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The geoid is the equipotential surface of the Earth’s gravity field best approximated by the
ocean at rest. All terrestrial geodetic and engineering surveying measurements are made after
aligning the instrument’s vertical axis orthogonal to an equipotential surface. The geoid,
therefore, is the best candidate for a reference surface, especially for heights. Since the geoid
is a physically meaningful surface, it responds to changes in the gravity field due to various
geophysical and geodynamical phenomena, in turn allowing us to study them as well. A precise
gravimetric geoid model is fundamental to both infrastructure development as well as for

geoscientific activities.

Geoid-related studies in India have a history of more than a century, which was started

with astrogeodetic geoids derived from astronomical observations. After 2005, there have been



a few gravimetric geoid-related studies over different regions of India, but all have used
GRAVSOFT subroutines with residual terrain modelling (RTM). Moreover, all these studies
have been conducted only at two organisations: Survey of India and National Geophysical
Research Institute, because these two organisations are the custodians of the Indian gravity data
and there are national policies that restrict data sharing. Further, none of the developed geoid

models for any region of India are available in the public domain.

Therefore, in this thesis we have developed the first national gravimetric geoid model
of India, which will be made available in the public domain. For this thesis, the Indian terrestrial
gravity data has been procured from GETECH Pty. Ltd., Leeds, UK. Unlike previous studies
in India or elsewhere (to the best knowledge of the author), three different methodologies have
been used to compute both gravimetric geoid and quasigeoid models for the whole of the
country encapsulating a similar varied landform consisting of the Himalayas and other hill
ranges, the Gangetic plains, Thar desert, plateaus and a long peninsular coastline. The three
methods used herein are those developed at i) the Curtin University of Technology (CUT),
Australia ii) the University of New Brunswick (UNB), Canada and iii) the Royal Institute of
Technology (KTH), Sweden, all with some modifications due to the peculiarities of Indian

datasets.

The major contributions in this thesis are 1) development of an efficient combined
spatial-spectral method for calculating planar gravimetric terrain corrections, which can also
be used in regions having slope >45°, 2) development of a numerical method that reduces the
computation time of planar gravimetric terrain correction by almost 50% as compared to the
literature-recognised best method of analytical mass-prism integration, 3) introducing the
dynamic integration radius for numerical global integration using the DEMs of multiple
resolution, 4) providing a conceptual argument and mathematical formulation of downward

continuation of height anomalies from Earth’s topographical surface to ellipsoid for defining



Vi

the quasigeoid, 5) deriving exact conversion formulas for gravity, geoid undulation, dynamic
height, orthometric height, normal height and ellipsoidal height among the three permanent
tide systems, 6) deriving formulas for ad-hoc conversion of various ellipsoidal parameters
among the three permanent tide systems of the solid Earth and providing the values of all the
ellipsoidal parameters for WGS84, GRS80 and an another reference ellipsoid, in all the three
permanent tide systems and 7) inter-model comparison of geoids and geoid-quasigeoid

separation terms that provide new insights to the decades-long quest of a cm-precise geoid.

Other contributions include 1) development of gravimetric geoid model for the
mainland India using the three methodologies that have never been tested in any region of
India, 2) development of geoid calculation packages, in MATLAB, based on the CUT and the
UNB methods, 3) development of local gravimetric geoid models using GRAVSOFT
subroutines (for least squares collocation) with RTM to compare the results with previous
studies (available descriptive statistic) over regions of India, 4) use of the first order indirect
effect for the first time in the CUT method, 5) validating geoid and quasigeoid models with the
geometric geoid undulations involving normal-orthometric heights as an effort to investigate
the more suitable reference surface for normal-orthometric heights in India and 6) validating
Pizetti’s geoid gradients with Helmert’s vertical deflections noting that the curvature of the

plumbline is neglected.

Before using the adopted methodologies for calculating the Indian geoid and quasigeoid
models, they have been tested over Auvergne in France to calculate ~+0.03 m precise
quasigeoid models. The precision of the developed Indian geoid model, for India is £0.396 m,
but only from small localised dataset. However, on region-wise validation, the precision varies
from a minimum of £0.03 m in Bangalore to a maximum of £0.158 m in Hyderabad. Since this
study has been conducted with the available datasets of unknown quality, gravimetric geoid

studies in India must continue with new precise and dense gravity, and GNSS/levelling data.
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This study shows that two or more gravimetric geoid/quasigeoid models or the
geoid/quasigeoid computation methodologies should not be compared for pre-eminence solely
based on standard deviation of fit to GNSS/levelling or vertical deflection data. Moreover,
there is no particular choice of a geoid computation methodology or a modification degree and
integration radius combination that gives the smallest standard deviation (or any other
descriptive statistic) for all regions of a country. Therefore, there is a need for a new geoid
computation methodology that could, may be, combine several regional geoid models or
different methods of geoid computation. As of today, geoid computation cannot be generalised
because the geoid models with different methods can deviate up to a few metres from one

another. Hence, we are yet far away from the goal of cm-precise geoid, at least in India.
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Chapter 1: Introduction

1.1 Background

From numerous equipotential surfaces of the Earth’s gravity field, the one best
approximated by the ocean at rest is the geoid. One should note that this is only one of the
many definitions of the geoid available in the literature, which are summarised by Basi¢
and Varga (2018). All terrestrial geodetic and engineering survey measurements are made
after aligning the instrument’s vertical axis orthogonal to an equipotential surface. Hence,
an equipotential surface is the best candidate for a reference surface for heights. By
definition, geoid is the equipotential surface and can also be theoretically calculated.
However, it is hardly possible to calculate a national geoid model, especially, because of
the uncertainty in the plumbline curvature (discussed later). Therefore, the best
approximations of the geoid, i.e., the calculated so-called geoid or quasigeoid are preferred

as a vertical reference surface.

The geoid can be calculated using astrogeodetic observations, known as an
astrogeodetic geoid, or using gravity observations with the Stokes (1849) and Bruns (1878)
formula, known as a gravimetric geoid or using Global Navigation Satellite System
(GNSS)/levelling data, known as a geometric geoid. Some have also used a combination
of the astrogeodetic and gravimetric data to develop an astro-gravimetric geoid (e.g., Fryer,
1972; Marti, 1997). Astrogeodetic and gravimetric geoids have their necessities and
advantages, but the former was practised long ago before development of the portable
gravimeters. A geometric geoid is practically meaningful only for local regions. A
gravimetric geoid is calculated with respect to a reference ellipsoid having the following

three properties (e.g., as given by Heiskanen and Moritz, 1967, pg. 94; but it should be



noted that commonly used ellipsoids (e.g., GRS80) often do not have all of these

properties, leading to the zero-degree term (discussed later, Section 3.6)):
i)  The potential of the reference ellipsoid (Uo) is equal to the potential of the geoid (Wo).

i) The ellipsoid encloses the mass numerically equal to the Earth’s mass (including

atmospheric mass).
iii) The centre of the ellipsoid is coincident with the centre of mass of the Earth.

Moreover, Stokes (1849) made the assumption that the gravity anomalies for the
whole world are available on the geoid and there are no external masses above the geoid.
On the contrary, gravity values are observed on or above the Earth’s topographical surface
and are not available for the whole world. Also, there exist external masses above the
geoid. Therefore, regional, national or continental geoid modelling is primarily about i)
regularisation of the masses above the geoid (e.g., Helmert, 1884) and ii) applying Stokes’s
integral with high frequency regional gravity data, which is available only in a limited

region.

The major concern in removing or shifting the masses external to the geoid is
assumptions regarding the density distribution of the topographical masses (Martinec,
1993; Pagiatakis et al., 1999; Kuhn, 2001; 2003; Huang et al., 2001). Therefore,
Molodensky et al. (1962) introduced the theory of the quasigeoid that is a non-
equipotential surface departing not much from the geoid. They suggested use of the Earth’s
topographical surface as the reference surface for Stokes’s integration of the gravity
anomalies, i.e., gravity anomalies may now be available on the Earth’s topographical
surface instead of the geoid. Thus, eliminating the need for regularisation of the

topographical masses between the geoid and the Earth’s topographical surface.



Since i) none confirms (to our best information from the literature) that the
calculated geoid is an equipotential surface (although some near-related studies have been
conducted, e.g., Claessens and Filmer, 2020; Wang et al., 2021) and ii) the difference
between geoid and quasigeoid is not significant (except in the mountainous regions), it has
become a country’s specific choice to adopt quasigeoid or geoid as the national vertical
reference surface. However, calculation of both geoid and quasigeoid still needs some
regularisation methods and modifications/strategies to truncate Stokes’s integral to the

region of interest.

In India, the first geoidal study was started more than a century ago. The detailed
information is most probably provided in the archaic Survey of India (Sol) reports, which
are not available in the public domain. However, we try to provide concise introductory
information as gathered from different sources. The geoidal study was started in India
around 1901 (Sol, 1950) based on astrogeodetic observations with respect to the
Everest1830 ellipsoid. Bomford (1967) mentions that de Graaff Hunter compiled the first
geoid map for India in 1922 based on astrogeodetic observations referred to an
international spheroid. According to de Graaff Hunter (1932), it was published in 1923
excluding the Himalayan region (information on where it was published is not available)
and published in Sol (1930) for India. The geoid map from 1923 is also provided in Daly

(1969, pg. 228).

Sol (1950, pg. 146) mentions that the definitions of the geoid provided in Sol
(1930) were all incorrect and hence, they rectified the definitions of the previous report.
The pages with the rectified definitions in Sol (1950) are provided in Appendix A. No
geoid map is provided in Sol (1950), but Sol (1951, pg. 89) provides a hard-to-read geoid
map, referred to an international spheroid, for India and neighbouring countries based on

the astrogeodetic data available during 1950-1951. Other than these, Fischer (1961)



mentions a more refined astrogeodetic geoid of India, with dense data, published in Sol
(1957) and also themselves had developed an Indian astrogeodetic geoid (Fischer, 1968).

However, neither of the two are available in the public domain.

During the 1970s to mid-1980s, a few other gravimetric and astrogeodetic geoid
related studies were conducted for India (e.g., Bhattacharji, 1973; 1982; Gaur, 1981;
Khosla et al., 1982; Srivastava, 1985), with respect to both Everest and GRS67 ellipsoids.
The used gravity data was primarily from the geopotential coefficients (Rapp, 1977) and
sometimes very coarse observed mean gravity anomaly data (1°x1°). None of these models

is available in the public domain.

From 2007 onwards, a few more gravimetric geoid-related studies over India were
available in the literature (e.g., Singh, 2007; Singh et al., 2007; Carrion et al., 20009;
Srinivas et al., 2012). This was probably because the proposal for a redefined vertical
datum, in 2005, mentioned adopting a gravimetric geoid model as the new Indian Vertical
Datum (IVD), whenever available. After 2012, to the author’s best information, there is
only one gravimetric geoid study over India published, i.e., Mishra and Ghosh (2016). The

results from these studies (from 2007 to 2017) are also not in the public domain.

It is important to note that the studies from 1901 to 1957 were all conducted by
Sol; from 1973 to 1985 by Sol or University of Roorkee in collaboration with Sol; and
from 2007 to 2017 by Sol, Indian Institute of Technology (IIT) Roorkee (previously
University of Roorkee) in collaboration with Sol, National Geophysical Research Institute
(NGRI) in collaboration with Sol or NGRI (but without access to GNSS/levelling data for
validation, the keeper of which is Sol). This shows that until today, geoid related studies
in India are somewhat governed by Sol. Hence, several stakeholders are kept deprived of
any developed geoid model or the geodetic data to do geoid modelling themselves.

Moreover, despite all these efforts, no Indian national gravimetric or astrogeodetic geoid



model is available in the public domain. In the present thesis, we are interested only in the
gravimetric geoid model and, therefore, will keep our further discussions limited to that

only, though astrogeodetic data are used for validation.

It is now over 170 years since George Gabriel Stokes published his seminal
formula for geoid determination from gravity anomalies (Stokes, 1849); over 55 years
since the English translation of Mikhail Sergeevich Molodensky’s book was published,
including the formula for quasigeoid determination from gravity anomalies (Molodensky
et al., 1962); and over 50 years since Martin Hotine’s monograph was published including
the formula for geoid determination from gravity disturbances (Hotine, 1969). For the
present thesis, we are only concerned with the geoid and quasigeoid using the gravity

anomalies that require Stokes’s integration.

Ideally, Stokes’s integral should be implemented over the entire Earth with

continuous gravity anomalies on the geoid and with the Laplace harmonicity condition

(VZT =0) that there must not be any gravitating mass above it (Heiskanen and Moritz,

1967). However, in practice, the integral is reduced to a limited area, i.e., truncated because
gravity anomalies over the entire Earth are not available for computations due to a
multitude of reasons, e.g., inaccessible areas or national data restriction policies. Also,
gravity anomalies usually exist discontinuously on or above the Earth’s surface, so various
types of regularisations and downward continuation have been proposed. The gaps
between theoretical and practical aspects incur several kinds of errors, which geodesists

have tried to reduce.

Presently, based on various ideas, philosophies and numerical approaches, there are

the following four more common techniques available for geoid computation.



i)

Geoid/Quasigeoid computation methodology (GRAVSOFT) based largely on
Least Squares Collocation (LSC) developed at the University of Copenhagen,

Denmark (Forsberg, 1984, 1985; Knudsen, 1987; Forsberg and Tscherning, 2008)

The Stokes-Helmert method (SHGeo) developed at the University of New
Brunswick (UNB), Canada (Vanicek and Kleusberg, 1987; Vani¢ek and Martinec,
1994; Martinec and Vanicek, 1994a; 1994b; Vanicek et al., 1999; UNB, 2009;

Tenzer et al., 2003; Ellmann and Vanicek, 2007; Vanicek et al., 2013).

Least Squares Modification of Stokes formula (LSMS) with Additive Corrections
(AC) method developed at the Division of Geodesy, Royal Institute of Technology

(KTH), Sweden (Sjoberg, 1984a; 1984b; 1991; 2000; 2003a; 2003b; Agren, 2004).

Quasigeoid computation method developed at Curtin University of Technology
(CUT), Australia (Featherstone, 2000; 2001; Featherstone et al., 1998; 2001; 2011;
2018; Amos and Featherstone, 2009; Claessens et al., 2011; McCubbine et al.,

2018; 2021).

There are of course, other approaches such as radial basis functions (e.g., Li, 2018;

Liu et al., 2020) but perhaps not yet applied as widely as the above four. Despite a long-

elapsed time from the developed methodologies and numerous implementations,

determination of a centimetre level precise geoid and quasigeoid still remains an ongoing

quest (Sanso and Rummel, 1997; Foroughi et al., 2019; Ellmann et al., 2020). Hence,

comparative studies among the different computational techniques are required to

investigate, primarily, the scope of modifications to the existing methodologies or a need

of precise and dense input datasets. Arguably, different approaches are necessary in

different parts of the world due to, for instance, the peculiarities of the data holdings, e.g.,



Goyal et al. (2022) summarises numerous geoid/quasigeoid solutions of Auvergne in

France where researchers have tested their geoid/quasigeoid calculation methods.

With the above background on Indian geoid-related studies, we will next discuss

the IVDs and the height systems.
1.2 Height systems

Height is the vertical distance between two points. However, one could ask, what
is the direction of the vertical distance? Therefore, a more precise definition of height
could be, a vertical distance between two points lying on well-defined mathematical,
physical or virtual surfaces along a specified direction. Scientifically, height is a coordinate
that separates two points along a specified direction in a 3D space having the same 2D

coordinates in a given reference frame.

In the present satellite era, 3D coordinates of our position on the Earth’s surface
are obtained using GNSS. There are multiple options for the height coordinate, including
using GNSS itself. These options primarily depend on the direction of the vertical distance
and the reference surface from where the distance is being measured. Heiskanen and
Moritz (1967), Jekeli (2000), Dennis and Featherstone (2003), Featherstone and Kuhn
(2006) and Amos (2007) have discussed different types of heights. Also see Tenzer et al.
(2005) and Santos et al. (2006). Therefore, here we will discuss only those which are
relevant to the present thesis: orthometric height, normal height, normal-orthometric

height, geodetic or ellipsoidal height, geoid undulation and height anomaly.

Figure 1.2.1 shows a schematic diagram for above mentioned different heights, and

Table 1.2.1 explains/defines the same.
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Table 1.2.1: Definition of heights
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* No unique reference surface is specified for normal-orthometric height system (e.g.,
Filmer et al., 2010; 2014)




The definitions in Table 1.2.1 can be read as “Column 1 height is the height of a
point on Column 2 from a corresponding point on Column 3 along the Column 4,” e.g.,
‘Orthometric height is the height of a point on the Earth’s surface from a corresponding
point on the geoid along the curved and torsioned plumb line’. In addition to the heights
explained in Tablel.2.1, there is also dynamic height. The dynamic heights are computed
by dividing the geopotential number (difference between geopotential values at the geoid
and point in consideration on the Earth’s topography) by some constant. The adopted
constant for calculating the dynamic heights is normal gravity at 45° latitude (Heiskanen

and Moritz, 1967, pp. 162-163).

From Figure 1.2.1, there exists geometrical relationship between i) geodetic height
(h), orthometric height (H) and geoid undulation (N) given by Eq. (1.2.1) and ii)
geodetic height, normal height (H") and height anomaly (¢') given by Eq. (1.2.2). Since

no unique surface is defined for normal-orthometric height (HNO), H or H in Egs.

(1.2.1) and (1.2.2) are sometimes replaced by H"° also to calculate geometric geoid

undulation or geometric height anomalies, respectively.
N~h-H (1.2.1)

(1.2.2)

A ‘pure’ orthometric height is impossible to be realised practically, as this requires
gravity and density information at every point on the curved and torsioned plumbline
between the Earth’s surface and the geoid. Therefore, instead of using the integral mean
value of Earth’s gravity along the plumbline, mean gravity is approximated using the
Poincaré and Prey reduction (Heiskanen and Moritz, 1967, pg. 163), thus providing

Helmert’s orthometric heights (Heiskanen and Moritz, 1967, pg. 167). Niethammer (1932)
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and Mader (1954) heights, which include terrain corrections, are proved to be better than

Helmert’s orthometric heights (Dennis and Featherstone, 2003).

Molodensky (1945) proposed the use of normal heights, wherein the mean actual
gravity is replaced by mean normal gravity between the reference ellipsoid and the
telluroid (Heiskanen and Moritz, 1967). The distance between Earth’s topographical
surface and the telluroid is the height anomaly, and mapping of these height anomalies on
the corresponding points on the ellipsoidal surface gives quasigeoid. Although not a
geopotential surface, quasigeoid is a preferred choice of the vertical reference surface in

many countries, including Australia and Sweden.

The main issue in the determination of orthometric heights is the computation of
the integral mean gravity along the plumbline (Rapp, 1961). Tenzer et al. (2005)
formulated ‘rigorous’ orthometric height by calculating the mean gravity along the
plumbline by considering the effect of second-order correction for normal gravity, the
gravitational attraction of topographical (Bouguer shell and terrain roughness) and
atmospheric masses, lateral variation of topographical mass-density and the gravity
disturbance due to the masses below the geoid surface. Santos et al. (2006) derived the
corrections to obtain the ‘rigorous’ orthometric height (Tenzer et al., 2005) from Helmert’s
orthometric height. An effort to modernise the existing [Helmert’s] orthometric height
system of Canada to these ‘rigorous’ orthometric heights has been made by Kingdon et al.

(2005).

However, despite recent advancements in the height systems, Helmert’s
orthometric heights (which use Poincaré and Prey reduction) are still in vogue in many
countries, probably due to their relative ease of implementation. Also, there are many other
countries, mainly in Eastern Europe, the former Union of Soviet Socialist Republics

(USSR) and South America use normal heights.
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Normal-orthometric heights are also practiced in several countries, e.g., United
Kingdom (Penna et al., 2013), Australia (Featherstone and Kuhn, 2006), New Zealand
(Amos, 2007), Sri Lanka (Abeyratne et al., 2010) and Uganda (Ssengendo, 2015). This
height system is defined for the case when gravity observations are not available along the
levelling lines and therefore, utilises spheropotential number instead of the geopotential
numbers. The normal-orthometric correction (e.g., Burrard, 1910; Rapp, 1961; Bomford,
1971) is applied to the levelling height differences for calculating the normal-orthometric
heights. Moreover, unlike normal or orthometric heights, there is no unique reference
surface defined for normal orthometric heights, though quasigeoid is sometimes preferred

(Amos, 2007; Ssengendo, 2015).

With so many height systems available, the discussion on the suitability of heights
and geoid (Vanicek et al., 2012) or quasigeoid (Sjoberg, 2013) as a reference surface for

heights has remained group/country specific.
1.2.1 Indian vertical datum and height system

We will start this section by depicting different major topographical landforms of India
(Figure 1.2.2): the Himalayas, Aravalli and Vindhya ranges, Western and Eastern Ghats,
plateaus, desert, the Gangetic plains and a long peninsular coastline of ~7500 km. To
differentiate the heights of various landforms, we have used the bins of <300 m, 300 m —
600 m, 600 m — 1200 m and >1200 m, because these bins are also used in the standard

school textbook (NCERT, 2006, pg. 9).

Different sources have different numbers attached to the highest peak, average
elevation and length of the hill ranges in India. To provide an overview, we tabulate some

information in Table 1.2.2, from not so reliable sources (Wikipedia and Encyclopedia).



Table 1.2.2: Information about different landforms in India.

Highest peak

Average

Landform/coastline . Length/ Area
(m) elevation (m)
Aravalli 1722 400-600 670 km
Vindhya 752 300-650 1200 km
Western Ghats 2637 900-1500 1600 km
Eastern Ghats 1680 600 1400 km
Himalayas (India) 8586 900-4900 500,000 km?
Thar Desert - 150 | 238,254 km?
Deccan plateau - 600 | 422,000 km?
Chota Nagpur plateau 1350 - 65,000 km?
Gangetic plains - 250 | 2,500,000 km?
Coastline - - 7516 km
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Figure 1.2.2: Various landforms in India. Red italics shows the name of the Indian state
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The information in Table 1.2.2 and Figure 1.2.2 is provided so that readers may

appreciate the painstaking job of Sol in the high precision levelling of a country like India.

Now, resuming the discussion on the vertical datums and height systems, according
to Burrard (1910), the following four choices were considered and debated to establish the

‘zero’ surface/reference for the IVD defined in 1909 (IVD1909):

1. Any one of the benchmarks established at Delhi, Jodhpur, Raichur, Sanichari or

Naubatpahar.
2. Mean Sea Level (MSL) estimate determined at one tidal observatory.
3. MSL estimates determined at all the tidal observatories.
4. MSL from a few selected tidal observatories.

After considering all the merits and limitations of the above four options, it was
decided to select a few tidal observatories that would define the zero surface for the Indian
levelling net or the IVD1909. To choose a set of tidal observatories from the then
maintained 42 observatories by Sol, a simple rule was devised mentioning that the tidal
observatory should be an open-coast station (not situated in any of the channels, estuaries,

gulfs or rivers) at which successive annual determination of MSL should be consistent.

As such, only nine tidal observatories were selected, fulfilling the above-laid
criteria: Karachi, Bombay (Apollo Bandar), Karwar, Beypore, Cochin, Negapatam,
Madras, Vizagapatam, and False Point (Figure 1.2.3). The first five lie in the Arabian sea,
while the last four in the Bay of Bengal. Thus, the precise levelling net of India consisting
of 86 main lines was terminated at the Tide Gauge Bench-Marks (TGBM) of the above
nine tidal observatories. The heights of these TGBMs were transferred from the tidal
observatories considering that the MSL estimate at each of these nine stations is the same,

i.e., zero. Thereafter, these 86 lines (including nine lines from the tidal observatory to
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TGBM) were adjusted using least-squares (with the tide gauge MSL estimates constrained

to zero) to define the first IVD, i.e., IVD1909 (Burrard, 1910).
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Figure 1.2.3: Mean Dynamic Topography (DTU19MDT) along with tidal observatories
used in VD1909 and 1VD2009

An important fact to be mentioned here is that though the sea surface in the Bay of
Bengal and Arabian sea were considered to be equal, various observations (e.g., levelling
from east coast to west coast, levelling from the east coast and west coast to a centre
location etc.) suggested that there might be a difference of almost one Indian foot between
the two (Burrard, 1910). However, the difference (so-called error) in all the experiments
was attributed to the possible levelling errors, and this difference of one foot was left for

further confirmation by the future successive levelling exercises. Later, it was confirmed
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by Ghildiyal and Kumar (1984, also see Shankar and Shetye, 2001) that the Bay of Bengal
is on average ~320 mm higher than the Arabian sea (e.g., see difference in MDT of west
and east coasts in Figure 1.2.3). It should be noted that some exercises for 1VD1909
showed that even the sea surface along either east or west coast is not same, but this was
also attributed to the levelling errors. There exists a similar example of discrepancies in
the mean sea surface (MSS) along and across the Atlantic and Pacific coastlines in North
America (Reid, 1961; Sturges, 1967; 1974). This approach of constraining the level net to
multiple tide-gauges is a possible cause of a north-south tilt (Fischer, 1975; 1977;
Featherstone and Filmer, 2012) that is also confirmed from our results (Chapter 5). It is
possible that India may have an east-west tilt also (Figure 1.2.3), but it can’t be confirmed

because of the lack of GNSS/Ievelling data in the east-west extent (Section 2.2).

The precise levelling net for IVD1909 consisting of 86 main lines was observed
during 1858 to 1909 that covered a total of ~28922 km of double-line levelling (Burrard,
1910) that was a practice of observing any given levelling line by two surveyors one after
the other, immediately. A total number of 15981 benchmarks of different types (standard,
embedded, inscribed, etc.) were connected by these main lines. In this half a century-long
levelling exercise, 16 different levels (weighing from ~23 kg to ~12 kg) and four types of

levelling staves (introduced in 1858, 1902, 1906 and 1907) were used.

The spirit levelling height differences were transformed to dynamic heights by
applying a dynamic height correction using normal gravity instead of the observed gravity
(Burrard, 1910, pp. 100-103) because until 1909, pendulum gravity observations were not
taken at a sufficient number of benchmarks. These dynamic heights were used for the
adjustment of the level net. The orthometric correction (also using normal gravity) was

then applied to compute the so-called orthometric height. However, due to the use of
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normal gravity in place of the observed gravity, the resultant heights from IVD1909 were

actually normal-orthometric heights (Table 1.2.1; Burrard, 1910).

The 1IVD1909-based height information is sufficient for the needs of topographical
mapping on scales of 1: 50,000 or 1: 25,000 where the contour interval is 10 m /5 m in
plain areas or 200 m / 100 m in hilly areas (as per Sol topographical maps). Now with the
demand of 0.5 m to 1 m contours, the prevailing height information is not sufficient. In the
past 100 years, due to developmental activities, like widening of roads and railways,
construction of townships and industrial premises, most of the permanent benchmarks
have been destroyed. The frequent seismic activity in various parts of the country and
corresponding crustal movements have also necessitated the introduction of a new height
system. Moreover, 1IVD1909 was defined as a suitable datum only for 50 years. It was
recommended in the original report (Burrard, 1910) that the same must be revised without
losing the values observed during 1858-1909 as they will be useful for various scientific

studies.

Considering the fact that the height information was almost a century ago and with
the availability of precise relative gravimeters, the Sol started a project in 2005 to redefine
the IVD and modernise the Indian height system. There are some improvements in IVD
defined in 2018 (IVD2009; G&RB, 2018) compared to 1VVD1909, such as using double
foresight backsight levelling lines with invar staves and observed gravity values. Also,
rather than fixing the MSL estimates to zero at nine tidal observatories, the average of the
local geopotential value computed at eight tidal observatories was constrained in

1\VVD2009.

The eight tidal observatories were chosen such that each has data of at least 19
years (for 18.6 years nodal tidal cycle) without significant data gaps. We could not quantify

the word significant as no information is available on this. For this criterion, the following
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eight tidal observatories were chosen with their data from 1976-1994: Mumbai,
Marmagao, Karwar and New Mangalore on the west coast, and Paradip, Vishakhapatnam,
Chennai and Tuticorin on the east coast (Figure 1.2.3). The local geopotential value at each
of the eight tidal observatories was calculated as the average value of six estimates using
the same tidal data (which are not available) and Mean Dynamic Topography (MDT)

models but varying Global Geopotential Models (GGMs).

The difference between the chart datum and the MSS at these eight tidal
observatories ranges from 0.62 m to 2.56 m for the tidal data used from 1976-1994. The
average (of six) local geopotential value at these eight tidal observatories varied from
62636856.54 m?s (at New Mangalore) to 62636861.80 m?s (at Karwar) with the final
average value (of all eight observatories) as 62636859.40 m?s2, which is taken as the local
geopotential value for IVD2009. Though differently but on similar lines of constraining
the MSL at nine tidal observatories to zero in IVD1909, local geopotential value is now
taken as the same at eight tidal observatories for IVD2009. Therefore, IVD2009 may also
be prone to a north-south slope because the difference between the final geopotential value
(62636859.40 m?s2) and its minimum (62636856.54 m?s2) and maximum (62636861.80
m?s?) values translates to a difference of approximately 0.29 m and -0.26 m, respectively.
We cannot discuss the reasons for choosing average of the mean value for defining

IVD2009 because it is not available in any publication.

The precise levelling net for IVD2009 is based on Helmert’s orthometric height
system that consists of 42 precise levelling lines (including eight lines between the TGBM
and tidal observatories) covering a distance of 19450 linear km. The remarkable fact is
that the distance of 19450 km was covered in a timeframe of three years, i.e., from 2006-

2008. The levelling net was adjusted using 41 observations (one was not included as a
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result of some unexplained trial and error exercises of adjustment) involving a total of 32

stations, including eight fixed TGBMs.

Not much information is available about 'VD2009 in the public domain. However,
in personal communication with Singh in (2021), it was concluded that IVD2009 had been
defined with the best data available with Sol during that time (2017-2018), and 1VD2009
also has a significant scope of improvement after further in-depth analysis. However, due
to the non-availability of the data and details of the IVD2009 computation, it is difficult to

further study the merits and limitations of the 1'VD2009.

When a redefined 1VD was proposed, a long-term goal was also set to develop a
precise national gravimetric geoid model to be adopted as the VD, whenever available.
Since then, officers and scientists from only either Sol or NGRI have made a few
gravimetric geoid-related studies but are limited to local regions, e.g., southern India,
central India, or western India. Only Sol and NGRI have put in the effort to develop
regional gravimetric geoid because these two organisations are the keeper of the gravity
data in India, which is deemed to be classified. Anyway, we will now discuss these

regional geoid models in detail in the next section.
1.3 Previous Indian gravimetric geoid models

There have been only a few studies on gravimetric geoid modelling over India, which we

have summarised in Table 1.3.1 followed by a discussion on the individual studies.
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Table 1.3.1: Gravimetric geoid related studies in India

Singh Singh et Carrion et | Srinivas et gfwgtgiosh gfwgtgiosh Choudhary glr?\?;sg\‘/i

(2007) al. (2007) | al. (2009) | al. (2012) (2016) (2016) (2017) (2018)

2o BN | o0 [N | St | e 20 -
Region | 29°N; 76" 76 Ny 7450 E | 182N (30°1° (75" 1 |ndia 31°N, 71°

E.grp |E-T7307 | Rosip | 75STE- |N,75°4 IN,785 E.70 R

E ' 79.5°E E) E)

Software GRAVSO | GRAVSO | GRAVSO | GRAVSO | GRAVSO | GRAVSO NA GRAVSO

FT FT FT FT FT FT FT

Fast
Technique | FFT FFT Collocatio | LSC LSC LSC NA FFT
n
Type Geoid Geoid Geoid Geoid Geoid Geoid Geoid Geoid
Resolution | 5°x5’ 8'2 m Xk NA NA NA NA 15°x15°
Gravity Sol Sol NGRI NGRI Sol Sol Sol Sol
data database database database database database database database database
GGM CE;'LGCE'(\:' EGM9 | NA EGM2008 | EGM2008 | EGM2008 | NA GGMO5C
0 degree NA NA NA NA NA NA NA NA
Integratio | ,, 0.5 NA NA NA NA NA NA
n radius
Kernel Wong and | Wong and
modificati | Gore Gore None None None None NA NA
on (1969) (1969)
Terrain TC* and " #
treatment | RTM RTM NA RTM RTM RTM NA RTM
LOBE
DEM/ ZG’XS’, Sgrrfrla;gd NA CTOPO30 tlc;sgorgg SRTM NA SRTM
DSM 4'x4 and | spot p POIMAP | 3y 3 307x30”
s - erived

6’x6 heights
Atmosphe Constant
ric Yes NA NA NA NA NA NA

. 0.87 mGal

correction
Ellipsoidal | NA NA NA NA NA NA NA
correction
gth't(min 0.148, | -0172, 0.360, | 0023, | -0.130, 0.346,
max "1 0.304; 0.189, - NA 0.170, 0.266, 0.210, NA 0.226,
meah std) 0.049; 0.220, -0.020, 0.175, 0.070, -0.005,
40 ' 0.089 0.083 0.090 0.190" 0.100% 0.136
After fit =1 5 100, -1.510, -0.064,
stat (min, | ") 1.080 0.125
max, ) X NA 0.000, NA NA NA NA ' !
mean, std) -0.001, . , 0.039,
w 0.044 0.220" 0.072

TC: Terrain Corrections
RTM: Residual Terrain Model

# Before and after fit statistical values (min, max, mean, STD) are given in m.

#11n Singh (2007), planar TC have negative values that is impossible.

# In Singh et al. (2007), RTM is used synonymously with TC.

# In Carrion et al. (2009), validation is done with respect to EGM2008 derived
geoid undulations.

# 1n Mishra and Ghosh (2016), only location is given in the article and not its extent.

# In Mishra and Ghosh (2016), root mean square error (RMSE) is provided instead
of standard deviation.

LSC: Least Squares Collocation
FFT: Fast Fourier Transform
DEM: Digital Elevation Model
DSM: Digital Surface Model
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Before discussing the Indian gravimetric geoid studies further, we mention two things:

)] The free-air gravity anomalies in India, either in Sol or NGRI database, are the

free-air gravity anomalies on the geoid.

i) If RTM is used in GRAVSOFT, the resultant will be height anomalies for which
free-air gravity anomalies are required on the Earth’s topographical surface.
Thereafter, GRAVSOFT allows computation of a geoid-quasigeoid separation

term to calculate the geoid undulations from height anomalies.

None of the literature from Table 1.3.1 have mentioned anything about both these
aspects and have used free-air gravity anomalies on the geoid with RTM to compute geoid
undulations. Though none have mentioned but to their best defence, we would say that a)
free-air gravity anomaly on the geoid is practically equivalent to the free-air gravity
anomaly at the Earth’s topographical surface (iff it is assumed that the Earth’s gravity
gradient is equal to the normal gravity gradient, and normal height is equal to the
orthometric height), and b) they have used the terms geoid-undulation and height anomaly
synonymously. It should be noted that though free-air gravity anomalies at the Earth’s
topography and the geoid are practically equivalent, the differences can be significant in
view of the cm-precise geoid, primarily, due to the mentioned assumptions. Despite
considering the above discussed two points, there are certain questions that arise from the

studies listed in Table 1.3.1, which are as follows:

)] Singh (2007): The topography in the study area varies from 1 m to 6918 m. The
authors have assumed that the atmospheric correction will not be significant and
used a constant value of 0.87 mGal for the whole gravity data set, which is equal
to the atmospheric correction at the sea level (H = 0 m; Moritz, 2000). This

assumption cannot be justified at least when very simple formulations for
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atmospheric correction are already available in the literature (Section 3.3). Also, it
is not practically and conceptually possible to have negative planar TCs, yet the
authors have achieved the same. The reported TCs vary from -3.38 mGal to 36.69
mGal with a mean and standard deviation of 0.598 mGal and 3.871 mGal,

respectively. Their TC map also shows a large area with negative planar TCs.

Singh et al. (2007): The flowchart provided by the authors have shown the use of
TC to compute geoid undulation. However, the formulas provided include the
methodology involving RTM. They have shown in the flowchart that atmospheric
correction is applied, but neither have they provided any formulation nor
discussion. It becomes difficult to understand what methodology has been
followed: the one shown in the flowchart or the one provided in the formulations,
as these two are different. Also, the authors have prepared a DEM from spot
heights, but no information is provided on the resolution or the gridding method.
This information is very crucial for topographic corrections, either TC or RTM.
Above all, the validation results seem intriguing because the mean value (0.220 m)
is beyond the minimum (-0.172 m) and maximum (0.189 m) values. However, this

might be a typographical error.

Carrion et al. (2009): We cannot comment anything on the methodology adopted
because not much relevant information is provided in the article on the geoid

computation.

Mishra and Ghosh (2016): It is really very hard to understand the data and

methodology followed in their study.

Data used: The DEM for Dehradun region was developed using a 1:50,000

topographical map, while for Hyderabad, SRTM 3”x3” DSM is used. The authors
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have not provided any rationale for this different choice of DEM in the two study
areas. We can only speculate that they might have chosen to use the topographical
map in and around Dehradun for the accuracy concerns of the height information
because Dehradun is a relatively more undulating region than Hyderabad.
However, no information is provided on either extent of the study area or the
resolution of the developed DEM. Moreover, the provided coordinates of
Dehradun are somewhere in the Punjab, which can only be a typographical error

in longitude.

Methodology: Regarding the methodology, there are several possibly-only-
typographical errors in the use of various GRAVSOFT subroutines. However, the
major concern is the explanation of the methodology. To provide a summary of the
author’s explanation: they have a set of free-air gravity anomalies that are being
reduced to residual free-air anomalies by subtracting the corresponding GGM and
RTM implied gravity anomaly, at the gravity data points. LSC is then used to
predict the residual free-air gravity anomalies at the GNSS/levelling points to
which the GGM and RTM implied gravity anomalies are restored to obtain the
free-air gravity anomalies at the GNSS/levelling points. Thereafter, the geoid
undulation (from GNSS/levelling data: ellipsoidal/geodetic height — normal
orthometric height) and the free-air anomalies are given input in N2Zeta subroutine
(of GRAVSOFT) to obtain height anomaly and geoid-quasigeoid separation. As
such, it is hard to understand what is being computed in the study. Moreover,
Bouguer anomaly (and not free-air anomaly) is required to be given as input in the

N2ZETA subroutine that is used to compute geoid-quasigeoid separation term.

Results: The authors talked about converting the gravity anomaly

components (residual, GGM and RTM gravity anomalies) at each of the
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GNSS/levelling data stations to the corresponding three height anomaly
components and three geoid-quasigeoid separation terms (each for residual, GGM
and RTM gravity anomalies). The corresponding terms height anomaly and geoid-
quasigeoid separation terms are added to calculate final geoid undulation.
However, in practice, height anomaly components are added together to calculate
the height anomaly to which geoid-quasigeoid separation term calculated using the

Bouguer anomalies is added for obtaining the final geoid undulations.

Choudhary (2017): This is based on news coverage of the INDGEOID version 1.0
(https://www.geospatialworld.net/videos/survey-india-launches-geoid-model-
country/) announced by the Surveyor General of India in 2017. Sol claimed to have
developed INDGEOID version 1.0 as the first national gravimetric geoid model
for the whole of India. However, neither the model nor any scientific article has
ever been available in the public domain to verify this. Therefore, we cannot
comment on the merits or limitations of the methodology adopted.

Singh and Srivastava (2018): Much relevant information pertaining to geoid
modelling is missing from this article. Therefore, we cannot comment on the
methodology. However, the choice of 15°x15° resolution needs a strong
justification because though geoid is a smooth surface but is not smooth enough
that it does not change in an area of ~ 625 km?. In fact, focal statistics tool in
ArcGIS, with our calculated Indian geoid model, shows that there are certain
regions in which the geoid undulation can vary up to as large as 12 m in an area of
~625 km?. Moreover, with the availability of high-resolution DEM, the use of
SRTM 307x30” is in contrast to the fact that high-resolution topographical

representation is a must for precise computation of topographical effects.
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1.4 Research gaps

The following are some key points from the discussion of the previous gravimetric geoid-

related studies in India:

i)

i)

All the studies of geoid modelling in India have been done in local areas and only
using GRAVSOFT software with RTM (including INDGEOID verl, as per
personal communication with an official at G&RB, Sol in (2018)). GRAVSOFT,
as it isavailable, has a limitation of handling large matrices involved in calculating
RTM or matrix inversion in GEOCOL. This is a possible reason of using a coarse

dataset in regional geoid-modelling studies in India.

Despite all the studies in India with GRAVSOFT, there is no single study that
reports the complete framework of the development of the gravimetric geoid model

for India and its validation.

Though it has been accepted that a precise high-resolution DEM should be used
for topographic effects, this has never been practiced in any geoid modelling study
over India, even with the availability of freely available high-resolution global

DEMs.

There is an inconsistency in reporting the methodologies and results that obstruct
a fair and objective comparison of different geoid-related studies. The used data or

the developed product are also never provided.

India has a varying topographical landform that makes it one of the most
challenging and best study areas to check the suitability of different existing
algorithms or to analyse the scope of new algorithms in geoid modelling. Yet, no
study has covered several landforms in one geoid calculation and discussed the

results in connection with varying topography.
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Vi) A gravimetric geoid model for the whole of India has remained elusive.

The research gaps identified above seem to be India specific. However, as we move
forward in the thesis one may note that several other research gaps of global significance

have also been addressed in this study.
1.5 Objectives

Based on the literature review and identified research gaps, we have set the following three

objectives for this thesis:

)} Develop a gravimetric geoid model for India using all the available gravity and

terrain data.

The first high-resolution gravimetric geoid model will be calculated for the
mainland India using three different approaches, which have never been applied
over India in any of the regions, namely, the CUT, the KTH and the UNB methods
(Chapter 5). Inconsistencies, if any, in the reported literature of the three methods
(CUT, UNB and KTH) will be dealt in detail to avoid the same in future (Chapters
3 and 4). Discussions on various aspects involved in calculating the gravimetric
geoid will be provided, keeping in mind the decades-long quest of geodesists for a

cm-precise geoid (Chapter 3) (Sanso and Rummel, 1997; Foroughi et al., 2019).

GEOCOL with RTM method will also be used for geoid calculation but not
for the whole of mainland India due to the method’s limitation of large matrix
inversion. Regional geoid models developed using GEOCOL will only be used for
comparison and validation because one of the main motives of this study is to

explore new methodologies over India that have never been tested.
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Analyse the use of high-resolution DEM in determining terrain effects.

The major reasons for either not using or circumventing the use of high-resolution
DEM for terrain effects are i) use of high-resolution DEM causes a significant
increase in the computation time, e.g., it may take years for the computation of
precise planar TC for India using one-arc second DEM even with a supercomputer
and ii) high-resolution DEMs provide a better representation of the topography
with comparatively detailed information of the undulations, therefore, certain
algorithms may not provide a numerically convergent solution for terrain effects,
e.g., FFT method of planar TC computation which are limited to the regions having
gradients less than 45°. However, terrain effects are one of the important
computations in precise geoid development, and that is only possible with the use
of high-resolution DEM. So, an efficient algorithm will be developed for the fast

computation of precise TC using the high-resolution DEM (Chapter 3).
Evaluate and validate the developed gravimetric geoid and quasigeoid models.

The reference surface for Helmert’s orthometric heights is the geoid, while no
unique reference surface (either geoid or quasigeoid) is specified for normal-
orthometric heights. We have been provided with 119 GNSS/levelling datapoints,
clustered in four regions of India, without any information on the height system.
Therefore, with an assumption that the levelling heights are based on 1VD1909 and
normal-orthometric height system, we will validate (absolute and relative testing)
our GNSS/levelling data with both geoid and quasigeoid for all the combinations
of parameter sweeps in all the three methods (CUT, KTH and UNB) before and
after 4-parameter fitting (Chapter 5). We will also validate Pizetti’s geoid gradients
with Helmert’s vertical deflections noting that the curvature of the plumbline is

neglected. The vertical deflections consist of 700 meridional components and 279
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prime vertical components over most of India in contrast to only 119

GNSS/levelling points clustered in four regions.

We will also calculate the geoid model of four regions (Uttar Pradesh West,
Uttar Pradesh East, Hyderabad and Bangalore) using GEOCOL with RTM because
a few of the previous studies in India have used this approach. Since no detail work
is done with GEOCOL, these geoid models have been used only for comparison
with the i) geoid models developed using the other three approaches and ii)
previously developed geoid models in and around these four regions. Moreover,
we will also perform an inter-comparison of i) national geoid models computed
using the three methods and ii) regional geoid models calculated using the four
methods. It is to analyse the differences between the four methodologies in the
final product (Chapter 5). The inter-comparison of geoid models will be an

important analysis from the viewpoint of the quest of cm-precise geoid.
1.6 Significance of the study

A precise gravimetric geoid model is fundamental to both infrastructure developments as
well as for geoscientific activities in India. The studies on gravimetric geoid for India either
are not published, or those published have not provided the data and/or all the necessary
computational details that restricts the repeatability of their research. Moreover, to date,
no gravimetric geoid model for India is available in the public domain. Therefore, this
study will be the first to provide a national gravimetric geoid model and also a strong
conceptual framework using three different geoid modelling approaches (which have
never been used in any part of India) that can be used by the competent authorities to

develop an official geoid model using the classified gravity data.



28

The comparison of different geoid solutions will help in understanding any
similarities or dissimilarities among different methods of geoid computation. An in-depth
discussion (merits, limitations, inconsistencies) of the three methods (CUT, UNB and
KTH) from the viewpoint of cm-precise geoid is provided that shall be of use to any geoid-

modeller interested in developing a precise gravimetric geoid or quasigeoid model.

The IVD2009 based physically meaningful (Helmert’s) orthometric heights (H),
referred to the geoid, are connected with the geodetic heights obtained from GNSS
positioning and referred to an ellipsoid, via the geoid undulation (Eg.(1.2.1)). An
immediate consequence of this is the conversion of elevation models (e.g., national
CartoDEM (NRSA, 2006)) and height observations in geodetic heights to orthometric
heights effortlessly. A freely available geoid model will allow surveyors to efficiently
measure physical heights with GNSS positioning by replacing the costly and laborious

differential levelling (while keeping an account of accuracy required).

Recently, Indian Railways, Public Works Department and National High Speed
Rail Corporation Limited have suggested using a geoid model for their infrastructural
projects/developments. However, since no Indian gravimetric geoid model is available, all
have mentioned using EGM2008. Therefore, all concerned organisations can now make
use of our developed Indian gravimetric geoid model instead of EGM2008 or any other

GGM.

Since the geoid is a physically meaningful surface, it responds to changes in the
gravity field due to various geophysical and geodynamical phenomena, in turn allowing
us to study them as well (e.g., Vanic¢ek and Christou, 1993). Therefore, while benefiting
a number of stakeholders: Sol, Geological Survey of India (GSI), Oil and Natural Gas
Corporation (ONGC), Indian Qil Corporation Limited (I0OCL), NGRI, National Disaster

Management Authority (NDMA), Indian National Centre for Ocean Information Services
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(INCOIS), Coal India Limited (CIL), the national gravimetric geoid model (and its
intermediate results, e.g., TC) will also be invigorating sciences like geomorphometry
(Coblentz et al., 2011), hydrography (Robin et al., 2016), oceanography (Ophaug et al.,

2015), among many other applications (Vanicek and Christou, 1993).

1.7 Structure of the Thesis

The thesis is divided into six chapters. Chapter one provides an introduction to the previous
geoid-related studies in India and their limitations. Thereafter, setting up the objectives

and discussing the significance of the present thesis work.

Chapter two describes the dataset available to us: gravity, GNSS/levelling,

deflections of the vertical, DEMs and GGMSs.

Chapter three discusses various corrections required in gravimetric geoid or
quasigeoid modelling. The corrections that are discussed are: free-air gravity correction,
topographic correction, atmospheric correction, ellipsoidal correction, downward
continuation, and zero-degree term and tidal corrections. Free-air gravity correction, and
zero-degree and tidal corrections are described in general to any method of geoid or
quasigeoid computation, while the other four are discussed as are applied in the three

methods individually, i.e., the CUT, the UNB, and the KTH methods.

We have identified some inconsistencies in the formulas and tried to re-derive and
resolve them. A new method of planar terrain corrections is also provided, along with a
few new formulas for working in different solid Earth permanent tide systems, i.e., tide-
free, zero-tide and mean-tide. With the derived algorithms and formulas, we have also
provided the values of various parameters of two existing ellipsoids (WGS84 and GRS80)
and a new ellipsoid (not official, but based on IHRS parameters (Poutanen and Rdzsa,

2020)) in the three permanent tide-systems.
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Chapter four is about the geoid and quasigeoid computation. The three methods of
geoid and quasigeoid computation are discussed along with geoid-quasigeoid separation
term. It should be noted that though we have used the names, the CUT, the UNB and the
KTH methods, but we have not applied any method exactly in the same way as applied by
the institutes who developed the methodologies. A discussion on the modifications and
limitations of the methods applied as compared to the original methods is provided

wherever found necessary.

In chapter five, the results of external validation with respect to GNSS/levelling
dataset and deflections of the vertical are provided. Since a few previous geoid-related
studies in India have utilised GEOCOL with RTM, we have also calculated geoid model
of the four regions for a comparison with Indian geoid models calculated using the three
methods (CUT, UNB and KTH). Further, an inter-geoid comparison of the Indian and

regional geoid models is also provided.

Chapter six lists the conclusions and recommendations.
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Chapter 2: Datasets

2.0 Introduction

Gravimetric geoid determination, irrespective of the methodology followed,
involves three datasets, viz., gravity anomalies, Digital Elevation Model (DEM) and
Global Geopotential Model (GGM). Additionally, either or both of Global Navigation
Satellite System (GNSS)/levelling and deflections of vertical data are used for the
validation study. Some researchers also use density models in geoid computation but is
not considered in the present study because they are not available to us. Like any other
study, precise datasets are favourable for precise determination of the geoid. Though all
the geoid computation literature involves a brief discussion on the used datasets, many
researchers have discussed the characteristics and subtleties of the datasets for their study
areas, e.g., Lagios et al. (1996; Greece), Featherstone et al. (1997; Australia), Duquenne
(2006; France), Borghi et al. (2007; Italy), McCubbine et al. (2017b; New Zealand) and

Abd-Elmotaal et al. (2018; Africa).

In this chapter, we will discuss the availability, characteristics and hence, our

choice of the datasets for the geoid modelling study over India.
2.1 [Lack of] Freely available gravity data

Gravity data are primarily used in the 1) evaluation of the GGMs (Section 2.4), 2) Stokes’s
integration to compute the residual geoid/quasigeoid or approximate quasigeoid (Section
4.2), and 3) computation of geoid-quasigeoid separation term (Section 4.3). Before
discussing the availability of gravity data for the present study, we will briefly discuss
gravimetry in India as understood from Gulatee (1948), Sundaram et al. (2009) and Tiwari

etal. (2014).
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Several organisations have conducted terrestrial gravity surveys over different
parts of India. The gravity data comprise latitude, longitude, observed gravity, and physical
height (based on the national height system). The Survey of India (Sol) began absolute
gravity measurements in 1865 using brass pendulums. Five hundred and sixty-four
pendulum measurements were acquired throughout the country in two separate phases,
i.e., 1902-1925 and 1926-1939. After the second world war, the gravity surveys were
continued for further densification using Frost and Worden gravimeters. A gravity map of
India was produced at a scale of 1:12,000,000 in 1956 (Gulatee, 1956). This gravity map

was drawn with a contour interval of 20 mGal using the data from around 3000 stations.

The gravity base-station for the Indian National Gravity Datum 1963 (INGD63) is
situated at Dehradun. The absolute gravity value of this base station in INGD63 is
978064.0 mGal, and 978049.09 mGal based on the International Gravity Standardization
Net 1971 (IGSN71; Morelli et al., 1972). Hence, a correction of ~14.9 mGal (which
originates from an error at Potsdam, e.g., Dryden, 1942) is generally applied to data
observed in the INGD63 to obtain the corresponding value in International Gravity

Standardization Net 1971 (IGSN71).

During the late-1950s to the mid-1970s, other organisations, such as the Geological
Survey of India (GSI) collected gravity data. The old and new data were compiled and
transformed to a common datum (INGDG63) to prepare the gravity map of India with a 10
mGal contour interval (GMSI, 1975). It should be noted that there is no information
available on how the different data were transformed to the same datum. This map was

published in 1975 at a scale of 1:5,000,000 (GMSI, 1975).

Later, due to the requirement of updated, precise gravity data, it was decided to
revise the gravity map of India using the data collected by Sol, GSI, National Geophysical

Research Institute (NGRI), Oil and Natural Gas Corporation (ONGC), and Qil India



33

Limited (OIL) under various projects. A total of 143,786 gravity data points were observed
by these organisations, which were archived at GSI, Hyderabad. However, only 51,356
data points were selected to maintain a uniform coverage over the entire India. These
points were re-processed to refer to IGSN71, but the reprocessing steps are not available
in the literature. The final output was a revised gravity map series of India (GMSI) 2006
that comprises five sets of gravity anomaly maps, including a free-air anomaly map and
Bouguer anomaly map, both at 1:2,000,000 scale (GSI-NGRI, 2006). These are the latest

gravity maps computed/compiled for India.

However, pointwise observed gravity data is confidential in India. Therefore, with
this predicament, we obtained a grid of Indian terrestrial gravity data from GETECH

(https://getech.com/) that is claimed to come from the GMSI. The GETECH gravity data

comprise a 0.02°x0.02° grid of simple Bouguer gravity anomalies over all of India (except
a few regions in Jammu and Kashmir, Arunachal Pradesh, and the whole of Andaman and
Nicobar and Lakshadweep) with an overall estimated precision of +1.5 mGal (GETECH,
2006). According to the GETECH manual for Indian gravity data, they used i) the normal

gravity formula from WGS84 (NIMA, 2000),

1+0.00193185438639sin’ ¢

Yo wesaa = 978032.67714
_ J1-0.00669437999013sin’ ¢

mGal  (2.1.1)

ii) a second-order free-air correction given by

5 =(0.3083293357 +0.0004397732c0s’ ) h—7.2125x10°°h? (2.1.2)

iii) the following atmospheric correction (Ecker and Mittermayer, 1969)

~0.116H %47
5QoETEH _ {0.87e mGal. H > 0km 213

am 0.87 mGal H <=0km

and iv) the simple planar Bouguer correction


https://getech.com/
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5gee ™" =-0.04191pH mGal ~—0.1119H mGal (2.1.4)

where 7, yeses IS NOrmal gravity on the WGS84 ellipsoid, dggi - is the free-air

correction, ¢ is the geodetic latitude, h is the ellipsoidal height (in m), H is the elevation

(in km for Eq. (2.1.3) and in m for Eq. (2.1.4)), g™ is the atmospheric correction,

atm

5gec =" is the Bouguer correction and p is the constant topographical density of 2670

kgm™. We recomputed the free-air gravity anomalies (Ag) from the GETECH data using

Ag = Ag?BE/IECH +0.1119H + ¥ \weses — 59E/EgECH
N 2.15
_5g§triTECH — 70 _GRrsso +5g§}£ +59§ff ( )
where from Heiskanen and Moritz (1967, pg. 78), we have
CuT 2 a2 3 2
St =74 orseo 5(1+ f+m-2fsin’p)H —;H (2.1.6)
1+ksin® @
Yo_crsso = 7a {—'—162 Sinzgol (2.12.7)
cuT 0.871-1.0298x10*H +5.3105x10°H?* —2.1642x10 *H® +
am  — (2.1.8)
9.5246x10*H* —2.2411x10#H°
For GRS80, a=6378137m, e’ =0.0066943800229, m = 0.0034478600308,

f =1/298.257222101, 7, =978032.67715mGal and k =0.001931851353  (Moritz,

2000).

The descriptive statistics of the differences between the free-air anomalies from
the GETECH data and recomputed free-air anomalies (that are mostly due to the different
free air correction) are (in mGal): min = -0.001, max = 0.188, mean = 0.002, STD =
+0.007. It should be noted that we have used H instead of h in Eq. (2.1.2) because we

believe that there might be a typographical error in the GETECH manual. The reason
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being that the use of h would have provided gravity disturbances and not gravity
anomalies (Hackney and Featherstone, 2003). A blanket accuracy estimate of the
reconstructed free-air anomalies from the GETECH Bouguer anomalies is +2.4 mGal,

calculated using the DEM error in the CUT reconstruction technique (Featherstone and

Kirby, 2000) as per O'FAA=\/(1.5X10_5)2+(27Z'Gp><17.3)2 (17.3 m is the accuracy
estimate of DEM used, Section 2.5).

The atmospheric correction (Eq. (2.1.8)) was removed from the recomputed
gravity anomalies because i) the GETECH data was required to be merged with other
datasets, and ii) the UNB and the KTH methods have different strategies of applying the

atmospheric correction (Sections 3.3.2 and 3.3.3, respectively).

We do not have gravity data from the countries neighbouring India and a well
distributed sufficient data coverage is not available in the Bureau Gravimetrique

International (https://bgi.obs-mip.fr/) archives either (Country: no. of gravity data points -

Pakistan: 1270, Bangladesh: 25, Sri Lanka: 48, Myanmar: 71, Afghanistan: 1649, China:
446, Nepal: 617 and Bhutan: 0). Therefore, we constructed a 0.02°x0.02° grid of free-air
anomalies over land using EGM2008 (Pavlis et al., 2012; 2013) up to degree-order (d/o)
900 to fill-in the land gravity anomaly data in and around India where the GETECH data
is not available, including Nepal, China, Pakistan, Sri Lanka, Bangladesh, Bhutan,
Afghanistan, and Myanmar. The specific d/o 900 was chosen because EGM2008 uses

proprietary data up to d/o 900 (Pavlis et al., 2013).

One may argue that filling-in the data using d/o 900 may provide a wrong sign in
residual gravity anomalies which are computed by subtracting GGM synthesised gravity
anomalies from the observed gravity anomalies. The reason being that the observed gravity

anomalies contain the whole spectrum from 0 to infinity and we are using only d/o up to


https://bgi.obs-mip.fr/
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900 to infill the data. Therefore, on subtracting, for the CUT method (Section 4.2.1) that
uses the highest d/o GGM, gravity anomalies synthesised using d/o 2159 from i) observed
gravity anomalies and ii) infill (d/o 900) gravity anomalies, sign for the two set of residual

anomalies should be different.

However, we would argue that in EGM2008, proprietary gravity data has only been
used up to d/o 900 (Pavlis et al., 2013) and RTM induced gravity anomalies from d/o 901
to 2159. For the CUT method (which makes use of Faye and residual Faye anomalies), we
used EGM2008 d/o 900 (fill-in) and mean planar TCs on 0.02°x0.02° grid. Therefore, we
think that subtracting EGM2008 (d/o 900) and RTM (d/o 901 to 2159) from EGM2008
(d/0 900) and TC should give same sign as subtracting EGM2008 (d/o 900) and RTM (d/o
901 to 2159) from observed gravity anomalies and TC. It should be noted that sign
confusion does not arise in the use of our in-fill data with the UNB (Section 4.2.2) and the
KTH (Section 4.2.3) methods because both of these use satellite-only GGMs, which has

the highest d/o significantly lesser than 900.

We tested the above arguments over 1) Auvergne and ii) a 5°X5° region in India for
both of which we have the terrestrial gravity data. A comparison was made between Faye
anomalies involving terrestrial gravity data and Faye anomalies involving fill-in data
(EGM2008 d/o 900). Residual Faye anomalies were constructed by subtracting EGM2008
d/o 2190 free-air gravity anomalies. The results show that for both the study areas, more
than 51% of the total points in the two sets of residual Faye anomalies have same sign
(either positive or negative). We acknowledge that 51% is not a significant number to trust
our fill-in methodology globally. However, for the present study, we work with this fill-in

methodology that can be seen as one of the limitations.

Therefore, we suggest that a quantification of the errors involved due to the non-

availability of data in the surrounding regions of the study area and measures to circumvent
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the same (e.g., using some d/o GGM derived gravity anomalies or setting the gravity
anomalies in those regions equal to zero (Featherstone et al., 2018)) should be done in

future.

For the oceanic regions surrounding India, we used free-air gravity anomalies from
the Scripps Institute of Oceanography, version 28.1 (Scripps v28.1,

https://topex.ucsd.edu/marine grav/mar grav.html), which has an overall root mean

square error of £1.23 mGal (Sandwell et al., 2021). The Scripps data is also accompanied
with an error grid that we have shown for our study area in Figure 2.1.1. The data contains
a 1’x1” grid that also covers the land, but we used the Scripps data only for the oceanic
region because the land data, in the Scripps dataset, is from EGM2008 to avoid Gibbs
fringing at the coasts. We acknowledge that there exist other versions of Scripps data
along with marine gravity data from DTU, but due to the non-availability of any ship-
borne gravity data for validation, we chose to work with Scripps v28.1. Figure 2.1.2 shows

the regions for the three gravity anomaly datasets.

The gridding techniques for the gravity anomalies are not discussed because we
already have gridded data for the present thesis work. However, it is acknowledged that
gridding of the gravity anomalies is one of the most important steps in the computation of
the geoid (Goos et al., 2003; Winefield, 2016; Claessens and Filmer, 2020). Since the data
is generally collected along the roads and the streets (the highway effect; Colombo, 1991),
gridding becomes more crucial for plateaus and the mountainous regions with rapidly
undulating terrain where data is collected very sparsely. Both these landforms are present
in India. Therefore, this aspect should be studied, but it will only be possible when the
distributed gravity data will be available rather than already gridded data. The gridding

techniques may possibly be analysed using synthetic models (Featherstone, 2002; Agren,


https://topex.ucsd.edu/marine_grav/mar_grav.html
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2004; Kuhn and Featherstone, 2005; Vanicek et al., 2013) to have preliminary intuitive

conclusions, but this is not done in the present study.
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Figure 2.1.1: Error map of the Scripps v28.1 marine gravity-anomaly data (units in
mGal).

For the present study, we need to merge the three available datasets to get a uniform
gravity anomaly grid of 0.02°x0.02° interval, avoiding the Gibbs fringing of land data

(both GETECH and EGM2008 individually) with the marine data.

Several sophisticated space-domain and frequency-domain methods are available
for merging heterogenous gravity anomaly datasets (e.g., Strykowski and Forsberg, 1998;
Kern et al., 2003; Catalao, 2006; Olesen et al., 2002; McCubbine et al., 2018). However,
we chose to work with a comparatively simpler space-domain method following

Featherstone et al. (2011; 2018). The choice of this method is arbitrary because we are
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working with the land gravity of unknown quality, and the strategy that we use has already
been implemented in the computation of the Australian quasigeoid, which is an island
nation and approximately 2.3 times larger than India. Other methods should also be tested,
but it is left for the time when sufficient marine and airborne gravity data along with

reliable terrestrial gravity data will be available over India.
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Figure 2.1.2: Regions for the terrestrial (GETECH and EGM2008 derived) and marine

gravity anomalies.

In the adopted method, first, we overlaid the GETECH free-air anomaly grid over
the EGM2008 (d/o 900) derived gravity anomalies. The gravity anomalies of the latter
dataset at the overlapping grid nodes were replaced by the gravity anomalies from the

former dataset. As a result, a 0.02°x0.02° grid of gravity anomalies on land are obtained.
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To concatenate the land and marine gravity anomaly data, we clipped the 1°X1°
gravity anomalies in the ocean from the complete Scripps dataset, i.e., on both ocean and
land, using the GMT high-resolution shoreline (Wessel and Smith, 1996). It is then block
averaged to the required 0.02°x0.02° grid that was overlaid with the land gravity anomaly
grid. The former values were replaced by the latter at overlapping nodes to obtain the

0.02°x0.02° grid of the merged gravity anomalies.

Figure 2.1.3 shows the merged free-air gravity anomalies at 0.02°x0.02° grid. A
scatter plot of gravity anomalies with respect to the topographical heights and a histogram
of the gravity anomalies are shown in Figures 2.1.4a and 2.1.4b, respectively. To check
for any discontinuities at the edges of the merged datasets, we computed and plotted the
arctangent (Figure 2.14a) and logarithmic (Figure 2.1.4b) values of the gradients of the
merged data. We observe no clear visual indication of any discontinuities at the boundaries
of the merged data, but also partially due to the ruggedness of the dataset in our study area

that can be obscuring. This grid is used for geoid/quasigeoid computation over India.
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Figure 2.1.3: Merged gravity anomaly data from GETECH, EGM2008 (d/o 900), and
Scripps v28.1 data.
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Figure 2.1.4: a) Scatter plot of merged gravity anomalies and heights (linear regression

fit: y = 0.016x —30.824); b) Histogram of the merged gravity anomalies.
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Figure 2.1.5: Arctangent (a) and logarithmic (b) plot of gradients of merged gravity
anomaly data to attempt to identify discontinuities at the edges of the merged
grids.

Without any atmospheric corrections, the free-air gravity anomaly in the study area
varies from -300 mGal to +513 mGal, with majority of the values being in the range [-200
mGal, 200 mGal] (Figure 2.1.4b). This is the extreme range reported in the literature on
geoid computation to our best knowledge, except for GGMplus (Hirt et al., 2013). The
extreme positive is in the Himalayan belt in Nepal, near Mount Everest, while the extreme
negative value is in the Himalayan belt in Afghanistan. From Figure 2.1.3, the free-air
anomaly over mainland India varies from a minimum of -242 mGal to a maximum of +486
mGal with a mean -12 mGal and a standard deviation of +61 mGal. There are some
unexpected rough patches of free-air anomaly observed in Figure 2.1.3 in a near-diagonal
zone (parts of Uttarakhand, Himachal Pradesh and Jammu and Kashmir) of a region
bounded within 29°N - 35°N latitude and 74°E - 85°E longitude. These are from the

GETECH gravity dataset. For a clearer visualisation of this region, please see Figure 3.5.1
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later, where we have computed the vertical gravity gradient. Though these rough patches
can be due to the presence of mountainous terrain in those areas, smooth variation of free-

air gravity anomaly is observed in other mountainous topographical landforms of India.

Figures 2.1.3 and 2.1.4a show that there exists some positive and negative pattern
of the free-air anomalies in and around India, e.g., when moving from the Himalayas to
the Gangetic Plains, parts of the Eastern Ghats (15°N - 20°N and 80°E - 85°E) and Western
Ghats (8°N - 12°N and 75°E - 79°E), oceanic ridges. Geophysicists have previously studied
the positive and negative patterns of the free-air anomalies over India and attributed the
reason primarily to the crustal mass inequalities, i.e., isostatic compensation/under-
compensation rather than any geological features (e.g., Takin, 1966; Mathur, 1969;
Qureshy, 1971; Subrahmanyam and Verma, 1980; Verma, 1985; Basavaiah et al., 1991).

It can be further studied in the future with the updated data.
2.2 GNSS/Levelling

GNSS/levelling data comprises points with latitude, longitude, geodetic height, and
physical height (based on a national height system from differential levelling). These are
required for i) the evaluation of GGMs (Section 2.4), ii) calculating hybrid
geoid/quasigeoid (Section 4.4), and iii) absolute and relative validation of the computed

gravimetric and hybrid geoid/quasigeoid models (Chapter 5).

A total of only 119 GNSS/levelling data points are available for the present study,
again due to reasons of data restrictions. The distribution of the data points is shown in Figure
2.2.1. These data points are clustered in four regions, viz., Uttar Pradesh West (UPW), Uttar
Pradesh East (UPE), Hyderabad, and Bangalore. The data in UPW (29 points) and UPE (27
points) were procured from the Sol, while the data in Hyderabad (56 points) and Bangalore

(7 points) have been retrieved from Mishra (2018), who also used the Sol dataset.
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No error estimates were provided by Sol for the procured GNSS/levelling data.
However, Mishra (2018) mentioned that the horizontal and vertical precisions of GNSS data
are within £12 to £26 mm and +31 to £53 mm, respectively. The vertical precision of the

levelled heights is unknown to us, but they are from the high precision levelling net of India.

We have not been provided a clear indication on the type of physical heights, and
therefore, due to this anonymity of the height system, we consider the levelling heights to
be based on IVD1909 and thus, in the normal-orthometric height system (Section 1.2).
Hence, we chose to validate both geoid and quasigeoid models with the available
GNSS/levelling dataset to test the representativeness of the Indian heights with respect to
the two surfaces. Please note that we use only the terms ‘geoid undulation’ and

‘orthometric height’ for discussing the GNSS/levelling dataset for brevity.

In India, physical heights vary from -2 m to +8586 m, and geoid undulations vary
from approximately -100 m to -18 m. We acknowledge that the evaluation and validation
with 119 data points can never provide a reliable estimate for the whole of India, especially
when there are a variety of topographical landforms (Figure 1.2.2). Since we have no other
choice but to work with the available dataset, the aforementioned evaluations and
validations were done for India with 119 data points and for the four regions individually
with their corresponding number of data points. The numerical description of the dataset

is given in Table 2.2.1.
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Table 2.2.1: Description of the available 119 GNSS/levelling data points.

India UPW UPE Hyderabad | Bangalore
h Min -11.64 76.37 -11.64 280.67 741.48
(m) Max 1006.11 1006.11 371.54 430.62 826.65
Mean 341.66 191.82 50.51 355.57 792.19
Min 54.70 140.18 54.7 358.05 827.31
(an Max 1050.74 1050.74 429.73 506.50 911.87
Mean 272.14 248.11 114.97 432.39 877.78
N Min -85.86 -63.81 -68.68 -77.85 -85.85
GNSS/lev | Max -44.63 -44.63 -58.19 -75.84 -85.22
(m) Mean -69.53 -56.29 -64.45 -76.82 -85.59
Baseline | Min 0.61 11.94 20.45 0.61 4.80
length Max 1937.37 533.88 384.32 46.75 25.16
(km) Mean 713.46 197.28 169.33 18.67 14.08
Datapoints | No. 119 29 27 56 7
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From Table 2.2.1, it is observed that for 119 data points, the approximate range of

h =1018 m, H =996 m, Ngysse, = 41 m and baseline length = 1937 km. The values of

Ngnss/iew INCrease as we move towards north from Bangalore to UPW. Also, the data points

in Bangalore and Hyderabad are much closer than UPW and UPE.
2.3 Deflections of the Vertical

Deflections (or deviations) of the vertical data comprises data points with latitude,
longitude, east-west and north-south components of the deflection of vertical. These are
used for i) evaluation of the GGMs (Section 2.4) and ii) absolute validation of the
computed geoid models (Chapter 5; e.g., Featherstone and Morgan, 2007; Featherstone

and Lichti, 2009).

The deflection of the vertical is the angular difference between the directions of the
plumbline at a point and the ellipsoidal normal at that point. From Jekeli (1999), these are
termed absolute deflections when a geocentric ellipsoid is used and relative deflections
when a non-geocentric, that is a regional or local, ellipsoid is used. Also, as the plumbline
is curved and torsioned, the deflection varies as a function of position and height, leading
to more subtle definitions such as the Pizzetti deflection at the geoid, the Helmert
deflection at the Earth’s surface, or the Molodensky deflection with respect to the normal

plumbline, all of which are described and explained in Jekeli (1999).

The vertical deflection is usually decomposed into north-south and east-west
components, principally because they are determined by comparing geodetic and

astronomic coordinates (Eqg. (2.3.1)). The north-south component is also termed the

meridional deflection (§H) and the east-west component is termed the prime vertical

deflection (77H ) . The equations for astronomically observed deflections are:
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Sw=0-9¢ } 2.3.1)

Ny =(A—A1)cos¢e

where (@, A) are the astronomical latitude and longitude and (¢, 1) are geodetic latitude
and longitude.

