid and quasigeoid models 

The absolute testing is realised through point-wise subtraction of gravimetric geoid 

undulations (or height anomalies) obtained using Stokes’s integration (N or  ) and the 

geometrical geoid undulation (h - H) or height anomaly obtained using GNSS/levelling 

data (Eq. (5.1.1)). 

 ( )/ 1,2,3,.......abs grav GNSS lev grav

i i i i i iN N N h H i n = − = − −  =   (5.1.1) 
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where n  is the total number of discrete GNSS/levelling data points. However, it should 

be again noted that the height system of the available levelling data (in this study; Section 

2.2) is unknown and we have assumed it to be based on IVD1909, which is in the normal-

orthometric height system. Though absolute precision assessment is practiced by the 

‘subtraction’ of data points, it is important to acknowledge that absolute precision is only 

an assumption. This is principally because the levelled heights that refer to the local 

vertical datum are not necessarily coincident with the geoid (Featherstone, 2001). Without 

going into further details, we have also used ‘subtraction’ of gravimetric and geometric 

geoid undulations after a 4-parameter fit for absolute precision assessment. 

The test for the relative fit of geoid and quasigeoid is an analysis tool to investigate 

the geoid/quasigeoid gradients. This type of analysis (Eq. (5.1.2)) is of more interest to 

land surveyors who use relative GNSS baselines and geoid/quasigeoid gradients as a 

replacement for the time-consuming differential levelling. 

 ( )/ , 1,2,3,....... ;rel grav GNSS lev grav

i j i j i j i j i j i jN N N h H i j n i j =  − =  −  −  =    (5.1.2) 

We have computed (for 
rel

i j ) minimum, maximum, mean, standard deviation, and 

the ratio of mean differences to the mean baseline length in parts per million (average ppm 

in mm/km) for geoid and quasigeoid, before and after a 4-parameter fitting. Featherstone 

(2001) has also discussed the relative precision assessment of geoid/quasigeoid. 

Helmert’s vertical deflections (obtained by astrogeodetic observations) are 

compared with Pizetti’s vertical deflections (obtained from the horizontal gradients of the 

geoid models). Pizetti’s vertical deflections can also be obtained using Vening-Meinesz’s 

integral (Heiskanen and Moritz, 1967) but this is not used here. Instead, we used the 

horizontal gradients of the developed geoid models using the three methods (CUT, UNB 

and KTH) with all the tested combinations (parameter sweeps) of modification degree and 
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integration radius. Pizetti’s north-south ( Pz ) and east-west ( Pz ) vertical deflection’s 

components are calculated using Eqs. (5.1.3) and (5.1.4), respectively (Featherstone and 

Lichti, 2008) 

 
Pz

N 


 

−
=


 (5.1.3) 

 
cos

Pz

N 
  

−
=


 (5.1.4) 

where N   and N   are the changes in the geoid undulation at the grid nodes defining 

  and  , respectively.   and   are the radii of curvature in meridional and prime-

vertical, respectively. 

As a recall from Chapter 2, for validation we have 119 GNSS/levelling data points, 

and 701 meridional components and 280 prime vertical components of the vertical 

deflections. Figure 5.1.1 shows the base figure, i.e., following which the results of 

parameter sweeps have been depicted in Figures 5.1.2 to 5.1.11. We provide this base 

figure as an explanation because, in the literature, parameter sweeps are depicted in a 

different way (e.g., Featherstone et al., 2018; Claessens and Filmer, 2020). This way of 

plotting the results of parameter sweeps was chosen so that the plots for geoid (blue) and 

quasigeoid (red) can be shown on the same graph for a better comparison. There are eight 

columns in Figure 5.1.1, each of which is assigned to a modification degree (40, 80, 120, 

160, 200, 240, 280 and 300). Each circle in a column represents a combination of M and 

  starting with M = 40,   = 0.2˚ to M = 40,   = 2˚ in the first column, then M = 80,   

= 0.2˚ to M = 80,   = 2˚ in the second column up to M = 300,   = 0.2˚ to M =300   = 

2˚ in the last column. y-axis shows the statistic (standard deviation or average ppm) for all 

the combinations of M and  . 
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Figure 5.1.1: Base figure to show the variation of STD or average ppm in validation 

results for different combinations of modification degree and integration radius 

(parameter sweeps). 

The results are arranged as follows: 

Figures 5.1.2, 5.1.3, and 5.1.4 show the variation of standard deviation (for 

absolute precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid 

for different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300) 

and integration radius (0.2˚, 0.5˚, 0.75˚, 1˚, 1.5˚, 2˚) for India and four local regions using 

the CUT, the UNB, and the KTH methods, respectively. 

Figures 5.1.5, 5.1.6, and 5.1.7 depict the variation of standard deviation (for 

relative precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid 

for different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300) 

and integration radius (0.2˚, 0.5˚, 0.75˚, 1˚, 1.5˚, 2˚) for India and four local regions using 

the CUT, the UNB, and the KTH methods, respectively. 

Figures 5.1.8, 5.1.9, and 5.1.10 depict the variation of average ppm (for relative 

precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid for 

different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300) and 

integration radius (0.2˚, 0.5˚, 0.75˚, 1˚, 1.5˚, 2˚) for India and four local regions using the 

CUT, the UNB, and the KTH methods, respectively. 
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Figure 5.1.11 depicts the variation of the standard deviation for geoid validation 

with the vertical deflection’s components. The results are presented for India geoid models 

developed using the three methods with different combinations of modification degree (40, 

80, 120, 160, 200, 240, 280, 300) and integration radius (0.2˚, 0.5˚, 0.75˚, 1˚, 1.5˚, 2˚). 

Table 5.1.1 provides the minimum, maximum, mean, and standard deviation of the 

absolute precision assessment of geoid and quasigeoid, before and after fit, computed 

using the CUT, UNB and KTH methods. The values are provided for the combination of 

modification degree and integration radius providing the minimum standard deviation 

among all combinations for India and four local regions. 

Table 5.1.2 provides the mean, standard deviation, and average ppm for the relative 

precision assessment of geoid and quasigeoid, before and after fit, computed using the 

CUT, UNB and KTH methods. The values are provided for the combination of 

modification degree and integration radius providing the minimum standard deviation 

among all combinations for India and four local regions. 

Table 5.1.3 provides the minimum, maximum, mean, and standard deviation of the 

geoid validated with the meridional and prime vertical components of vertical deflections. 

The values are provided for the combination of modification degree and integration radius 

providing the minimum standard deviation among all combinations. 

 Tables 5.1.4 and 5.1.5 provide the results of the absolute and relative precision 

assessment, respectively, of geoid and quasigeoid, before and after fit, computed using the 

GEOCOL with RTM. 
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Figure 5.1.2: Standard deviation (in m) from the absolute precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the CUT method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.3: Standard deviation (in m) from the absolute precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the UNB method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 



213 

 

To Maa 

 

Figure 5.1.4: Standard deviation (in m) from the absolute precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the KTH method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.5: Standard deviation (in m) from the relative precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the CUT method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The right column is 

for before any fitting, and the corresponding left column is for after fitting. 
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Figure 5.1.6: Standard deviation (in m) from the relative precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the UNB method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.7: Standard deviation (in m) from the relative precision of geoid (blue) and 

quasigeoid (red) for different M  and   combinations in the KTH method for a) India, 

b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for before 

any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.8: Average ppm (mm/km) from the relative precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the CUT method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The right column is 

for before any fitting, and the corresponding left column is for after fitting. 
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Figure 5.1.9: Average ppm (mm/km) from the relative precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the UNB method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.10: Average ppm (mm/km) from the relative precision assessment of geoid 

(blue) and quasigeoid (red) for different M  and   combinations in the KTH method for 

a) India, b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for 

before any fitting, and the corresponding right column is for after fitting. 
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Figure 5.1.11: Standard deviation (in arc-second) for the validation of the geoid models 

(computed using the three methods) with the meridional (red) and prime vertical (blue) 

components of the vertical deflections. 
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Table 5.1.1: Descriptive statistics of absolute precision assessment of gravimetric geoid 

and quasigeoid models, for India and the four regions, with the three methods for a M  

and   combination that has the least standard deviation. [psi in degrees, min, max, mean 

and STD in m] 

   
Geoid Quasigeoid 

   
mod(psi) min max mean STD mod(psi) min max mean STD 

India CUT no fit 40(1.5) -0.881 0.783 -0.176 0.395 40(1.5) -0.890 0.721 -0.191 0.387 
  

4pfit 300(0.75) -0.475 0.408 0.000 0.134 300(0.75) -0.477 0.409 0.000 0.134 
 

UNB no fit 40(1.5) -1.186 0.696 -0.419 0.459 40(1.5) -1.193 0.635 -0.434 0.449 
  

4pfit 200(0.5) -0.509 0.435 0.000 0.154 200(0.5) -0.506 0.436 0.000 0.151 
 

KTH no fit 80(2) -0.827 0.816 -0.086 0.388 80(2) -0.836 0.754 -0.100 0.377 
  

4pfit 300(2) -0.518 0.433 0.000 0.134 280(1) -0.463 0.427 0.000 0.133 

UP West CUT no fit 40(0.5) -0.981 -0.327 -0.577 0.115 120(0.75) -0.985 -0.295 -0.578 0.121 
  

