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ABSTRACT 

Civil infrastructures are prone to deterioration due to routine services and exposure to 

extreme operational conditions, such as earthquake, typhoon and corrosive environment. The 

accumulation of structural damage will adversely affect the serviceability, integrity, reliability 

and shorten the life expectancy of civil engineering structures. Structural health monitoring 

(SHM) and condition assessment are crucial for ensuring safety and preserving the service life 

of existing infrastructure. With massively availability of vibration data collected from the long-

term SHM applications, an immediate task is to accurately and effectively identify potential 

structural damage at an early stage. Based on the fact that structural damage will alter the 

structural vibration characteristics, vibration-based damage detection methods have been 

widely used in structural condition assessment during the past decades. The success of 

vibration-based damage detection methods largely relies on the extraction of reliable features 

that are sensitive to structural damage but robustness to variation of the operational condition. 

However, the variation of operational and environmental conditions, as well as the presence 

of nonlinearities and measurement noise, are common in SHM practice, which can adversely 

affect the accuracy of vibration-based damage detection methods if not properly addressed.  

The research carried out in this thesis focuses on developing novel data analytics and 

damage detection methods that are applicable to SHM applications subjected to operational 

and environmental condition changes, nonlinearity and/or measurement noise. The contents of 

this thesis include:  

(1) Time-frequency analysis is suitable for processing the time-varying and nonstationary 

signal, the estimated modal parameters can be further used for structural damage detection.  

To estimate the high-resolution instantaneous frequency for nonstationary vibration signal 

polluted with strong noise, an adaptive Duffing oscillator-based time-frequency analysis 

approach is proposed in this study. With a high sensitivity to detect slight frequency shift and 

immunity to noise effect, the intermittent chaotic of Duffing oscillator system is introduced to 

accurately identify the time-varying instantaneous frequencies. Furthermore, an adaptive 

Duffing oscillator array is adopted to improve the efficiency of instantaneous frequency 

identification. The proposed approach is compared with empirical wavelet transform (EWT) 

and Hilbert transform (EWT-HT)-based method to highlight the superiority of the proposed 

approach in obtaining high-resolution time-frequency analysis results for nonstationary signals 

with strong noise. 

(2) Linear theory-based system parameter identification or modal analysis methods might 

result in biased parameter estimation results and fail to accurately detect nonlinear structural 
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damage. An output-only Volterra series model is proposed to quantify the nonlinearity of 

vibration responses and further used to perform nonlinear structural damage assessment. The 

main idea is to replace the excitation input to the Volterra model with the dynamic response 

measured from a specific location, and to describe the nonlinearity in the region between two 

nodes with output-only data. The contribution of nonlinearities is employed as damage feature 

to locate and quantify structural nonlinear damage.  

(3) To improve the identifiability of structural damage, a systematic singular spectrum 

analysis (SSA) based phase space technique (PST) framework for structural damage detection 

by using the higher order frequency response components is proposed. The high dimensional 

dynamic acceleration response is decomposed into several low dimensional components via 

SSA. Then the change in phase space trajectory (CPST) reconstructed from the decomposed 

component with higher order responses of structures under intact and damaged states is 

utilized to identify the structural condition changes. To demonstrate the advantage of using the 

proposed method for structural damage detection in providing a higher sensitivity than the 

traditional modal information based indices, damage detection results by using the proposed 

SSA-CPST index are further compared with those from the relative change of other commonly 

used modal-based indices, i.e. natural frequency, flexibility, COMAC and ECOMAC. 

(4) Due to the complexity in practical structural systems and uncertainties in loading 

scenarios, the in-situ measured responses are inevitable of high-dimensional frequency 

components, which may not be fully unfolded in the phase space. To address the issue faced 

by PST-based methods for identifying structural damage using high dimensional dynamic 

responses of structures under stochastic excitations, a data-driven structural damage 

assessment approach using phase space embedding strategy in conjunction with Koopman 

operator under stochastic excitations is proposed. The proposed approach consists of three 

main steps. Firstly, structural vibration responses from a single channel are projected to the 

dynamic attractor of high dimensional system in phase space using embedding strategy. The 

second step connects the consecutive embedded Hankel matrix with a mapping matrix, that is, 

Koopman operator, and obtains the eigenvalues approximation of Koopman operator with 

subspace DMD. Then, the Mahalanobis distance between the eigenvalue vectors approximated 

under intact and current testing states is served as DSF to detect the structural condition change.  

(5) The change in modal parameters due to temperature variation could be contaminated 

by these induced by a medium degree of damage. A novel phase space based manifold learning 

approach is proposed to develop damage index for structural damage detection, taking into 

account of the variations in environmental and operational conditions. The feasibility and 

superiority of using manifold learning for revealing the inherent topological structure of the 
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underlying systems subjected to operational conditions with the long-term vibration 

monitoring responses are demonstrated. DSF that is sensitive to damage but insensitive to 

environmental effects is developed via the multivariate Gaussian process regression model. 

Long-term vibration responses measured from two in-situ bridges, namely Dowling Hall 

Footbridge and Z24 bridge are utilized to validate the applicability and performance of the 

proposed approach for structural damage detection under ambient operation conditions. 

(6) Most structures are subjected to a certain extent of nonlinear and non-stationary 

vibration behavior, therefore, modal analysis techniques based on linearity assumption may 

fail to provide accurate estimation or prediction of nonlinear problems. To overcome this 

challenge, this thesis demonstrates that linear and nonlinear structural dynamic vibrations can 

be represented by a universal forced linear model in a finite dimension space projected by 

time-delay coordinates. Similar to the modal analysis of linear systems, the linearized model 

allows for handling nonlinear vibration responses as a superposition of the discovered 

nonlinear coordinate basis. Numerical and experimental studies on nonlinear structures are 

conducted to demonstrate that the finite dimensional DMD based on the discrete Hankel SVD 

coordinate is highly symmetrically structured, and is able to accurately predict the responses 

of nonlinear systems with limited training datasets.    

(7) Application of the proposed linearization of nonlinear model for identifying the 

condition change of structures with initial nonlinearity. The eigen-frequencies extracted from 

the linearization model are served as damage features. The performance of using the eigen-

frequencies from DMD for nonlinear structural damage detection is compared with the natural 

frequencies obtained from FFT and the time-frequency analysis method to emphasize the 

superiority of the proposed approach. 

In summary, the research work conducted and the results obtained in this dissertation 

contribute to the development of robust and reliable vibration-based DSFs applicable to the 

SHM of civil engineering structures with the consideration of environmental condition change, 

system nonlinearities and measurement noise.   
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CHAPTER 1  INTRODUCTION 

1.1 Background 

        Existing infrastructure, such as bridges and buildings exposed to the operational 

environment for long service life, are prone to performance degradation, owing to material 

deterioration, natural hazards and human-made loading conditions. As of 2020, there were 

more than 617,000 and 912,000 bridges across the United States and China, respectively [1]. 

According to the 2021 Bridge Conditions Report of the American Road & Transportation 

Builders Association, more than 45,000 bridges were in poor condition and classified as 

“structurally deficient” in 2020 [2]. The same health condition problem of civil structures is 

common worldwide. With an increasing number of bridges approaching to the end of their 

designed lifespan, conducting timely condition assessment and maintenance of existing 

bridges will significantly extend its life expectancy and decrease the life-cycle overall cost [3]. 

Structural health monitoring (SHM) techniques have gained a significant amount of attention 

from the academy and industry in the last several decades. The wide applications of SHM 

systems have accumulated massive real measured structural long-term vibration responses as 

well as environmental condition measurements. The massive available SHM data provide 

opportunities to reveal the structural performance degradation mechanism and evaluate the 

structural health condition under operational conditions [4].  

        Damage identification and condition assessment can be considered as one of the most 

crucial aspects in the field of SHM. Structural damage, such as cracking and spalling of the 

concrete, corrosion of reinforcing steel, and settlement of supports are commonly found in 

bridges and buildings [5]. The accumulation of structural damage will alter the stiffness, mass, 

damping properties, boundary condition and system connectivity. As a result, the mechanical 

properties and dynamic characteristics of the civil structures corresponding to different states 

will be different. Identifying the presence of the minor damage at an early stage can provide 

important evidence to understand the root causes of the structural performance anomaly and 

make immediate maintenance action recommendations. Four levels are usually defined in 

structural damage detection, namely, level 1: diagnosing the presence of damage; level 2: 

detecting the location; level 3: identifying the extent of damage; and level 4: predicting the 

remaining life of structures [6].  

        Available structural damage identification methods can be broadly classified into the 

following two main types: (i) non-destructive test (NDT); and (ii) vibration-based methods. 

The NDT mainly includes acoustic emission testing (AE), electromagnetic testing (ET), laser 

testing methods (LM), leak testing (LT), magnetic flux leakage (MFL), liquid penetrant testing 
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(PT), magnetic particle testing (MT), neutron radiographic testing (NR), radiographic testing 

(RT), thermal/infrared testing (IR), ultrasonic testing (UT) and visual testing (VT) [7]. 

However, the NDT methods encounter some difficulties in the application to damage detection 

of civil structures. Primarily, the most widely used material, concrete, is inhomogeneous and 

highly variable from place to place. Secondly, only the personnel and equipment assessable 

components of large-scale civil structures can be evaluated by using NDT methods [8]. Owing 

to these constraints, the NDT methods are often limited to damage detection on or beneath the 

surface of the structure. In comparison, vibration-based damage detection methods globally 

identify the occurrence, location and extent of structural damage by tracking the vibration 

characteristics variations between undamaged and damaged states [9]. The vibration-based 

methods have attracted considerable attention due to their unique ability to detect minor 

structural condition changes inside the structures that are invisible via regular inspection. 

Vibration-based damage diagnosis methods are based on the fact that structural damage, such 

as stiffness reduction resulting from the presence of cracks or loosening of connection, will 

cause changes in the vibration characteristics. Thus, structural damage is generally identified 

by tracking the variation of the extracted damage-sensitive features from vibration acceleration, 

velocity, displacement and strain responses. The scope of this thesis is limited to developing 

vibration-based damage detection methods.   

        According to whether the physical finite element (FE) model of the monitored structure 

is required or not, the vibration-based damage detection methods can be classified into two 

large groups, namely FE model updating methods and data-driven methods. Each type has its 

intrinsic advantages and limitations. Model updating methods usually modify structural 

stiffness, mass and damping matrices to minimize the residual error of modal parameters, such 

as vibration frequency and mode shape estimated from the analytical model and the 

experimental measurement [10]. It is possible to achieve Level 1-3 damage identification by 

using the model-based methods when the iteratively updated FE model is fine and accurate 

enough. However, it is time and computation resource consuming to construct a fine FE model 

for large-scale infrastructure and repeatedly update the model parameters. The data-driven 

methods usually extract damage features from time-domain, frequency-domain and time-

frequency domain. Structural damage can be detected by statistically evaluating the 

dissimilarity in the defined damage sensitive feature (DSF) between baseline (healthy) and the 

currently inspected states. With the superiority in data-driven monitoring strategy which does 

not require FE modelling and updating, the data feature-based methods have been widely 

developed in the last decades [11]. However, since the physical model is not used, the data-

driven methods primarily provide Level 1-2 damage detection.  

        In this chapter, literature review on the model-based and data-driven damage detection 
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methods will be conducted. Then, the research gaps and research objectives of this thesis are 

provided. Finally, the outline of this thesis is presented. 

1.2 Literature review of the vibration-based structural damage detection methods 

1.2.1 FE model updating methods 

        FE model updating methods can be utilized to identify the presence, location and severity 

of structural damage. These methods iteratively modify the structural parameters, such as 

stiffness, damping and mass matrices at elemental or sub-structural level as well as boundary 

conditions, to minimize the difference between the indexes obtained from measurement and 

FE model [12]. The indexes used in the model updating can be natural frequencies, mode 

shapes, damping coefficients, frequency response functions (FRF) and/or structural dynamic 

responses [13]. For large-scale structures with a large number of elements, the sub-structuring 

techniques can significantly enhance the computation efficiency by dividing a global structure 

into several independent substructures [14, 15].  

        The FE updating based damage detection is an inverse problem and typically ill-posed. 

In particular, sensors will only be installed on parts of crucial nodes or components, which 

means that the number of measurements is significantly less than the overall DOFs. Therefore, 

regularization techniques should be employed in the model updating process by introducing 

additional prior physical information. The value range of stiffness reduction coefficient and 

the sparsity of damaged locations can be used as constraints or physical-informed terms to 

regularize the damage identification [16]. 

1.2.2 Data-driven methods 

The ultimate goal of data-driven damage diagnosis is to extract damage features that are 

sensitive to structural condition change, but is robustness to external loading, environmental 

conditions change, and measurement noise. The success of vibration-based damage detection 

largely relies on the choice of DSF [17]. In literature, the DSF extracted from structural 

vibration responses can be categorized into three domains: time-domain, frequency-domain 

and time-frequency domain. Therefore, the data-driven damage identification methods 

involving DSF extracted from different domains are reviewed. 

 

1.2.2.1 Frequency domain based methods 

        With the development of experimental and operational modal analysis techniques, the 

majority of damage features are derived from frequency domain. Frequency domain 
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parameters, such as natural frequencies, mode shapes, mode shape curvatures, flexibility, 

modal strain energy, frequency response function (FRF) and transmissibility, etc., have been 

commonly used as indicators in structural damage detection [18]. Natural frequency is a global 

index that is related to the stiffness matrix, mass matrix and boundary conditions. Therefore, 

changes in natural frequencies have been used to conduct the Level 1 damage identification.   

        The mode shape is related to the element stiffness, thus the mode shape curvature and its 

derivatives, such as coordinate modal assurance criteria (COMAC) and enhanced coordinate 

modal assurance criteria (ECOMAC), have been used to detect the location of structural 

damage. However, as stated by Farrar and Worden [19], the damage location accuracy depends 

on the number of modes considered and the spatial density of sensors deployed. The flexibility 

matrix is defined as the inverse of the static stiffness matrix and thus can be used to alarm the 

damage-induced stiffness reduction. The flexibility matrix can be experimentally derived from 

the natural frequency and mode shape. The change in flexibility matrix before and after 

damage has been served as DSF to identify the location of damage [20, 21]. The FRF of a 

linear mechanical system is the quantitative measure of the output responses spectrum divided 

by the input excitation in frequency domain, which is a comprehensive representation of the 

original structure and is not dependent on the externally applied loads. The FRF delivers 

adequate information on the dynamic behavior of a structure, which has been widely applied 

to Level 1-2 damage detection of linear structures. More recently, some attempts have been 

made to quantify the damage extent (Level 3) by using the FRF-based methods. Nevertheless, 

the external excitation and synchronized structural responses should be measured to estimate 

the FRF. The dynamic excitation of large-scale structures under operating conditions is 

difficult or expensive to measure, which could greatly limit the applications of using FRF-

based method in practical applications. To address this limitation, the power spectral density 

transmissibility has been studied in Ref. [22-24] and demonstrated to be sensitive to structural 

damage without known input excitation. 

        A major challenge is that modal parameters can also be significantly affected by the 

environmental conditions, such as temperature, wind characteristics and humidity that the 

structures are faced with [25]. For example, temperature affects structural properties in a 

complicated manner. The variations in the thermal coefficient of Young’s modulus and the 

thermal expansion coefficient will directly or indirectly vary the stiffness, geometric 

dimension and boundary conditions of structures. Consequently, false structural damage 

detection results may occur when the temperature effects are not correctly considered. 

 

1.2.2.2 Time domain based methods   
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The time-domain methods directly extract DSF from the vibration time series and 

quantify the statistical and/or geometrical dissimilarity of dynamic responses before and after 

the damage. Compared with the FE model updating based methods, the time-domain methods 

may not suffer from the limitation of constructing a precise FE model. Furthermore, the time-

domain based DSFs are usually more sensitive to structural damage and applicable to 

nonlinear structures. In literature, most of the time domain methods are based on two kinds of 

principle. One is to establish a mathematic alternative model to represent the underlying 

system. Structural damage will alter the statistical distribution of mathematic model 

parameters or the prediction residual by using the model trained with baseline data. The 

mathematic alternative model can either characterize the transfer function between the external 

excitation and structural measurable responses, or between the responses measured from 

different locations. In terms of this, the representative methods includes, ARMA [26], Kalman 

filter [27], PST [28] and Volterra series [29] have been developed. Another principle is to 

characterize the irregularities or nonstationary induced by structural damage. To this end, the 

feasibility of using WT [30], Cointegration [31] and fractal dimension [32] based techniques 

have been investigated. Since the quantitative relation between the vibration responses and the 

damage severity cannot be explicitly established, the time domain based methods are usually 

limited to the Level 1-2 damage detection.  

The time-domain based methods are usually not only sensitive to structural damage but 

also to the operational conditions, especially the external loading conditions. Therefore, 

reliable time-domain damage feature that is robust to the variation of operational condition, is 

desirable. 

 

1.2.2.3 Time-frequency domain based methods   

Real-world structures may inherently be nonlinear to a certain extent, because of the 

geometric nonlinearities, materials with nonlinear constitutive relationships, complex 

boundary conditions and joint interfaces [33]. Besides, structures may exhibit nonlinear 

behaviors due to the accumulation of structural damage (e.g., breathing crack, plastic 

deformation and joint looseness) [34]. Under this situation, linear theory-based system 

parameter identification or modal analysis methods might result in biased parameter 

estimation results and fail to accurately detect structural damage. The time-frequency analysis 

techniques, such as short time Fourier transform (STFT), discrete wavelet transform, Hilbert 

transform (HT), Wigner distribution and Choi-Williams distribution have been widely used to 

characterize the temporal evolution of the instantaneous frequencies, mode shapes and 

amplitude of nonlinear structure [35]. The above-mentioned features extracted from the time-
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frequency analysis contain structural damage information. As stated by Bao et al. [36], the 

spikes of the identified instantaneous frequency, instantaneous phase, the Hilbert marginal 

spectrum, the slope of instantaneous phase can be used to identify the presence, location and 

relative extent of damage. In addition, the instantaneous mode shapes curvature is 

demonstrated to be able to identify the location of structural damage [37]. A comprehensive 

review of time-frequency analysis and application in system identification and damage 

detection is provided in Ref. [35]. A crucial procedure of time-frequency analysis is the 

decomposition of the original signal into several intrinsic mode functions (IMF). The empirical 

mode decomposition (EMD) and its variants, analytical mode decomposition, variational 

mode decomposition (VMD) and EWT are commonly used for nonstationary signal 

decomposition.  

One important focus of recent research in signal processing is to represent accurately the 

time-frequency distribution of non-stationary signals polluted by strong noise. Despite the long 

success of existing time-frequency analysis approaches in processing nonstationary signals 

with high signal-to-noise ratios (SNR), the significant noise contamination in signals poses a 

challenge to the accuracy and resolution of time-frequency analysis representation, especially 

for the nonstationary signals with low SNR. 

 

1.2.3 Machine learning and deep learning based methods 

With emerging computing power and sensing technology in the last decade, machine 

learning and deep learning-based methods have been extensively applied to structural damage 

detection. The damage detection problem can be viewed as a pattern recognition process, 

which consists of three parts: (i) data acquisition; (ii) feature extraction; and (iii) classification. 

Depending on the requirement of pre-defining the label of structural condition in healthy state 

and different damage states, the machine learning-based methods can be broadly divided into 

supervised, unsupervised and semi-supervised learning modes. As stated in Ref. [38], deep 

learning is a specialized subset of machine learning based on artificial neural network. Deep 

learning algorithms are incredibly complex, and there are different types of neural networks 

to address specific problems or datasets. Therefore, the deep learning and machine learning-

based damage detection methods are reviewed together.  

 

1.2.3.1 Supervised learning methods 

In the past decade, most machine learning algorithms are based on a supervised learning 
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manner. Usually, the frequency-domain features such as natural frequency [39], mode shape 

[40], transmissibility [41], FRFs [42] and time-domain features such as variance, skewness, 

kurtosis, wavelet energy and AR coefficients of vibration responses [39] have been found in 

literature. The efficiency and accuracy of commonly used machine learning classifiers, i.e. 

support vector machine (SVM) [43], decision tree, random forest [44], artificial neural 

network [45] and its variants have been extensively investigated. With sufficient input data 

and labelled output, the machine learning classifier can achieve a desirable damage 

identification accuracy.  

The performance of machine learning-based methods is highly dependent on the selection 

of input features. However, the suitable features that can accurately characterize the measured 

vibration responses are structure and problem-dependent. To this end, the reliable features that 

can be used to maximize the classification accuracy are designed by expert knowledge or 

repeatedly obtained by trial-and-error during the model training procedure. In comparison, the 

input of deep learning-based methods, i.e.， convolutional neural network (CNN), can be raw 

measurement, which automatically learns to extract the optimal features from data that 

maximize the classification accuracy [46]. This advantage made the deep learning-based 

methods more attractive and applicable to complicated SHM applications when massive data 

are available. Various alternative deep learning models have been reported, such as deep CNN 

[47], recurrent neural network [48] and recursive neural network [9] and deep residual network 

[49]. 

 

1.2.3.2 Unsupervised learning methods 

In SHM practices, the data measured from the damage state is absent or significantly less 

than samples under the healthy state. Therefore, the unsupervised methods are more applicable 

to practical SHM. The unsupervised machine learning-based damage detection methods, such 

as k-means clustering [50] and hierarchical clustering [41], have been studied. The basic 

principle is to separate different structural conditions in the output space via clustering analysis. 

The alternative unsupervised deep learning methods, such as auto-encoders, deep belief 

networks, and generative adversarial networks have been developed in data science 

community. However, only the auto-encoders and their variants have been reported in 

vibration-based structural damage detection [51-53]. The main advantage of auto-encoder is 

to discover low-dimensional features that are most representative of the original data. However, 

owing to no damage label being used in the training process, the unsupervised methods are 

mainly applied to identify the presence of structural damage (Level 1). 
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1.2.3.3 Semi-supervised learning methods 

The semi-supervised learning methods fall between supervised and unsupervised learning, 

which are suitable for the situation when a small range of changing operational and damage 

condition labelled data are available. It has been found that the damage identification accuracy 

can be substantially improved by combining the unlabeled data with a small number of labelled 

data [19]. For example, a novel adaptive graph filter-based semi-supervised classifier is 

proposed in [54] to indirectly classify the bridge damage by using drive-by measurement. 

Rogers et al. [55] proposed a Bayesian non-parameter clustering approach for the damage 

detection of bridge under operational conditions based on online feature extraction. Compared 

with the unsupervised learning methods, the semi-supervised learning methods can identify 

the presence and location of damage (level 1-2).  

However, a common concern of the deep learning-based methods is the lack of physical 

interpretability of the models built through the deep networks. 

1.2.4 Bayesian methods 

The presence of measurement noise and modelling errors induce considerable 

uncertainties, which adversely affect the accuracy of the deterministic damage detection 

methods. The probabilistic methods, i.e. Bayesian framework, can explicitly quantify the 

posterior probability of uncertainties based on observation and prior knowledge. In this regard, 

the Bayesian framework has been extensively cooperated with the FE model updating, system 

identification, machine learning methods in the context of structural damage detection. For 

example, Xin et al. [56] proposed a Bayesian-based nonlinear model updating method using 

instantaneous characteristics of structural dynamic responses. A Bayesian FE model updating 

method with incomplete complex modal data has been developed in Ref. [57] and applied to 

probabilistic damage detection. A sparse Bayesian learning approach has been proposed by 

Hou et al. [58] for structural damage detection with the consideration of uncertainties and 

varying temperature conditions. An extensive review of the Bayesian approach in structural 

system identification and damage assessment is provided in Ref. [59]. 

1.3 Research Gaps 

In literature, although vibration-based SHM methods have been extensively developed 

and investigated through numerical and experimental studies, the application of SHM 

techniques for effective condition assessment of practical structures still encounters some 

technical problems: 1) in time frequency analysis, the accuracy of instantaneous frequency 

identified from existing methods may be significantly affected when the vibration responses 
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are polluted with strong measurement noise; 2) it is a challenge to reliably evaluate the health 

condition of nonlinear structures in a data-driven manner when only the output responses are 

provided; 3) the sensitivities of DSF to minor structural damage occurred at an early stage is 

vulnerable to environmental and loading conditions ; 4) the robustness of DSF extracted from 

vibration responses under change environmental and operational conditions needs to be 

enhanced.  

1.4 Research Objectives 

The primary goal of this thesis is to identify reliable damage features from vibration 

responses that are sensitive to structural damage and insensitive to nonlinear effects, 

operational condition change and measurement noise. The research work includes: 

1. To accurately identify the instantaneous frequency of nonstationary signals with a 

strong noise pollution, an adaptive Duffing oscillator-based time frequency representation 

approach will be developed; 

2. To perform damage assessment of nonlinear structure without the prior knowledge of 

external excitations, an output-only Volterra series model approach, by quantifying the 

nonlinear behavior of structures will be developed;  

3. To extend the applicability of phase space based methods to process high dimensional 

responses, a systematic SSA based PST framework for structural damage detection, by using 

the higher order frequency response components will be developed; 

4. To address the issue faced by PST based methods for identifying structural damage 

using high dimensional dynamic responses of structures under stochastic excitations, a novel 

data driven approach for structural damage assessment based on phase space embedding in 

conjunction with stochastic Koopman operator will be proposed; 

5. To detect possible condition change of structures from long term SHM data subjected 

to operational conditions, a phase space based manifold learning method for structural damage 

detection under changing environmental and operational conditions will be developed; 

6. To characterize nonlinear systems from a linearized perspective for nonlinear dynamics 

analysis, a finite linear representation of nonlinear structural dynamics using phase space 

embedding coordinate will be developed; 

7. To verify the feasibility and applicability of the phase space reconstruction and 

Koopman operator based linearization of nonlinear model for damage detection of nonlinear 

structures. 
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1.5 Research Outline 

This thesis comprises nine chapters. The contents of these chapters following the 

introduction are presented as follows: 

Chapter 2 proposes a high resolution time-frequency representation approach for 

nonstationary signals polluted with strong noise. With a high sensitivity to detect slight 

frequency shift and an immunity to noise effect, the intermittent chaotic of Duffing oscillator 

system is introduced to accurately identify the time varying instantaneous frequencies. 

Furthermore, an adaptive Duffing oscillator array is adopted to improve the instantaneous 

frequency identification efficiency. The feasibility and effectiveness of the proposed method 

are verified with numerical studies on a multi-component synthetic nonstationary signal as 

well as on a two-storey shear building with time varying stiffness under seismic loads, and 

experimental studies on a laboratory bridge model under moving vehicle load. 

Chapter 3 proposes an output-only-based approach using Volterra series model for 

nonlinear structural damage detection, by quantifying the nonlinear behavior of structures 

without the prior knowledge of external excitations. The capability and accuracy of using the 

proposed approach for nonlinear structural damage detection are validated with numerical 

studies on a beam structure with a breathing crack under different levels of white noise 

excitations and experimental studies on a precast segmental concrete column subjected to 

ground motions with different peak ground acceleration (PGA) values. 

Chapter 4 proposes a novel approach for improving the identifiability of structural 

damage by using higher order responses and SSA based PST technique. The accuracy and 

reliability of the proposed approach are verified with numerical studies on a planar truss 

structure and experimental studies on a Tee-section pre-stressed concrete beam model. The 

effects of white noise, pink noise, modelling uncertainties on the accuracy of damage detection 

are investigated. 

Chapter 5 proposes a novel data driven approach for structural damage assessment based 

on phase space embedding in conjunction with stochastic Koopman operator. The feasibility 

and applicability of the proposed approach are verified with numerical studies on a planar truss 

model and experimental studies on the Z24 benchmark bridge. The robustness of the proposed 

approach under operational and environmental variations is tested by considering 10% white 

noise in vibration measurement and six different ambient loading scenarios.  

Chapter 6 proposes a novel structural damage detection approach based on manifold 

learning for the effective condition assessment of real-world structures under environmental 

and operational conditions. The effectiveness and superiority of the proposed approach are 
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demonstrated by two real-world engineering structures, that is, the Dowling Hall Footbridge 

and Z24 bridge. 

Chapter 7 proposes a finite linear representation of nonlinear structural dynamics using 

phase space embedding coordinate. Experimental studies on an eight-story shear-type linear 

steel frame is conducted to identify natural frequencies and the corresponding mode shapes. 

Numerical and experimental studies on nonlinear structures are conducted to demonstrate that 

the finite dimensional DMD based on the discrete Hankel SVD coordinate is highly 

symmetrically structured, and is able to accurately obtain a linear representation of structural 

nonlinear vibration. 

Chapter 8 builds on the finding of Chapter 7 in order to identify the condition change of 

structures with initial nonlinearity. The eigen-frequencies extracted from the Koopman 

operator are served as damage features. Two experimental structures exhibiting inherent 

nonlinearity, namely a magneto-elastic system and a precast segment beam, are employed to 

demonstrate the feasibility and effectiveness of using the proposed method for identifying 

condition change of nonlinear structures. 

Chapter 9 summarizes the main finding from this study, as well as some future works.  

It should be noted that this thesis is compiled by combining the technical papers prepared 

by the candidate during his PhD study. Therefore, Chapters 2 to 8 can be read independently. 

On the other hand, to make each technical paper complete, the numerical simulations and 

experimental applications are introduced in almost every chapter (i.e. in each independent 

chapter). These parts thus might be slightly repetitive with each other. 
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CHAPTER 2 HIGH RESOLUTION TIME FREQUENCY 

REPRESENTATION FOR INSTANTANEOUS FREQUENCY 

IDENTIFICATION BY ADAPTIVE DUFFING OSCILLATOR 

ABSTRACT1 

Time frequency analysis of structural vibration responses provides essential information 

for structural system identification, modal updating and condition assessment. However, 

spurious peaks introduced by the strong noise will significantly increase the false positive rate 

as well as compromise the sparse time frequency signal representation. This chapter proposes 

a high resolution time frequency representation approach for nonstationary signals polluted 

with strong noise. With a high sensitivity to detect slight frequency shift and an immunity to 

noise effect, the intermittent chaotic of Duffing oscillator system is introduced to accurately 

identify the time varying instantaneous frequencies. Furthermore, an adaptive Duffing 

oscillator array is adopted to improve the instantaneous frequency identification efficiency. 

The feasibility and effectiveness of the proposed method are verified with numerical and 

experimental studies. Numerical studies are conducted on a multi-component synthetic 

nonstationary signal as well as on a two-storey shear building with time varying stiffness under 

seismic loads. In experimental validations, the acceleration response of a laboratory bridge 

model under moving vehicle load is also analysed by using the proposed approach to obtain 

the instantaneous frequency variations induced by the bridge-vehicle interaction. These results 

are compared with those obtained from a method based on empirical wavelet transform (EWT) 

and Hilbert transform (EWT-HT), to highlight the superiority of the proposed approach in 

obtaining high resolution time frequency analysis results for nonstationary signals with strong 

noise. 

2.1 Introduction 

One important focus of recent researches in signal processing is to represent accurately 

the time frequency distribution of non-stationary signals polluted by strong noise. Existing 

methods, such as, STFT, discrete wavelet transform, HT, Wigner distribution and Choi-

                                                      

1This chapter was published in Structural Control & Health Monitoring with the full 

bibliographic citation as follows: Peng, Z., Li, J., Hao, H., & Xin, Y. (2020). High-resolution 

time-frequency representation for instantaneous frequency identification by adaptive Duffing 

oscillator. Structural Control and Health Monitoring, 27(12), e2635. 

https://doi.org/10.1002/stc.2635.  

https://doi.org/10.1002/stc.2635
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Williams distribution, have been studied in various disciplines for different applications. The 

detailed theoretical background of those algorithms and the improvements developed to 

improve the existing methods have been reviewed in Ref. [1-6]. Despite its success in 

processing nonstationary signals with high signal-to-noise ratios (SNR), the significant noise 

contamination in signals poses a challenge to the analysis accuracy and resolution of time 

frequency analysis representation, especially for the nonstationary signals with low SNR.  

For vibration signals submerged in strong background noise, signal denoising methods 

by using Wiener filter [7], wavelet filter [8] and singular value decomposition (SVD) [9] have 

been commonly used to reduce the influence of noise and improve the quality of time 

frequency analysis. In fact, most of the above-mentioned methods remove noise in the 

frequency domain, and are only suitable for signals with energy compact spectra. Conversely, 

the nonstationary signals in real situations usually contain multiple and even varying frequency 

components that are broadly distributed in a range of frequency band and maybe even 

overlapped in the frequency domain. Consequently, non-negligible level of noise remains in 

the signals, which may not be fully filtered by using conventional signal denoising methods. 

Considering the sparse feature of nonstationary signals in time frequency domain 

representation, more advanced methods, i.e. compressive sensing technique [10] and 

envelope-tracking filter [11], have been developed to improve the effectiveness and 

performance of nonstationary signal denoising and processing.  

During the last two decades, nonlinear chaotic oscillator has attracted more and more 

research attention owning to its excellent performance in sensitively detecting weak periodic 

signals under strong noise effect. The motion of human eardrum, which can sensitively 

distinguish a faint sound from the noisy environment, motivated the very first discovered 

chaotic oscillators in weak signal detection. Duffing equation, as the second-order differential 

model simplified from eardrum vibrations, has been widely used in weak signal detection [12, 

13]. The nonlinear behavior of Duffing oscillator usually exhibits by introducing a high order 

nonlinear term. A Duffing system will experience fixed-point state, cyclic attractor state, 

periodic state and chaotic state with the increase of driving force amplitude. Existing studies 

[14, 15] demonstrated the potential use of Duffing oscillator in noise contaminated weak signal 

detection by adjusting the system into a critical state between periodic state and chaotic state 

[16]. Phase transition can be observed in the PST when the external weak signal with the same 

frequency as that of the internal driving force is served as input to the Duffing system. The 

effect of noise on the phase lag and frequency responses of Duffing oscillator is 

comprehensively investigated in Ref. [17, 18]. However, strong noise will only roughen the 

local PST but introduce an insignificant effect on the critical state. Wang et al. [19] applied the 

intermittent chaotic motion of Duffing oscillator to detect the frequency of weak signals 
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polluted by a strong noise. Studies in Ref. [20, 21] utilized the Duffing oscillator to detect the 

nonlinear Lamb wave reflected from the crack surface and identify the crack location by using 

the difference between arrive time instants of lamb wave. More recently, it has been pointed 

out [22] that intermittent chaotic phenomenon will present when a slight frequency shift (less 

than 3%) exists in the internal reference signal and the signal to be detected. Accordingly, 

several attempts have been made to precisely estimate the frequency shift of weak signal to be 

detected by using an array of uncoupled Duffing oscillators covering the possible frequency 

range of signals to be detected. Then the actual frequency can be indirectly estimated with a 

high resolution according to the inversely proportional relationship between frequency shift 

and intermittent chaotic transition period [19].  

Little work has been devoted to estimating time varying frequency of nonstationary 

signals with Duffing system, mainly because of two reasons. One is that sufficient uncoupled 

oscillators ought to be arranged to cover the possible frequency variation of the target signal. 

Therefore the efficiency of instantaneous frequency identification will be significantly affected 

to execute numerous sets of oscillators at the same time. Furthermore, the phase transition 

period in a special oscillator will change with the variation of frequency, and the intermittent 

chaotic phenomenon may even disappear if the frequency shift exceeds 3%. Inspired by the 

STFT method, this study attempts to extend the applicability of Duffing system in analysing 

nonstationary signals by dividing the target signal into several separate segments with a sliding 

rectangular time window. Therefore, the signal segment in each time window can be viewed 

as stationary if the time window size is sufficiently short. Instead of estimating the 

instantaneous frequency in each time window with Fast Fourier Transform (FFT), the 

proposed approach develops an array of adaptive Duffing oscillators to recursively identify 

the time varying instantaneous frequency of nonstationary signals with high resolution and 

efficiency. With a good noise immunity and a high sensitivity to minor frequency change, the 

main contribution of this study is to develop a novel approach using Duffing oscillators to 

accurately identify the instantaneous frequency of nonstationary signals with a strong noise 

pollution.  

The remaining sections of this chapter are organised as follows. Section 2 provides the 

theoretical derivation and implementation procedure of the proposed approach to obtain high 

resolution time frequency analysis results with an adaptive Duffing oscillators array. Section 

3 demonstrates the accuracy of using the proposed adaptive Duffing oscillators array system 

to conduct the instantaneous frequency identification of a multiple-component synthetic 

nonstationary signal. Numerical studies on a building structure with time-varying stiffness 

under seismic loads are also conducted to validate the accuracy of the proposed approach. 

Section 4 further verifies the effectiveness of using the proposed approach for identifying the 
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instantaneous vibration frequency variation of a vehicle-bridge interaction system. In Section 

5, conclusions and some discussions for future studies are provided. 

2.2 Theoretical Background and Development 

2.2.1 Duffing oscillator operation for high resolution frequency shift detection 

In this study, a damped Duffing oscillator with a cubic-quintic nonlinearity term (-x3+x5) 

is chosen as the Duffing oscillator model. This nonlinear equation has been demonstrated to 

have an enhanced sensitivity to periodic weak signal detection and a good input-to-state 

stability (ISS) owning to the higher order nonlinear term [20, 21]. This damped cubic-quintic 

Duffing oscillator equation is expressed as 

�̈�(𝑡) + 𝛿�̇�(𝑡) − 𝑥(𝑡)3 + 𝑥(𝑡)5 = 𝐹𝑐𝑜𝑠(𝜔0𝑡)                                   (2.1) 

where and –x(t)3+x(t)5 are the damping ratio and nonlinear recovery force term of Duffing 

oscillator model, respectively; F and  are the amplitude and reference angular frequency of 

the internal harmonic driving force, respectively. The corresponding space state equation of 

Eq. (2.1) is  

{
�̇�(𝑡) = 𝑦(𝑡)

�̇�(𝑡) = −𝛿𝑦(𝑡) + 𝑥(𝑡)3 − 𝑥(𝑡)5 + 𝐹𝑐𝑜𝑠(𝜔0𝑡)
                                 (2.2) 

The Duffing oscillator described in Eq. (2.2) is parameter sensitive and its phase 

trajectory can be dramatically changed if a small disturbance is applied to the damping ratio 

or the internal harmonic driving force F. Without loss of generality, the damping ratio  is 

set as 0.5 according to Ref. [12]. Once  is fixed, the evolution of motion state will be: fixed 

point → periodic doubling → chaotic state → large-scale periodic state, with the gradual 

increase of the driving force amplitude. A clear state transition can be observed between the 

chaotic state and large-scale periodic state, thus the internal driving force of Duffing system is 

usually adjusted to a corresponding threshold value Fc. The transition in PST will be observed 

when a tiny increment is applied to Fc. For the purpose of weak signal detection, the state of 

the Duffing oscillator will be transformed when the external signal to be detected with the 

same frequency is introduced. Another potential application of Duffing system is to 

accurately detect a slight frequency shift. For this purpose, Eq. (2.1) can be revised as follows 

when external signal to be detected with the frequency shift and noise is added. 

�̈�(𝑡) + 𝛿�̇�(𝑡) − 𝑥(𝑡)3 + 𝑥(𝑡)5 = 𝐹𝑐𝑐𝑜𝑠(𝜔0𝑡) + 𝐹𝐴𝑐𝑜𝑠[(𝜔0 + ∆𝜔)𝑡 + 𝜑] + 𝑁𝐿𝑛(𝑡)  (2.3) 

in which FA cos[(+)t+] represents the external signal to be detected (amplitude FA, 

angular frequency shift and phase difference ). NL denotes the additive noise level, and 
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n(t) is a zero mean and unit standard deviation vector with the same length as the reference 

signal. Eq. (2.3) can be simplified by combining the internal reference signal and external 

signal to be detected with trigonometric function transformations, and can be expressed as 

�̈�(𝑡) + 𝛿�̇�(𝑡) − 𝑥(𝑡)3 + 𝑥(𝑡)5 = 𝐹(𝑡)𝑐𝑜𝑠[𝜔0𝑡 + 𝜃(𝑡)] + 𝑁𝐿𝑛(𝑡)                 (2.4) 

where   

{
𝐹(𝑡) = √𝐹𝑐

2 + 2𝐹𝑐𝐹𝐴 cos(∆𝜔 + 𝜑) + 𝐹𝐴
2

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝐹𝐴sin(∆𝜔+𝜑)

𝐹𝑐+𝐹𝐴cos(∆𝜔+𝜑)
]

                                  (2.5) 

In Eq. (2.5), the amplitude of the combined signal F(t) will change between [Fc -FA , Fc 

+FA] periodically with a constant angular speed of . Figure 2-1 describes the changing 

process of the overall driving force F(t) over time. Since the overall driving force will pass 

through the threshold value Fc periodically, the corresponding phase state of Duffing system 

will also vary from chaotic state to large periodic state with a period of T=2/. This 

phenomenon is also referred to as intermittent chaotic motion. The angular frequency 

difference between reference signal and signal to be detected can be indirectly estimated by 

calculating the intermittent chaotic T with phase state sensitivity indicators, i.e. Lyapunov 

exponent, Lyapunov dimension and Poincaré section [23, 24].   

It should be noted that intermittent chaotic based frequency shift estimation method has 

its limitation, namely, the boundary between chaotic and periodic states is obvious and easy to 

be identified when the relative frequency shift  ≤3%. However, the intermittent chaotic 

phenomenon might be destroyed when  is larger than 3%. One reason is that some 

response time is required to cause Duffing system phase state to change when the overall 

driving force exceeds the critical value. If the overall driving force F(t) changes quickly, the 

Duffing system could not respond well when the relative frequency shift is larger than 3%. 

            

Figure 2-1. The vector chart of the overall driving force. 
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2.2.2 Time varying instantaneous frequency identification with adaptive Duffing 

oscillator 

Duffing intermittent chaotic described in Section 2.1 has been proven to be potentially 

promising in detecting frequency shift of stationary signals under strong noise environment 

[22, 25]. It is inspired to develop a new time frequency analysis approach, to analyse the 

nonstationary signal that is divided into segments by using small sliding time windows. These 

windows are short enough to assume that, within each window, the frequency can be 

considered as time-invariant. Moreover, since the nonstationary signal is broken into segments 

in a set of time windows, Duffing oscillator array should be deployed densely and widely to 

cover all the possible frequency ranges of the signal to be detected. Figure 2-2 depicts how to 

arrange the reference frequency of each oscillators in an array to cover the whole frequency 

range of to-be-detected signal. In Figure 2-2, the middle oscillator with the reference frequency 

OS(mid) is deployed to detect the signal with instantaneous frequency belonging to the range 

[OS(mid)/1.03, OS(mid)×1.03] [16]. The frequency range can be extended by subsequently 

adding adjacent oscillators to the left and right sides of the middle one. In particular, the left 

frequency boundary of the middle oscillator OS(mid) is equal to the right frequency boundary 

of the left oscillator OS(L1). For instance, 79 uncoupled oscillators with different values of  

should be involved in an array to identify the instantaneous frequency varying between 1 ~100 

Hz. However, the intermittent chaotic will not occur in most Duffing oscillators when the 

reference frequency is located far away from the actual frequency of a certain time window, 

which thus provides less benefit to the instantaneous frequency identification.  

 

 

Figure 2-2. Duffing oscillators array. 

 

To improve the efficiency of the proposed approach and avoid the use of a large array of 

Duffing oscillators, this study attempts to propose a practical solution that consists of 

generating an adaptive array of oscillators. The proposed approach is able to recursively 

identify the evolution of instantaneous frequency. This means that the array will adjust itself 

to the changes in instantaneous frequency of the selected time window, according to the 

frequency estimated in the previous time window. Firstly, the nonstationary signal will be 
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divided into a number of time windows and the signal in the first time window will be used as 

input to a large Duffing oscillator array which covers all the possible frequency ranges of to-

be-detected signal to obtain an initial frequency estimation 1. Then, the large size of Duffing 

oscillators array will be replaced by a small one with three default oscillators to estimate the 

instantaneous frequency in the second time window. In a default oscillator array, the reference 

frequency of the middle default oscillator (referred to as OS(mid)) will be adjusted to the 

instantaneous frequency estimated in the previous time window. Other two default oscillators 

will be respectively deployed in the left side (OS(L1)) and right side (OS(R1)) of the middle 

oscillator with the frequency interval illustrated in Figure 2-2. Then, the signal in the second 

time window will be used as input to the above-mentioned Duffing array as the external driving 

force. The phase state transition will present in one of these three oscillators response if the 

actual signal frequency of current time window falls into the frequency detection range of a 

certain oscillator. Therefore phase state transition period is used to estimate the frequency shift 

between the actual and reference signals. Although such transition between periodic state and 

chaotic state can indeed be observed in the PST intuitively, it is difficult to highlight any of 

these two states from the PST at which the transition occurs, especially in scenarios with strong 

noise. The Lyapunov exponent is a quantitative index to evaluate the rate of separation of 

nonlinear dynamic system. For the two-dimensional (2D) Duffing oscillator used in this study, 

Table 2-1 gives the relationship between motion states and the corresponding three Lyapunov 

exponents [26, 27]. It can be found that the Duffing system will be in the chaotic state only 

when the sign of the maximum Lyapunov exponent (MLE) 1 is positive. This is because the 

phase trajectory will become dispersed when MLE is larger than 0. Therefore, the sign of MLE 

is introduced to distinguish the chaotic and periodic states of Duffing system as well as to 

calculate the exact intermittent chaotic periodic T. 

 

Table 2-1. Motion states of Duffing oscillator and its corresponding Lyapunov exponents. 