Equation (2.3.1) is a simplified form obtained by taking small angle (in radian)
approximations (i.e., cosX ~1, sinx ~ x; Vx <<<1; XE[nH,fH,(A—ﬂ,)]) in Eq. (2.3.2)

(Torge, 2001, pg. 220)

sm¢:wwmﬂﬁ®—§d} 2.3.2)

sinz,, =cosgsin(A—2)

In the 19" century, the vertical deflections over India proved to be an important
data for pursuing the idea of isostasy. Heiskanen and Vening Meinesz (1958, pg. 139)
mentions: “The existence of the isostatic compensation was established in India on the
basis of deviations of the plumb line and of gravity anomalies”. Interested readers may see
Walker (1863; 1870), Danvers (1870), Keay (2000) for some historical aspects regarding
the Great Trigonometric Survey (GTS) of India and Pratt (1855), Crosthwait (1912),
Bowie (1914), Burrard (1918; 1920) and Heiskanen and Vening Meinesz (1958, pg. 125-

131) for historical development of the isostasy with the GTS observations.

The vertical deflections over India that we have access to are in the report of
Gulatee (1955), which is a scanned image-only pdf. Therefore, we had to digitise them
manually and perform several closed-loop checks and datum transformation, all of which
are explained in detail in Featherstone and Goyal (2022; provided in Appendix C.5). It
should be noted that not all stations had both deflection components. Of the 1071 stations
listed, 708 points are in India (7°N to 37°N and 68°E to 98°E) of which 701 have
meridional deflections but only 280 have prime vertical deflections. Figure 2.3.1 shows

the distribution of the stations. The meridional deflections vary from -52.7” to +24.5”
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while prime vertical deflections from -41.1” to +19.1” with a mean value of -5.9” and

+0.1”, respectively.
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Figure 2.3.1: Deflection of vertical stations in India from Gulatee (1955)

2.4 Global Geopotential Models

Any harmonic function that satisfies Laplace’s equation can be expanded into a series of
spherical harmonics (e.g., Hobson, 1931). Therefore, the gravitational potential of the
Earth, which is a harmonic function outside the gravitating masses, can also be expressed
by a series of solid spherical harmonics (Heiskanen and Moritz, 1967, pg. 35). This
involves the determination of the geopotential coefficients used in the harmonic expansion.
The set of geopotential coefficients of the gravitational potential is called a GGM. These

are determined either from satellite observations alone or a combination of satellite and
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terrestrial observations. Accordingly, they are termed as satellite-only and combined

GGMs, respectively.

Rapp (1998) provides a discussion on developments of the geopotential modelling
over several decades but for pre-Gravity Recovery and Climate Experiment (GRACE;
Tapley et al., 2004) and Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE; Drinkwater et al., 2003). Pail et al. (2011) discussed the GOCE gravity field
modelling using three different approaches (direct, space-wise, time-wise) while Tapley et
al. (2007), Dahle et al. (2013) and Chen et al. (2015) provided an overview of processing

GRACE data for gravity field models.

The determination of the spherical harmonic coefficients (for gravitational
potential or any other gravity field functional) is known as spherical harmonic analysis
(SHA). The determination of the gravity field quantities or any other corresponding
function using the spherical harmonic coefficients is known as spherical harmonic
synthesis (SHS). Both SHA and SHS have been discussed in the literature (e.g., Kaula,
1959; Rapp, 1968; Ricardi and Burrows, 1972; Colombo, 1981; Tscherning et al., 1983;
Sneeuw, 1994; Bucha and Janak, 2014; Claessens, 2016 among many others) and hence,
we will not discuss the same here, instead see the cited literature and the references therein.

However, we have discussed some subtleties of SHS in Section 3.6.

Briefly discussing the choice of GGM in the three methods tested (CUT, UNB, and
KTH), it is observed that the CUT approach has consistently used the highest available
degree of GGM, which is always a combined model. This contrasts with the KTH and the
UNB methods that use a satellite-only GGM to avoid correlations in the terrestrial data
when used twice (Vanicek and Sjoberg, 1991). However, it has been observed that the
KTH method is sometimes being used with combined GGM but up to a lower degree-order

(e.g., Agren et al., 2009a, 2009b; Ulotu, 2009; Yildiz et al., 2012).
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The [implicit] rationale for the CUT approach to use the highest available d/o
GGMs is that while being fully subject to the undesirable correlation of largely the same
terrestrial data being used, the use of high-degree GGM makes the residual
geoid/quasigeoid smaller in magnitude. Thus, the residual geoid/quasigeoid computations
are less subject to approximation errors, for e.g., ellipsoidal approximation error (~0.003N,
Heiskanen and Moritz, 1967, pg. 87) for geoid undulation of 100 m is 300 mm and the

same error for (residual) geoid undulation of 1 m would be 3 mm.

There are numerous choices of satellite-only or combined GGMs with varying d/o,
mostly available at International Centre for Global Earth Models (ICGEM;

http://icgem.gfz-potsdam.de/tom_longtime; Ince et al., 2019). GGM testing must be done

to choose the most suitable GGM for the geoid/quasigeoid computation (e.g., Amos and
Featherstone, 2003). The availability of larger datasets in the future can be exploited for
some more informative statistical testing also as implemented by Fotopoulos (2003) and

Goyal et al. (2019a; provided in Appendix C.1) with the available data.

With our datasets discussed in Sections 2.1, 2.2 and 2.3, the GGMs were evaluated
with the i) geometric geoid undulations (geodetic height minus physical height) obtained
from 119 GNSS/levelling points for India (Table 2.4.1) and also region-wise (Tables 2.4.2
and 2.4.3), ii) recomputed free-air anomaly from the GETECH data at 638,625 points

(Table 2.4.4) and iii) deflections of the vertical for India (Table 2.4.5)


http://icgem.gfz-potsdam.de/tom_longtime
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Table 2.4.1: GGM validation with GNSS/levelling points over India (units in m)

GGM Max d/o | min max mean | STD Reference

EGM2008 2190 | -1.162 | 0.452| -0.368 | 0.417 | Pavlisetal. (2012; 2013)
EIGEN-6C4 2190 | -1.203| 0.463| -0.428 | 0.410 Forste et al. (2014)
GECO 2190 | -1.255| 0513 | -0.415| 0.407 Gilardoni et al. (2016)
XGM2016 719| -1309 | 0.511| -0.407 | 0.407 Pail et al. (2018)
DIR-R5 300 | -1.711| 0563 | -0.485| 0.419 Bruinsma et al. (2013)
TIM-R5 280 | -1584 | 0.633| -0.464 | 0.433 | Brockmann etal. (2014)
SPW-R5 330 | -1.650 | 0.584| -0504 | 0.415 Gatti et al. (2016)

Table 2.4.2: GGM validation with GNSS/levelling points over UPW and UPE

UPW (units in m) UPE (units in m)

GGM min max mean | STD min max mean | STD

EGM2008 -1.162 | -0.509 | -0.824 | 0.192 | -1.007 | -0.047 | -0.654 | 0.227
EIGEN-6C4 -1.203 | -0.643 | -0.870 | 0.105| -1.034 | -0.361 | -0.742 | 0.144
GECO -1.255 | -0.723 | -0.857 | 0.102 | -1.088 | -0.418 | -0.712 | 0.135
XGM2016 -1.309 | -0.715| -0.843 | 0.112| -1.037 | -0.453 | -0.710 | 0.139
DIR-R5 -1.711 | -0.424 | -0.920| 0.277| -1.120| -0.263 | -0.719 | 0.203
TIM-R5 -1.584 | -0.411| -0.904| 0.258| -1.206 | -0.230 | -0.716 | 0.229
SPW-R5 -1.650 | -0.480 | -0.917 | 0.255| -1.160| -0.206 | -0.739 | 0.234

Table 2.4.3: GGM validation with GNSS/levelling points over Hyderabad and Bangalore

Hyderabad (units in m) Bangalore (units in m)
GGM min max mean | STD min max mean | STD
EGM2008 -0.541 | 0.328 | -0.093 | 0.153| 0.372| 0.452| 0.418| 0.029

EIGEN-6C4 | -0.612 | 0.258 | -0.154 | 0.157 | 0.379| 0.463 | 0.422 | 0.029

GECO -0.611 | 0.260 | -0.153 | 0.157 | 0.428 | 0.513| 0.472 | 0.028
XGM2016 -0.632 | 0.250 | -0.142 | 0.171| 0.387 | 0.511| 0.449 | 0.039
DIR-R5 -0.744 | 0.135| -0.264 | 0.172| 0.381| 0563 | 0.450 | 0.064
TIM-R5 -0.735] 0.161 | -0.238 | 0.176| 0.472| 0.633 | 0.534| 0.056
SPW-R5 -0.760 | 0.162 | -0.299 | 0.166| 0.401| 0584 | 0477 ] 0.065

Table 2.4.4: GGM validation with free-air anomalies over India (units in mGal)

GGM min max mean STD

EGM2008 -381.846 355.076 -0.307 15.558
EIGEN-6C4 -353.134 379.699 0.168 15.412
GECO -348.027 374.494 0.205 15.355
XGM2016 -237.671 267.468 0.073 16.278
DIR-R5 -352.938 365.798 -0.285 22.833
TIM-R5 -345.457 368.174 -0.304 22.835
SPW-R5 -349.708 367.626 -0.263 22.821
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Table 2.4.5: GGM validation with vertical deflections over India

Meridional (units in arc-second) | Prime vertical (units in arc-second)
GGM min max mean | STD min max mean | STD
EGM2008 -21.0 13.2 -0.3 21| -415 13.9 0.1 3.7
EIGEN-6C4 -19.8 12.3 -0.3 20| -413 11.4 0.0 3.7
GECO -18.6 12.2 -0.3 20| -413 14.4 0.0 3.7
XGM2016 -16.1 16.0 -0.4 23| -41.6 8.4 0.0 3.8
DIR-R5 -19.7 27.4 -0.1 36| -40.7 15.9 0.1 4.2
TIM-R5 -19.2 28.5 -0.1 36| -404 16.0 0.1 4.2
SPW-R5 -20.2 26.3 -0.2 35| -40.2 15.3 0.1 4.2

In Table 2.4.5, there are only two points that have a difference value of prime
vertical deflection < -11” (i.e., -41” and -29”’). Removing these two points alone causes an
increase of ~0.3” in the mean values and a decrease of ~+1.4” in the standard deviations

of the prime vertical validation (Table 2.4.5).

Tables 2.4.1-2.4.5 do not comprehensibly indicate which GGM is comparatively
more suitable among combined models and satellite-alone models, individually. This is
because there is no significant variation in the mean and standard deviations from different
GGMs. Moreover, we do not have any authoritative accuracy estimates of our datasets.
So, our choice of EIGEN-6C4 for the CUT method and DIR_R5 for the UNB and the KTH

methods are arbitrary rather than based on any rigorous quantitative argument.

EGM2008 is used for filling in the gravity data (Section 2.1) and GECO and
EIGEN-6C4 both include EGM2008 data in addition to other datasets. GECO and EIGEN-
6C4 have provided comparable results, and we cannot claim the priority of one over the
other. Therefore, the choice of EIGEN-6C4 is completely arbitrary. However, for the
satellite-only models, we have chosen DIR-R5 GGM because it has been used in the
literature on geoid/quasigeoid computation (e.g., Abdalla and Mogren, 2015; Isik and Erol,

2016; Foroughi et al., 2017a; 2019) as compared to other satellite-only models.
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2.5 Digital Elevation Models

A DEM, sometimes known as a digital terrain model (DTM), is a bare-Earth model, i.e.,
it represents the solid topographic surface. We deliberately distinguish between a DEM
and a Digital Surface Model (DSM) that represents the shape of the Earth’s surface,
which includes the height of vegetation canopy and man-made structures (e.g., Hirt,
2014). Several near-global DSMs have been produced from satellite-borne platforms
from either radar, e.g., SRTM (Farr et al., 2007), or stereoscopic optical imagery, e.g.,
ASTER (Meyer et al., 2011). A satellite-derived DSM should be treated for speckle
noise (Gallant, 2011) and stripe noise (Tarekegn and Sayama, 2013), and then it can be
converted to a DEM by accounting for absolute biases (Crippen et al., 2016) and tree-
height biases (O’Loughlin et al., 2016). Yamazaki et al. (2017) have treated the SRTM
v2.1 DSM for all these four sources to produce a freely available 3”x3” global DEM,

i.e., the MERIT DEM.

DEMs and DSMs are used synonymously in several applications, such as mapping
soil and vegetation (e.g., Dobos and Hengl, 2009; Cavazzi et al., 2013), studying natural
hazards (e.g., Gruber et al., 2009; Demirkesen, 2012), catchment geomorphology and
hydrology (e.g., Barnes et al., 2014; Zhao et al., 2019), watershed modelling (e.g., Park et
al., 2011; Li et al., 2019), floodplain mapping (e.g., Jafarzadegan and Merwade, 2017;
Nardi et al., 2019), weather and flood forecasting (e.g., Truhetz, 2010), and gravity-field
forward modelling (e.g., Banerjee and Gupta, 1977; Forsberg, 1984). However,
researchers have started analysing the effect of using a DSM and not the ‘required’ DEM
for their respective applications, such as done by Yang et al. (2019) for gravity forward
modelling. With the experiments involving MERIT DEM and SRTM DSM, Yang et al.
(2019) suggested that DEM should always be preferred over DSM to reduce or avoid the

tree-canopy effect in gravity forward modelling.
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For the geoid and quasigeoid computations, we are interested in the DEMs, in both
spatial and spectral forms. A precise high-resolution DEM is a crucial input primarily for
calculating topographical effects (Section 3.2), atmospheric gravity corrections (Section
3.3), and analytical continuations (downward or upward) of gravimetric quantities between
different surfaces/levels (Section 3.5). However, obtaining a precise DEM is still

challenging, especially in the mountainous regions.

Vanicek et al. (n.d.), Varga and Basi¢ (2018), and Varga et al. (2019) have analysed
the effect of different DEM (and DEM resolutions) on the topographic effects. It should
be noted that the latter two studies included the freely available global DSMs in their
computations, while Vanicek et al. (n.d.) used only DEMs. Though their study areas did
not comprise a complex terrain such as that of India, all have reported significant
disparities in the results with different DEMs. Thus, the choice of a precise high-resolution
DEM becomes more crucial in the mountainous or rapidly undulating regions, where the
problem due to the horizontal shifts among DEMs (Rodriguez et al., 2005; Denker, 2005)

also becomes enormous (e.g., for India, see Goyal et al., 2021a).

Since a DEM is required for the present study, we have chosen to work with the
MERIT DEM (YYamazaki et al., 2017) because this is the only DEM (to the authors best
information) available over India. It should be noted that the Indian CartoDEM derived
from the Cartosat mission using stereoscopic optical imagery (NRSA, 2006) is a DSM.
Moreover, unlike other DSMs, it provides the geodetic heights that are referenced to the
WGS84 ellipsoid (NIMA, 2000). We would like to mention that our DEM/DSM
analysis (Goyal et al., 2021a; provided in Appendix C.3) has shown MERIT as the best
candidate among all the tested models. The MERIT DEM for the study area is shown

in Figure 2.5.1.
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Figure 2.5.1: MERIT DEM over study area at 3’X3” resolution

The CUT method requires only the spatial form of a DEM. However, the UNB and
the KTH methods also require one or all of the height, height-squared, and height-cubed
spherical harmonic coefficients in addition to the spatial form of DEM. The KTH method
calculates the atmospheric effects while the UNB method computes reference
topographical effects using the height coefficients. Since the topographical effects in the
UNB method involve global numerical integration, different resolution DEMs are required
(Section 3.2). Therefore, to have consistency among the DEMs, we downloaded the whole
of global 3”’x3” MERIT DEM and block averaged it into grids of various resolutions, i.e.,

30”%30”, 5°x5’, and 1°X1°.
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Since we worked with the KTH method before starting with the UNB method, the
global DEM was downloaded at a later stage. Therefore, we followed the KTH strategy
for developing the spectral form of DEM wherein a global DEM is constructed with the
block-averaged 15°x 15> DTM2006 (d/o 2190) heights augmented with block-averaged
15°%x15” MERIT DEM over the study area, i.e., 2°N to 42°N latitude and 63°E to 103°E
longitude. Spherical harmonic coefficients for the heights to a maximum d/o of 720 are
then estimated using a FORTRAN based SHA subroutine, analyfft_grd.f (subroutine in
GEOLAB package). For height-squared and height-cubed coefficients, the heights from
the constructed 15°x15° global DEM were squared and cubed, respectively, before

estimating the corresponding coefficients.

Degree-order 720 has been chosen because the geoid/quasigeoid models developed
using the KTH method also construct the height coefficients up to d/o 720 (Agren, 2004;
Agren et al., 2009a, 2009b; Yildiz et al., 2012). It was also possible to construct the
spherical harmonic coefficients using block-averaged global 15°x 15> MERIT DEM alone,
but this was not done because we already computed the harmonic coefficients following
the KTH approach. We acknowledge that more in-depth quantitative testing should be
done with different d/o to analyse the included effects with the height coefficients in both

the UNB and the KTH method from the viewpoint of the cm-level precise geoid.
2.6 Summary

We discussed the availability and the characteristics of the five datasets over India and

finalised the following to be used in Indian geoid and quasigeoid modelling:

1) GETECH’s terrestrial gravity anomaly data for India, EGM2008 (d/o 900) derived fill-
in terrestrial gravity anomaly data for land areas surrounding India and oceanic gravity

anomaly data from Scripps Institute of Oceanography were merged using concatenated
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to construct a 0.02°x0.02° grid of free-air gravity anomalies for Indian
geoid/quasigeoid computations. Gradient testing was performed to identify any
discontinuities at the edges of the merged gravity anomaly dataset. We have not
observed clear visual indication of any discontinuities at the boundaries of the merged

gravity anomaly dataset.

119 GNSS/levelling data points are available over India, distributed in four regions:
Uttar Pradesh West (UPW), Uttar Pradesh East (UPE), Hyderabad, and Bangalore. No
information is provided on the height system of the levelling heights. Therefore, we
considered them to be based on normal-orthometric height system referring to
IVD1909. Since there is no uniquely defined reference surface for normal-orthometric
heights, it is decided to validate both geoid and quasigeoid models with the

GNSS/levelling data.

iii) Vertical deflections have been digitised from Gulatee (1955) that included 701

meridional deflections and 280 prime vertical deflections in India. The meridional
deflections vary from -52.7” to +24.5” while prime vertical deflections from -41.1” to
+19.1” with a mean value of -5.9” and +0.1”, respectively. These are used to validate

geoid models.

iv) GGMs were evaluated with the gravity anomalies, GNSS/levelling and vertical

deflections datasets. There is no clear choice of the preferred GGM from the
descriptive statistics of the evaluation results. Therefore, rather based on any
guantitative argument, we have arbitrarily chosen EIGEN-6C4 (max d/o 2190) for the
CUT method, and DIR-RLO5 (max d/o 300) for the UNB and the KTH methods.
EGM2008 has been used up to d/o 900 for calculating the fill-in gravity anomaly data
for the areas where we do not have access to the terrestrial gravity data. Degree-order

900 is chosen because EGM2008 uses proprietary gravity data up to d/o 900.
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v) The global freely available DEM is MERIT DEM and hence, it is used in Indian
geoid/quasigeoid computations. The CUT and the KTH methods use MERIT 3” x3”.
The UNB Method includes global integration and requires DEMs of different
resolutions. Therefore, MERIT 3” x3” and block-averaged MERIT 30”x30”, 5°X5’,
1°x1° DEMs are used in the UNB method. Additionally, for the KTH and the UNB
methods, spherical harmonic coefficients of height, height-squared and height-cubed

are also constructed.
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Chapter 3: Systematic effects in geoid determination

3.0 Introduction

There are various corrections and reductions that need to be applied to the datasets for the
use of Stokes’s formula for geoid/quasigeoid computation. These corrections, though
conceptually identical, are realised using different strategies in the three methods: CUT,
UNB, and KTH. Another aspect is that there have been various approximations in terms
of some assumptions, truncations, and certain inconsistencies in the involved formulations
that have been carried forward for decades under the umbrella of them being negligible.
However, from the viewpoint of cm-level precise geoid (Sans6 and Rummel, 1997), these
need a revisit because any mm-level error emanating from the approximations is liable to
deviate from achieving the goal significantly. That is, one-millimetre systematic error is a
10% deviation from the desired centimetre accurate geoid. Furthermore, any systematic
error will not be reflected in the error propagation, thus, one may obtain centimetre or sub-
centimetre precise geoid/quasigeoid but shifted by an amount equal to the systematic

errors.

In this chapter, we have tried to provide our discussions on the following in view

of the cm-level precise geoid/quasigeoid:

) Different choices for calculating normal gravity at any arbitrary height for

computation of the gravity anomaly at the Earth’s surface.

i) The topographic and the atmospheric corrections required to account for the
masses above the geoid because Stokes’s solution does not permit the masses

above the geoid (i.e., the Laplace harmonic condition must be valid).

iii) Ellipsoidal corrections required to compensate for the spherical approximation



Vi)

vii)
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used in formulating Stokes’s solution.
Downward continuation of gravity anomalies from the Earth’s surface to the geoid.

Analytical continuation of the gravity anomalies from the Earth’s surface to the

computation point-level surface for quasigeoid calculation.
Consistent use of the zero-degree term.

Effect of solid Earth permanent tide systems on physical Earth and parameters of

normal ellipsoid.

In the following sections, we will discuss free-air gravity anomalies only, but we

use a cryptic term ‘gravity anomaly’ for brevity. Otherwise, we will mention specifically

the type of gravity anomaly being discussed.

3.1 Gravity anomalies

Actual gravity is observed on or above the Earth’s topographical surface, therefore, the

computation of gravity anomaly requires either of the following:

i)

Upward continuation of normal gravity from the ellipsoid to the telluroid: For this,
normal heights are required. In case normal heights are not available, they are
approximated by normal orthometric heights or Helmert orthometric heights
(Though it is commonly done, geoid-quasigeoid correction can be applied to avoid
this approximation (Eg. 3.1.24)). By subtracting this upward continued normal
gravity at the telluroid from the corresponding observed gravity at the Earth’s
surface, we obtain the free-air gravity anomaly at the Earth’s surface (or sometimes
known as Molodensky-type free-air gravity anomaly). It is conspicuous that the
corresponding points on the Earth’s topography and the telluroid lie along the

ellipsoidal normal through the point on the Earth’s topography.
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i) Downward continuation of observed gravity from the Earth’s surface to the geoid:
For this, orthometric heights are required and density of the masses between the
Earth’s topographical surface and the geoid. The downward continuation of the
Earth’s gravity makes things a little complicated, but the difficulties are alleviated
by using Helmert’s second method of condensation (see Section 3.2). Therefore,
on subtracting the normal gravity at the ellipsoid from the corresponding
downward continued observed gravity at the geoid, we obtain the free-air gravity

anomaly on the geoid.

As such, upward continuation of normal gravity requires normal gravity gradient
while downward continuation of the Earth’s gravity requires actual gravity gradient
through the topography. Since the actual gravity gradient is less precisely known as
compared to the normal gravity gradient (which is in fact exactly known), a common
practice is to compute gravity anomalies on the Earth’s surface and further process as is

needed in the geoid/quasigeoid computation strategy.

Next, we discuss computing normal gravity at the telluroid (in general, at any
height of interest). This involves some expressions of normal gravity gradient and a direct
or exact method of computing normal gravity at any height using the concept of confocal

ellipsoids (Heiskanen and Moritz, 1967, pg. 65).
3.1.1 Gradient method of calculating normal gravity at any height

Normal gravity at any height can be obtained by using a Taylor series expansion

(Heiskanen and Moritz, 1967, pg. 78)

2 3
;/h:;/0+6—7h+16—7h2+18—7h3+

3.1.1
oh  2&°h 6 0°h ( )

It is observed that the above expression has been used in the literature with only the first-

order term or also including a second-order term (e.g., Hackney and Featherstone, 2003).
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That is, higher than second-order terms are generally neglected.

There can be different expressions for the normal gravity gradient of first- and

second-order. The more conventional formulas are given as (Heiskanen and Moritz, 1967,

pg. 78)
oy 27, in2
L =—Z20(1+ f+m—2fsin 3.12
oh a ( (p) ( )
827 670
Y7 _Zh 3.1.3
o*h  a° ( )

Thus, substituting Egs. (3.1.2) and (3.1.3) in Eq. (3.1.1), normal gravity at any

geodetic height (h) can be obtained using:

2 i 3
yh:yo[l—a(Hf+m—2fsm2¢)h+¥h2} (3.1.4)

A simple spherical approximation of Eq. (3.1.2), which is generally used in geophysics
(e.g., Hackney and Featherstone, 2003) and sometimes in geodesy as well (e.g., Mishra

and Ghosh, 2016) is

% ~—0.3086 mGal/m (3.L5)

Another expression for the first- and second-order terms are derived using Bruns’s

formula (Heiskanen and Moritz, 1967, pg. 78) that gives the first-order term as

8_7:_2703_2w2:_70 1+£ —20° (3.1.6)
oh vV o u

where J is the mean curvature of the ellipsoid, @ is the angular velocity of Earth’s rotation,
wand v are the principal radii of curvature in the meridian and prime vertical directions,

respectively and are given as (on the reference ellipsoid)
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a(1-¢’)
ﬂ:(l e?sin? )% 347

- ®»

a
V= (1_62 > ¢)% (3.1.8)
Substituting Egs. (3.1.7) and (3.1.8) in Eq. (3.1.6) gives
2wz \P

%:_70 g :(fl_nez(;) (2—e2(l+sin2¢>)) — 20 (3.1.9)

The second-order term is now obtained by differentiating Eq. (3.1.9) with respect to h and

substituting values of gzand v from Egs. (3.1.7) and (3.1.8).

o’y oy 0 1 1 ) o1 1

A R (S Ry A (I 3.1.10

o%h " o%a Ga[ 70(v+,uj R P Py (3.1.10)

2 2 2 n24in2 2 ain? % 2(a2  A24in2 2 =2 %

oty oY o | (a°—a’sin? p+b?sin® ) * +b* (a* —a’sin® p+b’sin’ p)

2 Y, T T 3.1.11
7h %a °aa a’b’? ( )

. %L‘_lz (1-¢’sin® o) (a* (1-€’sin p) + bz)—%(l—sinz ¢){2+ez Z3e'sin. (pﬂ (3.1.12)

J1-€’sin’@

Substituting Egs. (3.1.9) and (3.1.12) in Eq. (3.1.1) gives the second expression for

computing normal gravity at any height h.
3.1.2 Exact method of calculating normal gravity at any height

The exact method is based on computation of normal gravity on the surface of an ellipsoid
constructed confocally and concentrically with the reference ellipsoid passing through the
point at height equal to the height of interest (for our case normal height). The normal

potential of any such confocal ellipsoid is given as (Heiskanen and Moritz, 1967, pg. 67):
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LE 1 q( .. 1) 1
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where u, S are the semi-minor axis of the confocal ellipsoid and reduced latitude,

respectively; E is linear eccentricity. We have omitted A from the ellipsoidal coordinates

because normal potential is independent of longitude. In Eq. (3.1.13), the other terms are

2
q=1 1+3u—2 tan’lE— el
2 E u E
1 b? E b
==||1+3= [tan' —-3=
b 2M+ EZJ b E}

B= tanl(gtan ¢j (3.1.15)

(3.1.14)

It should be noted that Eq. (3.1.15) holds if ¢ is the geodetic latitude with respect to the
confocal ellipsoid through the point at altitude. For a more general relation for £ and ¢

see Claessens (2006, Chapter 2).

u=\/%(rz—E2)+%\/(r2—E2)2+4E222 (3.1.16)
z=((1—e2)v+H)singo (3.1.17)
r=\/(y+H)Zcosz(p+((1—e2)v+H)zsinzgo (3.1.18)

The gradient of the normal gravity potential (Eg. (3.1.13)) along the

lines/directions of the ellipsoidal coordinates gives normal gravity as

2 2 2
au) (au) (au
R R R A Rl B el B e
as,) o, ) \as,

v (o) (v ar)
au o, 0B os, oA s,

(3.1.19)
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where (Su,sﬂ, 34) is the triplet of the line elements of ellipsoidal coordinates. So, any arc

element on the ellipsoid is calculated as (Heiskanen and Moritz, 1967, pg. 41)

2 2 Ain2
u-+E“sin
dszz—’Bdu2+

o (u?+E?sin® B)d #° +(u” + E* )cos’ fdA* (3.1.20)
u?+

From Eqg. (3.1.13), % =0, therefore, Eq. (3.1.19) can be evaluated as

2 2
u*+E*> oauU 1 oJ
Y (Y b e ey el B I o e e e (3.1.21)
u“+E“sin” g ou u“+E“sin” g op

Equation (3.1.21) can be used to calculate the normal gravity at any height without using

the gravity gradient terms of any order and that is the reason we call it the exact method.

All the above-provided formulas for normal gravity at any height are dependent on
latitude and height. Hackney and Featherstone (2003) show that the difference in using
Egs. (3.1.4) and (3.1.5) can reach 5.7 mGal at the summit of Mt. Everest. We show the
variation of the differences in the gravity anomaly between the conditions when normal
gravity is computed using the exact formula (Eq.(3.1.21)) and i) an approximate
conventional (what we call here) second-order formula (Eq. (3.1.4), Figure 3.1.1), ii)

Bruns’s formula (Egs. (3.1.9) and (3.1.12), Figure 3.1.2, and iii) linear term (Eq. (3.1.5),

Figure 3.1.3).
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Figure 3.1.1: Difference in gravity anomaly using exact solution v/s second-order formula (mGal)
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Figure 3.1.2: Difference in gravity anomaly using exact solution v/s solution derived

using Bruns’s formula (mGal)
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Figure 3.1.3: Difference in gravity anomaly using exact solution v/s linear formula
(mGal)

Figures 3.1.1 - 3.1.3 show that, as expected, all the solutions give identical results
on the ellipsoid (h = 0 m) and minor differences at small heights (~100 m) above the
ellipsoid. The best approximative formula for y, is the conventional second-order formula.
However, given the precision of present-day gravimeters (uGal), the use of exact method
for y, is suggested. Therefore, any of the above discussed formula for y, can be used for
computing gravity anomalies on the geoid because that require normal gravity on the

ellipsoid. However, for gravity anomalies on the Earth’s surface, either, preference-wise,

the exact method or the conventional second-order formula must be used.
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The three methods, CUT, UNB and KTH use Eqg. (3.1.4) to compute normal gravity
at any height and hence, the gravity anomaly at the Earth’s surface. Unlike the CUT and
the KTH methods, the UNB method takes it a little further. It applies a correction for using
orthometric height as an approximation to the normal heights for upward continuing the
normal gravity (UNB, 2009), i.e., our normal gravity is not at the, required surface,
telluroid but a surface that is telluroid plus geoid-quasigeoid separation. The planar
approximation of the geoid-quasigeoid separation is given as (Heiskanen and Moritz,
1967, pg. 327; Martinec, 1993)

AgSB
Yo

H -H=N-¢~

H (3.1.22)
where Ag*®is simple planar Bouguer gravity anomaly.

Therefore, the geoid-quasigeoid correction to the gravity anomaly (Ag H-H ) is computed

as

SB
AghH = _OY[AG” (3.1.23)
oh ' 7,

Equation (3.1.23) in spherical approximation can be written as

N 2HAQ®®

A H'-H
: R+H

(3.1.24)

Equation (3.1.24) never exceeds 1.67 mGal (computed for the summit of Mt. Everest i.e.,
H =8848 m and Ag*® = 600 mGal), which is a value that may cause perceptible deviation
from the quest of a cm-precise geoid.

Therefore, the UNB method of computing gravity anomalies is (unless normal

heights are used)
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where Ag',s IS the free-air gravity anomaly on topography in the UNB method and

Ag' is the free-air gravity anomaly on topography in the CUT and the KTH methods.
3.2 Topographic corrections

Stokes’s formula for geoid computation requires that there be no masses outside the geoid
and the gravity anomalies should refer to the geoid. However, topographical masses exist,
i.e., the masses between the geoid and the Earth’s topographical surface. There do exist
atmospheric masses also, which will be dealt with in Section 3.3. The major argument on
the limitation in the geoid computation has always been that the topographical density is
less-precisely known (Heiskanen and Moritz, 1967, pg. 127). This has been attached to the
problem/biases that would occur in downward continuation of the gravity values from
Earth’s surface to the topography. In view of this, the solution given by Molodensky et al.
(1962) has been endorsed by many as an alternative to compute a quasigeoid without
worrying about topographical density and the downward continuation of gravity.
However, the quasigeoid is a non-equipotential surface but can always be transformed to

the geoid using geoid-quasigeoid separation term (see Section 4.3).

Thus, we can say that topographic corrections are not required for the quasigeoid
computation while they are mandatory for computation of the geoid (if not routed through
quasigeoid). However, among different solutions to Molodensky’s problem (Molodensky
et al., 1962; used for quasigeoid), Moritz (1968) has shown that the involved G; term can
be approximated by the planar Terrain Correction (TC) and a term equal to the First Order

Indirect Effect (FOIE).
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In geoid computation, topographic masses are handled by applying three
corrections (Vani¢ek and Kleusberg, 1987; Wang and Rapp, 1990; Heck, 1993a) before or
after the gravity or gravity anomaly is downward continued to the geoid: Direct
Topographical Effect (DTE) and Secondary Indirect Topographical Effect (SITE) on
gravity, and Primary Indirect Topographical Effect (PITE) on the gravity potential. These
three are discussed in detail in Section 3.2.2 because the UNB method strictly follows this

approach.

For applying any topographic correction, the height information is the paramount
information that is available from DEMs. It is known that the higher resolution DEMs
provide better (detailed) information of the Earth’s topography. Hence, precise DEMs of
higher resolution are the key inputs for the computation of any precise topographical
effect. However, with an increase in the DEM resolutions, there is an increase in the
number of computation points and the attached roving points for the integration (see
formulations in this Section). For a regional quantification, in an area of just 1°X1°, the
number of computation points for a 1”x1” DEM (12,960,000) increases nine-fold
compared to a 3”x3” DEM (1,440,000) and the number of roving points will increase ~36
times for an integration radius of 1°. Therefore, it is important that we use the methods that
are conceptually defendable and not resource-heavy. Further discussions in this section

will be around this argument.

In the following three sub-sections, we will discuss about handling the topography
in the CUT, the UNB and the KTH methods. A constant topographical density of 2,670
kgm2 is assumed in the following discussions and the formulations, although use of
topographical density models is suggested (Martinec, 1993; Huang et al., 2001; Kingdon

et al., 2009; Sheng et al., 2019).
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3.2.1 Topographic corrections in the CUT method

The CUT method uses Molodensky’s principle for the determination of the quasigeoid.
The Molodensky’s G1 term is approximated by the planar TC (Moritz, 1968, 1980,
McCubbine et al., 2018). However, deviating from the Moritz (1968, 1980) solution, the
FOIE term is omitted in the CUT method based quasigeoid computations (Featherstone et
al., 2011, 2018). The TCs are mainly used for reconstruction of Faye anomalies on the
topography (Featherstone and Kirby, 2000). As of here and in general, though the CUT
method makes use of the planar TC, it will not be correct to say that it applies direct or
indirect topographical effect. This has been briefly revisited in Section 3.5 with a slightly
different point of view. In the present section, we will discuss the method used for planar

TC computation.

As discussed above, the availability of high resolution DEMSs causes a drastic
increase in the computation-roving point pairs. Therefore, the use of spectral methods
becomes attractive. The CUT method has always used only the FFT alone method for TC
computations (e.g., Kirby and Featherstone, 1999; 2001; 2002; McCubbine et al., 2017a)
in the AUSGeoid models (Featherstone et al., 2001; 2011; 2018) and New Zealand

quasigeoid models (Amos and Featherstone, 2009; Claessens et al., 2011).

Spectral methods provide significant computational efficiency, but there are two
principal restrictions attached to the use of discrete/fast Fourier transforms (D/FFTs). First,
a convergence criterion because, use of a binomial expansion restricts D/FFT method to
the regions where terrain gradients are <45° (cf. Sideris, 1984; Forsberg, 1985; Martinec
et al., 1996; Sampietro et al., 2016). Secondly, a decision is needed on the truncation limit
of the binomial expansion to obtain a convergent TC solution. Some existing strategies to

address the above restrictions are summarised in Goyal et al. (2020) from where it is
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observed that a guaranteed convergent TC solution had never been pursued in a

satisfactory and optimal way.

We envisaged that the combined spatial-spectral approach for planar TC
computation (Tsoulis, 1998; 2001) could be a reliable approach for convergent TC
computation in regions with gradients >45°. The spatial-spectral combined method uses
D/FFT in the outer zone and mass-prism integration in the inner zone. Therefore, if we
divide the integration domain such that the terrain having gradient >45° are confined to
the inner zone, we can avoid using the D/FFT, i.e., avoid divergence emanating from those
areas. However, there are two issues with this method when using high-resolution DEMs.
First, there exists no defining rule to determine the radius that separates inner and outer
zones and hence, it is decided using the “brute force” method (e.g., Tsoulis, 1998). Second,
due to the increase in the computation points, mass-prism analytical integration in the inner
zone (cf. Forsberg, 1984; Tsoluis, 1998; Heck and Seitz, 2007; Tsoulis et al., 2009) is still

resource-heavy and time-consuming.

Therefore, as a complete solution package for local planar TC, we modified the
spatial-spectral approach of Tsoulis (1998; 2001) and provided i) rules for defining the
radius that separates inner and outer zones to guarantee convergence; ii) the number of
terms in the binomial expansion to be used in D/FFT for including non-negligible terms
(contribution >1puGal), and iii) a new numerical approach/solution to analytical mass-
prism integration. These three points are discussed below, but first, we show the source of

convergence/divergence criterion mathematically.

The planar TC is given by (Forsberg 1984):

X Yo Zp Z=Hp—H;

TC=6G Z dxdydz =G z dxdydz (3.2.1)
P;{{Z{( x2+y2+22)3 pJ;EJ. 21[0 ( x2+y2+22)3
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On integrating Eq. (3.2.1) with respect to z, we get

Tc_Gpﬁiﬁl—P+f%]} dydx
(3.2.2)

Where G is the universal gravitational constant, pis the constant bulk topographic density,

IE:\/(xp—xi)2+(yp—yi)2 is the horizontal Euclidean distance between the

computation and the roving points; (x.,y,,H,) and (x;,y;, H,

) are the coordinates of
computation point and roving point, respectively. H, is the height of the computation
point and H, the height of the roving point. We can writez, =Az=H_, — H,

)71/2

Making use of the binomial expansion of (L+ X according to

a+m1”=1—%x+3§x?-135ﬁ+1357x4—13579

x° +... for|x| <1 (3.2.3)
2.4 2.4.6 2.4.6.8 2.4.6.8.10

2 -1/2
we expand [1+(%j ] in Eq. (3.2.2). After rearranging the obtained terms, Eqg. (3.2.2)

can be written as

TC =G — + - + -
Pl 2 85 1617 1281° 2561 102417

XY

X, Ya 2 4 6 8 10 12
[Az 3Az* 5Az° 35Az° 63A7° 231Az +...}dxdy (3.2.4)

where we abbreviate each as

TC=TC +TC,+TC,+TC, +TC, +TC; +.... (3.2.5)
Each term retains the appropriate sign according to Eq. (3.2.4). This formulation is a

convolution, so can be solved numerically efficiently using the D/FFT (e.g., Schwarz et

al., 1990).



73

Since Eq. (3.2.3) is valid for |x| <1, the planar TC can be computed using Eq.

(3.2.4) iff when the condition

<1 VI (3.2.6)

is met. Equation (3.2.6) is referred to as the convergence criterion. The condition Vv | in
Eqg. (3.2.6) generally corresponds to the requirement that the slope of the terrain
immediately surrounding the computation point should not exceed 45° (e.g., Forsberg,
1985; Sideris, 1985; Klose and Ilk, 1993). However, conceptually, Eq. (3.2.6) must be
satisfied for each and every combination of computation and roving points in the whole
integration domain, i.e., the region covered by the integration/bounding radius (BR, Figure

3.2.1), of Eq.(3.2.4).

Therefore, we need to separate our inner and outer zones such that the condition
given by Eq. (3.2.6) is satisfied for all the computation-rover point pairs in the outer zone,

where the D/FFT is to be used.

Now we discuss our solution of calculating planar TC using an efficient spatial-
spectral combined method. This has been taken from Goyal et al. (2020), which is provided

in Appendix C.2.

i) Rules for defining inner and outer zones separating radius

In the following discussion, the inner and outer zones separating radius will be
interchangeably referred with the inner radius because, along with separating the study

area into zones, it also defines the radius of the inner zone.

We consider three scenarios to select the radius that separates inner and outer zones
(Figure 3.2.1). We term them: height-defined separating radius (HSR), exact separating

radius (ESR), and optimal separating radius (OSR) as follows.



a)

b)
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HSR follows directly from Eq. (3.2.6), which is a radius equal to the magnitude of

the maximum height difference in the study area, i.e.,

HSR =|Az,,,| (3.2.7)

ESR is calculated from the magnitude of the maximum height difference among
all the pairs of computation (P) and roving (R) points in the area bounded by a
circle of radius equal to the HSR. This gives the ESR. The TC solution with any
radius less than the ESR will always diverge. Computation of the ESR is time-
consuming, especially when the maximum height difference is large, the size of
the study area is large, and a high-resolution DEM is used. We thus define the ESR

as

ESR = |max(A 2,,)|¥ P(Xede) S
=|max(Az
PR)| &R X, y (

( min SX <Xmax'ymln - yP S ymax)

(3.2.8)
+(y-vp)' - 822, <0)

OSR is the upper range in the study area. The range is computed by taking the
difference between the maximum and minimum height values in an area around
each cell, bounded by a circle of radius equal to the HSR. The upper range is the
maximum of these range values in the entire study area. OSR can be computed
faster than the ESR as

OSR = max(range.); range. =(max(z). —min(z).)

where CE((X— ) H(Y-Ye ) Azmax_o) (3.2.9)

v(xp’yp);(xmm < X < Xmax'ymln = yP < ymax)
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Figure 3.2.1: The four integration domains. BR is the bounding radius of the whole
integration area that defines the integration radius. HSR, OSR and ESR are the height-

dependent, optimal and exact separating radii, respectively.

i) Truncation of the binomial expansion of TC solution

To test the convergence of the TC solution using the proposed choices of separating radii
(HSR, ESR, OSR), we conducted the computations over five rugged topographies in the
Himalayas with the SRTM 1”x1” DEM. The most rugged region was bounded within
27°N to 28°N latitude and 86°E to 87°E longitude where the height varies from 190 m to
8748 m. HSR, ESR, and OSR for this area are computed as 8558 m, 4261 m, and 5456 m,
respectively. The same information about the other four study areas can be found in Goyal

et al. (2020).

We used D/FFT in a tenth-order binomial expansion to compute TC with an
integration radius of 111,320 m (BR) minus the three separating radii (HSR, ESR and
OSR). This is done because we use D/FFT only in the outer zones. Table 3.2.1 shows the

value of each TC term for the study area mentioned in the preceding paragraph.



Table 3.2.1: Descriptive statistics of planar TCs (in mGal) in the outer zone up to the
tenth order with the separating radii of HSR = 8558 m, ESR = 4261 m and OSR =
5456 m and BR =111320 m

TC Separgtlng Min Max Mean STD
term radius

HSR 1.237 76.047 9.195 5.393

TC, ESR 1.299 124.770 12.648 7.717

OSR 1.278 107.603 11.361 6.865

HSR -2.45 -8.71x10* —7.07x107 1.00x10!

TC, ESR -11.399 —-8.95x10* —2.01x101 3.19x10?

OSR —7.402 -8.8x10* -1.40x10t 2.16x101

HSR 1.10x10® 1.73x10? 1.74x10°3 4.30x10°®

TC, ESR 1.11x10® 2.299 1.19x107 3.58x107?

OSR 1.10x10® 1.128 6.15x10°° 1.75x107?

HSR -1.69x10t -1.84x10° -7.84x10° 2.89x10*

TC, ESR -6.50x10! -1.85x10° -1.32x10°® 6.66x10°°

OSR -2.27x10? -1.84x10° -5.00x10* 2.31x10°®

HSR 3.61x107"? 1.92x1073 4.95x10 2.54x10°

TC, ESR 3.58x107? 2.30x10! 2.11x10* 1.67x10°3

OSR 3.60x107? 5.32x107 5.78x10° 4.00x10*

HSR -2.40x10* -7.88x10° -3.90x107 2.66x10°

TC, ESR -8.97x107? 1.51x1013 -4.34x10°° 5.06x10*

OSR -1.36x107? -4.70x10°% -8.45x10® 8.27x10°

HSR -7.23x1018 3.48x10° 3.60x10® 3.15x10”7

TC, ESR -2.52x10° 3.71x102 1.07x10° 1.74x10*

OSR -5.5x101! 3.76x10°3 1.46x106 1.92x10°

HSR -5.31x10® 7.60x10*2 -3.74x10°° 4.08x10®

TC, ESR -1.61x10® 9.71x10°® -3.05x10® 6.60x10°

OSR -1.08x10° 1.70x10°° -2.86x10”7 4.88x10°

HSR -2.97x1071? 8.45x107 4.26x101° 5.67x10°

TC, ESR -1.96x10° 7.24x1073 9.71x10”7 2.66x10°

OSR -1.51x10® 3.28x10* 6.17x10® 1.31x10®

HSR -1.39x107 1.19x101 -5.24x10 8.32x101°

TC, ESR -3.33x10°® 3.50%x10® -3.37x107 1.13x10°

OSR -1.02x10* 1.67x107 -1.44x10® 3.74x107

76

Table 3.2.1 shows that fewer TC terms are needed to achieve convergence (of <1

pGal) with the HSR. However, the HSR makes the inner zone larger (cf. Figure 3.2.1),

increasing the computation time for the mass-prism integration. Conversely, the ESR

makes the inner zone smallest but needs the largest number of TC terms that will require

more computer memory. Also, it takes a longer time to compute the ESR value. The OSR

offers a compromise that balances the computation of its radius, the number of TC terms
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required to achieve convergence, and computation time of the inner zone by mass prisms.
We acknowledge that the exact number of TC terms required will vary depending on the
study area, but we have deliberately chosen the extreme example of a 30 m DEM over
Mount Everest, where convergence is achieved using six binomial terms with HSR and

nine terms with OSR.

Since the above condition of the number of binomial terms is devised from the
experiments in one of the most rugged topographies on the planet, it can be taken true at
all times. So, we prefer and suggest working with OSR and nine terms of the binomial

expansion.

iii) Numerical approach to analytical mass-prism integration

The mass-prism integration method assumes that the DEM grid cells define right-
rectangular prisms with length and width given by the DEM resolution in the x and y

directions, respectively. The height of the prism is defined by the height difference of the

computation and roving points (Az).

The analytical solution of Eqg. (3.2.1) is

X

X, Y2 “
TC = Hx(log(yﬁtr)ﬁtylog(x+r)—ztan‘1%} } (3.2.10)

b
1 gy

which is a simplified, efficient and accurate version (Banerjee and Gupta 1977; Forsberg
1984) of the solution given by Nagy (1966). Expanding Eq. (3.2.10) with respect to its

limits gives
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TC =X, log(y, +1,5,) = %, 109(Y, +1,50) = %, 109(Y; +Fy5) + X, 109(Y; + 1) —
X 10g(Y, +122) =%, 109(Y, + 1y ) =X 10g(y, + 1y, ) + X 10g(y; + 1) +
Y2 IOg(Xz + rzzz) - Y IOg(Xz + r221) - Y IOg(X1 + r122) +Y; IOg(X1 + r121) -
y, l0g(X, +1,,) + Y, 10g(X, + Iy ) + Y, 10g(X, + 1) — Y, log(X, + 1yy) —

o x o X . N
Z, tan 1[2—)/2]+22 tan 1(2—ylj+zz tan 1[&]—22 tan 1(1—ylj+
ZZrZZZ er212 ZZrl22 ZZr]_'I.Z
L x A X _ B}
z, tan 1[2—)/2]—21 tan l[—Zle—zltan 1(x1y2 j+zltan 1(—X1ylj
er221 erZ:L'I. Zl'?l.Zl er]JJ.

where 7, =0;z,=H —-H;; X, X, Y, Y, are the planar coordinates of a prism assuming the

(3.2.11)

computation point to be at the origin of the planar coordinate system. The order of
subscripts of r = x> +y?+ 2z represents the order of coordinates (X, Y,z), and the subscript

value represents the lower or upper bound of that coordinate. For example, r,,, represents

VEHYi+T;

Rearranging the terms in Eq. (3.2.11), the analytical formula for the TC using right-

rectangular mass prisms (TCM) is

TeM X{,Og((yz +r222)<y1+rm>ﬂ_x{log[(yz +r122>(y1+rm)ﬂ+
(y2 + r221)(y1 + r-212) (y2 + r-121)(yl + rnz)

Y, {Iog ( (X2 * r222)()(1 + rlzﬂj} ~y, |:|Og ( (Xz + r-212)()(1 + rm) ]:| _
(X + T ) (X% +10y5) (X, + 6y ) (X, + 1)
z, {tan‘l [ﬂ} _tan (ﬂ} _tan® ( XY, ] +tan { XY H "
Z,1222 o0, Z,l, Z,h,
z {tan‘1 (ﬂJ —tan™ (ﬁj —tan™! (&j +tan™ [ﬂﬂ
1
4ihn 2y Z,1, Zh,

Solving the TC integral Eqg. (3.2.1) with respect to z is convenient compared to x

(3.2.12)

and y. Therefore, we extended the trapezoidal rule for single integration to double
integration for solving the surface integral achieved after analytical linear integration of
Eqg. (3.2.1) with respect to z. According to the trapezoidal rule for single integration with

n = 2 subintervals, we have (for any function in variable x)
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b
If(x)dXz%{f(a)+2f(a7+b]+f(b)] g=0-2 (3.2.13)
Extending Eq. (3.2.13) to solve double integration gives
HE _t(d=¢) c+d
[ [ [t y)dyjdx ~| (T{f(x, c)+2f (x, Tj +f(x, d)Ddx
a\c 2 (3.2.14)
= !(%)f(X,C)dxiz(d ;ij (x, C;d jdx+£(%)f(x, d)dx
j‘U‘f(x, y)ddex =TT1+TT2+TT3 (3.2.15)

where TT1, TT 2, TT3 represent the three integral terms in Eq. (3.2.14). By applying the

trapezoidal rule for n = 2 to these three terms individually, we get

d-c

c+d

et 5 v

TT2:2(—b_a
4

5

i

a+b

1Cj+2f(a;b,c+d

2

TT3= (bjTaj[%j[f(b, ¢)+ 2f (b,%}f(b, d)}

Jl

2

)

(3.2.16)

The analytical linear integral solution of the TC with respect to z is

(

Using the following substitutions of Eqg. (3.2.18) in Eq. (3.2.16)

z,=h,-h;

TC =Gphj jo %dzdydx} =Gpﬁf

X N1

11
rx,y.z) rxy.z)

]dydx} (3.2.17)

a=x, b=x,c=y,d=y,
b—a=x,-X =AX, c—d=Yy,—-Yy, =Ay

2,=0,z,=h —h =Az
a+h  x +Xx
2

_%tY,
2

c+d _y
2

N

(3.2.18)

and rearranging the terms, the TC with the trapezoidal rule (TCT) can be calculated using
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r(X,y) r(X,y,A2) r(xy) r(x,v,.4z) ) (r(X,y,) r(X,y,,Az)

(_j(ﬂj 1 1 L2 1 B 1 N 1 B 1

4 4 r(XZ’ yl) r(XZI yllAZ) r(XZ’ y) r(X27 77 AZ) r(X27 y2) r(X27 yZYAZ)

We also derived the TC formula using the Simpson’s rule (TCS), which is given by

TCT = Gp{

1 1 1 1 J ( 1 1 H
- +4 —— — + - +
{r(xl,yl) r(x, Y, Az) r(x,y) r(x,v.4z) ) \(r(x.y,) r(x,Yy, Az)

[ 1 1 1 1 ] [ 1 1 H
— - +4| ———— + — - +
Lr(Xy,) (X, y,,Az) r(x,y) r(x,v,Az) r(x,y,) r(x,y, Az)
(gj{ﬂj 11 . 11 N

6 6 r(XZ’ yl) r(XZ’ yl’ AZ) r(XZ’ 7) r(XZ’ 7’ AZ) r(XZ’ y2) r(XZ’ yZ’ AZ)

Both the derived formulas (Egs. (3.2.19) and (3.2.20)) were tested on two DEMs

IN

(1-arc-second and 3-arc-second) in three different types of topographies (plains,
undulating and mountainous). These were compared with the mass-prism analytical
integration solution (Eg. (3.2.12)). Both the proposed methods (TCT and TCS) decrease
the computation time by ~50%. Detailed results on this comparison can be found in Goyal

et al. (2019b, 2020), from where we deduce that TCT is comparatively equivalent to TCM.

In the trapezoidal and Simpson’s rules of integration (TCT and TCS), the numerical
results can be improved by increasing the number of subintervals, but at additional
computational cost. TCT and TCS were re-derived using a combination of n = 2 subintervals
for the inner limit and n = 4 for the outer limit. This was done because only an even number
of subintervals can be used in Simpson’s rule. On comparison, a marginal improvement was
observed in the results from TCT and TCS with respect to the analytical mass-prism
integration. However, the time taken for these computations became equivalent to the
analytical integration, thus defeating the purpose of the new method. Hence, it is

recommended to use TCT with n = 2 subintervals only, as is given in Eqg. (3.2.19).

(3.2.19)

(3.2.20)
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The CUT method requires a high-resolution TC grid for gridding the anomalies or
so-called re-construction of the Faye anomalies (Featherstone and Kirby, 2000).
Therefore, we computed the planar TC at 3”3 resolution for India and adjacent regions
using MERIT DEM (YYamazaki et al., 2017). The whole region was divided into 95 tiles
each covering 8°x8° area. All these tiles have an overlap of 4° on all the sides to avoid the
windowing effect (Sideris, 1984; Bracewell, 1986). The BR or the integration radius is
kept equal to 111320 m based on the change in the values of planar TC with varying BR
(5500 m to 166980 m), for a few tiles. The inner and outer zones were separated using the
OSR. The inner zone computations were done with TCT method and outer zone
computations with D/FFT having nine terms of the binomial expansion. The 3”x3” and
block-averaged 0.02°%0.02° planar TC maps for India and adjacent regions are shown in
Figures 3.2.2 (a) and (b), respectively. The scatter plot of the 0.02°x0.02° TCs with respect

to the heights is shown in Figure 3.2.3 (a), and the histogram is given in Figure 3.2.3 (b).

Figure 3.2.2 shows that larger values of TCs are obtained in the regions with high
peaks and rapidly undulating terrain, as expected. In the plateau regions where we have
high elevation but relatively lesser undulating terrain, TCs have smaller values. Figure
3.2.3a shows that TCs can have a long-range (~1 mGal to 50 mGal) for the areas having
considerable heights (~4000 m to 6500 m). Thus, TC vary noticeably in the regions with

the undulating terrain compared to the regions only having higher elevations.
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Figure 3.2.2: Local planar TC over India and adjacent countries at a) 3”°X3” grid, b)

0.02°x0.02° grid using spatial-spectral combined approach.

6
200 - - 5 10
3?150 :
E © 37
Q
© 100 3
= @
e w9
1]
a 50-
0 L 0
0 2000 4000 6000 8000 0 5 10 15
Height (m) Planar TC (mGal)

(a) (b)
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3.2.2 Topographic corrections in the UNB method

The topographical corrections in the UNB method originate from the use of Helmert’s
(1884) second method of condensation, where all the topographical masses (and
atmospheric masses, Section 3.3) outside the geoid are condensed as a thin layer on the
geoid. The gravitational potential of the topographical masses and their corresponding
condensation layer will not be exactly the same. However, it has two advantages. Firstly,
condensing the topographical masses will achieve the desired harmonicity of the
topographical potential above geoid (to be more precise, it should be co-geoid or
compensated geoid). Secondly, instead of working with the topographical masses between
the geoid and the Earth’s surface that can cause a geoid undulation value as large as 1000
m (Martinec and Vani¢ek, 1994a), we can work with residual topographical masses. These
residual topographical masses are the difference between the actual masses and the
condensed layer. The gravitational potential generated from these residual topographical
masses causes a substantially smaller effect on the geoid undulation values (of the order
of 2 m, Martinec and Vanicek, 1994a) as compared to the topographical potential of the

actual masses.

In Helmert’s second method of condensation, the following three things have to be

dealt with:

i) The gravitational attraction of the residual topographic masses. In the literature,
there are three names given to this: attraction change effect (Wichiencharoen,
1982), topographical attraction effect (Vanic¢ek and Kleusberg, 1987), and the most

common term, DTE (Martinec and Vanicek, 1994a).

i) The difference between the potentials of the actual topographical masses and the

condensed topographical layer at any point on the geoid is known as residual
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topographical potential. This means, with the condensed topographical masses as
a surface layer, we are not computing the geoid but a different surface, known as
the co-geoid (compensated geoid). Therefore, a correction term for the effect of
residual topographical potential on the geoid needs to be applied. This is termed as
either separation of geoid and co-geoid, or indirect effect of topography or, more

precisely, the PITE.

iii) Residual topographical potential indicates that the computation point or gravity
anomaly does not correspond to the computed co-geoid but to the geoid (due to the
use of orthometric heights). Thus, another correction is required that ensures that
the gravity anomaly is on the co-geoid. This is realised by computing the
gravitational acceleration of the masses between the co-geoid and the geoid, which
is too small that there is a common practice of neglecting it. This is known as the
SITE. Sjdberg (2015) discussed that the SITE could reach a maximum of -0.6 mGal
with Helmert’s second method of condensation and this translates to a -0.07 m
effect on the geoid undulation (calculated using Featherstone and Olliver, 1997,
Eq. 14). Therefore, SITE should not be neglected from the viewpoint of cm-level

precise geoid.

Vanicek and Kleusberg (1987) apply the DTE and SITE on the gravity anomaly at
the topographical surface. On the contrary, Wang and Rapp (1990) suggested applying the
two corrections on the downward continued gravity anomaly. Here, we are dealing with
the UNB’s approach and hence, will discuss the DTE and SITE as applied to the gravity
anomaly at the Earth’s surface while PITE is applied on the geoid (~co-geoid) undulations,

as per UNB.

We will now try to formulate the above discussions using some equations. Before

this, we remark that there exist many dissimilarities regarding the formulation of the above
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three terms. It is due to the choices of combining downward continuation with the
topographic correction (Wang and Rapp, 1990) and/or the spherical (Martinec and
Vanicek, 1994a; 1994b) versus a planar approximation (Wichiencharoen, 1982; Vani¢ek
and Kleusberg, 1987). Here, we will not provide all the formulations instead, see the cited

references. We will use spherical approximation in the following discussions.

Equations (3.2.21) and (3.2.22) give the potential of the topographical masses (V')

and the condensed topographical surface layer (ve), respectively (Martinec and Vanicek,

1994a)
R+H(Q 22
Q) =Gp dzd (3.2.21)
' fj;'j; Z.[R (rp2+22—2rcpzc05y/)%
Ve (r,,Q)=GR @) RTeY (3.2.22)
p 'U +R2 2r, Rcosz//)}/

where y is the spherical angular distance between two points on the sphere, o, is the

surface density of the condensed topographical layer and is given by (Wichiencharoen,

1982)
R+H(Q) 2 ! 3 '
q(g):é; | zwz=p(H(Qj+H S))+F:§?)J (3.2.23)

In this study, we use Eq. (3.2.23) that is a condensation density function with the
mass-conservation scheme, i.e., the mass of the Earth is not changed. A disadvantage
attached with the use of Eq. (3.2.23) is that there will be a change in the geocentre and
hence, degree-one terms will come into play (Hormander, 1976; Novék, 2000). There
could be other choices of condensed density functions (Martinec, 1993; 1998), such as i)
geocentre-conservation scheme or ii) more complicated mass and geocentre conservation

scheme.
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Both V' and V® can be divided into a spherical shell part and its corresponding

roughness part. This is something like a Bouguer correction and TC in spherical

approximation (Kuhn et al., 2009). Therefore, the topographical potential (Eg. (3.2.21)) at

any point is written as

t( R+H(Q) Zz d d
Vilr,,Q)=G Q'
»9) pi_@[ ZIR (rcf)+22—2rcpzcosv/)}/2 o
R+H(Q) 22
Gp” dzdQ'

)%

0, 2=R+H(Q) (rci +7° - 2rzcosy

(3.2.24)

The linear integral in Eq. (3.2.24) can be computed as (Gradshteyn and Ryzhik, 1980)

“ 2 z,, +3r,, Cos

j : }/dz :K%”W\/rﬁ +2] - 2r,2, 0031//}—
2 2 2

2% (1) + 28 - 2r,zcosy )

z, +3r, cosy
(+\/rjj +2; - 21,7, cos:,//j+

2
r"; (3cos?y —1)x

2 2
Z, -1, 0031//+\/GC +25,—-2r,z cosw‘

cp “ul

log

z, — I, COSY + \/rcf) +12; — 21,2, COSY ‘

(3.2.25)

Similarly, the gravitational potential of the condensed topographical surface layer at any

point (Eq. (3.2.22)) can be written as

(R+HY -R?

Ve (r,.Q)=Gp||

» dQ’
o, 3(r2 +R* - 2r Rcosy )

%

(R+H'Y =(R+H)’

dQ’
)%

+Gp

o, 3(r2 +R* —2r Rcosy

(3.2.26)

In Egs. (3.2.24), (3.2.25) and (3.2.26) r, is the computation point i.e., r, =R+H for

computation at the Earth’s surface and r,, = R for computation at the geoid.
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Subtracting Eqg. (3.2.26) from Eq. (3.2.24) the residual topographical potential

(éV t=vi-V Ct) on the Earth’s topography is obtained by

R+H'+3(R+ H)Cosz//><

éVt(R+H,Q)=GpZZH[ >

JR+H) +(R+H'Y —2(R+H)(R+H ')cosV/)—

(R+H +3(R+H)COSl//\/(RJrH)2+(R+H)2—2(R+H)(R+H)COS!//]Jr

2
2
(R+H) (3coszy/—1)>< (3:2.27)
R H (R H)oosy + J[R )+ (R 2(RH)(R+H Joosy|
0g
R+H (R H)oosy (R + H)F + (R )" 2(R+H)(R+ H)cosy |
3R’(H'=H)+3R(H"-H?)+(H"-H?
3 ( ) ( ) ( ) ApAL
3\/R2+(R+H)2—2R(R+H)cosy/
Therefore, the PITE is calculated using (Martinec and Vani¢ek, 1994b; Novak, 2000)
t
pire < OV (R0) (3.2.28)
Yo
Gp HZ H3
PITE=-F ZZ ERETUIN
3R
{(R+H +23RCOSW\/R2+(R+H I)Z—ZR(R+H ')COSWJ_
2
(R+H+3RCOSW\/R2+(R+H)2—2R(R+H)cosy/j+R—(30052‘//—1)X
2 2 (3.2.29)

R+H '=Rcosy +/R* +(R+H ") —2R(R+H" COS!//‘
R+H —Rcosy +R? +( R+H)—2R(R +H)cosy |

_{3R2(H'—H)+3R(H'Z—H 3) HMM

3\/R? + R? —2RRcosy/

log

and the SITE is given by (Novak, 2000)
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SITE = 3.2.30
(R+H) ( )
where, sV*'(R+H,Q)comes from Eq. (3.2.27).
The DTE is evaluated as (Martinec and Vanic¢ek, 1994a; Novak, 2000)
DTE :3(5V‘(R+H,Q)) (3.2.31)
or

(((R+H)* +3(R+H)*)Jcosw + (R+ H)(R+ H ) (L~ 6cos? )

DTE=Gp)_ D, -

JREHY +(R+H)’ —2(R+H")(R+H )cosy

(((R+HY +3(R+H)*)Joosy +(R+ H))(R+ H)(l‘GCOSZW)+(R+ H)(3cos?y ~1)

JR+H)Y +(R+HY —2(R+H)(R+H)cosy

')2+(R+H)2—2(R+H‘)(R+H)cosy/‘ )
(R+H) =2(R+H)(R+H)cosy ‘

(R+H)—(R+H)cosy +4(
(R+H)—(R+H)cosy +(

+

log

R
R

@
+

+

(Rcosw—(RJrH))(gRZ(H “H)+3R(H*~H?)+(H ‘3—H3))

ApAA

3(\/R2 +(R+H)’ —2R(R+ H)cow)3

(3.2.32)

These topographic corrections (Egs. (3.2.29), (3.2.30) and (3.2.32)) can be

practically computed in two ways: i) global integration (brute force summation), or ii)

dividing the integration area into two parts i.e., near and far zone contributions. The near-

zone contribution is computed using the equations derived above and spherical harmonics

are used for the far-zones (cf. Novak, 2000). In this study, we have evaluated the formulas

for the topographic corrections using the global integration (summation) approach that

utilises DEMs of different resolutions (e.g., Kuhn et al., 2009 for spherical Bouguer

anomalies and spherical TCs).

The strategy for practical realisation of global integration is to use varying pre-

decided integration radii for different (resolution) DEMs, i.e., different ‘fixed’ radii for

innermost, near, far, and far-most zones. In the case of these fixed-type integration radii,
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the roving point DEM cells for some computation points will overlap. Therefore, we
cannot use a fixed radius for our computations. We can only speculate that the researchers
might be taking this into account already, but an explicit mention of this issue is missing
in the literature to the author's best knowledge. Hence, for working with cascading grids
or multiple resolution DEM grids, we must use what we call a ‘dynamic integration

radius’.

This type of radius takes care of any overlapping/missing mass elements on moving
the bounding box (integration domain) by one element of the finer resolution DEM. In
simple words, dynamic integration radius for a given finer resolution DEM makes use of
the ‘extensions’ (to the pre-defined fixed radii) that are adapted according to the relation

between the location of the computation point and the resolution of the next coarser grid.

Though the overlapping of a few DEM cells (mostly in the transition boundaries
of the different zones) might not affect the overall topographic correction value, this
dynamic integration radius ensures that overlapping of the mass elements does not occur.
The use of dynamic integration radius is essential not only in the global integration but
also for the planar TCs where researchers use different resolution DEMs with pre-fixed

integration radii (e.g., Gomez et al., 2013).

Another point is that the UNB method uses mean values of the computed
topographic correction term. On the contrary, we think that the mean values should not be
used as we are already working with the mean DEMs i.e., the coarse DEMs that are
constructed by block averaging the high-resolution DEMs. Therefore, unlike the UNB
strategy, we do not use, what we call, the mean of the mean values, instead the point values
of the topographic correction terms computed at the gravity anomaly grid-nodes. These

point values are considered to be already a mean value.
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In addition to the above two modifications to the UNB strategy to compute the
topographic effects, we make one more change in our computations. In the provided
formulas, the radius of the geoid is approximated by the radius of the reference sphere.
The UNB strategy uses a constant value of the radius, but Martinec (1993) suggests that
this spherical approximation causes a maximum error of 30 mm (i.e., 0.3% ellipsoidal
approximation error for N = 100 m) in the geoid undulation. Therefore, we use the
geocentric radius to the surface of the GRS80 ellipsoid computed for each parallel of the
latitude (Claessens, 2006, Chapter 6). Though not checked in this thesis, using the
geocentric radius to the surface of the GRS80 ellipsoid may change the formulas for the

ellipsoidal correction that are employed in the UNB method.

The DTE (Figure 3.2.4), SITE (Figure 3.2.6) and PITE (Figure 3.2.8) for India and
adjacent regions are computed on a 0.02°x0.02° grid using MERIT 3”x3” DEM and block
averaged to 30”x30”, 5°x5” and 1°x1° resolutions. Figures 3.2.5, 3.2.7, and 3.2.9 show
the scatter plots with respect to the heights and histograms of DTE, SITE, and PITE,

respectively.

Figures 3.2.4 and 3.2.5 show that though the maximum and minimum DTE values
reach -119.45 mGal and 340.66 mGal, respectively, ~99% of the total points have the value
within [-50 mGal, +50 mGal] (and ~95% of the points within [-20 mGal, +20 mGal]). The
DTE (Figure 3.2.5a) does not vary depending on the elevation as compared to the SITE
(Figure 3.2.7a) and PITE (Figure 3.2.9a), both of which have a clear pattern of increasing
absolute values with an increase in the elevation. Therefore, over India, SITE (Figure 3.2.6
and PITE (Figure 3.2.8) have larger values in the Himalayan belt followed by the Western

ghats.
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Figure 3.2.4: DTE over India and adjacent regions
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Figure 3.2.5: a) Scatter plot of DTE versus height; b) histogram of DTE



SITE (mGal)

65°E 70°E 73’E 80'E B85 E 90°E 95°E 100°E

z i = | i = z
g B = 12
g : _ : ¢ s ST o 2 _ 2 h-‘ic =
= % e Ik
z s | /l" S e R D =z
ket Al DR S R
Z Ed dl\ z
og- = Canssliny
z %,% ; d
= =
b’ ' oo b - e
= \’ =
2 | & =
Z_ l : " I_ n;, =
o T i
85°E 70°E 75°E 80°E 85°E 90°E O5°E 100°E
(mGal)
[ |
05 -040 -0.30 -020 -0.10 -0.05  0.00
(min: -0.775, max:0.026 , mean:-0.049, STD:0.119)
Figure 3.2.6: SITE over India and adjacent regions
5
x10
0.2
10+
8
>
- 2
o 6
3
o
= @
L 4
0.6 3
0.8 = e 0
0 2000 4000 6000 8000 -0.1 -0.05 0
Height (m) SITE (mGal)
(@ (b)

Figure 3.2.7: a) Scatter plot of SITE versus height; b) histogram of SITE
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3.2.3 Topographic corrections in the KTH method

In the KTH method, SITE is not applied as a correction to account for gravity anomaly on
the geoid instead of co-geoid but, it comes as a term in the derivation of topographic
gravity anomaly (Sj6berg, 2014), which is termed DTE. Therefore, topographic
corrections in the KTH method are divided into two effects: direct and indirect. The direct
effect includes DTE and SITE, while the indirect effect is the PITE. The direct and indirect
topographic effects have been studied in detail by the KTH group and hence derived
several formulas (e.g., Sjéberg, 2000, 2001, Nahavandchi 1998; Nahavandchi and Sjoberg,
2001). The direct and indirect topographical effects in the KTH method are combinedly

applied as the total topographical effect to the (approximate) geoid undulations.

Their strategy shows that the combined topographical effect cancels the complete
gravitational attraction of the condensed topographical surface layer (Sjoberg and
Bagherbandi, 2017). As such, they do not use the concept of Helmert’s second method of
condensation in the formulation of the topographical corrections. Instead, the reciprocal
distance in the topographical potential (Eg. (3.2.21)) at the Earth’s surface is expanded as
an external-type series to give

VI(R+H,Q)= GPRZE(EJM {L”([H %JM —1JPn (cos y/)da} (3.2.33)

ol n+3
where n is the spherical harmonics degree and P, is the Legendre polynomials of the first

kind for degree n.

n+3
Expanding (1+ %) in the Taylor series, they obtain
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n=0 cp

(g[;+u22(gf+w(g}pﬂ(w)daﬂ

Using spherical approximation of the boundary condition of physical geodesy

VY(R+H ,Q)—GpRziHE]Mx

(3.2.34)

(Heiskanen and Moritz, 1967, pg. 88) with topographical potential gives (Sjoberg, 2014,

pg. 132)

t t
Ag‘(R+H,Q):—aV (R;H’Q)—zv (RJ;H’Q) (3.2.35)

where Ag' is the topographical gravity anomaly (it should not be confused with free-air

gravity anomaly on the topography).

Therefore, from Egs. (3.2.34) and (3.2.35)

cp

(J][%Jrn%z(%f +W[%TJ& (cosV/)daJ]

Equation (3.2.35) shows that the DTE(=—Ag") in the KTH technique is equivalent to the

Ag'(R+ H,Q)—GpRiHrB]nu(nl)x

(3.2.36)

combination of DTE and SITE with the difference being that Eq. (3.2.35) uses the

topographical potential and not the residual topographical potential.