4pfit 300(0.5) -0.417 0.207 0.000 0.111 240(0.5) -0.415 0.222 0.000 0.112 
 

UNB no fit 40(2) -1.123 -0.322 -0.723 0.184 40(2) -1.132 -0.352 -0.739 0.174 
  

4pfit 40(1.5) -0.471 0.245 0.000 0.133 40(1.5) -0.467 0.247 0.000 0.129 
 

KTH no fit 300(1.5) -1.156 -0.460 -0.647 0.126 280(1) -1.051 -0.375 -0.588 0.121 
  

4pfit 300(2) -0.441 0.220 0.000 0.116 240(1) -0.439 0.215 0.000 0.114 

UP East CUT no fit 300(0.75) -0.708 -0.305 -0.470 0.091 300(0.75) -0.707 -0.306 -0.473 0.091 
  

4pfit 300(0.75) -0.220 0.158 0.000 0.090 300(0.75) -0.219 0.157 0.000 0.090 
 

UNB no fit 240(0.75) -1.074 -0.700 -0.838 0.089 240(0.75) -1.073 -0.702 -0.840 0.089 
  

4pfit 280(0.75) -0.229 0.126 0.000 0.089 280(0.75) -0.227 0.130 0.000 0.088 
 

KTH no fit 160(2) -0.698 -0.326 -0.466 0.090 160(2) -0.697 -0.327 -0.468 0.091 
  

4pfit 200(2) -0.193 0.128 0.000 0.082 200(2) -0.192 0.127 0.000 0.082 

Hyderabad CUT no fit 80(1.5) -0.385 0.501 0.070 0.158 80(1.5) -0.400 0.488 0.057 0.158 
  

4pfit 80(1.5) -0.369 0.408 0.000 0.139 80(1.5) -0.368 0.407 0.000 0.139 
 

UNB no fit 40(0.2) -0.438 0.427 -0.004 0.153 40(0.2) -0.453 0.414 -0.017 0.153 
  

4pfit 40(0.2) -0.359 0.402 0.000 0.136 40(0.2) -0.358 0.401 0.000 0.136 
 

KTH no fit 40(2) -0.350 0.522 0.034 0.149 40(2) -0.365 0.509 0.021 0.148 
  

4pfit 80(0.5) -0.362 0.410 0.000 0.136 80(0.5) -0.361 0.409 0.000 0.136 

Bangalore CUT no fit 280(0.75) 0.727 0.810 0.769 0.030 300(0.75) 0.662 0.748 0.707 0.032 
  

4pfit 40(0.2) -0.023 0.047 0.000 0.025 40(0.2) -0.023 0.048 0.000 0.025 
 

UNB no fit 120(0.5) 0.687 0.769 0.726 0.028 120(0.5) 0.622 0.708 0.665 0.029 
  

4pfit 40(0.2) -0.022 0.045 0.000 0.024 40(0.2) -0.022 0.046 0.000 0.024 
 

KTH no fit 300(2) 0.724 0.811 0.764 0.031 300(2) 0.659 0.749 0.704 0.032 
  

4pfit 40(2) -0.022 0.042 0.000 0.023 40(1) -0.023 0.044 0.000 0.024 
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Table 5.1.2: Descriptive statistics of relative precision assessment of gravimetric geoid 

and quasigeoid models, for India and the four regions, with the three methods for a M  

and   combination that has the least standard deviation. [psi in degrees; mean, STD in 

m; mean ppm in mm/km] 

   
Geoid Quasigeoid 

   
mod(psi) mean STD ppm mod(psi) mean STD ppm 

India CUT no fit 40(0.2) 0.405 0.414 3.392 40(0.2) 0.400 0.406 3.388 
 

  4pfit 300(0.75) -0.011 0.189 3.150 300(0.75) -0.011 0.189 3.144 
 

UNB no fit 40(2) 0.394 0.523 3.462 40(2) 0.389 0.509 3.447 
 

  4pfit 200(0.5) -0.012 0.218 3.202 200(0.5) -0.012 0.214 3.191 
 

KTH no fit 160(0.5) 0.399 0.431 3.346 160(0.5) 0.395 0.419 3.332 
 

  4pfit 300(2) -0.009 0.190 3.107 280(1) -0.010 0.188 3.138 

UP West CUT no fit 160(0.5) 0.037 0.159 0.950 40(0.5) 0.052 0.163 0.981 
 

  4pfit 300(0.5) 0.001 0.157 0.923 240(0.5) 0.001 0.159 0.928 
 

UNB no fit 120(0.5) -0.155 0.253 1.459 160(0.75) -0.131 0.236 1.364 
 

  4pfit 40(1.5) 0.004 0.188 1.121 40(1.5) 0.004 0.182 1.078 
 

KTH no fit 280(1) -0.043 0.177 1.044 280(1) -0.026 0.170 0.988 
 

  4pfit 300(2) 0.002 0.164 0.954 240(1) 0.003 0.162 0.939 

UP East CUT no fit 300(0.75) 0.001 0.129 0.834 300(0.75) 0.004 0.129 0.834 
 

  4pfit 300(0.75) -0.003 0.128 0.835 300(0.75) -0.003 0.128 0.834 
 

UNB no fit 240(0.75) 0.000 0.126 0.816 240(0.75) 0.003 0.126 0.815 
 

  4pfit 280(0.75) -0.005 0.125 0.810 280(0.75) -0.004 0.125 0.808 
 

KTH no fit 160(2) 0.023 0.126 0.832 160(2) 0.027 0.126 0.835 
 

  4pfit 300(1.5) -0.004 0.114 0.823 300(1.5) -0.004 0.114 0.811 

Hyderabad CUT no fit 40(1.5) -0.031 0.221 13.029 40(1.5) -0.032 0.221 13.022 
 

  4pfit 40(1.5) 0.011 0.196 12.882 40(1.5) 0.011 0.196 12.860 
 

UNB no fit 40(0.2) -0.022 0.215 12.827 40(0.2) -0.023 0.215 12.688 
 

  4pfit 40(0.2) 0.011 0.193 12.669 40(0.2) 0.011 0.192 12.647 
 

KTH no fit 40(2) 0.040 0.206 12.122 40(2) 0.039 0.206 12.091 
 

  4pfit 80(0.5) 0.010 0.192 12.567 80(0.5) 0.010 0.192 12.546 

Bangalore CUT no fit 280(0.75) -0.004 0.043 3.049 300(0.75) -0.006 0.045 3.215 
 

  4pfit 40(0.2) -0.001 0.036 2.418 40(0.2) -0.001 0.037 2.467 
 

UNB no fit 40(2) -0.016 0.040 3.100 40(2) -0.018 0.042 3.303 
 

  4pfit 40(0.2) -0.001 0.035 2.305 40(0.2) -0.001 0.035 2.354 
 

KTH no fit 40(1.5) -0.006 0.044 3.054 300(2) -0.008 0.046 3.236 
 

  4pfit 40(2) -0.001 0.033 2.336 40(1) -0.001 0.034 2.303 
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Table 5.1.3: Descriptive statistics of validation of gravimetric geoid models, with 

deflection of the vertical’s components, for a ,M   combination that has the least 

standard deviation. [psi in degrees, min, max, mean and STD in arc-second] 

 Meridional Prime vertical 

 mod(psi) min max mean STD mod(psi) min max mean STD 

CUT 40(0.5) -38.230 31.270 -0.675 4.354 300 (0.2) -75.869 35.542 -2.163 6.805 

UNB 40(1.5) -28.231 67.084 -0.338 4.113 160(0.5) -41.783 17.996 0.200 4.261 

KTH 280(1) -25.576 32.096 -0.308 2.848 280(2) -41.717 10.258 0.123 3.981 

Table 5.1.4: Descriptive statistics of GNSS/levelling-based absolute precision assessment of the 

geoid and quasigeoid models calculated using GEOCOL [values in m]. 

 
 Geoid (m) Quasigeoid (m) 

 
 min max mean STD min max mean STD 

India no fit -0.325 0.408 0.006 0.114 -0.340 0.395 -0.007 0.110 
 

4pfit -0.325 0.356 0.000 0.103 -0.325 0.356 0.000 0.101 

UP West no fit -0.253 0.394 0.000 0.109 -0.262 0.282 -0.017 0.093 
 

4pfit -0.222 0.286 0.000 0.086 -0.217 0.224 0.000 0.079 

UP East no fit -0.317 0.211 -0.012 0.112 -0.316 0.211 -0.014 0.113 
 

4pfit -0.196 0.155 0.000 0.093 -0.194 0.152 0.000 0.093 

Hyderabad no fit -0.325 0.408 0.015 0.124 -0.340 0.395 0.001 0.124 
 

4pfit -0.325 0.356 0.000 0.122 -0.325 0.356 0.000 0.121 

Bangalore no fit -0.033 0.063 0.023 0.037 -0.074 0.030 -0.015 0.037 
 

4pfit -0.026 0.051 0.000 0.027 -0.026 0.052 0.000 0.028 

Table 5.1.5:  Descriptive statistics of GNSS/levelling-based relative precision assessment 

of the geoid and quasigeoid models calculated using GEOCOL [min, max, mean, STD in 

m and ppm in mm/km]. 