Lyapunov exponents Exponent sign Motion state  Phase space trajectory 

1, 2,3 

-, -, - stationary motion fixed point 

0, -, - periodic motion cyclic attractor 

0, 0, - quasi-periodic motion two-dimension torus 

+, 0, 0 chaotic state unstable 2D torus 

+, 0, - chaotic state strange attractor 

 

It should be noticed that the initial size of Duffing oscillator array is set as 3 to improve 

the computational efficiency. Inevitably, frequency mutation may exist in two adjacent time 
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windows due to the strong dynamic feature of to-be-detected signal. Therefore intermittent 

chaotic state might not occur in the current Duffing oscillator array. In this case, current 

Duffing array will extend its frequency detection range by symmetrically absorbing more 

oscillators in both sides until intermittent chaotic phenomenon presents. The same procedure 

will be recursively implemented to obtain the instantaneous frequency of the rest time 

windows. Then the time frequency representation of the original signal is generated by 

integrating those instantaneous frequencies identified by the adaptive Duffing oscillator in 

each time window. The framework of the proposed approach is as follows: 

Steps of the proposed approach include 

 Obtain the nonstationary signal contaminated with strong noise for detection; 

 Determine the window size and segment the original signal into n time windows; 

 Estimate the instantaneous frequency of the first time window 1 with a large array of 

Duffing oscillator; 

 Process the i-th time window signal, where 2≤ i ≤n-1; 

 a) set the reference frequency of the oscillator as OS(mid)=i-1;OS(L1)=i-

1/1.032;OS(R1)=i-1×1.032; 

b) input the signal of the i-th time window into the updated Duffing oscillator array, and 

obtain the state responses of each oscillator;  

c) calculate the Lyapunov exponent of each oscillator; 

d) if intermittent chaotic does not occur in the current Duffing oscillator, oscillators are 

added to the left and right sides of the current Duffing oscillator array; 

e) conduct sub-step b)~c) until the intermittent chaotic occurs in the current Duffing 

oscillator; 

f) quantify the intermittent period T according to Lyapunov exponent; 

g) estimate and record the instantaneous frequency i corresponding to the i-th time 

window. 

 Update the reference frequency for the next cycle; 

 Repeat sub-step a)~g) until the window index i is equal to n; 

 Generate the time frequency representation. 

 

Similar to the conventional STFT method, the main challenge faced by the proposed 

approach for instantaneous frequency identification is to determine the suitable window size. 
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Usually, a trade-off should be made between the signal resolution in time and frequency 

domains according to the frequency variation characteristic of the signal as well as the 

emphasis of individual applications. In this study, the time window size is fixed as 1s for the 

signal length, and 0.5s time window overlapping is considered to provide a more smooth time 

frequency analysis result.    

A prerequisite of the proposed adaptive Duffing oscillator based time frequency 

representation approach is that the to-be-detected signal only contains one main frequency 

component. For signals with multiple frequency components, previous studies demonstrated 

that the phase state transition will only occur when the actual frequency is the same or very 

close to the reference frequency of Duffing oscillator, however, is insensitive to other 

frequency components. However, the main contribution of this study is to demonstrate the 

feasibility of using Duffing oscillator for identifying time varying instantaneous frequency as 

well as taking advantages of its superiority in noise immunity. It should be noted that a pre-

processing procedure is applied to the original nonstationary signal. In particular, the multiple 

frequency component signals is decomposed into a number of components with individual 

frequencies. 

In literature, a variety of alternative time varying vibration signal decomposition methods, 

i.e. empirical modal decomposition (EMD), ensemble EMD, analytical mode decomposition, 

VMD, singular spectrum analysis (SSA) and EWT have been developed. Especially, the newly 

developed EWT method is selected in a library of candidate signal decomposition methods 

owning to its excellent performance in decomposing nonstationary signals [28]. The 

theoretical background and implementation procedure of EWT are detailed in Ref. [29, 30], 

and are not elaborated in this chapter. For the sake of better understanding the proposed 

approach, a flowchart of the whole framework as described in Figure 2-3 is presented for 

instantaneous frequency identification.  
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Figure 2-3. The framework of the proposed approach based on adaptive Duffing oscillator 

for instantaneous frequency identification. 

2.3 Numerical verification 

2.3.1 Numerical case 1 

To verify the effectiveness and performance of using the proposed approach for 

identifying the instantaneous frequency of nonstationary signals, a multi-component simulated 

nonstationary signal with frequency components ranged approximately from 5 Hz to 35 Hz 

and additional measurement noise is defined as  

1 2 3( ) ( ) ( ) ( ) ( )y t y t y t y t n t                                                 (2.6) 

where  denotes the noise level and n(t) is a zero mean and unit standard deviation vector with 

the same length as y(t). Three individual signal components y1(t), y2(t) and y3(t) are defined in 

Eqs. (2.7-2.9), respectively. Each signal component consists of three sections, namely two 

sections of frequency-modulated signals and a section of amplitude-modulated-frequency-
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modulated signal. The signal length of each section is 15s. This signal with discontinuities is 

simulated to be time varying and have sudden changes in vibration characteristics.   
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                  (2.9) 

The noise contaminated time domain signal with a sampling ratio of 400 Hz and its 

corresponding instantaneous frequency distribution and Fourier spectrum distribution are 

shown in Figure 2-4. Three main frequency components are obviously shown in the Fourier 

spectrum and the energy of each main frequency component is distributed in a wide frequency 

band, owing to the frequency variation with time as simulated in Eq. (2.6).  

 

(a) 

    

                 (b)                                                                (c) 

Figure 2-4. The simulated nonstationary signal: (a) Time series with 30% (SNR=10.44dB) 

white noise; (b) Theoretical instantaneous frequency; and (c) Fourier spectrum. 
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For signal decomposition by using EWT, the number of frequency components, that are 

also referred to as IMFs, along with the filtering boundaries of each IMF should be determined 

in advance. According to the observations from Fourier spectrum in Figure 2-4(c), the number 

of IMFs for EWT based signal decomposition is defined as 3. The filtering boundaries of three 

IMFs are respectively determined as 3.75 Hz, 13 Hz, 23 Hz and 38 Hz according to the average 

values of the maximum frequency of the left side frequency component and the minimum 

frequency of the right side component [29]. When the filtering boundaries are well determined, 

three signal components with sparse frequency distribution can be decomposed by conducting 

EWT analysis. 

For comparison purpose, the same nonstationary signal is also analyzed by a commonly 

utilized time-frequency analysis method, e.g. HT [30, 31], which has been intensively 

demonstrated to provide desirable performance in instantaneous frequency identification when 

the SNR is relatively high [32]. Conventional HT integrated empirical mode decomposition 

(EMD) and classical HT are conducted to obtain the time frequency representation. EMD 

method is affected by mode mixing phenomenon, which is non-negligible especially when the 

frequency distribution of signal components is not sparse or intermittent [33, 34]. Most 

recently, EWT has been demonstrated to be effective in ensuring the stable accuracy of 

decomposing multiple frequency components [35, 36]. To obtain an unbiased comparison of 

HT and the proposed approach in identifying instantaneous frequency under strong noise 

environment, EWT is used in both methods for signal decomposition.  

  

2.3.1.1 Instantaneous frequency identification by using counterpart EWT-HT method 

Figure 2-5 shows the time frequency distribution from the EWT-HT based method 

without or with 30% noise. Despite the errors at both boundaries and discontinuities, three 

individual signals are well distinguished and reliable time frequency analysis resolution is 

observed in Figure 2-5(a). Nonetheless, frequency fluctuations occur at the boundaries of two 

sections of synthetic signal, i.e. time instants at 15 s and 30 s. Slight frequency fluctuations 

caused by signal discontinuity are involved for the case without noise. As observed in Figure 

2-5(b), 30% white noise submerged in the synthetic signal significantly affects the 

performance of time frequency analysis resolution, especially in the amplitude-modulated 

signal section ranged from 30s to 45s. One possible reason is that the signal amplitude during 

this time period shows a decaying trend, thus, the SNR in this region is lower than that between 

0s and 30s. It should be noticed that the uncertainties of identified instantaneous frequency are 

more obvious in the higher frequency component, and the fluctuations are more significant. 

Hence, it can be preliminarily concluded that signals with high frequencies are more likely to 
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be affected by using EWT-HT based method when high-level noise is considered. 

 

   

       (a)                                                                      (b) 

Figure 2-5. Instantaneous frequency identification results by using EWT-HT based method: 

(a) without noise; (b) with 30% noise. 

 

2.3.1.2 Instantaneous frequency identification by using the proposed approach 

According to the implementation procedure of the proposed instantaneous frequency 

identification approach presented in Figure 2-3, a large array of Duffing oscillators should be 

deployed to estimate the actual frequency in the first time window. As can be found in the 

Fourier spectrum that is shown in Figure 2-4(c), the frequency variation range of the simulated 

signal is between 3.75Hz - 38 Hz. Therefore an array with 40 Duffing oscillators is designed 

to cover the frequency variation range of the signal. Figure 2-6 shows the instantaneous 

frequency identification results from the proposed adaptive Duffing approach. It is shown that 

although slight deviations are observed at some time instants, the overall instantaneous 

frequency are tracked accurately with a high resolution even when 30% noise is added. The 

relative errors as defined in Eq. (2.10) of identification results for the cases without and with 

noise effect by using the proposed approach are calculated based on the following equation 

1

( ) ( )

( )

N

identified theoretical

i

theoretical

Fre i Fre i

relative error
N Fre i









                                   (2.10) 

where Freidentified and Fredetected denote the identified frequencies and theoretical 

frequencies, respectively. N denotes the number of identified instantaneous frequencies during 

a specific vibration duration. The relative errors of using the proposed adaptive Duffing 

approach and EWT-HT based method for instantaneous frequency identification are listed in 

Table 2-2. It is observed that the relative errors of EWT-HT based method significantly 

increased when 30% noise is added to the original signal. In comparison, the relative errors of 

the proposed approach increase slightly for the case with 30% noise, indicating that the reliable 
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accuracy of using the proposed approach for identifying the instantaneous frequency of 

nonstationary signals under a strong noise scenario. The calculations are performed on a 

desktop with an Intel(R) Core(TM) i7-7700 CPU (3.6 GHz) and 16GB RAM. For numerical 

case 1, the computational time of using the proposed approach and EWT-HT method are 1.52 

s and 0.10 s, respectively.  

 

Table 2-2. Relative errors of identified instantaneous frequency results. 

 Adaptive Duffing approach EWT-HT approach 

 No noise 30% noise No noise 30% noise 

Component 1 (y1) 2.29% 2.45% 2.88% 7.55% 

Component 2 (y2) 0.46% 0.52% 4.85% 8.26% 

Component 3 (y3) 0.40% 0.65% 7.83% 10.39% 

 

    

     (a)                                                                       (b) 

Figure 2-6. Time-frequency analysis results by using the proposed adaptive Duffing 

approach: (a) without noise; (b) with 30% noise. 

 

2.3.2 Numerical case 2 

Structural responses under seismic excitations are usually nonstationary and contain a 

certain level of uncertainties due to nonlinear dynamic characteristics and measurement noise 

[37]. Time frequency analysis of structural responses under seismic loads can reveal the 

structural nonlinear dynamic behavior and earthquake resistant performance [38]. In order to 

investigate the effectiveness and reliability of using the proposed approach in identifying the 

instantaneous frequency of time varying structures under seismic loads, a two-storey shear 

building under the 1940 El Centro ground motion is simulated and taken as an example, as 

shown in Figure 2-7. The equivalent masses of floors 1 and 2 are defined as m1=1.60×104 kg 

and m2=8×103 kg, respectively. The damping values of two floors c1 and c2 are assumed to be 
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0.27×105 and 0.36×105, respectively. Time varying stiffness parameters of two floors are 

defined in Eqs. (2.11) and (2.12) to generate the nonstationary responses under seismic loads. 
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Figure 2-7. Two-storey shear building 

 

Figure 2-8 presents the applied seismic ground motion and the horizontal acceleration 

response of the first floor. It can be found that the amplitude of ground motion excitation in 

0~3s and 28s~30s are relatively small. As a result, the acceleration responses are also small 

during these two periods. Figure 2-9 compares time-frequency analysis results by using EWT-

HT based method and the proposed adaptive Duffing approach. It is obviously observed that 

the instantaneous frequency results identified by the proposed approach are more smooth and 

closer to the theoretical values. The relative identification errors listed in Table 2-3 further 

demonstrate the accuracy of the proposed method. However, the frequency resolution at both 

ends by using the EWT-HT based method is lower than that of the time domain responses at 

other time. Slight oscillations can also be observed in the results obtained from the proposed 

adaptive Duffing approach at the two ends of signals. The possible reason is that the signal 

amplitude in those periods are relatively small, and the end effect presents in the time 

frequency analysis. However, the proposed approach improves the accuracy and resolution of 

time frequency analysis results significantly compared with the method based on EWT and 
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HT. For numerical case 2, the computational time of using the proposed approach and EWT-

HT method are 8.80 s and 0.65 s, respectively.  

 

Table 2-3. Relative errors of identified instantaneous frequency results. 

 Adaptive Duffing approach EWT-HT approach 

1st IF 3.07% 8.99% 

2nd IF 2.00% 13.45% 

 

   

            (a)                                                                      (b) 

Figure 2-8. The applied seismic ground motion and the corresponding response of the 

structural model: (a) El Centro ground acceleration record; (b) The horizontal acceleration 

response of the first floor. 

 

 

     (a)                                                                     (b) 

Figure 2-9. Time-frequency analysis results by using: (a) EWT-HT method; (b) The proposed 

approach 

2.4 Experimental Validations  

Structural frequency variations caused by the vehicle-bridge interaction have been 

reported in several theoretical and experimental studies [31, 39, 40]. Dynamic responses of the 

bridge will inevitably be affected by several factors, i.e. road surface roughness, moving 

vehicle properties and measurement noise. In this study, measured vibration responses of a 

time varying system, namely a T-section prestressed concrete beam subjected to a moving 

vehicle load, are used to verify the proposed instantaneous frequency identification approach 
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in laboratory environment. Figure 2-10 shows the schematic experimental setup.  

 

(a)  

 

(b)  

Figure 2-10. Schematic experimental setup: (a) plan view; (b) cross-sections. (unit: mm) 

 

 

Figure 2-11. Overview of experimental setup of the bridge-vehicle system 

 

The bridge model mainly contains three separate components, a leading beam, a main 

span and a trailing zone, as shown in Figure 2-11. The boundary of the main span is simply 
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supported with steel rollers. Three prestressing tendons, as shown in Figure 2-10(b), are 

applied in the web of the main span with a total prestress force of 140 kN. Leading and trailing 

beams are used for accelerating and decelerating of the moving vehicle, respectively. The 

vehicle, as shown in Figure 2-11, is driven by an electrical motor to move through the main 

span with an approximately constant speed of 0.4 m/s. The wheel spacing and width of the 

vehicle are 0.8 m and 0.4 m, respectively. A previous study [39] observed an incremental 

impact of vehicle to bridge mass ratio on the variations of vehicle and bridge frequencies. In 

this experiment, additional weights are added on the top of vehicle to increase the vehicle to 

bridge mass ratio. The total weight of the vehicle and T-shaped main beam are 9.48 kN and 

12.441 kN, respectively. Six optical triggers are distributed along the main beam with an equal 

spacing of 1 m to measure the vehicle speed as well as record the exact time instants when 

vehicle axles move in and exit the main beam. More detailed information about the 

experimental setup and description can also be found in [41]. The vertical acceleration 

responses at the mid span of the bridge from the front axle entering the main beam to the rear 

axle leaving the main beam are recorded to analyse the time-varying frequency owning to the 

significant vehicle to bridge mass ratio, change location of moving vehicle and vehicle-bridge 

coupling effects. The duration of the measured acceleration time responses is about 15s with 

a sampling rate of 1000 Hz. According to the modal analysis of the bridge without the vehicle 

placing on the top of the bridge, the first two natural frequencies of the main span are 33.4 Hz 

and 97.3 Hz, respectively. Considering the responses from the bridge subjected to a moving 

vehicle are dominated by the first fundamental frequency component, a band-pass filter with 

a lower cutoff frequency of 4 Hz and a higher cutoff frequency of 60 Hz is applied to analyse 

the originally measured signal from the bridge subjected to the vehicle loads and to extract the 

instantaneous frequency from measured responses. Experimental response data are normalized 

in the interval [-1, 1]. Figure 2-12 shows the normalized acceleration responses at the mid-

span of the bridge beam after filtering, and its frequency spectrum. As can be found in the 

frequency spectrum, signal energy is mainly distributed in the range of 30-45 Hz and peaked 

at 33Hz. It is also worth noting that a small energy in the frequency range of 7.5-25 Hz can be 

observed, which is likely to be related to the vehicle’s vibration characteristics. For 

comparison, a hammer load is applied at the 3/8 span of the main beam when the vehicle is 

parked at the leading beam. The vertical acceleration responses of the mid-span under the 

hammer impact loads are shown in Figure 2-13(a). The small energy distributed from 7-25Hz 

no longer presents in the frequency spectrum as shown in Figure 2-13(b), when the vehicle is 

parked at the leading beam. This indirectly indicates that the natural frequency of the vehicle 

could be distributed in this frequency range. The wheel spacing and speed of vehicle in this 

study are respectively 0.8 m and 0.4 m/s, hence, the possible axis loading frequency is 0.5 Hz 



34 

 

[42, 43]. Another possibility is that the frequency component is due to the driving speed of 

vehicle. According to discussions presented in Ref. [40], the bridge frequency may shift about 

±v/L (1.57 Hz) due to the vehicle movement. From the above discussions, it could be 

concluded that the small energy from 7.5-25 Hz in the frequency spectrum is neither caused 

by the vehicle loading frequency nor the effect of vehicle movement. Therefore, it is 

reasonable to consider that the frequency range 7.5-25 Hz might be from the vehicle frequency 

variation during the vehicle moving cross the bridge.  

 

      

                                 (a)                                                                   (b)  

Figure 2-12. Vertical acceleration response at the mid-span under moving vehicle: (a) 

Normalized acceleration; (b) Frequency spectrum. 

 

     

                                      (a)                                                                      (b) 

Figure 2-13. Vertical acceleration response at the mid span under hammer impact loads: (a) 

Normalized acceleration; (b) Frequency spectrum 

 

To obtain a better understanding of the frequency evolution when the vehicle moves along 

the bridge, EWT is employed to decompose the measured acceleration responses into two 

components. Then, the time frequency spectrum of decomposed signals will be respectively 

displayed by performing HT and the proposed approach. The instantaneous frequency 

identification results by using both methods are shown in Figure 2-14 and Figure 2-15, 

respectively. Figure 2-14 shows the identified instantaneous frequency results from two EWT 
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components. The second-order curve fitting of both bridge frequency (blue scatter) and vehicle 

frequency (red scatter) are also presented. The bridge frequency at both ends of the signal is 

about 33.2 Hz, which is very close to the natural frequency when the vehicle is not on the 

testing beam. During the vehicle passing through the main beam, an increasing trend is 

observed and the instantaneous frequency reaches 36.3 Hz when the vehicle is located at the 

middle of main span. Intuitively, bridge frequency will decrease when additional mass is added 

to different locations of a bridge span. However, Chang and Yang [39] revealed that both the 

natural frequency of bridge and vehicle vary in a half-sine form with respect to the vehicle 

position. Namely, for a vehicle with relatively smaller natural frequency compared to the 

bridge, a convex trend in the variation of bridge instantaneous frequency and a concave 

varying trend will be found for the vehicle. This frequency deviation will be intensified when 

the fundamental frequency ratio of vehicle to bridge is close to one or the vehicle to bridge 

mass ratio is increased. The instantaneous frequency observation represented by the red scatter 

is consistent with the results reported in [39], which indicates that the frequency range 7.5-25 

Hz corresponds to the variation of the vehicle resonance frequency.   

 

 

Figure 2-14. Instantaneous frequency identification results by using EWT-HT method. 

 

Figure 2-15 shows the time frequency analysis spectrum obtained by using the proposed 

approach to analyse the signal components decomposed by EWT. As observed from Figure 

2-15, the evolution trends of bridge and vehicle frequencies are quite similar as the results in 

Figure 2-14. However, better convergent performance is achieved in the identified 

instantaneous frequencies and more stable results are obtained. Affected by vehicle-bridge 

interaction effect, road surface roughness and measurement noise, significant fluctuations may 

inevitably exist in the instantaneous frequency identification results when the vehicle crosses 

over the bridge. The curve fitting results are assumed as the baseline to calculate the relative 

errors since theoretical values are not available. Standard deviations and relative errors are 
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adopted herein to quantify the fluctuations of identified instantaneous frequencies by using 

both methods, as listed in Table 2-4. It can be observed that more stable results are obtained 

with the proposed approach. For experiment study, the computational time of the proposed 

approach and EWT-HT method are 3.66 s and 0.56 s, respectively. Although the proposed 

approach requires more computational time, the method is still efficient. The improvement on 

the identification results are substantial, demonstrated by the numerical and experimental 

results, especially the two numerical examples as given in Table 2-2 and Table 2-3.   

 

Table 2-4. Standard deviations and relative errors of instantaneous frequency results. 

Approach EWT-HT The proposed approach 

 
Standard 

deviation 
Relative error 

Standard 

deviation 
Relative error 

Bridge instantaneous 

frequency  
7.22 9.74% 4.05 8.8% 

Vehicle instantaneous 

frequency 
6.56 26.43% 4.11 23.64% 

 

 

Figure 2-15. Instantaneous frequency identification results by the proposed approach 

 

In Table 2-4, the standard deviations and relative errors of instantaneous frequency 

identification results by using the proposed approach are smaller than those from the EWT-HT 

method, which means that time-varying instantaneous frequencies identified by the proposed 

approach are more stable with less oscillations. In other words, a high frequency resolution is 

achieved in the instantaneous frequency identification. One possible explanation is that the 

noise-induced frequency perturbation can be well eliminated by Duffing system with the 

proposed approach. It is also noted that the improvement in experimental results is not as 

significant as results in numerical studies. The instantaneous frequency identification of 

bridge-vehicle system is a challenge task, especially separating the bridge and vehicle 
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frequencies accurately. The dynamic responses of the bridge subjected to a moving vehicle 

include the effects of measurement noise, the road surface roughness and bridge-vehicle 

interaction. These effects may increase the fluctuations in instantaneous frequencies of the 

bridge-vehicle system.   

2.5 Conclusions  

This chapter proposes a novel time frequency analysis approach based on an adaptive 

Duffing oscillator array to identify the instantaneous frequency of nonstationary signals under 

strong noise with a high resolution. To avoid the use of a large array of oscillators, 

improvement is made by recursively adjusting the central reference frequency in each time 

window according to the frequency estimated in the previous time window. A simulated 

multiple frequency component nonstationary signal, and the response of a frame structure with 

time varying stiffness parameters under seismic loads are utilized to investigate the capability 

of the proposed approach. The proposed method is further validated by analyzing the responses 

of a laboratory reinforced concrete beam subjected to moving vehicle load. Both numerical 

and experimental validation results show that the proposed adaptive Duffing oscillator 

approach can reveal a more stable and clear time-frequency transient feature and instantaneous 

frequency identification results with a high resolution than the counterpart EWT-HT based 

time-frequency analysis method. In future work, the superiority of the proposed approach in 

noise immunity will be further investigated by introducing pink noise and other types of strong 

noise and system uncertainties.  
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CHAPTER 3 NONLINEAR STRUCTURAL DAMAGE 

DETECTION USING OUTPUT-ONLY VOLTERRA SERIES 

MODEL 

ABSTRACT2 

Volterra series is a promising technique with great potential for nonlinear system 

identification. The conventional Volterra series model computes the output responses by 

performing multiple convolutions between the input excitation and Volterra kernels function. 

However, the difficulty in acquiring the excitation forces of civil engineering structures under 

operating conditions greatly limits the application of using Volterra series-based method for 

system identification. This chapter proposes an output-only-based approach using Volterra 

series model for nonlinear structural damage detection, by quantifying the nonlinear behavior 

of structures without the prior knowledge of external excitations. The proposed approach uses 

the structural responses measured at two different locations to identify the kernel function 

parameters and evaluate the contribution of nonlinear components in the measured responses. 

The ratio between the standard deviation of the nonlinear components and that of the overall 

structural response is adopted as damage-sensitive index to quantify the contributions from 

these two adjacent sensors for performing nonlinear structural damage detection. Numerical 

studies on a beam structure with a breathing crack under different levels of white noise 

excitations and experimental studies on a precast segmental concrete column subjected to 

ground motions with different PGA values are conducted to validate the capability and 

accuracy of using the proposed approach for nonlinear structural damage detection. The results 

demonstrate that the proposed approach is capable of performing nonlinearity quantification 

effectively and locating structural nonlinear damage. The increasing damage index value can 

also be used to register the increasing damage severity. 

3.1 Introduction 

Detection of structural local damage with vibration data measured from installed SHM 

systems is an important but still challenging task, especially when the structural vibration is 

nonlinear. It has received a considerable amount of research attentions in the structural 

                                                      

2This chaper was published in Structural Control & Health Monitoring with the full bibliographic 

citation as follows: Peng, Z., Li, J., Hao, H., & Li, C. (2021). Nonlinear structural damage detection 

using output-only Volterra series model. Structural Control and Health Monitoring, 28(9), e2802. 

https://doi.org/10.1002/stc.2802.  
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dynamics community during the last two decades [1]. In this scope, DSF extracted from 

structural vibration responses under the current state are compared with those under baseline 

(healthy) state to evaluate the occurrence, location and even severity of structural damage [2]. 

Most of the established vibration based damage detection methods can be divided into two 

categories: physical model-based and data feature-based [3, 4]. With the superiority in data 

driven monitoring strategy which does not require finite element modelling and updating, the 

data feature-based methods have been widely developed in the last decades [5, 6]. Developing 

the features or damage indices (DI) which are sensitive to structural condition but insensitive 

to operational effects or measurement noise is considered as one of the most essential 

components in data feature-based methods for evaluating the feasibility and effectiveness of 

using vibration data for damage detection. With this motivation, a number of novel time series 

analysis methods including the Autoregressive–moving-average (ARMA) model [7], PST 

technique [8] and autocorrelation function [9], etc., have been developed and successfully 

applied to detecting structural damage of numerical, experimental and in-field structures.   

Damage such as the breathing crack [10, 11], concrete crushing [12], column rocking, 

post-buckling and bolt rattling (impacting, stick-slip) [13], occurred in a structure or 

mechanical element is frequently manifested by nonlinear response manners, i.e. harmonic 

generation [14] and/or nonlinear attenuation [15] in vibrational responses. Breathing crack is 

one of the most commonly observed types of nonlinear damage that occurs in civil engineering 

or mechanical structures subjected to fatigue loading. The distinctive harmonic resonance 

features are usually used to evident the presence of breathing cracks. Chatterjee [14] analysed 

the acceleration responses of a cantilever beam with a breathing crack and found that the 

amplitude of the second harmonic component was positively proportional to the crack depth. 

Semperlotti et al. [11] pointed out that the phase information associated with the super-

harmonic components can be used to locate the crack damage. However, it should be noted 

that harmonic resonance based methods may suffer from several major drawbacks: 1) 

Compared with well excited low order natural frequency components of the structure, the 

signal energy of high order nonlinear component responses is relatively weak and not easily 

identified; and 2) The frequency of generated harmonic component is related to the excitation 

frequency, which is difficult to measure or even unavailable for in-field applications.   

It has been intensively demonstrated [16-18] that the damage-induced nonlinearity degree 

will increase with the damage severity, which provides a new damage assessment perspective 

by quantifying the proportion of nonlinearity component presented in vibration responses. In 

the past decade, many methods, e.g. Wiener–Hammerstein models [19], nonlinear 

autoregressive moving average (NARMA) model [20], frequency-domain subspace 

identification [21], principal component analysis (PCA) [22], deep learning [23] and Volterra 
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series model [24, 25] have been developed to effectively characterize nonlinearities with the 

system input and output data. Among those methods, Volterra series model has been 

demonstrated to have the feasibility and applicability in estimating the nonlinear properties 

presented in mechanical systems. Prawin and Rao [26] developed an adaptive filter based 

Volterra series model estimation method and applied it to the nonlinear parameter 

identification of multiple degrees-of-freedom (DOF) system subjected to a harmonic load. 

Villani et al. [25] proposed a stochastic Volterra series model and experimentally verified the 

feasibility of using this method in evaluating the state of structure with initial nonlinearity 

subjected to chirp excitations. The weak hysteresis behavior, i.e. vortex-induced vibration 

(VIV) can be accurately approximated by Volterra series model with the finite order 

polynomial. The single-input, single output second-order Volterra system is used in Ref. [27] 

to model the hysteresis phenomenon of the VIV of Tacoma Narrows Bridge at lock-in 

condition. Results shown that the nonlinear approximation using the identified Volterra kernels 

converges to the reference results. However, the Volterra series model dose not lead to a finite 

order convergent solution for system with strong hysteresis behavior. A state-of-the-art review 

on the Volterra series based nonlinear system modelling and its engineering applications has 

been comprehensively provided in Ref. [24]. In those studies, the external excitation and 

synchronized structural responses should be respectively used as input and output of the 

Volterra series model to estimate the kernel function coefficients. However, the dynamic 

excitation of structures under operating conditions is difficult to measure and therefore is 

usually unavailable, which could greatly limit the applications of using Volterra series based 

methods from laboratory-based experiment to the field tests. To overcome this limitation, 

attempts have been made in literature to estimate the system parameters without information 

of excitations. Tan et al. [28] proposed a sparse blind Volterra kernel parameter identification 

method and applied it to a single DOF system under distributed stationary random excitations. 

However, this method is considered oversimplified by removing all the memory terms. This 

method was extended by Fernandes et al. [29] to a parallel factor decomposition for blind 

identification of the first two orders of kernel parameters.  

The main objective of this study is to develop an output only based Volterra series model 

to quantify the nonlinearity associated with nonlinear structures, which can be used to perform 

nonlinear structural damage assessment. The main idea is to replace the excitation input to the 

Volterra model by the dynamic response measured from a specific location, and to describe 

the nonlinearity in the region between two nodes with output-only data. In the proposed 

method, the optimal kernel parameters of Volterra series model will be obtained through the 

LSE to minimize the normalized root-mean-square-error (NRMSE) between the measured 

output response and the prediction obtained from Volterra series model. Then a damage index 
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is defined based on the contribution of nonlinearities in Volterra series model to identify 

damage in nonlinear structures.   

The remaining sections of this chapter are organised as follows. The theoretical derivation 

from input-output based Volterra series to output-only based Volterra series representation, as 

well as the implementation procedure of the proposed approach in quantifying the nonlinearity 

associated with structural responses will be detailed in Section 2. In Section 3, a 2D numerical 

beam with a breathing crack is used as an example to verify the effectiveness and applicability 

of using the proposed approach for detecting the location and severity of crack damage. In 

Section 4, the proposed approach will be further applied to detect the nonlinear damage of a 

precast segmental column introduced by seismic excitations in the laboratory shaking table 

tests. Conclusions and discussions will be provided in Section 5. 

3.2 Theoretical Background and Development 

3.2.1 From input–output Volterra series to output-only Volterra series response 

representation 

The Volterra series theory [24] has been widely applied in several fields, including 

electronic, biomedical, mechanical, and civil engineering communities, to model and analyze 

the nonlinear process among measurable variables. Before stating the proposition, it is 

supposed that the nonlinear system involved in this study has a convergent expansion through 

Volterra series and the output response can be estimated by multiple convolutions involving 

the input series with the following discrete expression 

𝑦(𝑡) = ∑ ∑ ∑ ⋯
𝑁2
𝑛2=0

∑ 𝐻𝜂(𝑛1, 𝑛2,⋯ , 𝑛𝜂)
𝑁𝜂
𝑛𝜂=0

∏ 𝑢(𝑡 − 𝑛𝑖)
𝜂
𝑖=1 = ∑ 𝑦𝑛(𝑡)

∞
𝑛=1

𝑁1
𝑛1=0

∞
𝜂=1   (3.1) 

where 𝑢(𝑡), 𝑦(𝑡)∈ R are the one-dimensional input and output responses of nonlinear system 

at time instant t, respectively. 𝐻𝜂(𝑛1, 𝑛2,⋯ , 𝑛𝜂)  is the 𝜂 -th order discrete Volterra kernel 

function. Ni is the memory length of the i-th order Volterra kernel. As expressed in Eq. (3.1), 

the output time series can be viewed as the infinite combination of linear component y1 and 

higher-order nonlinear components y2(t)+ y3(t)+··· y∞(t). The first three components are 

expanded as follows 

𝑦1(𝑡) = ∑ 𝐻1(𝑛1)𝑢(𝑡 − 𝑛1)
𝑁1
𝑛1=0

                                        (3.2) 

𝑦2(𝑡) = ∑ ∑ 𝐻2(𝑛1, 𝑛2)𝑢(𝑡 − 𝑛1)𝑢(𝑡 − 𝑛2)
𝑁2
𝑛2=0

𝑁1
𝑛1=0

                       (3.3) 

𝑦3(𝑡) = ∑ ∑ ∑ 𝐻3(𝑛1, 𝑛2, 𝑛3)𝑢(𝑡 − 𝑛1)𝑢(𝑡 − 𝑛2)𝑢(𝑡 − 𝑛3)
𝑁3
𝑛3=0

𝑁2
𝑛2=0

𝑁1
𝑛1=0

          (3.4) 

Eq. (3.1) is the extension of the one-dimensional convolution theory to multi-dimensional 
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convolutional integrals with infinite series and memory terms. It should be noted that Volterra 

system is degraded into a linear system if all the higher order Volterra kernels except the first 

order are set as zero. For an unknown nonlinear system, the output prediction will be more 

accurate when a sufficient number of higher order kernels (can also be referred to as truncation 

order) is involved [30]. However, the parameters to be identified in each kernel function 

exponentially grow with the increasing truncation order, which eventually requires large size 

input-output observations as well as excessive computation to obtain a converged estimation 

of parameters associated with higher-order kernels [31, 32]. Existing studies suggest that a 

truncation order of 3 is commonly used to approximate the nonlinear dynamics of mechanical 

and civil structures with fading memory [33, 34]. Hence, the truncation order is predetermined 

as 3 in this study, and the corresponding Volterra series response representation is given in Eq. 

(3.5). 

  𝑦(𝑡) ≈ 𝑦1(𝑡)⏟  
𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝑦2(𝑡) + 𝑦3(𝑡)⏟        
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝑒(𝑡) 

= ∑ 𝐻1(𝑛1)𝑢(𝑡 − 𝑛1)
𝑁1
𝑛1=0

+ ∑ ∑ 𝐻2(𝑛1, 𝑛2)𝑢(𝑡 − 𝑛1)𝑢(𝑡 − 𝑛2)
𝑁2
𝑛2=0

𝑁1
𝑛1=0

  (3.5) 

             +∑ ∑ ∑ 𝐻3(𝑛1, 𝑛2, 𝑛3)𝑢(𝑡 − 𝑛1)𝑢(𝑡 − 𝑛2)𝑢(𝑡 − 𝑛3)
𝑁3
𝑛3=0

+ 𝑒(𝑡)
𝑁2
𝑛2=0

𝑁1
𝑛1=0

  

where 𝑒(𝑡)is the sum of prediction error at time instant t owning to ignoring the higher-order 

terms.  

The Volterra series response representation using input and output data detailed in Eq. 

(3.5) has been intensively demonstrated to be an efficient tool for modelling the nonlinear 

features and predicting the output of nonlinear mechanical system [24, 25, 35]. Unfortunately, 

as mentioned above for SHM applications under operating conditions, the input excitations 

could come from multiple sources at multiple locations, which poses an extreme difficulty to 

measure if not impossible [36]. To overcome this limitation, this study proposes a novel 

approach to identify the structural nonlinearity by developing an output data only Volterra 

series model. It is widely recognised that the accumulation of structural damage, especially 

crack damage, will gradually increase the contribution of nonlinear component in vibration 

responses [16]. Instead of investing efforts in measuring the barely accessible environmental 

excitation under operating conditions, the main idea of this study is to replace the excitation 

input by using an available structural response from a specific measurable location, and to 

estimate the development of structural damage in a certain region through investigating the 

nonlinearity between two used vibration responses (one as input and the other one as output 

in Volterra series model). To relate structural responses measured from two different locations 

as performed by the conventional Volterra model, the prediction of y(t) from Eq. (3.5) is 

modified as    
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𝑦(𝑡) ≈ 𝑦1(𝑡)⏟  
𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝑦2(𝑡) + 𝑦3(𝑡)⏟        
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝑒(𝑡) 

= ∑ 𝐺1(𝑛1)�̅�(𝑡 − 𝑛1)
𝑁1
𝑛1=0

+ ∑ ∑ 𝐺2(𝑛1, 𝑛2)�̅�(𝑡 − 𝑛1)�̅�(𝑡 − 𝑛2)
𝑁2
𝑛2=0

𝑁1
𝑛1=0

      (3.6) 

         +∑ ∑ ∑ 𝐺3(𝑛1, 𝑛2, 𝑛3)�̅�(𝑡 − 𝑛1)�̅�(𝑡 − 𝑛2)�̅�(𝑡 − 𝑛3)
𝑁3
𝑛3=0

+ 𝑒(𝑡)
𝑁2
𝑛2=0

𝑁1
𝑛1=0

   

in which the term �̅�(t) refers to the output response measured at another location at time t, 

G1(n1), G2(n1, n2) and G3(n1, n2, n3) denote the first, second and third orders of kernel functions 

that can be used to describe the output y(t) in a similar way by using Hn ( n1, n2, …, 𝑛𝜂). The 

above equation can be rewritten as follows  

𝑦(𝑡) = �̅�𝑇(𝑡)𝑮 + 𝑒(𝑡)                                                    (3.7) 

in which�̅�𝑇(𝑡) denotes the input vector measured from another location to predict y(t) with a 

length of Np. G denotes the unknown kernel parameters vector of length Np. Np= (N1+1) + 

(N2+1)2
 + (N3+1)3

 is the overall number of kernel parameters to be estimated. For the sake of 

simplicity, the same memory length of each order kernel is considered, namely, N1=N2=N3=N 

[26]. The expansion forms of�̅�𝑇(𝑡) and G of the order (Np ×1) are given as follows   

�̅�𝑇(𝑡) = [�̅�(𝑡),⋯ , �̅�(𝑡 − 𝑁1), �̅�
2(𝑡),⋯ , �̅�2(𝑡 − 𝑁2),⋯ , �̅�

3(𝑡),⋯ , �̅�3(𝑡 − 𝑁3)]      (3.8) 

𝑮 = [𝐺(0),⋯ , 𝐺(𝑁1)⏟          
𝐺1

, 𝐺(0,0),⋯ , 𝐺(𝑁2, 𝑁2)⏟            
𝐺2

, 𝐺(0,0,0),⋯ , 𝐺(𝑁3, 𝑁3, 𝑁3)⏟                
𝐺3

]          (3.9) 

It is concluded from Eqs. (7-9) that the output y(t) measured at time t is predicted by the 

convolution operation of current and past N samples measured from another location�̅�𝑇(𝑡). 

The involvement of memory terms allows the Volterra series model to describe the effect of 

the past input on the current response. Considering continuously measured input time history 

with m+1 observation [�̅�(0), �̅�(1), ···, �̅�(m)], and an equal length measured output time series 

[y(0), y(1), ···, y(m)], the output can be successively estimated by substituting the input signal 

into Eq. (3.7). The estimation process can be rewritten in the following matrix equation form  

𝒀 = �̅�𝑮 + 𝒆                                                             (3.10) 

where the output estimation vector Y of the order (m+1-N ×1), the prediction error vector e of 

the order (m+1-N×1) and the input matrix �̅� of the order (m+1-N× Np) are defined as follows  

𝒀 = [𝑦(𝑁), 𝑦(𝑁 + 1),⋯ , 𝑦(𝑚)]𝑇                                             (3.11) 

𝒆 = [𝑒(𝑁), 𝑒(𝑁 + 1),⋯ , 𝑒(𝑚)]                                                (3.12) 
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�̅� =

[
 
 
 
 
 

�̅�(𝑁),⋯ , �̅�(0)

�̅�(𝑁 + 1),⋯ , �̅�(1)
⋮

�̅�(𝑚),⋯ , �̅�(𝑚 − 𝑁)⏟            
�̅�1

|

|
�̅�(𝑁)2, ⋯ , �̅�(0)2

�̅�(𝑁 + 1)2,⋯ , �̅�(1)2

⋮
�̅�(𝑚)2,⋯ , �̅�(𝑚 − 𝑁)2⏟              

�̅�2

|

|
�̅�(𝑁)3,⋯ , �̅�(0)3

�̅�(𝑁 + 1)3,⋯ , �̅�(1)3

⋮
�̅�(𝑚)3, ⋯ , �̅�(𝑚 − 𝑁)3⏟              

�̅�3 ]
 
 
 
 
 

     (3.13) 

The optimal estimation of the Volterra series kernel parameters can be obtained 

analytically by using Eq. (3.9) in a least-squares manner, which yields 

�̂� = (�̅�𝑇�̅�)−1�̅�𝑇𝒀                                                        (3.14) 

With the least squares estimation (LSE), Volterra series kernel coefficient �̂�, the linear 

component y1 and nonlinear component y2 , y3 can be effectively calculated as 

𝒚1 = �̅�1�̂�1,𝒚2 = �̅�2�̂�2,𝒚3 = �̅�3�̂�3                                      (3.15) 

3.2.2 Output only based nonlinear DSF 

Using the methodology described in Section 2.1, it is possible to identify the nonlinear 

relationship between two adjacent sensor locations by estimating the Volterra kernels 

parameters. The nonlinear proportion will increase with the severity of damage, thus, structural 

damage can be effectively detected by analysing the nonlinearity in dynamic responses 

introduced by the degradation of structural integrity. A damage-sensitive index, which has 

already been successfully applied to detect the nonlinear damage [25, 37], including breathing 

crack and bolt loosen, is described as   

𝜆𝑖 =
𝑠𝑡𝑑(𝒚𝑖)

𝑠𝑡𝑑(𝒚1)+𝑠𝑡𝑑(𝒚2)+𝑠𝑡𝑑(𝒚3)
, (1 ≤ 𝑖 ≤ 3)                                 (3.16) 

where std(yi) is the standard deviation of the component signal corresponding to the i-th order 

kernel. λ𝑖  denotes the normalized contribution of yi to the overall system response. For 

instance, 𝜆1≈1 means that the relationship between two different sensor locations is nearly 

linear, indicating that no nonlinear damage occurs in this region. The system nonlinear level 

can be estimated as follows by subtracting the linear contribution from the overall contribution 

𝜆𝑖𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 1 −
𝑠𝑡𝑑(𝒚1)

𝑠𝑡𝑑(𝒚1)+𝑠𝑡𝑑(𝒚2)+𝑠𝑡𝑑(𝒚3)
                                   (3.17) 

The higher the above index, the more significant nonlinear response is expected. Figure 

3-1 presents the computational flowchart of using the proposed approach for nonlinear 

structural damage detection. In Step 1, structural dynamic responses at different locations are 

acquired and pre-processed. In Step 2, the truncation order and memory length of Volterra 

series model are pre-initialized as 3 and 1, respectively. Then the LSE method is adopted to 

estimate the optimal kernel parameters of the initialized Volterra series model. In Step 3, the 
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memory length will be adjusted in each iteration until the prediction error between measured 

and Volterra series model estimated responses meets the convergence criterion. It should be 

noted that the prediction error is related to the nonlinear degree of the system, which may be 

affected by the operational condition and may vary from case to case. Hence, it seems not 

reasonable to fix the allowable error level as a constant. NRMSE is defined as 

𝑁𝑅𝑀𝑆𝐸 =
√𝐸((�̂�−𝒚)2)

max(𝒚)−min(𝒚)
                                                    (3.18) 

where E(·) denotes the mathematical expectation; y and �̂� represent the actual response vector 

and predicted responses vector from Volterra series model, respectively; max(y) and min(y) 

are respectively the maximum and minimum values of actual responses vector. To this end, 

the relationship between memory length and NRMSE is carefully evaluated in each case to 

achieve a tradeoff between modelling accuracy and the number of kernel parameter numbers. 

In Step 4, the output response and the corresponding nonlinearity contribution will be 

estimated by using the Volterra series model determined in Steps 2-3. 

 

Figure 3-1. Flowchart of the proposed output-only nonlinear structural damage assessment 

 

It should be noted that the proposed approach conducts the nonlinear damage assessment 
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based on a developed Volterra series model using output vibration data only. The proposed 

approach can effectively evaluate the nonlinearity contribution between two sensor locations, 

and this feature can be explored for nonlinear damage detection. The proposed approach will 

be further validated in the following numerical and experimental studies.  

3.3 Numerical Studies 

3.3.1 Modeling of a beam structure with a breathing crack 

Cracks are the most commonly occurred type of structural damage in the aerospace, civil 

and mechanical structures subjected to fatigue loading. Typically, a crack can be classified into 

open crack and breathing crack according to the state of crack during the vibration. As the 

name suggests, open crack means that the crack is open under external excitations, usually 

leading to a reduction of physical stiffness. Apart from loss of stiffness, previous numerical 

and experimental studies demonstrated that the vibration of structures with breathing crack 

becomes nonlinear due to the fluctuation of stiffness during the periodical open and close of 

breathing crack. Douka and Hadjileontiadis [38] pointed out that considering the nonlinear 

behavior of breathing crack is more practical for the real situation and make the vibration based 

damage detection method more applicable. The bilinear stiffness model as shown in Figure 

3-2 has been widely used to describe the breathing behavior in an element with a breathing 

crack [39, 40]. For a crack propagating from the upper surface of beam, the crack will open 

when the upper surface suffers tensile stress, otherwise, the crack will close. As a result, the 

element stiffness matrix will vary with the open and close of crack surface. The crack opening 

mechanism along with the time-dependent element stiffness matrix in both states is given in 

Eq. (3.19).      

   

(a)                                                                   (b) 

Figure 3-2. DOFs at the crack element when the crack is: (a) open; (b) closed. 

 

𝑲𝑑(𝑡) = 𝑲 − 𝐻𝑠𝑡𝑒𝑝(𝜃𝑖 − 𝜃𝑖+1)𝑲𝑐 {
𝐻𝑠𝑡𝑒𝑝(𝜃𝑖 − 𝜃𝑖+1) = 1, 𝜃𝑖 − 𝜃𝑖+1 > 0

𝐻𝑠𝑡𝑒𝑝(𝜃𝑖 − 𝜃𝑖+1) = 0, 𝜃𝑖 − 𝜃𝑖+1 ≤ 0
    (3.19) 

where Hstep is the unit step function that is dependent on the relative rotations between the 

nodes i and i+1. K is the element stiffness matrix corresponding to the healthy state, 𝜃𝑖denotes 

the rotational displacement DOF corresponding to the i-th node. Kc refers to the element 
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stiffness reduction when the breathing crack opens. For a standard plane beam element with 

three DOFs per node, the element stiffness matrix K and Kc are described as 
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where A and l represent the section area and element length, respectively; Iu and Id are 

respectively the moments of inertial of the healthy element and damaged element; 𝜇 = (𝐼𝑢 −

𝐼𝑑)/𝐼𝑢 is the non-dimensional reduction ratio of moment of inertia, which is in the range from 

0 to 1. For example, 𝜇  =1 denotes that no damage is occurred, 𝜇 =0 denotes that the element 

is entirely damaged.  