Since the topographical effect will be added to the geoid undulation in the KTH
method, we need to have the gravity anomaly (in this case topographical, Eq. (3.2.36)) on

the geoid. Therefore, considering r, ~R and using Stokes’s formula with Stokes’s

function in spectral form, the DTE on the approximate geoid (SN, ) is given by (Sjoberg

and Bagherbandi, 2017)
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ony —_GPR [”[ n+2( j2+%6(n+1)(%)s]ﬂ(cosw)dol (3.2.37)

Similarly, for computing the indirect topographical effect, the topographical

potential (Eq. (3.2.21)) is expanded in surface harmonic series to obtain

5N,Tndlr_GpR [H[__”_l( j %(%T]Pﬂ(coyﬂdo} (32.38)

where SN/ ;. is the indirect topographical effect on approximate geoid undulations.

Adding Egs. (3.2.37) and (3.2.38) gives the combined total topographical effect

5N<;romb = 5N(-jr|r +5Nl-|;1d|r (3239)
G 0 HZ H3
SN oy = —TP;LI(ZHH)[ 2" +3—R”)an(COSV/)do- (3.2.40)

Unlike the UNB method, this method has not used the condensation scheme, and therefore,

both zero- and first-degree terms will come into play.

Moreover, there has been no discussion on the upper limit of the degree-order of
the height (height-squared or height-cubed) coefficients. Sjoberg and Bagherbandi (2017,
pg. 154) show that after adding zero- and first- degree terms to Eq. (3.2.40), the combined

total topographical effect is simplified to

2 3
SNI,, =—2zep R R (3.2.41)
, |2 "R

Following are the two observations regarding the KTH approach of computing

topographical corrections:

) The intermediate steps of the above formulation (Egs. (3.2.33) — (3.2.40)) cannot
be realised practically with either a high-resolution DEM or with a combination of

multiple resolution DEMs. It is because the spherical harmonic coefficients of
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height (height-squared or height-cubed) have to be determined using a DEM only.
Given the computer resources, it is not feasible to compute these height coefficients
with a high-resolution global DEM. Moreover, this contrasts with the final
expression of the total topographical effect (Eq. (3.2.41)) that can be evaluated

using any available highest resolution DEM.

i) Equation (3.2.41) that gives the combined direct and indirect effect on the geoid
undulation is equivalent to the first term of the PITE computed in the UNB method
(Eq. (3.2.29)). However, this term in the UNB’s PITE is due to the potential
difference of the actual and the condensed topographical shells (with a mass-
conservation condensation scheme) on the geoid, but the KTH method does not

use Helmert’s second condensation scheme.

One interpretation can be that the topographical correction in the KTH method is
just a term from the PITE (Eq. (3.2.29)). However, there arises a few questions that need
to be answered: 1) If the combined topographical effect is just a term of PITE then what
is the actual topographical effect on the geoid? 2) Does the effect of DTE, SITE (effect on
the geoid undulation) and remaining PITE term in the UNB method cancel each other out?
3) Which of the two methods (UNB or KTH) of topographic treatment is more
approximate, and which one is more exact given that both exclude downward continuation
and use spherical approximation in their expressions. This is important because the
discrepancy in the two formulas might cause a substantial effect concerning the quest of

cm-level precise geoid.

Moreover, suppose by any chance both methods are equivalent. In that case, the
KTH method should be preferred over the UNB method simply because the latter is
computer resource-heavy and time-consuming as compared to the former. Nahavandchi

and Sjoberg (2001) have analysed the two methods and concluded that the UNB method
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fits better in Sweden compared to the KTH method, but the marginally rigorous formulas
as presented in this thesis were not tested. They further suggested repeating the exercise

in other regions.

Figure 3.2.10 shows the total topographical effect over India and adjacent countries
computed from Eg. (3.2.41) with the block averaged MERIT 3”x3” DEM to the grid
resolution of the gravity anomaly data i.e., 0.02°x0.02°. The corresponding scatter plot

and histogram are shown in Figures 3.2.11a and 3.2.11b, respectively.

The total topographic effect in the KTH method is a function of only the
computation point’s height (Eq. (3.2.41)). Therefore, as shown in Figure 3.2.10,
distribution of the total topographic effect follows the topography (DEM). Moreover, its
scatter plot (Figure 3.2.11a) is not scattered as compared to the topographic effects in the

other two methods (CUT and UNB).
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total topographic effect in the KTH method.
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3.3 Atmospheric Correction

The parameters used to define the normal ellipsoid come primarily from the satellite-
derived geodetic data and hence, include the effect of the atmospheric masses. For WGS84
(NIMA, 2000, pg. 3-3), geocentric gravitational constant for the Earth, Earth’s atmosphere

and Earth with atmosphere excluded are GM =(3986004.418)x10° m’s?,

GM ,,, =(3.5£0.1)x10° m’s? and GM '=(3986000.9 +0.1)x10° m’s™, respectively.

Atm

This implies that the even degree zonal harmonic coefficients of the normal
ellipsoid include effect of the atmosphere. Moreover, as a necessary condition to use
Stokes’s formula atmospheric masses also must be moved inside the geoid or condensed
onto it. Therefore, atmospheric correction is applied to gravity anomalies to account for i)
gravitating atmospheric mass outside the geoid and ii) atmospheric mass included in the
normal ellipsoid. It is applied as always additive correction to the observed gravity. The
handling of the atmospheric correction in different geoid computation methods is

discussed in the following sub-sections.
3.3.1 Atmospheric correction in the CUT method

Only the direct atmospheric effect (DAE) is applied in the CUT method on the assumption
that its associated indirect effects are small. It does not make use of any atmospheric
density model but uses the fifth-degree polynomial fit (Featherstone, 1992) to the values

given in U.S. standard atmosphere (NOAA et al., 1976), and is given by

DAE =0.871-1.0298x10H +5.3105x10°H? ~ 2.1642x 10" H® +

3.3.42
9.5246x10° 8 H* -2.2411x10 2 H?> } ( )

We acknowledge that there also exist other polynomial functions or other variants
of Eq. (3.3.42), e.g., quadratic functions given by Wichiencharoen (1982) and Wenzel

(1985; also see Ecker and Mittermayer, 1969).
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It is also noted that researchers use DAE in Eq. (3.3.42) with different truncated
degree polynomial (e.g., Featherstone and Dentith, 1997; Amos, 2007; Kuhn et al., 2009).
Figure 3.3.1 shows the variation of the atmospheric effect with different heights and Eq.
(3.3.42) truncated to different degree polynomials. Use of only degree one polynomial for
atmospheric effect may cause a substantial effect to the final geoid computation in high
mountainous regions. For some quantification, from Featherstone and Olliver (1997, Eq.
14) a difference of 0.2 mGal in gravity anomaly translates to 24 mm effect on the geoid.
It is, therefore, recommended that the full expression with a fifth-degree polynomial fit
must be used to reduce the gravity anomalies in the CUT method, unless the maximum

height in the area of interest is less than 1000 m.

Moreover, we would like to emphasise that Eq. (3.3.42) is obtained after fitting a
five-degree polynomial to the values and hence, it would not be conceptually strong to use
any truncation in the formula. To use a truncated formula (2-, 3- or 4-degree), the

corresponding degree polynomial must be fitted to the U.S. standard atmosphere values.

Sjoberg  (1999; 2001) formulated that the use of Eq. (3.3.42) introduces a
significant bias when used in practical Stokes’s integration (i.e., truncated to a limited
region). Their observations are recognised but we use Eq. (3.3.42) with the CUT method,
as it has also been adopted by IAG and used in numerous CUT geoid/quasigeoid
computations (e.g. Amos, 2007; Claessens et al., 2011; Featherstone et al., 2018;

McCubbine et al., 2018).
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Figure 3.3.1: Atmospheric correction with different truncated degrees in Eq. (3.3.42)

3.3.2 Atmospheric correction in the UNB method

The UNB method applies DAE and Secondary Indirect Atmospheric Effect (SIAE) on
gravity and Primary Indirect Atmospheric Effect (PIAE) on the geoid, similarly to the
topographic effects (Section 3.2). They make use of Anderson et al. (1975) quadratic-

polynomial approximation of the atmospheric density model (NOAA et al., 1976) and is

given as

Pone (H, Q)= pf +aH (Q)+ SH? () (3.3.43)
where pj(=1.2227 kgm™®) is the mean bulk density of the atmosphere at sea level,
a(: ~1.1436x10™ kgm"‘)is the linear coefficient and ,B(: 3.4057x10°° kgm‘s) is the
quadratic coefficient.

Hildenbrand et al. (2002; also see Moritz, 2000) have mentioned that the
atmospheric correction goes to zero at a height of ~34 km, however, the UNB method
considers the atmosphere up to an arbitrary height of 50 km from sea-level. After the first

9 km, which is generally taken as the height of the troposphere, the remaining height is
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divided into several spherical sub-shells of constant height (possibly for simplifying the

computations).

Like UNB’s topographical correction (Section 3.2), the building block of all the
atmospheric corrections (DAE, PIAE, SIAE) is the residual atmospheric potential. This
can be calculated by subtracting the potential of condensed atmospheric mass layer from

the actual atmospheric masses. As such, both the actual and the condensed atmospheric

masses can also be divided into their corresponding rough (v;;,v;{n) and smooth

as Cs
(Vatm ' Vatm

) parts. The residual atmospheric potential is given by (e.g., Novak 2000)

oV* (GC’Q) (V;;(rcp,Q)-l-Va?;(I’Cp,Q)) (a(t:|21<rcp7Q> Vai;](cp, )) (3.3.44)

v (r,,Q) [ijj " Pl (T Q)l(rcp,y/(sll,g'),r-)rlzdr'dQ'Jr

R+9 a ' ' 1 ' ' '
G'!-)‘['[F'—R+H(Q')pUNB(r 2 )l(rcva(QQ')’r')r e ] (3.3.45)

v (Q.Q),R)

1
|(r 0 (2.0).R)

{ﬂfﬁﬁmB o) L _regrdo

O P ()

r'zdr'dQ}

The DAE and SIAE are computed at the Earth’s surface, while the PIAE is

computed at the co-geoid. Therefore, r, = R+H (Q) for DAE and SIAE, and r,, =R for

v Yep
PIAE. Like the topographic corrections, DAE is the radial derivative of the residual

potential of the atmospheric masses:
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DAE =

R+50 a 1 » ' I
{ m s P (1 )8r[I(R+H(Q),W(Q,Q'),r')]r dridQ’

1

R+9 a , , a 2 , ,
ng “R+H(Q >p“”B(r Q)5[|(R+H(Q),W(Q,Q'),r')JIr ar dQ]_
R+50 0 1 2 {4

{ ”I 'DUNB )ar(l(R+H(Q),w(Q,Q'),R)]r drdQ’

1

R+9 . NG L
G-L[J-r'—RJrH(Q')pUNB(r,Q)E[I(R+H(Q)’I/I(Q’QI)’R)JIF dr dQ]

It is known that the i) attraction of the atmospheric shell is zero at the inner points,

(3.3.46)

i.e., first term in Eq. (3.3.46) will be zero, and ii) attraction of the condensed layer of the
atmospheric shell is equal to a constant at the outer points, i.e. third term in Eq. (3.3.46)

will be a constant (cf. Blakely, 1996).
A more detailed formulation on the practical evaluation of the above formula is

given in Novék (2000, Section 4.4). SIAE is computed as Ea\/a and PIAE is computed as
r

SV @
70(9).

On the use of the atmospheric effect in the UNB method, some inconsistency
regarding ‘signs’ has been observed in the literature. For example, Janék et al. (2017) have
computed DAE over Auvergne ranging between -0.84 mGal and -0.71 mGal; also, see Klu
(2015). These values would have been accepted if they are being added to the normal
gravity, but they are reported to be added to the gravity anomalies in the respective studies.
However, Novak (2000) reported the atmospheric correction (spherical direct effect) over
Canada ranging from +0.559 mGal to +0.870 mGal. From the CUT method, we see that
the effect of atmospheric masses is positive. We can only speculate about the origin of this

difference in sign as the formulation done using the potential of actual masses subtracted
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from the potential of the condensed atmospheric mass layer, i.e., change in sign in Eq.
(3.3.44). However, DAE is added to the gravity anomaly and hence, it will introduce a bias
due to the use of incorrect sign convention. We suggest using the formulas presented

herein for atmospheric effects in the UNB method.
3.3.3 Atmospheric correction in the KTH method

The KTH method of atmospheric correction uses spherical harmonics with the inverse
distance in the atmospheric potential formula, extended as an internal-type of series
(Sjoberg and Bagherbandi, 2017). The atmospheric potential at any point on geoid is then

given by

o ”H
Vi, (r,Q)=47p,R {w—z Zzn+1( j R} (3.3.47)

where p, =Gpg,, (gravitational constant times atmospheric bulk density at sea level), w

is an arbitrary constant in the atmospheric density function used in KTH method, i.e.,

. _RY
Pxn = Po (?j (3.3.48)

Similar to the topographic gravity anomaly in the KTH method (Section 3.2.3), Eq.

(3.3.47) is used in the boundary condition (spherical approximation) of physical geodesy
to obtain the atmospheric gravity anomaly (Ag"") as
a 0, 2),a
AQ® =— (ar erKTH (3.3.49)

and therefore, direct atmospheric effect is

o 2
DAE =-Ag® = (E r ijaTH (3.3.50)

Equation (3.3.50) is inserted in the spectral form of Stokes’s formula to obtain the direct
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effect of atmosphere on the geoid. Similarly, the indirect atmospheric effect on the geoid

(VK&‘TH /7) is also computed. The summation of the two terms provides the total

atmospheric effect on the geoid.

We observe that there are somewhat different formulas reported in the literature

from the KTH group and we present a few in Table 3.3.1

Table 3.3.1: Formulas for different atmospheric effect in the KTH literature.

Direct
atmospheric
gravity anomaly

Direct atmospheric
effect on geoid

Indirect
atmospheric effect
on geoid

Total
atmospheric
effect on geoid

.( 2R Ve Vi) [4moR VARRVA
Arpy| ——— —— || /X I N )
Sjoberg w-2 rov Y yor 472'p0i H
(1999) * $0r2y, j $ N2 4ﬂp;Ri H; y =n-1
=2n+1 " =(2n+1)(n-1) " y f=2n+l
ARRA 47p,R y A +V1€’l
Sjoberg and - L, DV I .

_ o N+2 Yo7 y y oy 4rpt & H
Nahavandchi ﬁp022n+1Hn ) . ”p"zn_l
(2000) ZLZH 477/00Rz H, =

=(2n+1)(n-1) " 7y So2n+l
Ellmann n+2 ryov /4 y o Arpr & H
A7p, H, :
(2001) OZZH 1 i n+2 47rp;Ri H, 4 nzz;‘n—l
=(2n+1)(n-1) " y =2n+l
.( 2R 47p,R )
Sjoberg and 4”/’0(—2— , ) dap, & Hy
: - ArpiR & H
Bagherbandi |, ) o >t y nZ:;n—l
(2017) # Yot Hnj ZLH y oz LN
= 2n+1 =(2n+1)(n-1) " ot
2 *
*For Sjsberg (1999): H; =H, -2 LM ,,p;Rz(L_i) and v;* -0

* For Sjoberg and Bagherbandi (2017): Ng, =-

4rp R’

y(w-2)(w-
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Following are a few observations on atmospheric effects in the KTH method:
Since no atmospheric mass reduction/condensation strategy is being used in the
KTH method, it will not be correct to say that Eq. (3.3.49) is a combination of
direct and secondary indirect atmospheric effects. However, for the time being we
assume that the first term in Eq. (3.3.50) resembles the direct effect, while second
term gives the secondary indirect effect. Therefore, from Table 3.3.1 and Eg.
(3.3.50), the globally accepted 0.87 mGal atmospheric effect on gravity anomaly
at sea level can be interpreted as not a direct effect, but instead a combined direct

and secondary indirect effect. This is because the first term in Ag?®, i.e.,

0
—(—EVK?‘TH jgoes to zero at sea level (H = 0 m). Therefore, the contribution to

2
0.87 mGal at sea level originates from the second term, i.e., —(—FVKE‘THJ. We

envisage that this may not have numerical problem because the two terms are used
together, but it can be worth looking in future. We would also like to mention that
this observation might not hold true because it goes against the UNB method who
reports a SIAE range of only -0.002 mGal to -0.001 mGal over Canada (Novak,
2000), while the major contribution is from their direct atmospheric effect.

In Table 3.3.1, while there is no change in the expression of V,* on substituting n

=0inEq. (3.3.47), we get a different \V/,* on substituting n =1 in the same equation.

(3.3.51)

It seems that the expression for V,* in Table 3.3.1 is obtained by neglecting the first

term in Eq. (3.3.51) which further seems unguaranteed given that the first term has

been retained in V;* (Table 3.3.1).
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In the literature, we were unable to find a value for w (an arbitrary constant in the
involved KTH atmospheric density function) used in Eq. (3.3.47). It is most
probably because the KTH method applies the total atmospheric effect on the geoid
and omits w in its final formula (Table 3.3.1). However, we computed the arbitrary

value of w=1514 by setting DAE =0.87 mGal and H =0 m in Eq. (3.3.50). It

IS important to note here that, w=1514 does not provide atmospheric densities
comparable to those obtained using the density function used in the UNB method
(Eg. (3.3.43)). Thus, a validation study of different atmospheric density function is
required. Using a trial and error approach for different values of w and comparing
the graphs of UNB’s and KTH’s atmospheric density function with respect to
heights, we estimated that the most probable value of w can range from 655 to 665.
The w value in this range provides a difference between the two density functions
(Egs. (3.3.43) and (3.3.48)) not beyond [-0.016 kgm™, 0.016 kgm>]. We can only
speculate that the formula for DAE in the KTH method may suffer from some
approximations. We will not derive a more rigorous formula here because of the
possibly better alternatives to apply atmospheric corrections (the CUT and the

UNB method).

We anticipate that the use of the harmonic coefficients of heights in the
atmospheric correction can be a potential cause of errors. We are working with a
0.02°x0.02° grid of gravity anomalies. We have developed spherical harmonic
coefficients for a global DEM of 0.25°x0.25° resolution (Section 2.5). There can
be two cases, either we do SHA on a global DEM with same working resolution
(e.g., 0.02°x0.02° for our case) which will be computationally challenging, or we
accept the, maybe, negligible errors emanating from the use of different resolutions

(spatial DEM of 0.02°x0.02° resolution versus spectral DEM with d/o 720).
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However, as mentioned in the earlier point, we have possibly better alternatives for
DAE, so we will restrict ourselves from further discussion on using SHA/SHS for

DAE.
3.4 Ellipsoidal Correction

Stokes’s formula used to compute the geoid undulations from gravity anomalies is the
solution of the fundamental equation of geodesy in spherical approximation (Heiskanen

and Moritz, 1967, pg. 88):

or 2
Ag=———-=T 4.1
g or R (34.1)

where T is the disturbing potential.

However, the Earth is ellipsoidal in shape (flattening ~ 1/300). The correction applied to
account for this spherical approximation is known as the ellipsoidal correction. The first

term in Eq. (3.4.1) comes from the definition of the gravity disturbance (5g)

W oU
sg=—| =—-= 4,
) [aH ahj (342)

where W is the geopotential and U is the potential of the reference ellipsoid.

For practicality, we approximate %H ~ %h to obtain

__[oW _oU)__or _ oT
~loh oh) oh  or

The error introduced due to the assumption of equivalence in the derivatives with

respect to the plumbline and the ellipsoidal normal is accounted for by applying the

ellipsoidal correction to the gravity disturbance (6‘59 ) ; this can be written as
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_ow _ow (3.4.3)

0 =30 on
: : o 1oy
The second term on the R.H.S. of Eq. (3.4.1) is the spherical approximation of _8_hT
/4
(Heiskanen and Moritz, 1967, Section 2.14). Therefore, the correction applied to account
for this part of spherical approximation is known as ‘ellipsoidal correction for spherical
approximation’ (&,) and can be written as

10y 2
SR P | 44
=+ 27 -21) 344

Equations (3.4.3) and (3.4.4) together are termed as the ellipsoidal correction to the
gravity anomalies. These two equations have been studied in detail by many, e.g.,
Molodensky et al. (1962), Bjerhammar (1966), Koch (1968), Moritz (1974), Jekeli
(1981b), Cruz (1986), Martinec and Grafarend (1997), Martinec (1998), Fei and Sideris
(2000, 2001), Brovar et al. (2001), Heck and Seitz (2003), Hipkin (2004), Najafi-Alamdari
et al. (2006) among others whom are cited later in this section. Huang et al. (2003b) and
Ellmann (2005a) have conducted individual comparisons of various studies on ellipsoidal
corrections, and they reported that many of the methods disagree among themselves. The
effect of ellipsoidal corrections in the final geoid can be of decimetre level and hence,

some standardisation is required from the viewpoint of cm-level precise geoid.

Next, we will discuss the treatment/derivation or any possible improvement in the

handling of the ellipsoidal correction in the three methods (CUT, UNB, KTH).
3.4.1 Ellipsoidal correction in the CUT method

The CUT method does not talk explicitly about the ellipsoidal corrections to the gravity
anomalies. Ellipsoidal gravity anomalies are computed from GGM, which are subtracted

from the observed gravity anomalies to obtain the residual gravity anomalies (e.g.,
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Featherstone et al., 2018). Then R is replaced by the radius of the ellipsoid (Claessens,
2006, Chapter 6) in Stokes’s formula, and is computed separately for each latitude parallel.
As such, it is claimed that no further ellipsoidal correction is required. An important point
to note here is that these ellipsoidal gravity anomalies (Eq. (3.4.5)) are computed on the
topography because in the CUT method, we work with the gravity anomalies on the

Earth’s surface (Featherstone et al., 2018; Claessens and Filmer, 2020) as required in the

Molodensky theory.
T(r,Q oT (r,Q
AgSM (r,Q) = (r )6—7— (n2) (3.4.5)
y(h) eh  oh
where AgZ®" is the ellipsoidal gravity anomaly on the Earth’s surface calculated using a

GGM.

This can also be written as

rge (r,0)- LRy _(or OT(10) 200T(RQ)) (346
y(h) oh (oh or oh 06
Using the spherical approximation, we have
aT (r,Q
Ty, (no) (3.4.7)
060
oT (r,Q
TED)_ sg(r0) (348)

Substituting Egs. (3.4.7) and (3.4.8) in Eq. (3.4.6), ellipsoidal gravity anomaly on

topography is

AngM(r,Q)zT}EE':)))Z—g+(%§g(r,9)—g—ﬁr;/(h)g(r,Q)j (3.4.9)

where
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or v(l—ezsin2¢))+h

Z - 3.4.10
oh r ( )
00 e’vcotg
L £ — (3.4.11)
(v(l—e )+h) +(v+h) cot’ ¢
Y= a (3.4.12)

J1-e’sin’ g

Some important points to be noted in the practical evaluation of the above formula are:

i)

i)

Equation (3.4.9) uses the second-order approximate normal gravity gradient, given

by

oy 2y, 2
L ~-"La(14+ f+m-2fsin 3.4.13
oh a ( q)) ( )

A more rigorous formula can be derived by differentiating Eq. (3.1.21) with respect

to height.

y(h) in Eqg. (3.4.9) is the normal gravity on the Earth’s topographical surface,

which is computed using Eq. (3.1.4) in the CUT method (Featherstone et al., 2018,

pg. 153). A more robust formula given by Eq. (3.1.21) can also be utilised.

The height involved in the computation of GGM-derived gravity anomaly at the
Earth’s surface must be the ellipsoidal height and should not be approximated with
the orthometric height. A general way to obtain the ellipsoidal height in a regular
grid is to compute geoid undulations from GGM and adding them to the block
averaged DEM. The resultant will be the grid of required ellipsoidal heights. This
is iterated until the difference between the current and previous ellipsoidal heights

becomes imperceptible. The iteration is required because the computation of geoid
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undulation from GGM itself requires ellipsoidal heights, which are approximated

with orthometric heights (from DEM) in the first run (Rapp, 1997).
3.4.2 Ellipsoidal correction in the UNB method

From Vanicek et al. (1999, Eq. 11), the ellipsoidal correction to the gravity disturbance is

given by

Es4 =00 ﬂ—£+ gﬂy§+%(§2+n2) (3.4.14)

where £ (= f sin2¢) is the difference between geodetic latitude and geocentric latitude
(Bomford, 1971), &% +7° (: ®2) is the square of the total deflection of the vertical and g
is the gravity.

Vanicek et al. (1999) show that first and third terms in the R.H.S. of Eq. (3.4.14)
can be neglected to obtain the ellipsoidal correction to gravity disturbance up to an

accuracy of 10 uGal. Therefore, Eq. (3.4.14) is now written as
Esg = 9P, (3.4.15)

We substitute g, (= f sin2¢) in Eq. (3.4.14) to get a comparatively more robust

formula for ellipsoidal correction to the gravity disturbance

&5 =269 f?sin’ pcos® p—29 fSin(DCOS§0c§+%®2 (3.4.16)

Further substituting & = —i% and r in geodetic coordinates (Claessens, 2006)
r

r=r

e_geod =

1-e?(2—e?)sin’
aJ ( 5 )2 Y (3.4.17)
1-esin“ ¢

in Eq. (3.4.16), we get
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. f . 1-e’sin’ g oT g
g, =25q f2sin? pcos? p—| 29 Lsingcos —+20% (3.4.18
" ’ e ! PERE 1—e2(2—e2)sin2¢; op 2 ( )

It should be noted that e* term in Eq. (3.4.17) must not be omitted, as it can cause a
difference of approximately 145 min r.

To simplify Eq. (3.4.18), g/ can be approximately taken as unity. Implementing
this condition (g/y =1) causes a maximum error of less than 2 uGal that is five times

smaller than what has been allowed in the original study (~10 pGal). Therefore, the

ellipsoidal correction to the gravity disturbance up to an accuracy of 2 uGal is given as

1-€e’sin*g ar
1-e’(2-¢€*)sin*p |Og

&5, =269 f2sin’ pcos® - 218in(oCOS¢)\/ +g@)2 (3.4.19)
a

The first term on the R.H.S. of Eq. (3.4.19) can never get greater than 5 pGal;

hence, it can be omitted for further simplification, but we do not suggest omitting it. The

third term in the R.H.S. of Eq. (3.4.19) is the deflection correction and is exactly the same

as derived by Claessens (2006).

Regarding the deflection correction, Vanicek et al. (1999) reported that the
maximum vertical deflection could reach a value of 30” and as such, the maximum
correction cannot exceed 10 puGal while Claessens (2006) suggested 70” as the maximum
vertical deflection and gets a maximum value of 56 uGal for the deflection correction.
Both suggested neglecting the same. We can only speculate that this small value was not
of much significance during those times especially when there were larger error sources
to be considered. However, the maximum vertical deflections can reach ~109” (as in
GGMplus, Hirt et al., 2013) in the steep Himalayan peaks, which translates to a deflection

correction of 139 pGal. Indian vertical deflections from Gulatee (1955) that were re-
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processed by Featherstone and Goyal (2022) can be used in future geoid computations

over India.

For some quantification, we can have a rough estimate from Vanicek et al. (1999).
They computed the ellipsoidal correction to the gravity disturbance in the Canadian Rocky
Mountains that ranges from -118 pGal to +157 pGal. It was reported that on Stokes’s
integration, this correction translates to a geoidal effect of -70 mm to +140 mm. Thus, the
deflection correction (max ~139 uGal), which is a term in ellipsoidal correction to the
gravity disturbance (third term in the R.H.S. of Eqg. (3.4.19)), must not be omitted

especially when working in mountainous regions.

Next is the ellipsoidal error due to spherical approximation that is given by

(fundamental equation of physical geodesy minus its spherical approximation)
£ = (—E%—E]T (3.4.20)

The UNB method uses R as the mean radius of the Earth that can be rearranged as
-1
R:(azb)% —a(l-f)" za(l—%j:a: R(l—%j (3.4.21)
Substituting the normal gravity gradient (Eq. 3.1.2) with a from Eq. (3.4.21) in Eq. (3.4.20)
gives

2 f ] 2 2 ] f
= =[1-— |(1+ f+m=2fsin*p)-= |[T~=| f+m-=-2fsinp—— |T (3.4.22
i (R( 3)“ " ?) Rj R( " v 3J (3:4.22

This is the same equation as given in Vanicek et al. (1999).

It should be noted here that use of any other normal gravity gradient (Section 3.1)

in Eq. (3.4.20) will not provide any improvement in Eq. (3.4.22). It is simply because, in



116

the UNB method, the ellipsoidal corrections are applied at the geoid level (e.g., Wong,

2001) and all the expressions of the normal gravity gradient will provide the same result.

There is literature from the UNB group (e.g., Vani¢ek and Martinec, 1994; Tenzer
and Janak, 2002; Ellmann and Vanicek, 2007) that suggest using Eqs. (3.4.15) and (3.4.22)
for the ellipsoidal corrections. However, in the recent manual (UNB, 2009), the following

formulas have been used to apply the ellipsoidal corrections (Jekeli, 1981b; Cruz, 1986):

2

g, =~ sinocoso L (3.4.23)
R 06

9

2

¢ =—%(30052¢9—2)T (3.4.24)

ell

The gravity anomalies with ellipsoidal correction (AgUNB) are calculated using

2

2
AGirs = AOSE — %sin acose% + eE(Scosz 0-2)T (3.4.25)

where Ag_\e is the gravity anomaly on the geoid corrected for topographical and

atmospheric masses. This follows from Jekeli (1981b, Eq. 4.21)

2 2,2
Ag:—ﬁ—gT—ezsinecosHﬂ+ 6J2a—3P2(cos«9)—3w '
or r roo r GM

sin’ G]T (3.4.26)

where the ellipsoidal correction for the spherical approximation can be obtained by
rearranging the fourth term on the R.H.S. of Eq. (3.4.26) using some approximations based

on a fortunate similarity in the numerical values of various parameters

a)ZaZ e2
(e.g., GM z?j Figure 3.4.1 shows the two ellipsoidal corrections used in Eq.

(3.4.25).
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Figure 3.4.1: Ellipsoidal correction to (a) gravity disturbance and (b) spherical

approximation as applied in the UNB method.

3.4.3 Ellipsoidal correction in the KTH method
The KTH method applies ellipsoidal corrections in two parts:

) Ellipsoidal correction due to the use of spherical boundary condition (Sj6berg,

2003c; 2004).

e’ . oT € )
Ao _cort = Ag ——-C0SIsin 9%—;(3cos 0-2)T (3.4.27)

Equation (3.4.27) resembles Eq. (3.4.25) used in the UNB method. However, on a
closer look, there is a ‘sign’ difference between the two formulas. Following Jekeli (1981b,
Section 4), the signs followed in the UNB method seem more appropriate (Eq. (3.4.26))
but needs further investigation. However, in this study with the KTH method, we use Eq.

(3.4.27) as is used by the KTH group.

i) Upward continuation of the corrected gravity anomaly from reference ellipsoid of

radius T, (: av1-e?’cos’® 0) to the sphere of radius a.
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aAg ell _corl

Agle<|'|I'H :Agell_corl+(a_ re)[ 8r

j = Ag + G (3.4.28)

where 6G is the total ellipsoidal correction that needs to be applied to the gravity anomaly

and is given by (cf. Sjéberg, 2003c, Eq. 16)

5G =¢? Ecos%’(aA—gj —cosé’sin@ﬂ—(Bcosze—z)I (3.4.29)
2 or )., aod a

Therefore, the ellipsoidal effect on geoid is (Sjéberg and Bagherbandi, 2017)

a _(8=R)_R_ o ls 2 ,_€lacos’g(aT 4
R R N R

The first term on the R.H.S. of Eq. (3.4.30) is for geometrical scaling of the geoid
undulation, while the third term is due to the change in disturbing potential between

spheres with radii a and r,.

The above formula (Eg. (3.4.30)) has also been given in terms of spherical

harmonics. For details, refer to Sjoberg (2004), Sjoberg and Bagherbandi (2017).
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3.5 Downward continuation

The term downward continuation is strictly meant for geoid computation using Stokes’s
integration, where we need the gravity anomalies on the geoid. That is, either the observed
gravity or computed gravity anomalies need to be brought down from the Earth’s surface
to the geoid level. Please note that the geoid undulation can also be calculated using the
height anomalies computed on the Earth’s surface plus the geoid-quasigeoid separation
term in which we do not downward continue the gravity anomalies to the geoid. This will

be discussed in Section 4.3.

However, in the computation of height anomaly using the analytical continuation
solution (Moritz, 1971; Pellinen, 1972) of the Molodensky’s problem, we have to either
upward continue or downward continue the gravity anomalies from all the points on the
Earth’s surface to the level of the computation point. This analytical continuation is
discussed in Section 3.5.1. It should be noted here that Heiskanen and Moritz (1967, pg.
324) describe the computation of height anomalies using the downward continued gravity
anomalies at the geoid/sea-level. However, this is not a usual practice to be followed as it
somewhat defeats the purpose of the Molodensky’s theory of determining the shape of the

Earth, and hence, will not be discussed.
3.5.1 Downward continuation in the CUT method

The concept of downward continuation of gravity anomaly is also not forthright in the
CUT method. Although Pellinen (1972) has shown that all the available solutions of
Molodensky’s problem (Molodensky et al., 1962; Brovar, 1964; Moritz, 1971) are
equivalent, the CUT method makes use of the ‘solution by analytical continuation’, as
termed by Moritz (1971). In terms of gravity anomalies, the analytical continuation method

uses the Taylor series expansion to connect the gravity anomalies in the interior or exterior
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of the computation point-level surface to the corresponding gravity anomaly at the
computation point-level surface. This involves the use of downward or upward
continuation of the gravity anomalies in the CUT method (e.g., Moritz, 1980, Section 45).

To the first-order of the Taylor series, it is given by

Ag':AgP+Aza§—g (3.5.1)
z

where Ag, is the gravity anomaly at any fixed point P on the Earth’s surface and Ag' is

the corresponding gravity anomaly at the level surface passing through the computation

point.

The second term on the R.H.S. of Eq. (3.5.1) is the gradient of the gravity anomaly
times the height difference between the two point-levels. It will not be correct to call it a
downward continuation because it is also used for upward continuation. As such, we will

call it here an analytical continuation operator.

In spherical approximation, we have aaAg = 88Ag = GgAhg . Thus, the gradient can
z r

be written as (Heiskanen and Moritz, 1967, pg. 115)

0Ag  2Ag, R’ (fAg-Ag,
— =4 — || ——d 3.5.2
or R zz{f A (352)

In the planar approximation, the first term on the R.H.S. of Eq. (3.5.2) is neglected, and

the same is written as

2 —
oAg  R® ”A4d9 A% 45 (3.5.3)
or 2x |

o

Itis shown that the G, term in the solution of Molodensky’s problem reduces to (Heiskanen

and Moritz, 1967, pg. 312)
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ang _ arg

G=—(H-Hp)—==-(H-Hp)— (35.4)

We recommend the readers to see Moritz (1980, pg. 387-388) for some insights into this
analytical continuation solution.
The CUT method involves the use of G, term (Eqg. (3.5.4)), i.e., analytical

continuation of gravity anomaly (downward or upward). However, it does not make use

of the gradient operator (Eq. (3.5.3)) rather, approximates the G, term with the planar TCs

(Moritz, 1980, Eq. 48-31; McCubbine et al., 2019).

oAg 1 H-H,)
G, =—(H —Hp)a—szGpRZH(TP)dG (3.5.5)

Equation (3.5.5) is derived assuming that the free-air gravity anomalies on the
Earth’s surface are linearly correlated with the elevation, i.e., A —Ag'= ZﬂGp(AZ) .Also
see Moritz (1980, Egs. 48-12 and 48-13), and Heiskanen and Moritz (1967, Eqgs. 7-96 and
7-97).

Following are a few observations over this method that should be investigated

further:

) The expression of G, (Eq.(3.5.4)) in terms of gravity gradient neglects the term
Ag Ag :
-2(H —HF,)F (Eq. (3.5.2)) or —(H —HP)F (Moritz, 1980, Eq. 45-29). For

the Himalayan belt, where the gravity anomalies can reach 600 mGal, and height
difference in an area of 1°x1° can reach up to 7000 m, this neglected term can reach
a maximum value of ~1.30 mGal or ~0.65 mGal, depending on which formula is

being used.
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i) Following the derivation in Moritz (1980, pg. 416), we can approximate the G, term

by the planar TC iff the gravity anomalies on the Earth’s surface are linearly (or near
linearly) correlated with the elevations. This assumption seems not to be strictly
valid in various regions (e.g., Figure 2.1.5a) with varying heights. Moreover, with
the use of the second-order approximate formula (Eq. 3.1.4) in the computation of
free-air gravity anomalies on the Earth’s surface, they should not be assumed as
linearly correlated with the elevation. Therefore, it is possible that Eg. (3.5.5) might
not be valid from a theoretical point of view and a numerical test should be

developed to quantify the error, if any, being introduced due to this.

iii) G, is not equal to but approximated by the planar TC (Eqg. (3.5.5); also see Section
3.2.1; Featherstone et al., 2018; McCubbine et al., 2019). The difference between
Stokes’s integrated G, (S(G,)) and Stokes’s integrated TC (S(TC)) is equivalent

to the FOIE (Moritz 1980 Eq. 48-29), i.e.,

zGpH?
/4

5(G,)=5S(TC)- (3.5.6)

It should be noted that negative sign in Eq. (3.5.6) is sometimes omitted (e.g.,
Sjoberg, 2000; Hwang et al., 2020) and Eq. (3.5.7) is used

7GpH?

S(G,)=S(TC)+ ;

(3.5.7)

We now provide a short interpretation on the quasigeoid from height anomalies
that may require further speculation (also see Section 4.3). Following the CUT method,
we calculate height anomalies on the Earth’s surface. Therefore, the surface developed
using these computed height anomalies will be telluroid and not the required quasigeoid.

To obtain the quasigeoid, we think that the height anomalies should probably be downward
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continued to the ellipsoid along the ellipsoidal normal. One can argue that the height
anomalies are not any physical quantity but only a mathematical term and therefore, there
is no need to downward continue them using the gradient of height anomaly. Instead, we

can simply consider them to be on the ellipsoid.

In our support, we would like to mention that the height anomalies are computed
using gravity anomalies, so they form some physical basis. Moreover, height anomaly
gradients have been used for the analytical continuation of the height anomalies in the
literature. For example, Eq. 8-68 in Heiskanen and Moritz (1967), but it was simplified to
a more general case where the height anomaly gradient term vanishes (Heiskanen and
Moritz, 1967, Eq. 8-71). Also, see Agren (2004, Eq. 5.43), where they used height anomaly
gradient in the derivation of downward continuation effect on geoid undulation. Another
example comes from the spherical harmonic synthesis of geoid undulation. Rapp (1997),
Hirt (2012) and Goyal et al. (2019a) upward continued the height anomaly computed on
the ellipsoid to the Earth’s surface for converting the height anomaly to the geoid
undulation. Therefore, we reiterate that the height anomalies may be downward continued
from the Earth’s surface to the ellipsoid to define the quasigeoid, or there must be a

convention on the interpretation of the quasigeoid.

A possible derivation for the downward continuation of height anomalies follows

T
differentiating ¢ =—= with respect to h or r (in spherical approximation)
/4

o _10T_Toy 1(aT Toy)__Ag, (35
oh yoh y*oh yloh yoh y o
o 0 Ag, | . .
This implies o . Therefore, the height anomalies can be downward continued
/4

using
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% = A% (3.5.9)
oh y

where h is the ellipsoidal height.
3.5.2 Downward continuation in the UNB method

The UNB method follows Stokes’s solution that requires the gravity anomalies on the
geoid. That is, the gravity anomalies on the Earth’s surface need to be downward continued
onto the geoid. This is done after Helmert’s second condensation of the topographical and

atmospheric masses (Section 3.2.2 and 3.3.2)

The UNB method predominantly uses inverse Poisson’s integral for downward
continuation and usually mentions a warning regarding its limitations in the rapidly
undulating regions and/or higher than 5’X5’ resolution of the computation grid (e.g.,
Vanicek et al., 1995). There are several papers that report on the stability and instability
of inverse Poisson’s integral (Martinec, 1996, 1998; Sun and Vanicek, 1998; Kingdon and
Vanicek, 2011; Vanic¢ek and Santos, 2010) and other methods (Hunegnaw, 2001; Huang,
2002; Huang et al., 2003a) for downward continuation of gravity anomalies. Despite
different solutions to the inverse Poisson’s integral, two common arguments that can be
extracted from these studies (except Vani¢ek and Santos, 2010) are: i) the inverse
Poisson’s integral method is stable for Canadian rocky mountains and hence, it is stable
for the rest of the world except perhaps for the Himalayas, and ii) the method is either

unstable or convergence is slow if a grid higher than 5°X5’ resolution is used.

In this study, we work in the study area having diverse topographical features
varying from the Gangetic plains to the Himalayas with a computation grid of 0.02°x0.02°
(=1.2’x1.2”). Thus, we have not used the inverse Poisson’s integral but the analytical

downward continuation (Heiskanen & Moritz, 1967, pg. 115). Though India provides the
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best topography to test the extremities of any methods, an objective comparison between

the two methods remains one of the limitations of the present study.

We have used the exact analytical expression as given in Heiskanen and Moritz
(1967, pg. 115) without neglecting any term. To downward continue the gravity anomaly

at point P on the Earth’s surface, we compute the gravity gradient using Eq. (3.5.2), with

I =2RsinZ.
2

The integrand in the second term on the R.H.S. of Eq. (3.5.2) contains the inverse
of distance cubed; hence, the term will not be affected significantly with the increase in
distance (only after some considerable distance). We did the integration using the gravity
anomaly, corrected for topographical and atmospheric masses, with an integration radius
of 2° Figure 3.5.1 shows the calculated gravity gradient used for the downward
continuation of the gravity anomalies. A scatter plot and a histogram of the gravity
gradients are shown in Figures 3.5.2 (a) and (b), respectively. Though most values are
within [-0.03 mGal/m, +0.03 mGal/m], the large values are observed in those regions
where we suspect not good quality of the GETECH gravity data, i.e., regions in
Uttarakhand, Himachal Pradesh and Jammu and Kashmir, along the Himalayan belt. We
suggest that a more meticulous comparison study is required for the downward
continuation methodologies over the Himalayan belt with a higher than 5’X5” resolution

computation grid.
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Figure 3.5.2: (a) Scatter plot and (b) Histogram of gravity gradient.
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3.5.3 Downward continuation in the KTH method

The KTH method applies the effect of DWC directly on the approximate geoid undulations

(sNOPwe) and, therefore, can be written as

SNOWC = i jgj S(w)(Agers —Ag')do (3.5.10)

where AgRyS is the downward continued gravity anomaly and Ag' is the gravity anomaly

on the Earth’s topography as is required in the KTH method for (modified) Stokes’s

integration.

Using a concept similar to dividing the topography in the smooth shell and the

rough parts, Eq. (3.5.10) can be written as

R

SNOWe :—J'J‘S (x//){(Ag PV~ Ag®)+(Ag® - Ag ')}da (3.5.11)

SNV = SNPYC + SNDWC (3.5.12)

where Ag® is the gravity anomaly of smooth shell.

Sjoberg (2003b), Agren (2004), and Sjoberg and Bagherbandi (2017) in their solution to

Eq. (3.5.11) gives the same expression for the second term on the R.H.S of Eq. (3.5.11)

NP = 2 [[s(w aAg (Q)-H(Q))do (3.5.13)

However, somewhat different expressions for the first term on the R.H.S. of Eq. (3.5.11)

are observed, and are listed in Table 3.5.1.
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Table 3.5.1: Three solutions for first term on the R.H.S of Eq. (3.5.11)

Reference Solution
Sich 2003b HAg N H H? oAg 3H 2Ag 2H 2( (3.5.14)
Ober E— - - - 0.
joberg (2003b) y RtH 2/ H y(R+H) (RtH)

HAg 3H{ H?aAg | H®Ag 3H?¢

Agren (2004 — + + 35.15
gren (2004) y R+H 2y 6H y(R+H) (R+H)2 ( )

Sjoberg and HAg 3HC H'0Ag  H'Ag |, 3HYC o og
agherbandi 2y 0H ‘ -
(2017) r ReH Z o r(ReR) (ReH)

A typographical error in Eq. (3.5.14) (Sjoberg, 2003b) has already been mentioned

in the other two literatures (Table 3.5.1). Our derived expression for §N,>*“ is the same

as Eq. (3.5.15) (Agren, 2004). The KTH method makes use of only first three terms in Eq.

(3.5.15) and ignores the last two terms in the computation of §N,”"°. A quantification of

the five terms is given in Sjoberg (2003b) but we observe that the values assumed for a

few quantities do not match with the observations/computations of the present study.

Therefore, we recomputed the five terms in Eq. (3.5.15) with the values i) used in Sjoberg

(2003b) and ii) observed (approximately) in the present study. Both are listed in Table

3.5.2, keeping the same values for height. From Table 3.5.2, along with substantial

differences obtained in the first and the third terms, we believe that the fourth term cannot

be ignored in mountainous regions.
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Table 3.5.2: Approximate maximum values for the five terms in Eq. (3.5.15) [parametric

values in the first row are from Sjoberg (2003b) and in the second row are from this

study; units are in m]

HAg | 3H¢G | HP2Ag | H®Ag 3H’¢
4 R+H | 2y oH y(R+H) (R+H)2
|£|<100m,|Ag| < 200mGal,
oA 1.019 | 0.235 | 0.382 7.98e-4 1.84e-4
- 9] < 0.03mGalim, H = 5000(8800)m | (1.794) | (0.413) | (1.184) | (2.47e-3) | (5.6%-4)
r
|£]<105m,|Ag| < 600mGal,
oA 3.058 | 0.247 | 1.529 2.39%-3 1.93e-4
- 9] <0.12mGalim, H = 5000(8800)m | (5.382) | (0.434) | (4.736) | (7.42e-3) | (5.98e-4)
r

The DWC effect on height anomaly can be derived from Eq. (3.5.11) and using the

analytical solution of Molodensky’s problem with the involved G, term (Eq. (3.5.4)). Since
the gravity anomalies have to be analytically continued to the computation point-level
surface, the first term in Eq. (3.5.11) vanishes. Now to get the DWC effect on height
anomaly, Eq. (3.5.13) is modified to be computed on the Earth’s surface, i.e.,

5¢ove =r°—p”8(c//)aA—g(H (Q)-H(Q"))do

(3.5.17)
Ary 7! or

Comparing Egs. (3.5.13) and (3.5.17), R isreplaced by r_ (= R+ H) and normal

gravity is now computed on the telluroid instead of on the ellipsoid. Also see Sjoberg and

Bagherbandi (2017, Eq. 6.6b). From Agren (2004, Egs. 5.45 and 5.46), we have

1 1 2H
—==1-— (3.5.18)
Yo 7 I

1 1 H

_:_[H_] @5.19)
R - -
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Using Egs. (3.5.18) and (3.5.19), an approximate relation between (rcp, }/) and (R, y,) can

be written as

r
ﬂ:B(l+ 3H j (3.5.20)
Y7 R+H

Substituting Eg. (3.5.20) in Eq. (3.5.17), the DWC effect on height anomaly can be

calculated as

P :r:%jjs(w)as—rg(H (Q)-H(Q'))do+
’ (3.5.21)
FEE (s B2 (1 (@) H()do

Please note that the second term on the R.H.S. of Eq. (3.5.21) is not seen in KTH’s DWC

. : 3HS, . .
literature, instead —C:"ls used (e.g., Agren, 2004; Agren et al., 2009b). We believe

Ieo

HS,

cp

is not just the part of DWC. This term, with approximate height anomaly (¢,),

arises due to the use of scaling (Eqg. (3.5.20)) that is done because for height anomalies,
computations are done on the Earth’s surface with normal gravity on the telluroid.

3H{S,

Therefore, arises from the formulation of approximate height anomaly, and similar

I
terms may also arise for all the additive corrections in the KTH method of height anomalies

due to the scaling factor. One can always avoid this by simply using r, and normal gravity

on telluroid in their formulations, i.e., by not using any scaling.
3.6 Zero-degree term and tidal corrections

Bruns’s solution (ungeneralised; Heiskanen and Moritz, 1967, pg., 84-85) is valid based

on the assumptions that i) the potential of the normal ellipsoid (U,) and the geoid (w,)
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are same and ii) normal ellipsoid encloses the mass same as that of the Earth, i.e.

GM =GM There is one more assumption, i.e., the centre of the normal ellipsoid

Ellipsoid Earth *
coincides with the Earth's centre of mass (this makes degree-one harmonic coefficients
inadmissible). Practically, none of these assumptions are warranted. Therefore, along with
Stokes’s integration, one must account for any systematic bias (if any) emanating due to
these three assumptions. Non-fulfilment of the first two assumptions is attached with what
is known as zero-degree term while the failure of third assumption relates to the first-

degree term. Here we will discuss the zero-degree term only because it has been reported

inconsistently in the literature (e.g., Goyal et al., 2022).

Another important aspect is the tidal corrections for the effect of tide-generating
forces of the Sun and the Moon. Here, we restrict ourselves from the discussions on the
tidal potential, tidal forces, and tidal deformation (see Melchior, 1958, 1974, 1978; 1983;
Vanicek, 1973; Heikkinen, 1978; among others). Instead, we discuss the effect of different
permanent tide systems in relation to geoid modelling. There are mainly three types of
permanent tide-system: tide-free, zero-tide and mean tide. Their definition, in short, is
(Groten, 2004): (i) tide-free is the quantity from which all tidal effects have been removed,
(i) zero-tide includes the indirect tidal distortion, but not the direct distortion, and (iii)
mean-tide includes both direct and indirect permanent tidal distortions. For more detailed
definitions and distinctions among them, see, e.g., Ekman (1989), Makinen and Ihde

(2009) or Mékinen (2021).

In spherical harmonic synthesis (SHS) of the gravity field, the permanent tide

affects the value of the dynamical form factor (J,) and hence, the fully normalised

degree-two order-zero Stokes coefficient. This further causes change in geometrical and

physical parameters of the normal ellipsoid in use.



132

It should be noted that the changes in the normal ellipsoid due to change in the
solid Earth permanent tide-system are not compulsory. It depends on how we choose to
define the normal ellipsoid, i.e., a changing or an unchanging/fixed reference ellipsoid.
Though it seems like the latter is the current practice, the former has also been mentioned
in the literature (e.g., Vermeer and Poutanen, 1997; Smith, 1998; Lemoine et al., 1998,
Section 11.1; Méakinen, 2017; QPS, 2020). However, discussions on geodetic quantities in
different tide-systems are almost always presented with respect to a fixed reference
ellipsoid. Also, if there is no concern about the tide-system of an ellipsoid (i.e., for ‘the
fixed ellipsoid’ case), then one can always question the use of mentioning tide-system of
the ellipsoidal parameters (e.g., Moritz, 2000; Ihde et al., 2017; Drewes and Hornik, 2013;

Kotsakis and Katsambalos, 2010; Angermann et al., 2016).

Therefore, in this section we discuss the change in physical Earth and also

parameters of the normal ellipsoid due to change in the solid Earth permanent tide-system.

We provide numerical examples for both the cases: change and no-change in
ellipsoidal parameters due to different tide-systems. It is shown that the geoid is
independent of the permanent tide-system if we consider that there is a change in the
ellipsoidal parameters for different tide-systems. The results recommend towards a
required convention on: if we want 1. geoid undulations independent of permanent tide-

system or 2. a single reference ellipsoid independent of tide-system.

Both, zero-degree term and tidal corrections are common to all the methods yet
handled inconsistently in the literature on geoid computation. Like Section 3.1, we will

discuss both these corrections in general rather than method-wise.
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The geoid undulation N (without topographical biases e.g., Rapp, 1997) in spherical

harmonics is given by (subscript G is for GGM and subscript E is for the normal ellipsoid)

N(r,0,A) = Z[ )
To o (3.6.1)
S| = GM .
Co_nm— ( j Ce m cos(m/1)+SG am SIN(MA) an(cose)
m=0 GMG aG
N(r,e,l)zeMe(l_GME}
ry, GM
\/_GM ( j[CG 10050+ Co ucos}tsm0+SG 118Iﬂ/18|l’h9]
7, r
(3.6.2)
7o ;( ]
> EG_n,m—GME [a—EJ Ce nm |COS(MA) +Sc_nmsSin(MA) [Pnm(cos)
m=0 GMG aG
N=N;+N+> N, (3.6.3)

n=2

We assume that the centre of mass of the Earth is coinciding with centre of the

normal ellipsoid, therefore, degree-one terms are inadmissible. Please note that this is just

an assumption, which need not be true and necessary corrections are required (e.g.,

Heiskanen and Moritz, 1967, pg. 99; Kirby and Featherstone, 1997). Now, if the second

assumption of Bruns’s solution is not valid then from Eq. (3.6.2) zero-degree term comes

into play. The freely available SHS software, like isGraflab (Bucha and Janak, 2014) or

online services, like ICGEM (Ince et al., 2019) applies this zero-degree term (No) i.e.,

GM, —GM

Ny =—C& ——E (3.6.4)

1



134

We know that the first assumption is also not valid in real world especially when
there are numerous choices of geopotential values both, local (e.g., Grafarend and Ardalan,
1997; Bursa et al., 2004; Kotsakis et al., 2012; Tenzer et al., 2012; He et al., 2017) and
global (e.g., Petit and Luzum, 2010; Dayoub et al., 2012; Sanchez et al., 2016; Amin et
al., 2019; Poutanen and Rozsa, 2020). However, Eq. (3.6.4) does not consider difference

in the values of geopotential and equipotential of the normal ellipsoid.

As such, a complete zero-degree term for the geoid can be computed using the

generalised Bruns’s formula that can be obtained as (Heiskanen and Moritz, 1967, Section
2-19; Smith, 1998)

_GM -GM, W,-U,

N,
7 Yo

(3.6.5)

which we abbreviate as
N, = ZT, - ZT, (3.6.6)

This zero-degree term is one of the most inconsistently reported corrections in the
geoid modelling publications. Different geoid solutions in phase-1 of the Colorado geoid
experiment varied substantially, and the leading cause was the inconsistent use of the zero-
degree term (Wang et al., 2018; Wang and Forsberg, 2019). However, standardisation on
the zero-degree term was then decided for further computations (e.g., Jiang et al., 2020;

Claessens and Filmer, 2020; Wang et al., 2021).

The computations of geoid and quasigeoid over Auvergne using various
approaches (e.g., Agren et al., 2009a; Valty et al., 2012; Janak et al., 2017) and their
comparison with our test computations using the CUT and the KTH methods over the same
region (Goyal et al., 2022; provided in Appendix C.4) indicate that previously reported

studies applied only the first term in Eq. (3.6.5). That makes ~730 mm difference in the
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final geoid solutions. Further, Foroughi et al. (2019) and Ellmann et al. (2020) claim to
have computed sub-centimetre geoid. However, the limited reported information on the
zero-degree term is inadequate to appreciate if it is a sub-centimetre precise geoid or a sub-
centimetre geoid shifted by an amount equal to the numerical value of the second term in
Eq. (3.6.5). Moreover, since this forms a systematic error, its effect is not seen in error

propagation.

Speaking collectively, none of the computations with the methods those we are
working with (i.e., CUT, UNB and KTH) seem to have consistently reported the zero-
degree term in all the computations. That is, it might be plausible that some computations
might have involved the zero-degree term, while others may not. The fitting to

GNSS/levelling also clouds the matter.

Now, revisiting Eq. (3.6.5) to be used with SHS of geoid undulations, the most
commonly used normal ellipsoids in geoid computation are WGS84 (NIMA, 2000) and
GRS80 (Moritz, 2000). Therefore, with some global W, values (Table 3.6.1), a
quantification of Eq. (3.6.5) is provided in Table 3.6.2 using GRS80 and WGS84

ellipsoids. The value of GM, in the computations of Table 3.6.2 is taken as

3986004.415%10% m3s (Ries et al., 1992), which includes atmospheric masses.

Table 3.6.1: Values of the equipotential of normal ellipsoid (Uo) and global geopotential
(Wo)

Potential | Value (m%s?) | Reference

62636856.00 IERS/IAU (Petit and Luzum, 2010)

W, 62636855.69 | Bursa et al. (1999)

62636853.40 IHRS (Séanchez et al., 2016; Poutanen and Rézsa, 2020)

U 62636860.8500 | GRS80 (Moritz, 2000)
0

62636851.7146 | WGS84 (NIMA, 2000)
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Table 3.6.2: Individual terms of Eq. (3.6.5) i.e., generalised Bruns’s formula implied

zero-degree term.

W, U, T, (m) | ZT, (M) | N, (M)
min | -0.9378 | -0.7617 | -0.1783
max | -0.9360 | -0.7577 | -0.1761
min | -0.9378 | -0.5276 | -0.4112
max | -0.9360 | -0.5248 | -0.4102
min | -0.9378 | -0.4959 | -0.4427
max | -0.9360 | -0.4933 | -0.4419
min | -0.0048 | 0.1714 | -0.1771
max | -0.0048 | 0.1723 | -0.1762
min | -0.0048 | 0.4043 | -0.4113
max | -0.0048 | 0.4065 | -0.4091
min | -0.0048 | 0.4359 | -0.4407
max | -0.0048 | 0.4382 | -0.4430

IHRS GRS80

EGM2008 | GRS80

IERS/IAU | GRS80

IHRS WGS84

EGM2008 | WGS84

IERS/IAU | WGS84

Table 3.6.2 shows a large systematic bias that can enter into the geoid solution if
the zero-degree term is not handled appropriately. We further see that the overall zero-
degree term (N, ) for the two different ellipsoids does not vary much compared to the
significant variations in the ZT; and ZT, terms, individually. Therefore, use of both the

terms in Eq. (3.6.5) is suggested. In the computation of the zero-degree term, y, and r
depend on latitude, so N, will differ by a few millimetres from equator to pole (Table
3.6.2).

It should be noted here that a few researchers (e.g., Schettino, 2015, pg. 369)
provided GM . value from WGS84 (NIMA, 2000) but U, value from the older version
of WGS84 (Macomber, 1984), i.e., 62636860.8497 m?s2. This can cause a further

error/shift of ~900 mm in the geoid solution.

Then, there is tide-system that also enters into the computations. For example,
almost all the GGMs are in the tide-free system (with a few in the zero-tide system), but

there is an inconsistency in reporting the tide-system of GRS80. Rapp et al. (1991) and
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Ihde et al. (2017) mentioned GRS80 to be in tide-free system, Drewes and Hornik (2013,
pg. 262) report that semi-major axis and flattening of GRS80 are in zero-tide system,
Kotsakis and Katsambalos (2010) use GRS80 as being defined in zero-tide system and
Angermann et al. (2016, Table 3.1) mentioned that semi-major axis is in tide-free system

while Jz is in zero-tide system.

However, we interpret that the GRS80 is in the tide-free system. The rationale
behind this is the explicit mention in Moritz (2000) that the dynamical form factor of
GRS80 is “excluding the permanent tidal deformation”. Accordingly, we also interpret
that the WGS84-older version (Macomber, 1984) and WGS84 (NIMA, 2000) both are in

the tide-free system because they use, directly or indirectly, the same value of J, from

GRS80.

Proof for our speculation on the similarity of WGS84 and GRS80 follows from

Table 3.6.3, which tabulates their respective defining parameters.

Table 3.6.3: Defining parameters of the three normal ellipsoids.

Ellipsoid | Defining Parameters Reference
X\I/dGeEM- a(m) Cao © 7 GM (m*s) Macomber
version 6378137 | -4.8416685x10* | 7.292115x10° 3.986005x10 | (1984)
a(m) 1/ f o (sh GM (m3s?) NIMA
WGS84
6378137 | 298.257223563 | 7.292115x10° | 3.986004418x10% | (2000)
a(m) J, w (s GM (mds?) Moritz
GRS80
6378137 1.08263x103 | 7.292115x10° 3.986005x10% | (2000)

From Table 3.6.3, the older WGS84 had the parameters exactly the same as that of

the GRS80 (with C;5*-° truncated to eight significant digits).

ISR =1,08263x10° = —/5CI® = CoP = 4.8416685489x10™* = C,/os-o1

Using J, = _\/562,01 we also have J, yeees o = 0.0010826299
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Using the Newton-Raphson (NR) solution for ellipsoids (see Section 3.6.3) f and

U, are computed to be Y fyeses o = 298.257223563 and

Uy weses o = 62636860.8497 m’s™ . It should be noted that the computed 1/ feses o 1S

same as the defining parameter of WGS84 (1/ f,.q, » Table 3.6.3).

Furthermore, utilising the parameters of WGS84, we computed

J, woses =0.0010826298 and U, 55, = 62636851.7146m?s™. On truncating J to

2_WGsss
eight significant digits, we have J5 wesss_oid =J2 wesas = J2_crseo (NIMA, 2000, pg. 7-2).
The difference in the normal potential of the two versions of WGS84 ellipsoid is only due
to a change in the GM value (3.986005x10™ m?3s2 versus 3.986004418x10" m3s?).
However, a difference in 1/ f of the three ellipsoids should not have been there but is due
to only truncation and rounding errors.

However, under the framework of the International Height Reference System
(IHRS) it has been now suggested to use the mean-tide system for all geodetic
observations, and this has been adopted as the International Association of Geodesy (IAG)
convention (Poutanen and Ro6zsa, 2020). Therefore, if using a GGM in IHRS, there is a
need to i) convert the Stokes coefficients and other ellipsoidal parameters (Section 3.6.3),

among tide-systems, and ii) account for the difference between W, and w,"* .

Using the condition that U, and W, are invariant to the permanent tide systems

(Bursa, 1995), the zero-degree term for EGM2008 with respect to IHRS, staged via GRS80

(with 7, = 7,) simplifies to



139

AN. = (GM EGM 2008 — GM GRS80 ] _ [WEGM 2008 _UGRSBO ] _
0
7o 7o
GM ~-GM W, —U
EGM 2008 Grsso |_| Yo GRS80 (3.6.7)
7o 7o
AN, = Wo"™ ~Weguans | _ 62636853.4—62636855.69 _ 0234m
7o 9.78032677153479

If we need to transform the regional/national vertical datums to the IHRS, then

local W, values might have to be re-computed. In the literature, we were unable to find
any local W, value computed in the mean-tide system. The input quantities for the

computation of geopotential value are dependent on the choice of tide-systems. Therefore,

these W, values in the mean-tide system might differ (e.g., Sanchez et al., 2016) from the

present values and hence, would have to be re-computed in the mean-tide system and with

respect to the IAG-adopted IHRS value of W,"* (Sanchez et al., 2021).

3.6.2 Tidal corrections to the physical Earth

In many aspects of geodesy, conversions need to be made among different permanent tide
systems (zero-tide, tide-free, mean tide) because of different conventions adopted in sub
disciplines. For instance, gravimetric geoid heights are recommended to be in the zero-
tide system (e.g., Vatrt, 1999; IAG Resolution 16 Hamburg 1983) though several are
computed in the tide-free system, GNSS positioning with respect to the International
Terrestrial Reference Frame (ITRF) is in the conventional tide-free system (Poutanen et
al., 1996), and levelled heights are often in the mean-tide system (Heck, 1993b; Mé&kinen
and Ihde, 2009; Tenzer et al., 2012), though zero-tide has been implemented in some

European countries (Sacher at al., 2009).

For IGSN71 (Morelli et al., 1972) gravity network, it was suggested to use the tidal

correction (Heikkinen, 1979) and Honkasalo (1964) term. This gives gravity values in
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mean-tide system. However, it was followed by the suggestions from Heikkinen (1979)
and Ekman (1980), which caused IAG in its resolution no. 15 adopted in IUGG General
Assembly (1979) to recommend use of tide-free gravity values (Mueller, 1980; Uotila,
1980). Meanwhile, Groten (1980) and Ekman (1981) point out the problems with the use
of tide-free system, and they independently suggested using zero-tide gravity observations.
Following these studies, IAG in its resolution no. 9 adopted in IUGG General Assembly
in Hamburg in 1983 recommended using the zero-tide system for the potential field

quantities.

However, recently under the aegis of IHRS, IAG has recommended the use of
mean tide system for all the geodetic observations (Poutanen and R6zsa, 2020). Therefore,
we revisit Ekman’s (1989) equations (Egs. (3.6.8) - (3.6.11)) for the conversion of gravity,
geoid undulation, orthometric height and ellipsoidal height among the three tide-systems

(gravity in pGal and heights in mm).

Our — 1 :—6(\9NT =-30.4+91.2sin’ ¢
.
oW, S,
Oar = Ore =—(6, 1) — =(5,-1)(-30.4+91.2sin’ p) (3.6.8)

oW
— =90 T
Owr — 9 275y

=5,(-30.4+91.2sin’ p)

Ny =N, :\%:99—2965in2¢

N =Ny = I(2

W _ k, (99—2965in’ p) (3.6.9)
9

Nyr — Ny = (1+ kz)\% = (1+k,)(99-296sin* o)
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H, —H, = —\% =—(99-2965in’ p)

=—(7,-1)(99-296sin’ p) (3.6.10)

W.
Hy —Hpe = _(72 _1)6

H, —H. ——, \% ——7,(99-296sin’ )

hMT _hZT =0
W, S,

hyr —hre =(1—72+k2)3=h2 (99-2965sin’ p) (3.6.11)
W. ,

hyr —hee =(1+k, = 7,) =L = h, (99— 2965in’ )

where Wt is the tidal potential, h2 and k2 are second-degree load Love numbers. Ekman
(1988) mentions that h> describes the vertical tidal displacement of the crust relative to the

ellipsoid and k; describes the additional potential due to the deformation. y, (=1+k, —h,)

3
and 0, (=1+ hz_Ekzj are the factors that come up in the derivations of vertical

displacement of the geoid relative to the crust and tidal gravitation as observed on the

surface of the deformed crust, respectively.

It is not clear from Ekman (1989) where these numerical values come from, which
makes it difficult to understand any approximations/assumptions involved in deriving
these equations and rederive the same from the viewpoint of cm-precise geoid. However,
Makinen (2021) provides more rigorous formulations for the conversion of gravity and
orthometric height among mean-tide and zero-tide systems. The building block is the tidal
potential (Eq. (3.6.12)), which is transformed in terms of the geodetic coordinates (Eq.

(3.6.13))

2
3 5 r ) 1
W.==H_.|—g.| — | | sin¢g—-= 6.12
=3 o,/4ﬂge[ReM ¢ :J (3.6.12)
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H, =—-0.31460 m is the zero-frequency tidal displacement amplitude, and

R, =6378136.55 m is the Earth’s equatorial radius and g, = 9.79828685 ms™

W, = (1+ 2—hj(o.9722— 2.8841sin” p - 0.0195sin* ) (3.6.13)
a

Thus, the derived conversion formula for gravity and orthometric height are (Makinen,

2021)

Our — Oy =—30.49+90.95sin ¢+ 0.31sin* o (3.6.14)

W; (¢,0)

Hy —Hy =
MT ZT 7/0((0)

=99.40—295.41sin”* o —0.42sin" ¢ (3.6.15)

To our disposal, we tried to derive relatively more exact formulas for the
conversion of gravity (Eq. (3.6.17)), geoid undulation (Eg. (3.6.18)), dynamic height (Eq.
(3.6.19)), orthometric height (Eg. (3.6.20)), normal height (Eq. (3.6.21)) and ellipsoidal
height (Eq. (3.6.22)) among different solid Earth permanent tide systems. Initially, unlike
Makinen (2021) and Ekman (1989), we made use of exact transformation of tidal potential

(Eg. (3.6.12)) in terms of geodetic coordinates (Eq. (3.6.16); Claessens, 2021)

Zhj{(w — 46> +3)sin’ qo—l} _ (1+2_h){—2.8907sin2 ©+0.9722
a

W, =A|1+— 3.6.16
! ( 3(1-e”sin’ p) a 1-e?sin?p } ( )

where A =-2.9166 m%s 2.

The derived conversion formulas are (gravity in pGal and heights in mm)

_ OW,  —30.485+90.644sin’ ¢
Jur =0z =750 1-e%sin? ¢
—30.485+90.644sin’ ¢
1-e’sin¢p
~30.485 + 90.644sin’ ¢
1-e*sin’ @

oW,

Ozr — Gre =—(6,-1) P (3.6.17)

:(52 _1)

oW,
oh

Our — O :_52 :52



H,.-H.,.=—(r,-1 =—(7,-1
zT TF (72 ) ” (450) g (72 )( 1_¢2 Sinzq) ]

NN W (9,0) 99.4-295.6sin’ ¢
MT zZT T -

Yo () (1+ksin® (/))(M)

W, (@,0 4 6sin?
N, — N =k, r (¢ )=k 99.4-295.6sin” ¢

70(0) 7 (1+ksin® p)(Ji-e"sin’ g

W; (¢,0) 99.4 —295.6sin” @

%o ((0)

Nyr = Npe = (1+Kk, ) — —(1+kz)(1+ksin2(p)(M)

99.1-294.8sin’ ¢
1-e’sin’ g

I
Za
3

|
I
I:I|Q
I
|
o
I
|
7\

99.1-294.8sin’ ¢
1-e*sin’ g

99.1-294.8sin’ ¢
1-e’sin’ g

70(450 9

_ Wi(p0) 70(45)  (991-2948sin’p) 70(45)
- B 1-e?sin? ¢ g

W, (9,0) 70(45°) 99.1-294.8sin’ ¢
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(3.6.18)

(3.6.19)

. 2 (45°)

=
—
S

0) n(4) [99.1—294.85in2(pjx}/0(45")
- 2

7o (45°) g 1-e?sin’gp g

W (¢,o)x70(45°)=_ 99.1—294.8sin? o X70(45")
1-e*sin’ @ 7

g

1-e*sin’

W, (9,0) 7(45°)  (99.1-29458sin’p) 70(45)
& 1-e?sin’g 7

W (9.0) 7o (i‘5°) (5, _1)(99.1— 294.8sin’ gojx 7,(45°)

Y

(3.6.20)

(3.6.21)



1 1
hur =hzy :(HMT _HZT)+(NMT _NZT):WT [__?j

7o 9
k, 7,-1

hyr =t = (Hzr —Hue )+ (Nyr = Noe ) =Wy 7__T
0

1+Kk, T
o §

Mr =hee = (Hyr —Hze )+ (Nys _NTF):WT{

|
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(3.6.22)

Considering y, =@ in Eq. (3.6.22), we get equation for conversion of the ellipsoidal

height, which is comparable to Ekman (1989), i.e.,

hMT - hZT =0

99.4 - 295.65in’
hZT_hTF:(l"'kz_72) £

(1+ksin (p)(\/l—e2 sin? (p)
99.4—295.6sin’ ¢

(1+ksin? (p)(\/l—esz(p)

hvr —hre :(1+k2 _72)

(3.6.23)

Table 3.6.4 provides a comparison of Ekman (1989) and our conversion formula

for gravity, geoid undulation, orthometric height and ellipsoidal height over ¢ = [0°, 90°].

From Table 3.6.4, it is seen that the difference in the two formulas for heights can reach

>1 mm. Hence, our equations should be used because they are relatively more exact as

compared to Ekman (1989), although these differences (>~1 mm) are mainly due to the

different second-degree load Love numbers as compared to the different equations. For

gravity, the difference is <1 pGal for all the conversions, and hence, as of today we can

use any of the two equations but in future when portable gravimeters will be of <1 uGal

precision, our formulas must be used.



Table 3.6.4: Difference between Ekman (1989) and our conversion formula

min max mean STD

Gravity MT-ZT -0.32 -0.09 -0.24 0.08
(uGal) ZT-TF -0.34 0.14 -0.11 0.17
MT-TF -0.58 0.06 -0.35 0.24

Geoid Undulation | MT-ZT 0.40 0.57 0.51 0.06
(mm) ZT-TF -0.22 0.31 0.06 0.19
MT-TF 0.30 0.72 0.57 0.15

Orthometric* MT-ZT -0.55 -0.36 -0.48 0.06
(mm) ZT-TF -1.29 2.93 0.84 151
MT-TF -1.65 2.43 0.35 1.46

Ellipsoidal height* | MT-ZT 0.00 0.00 0.00 0.00
(mm) ZT-TF -0.96 2.72 0.91 1.32
MT-TF -0.96 2.72 0.91 1.32

* Assumed g(e)=7.(9)

in our equations.
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It is important to note here that Ekman (1989) used the second-degree load Love

numbers of k, =0.3, h,=0.62, y, =1+k,—h, =0.68, 5, =1+h, -3k, /2=1.16, and we

have used k, =0.30190, h, =0.60780 (Petit and Luzum, 2010) y, =1+k, —h, =0.69410,

6, =1+h, -3k, /2 =1.15495 in our equations.