  Geoid Quasigeoid 
  

min max mean STD ppm min max mean STD ppm 

India no fit -0.725 0.733 -0.009 0.160 2.607 -0.578 0.682 0.001 0.145 2.640 
 

4p fit -0.711 0.735 -0.004 0.155 2.598 -0.573 0.681 0.001 0.143 2.634 

UP West no fit -0.647 0.418 -0.050 0.146 0.789 -0.545 0.363 -0.032 0.127 0.727 
 

4p fit -0.508 0.435 0.003 0.121 0.698 -0.442 0.378 0.003 0.111 0.666 

UP East no fit -0.456 0.528 0.023 0.158 0.949 -0.452 0.527 0.027 0.157 0.945 
 

4p fit -0.306 0.350 -0.001 0.132 0.837 -0.305 0.346 -0.001 0.131 0.832 

Hyderabad no fit -0.565 0.733 0.014 0.174 11.027 -0.568 0.735 0.013 0.174 11.012 
 

4p fit -0.563 0.682 0.005 0.172 11.282 -0.563 0.681 0.004 0.172 11.271 

Bangalore no fit -0.069 0.095 0.009 0.052 3.711 -0.074 0.104 0.008 0.052 3.764 
 

4p fit -0.077 0.076 -0.001 0.039 2.604 -0.076 0.078 -0.001 0.040 2.671 
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Following are the observations from the above results: 

1. From Figures 5.1.2 - 5.1.3, no clear pattern is observed for the increase or decrease of 

the standard deviation of either geoid or quasigeoid with any method and any region. 

The FEO and VK kernels are claimed to be unstable (Featherstone, 2001; Li and Wang, 

2011) for higher modification degrees and larger integration radius. However, we have 

not observed any instability in Figures 5.1.2 and 5.1.3, most possibly only because of 

our lower/restricted choice of parameter sweeps (e.g., McCubbine et al., 2021) and 

limited dataset for validation. 

2. For the CUT and UNB methods, variation in the standard deviation for all the 

combinations of M  and   do not exceed ~60 mm and ~40 mm for the before fit and 

after fit cases, respectively. The maximum variation is in UP West, followed by UP 

East. The variation in standard deviation for Hyderabad and Bangalore is within 10 

mm. The probable causes can be that UP West and UP East have different landforms, 

and also, the data points in these regions are distributed over a larger area and more 

variable terrain. However, for the KTH method, a large variation is observed that 

reaches beyond 1.5 m for UP West and UP East. This is also reflected in the standard 

deviation for India with the KTH method. These large variations are mainly observed 

for lower modification degrees, i.e., M = 40 and 80. The large values can be due to the 

omission of the medium wavelengths from the geoid/quasigeoid solution using the 

KTH method because of L = M = 40 and 80, unlike the CUT or the UNB method where 

L = 2190 and 300, respectively. For L = M > 80, the KTH method also provided a range 

of standard deviation within 10 mm for Hyderabad and Bangalore. 

3. For all three methods and all regions, the difference in the standard deviation of the 

geoid and quasigeoid solutions is less than 20 mm. However, for the UNB and the 

KTH methods, the variation in the maximum value of the difference between absolute 
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precision assessment of geoid and quasigeoid reaches 100 mm for UP West, while with 

the CUT method the maximum variation is never beyond 20 mm. This can be because 

the CUT method provides a smaller standard deviation of geoid and quasigeoid for UP 

West as compared to the UNB and the KTH methods. It should be noted that this 

observation does not show that the CUT method is superior to other methods because 

it might be due to the use of the highest available degree-order GGM into which, 

probably, GETECH data might already have been incorporated and hence comparably 

better results. 

4. The standard deviation of the absolute precision assessment in the four regions, 

individually, is smaller as compared to the standard deviation for India. This indicates 

a large variation in the mean values of the four regions (Table 5.1.1). The average of 

the mean values for different combinations of M  and   in the four regions (UP West, 

UP East, Hyderabad, and Bangalore) with i) the CUT method are: -570 mm, -480 mm, 

100 mm, and 760 mm, respectively; ii) the UNB method: -730 mm, -860 mm, -20 mm, 

and 710 mm, respectively; iii) the KTH method: -680 mm, -650 m, 100 mm, and 810 

mm, respectively. The mean values and the locations of the four regions (Figure 2.2.1) 

indicate a north-south tilt in the Indian vertical datum.  

The variation of the standard deviation of UP East with the CUT and the UNB 

methods is within 2 mm, but the mean value differs by ~400 mm (also see Figures 

5.2.7, 5.2.9 and 5.2.11, later). Also, the standard deviation of Hyderabad for different 

M  and   combinations agree within 30 mm for the three methods, but the mean value 

with the UNB method is -20 mm while with the other two methods is 100 mm. 

Therefore, comparing the geoid models (or methods) based on only standard deviation 

may not provide an objective comparison. However, in the present study, we do not 

have sufficient datapoints to explore other statistical parameters for the methodology 
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comparison, and therefore, we will unwillingly provide discussions solely around 

standard deviations. 

5. The increasing minimum, maximum, and mean values (Table 5.1.1) while moving 

from a northern region to the southern region (UP West→UP 

East→Hyderabad→Bangalore) indicates a north-south tilt (Fischer, 1975; 1977) in the 

Indian vertical datum. This is probably because IVD1909 was based on constraining 

the spirit levelling of the nine tide gauges along the Indian coast at zero heights 

(Burrard, 1910), and for IVD2009 (G&RB, 2019), local geopotential values at eight 

tide gauges are constrained to the same value. Hence, a tilt in the datum is possible due 

to the ocean’s time-mean dynamic topography (e.g., Featherstone and Filmer, 2012) 

6. The plots of standard deviation for the relative precision assessment follows the same 

pattern as that of standard deviation plots of absolute precision assessment for all the 

three methods in all the regions, except for i) India with the CUT and the UNB 

methods, and ii) Bangalore with the KTH method. Also, the standard deviations for 

relative testing are always larger as compared to absolute testing.  

7. The average ppm (mm/km) for India (7021 baselines) varies from 3.37 to 3.42 and 

3.43 to 3.56 with the CUT and the UNB methods, respectively, for different M and   

combinations. For the KTH method with M greater than 80, the average ppm varies 

from 3.35 to 3.84. The KTH method in all the regions except Hyderabad shows higher 

average ppm values for M < 80 with exceptions of larger integration radius (  > 1˚). 

A relatively larger difference in the average ppm of geoid and quasigeoid is observed 

with i) most of the M  and   combinations in the UNB method for Bangalore (~0.2), 

and UP West (~0.1), the CUT method for Bangalore (~0.15) and ii) only a few M  and 

  combinations in the KTH method for Bangalore (~0.15). However, the differences 
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for the average ppm (for both geoid and quasigeoid) in all the three methods (the KTH 

method with M larger than 80) for all the regions may not be statistically significant 

for local areas (< 10 km). 

8. Table 5.1.1 shows that there is no particular choice of M  and   combination that 

provides a minimum standard deviation in all four regions and India. Table 5.1.1 

further depicts that the minimum standard deviation before and after fit is achieved 

with different M  and   combinations. Based on standard deviation alone, we cannot 

comment on the use of a lower or higher degree of modification for any method 

because, for e.g., with the CUT method, combination of ,M   = 40, 0.5˚ gives 

minimum standard deviation in UP West while ,M   = 300, 0.75˚ gives minimum 

standard deviation in UP East. With the available datasets, this is true for geoid and 

quasigeoid, before and after fit, and for all methods. Therefore, it also backs up our 

argument of point 4 that the numerical value of standard deviation alone should not be 

the deciding factor of pre-eminence of one method and/or one M  and   combination 

over the other. 

9. EIGEN-6C4 is used with the CUT method and DIR-RL05 with the UNB and the KTH 

methods. On comparison of Table 5.1.1 with the validation of EIGEN-6C4 (Tables 

2.3.1 - 2.3.3), it is observed that for the CUT method, though the overall mean values 

are improved for all the regions except Bangalore, an improvement in the standard 

deviation beyond 10 mm is observed only for UP East. However, the standard 

deviation of gravimetric geoid in UP West is degraded by 10 mm as compared to the 

EIGEN-6C4. A degradation in standard deviation of gravimetric geoid is also observed 

in Featherstone and Sideris (1998) and Forsberg and Featherstone (1998). This was, 
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and similarly is, attributed to errors in either one, more or all of the terrestrial gravity 

data, GGMs, and the GNSS/levelling data. 

On comparison of Table 5.1.1 with the validation of DIR-RL05 (Tables 2.3.1 - 

2.3.3), it is observed that with the UNB and the KTH methods there is an improvement 

in the mean values of all the regions except for Bangalore and UP East (with the UNB 

method). Moreover, an improvement in the standard deviation is observed for all the 

regions except for the whole of India with the UNB method. The improvement in the 

standard deviation reached more than or equal to100 mm for UP West and UP East 

regions with both the methods. 

However, it should be noted that though there is more improvement, with 

respect to GGMs, on the inclusion of the terrestrial gravity data in the UNB and the 

KTH methods as compared to the CUT method, the standard deviations with the three 

methods are almost equivalent except for the whole of India and UP West with the 

UNB method.  