As shown in Figure 3-3, a steel simply-supported bridge model with a breathing crack 

described in Eqs. (3.19-3.20) is introduced to demonstrate the effectiveness and feasibility of 

using the proposed approach for nonlinear damage detection. It is noted that structural 

responses along the axial direction are not used as input to estimate the damage feature, 

therefore, the DOF in the axial direction of each node is not shown in Figure 3-3. The beam 

bridge model is represented by a FE model discretized into 20 equal length beam elements 

with a total length of L=4m. The material properties are assumed as: Young’s modulus E= 206 

GPa, cross-section A= 6×10-4 m2, density 𝜌 =7800 kg/ m3, Poisson’s ratio 𝜐  =0.3. Rayleigh 

damping model with damping matrix C=𝛾𝑴 + 𝛿𝑲 is assumed in this study, with damping 

coefficients 𝛾 = 0.025 and 𝛿=0.002. The first three natural frequencies are 43.33 Hz, 85.67 

Hz and 122.67 Hz, respectively. As suggested in Ref. [41], the effect of crack damage on the 

variations of global mass and Rayleigh damping matrix is not considered in this study. 

Stationary zero-mean Gaussian white noise is applied in the vertical direction at both supports 

to simulate the ambient excitations [42], unless specifically defined otherwise below for 

particular analysis.  
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Figure 3-3. Finite element beam model and the cross-section 

 

3.3.2 Validation of the breathing crack modelling 

Three damage scenarios with 5%, 10%, 15% and 20% damage extent are respectively 

assumed in the bottom surface of element No. 6. It should be noted that the above damage 

extent is considered as the ratio of the crack depth to the overall height of healthy beam [43]. 

The system nonlinear behavior comes from the breathing effect of damaged element. Before 

conducting the nonlinear damage detection, the vertical acceleration response of DOF x16 with 

a breathing crack of 10% damage in element No. 6 is compared with those from the healthy 

beam and a beam with the same damage level of open crack to verify that breathing crack is 

correctly modelled. The FE model of the beam is excited by applying a sinusoidal load with 

an amplitude of 20 N and a single excitation frequency of 30 Hz on the vertical DOF x7. The 

open crack scenario is considered by changing the unit step function H in Eq. (3.19) as a 

constant value of 1. The frequency spectra of vertical acceleration responses in the vertical 

DOF x16 of the beam model under the healthy state, open crack state and breathing crack state 

are respectively shown in Figure 3-4. The sampling rate and duration of acceleration responses 

are set as 1000 Hz and 4 seconds, respectively. The comparison of frequency spectra in Figure 

3-4 shows that the excitation frequency dominates the dynamic response of the beam model 

under three different states. It should be noted that “1X” in Figure 3-4 is defined as the 

excitation frequency, and “2X” is twice of the excitation frequency. From Figure 3-4(a) and 

Figure 3-4(b), the first natural frequency is clearly observed besides the excitation frequency. 

The first natural frequency in Figure 3-4(b) is a little smaller than that in Figure 3-4(a). As 

observed in Figure 3-4(c), higher order harmonics of the excitation frequency are clearly 

observed in the frequency spectrum when the beam has a breathing crack. The generation of 

higher order harmonic phenomenon is usually recognized as nonlinear behavior introduced by 

the breathing crack damage [44], and the amplitude of the second harmonic component (2X) 

is widely reported in literature to be a good DSF in identifying the severity of crack damage 

[14, 45]. Hence, it can be clearly implied that the breathing crack is correctly modelled in this 

bridge beam model. 
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       (a)                                             (b)                                            (c) 

Figure 3-4. Frequency spectra of the measured responses from: (a) intact beam; (b) open 

crack with 10% damage; (c) breathing crack with 10% damage   

 

3.3.3 Output based nonlinear damage detection 

Dynamic responses from the beam model under the above defined ambient excitations 

are used for the subsequent analysis. It should be noted that ambient excitations are used here 

to simulate a realistic loading condition in the real world, and then the effect of the applied 

loads, e.g. hammer impact, at certain locations is not involved. The accuracy of Volterra series 

model in describing the nonlinear behavior of structural responses is based on the proper 

estimation of Volterra kernel parameters. According to Eq. (3.8), the number of kernel 

parameters will be exponentially growing with the truncation order and the memory length. 

The truncation order is predetermined as 3. In Figure 3-5, NRMSE defined in Eq. (3.18) is 

adopted to evaluate the prediction error between numerical responses and predicted output 

responses obtained from Volterra series model [46]. To well locate the location and source of 

nonlinearities, pairs of two adjacent sensors are selected for the calculation. To optimally select 

the parameters for the Volterra model, the nonlinearity features between responses at vertical 

DOFs x3~x4, x4~x5, x5~x6, x6~x7 and x7~x8 are respectively analysed. Overall, the NRMSE curve 

values show a decreasing trend with the increasing memory length, and turn to stable when 

the memory length reaches 2. The y-axis on the right side gives the increase of kernel 

parameters number with the memory length. When the memory length is considered as 2 or 3 

to construct the Volterra model, the number of kernel parameters to be estimated are 

respectively 39 and 84. Hence, the memory length is determined as 2 in this case study to keep 

a good balance between the prediction accuracy and computational efficiency. It is worth 

noting that a relatively high prediction error is observed in the region between x5 and x6 than 

that of other regions. One main reason is that the nonlinearity generated by the breathing crack 

damage in element 6 will increase the prediction error of Volterra series model. Similar 

phenomenon was also reported in existing studies [34] [47], thus the prediction error was 

utilized as a nonlinear damage sensitive index in those studies. 
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Figure 3-5. The prediction error and kernel parameters number with different memory 

lengths. 

 

Figure 3-6 shows the acceleration outputs predicted by using Volterra series model with 

a truncation order of 3 and a memory length of 2, compared with the simulated responses in 

time and frequency domains. The input and output of Volterra series model are the acceleration 

responses of x5 and x6 under white noise excitations with an amplitude of 10m/s2. Overall, a 

good agreement is observed between the true and predicted responses, demonstrating that the 

Volterra series model with the above-defined parameters can effectively model the breathing 

crack damage-introduced nonlinearity under white noise excitations. According to the 

comparison results as shown in Figure 3-5, the output prediction error level in region x5~x6 is 

relatively higher than that in other regions, hence better match than the results presented in 

Figure 3-6 is expected in other regions. Due to the page limit, these results from different 

sensor locations are not presented here. 

 

Figure 3-6. Comparison of true responses and predicted responses from Volterra series model 

under white noise excitations: (a) time domain responses; (b) zoom in time domain response; 

(c) frequency domain spectrum. 
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To detect the damage location, the adjacent neighbor nodes are respectively used as input 

by using the proposed approach described in Figure 3-1 to estimate the optimal Volterra series 

kernel parameters and evaluate the corresponding nonlinear component contribution. The 

noise robustness of proposed method is validated by adding 5% measurement noise to the 

vibration responses. Then, the nonlinear contribution of each structural element in total 

response is calculated with Eq. (3.17). Generally speaking, the nonlinearity level in structural 

response is not only related to the presence and severity of damage but also affected by external 

excitation condition, i.e. loading type and level. To gain more robust and reliable damage 

detection results, the procedure detailed in Figure 3-1 is repeated by changing the amplitude 

of randomly generated white noise excitation from 2.5 m/s2 to 15m/s2 N with a load increment 

of 2.5 m/s2 at each test. Moreover, the random white noise excitation series are regenerated in 

every simulation to ensure that different ambient excitations are used. Statistical results, such 

as mean and standard deviations are obtained from tests under different ambient excitations. 

Figure 3-7 shows the nonlinear damage detection results when 5%, 10%, 15% and 20% 

damage levels of breathing crack are respectively introduced in element 6. It can be clearly 

observed that the nonlinearity level in elements close to the damage location are relatively 

higher, and peaks are accurately observed at the damaged element 6. It is noted when a 

relatively small damage (5%) is considered in element 6, the nonlinear contribution index 

𝜆𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 at the damaged element is about 2% but larger than that of healthy elements. The 

uncertainties caused by white noise excitation levels increase the standard deviations in the 

results of minor damage detection case. Nevertheless, a lower level of uncertainties is observed 

when further increasing the damage severity. Owing to the fact that structural responses at 

different locations are obtained and excited by the same external load from a certain dynamic 

testing, the influences of the amplitude, type and duration of load on the measured structural 

responses at different locations in a single test are similar. This is a promising advantage of the 

proposed approach since the damage index is identified by using two dynamic acceleration 

responses at different locations, therefore the proposed damage index is independent of the 

loading. The results in Figure 3-7 demonstrate that the proposed method obtains good damage 

detection results in nonlinear structures with a breathing crack, and a robust performance under 

different loading amplitudes is achieved. 
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Figure 3-7. Nonlinear contribution index and its standard derivation under different 

excitation amplitudes: (a) 5% damage; (b) 10% damage; (c) 15% damage; and (d) 20% 

damage.  

3.4 Experimental verifications 

3.4.1 Experimental setup 

Experimental verifications on two precast segmental column models are conducted in this 

section to validate the performance of the proposed approach for nonlinear structural damage 

detection. A series of shaking table tests are conducted on two scaled precast segmental 

concrete columns constructed in laboratory subjected to seismic loads with different 

magnitudes of PGA to simulate the accumulated structural condition variations for damage 

detection of nonlinear structures. Figure 3-8 shows a testing specimen and experimental setup 

for the shake table tests. As shown in Figure 3-8, the precast segmental column used in this 

study is a 1/12 scaled model of a full-scale bridge column in Ref. [50]. The horizontal base 

slab was connected with four shake tables to support the specimen as well as to transfer the 

generated ground motions to the column model. Three segments, a footing block and a cap 

block were concatenated by a post-tensioned tendon to form the precast segmental column. 

More information about the dimensions of specimens are detailed in Ref. [48]. The only 

difference between these two precast segmental column models are the used reinforcement 

bars. In particular, one specimen (referred to as Specimen 1) is reinforced with fiber-reinforced 

(

b) 
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plastic (FRP) bars, and the other specimen (referred to as Specimen 2) is reinforced with 

ordinary steel reinforcing bars. The weight of the superstructure undertaken by the pier column 

is equalized by fixing two top masses with a dimension of 1000 mm ×1000 mm × 150 mm on 

the upper surface of the cap block through four bolts. The total weight of the specimen placed 

on the shake table is about 1456 kg.  

The ground motions recorded at the Niland Fire Station during the 1979 Imperial Valley 

Earthquake are selected as the excitation loads of the testing specimens. The PGA values of 

the recorded ground motions in E-W and N-S directions are 0.108 g and 0.068 g, respectively. 

The PGA of the E-W direction ground motion was scaled to 0.1 g and that in the N-S direction 

was also proportionally scaled in the first test. It should be noted that the uniaxial (only in the 

E-W direction) and bi-direction ground motions are applied to Specimen 1 and Specimen 2, 

respectively. To obtain the process of structural damage accumulation under different seismic 

loading levels, PGA value was increased with an interval of 0.1 g in the subsequent tests until 

the column was collapsed. To measure the evolution of dynamic characteristic and identify the 

integrity of specimens with the increasing ground motion intensities, small white noise 

excitations were also applied after each test. The vibration duration and amplitude of white 

noise excitations are 40 s and 0.02 g, respectively. Meanwhile, the seismic excitation duration 

is correspondingly scaled by dividing by the square root of the reduced-scale 12 [51]. Only 

the acceleration responses in E-W direction are used for verifying the performance of the 

proposed approach in this study. As shown in Figure 3-8(b), five accelerometers, namely 

#A1~#A5 were respectively installed on the base slab, footing block, the first, third segment 

column and the top mass to measure vibration accelerations along the E-W direction of the 

specimen. The acceleration responses were measured with a sampling rate of 200 Hz. More 

details of the experimental setup and test descriptions can be found in [48]. 
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 (a)                                                                        (b) 

Figure 3-8. The experimental setup for shake table tests of precast segmental column 

reinforced with FRP bars (Specimen 1): (a) overall view and (b) schematic diagram. (unit: 

mm).  

3.4.2 Dynamic tests and observed damage 

Figure 3-9 shows the input ground motion along E-W direction with the PGA scaled to 

0.1 g. The overall duration of excitation is about 12s and the energy of ground motion is mainly 

distributed in the frequency range of 0-50 Hz. The time-domain and frequency-domain 

acceleration responses subjected to this seismic load are shown in Figure 3-10. As evidenced 

in Figure 3-10(a) and Figure 3-10(b), dynamic responses of the precast segment column model 

under ground motion excitations and the free decay responses after the excitation are included 

in the measurement, and the first two natural frequencies are excited by the input seismic load 

and observed in the frequency spectrum at 3.86 Hz and 26.05 Hz, respectively.  

 

   

  (a)                                                                   (b) 

Figure 3-9. Input ground motion along the E-W direction: (a) Time domain, (b) Frequency 

domain. 
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Figure 3-10. Measured acceleration responses in: (a) time domain; (b) frequency domain. 

 

Time-frequency analysis is one of the widely used methods for better understanding 

structural vibration behavior during earthquake excitations [52]. HT is applied to analyse the 

measured dynamic responses. Figure 3-11 shows the time-frequency analysis results of 

seismic load and the corresponding responses at five sensor locations from #A1 to #A5. In 

Figure 3-11, the first two natural frequencies are observed in the response of #A3, #A4 and 

#A5. The time-frequency representations of sensors #A1 and #A2 are similar as that of the 

input ground motion, since the base slab and footing block are directly connected with the 

shake table. Dynamic responses from these two sensors are highly correlated with the input 

ground motion of the shake table. In addition, as can be observed from Figure 3-11(e) and 

Figure 3-11(f), the responses at the precast segmental column and the top mass clearly indicate 

the first two natural frequencies, and the free decay responses are dominated by the 

fundamental frequency of the column model.   
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    (a)                                            (b)                                         (c) 

 

(d)                                            (e)                                         (f) 

Figure 3-11. Time-frequency analysis results of input excitation and measured responses of 

Specimen 1: (a) ground motion excitation (PGA=0.1 g); (b) #A1; (c) #A2; (d) #A3; (e) #A4; 

and (f) #A5. 

 

The precast segmental column model has increasing significant vibrations observed 

under the seismic loads, and the acceleration responses increase with the increasing PGA value. 

The observed damages of the precast segmental column reinforced with FRP bars (Specimen 

1) and ordinary steel bars (Specimen 2) under different PGA magnitudes are shown in Figure 

3-12 and Figure 3-13, respectively. For Specimen 1, it can be observed that no visible concrete 

crack is observed in the tested specimen before the PGA reaches to 0.6 g. Nevertheless, owing 

to the periodically open and close behavior of precast segmental column joints, the contact 

surfaces of joints may experience significant compressive stress during the vibrations. As a 

result, when the PGA of the applied ground motion is higher than 0.7 g, concrete crushing is 

observed at the toes of the bottom segment of the column model. The severity of concrete 

crushing damage continues to increase with the increasing intensity of ground motions, and 

Specimen 1 finally loses stability and collapses at ground excitation with PGA of 1.1 g. Figure 

3-13 shows the observed damage and final failure of Specimen 2 under different ground 

motion intensities. In particular, visible concrete spalling and crushing is observed at the toes 

of the bottom segment at a PGA of 0.6 g. The severity of structural damage is further 

accumulated with an increase of ground motion intensities, and Specimen 2 collapses when 

the PGA reaches to 0.8 g. 
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Figure 3-12. Damage observations of the precast segmental column (Specimen 1) reinforced 

with FRP bars under different PGA values: (a) 0.6 g; (b) 0.7 g; (c) 0.8 g; (d) 1.1 g. 

 

 

Figure 3-13. Damage observations of the precast segmental column (Specimen 2) reinforced 

with ordinary steel bars under different PGA values: (a) 0.5 g; (b) 0.6 g; (c) 0.7 g; (d) 0.8 g. 

 

3.4.3 Nonlinear structural damage detection 

Pairs of acceleration responses measured from the precast segmental column model 
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Specimen 1 subjected to white noise excitations after each ground motion with different PGA 

values, are used as input to the Volterra series model with the proposed approach detailed in 

Section 2.1 to quantify the nonlinearity between every two adjacent sensors, i.e. #A1 and #A2, 

#A2 and #A3, and #A4 and #A5. The pair of #A3 and #A4 is not used since two joints are 

involved in this region, and there is no damage in these two joints as observed in Figure 3-12 

and Figure 3-13. Similar to the numerical study in Section 3.2, a parametric analysis is 

conducted to determine the optimal memory length for Volterra series model. Figure 3-14 

shows the NRMSE values and numbers of kernel parameters with different memory lengths 

using the responses under white noise excitations after the applied ground motion with a PGA 

value of 0.2 g. It can be observed that the prediction error between the accelerometers #A4 

and #A5 is significantly higher than that of other two sensor pairs. Hence, it can be 

preliminarily concluded that the region between those two sensors is of a higher level of initial 

nonlinearity. Moreover, a significant decreasing trend followed with a stable evolution is 

observed in the NRMSE of the region between accelerometers #A4 and #A5 when the memory 

length reaches to 2. The other two sensor pairs, such as #A1 and #A2, and #A2 and #A3, have 

relatively stable NRMSE values with different memory lengths. However, the number of 

kernel parameters significantly increases with an increasing memory length, which implies 

that a high computational demand is required. Considering the balance between the accuracy 

of the calculated Volterra series model and computational efficiency, the memory length is set 

as 2 in the following experimental studies. 

 

Figure 3-14. The prediction error and kernel parameters number with different memory 

lengths. 

 

Similar as the numerical study, the truncation order is predetermined as 3. Volterra series 

model with a memory length of 2 and a truncation order of 3 is applied to simulate the vibration 

responses of a segmental column subjected to white noise excitations in the experimental 

studies. The contribution of the component signal corresponding to each of the three kernels 
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are presented in Figure 3-15. It can be found that the nonlinear vibrations are dominated by 

the linear component (Kernel order 1), while the contribution of nonlinear term 1 (Kernel order 

2) and nonlinear term 2 (Kernel order 3) are non-negligible. It is noteworthy that the 

contribution or kernel order 3 is higher than that of kernel order 2, which means that the 

nonlinearity within the joint is manifested as a cubic term. Therefore, Volterra series model 

with two nonlinear terms are more suitable than only one nonlinear term in this study.  

 

 

Figure 3-15. Contribution of component signal corresponding to each of the three kernels: 

(a) #A1 - #A2; (b) #A2-#A3; and (c) #A4-#A5. 

 

When the memory length and the truncation order of kernel function are determined, 

dynamic responses of two adjacent accelerometers, such as #A1 and #A2, #A2 and #A3, and 

#A4 and #A5, measured from the structure subjected to white noise excitations after shake 

table tests with different PGA values are respectively utilized as input and output of Volterra 

series model. Figure 3-16 compares the measured response at sensor location #A3 under white 

noise excited responses after the ground excitation with a PGA value of 0.4 g and the predicted 

response from Volterra series model in time and frequency domains, by using sensor response 

measured from #A2 as input to Volterra series model. The prediction NRMSE is 3.83%. 

Comparison results intuitively illustrate the effectiveness and accuracy of using the proposed 

approach in modelling the structural nonlinear behavior of segmental column models under 

white noise excitations in experimental studies.  
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Figure 3-16. Comparison of true responses and predicted responses from Volterra series 

model under white noise excitations: (a) time domain responses; (b) zoom in time domain 

response; (c) frequency domain spectrum. 

 

Figure 3-17(a) and Figure 3-17(b) show the evolution of the nonlinear contribution index 

𝜆𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟  of Specimens 1 and 2 subjected to white noise excitations. It should be noted that 

the nonlinearities in this structure mainly consist of two components. The initial nonlinearity 

existed in the segmental column structure comes from the joints between segments, and the 

nonlinearity induced by the structural damage subjected to ground excitation, which increases 

with the intensity of the applied seismic excitation. Owing to the open and close of joint during 

significant vibrations under applied ground motions, concrete crushing damage usually occurs 

at the joint region owing to significant compressive stress induced by rocking response of the 

joint. The mechanical properties, such as damping, stiffness and friction of the joint interface, 

may change. Therefore, structural damage can be identified by quantifying the nonlinear 

responses between two adjacent sensors. With the increasing intensity of applied ground 

motions, structural damage accumulated in the structural model will introduce the presence of 

nonlinear behavior in structural dynamic responses. To mitigate the loading effect and 

highlight the evolution of nonlinearity level before and after the ground motion excitation with 

different PGA intensities, structural vibration responses subjected to white noise excitations 

with constant loading level will be analysed in this study.  

As can be found in Figure 3-17(a), the lowest nonlinearity is observed in the region 

between #A1 and #A2, which shows a slight increase with the increasing PGA. This is because 

the footing block is fixed on the base slab by using four strong bolts, and these two responses 

are highly correlated and less nonlinearity is observed. The highest nonlinearity result is 

estimated from the region between #A4 and #A5 in the first two white noise excitation 

scenarios, followed by a decreasing trend with the increasing ground motion intensities. This 

could be owing to the initial friction forces existed between the added top masses on the precast 

segmental column model. After several ground motion excitations, the initial nonlinearity as 
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evidenced by the results between #A4 and #A5 in Figure 3-14 due to this friction force 

becomes smaller, indicating a smaller nonlinear contribution index between sensors #A4 and 

#A5 with the increasing ground motion intensities. It should be noted the trend of the defined 

nonlinear contribution index is used for locating the damage occurred in this structure. With 

the increasing ground motion PGA value, the nonlinear contribution index at the damage 

location shows an increasing trend. Among all of these three sensor pairs, only the nonlinearity 

contribution index values obtained from the region between #A2 and #A3 show an increasing 

trend. The results from the pair #A4 and #A5 at some scenarios are even larger than other 

sensor pairs, however, as discussed above, the nonlinearity at the top joint between the 

segmented column and the added slab was not caused by structural damage. The increase in 

the nonlinearity at the column base between sensor #A2 and #A3 is associated with the damage 

accumulation, as shown in Figure 3-12 and Figure 3-13.  

In particular, no obvious change in the nonlinearity level is found between #A2 and #A3 

before the white noise excitation scenario 5 (after ground motion with a PGA of 0.4 g), 

followed by a slight increasing trend in the next two white noise excitation scenarios. The 

nonlinearity contribution index obviously increases, since white noise excitation 8 (after 

ground motion with a PGA of 0.7 g) until the specimen collapses. These results are consistent 

with the observed concrete crushing damage occurred at the bottom of the precast segmental 

column, as shown in Figure 3-12. The sensor pair #A2 and #A3 shows an increase trend and 

finally has the highest nonlinear contribution value, indicating the region between these two 

sensors has the highest probability of damage occurrence at the joint interface. The results also 

demonstrate that the proposed nonlinear damage index is sensitive to detect structural 

nonlinear damage at an early stage, when the actual concrete crushing is not visible. As can be 

found in Figure 3-17(b), similar evolution trend of the nonlinear contribution index estimated 

from Specimen 2 is observed. In detail, significant nonlinear contribution index increase is 

observed between sensor pair #A2 and #A3 after the white noise excitation scenario 6 (after 

ground motion with a PGA of 0.5 g), which indicates that the nonlinear damage is located in 

this region.  

To highlight the evolution of nonlinearity contribution since the visible concrete crush 

damage occurred in these two specimens, the identified nonlinear contribution index values of 

Specimen 1 (from white noise excitation scenarios 8 to 11) and Specimen 2 (from white noise 

excitation scenarios 6 to 8) are presented in Figure 3-17(a) and Figure 3-17(b), respectively. 

The highest and increasing nonlinear contribution index values observed in the sensor pair 

#A2 and #A3 indicate that the nonlinear damage is located in this region, which is well 

consistent with the damage patterns observed in Figure 3-12 and Figure 3-13. The above 

experimental results demonstrate the reliability of using the proposed approach for nonlinear 
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structural damage detection.  

 

 

Figure 3-17. The evolution of nonlinear contribution index of segmental columns subjected 

to white noise excitations: (a) Specimen 1; and (b) Specimen 2. 

 

 

Figure 3-18. Histogram plot of the nonlinear contribution index of segmental columns 

subjected to white noise excitations: (a) Specimen 1; and (b) Specimen 2. 

 

    The number of to be estimated parameters of Volterra series model exponentially 

increases with the memory length and truncation order, which poses challenges to guarantee 

the global maximum solution. One common prescription to this issue is to limit the complexity 

based on the reasonable selection of parameters, i.e. the order and the memory length of 

Volterra series model. Another way that is found in literature to reduce the number of 

parameters to be estimated is to replace the conventional Volterra series kernel by Kautz filter 

[30, 53]. In this study, the overall number of kernel parameters to be estimated for a Volterra 

series model with a memory length of 2 and a truncation order of 3, is 39. The maximum 

NRMSE values in numerical and experimental studies for structures subjected to white noise 

excitation are 4.59% and 3.83%, which means that the nonlinear approximation converge 
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accurately to the reference results by using the Volterra series model with the above-selected 

parameters.  

The main objective of this study is to develop an output only based Volterra series model 

to localize and quantify the source of nonlinearity. Therefore, the vibration responses of 

adjacent node are selected as input and output of Volterra series model. Nonlinearity 

contribution index defined in this study does not satisfy superposition principle. For example, 

the nonlinearity contribution index between DOF x4~x6 is not equal to the sum of that from 

x4~x5 and x5~x6. Therefore when only responses from two nodes are used to calculate the 

nonlinearity contribution between them, it represents the nonlinearity contribution in this 

region between these two nodes only, but is not able to distinguish the nonlinearity contribution 

from any other two nodes inside this region. 

3.5. Conclusions   

This chapter proposes a novel structural nonlinear detection approach based on the output 

responses only, by quantifying the nonlinear contribution in structures using Volterra series 

model. Compared with the existing studies which mainly focus on input-output based Volterra 

series model, the main contribution of the presented study resides in the fact that the external 

excitation is not required in the proposed approach, which overcomes the practical difficulties 

in reliably obtaining the ambient excitations to structures. With the merit of using Volterra 

series expansion for separating the linear and high order nonlinear components, a nonlinearity 

contribution index is introduced to quantify the nonlinearity degree corresponding to structural 

responses at two selected sensors, which are used as the input and output of the used Volterra 

series model. The performance and reliability of the proposed approach are demonstrated by 

numerical studies on a simply-supported beam model with a breathing crack under different 

levels of white noise excitations and experimental studies on a precast segmental concrete 

column subjected to ground motions with different PGA values. The results in numerical and 

experimental studies demonstrate that the nonlinear behavior can be modelled qualitatively by 

using the Volterra series model with the optimally selected parameters. By using measurement 

data under different structural conditions, the location of nonlinear structural damage can be 

identified accurately, and the severity can be indicated by comparing the evolution of 

nonlinearity contribution index value obtained in each structural region.   

Although the proposed method based on measured structural responses can locate the 

structural damage, there are still some limitations and further investigations could arise from 

this work. In reality, the energy of environmental excitation is relatively low. As a result, the 

civil engineering structure may usually respond linearly or with only weak nonlinear behavior 
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under operating conditions. Under this situation, the proposed method may not be able to 

identify the damage. The proposed approach is effective to detect damage of structures with 

significant nonlinear behavior. Many factors, such as geometric nonlinearity, nonlinear 

boundary conditions, joints of prefabricated structures and material nonlinearity, etc., may 

make the structural system exhibit nonlinear behavior. This may confuse the damage detection 

performance when the uncertainties caused by the above-mentioned factors are not fully 

considered. Therefore, appropriate methodologies or indicators with adequate capacity to 

distinguish the sources of nonlinear characteristics could be further investigated. Experimental 

study will be designed to acquire structural responses with a significant inelastic hysteresis 

behavior of structures during excitations in the future study. Furthermore, the improvement of 

the proposed method will be made in the future study to extend the feasibility of Volterra series 

to model the inelastic hysteresis behavior of nonlinear structures.  
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CHAPTER 4 IMPROVING IDENTIFIABILITY OF 

STRUCTURAL DAMAGE USING HIGHER ORDER 

RESPONSES AND PHASE SPACE TECHNIQUE 

ABSTRACT3 

This chapter proposes a novel approach for improving the identifiability of structural 

damage by using higher order responses and SSA based PST technique. SSA is employed to 

decompose the structural dynamic acceleration response into several low dimensional 

components. Then the CPST reconstructed from the decomposed component with higher order 

responses of structures under intact and damaged states is utilized to identify the structural 

condition changes. Numerical studies on a planar truss structure are conducted to investigate 

the accuracy and reliability of the proposed approach. The dynamic acceleration responses of 

the truss structure corresponding to intact and several damage scenarios are utilized for signal 

decomposition by using SSA and damage detection with CPST. The effects of white noise, 

pink noise, modelling uncertainties on the accuracy of damage detection are investigated. The 

proposed method is also validated through experimental studies on a Tee-section pre-stressed 

concrete beam model. Vibration acceleration responses under hammer impact loads are 

measured under intact and damaged states, which are used for the damage detection with the 

proposed approach. Damage patterns identified by using the proposed approach under 

different loading levels agree well with the observed crack distributions. Both numerical and 

experimental results demonstrate that using the higher order response components 

decomposed by SSA and the proposed method is sensitive to damage and reliable for structural 

damage detection. 

4.1 Introduction 

SHM techniques have gained a significant amount of attention in the last several decades, 

mainly for large scale structures to ensure the designed performance, functionality and safety 

during their long service life. Damage identification and condition assessment can be 

considered as one of the most crucial aspects in the field of SHM. Identifying the presence of 

                                                      

3This chaper was published in Structural Control & Health Monitoring with the full bibliographic 

citation as follows: Peng, Z., Li, J., Hao, H., & Nie, Z. (2021). Improving identifiability of structural 

damage using higher order responses and phase space technique. Structural Control and Health 

Monitoring, 28(10), e2808. https://doi.org/10.1002/stc.2808.  

https://doi.org/10.1002/stc.2808
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the minor damage owing to, for example, degradation in material properties and/or changes in 

geometric properties that influence the dynamic behavior of structures adversely at an early 

stage, can provide important evidence to understand the root causes of the structural 

performance anomaly and make immediate maintenance action recommendations. 

Three levels are usually defined in structural damage detection, namely, 1) diagnosing 

the presence; 2) detecting the location; and 3) identifying the extent of damage, by using 

indices or indicators derived from structural static and dynamic vibration responses [1]. Static 

responses based methods usually utilize the DI extracted from strain and deflection responses 

in the critical locations of structures under static load tests to reveal the global mechanical 

behavior of structures. Some of these methods can be found in the literature [2, 3]. Vibration-

based damage diagnosis methods are based on the fact that structural damage will cause 

changes in its vibration characteristics. Thus, structural damage is generally identified by 

tracking the variation of the extracted damage-sensitive features from vibration acceleration, 

velocity, displacement and strain responses in the frequency or time domain. Frequency 

domain parameters, such as natural frequencies, mode shapes, mode shape curvatures, 

flexibility, modal strain energy and frequency response function (FRF), etc., have been 

commonly used as indicators in structural damage detection [4, 5]. Although most of the modal 

information based methods have been intensively studied for structural damage detection, 

there are still some challenges related to the practical applications. For example, many studies 

have proved that lower order frequency shifts are insensitive to minor structural damage 

compared with higher order frequency components [6, 7]. Meanwhile, the modal energy is 

usually concentrated in the first several lower order frequency components, which introduces 

a significant challenge to accurately identify higher order frequency components from the real 

measured responses to make use of their high sensitivity to structural damage. Additionally, 

the changes in dynamic behavior and vibration characteristics duo to structural degradation 

may even be overwhelmed by environmental noise and other instrumental errors and 

uncertainties [8, 9]. As a result, the modal information based methods may have a poor 

sensitivity and noise immunity when applied to the detection of early minor damage, with the 

lower order frequency components. To address the drawback of the low sensitivity of using 

lower order frequency components for structural damage detection, some attempts were 

conducted to obtain the accurate measurement of higher order FRF [10], which was proven to 

be potentially promising for damage assessment [11, 12].  

On the other hand, the time domain methods, which can be used to quantify the statistical 

and/or geometrical dissimilarity of dynamic responses before and after the damage, may not 

necessarily suffer from the above limitation. Chen and Yu [13] proposed a structural nonlinear 

identification algorithm based on a model of ARMA with generalized autoregressive 
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conditional heteroscedasticity, by using the acceleration series from the baseline and the 

unknown state as input to estimate the nonlinear damage in a three-story building structure. Li 

et al. [14] proposed a damage detection and optimal sensor placement method for structures 

under unknown traffic-induced vibrations. Xin et al. [15] proposed an enhanced EWT 

approach based on synchroextracting transform for the time varying system identification. 

Numerical simulations and experimental results showed that the proposed method is effective 

and accurate for time-varying system identification to obtain the instantaneous frequencies of 

structures, even under the significant noise effect. Other time frequency analysis methods, 

such as HT and wavelet-based methods, have also been used for structural linear or nonlinear 

damage detection [16, 17].  

Phase space reconstruction is one of promising time series data-driven methods for 

structural condition monitoring. Structural dynamic state variable is a graphical representation 

in the multidimensional orthogonal coordinate system, and any underlying system model relies 

upon the phase trajectory. PST reconstructed from dynamic responses in the healthy state is 

viewed as a baseline. Structural damage can be detected by quantifying the dissimilarity 

between the trajectories under the intact and damaged states. Based on this principle, several 

studies have been conducted recently to identify damage of structures under impact loads or 

chaotic loads. The results indicate that phase space-based methods have a great potential in 

damage detection of both linear and nonlinear structures. Nie et al. [18, 19] developed an index 

named change in phase space trajectory (CPST) to identify damage in a circular arch structure 

and a RC slab. The results showed that CPST can be used as a DI with a higher sensitivity than 

conventional modal information-based features, such as the mode shape curvature, flexibility 

matrix change, COMAC and ECOMAC [20]. Todd et al. [21] extracted local attractor variance 

ratio from nonlinear time series corresponding to the baseline and damaged structures under 

chaotic excitations, for vibration based damage assessment.  

However, the input signal of the above-mentioned studies should be low dimensional that 

can be embedded in the phase space by Taken’s embedding theorem [22]. For example, the 

first several lower order frequencies are excited by the hammer impact or moving loads [14, 

15]. This can limit the potential applications of such methods to real-world structure. It has 

been demonstrated in the existing studies [23, 24] that using higher order vibration modes is 

more sensitive to detect structural damage than the lower order modes. Due to the complexity 

in practical structural systems and uncertainties in loading scenarios, the in-situ measured 

responses are inevitably of high-dimensional frequency components, which may not be fully 

unfolded in the phase space [25, 26]. Though this limitation could be overcome by carefully 

choosing a low dimensional chaotic signal, i.e. Lorenz chaotic or Hyper-chaotic oscillators 

[27] as the excitation signal, it is difficult and costly, if it is not realistically impossible, to 



75 

 

generate a chaotic waveform load to excite a real structure. The feasibility and applicability of 

phase space based damage detection methods will be largely enhanced if a generalized 

dynamic load with multiple frequency components can be used. Therefore, suitable 

dimensionality reduction techniques ought to be explored and applied to decompose the 

original vibration signal into several low dimensional components. Several commonly used 

vibration signal decomposition methods, such as EMD, VMD and SSA, can serve this purpose. 

It is noteworthy that the signal components after decomposition should not only be low 

dimensional that is suitable for PST reconstruction, but also has a certain degree of oscillatory 

performance to ensure that the sufficient vibration based damage information is retained in the 

decomposed components. 

SSA is a powerful automatic time-series decomposition method for extracting the original 

signal into slowly varying trends, oscillatory components and noise [28]. Jinane and 

Dominique [29] and Xu et al. [30] have demonstrated its efficiency for processing stationary 

and non-stationary signals without restriction on the length of the analyzed signals. Recently, 

SSA has been demonstrated to be effective in decomposing the dynamic responses of bridges 

under the moving vehicle into several signal components to improve the visibility of high order 

bridge frequencies from low order frequencies dominated responses [31-33]. In these studies, 

the frequency spectrum of each signal component is dominated by a certain frequency 

component, in another word, the dimensionality of signal components after the decomposition 

is reduced. With the superiority in modal decomposition and signal dimensionality reduction, 

SSA is used in this study to conduct signal decomposition to separate the high frequency 

components reliably from the original vibration responses. In this study, ‘high dimension’ 

means that the signal consists of multiple frequency components in the frequency spectrum, 

which indicates that a high embedding dimension parameter is required for phase space 

reconstruction by using dynamic responses. In contrast, low dimension signal means that only 

one or two peaks appeared in the frequency spectrum. The low/high order frequency refers to 

low/high order natural frequency components in the frequency spectrum. 

With the main objective of extending the applicability of phase space based methods to 

processing high dimensional responses, this chapter proposes a systematic SSA based phase 

space technique framework for structural damage detection, by using the higher order 

frequency response components. The SSA decomposed low dimensional components with 

higher order frequency responses that are extracted from original dynamic vibration 

measurements, are used to reconstruct phase space with Taken’s theorem. Structural damage 

is identified by using a damage index developed based on CPST. Theoretical background and 

development of the proposed approach will be briefly introduced in Section 2. In Section 3, 

the procedure of the proposed structural damage detection framework will be illustrated and 
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verified using numerical studies on a 2D truss structure. The effects of white noise, pink noise 

and modelling uncertainties on the accuracy and performance of damage detection are 

investigated. In Section 4, the proposed approach will be further applied to perform the damage 

detection in an experimental Tee-section pre-stressed concrete beam model. Finally, Section 5 

provides the concluding remarks and recommendations for further work. 

4.2 Theoretical Background and Development 

The proposed structural damage detection approach using SSA based phase space 

technique and higher order frequency response consists of several important steps. First, the 

acquired acceleration responses are decomposed into a set of low dimensional signal 

components through SSA. Then, the decomposed signal components are analyzed by using 

SVD to evaluate the dimensionality for embedding. The time delay parameter for PST 

reconstruction is determined by using the auto-correlation function of the respective SSA 

components. Lastly, the damage index, named as SSA-CPSTaverage, is defined to identify the 

structural damage based on the phase space of higher order frequency response component.   

4.2.1 SSA for signal dimensionality reduction 

This section provides a brief theoretical background of SSA for signal decomposition. 

SSA is nonparametric signal decomposition technique, which consists of three main steps, 

namely, embedding, SVD, grouping, skew diagonal averaging. More details can be referred to 

the literature [34]. The theoretical background and major procedure to conduct SSA are 

summarized as follows. 

 

4.2.1.1 Embedding 

Given a set of single channel acceleration response time series at a certain node described 

as a(t) = [a0, a1, a2,…, aN-1] and a window length as 2 ≤ L ≤ N/2, the one-dimensional signal 

a(t) can be embedded into a L×K trajectory matrix X as    

𝑿 = [𝑿1, 𝑿2,⋯ , 𝑿𝐾] = [

𝑎0 𝑎1 ⋯ 𝑎𝐾−1
𝑎1 𝑎2 ⋯ 𝑎𝐾
⋮ ⋮ ⋱ ⋮

𝑎𝐿−1 𝑎𝐿 ⋯ 𝑎𝑁−1

]                                 (4.1) 

where Xi=[ ai-1, ai,…, a i+L-2]
T, i=1,2,…,K and K=N-L+1. Since the (i, j) element of X is xi,j= 

ai+j-2, the embedded trajectory matrix X corresponds to the features of Hankel matrix, which 

can be viewed as a multivariate representation of a(t). 
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4.2.1.2 SVD 

Applying SVD to analyse the trajectory matrix formulated in Eq. (4.1), we have X=UQVT, 

where U and V represent the left-singular eigenvectors and right-singular eigenvectors with 

dimensions of (L× L) and (K×K), respectively. Q denotes the rectangular diagonal matrix with 

non-negative singular values, which are sorted in the descending order. Here, the signal 

dimensionality of the original time series can be obtained from the number of singular values 

which are significantly greater than zero. Supposing that 𝑋(𝑙) = 𝒖𝑙𝒒𝑙𝒗𝑙
′   with ul, vl and ql 

defined respectively as the l-th left-singular eigenvector of U, the right-singular eigenvector 

of V and the l-th eigenvalue of Q, the trajectory matrix X can be expanded as 

𝑿 = 𝑿(1) +𝑿(2) +⋯+𝑿(𝐿)                                                 (4.2) 

After performing SVD, the trajectory matrix X is decomposed into L elementary matrices 

of rank 1 with the norm equal to the singular value [32].  

 

4.2.1.3 Grouping and skew diagonal averaging 

Grouping procedure is the most important step in SSA, in which all the elementary 

matrices should be divided into M groups according to the analysis results of SSA, e.g., noise 

elimination, smoothing, trend component analysis and specific frequency extraction, etc. 

Defining a group index, gm=1,…,Ng, the elementary matrices in gm group can be represented 

by 𝑿𝑔𝑚 ⊆ {𝑿
(1), 𝑿(2),⋯ , 𝑿(𝐿)} . Then the elementary matrix in the same group are 

accumulated, and M grouped matrices, i.e. 𝑿𝑔1, 𝑿𝑔2 ,…, 𝑿𝑔𝑁𝑔can be obtained. The trajectory 

matrix X can be rewritten as  

𝑿 = 𝑿𝑔1 + 𝑿𝑔2 +⋯+ 𝑿𝑔𝑁𝑔                                                (4.3) 

The signal components with the same length as the original single-channel acceleration 

time series is recovered by adopting a skew averaging procedure to each resultant matrix. Let 

Y be any of the resultant matrices Xgl, with elements yi,j, i=1,2,…,L, j=1,2,…,K, the l-th 

component signal agl=[𝑎0
𝑔𝑙 , 𝑎1

𝑔𝑙 , … , 𝑎𝑁−1
𝑔𝑙 ] can be reconstructed as 

𝑎𝑘
𝑔𝑚 =

{
 
 

 
 

1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1
𝑘+1
𝑚=1 for1 ≤ 𝑘 < 𝐿

1

𝐿
∑ 𝑦𝑚,𝑘−𝑚+1
𝐿
𝑚=1 for𝐿 ≤ 𝑘 ≤ 𝐾

1

𝑁−𝑘
∑ 𝑦𝑚,𝑘−𝑚+1
𝑁−𝐾+1
𝑚=1 for𝐾 < 𝑘 ≤ 𝑁 − 1

                         (4.4) 

SSA decomposes the original time series a(t) into M component series, that is mg

ka for 

m=1,…,M. It should be noted that both the embedding dimension m and delay time parameters 

τ in PST reconstruction are related to the frequency of a certain signal component obtained 
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from SSA. To achieve the signal dimensionality reduction effectively, decomposed 

components from SSA with similar frequency features will be deployed in one group. 

4.2.2 Phase space reconstruction 

It is known that phase space can recover all possible states of a dynamic system. The 

possible values of position (displacement) and motion status (velocity and acceleration) 

correspond to a unique point. For a structure, the excitation mechanisms are balanced by the 

dissipative mechanisms to result into an invariant trajectory in the phase space, also referred 

to as phase portrait [25, 26]. Generally, the phase space can be regarded as a model that 

comprehensively reflects all the physical parameters. Minor structural damage (change in mass, 

damping and stiffness) may not be straightforwardly extracted from directly analysing the time 

history and frequency spectrum, but can be reflected in the phase space sensitively. Therefore 

this feature makes phase space as a good and sensitive DI for structural damage detection, as 

presented and validated in previous studies. 

To construct a multi-dimensional phase space, acceleration, velocity and displacement 

time series can be arranged in three directions of a coordinate system. However, measuring 

the dynamic velocity and displacement with a high accuracy experiences difficulties in 

practice [35]. Fortunately, this limitation is overcome by applying Takens’ embedding 

theorems, where the complete information of system dynamics can be unfolded in the phase 

space by a single status variable with the time delay method [26]. Hence, the delayed series of 

single-channel acceleration response at the time instant n is used herein to reconstruct the PST 

as          

𝒂(𝑛) = [𝑎(𝑛), 𝑎(𝑛 + 𝜏),⋯ , 𝑎(𝑛 + (𝑚 − 1)𝜏)]                                (4.5) 

where m and τ denote the embedding dimension and time delay, respectively.  

The selection of embedding dimension and time delay parameters will significantly affect 

the PST reconstruction. For the embedding dimension, SVD and false nearest neighbor 

methods are the most commonly used methods to calculate the optimal embedding dimension. 

In this chapter, the dimension of the original measured signal is reduced by using SSA 

described in Section 2.1, in which the embedding dimension of the signal can be reflected by 

the number of relatively larger singular values. In other words, all the singular values are sorted 

in the descending order with SVD analysis, and the number of singular values that are 

significantly larger than zero is selected as the optimal value of embedding dimension [26].  

Regarding the time delay, the phase space will be collapsed into a 45° line if the selected 

time delay parameter is too small or too large, which causes difficulties in the extraction of 
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damage-sensitive indicator. The auto-correlation function is one of the most effective tools in 

selecting the best suitable time delay [36], which can be expressed as  

𝑐𝑎𝑎 =
∑ [𝑎(𝑛)−�̅�][𝑎(𝑛+𝑡)−�̅�]𝑁−1
𝑛=0

∑ [𝑎(𝑛)−�̅�]2𝑁−1
𝑛=0

                                                 (4.6) 

where ā is the average value of the given time series. The time instant corresponding to the 

first zero of the auto-correlation function is selected as the best time delay parameter. 

4.2.3 SSA and phase space based damage detection 

As mentioned above, the dynamic response of the structural system can be represented 

by using PST. The occurrence and development of structural damage cause changes in PST. 

Based on the fact that the higher order frequency responses are more sensitive to structural 

damage, the higher order decomposed component from SSA is used for constructing the PST. 