3.6.3 Tidal corrections to the ellipsoidal parameters

Before discussing the conversions of the ellipsoidal parameters in different tide systems,

we distinguish among defining parameters and derived parameters (Kinoshita, 1994) in

relation to the permanent tide. In principle, defining parameters of an ellipsoid are

observed/calculated independently. Hence, with the change in one defining parameter (due

to permanent tide) there should be no change in other defining parameters. Semi-major

axis is the defining parameter of both GRS80 and WGS84. Therefore, its value should

remain unaffected due to different permanent tide-system (e.g., change in J,).

However, with the variation in J, the flattening must change but, if the flattening

changes and the semi-major axis does not change, then we have changes only in the semi-

minor axis. As such, the volume of the Earth will alter. However, the mass of the Earth
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must not vary due to a different permanent tide system. So, a variation in the Earth's
volume without any deviation in its mass implies a change in the Earth’s density due to
the different tide system, which is physically unlikely. Therefore, the Earth's volume must
not change and that is possible iff the defining parameter- semi-major axis also changes
with the change in J,. Hence, deviating from the meaning of the term ‘defining parameter’.
As such, we recommend that any new normal ellipsoid should not have semi-major axis

and flattening as the defining parameters but follow the mean earth ellipsoid (Heiskanen

ad Moritz, 1967, pg. 109) with defining parameters being GM, J,, U0(=W0) and .

Looking into the SHS of gravity field functions, we see that the effect of different

permanent tide system can primarily enter in:

1) Even-degree zonal harmonic coefficients of the ellipsoid (C_:E_Zn,o)
A (3.6.24)
E_2n,0 m I
where
n+ 362" J
Jg o =(-1)™ E 1-n+5n—=2 3.6.25
oo = (7Y) (2n+1)(2n+3)( neen e’ j ( )
Or only in terms of flattening,
e 3f"(2- 1) J
I = ()" E Bl _11-n+5n—F2— 3.6.26
e =(71) (2n+1)(2n+3)( 2f, - . (3.6.26)

iy The scaling of the C¢ ,n, (Eq. (3.6.2))

2n
GM _
el % | e oo (3.6.27)
GM¢ | a4
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iii) Normal gravity

We need to find the conversion formulas for J,, or the flattening for different

permanent tide system because, all other parameters of an ellipsoid are a function of these
two terms and, GM and @. However, the latter two do not change with the change in the
permanent tide system. We will also work on the conversion formula of semi-major axis
because other studies (Heiskanen and Moritz, 1967, pg. 111; Bursa, 1995; Groten, 2004)

have provided formulas for it in addition to the conversion formula for flattening.

From Petit and Luzum (2010, Sections 6 and 7), we have (for brevity, we have

omitted the subscript in the following discussions) for normal ellipsoid

CH_CIF=— 0 k =-420071x10"°
2,0 2,0 Rem 2
_ _ _ H
AC, ={CM _C2l =0 _ —_139143x107° 3.6.28
2,0 20 20 Rem ( )
_ _ H
CMT_cIF = 0 _(1+k,)=-1.81150%x10"°
20 20 Rem( 2)

where k, =0.30190 is the degree-two Love number for an anelastic Earth (Petit and
Luzum, 2010, pg. 83), H, =-0.31460 m is the zero-frequency tidal displacement

amplitude, and R, =6378136.55 m is the Earth’s equatorial radius. Normalising Eq.

(3.6.28) by —/5 gives

I -3 =— iﬂkz = 1+9.39308x10°°
' ' 4z R,
MT zT S H, 8
AJ,=4IM" 32 —_ | 2 "0 - 131113210 (3.6.29)
47 R

(]

N /% %(1+ k,) = +4.05063x10°°

e
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Values in Egs. (3.6.28) and (3.6.29) differ slightly from some of the values given

in McCarthy and Petit (2003) and Petit and Luzum (2010), which is due to numerical

rounding at each stage of their calculations. For instance, their term A, =]/( Re\/47z) is

rounded to 4.4228x10® m™, and for EGM96 and EGM2008, the term A H, is rounded to

-1.391x10%, and k, is rounded to 0.3.

Heiskanen and Moritz (1967, pg. 111) used approximate formulas for cm , U,
and J, (Heiskanen and Moritz, 1967, pgs. 77-78) to derive the formulas (in spherical
approximation) for calculating the changes in the flattening (Af ) and the semi-major axis

(Aa) due to the change in J, (AJ,), which are given by

Af =gAJ2 (3.6.30)
a
ra=243, (3.6.31)

Bursa (1995) and Groten (2004) derived similar formula using scale factor for

length R,=GM /U, (Rapp, 1974), which is also considered independent of the permanent
tide system (BurSa, 1995). They also used the approximate formulas for GM, U, and J,

, to provide Af same as Eq. (3.6.30) but Aa as

Aa = %AJZ (3.6.32)

We instead use the exact equation of J, from Moritz (2000) to derive the formulas

for Af and Aa

2 '
3, = 9—[1— 2me J (3.6.33)
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where

w’a’b B w’a’ (1— f)
GM  GM

(3.6.34)

Using Eq. (3.6.34) and other various geometrical relationships among the ellipsoidal

parameters (Moritz, 2000), Eq. (3.6.33) is re-written as

3/2

_f2 4’ (2f - f°
Jzz(Zf 3 f J 1- ( - ) (3.6.35)
15GM (2f2—4f +3)tan‘1(Zlf_ffJ—%GM,/Zf—fz(l—f)
The total differentiation of Eq. (3.6.34) gives
3wa’(1- f 258
A Col) PV Y. (3.6.36)

GM

Inserting the values for GRS80 and approximated values of Af and Aa from Egs.

.6. an .6. in Eq. (3.6.36), Am is of the order 10, which is two orders o
(3.6.30) and (3.6.31) in Eq. (3.6.36) is of the order 10™, which ders of

magnitude less than the largest AJ, in Eq. (3.6.29). Although f and m are of similar value

(~0.003), Af is of the order 10 and Am is of the order 10™. Therefore, we can assume

that there is no change in Am and, therefore, from Eq. (3.6.36)

Af (3.6.37)

Af =—AJ, (3.6.38)

Aa=—o A 6.
a B ™ (3.6.39)
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where

tora® (2f - 12)?
Du =3 1)- ASSGM =

(4(1- )" +20(2- 1)’ +1)tan-“'21f__ff2—m(8(1_ £y +7(1-1)) | G640

2

- 1) (200~ 1) +)an 2 g ) 2r o

Therefore, as required in SHS, the higher than second-degree zonal harmonic
coefficients of the ellipsoid can be computed by using Egs. (3.6.24), (3.6.26), (3.6.29) and
(3.6.38) or a direct formula that we derive by taking total differentiation of Eq. (3.6.26)

given by

(-1)"*3nf"(2- )" 2—2f£ J j
AC,,, = 1-n+(5n-5 2— |+5]AJ, (3.6.41
% (2n+1)(2n+3)Van+1| Dy ( )2f f? 2 )

Bursa (1995) proved that the potential is invariant to the choice of tide system, i.e.,

change in the J,, but to cross-check, we derived a formulation to compute the changes (if
any) in the normal potential due to change in J,. We use the exact formula for normal

potential of a reference ellipsoid (Heiskanen and Moritz, 1967, pg. 67)

242
U, :G?Mtanl(e')+w a

(3.6.42)

Writing Eq. (3.6.42) in terms of the semi-major axis and the flattening gives

[bs 2 2.2
u CM tan‘{ 2f - f ]+“’a (3.6.43)

Oza\/Zf—fz 1-f 3

Equation (3.6.43) can also be re-arranged in terms of GM as



151

2,2
&hf—fﬂpo—”;]

GM = (3.6.44)
_f2
tant| Yo 2f -~ f
1-f
However, taking the total differentiation of Eq. (3.6.43) gives
2 _f2
AU, = 20'a  GM tan-t J2f—f At
3 alf2f - f? 1-f
(3.6.45)
GM 1-f Ly2f 17
1- tan Af
a(2f - f2) " J2f—t? 1-f
and using Egs. (3.6.38) and (3.6.39), we have
DJU
AU, =—=AJ, (3.6.46)
DJf
where D, is same as Eq. (3.6.40) and
GM 20 | GM|  1+2(1-fY’ 2f — f2
e et BT,y
a(2f-f?) 9(1-f)| a 3(1- f)(2f - £7) 1-f

Another option is to solve Egs. (3.6.35) and (3.6.43) or (3.6.44) as system of non-

linear equations using NR method with variables being a and f, keeping U,, GM and @
constant for each tidal J, (following the definition of mean Earth ellipsoid, Heiskanen and

Moritz, 1967, pg. 109). We provide some quantification of the above-discussed formulas

for GRS80 in Table 3.6.5



Table 3.6.5: Conversion values of parameters for different tide-systems (for
GRS80) [ZT = zero-tide; TF = tide-free; MT = mean-tide]

Bursa (Egs. Ours (Egs.
(3.6.30) and (3.6.38) and NR solution

(3.6.32)) (3.6.39))
ZT-TF 9.39308 9.39308 9.39308
AJ,(x10°°) MT-ZT 31.11320 31.11320 31.11320
MT-TF 40.50630 40.50630 40.50630
ZT-TF 1.40896 1.41301 1.41301
Af (xlO*g) MT-ZT 4.66698 4.68038 4.68039
MT-TF 6.07595 6.09339 6.09339
> ZT-TF 2.98872 3.01422 3.01578
Aa(xm ) MT-ZT 9.89971 9.98417 9.98933
(inm) MT-TE 12.88844 12.99840 13.00511
. ZT-TF 18.02612 1.52015 0.0000
AU, (Xlo )* MT-ZT 59.70889 5.03527 0.0000
(inm?s?) MT-TF 77.73506 6.55543 0.0000

* Equation (3.6.45) can be used to compute AU,, but for Table 3.6.5 (all three
methods) we have computed U, using Eq. (3.6.43) with a and f for different values of J,
and then took the differences.

From Table 3.6.5, there are minimal differences in the existing approximate

solutions and our rigorous formulas (along with NR solution). U, can be considered to be

invariant to the choice of tide-system, but on a closer look, the approximate formula by

Bursa (1995) can cause an error of ~1 mm in the geoid solution due to the change in U,

using their formulas. Therefore, it is suggested that to remove all the possible systematic
errors in geoid computation one should use as exact as possible formulas, i.e., in this case,
the best choice would be the NR’s solution followed by our nearly exact formulas (Egs.

(3.6.38) and (3.6.39)).

Now, we derive the formula for conversion of normal gravity between different
permanent tide-systems using normal gravity formula (Heiskanen and Moritz, 1967, pg.

77).
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y=7. 1+Msin2¢—1(—lf2+§fmjsin22¢ (3.6.48)
. 2\ 72" T
where
=My o med (3.6.49)
ab 6 q
and
yo = (1+Eh) (3.6.50)
a 3 0

From Egs. (3.6.49) and (3.6.50), we derive conversion formulas for normal gravity at

equator and poles

_ 315484135
: DJf
_6.54767497

DJf

‘]2
(3.6.51)

Ay, = J,

Taking total differentiation of Eq. (3.6.48) and using Egs. (3.6.51) and (3.6.38), the

conversion formula for normal gravity is

(3.1548-9.7025sin” - 0.0129sin’ 290
Ay = S AJ, nGal  (3.6.52)
Jf

There is another constant k provided in Moritz (2000) that is given by

k=27 4 (3.6.53)
ay,

for which the conversion formula becomes

_ —4.83346787
DJf

Ak J, (3.6.54)
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Before discussing SHS, we provide simplified conversion formulas for flattening
(Eg. (3.6.55)), semi-major axis (Eq. (3.6.56)), semi-minor axis (Eq. (3.6.57)), first
eccentricity (Eq. (3.6.58)), normal gravity at equator (Eq. (3.6.59)), normal gravity at poles

(Eq. (3.6.60)), normal gravity on ellipsoid (Eg. (3.6.61)) and constant k (Eq. (3.6.62))

f2 — £ =1.41300686 x10"°
fMT — £77 = 4.68037801x10° (3.6.55)
fM — £ =6.09338788x10°°

a’" —am =30.1mm
a —a”" =99.8 mm (3.6.56)
a"m —a™ =130.0 mm

b*" —b™ =-60.1 mm
b"" —b*" =-199.0 mm (3.6.57)
b"T —b™ =-259.1 mm

el —e™™ =1.7212x10~'
eM —e”" =5.7012x10”" (3.6.58)
eM —e™ =7.4224x1077

y2 —yIF = 4.4578 uGal
Ya© —7a =14.7659 uGal (3.6.59)
yM —yIF =19.2237 uGal

7' =yt =-9.2519 pGal
7T —y2T =-30.6456 pGal (3.6.60)
" =yt =-39.8975 uGal

' —y'" = 4.4578-13.7097sin” - 0.01823sin* 2¢ pGal
yMT —y*T =14.7657 - 45.4114sin’ ¢ —0.0604sin’ 29 nGal »  (3.6.61)
yM —y™" =19.2234-59.1211sin” ¢ —0.07860sin’ 29 nGal
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k?T —k™ =-6.8297x10°®
kM — KT =-22.6224x107®
kM —k™ =-20.4522x107®

(3.6.62)

3.6.4 Numerical test for tide-system in SHS

We provide some numerical analysis of degree-two geoid undulation (precisely height
anomaly) and free-air anomaly using SHS of EGM2008 with GRS80 ellipsoid. Table 3.6.6
and Figure 3.6.1 show the difference of height anomalies among tide-systems calculated
by only converting the second-degree zonal Stokes coefficient of EGM2008 (using Eqg.
(3.6.28)), i.e., without touching any parameter of GRS80. Results from Ekman’s (1989)
geoid conversion formula are also provided in Table 3.6.6. Figure 3.6.2 provides the plot
for the difference in the SHS and Ekman’s (1989) values.

Table 3.6.6: Difference in degree-two geoid in three tide systems. Computations are done

by considering GRS80 in tide-free system and only changing 52'0 term of EGM. No

changes to any parameter of GRS80 ellipsoid.

Geoid (mm)
min max mean STD
SHS -199.763 | 99.405 | -49.567 | 105.796
MT-ZT Ekman
(1989) -197.000 | 99.000 | -49.068 | 104.700
SHS -60.308 | 30.010 | -14.964 | 31.940
ZT-TF Ekman
(1989) -59.100 | 29.700 | -14.721 | 31.410
SHS -260.072 | 129.415 | -64.532 | 137.735
MT-TF Ekman
(1989) -256.100 | 128.700 | -63.789 | 136.110
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Figure 3.6.1: Variation in geoid undulation for GRS80 in tide-free system and C, , of

EGM2008 in different tide system.
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Figure 3.6.2: Difference in Ekman (1989) formula and the calculated value of geoid
undulation in different tide-system. (left: k. = 0.3 in Ekman (1989) and right: k> =
0.30190 in Ekman (1989)

It should be noted that the absolute difference value of ~3 mm for MT-ZT in Figure
3.6.2 is in some accordance with the explanation of Makinen (2021, pg. 6) which suggests
that an error of +3.3 mm can be observed if we use second-degree zonal term of the GGM

converted in the mean-tide system using conversion formulas (Eqg. (3.6.28)).

This type of geoid undulations that involves no change in the parameters of
ellipsoid (defined in tide-free system) can be perceived as the separation between mean-
tide geoid and tide-free ellipsoid or zero-tide geoid and tide-free ellipsoid or tide-free geoid
and tide-free ellipsoid. We think that geoid undulation should be the separation between
the geoid and ellipsoid, both in the same tide-system. Therefore, only the last choice, i.e.,
distance between tide-free geoid and tide-free ellipsoid provides the required geoid

undulation.
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To check the variation of geoid undulations between: mean-tide geoid — mean-tide

ellipsoid, tide-free geoid — tide-free ellipsoid and zero-tide geoid — zero-tide ellipsoid,

geoid undulations have also been computed with changed parameters of GRS80. The

results are provided in Table 3.6.7 and Figure 3.6.3.

Table 3.6.7: Difference in degree-two geoid undulation computed using EGM2008 and
GRS80 (both in same tide system)

Geoid (mm)
min max | mean STD
MT-ZT | -0.056 | 0.108 | 0.027 | 0.057
ZT-MT | -0.017 | 0.033| 0.008 | 0.017
TF-MT | -0.073 | 0.141| 0.035| 0.075
0.15
I g

Height Anomaly (mm)

-80

-60 40

-20 0
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40

-ZT-TF
MT-TF
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Figure 3.6.3: Variation of the difference in degree-two geoid undulation computed using

EGM2008 and GRS80 (both in same tide system).

Table 3.6.7 and Figure 3.6.3 show that though geoid may deform under tidal

potential (Table 3.6.6), geoid undulation is independent of the tide-system provided that

geoid undulation is defined as the difference between geoid and normal ellipsoid, both in

same permanent tide-system.

We also performed similar exercises for SHS of free-air gravity anomalies (FAA)

using EGM2008 and GRS80. Table 3.6.8 provides the difference in FAA among three

tide-systems computed only by changing the second-degree zonal term of EGM2008 and

no change in GRS80 parameters. The variation of these differences is shown in Figure

3.6.4. Table 3.6.9 and Figure 3.6.5 depict the difference and their variation (among three
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tide-systems) of FAA computed by considering EGM2008 and GRS80 in same tide-

systems, i.e., changing the ellipsoidal parameters.

Table 3.6.8: Difference in degree-two FAA. Computations are done by considering the

GRS80 in tide-free system and only changing C, , term of EGM2008. No changes to

any parameter of GRS80 ellipsoid.

FAA (pGal)
min max mean STD
MT-ZT | -30.898 | 15.243 | -7.683 | 16.317
ZT-TF | -9.328 | 4.602 | -2.320 | 4.926
MT-TF | -40.226 | 19.845 | -10.003 | 21.243

-80 -60  -40

Free-air Anomaly (pGal)
N o
.[
\n
".
\
\
.'.I:

-20 4] 20 40 680 80
Latitude (degree)

Figure 3.6.4: Variation in FAA for GRS80 in tide-free system (as is) and C, , of

EGM2008 in different tide system.

Table 3.6.9: Difference in degree-two FAA with EGM2008 and GRS80 in same tide system

FAA (uGal)
min max mean STD
MT-ZT -0.009 0.017 0.004 0.009
ZT-MT -0.003 0.005 0.001 0.003
TF-MT -0.011 0.022 0.005 0.012
= 0.02
2 SN |
g 0.01
; i:‘ T 7 MT-ZT
£ -0.01 o =
MT-TF
-80 -60 =40 -20 0 20 40 60 80

Latitude (degres)

Figure 3.6.5: Variation of FAA when EGM2008 and GRS80 are in same tide system.
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From Table 3.6.8, the difference values of FAA are in accordance (<1 pGal) with
the variation of normal gravity (Eg. (3.6.61)) in different tide-systems. This might be
because in SHS we have used ellipsoidal parameters as defined in GRS80 (i.e., in tide-free
system). Therefore, from the re-computation of the FAA with ellipsoidal parameters and
EGM2008 in same tide-system, Table 3.6.9 and Figure 3.6.5 show that FAA is also
acceptably independent (<1 pGal) of the tide-system provided that EGM2008 and normal

ellipsoid are in the same tide system.

As discussed in Section 3.6.2, there is some inconsistency (in the literature) on the
tide-system of GRS80. Therefore, in Table 3.6.10 and Figure 3.6.6, we provide
quantification of the possible error involved in SHS of geoid undulations and FAA if the
tide system of GRS80 is mistaken as zero-tide instead of tide-free. In the computations,

we have kept EGM2008 and GRS80 in same tide system.

Table 3.6.10: Difference in degree-two geoid undulations and FAA for an inconsistency

in the tide-system of GRS80 (tide-system or zero-tide as per literature).

Geoid undulation (mm) FAA (uGal)

Ego'\él GRS min max mean STD min max | mean | STD
TF -IZ—'II:'(CBSIF?{g'II:E* -30.027 | 60.341 | 14973 | 31.957 | -4.604 | 9.333 | 2.321 | 4.929
al T§$§F§§;:_ -30.027 | 60.341 | 14973 | 31.957 | -4.604 | 9.333 | 2.321 | 4.929
MT -IZ—'II:'(CB;IF?{gkA/l:lI:z# -30.027 | 60.341 | 14.973 | 31.957 | -4.604 | 9.333 | 2.321 | 4.929

“ZTGRSTF = GRS80 is in zero-tide system and converted to tide-free system
“TFGRSZT = GRS80 is in tide free system and converted to zero-tide system
#* ZTGRSMT = GRS80 is in zero-tide system and converted to mean-tide system
#TFGRSMT = GRS80 is in tide-free system and converted to mean-tide system
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Figure 3.6.6: Variation of differences in degree-two geoid undulation and free-air
anomaly for EGM2008 in ZT and GRS80 (TFGRSZT- ZTGRSZT)

Table 3.6.10 and Figure 3.6.6 show that a confusion/inconsistency in the tide-
system of GRS80 ellipsoid (tide-free or zero-tide) can cause a maximum difference of ~60
mm in geoid undulation and ~9 pGal in free-air anomaly synthesised from EGM2008. This

will also be true for WGS84 ellipsoid, which is also in tide-free system.

For the IAG resolution of all the geodetic quantities in mean-tide system, including
coordinates, Makinen (2021) provides the formulas for converting geodetic latitude (Eq.
(3.6.63)) and ellipsoidal height (Eq. (3.6.64)) from tide-free system to mean-tide system,

derived from Petit and Luzum (2010, Section 7)

Our — @ =—0.814sin 29 —0.004sin 4 mas (3.6.63)

hyr — e =60.34-179.01sin* »—1.82sin*  mm (3.6.64)

MT

In our view, these formulas are for coordinate transformation from tide-free system
to mean-tide system but with GRS80 in ‘as-is’ tide-system, i.e., tide-free system. The
ellipsoidal height formula above is derived from Petit and Luzum (2010, Eq. 7.14) and is
comparable with the ellipsoidal height conversion formulas derived using

(Hur —Hqe )+ (Nyr =Ny ), 1.6, Eq. (3.6.11) or Eq. (3.6.23). This is because these are

also derived considering that there is no change in the tide-system of the ellipsoid.

Therefore, with these conversion formulas (Egs. (3.6.63) and (3.6.64)) mean-tide geodetic

80
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coordinates are obtained with respect to the tide-free ellipsoid.

However, if we want mean-tide coordinates with respect to mean-tide ellipsoid,
Molodensky transformation (NIMA, 2000, pg. 7-3) should be used, which are simplified
to

Ap _2(ﬂ+h)8in1"{Aa{ a }+Af{(1_f)+(1 f)v}} (3.6.69)

Ah= —AaHMf (1- f)vsin?g (3.6.66)
1%

where Aa and Af are change in semi-major axis and flattening of the ellipsoid in
different tide-systems provided by Eqgs. (3.6.56) and (3.6.55), respectively; v and . are

the radius of curvature in prime vertical and meridional directions, respectively.

Therefore, there should be some consensus on the choice (conversion/no
conversion) of ellipsoid parameters. The formulas given by, e.g., Ekman (1989) or
Mékinen (2021) are based on calculating the quantities in any tide-system but with respect
to the tide-free ellipsoid (for GRS80 or WGS84). However, we think a better option is to
also convert the ellipsoidal parameters in the working tide-system, i.e., using our formulas

of conversion of ellipsoidal parameters and use them in SHS or coordinate transformation.

In case our suggestion of using GGM and normal ellipsoid in same tide-system is
opted, we have computed and provided all the parameters (Table B.1) of GRS80 and
WGS84 in the three-tide systems in Appendix Table B.2 and B.3, respectively. The values
can be directly utilised in the SHS of the gravity field functions. The conversion formulas
of various ellipsoidal parameters can also be included in the SHS subroutines. In Table

B.4, we also provide the parameters of a possibly new normal ellipsoid that is consistent
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with the IHRS parameters (Poutanen and R0zsa, 2020, pg. 275). Please note that the values

in Table B.4 are not official.

3.7 Summary

In this chapter we have discussed various corrections and reductions involved in geoid
computation as handled in the three different methods viz. CUT, KTH and UNB. We also
discussed about the important yet loosely handled zero-degree term and solid Earth
permanent tide systems. Below are some summarising comments from the discussions in

the six sub-sections of this chapter:

Either for geoid or quasigeoid computation, gravity anomalies should be initially
computed at the Earth’s surface using the normal gravity from the exact method (Eq.
(3.1.21)). If the required normal height is approximated by orthometric height or
normal-orthometric height, a geoid-quasigeoid correction term (Eq. (3.1.24)) for

gravity anomalies should be used.

The CUT method does not apply any topographic correction but approximates
Molodensky’s G1 term by the planar TC. The UNB method is theoretically the most
rigorous method for handling the topography in geoid computation. However, it seems
that their present approach uses an average of the mean values for the various
topographic corrections due to the use of mean topographic correction values from
already block-averaged DEM. We have also explicitly introduced the preferred use of
dynamic integration radius instead of a fixed integration radius that may cause some
overlapping of the DEM qgrid cells. A rigorous quantitative analysis is required to
compare the formulation of topographic corrections in the KTH method and the UNB
method. The effect of total topographic correction to the geoid in the KTH method is

equal to a part of only indirect effect in the UNB method.
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The most general method of direct atmospheric effect (DAE) is to use a polynomial
function as included in the CUT method. We have shown that one should not use a
truncated polynomial function to compute DAE. A similar formula has also been
adopted by the International Association of Geodesy (IAG) for DAE. However,
Sjoberg (1999) and Sjoberg and Nahavandchi (2000) had discussed some of its
limitations. The primary parameter in the DAE is the atmospheric density function
which differs among all the three methods. Moreover, only the UNB method considers
the atmospheric height up to an arbitrarily chosen 50 km. Also, we discourage the use
of height coefficients in DAE (as used in the KTH method) unless they are constructed
using the global DEM of working resolution, i.e., resolution of the geoid (0.02°x0.02°
for our case). Though the DAE difference among the different methods may be

negligible, some standardisation is needed.

There exist several different approaches of ellipsoidal correction which are
significantly different to each other, but we had restricted the discussions to the three
strategies as adopted in the CUT, UNB and KTH methods. We have given some more
rigorous formulas at some junctures. There exists some discrepancy in the ‘signs’ in
the formulas for ellipsoidal correction used in the UNB and the KTH methods.
Although we have provided our reasons for preference to the ‘signs’ used in the UNB
method, it may need some further investigation. All formulas, irrespective of the
method, are realised using the Global Geopotential Model (GGM). Hence, ellipsoidal
corrections will vary due to the methodology as well as the different choices of GGMs.
The CUT method uses full d/o GGM to compute the residual gravity anomaly, i.e.,
they use the full d/o GGM for ellipsoidal correction (along with geocentric ellipsoidal

radius of the computation point). The UNB and the KTH methods uses satellite-only
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GGMs. Therefore, though presumably negligible, this effect needs to be quantified in

the future.

Downward continuation (DWC) of gravity anomalies is not applied in the CUT method
because it computes the quasigeoid. However, a different viewpoint is provided where
DWC is applied as the analytical continuation in the CUT method which also follows
the DWC effect for calculating the height anomalies in the KTH method. A conceptual
need for DWC of height anomalies from the Earth’s topography to the ellipsoid is also
introduced to obtain the quasigeoid. A different interpretation of the DWC effect in the
quasigeoid computation of the KTH method (Eg. (3.5.17)) has been provided that may

require some modifications in their additive corrections to the approximate quasigeoid.

The quantification of the significant biases introduced due to the inconsistent use of
the zero-degree term has been demonstrated. Expressions/relations have been provided
for the conversion of observed gravity, geoid undulation, orthometric, dynamic,
normal-orthometric and ellipsoidal heights and various ellipsoidal parameters among
the three permanent tide systems (tide-free, zero-tide and mean-tide). The numerical
values of the defined and derived parameters of GRS80, WGS84 and an International
Height Reference System (IHRS)-based possibly new normal ellipsoid have been

computed in the three tide systems and are provided in Appendix Al.

Having discussed the systematic corrections, the next chapter will deal with
geoid/quasigeoid computation strategies of the three methods that will also involve the

order in which the above discussed corrections are applied.
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Chapter 4: Computation of the Indian gravimetric geoid and

guasigeoid models

4.0 Introduction

In previous chapters, we have discussed the datasets and various corrections or data
handling (with some results) in the three geoid computation methodologies (CUT, UNB,
KTH). In the present Chapter, we use those discussions and results to overview the geoid
computation methodologies. An introduction to Stokes’s integration and modification of
Stokes’s kernel is also provided. Since we are interested in both geoid and quasigeoid, a
geoid-quasigeoid separation term is discussed to convert geoid undulations to height
anomalies or vice-versa. Further, some parametric fitting of gravimetric geoid/quasigeoid
on the geometric geoid undulation is discussed that helps in reducing the systematic biases

among geodetic datums.
4.1 Stokes’s integration and kernel modification

The gravimetric geoid or quasigeoid computation is basically the conversion of observed
gravity values into geoid undulations or height anomalies. This is mainly achieved by
using Stokes’s and Bruns’s formulas under two main assumptions: i) gravity data is
available all around the globe on the surface of the geoid, and ii) there should be no masses
above the geoid. The handling of the second assumption has been dealt with in Chapter 3.
Contrary to the first assumption, the data of the entire globe is not available, and we use
gravity data only for a region. Therefore, integration over the whole globe is compelled to
be truncated to a limited region around the computation point. Hence, truncation error or
bias is introduced in the geoid and quasigeoid (quasi/geoid) solution, but it is reduced by

using a Global Geopotential Model (GGM) in a remove-compute-restore approach.
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Molodensky et al. (1962) presented, for the first time, modification to the original
Stokes’s kernel with the main idea of reducing the truncation error. Presently, there are
several kernel modifications available that can be broadly classified as either deterministic

or stochastic modifiers.

In this chapter, we provide a basic overview of Stokes’s integration and kernel

modification without going into details, mainly due to the following two reasons:

)] There is much literature available on these topics, and we cannot explain them any

better than what is already documented.

i) We have not modified the existing formulas or the methodologies of Stokes’s

integration or kernel modifications.

Therefore, we thought it wise enough to provide only the basic equations and the most

relevant references.
4.1.1 Stokes’s Integration

George Gabriel Stokes, in 1849, published his formula that demonstrated for the first time
the use of gravity measurements to determine the geoid (Stokes, 1849). The formula is a
solution to the third geodetic boundary value problem (GBVP). In the third GBVP, gravity
anomaly is modelled as a linear combination of disturbing potential and its normal
derivative through the fundamental equation of physical geodesy. Also, it is given that
disturbing potential is harmonic in space outside the geoid (i.c., satisfying Laplace’s
equation). Therefore, disturbing potential is solved on the geoid and space outside the

geoid. This can be mathematically written as (e.g., Heiskanen and Moritz, 1967, pg. 86)

AT =0, in space outside geoid
Given:
Z—T+ET =—Aqg, on geoid (4.1.1)
n r

Sought: T =?, on geoid and in space outside geoid



167

Stokes (1849) derived the solution to the third GBVP (under the assumptions that ai = aﬁ
n or

and r = R; Heiskanen and Moritz, 1967, pg. 87-88, 92-93) as
:_ﬁs )Agdo (4.1.2)

where ”da—j Ism )dyda in spherical  polar  coordinates  and

a=0y=0
2r 72
_Uda:j ICOS(¢')d¢'d/1' in  geographical  coordinates  (in  spherical

o A'=0 ¢'=—17/2

approximation); S (y) is Stokes’s kernel that is given in spatial and spectral forms by Egs.

(4.1.3) and (4.1.4), respectively.

S(v)= Sin(%j—63inE%jH—SCos(y/)—Bcos(y/)ln (sin [%j+3in2 (%B (4.1.3)

2

= 2N +1
)=>. P, (cosy) (4.1.4)

:2_

and y is the spherical distance given by
w =cos ™ (sin ¢sing'+cosgcosg'cos(A—A )) (4.1.5)

The use of Bruns’s formula (Eq. (4.1.6)) in Eq. (4.1.2) gives the famous Stokes

formula (Eq. (4.1.7)) that is used to calculate geoid height from gravity anomalies.

N=— (4.1.6)
Yo

N =

i [[s(v)Agdo (4.1.7)
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The same formula is also used to compute the height anomalies using
Molodensky’s problem, where geoid undulation is replaced with height anomalies.
Gravity anomalies on the geoid are replaced by gravity anomalies on the Earth’s surface,
and normal gravity at ellipsoid is replaced by normal gravity at the telluroid. Another
critical yet inconsistently reported replacement would be R by R+H. From Eq. (4.1.7), the
use of R instead of R+H can cause a difference of ~15 mm for a region/point with a geoid
undulation value of 50 m and a height of 2000 m, but much less when remove-compute-

restore is used.

Stokes’s integral (Eq. (4.1.7)) can be evaluated using various methods such as
‘brute force’ numerical integration (Heiskanen and Moritz, 1967, pg. 117), quadrature-
based numerical integration (e.g., Hirt, 2011), ring integration (Kearsley, 1986; Tsen,
1992), 1D-FFT on sphere (Haagmans et al., 1993), 2D-FFT on sphere (Strang van Hees,
1990; Forsberg and Sideris, 1993), 2D-FFT on a plane (Schwarz et al., 1990; Sideris and
Li, 1993) or Least Squares Collocation (Krarup, 1969; Tscherning, 1977; Moritz and
Sinkel, 1978; Moritz, 1980). Interested readers should also see Tziavos (1996) and Zhang

(1997) for numerical comparisons of the spectral methods for Stokes’s integration.

It is well advocated and numerically shown in the literature that solution with 1D-
FFT is significantly faster than and exactly the same as numerical integration (e.g.,
Haagmans et al., 1993). Therefore, the use of 1D FFT in evaluating Stokes’s integral is
widespread in the literature on geoid computation (e.g., Agren et al., 2009a; 2009b;
Featherstone et al., 2018; Claessens and Filmer, 2020; Grigoriadis et al., 2021, among
numerous others). However, Huang et al. (2000) presented a modified numerical
integration that is claimed to be faster than the 1D-FFT method (e.g., Janak et al., 2017).
It makes use of the symmetrical property of Stokes’s and modified Stokes’s kernels

(Section 4.1.2) with respect to the meridian of the computation point. As such, only half
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of the kernel values are required to be evaluated. This modified method is realised by
shifting the ‘evaluation of kernel” from the longitudinal loop to the latitudinal loop, which
causes computation of the kernel values only once for a given latitude. Huang et al. (2000)
have shown that, on their computing system (Dell Optiplex GS1p PC with 400MHz CPU),
their method is ~45 times faster than the brute force numerical integration method with a

modified Stokes’s kernel.

In this study, we have used this modified numerical integration (Huang et al., 2000)
for evaluating Stokes’s integral, coded in MATLAB. The geoid height at any point can be

obtained using the discrete version of Stokes’s integral (Eq. (4.1.8)).
R
N=—-APALY D> Ag(¢'A")S(w)cosy’ (4.1.8)
47y, v

4.1.2 Kernel modification

Due to the availability of limited gravity anomaly data, Stokes’s integral cannot be

extended over the entire Earth. Instead, it has to be truncated to a limited area (o, ) where

gravity data is available. Therefore, Stokes’s formula can be re-written as

Hs(:,y)Ag do (4.1.9)

where N is an estimate of geoid height due to truncation of the integral. The difference

between Eqgs. (4.1.7) and (4.1.9) is the truncation error and is given by

ON =—

4;0 J{ | S(y)Agdo (4.1.10)

o —o, Is the area where gravity data are not available. Molodensky et al. (1962)

demonstrated that the truncation error could be minimised by modifying Stokes’s kernel

(minimising L2 norm of the error kernel; Vanicek and Sjoberg, 1991).
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There have been several kernel modifications that are based on reducing the
truncation error (Molodensky et al., 1962; de Witte, 1967; Wong and Gore, 1969; Vanicek
and Kleusberg, 1987), accelerating the convergence of the truncation error (Meissl, 1971;
Heck and Grininger, 1987), and reducing the truncation error with simultaneously
accelerating its convergence (Featherstone et al., 1998). These all are categorised as
deterministic modifiers. There are other modifiers that aim to reduce the errors in either
one or both of the potential coefficients and terrestrial gravity data along with the
truncation error using least squares solution (Sjéberg, 1984a; 1984b; 1991). These are
categorized as stochastic modifiers. Other stochastic modifiers also exist, but which do not
aim to reduce the truncation error, rather do the weighting of the kernel based on the errors

in potential coefficients and terrestrial gravity data (Wenzel, 1981; 1983).

In this study, the geoid is computed using the three methods (CUT, UNB, KTH),
therefore, only their preferred choice of modifications are discussed and used. The name

and seminal references to the kernel modifications in the three methods are listed in Table

4.1.1.
Table 4.1.1: References of the three modifications to Stokes’s kernel.
Method | Kernel modification Key references

cuUT Featherstone, Evans, Featherstone et al. (1998)
Olliver (FEO)

UNB Vanicek and Kleusberg Vanicek and Kleusberg (1987); Vanicek and
(VK) Sjoberg (1991); Vanicek et al. (1995)
Least Squares Sjoberg (1980; 1981; 1984a; 1984b; 1986;

KTH | Modification of Stokes’s 1990; 1991; 2003; 2005); Sjoberg and
kernel (LSMS) Hunegnaw (2000)

In addition to the references in Table 4.1.1, there have been review articles with
the involved formulations on deterministic modifiers (Vanicek and Featherstone, 1998;
Featherstone, 2003; 2013; Sprlak, 2010; Rabehi et al., 2012) and stochastic modifiers

(Ellmann, 2005b; Rahebi, 2012; Featherstone, 2013). The detailed formulas for kernel
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modifications can also be seen in various theses on geoid modelling, e.g., Novak (2000),
Kern (2003), Agren (2004), Ellmann (2004), Singh (2007), Amos (2007), Daras (2008),
Abdalla (2009), Ulotu (2009) among many others. Also see Jekeli (1980, 1981a), Martinec

(1993) and Sjoberg and Bagherbandi (2017).

Therefore, without duplicating the detailed derivations of each of the three
modifiers, we write a general equation (Eg. (4.1.11), with c=R/2y) for Stokes’s
integration that uses modified Stokes’s kernel and GGM. This can take the form of
remove-compute-restore (RCR) formulation as required in the CUT and the UNB

methods, and also the non-RCR formulation as used in the KTH method.

_C M A # -
N_ggs Ag da+cn§angn, L>M (4.1.11)

L
Ag—- > Ag , forVK or FEO
ag'={"" Z;‘ o (4.1.12)

Ag, for LSMS

Ag _GM {(n—l)(g] 3 (AC,,cosmi+S, sinmi)xP,, (cosd)| (4.1.13)

i, forVK or FEO
X, =1n-1 (4.1.14)

Q" +s,, forLSMS

M
s(y/)_zz2”2+1(ni_1+tnjpn(cosv,), for vk
M
oM _ S(V/)—S(WO)—Z; 2n2+1(ni_+tnj(Pn(cosw)—Pn(cosv/O)), for FEO (4.1.15)
M
S(l//)—z_;zn;lsn P, (cosy), for LSMS
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Q" and t,,s, are truncation coefficients and modification parameters, respectively, that

need to be computed for determining the modified Stokes’s kernel. The formulas are
available in almost all the above-cited literature, also see Hagiwara (1972; 1976) and Paul

(1973) for auxiliary coefficients.
4.2 Different techniques of geoid and quasigeoid calculation

The gaps between theoretical and practical aspects in quasi/geoid computation arising
from the various assumptions and approximations (Chapter 3; Section 4.1) incur several
errors, which geodesists have tried to reduce for the ongoing quest of cm-precise geoid
(e.g., Sans6 and Rummel, 1997; Téth et al., 2000). Also, there are two choices of reference
surface: geoid or quasigeoid. As such, there are several methods available for quasi/geoid

computation (Goyal et al., 2022, Table Al).

A brief overview of the CUT, the UNB, and the KTH geoid computation
methodologies are presented in this section. However, it is important to note here again
that the methodology adopted and discussed under the names: CUT, UNB, and KTH do
not strictly follow the methodology depicted in their research articles or manuals. We have
mentioned a few differences between the strict and our adopted methodologies because of

different aspects of the Indian data (Chapter 2).

Table 4.2.1 lists a few study areas where these three methods have been
implemented, although a combination of the methods is also used and reported in the
literature (e.g., Matsuo and Kuroishi, 2020). The CUT method is primarily used for
quasigeoid computation. The UNB method is for geoid computation. The KTH method
was initially developed to compute the geoid but later modified to calculate the quasigeoid.

A geoid-quasigeoid separation term is needed to convert geoid to quasigeoid (or vice-
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versa) so that both can be computed using all three methods. This separation term is dealt
with in Section 4.3.

Table 4.2.1: Examples of implementation of geoid/quasigeoid computation

methodologies.

Method | Region/Country Reference
Australia Featherstone et al. (2001; 2011; 2018)
New Zealand Claessens et al. (2011); McCubbine et al. (2018)
CUT | Colorado Claessens and Filmer (2020)
India Goyal et al. (2021b)
Auvergne Goyal et al. (2022)
Canada Vanicek and Kleusberg (1987); Vanicek et al. (1995);
Huang and Véronneau (2013)
Brazil Guimarées et al. (2014)
UNB Iran Najafi-Alamdari (2004)
Mexico Hernandez-Navarro (2004); Avalos Naranjo et al.
(2006)
Ghana Klu (2015)
Auvergne Foroughi et al. (2017a; b; 2019)
Sweden Agren et al. (2009b)
Baltic countries Ellmann (2004); Ellmann et al. (2020)
Iran Kiamehr (2006)
Tanzania Ulotu (2009)
Greece Daras et al. (2010)
Kazakhstan Inerbayeva (2010)
Sudan Abdalla and Fairhead (2011)
KTH New Zealand Abdalla and Tenzer (2011)
Turkey Abbak et al. (2012)
Uganda Ssengendo (2015)
Poland Kuczynska-Siehien et al. (2016)
Malaysia Pa’suya et al. (2019)
Jilin province in Wu et al. (2020)
China
Auvergne Agren et al. (2009a); Yildiz et al. (2012); Goyal et al.
(2022)

4.2.1 CUT method of geoid/quasigeoid calculation

The CUT method uses a simplified Molodensky theory with the Moritz (1971) solution,
where Molodensky’s Gi term is approximated by the planar terrain correction (TC)
(Moritz, 1971; 1980; McCubbine et al., 2019). A flowchart of the CUT methodology for

calculating the height anomalies/geoid undulations is shown in Figure 4.2.1.
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Figure 4.2.1: Flowchart of the CUT methodology of geoid/quasigeoid computation.

A brief description of Figure 4.2.1 is as follows:

With the available gravity data, free-air anomalies are calculated on the Earth’s

topography by subtracting normal gravity at the telluroid (Section 3.1) from the observed

gravity at the Earth’s surface. Atmospheric corrections (Section 3.3.1) are also added to
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these free-air anomalies. TCs (Section 3.2.1) are computed using the best-available Digital
Elevation Model (DEM) (Section 2.5) and block-averaged to the grid size of the gravity
anomaly data. Block-averaged TCs are added to the free-air anomalies to obtain a grid of
mean Faye anomalies (Figure 4.2.2a) on the Earth’s topographical surface. It should be
noted that if we had randomly distributed gravity data, mean Faye anomalies would have
been obtained using the reconstruction technique of gridded Bouguer anomaly as

discussed by Featherstone and Kirby (2000) and Goos et al. (2003).

Ellipsoidal free-air anomalies are synthesised on the topography at a grid of 3”x3”
using the highest available GGM (EIGEN-6C4 in our case), which are then block-averaged
to 0.02°x0.02° grid to obtain the area-mean reference gravity anomalies. Residual Faye
anomalies on the topography are then calculated by subtracting the mean reference gravity
anomalies from the mean Faye anomalies. The residual Faye anomalies are shown in
Figure 4.2.2b. These are Stokes-integrated using the FEO kernel modification (Section
4.1.2) to obtain a grid of residual height anomalies. Please recall from Section 3.4.1 that
the reference radius in the Stokes integration is set equal to the ellipsoidal radius of the
computation point, and this negates the need for further ellipsoidal corrections (Claessens,

2006, Chapter 6).

The residual height anomalies were computed using the following combinations
(parameter sweeps) in Eq. (4.1.11): L = 2190, M = 40, 80, 120, 160, 200, 240, 280, 300,
and y, =0.2° 0.5° 0.75°, 1°, 1.5°, 2°. The residual height anomalies for M = 80 and y
= 1.5° are shown in Figure 4.2.3. The reference height anomalies on the topography are
computed using GGM (EIGEN-6C4) with a zero-degree term from the generalised Bruns

formula (Section 3.6.1) calculated for each latitude parallel. We used normal potential

U, (=62636860.85 m’s”) from GRS80 and the geopotential W, (= 62636853.4 m’s* )
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from IHRS (Sanchez et al., 2016). The reference height anomalies and, unlike the CUT
application, the first-order indirect effect (FOIE, Section 3.5.1) are added to the residual

height anomalies to obtain the height anomalies.

The geoid-quasigeoid separation (Flury and Rummel, 2009) term is applied to the
height anomalies to obtain the corresponding geoid undulations. Parametric fitting of
geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid
geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The
gravimetric geoid and quasigeoid models (before and after fit) are then validated with the
available GNSS/levelling data. The gravimetric geoid is also validated with Indian vertical

deflections (Section 2.3).
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Figure 4.2.2: a) Faye gravity anomalies and b) residual Faye gravity anomalies as
required in the CUT method.
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Figure 4.2.3: Residual height anomalies after Stokes integrating residual Faye gravity

anomalies with FEO kernel modification (M =80 and y = 1.5%)
The following are the major differences from the original CUT method:

) Due to the availability of already gridded Bouguer anomalies data, a different

approach is used to calculate Faye anomalies on the Earth’s topographical surface.
i) A different method is used to compute the planar TC (Section 3.2.1).
iii) FOIE is applied in this study.

iv) The zero-degree term based on generalised Bruns’s formula is used and explicitly

mentioned.

V) The geoid-quasigeoid separation term is computed using the Flury and Rummel

(2009) method.
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Vi) The numerical method (Huang et al., 2000) has been used instead of 1D-FFT

(Haagmans et al., 1993) for Stokes’s integration.
4.2.2 UNB method of geoid/quasigeoid calculation

The UNB method generally talks about two spaces, i.e., the real space and Helmert’s space.
The difference between the two is that in Helmert’s space, all the masses above the geoid
(topographic and atmospheric), present in the real space, are condensed as a thin surface
layer on the geoid (Helmert’s second condensation). This makes the space between the
geoid and the Earth’s surface harmonic (Martinec, 1993), i.e., it satisfies Laplace’s

equation.

The method starts with formulating the spherical fundamental equation of physical
geodesy on the Earth’s surface and thus calculating the free-air anomaly on the topography
in the real space (Section 2.1). However, for geoid determination, gravity anomalies are
desired on the geoid. Since there are masses above the geoid, the gravity anomalies are
transformed from the real space to Helmert’s space, but still referring to the Earth’s
surface. This transformation is done by applying direct (DTE) and secondary indirect
(SITE) topographical (Section 3.2.2) and direct (DAE) and secondary indirect (SIAE)

atmospheric effects (Section 3.3.2).

These Helmert’s gravity anomalies are downward-continued (DWC; Section 3.5.2)
from the Earth’s surface to the geoid, or more precisely the Helmert co-geoid. Ellipsoidal

corrections are then applied to Helmert’s gravity anomalies at the geoid level (Section

3.4.2).

The so-obtained Helmert’s gravity anomalies on the geoid in the UNB approach
are decomposed into the low- and high-frequency of the gravity field. The latter is achieved

by removing reference Helmert’s gravity anomaly, i.e., reference gravity anomaly (GGM
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derived, DIR-RLO5 in this case) along with reference topographical effects (DEM SHC
d/o 300 derived; Novak, 2000, pgs. 51-56; Table 4.2.2). The result is residual (high-
frequency) Helmert’s gravity anomalies (Figure 4.2.5) that are Stokes-integrated using the

VK kernel modification (Section 4.1.2) to obtain residual (high-frequency) co-geoid.

The residual co-geoid is computed using the following combinations (parameter
sweeps) in Eq. (4.1.11): L = 300, M = 0, 40, 80, 120, 160, 200, 240, 280, 300, and y, =
0.2°, 0.5° 0.75°, 1°, 1.5°, 2°. The residual height anomalies for M =80 and = 1.5" is

shown in Figure 4.2.6. The reference spheroid (GGM (DIR-RLO5) derived geoid
undulations and reference primary indirect topographic effect (PITE)) are added to the
residual co-geoid. GGM-derived geoid undulations are computed with a zero-degree term

from the generalised Bruns’s formula (Section 3.6.1) calculated for each latitude parallel.

We used normal potential U, (: 62636860.85 mzs‘z) from GRS80 and the geopotential

WO(: 62636853.4 mzs'z) from IHRS (Sanchez et al., 2016). Finally, the geoid from

Helmert’s space (co-geoid) is transformed to the required geoid in the real space by

applying PITE and primary indirect atmospheric effects (PIAE).

The geoid-quasigeoid separation term (Flury and Rummel, 2009) is applied to the
geoid undulations to obtain the corresponding height anomalies. Parametric fitting of
geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid
geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The
gravimetric geoid and quasigeoid models (before and after fit) are then validated with the
available GNSS/levelling data. The gravimetric geoid is also validated with vertical

deflections (Section 2.3).
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Figure 4.2.4: Flowchart of the UNB methodology of geoid/quasigeoid computation.

Table 4.2.2: Topographical effects (in mGal) from spherical harmonic coefficients of the

DEM.
d/o min max mean STD
DTE 160 | -13.557 9.627 | -0.168 | #+2.289
300 | -25.733 | 23.174| -0.161| +3.344
SITE 160 | -0.554 0.084 | -0.056 | =+0.136
300 | -0.617 0.082 | -0.056 | =+0.137




181

Though we have used d/o 300 for our computations, corresponding values
calculated with d/o 160 are also depicted in Table 4.2.2 only to emphasise that there can
be substantial absolute differences (~10 mGal to ~15 mGal) in the reference topographical
effects. These differences will have equivalent effect (~10 mGal to ~15 mGal) on
Helmert’s residual gravity anomalies, affecting the final geoid solution. Therefore, from
the viewpoint of cm-precise geoid model, we suggest to study the effects of different d/o

of DEM for calculating Helmert’s residual gravity anomaly.
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Figure 4.2.5: Residual Helmert’s anomaly calculated with the DIR-RL05 GGM d/o 300.
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Figure 4.2.6: Residual co-geoid after Stokes-integrating residual Helmert’s gravity
anomaly with the VK kernel modification (M =80 and y =1.5°)
The large residual Helmert’s gravity anomalies (Figure 4.2.5) are possibly due to
the large gravity gradients (Figure 3.5.1) in the regions where we suspect poor quality of

the GETECH gravity data (Section 2.1).
The following are the major differences from the original UNB method:

)] The computed topographic effects are considered as the mean value, which
contrasts with the UNB method, where the mean value is calculated by averaging
the topographic effect computed using DEMs with different resolutions (Section

3.2.2).
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For the present study, we have not used the formulas used in the UNB method for
atmospheric effects. We have only applied direct atmospheric effect as discussed
in Section (3.3.1) and do not apply primary and secondary indirect atmospheric
effect, and reference atmospheric effects. As discussed in Section 3.3, though
atmospheric correction may not be significant but needs to be studied meticulously

to have some consensus on the same among different methods.

For DWC, we have used the gravity gradient method instead of inverse Poisson’s

integration (Section 3.5.2).

We have not used the ‘distant zone contribution’ (Novak, 2000, pg. 62) in the final
geoid solution and have utilised GGM with d/o 300 to remove the reference gravity
anomalies and restore the reference geoid undulations. This contrasts with the idea
of a satellite-only reference spheroid in the UNB method (e.g., Vani¢ek and

Martinec, 1994; Vanicek et al., 1995).

The zero-degree term based on the generalised Bruns formula is used and explicitly

mentioned.

The geoid-quasigeoid separation term is computed using the Flury and Rummel

(2009) method.

4.2.3 KTH method of geoid/quasigeoid calculation

The primary uniqueness of the KTH method lies in the stochastic modification of Stokes’s

kernel and additive corrections to the gravity data. Unlike the other methods tested (CUT,

UNB, LSC), the direct and indirect effects needed to make the observations accordant with

the geodetic boundary value problem are added as separate combined corrections to the

approximate geoid estimates obtained using Stokes’s integration with un-reduced gridded

terrestrial gravity data.
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Firstly, in the KTH method, approximate values of geoid undulations are computed
from the un-reduced gridded gravity anomalies and GGM using the unbiased least-squares
geoid estimator (Eq. (4.1.11), with L = M). One of the most important steps in calculating
approximate geoid is determining a priori estimates of signal and error degree variances.
These are necessary to compute a better choice of modification parameters to be used in

the least-squares modification method (Agren, 2004; Agren et al., 2009Db).

We have used KTH’s preferred Tscherning and Rapp (1974) model to compute the
gravity signal degree variance. The error degree variance of the GGM gravity is computed
from the published error estimates that accompany the GGM coefficients (Rapp and
Pavlis, 1990). The error degree variance of terrestrial gravity anomalies is assumed to be
a combination of white noise and a reciprocal distance covariance model (Agren, 2004;
Agren and Sjoberg, 2014). The signal and the GGM error degree variances are further

rescaled by an empirically determined factor to best depict the ‘reality’ of the study area.

Next are the additive corrections. The basic equation for geoid modelling using the

KTH method is

N=N+5NT

comb

+ONPYC SN2+ SNE (4.2.1)

omb

The various additive corrections (atmospheric, ellipsoidal, and downward continuation)
discussed in Chapter 3 are reformulated using the modified Stokes kernel for practical
geoid computation. Only the combined topographic effect remains the same (Eq. (3.2.41))
(Sjoberg, 2000; Agren, 2004). However, we would mention that there exists some
discrepancy in the expression of combined topographical effect on geoid emanating from

the use of R (e.g., Sjoberg and Bagherbandi, 2017) versus R+H, (e.g., Agren et al.,

2009b) in the second term of Eq. (3.2.41).
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In addition to the total combined topographical effects, other three corrections in

Eq. (4.2.1) are given as:

i) Downward continuation effect on geoid (5 N DWC) (Sjoberg, 2003b)

M
7/ R+H 2y or 27 7=

[(R+RHPJH+2_1JA9J+%£[SM (t//)(aaA—rg(HP —HQ))da

i) Atmospheric correction (Sjoberg, 1999; 2001; Sjéberg and Nahavandchi, 2000)

atm M
PN YA _27szatmz( 21—Qn“—sn)Hn— (42.3)
4 4 n2\N—
27Z'Rpatm ~ ( 2 _ n+2 Q:,'an
}/ n=M+1 n_l 2n+1

iii) Ellipsoidal correction to the geoid height (Sjoberg, 2003c; 2004)
R&( 2 a—R
ONF' = — M| =g — —A 4.2.4
R S 2y
2 n
S (8- (n+2)Fy )Ty ~(n41)Gy T, —(N+7)E,,T ]Ynm]

nm '’ n-2,m nm ' n+2,m
2R m=—n

. S, if2<n<M
where s’ = _
0, otherwise

T, arespherical harmonic coefficients of disturbing potential and E,,,F,,, and G are

nm?! " nm?

ellipsoidal coefficients arising in the derivations (e.g., Sjéberg, 2003a; 2003d).

We have not duplicated the derivations because they are provided in detail in the
cited references, almost all doctoral and master dissertations from the KTH on geoid

modelling, and the book by Sjoberg and Bagherbandi (2017).
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The above four corrections are collectively known as additive corrections, and
these are applied to the approximate geoid height to obtain the final geoid height. The
geoid-quasigeoid separation term is applied to convert the geoid height to the height

anomalies (Section 4.3). This procedure is shown as a flowchart in Figure 4.2.7.

GGM GETECH Bouguer GGM Merged

(EGM2008) anomalies DEM SHC {| DEM MERIT (DIR-RLO5) gravity
l ¢ anomalies
Spherical Reconstruction
Harmonic of FAA h.4 h 4 v
Synthesis l Atmospheric Topographic Ellipsoidal Downward
correction correction correction continuation
i FAA on
Fill-in land topography , USSR B
ravity anomal : - -
g(O Og°x0 02°)y | Combined Combined Effect of ellipsoidal Downward
- - atmospheric topographic correction on continuation | |
effect on geoid effect on geoid geoid effect on geoid | :
scrRPps | | T '
FAA
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Merging the M d A imat
T three gravity » gg\?i(tey Stoke_s ppég)élir(?a ¢l
Reconstitution anomaly anomalies rice e don undulation GNSS/
datasets Leveling
T GGM : ------ V- ---------------------- :
SCRIPPS Terrain ' Geoi — '
' i DIR-RL0O5 ! eoid 4-P fitting / s
FAA(1x1) | | correction ( ) T undulation| | hybrid geoid |
] 1
Bouguer Geoid-Qgeoid : :
correction separation : A\ 4 — i
Y | Height | 4-Pfitting/ 1
l ' | anomaly hybrid Qgeoid|!
Input Data " [y [yt !
ll;efmed »| Flury and
. ouguer | Rummel (2009)
Computation anomaly ¢ ¢
Computational Vertical _ Absolute Relative
result deflections testing testing

Figure 4.2.7: Flowchart of the KTH methodology of geoid followed by quasigeoid

computation.

The KTH method has been designed primarily to compute a gravimetric geoid,
which is then converted to quasigeoid by adding the geoid-quasigeoid separation term.
However, Sjéberg (2000) and Agren et al. (2009b) show that if the combined topographic
effects are not applied in the computations using the KTH method and if the downward
continuation is also adjusted accordingly, the result will be a quasigeoid. The modification

to the downward continuation is based on the analytical continuation solution using
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Molodensky’s G1 term. This eliminates the need for computing the topographic effects

and further correction terms to convert the geoid to quasigeoid. It has been discussed in

Section 3.5.3. For practical computations, the stochastically modified Stokes’s kernel is

used in the modified DWC effect for quasigeoid, which is then given by

Atmospheric and ellipsoidal corrections remain the same i.e., 62"

5§DWC — 3

So
R+H,

R
47r;/

P

2

CEISE

n+2
)| =] -1lag,+| @25)
R+H,
comb=5N:1c:mb d

Ell Ell - - - - .
o = SN (Agren et al., 2009b). An overview of the direct quasigeoid computation
using the KTH method is given in Figure 4.2.8.
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Figure 4.2.8: Flowchart of the KTH methodology for quasigeoid followed by geoid

computation.
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For our computations with the KTH method, we used the latter method with DIR-
RLO5 GGM and following combinations (parameter sweeps): L = M = 40, 80, 120, 160,

200, 240, 280, 300, and y, =0.2°,0.5° 0.75° 1°,1.5°, 2° in Eq. (4.1.11). The reference

height anomalies on the topography are computed using GGM with a zero-degree term

from the generalised Bruns’s formula (Section 3.6.1) calculated for each latitude parallel.

We used normal potential U, (: 62636860.85 mzs‘z) from GRS80 and the geopotential

W, (=62636853.4 m’s? ) from IHRS (Sénchez et al., 2016).

The geoid-quasigeoid separation (Flury and Rummel, 2009) term is applied to the
height anomalies to obtain the corresponding geoid undulations. Parametric fitting of
geoid/quasigeoid is done with GNSS/levelling data to calculate the corresponding hybrid
geoid/quasigeoid models. These are discussed in Sections 4.3 and 4.4, respectively. The
gravimetric geoid and quasigeoid models (before and after fit) are then validated with the
available GNSS/levelling data. The gravimetric geoid is also validated with vertical

deflections (Section 3.3).

Only for illustration purposes, the atmospheric, ellipsoidal, and the DWC effect are
shown in Figures 4.2.9, 4.2.10, and 4.2.11, respectively, computed with LSMS kernel

modification (M =80 and y = 1.5°).
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Figure 4.2.9: Combined atmospheric effect for the height anomalies/geoid undulations in
the KTH method with LSMS kernel modification (M = 80 and y = 1.5%)
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Figure 4.2.10: Ellipsoidal effect for the height anomalies/geoid undulations in the KTH
method with LSMS kernel modification (M =80 and y =1.5°)
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Figure 4.2.11: Combined downward continuation effect for the height anomalies in the
KTH method with LSMS kernel modification (M =80 and y =1.5%)

The following are the major differences from the original KTH method:

) We could not follow the remove-compute-restore method for gridding the gravity

anomalies because we already had the gridded gravity anomalies.

i) The zero-degree term based on generalised Bruns’s formula is used and explicitly

mentioned.

iii)  The geoid-quasigeoid separation term is computed using the Flury and Rummel

(2009) method.
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4.3 Geoid-quasigeoid separation

Primarily there are three choices of height systems (Featherstone and Kuhn, 2006):
orthometric heights (either Helmert (1884) or rigorous (Tenzer et al., 2005; Santos et al.,
2006)) referred to the geoid, normal heights referred to the quasigeoid (Molodensky et al.,
1962), and normal-orthometric heights referred to a non-explicitly mentioned surface
(Filmer et al., 2010; 2014). There have been discussions on the choice of geoid vs.
quasigeoid (Vanicek et al., 2012; Sjoberg, 2013; 2018; Penna et al., 2013; Foroughi et al.,
2017b; Popadyev, 2019; Santos et al., 2021) as a reference surface for physical heights.
Since both have their respective advantages and disadvantages, no consensus has been
attained. Therefore, different countries have their individual preference of one surface over
the other. A ‘bridge’ term connecting the two surfaces without an intensive
independent/separate computation of geoid and quasigeoid is the geoid-quasigeoid

separation (GQS) term.
The major motivations for pursuing GQS term are:

i) Avoiding the re-computations for the countries that are shifting from one height

system to another.
i) Use of consistent height system in the whole of the country or adjacent countries.

iii) Investigate the suitable representative surface for the normal-orthometric height

system and thereafter calculate hybrid geoid or hybrid quasigeoid.
iv) An aid to geophysical studies (e.g., Mehramuz et al., 2011)

The third point is the motivation to calculate GQS term for the present study. The
CUT and the KTH methods provide height anomalies (KTH method can also provide
geoid undulations, Section 4.2.3), while the UNB method provides geoid undulations.

Therefore, to convert among geoid undulations and height anomalies, the GQS term is
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required.

The background for GQS term is the relation between geodetic height and i)
orthometric height and geoid undulation (Eq. (4.3.1)), and ii) normal height and height

anomaly (Eq. (4.3.2))

h~H+N (4.3.1)
haH +¢ (4.3.2)

From Egs. (4.3.1) and (4.3.2),
H+N~H +{=N-¢~H —H (4.3.3)
From the relations of H and H” with the geopotential number (C),ie, H :% and

H = E we have
Y

H'-H~3Z7H (4.3.4)

Therefore, substituting Eq. (4.3.4) in Eq. (4.3.3), the relation between geoid undulation

and height anomaly is given by

N—ng_yH (4.3.5)
Y

where @ is the mean gravity along the curved and torsioned plumb line and y is the mean
normal gravity along the curved normal plumb line. If we consider ¢ as the separation
between the ellipsoid and the quasigeoid, Eq. (4.3.5) can also be regarded as the GQS.

Therefore, the problem of GQS has now reduced mainly to the determination of

mean gravity g along the curved and torsioned plumb line. The treatment of J is the
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principal source of various available formulas for GQS term. Table 4.3.1 lists a few of the

GQS term formulas available in the literature. We have not discussed their detailed

methodology, instead see the literature cited.

Table 4.3.1: Various formulas for calculating GQS term.

Reference GQS term
Heiskanen and Moritz Ag®*
(1967, pg. 327) 7 H (4.3.6)
Heiskanen and Moritz Ag®A H) (4.3.7)
(1967, pg. 328) ( )”‘ cas (F i
BA 2
Agren (2004) Ag™,, _H'oAg (4.3.8)
% 2y or
Ag®* H? oA
Sadiq et al. (2009) 29 +2—%—Hg (4.3.9)
Y Y
Flury and Rummel Ag® . Ve -Vi,
(2000 - H+ = (4.3.10)
Ag* o Ve—Veui(, HY) H? oAg"
—H + — 1 e
Sjoberg (2010) 7 7 R) 2y, oh
(4.3.11)
Ag™* H? 659
Chijun et al. (2011) —H R (4.3.12)
/4 Y
59" ., Va—Van H? 059" Yo
Schwabe et al. (2016) 9 H4Rmen J +§[ Rt —1] (4.3.13)
Yo Yo 2y, oh Yo

There also exist formulas for GQS that include density contribution (e.g., Tenzer

et al., 2006; 2015; Foroughi and Tenzer, 2017) but are not provided here because no

national Digital Density Model (DDM) is available for India.

The formulas presented by Flury and Rummel (2009) and Sj6berg (2010) do not

vary more than a centimetre anywhere on the Earth (Sjoberg, 2010; Flury and Rummel,

2011). In addition to the several available GQS formulas, there has been a mild

inconsistency in the use of simple or refined Bouguer anomalies in the formulas in Table

4.3.1. Heiskanen and Moritz (1967) and Agren (2004) use simple planar Bouguer

anomalies, while others (in Table 4.3.1) have used refined Bouguer anomalies. Adam
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(1999), Lasagna (2017) and Wang et al. (2020) preferred using simple Bouguer anomalies,
while Hwang et al. (2020) have worked with refined Bouguer anomalies with the formulas
in Heiskanen and Moritz (1967, pg. 327). From the derivations in the cited literature, it
can be observed that the use of simple versus refined Bouguer anomalies is dependent on

the choice of formulating § (e.g., Rapp, 1961, pg. 39-69; Hesikanen and Moritz, 1967,

pg. 166-167).

We now provide our interpretation of GQS (without density considerations).
Recalling from Section 3.5.1, height anomaly calculated by formulating the boundary
condition at the Earth’s surface will provide the telluroid. Therefore, height anomalies
should be downward continued to the ellipsoid to construct the quasigeoid. As such, the
difference between geoid undulations and downward continued height anomalies should
be called GQS. Hence, the difference between geoid undulation and height anomaly should

not be stated as equal to the difference between geoid and quasigeoid.

We acknowledge that quasigeoid is interpreted and defined as a surface generated
by plotting the computed height anomalies (at Earth’s topography) on the reference
ellipsoid. We also recall sentences regarding quasigeoid by 1. Vanicek (1974): “The height
anomaly can be — and very often is — interpreted as height above the reference ellipsoid.
The locus of such interpreted height anomalies is surface known as quasigeoid” and 2.
Moritz (2011): “The height anomalies are similar in magnitude to the geoid height, but
have quite a different geometric interpretation....Molodensky introduced an artificial
“quasigeoid” by plotting the height anomaly above the ellipsoid.” In such a case, if height
anomalies are downward continued to the ellipsoid, the height of a point above the
quasigeoid should not be a normal height. However, next we provide a mathematical
formulation involving downward continuation of height anomalies to the ellipsoid that

recommend towards a convention for defining/interpreting quasigeoid.
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Since the major difference in the computational theory of geoid and quasigeoid is
the required treatment of topographical effects in the former surface, the GQS should

comprise the terms related to topographical effects. Therefore, GQS can be given by

FA BC
N—| ¢, |29 | [~ 29 h T by piTe (4.3.14)
7 Yo o Y

The third term on the L.H.S. of Eq. (4.3.14) is the gradient of height anomalies (g—ﬁj

(Section 3.5.1). Eq. (4.3.14) can be rearranged to a more general term that is given as

. Ag™ +Ag®© +TC h4 PITE = AgF®h
7q 7q

N-C, h+PITE (4.3.15)

RBA

where Ag®® and Ag™®* are the planar Bouguer correction and refined planar Bouguer

anomalies, respectively.

We have used h because the height anomalies are downward-continued from the
Earth’s topography to the ellipsoid. Our Eq. (4.3.15) is comparable with Flury and
Rummel’s (2009) formula (Table 4.3.1). Therefore, our interpretation of GQS as the
separation between geoid undulations and downward-continued height anomalies is valid.
However, for the present study, we have computed the GQS term using Flury and
Rummel’s (2009) formula, which is shown in Figure 4.3.1. We also calculated the GQS
term using Heiskanen and Moritz’s (1967, pg. 327) formula (Figure 4.3.2) to compare the
values obtained using the two formulas. The differences in the GQS term with the two
formulas are shown in Figure 4.3.3. It should be noted that the refined planar Bouguer

anomalies have been used in implementing both formulas.
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Figure 4.3.1: GQS term calculated using Flury and Rummel’s (2009) method.
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Figure 4.3.2: GQS term calculated using Heiskanen and Moritz’s (1967) method.
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Figure 4.3.3: Difference in the GQS term calculated using the methods given in Flury
and Rummel (2009) and Heiskanen and Moritz (1967).

Large values (>4 m) of the GQS term are achieved using different methods
(Figures 4.3.1 and 4.3.2). For our study area, there is a significant difference (Figure 4.3.3)
in the GQS term calculated using the Flury and Rummel (2009) and Heiskanen and Moritz
(1967) methods. The differences in the GQS term from the two methods vary from -2.75
m to +1.45 m with a mean of -0.12 m and standard deviation of +£0.24 m. These large
differences among GQS terms with different methods are a caution for geoid modellers
who seek either a cm-precise geoid calculated using the quasigeoid and the GQS term or

cm-precise quasigeoid calculated using the geoid and the GQS term.

Furthermore, we have computed the GQS term at a grid spacing of 0.02°x0.02°

that may possibly omit some values in regions within/between these nodes. For example,
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Jiang et al. (2021) show a value of GQS as -1.30 m calculated using the Flury and Rummel

(2009) method for the summit of Mt. Everest.
4.4 Hybrid geoid/quasigeoid

Ideally, the following geometrical relation between the geodetic height, orthometric height

and geoid undulation must hold true.
h—H-N=0 (44.1)

However, due to, primarily, following factors Eq. (4.4.1) is never satisfied
(Rummel and Teunissen, 1988; Kearsley et al., 1993; Featherstone, 1998; Kotsakis and

Sideris, 1999, among many others):

)} The reference surfaces for the three heights are entirely different: ellipsoid for h),
tide gauge station(s) based local vertical datum for H , and gravity and GGM-based

reference surface for N .

i) There are numerous datum inconsistencies (e.g., different permanent tide systems,
long-wavelength errors in N, over-constrained adjustment of levelling networks,
zero-degree term offsets in local vertical datums), theoretical approximations and
assumptions in calculating H, N or vertical deflections (e.g., use of approximate
formulas and negligence of density, sea surface topography, curved and torsioned

plumb line at each point is along a different path, etc.)

iii)  Observations at different epochs, non-consideration of vertical land motion and/or

use of different GNSS data processing softwares (e.g., Featherstone et al., 2019).

iv) Eq. (4.4.1) does also not hold for a theoretical reason, that is, h is measured along
the ellipsoidal normal, while H is measured along the curved and torsioned plumb

line.
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The requirement and methods of fitting a gravimetric geoid to the GNSS/levelling
dataset have been studied by many (e.g., Jiang and Duquenne, 1996; Kotsakis and Sideris,
1999; Denker et al., 2000; Fotopoulos, 2003, among many others). A geoid model obtained
after fitting to the GNSS/levelling data is often known as hybrid geoid. Several researchers
have computed the national hybrid geoid/quasigeoid models (e.g., Erol and Erol, 2013;
Lee et al., 2013; Miyahara et al., 2014; Brown et al., 2018; Roman and Ahlgren, 2019;

Borghi et al., 2020; Yildiz et al., 2020; Hwang et al., 2020).