Therefore, no method can be suggested as more preferred because each of the 

three methods has provided the least standard deviation (numerically and may not be 

statistically) at least in one of the regions, e.g., the CUT method in UP West, the UNB 

method in UP East and Bangalore, and the KTH method in Hyderabad. Moreover, a 

M  and   combination providing the least standard deviation does not necessarily 

have the least mean value. For example, ,M   = 40, 1.5˚ in the UNB method for India 

gives the least standard deviation of 459 mm and a mean value of -419 mm, but the 

least mean value for India with the UNB method is achieved for a combination of 

,M   = 40, 0.5˚ with the values being: standard deviation = 493 mm and mean value 

= -315 mm. 
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10. The standard deviation is minimally smaller (~10 mm) for quasigeoid compared to 

geoid for India. However, for all four regions individually, the standard deviation is 

smaller or equal for geoid compared to quasigeoid with a maximum difference of ~10 

mm for UP West with the UNB method. The larger standard deviation of geoid for 

India can be attributable to the larger mean of geoid compared to quasigeoid for 

Bangalore (difference ~60 mm) and Hyderabad (difference ~10 mm) regions.  

11. Similar to Table 5.1.1, there is no clear indication about the choice of the M and   

combination from Table 5.1.2 because the three methods provide the least standard 

deviation for different M and   combinations for different regions. Also, the 

difference between ppm of geoid and quasigeoid for all the regions and India are within 

±0.2 mm/km for all the methods, before and after fit. 

12. From Table 5.1.2, there is an improvement of less than 100 mm in standard deviation 

for all the four regions after fitting as compared to without any fitting. However, there 

is an improvement of ~300 mm in standard deviation for India, with all three methods, 

for geoid and quasigeoid both. This indicates that after fitting, there is more 

improvement for inter-region baselines as compared to intra-region baselines. The 

larger average ppm (mm/km) values for India (~3.4) are attributable to the larger 

values of ppm for baselines in Bangalore (~3) and significantly larger values for 

baselines in Hyderabad (~12.7). These are further attributable to the relatively smaller 

baseline lengths in the two regions ([0.61 km, 46.75 km] for Hyderabad and [4.80 km, 

25.16 km] for Bangalore). For our tests, the standard deviation always reduced after 

fitting. However, for the KTH method with M ≤ 80 and any  , though there is a 

reduction in standard deviation, the average ppm value increased. Therefore, it can be 

said that a reduction in standard deviation need not always indicate a reduction in the 

average ppm value.  
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13. The KTH method with larger modification degree and integration radius provides 

better results (minimum standard deviation) as compared to the UNB and the CUT 

methods on validation with the vertical deflections. However, similar to the 

GNSS/levelling-based validation, the KTH method has not provided better results on 

validation with vertical deflections for smaller modification degrees (M ≤ 80). Though 

the CUT method provides comparable descriptive statistical values for the meridional 

component, the mean and standard deviation for the prime vertical are ~2” larger than 

the other two methods. Also, the minimum and maximum values of prime vertical 

validation are almost 2 times larger with the CUT method. Though, maximum, mean 

and standard deviation of the meridional component-based validation of the geoid 

model with the UNB method are comparable with the other methods, the maximum 

value (67.1”) is larger than double as compared to the CUT (31.3”) and the KTH 

(32.1”) methods.  

14. GRAVSOFT with GEOCOL and RTM have the limitation of using large data set 

especially due to involved inversion of matrix with a dimension equal to the number 

of data points. Therefore, GEOCOL is generally used with sparse gravity data or block-

wise over smaller areas (with overlap between blocks) else, thinning of the gravity data 

is required. Hence, it can be interpreted that the use of coarse gravity and DEM grids 

in previous geoid modelling studies in India (Table 1.3.1) is possibly because 

GRAVSOFT has a limitation of using large matrices. Moreover, from Tables 5.1.4 and 

5.1.5, no tilt in the datum is observed, which is in contrast with the results of other 

three methods (CUT, UNB, KTH; Table 5.1.1). This is because LSC removes the 

trends a-priori to make the residual field stationary in the stochastic sense (Moritz, 

1980; Darbeheshti, 2009).  
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The descriptive statistic values in Table 5.1.4 are comparable with previous 

studies over regions of India using LSC (Table 1.3.1) except for the Dehradun region 

(lies in UP West) in Mishra and Ghosh (2016). However, results of UP West are 

comparable to other studies in and around same region (Singh, 2007; Singh and 

Srivastava, 2018) using GRAVSOFT but with FFT subroutines and Stokes’s 

integration. The results are thus reassuring that the previous studies (and their 

limitations) over Indian regions are realistic. The difference in the results of previous 

studies and our GEOCOL experiment are due to one, more or all of the different 

GGMs, use of gravity anomaly data grids or points, different DEM, resolution of 

computation (i.e., grid size of final geoid/quasigeoid model) and most importantly 

different gravity database.   

15. It is observed that GEOCOL does not apply the full zero -degree term (Eq. (3.6.5)), 

instead it uses only the first term (Eq. (3.6.4)). In the LSC solutions (only) we have 

also not applied the full zero-degree term because the main motive of using LSC was 

to assess the calculations of previous studies and none of those studies mentioned using 

the zero-degree term. Moreover, comparable results with respect to the previous 

studies have been obtained without addition of the second term of Eq. (3.6.5) in the 

LSC solutions. Though the second term in Eq. (3.6.5) is constant (= -0.76 m for W0 of 

IHRS and U0 of GRS80) and can be added to the geoid undulations calculated using 

the LSC method, it may cause significant differences with respect to the other three 

methods. 

Therefore, the smaller values of minimum, maximum and mean with the LSC 

solution (Table 5.1.4) as compared to CUT, UNB and KTH methods (Table 5.1.1) are 

most probably because i) GEOCOL does not use the generalised Bruns’s formula, ii) 

GEOCOL makes use of residual gravity and residual GNSS/levelling datasets to 
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calculate residual height anomalies, and iii) GEOCOL remove trends a-priori, which 

can also be seen as 1-parameter fit during the geoid/quasigeoid computation itself. 

5.2 Indian gravimetric geoid model 

In this section, we provide the final geoid model for India calculated using the three 

methods. As discussed in the previous section, we do not have a clear indication of the 

more preferred choice of M  and   combination for any method. However, we do have a 

certain idea about the M  and   combinations for any particular method that should not 

be used, e.g., 80,M   for the KTH method. Therefore, we have chosen to show the 

gravimetric geoid model for ,M   = 300, 1˚ with all three methods, namely, the CUT, the 

UNB, and the KTH.  

The difference between mean absolute error and standard deviation with ,M   = 

300, 1˚ for India with all the three methods does not exceed 50 mm as compared to their 

respective M  and   combination providing the minimum standard deviation (Table 

5.1.1). Mean absolute difference and standard deviation for M  and   combination giving 

minimum standard deviation versus ,M   = 300, 1˚ is, all in mm, (360±400 vs. 370±410), 

(510±460 vs. 470±490), and (330±390 vs. 380±420) for the CUT, the UNB, and the KTH 

methods, respectively.  

Figures 5.2.1, 5.2.2, and 5.2.3 show the gravimetric geoid models for India 

calculated using the CUT, the UNB, and the KTH methods, respectively for ,M   = 300, 

1˚. We have not shown quasigeoid because they are within 50 mm of standard deviation 

as compared to the geoid model for our chosen ,M   combination. Moreover, SoI has 

decided to compute geoid over quasigeoid. The descriptive statistics of the three geoid 

models are depicted in Table 5.2.1. Figures 5.2.4, 5.2.5, and 5.2.6 show the scatter plots 

of the relative difference (magnitudes) of the geoid models for the CUT, the UNB, and the 
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KTH methods, respectively. The curved lines in each figure depict the maximum allowable 

in-field misclose for Indian high precision (lower curve) and double tertiary (upper curve) 

levelling for all the 7071 baselines computed using Eq. (5.2.1) with c equal to 3 and 12, 

respectively. 

 r c d=  (5.2.1) 

where r = allowable misclose, in mm; c = empirically derived factor for a given ‘type of 

levelling’; d = distance between stations, in km. 

The pixel-wise difference maps for India are shown in Figures 5.2.7, 5.2.9 and 

5.2.11 for the pairs of geoid model calculated using i) CUT and UNB, ii) CUT and KTH, 

and iii) KTH and UNB methods, respectively. The corresponding scatter plots and 

histograms for the three difference maps are shown in Figures 5.2.8, 5.2.10 and 5.2.12, 

respectively. The regional geoid models have been computed for UP West, UP East, 

Hyderabad and Bangalore, individually using GEOCOL with RTM. Figures 5.2.13, 

5.2.14, 5.2.15 and 5.2.16 show the regional difference maps of GEOCOL-based geoid 

models of UP West, UP East, Hyderabad and Bangalore, respectively, with respect to the 

geoid models calculated using the CUT, UNB and KTH methods. 
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Figure 5.2.1: Indian gravimetric geoid model computed using the CUT method ( ,M   = 300, 

1˚). 
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Figure 5.2.2: Indian gravimetric geoid model computed using the UNB method ( ,M   = 

300, 1˚). 
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Figure 5.2.3: Indian gravimetric geoid model computed using the KTH method ( ,M   = 

300, 1˚). 
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Table 5.2.1: Descriptive statistics of absolute precision assessment of gravimetric geoid 

and quasigeoid models, for India and the four regions, with the CUT, UNB and KTH 

methods for ,M   = 300, 1˚. 