This can be developed as a sensitive index to evaluate structural degradation by quantifying 

the difference between PST before and after damage. A DI CPST proposed by Nichols [37] is 

proved to be sensitive and accurate in damage detection. PST defined in Eq. (4.5) 

corresponding to the structural healthy state is considered as the baseline trajectory. The 

trajectory extracted from the response data under the damaged state can be expressed as   

𝒂𝑑(𝑛) = [𝑎𝑑(𝑛), 𝑎𝑑(𝑛 + 𝜏),⋯ , 𝑎𝑑(𝑛 + (𝑚 − 1)𝜏)]                              (4.7) 

where m and τ correspond to the optimal embedding dimension and time delay, respectively. 

As shown in Figure 4-1, for the purpose of demonstration, it is assumed that the structural 

response is represented by a two dimensional PST. A fiducial point on the damaged PST with 

time index k is selected as ad(k), then the nearest p neighbors of this point on the baseline PST 

can be found by minimizing the Euclidean distance as  

𝒂𝑛𝑛𝑘(𝑝𝑗):min‖𝑎(𝑝𝑗) − 𝑎𝑑(𝑘)‖𝑗 = 1,2, … , 𝑝                             (4.8) 

where the subscript ‘nnk’ means the nearest neighbors to the fiducial point k. It is noted that 

the size of the nearest neighboring points p should be chosen according to the total number of 

sample points N. Ørstavik and Jaroslav [38] and Nichols [37] suggested that the range of 

neighbors size should be 10-4 N≤ p ≤10-3 N.  
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Figure 4-1. Schematic demonstration of CPST calculation 

 

The value of ad(k) moving ahead some time step s can be forecasted in the baseline 

trajectory via 

�̂�(𝑘 + 𝑠) =
1

𝑝
∑ 𝑎𝑛𝑛𝑘(𝑝𝑗 + 𝑠)
𝑝
𝑗=1                                      (4.9) 

where the predicted â(k+s) is the average of all the evolved values from the neighbors. To 

ensure the correlation of evolved neighbors in time domain, the time interval s used for 

prediction is typically selected according to 1 ≤ s ≤ (1/2). Meanwhile, the evolved value on 

the damaged trajectory after s time step should be ad(k+s).   

The damage index CPST is defined as  

CPST(𝑘) =
1

𝑚
[‖�̂�(𝑘 + 𝑠) − 𝑎𝑑(𝑘 + 𝑠)‖ − ‖𝑎(𝑘 + 𝑠) − �̂�(𝑘 + 𝑠)‖]          (4.10) 

where m is the embedding dimension. a(k+s) represents the evolved value of a(k) on the 

baseline trajectory after s time steps. The above formula is consisted of two parts: the first part 

‖�̂�(𝑘 + 𝑠) − 𝑎𝑑(𝑘 + 𝑠)‖ is defined to evaluate Euclidean distance between the trajectories 

under the baseline and damaged states after moving ahead s time steps; and the second part 

‖𝑎(𝑘 + 𝑠) − �̂�(𝑘 + 𝑠)‖ is calculated from the baseline state to eliminate the nearest neighbors 

prediction error introduced in Eq. (4.9) when damage is not occurred. In particular, a fiducial 

point a(k) and the corresponding nearest p neighbors are selected from the baseline PST. Then 

the exact value of a(k) moving ahead s time steps 𝑎(𝑘 + 𝑠)  as well as the value �̂�(𝑘 + 𝑠) 

predicted from the nearest p neighbors via Eq. (4.9) can be obtained. CPST value in the 

selected fiducial point on the damaged state PST with the time index k is calculated based on 

the difference between the above two parts. 

To obtain more stable and reliable damage detection results, a certain number of fiducial 

points with different time indices are chosen to repeat the calculation procedure illustrated 

from Eq. (4.7) to Eq. (4.10). It is suggested that the fiducial points Np should be no less than 

5% of the total sample points N [37]. The average of calculated CPST values is given as 
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   SSA − CPST𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝐶𝑃𝑆𝑇(𝑘)/𝑁𝑝
𝑁𝑝
𝑘=1                                 (4.11) 

This will be used as the damage index to detect the damage in structures. The flowchart 

of the proposed SSA based PST technique for structural damage detection is summarized in 

Figure 4-2. 

Dynamic test on the structure

Measurement of acceleration responses under baseline 

and damaged states

Using SSA to reduce the signal embedding dimension 

Using SVD to analyse decomposed signal components to obtain embedding dimension 

Calculating auto-correlation function of the decomposed signal components to obtain 

optimal time delay

Phase space reconstruction and CPST estimation 

Detecting the presence and localization of damage in structures

 

Figure 4-2. Flowchart of the proposed SSA based PST technique for structural damage 

detection 

4.3 Numerical verification 

In this section, numerical studies on a plane truss bridge model are conducted to 

demonstrate the accuracy and improvement of the proposed approach for structural damage 

detection. The effects of different types of measurement noises, as well as uncertainty in FE 

model are investigated. 

4.3.1 Numerical Model 

A simply-supported planar truss bridge model as shown in Figure 4-3 is employed to 

demonstrate the accuracy of the proposed damage detection approach and verify its 

effectiveness. There are totally 32 nodes and 61 elements, and all the joint between elements 

are hinge connections. The length and height of each bay are respectively 0.58 m and 0.38 m, 

with the same circular cross-section area of 5.65×10-4 m2 for the diagonal and longitudinal bars. 

The Young’s modulus and Poisson’s ratio of the material are defined as 90 GPa and 0.3, 

respectively.  
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Figure 4-3. Planar truss model used in the numerical study. 

 

100 N vertical impact load is applied on the node #21 of the planar truss model, as shown in 

Figure 4-3. It should be noted that the impact load is simulated as a triangular load with 20 

load sub-steps during 0.1s. The vertical acceleration responses of node #2, #3, …, #16 under 

different damage scenarios are collected with a sampling frequency of 2000Hz. Single damage 

(SD) cases are assumed in the element #21 with different severities, and multiple damages 

(MD) cases are assumed in the element #21 and #45. The severities are defined by reducing 

the Young’s modulus of damaged elements. The specific locations and severities of single and 

multiple damage scenarios are listed in Table 4-1. As shown in Table 4-1, the first three order 

natural frequencies are slightly decreased with the increasing damage extent, indicating that 

the damage effect is very minor. In addition, the (modal assurance criterion) MAC values 

between the baseline and damage states are provided in Table 4-2 for understanding the effect 

of damage on the structural vibration characteristics. As shown in Table 4-2, the MAC values 

of the first three order mode shapes between the baseline and damage states are very close to 

1, which means that the effect of the introduced element level minor damage on the vibration 

characteristics of the truss model with a high redundancy is not significant. 

 

Table 4-1. Damage scenarios and the first three natural frequencies of the numerical truss 

model before and after damage. 

Damage 

scenario 
Stiffness reduction 

1st order 

frequency 

(Hz) 

2nd order 

frequency 

(Hz) 

3rd order 

frequency 

(Hz) 

UD 0% (baseline state) 12.0284 32.8688 69.8015 

SD 1 Element #21: 5% 12.0278 32.8651 69.7551 

SD 2 Element #21: 10% 12.0272 32.8609 69.7035 

SD 3 Element #21: 15% 12.0266 32.8563 69.6458 

MD 1 Element #21: 15% & Element #45: 5% 12.0256 32.8558 69.6115 

MD 2 Element #21: 15% & Element #45: 10% 12.0245 32.8552 69.5732 

MD 3 Element #21: 15% & Element #45: 15% 12.0234 32.8546 69.5304 

 

Table 4-2. MAC values (in %) between the baseline and damage states  

UD SD 3 MD 3 

 (48)  (52)  (56)

 (25)

 (60)

 (15)  (19)  (23)  (27)  (31)  (59) (55) (51) (47) (43) (39) (35)

 (6)  (10) (14)  (18)  (22)  (26)  (30)  (34)  (38)  (42)  (46)  (50)  (54)  (58)18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Excitation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 (3)

 (5)  (9)  (13)  (17)  (21)  (29)  (33)  (37)  (41)  (45)  (49)  (53)  (57)  (61) (2)

 (7)  (11)

 (1)  (4)  (8) (12)  (16)  (20)  (24)  (28)  (32)  (36)  (40)  (44)
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1 2 3 1 2 3 

1 100.0000 0.0000 0.0089 100.0000 0.0000 0.0079 

2 0.0000 99.9998 0.0000 0.0000 99.9998 0.0000 

3 0.0090 0.0003 99.9966 0.0095 0.0001 99.9961 

4.3.2 Single damage detection 

4.3.2.1 Determination of embedding dimension and time delay 

To evaluate the effectiveness of using the proposed method for detection of single damage 

scenarios, 5%, 10% and 15% stiffness reductions are simulated respectively and the 

corresponding acceleration responses at measurement locations are obtained. Figure 4-4 

presents the vertical acceleration responses and the frequency spectra of node #7 from the 

numerical model under healthy state and single damage scenario with different damage 

severities. It is observed that the acceleration responses of the truss bridge structure excited by 

the introduced impact load mainly contain four frequency components. Only very minor 

differences in the time domain acceleration responses and the frequency spectra are observed 

when the damage occurs, indicating that the presence of damage is difficult to be identified by 

using the modal information, such as frequency shifts. 

 

 

Figure 4-4. Response of node 7 under the impact load: (a) Accelerations; (b) Frequency 

spectra. 

 

SVD introduced in Section 2.1 is conducted to obtain the dimensionality of the above 

obtained acceleration responses. Singular values as the diagonal element of matrix Q are sorted 

in the descending order and shown in Figure 4-5. It is observed that the SVD results are 

presented in term of the singular value and embedding dimension. The first 6 singular values 

account for more than 95% of the sum of all the singular value. This indicates that at least 6 

embedding dimensions are required for phase space reconstruction to unfold all the 
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information hidden in the dynamic response. Since the DI CPST is derived from the geometry 

of PST in the coordinate system, which pose challenges to calculate the accurate estimation of 

CPST when the signal is of high dimensionality. This provides the motivation to explore signal 

decomposition and dimensionality reduction approach to improve the feasibility and accuracy 

of using PST based damage detection method with high dimensional signals.  

 

 

Figure 4-5. Singular values from SVD of acceleration responses at node 7. 

 

In order to maintain the low dimensionality of the reconstructed phase space, the 

embedding dimension of the input signal should be reduced, ideally no more than three. Hence, 

SSA introduced in Section 2.1 is used herein for signal dimensionality reduction. The original 

acceleration response is decomposed into 4 components. It is noteworthy that the grouping 

step of SSA in this work is guided by frequency distribution, in other words, the elementary 

matrices with the same frequency distribution are merged into a group. The frequency 

spectrum of each component as shown in Figure 4-6 demonstrates that 4 main frequency 

components have been decomposed from the original measured response. These four 

frequencies correspond to the excited frequency components in the measured acceleration.  

Meanwhile, the signal dimensionality of each signal component is calculated by 

conducting the SVD analysis. Results in Figure 4-7 show that the singular values tend to be 

zero when the embedding dimension m equals 2. This means that all these four components 

decomposed from using SSA can be fully unfolded in a 2-D phase space, demonstrating that 

SSA significantly reduces the signal dimensionality to the required level for PST 

reconstruction. The phase space of a signal component with the embedding dimension of 2 

will be reconstructed in a 2-D coordinate system. 
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Figure 4-6. Frequency spectra of decomposed components of the response at node 7 by using 

SSA: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th. 

 

 

Figure 4-7. Singular values of each decomposed component: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th. 

 

Furthermore, another critical parameter for PST reconstruction, that is the time delay, will 

be determined by observing the first zero in the respective auto-correlation function described 

in Eq. (4.6). These four auto-correlations are plotted for each signal component under different 
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damage scenarios in Figure 4-8. In general, a descending trend in the time delay of the obtained 

four signal components can be found, which is caused by the difference in its frequency 

component. Usually, a larger time delay is required for the PST reconstruction of lower 

frequency signal component, since the period of the decomposed signal is larger. In summary, 

PST reconstruction parameters of each component under these four damage scenarios are 

listed in Table 4-3.  

 

Table 4-3. PST reconstruction parameters of each decomposed component 

Parameters 
First component Second component 

SD 0 SD 1 SD 2 SD 3 SD 0 SD 1 SD 2 SD 3 

m 2 2 2 2 2 2 2 2 

 42 42 42 42 16 16 16 16 

Parameters 
Third component Fourth component 

SD 0 SD 1 SD 2 SD 3 SD 0 SD 1 SD 2 SD 3 

m 3 3 3 3 2 2 2 2 

 8 8 8 8 3 3 3 3 

 

 

Figure 4-8. Time delay parameters obtained from the normalized auto-correlation functions 

of each component: (a) 1st; (b) 2nd; (3) 3rd; (4) 4th. 
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Though the same impact load is used in the above studies, the normalization process can 

be applied to remove the effect of different impact load levels. When the embedding dimension 

and time delay are determined, each SSA decomposed component signal is normalized by 

using the normalization procedure given as 

𝒂𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝒂−�̅�

𝜎(𝒂)
                                                  (4.12)   

where ā and σ(a) denote the mean value and standard deviation of the decomposed acceleration 

response, respectively. Then, the normalized signal will be embedded in the phase space. The 

reconstructed PST of each component from the acceleration response of node 7 is shown in 

Figure 4-9, in which the amplitude of acceleration response is reflected as the radius of a circle 

in the phase space. It can be observed that the component corresponding to the higher order 

frequency component decays more quickly than that of the lower order frequency components. 

Moreover, the difference in the PST reconstructions between undamaged and damaged state 

is more obvious in the 3rd and 4th components than that of the 1st and 2nd components. These 

results demonstrate that the higher order frequency response components have a higher 

sensitivity than lower order frequency components.   

 

 

Figure 4-9. Reconstructed PST of: (a) 1st SSA component; (b) 2nd SSA component; (3) 3rd 

SSA component; (4) 4th SSA component. 

 

4.3.2.2 Sensitivity analysis of the SSA components 

To quantitatively compare the sensitivity of using the above obtained SSA components 

for damage detection, CPST values calculated from the reconstructed PST of each signal 

component under different damage scenarios are shown in Figure 4-10. It is noted that the first 

1000 of the overall 8000 sampling points are used as fiducial points successively to calculate 

the average CPST value by using Eqs. (10) and (11). It can be observed that the average CPST 

values increase with the damage level. Besides, the CPST value of the 3rd and 4th components 

are more sensitive to damage than that of the 1st and 2nd components. These results demonstrate 

that the high frequency response components that are effectively decomposed by using SSA, 
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are more sensitive to detect structural damage. Hence, in this numerical study, the 3rd and 4th 

components are given priority when choosing a component as the input for PST reconstruction 

and the subsequent damage index calculation for structural damage detection.  

 

 

Figure 4-10. Comparison of average CPST value of four decomposed response components 

by SSA. 

 

 

Figure 4-11. Scatterplot for the CPST values under different structural conditions: (a) 

Original signal; (b) The 4th component. 

 

In order to illustrate the necessity of using low dimensional signal for improving the 

accuracy and reliability of phase space based technique for structural damage detection, the 

damage index CPST values calculated from original acceleration response without applying 

SSA and the 4th component signal decomposed with SSA are compared as scatterplot and 

shown in Figure 4-11. It is observed from Figure 4-11(a) that the CPST values without using 

SSA are diverse and the difference between different damage severities are not clearly 

distinguishable. However, much more consistent results are obtained by using the lower 

dimensional signal decomposed from SSA, as observed from Figure 4-11(b).  
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4.3.2.3 Damage detection results 

To investigate the effects of different types of measurement noises and modelling errors 

on the reliability and accuracy of the proposed structural damage detection approach, 10% 

white noise, 10% pink noise and 1% modelling error are considered in the acceleration 

responses, respectively. Theoretically the power spectral density (PSD) of white noise in the 

frequency domain is a constant, which makes it easily be filtered out by applying the auto-

correlation analysis. The following equation shows how the white and pink noises are 

considered.  

( )noise L SN N  a a a                                                 (4.13)   

where anoise is the acceleration response smeared with noise effect; NL denotes the noise level. 

10% white and 10% pink noise levels are considered respectively in this numerical study, 

therefore NL =0.1. Ns denotes the generated random white or pink noise. For white noise, it is 

a zero mean and unit standard deviation vector with the uniform PSD. While for pink noise, 

the PSD distribution is inversely proportional to 1/√𝑓 with a frequency f. The finite element 

modelling errors due to the inhomogeneity of material properties and the measurement errors 

of geometrical dimensions, inevitably exist. To investigate its influence, 1% variation is 

assumed in the elemental stiffness parameters as follows  

uncertainties ( ) ( ) ( )L sE i E i U U E i                                              (4.14)   

where Euncertainties(i) and E(i) denote the Young’s modulus of the i-th element with uncertainties 

and the original value, respectively; UL is the uncertainty level and is equal to 0.01; and US 

denotes the standard normal distribution vector with zero mean and unit standard deviation. 

Figure 4-12(a-d) shows the damage index results calculated with the original decomposed 

response components by using SSA, without considering measurement noise and modelling 

error. Figure 4-12(e-h), Figure 4-13(a-d) and Figure 4-13(e-h) show the damage detection 

results with 10% white noise, 10% pink noise and 1% modelling error, respectively. The true 

damage is located at the 6th element, marked with a red arrow in the figures. In Figure 4-12, 

the damage index SSA-CPSTaverage values at each measurement point increase with the damage 

extent, demonstrating the fact that the phase spaces of structural vibration responses are 

influenced by the damage in a certain region. Higher damage index values are clearly observed 

in the #6 measurement node, which is the location of the introduced damage. This shows that 

the location of the preset single damage is successfully identified. 

Comparing the normalized damage index values obtained from the 1st, 2nd, 3rd and 4th 

decomposed components, it is observed that the values from the 4th component are much 

higher than those from the other three components. These results are also consistent with the 
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above analysis, demonstrating that the sensitivity of using the 4th component for damage 

detection is significantly higher. Regarding the effect of measurement noise and uncertainties, 

the damage detection results are shown in Figure 4-12(e-h) and Figure 4-13. It is found that 

the measurement noise and modelling errors only have a slight influence on the performance 

of damage detection using the proposed approach. In other words, the proposed approach is 

robust to white noise, pink noise and modelling uncertainties. One possible reason for this 

good noise immunity of the proposed method is that the principle of the damage index SSA-

CPST based on phase space techniques is to evaluate the dissimilarity of reference points in 

baseline trajectory and its neighbors in the trajectory corresponding to an unknown structural 

state after several time steps evolution. Therefore this damage index significantly increases 

the sensitivity to detect the damage in phase space. However, phase-based method evaluates 

the dissimilarity of PST in baseline and unknown status, the measurement noise and 

uncertainties affect only the local values of the time series responses that are reflected as the 

choice of local-scale neighbors in the phase space, while brings a less influence on the free 

decay period of dynamic responses. Thus, the effects of measurement noise will be submerged 

in the phase after several time steps evolution. It is noteworthy that the SSA-CPSTaverage value 

in the 4th SSA component of #9 node (mid-span model node) is null, which is because of the 

mode shape corresponding to the 4th SSA component cannot be excited on this node. Therefore, 

the structural damage ought to be evaluated by a combination of several decomposed SSA 

components to achieve robust damage detection results.  
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Figure 4-12. Damage detection results for single damage case when using different 

decomposed components without noise: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th and with 10% white 

noise: (e) 1st; (f) 2nd; (g) 3rd; (h) 4th. 

 

 

Figure 4-13. Damage detection results for single damage case with 10% pink noise when 

using different decomposed components: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th and with 1% 

modelling error when using different decomposed components: (e) 1st; (f) 2nd; (g) 3rd; (h) 4th. 
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4.3.3 Multiple damage detection 

To verify the accuracy of applying the proposed method for identifying multiple damage 

scenarios, 15% stiffness reduction is defined in element No. 21 and the stiffness reduction in 

element No. 45 is respectively set as 5%, 10% and 15%, as listed in Table 4-1. The same 

procedure as the above single damage detection is performed in this section. Figure 4-14(a-d) 

shows the damage detection results for multiple damage scenarios calculated with the original 

decomposed response components by using SSA, without both measurement noises and 

uncertainties. Figure 4-14(e-h), Figure 4-15(a-d) and Figure 4-15(e-h) show respectively the 

damage detection results for multiple damage case with 10% white noise, 10% pink noise and 

1% modelling error. It should be noted that in these detection results, both damage locations 

could be confidently detected even when the dynamic responses are contaminated with 

significant white noise, pink noise or uncertainties.  

It is worth noting that for most cases, the structural minor damage, i.e. 5% in element No. 

45 around measurement location #13 in MD1, is detected accurately, especially when taking 

noise and uncertainties into consideration. The detection performance is more reliable and 

sensitive when using higher order frequency responses, as demonstrated by the results using 

the third and fourth decomposed components from SSA. The damage index values calculated 

with the fourth component are much higher than those from other three components. This also 

validates the fact that the fourth component with higher order frequency response is more 

sensitive and reliable to detect structural damage, even for the minor structural damage, under 

the significant measurement noise and uncertainty effect.     
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Figure 4-14. Damage detection results for multiple damage case when using different 

decomposed components: without noise: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th and with 10% white 

noise: (e) 1st; (f) 2nd; (g) 3rd; (h) 4th. 

 

 

Figure 4-15. Damage detection results for multiple damage case with 10% pink noise when 

using different decomposed components: (a) 1st; (b) 2nd; (c) 3rd; (d) 4th and with 1% 

modelling error when using different decomposed components: (e) 1st; (f) 2nd; (g) 3rd; (h) 4th. 

4.4 Experimental Application               

The performance and reliability of the proposed damage detection method are further 

verified through the experimental studies on a pre-stressed concrete beam model in the 
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laboratory. The experiment setup and damage detection results are discussed in this section. 

4.4.1 Experiment setup and sensor placement 

A Tee-section pre-stressed concrete beam model was constructed in the laboratory to 

validate the performance and reliability of the proposed damage detection method. Its plan 

view, cross-section and dimensions are shown in Figure 4-16(a). The Young’s modulus and 

density of concrete are 2.6×104 MPa and 2.7077×103 kg/m3, respectively. Three pre-stressing 

tendons with a total pre-stress force of 140 kN was applied on the beam model with the post-

tensioning method. The cross-section dimensions and pre-stressing tendon locations at both 

ends and mid-span are shown in Figure 4-16(b). Seven single-axial sensors numbered from 1 

to 7 as shown in Figure 4-16(a), are placed on the top of the T-section beam model for the 

dynamic vibration tests to measure the accelerations in the vertical direction. Hammer impact 

loads are applied at the 3L/8 location to the right end of the beam for the structures under 

undamaged and damaged states to collect the acceleration vibration responses, which will be 

used for the damage detection with the proposed approach.   

 

(a) 

          

(b) 

Figure 4-16. The sketch of pre-stressed concrete beam: (a) plan view; (b) cross-sections. 

(unit: mm). 

4.4.2 Loading process to introduce structure damage 

Structural damage is introduced by applying three different loading levels on the top of 

the beam model with hydraulic loading system, as shown in Figure 4-17, to create cracks in 

the beam. The applied loads of increment 1, increment 2 and increment 3 are 100kN, 180kN 

and 210kN, respectively.  
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The crack locations, intensities and distributions under each loading increment are 

presented in Figure 4-18. The light yellow curve denotes the appeared cracks at the end stage 

of the applied static load, and the black curve denotes the remaining cracks after unloading for 

one and a half hours. For the loading increment 1, some small cracks appear in the region from 

sensors #2 to #6, and only four cracks close to sensors #4 and #5 still remain in the beam 

model after unloading. The number and severity of cracks such as the depth are further 

increased when applying loading increment 2. Most of the cracks appeared in the loading 

increment 1 are not closed after unloading in this case, and some new cracks are developed. 

The loading increment 3 is applied on the beam structure to further increase the damage extent. 

It is observed that the depths of most cracks are significantly developed and some cracks are 

expanding to the flange of Tee-section beam, practically in the region from sensors #2 to #6 in 

the mid span of the model. Figure 4-19 displays the distribution of cracks observed after the 

loading increment 3. 

 

 

Figure 4-17. Experimental setup. 
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Figure 4-18. The crack distribution pattern in the damaged beam model under different 

loads: (a) Increment 1; (b) Increment 2; (c) Increment 3. 

 

 

Figure 4-19. Observed crack locations and heights. 

4.4.3 Vibration tests and analysis 

Dynamic tests were conducted by using a LC-03A hammer with a nylon head and 

additional weight to make sure that a sufficient amount of energy is applied to excite the 

structure with a number of vibration modes. Acceleration responses of placed accelerometers 

under hammer impact tests are acquired from the beam model under the intact and damaged 

states, after the unloading of each loading increment at a stable state. Figure 4-20 shows the 

measured acceleration responses from sensor #1 and the corresponding frequency spectra in 

the healthy and damaged states under the applied incremental loads. It is observed that minor 

frequency reductions are observed in the low order frequency components, i.e. the 

fundamental frequency around 40Hz, even for the most significant damage severity under the 

loading increment 3. However, for the higher order frequency components, for example, those 

above 400Hz, the resonance frequency shifts are much more prominent, indicating a 

significantly higher sensitivity to detect the damage. Traditionally natural frequencies and 

mode shapes of the relatively low frequency components can be more reliably identified. For 

high frequency components, the excited energy and the participation ratio could be small 

accelerometer

#1 #2 #4 #5 #6 #7#3

accelerometer

accelerometer

#1 #2 #4 #5 #6 #7#3

#1 #2 #4 #5 #6 #7#3

crack closed after unload crack still exist after unload

(a)

(b)
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compared with those of the first several frequencies. Therefore vibration characteristics of 

these high frequency components may not be identified confidently. The accuracy of this 

identification is also susceptible to the effect of various uncertainties, such as measurement 

noises and other sources of uncertainties etc.  

 

 

Figure 4-20. Acceleration responses of sensor #1 under hammer loads and different loading 

increments: (a) Time domain; (b) Frequency spectra. 

4.4.4 SSA and phase space reconstruction   

Before conducting PST reconstruction and calculating the damage index, SSA is 

performed to decompose the high dimensional acceleration response into a number of reduced 

dimensional components, which is more accurate to perform the PST reconstruction and 

reduces the computational demand as well. Figure 4-21 shows the Fourier spectra of 

decomposed components from the measured responses of sensor #1. It is clearly observed that 

the 2nd, 3rd and 4th components obtained by SSA contain only one dominate frequency 

component, while two frequencies are found in the first component. Besides, the natural 

frequencies in the 3rd and 4th components are distinctly decreased with the increasing severity 

of damage from loading increments 1 to 3. As discussed and validated by the results in the 

numerical studies on the sensitivity analysis of using different decomposed components for 

damage detection as shown in Figure 4-10 and Figure 4-12, the decomposed component by 

using SSA corresponding to high order responses is more sensitive to damage. Therefore in 

this study, the 3rd and 4th components are used herein to reconstruct the PST and evaluate the 

damage condition by using the proposed approach. 
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Figure 4-21. Fourier spectra of decomposed components from sensor #1: (a) 1st; (b) 2nd; (c) 

3rd; (d) 4th. 

 

SVD and auto-correlation function calculation presented in Section 2.2 are utilized to 

determine the proper embedding dimension and time delay parameters, respectively. The 

embedding dimensions of the 3rd and 4th components of the dynamic response measured by 

sensor #1 are determined as 2 . Then, the normalized auto-correlation functions of the 3rd and 

4th SSA component of #1 sensor are calculated to find out the optimal choice of delay time 

parameter. The time delay parameters of the 3rd and 4th components are obtained as 8 and 4, 

respectively. The process is repeated for the calculation of the embedding dimension and time 

delay parameters of sensors #1 to #7. With the obtained embedding dimension and time delay 

parameters, the PST of the 3rd and 4th component by SSA can be reconstructions according to 

the same procedure described in Section 2.3.  

4.4.5 Damage detection results 

The obtained PST corresponding to the intact beam is selected as the baseline, and the 

damage index results, SSA-CPSTaverage, are calculated and used to detect structural damage 

corresponding to the different states of load increment. It is noted that structural damage in 

this experimental verification is reflected by the number and length of cracks under the applied 

static loads. With a large number of different cracks observed in the beam model, it is difficult 

to derive analytically the exact damage extent. Therefore the observed crack pattern is defined 

as the target to identify in this study. Figure 4-22 shows the obtained SSA-CPSTaverage damage 

index values depicting the progressive damage evolution for loading increments 1, 2 and 3, 
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respectively. The magnitudes of SSA-CPSTaverage damage index values in almost all the sensors 

increase generally with the incremental loads from both the 3rd and 4th components, except the 

sensor #6 in the load increment 2. The maximum damage index values are observed at the 

sensor #5 location in all of the three damage scenarios, which means that the region close to 

sensor #5 sensor has the largest damage severity. The most significant damages are distributed 

in the region from sensors #2 to #6. These detection results are consistent with the observed 

crack distribution in Figure 4-19. It is interesting that even though the cracks near sensors #2 

and #3 are closed after the unloading of increment 1 for one and a half hour, the calculated 

damage index values still have a certain level of increase. The reason is that there will be 

friction in the closed micro cracks of the beam, which will significantly increase the damping 

ratios of some vibration modes and further affect the duration of free vibrations decay [19]. 

This observation shows that the damage index used in this study is very sensitive to minor 

structural damage. Comparing the results in Figure 4-22(a) and Figure 4-22(b) by using the 3rd 

and 4th components, the detection with the high order responses, i.e. the 4th component, shows 

a more sensitive and better damage pattern distribution, which matches well with the captured 

crack images. These results well demonstrate the reliability and sensitivity of using the 

proposed approach for structural damage detection.  

 

 

Figure 4-22. Damage detection results by SSA based CPST: (a) 3rd component; (b) 4th 

component. 

 

To demonstrate the advantage of using the proposed method for structural damage 

detection in providing a higher sensitivity than the traditional modal information based indices, 

damage detection results by using the proposed SSA-CPST index are further compared with 

those from the relative change of other commonly used modal-based indices, i.e. natural 

frequency, flexibility, COMAC and ECOMAC. The theoretical derivations of the above 

mentioned DI are summarized by Nie et al. [18]. Figure 4-23 shows the comparison of using 
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modal-based indices and the proposed SSA-CPST with the 3rd and 4th component at an 

arbitrary location of measurement (e.g. sensor #5) under different structural conditions, 

including undamaged and damaged states introduced by different loading increments. It is 

clearly observed that SSA-CPST is the most sensitive one, followed by the relative change in 

flexibility. The proposed damage index shows a significantly higher sensitivity than modal 

based indices in damage detection. Moreover, the values of SSA-CPST show a consistently 

increasing trend with the damage severity, indicating that this proposed damage index could 

also be used for structural damage quantification. 

 

 

Figure 4-23. Comparison of the proposed damage index and traditional ones. 

4.5 Conclusions   

This chapter proposes a novel approach to improve the identifiability of structural damage 

by using higher order responses and SSA based PST technique. It is developed to extend the 

feasibility of using high dimensional structural responses to achieve the sensitive damage 

detection, which is essential for effective SHM under a number of uncertainties. The used SSA 

allows the decomposition of high dimensional structural responses into a number of low 

dimensional response components with separated vibration frequencies. These components 

contain sufficient dynamic feature to reflect structural degradation in the phase space. The 

optimal PST reconstruction parameters, namely, embedding dimension and time delay are 

determined using SVD analysis and auto-correlation function, respectively. Numerical and 

experimental studies demonstrate that the presence, location and progressive damage 

evolution can be identified effectively by the decomposed high order response component with 

the developed approach. The superiority of using SSA decomposed component corresponding 

to the higher-order response for damage detection is also demonstrated. Numerical results on 
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a planar truss model demonstrate that the proposed method is not only sensitive to structural 

damage, but also tolerant to a significant level of white noise, pink noise and modelling 

uncertainties. The performance of the proposed method is further verified with experimental 

investigations on a pre-stressed reinforced concrete beam model. The structure is progressively 

damaged by applying increasing static loads to develop a series of cracks. Vibration 

acceleration responses of the testing structure under intact and damaged states are used for 

SSA and PST reconstruction. The decomposed component with the higher-order response is 

then used for damage detection. The results show that damage pattern identified by the 

proposed approach agrees well with the observed crack distribution in the experimental tests.  

It should be noted that hammer impact load is applied as excitations in this study. The 

excitation applied under different conditions is not necessarily the same in the test, but 

normalization can be conducted to remove the effect of different excitation levels. The 

flexibility of using the proposed method for scenarios under other forms of external loads, i.e. 

ambient and seismic excitations could be further investigated. It is also noted that a number of 

sensors are used to accurately identify damage. This limitation could be overcome by 

employing the phase space reconstructed from the dynamic responses of a moving vehicle 

crossing over the bridge, which will be studied in the future work. 
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CHAPTER 5 DATA DRIVEN STRUCTURAL DAMAGE 

ASSESSMENT USING PHASE SPACE EMBEDDING AND 

KOOPMAN OPERATOR UNDER STOCHASTIC EXCITATIONS 

ABSTRUCT4 

To address the issue faced by PST based methods for identifying structural damage using 

high dimensional dynamic responses of structures under stochastic excitations, a novel data 

driven approach for structural damage assessment based on phase space embedding in 

conjunction with stochastic Koopman operator, is proposed in this study. Vibration 

acceleration responses are used to reconstruct the phase space representation of system 

dynamic attractor using embedding strategy, followed by subspace dynamic mode 

decomposition (subspace DMD) to estimate the unbiased eigenvalues of the corresponding 

stochastic Koopman operator. Under the hypothesis that the Koopman operator eigenpairs will 

vary with structural condition change, the Mahalanobis distance of Koopman operator 

eigenvalues approximated from heathy state and current testing state is introduced as a DSF 

to detect structural damage. A planar truss model is adopted in numerical studies to 

demonstrate the feasibility and applicability of the proposed approach. The robustness of the 

proposed approach under operational and environmental variations is tested by considering 

10% white noise in vibration measurement and six different ambient loading scenarios. 

Numerical results show that the proposed approach is sensitive to the occurrence and severity 

of structural damage, and is insensitive to the measurement noise and the variation of 

stochastic excitation amplitudes. Furthermore, the proposed method is applied to identify 

damage introduced as the artificially applied settlements of pier in the Z24 benchmark bridge. 

Results demonstrate that the bridge condition under the reference state and the damage 

scenarios with different levels of pier settlement are well identified by using the proposed 

approach with in-field measurement data including different test environment. The defined 

DSF value can be used to reflect the damage severity in these damage scenarios.   

                                                      

4 This chaper was published in Engineering Structures with the full bibliographic citation as 

follows: Peng, Z., Li, J., & Hao, H. (2022). Data driven structural damage assessment using 

phase space embedding and Koopman operator under stochastic excitations. Engineering 

Structures, 255, 113906. https://doi.org/10.1016/j.engstruct.2022.113906.   

https://doi.org/10.1016/j.engstruct.2022.113906
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5.1 Introduction 

Monitoring infrastructure health condition refers to detecting the structural condition 

changes by some global or local DSFs extracted from observed vibration responses. In this 

context, many works have been devoted to deriving features that are sensitive to structural 

performance degradation, but robust to operational conditions and measurement noise. 

Comprehensive reviews of vibration based damage detection techniques can be found in Refs. 

[1, 2]. Without the need to conduct finite element modelling and the requirement of performing 

model updating, the data driven damage detection methods provide opportunities to assist real-

time and long-term condition assessment of large-scale civil engineering structures [3, 4]. Data 

driven based structural damage detection is usually conducted by statistically comparing the 

DSFs obtained from possible damage state with those estimated under the reference (healthy) 

state. However, under certain situations, structures inherently exhibit nonlinearities, owning to 

the materials with nonlinear constitutive relationship and structural geometric nonlinearity, as 

well as the damage (crack and bolt loosening, etc.) induced nonlinearity, which result in the 

presence of nonlinear behavior. This may significantly degrade the performance of using DSFs 

extracted from modal parameters and its derivatives based on the linear assumption of 

structures [5, 6] for damage detection. To this end, the ARMA [7, 8], phase space portrait [9], 

Volterra series [10], autoregressive support vector machines [11], convolutional neural 

networks and deep learning based techniques [12] have been recently developed to represent 

the structural nonlinear dynamics with data based models.  

In recent years, PST based damage detection methods have received research attention 

owing to its much higher sensitivity to structural condition change than traditional modal 

information based damage features, but a significantly less sensitivity to measurement noise. 

In addition, the nonlinear dynamic behavior can be completely unfolded in phase space with 

appropriate time delay and embedding dimension parameters [13]. In state-space, a specific 

mechanical system is deterministic under a steady-state condition. Fortunately, the state-space 

representation of the dynamic system attractor can be fully reconstructed in phase space using 

the Taken’s embedding theory [14]. Therefore, structural condition changes can be identified 

by quantifying the PST dissimilarity between the geometric PST under pristine (baseline) and 

to-be-detected states using DSFs, such as CPST, Mahalanobis distance in phase space 

trajectory (MDPST) [15, 16], and auto-prediction and cross-prediction errors [17, 18]. More 

recently, the PST reconstructed by vibration measurements with multiple types of sensors 

subjected to moving loads has been developed and applied to accurately identify the damage 

location in bridge structures [19]. Improvement has been made in Ref. [20] by using a single 

sensor measurement to identify the damage location of a beam subjected to a moving mass. 

Previous comparative studies shown that the damage sensitivity of PST-based DSFs could be 
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orders of magnitude higher than that of modal-based DSFs [15, 21]. However, the 

abovementioned DSFs are extracted from the geometry of low dimensional (usually less than 

or equal to 3) phase space attractor, which is impractical for structures with high dimensional 

vibration responses under stochastic excitations. In order to extract DSFs from low-

dimensional vibration signals, early attempts were made by applying artificial-made loads with 

low or narrow band-limited frequency range, i.e. chaotic excitation, to obtain lower-

dimensional structural responses. This limited its applicability in practical applications [16, 

22]. More recently, signal decomposition techniques, including (but not limited to) EMD, 

independent component analysis and SSA, have been developed to obtain lower dimensional 

signal components from high dimensional vibration responses for phase space reconstruction 

[16, 23]. These signal decomposition techniques successively improved the feasibility of using 

PST-based methods for structural damage diagnosis to some extent. It is worth noting that the 

particular signal decomposition method and the appropriate number of components should be 

carefully selected according to the characteristics of signals. Structural responses under 

operational and ambient excitations are usually high dimensional. Under this circumstance, 

the traditional PST based method using low dimensional responses may not be applicable and 

able to provide reliable damage detection results. For civil engineering structures under 

operational conditions, the unmeasured ambient excitations are usually considered as 

stochastic excitations, rather than other artificially-generated deterministic loads, such as 

multi-frequency sinusoidal wave excitation or chaotic excitation [24, 25]. Therefore, 

extending the feasibility and accuracy of PST-based methods to monitor and assess the 

structural performance under operational conditions is significant and remains largely under-

explored. In particular, the main obstacle is how to capture the manifold topology of the 

original attractor with vibration signals subjected to stochastic excitations.  

The Koopman operator is a linear but infinite-dimensional operator that can fully capture 

the dynamic behavior of a nonlinear system through the linear evolution of functions on the 

state space [26]. Although the concept of Koopman operator was first proposed several 

decades ago [27], few relevant publications were found in literature, partly owning to the lack 

of efficient methods in obtaining the Koopman operator itself for a dynamic system without 

any prior knowledge. Until recently, Schmid [28] proposed the data driven dynamic mode 

decomposition (DMD) algorithm and proven that the eigenvalues and eigenvectors extracted 

from DMD is a numerical approximation of Koopman operator. The key strength of DMD is 

its data driven nature, which does not rely on any prior assumption except using the system 

responses observed over time. More recently, Tu et al. [29] improved the computational 

efficiency of DMD algorithm and developed to its current state-of-the-art form. In the last 

decade, several improvements have been made to enhance the efficiency and accuracy of using 
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standard DMD for numerically approximating the Koopman operator, the Koopman 

eigenvalues and eigenvectors. For instance, noise-aware total DMD was developed to 

eliminate the noise-induced bias description of using dynamic system observations 

contaminated by noise [30]. For an external force driven system, DMD with control (DMDc) 

was developed to incorporate the effect of external excitation to extract a low order model 

from the underlying high dimensional system [31]. Furthermore, the stochastic Hankel DMD 

and subspace DMD were developed to obtain an accurate estimation of Koopman operator 

from the random dynamic system (RDS) with observation noise [32, 33]. As a result, Koopman 

theory and DMD have been recognized as powerful tools for analysing the dynamics of 

complex nonlinear systems across multiple fields, including complex fluid flows process, 

computer vision, neuroscience and trends forecasting [34, 35]. Mathematically, Koopman 

operator and DMD can be viewed as a mapping function acting on the state-space, which 

builds up a linear representation for the past and current observations of the underlying 

nonlinear system [36]. For a time-invariant system or linear structures, Koopman operator and 

DMD enable us to capture the long-term dynamics of observables that appear after the fast 

unstable transients, and its eigenvalues, eigenfunction and mode will be constant if the system 

parameters are not changed [34].  

This chapter proposes a data driven structural damage assessment approach using phase 

space embedding strategy in conjunction with Koopman operator under stochastic excitations. 

The proposed approach consists of three main steps. Firstly, structural vibration responses 

from a single channel are projected to the dynamic attractor of high dimensional system in 

phase space using embedding strategy. The second step connects the consecutive embedded 

Hankel matrix with a mapping matrix, that is, Koopman operator, and obtains the eigenvalues 

approximation of Koopman operator with subspace DMD. Then, the Mahalanobis distance 

between the eigenvalue vectors approximated under intact and current testing states is served 

as DSF to detect the structural condition change. Numerical studies on a truss bridge model 

are conducted to verify the feasibility and accuracy of the proposed approach. Experimental 

validations using measurement data from in-field bridge tests are performed to further 

demonstrate the performance of using the proposed approach for data driven structural damage 

detection under stochastic ambient excitations.       

The remaining sections of this chapter are organised as follows. Section 2 provides a 

theoretical derivation of embedding alternative view of time-invariant stochastic Koopman 

operator through single channel measurements. The subspace DMD with the awareness of 

process noise and observation noise is introduced to obtain the unbiased approximation of 

Koopman operator eigenvalues. Then, the DSF is extracted from the Mahalanobis distance of 

the estimated eigenvalues. Section 3 demonstrates the applicability and accuracy of using the 
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proposed approach for damage detection in a numerical truss model. In Section 4, the proposed 

approach is applied to evaluate the condition of the Z24 benchmark bridge with different levels 

of pier settlement. Section 5 provides conclusions of this study, discussions on the limitation 

and recommendations for future work. 

5.2 Theoretical Background and Development 

5.2.1 System dynamic attractor reconstruction with phase space embedding strategy 

The responses of a discrete-time nonlinear dynamic system can be represented by the 

following first-order differential equation 

�̇� = f(𝒙, 𝑡)𝒙 ∈ 𝑅𝑑                                                             (5.1) 

where f (·) is a general, possibly nonlinear and mapping function determined by the underlying 

system, x is the state vector with d variables. For a mechanical dynamic system, the state vector 

x consists of displacement and velocity. Considering a single degree of freedom (DOF) 

mechanical system with a cubic nonlinear term (referred to as Duffing-Homels nonlinear 

oscillator), we have  

�̈�(𝑡) + 𝑐�̇�(𝑡) − 𝛼𝑥(𝑡) + 𝛽𝑥3(𝑡) = 𝐹cos(𝜔𝑡)                                    (5.2) 

in which c denotes the damping coefficient, 𝛼and 𝛽 represent the linear and nonlinear stiffness 

coefficients, respectively.𝐹cos(𝜔𝑡)  is the external driving force with the amplitude F and 

circular  frequency𝜔. With state vector 𝒙 = [𝑥1, 𝑥2]
𝑇, the state space representation of Eq. 

(5.2) can be expressed as the following first-order equation 

{
�̇�1 = 𝑥2

�̇�2 = 𝐹cos(𝜔𝑡) + 𝛼𝑥1 − 𝛽𝑥1
3 − 𝑐𝑥2

                                             (5.3) 

Without loss of generality, the Duffing oscillator parameters are preset as c = 0.1, 𝛼= 1, 

𝛽= 0.25, F=1.5 and 𝜔=2. The fourth-order Runge-Kutta method with a time step of 0.01 s is 

adopted to obtain the numerical solution of Eq. (5.3). Figure 5-1(a) and Figure 5-1(b) show 

the displacement time series x1 and the trajectory of state vector 𝒙 = [𝑥1, 𝑥2]
𝑇in phase space, 

respectively. When deterministic excitation is applied to a mechanical system, the geometric 

depiction (also referred to as system dynamic attractor) of state vector is unique under a steady-

state condition [37]. The resulting attractor topology will change once the system parameters 

are slightly disturbed. The manifold topology of any underlying dynamic system can be 

completely unfolded in phase space to have a better understanding of the state evolution 

process, when all the state variables are measurable. However, some variables are difficult or 

even impossible to be accurately observed under actual operations. For instance, owing to the 
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difficulty to find a fixed reference point, direct measurement of dynamic displacement 

response is uncommon in bridge health monitoring practices. Fortunately, the original attractor 

traced out by state vector with all variables can be fully reconstructed with a single variable 

embedded as follows 

𝑿1
𝑚 = [𝒙1𝒙2⋯𝒙𝑚] = [

𝑥(1) 𝑥(1 + 𝜏) ⋯ 𝑥(1 + (𝑚 − 1)𝜏)
𝑥(1 + 𝜏) 𝑥(1 + 2𝜏) ⋯ 𝑥(1 +𝑚𝜏)

⋮ ⋮ ⋱ ⋮
𝑥(1 + (𝑛 − 1)𝜏) 𝑥(1 + 𝑛𝜏) ⋯ 𝑥(1 + (𝑚 + 𝑛 − 2)𝜏)

]  (5.4) 

where m and n represent the embedding dimension and the number of samples in each column 

of the embedding matrix, respectively. Typically, n≫m. 𝜏 is the time delay. By introducing an 

embedding procedure, the single channel vibration response measurement is formed as a 

higher dimensional attractor in the phase space with more features unfolded [38]. It should be 

noted that the single response variable in Eq. (5.4) could be displacement or acceleration. The 

function of embedding strategy is to elevate the single channel response signal to a high 

dimensional space, where the original dynamic attractor of system traced out by full-state 

vectors can be fully unfolded by using partial state variable. This is important for civil 

engineering applications, since the displacement and velocity responses are difficult or 

expensive to be measured. Figure 5-1 shows an example displacement response, its phase 

space and reconstructed attractor. For comparison purpose, the attractor reconstructed in the 

phase space with m =2, 𝜏=25 and n=8000 is plotted in Figure 5-1(c). Actually, the appropriate 

selection of embedding dimension and time delay parameters to fully uncover the original 

attractor is associated with the complexity of the underlying dynamic system. The optimal 

selection of these parameters is further discussed in Sections 3 and 4. As can be found in Figure 

5-1(b) and Figure 5-1(c), apart from that the direction of the attractor is changed in the 

embedding coordinate, the manifold topology of the original attractor is well reconstructed by 

using Taken’s embedding strategy. For structures under deterministic excitations, the structural 

condition change can be detected by comparing the dissimilarity between the attractor 

trajectories reconstructed from vibration responses measured from healthy and damaged states. 