There are two common approaches of constructing a hybrid geoid: i) finding the

offsets between the gravimetric (N ) and geometric (h—H ) undulations, which are then

interpolated on a regular grid to be added to the gravimetric geoid model, and ii) least-
squares fitting of gravimetric and geometric undulations using some parametric model,
thereby reducing the offsets for some biases and tilts in different reference surfaces, which
are then interpolated to be added to the geoid model. The interpolation methods include
polynomial surfaces (Featherstone, 2000; Fotopoulos et al., 2002) and least-squares
collocation (e.g., Moritz, 1980, Fukuda et al., 1997; Featherstone, 2000; Featherstone and

Sproule, 2006; Miyahara et al., 2014; Al-Kherayef et al., 2020).

The basic model to compute geoid offset along with minimising the effect of
vertical datum inconsistencies using parametric equations is (Heiskanen and Moritz, 1967,

pg. 206)
AN =Ny —N =h —H, =N, =a’x+V, (4.4.2)

where x is @ mx1 vector of unknown parameters in the parametric model, a isa mx1
vector of known coefficients and v is a nx1 vector of residuals, n is the number of

observations, and m is the number of parameters in the model. All the possible datum

inconsistencies and systematic bias in the data are described by the parametric part a'x .
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The choices of multi-parametric models (Heiskanen and Moritz, 1967; Kotsakis et

al., 2001; Sjoberg and Bagherbandi, 2017) viz. three-, four-, five- and seven-parameter

transformation models are given by

3-parameter: AN = (cos¢cosA)x, +(cos@sin )X, +(sing)x, +v
4-parameter: AN = (cos¢@cos )X +(cos@sin )X, +(sing)x; + X, +v

5-parameter: AN = (cos¢cos )X, +(cos@sin 1) X, +(sing)x, +(sin2 ¢)X4 + X +V

7-parameter: AN = (cos¢cosA)x, +(cos@sin )X, +(sing)x, +(

cosgsingcosd | 1-f?sin’ ¢ 4
J1-e?sin?¢ ° J1-e?sin® ¢ 6

(4.4.3)

— % TV
1-e“sin“ ¢

cosgsingsin A X, +
J1-€?sin’ ¢

sin® ¢

As an example, for a four-parameter model and one observation (h— H-N), vectors

a and x are given by

COS¢@CoS A X
cos¢gsin A X

a= ¢ and x=| 2
sin ¢ X,

1 X,

where x can be solved using

x=(ATA)"(ATI)

(4.4.4)

(4.4.5)

with A being the design matrix of size nxm, AT is the transpose of matrix A and | is a

nx1 vector of the observations obtained using Eq. (4.4.2).

Thereafter, adjusted AN (AN, ) can be obtained, which represents the gravimetric-

geometric geoid offset treated for biases, tilts, or any other type of systematic differences

between the two data sets (N and Ny, )- These AN, values are interpolated at a grid
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of the size and resolution of the gravimetric geoid using some interpolation technique,

which is then applied to the gravimetric geoid.

Due to the availability of several parametric models, the choice of one over others
is sometimes based on i) arbitrary choice, ii) least standard deviation on validation with
the GNSS/levelling data or iii) some other statistical testing (e.g., k-fold cross validation
(Stone, 1974; 1977; Shao, 1993)). With the seven-parameter model, we almost always get
the results with the smallest standard deviation (e.g., Abdalla, 2009; Goyal et al., 2019a).
Still, under certain conditions, it is possible that the seven-parameter model cannot be used
(e.g., not sufficient datapoints) or suffer from over-parametrisation. Therefore, a
meticulous statistical study is required in this direction. Though not covered in this thesis,
we would like to direct towards a starting point where i) Fotopoulos (2003) has used
descriptive statistics, goodness of fit and adjusted goodness of fit, cross-validation, and
three tests for parameter significance (forward elimination, backward elimination,
stepwise procedure), and ii) Goyal et al. (2019a) demonstrated the use of Akaike's
information criterion (Akaike, 1974) and Bayesian information criterion (Schwarz, 1978)

for testing parameter significance. It should be noted that there is a typographical error in

Eqn. 9 of Goyal et al. (2019a); the denominator should read r? instead of yr .

4.5 Summary

In this chapter, we discussed the three methodologies (CUT, UNB and KTH) of calculating
geoid and quasigeoid models. The three methods are significantly different from each
other. The CUT method uses Moritz’s analytical solution of the Molodensky’s problem to
calculate the height anomalies. The UNB method uses Helmert’s second condensation
scheme to account for the gravitating masses above the geoid for the calculation of geoid

undulations. The CUT and the UNB methods apply the Stokes integration on residual
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gravity anomalies with deterministically modified (but different) Stokes’s kernel. The
KTH method applies the Stokes integration on the un-reduced gravity anomalies with
stochastically modified Stokes’s kernel. The KTH method uses least squares modification
of Stokes’s kernel with additive corrections to the approximate height anomalies for

calculating the height anomalies.

We have explicitly mentioned the differences between the methodologies strictly
followed by the respective developers of the three methods and our application due to the

unique aspects of the Indian data.

Since the CUT and the KTH methods provide height anomalies and the UNB
method provides geoid undulation, a discussion on the geoid-quasigeoid separation (GQS)
term is provided that is used to calculate geoid undulations from height anomalies or vice-
versa. This is important because we aim to compare our GNSS/levelling data with both

geoid and quasigeoid.

We have provided a list of different formulas available in the literature for GQS
term. It is shown that the difference in the GQS term calculated with two more commonly
used formulas (Heiskanen and Moritz, 1967; Flury and Rummel, 2009) can range from -
2.75 m to +1.45 m, which is substantial from the viewpoint of cm-precise geoid calculated
using quasigeoid modelling technique and the GQS term or cm-precise quasigeoid

calculated using geoid modelling technique and the GQS term.

A discussion is provided that the difference between the geoid undulations and the
height anomalies should not be called GQS. However, GQS should be defined as the
difference between the geoid undulations and the downward-continued height anomalies.
A mathematical proof has also been provided for the latter definition, which is comparable

to the GQS formula derived by Flury and Rummel (2009).
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Finally, we have presented the method of calculating hybrid geoid and hybrid
quasigeoid models using three-, four-, five-, and seven-parameter fitting, which are

generally used to account (remove) for tilts and biases in the vertical datum.
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Chapter 5: Geoid and quasigeoid: results and validations
5.0 Introduction

This chapter presents the results of the geoid and quasigeoid models of i) the whole of
mainland India calculated using the three methods as discussed in Sections 4.2.1, 4.2.2,
and 4.2.3 and ii) four regions (UP West, UP East, Hyderabad and Bangalore) calculated
using GRAVSOFT with LSC (GEOCOL) and RTM as described in Forsberg and
Tscherning (2008). The geoid and quasigeoid models are validated with the available
GNSS/levelling data in an absolute and relative sense. Since we do not have a well-
distributed dataset, the validation has been done using the whole of GNSS/levelling data
(for India) and using the datasets from the four clusters/regions (UP West, UP East,
Hyderabad and Bangalore, Figure 2.2.1). Moreover, we have validated the gravimetric
geoid models with the north-south and east-west components of the vertical deflections.
Since the quasigeoid is not an equipotential surface, the quasigeoid models are not
validated with the vertical deflections. The gravimetric geoid models of India based on the
CUT, the UNB and the KTH methods and an inter-model comparison are also provided in

this chapter.
5.1 Validation of the developed geoid and quasigeoid models

The absolute testing is realised through point-wise subtraction of gravimetric geoid

undulations (or height anomalies) obtained using Stokes’s integration (N or £ ) and the

geometrical geoid undulation (h - H) or height anomaly obtained using GNSS/levelling

data (Eq. (5.1.1)).

giabs — Nigrav _ NiGNSS/Iev — Nigrav _(hi _ Hi) Vi :1,2’3’ ....... N (5.1.1)
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where n is the total number of discrete GNSS/levelling data points. However, it should
be again noted that the height system of the available levelling data (in this study; Section
2.2) is unknown and we have assumed it to be based on IVD1909, which is in the normal-
orthometric height system. Though absolute precision assessment is practiced by the
‘subtraction’ of data points, it is important to acknowledge that absolute precision is only
an assumption. This is principally because the levelled heights that refer to the local
vertical datum are not necessarily coincident with the geoid (Featherstone, 2001). Without
going into further details, we have also used ‘subtraction’ of gravimetric and geometric

geoid undulations after a 4-parameter fit for absolute precision assessment.

The test for the relative fit of geoid and quasigeoid is an analysis tool to investigate
the geoid/quasigeoid gradients. This type of analysis (Eg. (5.1.2)) is of more interest to
land surveyors who use relative GNSS baselines and geoid/quasigeoid gradients as a

replacement for the time-consuming differential levelling.

gl = ANT™ —ANS™™ = ANS™ —(Ah; —AH,;) Vi, j=123..ni=j (5.12)

i =

We have computed (for & ) minimum, maximum, mean, standard deviation, and

the ratio of mean differences to the mean baseline length in parts per million (average ppm
in mm/km) for geoid and quasigeoid, before and after a 4-parameter fitting. Featherstone

(2001) has also discussed the relative precision assessment of geoid/quasigeoid.

Helmert’s vertical deflections (obtained by astrogeodetic observations) are
compared with Pizetti’s vertical deflections (obtained from the horizontal gradients of the
geoid models). Pizetti’s vertical deflections can also be obtained using Vening-Meinesz’s
integral (Heiskanen and Moritz, 1967) but this is not used here. Instead, we used the
horizontal gradients of the developed geoid models using the three methods (CUT, UNB

and KTH) with all the tested combinations (parameter sweeps) of modification degree and
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integration radius. Pizetti’s north-south (&,,) and east-west (77,,) vertical deflection’s

components are calculated using Egs. (5.1.3) and (5.1.4), respectively (Featherstone and

Lichti, 2008)
—AN
oy =" (5.1.3)
HAp
Mop =Nz (5.1.4)
v AACOS @

where AN, and AN,, are the changes in the geoid undulation at the grid nodes defining

Ag and AA, respectively. 4 and v are the radii of curvature in meridional and prime-

vertical, respectively.

As arecall from Chapter 2, for validation we have 119 GNSS/levelling data points,
and 701 meridional components and 280 prime vertical components of the vertical
deflections. Figure 5.1.1 shows the base figure, i.e., following which the results of
parameter sweeps have been depicted in Figures 5.1.2 to 5.1.11. We provide this base
figure as an explanation because, in the literature, parameter sweeps are depicted in a
different way (e.g., Featherstone et al., 2018; Claessens and Filmer, 2020). This way of
plotting the results of parameter sweeps was chosen so that the plots for geoid (blue) and
quasigeoid (red) can be shown on the same graph for a better comparison. There are eight
columns in Figure 5.1.1, each of which is assigned to a modification degree (40, 80, 120,
160, 200, 240, 280 and 300). Each circle in a column represents a combination of M and
w starting with M =40, w =0.2° to M =40,  =2° in the first column, then M = 80, y
=0.2°to M =80, w =2° in the second column up to M = 300, v =0.2° to M =300 y =
2° in the last column. y-axis shows the statistic (standard deviation or average ppm) for all

the combinations of M and .
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Figure 5.1.1: Base figure to show the variation of STD or average ppm in validation
results for different combinations of modification degree and integration radius

(parameter sweeps).

The results are arranged as follows:

Figures 5.1.2, 5.1.3, and 5.1.4 show the variation of standard deviation (for
absolute precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid
for different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300)
and integration radius (0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°) for India and four local regions using

the CUT, the UNB, and the KTH methods, respectively.

Figures 5.1.5, 5.1.6, and 5.1.7 depict the variation of standard deviation (for
relative precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid
for different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300)
and integration radius (0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°) for India and four local regions using

the CUT, the UNB, and the KTH methods, respectively.

Figures 5.1.8, 5.1.9, and 5.1.10 depict the variation of average ppm (for relative
precision assessment with respect to GNSS/levelling) in the geoid and quasigeoid for
different combinations of modification degree (40, 80, 120, 160, 200, 240, 280, 300) and
integration radius (0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°) for India and four local regions using the

CUT, the UNB, and the KTH methods, respectively.
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Figure 5.1.11 depicts the variation of the standard deviation for geoid validation
with the vertical deflection’s components. The results are presented for India geoid models
developed using the three methods with different combinations of modification degree (40,

80, 120, 160, 200, 240, 280, 300) and integration radius (0.2°, 0.5°, 0.75°, 1°, 1.5°, 2°).

Table 5.1.1 provides the minimum, maximum, mean, and standard deviation of the
absolute precision assessment of geoid and quasigeoid, before and after fit, computed
using the CUT, UNB and KTH methods. The values are provided for the combination of
modification degree and integration radius providing the minimum standard deviation

among all combinations for India and four local regions.

Table 5.1.2 provides the mean, standard deviation, and average ppm for the relative
precision assessment of geoid and quasigeoid, before and after fit, computed using the
CUT, UNB and KTH methods. The values are provided for the combination of
modification degree and integration radius providing the minimum standard deviation

among all combinations for India and four local regions.

Table 5.1.3 provides the minimum, maximum, mean, and standard deviation of the
geoid validated with the meridional and prime vertical components of vertical deflections.
The values are provided for the combination of modification degree and integration radius

providing the minimum standard deviation among all combinations.

Tables 5.1.4 and 5.1.5 provide the results of the absolute and relative precision
assessment, respectively, of geoid and quasigeoid, before and after fit, computed using the

GEOCOL with RTM.
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Figure 5.1.2: Standard deviation (in m) from the absolute precision assessment of geoid
(blue) and quasigeoid (red) for different M and y combinations in the CUT method for

a) India, b) UP West, ¢) UP East, d) Hyderabad, and e) Bangalore. The left column is for
before any fitting, and the corresponding right column is for after fitting.
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Figure 5.1.4: Standard deviation (in m) from the absolute precision assessment of geoid
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before any fitting, and the corresponding right column is for after fitting.
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Figure 5.1.5: Standard deviation (in m) from the relative precision assessment of geoid
(blue) and quasigeoid (red) for different M and y combinations in the CUT method for

a) India, b) UP West, ¢) UP East, d) Hyderabad, and e) Bangalore. The right column is
for before any fitting, and the corresponding left column is for after fitting.



215

0.535]

[(a)

0.235F
053¢

0.23r
0.525¢

Gl 0.225,

0.515¢ 9:22

03+ 0241 _
0.29} 023} 1 |
0.28% 0.22 §
0.27 5511 |
0.26} | [
0.25- ! J \! )\ Lo g ﬁ
\

019+
0.24 -

02r 0.16 (c)

018+

0.15F
0167 1 1 T 014f \j
160 200 240 280 300 " 40 80 120 160 200 240 280 300
02261 0197 F I t
(d)
0.224 0.196
0.222f ] prhee  pTtes
f\ 0.195
0.22}
194
0.218 e
0.216 0.193
160 200 240 300
0.039F -
0.085} (e)
0.038} .
t
005" 1 1 0.037}
lll L ]
0045 _r I 0035 [
{ \m
3 "tee e
J 0.035
0.04

40 80 120 160 200 240 40 80 120 160 200 240 280 300

Figure 5.1.6: Standard deviation (in m) from the relative precision assessment of geoid
(blue) and quasigeoid (red) for different M and y combinations in the UNB method for
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Figure 5.1.7: Standard deviation (in m) from the relative precision of geoid (blue) and
quasigeoid (red) for different M and y combinations in the KTH method for a) India,

b) UP West, c) UP East, d) Hyderabad, and e) Bangalore. The left column is for before
any fitting, and the corresponding right column is for after fitting.
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for before any fitting, and the corresponding left column is for after fitting.
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Figure 5.1.9: Average ppm (mm/km) from the relative precision assessment of geoid
(blue) and quasigeoid (red) for different M and y combinations in the UNB method for
a) India, b) UP West, ¢) UP East, d) Hyderabad, and e) Bangalore. The left column is for

before any fitting, and the corresponding right column is for after fitting.
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before any fitting, and the corresponding right column is for after fitting.
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(computed using the three methods) with the meridional (red) and prime vertical (blue)

components of the vertical deflections.
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Table 5.1.1: Descriptive statistics of absolute precision assessment of gravimetric geoid
and quasigeoid models, for India and the four regions, with the three methods fora M

and w combination that has the least standard deviation. [psi in degrees, min, max, mean

and STD in m]

Geoid Quasigeoid
mod(psi) | min max | mean | STD | mod(psi) | min max | mean | STD
India CUT | nofit 40(1.5) | -0.881 | 0.783 | -0.176 | 0.395 40(1.5) | -0.890 | 0.721 | -0.191 | 0.387
4pfit | 300(0.75) | -0.475 | 0.408 | 0.000 | 0.134 | 300(0.75) | -0.477 | 0.409 | 0.000 | 0.134
UNB | no fit 40(1.5) | -1.186 | 0.696 | -0.419 | 0.459 40(1.5) | -1.193 | 0.635 | -0.434 | 0.449
4pfit | 200(0.5) | -0.509 | 0.435 | 0.000 | 0.154 | 200(0.5) | -0.506 | 0.436 | 0.000 | 0.151
KTH | no fit 80(2) | -0.827 | 0.816 | -0.086 | 0.388 80(2) | -0.836 | 0.754 | -0.100 | 0.377
4pfit 300(2) | -0.518 | 0.433 | 0.000 | 0.134 280(1) | -0.463 | 0.427 | 0.000 | 0.133
UP West | CUT | nofit 40(0.5) | -0.981 | -0.327 | -0.577 | 0.115 ] 120(0.75) | -0.985 | -0.295 | -0.578 | 0.121
4pfit | 300(0.5) | -0.417 | 0.207 | 0.000 | 0.111 | 240(0.5) | -0.415 | 0.222 | 0.000 | 0.112
UNB | no fit 40(2) | -1.123 | -0.322 | -0.723 | 0.184 40(2) | -1.132 | -0.352 | -0.739 | 0.174
4pfit 40(1.5) | -0.471 | 0.245| 0.000 | 0.133 40(1.5) | -0.467 | 0.247 | 0.000 | 0.129
KTH | nofit | 300(1.5) | -1.156 | -0.460 | -0.647 | 0.126 280(1) | -1.051 | -0.375 | -0.588 | 0.121
4pfit 300(2) | -0.441 | 0.220 | 0.000 | 0.116 240(1) | -0.439 | 0.215| 0.000 | 0.114
UP East CUT | nofit | 300(0.75) | -0.708 | -0.305 | -0.470 | 0.091 | 300(0.75) | -0.707 | -0.306 | -0.473 | 0.091
4pfit | 300(0.75) | -0.220 | 0.158 | 0.000 | 0.090 | 300(0.75) | -0.219 | 0.157 | 0.000 | 0.090
UNB | nofit | 240(0.75) | -1.074 | -0.700 | -0.838 | 0.089 | 240(0.75) | -1.073 | -0.702 | -0.840 | 0.089
4pfit | 280(0.75) | -0.229 | 0.126 | 0.000 | 0.089 | 280(0.75) | -0.227 | 0.130 | 0.000 | 0.088
KTH | no fit 160(2) | -0.698 | -0.326 | -0.466 | 0.090 160(2) | -0.697 | -0.327 | -0.468 | 0.091
4pfit 200(2) | -0.193 | 0.128 | 0.000 | 0.082 200(2) | -0.192 | 0.127 | 0.000 | 0.082
Hyderabad | CUT | no fit 80(1.5) | -0.385 | 0.501 | 0.070 | 0.158 80(1.5) | -0.400 | 0.488 | 0.057 | 0.158
4pfit 80(1.5) | -0.369 | 0.408 | 0.000 | 0.139 80(1.5) | -0.368 | 0.407 | 0.000 | 0.139
UNB | no fit 40(0.2) | -0.438 | 0.427 | -0.004 | 0.153 40(0.2) | -0.453 | 0.414 | -0.017 | 0.153
4pfit 40(0.2) | -0.359 | 0.402 | 0.000 | 0.136 40(0.2) | -0.358 | 0.401 | 0.000 | 0.136
KTH | nofit 40(2) | -0.350 | 0.522 | 0.034 | 0.149 40(2) | -0.365 | 0.509 | 0.021 | 0.148
4pfit 80(0.5) | -0.362 | 0.410 | 0.000 | 0.136 80(0.5) | -0.361 | 0.409 | 0.000 | 0.136
Bangalore | CUT | no fit | 280(0.75) | 0.727 | 0.810 | 0.769 | 0.030 | 300(0.75) | 0.662 | 0.748 | 0.707 | 0.032
4pfit 40(0.2) | -0.023 | 0.047 | 0.000 | 0.025 40(0.2) | -0.023 | 0.048 | 0.000 | 0.025
UNB | nofit | 120(0.5) | 0.687 | 0.769 | 0.726 | 0.028 | 120(0.5) | 0.622 | 0.708 | 0.665 | 0.029
4pfit 40(0.2) | -0.022 | 0.045 | 0.000 | 0.024 40(0.2) | -0.022 | 0.046 | 0.000 | 0.024
KTH | nofit 300(2) | 0.724 | 0.811| 0.764 | 0.031 300(2) | 0.659 | 0.749 | 0.704 | 0.032
4pfit 40(2) | -0.022 | 0.042 | 0.000 | 0.023 40(1) | -0.023 | 0.044 | 0.000 | 0.024
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Table 5.1.2: Descriptive statistics of relative precision assessment of gravimetric geoid
and quasigeoid models, for India and the four regions, with the three methods fora M

and y combination that has the least standard deviation. [psi in degrees; mean, STD in

m; mean ppm in mm/km]

Geoid Quasigeoid

mod(psi) | mean | STD ppm | mod(psi) | mean | STD ppm

India CUT | nofit 40(0.2) | 0.405 | 0.414 | 3.392 40(0.2) | 0.400 | 0.406 | 3.388

4pfit | 300(0.75) | -0.011 | 0.189 | 3.150 | 300(0.75) | -0.011 | 0.189 | 3.144

UNB | no fit 40(2) | 0.394 | 0.523 | 3.462 40(2) | 0.389 | 0.509 | 3.447

4pfit 200(0.5) | -0.012 | 0.218 | 3.202 ] 200(0.5) | -0.012 | 0.214 | 3.191

KTH | no fit 160(0.5) | 0.399 | 0.431 | 3.346] 160(0.5) | 0.395 | 0.419 | 3.332

4pfit 300(2) | -0.009 | 0.190 | 3.107 280(1) | -0.010 | 0.188 | 3.138

UP West | CUT | nofit 160(0.5) | 0.037 | 0.159 | 0.950 40(0.5) | 0.052 | 0.163 | 0.981

4pfit 300(0.5) | 0.001 | 0.157 | 0.923 | 240(0.5) | 0.001 | 0.159 | 0.928

UNB [ no fit 120(0.5) | -0.155 | 0.253 | 1.459 ] 160(0.75) | -0.131 | 0.236 | 1.364

Apfit 40(15) | 0.004 | 0.188 | 1.121| 40(15)| 0.004 | 0.182 | 1.078

KTH | no fit 280(1) | -0.043 | 0.177 | 1.044| 280(1) | -0.026 | 0.170 | 0.988

4pfit 300(2) | 0.002 | 0.164 | 0.954 240(1) | 0.003 | 0.162 | 0.939

UPEast | CUT [ nofit | 300(0.75) | 0.001 | 0.129 | 0.834 | 300(0.75) | 0.004 | 0.129 | 0.834

4pfit | 300(0.75) | -0.003 | 0.128 | 0.835 ] 300(0.75) | -0.003 | 0.128 | 0.834

UNB | nofit | 240(0.75) | 0.000 | 0.126 | 0.816 | 240(0.75) | 0.003 | 0.126 | 0.815

4pfit | 280(0.75) | -0.005 | 0.125 | 0.810 | 280(0.75) | -0.004 | 0.125 | 0.808

KTH | no fit 160(2) | 0.023 | 0.126 | 0.832 160(2) | 0.027 | 0.126 | 0.835

4pfit | 300(15) | -0.004 | 0.114 | 0.823 | 300(1.5) | -0.004 | 0.114 | 0.811

Hyderabad | CUT | no fit 40(1.5) | -0.031 | 0.221 | 13.029 40(1.5) | -0.032 | 0.221 | 13.022

4pfit 40(15) | 0.011 | 0.196 | 12.882 | 40(15) | 0.011 | 0.196 | 12.860

UNB [ no fit 40(0.2) | -0.022 | 0.215 | 12.827 40(0.2) | -0.023 | 0.215 | 12.688

4pfit 40(0.2) | 0.011 | 0.193 | 12.669 40(0.2) | 0.011 | 0.192 | 12.647

KTH | no fit 40(2) | 0.040 | 0.206 | 12.122 40(2) | 0.039 | 0.206 | 12.091

4pfit 80(0.5) | 0.010 | 0.192 | 12.567 80(0.5) | 0.010 | 0.192 | 12.546

Bangalore | CUT | no fit | 280(0.75) | -0.004 | 0.043 | 3.049 | 300(0.75) | -0.006 | 0.045 | 3.215

4pfit 40(0.2) | -0.001 | 0.036 | 2.418 40(0.2) | -0.001 | 0.037 | 2.467

UNB [ no fit 40(2) | -0.016 | 0.040 | 3.100 40(2) | -0.018 | 0.042 | 3.303

4pfit 40(0.2) | -0.001 | 0.035 | 2.305 40(0.2) | -0.001 | 0.035 | 2.354

KTH | no fit 40(1.5) | -0.006 | 0.044 | 3.054 300(2) | -0.008 | 0.046 | 3.236

Apfit 40(2) | -0.001 | 0.033| 2336 40(1) | -0.001 | 0.034 | 2.303
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Table 5.1.3: Descriptive statistics of validation of gravimetric geoid models, with

deflection of the vertical’s components, fora M,y combination that has the least

standard deviation. [psi in degrees, min, max, mean and STD in arc-second]

Meridional Prime vertical

mod(psi) min max | mean | STD | mod(psi) min max mean | STD

CUT | 40(0.5) | -38.230 | 31.270 | -0.675 | 4.354 | 300 (0.2) | -75.869 | 35.542 | -2.163 | 6.805

UNB | 40(1.5) -28.231 | 67.084 | -0.338 | 4.113 ] 160(0.5) | -41.783 | 17.996 | 0.200 | 4.261

KTH 280(1) -25.576 | 32.096 | -0.308 | 2.848 280(2) -41.717 | 10.258 | 0.123 | 3.981

Table 5.1.4: Descriptive statistics of GNSS/levelling-based absolute precision assessment of the

geoid and quasigeoid models calculated using GEOCOL [values in m].

Geoid (m) Quasigeoid (m)
min max mean STD min max mean STD
India no fit -0.325 0.408 0.006 0.114 -0.340 0.395 | -0.007 0.110

4pfit | -0.325 0.356 0.000 0.103 -0.325 0.356 0.000 0.101

UP West nofit] -0.253 0.394 0.000 0.109 -0.262 0.282 -0.017 0.093

4pfit | -0.222 0.286 0.000 0.086 -0.217 0.224 0.000 0.079

UP East nofit] -0.317 0.211 -0.012 0.112 -0.316 0.211 -0.014 0.113

4pfit | -0.196 0.155 0.000 0.093 -0.194 0.152 0.000 0.093

Hyderabad nofit] -0.325 0.408 0.015 0.124 -0.340 0.395 0.001 0.124

4pfit ] -0.325 0.356 0.000 0.122 -0.325 0.356 0.000 0.121

Bangalore no fit| -0.033 0.063 0.023 0.037 -0.074 0.030 -0.015 0.037

4pfit | -0.026 0.051 0.000 0.027 -0.026 0.052 0.000 0.028

Table 5.1.5: Descriptive statistics of GNSS/levelling-based relative precision assessment
of the geoid and quasigeoid models calculated using GEOCOL [min, max, mean, STD in

m and ppm in mm/km].

Geoid Quasigeoid
min max | mean | STD | ppm min max | mean | STD ppm
India no fit | -0.725| 0.733 | -0.009 | 0.160 | 2.607 | -0.578 | 0.682 | 0.001 | 0.145 | 2.640

4pfit | -0.711 | 0.735 | -0.004 | 0.155 | 2598 | -0.573 | 0.681 | 0.001 | 0.143 | 2.634

UP West no fit | -0.647 | 0.418 | -0.050 | 0.146 | 0.789 ] -0.545| 0.363 | -0.032 | 0.127 | 0.727

4pfit | -0508 | 0.435 | 0.003 | 0.121 | 0.698 | -0.442 | 0.378 | 0.003 | 0.111 | 0.666

UP East no fit | -0.456 | 0.528 | 0.023 | 0.158 | 0.949 | -0.452 | 0.527 | 0.027 | 0.157 | 0.945

4pfit | -0.306 | 0.350 | -0.001 | 0.132 | 0.837 ] -0.305| 0.346 | -0.001 | 0.131 | 0.832

Hyderabad | no fit | -0.565 | 0.733 | 0.014 | 0.174 | 11.027 | -0.568 | 0.735 | 0.013 | 0.174 | 11.012

4pfit | -0.563 | 0.682 | 0.005 | 0.172 | 11.282 | -0.563 | 0.681 | 0.004 | 0.172 | 11.271

Bangalore | nofit | -0.069 | 0.095 | 0.009 | 0.052 | 3.711] -0.074 | 0.104 | 0.008 | 0.052 | 3.764

4pfit | -0.077 | 0.076 | -0.001 | 0.039 | 2.604 | -0.076 | 0.078 | -0.001 | 0.040 | 2.671
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Following are the observations from the above results:

From Figures 5.1.2 - 5.1.3, no clear pattern is observed for the increase or decrease of
the standard deviation of either geoid or quasigeoid with any method and any region.
The FEO and VK kernels are claimed to be unstable (Featherstone, 2001; Li and Wang,
2011) for higher modification degrees and larger integration radius. However, we have
not observed any instability in Figures 5.1.2 and 5.1.3, most possibly only because of
our lower/restricted choice of parameter sweeps (e.g., McCubbine et al., 2021) and

limited dataset for validation.

For the CUT and UNB methods, variation in the standard deviation for all the

combinations of M and y do not exceed ~60 mm and ~40 mm for the before fit and

after fit cases, respectively. The maximum variation is in UP West, followed by UP
East. The variation in standard deviation for Hyderabad and Bangalore is within 10
mm. The probable causes can be that UP West and UP East have different landforms,
and also, the data points in these regions are distributed over a larger area and more
variable terrain. However, for the KTH method, a large variation is observed that
reaches beyond 1.5 m for UP West and UP East. This is also reflected in the standard
deviation for India with the KTH method. These large variations are mainly observed
for lower modification degrees, i.e., M = 40 and 80. The large values can be due to the
omission of the medium wavelengths from the geoid/quasigeoid solution using the
KTH method because of L =M =40 and 80, unlike the CUT or the UNB method where
L = 2190 and 300, respectively. For L =M > 80, the KTH method also provided a range

of standard deviation within 10 mm for Hyderabad and Bangalore.

For all three methods and all regions, the difference in the standard deviation of the
geoid and quasigeoid solutions is less than 20 mm. However, for the UNB and the

KTH methods, the variation in the maximum value of the difference between absolute
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precision assessment of geoid and quasigeoid reaches 100 mm for UP West, while with
the CUT method the maximum variation is never beyond 20 mm. This can be because
the CUT method provides a smaller standard deviation of geoid and quasigeoid for UP
West as compared to the UNB and the KTH methods. It should be noted that this
observation does not show that the CUT method is superior to other methods because
it might be due to the use of the highest available degree-order GGM into which,
probably, GETECH data might already have been incorporated and hence comparably

better results.

. The standard deviation of the absolute precision assessment in the four regions,
individually, is smaller as compared to the standard deviation for India. This indicates
a large variation in the mean values of the four regions (Table 5.1.1). The average of

the mean values for different combinations of M and  in the four regions (UP West,

UP East, Hyderabad, and Bangalore) with i) the CUT method are: -570 mm, -480 mm,
100 mm, and 760 mm, respectively; ii) the UNB method: -730 mm, -860 mm, -20 mm,
and 710 mm, respectively; iii) the KTH method: -680 mm, -650 m, 100 mm, and 810
mm, respectively. The mean values and the locations of the four regions (Figure 2.2.1)

indicate a north-south tilt in the Indian vertical datum.

The variation of the standard deviation of UP East with the CUT and the UNB
methods is within 2 mm, but the mean value differs by ~400 mm (also see Figures
5.2.7,5.2.9 and 5.2.11, later). Also, the standard deviation of Hyderabad for different
M and y combinations agree within 30 mm for the three methods, but the mean value
with the UNB method is -20 mm while with the other two methods is 100 mm.
Therefore, comparing the geoid models (or methods) based on only standard deviation
may not provide an objective comparison. However, in the present study, we do not

have sufficient datapoints to explore other statistical parameters for the methodology
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comparison, and therefore, we will unwillingly provide discussions solely around

standard deviations.

. The increasing minimum, maximum, and mean values (Table 5.1.1) while moving
from a northern region to the southern region (UP West>UP
East->Hyderabad-> Bangalore) indicates a north-south tilt (Fischer, 1975; 1977) in the
Indian vertical datum. This is probably because 1VD1909 was based on constraining
the spirit levelling of the nine tide gauges along the Indian coast at zero heights
(Burrard, 1910), and for IVD2009 (G&RB, 2019), local geopotential values at eight
tide gauges are constrained to the same value. Hence, a tilt in the datum is possible due

to the ocean’s time-mean dynamic topography (e.g., Featherstone and Filmer, 2012)

. The plots of standard deviation for the relative precision assessment follows the same
pattern as that of standard deviation plots of absolute precision assessment for all the
three methods in all the regions, except for i) India with the CUT and the UNB
methods, and ii) Bangalore with the KTH method. Also, the standard deviations for

relative testing are always larger as compared to absolute testing.

. The average ppm (mm/km) for India (7021 baselines) varies from 3.37 to 3.42 and
3.43 to 3.56 with the CUT and the UNB methods, respectively, for different M and y
combinations. For the KTH method with M greater than 80, the average ppm varies
from 3.35 to 3.84. The KTH method in all the regions except Hyderabad shows higher
average ppm values for M < 80 with exceptions of larger integration radius ( > 1°).
A relatively larger difference in the average ppm of geoid and quasigeoid is observed
with 1) most of the M and y combinations in the UNB method for Bangalore (~0.2),
and UP West (~0.1), the CUT method for Bangalore (~0.15) and ii) only a few M and

w combinations in the KTH method for Bangalore (~0.15). However, the differences
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for the average ppm (for both geoid and quasigeoid) in all the three methods (the KTH
method with M larger than 80) for all the regions may not be statistically significant

for local areas (< 10 km).

. Table 5.1.1 shows that there is no particular choice of M and y combination that

provides a minimum standard deviation in all four regions and India. Table 5.1.1
further depicts that the minimum standard deviation before and after fit is achieved

with different M and y combinations. Based on standard deviation alone, we cannot

comment on the use of a lower or higher degree of modification for any method

because, for e.g., with the CUT method, combination of M,y = 40, 0.5° gives
minimum standard deviation in UP West while M,y = 300, 0.75° gives minimum

standard deviation in UP East. With the available datasets, this is true for geoid and
quasigeoid, before and after fit, and for all methods. Therefore, it also backs up our
argument of point 4 that the numerical value of standard deviation alone should not be

the deciding factor of pre-eminence of one method and/or one M and y combination

over the other.

EIGEN-6C4 is used with the CUT method and DIR-RL05 with the UNB and the KTH
methods. On comparison of Table 5.1.1 with the validation of EIGEN-6C4 (Tables
2.3.1-2.3.3), it is observed that for the CUT method, though the overall mean values
are improved for all the regions except Bangalore, an improvement in the standard
deviation beyond 10 mm is observed only for UP East. However, the standard
deviation of gravimetric geoid in UP West is degraded by 10 mm as compared to the
EIGEN-6C4. A degradation in standard deviation of gravimetric geoid is also observed

in Featherstone and Sideris (1998) and Forsberg and Featherstone (1998). This was,
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and similarly is, attributed to errors in either one, more or all of the terrestrial gravity

data, GGMs, and the GNSS/levelling data.

On comparison of Table 5.1.1 with the validation of DIR-RLO5 (Tables 2.3.1 -
2.3.3), it is observed that with the UNB and the KTH methods there is an improvement
in the mean values of all the regions except for Bangalore and UP East (with the UNB
method). Moreover, an improvement in the standard deviation is observed for all the
regions except for the whole of India with the UNB method. The improvement in the
standard deviation reached more than or equal t0100 mm for UP West and UP East

regions with both the methods.

However, it should be noted that though there is more improvement, with
respect to GGMs, on the inclusion of the terrestrial gravity data in the UNB and the
KTH methods as compared to the CUT method, the standard deviations with the three
methods are almost equivalent except for the whole of India and UP West with the

UNB method.

Therefore, no method can be suggested as more preferred because each of the
three methods has provided the least standard deviation (numerically and may not be
statistically) at least in one of the regions, e.g., the CUT method in UP West, the UNB
method in UP East and Bangalore, and the KTH method in Hyderabad. Moreover, a

M and y combination providing the least standard deviation does not necessarily
have the least mean value. For example, M, =40, 1.5° in the UNB method for India

gives the least standard deviation of 459 mm and a mean value of -419 mm, but the
least mean value for India with the UNB method is achieved for a combination of

M,y =40, 0.5° with the values being: standard deviation =493 mm and mean value

=-315 mm.
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The standard deviation is minimally smaller (~10 mm) for quasigeoid compared to
geoid for India. However, for all four regions individually, the standard deviation is
smaller or equal for geoid compared to quasigeoid with a maximum difference of ~10
mm for UP West with the UNB method. The larger standard deviation of geoid for
India can be attributable to the larger mean of geoid compared to quasigeoid for

Bangalore (difference ~60 mm) and Hyderabad (difference ~10 mm) regions.

Similar to Table 5.1.1, there is no clear indication about the choice of the M and y

combination from Table 5.1.2 because the three methods provide the least standard

deviation for different M and y combinations for different regions. Also, the

difference between ppm of geoid and quasigeoid for all the regions and India are within

+0.2 mm/km for all the methods, before and after fit.

From Table 5.1.2, there is an improvement of less than 100 mm in standard deviation
for all the four regions after fitting as compared to without any fitting. However, there
is an improvement of ~300 mm in standard deviation for India, with all three methods,
for geoid and quasigeoid both. This indicates that after fitting, there is more
improvement for inter-region baselines as compared to intra-region baselines. The
larger average ppm (mm/km) values for India (~3.4) are attributable to the larger
values of ppm for baselines in Bangalore (~3) and significantly larger values for
baselines in Hyderabad (~12.7). These are further attributable to the relatively smaller
baseline lengths in the two regions ([0.61 km, 46.75 km] for Hyderabad and [4.80 km,
25.16 km] for Bangalore). For our tests, the standard deviation always reduced after
fitting. However, for the KTH method with M < 80 and any y, though there is a
reduction in standard deviation, the average ppm value increased. Therefore, it can be
said that a reduction in standard deviation need not always indicate a reduction in the

average ppm value.
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The KTH method with larger modification degree and integration radius provides
better results (minimum standard deviation) as compared to the UNB and the CUT
methods on validation with the vertical deflections. However, similar to the
GNSS/levelling-based validation, the KTH method has not provided better results on
validation with vertical deflections for smaller modification degrees (M < 80). Though
the CUT method provides comparable descriptive statistical values for the meridional
component, the mean and standard deviation for the prime vertical are ~2” larger than
the other two methods. Also, the minimum and maximum values of prime vertical
validation are almost 2 times larger with the CUT method. Though, maximum, mean
and standard deviation of the meridional component-based validation of the geoid
model with the UNB method are comparable with the other methods, the maximum
value (67.1”) is larger than double as compared to the CUT (31.3”) and the KTH

(32.1”) methods.

GRAVSOFT with GEOCOL and RTM have the limitation of using large data set
especially due to involved inversion of matrix with a dimension equal to the number
of data points. Therefore, GEOCOL is generally used with sparse gravity data or block-
wise over smaller areas (with overlap between blocks) else, thinning of the gravity data
is required. Hence, it can be interpreted that the use of coarse gravity and DEM grids
in previous geoid modelling studies in India (Table 1.3.1) is possibly because
GRAVSOFT has a limitation of using large matrices. Moreover, from Tables 5.1.4 and
5.1.5, no tilt in the datum is observed, which is in contrast with the results of other
three methods (CUT, UNB, KTH; Table 5.1.1). This is because LSC removes the
trends a-priori to make the residual field stationary in the stochastic sense (Moritz,

1980; Darbeheshti, 2009).
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The descriptive statistic values in Table 5.1.4 are comparable with previous
studies over regions of India using LSC (Table 1.3.1) except for the Dehradun region
(lies in UP West) in Mishra and Ghosh (2016). However, results of UP West are
comparable to other studies in and around same region (Singh, 2007; Singh and
Srivastava, 2018) using GRAVSOFT but with FFT subroutines and Stokes’s
integration. The results are thus reassuring that the previous studies (and their
limitations) over Indian regions are realistic. The difference in the results of previous
studies and our GEOCOL experiment are due to one, more or all of the different
GGMs, use of gravity anomaly data grids or points, different DEM, resolution of
computation (i.e., grid size of final geoid/quasigeoid model) and most importantly

different gravity database.

It is observed that GEOCOL does not apply the full zero -degree term (Eqg. (3.6.5)),
instead it uses only the first term (Eq. (3.6.4)). In the LSC solutions (only) we have
also not applied the full zero-degree term because the main motive of using LSC was
to assess the calculations of previous studies and none of those studies mentioned using
the zero-degree term. Moreover, comparable results with respect to the previous
studies have been obtained without addition of the second term of Eq. (3.6.5) in the
LSC solutions. Though the second term in Eq. (3.6.5) is constant (= -0.76 m for Wy of
IHRS and Uo of GRS80) and can be added to the geoid undulations calculated using
the LSC method, it may cause significant differences with respect to the other three

methods.

Therefore, the smaller values of minimum, maximum and mean with the LSC
solution (Table 5.1.4) as compared to CUT, UNB and KTH methods (Table 5.1.1) are
most probably because i) GEOCOL does not use the generalised Bruns’s formula, ii)

GEOCOL makes use of residual gravity and residual GNSS/levelling datasets to
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calculate residual height anomalies, and iii) GEOCOL remove trends a-priori, which

can also be seen as 1-parameter fit during the geoid/quasigeoid computation itself.

5.2 Indian gravimetric geoid model
In this section, we provide the final geoid model for India calculated using the three
methods. As discussed in the previous section, we do not have a clear indication of the

more preferred choice of M and w combination for any method. However, we do have a
certain idea about the M and y combinations for any particular method that should not
be used, e.g., M <80,V for the KTH method. Therefore, we have chosen to show the
gravimetric geoid model for M, v =300, 1° with all three methods, namely, the CUT, the

UNB, and the KTH.

The difference between mean absolute error and standard deviation with M, =
300, 1° for India with all the three methods does not exceed 50 mm as compared to their
respective M and y combination providing the minimum standard deviation (Table
5.1.1). Mean absolute difference and standard deviation for M and y combination giving
minimum standard deviation versus M, w =300, 1° is, all in mm, (360£400 vs. 370+410),

(5104460 vs. 470£490), and (330£390 vs. 380+420) for the CUT, the UNB, and the KTH

methods, respectively.

Figures 5.2.1, 5.2.2, and 5.2.3 show the gravimetric geoid models for India
calculated using the CUT, the UNB, and the KTH methods, respectively for M, v = 300,
1°. We have not shown quasigeoid because they are within 50 mm of standard deviation
as compared to the geoid model for our chosen M, w combination. Moreover, Sol has
decided to compute geoid over quasigeoid. The descriptive statistics of the three geoid
models are depicted in Table 5.2.1. Figures 5.2.4, 5.2.5, and 5.2.6 show the scatter plots

of the relative difference (magnitudes) of the geoid models for the CUT, the UNB, and the
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KTH methods, respectively. The curved lines in each figure depict the maximum allowable
in-field misclose for Indian high precision (lower curve) and double tertiary (upper curve)
levelling for all the 7071 baselines computed using Eq. (5.2.1) with cequal to 3 and 12,

respectively.

r=cyd (5.2.1)
where r = allowable misclose, in mm; ¢ = empirically derived factor for a given ‘type of

levelling’; d = distance between stations, in km.

The pixel-wise difference maps for India are shown in Figures 5.2.7, 5.2.9 and
5.2.11 for the pairs of geoid model calculated using i) CUT and UNB, ii) CUT and KTH,
and iii) KTH and UNB methods, respectively. The corresponding scatter plots and
histograms for the three difference maps are shown in Figures 5.2.8, 5.2.10 and 5.2.12,
respectively. The regional geoid models have been computed for UP West, UP East,
Hyderabad and Bangalore, individually using GEOCOL with RTM. Figures 5.2.13,
5.2.14, 5.2.15 and 5.2.16 show the regional difference maps of GEOCOL-based geoid
models of UP West, UP East, Hyderabad and Bangalore, respectively, with respect to the

geoid models calculated using the CUT, UNB and KTH methods.
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Figure 5.2.1: Indian gravimetric geoid model computed using the CUT method (M, v = 300,
1°).
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Table 5.2.1: Descriptive statistics of absolute precision assessment of gravimetric geoid
and quasigeoid models, for India and the four regions, with the CUT, UNB and KTH
methods for M, w =300, 1°.

Geoid Quasigeoid

min max | mean | STD min max | mean | STD

India CUT | nofit | -0.973 | 0.809 | -0.149 | 0.407 | -0.982 | 0.747 | -0.163 | 0.400

4pfit | -0.475 | 0.408 | 0.000 | 0.134]-0.477 | 0.409 | 0.000 | 0.134

UNB | nofit | -1.266 | 0.769 | -0.328 | 0.489 ] -1.275 | 0.707 | -0.342 | 0.479

4pfit | -0.503 | 0.434 | 0.000 | 0.155] -0.500 | 0.435| 0.000 | 0.152

KTH | nofit | -1.050 | 0.839 | -0.140 | 0.425] -1.059 | 0.777 | -0.154 | 0.417

4pfit | -0.464 | 0.426 | 0.000 | 0.135] -0.462 | 0.427 | 0.000 | 0.134

UP West | CUT | nofit | -0.973 | -0.293 | -0.565 | 0.117 | -0.982 | -0.303 | -0.581 | 0.122

4pfit | -0.434 | 0.225 | 0.000 | 0.113]-0.430 | 0.237 | 0.000 | 0.113

UNB | nofit | -1.266 | -0.280 | -0.732 | 0.209 ] -1.275 | -0.372 | -0.748 | 0.192

4pfit | -0.483 | 0.187 | 0.000 | 0.138] -0.479 | 0.184 | 0.000 | 0.133

KTH | nofit | -1.050 | -0.368 | -0.577 | 0.128 ] -1.059 | -0.378 | -0.593 | 0.122

4pfit | -0.431 | 0.226 | 0.000 | 0.117 ] -0.427 | 0.238 | 0.000 | 0.116

UP East | CUT | nofit | -0.702 | -0.311 | -0.476 | 0.091 ] -0.701 | -0.313 | -0.478 | 0.091

4pfit | -0.226 | 0.151 | 0.000 | 0.091] -0.224 | 0.150 | 0.000 | 0.091

UNB | nofit | -1.074 | -0.702 | -0.840 | 0.089 ] -1.073 | -0.704 | -0.842 | 0.089

4pfit | -0.229 | 0.129 | 0.000 | 0.089 | -0.227 | 0.131 | 0.000 | 0.088

KTH | nofit | -0.764 | -0.326 | -0.488 | 0.096 | -0.763 | -0.328 | -0.490 | 0.097

4pfit | -0.232 | 0.118 | 0.000 | 0.090| -0.231 | 0.117 | 0.000 | 0.089

Hyderabad | CUT | nofit | -0.349 | 0.542 | 0.110 | 0.159] -0.364 | 0.529 | 0.096 | 0.159

4pfit | -0.369 | 0.408 | 0.000 | 0.139] -0.368 | 0.408 | 0.000 | 0.139

UNB | nofit | -0.457 | 0.433 | -0.002 | 0.158 ] -0.473 | 0.420 | -0.016 | 0.158

4pfit | -0.370 | 0.407 | 0.000 | 0.139] -0.369 | 0.406 | 0.000 | 0.139

KTH | nofit | -0.318 | 0.577 | 0.137 | 0.158] -0.333 | 0.564 | 0.124 | 0.158

4pfit | -0.368 | 0.407 | 0.000 | 0.139] -0.368 | 0.406 | 0.000 | 0.139

Bangalore | CUT | nofit ] 0.726 | 0.809 | 0.768 | 0.030 | 0.662 | 0.747 | 0.707 | 0.032

4pfit | -0.023 | 0.047 | 0.000 | 0.025] -0.023 | 0.048 | 0.000 | 0.026

UNB | nofit | 0.680 | 0.769 | 0.720 | 0.028 ] 0.616 | 0.707 | 0.659 | 0.030

4pfit | -0.023 | 0.047 | 0.000 | 0.025] -0.023 | 0.047 | 0.000 | 0.025

KTH | nofit] 0.751| 0.839 | 0.794 | 0.031] 0.687 | 0.777 | 0.733 | 0.033

4pfit | -0.025 | 0.048 | 0.000 | 0.026 | -0.024 | 0.049 | 0.000 | 0.026
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Figure 5.2.4: Magnitude of relative differences (blue circles) for the a. geoid (no fit) and
b. geoid (4P fitting), with the CUT method (M, v =300, 1°), over 7021 GNSS-levelling
baselines. Orange and yellow circles represent the maximum permissible in-field
misclose for Indian high-precision (c = 3) and double tertiary (c = 12) levelling for each

baseline, respectively.
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Figure 5.2.5: Magnitude of relative differences (blue circles) for the a. geoid (no fit) and
b. geoid (4P fitting), with the UNB method (M, v =300, 1°), over 7021 GNSS-levelling
baselines. Orange and yellow circles represent the maximum permissible in-field
misclose for Indian high-precision (c = 3) and double tertiary (c = 12) levelling for each

baseline, respectively.
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CUT and the UNB methods (M, v =300, 1°).
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Figure 5.2.8: Scatter plot (a) and histogram (b) of the differences between gravimetric
geoid undulations computed using the CUT and the UNB methods (M, v =300, 1°).
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Figure 5.2.10: Scatter plot (a) and histogram (b) of the differences between gravimetric
geoid undulations computed using the CUT and the KTH methods (M, v =300, 1°).
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Figure 5.2.11: Difference between gravimetric geoid undulations computed using the
KTH and the UNB methods (M, v =300, 1°).
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Figure 5.2.13: Difference between gravimetric geoid undulations in UP West calculated
using GEOCOL and a) CUT, b) UNB and ¢) KTH methods
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Figure 5.2.14: Difference between geoid models of UP East calculated using GEOCOL
and a) CUT, b) UNB and c) KTH methods
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Figure 5.2.15: Difference between geoid models of Hyderabad calculated using
GEOCOL and a) CUT, b) UNB and c) KTH methods
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Figure 5.2.16: Difference between geoid models of Bangalore calculated using
GEOCOL and a) CUT, b) UNB and c) KTH methods

Following are the main observations:

1. Though the Indian gravimetric geoid models computed using the three methods
(Figure 5.2.1 — 5.2.3) differ from each other (Figures 5.2.7, 5.2.9, 5.2.11), all three
somewhat depict the separation line of the Indian and the Eurasian plate. Thus, a
gravimetric geoid can be important for some lithospheric studies over India. The

contour pattern around the location of 24°N and 82°E seems intriguing for some
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gravimetric studies in that region. It should be noted that the area comprises a diamond
mine and one of the largest coalfields of India with the thickest and different varieties

of coal seams.

. Though the maximum standard deviation does not exceed 0.46 m (Table 5.1.1) on
validation of the three geoid models with GNSS-levelling datapoints for India, a large
standard deviation is observed for inter-model differences (Figures 5.2.7,5.2.9, 5.2.11)
among the three methods: CUT-UNB = 0.854 m, CUT-KTH = 0.498 m and KTH-

UNB =1.239 m.

. At the first instance, based on standard deviation, the UNB method can be interpreted
to provide less precise results for UP West and for the whole country. However, the
larger standard deviation in UP West can be only due to the erroneous GETECH data
in the region that causes more significant vertical gravity gradients (Section 3.5.2) and
hence, enormous residual Helmert’s gravity anomalies (used in the UNB method) for

Stokes’s integration.

. The largest misclosures in Figures 5.2.4 - 5.2.6 are most probably due to the tilt in the
Indian height datum and the relative closeness of the datapoints in Hyderabad and
Bangalore. Sudden spikes in Figures 5.2.4a, 5.2.5a, and 5.2.6a at distances of
approximately [0-50] km, [450-550] km, [900-1200] km, and [1200-1900] km are due
to the errors and differences (north-south tilt) in the baselines for [Bangalore and
Hyderabad, individually], [Bangalore to Hyderabad], [UP West, UP East to
Hyderabad], and [UP West, UP East to Bangalore], respectively. From Figures 5.2.4b,
5.2.5b, and 5.2.6b, after fitting, the misclosures for large baselines are diminished
significantly, but the misclosures in Hyderabad and Bangalore are diminished less than
those in UP because the points are closer together in former two regions. This also

explains the larger ppm values found in those regions (Table 5.1.2).
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5. The major differences between the geoid models using the three methods (CUT, UNB,
KTH) are observed in the high mountains (Figures 5.2.7 - 5.2.12). There is a clear
correlation between the geoid undulation differences and topographic heights (Figures
5.2.8 and 5.2.12). The differences between geoid models using the CUT and the KTH
methods are smaller as compared to the differences using the UNB and the other two
methods. This is possibly because the topographical effects are numerically larger in
the mountainous undulating terrains and the UNB method treats the topography more

rigorously as compared to the other two methods (Section 3.2).

6. Large differences (> 5 m) are observed in the Indian geoid models calculated using the
CUT and the KTH methods with respect to the UNB method (Figures 5.2.7 and
5.2.11). Similar large differences (max = 5.742 m) are also observed in the difference
map of geoid undulations with GEOCOL and UNB methods for UP West (Figure
5.2.13c). We reiterate here that a constant of -0.76 m (arising from generalised Bruns’s
formula) is not applied in the GEOCOL solutions and therefore, an equivalent
difference value is expected in the difference maps with respect to the CUT, UNB and
KTH methods in all the four regions (Figures 5.2.13 - 5.2.16). Mean values ranging
within [-0.652 m, -0.550 m] and [-0.807 m, -0.466 m] have been observed for UP West
(Figure 5.2.13) and UP East (Figure 5.2.14), respectively. However, mean values of [-
0.035 m, 0.0121 m] for Hyderabad (Figure 5.2.15) and [1.105 m, 1.222 m] for
Bangalore (Figure 5.2.16) are concerning enough to further investigate the GEOCOL
solutions because these values deviate more than 0.30 m of what is expected (i.e., ~0.76

m due to zero-degree term).
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5.3 Summary

In this chapter, we presented the validation results of the developed Indian geoid
and quasigeoid models using the three methods, i.e., CUT, UNB and KTH. The validations
are performed with respect to the GNSS/levelling data for India and the four regions

individually (UP west, UP east, Hyderabad, and Bangalore).

With the available GNSS/levelling data, the smallest standard deviation for Indian
geoid model is £0.39 m with the KTH method. However, region-wise, smallest standard
deviation for UP west is £0.12 m, UP east: £0.09 m, Hyderabad: £0.15 m and Bangalore:
+0.03 m, with CUT, UNB, KTH and UNB methods, respectively. For any given method
(CUT, UNB or KTH), there is no particular combination of modification degree and
integration radius that provides the smallest standard deviation in the validation of geoid
and quasigeoid models of all the four regions. Therefore, it is not possible to comment on

the pre-eminence of any one geoid/quasigeoid computation methodology over other.

Difference between the smallest standard deviation obtained from GNSS/levelling-
based validations of geoid model and corresponding quasigeoid model does not exceed
+0.01 m for all three methods in all four regions and India. Therefore, with the available
validation data, we can also not comment on the suitability of geoid or quasigeoid model

as a preferrable reference surface for the Indian normal-orthometric heights.

With the available data, a north-south tilt is observed in the Indian vertical datum.
An east-west slope may also be present in the Indian vertical datum due to the location of
its tide-gauge stations. However, we could not identify this because of the lack of

validation data.

An additional validation of the developed geoid models has been performed that

include components of vertical deflections. The geoid gradients (Pizetti’s vertical



248

deflection) have been validated with the Helmert’s vertical deflections. In this validation,
the KTH method proves to perform better (based on the smallest mean + standard

deviation) as compared to the other two methods (CUT and UNB).

Gravimetric geoid and quasigeoid models for the four regions have also been
computed using GEOCOL. The validation with GNSS/levelling shows that the standard
deviation, for the four regions, varies no more than £0.02 m as compared to the smallest
standard deviations in those regions with either of the CUT, UNB or KTH methods
(mentioned above). There is a significant improvement in standard deviation with the
complete GNSS/levelling data, i.e., £0.11 m (using GEOCOL) compared to +£0.39 m
(using KTH method). However, it should be noted that the GEOCOL calculations does
not include the zero-degree term calculated from the generalised Bruns’s formula. Though
it will not cause any change in the standard deviation values (because it will be a constant
term), zero-degree term will cause significant changes (~0.75 m) in other descriptive

statistic (minimum, maximum, mean).

An inter-model comparison of geoid models has also been presented for 1. India
for the following pairs: CUT-UNB, CUT-KTH and KTH-UNB, and 2. the four regions for
the pairs: GEOCOL-CUT, GEOCOL-KTH and GEOCOL-UNB. The analysis shows that
difference between the geoid models with different methods can vary >1 m, which is
significant in the quest for cm-precise geoid. The major differences in the geoid
computation methods are in the mountainous regions. Therefore, it has been suggested that
a study is required for either merging precise regional geoid models to develop a

nationwide geoid model or merging different geoid computation methodologies.
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Chapter 6: Conclusions and future recommendations

6.0 Introduction

This chapter provides the final remarks on this study and is divided into three sections.
First, a summary of the complete research has been provided. It consists of the key points
that emerged from various tests, results, validations and discussions in the first five
chapters. Second, conclusions of the study are given with respect to each of the three
objectives of the thesis. Finally, due to the limitations of the present study, primarily

because of the datasets, a few recommendations for future work are provided.
6.1 Summary of research

The study aimed to develop gravimetric geoid models for mainland India using three
methods (CUT, UNB and KTH) and discuss the involved systematic effects from the

viewpoint of the cm-precise geoid.

In chapter one, the background on the geoid-related studies over India has been
presented. The discussion on the studies has revealed that despite a few studies, a national
gravimetric geoid model for India or a detailed computation methodology for the Indian

geoid model has never been available in the public domain.

The geodetic data in India has been imposed with numerous restrictions that make
it almost impossible to procure the data from the national surveying organisation.
Therefore, in chapter two, a discussion on the limitations of this study in terms of the
datasets is provided. We discussed the following datasets that have been used in this study:
gravity, GNSS/levelling, vertical deflections, GGMs and DEM. Unlike any previous

geoid-related study over India, a DEM has been used in the present study instead of DSM
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and vertical deflections have been used in addition to the GNSS/levelling data to validate

the developed geoid models.

Chapter three discussed the following systematic effects as applied in the three
methods (CUT, UNB and KTH) individually: topographic correction, atmospheric
correction, ellipsoidal correction and downward continuation. In addition to these four, the
following three effects have also been discussed irrespective of the geoid computation
methodology: i) different formulas for calculating normal gravity at any arbitrary
ellipsoidal height, ii) consistent use of the zero-degree term and iii) conversion formulas
for gravity, geoid undulation, orthometric height, normal height, dynamic height, geodetic
height and ellipsoidal parameters among the solid Earth permanent tide systems (tide-free,

zero-degree and mean-tide).

Three methods for calculating normal gravity using the normal gravity gradient
method and one exact method based on confocal ellipsoid has been discussed with a
suggestion to use the exact method wherever possible. A new method for calculating local
planar TCs has been formulated to be used in the CUT method. For the UNB method, a
discussion is provided to use the point values of the topographical effects calculated using
the cascading grids instead of the block mean value. The combined topographical effect in
the KTH method is explored to be a part of the primary indirect topographical effect in the

UNB method.

It has been shown that the formula used for the atmospheric correction in the CUT
method should be used as it is, i.e., without truncating/neglecting any term, at least when
the maximum height in the study area is >1000 m. A discussion is provided where it is
discouraged to use spherical harmonic coefficients for DEM to compute the atmospheric
effect. Though the atmospheric correction is lesser than other corrections, the difference

needs to be quantified from the viewpoint of the cm-precise geoid.
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The CUT method uses ellipsoidal reference gravity anomalies (to calculate residual
Faye anomalies) and ellipsoidal radius computed at each latitudinal parallel in Stokes’s
integration, negating the use of the ellipsoidal correction. The UNB and the KTH methods
have similar formulas for the ellipsoidal correction, but the two formulas have a sign
inconsistency. It has been discussed that the deflection correction (a term arising in the
derivation of the ellipsoidal correction to the gravity disturbance) should also be applied
because it can reach up to 139 pGal, which is significant with respect to the present day 1
nGal precise gravimeters. The UNB’s formula for the ellipsoidal correction to the gravity
disturbance that was precise up to 10 pGal has been modified to a precision level of 2

pGal.

Unlike the UNB and the KTH (of direct geoid computation) methods, the CUT and
the KTH (of quasigeoid computation) methods do not require downward continuation.
Instead, the latter two use analytical continuation that can be either downward or upward
continuation. The CUT method uses the planar TCs as an approximation to the analytical
continuation of gravity anomalies. We also presented an argument for the possible
downward continuation of the height anomalies from the topographical surface to the
ellipsoid to define the quasigeoid. Gravity gradients have been calculated to downward
continue the gravity anomalies to the geoid in the UNB method. The downward
continuation formula in the KTH method comprises five terms, of which only the first
three are used, and the last two are neglected. It has been shown that though we can ignore
the fifth term, the fourth term should be included in the calculations because its value can

reach ~7 pGal, which is seven times the precision of the present-day gravimeters.

The error that can be introduced due to the zero-degree term in Bruns’s formula
instead of generalised Bruns’s formula has been quantified with a suggestion to always

use generalised Bruns’s formula. It has been shown that geoid undulations and free-air
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gravity anomalies do not depend on the solid Earth permanent tide-system, i.e., if the GGM
and the ellipsoidal parameters are in the same tide-system there will be no perceptible
changes in either of the two for different tide-systems. However, a misinterpretation in
tide-system of J, of GRS80 (zero-tide instead of tide-free) can cause an error of the order
60 mm in geoid undulations and 10 pGal in free-air anomalies. Several formulas have also
been given for the ad-hoc transformation of the ellipsoidal parameters among different
tide-systems. It is clearly acknowledged that the change in the ellipsoidal parameters due
to different permanent tide systems are not compulsory. Change in the ellipsoidal
parameters and the above-mentioned errors of 60 mm in geoid undulation and 10 pGal in
free-air anomalies will arise iff we do not define our reference ellipsoid as fixed or
unchanging. Hence, we have recommended the need for a convention on the choice of
reference ellipsoid (changing or unchanging) while dealing with the solid Earth permanent

tide systems.

Chapter 4 discussed the CUT, the UNB and the KTH methods of geoid and
quasigeoid computation and the changes that we made to the original methods due to the
peculiarities of our dataset. Methods of calculating the geoid-quasigeoid separation (GQS)
term and hybrid geoid/quasigeoid have also been presented. It has been shown that the
GQS term needs further investigation as different methods can deviate up to ~2.5 m, which
is significant in the quest of a cm-precise geoid. This is important for the geoid modellers
who calculate geoid from quasigeoid and GQS term or quasigeoid from geoid and GQS
term. Furthermore, an interpretation with a formulation has been provided that suggests
the difference between geoid undulations and height anomalies (as computed on the
Earth’s topographical surface) may not be called GQS; instead, height anomalies may be

first downward continued to the ellipsoid. However, we have acknowledged that
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downward continuation of height anomalies may not result in normal heights and

therefore, further study or a convention is required for the interpretation of quasigeoid.

The gravimetric geoid models for India and their validation results have been
presented in chapter 5. Validation has been done with the GNSS/levelling dataset for India
and region-wise because the data were clustered in four regions: Uttar Pradesh West, Uttar
Pradesh East, Hyderabad and Bangalore. Pizetti’s vertical deflection components have
been computed using the horizontal gradients of the geoid models, which were validated
with Helmert’s vertical deflection components. Regional gravimetric geoid models have
also been computed using GEOCOL with residual terrain modelling (RTM). No detailed
work is done with GEOCOL in this thesis, and the developed regional models are used
only for comparison study with respect to the models developed in this study using other
methods (CUT, UNB and KTH) and previously developed regional geoid models available
in literature. An inter-model comparison of geoid models for India (calculated using CUT,
UNB and KTH methods) has also been presented. The results suggest that, as of now, we
cannot generalise the geoid computation methodology because i) they deviate up to a few
metres among themselves and ii) each of the three methods provides the least standard

deviation in some region of India on validation with GNSS/levelling data.

6.2 Conclusions

Following are the conclusions of this study with respect to each of the three objectives:

)] Develop a gravimetric geoid model for India using all the available gravity and

terrain data.

Gravimetric geoid models for the whole of mainland India have been developed using the
CUT, the UNB and the KTH methods at a grid of 0.02°x0.02°. The geoid model computed

using the CUT method (Goyal et al., 2021, provided in Appendix C.6) will be available
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from  the International Service  for the  Geoid (ISG)  website

(https://www.isgeoid.polimi.it/). The precision of this model, for India, as computed with
the available 119 GNSS/levelling data is £0.396 m. However, region-wise, the precision
varies from a minimum of £0.03 m in Bangalore to a maximum of £0.158 m in Hyderabad.
Other geoid models can be shared on individual requests. Therefore, in this study, the first
gravimetric geoid model for India has been developed that will also be available in the
public domain. However, the cm-precise geoid is not possible with the present data. Hence,
the gravimetric geoid studies in India must be continued with new precise and dense

gravity and GNSS/levelling data.
i) Analyse the use of high-resolution DEM in determining terrain effects.

We have developed an efficient spatial-spectral combined method for calculating planar
TCs using high-resolution DEMs (Goyal et al., 2020). The developed method has no
implementing restrictions on the type of topography. Moreover, the developed numerical
method is sufficiently accurate with respect to the analytical solution and reduces the
computation time by almost 50%. Local planar TCs have been computed on a grid of
3”%3” for a region of 40°x40° in and around India using MERIT DEM. This is the first
planar TC computation that i) has been conducted in a study area encapsulating typical
landforms, e.g., the Himalayas, Gangetic plains, Thar desert, plateaus and other hill ranges,
ii) uses a single high-resolution DEM and without removing the DEM points to circumvent

the divergence issue and iii) provides convergent solution down to < 1 pGal.
iii) Evaluate and validate developed gravimetric geoid and quasigeoid models.

The study suggests that the gravimetric geoid or quasigeoid models should be validated
after clustering the GNSS/levelling data in groups (maybe based on region or topography)

in addition to the validation with the complete dataset. Moreover, two or more gravimetric
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geoid/quasigeoid models or the geoid/quasigeoid computation methodologies should not
be compared for pre-eminence solely based on standard deviation. There is no particular
choice of a geoid computation methodology or a modification degree and integration
radius combination that would give the least standard deviation (or any descriptive
statistical value) for a country if validated region-wise. Therefore, there is a need for a new
geoid computation methodology that could combine several regional geoid models or
different methods of geoid computation. The vertical deflection components, if available,
should also be used for geoid validation. As of today, the geoid computation cannot be
generalised because the geoid models with different methods can deviate up to a few
metres from one another. Therefore, we are yet far away from the goal of the cm-precise

geoid.
6.3 Scope of the future work

The suggestions for future work have been discussed in several sections of this thesis and

are summarised as follows:

i) There must be some work done towards improved availability of point-wise gravity
data in India.

i) Generally, the gravity data is limited to the study area but is also required in the
regions surrounding the study area. Therefore, different methods for filling the
gravity (or gravity anomaly) data in the surrounding regions of the study area
should be analysed and quantified.

iii) There are large variations of the gravity anomalies in the mountainous regions.
Sometimes, they are presented in the horizontal layers of positive and negative
anomalies while transiting different landforms. Moreover, we have multiple

gravity datasets, e.g., terrestrial, airborne and marine gravity data, with very little
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data coverage in the mountainous regions due to the highway effect. Therefore,
with the precise and dense observed gravity data or synthesised gravity data,
various gravity merging and interpolation techniques should be analysed over
different landforms and the whole of a country.

A few modified formulas, which are derived and discussed in Sections 3.1 to 3.5,
must be analysed with precise gravity data. The associated errors or differences
between the existing and modified formulas must be quantified in calculating geoid
undulations or height anomalies.

The effect of the topographical corrections to the geoid in the KTH and the UNB
method must be rigorously analysed because the combined topographic effect in
the KTH method is equivalent to a part only of the primary indirect topographic
effect of the UNB method. Moreover, ellipsoidal correction formulas in the UNB
and the KTH methods must be analysed for the sign inconsistency.

Downward continuation of the height anomalies from the Earth’s topographical
surface to the ellipsoid for defining the quasigeoid can be studied further, along
with formulating our interpretation of the geoid-quasigeoid separation term. A
starting point can be quantifying the difference between the ellipsoidal normal and
the curved normal plumb line.

It is common to test the geoid models or methodologies based on standard
deviation. However, it should be noted that standard deviation is a measure of
precision and not accuracy. Also, the GNSS/levelling-based validations are highly
dependent on the quality of the GNSS and levelling data and on any outliers in the
data. Therefore, it is possible that one may obtain a high-precise geoid but with an
offset. A statistical study is required to compare geoid models or methods more

objectively.
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More validation studies are required to comment on the suitability of the geoid or
quasigeoid model as a reference surface for the normal-orthometric height system.
However, the geoid must be validated with orthometric (Helmert’s or rigorous)
height and quasigeoid with normal heights. Therefore, the physical heights in the
GNSS/levelling dataset must be converted to the required height system before
validating the geoid or quasigeoid.

The geoid models from different methods can significantly deviate from each
other. According to this study with limited datasets, there is no geoid/quasigeoid
computation method that gives consistent results in the country, i.e., different
methods can be suitable for different types of landforms/topography. Therefore, a
new method is required to compute the national gravimetric geoid model. A
starting point could be devising an algorithm for merging several regional geoid
models. However, before working on a new method, perhaps, the methods need to
be compared in different areas with higher quality data than that available in India.
A cluster-wise validation and inter-model analysis may be performed on the
Colorado geoid models
(https://www.isgeoid.polimi.it/Projects/colorado_experiment.html) or Auvergne

geoid models (https://www.isgeoid.polimi.it/Projects/Auvergne_test.html).
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Appendix A: Excerpts of- Survey of India, 1950: Part 111 - Geodetic work

146 TECHNICAL REPORT [ PART 111, 1948-49

Secrion ITT—Grorms

1. The study of deflections in India on some sort of a gyste-
matic basis started in the beginning of this century (ses
Professional Paper No. 5, Survey of India 1901 ). In those days, the
data was sparse and the plumb-line deflections were plotted and
shown vectorially by arrows. Certain important characteristics
about their distribulion were noticed, such as their being deflected
away from the Himilayas in Central India and pointing towards
@ lino in the plains. As more and more data accumulated it was
considered that to make a detailed study of the hidden mass
anomalies in the earth’s crust, it was better to study the rise of
the geoid which can be regarded as a synthesis of the deflections
rather than individual values of deflections.

Reliable charts showing the different types of geoids were started
in the Survey of India in about 1928 ( see Geodetic Report Vol. V,
Charts IX, X, XT and XII ). These geoidal charts have provided a
broad framework for the study of deep seated effects well below the
limit of geophysical prospecting. The next step is to narrow down
this framework further and further till true lmowledge of superficial
effects is gained.