      Geoid Quasigeoid 

     min max mean STD min max mean STD 

India CUT no fit -0.973 0.809 -0.149 0.407 -0.982 0.747 -0.163 0.400 

    4pfit -0.475 0.408 0.000 0.134 -0.477 0.409 0.000 0.134 

  UNB no fit -1.266 0.769 -0.328 0.489 -1.275 0.707 -0.342 0.479 

    4pfit -0.503 0.434 0.000 0.155 -0.500 0.435 0.000 0.152 

  KTH no fit -1.050 0.839 -0.140 0.425 -1.059 0.777 -0.154 0.417 

    4pfit -0.464 0.426 0.000 0.135 -0.462 0.427 0.000 0.134 

UP West CUT no fit -0.973 -0.293 -0.565 0.117 -0.982 -0.303 -0.581 0.122 

    4pfit -0.434 0.225 0.000 0.113 -0.430 0.237 0.000 0.113 

  UNB no fit -1.266 -0.280 -0.732 0.209 -1.275 -0.372 -0.748 0.192 

    4pfit -0.483 0.187 0.000 0.138 -0.479 0.184 0.000 0.133 

  KTH no fit -1.050 -0.368 -0.577 0.128 -1.059 -0.378 -0.593 0.122 

    4pfit -0.431 0.226 0.000 0.117 -0.427 0.238 0.000 0.116 

UP East CUT no fit -0.702 -0.311 -0.476 0.091 -0.701 -0.313 -0.478 0.091 

    4pfit -0.226 0.151 0.000 0.091 -0.224 0.150 0.000 0.091 

  UNB no fit -1.074 -0.702 -0.840 0.089 -1.073 -0.704 -0.842 0.089 

    4pfit -0.229 0.129 0.000 0.089 -0.227 0.131 0.000 0.088 

  KTH no fit -0.764 -0.326 -0.488 0.096 -0.763 -0.328 -0.490 0.097 

    4pfit -0.232 0.118 0.000 0.090 -0.231 0.117 0.000 0.089 

Hyderabad CUT no fit -0.349 0.542 0.110 0.159 -0.364 0.529 0.096 0.159 

    4pfit -0.369 0.408 0.000 0.139 -0.368 0.408 0.000 0.139 

  UNB no fit -0.457 0.433 -0.002 0.158 -0.473 0.420 -0.016 0.158 

    4pfit -0.370 0.407 0.000 0.139 -0.369 0.406 0.000 0.139 

  KTH no fit -0.318 0.577 0.137 0.158 -0.333 0.564 0.124 0.158 

    4pfit -0.368 0.407 0.000 0.139 -0.368 0.406 0.000 0.139 

Bangalore CUT no fit 0.726 0.809 0.768 0.030 0.662 0.747 0.707 0.032 

    4pfit -0.023 0.047 0.000 0.025 -0.023 0.048 0.000 0.026 

  UNB no fit 0.680 0.769 0.720 0.028 0.616 0.707 0.659 0.030 

    4pfit -0.023 0.047 0.000 0.025 -0.023 0.047 0.000 0.025 

  KTH no fit 0.751 0.839 0.794 0.031 0.687 0.777 0.733 0.033 

    4pfit -0.025 0.048 0.000 0.026 -0.024 0.049 0.000 0.026 
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Figure 5.2.4: Magnitude of relative differences (blue circles) for the a. geoid (no fit) and 

b. geoid (4P fitting), with the CUT method ( ,M   = 300, 1˚), over 7021 GNSS-levelling 

baselines. Orange and yellow circles represent the maximum permissible in-field 

misclose for Indian high-precision (c = 3) and double tertiary (c = 12) levelling for each 

baseline, respectively. 

 

Figure 5.2.5: Magnitude of relative differences (blue circles) for the a. geoid (no fit) and 

b. geoid (4P fitting), with the UNB method ( ,M   = 300, 1˚), over 7021 GNSS-levelling 

baselines. Orange and yellow circles represent the maximum permissible in-field 

misclose for Indian high-precision (c = 3) and double tertiary (c = 12) levelling for each 

baseline, respectively. 
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Figure 5.2.6: Magnitude of relative differences (blue circles) for the a. geoid (no fit) and 

b. geoid (4P fitting), with the KTH method ( ,M   = 300, 1˚), over 7021 GNSS-levelling 

baselines. Orange and yellow circles represent the maximum permissible in-field 

misclose for Indian high-precision (c = 3) and double tertiary (c = 12) levelling for each 

baseline, respectively. 
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Figure 5.2.7: Difference between gravimetric geoid undulations computed using the 

CUT and the UNB methods ( ,M   = 300, 1˚). 

 

Figure 5.2.8: Scatter plot (a) and histogram (b) of the differences between gravimetric 

geoid undulations computed using the CUT and the UNB methods ( ,M   = 300, 1˚). 
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Figure 5.2.9: Difference between gravimetric geoid undulations computed using the 

CUT and the KTH methods ( ,M   = 300, 1˚). 

 

Figure 5.2.10: Scatter plot (a) and histogram (b) of the differences between gravimetric 

geoid undulations computed using the CUT and the KTH methods ( ,M   = 300, 1˚). 
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Figure 5.2.11: Difference between gravimetric geoid undulations computed using the 

KTH and the UNB methods ( ,M   = 300, 1˚). 

 

Figure 5.2.12: Scatter plot (a) and histogram (b) of the differences between gravimetric 

geoid undulations computed using the KTH and the UNB methods ( ,M   = 300, 1˚). 
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Figure 5.2.13: Difference between gravimetric geoid undulations in UP West calculated 

using GEOCOL and a) CUT, b) UNB and c) KTH methods 

 

Figure 5.2.14: Difference between geoid models of UP East calculated using GEOCOL 

and a) CUT, b) UNB and c) KTH methods 
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Figure 5.2.15: Difference between geoid models of Hyderabad calculated using 

GEOCOL and a) CUT, b) UNB and c) KTH methods 

 

Figure 5.2.16: Difference between geoid models of Bangalore calculated using 

GEOCOL and a) CUT, b) UNB and c) KTH methods 

Following are the main observations: 

1. Though the Indian gravimetric geoid models computed using the three methods 

(Figure 5.2.1 – 5.2.3) differ from each other (Figures 5.2.7, 5.2.9, 5.2.11), all three 

somewhat depict the separation line of the Indian and the Eurasian plate. Thus, a 

gravimetric geoid can be important for some lithospheric studies over India. The 

contour pattern around the location of 24˚N and 82˚E seems intriguing for some 
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gravimetric studies in that region. It should be noted that the area comprises a diamond 

mine and one of the largest coalfields of India with the thickest and different varieties 

of coal seams. 

2. Though the maximum standard deviation does not exceed 0.46 m (Table 5.1.1) on 

validation of the three geoid models with GNSS-levelling datapoints for India, a large 

standard deviation is observed for inter-model differences (Figures 5.2.7, 5.2.9, 5.2.11) 

among the three methods: CUT-UNB = 0.854 m, CUT-KTH = 0.498 m and KTH-

UNB = 1.239 m.  

3. At the first instance, based on standard deviation, the UNB method can be interpreted 

to provide less precise results for UP West and for the whole country. However, the 

larger standard deviation in UP West can be only due to the erroneous GETECH data 

in the region that causes more significant vertical gravity gradients (Section 3.5.2) and 

hence, enormous residual Helmert’s gravity anomalies (used in the UNB method) for 

Stokes’s integration. 

4. The largest misclosures in Figures 5.2.4 - 5.2.6 are most probably due to the tilt in the 

Indian height datum and the relative closeness of the datapoints in Hyderabad and 

Bangalore. Sudden spikes in Figures 5.2.4a, 5.2.5a, and 5.2.6a at distances of 

approximately [0-50] km, [450-550] km, [900-1200] km, and [1200-1900] km are due 

to the errors and differences (north-south tilt) in the baselines for [Bangalore and 

Hyderabad, individually], [Bangalore to Hyderabad], [UP West, UP East to 

Hyderabad], and [UP West, UP East to Bangalore], respectively. From Figures 5.2.4b, 

5.2.5b, and 5.2.6b, after fitting, the misclosures for large baselines are diminished 

significantly, but the misclosures in Hyderabad and Bangalore are diminished less than 

those in UP because the points are closer together in former two regions. This also 

explains the larger ppm values found in those regions (Table 5.1.2). 
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5. The major differences between the geoid models using the three methods (CUT, UNB, 

KTH) are observed in the high mountains (Figures 5.2.7 - 5.2.12). There is a clear 

correlation between the geoid undulation differences and topographic heights (Figures 

5.2.8 and 5.2.12). The differences between geoid models using the CUT and the KTH 

methods are smaller as compared to the differences using the UNB and the other two 

methods. This is possibly because the topographical effects are numerically larger in 

the mountainous undulating terrains and the UNB method treats the topography more 

rigorously as compared to the other two methods (Section 3.2). 

6. Large differences (> 5 m) are observed in the Indian geoid models calculated using the 

CUT and the KTH methods with respect to the UNB method (Figures 5.2.7 and 

5.2.11). Similar large differences (max = 5.742 m) are also observed in the difference 

map of geoid undulations with GEOCOL and UNB methods for UP West (Figure 

5.2.13c). We reiterate here that a constant of -0.76 m (arising from generalised Bruns’s 

formula) is not applied in the GEOCOL solutions and therefore, an equivalent 

difference value is expected in the difference maps with respect to the CUT, UNB and 

KTH methods in all the four regions (Figures 5.2.13 - 5.2.16).  Mean values ranging 

within [-0.652 m, -0.550 m] and [-0.807 m, -0.466 m] have been observed for UP West 

(Figure 5.2.13) and UP East (Figure 5.2.14), respectively. However, mean values of [-

0.035 m, 0.0121 m] for Hyderabad (Figure 5.2.15) and [1.105 m, 1.222 m] for 

Bangalore (Figure 5.2.16) are concerning enough to further investigate the GEOCOL 

solutions because these values deviate more than 0.30 m of what is expected (i.e., ~0.76 

m due to zero-degree term). 
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5.3 Summary 

In this chapter, we presented the validation results of the developed Indian geoid 

and quasigeoid models using the three methods, i.e., CUT, UNB and KTH. The validations 

are performed with respect to the GNSS/levelling data for India and the four regions 

individually (UP west, UP east, Hyderabad, and Bangalore).  