Nevertheless, most of the up-to-date PST-based structural damage detection methods are only 

applicable to numerical and experimental structures under user-defined deterministic lower-

dimensional loads, which could not meet the requirement of practical SHM applications of 

civil engineering structures subjected to stochastic ambient excitations. Therefore, extending 

the feasibility and applicability of PST-based techniques to monitor and assess the structural 

performance under operational conditions should be further studied.   



111 

 

 

    (a)                                                 (b)                                             (c) 

Figure 5-1. An example response of Duffing oscillator: (a) Time series displacement x1; (b) 

The phase space attractor plotted with state vector x; (c) Attractor reconstructed from x1 with 

embedding strategy. 

5.2.2 Embedding alternative view of data driven Koopman operator 

The evolution of a deterministic complex system with unknown underlying dynamic in 

the phase space can be reorganized as follows 

𝒙𝑡+1 = 𝑓(𝒙𝑡),𝒙𝑡 ∈                                                       (5.5) 

with a measurable map f : →  and a subscript time index 𝑡 ∈  = {0} ∪ .  

The Koopman operator defines a set of scalar-valued functions (also referred to as 

observables) 𝑔: → R𝑚  and seeks for the infinite-dimensional linear expression of finite-

dimensional nonlinear dynamic system in Hilbert space. The Koopman operator acting on the 

pre-determined set of observables in Hilbert space is defined as  

𝑔(𝒙𝑡) ≝ 𝑔[(𝑓(𝒙𝑡)]                                                        (5.6) 

The schematic diagram in Figure 5-2 illustrates the framework of Koopman operator. 

Figure 5-2 describes how the phase space representation of collected time series from 

numerical, experimental or real vibration measurements is mapped by the pre-determined set 

of observables function𝑔. This also indicates the procedure of Koopman operator acting on 

R𝑚 propagating the observable 𝑦𝑡 to 𝑦𝑡+1. 
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Figure 1. An example response of Duffing oscillator: (a) Time series displacement x1; (b) The 

phase space attractor plotted with state vector x; (c) Attractor reconstructed from x1 with 

embedding strategy. 
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Figure 5-2. Schematic diagram of Koopman operator. 

 

In practical applications, the observable functions need to be manually selected from a 

library of nonlinear observable dictionary according to the prior knowledge about the 

nonlinearity sources of the underlying dynamic system, requiring domain-specific knowledge 

and painstaking parameter tuning [39]. Under this circumstance, neural networks and deep 

learning techniques that aimed at minimizing the reconstruction residuals were recently found 

in literature to automatically select the appropriate set of observable functions [40]. DMD is a 

full data-driven, equation-free alternative algorithm that approximates the Koopman operator 

from system output only. The dynamic modes and eigenvalues extracted from DMD converge 

to its corresponding ones obtained from Koopman operator with the assumption of ergodicity, 

as theoretically demonstrated in Refs. [29, 41]. The algorithm of DMD and the procedure to 

identify the dynamic modes and eigenvalues of the underlying dynamic system, are briefly 

reviewed as follows for the completeness of this chapter. 

Recalling the Hankel matrix 𝑿1
𝑚  with n×m elements defined in Eq. (5.4), it can be 

justified that a mapping matrix A (a numerical approximation of Koopman operator) exists 

between consecutive lagged vectors [32]. Those vector spaces span the Krylov subspace 

{
𝑿1
𝑚 = [𝒙1𝒙2𝒙3⋯𝒙𝑚] = [𝒙1𝑨𝒙1𝑨

𝟐𝒙1⋯𝑨
𝑚−1𝒙1]

𝑿2
𝑚+1 = [𝒙2𝒙3𝒙4⋯𝒙𝑚+1] = [𝒙2𝑨𝒙2𝑨

𝟐𝒙2⋯𝑨
𝑚−1𝒙2]

                 (5.7) 

where 𝑿2
𝑚+1denotes the time-shift Hankel matrix. Computationally, the DMD algorithm finds 

the best-fit operator A to minimize∑ ‖𝒙𝑖+1 − 𝑨𝒙𝑖‖
𝑚
𝑖=1 , so that 𝑿2

𝑚+1 ≈ 𝑨𝑿1
𝑚. The dimensions 

of both 𝑿1
𝑚 and𝑿2

𝑚+1 matrices are n×m. Therefore, the size of the mapping matrix A would 

be n×n. Since n≫m, it will be computational-intensive to estimate A directly through𝑨 =

𝑿2
𝑚+1(𝑿1

𝑚)† , where (𝑿1
𝑚)†  is the Moore–Penrose pseudo-inverse of 𝑿1

𝑚 . Instead, a much 

more efficient DMD algorithm, termed as standard DMD, developed by Tu et al. [29] has 

gained wide attention. The Pseudo-code of the standard DMD is detailed in Algorithm 1.  
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Algorithm 1: standard DMD 

Input: Hankel matrix 𝑿1
𝑚, time-shifted Hankel matrix𝑿2

𝑚+1 and target truncation rank r. 

Output: DMD eigenvalues𝝀, eigenvectors𝝎 and dynamic mode𝚽  

1: procedure standard DMD (𝑿1
𝑚 , 𝑿2

𝑚+1, 𝑟) 

2:[𝑼1:𝑟 , 𝑺1:𝑟 , 𝑽1:𝑟] ←

compactSVD(𝑿1
𝑚 , 𝑟)     

𝑼1:𝑟 ∈ 𝑛×𝑟 , 𝑺1:𝑟 ∈ 𝑟×𝑟 , 𝑽1:𝑟 ∈ 𝑚×𝑟 , 𝑟 = 𝑟𝑎𝑛𝑘(𝑿1
𝑚) 

3: �̃� ← 𝑼1:𝑟
∗ 𝑿2

𝑚+1𝑽1:𝑟𝑺1:𝑟
−𝟏                     �̃� ∈ 𝑟×𝑟is a low-rank with the same eigenvalues to A 

4: [�̃�, �̃�] ← EIG(�̃�) eigenvalues�̃� and eigenvector�̃�   

5: 𝚽 ← 𝑿2
𝑚+1𝑽1:𝑟𝑺1:𝑟

−𝟏�̃�  

6: end procedure  

 

Algorithm 1 provides accurate eigenvalues approximation for deterministic dynamic 

systems without external excitations. It is noted that the originality and contribution of this 

study is to extend the feasibility and applicability of PST based structural damage assessment 

methods to the scenarios with structures subjected to stochastic loads. For a random dynamical 

system (RDS) in engineering applications, it should be noted that the process noise and the 

measurement noise may yield bias eigenvalue estimation using the standard DMD method [30, 

42].  

The Koopman operator is suitable to construct a linear representation of deterministic 

nonlinear dynamic systems. In this study, a stochastic Koopman operator is introduced with 

consideration of process noise and measurement noise. The stochastic Koopman operator 

extends the feasibility of Koopman operator in generating a linear representation for random 

dynamic systems, which is better for the analysis of structural vibration responses from 

stochastic excitations. A subspace DMD algorithm is applied to obtain the unbiased estimation 

of the stochastic Koopman operator eigenvalues from the RDS responses [32]. A discrete RDS 

is defined as 

𝒙𝑡+1 = 𝑓Ω(𝒙𝑡, 𝜉𝑡),𝒙𝑡 ∈ , 𝜉 ∈ Ω                                         (5.8) 

where (Ω, ΣΩ, 𝜇Ω) is a probability space of process noise, 𝜉𝑡  is a white noise series and is 

assumed to be independent from 𝒙𝑡. Similar to Eq. (5.6), the evolution of the RDS can be 

described using the following stochastic form of Koopman operator 

Ω𝑔(𝒙𝑡) ≝ 𝐸Ω[𝑔(𝑓Ω(𝒙𝑡, 𝜉𝑡))]                                                (5.9) 

where 𝐸Ω  represents the mathematical expectation in space Ω . Setting 𝑨Ω  be the finite-
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dimension restriction of infinite-dimension invariant stochastic Koopman operator Ω , the 

one step evolution of RDS mapped by 𝑨Ω can be written as   

𝑔(𝒙𝑡+1) = 𝑨Ω𝑔(𝒙𝑡) + 𝒆𝑡                                                  (5.10)   

where 𝒆𝑡 represents the process noise owing to the mapping of 𝑔(𝒙𝑡) to future observation 

𝑔(𝒙𝑡+1) with finite-dimension operator 𝑨Ω. The expression of process noise corresponding to 

the time instant t is 

𝒆𝑡 ≝ 𝑔(𝑓Ω(𝒙𝑡, 𝜉𝑡)) − 𝐸Ω[𝑔(𝑓Ω(𝒙𝑡, 𝜉𝑡))]                                       (5.11) 

Further, for a RDS with current state vector 𝒙𝑡, the evolution of observation of 𝜏 steps in 

the future with the accumulation of process noise satisfies  

𝑔(𝒙𝑡+𝜏) = 𝑨Ω
𝜏 𝑔(𝒙𝑡) + ∑ 𝑨Ω

𝑖−𝑡𝑡+𝜏−1
𝑖=𝑡 𝒆𝑖                                           (5.12) 

Besides the process noise, the observation noise-induced bias is considered as  

ℎ(𝒙𝑡) = 𝑔(𝒙𝑡) + 𝒘𝑡                                                      (5.13) 

where 𝒘𝑡: 𝑆 ∈ 𝑛 is assumed to be a uncorrelated Gaussian stationary white noise vector with 

zero mean and covariance of Q. ℎ(𝒙𝑡) = 𝑔(𝒙𝑡) when the observation noise is absent.  

Similar to the standard DMD, a numerical method called subspace DMD with the 

considerations of process noise and observation noise developed in Ref. [32], is introduced to 

capture the unbiased finite-dimension stochastic Koopman operator 𝑨Ω. For the brevity and 

clarity of the presentation of this study, the subsequent content of this subsection focuses on 

introducing the implementation of the subspace DMD. The proofs of using subspace DMD in 

obtaining unbiased stochastic Koopman operator from process noise and observation noise is 

attached in the Appendix. The derivation provided in the Appendix I is a supplement of using 

subspace DMD in obtaining unbiased stochastic Koopman operator with consideration of 

process noise and observation noise, based on the existing study [32].   

To account for the effects of the process noise and observation noise, the Hankel matrix 

in Eq. (5.7) is rewritten as follows  

𝒀1
𝑚 = [ℎ(𝒙1)ℎ(𝒙2)ℎ(𝒙3)⋯ℎ(𝒙𝑚)] ∈ 𝑛×𝑚                               (5.14) 

Defining two augmented observation matrices 𝒀𝑝
𝑎𝑢𝑔

= [𝒀1
𝑚; 𝒀2

𝑚+1]  and 𝒀𝑓
𝑎𝑢𝑔

=

[𝒀3
𝑚+2;𝒀4

𝑚+3] ∈ 2𝑛×𝑚 , the compact SVD of 𝒀𝑝  with the truncation rank 𝑟 = 𝑟𝑎𝑛𝑘(𝒀𝑝) 

yields 

      𝒀𝑝
𝑎𝑢𝑔

= 𝑼1:𝑟𝑺1:𝑟𝑽1:𝑟
∗                                                     (5.15) 

where𝑼1:𝑟 ∈ 2𝑛×𝑟, 𝑺1:𝑟 ∈ 𝑟×𝑟 and𝑽1:𝑟 ∈ 𝑚×𝑟 denote the left-singular vectors, non-zero 
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singular values and right-singular vectors of 𝒀𝑝, respectively. 𝑽1:𝑟
∗ is the conjugate transpose 

of 𝑽1:𝑟. 

With 𝑶𝑎𝑢𝑔 = 𝒀𝑓
𝑎𝑢𝑔

(𝒀𝑝
𝑎𝑢𝑔

)
∗
[𝒀𝑝
𝑎𝑢𝑔
(𝒀𝑝

𝑎𝑢𝑔
)
∗
]
−1
𝒀𝑝
𝑎𝑢𝑔

= 𝒀𝑓
𝑎𝑢𝑔

𝑽1:𝑟𝑽1:𝑟
∗ ∈ 2𝑛×𝑟 , the 

compact SVD of 𝑶𝑎𝑢𝑔 with the truncation rank 𝑞 = rank(𝑶𝑎𝑢𝑔) is expressed as 

      𝑶𝑎𝑢𝑔 = 𝑼1:𝑞𝑺1:𝑞𝑽1:𝑞
∗ = [𝑼1:𝑞1;𝑼1:𝑞2]𝑺1:𝑞𝑽1:𝑞

∗                             (5.16) 

where 𝑼1:𝑞1 and 𝑼1:𝑞2 ∈ 𝑛×𝑞 represent the first and last n rows of 𝑼1:𝑞, respectively; and 

we have 𝑺1:𝑞 ∈ 𝑞×𝑞 and 𝑽1:𝑞 ∈ 𝑚×𝑞. Further conducting the compact SVD on 𝑼1:𝑞1 with 

the truncation rank �̃� = rank(𝑼1:𝑞1), we have 

      𝑼1:𝑞1 = �̃�1:�̃��̃�1:�̃��̃�𝟏:�̃�
∗                                                (5.17) 

Then, the stochastic Koopman operator 𝑨Ω can be approximated as  

𝑨Ω ≝ 𝑼1:𝑞2𝑼1:𝑞1
† = �̃�1:�̃�

∗ 𝑼1:𝑞2�̃�1:�̃��̃�1:�̃�
−1                                     (5.18) 

Hereafter, the eigenvalues, eigenvectors and dynamic modes of Koopman operator 𝑨Ω 

can be calculated by the same procedures introduced in Steps 4-5 of standard DMD as 

described in Algorithm 1. Takeishi et al. [32] compared the subspace DMD with standard 

DMD, total-least-square DMD and optimized DMD (opt-DMD) to demonstrate the superiority 

of using subspace DMD in accurately estimating the eigenvalues of several numerical 

examples corrupted by process noise and observation noise. The pseudo-code of subspace 

DMD based on the procedures introduced in Eqs. (14)-(18) is detailed in Algorithm 2. 
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Algorithm 2: subspace DMD 

Input: augmented Hankel matrix 𝒀𝑝
𝑎𝑢𝑔

= [𝒀1
𝑚; 𝒀2

𝑚+1], 𝒀𝑓
𝑎𝑢𝑔

= [𝒀3
𝑚+2; 𝒀4

𝑚+3]. 

Output: DMD eigenvalues�̃�Ω, eigenvectors�̃�Ω and corresponding dynamic mode𝚽Ω. 

1: procedure subspace DMD (𝒀𝑝
𝑎𝑢𝑔
, 𝒀𝑓
𝑎𝑢𝑔
, 𝑟) 

2:[𝑼1:𝑟 , 𝑺1:𝑟 , 𝑽1:𝑟] ←

SVD(𝒀𝑝
𝑎𝑢𝑔
, 𝑟)  

𝑼1:𝑟 ∈ 2𝑛×𝑟 , 𝑺1:𝑟 ∈ 𝑟×𝑟 , 𝑽1:𝑟 ∈ 𝑚×𝑟 , 𝑟 = 𝑟𝑎𝑛𝑘(𝒀𝑝
𝑎𝑢𝑔
) 

3: 𝑶𝑎𝑢𝑔 ← 𝒀𝑓
𝑎𝑢𝑔
𝑽1:𝑟𝑽1:𝑟

∗  𝑶𝑎𝑢𝑔 ∈ 
2𝑛×𝑟

 

4: [𝑼1:𝑞1; 𝑼1:𝑞2]𝑺1:𝑞𝑽1:𝑞
∗ ← SVD(𝑶𝑎𝑢𝑔 , 𝑞) 𝑼1:𝑞1, 𝑼1:𝑞2 ∈ 𝑛×𝑞 , 𝑺1:𝑞 ∈ 𝑞×𝑞, 𝑽1:𝑞 ∈

𝑚×𝑞  
5: [�̃�1:�̃� , �̃�1:�̃� , �̃�1:�̃�] ← SVD(𝑼1:𝑞1, �̃�) �̃�1:�̃� ∈ 𝑛×�̃� , �̃�1:�̃� ∈ �̃�×�̃� , �̃�1:�̃� ∈ 𝑞×�̃� , �̃�

= 𝑟𝑎𝑛𝑘(𝑼1:𝑞1) 
6: 𝑨Ω ≝ �̃�1:�̃�

∗ 𝑼1:𝑞2�̃�1:�̃��̃�1:�̃�
−1    𝑨Ω is the stochastic Koopman operator  

7: [�̃�Ω, �̃�Ω] ← EIG(𝑨Ω) eigenvalues�̃� and eigenvector�̃�   

8: 𝚽Ω ← 𝑼1:𝑞2�̃�1:�̃��̃�1:�̃�
−1�̃�Ω  

9: end procedure  

5.2.3 DSF extraction 

With the subspace DMD algorithm described in Section 2.2, the eigenvalues and 

eigenvectors of stochastic Koopman operator can be directly estimated from measured system 

output responses. For a time-invariant system, the eigenvalues of Koopman operator will be 

constant when the state of dynamic system is not changed. In this study, the Mahalanobis 

distance is served as DSF to quantify damage level based on the distance between the 

eigenvectors obtained from a baseline state and current testing state. From the statistical 

perspective, the Mahalanobis distance is expressed as 

        𝑑𝑀 (𝑣𝑒𝑐(�̃�Ω(test))
𝑖
) =

√𝑣𝑒𝑐{(�̃�Ω(test))
𝑖 − 𝜇((�̃�Ω(ref)))}

𝑇
[𝐶𝑟𝑒𝑓]

−1
𝑣𝑒𝑐{(�̃�Ω(test))

𝑖 − 𝜇((�̃�Ω(ref)))}        (5.19) 

where 𝑣𝑒𝑐(·) is a vectorization operator. For example, 𝑣𝑒𝑐(�̃�Ω) = {�̃�Ω
1 , �̃�Ω

2 , �̃�Ω
3 ,⋯ , �̃�Ω

𝑛 }
𝑇

 is a 

multivariate vector, in which �̃�Ω
𝑖  denotes the i-th eigenvalue. The subscripts ‘test’ and ‘ref’ 

represent the statistical samples under the testing and reference (healthy) states, respectively, 

𝜇((�̃�Ω(ref)))  and 𝐶𝑟𝑒𝑓  denote the mean and covariance of eigenvalues matrix under the 

reference state, respectively. (�̃�Ω(test))
𝑖  is the i-th eigenvalue vector sample obtained from 

acceleration responses under the testing state.  



117 

 

For a better understanding of the procedures, the flowchart of the proposed structural 

damage assessment approach is summarised in Figure 5-3. Numerical and experimental 

verifications are presented in the following sections to demonstrate the accuracy and 

effectiveness of using the proposed approach for structural damage detection.  

 

 

Figure 5-3. The flowchart of the proposed structural damage assessment approach. 

 

In this study, the contribution in methodology development lies on combining the phase 

space embedding and stochastic Koopman operator to extend the feasibility and accuracy of 

using PST-based methods for monitoring and assessing the structural performance under 

operational conditions. Different from the stochastic Koopman operator developed in Ref. [32] 

using the full-state variables as input, the Hankel matrix reconstructed from phase space 

embedding is used as the input to Algorithm 2. This means that only partial structural vibration 

responses are required for obtaining the stochastic Koopman operation. For example, only 

acceleration responses from a single location is required in this study. The damage feature 

extracted from the proposed method is sensitive to structural damage, but not sensitive to the 

measurement noise, stochastic excitation levels and environmental conditions. 

5.3 Numerical verifications 

5.3.1 FE model description 

In this section, the feasibility and accuracy of using the proposed approach with phase 

space embedding strategy and Koopman operator for damage assessment of structures under 
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stochastic excitations, are studied. Numerical studies are conducted on a simply supported 

sixty-one elements planar truss structure subjected to stochastic excitations. As shown in 

Figure 5-4, the lengths of the horizontal and vertical bar elements are 0.58 m and 0.38 m, 

respectively. The external and internal radii of circular-shape bars are 18 mm and 12 mm, 

respectively. Other mechanical parameters, e.g., Young’s modulus, density and Poisson’s ratio 

are detailed in Figure 5-4. Three severities of single structural damage are simulated by 

applying 5%, 10% and 15% stiffness degradations in #22 element, marked with a red circle in 

Figure 5-4. The vertical acceleration responses of node 6 (5/16 span) subjected to stochastic 

excitations applied in the vertical direction of node 24 are obtained from the finite element 

analysis with a sampling rate of 400 Hz. Table 5-1 lists the first five natural frequencies of this 

planar truss structure corresponding to different structural condition states. It can be found that 

the modal frequencies have been slightly changed with the increasing stiffness reduction in 

element #22. Owing to the high statically indeterminate characteristic of this truss structure, 

minor stiffness reduction in a single bar element will not cause a significant influence on the 

global vibration characteristics. Very minor reductions are observed in the natural frequencies 

as listed in Table 5-1. These results indicate that modal information based index, e.g. natural 

frequencies, is not sensitive to the local damage of the truss structure, which motivates the 

development of damage features that are more sensitive to structural minor damage. 

 

Table 5-1. The first five order natural frequencies of planar truss structure 

Structural condition 
Modal frequency (Hz) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Intact state 12.00 32.15 64.05 89.75 115.80 

5% stiffness reduction 12.00 32.15 63.75 89.40 115.80 

10% stiffness reduction 12.00 32.05 63.75 89.40 115.10 

15% stiffness reduction 11.90 32.05 63.75 89.40 115.10 

 

 

Figure 5-4. Sixty-one elements planar truss structure. 

 

For most data driven damage assessment methods that do not involve the system physical 

parameters identification process, the measurement noise and the variations of environmental 
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conditions, including loading properties, temperature and humidity effects, may degrade the 

damage detection performance to some extent. Therefore, a desirable and effective method 

should be sensitive to minor structural damage while insensitive to the abovementioned 

influence factors. In this study, the measurement noise is considered by adding 10% normally 

distributed white noise to the calculated acceleration response as 

�̈�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = �̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 + 10%× 𝑠𝑡𝑑(�̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) × 𝒏𝒐𝒊𝒔𝒆         (5.20) 

where �̈�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and �̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 represent the measured response with noise effect and the 

calculated acceleration responses from the numerical finite element analysis, respectively; 

𝑠𝑡𝑑(�̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)  and noise represent respectively the standard deviation of calculated 

acceleration response and a zero mean and unit variance random measurement white noise 

vector with the same length as �̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑.   

In this study, to investigate the effect of different types of applied stochastic excitations on the 

effectiveness and performance of the proposed approach, white noise and pink noise with 

different excitation levels are applied on the structure before and after damage. Table 5-2 lists 

six loading scenarios considered in this study to simulate the loading effects with different 

noises. It should be noted that ‘WN’ and ‘PN’ represent white noise excitation and pink noise 

excitation, respectively; ‘std1’ and ‘std2’ represent that the standard deviations of applied 

excitations are 1 m/s2 and 2 m/s2, respectively. For example, PN-std2 denotes pink noise 

excitation with an excitation amplitude of 2.0 m/s2. In Scenarios 1 and 2, white noise of 

different levels are assumed as the ambient excitations before and after damage. Different 

excitation level is obtained by applying a scaling factor to the generated stochastic excitation 

with zero mean value and unit standard deviation. It should be noted that besides the excitation 

amplitude, the time histories of applied stochastic excitations before and after damage are also 

different because they are independently generated following the assumed statistical 

distributions. In Scenario 3, both the white noise excitations are applied on the structure under 

the healthy and damaged states, but the excitation amplitudes and standard deviations are 

different. In Scenarios 4 and 5, pink noise of different levels are assumed as the excitations 

before and after damage. In Scenario 6, the pink noise excitations of different amplitudes are 

used to excite the healthy and damaged states. These scenarios are assumed to simulate the 

realistic situation in practical applications with different types of excitations and different 

excitation levels before and after damage.  
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Table 5-2. The excitation type and level of each loading scenario 

Loading and  

structural condition 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Healthy state WN-std1 WN-std2 WN-std1 PN-std1 PN-std2 PN-std1 

Damage state WN-std1 WN-std2 WN-std2 PN-std1 PN-std2 PN-std2 

5.3.2 Parameters determination and damage detection results 

From the formulation of Hankel matrix in Eq. (5.4), the first step of the proposed 

approach is to reconstruct the Hankel matrix from a single-channel acceleration response with 

suitable embedding dimension m, time lag τ  and window size n. Typically, the optimal 

embedding dimension is related to the frequency components as well as the noise level [43]. 

The noise presented in the vibration response is usually associated with the relatively small 

singular values, after performing SVD. The global attractor of the dynamic system cannot be 

fully unfolded in the phase space when insufficient dimension m is considered. In literature, 

SVD technique [21] and false nearest neighbors (FNN) method [13] have been frequently used 

for the optimal choice of embedding dimension m. The former approach is considered in this 

study to find an appropriate embedding dimension. In Figure 5-5, the descending singular 

value calculated from the vertical acceleration responses of node 6 contaminated by 10% white 

noise are plotted against different dimension m. The slope of decreasing trend tends to be 

steady when m≥ 22. Therefore, it is selected in this study that a suitable embedding dimension 

for the target structure is equal to 24. For structures with high dimensional responses (m=24), 

the conventional DSFs, e.g. CPST and MDPST extracted from lower dimensional (m≤3) PST, 

are not capable of sensitively alarming structural condition change. The time delay is usually 

determined by the first minima of the average mutual information (AMI) [13] or 

autocorrelation function [16]. The selection of time lag will influence the reconstructed 

topological structure of the underlying system in phase space, thus, the optimal time delay is 

critical for the conventional PST-based damage detection methods. However, the DSF adopted 

in this study is not extracted from the dissimilarity of trajectories in the embedded phase space. 

Therefore in this study, the time delay is assumed to be a unit lag for convenience. The same 

choice of time delay is also found in Refs. [43, 44].   
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(a)                                                                    (b) 

Figure 5-5. Singular values calculated from the acceleration responses at node 6 of the truss 

structure under reference and damaged states; (b) The slope of singular values. 

 

Besides the embedding dimension and time lag, another parameter that may affect the damage 

detection results is the window length n. The effect of window size is verified on the simulated 

panel truss model with different data lengths of n=1500, n=2000, n=2500, n=3000, n=3500 

and n=4000, respectively. In particular, the DSF value of each structural condition is estimated 

with 3000 random trials from structural responses under loading scenario 1, as shown in Table 

5-2. The statistical distributions of the calculated DSF values with different window lengths 

are presented in Figure 5-6. Comparing Figure 5-6(a-f), it can be found that the DSFs estimated 

from different structural conditions are overlapped and no obvious separation threshold 

between two adjacent structural states is observed, when a relatively small window size is 

chosen. In addition, the overlapping area shows a decreasing trend with the increasing window 

size parameter n, and it finally disappears when n≥3000. However, the computational demand 

will be intensive when a large number of samples is involved in each calculation, which may 

slow the algorithm efficiency and pose challenges to the structural online monitoring. From 

the parametric analysis results as shown in Figure 6, the window size n=3500 is chosen to keep 

a balance between damage detection performance and computational efficiency. 
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Figure 5-6. Distributions of DSF values obtained by using different window lengths:  

(a) n=1500; (b) n=2000; (c) n=2500; (d) n=3000; (e) n=3500 and (f) n=4000. 

 

With the parameters determined above, structural responses under different loading scenarios 

and structural conditions listed in Table 5-2 are analysed to verify the effectiveness and 

robustness of the proposed approach for structural damage detection under different loading 

effect including the type and level of stochastic excitations. The DSF defined in Eq. (5.19) is 

calculated for 3000 random trials to obtain the statistical results including the mean and 

standard deviation under each loading scenario. Figure 5-7 shows the damage detection results 

of all the loading scenarios. It is observed that the DSF developed in this study can be applied 

to identify the damage very well. The DSF values from the damaged states, even the excitation 

levels to the structure before and after damage are different, are significantly larger than those 

from the healthy state, indicating the sensitivity of the proposed approach to detect minor 

structural damage. Moreover, for the same type of excitations, consistent results are obtained 

for loading scenarios with different excitation amplitudes. This means that structural damage 

can be effectively detected irrespective of the stochastic excitation levels. The DSF values 

could be used to quantify the damage severity as observed in Figure 5-7(a). It is observed from 

Figure 5-7(b) that, for those scenarios with pink noise excitations, even with different 

excitation levels before and after damage (scenario 6), the proposed approach can detect the 

damage accurately and sensitively. It is also observed the DSF value is proportional to the 

damage severity in loading scenarios 1 2, and 3, as well as loading scenarios 4, 5 and 6. This 

also means that under the same type of stochastic excitations, the used DSF is able to reflect 

the damage severity.  

Nevertheless, it is noted that the average DSF values under white noise excitations 
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Figure 6. Distributions of DSF values obtained by using different window lengths:  

(a) n=1500; (b) n=2000; (c) n=2500; (d) n=3000; (e) n=3500 and (f) n=4000. 
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(loading scenarios 1-3) and different damage severities may not be the same as those obtained 

under pink noise excitations (loading scenarios 4-6). This is because pink noise is not 

independent and identically distributed in time, with zero mean, time-invariant finite variance 

and temporally uncorrelated. Therefore, Assumption 1 stated in the Appendix I could not held 

well. The effect of different types of stochastic excitations is rarely studied. It should be 

mentioned that normalising the effect of variations in loading distribution characteristics on 

structural damage detection is still a challenging issue and is a worthwhile research topic for 

data driven damage assessment methods. 

To investigate the accuracy of the proposed method in identifying damage at locations away 

from the vibration measurement point, one more case is considered. The DSF is calculated by 

using the vertical acceleration responses of node 15 subjected to those six loading scenarios 

listed in Table 5-2. The identification results are presented in Figure 5-8. As shown in Figure 

5-8, different structural damage conditions can be well separated. It is interesting that the 

damage detection results by using the vibration responses of node 15 is similar to that of node 

6. One reason is that the Koopman operator introduced in this study is a transfer operator, 

which captures the global evolution of dynamic systems and maps the current state observation 

to the one-step forward observation. This can be used to indicate the global vibration behavior 

and health condition of structures. As a result, the eigenvalues of Koopman operator reflect 

the global condition of structures.  

In this study, the single channel vibration responses is used. However, the proposed 

method is also capable of processing multi-channel vibration responses. In particular, the 

single channel vibration responses x(i) at the time instant i in Eq. (5.4) is replaced by the multi-

channel responses. Other procedures remain unchanged. The performance of using multi-

channel responses will be further studied in the future.  

 

 

Figure 5-7. Damage identification results by using the vertical acceleration responses of node 

6 under six loading scenarios (log-scale). 
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Figure 7. Damage identification results by using the vertical acceleration responses of node 6  

under six loading scenarios (log-scale) 
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Figure 8. Damage identification results by using the vertical acceleration responses of node 15 

under six loading scenarios (log-scale) 
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Figure 5-8. Damage identification results by using the vertical acceleration responses of node 

15 under six loading scenarios (log-scale). 

5.4 Verifications with in-field testing data 

5.4.1 Z24 bridge and benchmark data 

The Z24 bridge is a commonly used benchmark in the civil engineering community for 

many vibration-based SHM studies including environmental effect analysis [45], system 

identification and condition assessment [46, 47]. The front view and top view of the Z24 

Bridge are shown in Figure 5-9(a). Detailed descriptions of SHM system setup, sensor 

locations and introduced damage scenarios can be found in Ref. [48] and other reports attached 

in the data package, which is available via https://bwk.kuleuven.be/bwm/z24. Within the 

framework of System Identification to Monitor Civil Engineering Structures project, a series 

of artificially introduced progressive damage tests, including settlements of pier, tilt of 

foundation, spalling of concrete, failure of concrete hinges at abutments of piers, failure of 

anchor heads of post-tensioning cables and rupture of tendons were sequentially conducted 

before its demolition in 1998. Before and after each test, vibration acceleration responses 

subjected to external forced and ambient excitations are respectively recorded. Figure 5-9(b) 

shows the deployment locations of five installed accelerometers during the tests. 

Compared with settlements of pier, other types of damages mentioned-above cause very 

minor or less degradation of bending stiffness. Therefore, the vertical acceleration responses 

at location V2, as shown in Figure 5-9(b), under ambient excitations from the reference state 

and damage scenarios with different levels of settlement of pier, are analysed in this study. The 

acceleration responses were recorded with a sampling rate of 100 Hz and a duration of 655.3 

seconds for each damage scenario. Table 5-3 lists the mean values and standard deviations of 

the first four identified natural frequencies obtained by Stochastic Subspace Identification 

method [48], for the reference states and damaged states with pier settlements. Overall, the 

identified natural frequencies show a slowly decreasing trend with an increasing settlement, 
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Figure 7. Damage identification results by using the vertical acceleration responses of node 6  

under six loading scenarios (log-scale) 
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Figure 8. Damage identification results by using the vertical acceleration responses of node 15 

under six loading scenarios (log-scale) 
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under a certain level of uncertainties in the environmental conditions.   

 

Table 5-3. Natural frequencies of Z24 bridge with different pier settlements under different 

damage scenarios 

No. 
Implementation 

date 
Damage scenario 

Natural frequency (Hz) [48]  

(Mean + Standard Deviation) 

Mode 1 Mode 2 Mode 3 Mode 4 

1 04/08/1998 
First reference 

measurement 
3.92±0.02 5.12±0.02 9.93±0.02 10.52±0.08 

2 09/08/1998 
Second reference 

measurement 
3.89±0.03 5.02±0.04 9.80±0.03 10.30±0.05 

3 10/08/1998 
Lowering of pier,  

20 mm 
3.87±0.01 5.06±0.02 9.80±0.04 10.33±0.05 

4 12/08/1998 
Lowering of pier,  

40 mm 
3.86±0.01 4.93±0.04 9.74±0.03 10.25±0.03 

5 17/08/1998 
Lowering of pier,  

80 mm 
3.76±0.01 5.01±0.03 9.37±0.04 9.90±0.15 

6 18/08/1998 
Lowering of pier,  

95 mm 
3.67±0.02 4.95±0.03 9.21±0.04 9.69±0.04 

 

   

(a)                                                                 (b) 

Figure 5-9. The Z24 bridge and its sensor locations: (a) Front and top views; (b) Installed 

accelerometer locations. 

5.4.2 Parameters determination and damage detection results 

For the illustration purpose, the acceleration responses from the sensor location V2 

measured under damage scenarios listed in Table 5-3, are shown in Figure 5-10. Singular value 

spectrum of the bridge under different structural conditions are obtained by applying SVD 

method to the corresponding data measurement, and the results are shown in Figure 5-11. The 

decreasing trend of singular value spectrum gradually converges when m≥40. Hence, the 

embedding dimension parameter is set as 40 in this study.  
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In order to formulate the Hankel matrix with the suitable window size, a total of 2000 

damage identification trials are conducted for each structural condition with a window size of 

n=3000, n=4000 and n=5000, respectively. Results are shown in Figure 5-12. It is observed 

that the distribution of DSF values corresponding to the lowering of pier of 40 mm is mixed 

with that from lowering of pier of 80 mm, when the window size n ≤ 4000. Good separation 

results between any two adjacent scenarios are obtained when the window size n = 5000. 

Therefore, a sample window size of 5000 is chosen in this study.   

 

 

Figure 5-10. Measured acceleration responses at V2 from reference state and each damage 

scenario. 

   

    (a)                                                                              (b) 

Figure 5-11. Singular values calculated from the acceleration responses of Z24 bridge under 

reference and damage states, (b) the slope of singular value. 

 

   

   

Figure 10. Measured acceleration responses at V2 from reference state and each damage scenario 
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     (a)                                             (b)                                             (c) 

Figure 5-12. Distribution of DSF values identified with different window size parameters: (a) 

n=3000; (b) n=4000; (c) n=5000. 

 

Vibration measurement datasets with embedding dimension m=40, window size n=5000 

and unit time lag are analysed for 2000 random trials to statistically obtain the means and 

standard deviations of DSF values of the bridge under the reference and damaged states. 

During the test implementation and vibration measurement, the variation in environment 

effects, e.g. temperature, wind, traffic under the bridge and measurement noise may cause a 

certain level of uncertainties in the measured structural dynamic responses. The effect of those 

factors is not quantitatively investigated, but is included in this study, since the experimental 

measurement data before and after the damage have different environmental conditions. 

Damage assessment results obtained by the proposed approach are presented in Figure 5-13(a). 

The DSF values under the reference states from Scenarios 1 and 2 have almost the same values, 

indicating structural condition is the same. From the results for damage scenarios with 

settlements of pier, the proposed approach is sensitive to detect the lowering of pier and the 

corresponding DSF value is obviously increased with the degradation of structural condition. 

The magnitude of the defined DSF can be used to reflect the severity of the introduced damage. 

Figure 5-13(b) compares the relative change of the proposed DSF and the first four order 

natural frequencies. It is observed that the proposed DSF is much more sensitive (several order 

of magnitudes) to detect structural damage than using natural frequencies, even the higher 

order frequencies. Overall, the bridge condition under the reference state and damage scenarios 

with different settlements of pier can be well identified by the proposed approach under the 

test environment, using the real in-field testing data from a real bridge under different 

environmental conditions.  
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Figure 12. Distribution of DSF values identified with different window size parameters:  

(a) n=3000; (b) n=4000; (c) n=5000. 
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(a)                                                                        (b) 

Figure 5-13. (a) Damage identification results (log-scale) under the reference state and 

different damage scenarios, (b) Sensitivity analysis and comparison. 

 

In the numerical and experimental verifications, the selection of phase space 

reconstruction parameters like embedding dimension and window length is discussed. The 

general mechanism for the optimal selection of these two parameters is further provided. For 

deterministic dynamic systems, there are several existing methods that can be used for the 

optimal selection of embedding dimension. This is because the dimension of deterministic 

dynamic systems in phase space is finite. However, the dimension of random dynamic systems 

in the phase space is infinite. In this study, the singular value spectrum is applied to determine 

a suitable embedding dimension. In the singular value spectrum, larger singular values appear 

in pairs, and each pair corresponds to a frequency component of the vibration responses. The 

vibration responses are dominated by the first several frequency components with larger 

singular values. The noise is mainly distributed in the components with lower singular values. 

There is a sudden drop between each singular value pair, which is manifested as a large slope 

in the singular value spectrum curve. Therefore, the slope of singular values spectrum is 

utilized for optimal selection of the embedding dimension. It should be noted that the 

embedding dimension used for analysing structural vibration responses before and after 

damage should be the same.  

The effect of window size on the DSF value presented in Figure 5-6 and Figure 5-12 

shows that better separation results between different damage scenarios can be obtained when 

a larger window size is selected. However, the computational demand increases when a large 

number of samples are involved in each calculation. Therefore, the window size can be chosen 

based on the balance between damage detection performance and computational efficiency. 

5.5 Conclusions   

Motivated by the infeasibility of using conventional PST-based methods in extracting 
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Figure 13. (a) Damage identification results (log-scale) under the reference state and different 

damage scenarios, (b) Sensitivity analysis and comparison 
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damage features from high dimensional structural dynamic responses, this chapter proposes a 

novel data driven approach using phase space embedding strategy and Koopman operator for 

the health monitoring and condition assessment of structures subjected to stochastic 

excitations. The main contribution of this study is to obtain the time-invariant stochastic 

Koopman operator from the phase space representation of observable vibration responses, e.g. 

a single channel acceleration response, which is subsequently used for damage assessment. In 

contrast to many of the existing PST-based methods by extracting DSFs from the manifold 

topology of the original attractor in low dimensional phase space representations, the DSF 

developed in this chapter is derived from the eigenvalues of the corresponding Koopman 

operator. As a result, the high sensitivity of using high dimensional phase space to detect the 

structural damage is obtained to conduct structural condition assessment with observations 

measured under operational conditions, e.g. stochastic ambient excitations instead of 

artificially generated excitations including chaotic, impulse or limited band swept-sine, etc. 

The feasibility and accuracy of the proposed approach are validated using acceleration 

responses obtained from numerical FE model of a truss bridge subjected to stochastic 

excitations, as well as in-field monitoring data from a real bridge under ambient loads. In 

numerical studies, minor structural damage simulated as stiffness reductions is detected 

effectively and accurately. For the in-field studies on a bridge, the introduced damage in the 

form of settlement is also identified effectively and reliably. Different forms of structural 

damage are identified in numerical and experimental studies. The results from both numerical 

and in-field studies reveal that the proposed method is sensitive to structural condition change, 

but insensitive to environmental condition and measurement noise. In particular, the statistical 

distribution of the obtained DSF values of each scenario is concentrated and well distinguished, 

supporting a reliable condition assessment result.  

The effect of stochastic loading amplitude and distribution properties is numerically 

investigated. Results demonstrate that the proposed approach is robust to change in excitation 

amplitudes, however, the damage detection performance may be influenced at a certain level 

when the excitation type is not the same before and after damage. Therefore, in the future study, 

a better normalisation method could be further investigated to eliminate the effect of load 

conditions and detect the damage in structures under different types of stochastic excitations 

before and after damage. 
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CHAPTER 6 STRUCTURAL DAMAGE DETECTION VIA 

PHASE SPACE BASED MANIFOLD LEARNING UNDER 

CHANGING ENVIRONMENTAL AND OPERATIONAL 

CONDITIONS 

ABSTRUCT5 

The feasibility and performance of existing vibration-based damage detection methods to 

real world civil engineering structures are inevitably affected by the varying environmental 

and operational conditions. Reliable damage detection methods with damage features that are 

sensitive to structural condition change but robust to environmental and loading effects are 

desirable for practical applications. This chapter proposes a novel structural damage detection 

approach based on manifold learning for the effective condition assessment of real-world 

structures under environmental and operational conditions. The phase space representation of 

the vibration characteristics is reconstructed using the identified natural frequencies of 

structures. Then, the intrinsic nonlinear manifold between the environmental variables and 

natural frequencies in the high dimensional phase space is projected to a low-dimensional 

representation via manifold learning. The Gaussian process regression technique is introduced 

to extract reliable damage index from the learned manifold structure. The effectiveness and 

superiority of the proposed approach are demonstrated by two real-world engineering 

structures, that is, the Dowling Hall Footbridge and Z24 bridge. Damage detection results 

obtained from the proposed approach are compared with those from the current state-of-the-

art Kernel PCA method, which is a representative nonlinear dimensionality reduction method 

to alleviate the environmental effects. The results demonstrate that the proposed approach is 

sensitive to structural damage but insensitive to changes in environmental and operational 

conditions. More importantly, the nonlinear environmental effects can be efficiently 

characterized by the proposed approach, using only partial datasets with environmental 

variations in the training datasets.  

6.1 Introduction 

Existing infrastructure, such as bridges and buildings exposed to the operational 

                                                      

5Peng, Z., Li, J., Hao, H. (2022) Structural damage detection via phase space based manifold learning 

under changing environmental and operational conditions, Engineering Structures. 263, 114420. 

https://doi.org/10.1016/j.engstruct.2022.114420.   

https://doi.org/10.1016/j.engstruct.2022.114420
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environment for long service life, are prone to performance degradation, owning to the 

material deterioration, natural hazards and human-made loading conditions. The wide 

applications of SHM systems accumulate massive real measured structural long-term vibration 

responses as well as environmental condition measurements. Similarly, vibration-based 

structural damage detection and condition assessment methods have been extensively 

developed over the last several decades for monitoring the conditions of civil engineering 

structures. A comprehensive review of the new development in the vibration-based damage 

identification methods for civil infrastructure over the past decades is recently provided in Ref. 

[1]. Apart from the traditional modal parameter-based methods and FE model updating based 

methods, machine learning and deep learning techniques have also been extensively studied 

for damage identification in recent years. Generally speaking, the damage detection problem 

can be viewed as a pattern recognition process, which transfers the observable variables in the 

time domain, frequency domain or time-frequency domain into DSF. The ultimate goal of 

damage diagnosis is to extract damage features that are sensitive to structural condition change, 

but robustness to external loading and environmental conditions, and measurement noise [2].  

Modal parameters are directly related to structural properties, but independent to the 

applied loads. Thus, modal information, such as natural frequency, mode shape and FRF, etc., 

has been served as the input of many newly developed damage detection methods, including 

the machine learning/deep learning based methods. A major challenge is that modal parameters 

can also be significantly affected by the environmental conditions, i.e. temperature, wind 

characteristics and humidity that the structures faced with [3]. Temperature effects have been 

reported to be the primary influential factor in the variation of modal parameters than other 

environmental effects [4]. Temperature affects structural properties in a complicated manner. 

The variations in the thermal coefficient of Young’s modulus and the thermal expansion 

coefficient will directly or indirectly vary the stiffness, geometric dimension and boundary 

condition of structures. The mechanism how temperature affects the structural vibration 

characteristics could be more complicated when the spatial temperature distribution inside the 

structures as well as the seasonally frozen soil effects are considered [5-7]. Owing to the 

uniqueness of different structural styles and designs, construction material properties and 

construction process are different from case to case, it is almost impossible to deduce a 

generally applicable formula to quantify the temperature effects on the mechanical properties 

of different structures. In most long term SHM applications, vibration measurements from the 

in-service structures under varying operational conditions are massively available, which 

provides opportunities to statistically evaluate the dissimilarity in the defined DSF between 

baseline (healthy) and the currently inspected states.  