Unfortunately the definitions of geoids given on page 57 of
Geodetic Report Vol. V are all incorrect, They are accordingly set
down in the next para. It is important to put them down clearly as
there is no uniformity about their nomenclature and different
countries are apt to designate them differently.

2. Natural geoid or Geoid :
This is simply the sea-level
equipotential surface of the
matter. comprising the whole
earth. It may be reckoned as
equipotential of & reference
spheroid 8,+4-matter 4 between
this spheroid and the geoid <+
matter B between the geoid and
the earth.

Compensated geoid or
Co-geoid : If the topographic
masses B between the geoid and
the earth be removed together
with their compensation, the
lovel surface of the new mass
system is called the co-geoid.
The new system of masses of
which co-geoid is the level
gurface may be represented
by reference spheroid S
matter 4y ;
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Obviously all the attracting masses are not externsl to the
co geowd as some parts of 4, he above 1t

Corrected  Geod For

many purposes, 1t 18 Necessary Sorn

to thle) ?;evel surface which Py
has no masses external to it S ke

This ean be achieved by further »
modifying the topography by T Satieron e N

cndensmmg 16 on  referénce
gpheroid 8;  The equipotentia)
of the new mass system having
tho same potential as the
spheroid Sy 18 called the correct
¢d geord

Isostatic Geond  Tlhis 19 the theoretical gemd obtamned by
ssuming 1s0stasy to be perfect ma all detad  Its height above its
reference spherord can be computed theoretically by caleulating the
warping produced by the topography and 1its compensation

Ifearth were mn 1sostatic equlibtium, compensated geoid would
be a perfect spheroid but not =o the sostatic geord Tius wul
ouade with the natural geoid

If however asis the actual case isostasy 1s not perfect then
dsviation of compensated geod from 1ts reference spheroid gives a
measure of the non fulfiiment of 1sostasy Some countres parts
wilarly the US A call Co geod as Isostatse geord 50 1t 1s necessary
bo be clear about the defimitions

Chart XXTV of this Report shows the compensated geoid m
13

3 Normally the observed grawity 1s reduced to co geod and
3 eompared agamnst 1, the value on the reference spheroid computed
tbwretwany The conventional 1sostatic anomaly ( go — ¥ ) = 87
Bdue to three causes

(@) Distance N between co geowd and spherod
(%) Matter N between these surfaces
{¢) Anomalous masses . pens
In India the natural geord has been dertved from observed plum
Tng deflections a:d not fggm granity data Compensated geoid can
denved by integrating Haj ford deflection anomalies but since
%8 are labonous to compute 1t was dertved from the natural
£l by subtracting the height of the isostatic geord from it
Tafion u of the 1sostatic geoid above its spheroid was calculated
otetically by eqnsidering the effect of topography and 1ts co;ntpen
¥0n  There 1s a hittle wrregulanty mnvolved here as the c;lon 1 dxons
£ which u 15 enlculated are that masses of geoid and sp ‘arox n(;e
t8ams  Thig condition 18 nat necessarily satisfied for t \61 geo\ds
™uned fror plamb hine deflections and their reference f{‘ 1eroids
b he method has been checled by antegrating diree yfso:ne
3ford deflection amomalies  The Tesults agree to withmn 1 foa



Appendix B
Table B.1: Ellipsoidal parameters following Moritz (2000)
Symbol | Name Dimension
Defining parameters
a Semi major axis length [L]
GM Geocentric gravitational constant [L3][T4]
J, Dynamical form factor -
@ Mean angular velocity of Earth’s rotation [T
Derived geometrical parameters
b Semi minor axis length [L]
o Polar radius of curvature [L]
E Linear eccentricity [L]
e’ First numerical eccentricity squared --
e First numerical eccentricity squared --
f Polar flattening -
1/ f Reciprocal polar flattening -
Q Meridian quadrant arc from equator to pole [L]
R, Scale factor for length [L]
R, Mean spherical radius [L]
R, Radius of sphere with same surface area as the ellipsoid [L]
R, Radius of sphere with same volume as the ellipsoid [L]
Derived physical parameters
U, Normal gravity equipotential on surface of ellipsoid [L2[T4]
J, Degree-four even zonal harmonic --
g Degree-six even zonal harmonic --
Jg Degree-eight even zonal harmonic -
m Clairaut parameter --
7a Normal gravity on the ellipsoid surface at the equator [L1[T2]
I Normal gravity on the ellipsoid surface at the poles [L1[T2]
fr Normal gravity flattening --
k Unnamed (we called it constant in normal gravity formula) | --
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Table B.2: Parameters of GRS80 in all the three tide-systems. [ZT= zero-tide; TF=tide-

free; MT=mean-tide]

ZT TF MT
GM [m®~2?] | 3.98600500000000E+14 3.98600500000000E+14 | 3.98600500000000E+14
@ [rad.s™] 7.29211500000000E-05 7.29211500000000E-05 | 7.29211500000000E-05
J, 1.08263939308000E-03 1.08263000000000E-03 | 1.08267050630000E-03
a [m] 6.37813703015779E+06 6.37813700000000E+06 | 6.37813713005113E+06
b [m] 6.35675225407345E+06 6.35675231414037E+06 | 6.35675205511047E+06
C [m] 6.39959374685424E+06 6.39959362586401E+06 | 6.39959414761693E+06
E 5.21855109970296E+05 5.21854009700068E+05 | 5.21858754440011E+05
¢’ 6.69440818830765E-03 6.69438002289616E-03 | 6.69450148216269E-03
e? 6.73952532180726E-03 6.73949677547427E-03 | 6.73961987742130E-03
f 3.35282481126133E-03 3.35281068118000E-03 | 3.35287161511507E-03
1/t 2.98255965131623E+02 2.98257222101206E+02 | 2.98251801677077E+02
Q [m] 1.00019657058919E+07 1.00019657293230E+07 | 1.00019656282799E+07
R, [m] 6.36367248889098E+06 6.36367248889098E+06 | 6.36367248889098E+06
R, [m] 6.37100877146301E+06 6.37100877138012E+06 | 6.37100877173757E+06
R, [m] 6.37100718099471E+06 6.37100718092522E+06 | 6.37100718122489E+06
R; [m] 6.37100078998965E+06 6.37100078997414E+06 | 6.37100079004105E+06
U, [M*s] | 6.26368658500000E+07 6.26368658500000E+07 | 6.26368658500000E+07
J -2.37095993044382E-06 | -2.37091221865110E-06 | -2.37111797112972E-06
Js 6.08370228569990E-09 6.08347062840596E-09 | 6.08446964023618E-09
Jg -1.42692604082946E-11 | -1.42681405972791E-11 | -1.42729698006965E-11
m 3.44978600310289E-03 3.44978600307769E-03 | 3.44978600318637E-03
Vo [Ms] 9.78032681750099E+00 9.78032677153479E+00 | 9.78032696975566E+00
7y [Ms™] 9.83218627595210E+00 9.83218636851971E+00 | 9.83218596933875E+00
f’ 5.30242592285509E-03 5.30244011231431E-03 | 5.30237892285718E-03
k 1.93182300639977E-03 1.93185135328947E-03 | 1.93172911195904E-03
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Table B.3: Parameters of WGS84 in all the three tide-systems. [ZT= zero-tide; TF=tide-

free; MT=mean-tide]

ZT TF MT
GM [ms?] | 3.98600441800000E+14 | 3.98600441800000E+14 | 3.98600441800000E+14
o [rads? | 7.29211500000000E-05 | ~ 7.29211500000000E-05 | 7.29211500000000E-05
Js 1.08263839308000E-03 |  1.08262900000000E-03 |  1.08266950630000E-03
a [m] 6.37813703015780E+06 |  6.37813700000000E+06 | 6.37813713005113E+06
b [m] 6.35675225417827E+06 |  6.35675231424520E+06 | 6.35675205521529E+06
C [m] 6.39959374674872E+06 |  6.39959362575848E+06 | 6.39959414751141E+06
E 5.21855108693540E+05 |  5.21854008423183E+05 | 5.21858753163265E+05
¢’ 6.69440815555109E-03 |  6.69437999013625E-03 |  6.69450144940612E-03
e*? 6.73952528860769E-03 |  6.73949674227130E-03 |  6.73961984422171E-03
f 3.35282479482795E-03 |  3.35281066474494E-03 |  3.35287159868168E-03
1/f 2.98255966593481E+02 |  2.98257223563226E+02 | 2.98251803138895E+02
Q [m] 1.00019657059742E+07 | 1.00019657294052E+07 | 1.00019656283622E+07
Ry [m] 6.36367299582987E+06 |  6.36367299582987E+06 | 6.36367299582987E+06
Ry [m] 6.37100877149795E+06 |  6.37100877141507E+06 | 6.37100877177252E+06
R, [m] 6.37100718102967E+06 |  6.37100718096018E+06 | 6.37100718125984E+06
Ry [m] 6.37100079002467E+06 |  6.37100079000917E+06 | 6.37100079007607E+06
Uo [M*7] | 6.26368517146000E+07 |  6.26368517146000E+07 | 6.26368517146000E+07
J -2.37095419957422E-06 |  -2.37090648780648E-06 | -2.37111224017979E-06
Js 6.08367035518563E-09 |  6.08343869817010E-09 | 6.08443770882693E-09
J; -1.42690792676325E-11 |  -1.42679594589861E-11 | -1.42727886524185E-11
m 3.44978650686606E-03 |  3.44978650684085E-03 |  3.44978650694954E-03
Va [Ms7] 9.78032538186934E+00 |  9.78032533590377E+00 | 9.78032553412478E+00
7y [ms™] 9.83218484529723E+00 |  9.83218493786360E+00 | 9.83218453868235E+00
fr 5.30242721004218E-03 |  5.30244139931135E-03 |  5.30238020980227E-03
K 1.93182430579164E-03 |  1.93185265249369E-03 | 1.93173041110989E-03
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Table B.4: Parameters of IHRS implied possibly new normal ellipsoid (NOT OFFICIAL)
in all the three tide-systems. [ZT= zero-tide; TF=tide-free; MT=mean-tide]

ZT TF MT
GM [m3?] 3.98600441500000E+14 | 3.98600441500000E+14 3.98600441500000E+14
o [rad.s™] 7.29211500000000E-05 | 7.29211500000000E-05 7.29211500000000E-05
J, 1.08263559308000E-03 | 1.08262620000000E-03 1.08266670630000E-03
a [m] 6.37813684115779E+06 | 6.37813681100000E+06 6.37813694105113E+06
b [m] 6.35675210171768E+06 | 6.35675216178461E+06 6.35675190275470E+06
C [m] 6.39959352096519E+06 | 6.39959339997495E+06 6.39959392172786E+06
E 5.21854655859408E+05 | 5.21853555588155E+05 5.21858300332047E+05
e’ 6.69439693429806E-03 | 6.69436876888322E-03 6.69449022815310E-03
e” 6.73951391559327E-03 | 6.73948536925753E-03 6.73960847120516E-03
f 3.35281916532672E-03 | 3.35280503524379E-03 3.35286596918019E-03
17°f 2.98256467375733E+02 | 2.98257724349692E+02 2.98252303907188E+02
Q [m] 1.00019654377677E+07 | 1.00019654611988E+07 1.00019653601557E+07
R, [m] 6.36367281980994E+06 | 6.36367281980994E+06 6.36367281980994E+06
R, [m] 6.37100859467776E+06 | 6.37100859459487E+06 6.37100859495232E+06
R, [m] 6.37100700421486E+06 | 6.37100700414537E+06 6.37100700444503E+06
Ry [m] 6.37100061323154E+06 | 6.37100061321604E+06 6.37100061328295E+06
U, [m’s?] 6.26368534000000E+07 | 6.26368534000000E+07 6.26368534000000E+07
J, -2.37094059761382E-06 | -2.37089288594984E-06 | -2.37109863787570E-06
J 6.08360822357266E-09 | 6.08337656759914E-09 6.08437557376241E-09
Jg -1.42688044508384E-11 | -1.42676846500843E-11 -1.42725138094815E-11
m 3.44978622227124E-03 | 3.44978622224603E-03 3.44978622235472E-03
Vo [ms™] 9.78032590317898E+00 | 9.78032585721398E+00 9.78032605543385E+00
Yy [ms™] 9.83218541763973E+00 | 9.83218551020495E+00 9.83218511102597E+00
fr 5.30243214532321E-03 | 5.30244633441570E-03 5.30238514525858E-03
k 1.93183488387683E-03 | 1.93186323040286E-03 1.93174098936943E-03




Appendix C: Published research papers that provide supporting information.

C.1: Paper on evaluation of global geopotential models.
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Note: There is a typographical error in Eq. 9 of paper in C.1 that is the denominator should

read I instead of yr.
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Evaluation of global geopotential models: a
case study for India

Ropesh Goyal ©“, Onkar Dikshit and Nagarajan Balasubramania

This paper aims to identify most suitable global geopotential model (GGM) for India, by comparing
15 GGMs developed through 1996 to 2017. The GGM derived geoid undulation values are
compared with the geometrical undulation values obtained from GNSS/levelling data on Indian
vertical datum. A correction term is added to the computed GGM derived geoid undulation
value after fitting three-, four-, five- and seven-parameter models to account for bias and tilt
between local geometric Indian vertical datum and global gravimetric vertical datum. The results
indicate that EGM2008 model is the best GGM available for India with root-mean-square error
(RMSE) of 0.28 m, without model fitting. However, after considering the systematic errors in the
two datums with seven-parameter model, GECO GGM has shown significantly better results with

RMSE of 0.19 m for India.

Keywords: GGM. Geoid undulation, Accuracy, Bias and tit, Parameter models, India

Introduction

The mathematical approximation, in terms of coefficients
of spherical harmonics, of the Earth’s external gravita-
tional potential is termed as global geopotential model
(GGM) which have numerous applications (Pavlis 2006,
Wenzel 2008). In the past. geodesists have developed cer-
tain GGMs for particular applications only. For example,
orbit determination of a particular satellite or computing
geoid heights for a specific region. However, development
of an application independent unique GGM has been one
of the important goals of geodesists. GGM development
involves combination of a variety of datasets (terrestrial,
airborne, satellite, marine). Therefore. accuracy and resol-
ution of such data plays an important role in dictating the
overall accuracy and resolution of developed GGMs

Amos and Featherstone (2003) emphasised on the
benefit of selecting a GGM for computation of regional
gravimetric geoid model. A proper choice of GGM is
one of the important steps in geoid computation.
Researchers have tried to make an optimal choice of a
GGM that best fits to the local geometric vertical
datum of a country/area of interest and with gravity
field data (Amos and Featherstone 2003, Benahmed
Daho 2010, Ellmann 2010, Kotsakis er al. 2010, Stry-
kowski and Forsberg 2010, Doganalp 2016, Yilmaz
et al 2017, Saari and Bilker-Koivula 2017).

There are three motivations for conducting the present
study for India. First. we need to investigate suitability of
any GGM for India in the light of argument by Feather-
stone (1998) who questions the very need of either a gravi-
metric geoid or a model of the local vertical datum to
transform GNSS heights in India. Secondly, Lambeck
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and Coleman (1983) commented that the various
GGMs are not as good as they are said to be, because
the differences between them are large, which should
not have been the case otherwise. And thirdly, Satishku-
mar er al. (2013) derived geoid undulation values for
two river basins in India using GOCE lewel-2 data product
(EGM_GOC_2), which contains geoid undulations at an
mterval of 30 x30". Geoid undulation values at 148
benchmarks were calculated using interpolation in
GOCE user toolbox (GUT) provided by European
Space Agency. The authors concluded that after algebraic
removal of 1.5m bias in geoid undulation for GOCE
level-2 data product, it is feasible to derive a geoid with
an accuracy of 10-15 cm, The GOCE level-2 data com-
prise spherical harmonic coefficients from satellite data
alone and is a lower maximum degree GGM. Generally,
lower maximum degree GGMs (low-resolution) have
applications in studying plate shifting, satellite orbits,
earth rotation variation, etc. and higher maximum degree
GGMs (high-resolution) are generally used for comput-
ing geoid undulations (Wenzel 2008). Tt is known that
omission errors in the low resolution GGMs are signifi-
cantly higher than high-resolution GGMs (Tscherning
and Rapp 1974). However, as Survey of India (Sol; the
competent authority to archive the gravity data in
India) has not shared any terrestrial gravity data for the
development of high resolution GGMs, it is possible
that commission error of high resolution GGMs are
more than the omission error of low resolution GGMs.
Hence, presently for India, the resolution of GGM does
not matter much as long as it fits the control data. There-
fore, this study evaluates various lower and higher maxi-
mum degree GGMs,

For choosing a GGM for gravimetric geoid compu-
tation by combining it with terrestrial data in the modified
Stokes formula, it is important to compare the GGM with
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respect to observed gravity anomaly data and GNSS/
levelling geometric geoid undulation values. Since gravity
data is not available for India, this study is focused on
application based comparison of GGM. India neither
possess a precise geoid model nor a precise digital
elevation model (DEM). Presently. the Indian scientific
community for whom heights are an important input in
their respective research, make use of SRTM, ASTER,
Cartosat DEMs or digitised contours from Sol topo-
graphic maps, without mentioning or analysing the accu-
racy needed (Kumar er @/ 2007, Ramakrishnan er al.
2009, Sreedevi er al. 2009, Ahmed ez al. 2010, Singh
and Dowerah 2010, Selvan et al. 2011). The claimed accu-
racy of SRTM30 m for Eurasia is 8.7 m at 90% confidence
(Rodriguez et al. n.d.) and 10.36 m at 90% confidence
with ASTER (Meyer 2011). An alternative to the use of
aforementioned sources of height information is to ana-
lyse GGMs for the computation of geoid undulations to
convert the GNSS derived ellipsoidal heights to ortho-
metric heights.

This paper has two objectives. First, to find the most
suitable GGM for the computation of precise geoid undu-
lation values for India, via height anomalies calculated at
ellipsoid and continued to Earth’s surface utilising the
first-order Taylor series which is described in detail in
the methodology section. Second, to find a suitable para-
metric model (from three-, four-, five- and seven-par-
ameter models) to account for the effect of biases, tilts
and/or systematic errors in the two datums, the Indian
local geometric vertical datum (defined by tide gauge
observations) and the global gravimetric vertical datum
(defined by GGMs) as suggested by Sjoberg and Bagher-
bandi (2017). This approach is also further explained in
the methodology section. Finally, it is also evaluated
whether the aforementioned approaches can replace the
need of a precise gravimetric geoid to convert ellipsoidal
heights to the orthometric heights with desired accuracy.

In the following sections, first a brief review on different
types of GGMs available is presented which is followed by
an overview on the data used. The detailed methodology
is given in the subsequent section, followed by results and
discussions. Finally, the paper ends with the conclusion
and suggestions on the scope of future research.

Global geopotential models

GGMs are usually divided into two groups, namely, satel-
lite-only models and combined models Satellite only
models are computed using data from one or more satel-
lites Amos and Featherstone (2003) explained the limit-
ations on the precision of these models as a factor of the
power decay of the gravitational field with altitude, errors
in tracking satellite orbits from ground based stations, mac-
curate modelling of atmospheric drag, non-gravitational
perturbations and incomplete sampling of the global grav-
ity field. Several aforementioned limitations addressed
above are reduced significantly by introduction of dedicated
satellite gravimetry missions such as CHAMP, GRACE.
and GOCE. Since the damping of the shorter wavelengths
of the gravity field is directly proportional to the increasing
distance from the Earth, satellite only GGMs have a lower
spatial resolution (Barthelmes 2014).

On the other hand, combined models are computed
using terrestrial, airborne, shipborne and altimetric grav-
ity data in addition to the satellite data (Rapp 1998) and
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therefore, these have higher harmonic degrees. However,
there are limitations on the precision of these models as
well. These are due to the spatial coverage and quality
of the additional data, and merging these data that have
different vertical geodetic datums (Heck 1990. Amos
and Featherstone 2003). Presently. combined geopoten-
tial mode! is available with the highest degree and order
of 2190 and a spatial resolution of about 10 km. However,
in practice this spatial resolution only exists in those
regions where dense and accurate terrestrial measure-
ments are included in the model (Barthelmes 2014).
GGMs, aither satellite only or combined, are truncated at
a maximum degree. This truncation of the coefficients
above maximum degree produces omission error (Wang
2012). It should be noted that the omission error is due to
the fact that a geopotential model can have a finite resol-
ution and therefore a portion is omitted from the Earth’s
true gravity field spectrum (which extends to infinity).
Detailed explanation on omission errors can be found as
Kaula's rule in Sanso and Sideris (2013, chapter 3).

Data resources

Table 1 summanses 15 GGMs used in the study whose
spherical coefficients were downloaded from ICGEM
website (http://icgem. gfz-potsdam.de/tom_longtime)
(Barthelmes and Kohler 2016). These GGMs cover a
wide range of satellite only (GOCE and/or GRACE) and
combined geopotential models with maximum degree vary-
ing from 180 to 2190. GNSS/levelling data of 145 ground
control points (GCPs) from different parts of India, namely,
Hyderabad, Bangalore, Kanpur, Dehradun and Saharan-
pur were used. These 145 GNSS/levelling data points com-
prise latitude, longitude, ellipsoidal height and orthometric
height. The orthometric height in the dataset varies from
125 to 2000 m reflecting wide variations in the topography
of the India. Though the data covers a wide set of topogra-
phy of India, but is from four regions only and thus the
dataset is not sufficient to be a true representative of com-
plete India. However, this dataset can be used for prelimi-
nary study for checking the suitability of GGMs in India
as the first approximation.

Methodology

In this section, first, a mathematical background on the
computation of geoid undulation using GGMs is sum-
marised which is followed by implementation of a two-
step methodology.

The equation (1) can be used to compute geoid undula-
tion (V) from height anomaly () as given by Heiskanen
and Moritz (1993, equation 8-100).

(Ags) . )
¥

N6, A) = 0. A, )+
where (6, A, r) are the spherical coordinates (co-latitude,
longitude, geo-centric radius) of the computation point, Agg
is the Bouguer anomaly, H is the orthometric height of
point P and ¥ is an average normal gravity between a point
O’ on the ellipsoid and point Q on telluroid (refer Fig. 1).

The equation (1) was modified by Rapp (1997) and re-
written as equation (2) to improve computing efficiency.

N(O. X) = §(0. A r)+ C (0. A) + Ca(0. A), (2)
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Table1 GGMs used in the study (Barthelmes and Kohler 2016)

300

Sr. no. Model name Degree Data

1. EGM96 360 A, EGMY6S, G

2 EGM2008 2190 A, G, S (GRACE)

3 EIGEN-6C4 2190 A, G, S (GOCE), S (GRACE), S (LAGEOS)
4. GAQO2012 360 A, G, S (GOCE), S (GRACE)
5. GECO 2190 EGM2008, S (GOCE)

6. GGMOSC 360 A, G, S(GOCE), S(GRACE)
A GGMO5G 240 S(GOCE). S(GRACE)

8. GGM05S 180 S(GRACE)

9. GO_CONS_GCF_2_SPW_R4 280 S (GOCE)

10. GO_CONS_GCF_2_SPW_R5 330 S (GOCE)

11. HUST-Grace2016s 160 S (GRACE)

12. ITU_GGC16 280 S (GOCE), S(GRACE)

13. ITU_GRACE16 180 S (GRACE)

14. NULP-02s 250 S (GOCE)

15. XGM2016 719 A, G, S(GOCO05s)

Notes: Data: S = Satellite tracking data, G = Gravity data, A= Altimetry data.

where {; is the height anomaly on ellipsoid. This value is
corrected by using correction term € to get ¢ value at P.
G; is the correction term to convert height anomaly to
geoid undulation.

¢y can be computed by using equation (3) as described
by Heiskanen and Moritz (1993).

NS n

Z (5,1)" Z (Cum cOSMA

=2 =0

M
LB A, 1) = o [

48, 5inmA) X P (cos 0)]. 3)

In this equation, it has been assumed that the ellipsoid
has the same mass and the spin rate as the actual

H? = Onhometric height (PP™)

N = Geoid undulation (P"Q")

1 Various surfaces and heights
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{ = Height anomaly (QP)

Earth, and that the centre of mass of both the ellipsoid
and the Earth are coincident. C,, and S,, are the
fully normalised potential coefficients of degree n and
order m, respectively referenced to the normal potential
field coefficients of reference ellipsoid. P, are the fully
normalised associated Legendre function of the first
kind. y, is the normal gravity on the ellipsoid, calcu-
lated using Somigliana formula (Somigliana 1929 as
cited in Heiskanen and Moritz 1993) for normal
gravity.
The correction terms, €'} and (> are given by equations
(4) and (5), respectively (Rapp 1997).
(8, /\)=f’—{H+ 0

ar 5—&55 s (4)

Topography (W # const.)

Telluroid (W # const.)

Geo-potential surface (W = W)

Ellipsoid (U = W)

Geoid (W= W)

Quasi-geoid (W # const.)

H" - Normal height (QP')

€ n > Ellipsoidal height (PP)
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where H is the orthometric height, and gradient terms are
calculated using equation (6) (Rapp 1997) and equation
(7) (derived from Heiskanen and Moritz 1993 equation
(2-79)), respectively,

o —GM [ e il
- oy ["; (n+ U(;) '"ZO(CMH cosmA

6)
+ S, SiInMA) X Py, (cOS 0)].

And
agay [GM¥ janxs - Tl -
o= [ & ;(r) ‘"Z:;(C,,,,wanu\ +8,,sinmA) x P, (c0s 6)
Yol +ksin G)2— (1 +si° B)) . -
x g +Zw |,
al—-¢)

(]

where a,k, e, and y, are the constants with their defined
values and meaning, as mentioned by Moritz (1980) for
GRSS80.

Agp in equation (5) is computed according to Heiska-
nen and Moritz (1993, equations (3-15) and (3-18)),
which is given by equation (8).

Agp = Agps — 0.01119H. (8)

Free-air gravity anomaly (Agg,) using GGM is computed
using equation (9), which is derived from the relationship
among equations (2-152), (2-153) and (2-154) in Heiska-
nen and Moritz (1993)

M o
Agpa(0. A, r) = -G% [Z (n— l)(‘;l) 1 z (€ COS A

n=2 m=0

48, sinmA) x P, (cos 6)]. 9)

Rapp (1997) suggested that the evaluation of (9) should
have been done on Earth’s surface. Since a small correc-
tion term is computed. it seems reasonable to evaluate
(9) on the ellipsoid. i.e. y =y, and r = rg.

The aforementioned strategy was programmed in
MATLAB software and was implemented as the first
step given in the flowchart (Fig. 2). First, the geodetic
coordinates of all the 145 GCPs were read in the software
and transformed to spherical coordinates. Then the
spherical harmonic coefficients (C,,,,S,,,) of all 15
GGMs were read from the respective files with *.gfc
extension available from ICGEM. The degree n=2, 4, 6
and 8 zonal coefficients have been referenced to the field
implied by an equipotential reference ellipsoid using
equation (10) (Losch and Seufer 2003)

% = GM,.;
G =Gt (GM (;(;.u)

e (n/2) Jn
& ("GGM) (‘/4(11/2)+ l)‘

where GM, ., and GM gGar are the Earth’s gravity constant
for reference ellipsoid (GRS80) and the GGM being used,
respectively. a,.; is the equipotential radius of reference
ellipsoid (GRS80) and aggar 1s the equipotential scale

(10)
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factor for GGM. J is the dynamical form factor and
Ji, Jo and Jg are the derived physical constants for
GRS80 reference ellipsoid.

Fully normalised associated Legendre polynomials of
the first kind were calculated as proposed by Moazezi
and Zomorrodian (2012). The geoid undulation values
were computed using equation (2) by developing subrou-
tines for equations (3-5). For the computations in
equations (4) and (5), H value has been extracted from
SRTM30 m DEM for the given geodetic coordinates of
points.

Basic statistical analysis, by calculating mean, standard
deviation, mean absolute error (MAE) and root-mean-
square error (RMSE) was done to check the suitability
of the GGMs for India by comparing the observed and
calculated geoid undulation values using equation (11).

ANGoym = Nonss pleveting — Naom
=h— H — Ngou. (11)

In equation (11),

NGssylereiiing = h(ellipsoidal height) — H (levelling height).

MAE and RMSE are calculated by using equations
(12) and (13), respectively.

MAE = 21:1 [hr _Hl -N[GG-‘Il

n

N (e — H — NGGMY
RMSE:JZ&I("' "‘1' i et

(12)

(13)

Datum inconsistencies influence the comparison results
between geoid undulations derived from GNSS/levelling
and GGMs. In the second step (Fig. 2), therefore, various
parametric models (with three-, four-, five- and seven-
parametric model) are used to minimise the effect of
datum inconsistencies (Kotsakis er al 2010, Yilmaz
et al 2010, Sjoberg and Bagherbandi 2017).

The basic model to study comparisons of geoid evalu-
ations from GGM and GNSS/levelling is given by
equation (14) (Kotsakis and Sideris 1999)

AN = Ngnss jievetiing — Noay =h — H — Ngam

=a"X+V, (14)
where X isanm x 1 vector of unknown parametersin the
parametric model, ¢ is an m x n vector of known coeffi-
cients and ¥V is an n x 1 vector of residuals, n is the num-
ber of observations and m is the number of parameters in
the model. All the possible datum inconsistencies and sys-
tematic bias in the data are described by the parametric
part a”X. As an example, for a five-parameter model
and one observation (4 — H — Nggar), matrices a and X
are given by equation (15). The three-, four-, five- and
seven-parameter transformation models as given in
equation (16), were implemented in this study to analyse
the removal of biases.

€os hcos A X1
cosgsinA X2

a= sin ¢ and X = | x3 (15)
sin® ¢ Xy
1 Xs

Survey Review 2019 voL 51 ~NO 368

301

Evaluation of global geopotential models: a case study for India



Goyal et al.

Evaluation of global geopotential models

: a case study for India

Convert Geodetic
coordinates to

Compute
normalized

associated Legendre

Compute referenced

zonal coefficients

302

spherical lvnomsial of fist w.r.t GRS&O
coordinates II:)nZn : ellipsoid (eq. 10)
P e - -
| - 1 Step |
1 | Compute height 1
: anomaly ¢ “_f
1 3 1
| (eq.3) i
1 '
1 1
1| Compute ! C r
te NV,
i | correction term i om:)u «Naom
VG tea b il ] <82
1 1
T TR0 O oo . - P U P . S 9P S o " 1 1
1 =3 i 1 1
i| Compute free Compute 1 1 | Compute |
: air anomaly Bouguer : %! correction term _Jl-
1 2y (eq.9) anomaly 2g5 |t 1| €5 (eq. 5) 1
1 I 1 1
e i o e e e e 8 I Sy 1
Observations Sep 2
Wi
(Neawr) Compute geoid
(eq. 11) Least squares Compute (“ompult? adjusted undulmi'on aﬂ.er
solution  (eq. > residuals (eq. observation accounting for
ST 17) 18) AN, =Ny +V bias and tilt
Nga AV
model  (a’x) et
(eqs.16)
Approaches
) Mean, Std dev,
L= NG MAE, RMSE
2:Ngear + Wy
Parametric Model
o Three parameters Adjusted  R-
« Four parameters ¥ squared, AIC,
e Five parameters BIC
¢ Seven parameters

2 Flowchart of the methodology

Three -parameter:
Four -parameter:
Five-parameter:

Seven-parameter:

1 —f3sin’¢

AN = (cosdcos A)x; + (cos PsinA)x; + (sind)x; + V
AN = (cosdcosA)xy + (cos dsinA)xs + (smd)x; + x4+ V
AN = (cosdcos A)x; + (cos ¢sin A)x; + (sin P)x; + (sin2 d)xy+xs+V

AN = (cosdcosA)xy + (cos dsinA)x; + (sin )y + (M)xﬁ- ¥
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where (&, A) are the geodetic coordinates of the points,
/ is the flattening of the reference ellipsoid and W is

w

)
sin
).\‘5 =+ (

w

: ‘b) x1+V

(16)

There is no information regarding the accuracy of
the GNSS/levelling and GGM driven geoid undula-

tions. Therefore, the solution is achieved by the
unweighted least squares adjustment technique (Ghilani
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Table 2 Statistical results of AN, for 15 GGMs (all values in m)

Sr. no. Model name Nmax Mean S.D. MAE RMSE
1. EGM96 360 -0.02 0.76 053 0.76
2. EGM2008 2190 -0.06 0.28 0.22 0.29
3. EIGEN-6C4 2190 -0.11 0.32 027 0.34
4. GAO2012 360 -0.11 0.49 039 0.50
2 GECO 2190 ~0.11 0.31 027 0.33
6. GGMO5C 360 -0.13 0.37 033 0.39
7. GGMO5G 240 -0.04 0.47 036 0.47
8. GGMO5S 180 -0.45 0.58 065 0.74
9. GO_CONS_GCF_2_SPW_R4 280 ~0.05 0.48 0.39 0.48
10. GO_CONS_GCF_2_SPW_R5 330 -0.08 0.48 040 0.48
1. HUST-Grace2016s 160 ~0.44 0.52 057 0.68
12. TU_GGC16 280 -0.05 0.47 038 0.47
13. TU_GRACE16 180 -0.02 2.34 216 2.33
14. NULP-02s 250 ~0.16 0.46 041 0.49
15. XGM2016 718 ~0.14 0.32 028 0.35

2010) as given by equation (17). If the above infor-
mation was known, it could have led to a better esti-
mate of the parameters of the parametric model
being investigated to account for the datum inconsis-
tencies.

X=(AT4)y (4A"L), 17

where A is the design matrix of size n x m and A7 is
the transpose of matrix A. L is an n x 1 matrix of
the observations obtained using equation (11).
Residuals are caleulated by equation (18) and are
added to matrix L to obtain adjusted AN (AN,).

V=dAX-L. (18)

These AN, value represents the biases, tilts or any other
type of systematic differences between the two data sets
(NgGy and NG.\'SS/A-rth'ng)- AN, values are added to
Naaar to obtain a solution of geoid undulation, which
accounts for the datum inconsistencies between the global
gravimetric and local geometric vertical datums. The
geoid undulation values obtained after the transformation
between the two datums are also statistically compared
with the Ngags)evening values. The complete methodology
is depicted in Fig. 2.

A test statistic of goodness of fit of a regression model,
known as coefficient of determination (R*) or R-squared
is generally implemented to assess how well a model fits
the observation points. A general expression of R-squared
is given by equation (19) (Rao er al. 2008).

B SS(res)

=1- A 9

B SS(tot) (19)

where SS(tot) = 37, (3y — Y)* is total sum of squares and
SS(res) = Y, (3 — »)* is sum of squares of residuals. y,

are the individual observations (4; — H, — NY%* in the
present case), Y is the mean value for the set of obser-
vations and § are the adjusted observations
(h; — H, — (N9“M 4 AN?)). However, it is known that
R-squared value always increases with the addition of
every new parameter to a model, i.e. it is not adjusted
for the degrees of freedom. Hence, an ever-increasing
value with the addition of parameter can be misleading
while estimating the better fit of a model, Therefore,
three tests are performed to check the better fit of a
model. Firstly, the adjusted coefficient of determination

or adjusted R-squared which is given by equation (20)
(Heumann er ¢/ 2016). In a regression model, it may
appear reasonable to add more variables to get a good
R-squared value. However, some of the variables may be
insignificant. The adjusted R-squared penalises for such
extra variables and therefore, is a better check than the
R-squared value (Rao er al. 2008).

I (], o
Ryu=1-0 R)(—n—k—l)'

In the above equation, » is the sample size and k is the
number of parameters in the transformation model.

The second approach is based on the relationship
between likelihood and information theory and is
known as Akaikes information cnterion (AIC)
(Akaike 1998). It is used to select a better model
from a set of models (Rao et «l. 2008) and is given
by equation (21).

AIC = nIn(SS(res)) + 2k — nln (n). 20

The AIC is known to be a better model selection cri-
terion in terms that the adjusted R-squared considers
only fit to the data via SS(res), while AIC, in addition
to what adjusted R-squared do, considers the parsi-
mony of the model via the term 2k (Heumann et al.
2016).

Finally, the Bayesian information criterion (BIC) devel-
oped by Schwarz (1978, as cited in Rao et al 2008) was
used to assess the model choice. The BIC is given by
equation (22).

BIC = nln (§S(res)) + kIn (7) — nln(n). (22)

Suitability of a model is inversely proportional to the AIC
and BIC values and is directly proportional to the Ridj
value.

The seven-parameter model was fitted 10 times to a set
of randomly selected 100 points from the dataset of 145
points. The remaining 45 points were used for validating
the computed parameters.

(20)

Results and discussion

Table 2 presents the basic statistical results of ANggas
(=h; — H; — Ngga) for all the 15 GGMs with varying
maximum degree. It is observed from Table 2 that the
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3 Model selection criteria results for all GGMs (i) Adjusted R-squared (ii) AIC (iii) BIC

GGMs with higher maximum degrees have shown better
results as compared to the GGMs with relatively lower
maximum degrees. It is evident from the fact that the
omission errors of a GGM reduces with an increase in
the resolution or the maximum degree of a GGM (Wenzel
2008). Among the high degree GGMs (EGM2008,
EIGEN-6C4 & GECO), EGM2008 can be considered
as the best model with least standard deviation, MAE
and RMSE of 0.28, 0.22 and 0.29 m, respectively. How-
ever, along with EIGEN-6C4 and GECO, XGM2016
(maximum degree 719) can also be considered as a suit-
able GGM with the test statistic only marginally different
from EGM2008.

Among the low degree GGMs, it is observed that the
GGMOS5C (maximum degree 360) has shown the best
results with standard deviation, MAE and RMSE of
0.37. 0.33 and 0.39 m, respectively. The RMSE of other
low maximum degree GGMs fall in the range of 0.47-

Survey Review 2019 vor 51 ~no 368

2.33 m with ITU_GRACEI16 (maximum degree 180) hav-
ing the poorest results.

Figure 3 shows the results for different criteria
(adjusted R-squared. AIC and BIC) applied to check
the suitability of the parametric models used to combine
global gravimetric and local geometric vertical datums.
As mentioned earlier, the higher values of adjusted
R-squared and lower values of AIC and BIC support
the choice of a model. It is observed from Fig. 3 that
the adjusted R-squared values are higher for the seven-
parameter model as compared to other models. Also,
AIC and BIC values are lower for the seven-parameter
model as compared to other models for all GGMs, except
GECO, GGMO05C, GO_CONS_GCF_2 SPW_R4,
NULP-02S and XGM2016, for which the BIC values of
seven-parameter model are marginally higher as com-
pared to either four- or five-parameter models. However,
adjusted R-squared values are higher and AIC values are
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Table 3 Parameters of seven-parameter model for high degree GGMs

Parameters of seven-parameter model

GGMs X X2 X3 X4 X5 X X7

EGM2008 251.35689 1314.4632 548.46074 -133.7303 -133.7303 557.86106 -1333.8827
GECO 179.86129 1326.3552 ~244 5312 205.94775 54.93856 955.29621 ~1314.1874
EIGEN-6C4 383.48266 2021.9521 477.67652 ~86.16844 -518.97706 1019.15 ~2047.8806
XGM2016 299,90849 18520572 -303.65079 196.38916 9205152 1292.8664 —~1850.8774

Table 4 Statistical results of AN for 15 GGMs post fitting seven-parameter model (all values in m)

Sr. no. Model name Nmax Mean S.D. MAE RMSE
1. EGM96 360 0 0.51 0.30 051
2. EGM2008 2190 0 0.20 0.12 020
<l EIGEN-6C4 2190 0 0.21 0.13 021
4. GAO2012 360 0 0.31 0.21 0.31
5. GECO 2190 0 0.20 0.12 0.20
6. GGMO5C 360 0 0.27 0.18 027
7. GGMOSG 240 0 0.35 0.22 035
8. GGMO5S 180 0 0.36 0.24 0.36
9. GO_CONS_GCF_2 SPW_R4 280 0 0.33 0.21 033
10. GO_CONS_GCF_2_SPW_RS 330 0 0.33 0.21 033
11. HUST-Grace2016s 160 0 0.37 0.24 037
12. ITU_GGC16 280 0 0.33 0.22 033
13. ITU_GRACE16 180 0 0.40 0.26 040
14. NULP-02s 250 0 0.33 0.21 033
15. XGM2016 719 0 0.22 0.14 022
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lower of these GGM s for seven-parameter model as com-
pared to other GGMs. Therefore, it is observed that the
seven-parameter model is statistically the best parametric
model to account for the inconsistencies between the two
vertical datums

The improvement in the MAE and RMSE of the four
high degree GGMs after accounting for the bias and tilts
by various parametric model fitting is depicted in Fig. 4.

Figure 4 shows an improvement in the geoid undula-
tion values, based on MAE and RMSE of
AN(=h; — H, — (Ngom +AN,)), after considering the
datum inconsistencies using different parametric models
as compared to gravimetric geoid undulation values
obtained from GGM alone. There is not significant devi-
ation in the results of geoid undulation among three-,
four-, five- or seven-parameter models for any GGM.

Table5 Statistical results of AN for four GGMs on 10 different samples of 100 random data points and remaining 45 test points

(all values in m)

GGM name Statistic s* S2 S3 S4 S5 S6 S7 S8 S9 S10 Average
GECO Mean 008 002 001 002 -006 002 -003 -005 -0.03 -003 -0.01
S.D. 0.20 0.13 0.14 0.24 0.20 0.12 020 0.20 0.19 022 0.18
MAE 0.12 0.10 0.10 0.13 0.13 0.09 on 0.10 0.11 0.12 0.1
RMSE 021 0.13 0.13 0.24 0.21 0.12 0.20 0.20 0.19 022 0.19
EGM2008 Mean 0.08 0.02 0.01 002 -0.06 0.04 -0.04 -0.06 ~0.03 -0.04 -001
S.D. 0.20 0.13 0.14 0.24 0.21 0.15 0.21 021 0.21 022 0.19
MAE 0.12 0.10 0.10 0.13 0.14 0.11 0.13 0.10 0.12 0.12 0.12
RMSE 0.21 0.13 0.14 0.24 0.22 0.15 0.21 021 0.20 022 0.19
EIGEN-6C4 Mean 0.08 0.01 0.01 0.01 -0.06 004 -0.04 -0.06 -0.04 -0.03 -0.01
S.D. 020 0.13 015 025 021 016 0.22 0.21 0.21 023 0.20
MAE 0.13 0.10 0.11 0.13 0.14 0.12 0.13 0.1 0.12 0.13 0.12
RMSE 0.21 0.13 0.15 0.25 0.22 0.16 0.22 0.21 0.21 023 0.20
XGM2016 Mean 0.10 0.02 ~0.02 0.03 ~0.08 0.02 -0.03 -0.06 0o ~0.07 -0.01
S.D. 020 017 0.16 0.26 0.23 0.15 0.25 0.20 0.22 0.26 0.21
MAE 013 0.13 0.12 0.16 0.16 on 0.16 SRR 0.15 017 0.14
RMSE 0.22 0.17 0.16 0.26 0.24 0.15 0.25 0.21 0.22 026 0.21
“Sample.
Survey Review 2019 vor 51 ~no 368



However. only a marginal improvement is observed in the
geoid undulation values from GGM accounted for datum
inconsistencies with seven-parameter model as compared
to other parametric models. The parameters calculated
for seven-parameter model for the four high degree
GGMs are listed in Table 3. The results of basic statistics
after correcting for biases, tilts or systematic errors in the
two datums using seven-parameter model is listed in
Table 4. The greatest improvement can be seen from the
MAE and RMSE values of ANggy from ITU -
GRACEI6, which were 2.16 and 2.33 m, respectively.
After accounting for bias and tilts with seven-parameter
model, the values of MAE and RMSE of AN are 026
and 0.39m, respectively. Considering the systematic
errors by fitting the seven-parameter model, it is observed
that EGM2008 has performance improvement with MAE
and RMSE of 0.12 and 0.2 m, respectively. However.
GECO proved a marginally more suitable GGM with a
0.004 m lower value of RMSE and 0.006 m lower value
of MAE. as compared to EGM2008.

A comparison in datum inconsistencies for four
GGMs, before and after accounting for the biases, tilts
and systematic errors using three- and seven-parameter
model is shown in Fig. 5. The Figure 5 shows that the
biases and tilts in the two datums are significantly mini-
mised after fitting the seven-parameter model as com-
pared to the three-parameter model.

The statistical results of AN for multiple test con-
ducted with 10 different sets of 100 random model points
and 45 remaining test points using seven-parameter
model on four GGMs, ie. GECO, EGM2008. EIGEN-
6C4 and XGM2016, are summarised in Table 5. It is
observed from the table, that it is possible to obtain
geoid undulation values accurate up to 19 cm by using
GGMs and the transformation parameters obtained for
seven-parameter model, Table 5 also depicts that it is
possible that GGMs can do better with a set of data
points (samples 2, 3 and 6) and may not with some
other set of data points

Conclusion

The present study shows that high degree GGMs provide
better results as compared to low degree GGMs. For
India, with the available data, EGM2008 provides
initially better results as compared to other high degree
GGMs. However, after accounting for datum inconsisten-
cies, GECO and EGM2008 show almost similar results.
EIGEN-6C4 and XGM2016 also proved suitable
GGMs with deviations limited to *2 cm. To choose a
suitable GGM, multiple tests with random sample dataset
demonstrates that if a well spread data points are chosen
for computing the parameters of seven-parameter model,
GECO can provide undulation values that can be used to
calculate orthometric heights with an estimated accuracy
of *19cm. With the availability of only limited data
points for India, the study can be considered as prelimi-
nary. However, it provides an alternative to use more
meaningful heights than which are being presently used
in India. It can also be inferred that a precise gravimetric
geoid is needed for India and cannot be replaced by a for-
mulated transformation model to convert the ellipsoidal
heights to the orthometric heights as per the need of pre-
sent scientific community. For India, in the absence of a
precise geoid model or precise DEM, the present study

Goyal et al.

can be replicated by the competent authority (SoI) with
the complete GNSS/levelling dataset to compute the par-
ameters of the seven-parameter model which will define a
precise conversion surface. The geoid undulation value
(obtained using GGM and parameters of conversion sur-
face) with ellipsoidal height can provide orthometric
height which is an important input for various practical
and research applications.

Future scope

Although, the study was carried out using ground data
selected from different topography of the India, the size
of the dataset is quite small for a large country like
India. Therefore, it is possible that using a dense and
well spread data may result in better calculation of par-
ameters to account for datum inconsistencies. Also, the
error variances are not available for the GNSS/levelling
data. If the data were available, a corrector surface incor-
porating the random noise effects could be developed and
may yield an improvement in the transformation model to
convert ellipsoidal heights to orthometric heights. It is
observed from the present study that the combined
GGMs with high degree presented themselves to be the
suitable candidates, it is suggested that a spectral combi-
nation of the two or more GGMs from GECO,
EGM2008, EIGEN-6C4 and XGM2016, will be helpful
to calculate precise geoid undulation values.
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C.2: Paper on local planar gravimetric terrain corrections

Note: There is a typographical error in Table 4 of paper in C.2 that is HSR value of TC4
should read -1.69x 10! instead of -1.69x10°. Also, in the last line of pg. 1820 “eight-
fold” should read “nine-fold”.
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SUMMARY

Computation of gravimetric terrain corrections (TCs) is a numerical challenge, especially
when using very high-resolution (say, ~30 m or less) digital elevation models (DEMs). TC
computations can use spatial or/and spectral techniques: Spatial domain methods are more
exact but can be very time-consuming: the discrete/fast Fourier transform (D/FFT) implemen-
tation of a binomial expansion is efficient, but fails to achieve a convergent solution for terrain
slopes >45%. We show that this condition must be satisfied for each and every computation-
roving point pair in the whole integration domain, not just at or near the computation points.
A combination of spatial and spectral methods has been advocated by some through dividing
the integration domain into inner and outer zones, where the TC is computed from the su-
perposition of analytical mass-prism integration and the D/FFT. However, there remain two
unresolved issues with this combined approach: (1) deciding upon a radius that best separates
the inner and outer zones and (2) analytical mass-prism integration in the inner zone remains
time-consuming, particularly for high-resolution DEMs. This paper provides a solution by
proposing: (1) three methods to define the radius separating the inner and outer zones and (2)
a numerical solution for near-zone TC computations based on the trapezoidal and Simpson’s
rules that is sufficiently accurate w.r.t. the exact analytical solution, but which can reduce the
computation time by almost 50 per cent.

Key words: Gravity anomalies and Earth structure; Fourier analysis: Numerical approxima-
tions and analysis; Numerical solutions.

1 INTRODUCTION

The gravimetric terrain correction (TC) is computed to account for the gravitational effect of deviations of the Earth’s topography from some
simplified model for which an exact analytical solution for the gravitational acceleration exists. Arguably the most common simplified model
is the Bouguer Plate of thickness equal to the height of the terrain, either relative to some arbitrary height or the geoid depending whether
the application is geophysical or geodetic, respectively (¢f. Nowell 1999). There are several other geometries that can be used (e.g. Bouguer
shell or cap), but which will not be reviewed here. Instead, we only work with planar TCs as these are still efficient for local geodetic (c.g.
Majkrakova et al. 2016; Benedek et al. 2018: Dransfield & Chen 2019: McCubbine et al. 2019: Sobh et al. 2019) and geophysical applications
{e.g. Pasteka et al. 2017; Saragih & Brotopuspito 2018; Zahorec ef al. 2019; Ariane Darolle Fofie et al. 2019; Fauzi et al. 2019).

Although, in this paper, we only consider the simplest case of the Bouguer plate by considering the planar TC for localized computations
(out to ~ 100 km), but our proposed methods can be adapted and extended to more complicated geometries for the earth model. Our motivation
is to seek simultaneously accurate and numerically efficient algorithms for the computation of local TCs for very high-resolution digital
height models, such as those derived from the Shuttle Radar Topography Mission (SRTM: Farr er af. 2007), the Advanced Spacebome
Thermal Emission and Reflection Radiometer (ASTER: Meyer ef al. 2011) or Multi-Error-Removed Improved-Terrain (MERIT: Yamazaki
etal 2017). We acknowledge that SRTM and ASTER are strictly digital surface models, not digital elevation models (DEMs) like MERIT,
but we have used the 1” x 1” SRTM as if it is a DEM in our numerical experiments. The term DEM will be used throughout this paper for
simplicity.

With the generally free availability of high-resolution (1" x 1) near-global DEMs, the time to compute TCs with space-domain methods
can be prohibitive, even using supercomputers. For example, in an area of just 1° x 17, the number of computation points fora 1” x 1" DEM
(12960000) is increased eight-fold compared to a 3" x 3" DEM (1 440000). Therefore, the use of spectral methods becomes attractive.

1820 ¢ The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Socicty.
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Despite the computational efficiency offered by spectral methods, there are two principal restrictions attached to the use of discrete or fast
Fourier transforms (D/FFTs). First, a convergence criterion due to the use of a binomial expansion (e.g. Huang 2012: sect 2.3v) restricts the
use of D/FFTs when terrain gradients are >45" (e.g. Sideris 1984; Forsberg 1985; Martinec er al. 1996; Sampietro et al, 2016). Secondly, a
decision is needed on the truncation limit of the binomial expansion to obtain a convergent TC solution. Some existing strategies to address
these restrictions are summarized in the Appendix Al.

From previous TC computations (e.g. Nagy 1966; Forsberg 1984: Tsoulis 1998, 2001; Heck & Seitz 2007; Tsoulis ef al. 2009) the
right-rectangular prism is the most commonly recommended elementary mass body for TC computations. The mass-point and mass-line
approximations of the mass-prism, while computationally faster, are not sufficiently accurate (Li & Sideris 1994; Heck & Seitz 2007). Thus,
we only use the mass-prism herein.

All the derivations and computations in this paper follow the planar approximation, which is sufficient for local TCs, Tsoulis e al.
(2009) show that by simulating the spherical approximation using ‘super-elevation’ (Forsberg 1984), the change in the horizontal distance
between the computation and roving point at a distance of 100 km is only -4 m, so can be neglected. The effect of laterally and radially
varying topographic bulk density on TC is also an important aspect. A constant difference of 100 kgm* in the density can result in an
approximate error of 0.037 x TC (with p = 2670 kgm™*) mGal in TC computation and a ~3.5 mGal error in the Bouguer gravity anomaly
for an elevation of 840 m (Hinze 2003). Since the focus of this study is on the use of high-resolution DEMs, we work only with the constant
density assumption. However, it is suggested that for either a precise geodetic application (e.g. Tziavos & Featherstone 200 1; Caratori Tontini
et al. 2007; Jandk et al. 2017; Yang et al. 2018) or an unambiguous geophysical interpretation (e.g. Uwiduhaye et al. 2018; Saibi ef al. 2019;
Tschirhart et al. 2019; Rathnayake et al. 2020), a topographic bulk density model (e.g. Blomez al. 2017; Tenzer et al. 2018; Sheng et al. 2019)
should be used as an input with the presented methodology and following the formulation provided by Tziavos et al. (1996) and Tziavos &
Sideris (2013).

Subject to the above conditions. we propose a modification to the combined spatial-spectral approach for local planar TC computation
under the assumption of a constant topographic density, in which the FFT is applied in the outer zone and mass-prism integration used in the
inner zone. We also propose a strategy to divide the inner and outer zones and choose the truncation limit of the binominal expansion in such
ways that the D/FFT-driven convergence criterion is satisfied. Additionaily, a new faster numerical mass-prism solution is presented based
on the trapezoidal and Simpson’s rules. Our numerical experiments are conducted in the Himalayas, which hosts among some of the most
rugged topographies on Earth.

2 D/FFT OUTER ZONE TC COMPUTATION

2.1 Limitations of existing solutions

TC computation using the D/FFT was first presented by Parker (1973), but had geodetic limitations in that the computation points must lie

above the topography: a case complying more with aeromagnetic and oceanographic than geodetic applications. Sideris ( 1984) proposed

a revised formulation of Parker (1973) to provide TCs on the topographic surface that is more suited to geodetic application. However. a

convergence criterion is attached to this method; also see Forsberg (1984, 1985), Sideris (1985), Martinec ef al. (1996) and Tsoulis ( 1998).
The spatial form of the integral for computation of the planar TC that can be expressed as a convolution is (e.g. Sideris 1984)

rC=GpJE]' (; 1 - [1 o (%)Z]M )dyd.r. (1

where G is the universal gravitational constant, p is topographic bulk density (herein assumed constant), | = \/(x, — x; )’ + (v, — y;)’ is
the planar Euclidean distance, Az = h, — h;, and (x,. y,. hy) and (x;, y;, h;) are the coordinates of computation point and running point,
respectively.

Making use of the binomial expansion of (1 4 x)~'/? according to
Gxy oy by 13 135, 1357, 13579 . 1357911 &
- - 2 2.4 246 24.6.8 24.6.8.10 24.6.8.10.12
one can series-expand (1 + ( % ): )~"2 in eq. (1) and rearrange terms to give
n w»
F A2 3Az2*  5A:°  35A:%  63Az"  231A:R
=~ @, _————t — — — p 3
e ("’f/ [ W T ®F T Ter 1280 T s 1024 T ]‘“d-‘ )

M

where we abbreviate each as
TC=TCGHTC+TCGH+TC+TC+TC + ...

with each term retains the appropriate sign according to eq. (3). This formulation is a convolution, so can be solved numerically efficiently
using the D/FFT (e.g. Schwarz et al. 1990).
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Figure 1. Hypothetical DEM with § m resolution. The numbers in the cells represent height. The red cell is the computation point. The yellow cell is one that
violates the <45” slope condition.
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Figure 2. The terrain slope has to be computed in all to identify computation-roving point pairs that are steeper than 457, otherwise violating the convergence
criterion for TC computation.

The convergence criterion for using the binomial expansion in eq. (2) is —1 < x < |. Therefore, if using eq. (3), the TC can only be
computed when the condition

—]<(%)-51:

is met. This limitation is often referred to as the convergence criterion, which restricts the implementation of eq. (3) to domains having terrain
slopes of <45°. The condition ¥/ in eq. (4) must be satisfied for each and every combination of computation and roving points in the whole
integration domain. However. in some literature, this condition has been misinterpreted as a requirement that only the slope of the terrain at
or immediately surrounding the computation point should not exceed 45” (e.g. Forsberg 1985; Sideris 1985: Klose & Ilk 1993: McCubbine
et al. 2017; among others).

To exemplify this, consider a hypothetical DEM with a 5 m spatial resolution, as shown in Fig. |, where the yellow roving cell is distant
from the red computation point but which violates the <45” slope condition. Therefore, unless the slope is computed for each and every
computation-roving point pair (a time-consuming process as depicted in Fig. 2). and before/during TC computation, numerical convergence

%‘1!51 VI 4
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Table 1. TC values (in puGal) after deliberately vi-
olating the <45 convergence criterion at only one
DEM cell. While the cffect may appear small here,
we could make it arbitrary larger by increasing the
cell height by more or by including more cells that
violate the <457 convergence criterion.

Unchanged  Single cell height

TC term SRTM DEM  changed to 6731 m
e, 331.2 332.7
TC, -23 3.7
TCs 3x107? 13
TCs -5x 10~* -1.3
TCs 1 x 10-% 1.4
TCy -2x 1077 =15
TC, 5001077 1.6
TCy -1 x 10-% -1.7
Ic= 3289 327.9
ETC,...TCy

will not be assured. However, we do acknowledge that it is plausible that the presence of only a few such roving points may not always provide
noticeably divergent TC results.

To quantify the above statements, TCs were computed up to the eighth order binomial term (TCy) at the central red cell for a region
bounded by 20" N-21"N, latitude and 81°E-82°E longitude using the SRTM V3.0 1"x1" DEM (Farr er al. 2007), with height of the central cell
being 531 m. TC values (only from the outer zone beyond an arbitrarily selected | km) were computed for two scenarios: (1) the unchanged
DEM for which all cells satisfy the convergence criterion and (2) after changing the height of only one DEM cell at/ = 6 km (200 grid cells)
from 495 m to 6731 m in order to deliberately violate the convergence criterion (| Az| < /) at a single point. The results in Table 1 reveal that
the presence of even a single point violating the converging criterion causes the solution to diverge.

2.2 Radius separating the inner and outer zones

This and the next subsection provide our proposed solutions to satisfy the convergence criterion in the D/FFT method when used in the
combined spatial-spectral approach to local planar TC computation. Recall that the D/FFT method is to be used in our so-called outer zone and
the mass-prism method is to be used in our so-called inner zone. The motivation behind this combined approach is to achieve computational
efficiency while not compromising accuracy. This raises the question of how best to select the integration radius that separates the inner and
outer zones.

There is, however, one further choice of integration radius, which we term the bounding radius (BR) that encloses the outer zone [as
we define it here]. In the following, we will assume that the BR of the outer zone is sufficiently large so as to capture the entire planar TC,
but we do not consider Earth curvature. A common empirical approach is to increment the BR to a distance beyond which the change to the
planar TC becomes negligible. We acknowledge that for non-planar geometries. the far/remote zones beyond the BR may not be negligible
(¢f. Kuhn et al. 2009),

We consider three scenarios to select the radius separating inner and outer zones for the planar TC (Fig. 3). We term them: height-defined
separating radius (HSR), exact separating radius (ESR) and optimal separating radius (OSR), as follows.

(1) HSR follows directly from eq. (4), which is a radius that is equal to the magnitude of the maximum height difference in the study area.
that is

HSR = | Az (5)

(ii) ESR is calculated from the magnitude of the maximum height difference among all the pairs of computation (P) and rover (R) points in
the area bounded by a circle of radius equal to the HSR. This gives the ESR, beyond which the solution will always diverge. Computation of the
ESR is time-consuming, especially when the maximum height difference is large, the size of the study area is large, and for a high-resolution
DEM. We thus define the ESR as

ESR = [max(Azpp)| ¥ P(xp,yp) S (min < Xp < Xmany Ymin < Vp = Vi)

2 3 5 6
&R (x,y): ((.\' —xp) +(y—yp) — Azl <0) ©)

(iii) OSR is the upper range in the study area. The range is computed by taking the difference between the maximum and the minimum
height values in an area around each cell. bounded by a circle of radius equal to the HSR. The upper range is the maximum of these range
values in the entire study area. OSR can be computed faster than the ESR because

OSR = max(rangey);rangey = (max(z), —min(z),) VN = P(xp, yp) — R(x, y) (7
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Figure 3. The four integration domains. BR is the bounding radius of the whole integration arca. HSR, OSR and ESR are the height-dependent, optimal and
exact separating radii, respectively.

Table 2. Details of the five study arcas (SA) from SRTM 1" v3.0 (SAS includes Mount Everest).

Study Latitude Longitude Heights (m)

area bounds bounds Min Max Mean STD

SAl 29°N-30°N R86°E-87°E 4111 6399 5161.7 3715
SA2 28°N-29°N 86°E-8TE 2535 8291 5067.4 5453

SA3 27°N-28°N 88°E-89°E 182 8314 3389.0 1673.8
SA4 27°N-28°N 87°E-88°E 176 8250 28304 1586.7
SAS 2T°N-28°N 86°E87°E 190 8748 25721 1605.9

Table 3. Empirically determined choices of
separating radii (in metres).

Study area HSR ESR OSR

SAl 2288 1642 1977
SA2 5756 3071 3354
SA3 8132 4290 5381
SA4 8074 3637 4724
SAS 8558 4261 5456

2.3 Numerical choice of separating integration radius

To test the convergence of the TC solution using the proposed choices of separating radii (HSR, ESR and OSR). computations were carried
out in five rugged topographies in the Himalayas (Table 2). Table 3 lists the values of the three computed radii for the five study areas using
the SRTM 1” V3.0 DEM. A MATLAB™ subroutine was written to compute the ESR. The focal statistics tool in ArcGIS™ was used to
compute the OSR. Table 3 confirms the relative sizes of the separating radii depicted in Table 3.

2.4 Effect of separation radius on TC convergence

To analyse the effect of truncating the binomial expansion of the D/FFT (eq. 3) at different orders, the TC terms are computed up to the tenth
order for SAS (Table 4) using the three different choices of separating radius (Table 3). All computations were performed for outer zones
defined by subtracting the three different separating radii (HSR. ESR and OSR) from the BR, arbitrarily selected to be 111 320 m which
was driven solely by the size of the data area. No optimization of the BR was attempted because this is only an illustrative example of the
convergence.

Recalling from Fig. 3 and Table 3, HSR > OSR > ESR. From Table 4. fewer TC terms are needed to achieve convergence (to <0.1
pGal) with the HSR. However, the HSR makes the inner zone larger, which will increase the computation time for the mass-prism integration
(Section 3). Conversely, the ESR makes inner zone smallest but needs the largest number of TC terms which will require more computer
memory. Also, it takes a longer time to compute the ESR value, especially for a high-resolution DEM.

The OSR offers a compromise that balances the computation of its radius, the number of TC terms required to achieve numerical
convergence, and computation time of the inner zone by mass-prisms. Not presented here, this also holds true for the other four study areas in
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Table 4. Descriptive statistics of planar TC values (mGal) in the outer zone up to the tenth order for SAS
with the separating radii of HSR = 8558 m, ESR = 4261 m and OSR = 5456 mand BR = 111320 m.

TC term  Separating radius Min Max Mean STD
TC, HSR 1.237 76.047 9.195 5.393
ESR 1.299 124.770 12.648 77117
OSR 1.278 107.603 11.361 6.865
e HSR -245 -8.71 x 10— ~7.07 x 10~2 1.00 x 10!
ESR -11.399 895 x 10 201 x107"  319x 10!
OSR -7.402 88 x 1%  -140x 10" 216 x 10!
TG, HSR 1.10 x 107¢ 1.73 x 107! 174 x 107 430 x 1073
ESR 111 x 10-° 2299 1.19 x 102 3.58 x 1072
OSR 110 x 10-° 1.128 6.15 x 10~ 1.75 x 10-2
TC, HSR —1.69 x 107¢ —184% 10" —7.84x 105 289x10°*
ESR —6.50 x 107! —185x 107" —1.32x107% 6.66x 1073
OSR =227 x 107" 184 x 10~ =5.00x10~* 231x 1073
TCs HSR 3.61 x 10~ 1.92 x 10— 495 x 10 2.54 %103
ESR 358 % 1072 230 x 107! 2.11 x 104 1.67 x 1073
OSR 3.60 x 1072 332 x 1072 5.78 x 103 4.00 x 10-#
TCe HSR =240 x 10~%  —788 x 10~'% —3.90x 107 2.66x 10-°
ESR —897 x 102 151 x 10-7  —434x 10-°  506x 104
OSR —136 x 1072 —470 % 107'% —845x 107 827 x 107
Ire, HSR -723 % 107'% 348 x 10-° 3.60 x 107 315 x 1077
ESR =252 %107 371 x 102 107 x 10-% 1.74 x 10—
OSR —S55x 10" 376 x 10-3 146 x 10-° 1.92 x 10-3
TGy HSR —531x107% 760x 107 —3.74x 10" 4.08x10°%
ESR —1.61 x 107" 971 x10~%  —=3.05x 107"  6.60 x 10~°
OSR —1.08x10-* 170 x10-* —286x%10-7 488 x10-°
TG HSR —297 x 1072 845 x 107 426 x 107! 567 x 10-°
ESR —196 x 1076 7.24 x 103 9.71 x 1077 2.66 x 1073
OSR ~1.51 x 1078 3.28 x 10~* 6.17 x 10—% 1.31 x 10-¢
TCw HSR —-1.39x 1077 L19x 10" 524 x10-" 832x10-'
ESR —333x 10 3350x10°% —337x 107 LI3x10°3
OSR 102 x 107% 167 x 1077 —144x10°% 374x107

Table 2. We acknowledge that the exact number of TC terms required will vary depending on the study area, but we have deliberately chosen
the extreme example of a 30 m DEM over Mount Everest, where convergence is achieved using six terms with HSR and nine terms with
OSR. Also not presented here, we used the D/FFT to compute TCs from the outer zone for 198 2° x 2° tiles covering parts of India, Pakistan,
Sri Lanka, Nepal and China. Convergence was achieved in all cases with the same number of terms.

3 ANALYTICAL AND NUMERICAL INNER ZONE TC COMPUTATION

In this section, we begin by stating the formula for analytical mass-prism integration (¢f. Banerjee & Gupta 1977). This is followed by
derivation of our proposed numerical integration techniques utilizing the trapezoidal and Simpson’s rules for linear integration extended
to double integrals. The analytical mass-prism integral of the TC is a volumetric integral solution. The approach suggested here utilises
numerical surface integration of the analytical linear solution of TC integral with respect to the z-direction (height).

3.1 Mass-prism integration

This method assumes that the cells in the DEM grid define right-rectangular prisms with length and width given by the resolution of the DEM
in the x and y directions, respectively. The height of the prism is defined by the height difference of the computation and rover points (Az).
According to Forsberg (1984). the planar TC can be represented as
na#xn
TC =Gp f f / %drd_rdz. (8)

X N

where » = \/x? + y? + 22 is Euclidean distance (see below). The analytical solution of eq. (8) is

TC= [:[x(log(}ﬂ'+r)+._|'log(.\' +r)—:m"%] ] (9)
st
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which is a simplified, efficient and accurate version (Banerjee & Gupta 1977: Forsberg 1984) of the solution given by Nagy (1966).

Expanding eq. (9) with respect to its limits. gives
TC = x;3log(ys +raxn) — x; log(ys + raa1) — xzlog(n + 7212) + x3 log(yy + rauy)

—x log(yz +7122) — x log(yz + ri21) — x log(yy + ryi2) +x log(yy +7444)

+v2logxz + r2a) — a2 log(xz + raz1) — vo loglx; + rizz) +y2 log(xy + ri2:)

. 10

—viloglxs +r212) + 31 log(xa + ran) + vy log(xy + i) — vy log(xy + riyy) (0

—ztan! (B2 ) +atan! () e (22) —ztan’ ()

3 -1 myr ) . =1 [ BV = S = —1 { x¥
+zitan (-’1"::;) aitan (W‘zn) zitan (-'l"l?l)+—]'an (:l"m)

where z; = 0.z, = h, —h;; h, is the height of the computation point and 4, the height of the roving point. x, x,, v, y; are the planar
coordinates of a prism assuming the computation point to be at the origin of the planar coordinate system. The order of subscripts of
r = /x? + v? + 2% represents the order of coordinates (x, v, z) and the subscript value represents the lower or upper bound of that coordinate.
For example, r;y, represents,/x? + y? + z3, etc.

Rearranging the terms in eq. (10), the analytical formula for the TC using right-rectangular mass prisms (TCM) is

Oz4rayi-bran) G24m2 Ky ey
(onkuinn) )| _ (xarap ey 4rn)
+ ¥ [log (u;+r;_~| KXy +722) )] » [log (4.:_-4-:‘;.. Nt 47y 13) )]

o () o () - (252) o (220

2 a2 nrn M

+:z1 [tan" (%—‘)—mn" (_:7.\:7) —tan“(%!r:‘—;) +tan~' (ﬁ)]

TCM =x, [log (m-e--:::uvn-mu)] —x [log (})2+r|2‘ﬂl‘|-l‘ m)]

(1)

3.2 Trapezoidal rule integration

Solving the TC integral (eq. 8) with respect to ‘z’ is convenient compared to *x’ and "y’. Therefore, in this method. the trapezoidal rule for
single integration is extended to double integration for solving the surface integral achieved after analytical linear integration of eq. (8) with
respect to ‘z’. According to the trapezoidal rule for single integration with n = 2 subintervals (refer to the end of Section 3.4 for further
discussion), we have

b
; ' b - b—
gy =& pay e o (222 Ve o | i =2=2. (12)
2 2 n
Extending eq. (12) to solve double integration gives

d b
}(ff(.\‘.y)dy)dx ~ [ ("";—“ [f(.\'.c)+2/'(.r. ‘%’) +f(x.d)]) dy

¢

>

h

4
= [(55) flxoo)det [2(52) £ (v S52) det [ (55) S, d)dx
=TT1+TT24+TT3

(13)

where 771,772, TT3 represent the three integral terms in eq. (13). By applying the trapezoidal rule for n = 2 to these three terms
individually, we get
TT1=(52) (%2) [fla, o) +2 1 (a. £2) + f(a, d)]
TT2=2(52) (5 [/ (452.) +27 (422, %4) + /(2. d)] (14
TT3 = (54) (55) [£b.c) + 21 (b. 2) + f(b. )]

The analytical linear integral solution of the TC with respect to ‘z’ can be written as

D2=hp-hy

TC =Gp |:_U / r%—d:d_vd\’]

=0

. (15)
X1 ¥2 i q
=Gp ff(m = m)d}‘dx]

un
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Table 5. Geographical bounds of the study arcas and their respective height statistics,

Study Latitude Longitude SRTM heights (m)

area bound bound Min Max Mean STD
SAA 19.25°N-19.75°N  73.257E-73.75°E 2 1537 299 264
SAB 26.25°N-26.75°"N  80.25"E-80.75°E 94 155 123 5
SAC 28.25°N-28.75°N  83.25°E-83.75°E 723 8141 2976 1334

Using the following substitutions in eq. (14)
a=x,b=x5c=y,.d=y

b—a=x3—x1=AMx,c—d=p—n==Ay

(16)

and rearranging terms, the TC with the trapezoidal rule (7CT) can be calculated as
rer = 6o |(%) () (i~ moirm) +2 (s ~ ) + (mim ~ e
+2(8) (3 [(= - ,.}—\.:T.,)u(m ) + (7 - )| : an
1
§

+(49 (%) [(ruzl-.x'n Maan A.b) +2 (ruv i —)) + (ﬁ = m)]l

3.3 Simpson’s rule integration

According to Simpson’s rule for single integration, again with » = 2 subintervals (again refer to the end of Section 3.4), we have

a+b

/f(x)d\~—[f(a)+4f( )-{—f(b)],l:b;a. (18)

For double integration, ¢q. (17) takes the form

h

(f Sx, v)dv) z;(‘“"" [Feoo)+4f (v, 22) + f(.t.zl)])dx

b
=f(‘l_‘)f(\' ()(1\+f4(" ) [ (x, rJ"')d.vc+j( =) f(x,d)dx
—ST1+ST2+ST3

o

(19

where ST'1. §T2. ST3 represent the three integral terms in eq. (19). By applying Simpson’s rule to the three terms individually, we get
= () () [l ) +41 (a. ) + fla. )]
ST2=4(%2) (%5) [/ (5. o) +47 (2. 59) + 1 (42.d)] ¢ - (20)
ST3 = (£2) (&) [/ (b, ) +4 f (b S2L) + f(b.d)]
The numerical solution of TC using Simpson’s rule (7CS) is obtained using the substitutions from eq. (16) in eq. (20) to yield
res=Go (%) () (i — s +4 (7t — rnkm) + (i — )
+4(%)(éﬁ.v)[(m;_”_m‘:—m)+4( - i) + (7 - )] : @1
+ (88 (o ~ ) 4 (i — )+ (e — i) )|

3.4 Numerical analyses

The proposed nurmerical methods for mass-prism integration are tested on three different smaller study areas (that exhibit varying terrain
roughness) again using the SRTM 1” v3.0 DEM (Table 5). Mass-prism TC values were computed with the separating radius defined by the
OSR computed individually for each study area (Table 6). Computations were performed using MATLAB™ parallelization on I8 cores of
an Intel® Xeon®) E7-8870 v3 @2.10 GHz CPU having 251 GB of RAM. The statistics and time required for TC computation using the
analytical (TCM) and numerical (TCT and TCS) methods for the three study areas are given in Table 6. The statistics of the difference between
the TC values computed using analytical and numerical methods are given in Table 7.