With the available GNSS/levelling data, the smallest standard deviation for Indian 

geoid model is ±0.39 m with the KTH method. However, region-wise, smallest standard 

deviation for UP west is ±0.12 m, UP east: ±0.09 m, Hyderabad: ±0.15 m and Bangalore: 

±0.03 m, with CUT, UNB, KTH and UNB methods, respectively. For any given method 

(CUT, UNB or KTH), there is no particular combination of modification degree and 

integration radius that provides the smallest standard deviation in the validation of geoid 

and quasigeoid models of all the four regions. Therefore, it is not possible to comment on 

the pre-eminence of any one geoid/quasigeoid computation methodology over other.  

Difference between the smallest standard deviation obtained from GNSS/levelling-

based validations of geoid model and corresponding quasigeoid model does not exceed 

±0.01 m for all three methods in all four regions and India. Therefore, with the available 

validation data, we can also not comment on the suitability of geoid or quasigeoid model 

as a preferrable reference surface for the Indian normal-orthometric heights. 

With the available data, a north-south tilt is observed in the Indian vertical datum. 

An east-west slope may also be present in the Indian vertical datum due to the location of 

its tide-gauge stations. However, we could not identify this because of the lack of 

validation data.  

An additional validation of the developed geoid models has been performed that 

include components of vertical deflections. The geoid gradients (Pizetti’s vertical 
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deflection) have been validated with the Helmert’s vertical deflections. In this validation, 

the KTH method proves to perform better (based on the smallest mean ± standard 

deviation) as compared to the other two methods (CUT and UNB).  

Gravimetric geoid and quasigeoid models for the four regions have also been 

computed using GEOCOL. The validation with GNSS/levelling shows that the standard 

deviation, for the four regions, varies no more than ±0.02 m as compared to the smallest 

standard deviations in those regions with either of the CUT, UNB or KTH methods 

(mentioned above). There is a significant improvement in standard deviation with the 

complete GNSS/levelling data, i.e., ±0.11 m (using GEOCOL) compared to ±0.39 m 

(using KTH method). However, it should be noted that the GEOCOL calculations does 

not include the zero-degree term calculated from the generalised Bruns’s formula. Though 

it will not cause any change in the standard deviation values (because it will be a constant 

term), zero-degree term will cause significant changes (~0.75 m) in other descriptive 

statistic (minimum, maximum, mean). 

An inter-model comparison of geoid models has also been presented for 1. India 

for the following pairs: CUT-UNB, CUT-KTH and KTH-UNB, and 2. the four regions for 

the pairs: GEOCOL-CUT, GEOCOL-KTH and GEOCOL-UNB. The analysis shows that 

difference between the geoid models with different methods can vary >1 m, which is 

significant in the quest for cm-precise geoid. The major differences in the geoid 

computation methods are in the mountainous regions. Therefore, it has been suggested that 

a study is required for either merging precise regional geoid models to develop a 

nationwide geoid model or merging different geoid computation methodologies. 
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Chapter 6: Conclusions and future recommendations 

6.0 Introduction 

This chapter provides the final remarks on this study and is divided into three sections. 

First, a summary of the complete research has been provided. It consists of the key points 

that emerged from various tests, results, validations and discussions in the first five 

chapters. Second, conclusions of the study are given with respect to each of the three 

objectives of the thesis. Finally, due to the limitations of the present study, primarily 

because of the datasets, a few recommendations for future work are provided. 

6.1 Summary of research 

The study aimed to develop gravimetric geoid models for mainland India using three 

methods (CUT, UNB and KTH) and discuss the involved systematic effects from the 

viewpoint of the cm-precise geoid.  

In chapter one, the background on the geoid-related studies over India has been 

presented. The discussion on the studies has revealed that despite a few studies, a national 

gravimetric geoid model for India or a detailed computation methodology for the Indian 

geoid model has never been available in the public domain.  

The geodetic data in India has been imposed with numerous restrictions that make 

it almost impossible to procure the data from the national surveying organisation. 

Therefore, in chapter two, a discussion on the limitations of this study in terms of the 

datasets is provided. We discussed the following datasets that have been used in this study: 

gravity, GNSS/levelling, vertical deflections, GGMs and DEM. Unlike any previous 

geoid-related study over India, a DEM has been used in the present study instead of DSM 
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and vertical deflections have been used in addition to the GNSS/levelling data to validate 

the developed geoid models. 

Chapter three discussed the following systematic effects as applied in the three 

methods (CUT, UNB and KTH) individually: topographic correction, atmospheric 

correction, ellipsoidal correction and downward continuation. In addition to these four, the 

following three effects have also been discussed irrespective of the geoid computation 

methodology: i) different formulas for calculating normal gravity at any arbitrary 

ellipsoidal height, ii) consistent use of the zero-degree term and iii) conversion formulas 

for gravity, geoid undulation, orthometric height, normal height, dynamic height, geodetic 

height and ellipsoidal parameters among the solid Earth permanent tide systems (tide-free, 

zero-degree and mean-tide).  

Three methods for calculating normal gravity using the normal gravity gradient 

method and one exact method based on confocal ellipsoid has been discussed with a 

suggestion to use the exact method wherever possible. A new method for calculating local 

planar TCs has been formulated to be used in the CUT method. For the UNB method, a 

discussion is provided to use the point values of the topographical effects calculated using 

the cascading grids instead of the block mean value. The combined topographical effect in 

the KTH method is explored to be a part of the primary indirect topographical effect in the 

UNB method.  

It has been shown that the formula used for the atmospheric correction in the CUT 

method should be used as it is, i.e., without truncating/neglecting any term, at least when 

the maximum height in the study area is >1000 m. A discussion is provided where it is 

discouraged to use spherical harmonic coefficients for DEM to compute the atmospheric 

effect. Though the atmospheric correction is lesser than other corrections, the difference 

needs to be quantified from the viewpoint of the cm-precise geoid. 
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The CUT method uses ellipsoidal reference gravity anomalies (to calculate residual 

Faye anomalies) and ellipsoidal radius computed at each latitudinal parallel in Stokes’s 

integration, negating the use of the ellipsoidal correction. The UNB and the KTH methods 

have similar formulas for the ellipsoidal correction, but the two formulas have a sign 

inconsistency. It has been discussed that the deflection correction (a term arising in the 

derivation of the ellipsoidal correction to the gravity disturbance) should also be applied 

because it can reach up to 139 µGal, which is significant with respect to the present day 1 

µGal precise gravimeters. The UNB’s formula for the ellipsoidal correction to the gravity 

disturbance that was precise up to 10 µGal has been modified to a precision level of 2 

µGal. 

 Unlike the UNB and the KTH (of direct geoid computation) methods, the CUT and 

the KTH (of quasigeoid computation) methods do not require downward continuation. 

Instead, the latter two use analytical continuation that can be either downward or upward 

continuation. The CUT method uses the planar TCs as an approximation to the analytical 

continuation of gravity anomalies. We also presented an argument for the possible 

downward continuation of the height anomalies from the topographical surface to the 

ellipsoid to define the quasigeoid. Gravity gradients have been calculated to downward 

continue the gravity anomalies to the geoid in the UNB method. The downward 

continuation formula in the KTH method comprises five terms, of which only the first 

three are used, and the last two are neglected. It has been shown that though we can ignore 

the fifth term, the fourth term should be included in the calculations because its value can 

reach ~7 µGal, which is seven times the precision of the present-day gravimeters. 

The error that can be introduced due to the zero-degree term in Bruns’s formula 

instead of generalised Bruns’s formula has been quantified with a suggestion to always 

use generalised Bruns’s formula. It has been shown that geoid undulations and free-air 
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gravity anomalies do not depend on the solid Earth permanent tide-system, i.e., if the GGM 

and the ellipsoidal parameters are in the same tide-system there will be no perceptible 

changes in either of the two for different tide-systems. However, a misinterpretation in 

tide-system of J2 of GRS80 (zero-tide instead of tide-free) can cause an error of the order 

60 mm in geoid undulations and 10 µGal in free-air anomalies. Several formulas have also 

been given for the ad-hoc transformation of the ellipsoidal parameters among different 

tide-systems. It is clearly acknowledged that the change in the ellipsoidal parameters due 

to different permanent tide systems are not compulsory. Change in the ellipsoidal 

parameters and the above-mentioned errors of 60 mm in geoid undulation and 10 µGal in 

free-air anomalies will arise iff we do not define our reference ellipsoid as fixed or 

unchanging. Hence, we have recommended the need for a convention on the choice of 

reference ellipsoid (changing or unchanging) while dealing with the solid Earth permanent 

tide systems. 