The damage detection methods considering the environmental and operational conditions 
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can be classified into two main categories, according to the situation whether the 

environmental effects and operational loads, such as temperature, humidity, wind 

characteristics and traffic flow are simultaneously monitored along with vibration responses 

or not. For the former case, the environmental effects can be eliminated by conducting the 

correlation analysis between the environmental variable and the developed DSF. Most of the 

existing studies focus on analysing the correlation between structural modal parameters and 

the air temperature. Limited studies considered the thermal gradient distribution in structures 

and thermal time lags effect, owning to the limitation of deploying a very spatially dense 

network of thermometers [8, 9]. Therefore, methods developed towards separating the 

temperature effects and structural damage without the environmental measurements have a 

more practical significance. When the environmental measurements are not available, research 

efforts have been devoted to distinguishing the environmental effect, based on the assumption 

that the variations in the obtained vibration characteristics induced by structural damage 

behaves differently from those due to the change in operational and environmental conditions. 

In this regards, various methods, including the Kernel principle component analysis (PCA) 

[10], co-integration analysis [11] and auto-associative neural networks [12] have been recently 

developed for extracting reliable damage features.  

For dynamic systems, all the observable variables span a phase space. Each possible state 

of a system corresponds to one unique point in the phase space [13, 14]. It is noted that the 

dimension of the spanned phase space is equal to the number of independent observable 

variables that are used. All the possible states will form a unique topology trajectory (also 

referred to as manifold in data science) in the high-dimensional phase space. The locally 

nearby points in the phase space correspond to similar structural conditions. For instance, a 

healthy structure exposed to similar operational conditions at two different time instants will 

be embodied as neighbors in the high dimensional phase space. The influential external factors 

will be manifested as a distribution in a specific region of the phase space. When the structural 

condition changes, the PST corresponding to the new structural condition no longer returns to 

the original distribution, even though the external influential factors remain unchanged. The 

unmeasured variables, such as environmental conditions and traffic loads, can be viewed as 

latent variables (also referred to as hidden variables), which can be fully unfolded in the 

defined high dimensional phase space. It is noted that phase space technique is known for its 

capability in effectively representing both linear and nonlinear dynamic features, which has a 

great potential in expressing the nonlinear relationship between the environmental variables 

and structural modal parameters. Different combinations of structural states and operational 

conditions will formulate a unique trajectory or distribution in a phase space with a sufficiently 

high dimension. Structural damage detection can be achieved by projecting the observations 
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in high dimensional phase space to low dimensional feature space. PCA is a representative 

linear dimensionality reduction technique. However, PCA is not applicable to variables with a 

nonlinear mutual relationship. For example, Reynders et al. [15] pointed out that PCA can fail 

to distinguish the structural damage condition from the healthy state, when the temperature is 

below 0℃. Under this circumstance, Kernel PCA with Gaussian kernel was introduced to 

alleviate the false-positive alarms owing to the nonlinear effects of temperature on natural 

frequencies. The capacity of using Kernal PCA for structural damage detection has been 

verified on a benchmark Z24 bridge using the first four order natural frequencies under 

different environmental conditions to train the model. It should be noted that a broader range 

of temperature conditions, including the period when the temperature is below -5℃ should be 

covered in the training datasets. 

Manifold learning is a promising nonlinear dimensionality reduction technique that seeks 

low-dimensional visualization of the inherent structure of original datasets embedded in high-

dimensional phase spaces. The hypothesis of manifold learning is that the phase space attractor 

of real-world systems spanned by the observable state variables is expected to evolve in a 

much low-dimensional manifold. The most remarkable feature of manifold learning is that the 

local topological and neighborhood information of the original datasets is preserved in the low 

dimensional graph representation [16]. An illustrative example is presented in Figure 6-1 for 

better understanding the mechanism of manifold learning in dimensionality reduction. Figure 

6-1(a) visualizes the original data with a Swiss roll-like topologic inherent structure, the 

corresponding low dimensional embedding as shown in Figure 6-1(b) is unfolded via a specific 

manifold learning method called Isomap [17]. It can be found that the neighborhoods in the 

original data with the similar color have been mapped close to each other in the unfolded 2D 

manifold, which demonstrates the ability of manifold learning in preserving the consistency 

of the neighborhood structure. In literature, locally linear embedding (LLE) [18], Isomap [17], 

Laplacian eigenmaps [19] are some of the most representative manifold learning methods for 

nonlinear dimensionality reduction. Features extracted from the manifold learning have been 

successfully applied for early warning of the financial market [20], hyperspectral image 

classification [21], machinery fault diagnosis [22] and structural damage classification [23], 

etc. For SHM, rare work has been conducted in order to characterize the nonlinear manifold 

of monitoring data of civil engineering structures subjected to operational conditions, and to 

further develop DSF that is robust to environmental and operational conditions for structural 

condition assessment.  
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(a)                                                                (b) 

Figure 6-1. An illustrative example of manifold learning: (a) Original data in a high 

dimensional phase space with a Swiss roll-like topologic inherent structure; (b) 2D 

embedding via manifold learning. 

 

This chapter proposes a novel approach based on manifold learning to develop a DI for 

structural damage detection, taking into account the environmental and operational conditions. 

The feasibility and superiority of using manifold learning for revealing the inherent topological 

structure of the underlying systems subjected to operational conditions with the long-term 

vibration monitoring responses are demonstrated. DSF that is sensitive to damage but 

insensitive to environmental effects is developed via the multivariate Gaussian process 

regression model. Gaussian process regression is a robust nonparametric, Bayesian-based 

probabilistic model for regression and classification tasks in machine learning. In particular, 

partial of the samples under the healthy state are used as the input to the Gaussian process 

regression model for learning the environmental effects induced nonlinear relationship. Then, 

the trained Gaussian process regression model is used to predict the future responses and the 

absolute prediction residual is served as DSF, which is used for structural damage detection 

considering environmental and operational conditions. It is noted that the damage features 

extracted from phase space based manifold learning on the measurement data under the initial 

stage (baseline) and the current stage are compared to detect possible structural condition 

change. The closely spaced modes can be extracted by using the improved modal identification 

methods [24]. However, this is not within the scope of this study.  

The remaining sections of the chapter are organized as follows. In Section 2, the 

theoretical background of phase space reconstruction, manifold learning and Gaussian process 

regression is briefly reviewed. In Sections 3 and 4, the long term SHM data of Dowling Hall 

footbridge and the Z24 bridge are utilized to demonstrate the feasibility and superiority of the 

proposed method in sensitively detecting the structural condition change while remaining 

robust to operational condition variations. Comparisons with other state-of-the-art data-driven 

damage detection methods are also conducted and the results are discussed. Finally, the 



138 

 

conclusion is provided in Section 5.  

6.2 Theoretical Background and Development 

6.2.1 Phase space reconstruction 

For a civil engineering structure, structural natural frequency is a function of its geometry, 

boundary condition and material properties, which can be expressed as follows   

𝑓𝑛 = ℱ𝑛(𝜆𝑛, 𝐺, 𝐾,𝑀)                                                    (6.1)  

where the subscript n represents the n-th order natural frequency. The dimensionless 

parameters 𝜆𝑛  and 𝐺  are functions of the boundary constraint conditions and geometric 

properties of the structure, respectively; K and 𝑀  denote the stiffness and mass matrices, 

respectively. As can be found in Eq. (6.1), the mapping function ℱ𝑛 from structural variables 

to natural frequency is deterministic. However, the boundary condition, geometric dimension 

and elastic modulus can be directly or indirectly affected by the material thermal coefficient 

of modulus and the thermal coefficient of linear expansion in a complicated manner, 

considering the temperate is the major factor that affects structural vibration characteristics. 

As a result, Eq. (6.1) can be rewritten as 

𝑓𝑛 = ℱ𝑛[𝜆𝑛(𝑇), 𝐺(𝑇), 𝐾(𝑇),𝑀, 𝑇] + 𝑒                                  (6.2)  

where T represents the non-uniform temperature distribution along the structure, 𝑒 represents 

the uncertainties caused by measurement noise and modelling errors. For small scale structures, 

the air temperature or temperatures at a few critical points of the structure are sufficiently 

accurate to quantify the relationship between the temperature and natural frequency. However, 

the accuracy of frequency calculation can be significantly affected for large-scale structures 

without installing a dense set of thermometers to obtain the thermal distribution of the entire 

structure [25]. Owing to the budget constraints, only partial measurements of temperatures and 

vibration responses at some crucial locations can be made by sensor networks installed in 

SHM applications. In the theory of phase space, the unavailable temperature spatial 

distribution can be viewed as a hidden variable, which is manifested as a specific trajectory or 

distribution in the phase space spanned by partial observable variables. For this purpose, in 

this study, the identified natural frequencies are selected as the observed variables. The phase 

space spanned by the first n natural frequencies with a window size of m samples, can be 

defined as 
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 𝚽𝑛,𝑚 = [

𝒇1
𝒇2
⋮
𝒇𝑛

] = [

𝑓1(𝑡1) 𝑓1(𝑡2) ⋯ 𝑓1(𝑡𝑚)

𝑓2(𝑡1) 𝑓2(𝑡2) ⋯ 𝑓2(𝑡𝑚)
⋮ ⋮ ⋱ ⋮

𝑓𝑛(𝑡1) 𝑓𝑛(𝑡2) ⋯ 𝑓𝑛(𝑡𝑚)

]                                (6.3)  

The dimension of the phase space defined in Eq. (6.3) is n. The topologic structure traced 

out by the PST of the underlying system can be visualized when 𝑛 ≤ 3. For phase space based 

methods, in general, the more variables used to span the phase space, the better the dynamic 

attractor of underlying system obtained and the more accurate the unmeasurable latent 

variables represented. The higher order vibration modes may not be well excited for bridge 

structures under operational conditions. Therefore, to improve the performance of damage 

pattern recognition, the several low order modal frequencies that are reliably identified from 

the vibration responses are used to construct a high dimensional phase space [26]. In particular, 

the first four and the first five order natural frequencies are used for the studies on Dowling 

Hall footbridge and Z24 bridge, respectively.  

6.2.2 Manifold learning 

In practice, it is challenging to extract interpretative features from a high dimensional 

phase space. To this end, deriving a low-dimensional projection of a given high-dimensional 

trajectory that preserves the equivalent intrinsic manifold structure and maintains the local 

neighborhood information is of great significance [27]. Owing to the fact that most of the real-

world dynamic systems exhibit the nonlinearity to a certain extent, the nonlinear 

dimensionality reduction algorithm, such as kernel PCA and other manifold learning methods, 

i.e. Laplacian eigenmaps, Isomap and LLE have been developed in existing works. In this 

study, the Laplacian eigenmaps is adopted to extract the inherent nonlinear relationship 

between natural frequencies and environmental variables, by taking advantages of its locality 

preserving characteristics [28]. The Laplacian eigenmaps method is mainly consisted of two 

steps, namely, constructing the similarity graph from high dimensional data points and 

projecting points into a low-dimensional space using eigenvectors of the graph.  

Supposing that the n-dimensional frequency observation vector at time instant 𝑡𝑖  is 

𝒙(𝑡𝑖) = [𝑓1(𝑡𝑖)𝑓2(𝑡𝑖)⋯𝑓𝑛(𝑡𝑖)]
𝑇 , the corresponding low-dimensional representation is 

𝒚(𝑡𝑖) = [𝑦1(𝑡𝑖)𝑦2(𝑡𝑖)⋯𝑦𝑚(𝑡𝑖)]
𝑇, where 𝑚 < 𝑛. The premise of Laplacian eigenmaps is that 

the neighborhood information should be preserved, in other words, nearby points on the 

original graph stay as close as possible after dimensionality reduction projection. To this end, 

the following cost function is defined 

ℒ𝑜𝑠𝑠(𝒚) = 𝑚𝑖𝑛∑ ‖𝒚(𝑡𝑖) − 𝒚(𝑡𝑗)‖
2

𝑖,𝑗 𝑤𝑖,𝑗                              (6.4) 
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where 𝑤𝑖,𝑗 represents the weighting coefficient determined by the similarity score between 

two observations  𝒙(𝑡𝑖) and  𝒙(𝑡𝑗), 𝑾 = (𝑤𝑖,𝑗) of dimension 𝑛 × 𝑛  is the weight matrix. In 

Laplacian eigenmaps, the weight matrix 𝑾 is calculated using the Gaussian kernel function, 

which is expressed as  

𝑤𝑖,𝑗 = 𝑒
−
‖𝒙(𝑡𝑖)−𝒙(𝑡𝑗)‖

2𝜎2                                                (6.5) 

As can be found in Eq. (6.5), the closer two points is in the original high dimensional 

phase space, the larger the weighting coefficient is. The Gaussian kernel function is used to 

ensure that neighboring points  𝒙(𝑡𝑖) and  𝒙(𝑡𝑗) have a heavy penalty when they are mapped 

far away in the low-dimensional space. The diagonal degree matrix 𝑫 of the weight matrix 𝑾 

is introduced, and the diagonal element is obtained as  𝐷𝑖,𝑖 = ∑ 𝑤𝑖,𝑗𝑗 . The Laplacian graph 𝑳 

is calculated by 𝑳 = 𝑫 −𝑾. The cost function in Eq. (6.4) can be expanded as  

ℒ𝑜𝑠𝑠(𝒚) =∑ 𝒚(𝑡𝑖)
𝑇𝒚(𝑡𝑖)

𝑖
𝐷𝑖,𝑖 +∑ 𝒚(𝑡𝑗)

𝑇𝒚(𝑡𝑗)
𝑗

𝐷𝑗,𝑗 − 2∑ 𝒚(𝑡𝑖)
𝑇𝒚(𝑡𝑗)

𝑖𝑗
𝑤𝑖,𝑗 

= 2𝒀𝑇𝑫𝒀− 2𝒀𝑇𝑾𝒀 = 𝟐𝒀𝑇𝑳𝒀                                 (6.6) 

From Eq. (6.6), the optimization problem is converted to minimise 𝒀𝑇𝑳𝒀 . The low-

dimensional data representation Y can thus be found by solving the following generalized 

Eigen analysis problem [19, 29]  

𝑳𝒗 = 𝜆𝑫𝒗                                                          (6.7) 

With Eq. (6.6) defined as the loss function for a minimization problem, the eigenvalues 

and the corresponding eigenvectors solved from Eq. (6.7) are sorted based on the order from 

the smallest to the largest eigenvalues [19, 28]. The low-dimensional projection Y is consisted 

of the eigenvectors corresponding to the m smallest eigenvalues.  

6.2.3 DSF extraction based on Gaussian process regression 

Gaussian process regression models are nonparametric kernel-based probabilistic models 

within the machine learning community. In this study, the Gaussian process regression will be 

used to estimate the nonlinear relationship between the components of Y obtained from 

Laplacian Eigenmaps. In particular, the first two Laplacian components 𝒚1,2 = [𝒚1; 𝒚2]  of 

dimension 2 × 𝑛   are used as the input to predict the third Laplacian component 𝒚3  of 

dimension 1 × 𝑛 . A Gaussian process model is defined by its mean function 𝑚 (𝒚1,2 ) and 

covariance function 𝑘(𝒚1,2, 𝑦1,2
′ ), that is 
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�̂�3~𝐺𝑃[𝑚(𝒚1,2), 𝑘(𝒚1,2, 𝒚1,2
′ )]                                        (6.8) 

A Gaussian process regression model can be trained using Matlab inbuilt function ‘fitrgp’. 

The alternative options of the prior mean function include zero (default), linear and polynomial 

functions. The covariance function defines the covariance of neighboring data points as a 

function of the corresponding distance, which governs the smoothness of a process. Dozens of 

specific covariance functions, i.e., squared exponential kernel (default), exponential kernel, 

Matern kernel are provided to optimize the regression performance. In this study, the default 

mean function and covariance function are adopted to train the Gaussian process regression 

model. Empirical experiments conducted by the authors indicate that the accuracy of Gaussian 

process regression model with default setting is desirable. In practical applications, part of the 

observations corresponding to the healthy state will be used to train the model, and then the 

remaining datasets are employed for monitoring structural condition change. The Gaussian 

process regression model may not provide accurate prediction results when the structural 

damage occurs and structural condition changes. Therefore, the residual in the absolute 

prediction is defined as a damage index (DI) 

𝐷𝐼 = |𝒚3 − �̂�3| = |𝒚3 − 𝐺𝑃[𝑚(𝒚1,2), 𝑘(𝒚1,2, 𝒚1,2
′ )]|                          (6.9) 

in which �̂�3 denotes the prediction of the third Laplacian component via the trained Gaussian 

process regression model. It should be noted that only the structural long-term vibration 

responses under different environmental conditions are used in the proposed damage detection 

approach. The environmental conditions, such as temperature measurements are not required, 

and the robustness of the proposed method to environmental effects will be demonstrated in 

the following sections.  

This study proposes a data-driven structural damage detection method. One of the main 

challenges of data-driven SHM methods is to understand and eliminate the environmental 

effects on structural vibration characteristics or responses. To this end, most of the existing 

methods, such as PCA and more recently developed cointegration method, aim at separating 

the environmental effect on vibration characteristics with structural damage effect. This 

chapter develops a novel approach from a new perspective by visualizing the manifold 

structure of environmental effects via phase space technique. Different environment conditions 

correspond to specific points in the reconstructed phase space. The manifold structure of a real 

engineering structure can be viewed as a data-driven model. The occurrence of structural 

damage, i.e., boundary condition change or stiffness reduction, is detected by quantifying the 

dissimilarity of manifold topological structures. This study develops a damage feature that is 

sensitive to structural damage, but insensitive to changes in environmental and operational 
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conditions. The environmental and loading conditions affect the structural vibration 

characteristics in a complicated manner. For example, the Young's modulus, thermal stress and 

boundary conditions will be affected by air temperature and the thermal gradings in the entire 

structure, etc. It is difficult to numerically simulate realistic environmental and loading 

conditions on real bridge structures. However directly using the in-field vibration 

measurement data of structures is considered as the best way to validate the effectiveness and 

performance of the proposed approach. Therefore, the long-term SHM data measured from the 

two in-situ bridges are employed to verify the performance of proposed method. Figure 6-2 

shows the flowchart of the proposed approach for structural damage detection from data 

obtained with varying environmental conditions. 

 

 

Figure 6-2. Flowchart of the proposed approach for structural damage detection from data 

obtained with varying environmental conditions. 

6.3 Real-world Application 1: Dowling Hall Footbridge 

In this section, about 16 weeks continuously monitored vibration responses of Dowling 

Hall Footbridge are utilized to verify the effectiveness and performance of using the proposed 

approach for structural condition monitoring. The Dowling Hall footbridge, as shown in Figure 

6-3, is a two-span continuous steel frame structure located at the Medford campus of Tufts 

University, Massachusetts. The length and width of each span are about 22 m and 3.7 m, 

respectively. A vibration-based long term SHM system was designed and installed on this 

bridge in 2009 to measure the acceleration and strain responses as well as the temperature at 

different locations. The locations of installed sensors are shown in Figure 6-3(b). Vibration 

modes of this footbridge can be easily excited by the pedestrian and/or wind loads. During the 

monitoring period, no structural damage was observed. More details about the design and the 
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implementation of this SHM system are described in Ref. [30-32]. 

 

     

(a)                                                                        (b) 

Figure 6-3. (a) Overview of the Dowling Hall footbridge; (b) Locations of installed sensors 

[32]. 

 

In this study, the first four natural frequencies of Dowling Hall footbridge during this 16 

weeks are identified by using the poly-reference least squares complex frequency method (p-

LSCF) [33, 34], which is one of the current widely used methods for operational modal 

analysis methods in the frequency domain. The identification results based on acceleration 

measurements in every hour are presented in Figure 6-4. The frequency variations in the first 

four natural frequencies owning to environmental and operational effects are 4.18%, 7.02%, 

7.34% and 4.16%, respectively. As reported in an existing study [31], the first two mode shapes 

are bending modes in the vertical direction, and the third and fourth mode shapes of the bridges 

are torsional modes. The corresponding air temperature measurements in every hour during 

this 16 weeks are shown in Figure 6-5. The environmental temperature varies from -11.5 ℃ 

to 30 ℃, and the lowest temperature is observed at 9.00 am, January 30, 2010 (sample 457 in 

Figure 6-4).  Owing to the temperature difference between day and night time, a clear pattern 

of daily variation in the natural frequency is observed in Figure 6-4. Besides, the first four 

frequencies are obviously increased when the bridge experiences the lowest temperature.  

 

Figure 6-4. The identified first four natural frequencies during the monitored period. 
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Figure 6-5. Air temperature variations during the monitored period. 

 

Figure 6-6 shows the paired relationships between any two of the obtained natural 

frequencies. Overall, the natural frequencies raise with the decrease of environmental 

temperature. Curve-like topologic structures are observed in frequency pairs, i.e., 𝑓1𝑣𝑠𝑓2 , 

𝑓2𝑣𝑠𝑓4 and 𝑓3𝑣𝑠𝑓4. Linear relationship is observed in other frequency pairs. The 2D phase 

space topologic structures as shown in Figure 6-6 indicate that the temperature effect on each 

order frequency is different. To further visualize the temperature effect on a higher dimensional 

phase space, the first three natural frequencies are used to form a three-dimensional (3D) phase 

space.  In Figure 6-7, the frequency observations form a spatial curve, and no distinct outlier 

cluster is observed in the 3D phase space. 

 

Figure 6-6. Visualisation of the relationships between the pairs of the first four natural 

frequencies. (The color bar denotes the environmental temperature). 
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Figure 6-7. Visualisation of the nonlinear manifold of the Dowling Hall footbridge in the 

phase space spanned by the first three natural frequencies. (The color bar denotes the 

environmental temperature). 

 

Generally speaking, the natural frequencies of bridge structures subjected to the 

operational condition are mainly affected by the temperature and loading conditions. The live 

loads applied on structures introduce additional mass and interaction effects to the bridge and 

thus induce frequency variations [35]. For a footbridge located on the campus, the pattern of 

live pedestrian loads on the bridge has periodically changes, which allows to understand the 

frequency variations attributed to live loads. In this study, the root mean square (RMS) of the 

acceleration responses is calculated to approximately evaluate the living load effects. Figure 

6-8(a) and 8(c) statistically show the weekly and daily RMS variations within 16 weeks. It can 

be found that the RMS acceleration in weekday and the daytime (between 9 to 20 o’clock) are 

significantly higher than that of weekend and nighttime. The reason is that most of the 

pedestrians cross the bridge during the daytime in weekdays. The corresponding weekly and 

daily frequency variations are presented in Figure 6-8(b) and (d), respectively. As shown in 

Figure 6-8(b), the weekly variation of the mean value of the first-order frequency is about 

0.3%. Compared with the overall temperature effect on the variation of the first-order natural 

frequency (4.18%), the live load effect on frequency is negligible.  
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(a)                                                               (b) 

 

(c)                                                               (d) 

Figure 6-8. Effect of live load on natural frequency: (a) weekly RMS variation; (b) weekly 

frequency variation; (c) daily RMS variation; (b) daily frequency variation. 

 

The first four natural frequencies of Dowling Hall footbridge shown in Figure 6-4 are 

utilized as input to the Laplacian Eigenmaps method and Kernel PCA method to project the 

manifold structure from four-dimensional observation space into 3D feature space. In the 

Laplacian Eigenmaps method, the number of nearest neighbors is set as 6. In the Kernel PCA 

method, the Gaussian kernel is used. The intrinsic structure of the underlying dynamic 

discovered by both nonlinear dimensionality reduction methods are visualized in Figure 6-9. 

The manifold identified by the Laplacian Eigenmaps is distributed along with the temperature. 

A better converged pattern is observed by using Laplacian Eigenmaps as shown in Figure 6-9(a) 

than that of the Kernel PCA method in Figure 6-9(b).  
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(a)                                                                         (b) 

Figure 6-9. Manifold structures of the Dowling Hall Footbridge discovered by: (a) Laplacian 

Eigenmap method; (b) Kernel PCA method. (The color bar denotes the environmental 

temperature). 

 

As mentioned in Section 2.3, a multivariate Gaussian process regression model is trained 

using the first two Laplacian components to predict the third Laplacian component. With the 

consideration that the extreme environment condition may not be experienced by the structure 

at the early stage of an installed SHM system, in this case study, only the first 400 samples are 

used to train the Gaussian process regression model. The air temperature measurements of 

Dowling Hall Footbridge are shown in Figure 6-5, and the temperature variation of the first 

400 samples is between -7.5℃ to 12.9℃, which only covers partial of overall temperature 

variations. The absolute prediction error of Gaussian process regression is used as DI to alarm 

the structural condition change, as described in Eq. (6.9). The DI obtained from the Laplacian 

Eigenmap and Kernel PCA with the training datasets of 400 samples are shown in Figure 

6-10(a) and Figure 6-10(b), respectively. The DI of the proposed Laplacian Eigenmaps based 

Gaussian process regression method is very stable and remains at the same level even though 

the temperature exceeds the range of the training datasets. Meanwhile, significant fluctuation 

is observed in the DI calculated from Kernel PCA based Gaussian process regression method 

at the sample intervals from 416 to 449, when the structure experiences the lowest temperature. 

These errors are observed since the data under corresponding environmental conditions are 

not included in the training datasets.   

To further investigate the effect of training dataset size on the environmental robustness 

of Kernel PCA based Gaussian process regression method and examine whether the 

performance can be improved, the first 1500 samples are utilized to fit the Gaussian process 

regression model. The false positive alarms appeared in Figure 6-10(b) owing to the extreme 

cold temperature, which, however, no longer exist in the results with more training samples as 

shown in Figure 6-10(c). In addition, the overall amplitude of DI is also slightly decreased, 



148 

 

which means that the environmental effects can be alleviated by including a wider range of 

temperature variations into the training datasets. However, it can be observed that larger 

damage index values are obtained for the testing sample, even when 1500 samples are used 

for training the Kernel PCA based method. Overall, no damage-induced outlier and very minor 

values are observed in the DI results calculated from the proposed approach, which is 

consistent with the ground truth. This demonstrates that using the proposed approach for 

damage detection is not subjected to environmental and operational conditions. Phase space 

based manifold learning method proposed in this study is robust to the environmental effects 

when measurement samples with only partial temperature variations are included in the 

training datasets. One possible reason is that nonlinear characteristics induced by temperature 

variations are captured by the phase space based manifold learning method. Therefore, the 

false alarm related to the extreme environmental condition is minimized. The damage feature 

extracted from the nonlinear regression tool such as Gaussian process regression, is directly 

related to the structural condition change and can be used as a reliable DSF for long term health 

monitoring.  



149 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6-10. DI results of Dowling Hall footbridge: (a) Laplacian Eigenmaps with 400 

training data; (b) Kernel PCA with 400 samples; and (c) Kernel PCA with 1500 samples. 

 

6.4 Real-world Application 2: Z24 Bridge 

In this section, a widely used benchmark structure, namely, Z24 bridge, is adopted to 

further verify the environmental robustness and sensitivity of using the proposed approach for 

damage detection. The Z24 bridge is a post-tensioned concrete box-girder bridge, which has 

been serviced as a full-scale benchmark to test the applicability of new developed long-term 

health monitoring and damage detection methods with the consideration of environmental and 

operational effects. Before the demolishment in the 1990s, a SHM system has been installed 

to measure nearly one-year vibration responses and environmental variables, such as 

temperature, humidity, wind characteristic and traffic flow under operational conditions. At 
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the end stage of health monitoring, a series of progressive damage scenarios described in Table 

6-1 [15] are artificially applied. A detailed description of the SHM system configuration, the 

introduced damage scenarios and implemented vibration tests can be found in Refs. [36-38]. 

System identification and damage detection methods have been developed in the past decades, 

for extracting DSFs that can be used to detect structural damage under the environmental 

conditions.  

 

Table 6-1. Z24 progressive damage test scenarios  

Sequence Date Description Samples No.  

D0 
11-Nov-1997 to 

4-Aug-1998 
Baseline state 

1~6393 

D1 10-Aug-1998 Settlement of pier, 20mm 6514~6557 

D2 12-Aug-1998 Settlement of pier, 40mm 6572~6671 

D3 17-Aug-1998 Settlement of pier, 80mm 6682~6705 

D4 18-Aug-1998 Settlement of pier, 95mm 6726~6745 

D5 19-Aug-1998 Tilt of foundation 6745~6765 

D6 20-Aug-1998 New Reference Measurement 6769~6788 

D7 25-Aug-1998 Spalling of Concrete (12 m2) 6874~6897 

D8 26-Aug-1998 Spalling of Concrete (24 m2) 6898~6921 

D9 28-Aug-1998 Landslide of 1 m at abutment 6962~6993 

D10 31-Aug-1998 Failure of concrete hinges at abutment pier 7019~7028 

D11 02-Sep-1998 
Failure of anchor heads of post tensioning cables (1 

head) 

7066~7089 

D12 03-Sep-1998 
Failure of anchor heads of post tensioning cables (4 

heads) 

7090~7113 

D13 07-Sep-1998 Rupture of tendons #1 7186~7209 

D14 08-Sep-1998 Rupture of tendons #2 7210~7233 

D15 09-Sep-1998 Rupture of tendons #3 7234~7257 

 

Figure 6-11 shows the hourly variations of the first five natural frequencies during the 

entire monitoring period identified by the p-LSCF method mentioned in Section 3. The first 

4912 samples belong to the healthy state, the samples from 4913 to 5638 correspond to the 

progressive damage tests listed in Table 6-1. It should be mentioned that some samples with 

sensor fault or being unable to identify the first five modal frequencies have been removed. 

The environmental effects induced frequency variations of the first five natural frequencies 

under the healthy state are 17.22%, 20.34%, 14.69% 15.34% and 22.09%, respectively. The 

corresponding air temperature measurements of the bridge are shown in Figure 6-12. The 

temperature variation during the monitoring period is ranged from -9.6 ℃ to 35.7 ℃. The time 
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scales between Figure 6-11 and Figure 6-12 are the same. Generally, the natural frequency is 

negatively correlated with the air temperature. Significant frequency fluctuations are observed 

in the samples from 1650 to 2300, owning to stiffness hardening caused by the soil-frozen 

effects, which is more obvious than the damage-induced frequency reduction in the first five 

natural frequencies [15, 39]. The performance of damage detection can be adversely affected, 

when the effect of environmental and operational conditions could not be eliminated. This is 

the reason that the nonlinear manifold learning is introduced in this study to alleviate the false-

positives obtained in damage identification results due to the environmental and loading 

effects.   

 

Figure 6-11. The first five natural frequencies during the monitoring period (the progressive 

damage scenarios are denoted by green background color). 

 

 

Figure 6-12. Air temperature measurements during the monitoring period. 

 

In most previous studies, the relationships between natural frequency and temperature are 

derived. In this study, a pair of modal frequencies can be plotted to visualize the temperature 

effect. The relationship between a pair of natural frequencies can be viewed as the manifold 

of natural frequencies visualized in 2D phase space. In this study, both 2D and 3D phase spaces 

are respectively visualized in Figure 6-13 and Figure 6-14 to demonstrate that the underlying 

nonlinear manifold structure and structural condition can be better unfolded and classified in 

a higher dimensional phase space. In Figure 6-13, the natural frequencies under the healthy 

state are marked with the temperature-related color dots. The black dots represent the 
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observations under the damaged states. As shown in Figure 6-13, the frequency observations 

corresponding to similar temperature conditions are distributed closely with each other. 

Besides, the distribution of damaged states is overlapped with that of the healthy state, which 

means that the 2D phase space spanned by any two of the first five frequencies is unable to 

separate the damage states with healthy states. It is noted that the second natural frequency 𝑓2 

is nonlinearly (bilinear) correlated with 𝑓1, 𝑓3, 𝑓4 and 𝑓5, while the natural frequencies 𝑓1, 𝑓3 

and 𝑓4 appear to be nearly linearly related with each other. One possible reason is that the 

second mode is transverse bending combined with the torsion of the girder, while the other 

four mode shapes are either vertical bending modes or vertical bending coupled with torsion 

[40]. Therefore, it can be preliminarily concluded that the extent of temperature effects on the 

modal parameter in different directions of the structure is different. This phenomenon is 

understandable since the mechanical properties such as boundary condition stiffness and cross-

sectional moment of inertia are different in vertical, transverse and torsional directions. The 

correlation relationship between natural frequencies of Z24 bridge is quite different from that 

of Dowling Hall Footbridge, indicating that the temperature effects on natural frequencies are 

structure dependent. It is reasonable to see different relationships between vibration 

characteristics and temperature conditions on different structures. 

 

Figure 6-13. Visualisation of the relationships between any two of the first five natural 

frequencies. (Colored dots: the healthy state; Black dots: the damage state). 

 

Following the same procedure in Section 3, the 3D nonlinear manifold structure of Z24 
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bridge is visualized in the phase space spanned by the first three order frequencies. Figure 6-14 

presents the nonlinear manifold in the phase space using the measurements of the first three 

natural frequencies of Z24 bridge under the healthy state and the first 6 damage scenarios as 

listed in Table 6-1 with different environmental conditions. Compared with Figure 6-13, the 

distribution of damage states is well separated with that of the undamaged state in the 3D phase 

space, which means that the classification performance of structural condition changes can be 

improved in a higher dimensional observation space. In particular, the first six damage 

scenarios forms three distinct clusters (cluster 1: Damage scenarios D1~D3; cluster 2: Damage 

scenarios D4~D5; cluster 3: Damage scenario D6). The distributions of early damage scenarios 

D1~D3 are close to that of the structure under the healthy state corresponding to relatively 

high temperatures. In the third reference measurement (scenario D6), the foundation and pier 

were raised to the original position under the healthy state. It is reported in Ref. [40] that the 

bridge suffered an amount of cracks after damage scenario D5, but the reinforcement steel was 

still within the elastic range. However, the frequency distribution of the third reference 

measurement (D6) in the defined phase space cannot return to the original distribution 

corresponding to the healthy state. This means that the structural condition is irretrievable even 

though the deflection is within elastic stage and the settlement has been lifted to the original 

position. It is likely that the boundary condition has been changed during the implementation 

of settlements of pier and tilt of foundation in those damage scenarios. Therefore the new 

reference state in scenario D6 is different from the original healthy state.  

 

Figure 6-14. Visualisation of the nonlinear manifold of Z24 bridge in the phase space 

spanned by the first three natural frequencies. 

 

Based on the visualisation of nonlinear manifold of Z24 bridge with operational condition 

changes as presented in Figure 6-13 and Figure 6-14, it is reasonable to consider that the 

accuracy of the manifold characteristics can be further improved when more observables are 
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used. In the higher dimensional phase space, the separation of different damage scenarios is 

more feasible. The phase space dimensions used for the Dowling Hall Footbridge and Z24 

bridge are 4 and 5, respectively. The main purpose of using Laplacian eigenmap is to identify 

the low-dimensional (3D used in this study) manifold from the original high-dimensional 

phase space reconstructed from bridge natural frequencies. Furthermore, a manifold structure 

with dimensions higher than three could not be visualized effectively. Figure 6-15 shows a 3D 

scatter plot with a Laplacian Eigenmaps projection for the first five order natural frequencies 

presented in Figure 6-11. The manifold as shown in Figure 6-15(a) reveals two distinctive 

distributions of the obtained frequency datasets. The first one shows the curved surface-like 

manifold of the bridge under the healthy state with different environmental temperatures, and 

the other one presents the trajectory of damage scenarios. For comparison, the 3D scatter plot 

of the manifold obtained using the kernel PCA algorithm is presented in Figure 6-15(b). The 

observables corresponding to those damaged cases in the manifold learned by kernel PCA are 

overlapped with the healthy observables measured under high temperature conditions. This 

may cause some false damage identification results.  

   

(a)                                                                     (b) 

Figure 6-15. Manifold structures of the Z24 bridge discovered by: (a) Laplacian Eigenmap 

method; and (b) Kernel PCA method. (The symbols shown in this figure are the same as 

those defined in Figure 6-14). 

 

The relationship between environmental temperature and the third Laplacian component 

predicted by the Gaussian process regression model is shown in Figure 6-16 to explain the 

underlying principles that the proposed damage feature is able to minimize the influences of 

temperature variations. As observed in Figure 6-16(a), the third Laplacian component 

predicted by the Gaussian process regression model under the damaged state is far away from 

that under the health state, which means that the proposed damage feature is more sensitive to 

damage while insensitive to temperature variation. In Figure 6-16(b), the samples 

corresponding to the hot and cold temperature conditions are distributed in two distinctive 
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directions, which means that the proposed approach learns the nonlinear characteristics of 

temperature effect on the vibration characteristics. Under the cold temperature conditions, the 

third Laplacian component value in the training dataset shows a decreasing trend with the 

decreasing temperature. It is noted that the results predicted by the Gaussian process regression 

model under the extreme cold temperature conditions, which are not within the temperature 

range of training datasets, are broadly consistent with the major trend obtained from the 

training datasets. The third Laplacian component values corresponding to the high 

temperatures that are not included in the training dataset (15℃ to 35℃), are at the similar level 

as those in the training dataset from temperature 5℃ to 15℃. The damaged state can be 

obviously separated from the healthy state even when samples under different environmental 

conditions are used for training.   

 

     (a)                                                                       (b) 

Figure 6-16. (a) The relationship between environmental temperature and the Gaussian 

process regression model predicted third Laplacian component; and (b) zoom in view of the 

samples corresponding to health state. Symbol *: training dataset (samples 1-1200); 

symbol ·: Gaussian process regression model predicted samples corresponding to health 

state and symbol +: Gaussian process regression model predicted samples corresponding to 

damage state. 

 

To investigate the sensitivity of using the proposed approach to detect structural damage 

and the robustness of environmental conditions, a predictive multivariate Gaussian process 

regression model is trained by using the first two components and the third component of 

Laplacian eigenmaps as input and output, respectively. With the consideration that the extreme 

environment conditions may not be experienced by the structure at the early stage when a 

SHM system is installed, only the first 1200 samples are served as the training datasets. It 

should be noted that the training data cover only partial of the environmental variations from 

-6.3 ℃ to 13.0 ℃. In particular, the extremely low temperature samples during the sample 

intervals from 1650 to 2300 as well as the relatively high temperature region from 3500 to 

4500 are not covered. The absolute prediction error defined in Eq. (6.9) is used as the DI to 
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alarm the structural condition change. The DI obtained from the Laplacian Eigenmap is 

presented in Figure 6-17(a). The DI is very stable in the healthy states, and no visible false-

positive alarm is observed under sub-zero and high temperature conditions. The DI values 

increase significantly when the progressive damage scenarios are applied to the bridge, 

demonstrating that the introduced damage can be detected effectively, even though different 

environmental conditions are considered. The encouraging results indicate that the mechanism 

of temperature-induced nonlinearity is acquired accurately by the proposed approach with a 

limited training dataset. Furthermore, the DI defined based on the proposed approach is 

sensitive to structural condition change while insensitive to operational condition changes. For 

comparison, Figure 6-17(b) provides the damage detection results of using Kernel PCA with 

a training dataset size of 1200 samples. As observed, there is an obvious peak around the 

sample 2000, when the temperature is colder than the lowest temperature used in the training 

data. The amplitude of false positive detection results is at the same level or even higher than 

that of the introduced damaged cases, indicating that the performance of using Kernel PCA for 

damage detection could be comprised. To alleviate the potential false identification, the 

number of samples in Gaussian process regression modal training datasets is increased to 3000 

for Kernel PCA, which covers a wider range of environmental conditions under the healthy 

state. In Figure 6-17(c), no visible peak is observed in the low temperature region, which 

indicates that the damage detection capacity of using Kernel PCA-based Gaussian process 

regression model could be significantly enhanced by increasing the size of training dataset.  
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(a) 

 

(b) 

 

(c) 

Figure 6-17. Comparison of damage detection results: (a) The proposed approach with 

training datasets of 1200 samples; (b) Kernel PCA with 1200 samples; and (c) Kernel PCA 

with 3000 samples. 

 

In order to compare the sensitivity of using the proposed approach for detecting damage 

with Kernel PCA, DI values under the healthy (D0) and damaged states (D1-D15) are 

calculated and listed in Table 6-1. Figure 6-17(a) and (b) compare the mean values and 

standard deviations of DI values by using both methods with a training dataset size of 1200. 

Under the healthy state D0, the amplitude of DI in Figure 6-18(a) obtained by the proposed 

approach is obviously smaller than those of other damage scenarios. This indicates that the 

damage introduced in those damage scenarios can be well detected. The DI values of the 

introduced damage scenarios by using the proposed approach are generally larger than those 

by using Kernel PCA.  On the other hand, for the results obtained with Kernel PCA, similar 

DI values between D0 and D1~D3 are observed as shown in Figure 6-18(b), which means that 

the DI calculated from Kernel PCA based method may introduce false identification results. 

When more samples are included in the training datasets of using Kernel PCA method, a better 
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performance is obtained. No false identification is obtained. It should be noted that the results 

of using the Kernel PCA-based method presented in Figure 6-17(c) already outperform most 

of the data-driven damage detection methods applied to the Z24 bridge benchmark during the 

past decade [15, 41, 42]. Comparison results show that the proposed approach can be used to 

alarm structural condition change with a higher confidence and sensitivity, especially when 

only a limited number of training data are available. In conclusion, the applicability and 

performance of the proposed approach developed in this study are superior than those of the 

existing state-of-the-art Kernel PCA-based methods in accurately detecting structural damage. 

However, since the DI defined in this study is calculated from the prediction residual, it 

is unable to generate a linear relationship between the DI value and the structural stiffness 

reduction induced by structural damage. In the progressive damage tests, different types and 

extents of damage are artificially applied. Therefore, the damage scenarios fall into a multiple 

damage feature space, with different types of damage and different damage extents. It is 

unrealistic to quantify the damage extent using the one-dimensional DI defined in this study 

without errors. However, there are some impressive results that can be extracted from Figure 

6-18. For example, before introducing the damage scenario D6 as a new reference state, an 

upward trend of the mean values of DI is observed from D1 to D5. This is evident by the 

introduced increasing settlement of bridge piers. Another increasing trend in the DI values is 

observed from the damage scenarios D7 to D15, as observed in Figure 6-17(a) and (b), since 

further progressive damage is introduced in the bridge. These results demonstrate that the DI 

values obtained from the proposed approach can reliably detect the structural damage and have 

the potential to indicate the development of damage severity in structures. It should be noted 

that only the measurements under the healthy states are included in the training and calculating 

the defined DI, and no measurements under the damaged states are required in prior for the 

training.  
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(a) 

 

(b) 

Figure 6-18. Damage detection results of using: (a) The proposed approach with 1200 

training samples; and (b) Kernel PCA with 1200 training samples. 

 

In this study, the phase space representation of vibration characteristics is reconstructed 

by using the identified natural frequencies of structures. The adjacent points in the phase space 

correspond to similar structural conditions. For example, as shown in Figure 6-14, the samples 

corresponding to similar temperature and structural condition are close to each other. Both the 

Laplacian eigenmaps from manifold learning method used in this study and kernel PCA are 

representative nonlinear dimension reduction methods. As indicated in Eqs. (4-5), the 

Laplacian eigenmap based on manifold learning method constructs the adjacency graph from 

the high dimension phase space. The node and edge in the adjacency graph represent a sample 

and the similarity between two nodes. The weighting coefficient is large when two samples 

are very close. By this way, the low dimension projection has locality-preserving properties. 

However, Kernel PCA fails to consider the locality preserving constraint. 

6.5 Conclusions  

This chapter proposes a novel damage detection approach based on the phase space based 

manifold learning technique, for the reliable assessment of the healthy condition of real-world 

civil engineering structures subjected to environmental and operational conditions. The 

inherent nonlinear relationship between temperature variation and structural vibration 

properties is unfolded in the high-dimensional phase space spanned by the identified natural 

frequencies. Then the topological structure of the underlying system is projected into a low-



160 

 

dimensional space via manifold learning. Gaussian process regression model is then applied 

to the low-dimensional manifold to extract DSF for structural damage detection. Vibration 

responses measured from two in-situ bridges, namely Dowling Hall Footbridge and Z24 bridge 

are utilized to validate the applicability and performance of the proposed approach for 

structural damage detection under ambient operation conditions. In summary, the proposed 

approach is sensitive to structural damage but not sensitive to environmental and loading 

conditions, even when only observations from the healthy state under partial environmental 

and operational variations are available and included in the training datasets. This shows a 

promising performance of using the proposed approach for damage detection of structures 

based on long term SHM data.  
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CHAPTER 7 FINITE LINEAR REPRESENTATION OF 

NONLINEAR STRUCTURAL DYNAMICS USING PHASE 

SPACE EMBEDDING COORDINATE 

ABSTRUCT6 

Modelling of structural nonlinear dynamic behavior is a central challenge in civil and 

mechanical engineering communities. The phase space embedding of response time series has 

been demonstrated to be an efficient coordinate basis for data-driven approximation of the 

modern Koopman operator, which can fully capture the global evolution of nonlinear 

dynamics by a linear representation. This study demonstrates that linear and nonlinear 

structural dynamic vibrations can be represented by a universal forced linear model in a finite 

dimension space projected by time-delay coordinates. Compared to the existing methods, the 

proposed approach improves the performance of finite linear representation of nonlinear 

structural dynamics on two essential issues including the robustness to measurement noise and 

applicability to multi-degree-of-freedom (MDOF) systems. For linear structures, the dynamic 

mode shapes and the corresponding natural frequencies can be accurately identified by using 

the time-delay DMD algorithm with acceleration response data experimentally measured from 

an eight-story shear-type linear steel frame. Modal parameters extracted from the time-delay 

DMD match well with those identified from traditional modal identification methods, such as 

frequency domain decomposition (FDD) and complex mode indicator function (CMIF). In 

addition, numerical and experimental studies on nonlinear structures are conducted to 

demonstrate that the finite dimensional DMD based on the discrete Hankel SVD coordinate is 

highly symmetrically structured, and is able to accurately obtain a linear representation of 

structural nonlinear vibration. The resulting linearized data-driven equation-free model can be 

used to accurately predict the responses of nonlinear systems with limited training datasets.    