Although there is no significant variation among the overall TC statistics (Table 6) using the three different methods, TCT provides
comparatively better results compared to the TCM than TCS (Table 7). An important observation from Table 6 is that the time required for
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Table 6. Statistics of 1”x1" TC values computed using the three methods (equations 11, 17 and 21) for three different study
areas [TCs are in mGal and CPU time is rounded to the nearest second].

SAA,OSR=1141m SAB,OSR =46 m

SAC, OSR = 6078 m

TcM T s ™M cT Tcs M Tcr 7Cs

Min 0.000 0.000 0.000 0.000 0.000 0.000 4.542 4.546 4.531
Max 22779 22713 22.627 1.032 0.897 0.839 126.646 126623  126.563
Mean 0722 0.720 0.711 0.003 0.003 0.002 22.180 22,162 22.110
STD 1487 1.483 1.472 0.005 0.004 0.004 11.898 11.892 11.882
RMS 1.653 1.649 1.635 0.006 0.005 0.005 25.170 25.151 25.101
Time 428 201 199 38 12 12 37746 17539 17481

Table7. Statistics of the difference b n TC values d using analytical (TCM)

and numerical (TCS and TCT) methods {units in mGal],

SAA SAB SAC
TCM-TCT TCM-TCS  TCM-TCT TCM-TCS TCM-TCT TCM-TCS

Min -0.031 0.000 —0.006 0.000 —-0.036 0.000

Max 0.136 0.246 0.135 0.192 0.144 0.248

Mean 0.002 0.011 0.001 0.001 0.017 0.070

STD 0.006 0.019 0.001 0.001 0.022 0.040

RMS 0.007 0.022 0.001 0.002 0.028 0.080

TC computation using our proposed methods (both TCT and TCS) is almost half of what is required for analytical TCM. Table 7 confirms
that the TCT and TCS are consistent with respect to (i) the ruggedness of topography (cf. Table 5) and (ii) the size of the OSR (cf. Table 6).

In the trapezoidal and Simpson’s rules of integration (TCT and TCS), the numerical results can be improved by increasing the number of
subintervals, but at some computational cost. TCT and TCS were rederived using a combination of » = 2 subintervals for the inner limit and
n = 4 for the outer limit. This was done because only an even number of subintervals can be used in Simpson’s rule. The derived formulas
were tested on SAC. Not significant, but an improvement was observed in the results versus TCM. However, time taken for the computations
became equivalent to the TCM.

4 CONCLUDING REMARKS

The free availability of high-resolution (~30 m or less) near-global digital elevation models poses a substantial challenge for the numerical
computation of gravimetric TCs. One computationally attractive option is to divide the integration domain into inner and outer zones, where
spectral methods are used in the outer zone and analytical or discretized numerical mass-prism integration is used in the inner zone. However,
this spatial-spectral combination suffers from a few unresolved issues: (1) the need to ascertain that the D/FFT implementation of the binomial
expansion of the TC formula (eq. 3) provides a numerically convergent solution, (2) the appropriate separation radius between the inner and
outer zones is selected so as to achieve an accurate and convergent result while profiting computationally from a smaller inner zone and (3)
the analytical mass-prism integration method (eq. 11) is very time consuming, even on supercomputers.
Our principal conclusions are:

(i) The D/FFT implementation of the binomial expansion of the TC integral is only convergent iff the terrain gradients are <45" for
each and every computation-roving point pair in the integration domain. This condition appears to have been overlooked in some previous
implementations of the D/FFT method. where it is only considered at or near the computation point.

(ii) The radius separating the inner zone. where mass-prism integration is conducted, and the outer zone, where D/FFT integration is
conducted. can be selected so as to achieve a balance among numerical convergence, accuracy and efficient computation time. Our so-called
optimal separation radius (OSR) is given by eq. (7) and depends on the range of height differences in the whole integration domain. When
using the binomial expansion of the TC (eq. 3) in areas of very rugged terrain and for high-resolution DEMSs, higher order terms cannot be
neglected (cf. Tables 1 and 4).

(iii) The analytical solution to the gravitational attraction of a right-rectangular prism in the inner zone can be replaced by numerical
integration based on the trapezoidal and Simpson’s rules extended to double integrals. Numerical experiments over Mount Everestona 1"x1"
grid show all the mass-prism TC solutions to be commensurate but can be achieved in roughly half the computation time when two integration
steps are used in the trapezoidal and Simpson’s methods.
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Table Al. TC computation using FFT and strategies used to account for convergence and truncation.

Area / DEM resolution /
Reference Order of TC Remarks / Cntique max AH
FFT alone
Forsberg (1985) 1 Terrain slopes near the computation point are assumed to be 9km x 9km/ 100m x
small. No discussion on the convergence of the series. 100 m/ 608 m
1" x 17705 x 0.5 /700
m
Sideris (1985) 1 Slope considered are much smaller than 45°. Discussed more 28 km x 36 km /1 km x 1
on the edge effect and windowing. No discussion on the km /2079 m
convergence of the series.
Harrison & 4 Discussed importance of the generally neglected 4" order 6" x6"/6"x6"/1200m
Dickinson (1991) term in the FFT solution of TC. The study arca is perhaps not
rugged enough.
Li & Sideris (1994) 3 FFT method for mass-line and mass-prism models is derived. 57 x 107 /0.5 x 1" /3573

Introduced a regularization parameter ‘e’ for fast convergence m

of the TC solution. H

still cannot be

promised.
Kirby & Featherstone 1

\ converg

On obtaining spikes 1n the computed TC using 9" DEM (due
(1999) to anomalous gradients (Kirby & Featherstone 2001)), the

Australia/ 9" x 9"/
2217.18 m

averaged DEM with 27" resolution was used for
re-computation of the TC, Convergence is not discussed.

Kirby & Featherstone 1

Australia / 27" x 27"/
2162.26 m

TC computed with a refined national DEM. No discussion on  Australia /97 x 9"/ 2244 m

Australia/ 1" x 17/2291.3

I5km x 20km /50 m x
50m/ 1450 m

(2002) convergence.

McCubbine er al. 1 TC values were removed for the computation points where

(2017) gradient exceeds 43°. Gradient computed in specific directions m
only. Cannot guarantee convergence at all points.

Space-FFT combined

Tsoulis (1998) 3 To check the violation of convergence criterion, slopes were
computed only in N-S and E-W directions. Also, the
convergence of the FFT method was analysed by varying the
inner radius ( brute-force method). Use of the brute-force
method may not guarantee convergence.

Tsoulis (2001) 3 Extended Tsoulis (1998) with different methods for the inner

zone TC computation. Brute-force method applied to check

15km x 20km/ 50 m x
50m/ 1450 m

the convergence criterion and to analyse the effect of inner

zone.
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Area / DEM resolution /
Reference Order of TC Remarks / Critique max AH
Huang (2012) 1 Defined the inner zone with a grid of 3 x 3 cellsaround the ~ 0.346 x 0.316° /3" x 3"/
computation point. The inner zone being 1.5 times greater 80 m

Gomez et al. (2013)

Capponi et al. (2018)

Others
Martinec ef al. (1996)

than maximum height difference, convergence is guaranteed.

But, the truncation limit for the FFT solution is not discussed.

The study area is very plain.

Inner zone computations are done with 3” DEM. For outer
zone, 3” DEM was averaged to 30”. Lower resolution DEM
was used to circumvent the converging criterion (cf. Kirby &
Featherstone 1999).

The study focused on the inner zone TC computation.
Suggested to define the inner zone with a distance of a few
kilometres from the computation point. May not guarantee
convergence.

The main conclusion was that the solution will diverge if the
height difference of the points is larger than the distance
between them and if the height difference is smaller than the
distance between the points, the solution will converge. The
truncation limit to be used in order to secure a convergent
solution is not generalized.

~2 5% % 35¥ 13 %3
2500 m

2° x27/3" x 37/6500 m
083> x0.83°/3" x3"/
2887 m

Considered two points with
hypothetical heights and
distances between them.
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Abstract

India presents among the world’s most topographically complex geomorphologies, with land elevations ranging from -2 m
to + 8586 m and terrain gradients sometimes exceeding 45°. Here, we present an evaluation of four freely available digital
surface models (DSMs) on a model-to-model basis, as well as a validation using independent ground-truth data from
levelled benchmarks in India. The DSMs tested comprise SRTM1”, SRTM3”, ASTER1” and Cartodem!” [an India-only
model]. Along with these four DSMs. the MERIT3” digital elevation model (DEM) is also tested with the ground-truth
data. Our results for India indicate some mismatch of these DEMs/DSMs from their claimed accuracies/precisions. All
DSMs/DEMs (except for ASTER) have > 90% of pixels satisfying &= 16 m at the one-sigma level, but only in the low-

lying (< 500 m) parts of India, i.e. the Gangetic plains and the Thar desert.

Keywords Vertical accuracy/precision assessment - Digital surface models - Digital elevation models - India

Introduction

A digital surface model (DSM) is a representation of the
shape of the Earth’s surface. Several near-global DSMs
have been produced from satellite-borne platforms from
either radar, e.g. SRTM (Farr et al. 2007) or stereoscopic
optical imagery, e.g. ASTER (Meyer et al. 2011). We
deliberately distinguish between a DSM and a digital ele-
vation model (DEM) also sometimes known as a digital
terrain model (DTM), where a DEM/DTM represents the
solid topographic surface, whereas a DSM represents the
surface sensed, which includes the height of vegetation
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School of Earth and Planetary Sciences, Curtin University of
Technology, GPO Box U1987, Perth, WA 6845, Australia

1

canopy and man-made structures (cf. Hirt 2014). A satel-
lite-derived DSM should be treated for speckle noise
(Gallant 2011) and stripe noise (Tarekegn and Sayama
2013), and then, it can be converted to a DEM by
accounting for absolute biases (Crippen et al. 2016) and
tree height biases (O’Loughlin et al. 2016). Yamazaki et al.
(2017) have treated the SRTM v 2.1 DSM for all these four
sources to produce the MERIT3” DEM. DEMs and DSMs
should also be checked for other artefacts such as spikes.
pits and line defects (e.g. Hirt 2018).

DEMs and DSMs are used synonymously in several
applications such as mapping soil and vegetation (e.g.
Dobos and Hengl 2009; Cavazzi et al. 2013), studying
natural hazards (e.g. Gruber et al. 2009; Demirkesen 2012),
catchment geomormphology and hydrology (e.g. Barnes
et al. 2014; Zhao et al. 2019), watershed modelling (e.g.
Park et al. 2011; Li et al. 2019), floodplain mapping (e.g.
Jafarzadegan and Merwade 2017; Nardi et al. 2019),
weather and flood forecasting (e.g. Truhetz 2010) and
gravity field forward modelling (e.g. Banerjee and Gupta
1977; Forsberg 1984). The exemplar citations made above
are not exhaustive because the literature on applications is
so vast. However, researchers have started analysing the
effect of using a DSM and not the “required” DEM for
their respective applications, such as done by Yang et al.
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(2019) for gravity forward modelling. In this paper, we
have used the terms DEM or DSM separately in many
instances so as to reinforce the difference between the two.

Since the procedures for generating DSMs vary due to
the different types of datasets or sensors involved (Gesch
2012), one should not generally rely on freely available
DSMs without appreciating the accuracy/precision required
for the application at hand. Rodriguez et al. (2005) and Farr
et al. (2007) provide global accuracy analyses of the SRTM
DSMs. Meyer et al. (2011) conduct a global accuracy
assessment for ASTER. DEM/DSM assessments have also
been made on regional scales (e.g. Nikolakopoulos et al.
2006; Racoviteanu et al. 2007; Hayakawa et al. 2008
Chirico et al. 2012; Gesch et al. 2012; Suwandana et al.
2012: Li et al. 2013; Jing et al. 2014; Purinton and
Bookhagen 2017: Elkhrachy 2018: Zhang et al. 2019:
Hawker et al. 2019) and countrywide scales (e.g. Hilton
et al. 2003; Denker 2005; Hirt et al. 2010; Athmania and
Achour 2014; Gesch et al. 2014; Toannidis et al. 2014;
Rexer and Hirt 2014: Varga and Basi¢ 2015). We attempt
to add to this body of literature by providing results from
the whole country of India, where the topographic mor-
phology is quite diverse: heights range from -2 m to +

8586 m and terrain gradients sometimes exceed 45° (2.4%
of the total cells at 1”7 x 1” resolution, i.e. 3,748,582.709
cells). While studies have been conducted on the compar-
ison and validation of different DEMs/DSMs in smaller
regions of India (see Table 1), none are countrywide as we
attempt in this investigation.

India hosts part of the Himalaya Mountain Ranges in the
north, the Gangetic Plain in the centre, the Aravalli and
Vindhya Mountain ranges, the Western and Eastern Ghats,
the Deccan Plateau, the Thar desert and a long peninsular
coastline (Fig. 1). Thus, accuracy/precision assessment of
DEMs/DSMs for India is of utility, especially when
researchers are already using freely available DSMs for
applications in India such as geology and geomorphometric
analysis (e.g. Selvan et al. 2011; Gayen et al. 2013),
watershed delineation (e.g. Sreedevi et al. 2009: Ahmed
et al. 2010; Gopinath et al. 2014), identifying potential
waler harvesting sites near rivers (e.g. Ramakrishnan et al.
2009), assessment of tsunami risk (e.g. Kumar et al. 2007),
hydrographic modelling (e.g. Patro et al. 2009) and esti-
mating glacial mass balance (e.g. Berthier et al. 2007).

Unlike some of the previous studies in India (Table 1),
and indeed elsewhere, we have deliberately preserved the
respective meanings of DEM versus DSM throughout our
analyses. Strictly, DEMs and DSMs should never be
compared until one is transformed to the other (Yamazaki
et al. 2017). In the study presented here, four freely
available DSMs for India (SRTM1”, SRTM3", ASTER1”
and Cartodem1” [an India-only model: see below]) are
inter-compared on a model-to-model basis. They are also

@ Springer

“validated” with independent ground-truth height data
provided by the Survey of India (Sol) to which National
Aecronautics and Space Administration (NASA) canopy
height information (Simard et al. 2011) has been added to
give point DSM heights (Sect. 4). Along with these four
DSMs, the MERIT3” DEM is also validated with the same
ground-truth  data, without canopy heights applied.
MERIT3” was not included in the model-to-model DSM
comparison. In India only, the national Cartodem DSM,
derived from the Cartosat mission using stereoscopic
optical imagery (NRSA 2006), is also used in regional
applications (Bera et al. 2014; Das et al. 2015, 2018;
Kumar and Gupta 2016), so we include this DSM in our
assessments. The DSMs and DEMs evaluated are sum-
marised in Table 2.

Due to the land height range in India (-2 m to + 8586
m), our analysis is divided into three sub-parts based on
classification of the heights into three intervals, with an
implicit assumption that these may correlate with the
broader morphology. namely H < 500 m, 500 m < H
< 1500 mand H > 1500 m (Fig. 2b). The rationale behind
the chosen three intervals is: regions of the Gangetic plains,
the Thar desert and the peninsular coastline are all below
500 m: the whole of the Aravalli range (except a few
peaks), the Vindhya range, majority of the Eastern Ghats
and half of the Western Ghats are between 500 and
1500 m, while the other half of Western Ghats, a small
extent of Eastern Ghats and almost whole of the Himalayan
belt are above 1500 m. The claimed accuracies/precisions
for all the DEMs/DSMs (Table 2) are also cross-checked
on whole of India and height-range-wise bases. This is of
utility because the accuracy statistics defined from global
assessments may not be applicable to India, which certainly
appears to be the case for high-elevation areas.

Subtleties of Indian Height Data

The nominal vertical datum of the Cartodem DSM is
WGS84 and it thus provides ellipsoidal heights of the
Earth’s surface. To achieve a consistent vertical datum
among the DSMs (cf. Table 2), the Cartodem was also
referenced to EGM96 (Lemoine et al. 1998) by subtracting
EGM96 geoid undulation values and rounding to the
nearest metre as was done when computing SRTM physical
heights (cf. Farr et al. 2007, p. 19). EGM96 is an older
spherical harmonic degree-360 geopotential model, and
comparatively better high-degree geopotential models are
now available, such as EGM2008 to degree 2190 (Pavlis
et al. 2012, 2013). To show the effect of using EGM2008
instead of EGM96, a difference map was prepared and
truncated to the nearest metre. Figure 3 shows that DEMs/
DSMs derived from each geoid model can differ by up to
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Table 1 Previous DEM/DSM assessment studies in India

Citation Data used

Remark

Muralikrishnan ~ SRTM1”, ASTER1”, Cartodem!”, three different regions
et al. (2013) in India

Srivastava and ~ SRTM3”, ASTER1” and Survey of India (Sol) 1:50.000

Mondal topographic map, 3’ x 3" area, elevation range: 82 m to
(2012) 100 m

Bothale and SRTM3”, ASTER!”, Cartodem (10 m. 20 m. 30 m. 40 m,
Pandey 50 m, 90 m), 0.45° x 0.3° area, Sol 1:50,000
(2013) topographic map

Thomas et al.  SRTM3”, ASTERI”, GMTED250m, DEM generated

(2015) using Sol 1:50,000 topographic map, 0.22° x 0.42°
area, 55 spot heights
Krishnan et al.  SRTM. ASTER. Cartodem and DEM generated using
(2016) Cartosat imagery, 0.33° x 0.25° area. 25 DGPS

surveyed GCPs

Yadav and Indu  SRTMI”, ASTER!", Cartodem, Sol 1:250,000
(2016) topographic map, 4° x 2° area, elevation range: 800 m
to 2000 m

Mukul et al. SRTM1” X and C band, SRTM3” C band. 221 GPS points

(2017)
Rawat et al. SRTM3", ASTERI!", Cartodem1”, 20 DGPS surveyed
(2019) GCPs, Shahjahanpur district

Absolute and relative evaluation of Cartodem was done w.rt to
ground control points (GCPs) and SRTM/ASTER, respectively.
It was concluded that in a flat region, height accuracy of
Cartodem is better than £ 4 m, and for the hilly regions, the
error reaches around £ 8 m. Also, it was established that more
than 90% of the SRTM and Cartodem difference points are
within 8§ m, The absolute and relative vertical accuracies of
Cartodem were stated to be 8 m at 90% confidence and 5 m at
68% confidence

Only three points in the study area were extracted from the
topographic maps with the height values of 82 m, 90 m and
100 m. DEMs/DSMs were evaluated based on these three
points. No statistical information was provided. ASTER was
concluded to be more precise compared to SRTM, but this has
to be heavily qualified because of the small sample size used

This DSM evaluation methodology mentioned all the heights
relative to WGS84 ellipsoid. However, the ground-truth was
extracted from Sol maps which provide heights above local
mean sea level (MSL). No information on the conversion of
ellipsoidal heights to physical heights or vice versa was
provided. RMSEs of ASTER and SRTM were reported to be
significantly high compared to the Cartodem (all resolutions).
90% of Cartodem and SRTM difference points were reported to
be within £ 8 m as also claimed by Muralikrishnan et al.
(2013)

The study involved evaluation based on spot heights extracted
from the topographic map. The comparison concluded that
SRTM (RMSE = 17.05 m) is more precise than ASTER
(RMSE = 24.09 m) and GMTED (RMSE = 32.85 m). The
RMSE of the topographic map-derived DEM was 3.17 m

The analysis reported the RMSEs for ASTER and SRTM to be
8.13 m and 8.98 m, respectively. RMSE for Cartodem was
60.94 m, while for the generated DEM the value was 36.79 m,
Though the study discussed the generation of DSM using
Cartosat imagery. we note some complications in the
conversion of ellipsoidal heights to physical heights. This
might be a reason for the large RMSE observed for Cartodem

Reported RMSEs for ASTER. SRTM and Cartodem were
74.78 m. 69.18 m and 69.38 m, respectively. An explanation
was missing for using a topographic map of 1:250,000 scale,
wherein plotting error is 62.5 m, i.e, the extracted point derived
from a map can indicate any point lying in an area of
625 m x 62.5m

An investigation involving only SRTM DSMs was done, wherein
the claimed accuracy of 16 m at %% confidence was also
cross-verified. The C band SRTM data were reduced to WGS84
datum by using geoid values from EGM96 (Lemoine et al.
1996). The study concluded that without any filtering of the
DSMs, only X band SRTM1” has an RMSE of 9.18 m. The 1”
and 3" C band DSMs have RMSE of 23.53 m and 47.24 m,
respectively. Outlier and void filtering techniques were also
discussed, after which the RMSEs of 1”7 X band, 1" C band and
3" C band reduced to 8.00 m, 10.14 m and 14.38 m,
respectively

For the 20 points, heights were extracted from the three DSMs
and were compared against cach other. RMSE values for
Cartodem-ASTER = 137.65 m, Cartodem-SRTM = 186.65 m
and ASTER-SRTM = 50.87 m
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Fig. 1 Physical features of Indian topography. ( Source: hitps://www.
nationsonline.org/oneworld/map/India- Administrative-map.htm)

12 m in magnitude, particularly in the Indian Himalaya (cf.
Fig. 1). The effect of the different geoid models will be
assessed later in Sect. 3.3.

Table 2 DEMs used in the study ( adapted from Rexer and Hirt 2014)

As well as model-to-model comparisons, the DEMs/
DSMs are “validated™ with independent ground-truth data,
comprising 3842 differentially levelled benchmarks and
145 ground control points (GCPs).

The 3842 benchmarks (Fig. 4) consist of latitude,
longitude and levelled heights above local mean sea
level (MSL). They come from the database archived by
the Bureau Gravimetrique International (BGI) and were
originally sourced from the Sol and the Indian National
Geophysical Research Institute (NGRI). Though the
horizontal and vertical precisions are not known, all the
relevant infrastructure and research projects in India are
based on benchmarks established by Sol. These are the
heights that we have used in our analysis. Vertical
precisions are important to be confident that we are not
validating the DEM/DSM heights with erroneous
ground control. Horizontal precision is important to
be confident that we are not interpolating the DEM/
DSM height to the wrong location, which can be a
substantial problem in areas of steep temrain gradients.
The 145 GCPs consist of GNSS-determined latitude,
longitude and ellipsoidal height. Geoid undulation
values from EGM96 were subtracted from these
ellipsoidal heights to determine physical heights that
are compatible with the DEMs/DSMs (cf. Table 2), but
not rounded to the nearest metre. The GCPs are
concentrated in five different regions of the country:
Hyderabad, Bangalore, Kanpur, Dehradun and Saha-
ranpur (Fig. 5). The GCPs in Kanpur were observed

SRTM V3.0 SRTM V4.1 ASTER GDEMV2  Cartodem V2 MERIT
(S1) (S3) (AS) (CA) (ME)
Model type DSM DSM DSM DSM DEM
Satellite Shuttle Radar SRT™M Terra Cartosat-1 (NRSA 2006) SRTM and Advanced Land
mission Topography Observing Satellite
Mission (SRTM) (ALOS)
Institution NASA CGIAR-CSI METI. NASA NRSC-ISRO Yamazaki et al. (2017)
Resolution (in  One Three One One Three
ar¢ seconds)
Release year 2015 2011 2011 2014 2018
Vertical datum EGMY96 EGM9Y6 EGMY%6 WGS84 EGMY6
Height type Physical' Physical Physical Ellipsoidal Physical
Claimed 16 m at 90% 16 m at 90% 17 m at 95% 8 m at 90% confidence, 12 m at 90% confidence,
accuracy confidence, near- confidence, confidence. India-only near-global
global near-global near-global
URL https://gdex.cr.usgs. http://srtm.csi. hitps://search. https://bhuvan-app3.nrsc. http:/Mhydro.iis.u-tokyo.ac.
gov/gdex/ cgiar.org/ carthdata.nasa, gov.in/data/download/ Jp/ ~ yamadai/MERIT _
gov/ index.php DEM/

!By physical, we mean that the geometric ellipsoidal/geodetic height (/1) has been transformed to a physically meaningful orthometric height (H)
using a global geoid (N) model (H = h — N)
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Fig. 2 Terrain of India a and the three height ranges tested b (equi-rectangular projection)
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Fig. 3 Geoid differences between EGM2008 and EGMY6. truncated
to the nearest metre (equi-rectangular projection)

using dual frequency GNSS, while GCPs at other
locations were obtained from the Sol archive. The
horizontal and vertical precision of these data lies
within 12 to 26 mm and 31 to 53 mm, respectively
(Mishra 2017).

We return to the caveat in the first paragraph of Intro-
duction, qualifying that a DEM is distinctly different from
a DSM. The benchmarks and GCPs give the physical
(MSL-based) heights of the solid ground, so are compatible

70°00"E  75°0'0"E 80°0'0"E 85°0'0"E 90°0'0"E 95°0'0"E

it
T
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Fig. 4 Spatial distribution of the 3842 levelled benchmarks (equi-
rectangular projection)

with DEMs, but not with DSMs. Therefore, in the later
analysis (Sect. 4), canopy height (CH) information is added
to the ground-truth data for comparison with DSMs in
order to achieve compatibility. We have not conducted an
analysis of the veracity of the CH model over India, instead
taking the published values “at face value”. We also
acknowledge that other corrections are needed, as outlined
in Introduction.
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Fig. 5 Spatial distribution of the 145 GCPs ( source: Google Earth)

Table 3 Statistics of inter-

: S1-S83 S1-AS S1-CA S3-AS S3-CA AS-CA
comparison among DSMs,
Ub';’"“ in l‘,“°"°f“- Tl:c - Min — 4287 — 5815 — 4801 — 4363 — 5152 — 5859
apbreviauions for the e
names are given in the first row Max 5197 3109 3235 5792 4846 4295
of Table 2 Mean 1.4 1.9 - 21 - 05 08 -0.2

STD 324 204 358 39.3 458 395

|nter-comparison Among DSMs Finally, we replace EGM96 with EGM2008 for all the

DSMs to gauge the effect of using a higher-degree geoid
The SRTM v4.1 DSM was first bicubically interpolated ~ model to obtain physical heights from a DSM.
from 3” x 3" to 1”7 x 1” resolution to make it spatially
consistent with the other three DSMs (SRTM v3.0, ASTER ~ Nationwide Inter-Comparison
GDEM2 and Cartodem; Table 2). The DSMs were com-
pared according to three criteria: Possibly the most alarming observation from Table 3 is that
the DSMs can differ by several kilometres, though the
percentage of such pixels is proportionally small (Table 4).
These large height differences among the DSMs are most
probably due to geolocation errors (Rodriguez et al. 2005),
i.e. horizontal shifts among the DSMs are caused by
incorrect co-registration (Denker 2005). These shifts result
in comparing DEM/DSM cells of two different locations,
hence producing substantial height differences, especially
in areas of steep temrain gradients. Also, from Table 4, the

1. For the whole country of India, producing a total of
3,748.582,709 1”7 x 1" DSM differences

2. For DSM heights divided into three ranges, namely
H <500m, 500m <H < 1500 m and H > 1500 m
(Fig. 2b)

3. For four intervals that are defined according to the
claimed accuracies/precisions of the DSMs (Table 6
later).
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Table 4 Distribution of “large™ differences among the DSMs over India. The abbreviations for the DSM names are given in the first row of Table 2

Comparison  Frequency of differences (AH) as a percentage

ge of total

number of pixels

—500m>AH= — 1000 m AH < — 1000 m Percenta

—100m>AH> — 500 m

100m <AH < 500 m 500 m < AH < 1000 m  AH > 1000 m

0.695

0.000
0.009
0.007
0.001
0.016

0210

0.001
0.000
0.013

0.126
0.001
0.059
0.138
0.037

354

0.

S1-83
S1-AS
S1-CA

S3-AS
S3-CA

AS-CA

0.080

0.012

0.035

0.023

0.313

0.901

1.012

0.036

0473

0.004
0.164

0.004

0.298

0.011

0.560
0.574
0.292

1.330
0.880

v

0.007

0.012

0.014

0.504

0.054

number of pixels in different ranges for S1-AS individually
and S1-AS and AS-CA collectively show that SRTMI1” and
ASTER are more consistent with one other than the other
model pairs. [The abbreviations for the DSM names are
given in the first row of Table 2.] This consistency is also
backed up by only 0.1% of the difference pixels for S1-AS
lie beyond the range [ — 100 m, 100 m]. Also. on ana-
lysing the three pairs i.e. S1-AS, S3-CA and AS-CA, it is
observed that the Cartodem, compared to SRTM3”, has
more congruency with SRTM1” and ASTER. This is
probably only because SRTM3” was bicubically resampled
toa 1” x 1" spatial resolution. The total number of pixels
ineach 1” x 1” DSM is 3,748,582,709, and AH represents
the difference among various pairs of DSMs (e.g. S1-S3.
S1-AS, S1-CA, §3-AS, S3-CA and AS-CA).

Figure 6 shows the striping effects among the DSMs.
Striping in ASTER was also observed by Hirt et al. (2010)
over Australia. Considering the fact that SRTM have stripe
effects with a different pattern compared to ASTER (cf.
Gallant and Read 2009), and on comparing (i) Figs. 6b.c
and (ii) Fig. 6d, e, it can be claimed that Cartodem also has
the stripe effects that are nearly in the same direction as
ASTER (Fig. 6c, ¢). Stripes are also shown in Fig. 6f (AS-
CA), indicating the non-negligible difference in the mag-
nitude of the stripes in ASTER and Cartodem. Hirt et al.
(2010) pointed out that the stripe effects in ASTER occur
on scales of several thousand kilometres; Fig. 6 shows the
similarity of this phenomenon for Cartodem in India.

Height-Range-Wise Inter-Comparison

Table 5 shows that, despite the lowest standard deviations
(STDs) of AH for the height range H < 500 m, large dif-
ferences exist among DSMs (cf. Table 4). The significant
differences between S1-S3 (both derived from the same
satellite mission) are possibly due to systematic errors
between the two DSMs, primarily found in the mountain-
ous regions. This is possibly because SRTM1”, a high-
resolution DSM, provides a better topographic representa-
tion compared to SRTM3”, especially along ridges and
valleys. Other discrepancies among Cartodem and other
DSMs are also observed at the locations of large lakes and
active open-pit mine sites (Fig. 7). This is due to the dif-
ferent epochs of the observations and re/processing
involved in the development of each DSM, which is
[partly] reflected by the release dates in Table 2. A similar
observation has been reported by Long et al. (2020) over
open-pit mines in Quang Ninh Province in Vietnam.
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f AS-CA]. The abbreviations for the DSM names are given in the first row of Table 2
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Table 5 Statistics of the DSM

! : S1-83  S1-AS  SI-CA  S3-AS  S3-CA  AS-CA
inter-comparison based on a
range-wise classification. Units — \piy 1 < 500m —301 —38  —1026 —326 —S152 —1180
in metres. The abbreviations for 7 ‘
the DSM names are given in the 500m<H<1500m —930  —2490 —685  —969  —2400 — 2390
first row of Table 2 H > 1500 m — 4287 — 5815 — 4801 — 4363 — 5098 — 4295
Max H<500m 5197 266 1189 5208 1034 1031
S00m<H<1500m 1444 352 2397 2525 773 2578
H > 1500 m 5163 3109 3235 5792 4846 5859
Mean H <500m 0.1 29 =45 —28 15 —14
S00m<H<1500m 03 3.1 =g —28 12 1
H > 1500 m 11.0 58 —67 169 —43 125
STD  H<500m 5.7 69 69 9.5 82 10.11
500m<H < 1500m 205 938 17.6 248 26.0 19.5
H > 1500 m 903 55.7 101.9 107.5 129.3 111.0

Inter-Comparison According to DSM Claimed

Precision

We deduce four accuracy/precision intervals according to
the claimed accuracies/precisions of the DSMs (Table 6).

@ Springer

The percentages of points lying in these different intervals
are shown in Table 7.

From Table 7, the percentages of pixels in intervals Inl
and In2 for S1-AS, S3-AS and AS-CA show that ASTER
contains more error compared to the other three DSMs. The
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Fig. 7 Differences between SRTM1” and Cartodem (greyscale panels) at the locations of large lakes and active open-pit mine sites (background
images from Google Earth)

Table 6 Accuracy/precision intervals as deduced from other investigations

Interval  One-sigma range  Remarks

(m)
Inl [ — 3.768, Rodriguez et al. (2005) computed an absolute height error of 6.2 m at 90% (1.645¢ for 1D) confidence in SRTM
3.768] for Eurasia. Therefore, the first interval is taken as bounded within 6.2/1.645 = 3.768 m
In2 [ = 9.726, One of the objectives of the SRTM mission was to obtain the absolute height error within 16 m at 90% confidence
9.726] (Farr et al. 2007). Therefore. the second interval is taken as bounded within 16/1.645 = 9.726 m
This bound also covers the accuracy estimate of Cartodem (7.6 m at 90% confidence, i.e. 4.62 m (Rao et al. 2014))
and MERIT3” (12 m at 90% confidence, i.e. 7.29 m (Yamazaki et al. 2017))
In3 [ — 16, 16] This bound is chosen by hypothetically considering 16 m to be the o error bound in the DSMs
Ind ] — 16, 16] This bound is to check the number of pixels that exceed the above hypothetical 16 error bound in the DSMs
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Table 7 Percentage of pixels (from model-to-model comparison) lying in the intervals set in Table 6

S1-83 (%) SI-AS (%) S1-CA (%) S3-AS (%) S3-CA (%) AS-CA (%)
Inl Overall 69 34 62 30 56 37
H < 500 m 83 38 70 35 67 41
500 m < H < 1500 m 56 32 57 24 46 33
H > 1500 m 14 16 23 8 11 12
In2 Overall 84 75 91 67 83 76
H < 500 m 95 82 98 78 94 84
500 m < H < 1500 m 76 72 91 56 78 72
H > 1500 m 29 42 52 20 27 32
In3 Overall 89 92 95 83 89 90
H=<50m 98 97 97 94 98 97
500 m < H < 1500 m 85 92 97 76 87 90
H > 1500 m 43 64 69 33 42 51
Ind Overall 11 8 4 17 11 10
H=<50m 2 3 <1 6 2 3
500 m < H < 1500 m 15 8 3 24 13 10
H > 1500 m 57 35 31 67 58 50
eSS £ SNl S1-83 S1-AS SI-CA S3-AS S3-CA AS-CA
and percentage of points in
different intervals (cf. Table 6) Min — 4280 — 5810 — 4795 — 4356 — 5154 — 5864
after replacing EGM96 by
EGM2008 geoid values. Units Max 5195 3116 3234 5797 4852 4288
in metres Mean 14 2.0 - 2.1 - 0.5 0.8 0.1
STD 326 204 357 39.5 45.7 39.7
Inl 69% 34% 61% 29% 56% 36%
In2 84% 75% 91% 66% 83% 76%
In3 89% 92% 95% 83% 89% 90%
In4 11% 8% 5% 17% 11% 10%

claimed accuracies/precisions are only valid if 90% of the
data satisfy the given accuracy requirements (cf. Rodriguez
et al. 2005). In the lowland range (< 500 m), more than
90% of the differences for S1-S3, S1-CA and S3-CA lie in
the interval In2. This indicates that the three DSMs (i.e. S1,
S3, CA) are congruous with their claimed accuracies. but
only in this height range. It is found that 90% of the total
S1-CA difference pixels (without any height-banded
classification) fall within 4 8 m, which resembles the
observations of 90% by Muralikrishnan et al. (2013) and
Bothale and Pandey (2013).

Finally, the overall statistics and the percentage of pixels
in different accuracy/precision intervals after replacing
EGM96 by EGM2008 for all the DSMs are summarised in
Table 8. This shows no significant change either in the
overall statistics (cf. Table 3) or the distribution of differ-
ences (cf. Table 7) after transforming the DSMs to physical
heights using EGM2008. Therefore, it appears immaterial

@ Springer

as to which geoid model is used to transform the geometric
cllipsoidal heights to physical heights given the former’s
intrinsic accuracy/precision (cf. Figure 3), but this only
applies to India and might not be the case in the countries
with relatively lower topographical elevations.

Validating DEMs with Ground-Truth Physical
Heights

The DEMs are now “validated”™ with two sets of inde-
pendent ground-truth data: 3842 levelled benchmarks and
145 GPS-based GCPs. Recalling from Sect. 2, the ellip-
soidal heights of GCPs were converted to physical heights
by subtracting the EGM96 geoid model. Since SRTM1”,
SRTM3", ASTER and Cartodem are all DSMs, canopy
height (CH) data from NASA (Simard et al. 2011) were
added to the ground-truth point heights. The CH data were
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Table 9 Statistics of comparison between ground-truth heights and the DEMs/DSMs. Units in metres. The abbreviations for the DSM names are

given in the first row of Table 2

3842 benchmarks 145 GCPs

Min Max Mean MAE STD RMSE Min Max Mean MAE STD RMSE
S1 - 2159 270.9 1.8 8.1 17.7 17.8 - 139 384 1.3 59 9.8 9.8
S3 — 2209 257.5 1.9 8.0 17.2 17.3 — 493 1024 2.1 8.1 17.5 17.6
AS - 2129 2439 44 105 18.8 193 - 212 439 54 8.2 100 11.4
CA — 336.7 270.2 1.0 8.5 19.7 19.7 — 114 50.2 1.9 57 94 9.6
ME — 256.3 2499 - 04 7.1 173 173 - 334 243 0.7 45 7.1 7.1

not subtracted from the entire DSMs pixel by pixel because
the conversion of a DSM to a DEM also involves extra
filtering techniques as summarised in Introduction. Thus,
just removing the CHs does not necessarily provide a true
DEM, but we believe it to be better than using a DSM
alone. We did not conduct an analysis of the veracity of the
CH data, instead taking the NASA model at face value.

Figure 8 shows the distribution of the heights of the
3842 benchmarks and 145 GCPs. They reflect the difficult
logistics of collecting surveying data at inaccessible alti-
tudes. As such, this validation only really holds for ele-
vations less than, say, ~ 500 m (cf. Fig. 8a). In addition,
the only sample geographically limited parts of India.
Table 9 shows the statistics of comparisons between the
DSMs/DEMs and these two ground-truth datasets, where
the CH has been added when assessing the DSMs. For the
heights extracted from Cartodem, there are two points with
unexpectedly large height differences (i.e. — 191 m and
— 186 m). These points are not removed from the analyses
because the overall statistics of the comparison after
removing them does not change significantly (min= —

336.7 m, max = 270.2 m, mean = 0.9 m, MAE = 8.4 m,
STD = 19.2 m and RMSE = 19.2 m).

The statistics in Table 9, when viewed collectively and
more so by the mean absolute error (MAE) and root mean
square error (RMSE), indicate that MERIT3” compares
relatively closer with respect to the ground-truth heights as

compared to the DSMs. This is most probably because
other error sources (mentioned in Introduction) were
removed in the construction of MERIT3” (Yamazaki et al.
2017), whereas we have only applied the CHs to the
ground-truth in this study. The better results for MERIT3”
with respect to the GCPs can also be attributed to GPS data
generally being collected in open areas (away from build-
ings/trees) for satellite visibility. Therefore, there is less
probability of CH error due to the presence of man-made
features or vegetation (cf. Denker 2005; Hirt et al. 2010).

We next repeat the analyses conducted among the
DSMs, but now with the ground-truth data, including the
MERIT3” DEM, and after CHs have been added to the
ground-truth when DSMs are assessed. We restrict the
presentation here to only the levelled benchmarks because
of the larger sample size with broader spatial (Fig. 3) and
vertical (Fig. 8) distributions versus the GCPs (cf. Figs. 4,
8). Our analyses with the GCPs do not contradict the
findings presented below. The DEM/DSM comparisons
with height-range-wise and accuracy/precision-wise clas-
sification are given in Tables 10, 11, respectively.

First, however, it is important to acknowledge that the
number of benchmarks with MSL-based land elevations
greater than 500 m is relatively few (Fig. 8 and Table 10).
As such, while all results are presented for the sake of
completeness, lesser emphasis on the interpretation is made
from them when H > 500 m. This is also demonstrated in
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Table 10 Statistics of the

comparison with benchmarks i M . Men Mas =Te BMSE
based rangewite H < 500 m SI 3263 —1149 2064 16 64 122 123
o N e $3 3263 - 1186 2064 16 63 120 121
values is the most preferred. AS 3263 — 1079 2104 45 88 13.6 14.3
Units in metres CA 3263 —336.7 2045 0.6 6.7 145 145
ME 3273 - 128.6 207.4 0.0 55 1.7 11.7
500 m< H < 1500 m S1 403 — 2159 2435 2.6 14.1 28.8 28.9
S3 403 — 2209 2575 2.1 149 30.0 30.1
AS 403 - 2129 2335 52 16.4 29.4 29.8
CA 403 — 2165 246.5 2.5 14.6 304 30.4
ME 395 —2239 2295 —-22 12.8 27.9 28.0
H > 1500 m Sl 176 - 2093 2709 3.7 259 47.1 47.1
S3 176 — 1194 181.9 7.2 244 41.0 41.5
AS 176 —-2093 2439 18 27.8 478 476
CA 176 - 290.7 270.2 59 27.3 49.1 49.3
ME 174 — 2563 249.9 - 27 248 473 47.2
IT;"’]': il o i SI(%)  S3(%)  AS(%)  CA®%)  ME(%)
i it S T w s »  a w
hi‘;ghcsl r;crccmagc in intervals H =< 500 m 48 48 31 4 58
Inl. In2, In3 and the lowest 500 m <H < 1500 m 27 28 23 29 37
percentage in interval Ind is the H=> 1500 m 24 24 17 15 27
et el 2 Overall 80 81 67 80 85
H = 500 m 84 86 70 84 89
500 m <H < 1500 m 65 63 50 63 72
H > 1500 m 46 47 37 37 48
In3 Overall 91 90 85 90 92
H < 500 m o 94 89 94 95
500 m <H < 1500 m 80 80 71 78 81
H> 1500 m 57 60 51 56 60
Ind Overall 9 9 15 10 8
H < 500 m 6 6 I 6 5
S00m <H = 1500 m 20 22 29 22 18
H> 1500 m 43 40 49 44 40

Fig. 9b-d, where the differences become more scattered for
the higher-elevation intervals. Figure 9a shows that all the
differences are near-normally [Gaussian] distributed, hence
justifying our use of descriptive statistics throughout this
manuscript.

With the data available to us, focussing on the < 500 m
band in Table 10 shows that, despite the presence of large
maximum and minimum differences, MERIT3" is more
reliable, while Cartodem is less preferred among all the
compared DEM/DSMs. The principal metrics used from
Table 10 to make this inference are the MAE and RMSE.
From the percentages in Table 11, no DEMs/DSMs have
more than 90% points falling in the Inl or In2 intervals,

@_ Springer

which are defined based on the claimed DEM/DSM accu-
racies/precisions (cf. Table 6). In the < 500 m range only,
however, all the DEMs/DSMs (except ASTER) have more
than 90% of the points in the In3 interval. ASTER provides
the smallest percentage in the interval Inl and the highest
in Ind, indicating it to be the least preferred DSM with
respect to the ground-truth data in India. Thus, for the
1” x 1" DSMs, SRTMI1” and Cartodem appear more
reliable as compared to ASTER over India. The MERIT3”
DEM has the highest percentage of points in intervals Inl,
In2 and In3 and the lowest in In4. indicating to be most
preferred among all the five models compared to the
ground-truth benchmarks in India.
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Conclusions

In this study, four freely available DSMs (SRTM1”,
SRTM3", ASTER1” and Cartodem1”) along with the
MERIT DEM developed by removing multiple emor
components from SRTM3 v2.1 are investigated based on a
model-to-model comparison over the whole of India and a
“validation” using ground-truth benchmark height data
over some regions of India. Since India has varying
topography (land heights range from — 2 m to + 8586
m), the heights were divided into three ranges, namely
H < 500m, 500 m < H < 1500 m and H > 1500 m. The
percentage of points lying in the claimed accuracy/preci-
sion limits for different DEMs/DSMs were also analysed.

The model-to-model comparison among DSMs shows
that SRTM1”, SRTM3” and Cartodem are congruous with
their claimed accuracy/precision, but only for heights less
than 500 m. Cartodem has the least discrepancies with
SRTM1” compared to ASTER and SRTM3” in all three
height ranges tested. There are artefacts between Cartodem
and other DSMs due to time-varying heights in lakes and
open-pit mining sites. Visual representation of the DSM
differences confirmed that stripe effects are present in
SRTM, ASTER and Cartodem over India, which appear to
have been eliminated/reduced following the procedures

involved in the production of MERIT3” (Yamazaki et al.
2017).

The validation with the only ground-truth data available
to us shows that no DEMs/DSMs satisfy their claimed
accuracies (intervals Inl and In2 in Table 6) in any height
range. However, for elevations less than 500 m only.
DEMs/DSMs (except ASTER) satisfy interval In3, but
which is still beyond their claimed accuracies/precisions.
The MERIT3” DEM is observed to be more reliable
compared to the other DEMs/DSMs based on overall,
range-wise and accuracy-wise analyses. However, this
needs to be qualified by our use of only canopy heights to
convert the ground-truth data to DSM-compatible heights.
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Empirical comparison between stochastic and
deterministic modifiers over the French
Auvergne geoid computation test-bed

R. Goyal ©**2, ). Agren ©3* W.E. Featherstone ©%*, L.E. Sjoberg ©°,
0. Dikshit ®* and N. Balasubramanian®

Since 2006, several different groups have computed geoid and/or quasigeoid (quasi/geoid)
models for the Auvergne test area in central France using various approaches. In this
contribution, we compute and compare quasigeoid models for Auvergne using Curtin University
of Technology's and the Swedish Royal Institute of Technology’s approaches. These
approaches differ in many ways, such as their treatment of the input data, choice of type of
spherical harmonic mode!l (combined or satellite-only), form and sequence of correction terms
applied, and different modified Stokes's kernels (deterministic or stochastic). We have also
compared our results with most of the previously reported studies over Auvergne in order to
seek any improvements with respect to time [exceptions are when different subsets of data
have been used]. All studies considered here compare the computed quasigeoid models with
the same 75 GPS-levelling heights over Auvergne. The standard deviation for almost all of the
computations (without any fitting) is of the order of 30-40 mm, so there is not yet any clear
indication whether any approach is necessarily better than any other nor improving over time.
We also recommend more standardisation on the presentation of quasi/geoid comparisons with
GPS-levelling data so that results from different approaches over the same areas can be
compared more objectively.

Keywords: Regional quasigeoid computation, Auvergne (France), technique comparison

1. Introduction

It is now over 170 years since George Gabriel Stokes pub-
lished his seminal formula for geoid determination from
gravity anomalies (Stokes 1849); over 55 years since the
English translation of Mikhail Sergeevich Molodensky’s
book was published including the formula for quasigeoid
determination from gravity anomalies (Molodensky ez al.
1962); and over 50 years since Martin Hotine’s mono-
graph was published including the formula for geoid
determination from gravity disturbances (Hotine 1969).

Despite this long-elapsed time, determination of a cm-
level-precise geoid and/or quasigeoid (quasi/geoid)

'Department of Civil Engineering, Indian Institute of Technology Kanpur,
Kanpur 2080186, India

2School of Earth and Planetary Sciences, Curtin University of Technology,
GPO Box U1987, Perth, WA 6845, Australia

“Department of Computer and Geospatial Sciences, University of Gavie,
Gavle SE-80176, Sweden

“Geodetic Research Division, Lantmateriet (Swedish Mapping, Cadastre
and Registry Authority), Gavie SE-80182, Sweden

“Division of Geodesy and Satellite Positioning, Royal Institute of Technol-
ogy (KTH), Stockholm SE-10044, Sweden

*Corresponding author, email rupeshg@iitk.ac.in Department of Civil
Engineering, Indian Institute of Technology Kanpur, Kanpur 2080186, India

© 2021 Survey Review Ltd
Received 7 N: ber 2020; d 31 December 2020
DOI 10.1080/00396265.2021.1871821

remains an ongoing quest and, hence, comparison studies
among the different computational techniques are still
required. Arguably, different approaches are necessary
in different parts of the world due to, for instance,
peculiarities of the data holdings. However, there appears
to be some slight subjectivity in the selection of the com-
putation strategy.

As just one example, the third author of this article
admits preference for his deterministically modified ker-
nel (Featherstone er al. 1998) for the computation of
Australian and New Zealand national gravimetric quasi-
geoid models (Featherstone er al. 2001, 2011, 2018a;
Amos and Featherstone 2009; Claessens er al. 2011).
In his defence though. he has compared his kernel
with other deterministic modifiers and some simplistic
stochastic modifiers (e.g. Featherstone er al. 2004),
hence the inclusion of the more sophisticated stochastic
modifier embedded in the Swedish Royal Institute of
Technology’s (KTH) approach in the comparisons pre-
sented herein.

In attempts to reach some sort of consensus on quasi/
geoid computation, two principal approaches have been
endorsed historically by the International Association of
Geodesy (IAG): synthetic and empirical. The creation
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and use of synthetic gravity fields further comprise two var-
iants. The first is to assume spherical harmonic coefficients
of a high-degree Earth Gravitational Model (EGM) are
error-free and use them to generate [assumed] self-consist-
ent sets of gravity anomalies and quasi/geoid heights (e.g.
Tzavos 1996: Novak er al. 2001; Featherstone 2002). The
second synthetic approach is to use forward modelling of
gravity anomalies and quasi/geoid heights from digital
elevation models (DEMs) (e.g. Haagmans 2000; Kuhn
and Featherstone 2003a, 2003b, 2005; Agren 2004; Baran
et al. 2006; Fellner er al. 2012; Vanicek er al. 2013).

Empirical study areas have been proposed in regions with
reasonably good coverage and free availability of gravity,
topographic and GPS-levelling data, most notably
Auvergne in central France (Duquenne 2006; Valty e al.
2012) and Colorado in the US.A. (e.g. Claessens and
Filmer 2020; Liu et al. 2020); Australia has been suggested
(Featherstone et al. 2018b) but not yet used by others. In
2006, the French Institut Geographique National (IGN)
provided a dataset of ~240,000 land gravity observations
and 75 GPS-levelling points over a region surrounding
Auvergne in central France along with two DEMs (Duqu-
enne 2006). These two DEMs were later replaced by the
SRTM 3" DEM. The Auvergne point gravity observation
data are freely available from the Bureau Gravimétrique
International (BGI).

Since 2006, several published studies have presented
quasi/geoid computations for Auvergne using several
different techniques, which are summarised in Appendix
A. We emphasise that the amount of information pub-
lished on the agreements with the 75 GPS-levelling data
is rather inconsistent and we discuss this further in Sec-
tion 3. In particular, we observe that the reporting of
descriptive statistics of the comparison with GPS-level-
ling data can be inconsistent, which arguably prevents
an objective comparison among the different quasi/
geoid computation techniques. As such, we present in
the Electronic Supplementary Material (ESM) a spread-
sheet that others may wish to adopt for a more standar-
dised comparison.

Curtin University of Technology’s (CUT) approach to
compute the quasigeoid has not been used before for the
Auvergne test-bed. In this study, therefore, we compare
the CUT and KTH’s techniques for quasigeoid model-
ling so as to add another ‘data point’ to the Auvergne
test-bed with a view to determining how well or not
the CUT technique performs with respect to some
other methods when using the same input and test
data. We choose only these two approaches because
they are so substantially different to one another, par-
ticularly regarding the use of deterministic versus sto-
chastic modifications to Stokes's formula.

2. Comparing and contrasting the CUT
and KTH approaches

Both the CUT and KTH approaches have evolved over
time, so we only report on their current status, but with

some historical context. We then describe their particular
application to the Auvergne test-bed in this study.

2.1. The CUT approach

The CUT approach has evolved over around 25 years
with particular focus on computing Australian models,
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though it has also been used in New Zealand, Colorado
in the U.S.A. and the British mainland (the latter is
unpublished). Probably the most Australia-specific
aspect is the treatment of the terrestrial gravity data.
Usually, refined Bouguer or isostatic gravity anomalies
are recommended for gridding as they are smoother
and thus more suited to interpolation. In Australia, how-
ever, the mean elevation 1s only ~330 m (max 2228 m) so
topographic/isostatic corrections are small and planar
simple Bouguer anomalies appear sufficient for interp-
olation and gridding (Goos er al. 2003; Zhang and Feath-
erstone 2004). There is a side-benefit to this approach
because it allows for the so-called reconstruction of
Faye anomalies on the topography (Featherstone and
Kirby 2000).

In short, point planar simple Bouguer anomalies
[including the atmospheric correction from Moritz
(1980, 2000)] are computed using a constant topographic
bulk density of 2,670 kg m™*. They are then interpolated
to the 1”7 x 1" resolution of the Australian DEM using the
tensioned spline algorithm (surface with 7=0.25)
embedded in the Generic Mapping Tools (GMT; Wessel
et al. 2013). Molodensky free air anomalies are ‘recon-
structed’ on the topography by applying a reverse (nega-
tive sign) planar simple Bouguer correction with the
height of each DEM element. Faye gravity anomalies
are then computed by adding the planar terrain correc-
tion from the same DEM as an approximation of the
Molodensky G, term, recently including error propa-
gation (McCubbine e al. 2017, 2019). These are then
block-averaged (GMT routine blockmean) to determine
surface-mean Faye gravity anomalies as approximations
of Molodensky anomalies for subsequent quasigeoid
computation,

The CUT approach has consistently used the highest-
available degree of EGM, which is generally a combined
model that has merged terrestrial and satellite-only
Stokes coefficients (e.g. Pavlis er al. 2012, 2013). This is
in contrast to the KTH approach that uses a satellite-
only EGM so as to avoid correlations in the terrestrial
data when used twice (e.g. Vanicek and Sjoberg 1991).
The [implicit] rationale for the CUT approach is that,
while being fully subject to the undesirable correlation
of largely the same terrestrial data being used (most Aus-
tralian gravity data are in the public domain and have
been for decades), the use of a high-degree EGM makes
the residual quasigeoid smaller in magnitude and thus
less subject to approximation errors in the residual quasi-
geoid computation. A recent refinement to the CUT
treatment of the EGM is to compute ellipsoidal arca-
mean gravity anomalies on the topography (Featherstone
et al. 20184, Section 2.3.2),

The CUT approach to computing the residual quasi-
geoid from the residual area-mean gravity anomalies is
based on the ID-FFT (Haagmans er al. 1993) using
F77 code that originated from the University of Calgary,
Canada. but which has been adapted to include determi-
nistically modified kernels (Featherstone and Sideris
1998; Featherstone 2003). It also now uses Gauss-
Legendre quadrature to better-determine area-means
for the deterministically modified kernels in the discre-
tised numerical integration (Hirt ez a/. 2011). The Austra-
lian models use the deterministic Featherstone er al.
(1998) kernel that is a combination of the Vani¢ek and
Kleusberg (1987) and Meissl (1971) modifiers. This



combined modifier aims to simultaneously reduce the
truncation error and improve the rate of convergence to
zero of the series expansion of the truncation error.

The integer degrees of kernel modification and inte-
gration cap radius are chosen empirically through com-
parisons with GPS-levelling after parameter sweeps.
The ellipsoidal correction is handled by using the geo-
centric radius to the surface of the GRS80 ellipsoid in
Stokes’s integral along each parallel of latitude of the
computation grid in the 1D-FFT (Claessens 2006,
Chapter 6).

2.2. The KTH approach

The stochastically modified kernel used in the KTH
method comprises a least-squares combination of satel-
lite and terrestrial data (Sjoberg 1981). Since then, the
KTH method has been continuously developed and
refined (e.g. Sjoberg 1984, 1991, 2003c: Agrcn 2004 and
the references therein). The KTH method follows
remove-interpolate-restore-compute strategy for geoid
computations, which contrasts with CUT method that
follows an interpolate-remove-compute-restore strategy.

The primary uniqueness of the KTH method lies in the
stochastic modification of Stokes’s kernel and additive
corrections to the gravity data. Unlike other methods,
the direct and indirect effects needed to make the obser-
vations accordant with the geodetic boundary value pro-
blem are added as separate combined corrections to the
approximate geoid estimates obtained using the Stokes
integration with un-reduced gridded terrestrial gravity
data.

The KTH method has been used to compute the Swed-
ish national quasigeoid (Agren ez al. 2009b), the Nordic
Geodetic Commission 2015 quasigeoid (Agren er al.
2016). The KTH approach has received much wider geo-
graphical application than the CUT approach, with
quasi/geoid models computed for the Baltic countries
(Ellmann 2004), Iran (Kiamchr 2006), Tanzania (Ulotu
2009), Greece (Daras er al. 2010), Kazakhstan (Iner-
bayeva 2010). Sudan (Abdalla and Fairhead 2011),
New Zealand (Abdalla and Tenzer 2011), central Turkey
(Abbak et al. 2012), Moldova (Danila 2012), Saudia Ara-
bia (Abdalla and Mogren 2015), Uganda (Ssengendo
2015), Poland (Kuczynska-Sichien e a/. 2016), peninsu-
lar Malaysia (Pa'suya et al. 2019), Estonia (Ellmann
et al. 2019) and Jilin province in China (Wu et al. 2020).

In the KTH treatment of the terrestrial gravity data,
point free-air gravity anomalies are computed from the
observed gravity values on the Earth's surface. These
are then reduced point-wise by subtracting the long wave-
length gravity anomalies from synthesising a satellite-
only EGM, the high-frequency part of the topography
is removed using Residual Terrain Modelling (RTM:
Forsberg 1985), and the atmospheric effect applied to
obtain residual point free-air gravity anomalies. These
are then interpolated using Least Squares Collocation
(LSC), in the geogrid. f module of the GRAVSOFT pack-
age (Tscherning et al. 1992), to the resolution of the
desired model to obtain a regular grid of residual gravity
anomalies. Since the KTH method uses un-reduced grav-
ity anomalies for gridding, the contributions of the
EGM, RTM and atmospheric effect are all computed
at the nodes of the grid and subsequently restored to
the interpolated point-wise residual gravity anomalies.
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Following Sjoberg (1991, 2003¢), approximate values
of geoid undulations are computed from the un-reduced
gridded gravity anomalies and EGM using the unbiased
least squares geoid estimator. This makes use of a sto-
chastic Stokes’s modified kernel that simultancously
reduces the errors due to the truncation bias, satellite-
only EGM coefficients and the terrestrial gravity data
(Sjoberg 1984). Besides the choice of an integration cap
radius, the most important step in the computation of
approximate geoid in the KTH method is the determi-
nation of « priori estimates of signal and error degree var-
iances. These are necessary for the computation of a
better choice of modification parameters to be used in
the least-squares modification method. Similar to the
CUT approach, the integration cap radius is chosen
empirically based on parameter sweeps versus GPS-level-
ling data.

The Tscherning and Rapp (1974) model is generally
preferred by the KTH team to compute the gravity signal
degree variance. The error degree variance of the EGM
gravity is computed from the published error estimates
that accompany the EGM coefficients. The error degree
variance of terrestrial gravity anomalies is assumed to
be a combination of white noise and a reciprocal distance
covariance model (Agren 2004; Agren and Sjoberg,
2014). The signal and the EGM error degree variances
are further rescaled by an empirically determined factor
to best depict the ‘reality’ of the study area. The stochas-
tically modified Stokes’s integral in the geoid estimator is
evaluated using the 1D-FFT method (Haagmans et al.
1993), but it has not been modified to include Gauss-
Legendre quadrature (cf. Hirt er al. 2011).

Next are the so-called additive corrections from the
combined topographic effect (Sjéberg 2000, 2001),
atmospheric effect (Sjoberg 1999; Sjoberg and Naha-
vandchi 2000), ellipsoidal shape of the Earth (Sjoberg
2003b; Sjoberg 2004) and downward continuation (Sjo-
berg 2003a; A gren 2004), which are added to the approxi-
mate geoid to achieve the final geoid.

The KTH method has been designed primarily to com-
pute a gravimetric geoid, which is then converted to qua-
sigeoid by adding the geoid-quasigeoid separation term
(Sjoberg 1995, 2010). However, Sjoberg (2000) and
Agrcn et al. (2009b) show that if the combined topo-
graphic effects are not applied in the computations
using the KTH method and if the downward continu-
ation is also adjusted accordingly, the result will be a qua-
sigeoid. This eliminates the need for computing the
topographic effects and further correction terms to con-
vert the geoid to quasigeoid. The latter is the approach
that was taken in the computations reported in the fol-
lowing section.

3. Results and discussion

Four separate quasigeoid models over Auvergne were
computed at a grid resolution of 0.02° % 0.02° using the
CUT and KTH approaches. The computation area
encompasses all 75 GPS-levelling points publicly avail-
able for validation. The KTH technique was used with
the satellite-only DIR_RS EGM (Bruinsma er al. 2013)
up to spherical harmonic degree and order (d/o) 240.
The CUT method was used with DIR_RS to d/o 240
(so as to compare the results between the two methods),
EGM2008 to d/o 360 (to compare the results from CUT
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method with previously published results using some
other methods; see Appendix A), and EGM2008 to d/o
2190 (to show the CUT method as it has been used in
Australia, New Zealand and the US.A.). The SRTM
3" x 3" DEM (Farr et al. 2007) is used in all models.

In this study, we have used the CUT gravity-gridding
method as used for Australia and New Zealand, despite
the fact that the topography varies between the two
study areas (Australiaz mean ~330m, max 2228 m;
Auvergne: ~380 m, max 4751 m). As such, other grav-
ity-gridding techniques may also be tested as was done
by Goos et al. (2003) and Zhang and Featherstone
(2004) in the Australian context. Furthermore. Claessens
and Filmer (2020) have compared two gridding tech-
niques over Colorado (one being the same as used in
this study) and with the available ‘ground-truth’ data,
they found sub-millimetre difference in the standard devi-
ation of the computed quasigeoids.

In previous studies over Auvergne (Appendix A), the
results are presented either with and/or without applying
some form of localised fitting surface. These comprise
one-parameter (removal of a constant bias) and four-par-
ameters (constant bias plus tilted plane). These are com-
monly termed hybrid quasigeoid models, where the
gravimetric-only model is fitted to GPS-levelling (and
hence the local vertical datum) using some parametric
or non-parametric surface. To be consistent with these
other studies, we have therefore provided our results
with and without such surface fitting, which are
appended in Table Al.

In addition to simple descriptive statistics (minimum,
maximum, mean and standard deviation) that are com-
monly used in most evaluations of gravimetric quasi/
geoid models, we include the mean absolute error
(MAE) and skewness, which are given in Table 1. We
believe that these additional statistics are informative
because the mean and standard deviation alone do not
necessarily provide sufficient information to compare
two or more methods, as shown later in this section. In
other non-quasi/geoid-related literature, the MAE and
skewness can be more informative metrics (e.g. Beedles
and Simkowitz 1978; Bogner and Pappenberger 2011;
Kosek et al. 2011; Mugume er al. 2016).

The standard deviation alone gives the magnitude of
the variation of differences but not the direction, which
is better quantified by the skewness. The MAE measures
the mean magnitude of differences that is not available in
case of arithmetic mean values. Thus. MAE and skewness
are necessary along with mean and standard deviation to
have an overall estimate of the magnitude and direction
of the differences and their distribution. In Table 1, we
also provide the coefficient of determination (R-squared)
values for our four quasigeoid models after-fitting as a
measure of how well the four-parameter regression
model explains the total variation of gravimetric quasi-
geoid with respect to the GPS-levelling points. The closer
the R-squared value is to one, the better the regression
model is.

Moreover, uncertainty in quasi/geoid computation can
be obtained by removing the effect of ellipsoidal and
levelling height errors from the overall error estimate
computed with respect to the GPS-levelling data. The
observed ellipsoidal heights are not correlated with the
computed quasi/geoid, but the levelling will have
[unknown] correlations if the land gravity observations
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have been observed at differentially levelled benchmarks.
Therefore, the quasi/geoid uncertainty (o) before any
fitting can be obtained using equation 1.

oN = \/(U'cv\'cr:sll)2 - (071)2 — (on )1 (1

where oy, and oy are the uncertainties of ellipsoidal and
levelling heights. respectively. and @gyeran 18 the standard
deviation obtained on comparison wrt the ground data
(e.g. Table Al).

A parametric-fitted quasi/geoid 1s correlated with the
ellipsoidal and levelling heights (see equations for the
four-parameter fit in the Electronic Supplementary
Material). However, due to the unavailability of the cor-
responding covariance terms, the quasi/geoid uncertainty
of the fitted model can also be computed using equation |
(cf. Agren and Sjoberg 2014; Sjcberg and Bagherbandi
2017; Ellmann et al. 2019). Equation 1 is valid iff

Coverall 18 greater than (T(,‘[lsf[(-..(: Jo + o*},) This con-

dition may not always be met. In this regard, the intern-
ally propagated errors from GPS data processing
software can be 2-10 times overly optimistic, i.e. too
small (Rothacher 2002). Therefore, one solution is to
scale up the formally propagated ellipsoidal height errors,
c.g. as has been done for the Australian data (Feather-
stone et al. 2019).

For the Auvergne GPS-levelling data, Duquenne
(2006) provided an approximate and ‘blanket’ (i.e. not
point by point) error estimate of ~20-30 mm for the ellip-
soidal heights and 20 mm for the differentially levelled
heights. Therefore, the uncertainty of the four quasi-
geoids (before and after fit) in our study can only be com-
puted (using equation 1) if the corresponding o ayeran 18

greater than 32 mm (0’(;ps/[,-|v =/25% +20° } From

Table Al, this condition is true for all the quasigeoid
models with no fit but not for any after a parametric
fit. Thus, we computed the uncertainties of the quasi-
geoid with no fit only using equation (1), and these are
provided in Table 1,

We also provide results of the relative fit of our quasi-
geoid models (Table 2) with respect to the tolerances for
differential levelling (cf. Featherstone 2001). Testing for
the relative fit of quasi/geoids can be an analysis tool to
mvestigate quasi/geoid gradients. This type of analysis
is of more interest to land surveyors who use relative
GNSS basclines and a quasi/geoid gradients as a replace-
ment for the more time-consuming differential levelling.
Moreover, like the parameter-fitting, it also cancels the
effect of almost constant zero-degree term (discussed
later) irrespective of the choice of reference geopotential
(WO0) value.

Figures 1 and 2 show scatter-plots of the relative differ-
ence (magnitude) of the four quasigeoid models before
and after parameteric fitting, respectively. The curved
lines in each figure depict the maximum allowable mis-
close for first order (lower curve) and third order levelling
(upper curve) for all 2775 baselines computed using
equation 2 with ¢ equal to 4 and 12, respectively.

r=cvd 2

where, r =standard uncertainty, in mm; ¢=empirically
derived factor for a given “order’ of levelling; 4 = distance
between stations. in km. The values adopted for ¢ may
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Table 1. Extended analysis of the computed quasigeoid models with respect to 75 GPS/levelling data around Auvergne. L is
the degree of kernel modification and W, is the integration cap radius.
L Wy MAE (m) Skewness R-squared Quasigeoid uncertainty (m)
KTH (DIR_RS) 240 i 1 No Fit 0.819 -0.312 - 0.016
4P Fit 0.020 0.712 0448 NA®
CUT (DIR_R5) 240 1 No Fit 0.871 -0.358 - 0.012
4P Fit 0.021 0.152 0.362 NA
CUT (EGMO8 d/o 360) 360 1° No Fit 0.982 -0.377 - 0.016
4P Fit 0.020 0.151 0.445 NA
CUT (EGMO8 d/o 2190)* 360 0.1° No Fit 0.872 -0.413 - 0.018
4P Fit 0.020 -0.017 0481 NA

“This solution is aimost independent of the modification degree parameter sweeps analysed (L= 20, 40, 60, 80, 120, 140, 180, 240,

360).

"Not applicable because g (after fit) is less than ggps e (Cf. quation 1 and the discussion thereaiter).

Table 2. Relative fit of quasigeoid models over (75°74"0.5=) 2775 possible GPS-levelling baselines around Auvergne.

L Wo Min (m) Max (m) Mean(m) STD(m) MAE (m) Skew-ness Average ppm
KTH (DIR_R5) 240 1° NoFit -0.166 0.189 -0.002 0.051 0.040 0.008 0.440
4P Fit -0.166 0.170 0.001 0.038 0.029 -0.282 0.354
CUT (DIR_RS) 240 1° NoFit -0.152 0.170 0.010 0.048 0.039 -0.114 0.440
4P Fit -0.138 0.155 0.002 0.038 0.031 -0.108 0.380
CUT (EGMO8 d/fo 360) 360 1° NoFit -0.150 0.177 0.014 0.048 0.041 -0.122 0.457
4P Fit -0.139 0.154 0.002 0.038 0.030 -0.048 0.374
CUT (EGM08 dfo 2190) 360 0.1° NoFit -0.159  0.181 0.014 0.050 0.042 -0.121 0.463
4PFit -0.122 0.145 0.002 0.038 0.030 0.011 0.369

vary among countries, and the levelling tolerances for
different order levelling in France is unavailable to us,
so we have used the ¢ values of 4 and 12 from the Austra-
lian perspective (ICSM, 2007).

Following are our key observations from Tables | and
2 and Al, coupled with some further discussion:

L : 4 o
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Figure 1.

a) For the solutions without any parametric fitting of
the computed quasi/geoid and the GPS-levelling
data, the mean differences of approximately
=133 mm and —184 mm by the UNB group and
Duquenne (2006), respectively, are attributed to a
vertical datum offset for France (Rillke er al.
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0 50 100 150 200 250 300
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Magnitude of relative differences (circles) for the four quasigeoid models without fitting (a. KTH-DIR_R5, b. CUT-

DIR_R5, c. CUT-EGM08_360, d. CUT-EGMO08_2190) over 2775 GPS-levelling baselines. Crosses and squares rep-
resent the maximum permissible in-field misclose for Australian first order (c =4) and third order (c = 12) levelling

for each baseline, respectively.
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Figure 2. Magnitude of relative error (circles) for the four quasigeoid models after four-parameter fitting (a. KTH-DIR_RS5,
b. CUT-DIR_RS, c. CUT-EGM08_360, d. CUT-EGMO08_2190) over 2775 GPS-levelling baselines. Crosses and squares
represent the maximum permissible in-field misclose for Australian first order (c = 4) and third order (c = 12) level-
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ling for each baseline, respectively.