Chapter 4 discussed the CUT, the UNB and the KTH methods of geoid and 

quasigeoid computation and the changes that we made to the original methods due to the 

peculiarities of our dataset. Methods of calculating the geoid-quasigeoid separation (GQS) 

term and hybrid geoid/quasigeoid have also been presented. It has been shown that the 

GQS term needs further investigation as different methods can deviate up to ~2.5 m, which 

is significant in the quest of a cm-precise geoid. This is important for the geoid modellers 

who calculate geoid from quasigeoid and GQS term or quasigeoid from geoid and GQS 

term. Furthermore, an interpretation with a formulation has been provided that suggests 

the difference between geoid undulations and height anomalies (as computed on the 

Earth’s topographical surface) may not be called GQS; instead, height anomalies may be 

first downward continued to the ellipsoid. However, we have acknowledged that 
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downward continuation of height anomalies may not result in normal heights and 

therefore, further study or a convention is required for the interpretation of quasigeoid. 

The gravimetric geoid models for India and their validation results have been 

presented in chapter 5. Validation has been done with the GNSS/levelling dataset for India 

and region-wise because the data were clustered in four regions: Uttar Pradesh West, Uttar 

Pradesh East, Hyderabad and Bangalore. Pizetti’s vertical deflection components have 

been computed using the horizontal gradients of the geoid models, which were validated 

with Helmert’s vertical deflection components. Regional gravimetric geoid models have 

also been computed using GEOCOL with residual terrain modelling (RTM). No detailed 

work is done with GEOCOL in this thesis, and the developed regional models are used 

only for comparison study with respect to the models developed in this study using other 

methods (CUT, UNB and KTH) and previously developed regional geoid models available 

in literature. An inter-model comparison of geoid models for India (calculated using CUT, 

UNB and KTH methods) has also been presented. The results suggest that, as of now, we 

cannot generalise the geoid computation methodology because i) they deviate up to a few 

metres among themselves and ii) each of the three methods provides the least standard 

deviation in some region of India on validation with GNSS/levelling data. 

6.2 Conclusions 

Following are the conclusions of this study with respect to each of the three objectives: 

i) Develop a gravimetric geoid model for India using all the available gravity and 

terrain data. 

Gravimetric geoid models for the whole of mainland India have been developed using the 

CUT, the UNB and the KTH methods at a grid of 0.02°×0.02°. The geoid model computed 

using the CUT method (Goyal et al., 2021, provided in Appendix C.6) will be available 
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from the International Service for the Geoid (ISG) website 

(https://www.isgeoid.polimi.it/). The precision of this model, for India, as computed with 

the available 119 GNSS/levelling data is ±0.396 m. However, region-wise, the precision 

varies from a minimum of ±0.03 m in Bangalore to a maximum of ±0.158 m in Hyderabad. 

Other geoid models can be shared on individual requests. Therefore, in this study, the first 

gravimetric geoid model for India has been developed that will also be available in the 

public domain. However, the cm-precise geoid is not possible with the present data. Hence, 

the gravimetric geoid studies in India must be continued with new precise and dense 

gravity and GNSS/levelling data. 

ii) Analyse the use of high-resolution DEM in determining terrain effects. 

We have developed an efficient spatial-spectral combined method for calculating planar 

TCs using high-resolution DEMs (Goyal et al., 2020). The developed method has no 

implementing restrictions on the type of topography. Moreover, the developed numerical 

method is sufficiently accurate with respect to the analytical solution and reduces the 

computation time by almost 50%. Local planar TCs have been computed on a grid of 

3”×3” for a region of 40°×40° in and around India using MERIT DEM. This is the first 

planar TC computation that i) has been conducted in a study area encapsulating typical 

landforms, e.g., the Himalayas, Gangetic plains, Thar desert, plateaus and other hill ranges, 

ii) uses a single high-resolution DEM and without removing the DEM points to circumvent 

the divergence issue and iii) provides convergent solution down to < 1 μGal. 

iii) Evaluate and validate developed gravimetric geoid and quasigeoid models. 

The study suggests that the gravimetric geoid or quasigeoid models should be validated 

after clustering the GNSS/levelling data in groups (maybe based on region or topography) 

in addition to the validation with the complete dataset. Moreover, two or more gravimetric 

https://www.isgeoid.polimi.it/
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geoid/quasigeoid models or the geoid/quasigeoid computation methodologies should not 

be compared for pre-eminence solely based on standard deviation. There is no particular 

choice of a geoid computation methodology or a modification degree and integration 

radius combination that would give the least standard deviation (or any descriptive 

statistical value) for a country if validated region-wise. Therefore, there is a need for a new 

geoid computation methodology that could combine several regional geoid models or 

different methods of geoid computation. The vertical deflection components, if available, 

should also be used for geoid validation. As of today, the geoid computation cannot be 

generalised because the geoid models with different methods can deviate up to a few 

metres from one another. Therefore, we are yet far away from the goal of the cm-precise 

geoid. 

6.3 Scope of the future work 

The suggestions for future work have been discussed in several sections of this thesis and 

are summarised as follows: 

i) There must be some work done towards improved availability of point-wise gravity 

data in India. 

ii) Generally, the gravity data is limited to the study area but is also required in the 

regions surrounding the study area. Therefore, different methods for filling the 

gravity (or gravity anomaly) data in the surrounding regions of the study area 

should be analysed and quantified.  

iii) There are large variations of the gravity anomalies in the mountainous regions. 

Sometimes, they are presented in the horizontal layers of positive and negative 

anomalies while transiting different landforms. Moreover, we have multiple 

gravity datasets, e.g., terrestrial, airborne and marine gravity data, with very little 
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data coverage in the mountainous regions due to the highway effect. Therefore, 

with the precise and dense observed gravity data or synthesised gravity data, 

various gravity merging and interpolation techniques should be analysed over 

different landforms and the whole of a country. 

iv) A few modified formulas, which are derived and discussed in Sections 3.1 to 3.5, 

must be analysed with precise gravity data. The associated errors or differences 

between the existing and modified formulas must be quantified in calculating geoid 

undulations or height anomalies. 

v) The effect of the topographical corrections to the geoid in the KTH and the UNB 

method must be rigorously analysed because the combined topographic effect in 

the KTH method is equivalent to a part only of the primary indirect topographic 

effect of the UNB method. Moreover, ellipsoidal correction formulas in the UNB 

and the KTH methods must be analysed for the sign inconsistency. 

vi) Downward continuation of the height anomalies from the Earth’s topographical 

surface to the ellipsoid for defining the quasigeoid can be studied further, along 

with formulating our interpretation of the geoid-quasigeoid separation term. A 

starting point can be quantifying the difference between the ellipsoidal normal and 

the curved normal plumb line. 

vii) It is common to test the geoid models or methodologies based on standard 

deviation. However, it should be noted that standard deviation is a measure of 

precision and not accuracy. Also, the GNSS/levelling-based validations are highly 

dependent on the quality of the GNSS and levelling data and on any outliers in the 

data. Therefore, it is possible that one may obtain a high-precise geoid but with an 

offset. A statistical study is required to compare geoid models or methods more 

objectively.   
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viii) More validation studies are required to comment on the suitability of the geoid or 

quasigeoid model as a reference surface for the normal-orthometric height system. 

However, the geoid must be validated with orthometric (Helmert’s or rigorous) 

height and quasigeoid with normal heights. Therefore, the physical heights in the 

GNSS/levelling dataset must be converted to the required height system before 

validating the geoid or quasigeoid.  

ix) The geoid models from different methods can significantly deviate from each 

other. According to this study with limited datasets, there is no geoid/quasigeoid 

computation method that gives consistent results in the country, i.e., different 

methods can be suitable for different types of landforms/topography. Therefore, a 

new method is required to compute the national gravimetric geoid model. A 

starting point could be devising an algorithm for merging several regional geoid 

models. However, before working on a new method, perhaps, the methods need to 

be compared in different areas with higher quality data than that available in India. 

A cluster-wise validation and inter-model analysis may be performed on the 

Colorado geoid models 

(https://www.isgeoid.polimi.it/Projects/colorado_experiment.html) or Auvergne 

geoid models (https://www.isgeoid.polimi.it/Projects/Auvergne_test.html).  
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Appendix B 

 

Table B.1: Ellipsoidal parameters following Moritz (2000) 
 

Symbol Name Dimension 

Defining parameters 

a  Semi major axis length [L] 

GM  Geocentric gravitational constant [L3][T2] 

2J  Dynamical form factor -- 

  Mean angular velocity of Earth’s rotation [T–1] 

Derived geometrical parameters 

b  Semi minor axis length [L] 

c  Polar radius of curvature [L] 

E  Linear eccentricity [L] 

2e  First numerical eccentricity squared -- 

2'e  First numerical eccentricity squared -- 

f  Polar flattening -- 

1/ f  Reciprocal polar flattening -- 

Q  Meridian quadrant arc from equator to pole [L] 

0R  Scale factor for length [L] 

1R  Mean spherical radius [L] 

2R  Radius of sphere with same surface area as the ellipsoid [L] 

3R  Radius of sphere with same volume as the ellipsoid [L] 

Derived physical parameters 

0U  Normal gravity equipotential on surface of ellipsoid [L2][T2] 

4J  Degree-four even zonal harmonic -- 

6J  Degree-six even zonal harmonic -- 

8J  Degree-eight even zonal harmonic -- 

m  Clairaut parameter -- 

a  Normal gravity on the ellipsoid surface at the equator  [L][T–2] 

b  Normal gravity on the ellipsoid surface at the poles [L][T–2] 