7.1 Introduction 

The geometric, material, boundary and structural damage-induced nonlinearities exist 

widely in civil/mechanical structures or components, which are frequently manifested by 

complex nonlinear behaviors, i.e. nonlinear harmonic generation and/or nonlinear attenuation 

in observed vibration responses [1, 2]. The state-of-the-art experimental and analytical modal 

                                                      

6 Peng, Z., Li, J., Hao, H. Finite linear representation of nonlinear structural dynamics using phase 

space embedding coordinate. (Under review). 
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analysis involves methods using a small set of parameters to describe the dynamic behavior of 

structures [3]. In reality, most structures are subjected to a certain extent of nonlinear and non-

stationary vibration behavior, therefore, modal analysis techniques based on linearity 

assumption may fail to provide accurate estimation or prediction of nonlinear problems [4]. A 

variety of data-driven methods and mathematical models, such as ARMA, Kalman filter, 

Volterra series, machine learning, deep learning and its derived methods, are extensively 

developed to discover and describe nonlinear behavior of structures [5]. Despite its long 

success, lack of direct physical interpretability is increasingly recognised as one of the main 

obstacles of machine learning/deep learning and similar data-driven techniques. Alternatively, 

a nonlinear structural system can be generally considered as a linear system with the 

nonlinearity induced restoring force along with the external excitation based on an underlying 

linear system [6, 7]. Consequently, state space models based on linear theory can be used to 

estimate, predict and control the dynamic behavior of nonlinear systems in many diverse 

engineering fields. For civil and mechanical engineering structures, the full measurement of 

the governing variables, namely, displacement, velocity and acceleration responses are 

required to construct the equation of motion of interest. In practice, only partial measurements, 

i.e. acceleration responses at a limited number of locations are usually available and the 

corresponding velocities and displacements are obtained through numerical integration. The 

measurement noise along with the integration error may degrade the accuracy of state space 

model. In this regards, advanced signal processing techniques in conjunction with partially 

measurable state information are constantly reported to reconstruct the full state variables of 

dynamic systems [8].  

For a dynamic system with incomplete observations, time-delay embedding is a 

promising technique to augment the information contained in the system state by constructing 

PST from univariate measurement with suitable embedding dimension and time lag [9]. 

Takens’ embedding theorem reveals that the reconstructed PST can be diffeomorphic to the 

original system attractor traced out by full state variables [10]. Two manifolds are said to be 

diffeomorphic if there exists a diffeomorphism between them, which is an isomorphism of 

smooth manifolds. It is an invertible function that maps one differentiable manifold to another 

such that both the functions and its inverse are smooth. The phase space reconstruction of well-

known chaos systems, such as Duffing oscillator and Lorenz attractor, is commonly used to 

intuitively interpret the definition of diffeomorphic [11]. For deterministic system, each 

possible state corresponds to one unique point in the phase space. Signal processing techniques 

developed based on time delay embedding, such as Eigensystem realization algorithm (ERA) 

[12], SSA [13] and nonlinear Laplacian spectral analysis [14], have been widely applied to 

system identification, spectral estimation as well as nonstationary signal prediction. Hankel 
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alternative view of Koopman (HAVOK) analysis is a recently developed data-driven 

framework, which combines the time delay embedding strategy with modern Koopman 

operator theory to represent nonlinear systems from a linearized perspective for nonlinear 

dynamics analysis [15]. The central principle of Koopman operator is to map the time series 

measurements into a new coordinate system, where nonlinear manifold can be reproduced by 

linear evolution on the newly-defined coordinate system space [16, 17]. Nonlinear 

linearization model is desirable because it allows using many efficient estimation, prediction 

and control methods based on linear theory for nonlinear systems. In practice, the proper 

choice of appropriate coordinate basis is crucial to characterise the underlying dynamic, but is 

often difficult to evaluate without domain-specific knowledge.  

To this end, a variety of approaches have been developed. For example, extended 

dynamic mode decomposition (EDMD) [18] and kernel DMD have been recently proposed by 

potentially augmenting a boarder set of observables, i.e. polynomial kernel, radial basis 

functions and sigmoid kernel [19] to the conventional linear coordinate system. Besides, 

machine learning methods, such as manifold learning and dictionary learning, have also been 

integrated to address this issue [20]. The HAVOK framework conducts SVD and uses the right-

singular vectors of time-delay embedding matrix as observables (hereafter refers to as Hankel 

SVD coordinate) to approximate the Koopman operator. This framework has been successfully 

applied to a series of well-known nonlinear dynamic examples including Lorenz attractor, 

Duffing oscillator and Van der Pol oscillator as well as real-world examples like data from 

Earth’s magnetic field reversal, electrocardiogram, electroencephalogram, measles outbreaks 

and power grid load, etc. [21]. Results demonstrated that the space of observables spanned by 

Hankel SVD coordinate is admitted as a faithful linear representation of nonlinear dynamics. 

Kamb et al. [22] and Lusch et al. [23] theoretically proofed that the time-delay coordinate 

forms an optimal finite-dimensional basis for representing the time-invariant Koopman 

operator. However, the feasibility of using HAVOC framework for analysing the dynamic 

vibration responses of civil/mechanical structures is still unexplored. Typically, using the 

HAVOC framework for processing the structural vibration responses faces two potential 

challenges. Firstly, the response signals of the above-mentioned nonlinear dynamic examples 

are from a single channel. Extension should be made to process the multi-channel vibration 

responses recorded from MDOF structures. Secondly, continuous Hankel SVD coordinate is 

used in the original HAVOC framework to approximate the Koopman operator. The 

measurement noise effect might be amplified to calculate the derivative of the Hankel SVD 

coordinate. Therefore, the effect of inevitable measurement noise should be carefully 

considered.   

The proposed approach in this study is built on the HAVOK framework by including the 
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spatially distributed structural vibration responses, which allows for finding spatiotemporal 

linear representation of MDOF nonlinear structures. Two main improvements are made in this 

study. Firstly, the multi-channel phase space embedding is introduced to accommodate the 

vibration responses recorded from MDOF structure. Secondly, apart from the original HAVOC 

framework with continuous Hankel SVD coordinate, the HAVOC framework based on 

discrete Hankel SVD coordinate is introduced to alleviate the noise effect. The prediction 

performance of using HAVOC framework based on discrete Hankel SVD coordinate is 

demonstrated to be better than the original continuous form. It is noteworthy that the proposed 

method is fully data-driven, which learns a forced linear model in Hankel SVD coordinate in 

an unsupervised manner. The proposed method has the following advantages: (1) Only partial 

system state information (acceleration or displacement responses) is required, thus, the non-

negligible errors in full-state variables reconstruction introduced from integration or 

differentiation procedure are avoided; (2) The proposed method based on the Hankel SVD 

coordinate can be used to obtain a linear model and Koopman invariant measurement system 

that nearly perfectly captures the dynamics of nonlinear quasiperiodic systems; (3) The 

proposed method is feasible for both linear and nonlinear dynamic systems. For linear systems, 

the computed Hankel SVD coordinate matches with that extracted via time-delay DMD 

algorithm. The corresponding modal parameters, such as natural frequencies and modal shapes, 

can be accurately identified.   

The layout of this chapter is organised as follows. Section 2 summarises the process, 

where the phase space representation is obtained from MDOF state variable measurement. The 

regression of linear DMD with three types of coordinate basis, namely, the time-delay 

coordinate, continuous Hankel SVD coordinate and discrete Hankel SVD coordinate are 

presented. Section 3 experimentally demonstrates the feasibility and efficiency of using time-

delay DMD in modelling the linear systems and extracting modal parameters from acquired 

vibration responses of an eight-story shear-type linear steel frame subjected to hammer loads. 

Section 4 reveals the applicability of continuous and discrete Hankel SVD coordinate systems 

on linearising the structural nonlinear vibrations acquired from numerical and experimental 

structures. The presented method is successful in discovering finite dimension predictive 

linearization representation of structural nonlinear vibrations in a fully unsupervised manner. 

In Section 5, concluding remarks are provided.  

7.2 Data-driven decomposition of nonlinear dynamic into forced linear model 

7.2.1 Time-delay embedding and DMD for linear systems 

Generally speaking, a forced nonlinear dynamic system can be expressed as follows 
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{
�̇�(t) = 𝑓(𝒛(𝑡), 𝒖(𝑡))

𝒛(𝑡) = [𝒙(𝑡)�̇�(𝑡)]𝑇
                                              (7.1) 

in which 𝒛(𝑡) = [𝒙(𝑡)�̇�(𝑡)]𝑇 denotes the state space vector. For a discrete n DOFs nonlinear 

dynamic system, 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]
𝑇 and �̇�(𝑡) = [�̇�1(𝑡), �̇�2(𝑡),⋯ , �̇�𝑛(𝑡)]

𝑇 

represent the displacement vector and velocity vector at the time instant t, respectively. 𝒖(𝑡) 

is the external loading vector applied on each DOF. f (·) is a general, possibly nonlinear 

mapping function of the underlying system. An alternative way to visualize the system 

dynamics is to build the state-space dynamic attractor from all the state variables [24]. In 

practice, only partial state variable, i.e. acceleration or displacement responses of structures 

are directly measured from instrumented sensors. Thus, the time-delay embedding of partially 

observed state information is implemented to reconstruct the PST. Under a certain condition, 

the full dynamics of a system as complicated as a turbulent fluid could be unfolded from a 

phase space embedding of a single point measurement [15]. The reconstructed PST can be 

diffeomorphic to the original state space attractor.     

For an acceleration time series 𝑎(𝑡) ∈ ℝ  measured from a specific location of the 

structure, it is possible to transform it to higher embedding dimension via time-shift copies of 

itself. The resulted Hankel matrix H is expressed as follows  

𝐇 = [

𝑎(𝑡1) 𝑎(𝑡2) ⋯
𝑎(𝑡2) 𝑎(𝑡3) ⋯
⋮ ⋮ ⋱

𝑎(𝑡𝑚)
𝑎(𝑡𝑚+1)

⋮
𝑎(𝑡𝑑) 𝑎(𝑡𝑑+1) ⋯ 𝑎(𝑡𝑑+𝑚−1)

]                                       (7.2) 

where m and d represent the window size and embedding dimension, respectively. The 

extension of phase space embedding procedure to the case of MDOF system is straightforward. 

For a vector (𝑡) ∈ ℝ𝑛, the resulted Hankel matrix H in Eq. (7.2) becomes 

𝐇 = [

𝒂(𝑡1) 𝒂(𝑡2) ⋯
𝒂(𝑡2) 𝒂(𝑡3) ⋯
⋮ ⋮ ⋱

𝒂(𝑡𝑚)
𝒂(𝑡𝑚+1)

⋮
𝒂(𝑡𝑑) 𝒂(𝑡𝑑+1) ⋯ 𝒂(𝑡𝑑+𝑚−1)

] , 𝐇′ = [

𝒂(𝑡2) 𝒂(𝑡3) ⋯
𝒂(𝑡3) 𝒂(𝑡4) ⋯
⋮ ⋮ ⋱

𝒂(𝑡𝑚+1)
𝒂(𝑡𝑚+2)

⋮
𝒂(𝑡𝑑+1) 𝒂(𝑡𝑑+2) ⋯ 𝒂(𝑡𝑑+𝑚)

] (7.3) 

where 𝒂(𝑡𝑖) = [𝑎1(𝑡𝑖), 𝑎2(𝑡𝑖),⋯ , 𝑎𝑛(𝑡𝑖)]
𝑇  represents the acceleration response vector 

measured from each DOF at time instant 𝑡𝑖. When the acceleration response 𝒂(𝑡)is the free 

decay response subjected to an impulse load, modal frequencies, damping ratios and mode 

shapes of the studied structure can be identified by using ERA. 𝐇′is a Hankel matrix of the 

same size to H and is shifted with a single step forwarded in time domain. Two tunable 

parameters, namely the delay embedding dimension d and the window size m, determine the 

size of Hankel matrix H. In literature, the lowest delay embedding dimension value is 

dependent on the complexity of vibration responses, and is usually approximated by using 
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AMI [25], FNN analysis [26], SVD or the optimal hard threshold of Gavish and Donoho [27]. 

In this study, SVD is implemented to extract a rank-reduced basis. Therefore it is not very 

essential to perform a very careful selection of the parameter d. Existing studies suggest that 

the observed dynamic can be faithfully unfolded in phase space when the embedding 

dimension is larger than two times of the distinct frequency components [22]. Another 

parameter that needs to be selected carefully is the window size m, which is related to the 

sampling rate, the fundamental frequency as well as the time scale of the dynamic system of 

interest. A detailed discussion of appropriate selection criterion is given in Ref. [28]. A further 

error analysis of the window size on the performance of the proposed approach will be 

conducted in Section 4.1.  

For linear and weak nonlinear deterministic systems, Hankel matrix H and 𝐇′in Eq. (7.3) 

can be connected by a best linear regression operator A, which is given as 

𝐇′ ≈ 𝐀𝐇                                                             (7.4) 

where the transfer operator A is the finite-dimensional approximation of infinite-dimensional 

time-invariant Koopman operator as mentioned above. The recently developed DMD has been 

demonstrated as an accurate and time-efficient algorithm to obtain A by solving the 

optimization of the objective difference function ‖𝐇′ − 𝐀𝐇‖𝐹. The subscript F denotes the 

Frobenius norm. When further conducting the eigen-decomposition on A, the consequent 

DMD eigenvectors and DMD eigenvalues offer a great deal of interpretability in terms of the 

coherent spatiotemporal structures. For linear dynamic systems, these eigenvalues and 

eigenvectors are as the same as natural frequencies and mode shape obtained by using ERA. 

The applicability and interpretation of using DMD to extract the experimental modal 

parameters of linear structures have been recently provided in Refs. [29, 30]. In these two 

studies, DMD algorithm is combined with computer vision method to extract full-field, 

spatially dense vibration modes of experimental and real-world cable stayed bridges. For weak 

nonlinear dynamics with sparse power spectra, the DMD exhibits its superiority in 

representing the spatiotemporal behavior associated with each dynamic mode. A more detailed 

discussion of the DMD theory and its application to process real-world nonlinear dynamic 

process can be found in Ref. [31]. For the sake of brevity, the procedure of using time-delay 

DMD for modal analysis of structures is summarized in Algorithm 1.  
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Algorithm 1: Structural modal analysis by time-delay DMD 

Input: Hankel matrix 𝐇, time-shifted Hankel matrix𝐇′ and target truncation rank r. 

Output: modal frequency𝒇, mode shape𝚽 

1: procedure time-delay DMD (𝑿1
𝑚 , 𝑿2

𝑚+1, 𝑟) 

2:[𝑼1:𝑟 , 𝑺1:𝑟 , 𝑽1:𝑟] ←
compactSVD(𝑿1

𝑚 , 𝑟)     
𝑼1:𝑟 ∈ 𝑛×𝑟 , 𝑺1:𝑟 ∈ 𝑟×𝑟 , 𝑽1:𝑟 ∈ 𝑚×𝑟 , 𝑟

= 𝑟𝑎𝑛𝑘(𝑿1
𝑚) 

3: �̃� ← 𝑼1:𝑟
∗ 𝑿2

𝑚+1𝑽1:𝑟𝑺1:𝑟
−𝟏                          �̃� ∈ 𝑟×𝑟is a low-rank with the same 

eigenvalues to A 

4: [�̃�, �̃�] ← EIG(�̃�) eigenvalues�̃� and eigenvector�̃�   

5: 𝒇 = ln[𝑖𝑚𝑎𝑔(�̃�𝑗)] (2𝜋∆𝑡)⁄  

6: 𝚽 = 𝑟𝑒𝑎𝑙(𝑼1:𝑟�̃�) 

modal frequency𝒇    

modal shape𝚽    

7: end procedure  

7.2.2 Linearized representation of nonlinear dynamic system using Hankel SVD 

coordinate 

For many real-world nonlinear dynamic systems without exhibiting sparse discrete power 

spectra, time-delay DMD introduced in Section 2.1 may fail to build a finite-dimensional 

linear predictive model. In literature, modifications have been made on the DMD architectures, 

such as extended DMD and kernel DMD, to linearize the underlying system with a specific 

type of nonlinearity. The basic principle is to augment a broader set of nonlinear coordinate 

basis, i.e., polynomial kernel, radial basis functions and sigmoid kernel to the linear basis 

based on domain-specific prior knowledge. As has been repeatedly stated, an accurate 

representation of the Koopman operator exclusively relies on the good choice of nonlinear 

coordinate basis. Alternatively, Brunton et al. [15] obtained intrinsic coordinates basis from 

the right-singular vector of Hankel matrix defined in Eq. (7.3). This perspective is fully data-

driven, without relying on prior knowledge about the nonlinearity of underlying dynamic. The 

Hankel SVD coordinate is obtained by conducting compact SVD on the time-delay embedding 

matrix 𝐇 

𝐇 ≈ 𝐔𝑟𝐒𝑟𝐕𝑟
∗                                                           (7.5) 

where 𝑟 ≪ 𝑑 denotes the truncation order. The obtained left singular vector𝐔𝑟,singular value 

𝐒𝑟 and right singular vector 𝐕𝑟 from the compact SVD of H, are of the dimensions 𝑑 × 𝑟, 𝑟 ×

𝑟  and 𝑟 × 𝑚 , respectively. The Hankel SVD coordinate basis is proven to be effective in 

producing approximate linear model accurately, even for strongly nonlinear dynamic system. 

Then, linear predictive Koopman operator A can be least-square regressed using data from the 

first r rows of the right singular vector 𝐕𝑟 as 

�̇�𝑟 ≈ 𝐀𝐕𝑟                                                              (7.6) 



171 

 

where �̇�𝑟  is the derivative of 𝐕𝑟 . The fourth-order central difference method is adopted to 

approximate the derivative. Eq. (7.6) defines the DMD based on the continuous Hankel SVD 

coordinate basis to extract linear Koopman operator A. By integrating this discrete differential 

equation, the resultant model is able to reproduce the dynamic behavior in the space of the 

Hankel SVD coordinate and to predict the evolution of state variables.  

It should be noted that measurement noise inevitably exists in real measured data and its 

influence will be magnified in the numerical differentiation calculation to compute �̇�𝑟 . 

Consequently, the accuracy of linear predictive Koopman operator A approximation will be 

significantly degraded. Under this circumstance, this study presents the following formulation 

of DMD with discrete Hankel SVD coordinate 

�̂�𝑟 = [

|
𝐯(𝑡2)
|

|
𝐯(𝑡3)
|


⋯


|
𝐯(𝑡𝑚+1)

|
] ≈ 𝐀 [

|
𝐯(𝑡1)
|

|
𝐯(𝑡2)
|


⋯


|
𝐯(𝑡𝑚)
|
]                             (7.7) 

In the HAVOC framework proposed in Ref. [15], the last row of the right singular vectors 

𝐕𝑟 is recognised as the discovered force. Improvement is made in this study by performing 

one-step forward forecasting, and the residual between the prediction and ground truth is 

extracted as the discovered force  

𝐅 = 𝐕𝑟 − �̂�𝑟 = [

|
𝐯(𝑡2)
|

|
𝐯(𝑡3)
|


⋯


|
𝐯(𝑡𝑚+1)

|
] − 𝐀 [

|
𝐯(𝑡1)
|

|
𝐯(𝑡2)
|


⋯


|
𝐯(𝑡𝑚)
|
]                (7.8) 

where �̂�𝑟 denotes the predicted right singular vectors. With the exogenous control force 𝐅 been 

simultaneously discovered, the forced linear model defined by �̂�𝑟(𝑡𝑗+1) = 𝐀𝐯𝑟(𝑡𝑗) + 𝐅(𝑡𝑗) 

can accurately capture the evolution of observed nonlinear dynamic dominated by near-

periodic mode. The aperiodic dynamic component, such as external force and abrupt change 

lying beyond the reach of DMD mode, will be relegated to the discovered force. The Hankel 

matrix in Eq. (7.3) constructed by the embedding of measured dynamic responses can be 

reconstructed using the predicted �̂�𝑟 via the following matrix multiplication 

�̂� = 𝐔𝑟𝐒𝑟�̂�𝑟
∗
                                                       (7.9) 

  It should be noted that each ascending skew-diagonal element of the Hankel matrix 

displayed in Eq. (7.3) is constant. However, no such property is guaranteed for the 

reconstructed �̂�. Acceleration response vector a can be obtained from the diagonal averaging 

procedure typically used in SSA. In Refs. [15] and [32], the focus is on the chaotic system, 

and an additional nonlinear force term is included in the HAVOK model to account for chaotic 

switching or bursting phenomena. This study focuses on structural nonlinear vibration analysis 

and demonstrates that the linearized model obtained by HAVOK is sufficient to reconstruct 
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and predict the free decay or sinusoidal-wave forced vibration responses of nonlinear 

structures in the numerical and experimental studies. This framework provides a more physical 

interpretable approach to nonlinear systems than many existing methods, and its linear 

intrinsic dynamic enables spectrum analysis through eigenvalue decomposition. In addition, 

the discovered force signal offers diagnostic insight into anomalous events. For instance, the 

HAVOC framework has been applied to construct a linear control model to reconstruct and 

forecast time series with almost-periodic dynamics of the real-world power grid load [21]. The 

schematic procedure of using the proposed data-driven approach to transform a nonlinear 

dynamic system into a linearized model is summarized in Figure 7-1. The multi-channel 

vibration responses measured from MDOF structure are embedded by using Eq. (7.3). Then 

the compact SVD is conducted on the time-delay embedding matrix to obtain the Hankel SVD 

coordinate. DMD regression is subsequently applied to the Hankel SVD coordinate to 

approximate finite dimension Koopman operator. Eventually the resulting Koopman operator 

can be used to predict the future responses of state variable with a desirable accuracy. DMD 

regression performed on the right singular vector V matrix yields a forced linearized model to 

capture the dominate evolution of dynamic behavior in the discrete time Hankel SVD 

coordinate basis. The stepwise prediction residual is interpreted as the discovered force. 

 

 

Figure 7-1. Procedure for representing nonlinear dynamic system as a forced linearized 

model using the DMD based on discrete Hankel SVD coordinate. 
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7.2.3 Contribution of this study 

This study improves the original HAVOC framework and investigates the applicability 

of using the proposed method for generating a finite linear representation of nonlinear 

structural vibration. In particular, the main contributions of this study are clarified as follows: 

        1) The phase space embedding of multi-channel responses is introduced to extend the 

feasibility of using the original HAVOC framework to process the vibration signals measured 

from MDOF structures.   

        2) When structural vibration responses are contaminated with measurement noise, the 

continuous Hankel SVD coordinate utilized in the original HAVOC framework may 

significantly affect the nonlinear vibration prediction accuracy. Therefore, the DMD with 

discrete Hankel SVD coordinate is introduced to improve the noise tolerance.  

 The introduced linearization framework is applicable to structural systems with discrete 

frequency spectrum and one equilibrium position (fixed point) in steady state. The vast 

majority of civil engineering structures subjected to operational condition falls into this 

category. 

7.3 Experimental verification with a linear structure 

Before considering nonlinear systems, the vibration responses experimentally measured 

from a MDOF linear structure are used to illustrate how the predictive model as well as modal 

parameters, such as mode shape and natural frequencies can be extracted by using the time-

delay DMD introduced in Section 2.1. In particular, vibration responses of an eight-storey 

shear-type steel frame structure as shown in Figure 7-2 subjected to hammer impact excitations 

are used in this study. The frame structure is fixed at the base, and the geometric dimension 

and material properties are reported in Ref. [33]. Eight KD-1300 accelerometers with a 

sampling rate of 1024 Hz are respectively attached at each floor to measure the horizontal 

acceleration responses. The hammer impact excitation is applied at the first floor by using a 

SINOCERA LC-04A hammer with a rubber tip. The applied force is simultaneously acquired 

along with the acceleration responses for identifying the FRF. However, only the raw measured 

acceleration data are selected to construct the Hankel matrix in Eq. (7.3). A low-pass filter with 

a cutoff frequency of 100 Hz is applied to preserve the first eight modes. Time-delay DMD 

presented in Algorithm 1 is applied to the first 10s free decay responses. Figure 7-3(a) 

compares the power spectrum and the eigen-frequencies from time-delay DMD. The eigen 

frequencies obtained from DMD match with the peaks in the power spectrum of the used 

acceleration responses, which means that the time-delay DMD converges to a sparse sinusoidal 

basis that is strongly represented in the data observed from linear systems. Figure 7-3(b) shows 
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the structure of the Koopman operator A estimated by Eq. (7.4). It can be found that the 

Koopman operator extracted from time-delay coordinate is highly symmetrically structured. 

In particular, the diagonal elements are approximately equivalent to 1, whereas the off-

diagonal element away from the diagonal tends to zero. As previously stated in Algorithm 1, 

modal parameters of linear systems can be obtained from time-delay DMD algorithm. For 

comparison purpose, all the eight natural frequencies and mode shapes of the eight-story shear-

type linear steel frame identified by time-delay DMD, FDD [34] and CMIF method [35] are 

presented in Table 7-1 and Figure 7-4, respectively. As can be found in the identification results, 

the mode shapes and natural frequencies obtained by time-delay DMD agree well with those 

from FDD and CMIF methods.  

To quantitatively evaluate the accuracy of the mode shapes predicted by the time-delay DMD 

method, modal assurance criterion (MAC) values for these eight modes are computed. MAC 

values between the mode shapes obtained by time-delay DMD and FDD as well as those values 

between mode shapes from time-delay DMD and CMIF are provided in   
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Table 7-2 and Table 7-3, respectively. The diagonal terms of both MAC matrices are larger 

than 99.8%, whereas the off-diagonal elements are less than 2.5%. The MAC values further 

indicate that the mode shapes extracted from the time-delay DMD method are reliable and the 

orthogonality of the modes are guaranteed. In fact, the time-delay DMD method is easy to 

connect with vision-based techniques to extract the full-field temporal-spatial dense dynamic 

modes from experimental and real-world structures [29].  

 

Table 7-1. Comparison of natural frequencies obtained by time-delay DMD, FDD and CMIF  

Method 
Mode order   

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

Time-delay 

DMD 
4.6650 13.7058 22.5549 30.6968 38.2429 44.4365 48.8286 52.3084 

FDD 4.6617 13.7086 22.5580 30.6963 38.2420 44.4444 48.8296 52.3062 

CMIF 4.6563 13.7187 22.5625 30.6875 38.2500 44.4375 48.8437 52.3125 
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Table 7-2. MAC (in %) between the modes obtained by time-delay DMD and FDD 

Time-

delay 

DMD 

FDD 

1 2 3 4 5 6 7 8 

1 99.815 0.002 0.029 0.015 0.085 0.219 0.020 0.049 

2 0.029 99.998 0.095 0.064 0.004 0.086 0.076 0.001 

3 0.000 0.040 99.901 0.005 0.090 0.002 0.043 0.000 

4 0.056 0.056 0.053 100.000 0.065 0.000 0.007 0.016 

5 0.213 0.003 0.039 0.037 99.989 0.000 0.000 0.035 

6 0.019 0.121 0.000 0.016 0.004 99.943 0.009 0.006 

7 0.044 0.032 0.058 0.058 0.023 0.021 99.900 0.006 

8 0.024 0.002 0.002 0.069 0.093 0.000 0.011 99.928 

 

Table 7-3. MAC (in %) between the modes obtained by time-delay DMD and CMIF 

Time-

delay 

DMD 

CMIF 

1 2 3 4 5 6 7 8 

1 99.904 0.002 0.029 0.015 0.085 0.220 0.020 0.048 

2 0.045 99.998 0.096 0.064 0.004 0.086 0.076 0.001 

3 0.006 0.049 99.898 0.006 0.091 0.002 0.042 0.000 

4 0.024 0.056 0.062 100.000 0.069 0.000 0.008 0.018 

5 0.141 0.003 0.040 0.042 99.987 0.001 0.000 0.037 

6 0.061 0.122 0.000 0.014 0.003 99.936 0.004 0.010 

7 0.051 0.033 0.059 0.058 0.021 0.017 99.891 0.014 

8 0.019 0.002 0.002 0.069 0.092 0.000 0.012 99.921 
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Figure 7-2. Laboratory steel frame model. 

 

 

                             (a)                                                                  (b) 

Figure 7-3. (a) Comparison of power spectrum and eigen-frequencies obtained from time-

delay DMD; (b) Visualization of the structure of the time-delay DMD. 
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Figure 7-4. Comparison of the mode shapes obtained by time-delay DMD, FDD and CMIF. 

 

For validating the accuracy of Koopman operator approximated from the time-delay 

DMD algorithm, the performance of using time-delay DMD to predict the state variables is 

tested. In particular, the acceleration data measured from t= 0s to t=10s are set as training 

datasets to obtain the regressed finite-dimensional approximation of Koopman operator A. 

Then, the future state variables that are not used to train the model are set as variables in the 

prediction datasets. Figure 7-5 presents the response forecasting of each DOF by using the 

time-delay DMD. The Y-axis on the right-hand side shows the absolute prediction error. 

Response prediction results demonstrate that the presented model accurately captures the 

evolution of linear structural vibrations, although the prediction error slightly increases at the 

end of responses owning to the errors in the accumulated integration process. 
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Figure 7-5. Prediction performance of time-delay DMD algorithm. 

 

The time-delay DMD algorithm can be applied to both single DOF and MDOF linear 

structural systems exhibiting discrete spectrum characteristics, as shown in Figure 7-3. This is 

a restrictive condition, since many structures of interest may present nonlinear behavior and 

do not exhibit fully discrete power spectra. As a result, the method introduced in Section 2.1 

may fail to build a linear model using the time-delay coordinate. The remainder of this chapter 

is devoted to developing a new coordinate basis that the nonlinear dynamic system can be 

linearly represented by using the proposed approach.  

7.4 Nonlinear structures 

Numerical and experimental verifications are conducted in this section to demonstrate 

the applicability of using the proposed approach in discovering a finite dimensional linear 

representation of dynamic behavior of nonlinear structures. In particular, three types of DMD 

algorithms introduced in Section 2, namely, time-delay DMD, DMD with continuous and 

discrete Hankel SVD coordinate bases are tested. Then, the DMD with discrete Hankel SVD 

coordinate will be applied to construct the linearized model for state variable prediction.  
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7.4.1 6-DOF nonlinear structural system with a hardening Adjustable Template Stiffness 

Device (ATSD) 

Before conducting experimental verifications, a six DOFs mass-spring-damper system 

with a hardening adjustable template stiffness device (ATSD) installed at the second DOF, as 

shown in Figure 7-6, is designed to evaluate the feasibility and accuracy of the proposed 

method. The ATSD was firstly proposed in Ref. [36] and has been used as a nonlinear stiffness 

modification device for structural vibration mitigation. The mechanical model of ATSD and 

several curved templates designed for the realization of stiffness hardening, softening and 

negative stiffness are detailed in Refs. [36, 37]. Assuming that the surface of ATSD and the 

curved template block is smooth, therefore, the friction force between the ATSD and curved 

template block is neglected. The restoring force 𝐹𝐴𝑇𝑆𝐷 provided by the ATSD in the motion 

direction is given as 

𝐹𝐴𝑇𝑆𝐷(𝑥) = 𝑘𝐴𝑇𝑆𝐷
𝑓′(𝑥)

1+𝑓′(𝑥)2
[∆𝐿 + 𝑓(𝑥)]                                  (7.10) 

where 𝑘𝐴𝑇𝑆𝐷and ∆𝐿 represent the stiffness and the initial compression length of the pre-

compressed spring, respectively, 𝑓(𝑥)  is the shape function of template block surface. A 

variety of force-displacement relationships 𝐹𝐴𝑇𝑆𝐷(𝑥) can be achieved by changing the design 

of shape function and specification of pre-compressed spring. In this study, the spring stiffness 

is 𝑘𝑖 = 15N/m (i=1 ,…, 6) , damping coefficient is 𝑐𝑖 = 0.01 (i=1 ,…, 6) and mass value is 

𝑚𝑖 = 1kg (i=1 ,…, 6). The stiffness and initial compression length of the pre-compressed 

spring are 𝑘𝐴𝑇𝑆𝐷=150 N/m and ∆𝐿 =1 m, respectively. F(t) is the external force applied on the 

6th DOF. In particular, the excitation is considered as a sinusoidal force with an excitation 

frequency of 3 Hz and an amplitude of 10 N, respectively. The shape function 𝑓(𝑥) is chosen 

as a 4th order polynomial function to increase the stiffness of the original structure in the 

direction of structural motion, which is expressed as  

𝑓(𝑥) = 0.1𝑥4                                                        (7.11) 

 

 

                        (a)                                                                 (b) 

Figure 7-6. (a) A six DOFs nonlinear system with ATSD and (b) mechanical modeling of the 

ATSD. 
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The equation of motion of the nonlinear structural system illustrated in Figure 7-6 is given 

as follows 

{
  
 

  
 
𝑚1�̈�1 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 + (𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 = 0

𝑚2�̈�2 + (𝑘2 + 𝑘3)𝑥2 − 𝑘2𝑥1 − 𝑘3𝑥3 + (𝑐2 + 𝑐3)�̇�2 − 𝑐2�̇�1 − 𝑐3�̇�3 + 𝐹𝐴𝑇𝑆𝐷(𝑥2) = 0

𝑚3�̈�3 + (𝑘3 + 𝑘4)𝑥3 − 𝑘3𝑥2 − 𝑘4𝑥4 + (𝑐3 + 𝑐4)�̇�3 − 𝑐3�̇�2 − 𝑐4�̇�4 = 0

𝑚4�̈�4 + (𝑘4 + 𝑘5)𝑥4 − 𝑘4𝑥3 − 𝑘5𝑥5 + (𝑐4 + 𝑐5)�̇�4 − 𝑐4�̇�3 − 𝑐5�̇�5 = 0

𝑚5�̈�5 + (𝑘5 + 𝑘6)𝑥5 − 𝑘5𝑥4 − 𝑘6𝑥6 + (𝑐5 + 𝑐6)�̇�5 − 𝑐5�̇�4 − 𝑐6�̇�6 = 0
𝑚6�̈�6 − 𝑘6𝑥5 + 𝑘6𝑥6 − 𝑐6�̇�5 + 𝑐6�̇�6 = −𝐹(𝑡)

(7.12) 

with Eq. (7.10) and the above pre-defined parameters, 𝐹𝐴𝑇𝑆𝐷(𝑥2) can be expressed as 

𝐹𝐴𝑇𝑆𝐷(𝑥2) = 150
0.4𝑥2

3

1+(0.4𝑥2
3)2
[1 + 0.1𝑥2

4]                               (7.13) 

With parameter and excitation defined above, the nonlinear structural system defined in 

Eq. (7.12) is integrated to steady-state using the fourth-order Runge–Kutta scheme with a 

randomly generated initial condition. The numerical acceleration responses of each DOF are 

obtained with a sampling rate of 100 Hz. Figure 7-7(a) and (b) show the acceleration responses 

of the 1st DOF and the restoring force-displacement loop, respectively. As can be found in 

Figure 7-7(b), the curve slope gradually increases with displacement, which brings a stiffness 

hardening effect to the structure.  

 

 

   (a)                                                              (b) 

Figure 7-7. (a) Acceleration time history of the 1st DOF; and (b) the restoring force-

displacement curve. 

 

In literature, attempt has been made in Ref. [37] to solve the governing equation of 

nonlinear behavior defined in Eq. (7.12) by using the algorithm for sparse identification of 

nonlinear dynamical systems (SINDy) recently proposed by Brunton et al. [31]. This method 

builds up a dictionary of possible candidate functions and uses sparse symbolic regression to 

obtain a parsimonious model, which is the most accurate representative to the underlying 

system. Lai et al. [37] constructed the candidate function dictionary with the polynomials of 

state variables and the external excitation term. The derived governing equation matches well 
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with the third-order Taylor expansion of theoretic formula. However, full state information, 

i.e. displacement, velocity and acceleration time series are required in SINDy framework. In 

the present work, a data-driven equation-free framework is introduced to obtain linearized 

representation of nonlinear dynamics with partial state information.   

For nonlinear structures, the time-delay DMD with a finite dimension introduced in 

Section 2.1 is not expected to perform well, since system with nonlinear components will not 

exhibit a fully discrete power spectra, and a finite number of discrete frequencies cannot 

densely cover a continuous interval on the frequency space. In this section, the time-delay 

DMD is extended to model nonlinear dynamic system as a forced linear system acting on the 

SVD vectors of Hankel matrix. The Hankel matrix is constructed from the acceleration 

responses of each DoF with an embedding dimension of 100. The Hankel SVD coordinate is 

directly obtained from the data and a wide range of nonlinear systems could be well-

approximated by applying DMD to these coordinates [22]. Following the procedure illustrated 

in Figure 7-1, a standard DMD working in the space of Hankel SVD coordinate 𝐯(𝑡𝑖+1) ≈

𝐀𝐯(𝑡𝑖) using the full duration of training dataset yields the best-fit approximation of linear 

operator A. The resulting model is then used for stepwise forward prediction. The prediction 

residual out of the reach of the above mentioned linear model will be considered as 

simultaneously obtained force term. The forced linear model defined by 𝐯(𝑡𝑖+1) = 𝐀𝐯(𝑡𝑖) +

𝐅(𝑡𝑖) fits the observed data perfectly.  

 

(a)                                          (b)                                               (c) 

Figure 7-8. Visualization of Koopman operator approximated from: (a) Time-delay DMD; 

(b) DMD with continuous Hankel SVD coordinate; and (c) DMD with discrete Hankel SVD 

coordinate. 

 

For comparison, the time-delay DMD, DMD with continuous Hankel SVD coordinate 

and discrete Hankel SVD coordinate are respectively best fitted by Eq. (7.4), Eq. (7.6) and Eq. 

(7.7) using the first 10 s acceleration measurements. The structures of Koopman operators 

estimated from three different formulas are illustrated in Figure 7-8. As can be observed in 

Figure 7-8(a), the time-delay DMD-based Koopman operator estimated from a nonlinear 
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system is an upper triangular matrix, which is quite different from the highly symmetrical 

structured operator for linear dynamic systems presented in Figure 7-3(b). In contrast, the 

Koopman operators based on the continuous Hankel SVD coordinate and discrete Hankel SVD 

coordinate appear to be symmetric. In particular, the continuous SVD coordinate operator 

displayed in Figure 7-8(b) is nearly skew-symmetric and most of the nonzero matrix elements 

are distributed in the first off-diagonals region. This particular structure means that the 

derivative �̇�𝑖,𝑗can be well-approximated by 𝐀𝑖,𝑗−1𝑣𝑖−1,𝑗 + 𝐀𝑖,𝑗+1𝑣𝑖+1,𝑗. The subscripts i and 

j represent the i-th row and j-th column of the matrix defined in Eq. (7.6). In Figure 7-8(c), the 

Koopman operator with discrete Hankel SVD coordinate presents distinct diagonal structure, 

which is similar as the time-delay DMD-based Koopman operator of linear dynamic systems 

shown in Figure 7-3(b). Further theoretical demonstration and explanation about these 

particular operator structures can be found in Refs. [38, 39]. Alternatively, a good linearized 

Koopman operator should be able to capture the evolution of the underlying dynamic behavior 

of nonlinear systems, therefore three resulting Koopman operators are illustrated in Figure 7-8 

by comparing the prediction performance. The first 4000 sampling points are used as training 

dataset to obtain the best fitted Koopman operator using the above-mentioned method. Then, 

the obtained Koopman operators can be utilized to predict the future responses. Here, the 

subsequent 4000 sampling point responses of each DOF are compared with the ground truth. 

The prediction performance is evaluated by using the NRMSE, which is defined as follows    

𝑁𝑅𝑀𝑆𝐸 =

√∑ (�̂�(𝑡𝑖)−𝑎(𝑡𝑖))
2𝑁

𝑖=1
𝑁

max(𝒂)−min(𝒂)
                                            (7.14) 

where �̂�(𝑡𝑖) and 𝑎(𝑡𝑖) are the predicted and ground truth acceleration time series, respectively. 

max(𝒂) and min(𝒂) denote the maximum and minimum value of a, respectively. N=4000 is 

the number of sampling points. The prediction errors of three different types of DMD 

algorithm are presented in Figure 7-9. Overall, the time-delay DMD yields the highest 

NRMSE, which further verifies that DMD based on the conventional time-delay coordinate is 

not suitable to model the dynamics of nonlinear structures. Moreover, the prediction 

performance of DMD with discrete Hankel SVD coordinate is consistently better than that 

calculated from continuous one. One possible reason is that the differential procedure is 

conducted in Eq. (7.6) to obtain the derivative of Vr. Thus, the inevitable measurement noise 

will affect the accuracy of d𝐕�̇�  and further influence the approximation of DMD with 

continuous Hankel SVD coordinate.  
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Figure 7-9. Comparison of prediction errors by using different DMD algorithm. 

 

In this nonlinear numerical example, the prediction results shown in Figure 7-9 

demonstrate that the DMD with discrete Hankel SVD coordinate operator introduced in 

Section 2.2 is able to correctly capture the dynamic evolution and predict the future responses 

with an improved accuracy than time-delay DMD and DMD with continuous Hankel SVD 

coordinate. It is interesting to investigate the necessary amount of data to train the DMD with 

discrete Hankel SVD coordinate and correctly identify a given nonlinear system. To this end, 

the number of training sampling points varying from 1000 to 10000 with an interval of 1000 

points are tested. For each sampling duration, the procedure introduced in Figure 7-1 is 

repeated 50 times with a randomly generated initial condition. The resulting mean value, 

median as well as the statistical distribution of NRMSE is presented in the Violin graph as 

shown in Figure 7-10. With few exceptions, most of the NRMSE values are below 0.1, even 

when only 1000 sampling points are used as the training datasets. Overall, the prediction error 

shows a decreasing trend with an increasing number of sampling points. The mean values and 

variations of the prediction errors tend to converge when the length of training datasets is larger 

than 2000 points. It should be noted that the first-order frequency of the studied structure is 

about 0.1495 Hz (a period of the oscillation is𝑇 ≈ 6.689s). For a sampling rate of 100 Hz 

used in this example, the number of sampling points corresponds to a period of the oscillation 

is about 669 points.To further test the noise effects on the proposed method, 5% white noise 

is added to the training dataset. Comparing the violin plot of NRMSE shown in Figure 7-10 

and Figure 7-11, it can be found that the effect of measurement noise is not significant on the 

prediction performance. Therefore, it can be preliminarily concluded that the DMD with the 

discrete Hankel SVD coordinate can be used to rapidly discover the underlying dynamics of 

the nonlinear system with confidence, even when only 3 periods of oscillation sampling data 

are available to train the model.   
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Figure 7-10. Violin plot of NRMSE of each DOF corresponding to different lengths of 

training dataset. 

 



186 

 

 

Figure 7-11. Violin plot of NRMSE of each DOF corresponding to different lengths of 

training dataset with 5% measurement noise. 

 

For illustration purpose, the dynamic response forecasting results from the learned 

Koopman operator are shown in Figure 7-12. This model is trained on 5000 sampling points 

(50 seconds), and the dynamic responses of the next 50 seconds are predicted to analyse the 

accuracy of the obtained linear model to represent the nonlinear system. Since the external 

force is applied to DOF 6, the vibration response of a6 is significantly different from the other 

DOFs. The predicted responses match well with the ground truth throughout this duration and 

the absolute error shown in the right y-axis is very small.     
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Figure 7-12. Using the DMD with discrete Hankel SVD coordinate to forecast the future 50 s 

of the vibration data. 

7.4.2 An aluminum column with magnet induced nonlinearity in laboratory test 

In this section, a nonlinear system consisting of an aluminum column with magnet 

induced nonlinearity is designed to further validate the feasibility of the proposed method. The 

experimental setup is shown in Figure 7-13. An aluminum flat bar with dimensions of 40 mm 

(Width)×3 mm (Depth)×1000 mm (Length) is used as the testing specimen. One end of the 

specimen is clamped to a strong base connected to a shaking table. As shown in Figure 7-13(b), 

one round rare earth magnet with a diameter of 18 mm is attached to the free end of the column 

specimen and another one is attached to a still stand at the same elevation. The still stand is 

fixed to the strong floor on the right side of the column. This setup is used to introduce a 

nonlinear force by using these two magnets. Four accelerometers #A1~#A4 are installed along 

the height of the column with locations specified in the schematic diagram. The sampling rate 

is set as 300 Hz. The nonlinear behavior in this structure comes from the repulsive force 

between two magnets. The repulsive force generated by the magnets is not only related to the 

properties, i.e. the residual flux density, geometric shape, common area of magnet, but also is 

a complex nonlinear function of the distance between two magnets [40, 41]. Figure 7-13(c) 

illustrates a nonlinear spring equivalent model to describe the magnet induced nonlinearity. 
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The repulsive magnetic force will dramatically increase when these two magnets move closer, 

which causes a stiffness hardening effect to the column when a large displacement occurs at 

the free end. It is noted that this structure does not represent a scale model of any particular 

‘‘real-world” structure, but is made to simulate a structural system with stiffness hardening 

nonlinear behavior owning to larger displacement responses and magnet induced nonlinearity. 

 

    (a)                                                 (b)                                              (c) 

Figure 7-13. The experimental setup: (a) Layout of the aluminum specimen with a tip 

magnet; (b) schematic diagram; and (c) spring equivalents for the magnet induced repulsive 

force, resulting in stiffness hardening. 

 

The free decay vibration tests are performed three times on the specimen, and the time 

domain and frequency domain responses are presented in Figure 7-14. As can be found in 

Figure 7-14(b), 7 peaks appear in the frequency spectrum. Therefore, the phase space 

embedding dimension is set as 14. The time varying instantaneous frequency presented in 

Figure 7-14 (c) verified the existence of nonlinearity in the vibration responses. 

 

   (a)                                                          (b) 

Figure 7-14. The free decay vibration responses in: (a) Time domain; and (b) Frequency 

domain and (c) time-frequency representation of mode 1. 

 

Performing the same procedure described in the above numerical studies in Section 4.1, 

  

 

 

(a) (b) (c) 

Fig. 13 The experimental setup: (a) Layout of the aluminum specimen with a tip magnet; (b) 

schematic diagram; and (c) spring equivalents for the magnet induced repulsive force, resulting in 

stiffness hardening. 
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three types of Koopman operators are respectively obtained using the structural free vibration 

responses. Similar to Figure 7-8, the diagonal symmetrical structure is also observed in the 

Koopman operator as shown in Figure 7-15 based on continuous and discrete Hankel SVD 

coordinate systems. It has been demonstrated in the above numerical example that the DMD 

with discrete Hankel SVD coordinate has the best accuracy. Owning to the space limitation, 

only the DMD with discrete Hankel SVD coordinate is used to conduct response prediction to 

verify the accuracy of the finite linearized representation of this nonlinear system. The first 

2000 sampling points of the first free decay test are used as training datasets to predict the 

future responses of duration with 1000 sampling points. The prediction errors of three different 

types of DMD algorithm are presented in Fig. 16. The prediction performance of DMD with 

discrete Hankel SVD coordinate is significantly better than that calculated from other two, 

which is consistent with the results obtained from the numerical case study. The prediction 

results of all the four acceleration responses are presented in Figure 7-16. Overall, the 

prediction accuracy is very good. 