2012). However, for the computations using both
the methods here (KTH and CUT) and the KTH
method in Yildiz et al. (2012), the mean difference
between quasigeoid and GNSS/levelling is, on aver-
age, —863 mm. This is almost 730 mm greater in
magnitude as compared to the other reported
studies. This large difference is due to the inconsis-
tency in the application of the zero-degree term
(cf. Smith 1998) by different groups. While this
will cancel when the quasi/geoid is used relatively
over baselines (cf. Featherstone 2001), it will not 1f
used with single point positioning techniques (such
as PPP). A practical solution if one does not choose
to use a parametric fit, a one parameter fit can be
used (i.e. a constant term) to simultaneously absorb
the zero-degree term and any constant offset in the
local vertical datum.

b) There are differences among the results computed

Survey Review

using the KTH method by Agren er al. (2009a), Yil-
diz et al. (2012) and our current study. These differ-
ences can be attributed to one, some or all of three
plausible reasons: 1) the use of different EGMs to
different degrees of expansion (and different
degrees of modification): ii) different spatial resol-
utions of the computed quasigeoid models (i.e
yielding a combination of discretisation and interp-
olation errors); and iii) inconsistent or lack of
reporting on the treatment of the zero-degree term.

Agren et al. (2009a) use EIGEN_GL04C (d/
0360) to compute a quasigeoid at a resolution of
I'x1I” with no zero-degree term applied. Yildiz
et al. (2012) use EGM2008 (d/0360) and compute
a quasigeoid at resolution of 0.02° x 0.025° with a
zero-degree term applied. However, their results
are presented after removing a mean value, so we
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are unable to distinguish what proportion is due
to their value of the zero degree term and any con-
stant offset in the French vertical datum over
Auvergne. In this study. we use DIR_RS5 (d/o 240)
with a resolution of 0.02° x 0.02°. Our zero-degree
term was applied using the W, value used in the
International Height Reference System (Sanchez
et al. 2016). We also used the GRS80 ellipsoid and
scaled the even degree harmonics as per,
e.g. Smith (1998).

¢) From Table Al, we observe that for any method

(KTH, UNB or GRAVSOFT), since 2006, there is
no clear trend of improvement in the results without
a corrector surface. Of all the studies in Table Al
with no surface fitting, the smallest standard devi-
ation of 29 mm is obtained using the Radial Basis
Function (RBF) method (Lin er al. 2019), while
the Finite Element Method (FEM) method (Janak
et al. 2014) provided the largest standard deviation
of 97 mm. The KTH method provided the smallest
standard deviations of 24 mm (Yildiz er al. 2012),
25 mm (Abbak and Ustun 2015) and 26 mm (this
study) after four-parameter, seven-parameter and
four-parameter surface fitting, respectively. Utilis-
ing the full expansion of EGM2008 (d/o 2190/
2159), the CUT method (this study) also provided
a standard deviation of 26 mm after four-parameter
fitting.

d) Different geoid modellers have had different views

on whether more than a one-parameter model
should be used during the GPS-levelling evaluation
or not. One argument for this is that different per-
manent tide systems are used for the GPS ellipsoidal
heights, levelled heights and terrestrial gravity data
(cf. Poutanen et al. 1996: Ekman 1989). It is not



mentioned in Duquenne (2006) whether the corre-
sponding datasets have been transformed to a com-
mon tide system, which means that they most likely
are in their default tide systems (e.g. non-tidal for
RGF93-ETRS89, unknown for NGF-IGNG69 and
mean-tide for IGSN71). This will result in a sys-
tematic tilt in the north-south direction with the
magnitude of a few centimetres (Ekman 1989),
which will be absorbed by a four-parameter surface.
Based on this and the comments in part (a). we rec-
ommend that both one- and four-parameter fits are
used in future Auvergne evaluations.

¢) Based on the standard deviations from Table Al
with DIR_R5 EGM, the CUT method (o=
34 mm) appears marginally *better’ than the KTH
method (6=36 mm) without any surface fitting,
whereas the KTH method (o= 26 mm) is marginally
‘better’ than the CUT method (o= 27 mm) after
four-parameter surface fitting. We use the term mar-
ginal because of the blanket error budget used for
the GPS-levelling (32 mm) and we are not at the
ability to compute millimetre-precise quasigeoid
models. Hence, these statement of being ‘marginally
better” are not statistically significant when account-
ing for the error budget of the control data (cf.
Featherstone er al. 2019), but are based solely on
numerical values of the standard deviations.

f) However, for the same EGM (DIR_RS), Table |
shows that after surface fitting, the KTH method
provides results which are significantly (~4.5 times)
more positively skewed compared to the CUT
method. Larger positive skewness represents asym-
metrical distribution of the differences, with more
values being clustered on the left tail of the distri-
bution and therefore, a larger positive difference.
The same pattern of results is also observed for the
relative fit of the quasigeoid models computed
using the CUT and KTH methods (Table 2). We
believe this is why the skewness is an additional and
useful metric of quasi/geoids versus GPS-levelling.

¢) Figures 1 and 2(A and B) show that the KTH
method (with DIR_RS5 EGM d/o 240) provides a
larger number of baselines beyond 150 km that
have misclosures greater than 150 mm and
100 mm, respectively, as compared to the CUT
method. Moreover, the CUT method with
EGM2008 (d/o 2190/2159) after a four-parameter
fit (Figure 2(D)) results in a misclosure of less
than 100 mm for all baselines greater than
200 km. Hence, with the available data, the CUT
method (as used for Australia and New Zealand)
can be regarded as a ‘better’ method for longer
baselines compared to the KTH method, but we
acknowledge that this may be because the French
gravity data have been used in the construction of
EGM2008 (Pavlis er al. 2012,2013). Another plaus-
ible explanation is that the use of a d/o 240 EGM
coupled with the data extent of the Auvergne grav-
ity data omits some of the medium frequency con-
tent of the KTH-modelled quasigeoid.

4. Conclusions and recommendations

In this study, quasigeoid models of Auvergne were com-
puted using the CUT and KTH techniques and
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compared. These results were also compared with respect
to previously published studies on quasi/geoid determi-
nation over Auvergne. The mean differences of
~730 mm among different techniques (e.g. CUT, KTH,
UNB, GRAVSOFT/LSC) are due mainly to different
treatments of the zero-degree term, but offsets in the
French vertical datum cannot be eliminated as a candi-
date. The NGF-IGN69 French vertical datum may
have an offset from classical geoid. This is possibly
because the mean sea level that is held fixed at Marseille
may be subjected to the effects of the ocean’s mean
dynamic topography, but which is challenging to model
in the coastal zone.

Small differences among standard deviations can be
due to, one some or all of. the choice of different
EGMs, kernel modification degree, cap radii. DEMs, ter-
rain corrections, quasi/geoid resolution and the gridding
of the point anomaly data. However, all these terms are
inseparable, so we are unable to point to any particular
candidates. We. through our analysis, suggest that the
practice of commenting on the pre-eminence of one
method over other based on only standard deviation is
not completely justified, especially if one takes into
account the error budget of the GPS-levelling data.

It is therefore recommended to establish some com-
monly adopted guidelines to define a statistical table for
reporting the results of quasi/geoid computations when
different methods are compared over the same region,
A tentative list of statistical parameters can be adapted
from Tables 1 and 2 and Al. These will be important to
(1) have an improved understanding of the ‘accuracy’
of the method in use, and (2) more objectively compare
the results with other computation approaches over the
same region. This recommendation perhaps may be
further taken up by either Sub-Commission 2.2 or 2.4
of the International Association of Geodesy.
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Abstract

We describe the [somewhat tedious] process of digitising from a 1955 report that lists over 1500 vertical
deflections in India and some surrounding countries. It turned out to involve detective work, not only for error-
checking with closed-loop tests, but also some ambiguity surrounding the meridional vertical deflection at the
Kalianpur origin of the datum. We transformed these Kalianpur coordinates to geocentric geodetic coordinates
to compute absolute vertical deflections for future assessment of gravimetric geoid models. However, due to
the many adjustments to the Everest spheroid and Kalianpur datum, we were restricted to abridged
Molodensky transformation parameters for the 1975 Kalianpur datum and Everest 1956 spheroid based on
only seven common points from the WGS84 technical manual. We compared these transformed absolute
vertical deflections with EGM2008 and GGMplus (meridional standard deviation: +2”; prime vertical
standard deviation: +3”), showing that digitisation of historical data is worthwhile.

Keywords: vertical deflections, India, Kalianpur datums, Everest spheroids, datum transformations

1. Introduction
The deflection (or deviation) of the vertical is the angular difference between the local gravity vector (direction
of the plumbline at a point) and the surface normal of a reference ellipsoid. From Jekeli (1999), these are termed
absolute deflections if a geocentric ellipsoid is used and relative deflections if a regional non-geocentric ellipsoid
is used. Also, since the plumbline is curved and torsioned, the deflection varies as a function of position and
height, leading to subtler definitions such as the Pizzetti deflection at the geoid, the Helmert deflection at the
Earth’s surface, or the Molodensky deflection with respect to the normal plumbline, all of which are described
and explained in Jekeli (1999).

The vertical deflection is usually decomposed into north-south (&) and east-west () components,

principally because how they are observed by comparing geodetic and astronomical coordinates (Eqs 1 and 2).
The north-south component is also termed the meridional deflection ( £ ) and the east-west component is termed
the prime vertical deflection ( ;7). The equations for astronomical observations are:

E=D—-9¢ (north-south or meridional deflection) (1)
n=(A=A)cos¢ (east-west or prime vertical deflection) (2)

where @ and A are the astronomical latitude and longitude determined with respect to the local gravity vector
from precisely timed stellar observations, and ¢ and /. are the geodetic latitude and longitude from, in this
case, the Great Arc triangulations conducted in India (Cook 1990; Keay 2001), as well as some astronomical
observations of azimuth for Laplace stations.

The younger generation can be dismissive of historical reports, perhaps because they are not readily
available in machine-readable portable document (PDF) format. However, reports can prove to be rich sources
of data because of the meticulous attention to detail paid by geodetic surveyors at that time. In this short note,
we describe the process of digitising and checking a Survey of India report by Gulatee (1955), which was typeset
and produced using a printing press. Examples of similar compilations of historical vertical deflections are
Featherstone and Olliver (2013), Featherstone et al. (2018) and Hirt and Wildermann (2018).
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2. Digitisation and closed-loop checking

The only copy of Gulatee (1955) that we have access to for electronic sharing is a scanned image-only PDF.
We provide this document as a supplement to this manuscript as the copyright will have expired. We have only
digitised Table 1 because the other tables are brought into question of their accuracy by Gulaee (1955). This
document is not of the highest quality. The paper has yellowed over time, probably due to the use of acids in
paper production in the 1950s. The paper is also thin, meaning that the text on the overleaf page comes through
in the scan as a silhouette (Figure 1). This makes automated optical character recognition (OCR) challenging as
the silhouettes can be interpreted incorrectly as characters on the page subject to OCR.

Figure 1: Title page and data page of the Survey of India report by Gulatee (1955) showing the relative
transparency of the paper that caused problems for the OCR process.

We first attempted the OCR embedded in Adobe™ Acrobat Pro™, but this was unsuccessful as many
parts of the tables were interpreted as smaller sub-images, so not fully digitised as text and numerical values.
Therefore, we had to resort to brute-force manual digitisation. As this is imperfect, we had to devise some
closed-loop tests to not only verify our manual digitisation, but also to check for typographical errors in Gulatee
(1955). Some glaring errors were easy to detect, usually due to mis-registration of a row in a column. These
were corrected manually by visual comparison with Gulatee’s report.

The closed loop testing involved calculating the meridional and prime vertical deflections for the Everest
1830 spheroid (semi-minor axis 6,377,276 m, inverse flattening 300.8017) from the geodetic and astrogeodetic
coordinates provided by Gulatee. Not all stations had both deflection components. Out of the 1071 stations
listed, 707 points are in India of which 701 have meridional deflections and 280 have prime vertical deflections.

We compared our computed deflections with the digitised deflections from Gulatee (1955). The first
striking observation was a systematic difference of ~3” in the prime vertical deflections. This is where the
detective work began. Reading Gulatee’s introductory text of only nine pages is particularly telling. He identifies
the source of this discrepancy to a sequence of blunders which, because they are so small, went unnoticed. In
short, the astronomical azimuth used to determine the prime vertical deflection at the Kalianpur origin station
was not applied, leading to an error in longitudes of 2.89™ (cf. Malys et al. 2015). After subtracting this value,
there was much closer agreement between the computed and tabulated prime vertical deflections.

The next stage was to search for extrema, which was done through plotting the differences and
identifying “outlying” points. This was done in Microsoft™ Excel™, which identifies the row number when
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the mouse cursor is hovered over the point in question. This served two purposes. The rouge points were first
checked for manual digitisation errors, which located only about 20 errors, showing the first-run to have been
proportionally successful (98% success rate).

Once these large errors were identified and corrected, the more interesting detective work could begin.
Again using plots, we could concentrate on smaller spurious values. This identified what seems to be just one
typographical error in the original report (point 190, Reban HS), where the meridional deflection should be -
8.0” not +8.0". This was detected by changing the sign and re-inspecting the closed loop. We acknowledge that
given the large amount of numbers that had to be typeset, this is testament to the fastidiousness of the people at
that time.

During this closed loop testing, a few other points appeared anomalous but not by a substantial amount
(using an arbitrarily chosen threshold of 0.5 difference between the digitised and computed values). We
visually cross-checked against Gulatee (1955) and could not find any transcription errors for any of them, so
they could sumply be surveying errors. We have no proof either way. As such, we have left them in the dataset.
but flag them as “questionable” using red font in the spreadsheet provided with this article as electronic
supplementary material.
e For the meridional deflections, they are: 750 Majurguda; 766 Hathhena; 792 Ramnagar TS.
e For the prime vertical deflections, they are: 222 Rirana TS; 391 Nojli; 393 Kaliana;

394 Titaora; 395 Saini; 427 Lut; 837 Takht Sindhu Resec; 871 Tilabani; 1067 Kandaw.

Figure 2 shows the coverage of the digitised data.

60°E 65"E 70°E 75°E 80"E 85'E 90°E 95°E 100°E
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Figure 2: Coverage of the vertical deflections digitised from Gulatee (1955)

3. Transformation from relative to absolute deflections
Not unlike many other countries, modern geodetic data in India is restricted from public/open access. As such,
we do not have observed geodetic coordinates in a geocentric datum for any of the 1071 astrogeodetic stations
listed by Gulatee. Therefore, we had to rely on a datum transformation based on published parameters. We
interrogated several publications and databases, principally the WGS84 technical manual (NIMA 2004 page b3-
2) and the EPSG (https://epsg.org/home html), which led to the need for further detective work.

Firstly, there have been many readjustments of the Everest spheroid and the Kalianpur datum (e.g., Anon
1919:; Bomford 1939; Mugnier 2014). Probably the most significant is the change of the semi-major axis of the
Everest spheroid because of a disparity between the conversion from Indian definition of the imperial foot to
metres and the British definition. Secondly, while there have been other estimations of transformation
parameters, they have not been published, only their evaluation (e.g., Singh 2002; Ramalingam and Srivastava
2003; Sunehra 2013).
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As such, we had to make some assumptions, not only about the datum, but also about the semi-major
axis of the Everest spheroid, which we will discuss further in section 4. While there are other ways to transforn
gravity field functionals between ellipsoids (e.g., Kotsakis 2008), the abridged Molodensky transformation
parameters that we have access to are only for the Kalianpur 1975 datum and Everest 1956 spheroid, so we
simply took these as a proxy.

The abridged Molodensky transformation parameters for Kalianpur 1975 in the WGS84 technical
manual and EPSG database (code #1156) are identical (Table 1). Notably, the parameters are determined from
only seven common stations, hence the uncertainty is rather high. This translates to about 18 m on the ground,
which equates to approximately half an arc-second in the vertical deflections. We used the trial version of Blue
Marble Geographics™ Geographic Calculator™, which uses the same parameters as in Table 1.

Table 1: Molodensky transformation parameters from
Kalianpur 1975 to WGS84 for the Everest 1956 spheroid
Aa Afx 10* AX AY AZ a If
835.757 m | 0.28361368 | 295412 m | 736+10 m | 25715 m | 6,377,301.243 m | 300.8017

4. Comparison with EGM2008 and GGMplus

We used the transformed WGS84 geocentric coordinates and heights provided in Gulatee (1955) converted
from Indian feet to metres (using 3.280857187 derived from Gulatee's page 1), but noting that many of the
heights are approxumate, to synthesise EGM2008 Helmert vertical deflections at the Earth’s surface using the
ICGEM calculation service (http://icgem.gfz-potsdam.de/calcpoints). At these locations, we also extracted the
values of north-south and east-west components of vertical deflections from the GGMplus dataset (Hirt et al.,
2013). GGMplus provides the Helmert's vertical deflection components by taking the latitudinal and
longitudinal derivative of the quasigeoid. For Pizzetti’s vertical deflection, the derivatives are taken on the
geoid. Table 2 shows descriptive statistics of the differences (absolute astrogeodetic deflections minus
EGM2008 and GGMplus) and Figure 3 shows the differences versus latitude, longitude and height.

From Figure 3, there are no discernible trends, showing that the use of the Kalianpur 1975 datum
transformation parameters and Everest 1956 spheroid have not introduced a bias or tilt between the deflections
datasets. This is expected as the change in semi-minor axis only affects scale and not angles. From Table 2,
there is no bias (mmean zero for each deflection component). The maxima and minima may appear large, but the
astronomical deflections were observed many decades ago when chronology was not so accurate and star
catalogues were less mature. In addition, EGM2008 (Pavlis et al. 2012, 2013) uses proprietary data over India
to spherical harmonic degree and order 900, supplemented by residual terrain modelling of the topographical
gravitational attraction. As such, there are two compounding contributors to the descriptive statistics: historical
data and modelled instead of observed high-frequency gravity data.
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Figure 3: Differences between absolute vertical deflections and EGM2008 (blue circles) and GGMplus
(orange circles) versus: a-b) latitude, c-d) longitude and e-f) height in metres.

Table 2: Descriptive statistics of the differences between absolute vertical deflections and EGM2008 and
GGMplus in arc-seconds, both on WGS84. Though we provide two decimal places in parentheses, they should
be neglected as the precision of the astronomical observations is probably around one arc-second and the
transformation introduces around one-half of an arc-second.

Max Min Mean STD
EGM2008| Meridional deflections | 15(.39)"| -21(.02)" -0(.12)"| £2(.50)"
Prime vertical deflections*| 15(.32)” -22(.69)" 0(.47)"| +3(.18)”
GGMplus®|  Meridional deflections 13(.75)" -19(.87)"| -0(.08)”| +2(.15)”
Prime vertical deflections®| 14(.86)”| -14(.60)"| 0(.60)"| +2(.56)"

* Two points (Point nos. 292 and 518) having Prime vertical deflection value of -29” and -41” are not

considered in calculating the descriptive statistics.
* GGMplus does not cover Point no. 790. It is ~30 m northwards or ~105 m eastwards from the closest area

covered by GGMplus. This may be possibly due to the limitations of our transformation of coordinates.

5. Concluding remarks
We have: (1) manually digitised a scanned hardcopy report from the Survey of India by Gulatee (1955) of vertical
deflections, (11) devised some closed-loop checks to identify our and other errors, (i11) transformed the relative
deflections from the Kalianpur datum to absolute deflections on WGS84 (albeit using a less-than-ideal
approach), and then compared (iv) these absolute deflections to those synthesised from EGM2008 and

GGMplus.
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Though this was quite a tedious process, we feel that our effort was worthwhile to share such a “geodetic
commodity”. Given the vintage of the astrogeodetic data in India, our use of an inexact datum transformation,
and the use of proprietary and modelled gravity data in EGM2008 and GGMplus, there appear to be no biases.
The standard deviations of £2” and £3” could be considered, by some, as quite remarkable given the ranges of
topography and vertical deflections in India.
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ABSTRACT

Over the past decade, numerous advantages of a gravimetric geoid model and its
possible suitability for the Indian national vertical datum have been discussed and ad-
vocated by the Indian scientific community and national zeodetic agencies. However,
despite several regional efforts, a state-of-the-art gravimetric geoid model for the
whole of India remains elusive due to a multitude of reasons. India encompasses one
af the most diverse topographies on the planet, which includes the Gangetic plains,
the Himalayas, the Thar desert, and a long peninsular coastline, among other topo-
graphic features. In the present study, we have developed the first national geoid and
quasigeoid models for India using Curtin University’s approach. Terrain corrections
were found to reach an extreme of 187 m@Gal, Faye gravity anomalies 617 mGal, and
the geoid-quasigeoid separation 4.002 m. We have computed both geoid and quasi-
geoid models to analyse their representativeness of the Indian normal-orthometric
heights from the 119 GNSS-levelling points that are available to us. A zeoid model
for India has been computed with an overall standard deviation of +03.396 m but vary-
ing from +3.03 to +0.158 m in four test regions with GN5S-levelling data. The great-
est challenge in developing a precise gravimetric geoid for the whole of India is data
availability and its preparation. More densely surveyed precise gravity data and a
larger number of GNSS/levelling data are required to further improve the models and
their testing.

1. INTRODUCTION

Ideally, Stokes’s {1849) integral should be implement-
ed over the entire Earth with continuous gravity anomalies
on the geoid and with the condition that there must not be
any gravitating masses above it. However, in practice, the
availability of gravity observations is limited to a specific
area, 50 the integration domain has to be truncated. Also the
gravity anomalies usually exist discontinuously on or above
the Earth’s surface so various types of downward continu-
ation and regularisation have been proposed. The zaps be-
tween theoretical and practical aspects induce several kinds
of errors, which geodesists have tried to reduce, but usually
requiting assumptions and approximations.

Based on various ideas, philosophies and numerical

* Corresponding autfior
E-mail: rupeshg@iith.ac.in

approaches, what we consider the four most commonly used
approaches/techniques are adopted for zeold computation
experiments in India. (1) Geoid/quasizeoid computation
methodology developed at the University of Copenhagen,
Denmark (Forsberg 1984, 1985; Forsberg and Tschern-
ing 2008) implemented in the public-domain GRAVSOFT
package, (7} the Stokes-Helmert method developed at the
University of New Brunswick (UNB), Canada (Vanic¢ek and
Kleusberg 1987; Vaniéek and Martinec 1994; Vanicek et al.
1999 UNB 2002; Ellmann and Vanidek 20073, (3) the Least
Squares Modification of Stokes formula with Additive Cor-
rections (LSMSAC) method developed at the Royal Insii-
tute of Technology (KTH), Sweden (Sjoberg 1984, 1991,
2003; Agren 2004), and (4) geoid/quasizeoid computation
methodology developed at Curtin University of Technology
(CUT), Australia {Featherstone 2000, 2003; Featherstone et
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al. 1998, 2001, 2011, 2018). There are of course other ap-
proaches, such as radial basis functions (eg., Li 2018; Liu
et al. 2020}, but perhaps not vet applied as widely. The ap-
plication areas of the above four approaches are listed in
Goyal et al. (2021b).

For India, the first geoid map was developed more than
five decades ago. It was based on astrogeodetic observa-
tions {Fischer 1961) and with respect to the Everest 1956
ellipsoid (cf. Singh and Srivastava 2018). No more informa-
tion 15 available on this geold, apart from distorted hardcopy
contour maps that are difficult to digitise reliably. The lev-
elled height information presently available in India i3 more
than a century old. When these heights were observed, nei-
ther the concept of foresight and backsight levelling nor the
use of invar staves were considered. Observed gravity val-
ues were not available as this was before the development
of the low-cost portable relative gravimeter. The Indian ver-
tical datum defined in 1909 was based on constraining the
levelling to nine tide-gauges along the Indian coast to zero
height (Burrard 1910). We will show later that this approach
may have cansed a north-south tilt (cf. Fischer 1975, 1977),
most probably due to the ocean’s time-mean dynamic to-
pography (cf. Featherstone and Filmer 2012).

Frequent seismic activity in varions parts of the Indian
sub-continent and so-caused crustal movement also necessi-
tate the introduction of a new height system, probably to be
based on geopotential numbers and Helmert’s orthometric
heights (or ‘tigorous’ orthometric heights as formulated by
Santos et al. 2006). The Survey of India (Sol) carried out
a re-levelling program (2007 — 2017y with gravity obser-
vations at fundamental benchmarks to provide a densified
network of Helmert’s orthometric heights as a part of the
Redefined Indian Vertical Datum 2009 (G&RE 2018; Singh
2018). However, these data are not yetin the public domain,
50 we are unable to use them to validate our geoid and qua-
sigeoid models. In addition, the national geodetic agencies
have proposed to compute a precise national geoid model to
serve as the new vertical datum for the country. This can be
viewed as Tollowing the suit of New Zealand (LINZ 2016},
Canada (Véronneau and Hoang 2016), and the TTSA (NGS
2017, 2019). Such an approach is being considered in many
other countries too.

Researchers and government organisations have made
some efforts to develop local gravimetric geoid models for
regions in India (Singh 2007 Carrion et al. 2009; Srimvas
et al. 2012; Mishra and Ghosh 2016; Singh and Srivastava
2018), but only using the GRAVSOFT package with resid-
ual terrain modelling (Forsberg 1985). Despite these efforts,
a state-of-the-art national gravimetric geoid model for the
whole India remains €lusive (Goyal et al. 2017). Therefore,
in this study, we present the first-ever nationwide geoid and
quasigeoid computation results over India with the available
data sets using the CUT method implemented using our own
computation package developed in MATLAB™ |

2. DATASETS
2.1 Terrestrial Gravity

Pointwise observed gravity data is confidential in In-
dia. Therefore, with this predicament, we obtained a grid
of Indian terrestrial gravity data from GETECH (hittps.//
getech com/y thatis claimed to come from the Gravity Map
Seties of India (GMSI), a joint project of five Indian organ-
isations, viz., Sol, Geological Survey of India (GSI), Oil
and Natural Gas Corporation (ONGC), National Geophysi-
cal Research ldstitute (NGRI), and Oil India Limited (ef.
Tiwari et al. 2014). The GETECH gravity data comprises
a 0.02° x 002° mid of simple Bouguer gravity anomalies
over India (except a for few regions in northern India), with
an overall estimated precision of +1.5 mGal (GETECH
2006). According to the GETECH manual for Indian grav-
ity data, they used (1) the normal gravity formula from
WGS84 (Macomber 1984)

Yo woss =
1+ 0.0019318543863%sin’ ¢ (1)
9TR032.67714 ———| mGal
4/ 1-0.00669437999013sin ¢
(2} a second-order free-air correction given by
5g;‘.z;zcn -
A
(0.3083293357 + 0.0004397732 cos” @) - 2)

7.2125 <1074 mGal

(3) the following atmospheric correction (Ecker and Mit-
termayer 1969}

SglETeCH — 087 S mGal, & =0km 3
= 0.87 mGal, H < 0km

and (4} the simple planar Bouguer correction

g5 " =-0.04191pH mGal = - 0.11194 mGal (4)

where Yo woses 15 normal gravity on the WGS84 level el-
lipsoid, Sg#i ™ is the free-air correction, ¢ is the zeo-
detic latitude, A is the ellipsoidal height (in m), H is the el-
evation [in km for Eq. (3} and m for Eq. (4}], Sgon = is
the atmospheric correction, Sgif =" is the planar Bouguer
correction and 2 is the constant topographical density of
2670 kg m®. We re-computed the free-air gravity anomalies
(Ag) from the GETECH data so as to be more compatible

with the CUT approach by using
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Ag=AgGEi™ +01119H + Yo pases - Ograe T -
BT Yo cnse + SgEie + Bzl

(5

GETECH
where, Agssa

GETECH and

are simple Bouguer anomalies from

BZEE = Yo_crse %{]+f+m-2fsinl¢)H-%Hz (5}

1+ £sin?
Yo _crsen = Ya [ﬁm?ﬁ%] @

Bz5TT =0.871-1.0298 x 1077 +5.3105 < 10°F7° -
21642 107 H 495246 107 H - (8}
22411 <1072

For GRS80, & = 6378137 m, ¢ = 0.0066943800229,
m = 0.0034478600308, f = 1/298.257222101 and Yy, =
97803267715 mGal, £ = 0001931851353 (Moritz 2000).
The descriptive statistics of the differences between the
free-air anomalies from the GETECH data and re-comput-
ed free-air anomalies are (in mGal): min = -0 001, max =
0.188  mean=0002, STD = +0.007_It should be noted that
we have used H instead of # (ellipsoidal heights) in Eq. (2)
because we believe that there might be a typographical error
in the GETECH manual. The rationale being that with the

65°E 70°E 75°E B0°E BS"E 80°E 95°E 100°E

use of A we would obtain gravity disturbances and not grav-
ity anomalies (cf. Hackney and Featherstone 2003). A blan-
ket accuracy estimate of the reconstructed free-air anoma-
lies from the GETECH Bouguer anomalies is =24 mGal,
calculated using the DEM error in the CUT reconstruction
technique as per & £, = y{1.5 %1077 +{2Gp x17.3)* .
For the oceanic regions surrounding India, we used
free-air gravity anhomalies (Version 28.1) from the Scripps
Institute of Oceanography (SCRIPPS, hitps/topexucsd,

edv'marine grav/mar gravhtml) which has an overall root
mean square error of =1 .23 mGal (Sandwell et al. 2021).

The SCRIPPS data is also accompanied with an etror grid
that we have shown, for our study area, in Fig. 1. The data
contains a 1" x 17 grid that also covers the land, but we used
the SCRIPPS data only for the oceanic region because the
land data, in the SCRIPPS dataset, i3 from EGM2008 to
avold aliasing (Gibbs fringing) at the coasts.

We do not have gravity data from the countries neigh-
bouring India and a well distributed sufficient data coverage
is not available in the Burean Gravimetrique International
(https://Ded obs-mip f1/) archives either (Country: no. of
aravity data points - Pakistan: 1270, Bangladesh: 25, Sri
Lanka: 48, Myanmar: 71, Afghanistan: 1649, China: 446,
Nepal: 617, and Bhutan: 0. Therefore, we constructed
a 0027 x 0027 grid of free air anomalies over land us-
ing EGM2008 (Pavlis et al. 2012, 2013} up to degree and
order (d/o) 900 to fill-in the land gravity anomaly data in
and around India where the GETECH data 1s not available,
including Mepal, China, Pakistan, Sri Lanka, Bangladesh,
Bhutan, Afghanistan, and Myanmar. The specific d/o %00

10°N 15°N 20°N 25°N 30°N 35°N 40°N

5°N

(mGal)

65°E JO'E 75°E BO"E B5°E 90°E 95°E 100°E

30°N 35°N 40°N

20°M 25°N 30

10°N 15°N

5*N

T T —

12 24 45 72 106145185220 276323371417 466
(min: 0.012; max: 54.235; mean: 1.789; STD: 2.882)

Fig. 1. Error map of the SCRIPPSv28 1 marine gravity-anomaly data (units in mGal).
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was chosen because EGM20038 uses proprietary data up to
dio 900 (Pavliset al. 2013).

As discussed next, we merged these three datasets
to get a complete free-air gravity anomaly grid of 0027 x
0027, avoiding aliasing or the contamination of land data
{both GETECH and EGM2008 individually) with the ma-
rine data or vice-versa.

There exist numerous sophisticated space-domain and
frequency-domain methods for merging heterogenous grav-
ity anoinaly datasets {eg_, Strykowski and Forsberg 1998;
Olesen et al. 2002; Catalao 2006, McCubbine et al. 2017).
However, we chose to work with the comparatively straight-
forward CUT space-domain method (cf. Featherstone et al.
2011,2018). This choice is somewhat arbitrary because we
are working with the land gravity of unknown quality, and
the strategy that we use has already been implemented in
the computation of the Australian quasigeoid, which 1s an
island nation and approximately 2.3 times larger than India.
Other methods can also be tested, but 1t 15 left for the time
when sufficient marine and airborne gravity data along with
reliable terrestrial gravity data will be available over India.

In the adopted method, the GETECH-derived free-
air anomaly grid is superimposed over the EGM2008 (d/'o
900} derived gravity anomalies. The gravity anomalies of
the latter dataset at the overlapping grid nodes are replaced
by the gravity anomalies from the former dataset. As a re-
sult, a 0 02° x« 0.02° grid of gravity anomalies on the land
is obtained.

To concatenate the land and matine gravity anoimaly
data, 17 x 17 gravity anomalies in the ocean are clipped (or
separated) from the complete SCRIPPS dataset, i.e., on both
ocean and land. It is then block averaged to the 0.02° x
0.02° grid and 15 superimposed with the land gravity anom-
aly grid. The former values were replaced by the latter at
overlapping nodes to obtain the 0.02° x 0.02° grid of the
merged gravity anomalies. Figure 2 shows the merged free-
air gravity anomaly map. To check for any discontinities
at the edges of the merzed datasets, we computed and plot-
ted the arctangent (Fig. 3a) and logarithmic (Fig. 3b) values
of the gradients of the merged data. We observe no clear
visual indication of any discontinuities at the boundaties of
the merged data, but also partially due to the ruggedness of
the dataset in our study area that can be obscuring.

22 Digital Elevation Model

The Digital Elevation Model (DEM} is another impor-
tant input in geoid computation. It is mainly used to com-
pute the topographical effects (e.g., Forsberg 1984). Thus,
a precise high-resolution DEM should be used. We would
like to mention here that DEM is generally used synony-
mously with a Digital Surface Model (DSM) (e.g., SRTM,
ASTER}, but this should be avoided. Quantification of the
differences in the topographical effect with the use of DEM

and DSM has been investigated by Yang et al. (2019}, Since
India doesnot have a national DEM , therefore, after a DEM/
DSM analysis (Goval et al. 20214}, it was decided to work
with the best available DEM over India,ie., the MERIT 37
x 37 DEM (Yamazaki et al. 2017), for our computations.
Though the accuracy of the MERIT DEM varies consider-
ably {+11.7 to +47 .3 m) over different landforms in India,
an overdll estimate for the whole of India is +17.3 m (Goyal
et al. 2021a).

2.3 GNBSB-Levelling

India has different horizontal and vertical control net-
works. Therefore, presently there are only a limited num-
ber of ground control points where we have the geodetic
coordinates (latitude, longitude, ellipsoidal heights) and
levelled heights. Moreover, due to several restrictions on
the datasets, only a few of these available data points were
available to us (Fig. 4). The datasets in the Uttar Pradesh
west (UJP west) and Uttar Pradesh east (TP east) regions
were procured from Sol, while the datasets over Hyderabad
and Bangalore have been retrieved from Mishra (2018},
who also used the Sol dataset. According to Mishra (2018),
horizontal and vertical precisions of GNSS data are within
+12 to =26 mm and £31 to £33 mum, respectively. The ver-
tical precision of the levelling heights 1s not known to us,
but they are from the high precision first level net of In-
dia. These heights are from the Indian Vertical Datum 1909
(Burrard 1910) and are based on the normal-orthometric
height system, while those on Indian Vertical Datumn 2009
(G&RB 2018) are based on Helmert’s orthometric height
systern. We have not been provided with a clear indication
on which heights have been provided to us, and therefore,
due to this anonymity of the height system, we consider the
levelling heights to be in the normal-orthometric height sys-
tem (Jekeli 2000, Featherstone and Kuhn 2006).

A METHODOLOGY AND RESULTS

An overview of the CUUT methodology for comput-
ing the geoid undulations is shown by a flowchart in Fig. 5.
The CUT method primarily computes the quasizgeoid using
the analytical continuation solution (Moritz 1971, 1980) of
Molodensky’s problem (Molodensky et al. 1962). Moritz
{1971) showed that Molodenksy’s (G, term can be approxi-
mated by the planar terrain correction (TC), which also
needs an additional term that is equal to the first-order indi-
rect effect (FCIE). We could not adopt the full CUT meth-
od-based reconsttuction of Faye anomalies (Featherstone
and Kirby 2000) because we already have gridded data,
whereas CUT mids point Bouguer anomalies. Instead, we
added the block averaged 0.02° «0.02° grid of TCs (Fig. 6a)
to the free-air gravity anomaly giid to calculate area-mean
Faye anomalies (Fig. 6b). The block-averaged 0.02° x0.02°
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Fig. 2. Merged gravity anomaly data from GETECH, EGM2003 (d/o 900), and SCRIPPS (units in mGal).
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Fig. 3. Aretangent (2) and logarithmie (b) plot of gradients of merged gravity anomaly data to attempt to identify discontinuities at the edges of the
merged grids.
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TC grid was constructed from the 37 x 37 TC mrid computed
with the MERIT DEM using the Optimal Separating Radius
(OS8R} in the spatial-spectral combined method suggested
by Goval et al. (2020). This method of TC guarantees the
full convergence of the TC solution, i.e., down to < 1 nGal.

A different approach is used in the CUT method to
apply ellipsoidal correction. Unlike other geoid computa-
tion strategies considered (LUNB or KTH; cf. Huang et al.
2003; Ellmann 2003}, the CUT method computes ellipsoi-
dal area-mean free-air gravity anomalies on the topography
using a Global Geopotential Model (GGM) (Featherstone
et al. 2018). These are subtracted from the mean Faye grav-
ity anomalies to obtain residual gravity anomalies (Fig. 6¢),
which are then Stokes-imtegrated with the Featherstone-
Evans-Olliver (FEO) modified kernel (Featherstone et al.
1998) to obtain the residual height anomalies. The FEQ
kernel, a deterministic modifier, 15 the combination of the
Meiss] (1971} and Vanitek and Kleusberg (1987) modi-
fiers that simultaneously reduces the truncation error and
improves the rate of convergence to zero of the series ex-
pansion of the truncation esror (cf . Featherstone et al. 1998;
Featherstone 2003). Additionally, the spherical reference
radius in the Stokes integration is set equal to the geocentric
ellipsoidal radivs of the computation point, and this negates
the need for further ellipsoidal corrections to Stokes’s inte-
gral (Claessens 2006).

The residual height anomalies were computed using
the following parameter-sweeps of the modification degree
(M) 0,40, 80, 120, 160, 200, 240, 280, 300, and integration
cap radios (): 0.2°, 0.5, 0.75°%, 1°, 1.5%, 2° (e.g., Fig. 6d
for M = 80,1 = 1.57). The reference height anomalies on the
topography are computed using GGMs with a zero-degree
term (&) from the generalised Bruns’s formula [Eq. (9)]
(Heiskanen and Moritz 1967} calculated for each latitude
parallel, which are added to the residual height anomalies
to obtain the required height anomalies. An inconsistent use
of Eq. (%) can cause an error of ~1 m in the computed geoid
undulations/height anomalies. We used normal potential L
(= 62636860.85 m® 57) from GRS80 (Moritz 2000) and the
zeopotential W, (= 62636853 4 m? 57) from THRS (Sanchez
et al. 2016).

_GM;-GMy W, -U,
M= T ©

As a small modificj%%or@pll_}p the original CUT method, we
added the FOJE =————— [Moritz 1980, Eqs. (48} — (29);
Heiskanen and Moritz 1967, chapter 8] to the computed
height anomalies. We note that the negative sign is some-
times omitted (e g., Sjoberz 2000; Hwang et al. 2020).

The geoid undulations are calculated by adding the
quasigeoid-geoid separation tetm (Fig. 6e; Flury and Rum-
mel 2009) to the height anomalies. The more rigorous quasi-

zeoid-geoid separation term from Flury and Rumimel (2009)
differs quite considerably from the approximate formula
given in Heiskanen and Moritz (1967, p 328). The differ-
ence in the guasigeoid-geoid separation term from the two
methods 15 shown in Fig. 6f. Acknowledging that the num-
ber and distribution of the GNSS/levelling data points ate
not sufficient for reliable fitting (Kotsakis and Sideris 1999;
Fotopoulos 2003}, we have not presented hybrid geoid and
hybrid gquasizgeoid models for this experiment over India.

The geoid should be validated with orthometric
[Helmert or rigorous (Santos et al. 2006)] heights and the
quasigeold validated with normal heights. A more rigorons
validation approach would be to convert the normal-ortho-
metric heights to Helmert’s orthometric height and normal
heights for validating geoid and quasigeoid, respectively.
Examples of this are Foroughi et al. (2017) and Jandk et al.
(2017) over Auvergne, France, where normal heights were
converted to rigorous heights for validation of their devel-
oped geold models. However, Indian levelled heights are
based on the normal-orthometric height system for which
there is no specific choice of reference surface, ie., either
zeoid or quasigeoid. Therefore, we are only able to “vali-
date” the developed geoid and guasigeoid models with the
Indian normal-orthometric heights on an vncertain vertical
daturmn (section 2.3},

Absolute and relative testing (Featherstone 2001} of
both height anomalies and geoid undulations are done in this
study. The absolute testing is realised through point-wise
subtraction of gravimetric geoid undulations obtained using
Stokesian integration (&) and the geometrical zeoid undula-
tion (# - H) obtained using GNSS/levelling data [Eq. (107].

EF =N -(h-H)Vi=1,2,3,...,n (10

where 7 15 the total number of discrete GNSS/levelling data
points. It is important to acknowledge that absolute accu-
racy is only an assumption. This 15 principally because the
levelled heights that refer to the local vertical datum are
not necessarily coincident with the geoid. This has been
discussed in detail by Featherstone (2001). The descriptive
statistics of £ are in Table 1.

The relative testing of geold and quasigeoid [Eq. (11)]
15 an analysis tool to investigate their gradients. This type
of analysis 15 of more interest to land surveyors who use
relative GNSS baselines and a geoid/quasizeoid gradients
as a replacement for the more time-consuming differential
levelling.

EV = AN, (Ak, - AHNYG F=1,2,3, it (1D

The descriptive statistics of E’f , and the ratio of mean dif-
ferences to the mean baseline length in parts per million
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Table 1. Statistics for the region-wise geoid/quasigesid (for &1 = BU and 1 = 1.5%) absolute testing

FUNILS it 1.
Region Geoid Cmasigeaid

(nae. of points) nin max mean STD Min Max Mean STD
India (1193 0807 QFRE 0171 +0.306 0906 0726 0185 +).3809
UP west (293 0807 0154 0532 +).138 0906 0164 0548 +).142
UP east (273 0712 0338 0521 +.114 0711 0340 0523 +.114
Hyderabad (56} 0385 050l Q070 158 0400 0488 Q057 158
Bangalore (73 Q709 0788 0751 +1030 0445 0726 0600 +032

{average ppm in mm km'") for the geoid and quasizeoid are
in Table 2.

The variation of standard deviation in the Indian ge-
oid and quasigeoid models, on testing with GNSS/levelling
data, for different combinations of modification degree and
integration cap ate shown in Figs. 7a and b, respectively.
Table 1 depicts the region-wise (UP west, UP east, Hyder-
abad, Bangalore, and all together) descriptive statistics for
the geoid and quasigeoid for the combination of M = 80
and v = 1.57. Though the standard deviation Tor the whole
of India 1s smaller with the combination of M =40 and ) =
1.5 compared to M =80 and 1 = 1.5° (¢f. Fig. 7}, standard
deviations for the four individual regions are less than or
equal to the combination of M = 80 and 1 = 1.5% compared
to M = 40 and 2 = 1.5". Therefore, M = 80 and 1) = 157
was chosen to present our results. The results of the relative
testing are shown in Figs. 8a and b, and Table 2. The com-
puted Indian gravimetric geoid (IndGG-CUT2021) and cor-
responding contours (at a 2-m contour interval) are shown
in Figs. %a and b, respectively.

4. DISCUSSION, RECOMMENDATIONS AND
CONCLUSIONS

Though the number (119} and the distribution (Fig. 4}
of the GNSS/levelling data points are insufficient to draw
concrete conclusions about the quality of the computed
gravimetric geoid and gquasigeoid models, the following are
some major observations from our experimental results:

(1) Since the study area comprises the most complex to-
pography varying from the Himalayas to the Gangetic
plains and a long peninsular coastline, Fig. 6 possibly
depicts the extreme (maximuom and minimuom} values of
planar TC, Faye gravity ahomaly, and quasizeoid-geoid
separation on the planet.

{2y From the viewpoint of the “cm-level accurate” geoid,
Fig. 6f suggests that a more rigorous method (e.g_, Flury
and Rummel 2009) should be preferred for calculating
the quasigeoid-geoid separation over a simple approxi-
mate formula {e.g ., Heiskanen and Moritz 1967). There
exist other formulas for the quasigeoid-geoid separation

term (e.g., Sjoberg 2010; Foroughi and Tenzer 2017),
but they are not tested here.

(3)Figure 7 sugzests that the FEQ kemel (Featherstone et al.
1998} 1s not numetically unstable for higher modification
degrees, as shown 11 Featherstone (2003), L and Wang
{2011), Featherstone et al. {2018}, and Claessens and
Hlmer (2020} However, this observation can also result
from our choice of parameter sweeps and limited data-
sets for validation, thus requiring further investigation.

4}y Generally, standard deviations versus GNSS/levelling
are large for lower modification degrees and larger in-
tegration radii (Featherstone et al. 2018; Claessens and
Filmer 2020). However, Fig. 7 shows an opposite trend
in India, with smaller standard deviations for lower
modification degrees and larger integration radii. Thisis
primarily attributable to the north-south tilt in the India
height datum (cf. Table 1). However, he smaller number
of GNSS/levelling data and their poor distribution are
also likely to contribute to this observation.

(5)Figure 7 shows that the Indian levelling heights are mar-
ginally better referred to the quasigeoid (std = 0 389 my)
than the geoid (5td =0 396 m). However, Table 1shows
that the geoid has an equal or better precision estimate
than the guasigeoid (in terms of standard deviation) in
each of the four regions individually. The difference in
the standard deviations of the guasizeoid and geoid com-
patison for the whole of India seems to be a consequence,
mostly, of the smaller mean of the gquasigeoid (0690 m)
than the geoid (0751 m) comparison over Bangalore.
Also, with the given precision estimate of the data points,
there can yet be no preferred choice between geoid or
quasigeoid for the Indian vertical datwn. Hence, a latger
set of data points are needed for any possible claim of
reference surface for India. Though the overall standard
deviation of the computed geoid/quasigeoid (Table 1)
15 ~H040 m, 1t varies from ~+0.03 to ~+0.16 m if only
evaluated individually in the four small test regions.

{6) Table 2 indicates that the largest misclosures in Fig. 8
are probably due to the tilt in the Indian height datum
and the relative closeness of data points in Hyderabad
and Bangalore, which also explains the larger ppm
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Table 2. Statistics for the region-wise geowl/quasigeoid (for M = B0 and 1 = 1.5%) relative testing.

Region Geoid Qnuasigeoid

(Mean distance) min (m) max (m) mean (m) STD (m) Average ppm | min(m) max (m) mean (m) STD (m) Averageppm

India (71346 k) 0620 1684 0373 +0418 3371 0625 1632 0.368 +0.408 3362
UPwest (19728 km) | 0605 0743 0040 +0.191 1.111 0602 0742 0057 +0.193 1118
UPeast (169.33km)y | 0374 0367 Q015 +0.161 1048 0372 0.367 0018 +0.161 1052
Hyderabad (1867 km) | 0620 0886 0031 +0221 13032 0625 0888 0032 +0221 13025
Bangalors (1408 km) | 0074 Q079 0005 +1.044 3113 0077 0081 0008 +0.046 3281
(a) :::gmgo_;:gm?go7:§gmx::§gm§;g—ﬁomam (b) [TFEOmO —FEOmAB0 —FEOMod 160 —FEO mod 240 —FEO mod 300

—FED mod 40 —FEO mad 120 — FEO aiyod 200 —FEQ mod 280
0.415 - . 0415 . . ——— =

0.410| | . - i

! ! et B WS o TS 0.380! | | | i i | )
04 06 08 1 1.2 14 16 1.8 2 0.2 04 06 08 1 1.2 14 1.6 18 2
Integration cap radius (deg.) Integration cap radius (deg.)

Fig. 7. Standard deviation of () geoid and (b) quasigeoid of India for different combinations of modification degree and integration eap (units in m).

(@) (b)

N
N

Misclose (m)
Misclose (m)

o

0 - 3 7 o & r - = 3 e £ [ ;
0 500 1000 1500 2000 0 500 1000 1500
Baseline length (km) Baseline length (km)

Fig. 8. Magnitude of relative differences (blue ecireles) for the (a) geoid and (b) quasigeoid. Orange and yellow cireles represent the maximum
permissible in-field misclose for Indian high-preeision (k = 3) and double tertiary (k = 12) levelling for each baseline, respectively (units in m).

2000
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Fig. & (2) Indian gravimetrie geoid computed using the CUT method (units in my, and (b eorresponding 2 m geoid contours.

values found in those regions. Spikes in Figs. 8a and
b at distances of approximately (0 — 50}, (450 — 550),
(900 — 12000, and (1200 — 1900} kun are due to the er-
rors and differences (north-south tilt) in the baselines for
(Bangalore and Hyderabad, individually), (Bangalore to
Hyderabad), (UUP west, UP east to Hyderabad), and (UJP
west, UP east to B angalore), respectively.

(73 On comparison of validations of the Indian gravimetric
zeoid with the CUT method and the GGM (Table 3), it
i3 observed that though the overall mean values are im-
proved for all regions except Bangalore, an improvement
in the standard deviation beyond +0.01 m is observed
only for TJP east. However, the standard deviation of
sravimetric geoid in UP west 1s degraded by 2003 m as
compared to the EIGEN-6C4. A degradation in the stan-
dard deviation of the gravimetric zeoid is also observed
in Featherstone and Sideris {1998). This was, and simd-
latly is, attributed to errors in either one or mote of ter-
restrial sravity data, GGMs and the GNSS/levelling data.

There is little to no improvement with the inclusion of
the terrestrial gravity data with the CUT method becaunse
it makes use of the highest available degree-order GGMs.

Also, the GETECH data 1s possibly already included in

the hizh degree-order GGM (e.g., EGM2008, Pavlis et al.

2012,2013).

(8) The Faye gravity anomaly (Fig. 6b}, zeoid (Fig. 9a}), and
contour map (Fig. 9b) somewhat depict the separation
line of the Indian and the Eurasian plate. Thus, the re-
sults presented in this study could be important for geo-
physical studies. The contour pattern around the location
af 24°N and §2°E seems intrizuing for some gravimetric

studies in that region. It should also be noted that the
area comprises one of the largest coalfields of India with
the thickest and different varieties of coal seams.

As a final remark, first experimental geoid and qua-
sizgeoid models for India have been computed with a stan-
dard deviation of +03.396 and +0.38% m, respectively, with
tespect to a sinall nuinber of test regions. However, for the
four regions individually, the standard deviation varies from
+0.030 to +0.158 m for the geoid and 20032 to +0.158 m
for the quasigeoid. Though all the results presented herein
are the first from India, the geoid/quasizeoid must be im-
proved with dense, precise gravity data. Moreover, a larger
number of GNSS/levelling data points must become avail-
able for more rizgorous validation of the gravimetric geoid/
guasigeoid. For the re-computation of the Indian geoid/qua-
sigeoid with the CUT method and additional gravity data,
the TC and the guasizeoid-geoid separation term need not
be computed again unless a high-resolution and more pre-
cise DEM i3 available. Further, due to the complexities of
the Indian topography and geomorphic characteristics, other
geoid/quasigeoid computation strategies should also be test-
ed over India.
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CGNss/levelling data funits in ).

min max mean STD
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GNS55/levelling data and (b) the additional page charges for
this article. We are also thankful to the three anonymous
reviewers and the editor (X, Li) for thelr prompt and con-
structive comments on an earlier version of this manuscript.

REFERENCES

Jigren, J., 2004: Regional geoid determination methods
for the era of satellite gravimetry: Numerical inves-
tigations using synthetic earth gravity models. PhD.
Thesis, Department of Infrastructure, Royal Institute of
Technology (KTH}, Stockholm, Sweden, 246 pp.

Burrard, 5., 1910: Levelling of precisionin India. The Great
Trigonometrical Survey of India, Vol XIX, Survey of
India, Dehradun, India.

Carrion, D, N. Kumar, R. Barzaghi, A. P. Singh, and B.
Singh, 2009 Gravity and geoid estimate in south India
and their compatison with EGM2008. Newton's Bul-
{etin, 4, 275-283.

Catalao, J., 2006 Iberia-Azores Gravity Model (TAGRM)
using multi-source gravity data. Earth Planets Space,
58,277-286,doi: 10.1186/BF03351924 [Link]

Claessens, 5. J., 2006 Solutions to ellipsoidal boundary
value problems for gravity field modelling. Ph.ID. The-
sis, Department of Spatial Sciences, Curtin University
of Technology, Perth, Australia, 220 pp.

Claessens, S. J. and M. §. Filmer, 2020: Towards an Inter-
national Height Reference System: Insights from the
Colorado geold experiment using ATTSGeoid compu-
tation methods 7. Geod., 94, 52, doi: 10.1007/500190-
020-01379-3. [Liuk]

Ecker, E. and E. Mittermayer, 1969: Gravity corrections
for the influence of the atmosphere. Boll. Gecfis. Teor.
Appl. 11,70-80.

Ellmann, A, 2005 A Numerical Compatison of Different
Ellipsoidal Corrections to Stokes’ Formula. In: Sansd,
F.(Ed}, A Window on the Future of Geodesy, Inter-

national Association of Geodesy Symposia, Vol. 128,
Springer, Berlin, Heidelberg, 409-414, doi: 10.1007/3-
540-27432-4_70. [Link]

Ellmann, A. and P. Vanifek, 2007: UNB application of
Stokes—Helmert’s approach to geoid computation. J.
Geodyn., 43, 200-213  doi: 10.1016/ jog 2006 09.019.
[Link]

Featherstone, W_E _, 200(: Refinement of gravimetric geoid
using GPS and leveling data. J. Surv. Eng., 126, 27-
56, doi: 10.1061/(ASCE733-9453(2000)126:2(27).
[Liuk]

Featherstone, W. E., 2001: Absolute and relative testing
of gravimetric geoid models using Global Positioning
System and orthometric height data. Comput. Geosci.,
27, 807-814, doi: 10.1016/50098-3004(0H00169-2.
[Link]

Featherstone, W. E., 2003: Software for computing five
existing types of deterministically modified inte-
aration kernel for gravimetric geoid determination.
Comput. Geosei., 29, 183-193, doi: 10.1016/S0098-
3004(02300074-2 . [Link]

Featherstone, W_E. and M. §_Filmer, 2012: The north-south
tilt in the Australian Height Datum 13 explained by the
ocean’s mean dynamic topography . . Geophys. Res.,
117, C08035, doi: 10.102%2012JC007974 . [Link)

Featherstone, W.E. and J. F. Karby, 2000: The reduction of
aliasing in gravity anomalies and geoid heights using
digital terrain data. Geophys. 7. Int., 141, 204-212 doi:
10.1046/].1365-246X 2000 00082 x. [Link]

Featherstone, W. E. and M. Kuhn, 2036: Height sys-
tems and vertical datums: A review in the Aus-
tralian context. J. Spat. Sci., 51, 21-41, doi:
10.1080/14498596.2006 9635062 [Link]

Featherstone, W_E. and M. G Sideris, 1998: Modified ker-
nels in spectral geoid determination: First results from
Western Australia. In: Forsberg, R M. Feissel, and R
Dietrich (Eds}, Geodesy on the Move, International



369

Experimental Indian Gravimetric Geoid Model 13

Association of Geodesy Symposia, Vol. 119, Springet,
Berlin, Heidelberg, 188-193, doi: 10.1007/978-3-642-
72245-5_26. [Link]

Featherstone, W. E., J. D. Evans, and J. G. Olliver, 1998:
A& Meissl-modified Vaniek and Kleusberg kernel
to reduce the truncation error in gravimetric geoid
computations. J. Geed., 72, 154-160, doi: 10.1007/
5001900050157 [Liok]

Featherstone, W.E_ J.F_ Kirby, A. H. W . Kearsley, J. R
Gilliland, G. M. Johnston, J. Steed, R. Forsberg, and
M. G. Bideris, 2001: The ATTSGeoid98 geoid model of
Australia: Data treatment, computations and comparti-
sons with GPS-levelling data. J. Geed., 73, 313-330,
doi: 10.1007/5001900100177 . [Liuk]

Featherstone, W_E_, I F. Kirby, C. Hirt, M. S. Filmer, §.
J. Claessens, N. J. Brown, G. Hu, and G. M. John-
ston, 2011 The AUSGeoid09 model of the Australian
height datum. 7. Geed., 85, 133-150, doi: 10.1007/
s00190-010-0422-2 [Liok]

Featherstone, W. E_, J. C. McCubbine, N.J. Brown, 5. 1.
Claessens, M. S. Filmer, and J. F. Kirby, 2018: The
first Aunstralian gravimetric quasigeoid model with
location-specific uncertainty estimates. J. Geod., 92,
149-168, doi: 10.1007/s00190-017-1053-7 _ [Liuk]

Fischer I.,1961: The present extent of the astro-geodetic ge-
oid and the zeodetic world datum derived from it. Buil.
Géodésigue, 61, 245-264, doi: 10.1007/BF02854151.
[Link]

Fischer, 1., 1975 Does mean sea level slope up or down
toward north? Bull. Gdodésigue, 115, 17-26, doi:
10.1007/BF02523939_ [Link]

Fischer, I., 1977 Mean sea level and the marine geoid—
an analysis of concepts. Mar. Geod., 1, 37-39, doi:
10.1080/014%04 17709387950 . [Liok]

Flury, J. and R. Rummel, 2009: On the geoid—guasigeoid
separation in mountain areas. J. Geod., 83, §29-847,
doi: 10.1007/500190-009-0302-9_ [Link]

Foroughi, 1. and R. Tenzer, 2017: Comparison of different
methods for estimating the geold-to-quasi-geoid sepa-
ration. Geophys. 7. Int., 210, 1001-1020, doi: 10.109%
2ji/ggx221 . [Link]

Foroughi, 1., P. Vaniéek, M. Sheng, R. W. Kingdon, and M.
C. Santos, 2017 In defense of the classical height sys-
tem. Geophys. 7. Int., 211, 11534-1161, doi: 10.109%
2jilgzx366. [Link]

Forsberg, R, 1984: A study of terrain reductions, density
anomalies and geophysical inversion methods in grav-
ity field modelling. Reports of the Department of Geo-
detic Science and Surveying, No. 355, Department of
Geodetic Science and Surveying, The Ohio State Uni-
versity, Columbus, Chio, 129 pp.

Forsberg R, 1985: Gravity field terrain effect computations
by FET. Bull. Géodésigue, 59, 342-360, doi: 10.1007/
BF02521068. [Link]

Forsberg, R, 1998: The use of spectral techiiques in gravity
field modelling: Trends and perspectives. PRys. Chem.
Earth,23,31-39, doi: 10.1016/50079-1946(97)0023 8-
3. [Liok] ---Not cited!!!

Forsberg, R. and C. C. Tscherning, 2008 An overview
mamial for the GRAVSOFT Geodetic Gravity Field
Modelling Programs. DT Space, 75 pp.

Fotopoulos, G_, 2003: An analysis on the optimal combina-
tion of geoid, orthometric and ellipsoidal height data.
Ph D. Thesis, University of Calgary, Calgary, Canada,
doi: 10.11575/PRISM/ 10883 [Link]

GETECH, 2006: Gravity data compilation of India. Report
No. GO610, University of Leeds, United Kingdom.

Goyal, R., B. Nagarajan, and O. Dikshit, 2017: Status of
precise reoid modelling in India: A review. Proceed-
ings of 37th Indian National Cartographic Association
International Congress on Geoinforinatics for Carto-
Diversity and Its Management, Indian Cartographer,
308-313.

Govyal, R, W. E. Featherstone, I). Tsoulis, and O. Dikshit,
2020 Efficient spatial-spectral computation of local
planar gravimetric terrain corrections from high-reso-
lution digital elevation models. Geophys. . Int., 221,
1820-1831, doi: 10.1093/gji/ggaal(d7. [Link]

Govyal, R, W_E. Featherstone, O. Dikshit, and N. Balasu-
bramania, 2021a: Comparison and Validation of Sat-
ellite-Derived Digital Surface/Elevation Models over
India. f. Indian Soc. Remote Sens., 49, 971-986, doi:
10.1007/512524-020-01273-7  [Link]

Goyal, R, 1. ,B;gren, W. E. Featherstone, L. E. §jdberg, O.
Dikshit, and N. Balasubramanian, 2021b: Empirical
compatison between stochastic and deterministic mod-
ifiers over the French Auverghe eoid computation test-
bed. Surv. Rev., doi: 10.1080:00396265 20211871821,
[Lik]

G&RE, 2018: Report on Redefinition of Indian Vertical Da-
tum IVD2009, Geodetic and Research Branch, Survey
of India, Dehradun, India.

Hackney, R. 1. and W_E. Featherstone, 2003: Geodetic ver-
sus geophysical perspectives of the “gravity anomaly’.
Geophys. J. Int., 154, 35-43, doi: 10.1046/1.1365-
246X 2003.01941 x. [Liok]

Heiskanen, W. A and H. Moritz, 1967: Physical Geodesy,
W._H. Freeman and Company, San Francisco, TUSA,
304 pp.

Huang, I, M. Veéronneau, and 5. D Pagiatakis, 2003: On
the ellipsoidal correction to the spherical Stokes solu-
tion of the gravimetric geoid. J. Geod., 77, 171-181,
doi: 10.1007/500190-003-0317-6. [Link]

Hwang, C., H.-J. Hsu, W. E. Featherstone, C.-C. Cheng,
M. Yang, W. Huang, C-Y. Wang, J-F. Huang, K.-
H. Chen, C-H. Huang, H. Chen, and W_.-Y. Su, 2020
New gravimetric-only and hybrid geoid models of Tai-
wan for height modermsation, cross-island datum con-



370

14 Goyal et al.

nection and airborne LiDAR mapping. J. Geod., 94,
83, doi: 10.1007/500190-020-01412-5. [Link]

Janik, )., P. Vani¢ek, 1. Foroughi, R. Kingdon, M. B. Sheng,
and M. C. Santos, 2017: Computation of precise ge-
oid model of Auvergne using current UNB Stokes-
Helmert's approach. Confrib. Geophys. Geod., 47,
201-229, doi: 10.1515/congeo-2017-0011. [Link]

Jekeli, C., 2000: Heights, the Geopotential, and Vertical Da-
tums. Report No. 459, Geodetic Science and Survey-
ing, Department of Civil and Environmental Engineer-
ing and Geodetic Science, The Ohio State University,
Columbus , Ohio, USA, 34 pp.

Kotsakis, C. and M. G. Sideris, 1999 On the adjustment of
combined GPS/levelling/geoid networks. J. Geod., 73,
412-421, doi: 10.1007/5001 900050261 . [Lank]

Li, X., 2018: Using radial basis functions in airborne gra-
vimetry for local geoid improvement. J. Geod., 92,
471-485, doi: 10.1007/500190-017-1074-2  [Link]

Li, X, and ¥. Wang, 2011: Comparisons of geoid models
over Alaska computed with different Stokes’ kernel
modifications. F. Geod. Sci., 1, 136-142, doi: 102478/
v10156-010-0016-1. [Link]

LINZ, 2016: New Zealand Quasigeoid 2016 (NZGe-
01d2016). Available at hitps//wvww linz sovi nz/data/

1 .{Accessed on 21 April 2021)

Liu, ., M. Schimidt, L. Sinchez, and M. Willberg, 2020:
Regional gravity field refinement for (quasi-) geoid de-
termination based on spherical radial basis functions in
Colorado. J. Geod., 94, 99, doi: 10.1007/500190-020-
01431-2. [Lingk]

Macomber, M. M., 1984: World Geodetic System 1984,
Defense Mapping Agency, Washington D.C., Unit-
ed States of America. Available at hitps//ia800108,

. .
ADAL147400 pdf.

MeCubbine, J.C., V. Stagpoole, F. C. Tontini, M. Aunos, E.
Smith, and R. Winefield, 2017: Gravity anomaly grids
for the New Zealand region. . Z. 7. Geel. Geaphys.,
60, 381-391, doi: 10.1080/0(02883062017.1346692.
[Liuk]

Meissl, P, 1971 Preparations for the numerical evaluation
of second order Molodensky-type formulas. Reports
of Department of Geodetic Science, Report No. 163,
Department of Geodetic Science, The Chio State Uni-
versity Research Foundation, Columbus, Ohio, TISA.

Mishra, TJ. N, 2018: A comparative evaluation of methods
for development of Indian geoid model. PhD. Thesis,
T Roorkee, India.

Mishra, U. N. and J. K. Ghosh, 2016 Develop-
ment of a gravimetric zeoid model and a com-
parative study. Geod. Cartogr., 42, 75-84, doi:
10.3846/20296991 20161226368 . [Link]

Molodensky, M. 5., V. F. Yeremeev, and M. I. Yurkina,
1962: Methods for study of the external gravitational
field and figure of the Earth.Israel Program for Scien-
tific Translations, Jerusalem, Israel.

Moritz, H., 1971: Series solutions of Molodensky’s prob-
lem. Deutsche Geodaetische Kommission Bayer . Akad.
Wiss., 70.

Moritz, H., 1980 Advanced Physical Geodesy, Abacus
Press, Tunbridge, England, 500 pp.

Moritz, H., 2000: Geodetic Reference System 1980. J.
Geod., 74, 128-133, doi: 10.1007/5001900050278 .
[Liok]

NGS, 2017 Blueprint for 2022 Part 2: Geopotential coordi-
nates. NOAA Techmical Report NOS NGS o4, NOAA |
41 pp. Available at https://seodesv noaa govw/PUUBS

LIB/NOAA TR NOS NGS (064.pdf.
NGS, 2019 Blueprint for the modernized NSRS, Part 3:

Working in the modernized NSRS. NOAA Techni-
cal Report NOS NGS 67, NOAA, 125 pp. https/

yww.ngsnoad,gov/PUBS LIBNOAA TR NOS

NGS 0067 pdf.
Qlesen, A. V., O_B.Andersen, and C. C. Tscherning , 2002:

Merging of Airborne Gravity and Gravity Derived
from Satellite Altimetry: Test Cases Along the Coast
of Greenland. Stud. Geophys. Geod., 46, 387-394 doi:
10.1023/A:1019577232253  [Liok]

Pavlis, N. K., 5. A Holmes, 5. C. Kenyon, and J. K. Fae-
tor, 2012: The development and evaluation of the
Earth Gravitational Model 2008 (EGM2008). J. Geo-
phys. Res., 117, BO4406, doi: 10.1029/2011JB008916.
[Liok]

Pavlis, N.K_, 5. A Holmes, 3. C.Kenyon, and J. K. Factor,
2013: Correction to “The development and evaluation
of the Earth Gravitational Model 2008 (EGM2008)".
J. Geophys. Res., 118, 2633, doi: 10.1002/jgrb 50167 .
[Link]

Sdnchez, L., R. Cundetlik, N. Dayoub, K. Mikula, Z. Min-
arechova, 7. él’ma, V. Vatrt, and M. Vojtiskova, 2016
A conventional value for the geoid reference potential
Wa. J. Geod., 90, §15-835, doi: 10.1007/500190-016-
0913-x. [Link]

Sandwell, D. T, H. Harper, B. Tozer, and W_H.F. Smith,
2021: Gravity field recovery from geodetic altim-
eter missions. Adv. Space Res., 68, 1039-1072, doi:
101016/ .asr 2019.09.011. [Link]

Santos, M. C., P. Vanitek, W. E. Featherstone, R. Kingdon,
A Ellmann, B -A. Martin, M. Kuhn, and R. Tenzer,
2006. The relation between rigorous and Helmert's
definitions of orthomettic heights. J. Geod., 80, 691-
704, doi: 10.1007/500190-006-0086-0 . [Link]

Singh, 8. K., 2007: Development of a high resolution gravi-
metric reoid for central India. PhD. Thesis, Indian In-
stitute of Technology Roorkee, India, 191 pp.

Singh, 5. K., 2018: Towards a new vertical datum for In-



371

Experimental Indian Gravimetric Geoid Model 15

dia. FIG Congress 2018, Istanbul, Turkey . Available at

https //fie net/resources/proceedings/fis proceedings/
Singh, 5. K. and R. K. Stivastava, 2018: Development of
zeoid model - A case study on western India. FIG Con-
gress 2018, Istanbul, Turkey. Available at https//fig,

net/resources/proceedings/fiz proceedings/fig2018/

Sjoberg, L. E., 1984: Least squares modification of Stokes
and Venning Meinesz formulas by accounting for er-
rors of truncation, potential coefficients and gravity
data. Technical Report 27, Department of Geodesy, In-
stitute of Geophysics, University of Uppsala, Uppsala,
Sweden.

Sjoberg, L. E., 1991: Refined least squares modiTication of
Stokes’ formula. Manuscr. Geod., 16, 367-375.

Sjoberg, L. E., 2000: Topographic effecis by the Siokes-
Helmert method of geoid and guasi-geoid deter-
minations. J. Geed., 74, 255-268, doir 101007
5001900050284 [Link]

Sjoberg, L. E., 2003: A compuiational scheme to model the
zeoid by the modified Stokes formula without orav-
ity reductions. J. Geod., 77, 423-432, doir 10.1007/
500190-003-0338-1. [Latk]

Sjoberg, L. E., 2010: A strict Tormula Tor geoid-to-quasi-
reoid separation. J. Geod., 84, 699-702, doi: 10.1007
s00190-010-0407-1. [Ligk]

Srinivas, N., V. M. Tiwari, J. 5. Tarial, §. Prajapti, A. E.
Meshram, B. Singh, and B. Nagarajan, 2012: Gravi-
metric zeoid of a part of south India and its compari-
son with global geopotential models and GPS-levelling
data. 7. Earth Syst. Sci., 121, 1025-1032, doi: 10.1007/
512040-012-0205-7 . [Ligk]

Stokes, G. G., 1849 On the variation of gravity at the sur-
face of the Earth. Trans. Camb. Phil. Soc. 8, 672-695.

Strykowski, G. and R. Forsberg, 1998: Operational Merg-

ing of Satellite, Adrborne and Surface Gravity Data by
Draping Techniques. In: Forsberg, R_, M. Feissel, and
R Dietrich (Eds), Geodesy on the Move. International
Association of Geodesy Symposia, Vol. 119, Springer,
Berlin, Heidelberg, 243-248 doi: 10.1007/978-3-642-
72245-5_35 [Link]

UNB, 2002: Theory of Stokes-Helmert’s Method of Geoid
Determination. SHGEOQ Software Package, The UNB
Application to Stokes-Helmert Approach for Precise
Geoid Computation, Reference Manual 1. Department
of Geodesy and Geomatics Engineering, University of
New Brunswick, Fredericton, Canada. http/iwww2,
uub.ca/gge/Research/GRI/GeodesyGroup/ SHGeo!

Manual/SHGeo manual 1 2000 pdf. 20027 20097
Vani¢ek, P. and A. Kleusberg, 1987: The Canadian geoid

— Stokesian approach. manuscripta geodeatica, 12, 86-
98

Vanitek, P. and Z. Martinec, 1994: The Stokes-Helmert
scheme for the evialvation of a precise geoid. mani-
scripta geodeatica, 19, 119-128.

Vani¢ek, P., J. Huang, P. Novik, 5. Pagiatakis, M. Vé-
ronhean, Z. Martinec, and W. E. Featherstone, 1999
Determination of the boundary values for the Stokes-
Helmert problem. 7. Gepd., 73, 180-192, dod: 101007/
5001900050235 [Link]

Véronneau, M. and J. Huang, 2016: The Canadian Geodetic
Vertical Datum of 2013 {CGVD2013). Geomatica, 70,
9-19, doi: 10.5623/c1g2016-101. [Link]

Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi,
F. O’Loughlin, J. C. Neal, C. C. Sampson, 5. Kanae,
and P.D. Bates, 2017: A high-accuracy map of global
terrain elevations. Gegphys. Res. Lett. 44 5844-5853,
doi: 10.1002/20 17GLOT2874. [Liok]

Yang, M., C. Hirt, M. Rexer, R. Pail, and D). Yamazaki,
2019: The tree-canopy effect in gravity forward mod-
elling. Geopiys. J. Int., 219,271-289, doi: 10.109%/ ¢ji/
ggz264 [Link]



	CUT_PhDThesis_Ropesh Goyal_19553975fi
	TitlePage_CUT
	BlankPage
	BlankPage1
	BlankPage2
	startingpages11062022
	binder v3afterSC -R1

	Response_Ropesh Goyal 16103275