*f  Normal gravity flattening -- 

k  Unnamed (we called it constant in normal gravity formula) -- 
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Table B.2: Parameters of GRS80 in all the three tide-systems. [ZT= zero-tide; TF=tide-

free; MT=mean-tide] 

 ZT TF MT 

GM [m3s–2] 3.98600500000000E+14 3.98600500000000E+14 3.98600500000000E+14 

  [rad.s–1] 7.29211500000000E-05 7.29211500000000E-05 7.29211500000000E-05 

2J  1.08263939308000E-03 1.08263000000000E-03 1.08267050630000E-03 

a  [m] 6.37813703015779E+06 6.37813700000000E+06 6.37813713005113E+06 

b  [m] 6.35675225407345E+06 6.35675231414037E+06 6.35675205511047E+06 

c  [m] 6.39959374685424E+06 6.39959362586401E+06 6.39959414761693E+06 

E  5.21855109970296E+05 5.21854009700068E+05 5.21858754440011E+05 

2e  6.69440818830765E-03 6.69438002289616E-03 6.69450148216269E-03 

2'e  6.73952532180726E-03 6.73949677547427E-03 6.73961987742130E-03 

f  3.35282481126133E-03 3.35281068118000E-03 3.35287161511507E-03 

1/ f  2.98255965131623E+02 2.98257222101206E+02 2.98251801677077E+02 

Q  [m] 1.00019657058919E+07 1.00019657293230E+07 1.00019656282799E+07 

0R  [m] 6.36367248889098E+06 6.36367248889098E+06 6.36367248889098E+06 

1R  [m] 6.37100877146301E+06 6.37100877138012E+06 6.37100877173757E+06 

2R  [m] 6.37100718099471E+06 6.37100718092522E+06 6.37100718122489E+06 

3R  [m] 6.37100078998965E+06 6.37100078997414E+06 6.37100079004105E+06 

0U  [m2s–2] 6.26368658500000E+07 6.26368658500000E+07 6.26368658500000E+07 

4J  -2.37095993044382E-06 -2.37091221865110E-06 -2.37111797112972E-06 

6J  6.08370228569990E-09 6.08347062840596E-09 6.08446964023618E-09 

8J  -1.42692604082946E-11 -1.42681405972791E-11 -1.42729698006965E-11 

m  3.44978600310289E-03 3.44978600307769E-03 3.44978600318637E-03 

a  [ms–2] 9.78032681750099E+00 9.78032677153479E+00 9.78032696975566E+00 

b  [ms–2] 9.83218627595210E+00 9.83218636851971E+00 9.83218596933875E+00 

*f  5.30242592285509E-03 5.30244011231431E-03 5.30237892285718E-03 

k  1.93182300639977E-03 1.93185135328947E-03 1.93172911195904E-03 
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Table B.3: Parameters of WGS84 in all the three tide-systems. [ZT= zero-tide; TF=tide-

free; MT=mean-tide] 

 ZT TF MT 

GM [m3s–2] 3.98600441800000E+14 3.98600441800000E+14 3.98600441800000E+14 

  [rad.s–1] 7.29211500000000E-05 7.29211500000000E-05 7.29211500000000E-05 

2J  1.08263839308000E-03 1.08262900000000E-03 1.08266950630000E-03 

a  [m] 6.37813703015780E+06 6.37813700000000E+06 6.37813713005113E+06 

b  [m] 6.35675225417827E+06 6.35675231424520E+06 6.35675205521529E+06 

c  [m] 6.39959374674872E+06 6.39959362575848E+06 6.39959414751141E+06 

E  5.21855108693540E+05 5.21854008423183E+05 5.21858753163265E+05 

2e  6.69440815555109E-03 6.69437999013625E-03 6.69450144940612E-03 

2'e  6.73952528860769E-03 6.73949674227130E-03 6.73961984422171E-03 

f  3.35282479482795E-03 3.35281066474494E-03 3.35287159868168E-03 

1/ f  2.98255966593481E+02 2.98257223563226E+02 2.98251803138895E+02 

Q  [m] 1.00019657059742E+07 1.00019657294052E+07 1.00019656283622E+07 

0R  [m] 6.36367299582987E+06 6.36367299582987E+06 6.36367299582987E+06 

1R  [m] 6.37100877149795E+06 6.37100877141507E+06 6.37100877177252E+06 

2R  [m] 6.37100718102967E+06 6.37100718096018E+06 6.37100718125984E+06 

3R  [m] 6.37100079002467E+06 6.37100079000917E+06 6.37100079007607E+06 

0U  [m2s–2] 6.26368517146000E+07 6.26368517146000E+07 6.26368517146000E+07 

4J  -2.37095419957422E-06 -2.37090648780648E-06 -2.37111224017979E-06 

6J  6.08367035518563E-09 6.08343869817010E-09 6.08443770882693E-09 

8J  -1.42690792676325E-11 -1.42679594589861E-11 -1.42727886524185E-11 

m  3.44978650686606E-03 3.44978650684085E-03 3.44978650694954E-03 

a  [ms–2] 9.78032538186934E+00 9.78032533590377E+00 9.78032553412478E+00 

b  [ms–2] 9.83218484529723E+00 9.83218493786360E+00 9.83218453868235E+00 

*f  5.30242721004218E-03 5.30244139931135E-03 5.30238020980227E-03 

k  1.93182430579164E-03 1.93185265249369E-03 1.93173041110989E-03 
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Table B.4: Parameters of IHRS implied possibly new normal ellipsoid (NOT OFFICIAL) 

in all the three tide-systems. [ZT= zero-tide; TF=tide-free; MT=mean-tide]  

 ZT TF MT 

GM [m3s–2] 3.98600441500000E+14 3.98600441500000E+14 3.98600441500000E+14 

  [rad.s–1] 7.29211500000000E-05 7.29211500000000E-05 7.29211500000000E-05 

2J  1.08263559308000E-03 1.08262620000000E-03 1.08266670630000E-03 

a  [m] 6.37813684115779E+06 6.37813681100000E+06 6.37813694105113E+06 

b  [m] 6.35675210171768E+06 6.35675216178461E+06 6.35675190275470E+06 

c  [m] 6.39959352096519E+06 6.39959339997495E+06 6.39959392172786E+06 

E  5.21854655859408E+05 5.21853555588155E+05 5.21858300332047E+05 

2e  6.69439693429806E-03 6.69436876888322E-03 6.69449022815310E-03 

2'e  6.73951391559327E-03 6.73948536925753E-03 6.73960847120516E-03 

f  3.35281916532672E-03 3.35280503524379E-03 3.35286596918019E-03 

1/ f  2.98256467375733E+02 2.98257724349692E+02 2.98252303907188E+02 

Q  [m] 1.00019654377677E+07 1.00019654611988E+07 1.00019653601557E+07 

0R  [m] 6.36367281980994E+06 6.36367281980994E+06 6.36367281980994E+06 

1R  [m] 6.37100859467776E+06 6.37100859459487E+06 6.37100859495232E+06 

2R  [m] 6.37100700421486E+06 6.37100700414537E+06 6.37100700444503E+06 

3R  [m] 6.37100061323154E+06 6.37100061321604E+06 6.37100061328295E+06 

0U  [m2s–2] 6.26368534000000E+07 6.26368534000000E+07 6.26368534000000E+07 

4J  -2.37094059761382E-06 -2.37089288594984E-06 -2.37109863787570E-06 

6J  6.08360822357266E-09 6.08337656759914E-09 6.08437557376241E-09 

8J  -1.42688044508384E-11 -1.42676846500843E-11 -1.42725138094815E-11 

m  3.44978622227124E-03 3.44978622224603E-03 3.44978622235472E-03 

a  [ms–2] 9.78032590317898E+00 9.78032585721398E+00 9.78032605543385E+00 

b  [ms–2] 9.83218541763973E+00 9.83218551020495E+00 9.83218511102597E+00 

*f  5.30243214532321E-03 5.30244633441570E-03 5.30238514525858E-03 

k  1.93183488387683E-03 1.93186323040286E-03 1.93174098936943E-03 
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Appendix C: Published research papers that provide supporting information. 

C.1: Paper on evaluation of global geopotential models. 

Note: There is a typographical error in Eq. 9 of paper in C.1 that is the denominator should 

read 
2r  instead of r . 
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C.2: Paper on local planar gravimetric terrain corrections 

Note:  There is a typographical error in Table 4 of paper in C.2 that is HSR value of TC4 

should read    -1.69× 10-1 instead of -1.69×10-6. Also, in the last line of pg. 1820 “eight-

fold” should read “nine-fold”. 
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C.3: Paper on evaluation of Digital Surface/Elevation Models 

 

 

 



322 

 

To Maa 

 



323 

 

To Maa 



324 

 

To Maa 

 



325 

 

To Maa 



326 

 

To Maa 

 



327 

 

To Maa 



328 

 

To Maa 

 



329 

 

To Maa 



330 

 

To Maa 

 



331 

 

To Maa 



332 

 

To Maa 

 



333 

 

To Maa 



334 

 

To Maa 

 



335 

 

To Maa 



336 

 

To Maa 

 

 

  



337 

 

To Maa 

C.4: Paper on Auvergne quasigeoid. 
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C.5: Preprint of the paper on Indian vertical deflections 
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C.6: Proof-read version of the paper on Indian gravimetric geoid model 
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