Furthermore, the phase angle of the predicted trajectory always matches well with the 

ground truth. It should be noted that the focus of this study is to demonstrate the feasibility of 

using DMD based on Hankel SVD coordinate system to yield a predictive linear model and 

represent the nonlinear structural vibration behavior. The deterministic sinusoidal wave 

excitation or free vibration under an initial displacement are used to excite the numerical and 

experimental structures. In the numerical studies, the excitation force is periodic. Thus, the 

Koopman operator includes the frequency component of the applied external periodic force. 

For the free-decay or periodic load-induced responses of nonlinear structures, the force 

component will not be discovered by using Eq. (7.8). This is because the frequency component 

corresponding to the periodic excitation will be included in the DMD mode. Therefore, 

accurate prediction performance can be achieved in all the case studies introduced in this study 

without periodic force. However, it is noteworthy that the proposed method is applicable to 

the vibration of nonlinear systems with arbitrarily applied forces.   
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(a)                                         (b)                                               (c)   

Figure 7-15. Visualizing the structure of: (a) Time-delay DMD; (b) DMD with continuous 

Hankel SVD coordinate; and (c) DMD with discrete Hankel SVD coordinate. 

 

 

Figure 7-16. Response forecasting results of a nonlinear structure by using DMD with 

discrete Hankel SVD coordinate. 

7.5 Conclusions  

Phase space embedding has been recognized as a representative technique for analysing 

the vibration of nonlinear systems, which enriches the partially measured state information 

with time-shifted copies of itself. Under a certain condition, the reconstructed phase space 

attractor in delay coordinate can be up to diffeomorphic to the original attractor traced out by 

full-state variables. This study demonstrates that the HAVOC framework based on time-delay 
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DMD can be used to generate a linear representation of MDOF nonlinear structures with the 

consideration of measurement noise. The evolution of underlying nonlinear system can be 

linearly represented in the coordinate system spanned by singular vectors of the phase space 

embedded Hankel matrix. On this basis, a data-driven equation-free procedure to derive a 

linearized system representation of structural nonlinear vibrations is presented. This proposed 

approach is based on phase space embedding, regression of DMD and Koopman operator. 

Numerical and experimental vibration response measurements from both linear and nonlinear 

structural systems are utilized to validate the feasibility and accuracy of the presented method. 

For linear systems, the DMD based on the time-delay coordinate accurately captures the 

evolution of linear structural vibration. Natural frequencies and mode shapes are accurately 

extracted from the eigenvalues and eigenvectors of Koopman operator. For free vibration and 

forced vibration of nonlinear structures subjected to sinusoidal excitations, the proposed 

approach exhibits highly predictive performance. This study examines DMD regression acting 

on continuous and discrete Hankel SVD coordinate systems and demonstrates that the 

prediction performance of the latter is consistently better than the former. In addition, error 

analysis is conducted to clarify the effect of training dataset length on the response prediction 

performance. The results indicate that DMD with discrete Hankel SVD coordinate can very 

rapidly establish the relationships of the underlying dynamics with limited data. In conclusion, 

the proposed approach is efficient to generate linearized representation of deterministic 

nonlinear systems, which is useful in understanding and predicting structural nonlinear 

dynamics. 
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CHAPTER 8 PHASE SPACE RECONSTRUCTION AND 

KOOPMAN OPERATOR BASED LINEARIZATION OF 

NONLINEAR MODEL FOR DAMAGE DETECTION OF 

NONLINEAR STRUCTURES 

ABSTRUCT7 

Vibration responses of structures with inherent nonlinear behaviors can degrade the 

performance of linear theory based damage detection methods. This chapter integrates the 

phase space reconstruction and Koopman operator to provide a linear representation of 

strongly nonlinear systems. Similar to the modal analysis of linear systems, the linearized 

model allows for handling nonlinear vibration responses as a superposition of the discovered 

nonlinear coordinate basis. This property provides opportunities to identify the structural 

condition change of structures with initial nonlinearity. The eigen-frequencies extracted from 

the Koopman operator are served as damage features. The performance of using the eigen-

frequencies from DMD for nonlinear structural damage detection is compared with the natural 

frequencies obtained from FFT and the time-frequency analysis method to emphasize the 

superiority of the proposed approach. Two experimental structures exhibiting inherent 

nonlinearity, namely a magneto-elastic system and a precast segment beam, are employed to 

demonstrate the feasibility and effectiveness of using the proposed method for identifying 

condition change of nonlinear structures. Results demonstrate that the presented nonlinearity 

linearization framework and the damage feature defined in this study are suitable for reliably 

identifying the occurrence of structural damage and condition change in structures with 

inherent nonlinearities.  

8.1 Introduction 

Over the past decades, structural damage detection has been widely recognized as one of 

the most crucial aspects of SHM. In literature, damage detection methods can be divided into 

two main categories, namely, NDT-based and vibration-based methods [1]. The vibration-

based methods have attracted considerable attention due to their unique ability to detect minor 

                                                      

7 Peng, Z., Li, J. (2022). Phase space reconstruction and Koopman operator based linearization 

of nonlinear model for damage detection of nonlinear structures. Advances in Structural 

Engineering, 25(7), 1652-1669. https://doi.org/10.1177/13694332221082729.   

https://doi.org/10.1177/13694332221082729
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structural condition changes inside the structures that are invisible via regular inspection. The 

fundamental principle of vibration-based damage detection methods is to extract reliable 

features including structural vibration characteristics, such as modal information and its 

variants from vibration responses, to distinguish the healthy and damage states of structures. 

It is assumed in most of the vibration-based damage detection methods that the structural 

dynamics are governed by linear theory. This means that structures are assumed as linear 

before and after damage, and vibration characteristics of structures with linear vibration 

behavior are used for damage detection. These traditional and well-developed methods have 

been successfully applied to identify the presence, location, and even the extent of damage in 

linear structures with the assistance of an accurate FE model and model updating techniques.  

However, structures may exhibit nonlinear behaviors due to the accumulation of 

structural damage (e.g., breathing crack, plastic deformation and joint looseness) [2-5]. Under 

these circumstances, damage detection methods based on the linear structural assumption 

could not be accurate for structures with nonlinear behavior. The well-established time-

frequency analysis, PST and higher order spectra methods can be employed to identify the 

damage-induced nonlinearity [6-10]. Besides, the real-world structures are inherently 

nonlinear to a certain extent, because of the geometric nonlinearities, materials with nonlinear 

constitutive relationships, complex boundary conditions and joint interfaces [11]. Under this 

situation, linear theory based system parameter identification or modal analysis methods might 

result in biased parameter estimation results and fail to accurately detect structural damage. 

Focus has been increasingly turned from linear theory based methods to nonlinear damage 

detection methods [12, 13].  

Most types of inherent structural nonlinearities are nonlinear functions of the 

displacement responses and can be visualized via the restoring force-displacement curve. For 

instance, the stiffness hardening, softening and piecewise linear stiffness nonlinearity are 

represented as functions of displacement responses. Other nonlinearity sources, such as 

nonlinear damping and Coulomb friction, are related to the velocity responses. Owing to the 

complexity of nonlinearity, prior knowledge on the nonlinearity type and function form is 

required for selecting reasonable nonlinear system identification and damage detection 

methods. In literature, time-frequency analysis, nonlinear FE model updating, extended 

Kalman filter and Bayesian inference-based methods have been extensively developed to 

identify nonlinear structural parameters [10, 14, 15]. Another common type of methods 

constructs a mathematic alternative model to describe the possible nonlinear feature of the 

underlying system [16, 17]. Although a considerable number of techniques have been 

developed for nonlinear system identification and damage detection, a generalized model that 

is able to characterize structural nonlinear behaviors has not well established partially due to 
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the following challenges:  

1) Nonlinear dynamics do not satisfy the linear superposition principle, therefore the well-

characterized system identification and modal analysis methods are not applicable; 

2) The nonlinear function may be govern by a hidden variable, i.e. the hysteretic 

displacement z(t) of Bouc-wen model is non-observable; and 

3) In practical SHM applications, only partial state variables can be measured at a limited 

number of spatial locations. Furthermore, the external excitations applied to actual 

structures are difficult or expensive to be accurately measured.  

Koopman operator is an infinite-dimensional linear operator, seeking a new coordinate 

system where the nonlinear dynamic behavior can be linearly represented [18]. The Koopman 

operator enables globally linear representation of nonlinear dynamical models, which can be 

used to predict the future responses by using the current measurements. This property has been 

confirmed by the author’s previous study [19]. Linearized models are desirable since many 

powerful linear algebraic methods, such as the ERA, can be extended to the nonlinear systems. 

DMD has been demonstrated to be an effective algorithm for estimating the finite-dimensional 

eigenvalues and eigenvectors of Koopman operator [20]. However, to accurately approximate 

the eigenfunction of Koopman operator, prior knowledge on the type of nonlinearity is 

required to judiciously choose the nonlinear coordinate basis vectors. To alleviate this issue, 

the EDMD has been established, which augments a broader set of nonlinear coordinate basis, 

i.e. polynomial kernel, Fourier modes, radial basis functions or discontinuous spectral 

elements to the classic DMD according to domain-specific prior knowledge [21]. The sparse 

identification and dictionary-learning algorithm have been commonly used to select a small 

number of representative nonlinear coordinate basis from a set of nonlinear candidate 

observations [22].  

Phase space embedding is a classical technique to enrich the information, when only 

partial state measurement is available. According to Taken’s embedding theorem, the PST 

reconstructed by the time-shift copy of a single state variable can be up to diffeomorphic to 

the original dynamic attractor traced out by full-state observations. Recently, Brunton et al. 

[23] developed a HAVOK approach and demonstrated that the Koopman operator 

approximated by DMD on delay embedding coordinate provides a linear representation of 

strongly nonlinear systems. Unlike EDMD, HAVOK does not require the explicit use of a pre-

determined basis dictionary, the right singular vector of Hankel matrix provides a coordinate 

that converges to the true Koopman eigenfunction and eigenvalue of nonlinear systems [24]. 

Therefore, HAVOC framework can be used on highly chaotic nonlinear systems, for the 

scenarios when approximations of the underlying near-periodic dynamics are completely 
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unknown. However, it should be noted that the HAVOC framework is also applicable to linear 

structures, since the HAVOC discovers a sparse Fourier basis made of sinusoids that match 

well with the Fourier spectrum [24, 25]. According to the author’s previous study [19] , the 

eigenvalue and eigenvector of a linear steel frame approximated by HAVOC framework agree 

well with  the natural frequency and mode shape obtained from FDD and CMIF methods [26-

28]. In literature, the HAVOC framework has been applied to construct a linear control model 

to reconstruct and forecast the real-world power grid load [29]. The control force discovered 

by the HAVOC framework matches well with the electricity usage of public holiday, i.e. new 

year, super bowl, labor day with respect to unusual electricity usage, which means that the 

learned external force can offer interpretative insight into anomalous events occurred in the 

operational condition. The comparison results show that the prediction performance of 

HAVOC method is superior than other leading data-driven methods, such as long short-term 

memory (LSTM), recurrent neural networks, auto regressive integrated moving average 

(ARIMA) and ensemble Gaussian process regression [29]. The convergence of HAVOC model 

to the true Koopman eigenfunction and eigenvalues are theoretically discussed in Refs. [18, 

24, 30]. HAVOC framework can be potentially developed and applied for analysing the 

vibration responses of civil engineering structures mainly due to the following two reasons. 

Firstly, the delay embedding of partial variables are serviced as the input, which motivates the 

applications to civil engineering structures where only partial state variables are measurable. 

Secondly, the nonlinear linearization model obtained by HAVOC model offers many desirable 

properties. For example, the analogous concept of natural frequency of linear structures can 

be extended to nonlinear structures by calculating the eigenvalues of Koopman operator, which 

will be demonstrated in the subsequent study and following sections.  

This chapter aims to validate the feasibility of using the Koopman operator identified 

from the HAVOC framework to conduct the damage detection of nonlinear structures. It 

should be clarified that the framework of discovering the nonlinear coordinate to linearize the 

nonlinear systems is developed in the authors’ previous study [19]. The main contribution of 

this study is to extract the damage feature from the linearization framework to identify 

structural damage of nonlinear structures. As an early attempt in this study, the eigenvalues (or 

understood as eigen-frequencies) of Koopman operator are approximated from the nonlinear 

vibration responses corresponding to different structural conditions using the HAVOC model. 

The extracted eigen-frequencies of Koopman operator are compared with the vibration 

frequencies obtained from FFT and the time-frequency analysis method, such as variational 

mode decomposition-Hilbert transform (VMD-HT)  [31], to emphasize the superiority of the 

proposed approach. The focus of this study is extracting the damage-sensitive features by 

developing Nonlinear Linearization Model for damage detection of nonlinear structures. This 



199 

 

research contributes to providing an equivalent nonlinearity linearization framework and 

extending the feasibility of generalized eigen-frequencies for nonlinear structural damage 

detection. It should be highlighted that the process of discovering the linearized model is fully 

data-driven and unsupervised, which means that prior knowledge on the source and type of 

nonlinearity is not necessary. This is an essential advantage of using the proposed approach 

for laboratory and real applications.  

The outline of this study is described as follows: Section 2 will briefly introduce the 

theoretical derivation of extracting the eigen-frequencies of DMD obtained from the HAVOC 

framework. In addition, using the DMD eigen-frequencies as damage features for nonlinear 

structural damage detection is discussed. In Sections 3 and 4, two experimental structures with 

inherent nonlinearities, namely a magneto-elastic system and a precast segment beam, are 

employed to demonstrate the feasibility and effectiveness of the proposed method to identify 

condition change of nonlinear structures. In Section 5, the conclusions and future studies for 

further improvement are provided.   

8.2 Data-driven decomposition of nonlinear dynamic system into linear model 

8.2.1 Theoretical derivation 

For the sake of completeness, theoretical derivation of three main components of the 

developed nonlinearity linearization method [19], including the phase space reconstruction, 

SVD and DMD, are briefly introduced in this section. Phase space reconstruction (sometimes 

referred to as time-delay embedding) is a process of lifting a single column time series into a 

higher dimensional attractor by stacking it with time-delay embedding of itself. Phase space 

embedding technique possesses a crucial benefit. In particular, the phase space attractor 

reconstructed from partial state variables can be up to diffeomorphic to the original attractor 

spanned by the full-state observation. This is of great practical significance to dynamic system, 

when full-state variable is impossible or expensive to measure. In literature, a single-channel 

signal is often used to reconstruct the PST. More generally, the time delay embedding 

procedure can be extended to multi-channel signals. For a structure attached with n 

accelerometers, the acceleration responses vector 𝒂(𝑡) ∈ ℝ𝑛 can be embedded as  
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𝐇 =

[
 
 
 
 
 
 
 
 
 
 
| |  |

𝒂(𝑡1) 𝒂(𝑡2) ⋯ 𝒂(𝑡𝑚)
| |  |
| |  |

𝒂(𝑡2) 𝒂(𝑡3) ⋯ 𝒂(𝑡𝑚+1)
| |  |
⋮ ⋮ ⋱ ⋮
| |  |

𝒂(𝑡𝑑) 𝒂(𝑡𝑑+1) ⋯ 𝒂(𝑡𝑑+𝑚−1)
| |  | ]

 
 
 
 
 
 
 
 
 
 

                                        (8.1) 

where H is a vectorized Hankel matrix with a dimension of nd×m. d and m represent the 

embedding dimension and the embedding length, respectively. For structural vibration test or 

in-situ measurement, the number of samples m is sufficient. Previous studies suggest that the 

embedding dimension d should be larger than two times of the distinct frequency components 

that appear in the Fourier spectrum, to ensure that the dynamic responses can be fully unfolded 

in the phase space. Further parameter analysis is conducted in Section 3 to demonstrate the 

effect of embedding dimension on the estimation of Koopman operator. Figure 8-1 provides a 

schematic diagram of Koopman operator. As shown in this figure, the original dynamic system 

f(xt) evolving on a nonlinear manifold ℳ is transformed to a linear dynamic system 𝒦(𝑦𝑡)in 

the space spanned by 𝑔: 𝑥𝑡 ⟶ 𝑦𝑡. 

 

Figure 8-1. Schematic diagram of Koopman operator. 

 

For linear or weak nonlinear systems, DMD can be applied to the Hankel matrix defined 

in Eq. (8.1) to obtain a set of modes that are representatives of the underlying dynamic systems 

with the most accuracy. However, DMD acting on the time-delay coordinates is unable to 

approximate the time-invariant Koopman operator for strong nonlinear dynamic systems 

accurately. This is because DMD seeks a best-fit linear model of the dynamic system.  SVD is 

one of the most popular methods to provide a unitary orthogonal basis for the row and columns 

of data matrix. Given the Hankel matrix H∈ ℝ𝑛𝑑×𝑚, the SVD decomposes H into the product 

of three matrices 
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𝐇 ≈ 𝐔𝑟𝐒𝑟𝐕𝑟
∗                                                         (8.2) 

where  𝐔𝑟 ∈ ℝ
𝑛𝑑×𝑟 and 𝐕𝑟

∗ ∈ ℝ𝑟×𝑚are the left and right singular vectors of H, respectively. 

r is the truncation order, which can be determined as two times of the number of observed 

distinct frequency components from the singular value spectrum. In the HAVOK framework, 

Brunton et al. [23] proved that the DMD which acts on the coordinate system consisting of the 

first r rows of 𝐕𝑟
∗ , yields accurate linear representation of strong nonlinear systems. For 

consistence, this coordinate system is referred to as Hankel SVD coordinate.  

 DMD is applied on the Hankel SVD coordinate to discover the following linearized 

model 

�̇�𝒓
∗ ≈ 𝐀𝐕𝑟

∗                                                                  (8.3) 

where �̇�𝑟 is the derivative of 𝐕𝑟. 𝐕𝑟
∗denotes the complex conjugate transpose of 𝐕𝑟. In this 

study, the 4th order central difference is used to calculate �̇�𝑟. In the simplest implementation, 

the Koopman operator A can be approximated via the standard DMD algorithm by solving the 

following optimization 

𝐀 = min
𝐀
‖�̇�𝒓

∗ −𝐀𝐕𝑟
∗‖
𝐹

                                                      (8.4) 

where the solution is 𝐀=�̇�𝒓
∗(𝐕𝑟

∗)†, where † represents the pseudo-inverse and the subscript F 

denotes the Frobenius norm. Instead of using the standard DMD, an alternative formulation 

known as opt-DMD proposed in Ref. [32] is used throughout this study to estimate the 

Koopman operator A. The opt-DMD obtains less bias in Koopman operator estimation in the 

presence of measurement noise than the standard DMD algorithm. Eigenvalues 𝝀  and 

eigenvector φ of the HAVOC model can be obtained using the eigendecomposition of matrix 

A 

[𝝀, φ] = eig(𝐀)                                                           (8.5) 

For linear structures, the imaginary and real parts of the obtained eigenvalues are the 

same as the natural frequency and damping ratio, respectively. The opt-DMD eigenvector is 

the same as the mode shape. For nonlinear dynamic structures, the eigenvalue (also referred 

to as eigen-frequency) identified from the HAVOC nonlinear linearization framework are used 

as the damage feature to indicate the presence of structural condition change. The pseudocode 

for estimating the opt-DMD eigen- frequency via HAVOC framework is presented in 

Algorithm 1. The process by performing the HAVOC framework to extract the opt-DMD 

eigen-frequency for damage detection of nonlinear structures is shown in Figure 8-2. The 

multi-channel vibration responses are embedded by using Eq. (8.1). Then, the truncated SVD 

is applied on the time-delay embedded matrix H to obtain the Hankel SVD coordinate. The 
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opt-DMD algorithm is applied to the Hankel SVD coordinate to approximate the koopman 

operator A. It should be noted that the eigenvalue 𝝀 of koopman operator A is used as damage 

feature for the damage identification of structure with initial nonlinearity.  

 

Algorithm 1: Estimation of the opt-DMD eigen-frequency via HAVOC framework 

Input: measured vibration responses 𝒂(𝑡) and target truncation rank r. 

Output: Koopman operator A and opt-DMD eigen-frequency 𝝀 

1: H=Hankel (𝒂(𝑡), 𝑟) 

2:[𝑼1:𝑟, 𝑺1:𝑟, 𝑽1:𝑟] = SVD(𝐇, 𝑟)     𝑼1:𝑟 ∈ ℝ
𝑛𝑑×𝑟, 𝑺1:𝑟 ∈ ℝ

𝑟×𝑟, 𝐕𝑟
∗ ∈ ℝ𝑟×𝑚 

3: �̇�𝒓
∗ ≈ 𝐀𝐕𝑟

∗                         𝑨 ∈ 𝑟×𝑟 

4: A=opt-DMD (min
𝐀
‖�̇�𝒓

∗ −

𝐀𝐕𝑟
∗‖
𝐹
) 

 opt-DMD   

5: [𝝀,φ] = eig(𝐀) eigenvalues 𝝀 and eigenvector φ    

6: end procedure  

 

 

Figure 8-2. The procedure of obtaining the damage feature from the nonlinear linearization 

framework. 

8.2.2 Remarks on the proposed approach 

In this study, the HAVOC framework is introduced to generate a linearized representation 

of structural nonlinear vibration responses and extract damage feature. It will be demonstrated 

that the obtained opt-DMD eigen-frequency could be used as a reliable DI for the condition 
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assessment of structure with inherent nonlinearity. The proposed method is driven by the 

following aspects and advantages:  

1) HAVOC discovers a nonlinear coordinate basis that most represent the underlying 

system in an unsupervised way without prior knowledge on the specific type of nonlinearity. 

This method allows for handling nonlinear vibration responses as a superposition of the 

discovered coordinate basis, which is impossible to be represented by the Fourier basis-based 

linear system modal analysis method [19, 23].  

2) The opt-DMD eigen-frequency approximated from the linearization model is robust to 

external excitation and yields reliable clustering performance under different structural 

conditions [32].  

3) The proposed method is easy to implement. Two parameters, namely the embedding 

dimension d and the SVD truncation rank r, should be predetermined to implement the 

proposed method. Parameter sensitivity analysis will be conducted in Section 3 to demonstrate 

that the embedding dimension brings ignorable influence to the extraction of opt-DMD eigen-

frequencies. Clear criterion is provided in Section 2 to determine the truncation rank r.  

However, a main limitation is that the introduce linearization framework is not applicable 

to vibration responses without discrete frequency spectral peaks. This is because singular value 

spectrum of a signal with a continuous spectrum is not dominated by several distinct frequency 

component, and thus cannot be fully reproduced by the opt-DMD with a limited truncation 

order. As a result, the proposed method is not suitable for systems with a strong hysteresis 

effect without discrete frequency spectrum.  

8.3 Experimental verifications on an aluminum beam with magnet induced nonlinearity 

8.3.1 Experimental setup 

To validate the feasibility and accuracy of using the proposed method for the damage 

detection of a system with an inherent nonlinearity, an aluminum beam with the magnet-

induced nonlinearity is used in this study. The experimental setup is shown in Figure 8-3(a). 

The dimension of the cantilever aluminum beam is 1000 mm × 40 mm × 3 mm. A bolt 

connected with different numbers of nuts is used to simulate the structure condition changes, 

by changing the weight of added mass at a specific location. Hexagon steel bolts with a 

diameter of 8mm and a length of 40mm are used in the first experimental tests. The weights 

of bolt and each nut are about 29 grams and 10 grams, respectively. The specimen is excited 

by a shaking table system. Four accelerometers and two laser displacement sensors are 

installed to measure the vibration responses with a sampling rate of 300 Hz. Two round 
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magnets with a diameter of 18 mm are respectively mounted on the supporting frame and the 

free end of the aluminum beam at the same height. The locations of sensors and magnets are 

shown in Figure 8-3(b).  

The repulsive magnetic force changes nonlinearly with the relative distance between two 

magnets, which causes a stiffness hardening effect in the system when the free end of the 

cantilever beam moves towards the supporting frame. An equivalent spring diagram is 

presented in Figure 8-4 to explain the stiffness hardening effects induced by the magnet 

induced repulsive force. The closer of two magnets will results in the increase of the nonlinear 

repulsive force, vice versa. The application of magnetic force to simulate stiffness nonlinearity 

is also found in Refs. [17, 33]. It is noted that this structure does not represent a scaled model 

of a particular real-world structure, but is rather constructed to simulate a structural system 

with nonlinear behavior. Therefore, the measured responses from free vibration tests with an 

initial introduced displacement and seismic load tests with two levels of PGA values are 

obtained to validate the robustness and performance of using the proposed method for 

nonlinear structural damage detection. The applied ground motion excitations are generated 

by a shake table according to Australian Standard AS 1170.4-2007 and scaled to PGA values 

of 0.05 g and 0.1 g, respectively.  

As shown in Figure 8-5, one nut is installed on the bolt for the baseline state. The number 

of nuts is set as two, three, and four, respectively, to simulate three levels of structural condition 

change for damage detection investigations. The dynamic tests are repeated three times for 

each structural state condition subjected to a specific loading scenario. Figure 8-6 shows the 

time domain and frequency domain responses of the magneto-elastic system under the baseline 

state subjected to free vibration and seismic tests, respectively. As can be observed in the 

Fourier spectra, the first three order natural frequencies of the aluminum beam are around 2.4 

Hz, 9.09 Hz and 27.86 Hz, respectively.  



205 

 

    

(a)                                                                  (b) 

Figure 8-3. The experimental setup: (a) Layout of the aluminum specimen with magnet 

installed at the top tip; (b) Schematic diagram of experimental setup. 

 

              

         (a)                                                            (b) 

Figure 8-4. Spring equivalents for the magnet induced repulsive force resulting in stiffness 

hardening effect: (a) Magnet induced repulsive force; (b) Equivalent spring model. 

 

 

Figure 8-5. Use of nuts to simulate the structural condition change. 
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Figure 8-6. The measured acceleration responses and obtained frequency spectra from the 

specimen subjected to free vibration (a-b), seismic excitation with a GPA of 0.05g (c-d) and 

seismic excitation with a GPA of 0.1g (e-f). 

 

To detect and visualize the magnetic force induced nonlinear effect in the structure, the 

VMD-HT method is adopted to extract the time-frequency representation of free vibration 

responses. As shown in the time-frequency analysis results presented in Figure 8-7(a), the first 

two order instantaneous frequencies are time-varying. The variation of instantaneous 

frequencies decrease with the amplitude of vibration responses. Figure 8-7(b) shows the scatter 

plot of dynamic displacement responses measured by LVDT #L2 and the corresponding 

instantaneous frequencies. A strong correlation is found in the mutual relationship between the 

displacement and the first-order instantaneous frequency. The correlation coefficient between 

displacement and the first order natural frequency is 0.9338. The magnet induced repulsive 

force intensifies and results in stiffness hardening, when the aluminum beam moves towards 

to the magnet attached on the supporting frame. This intrinsically nonlinear behavior 

negatively affects the detectability of the simulated structural condition change by using the 

existing frequency domain or time frequency analysis based damage detection methods, since 

the system is nonlinear and traditional linear methods may not be applicable.  

   

        (a)                                                                (b) 

   

        (c)                                                                (d) 

    

        (e)                                                                (f) 
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Figure 8-7. (a) Time frequency representation of the free vibration responses of specimen; 

(b) the relationship between the dynamic displacement measured by LVDT #L2 and the first 

order natural frequency. 

 

The acceleration responses 𝒂(𝑡) measured from the first repeated tests of the structure 

under the baseline state subjected to the ground motion excitation with a GPA of 0.05g, are 

used to demonstrate the procedure of obtaining the Koopman operator and extracting the 

corresponding opt-DMD eigen-frequencies. 𝒂(𝑡)  is of size 4× 13117, which consists of 4 

channels acceleration responses with a length of 13117 sampling points. The Hankel matrix 𝑯  

of size 512×12990 can be reconstructed by using the multivariate phase space embedding with 

the number of delay predetermined as 128. The effect of delay embedding dimension on the 

identification of opt-DMD eigen-frequency is further analysed and the results are shown in 

Table 8-1. Then, the truncated SVD is applied to perform 𝑯 ≈ 𝑼𝑺𝑽∗. Figure 8-8 shows the 

first eight columns of the matrix 𝑼 ∈ ℝ512×8 and the corresponding Fourier spectrum of right-

singular vector. u𝑖 represents the i-th column of the left-singular vector 𝑼, which is referred to 

as SVD modes in this chapter. Several key features are observed in Figure 8-8. Firstly, the 

frequencies of SVD modes are consistent with the natural frequencies presented in the Fourier 

spectrum of the acceleration responses shown in Figure 8-6(d), which means that the SVD 

applied on the time delay matrix discovers a sparse and nearly sinusoidal basis that is most 

representative coordinate of the nonlinear vibration responses. For instance, the frequencies of 

the first two SVD modes are approaching to the second order modal frequency presented in 

Figure 8-6(d). Secondly, the SVD modes self-organize into pairs (e.g.u1 andu2), which share 

the same frequency and different phase angle. Thirdly, the sequence of SVD modes is 

associated with the singular values. For example, the first two singular values shown in the 

singular value spectrum correspond to SVD modesu1 andu2, which indicates that these two 

SVD modes contribute most to the signal. The frequency of right-singular vector v1 and v2 are 

corresponding to the second order natural frequency, with the highest Fourier amplitude.  

 

     

                             (a)                                                                         (b) 
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Table 8-1. The effect of delay number on the estimation of DMD eigen-frequencies 

Delay number 12 24 48 72 96 128 

1st DMD Eigenfreqs 2.3609 2.3611 2.3610 2.3609 2.3610 2.3611 

2nd DMD Eigenfreqs 9.0722 9.0722 9.0722 9.0722 9.0723 9.0723 

3rd DMD Eigenfreqs 27.6861 27.6862 27.6860 27.6858 27.6857 27.6857 

4th DMD Eigenfreqs 57.3691 57.3691 57.3691 57.3691 57.3692 57.3693 

 

 

 

Figure 8-8. The singular value spectrum, SVD modes and the corresponding Fourier 

spectrum of right-singular vector of the considered nonlinear system subjected to ground 

motion excitation with a PGA of 0.05g. 

 

Following the HAVOC procedure defined in Figure 8-2, the finite-dimension Koopman 

operator A can be regressively approximated by applying the opt-DMD to the right-singular 

vector 𝑽. In this study, the Opt-DMD developed in Ref. [34] is introduced to estimate the 

Koopman operator A. Finally, the eigen-decomposition can be applied to the Koopman 

operator A to obtain the opt-DMD eigen-frequencies. In practical applications, the delay 

number may affect the approximation of Koopman operator A and further the accuracy of opt-

DMD eigen-frequencies. The number of delay used to construct the Hankel matrix H varies 

from 12 to 128 with an interval of 24 to illustrate the effects of delay number. Results listed in 

Table 8-1 indicate that the variation of the first four DMD eigen-frequencies caused by the 
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change of delay number is negligible. Therefore it can be concluded that reliable damage 

feature can be obtained via HAVOC framework without rigorous tuning delay number 

parameter. It is suggested that the delay number should be greater than or equal to two times 

of the number of peaks observed in the Fourier spectrum. In this experimental case, four 

frequency peaks are clearly observed in Figure 8-6, therefore, the delay number should be no 

less than 8.  

Figure 8-9 compares the resonance frequencies in the Fourier spectrum and the opt-DMD 

eigen-frequencies using the vibration responses measured under the ground motion with a 

PGA of 0.05g. It can be observed that the DMD spectrum is sparse and the opt-DMD eigen-

frequencies match well with the first four order frequencies. However, the exact opt-DMD 

eigen-frequencies are slightly different from the peaks of Fourier spectrum.  

 

Figure 8-9. Comparison of Fourier spectrum and the DMD eigen-frequencies (The Fourier 

spectrum is plotted in blue and the vertical red line represents the opt-DMD eigen-

frequencies). 

8.3.2 Structural condition change identification results 

For comparison, the time-varying instantaneous frequency, Fourier frequency and the 

opt-DMD eigen-frequency of each structural condition using the vibration responses acquired 

from different loading scenarios are identified to illustrate the superiority of the proposed 

nonlinear structural damage detection method. The instantaneous frequencies are identified by 

using the VMD-HT based method. The accuracy of time-frequency analysis could be deficient 

in the lower amplitude region, therefore, the instantaneous frequencies are discarded when the 

corresponding amplitude is less than 20% of its maxima value. The Fourier frequency is 

determined as the peaks appeared in the Fourier spectrum. Figure 8-10 shows the violin plot 

of the first two order instantaneous frequencies subjected to different excitations by using the 

VMD-HT method. Owing to the nonlinear stiffness effect, a certain level of variation is 

observed in the first two instantaneous frequencies. In particular, the frequency variation range 

under seismic excitation of PGA 0.1 g is larger than that of PGA 0.05 g. The mean value and 

medium value of instantaneous frequencies are stably decreased with the increasing number 
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of nuts. This is because increasing the added mass on the testing system results in a decrease 

in the natural frequencies. In Figure 8-10, the trend of mean values of instantaneous frequency 

is consistent with the severity of preset damage scenarios. However, significant variation of 

instantaneous frequency is observed.  

 

Figure 8-10. The distributions of the first two order instantaneous frequencies under different 

structural conditions. Red and black lines represent the mean value and medium of 

instantaneous frequencies, respectively. IF means instantaneous frequency. 

 

Figure 8-11, Figure 8-12 and Figure 8-13 show the FFT, time-frequency analysis and opt-

DMD eigen-frequencies of the aluminum beam subjected to free vibration, ground motion 

excitations with two levels of PGA values, respectively. The FFT frequencies is defined as the 

peaks that are observed in the Fourier spectrum. The IF mean values in these figures represent 

the mean values of instantaneous frequency corresponding to each repeat test. Comparison 

results presented in these figures indicate that the opt-DMD eigen-frequencies obtained from 

the proposed method are more converged than those of FFT frequencies and time-frequency 

analysis results. In particular, in Figure 8-13(b), 2 nuts and 3 nut states are not able to be 

separated by using FFT frequencies. The results of DMD eigen frequencies are better than 

those obtained from FFT and time-frequency analysis for all the cases. The opt-DMD eigen-

frequencies as DSF show excellent clustering results for each structural condition, which 

demonstrates the advantage of using the proposed method in generating a linearization model 

and improving the damage detectability for nonlinear structures. In this experimental 

verification, both the opt-DMD eigen-frequencies and the mean values of instantaneous 

frequencies can be used to evident the structure condition change. Using opt-DMD eigen-

frequencies as damage-sensitive features outperforms the FFT and time-frequency analysis 

   

(a)                                            (b)                                               (c) 
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based methods in terms of the effectiveness and accuracy for detecting the damage in 

structures with inherent nonlinearities. It should be noted that the main advantage of the 

proposed approach is to linearize nonlinear systems into linear ones, and then the obtained 

eigenvalues can be used for damage detection of nonlinear structures effectively. However, 

Different from linear structure, the external loading amplitude and type will affect the 

nonlinearity level of the vibration responses of nonlinear structures. As a result, the vibration 

frequency, instantaneous frequency and the developed opt-DMD eigen-frequency extracted 

from the vibration responses of nonlinear structures subjected to different loading conditions 

are different. Therefore, it is not suitable to compare the proposed damage feature for nonlinear 

structures under different loading conditions in one figure. 

 

 

Figure 8-11. The first two order natural frequencies idnetified from free vibration resposnes: 

(a) FFT frequencies;(b) mean values of time-varying instantaneous frequencies; (c) opt-

DMD eigen-frequencies. The symbols ×, ,  and ⁕ represent structural states with one nut, 

two nuts, three nuts and four nuts, respectively. 

 

           

          (a)                                           (b)                                          (c) 
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Figure 8-12. Comparsion among the first three order eigen-freuqencies identified from the 

structural responses subjected to seismic excitation of PGA 0.05g: (a) 1st and 2nd, (b) 1st and 

3rd and (c) 2nd and 3rd  FFT frequencies; (d) 1st and 2nd, (e) 1st and 3rd and (f) 2nd and 3rd  mean 

values of time-varying instantaneous frequencies; (g) 1st and 2nd, (h) 1st and 3rd and (i) 2nd and 

3rd opt-DMD eigen-frequencies. The symbols ×, ,  and ⁕ represents the one nut, two 

nuts, three nuts and four nut state, respectively. 

 

     

(a)                                                  (b)                                              (c) 
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Figure 8-13. Comparason among the first three order eigenfreuqency identified from 

structural responses subjected to seismic excitation of PGA 0.1g: (a) 1st and 2nd, (b) 1st and 

3rd and (c) 2nd and 3rd  FFT frequencies; (d) 1st and 2nd, (e) 1st and 3rd and (f) 2nd and 3rd  mean 

values of time-varying instantaneous frequencies; (g) 1st and 2nd, (h) 1st and 3rd and (i) 2nd and 

3rd opt-DMD eigen-frequencies. The symbols ×, ,  and ⁕ represents the 1nut, two nuts, 

three nuts and four nut state, respectively. 

8.3.3 Noise effect analysis 

In actual SHM applications, the measurement noise inevitably exists in the vibration 

responses. A reliable structural damage detection method should have excellent noise tolerance 

[35]. It should be noted that the measurements used in this study already includes the 

measurement noise in the laboratory experimental. However, to investigate the noise effect, in 

this section, 10% white noise is additionally added to the measured acceleration responses. 

The noise level is defined as  

NoiseLevel(%) =
𝑣𝑎𝑟(𝑁𝑜𝑖𝑠𝑒)

𝑣𝑎𝑟(𝑆𝑖𝑔𝑛𝑎𝑙)
× 100%                                   (8.6) 

Figure 8-14 and Figure 8-15 show the first three-order opt-DMD eigen-frequencies 

identified from the structural responses subjected to ground motion excitations with PGA 

values of 0.05g and 0.1g, respectively. Comparing the identification results with Figure 
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(d)                                                  (e)                                              (f) 
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8-12(g-h) and Figure 8-13(g-h), it can be found that four structural conditions are well 

separated when 10% white noise is considered. The data points under the same structural 

condition are all grouped together with a small standard deviation. Therefore, the proposed 

approach with the defined damage feature is robust to the presence of measurement noise and 

can be used to indicate the structural condition change reliably.  

 

Figure 8-14. The first three order opt-DMD eigen-freuqencies identified via the proposed 

method using the structural responses subjected to ground motion excitation of PGA 0.05g 

with 10% noise. The symbols ×, ,  and ⁕ represents the states with one nut, two nuts, 

three nuts and four nuts, respectively. 

 

 

Figure 8-15. The first three order opt-DMD eigen-freuqencies identified via the proposed 

method using the structural responses subjected to ground motion excitation of PGA 0.1g 

with 10% noise. The symbols ×, ,  and ⁕ represents the states with one nut, two nuts, 

three nuts and four nuts, respectively. 

 

8.4 Experimental verifications on a precast segmental concrete beam 

The precast prestressed segmental beam has been widely used for highway bridges, 

owning to its time-saving in construction and economic benefits. Different from the monolithic 

beam, the vibration behavior of the prestressed segmental concrete beams is inherently 

nonlinear, due to the joint contact and interaction between adjacent segments. Few studies has 

been conducted on the vibration-based condition monitoring and assessment of precast 

segmental structures. In this study, a precast segmental concrete beam prestressed with 

 

(a)                                                  (b)                                              (c) 

 

(a)                                                  (b)                                              (c) 



215 

 

external steel tendons is used to further validate the feasibility of the proposed method for 

nonlinear structural condition assessment.  

The schematic diagram of experimental setup as well as the configuration of 

accelerometers and Linear Variable Differential Transformer (LVDT) sensors are presented in 

Figure 8-16. Detailed description of the material, specimen fabrication, post-tensioning 

procedure and experimental test setup are elaborated in Refs. [36, 37]. Four point static loads 

are cyclically applied with an increment of 20 kN until structural failure to introduce different 

structural states and simulate different extents of structural damage. Figure 8-17(a) and Figure 

8-17(b) show the progressive loading increment intervals and the load-deflection curve at each 

loading level, respectively. Two loading cycles are performed at each loading increment level. 

In particular, the hydraulic static loading system gradually increases the load at a rate of 3-5 

kN/min to the designed loading level and then decreases to around 5 kN before starting the 

next cycle.  

Six progressive structural damage scenarios from DS0 (baseline), DS1 to DS5 

represented by the blue lines in Figure 8-17(a) are defined. Ten repeats of hammer impact load 

tests are conducted under the baseline and damage states to acquire the acceleration responses 

for vibration-based condition assessment of this nonlinear structure. It should be noted that the 

hydraulic pressure system is unloaded to the untouched state between the loading system and 

the specimen during the hammer load tests to avoid the coupling effect and boundary condition 

change of the testing specimen. In the first three loading intervals, no visible damage is 

observed at the joint and surface of the testing beam. Structural damage evident as the concrete 

crushing on the top surface of joint 2 (J2) is observed when the applied load reached to 80kN, 

followed by the yielding of the external steel tendons when  the applied load reached to 100kN. 

A linear relationship between the applied load and mid-span deflection is observed in Figure 

8-17 (b) when the applied load is less than 50kN. The slope of the load-deflection curve 

between 10 kN to 20 kN is extracted in Figure 8-17(c) to show the accumulation of structural 

damage. There might be initial slip between the joints interface at the early loading stage, 

therefore, it is noted that load-deflection curve between 0-10kN is not included in the 

estimation of slope. As shown in Figure 8-17(c), the slope subjected to the increasing 

incremental loading persistently decreases, which means that the bending stiffness degradation 

in each damage scenario is well observed. Therefore structural damage are introduced under 

different structure states.  
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(a) 

 

(b) 

Figure 8-16. Experimental setup: (a) Schematic diagram of experimental setup and sensor 

configuration; and (b) Experiment testing specimen. 

 

 

Figure 8-17. (a) Progressive loading intervals to simulate structural damage accumulation. 

Blue lines represents the damage scenarios. (b) load-deflection curves of the beam. The load-

deflection curve in the region of 10-20 kN is highlighted. (c) The slope of load-deflection 

curve in the load range 10-20 kN for each structural state. 
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Figure 8-18 shows the acceleration responses, Fourier spectrum and the identified 

instantaneous frequencies of the intact prestressed segment beam subjected to hammer loads. 

It can be observed that the vibration of the precast segment beams is predominantly observed 

at its fundamental frequency. Owing to the inherent nonlinearity generated by the interface of 

adjacent joints surface, as shown in Figure 8-18(c), the first order instantaneous frequencies 

are oscillating over the period of hammer impact excitation, and are gradually converged to 

the fundamental frequency, since the nonlinear structural behavior contributes less to the 

vibration.  

 

Figure 8-18. Time frequency analysis results: (a) Measured acceleration responses; (b) 

Fourier spectrum; and (c) The instantaneous frequency of hammer load induced vibration. 

 

The statistical distributions of the first two instantaneous frequencies under six structural 

conditions are estimated in the same way as the first experiment and are depicted in Figure 

8-19. As observed, the mean values of the first two order instantaneous frequencies present a 

monotonically decreasing trend with the accumulation of structural damage. The decrease in 

the mean values of the instantaneous frequencies agree well with the bending stiffness 

reductions observed in Figure 8-17(c). However, significant variation are observed in the 

identified instantaneous frequencies (especially the second order instantaneous frequency), 

which means that the time-frequency analysis is not sufficiently robustness to the damage 

detection of the segmental beam with the higher order responses. Following the HAVOC 

framework introduced in Figure 8-2, the opt-DMD eigen-frequencies of vibration responses 

measured from each hammer load test can be estimated. Figure 8-20 shows the obtained 

  

(a)                                                                  (b) 

 

(c) 



218 

 

Fourier frequencies, mean values of instantaneous frequencies and opt-DMD eigen-

frequencies corresponding to each damage scenario. It is observed that the obtained opt-DMD 

eigen-frequencies from the proposed approach under each structural condition are more 

concentrated than those Fourier frequencies. Clear separations are observed among the 

obtained opt-DMD eigen-frequencies for five different damage scenarios. Furthermore, 

statistical properties including the mean values and standard deviations (STD) of instantaneous 

frequencies obtained from the time-frequency analysis, Fourier transform and the proposed 

approach under each damage scenario are listed in Table 8-2. It should be noted that the mean 

values and STD of the Fourier frequencies and the opt-DMD eigen-frequencies from the 

proposed approach corresponding to each structural condition are calculated from ten repeat 

tests. In Table 8-2, the relative changes of mean values of instantaneous frequencies estimated 

from the time-frequency analysis and the opt-DMD eigen-frequencies are consistent with the 

damage-induced bending stiffness reduction, as shown in Figure 8-17(c). Besides, the STD 

value of the proposed method corresponding to each of the six damage scenarios is superior 

than that approximated from the Fourier analysis and time frequency analysis. These results 

clearly show that the nonlinearity linearization framework and the opt-DMD eigen-frequencies 

proposed in this study are suitable for reliably identifying the presence of structural condition 

change in the system with inherent nonlinearity.  

 

Table 8-2. Comparison of the first order frequency identified from time frequency analysis, 

Fourier frequency and the proposed DMD Eigen frequency. 

 

 
Instantaneous frequency Fourier frequency 

The proposed DMD eigen-

frequencies 

 
Mean 

(Hz) 

Relative 

change (%) 
STD 

Mean 

(Hz) 

Relative 

change (%) 
STD Mean (Hz) 

Relative 

change (%) 
STD 

DS0 27.5582 0 0.1473 27.6272 0 0.0832 27.6325 0 0.0458 

DS1 26.9854 2.0785 0.1460 27.2036 1.5333 0.1315 27.132 1.8113 0.0310 

DS2 26.8627 2.5237 0.1024 26.9376 2.4961 0.0673 26.8918 2.6810 0.0155 

DS3 26.775 2.8420 0.0910 27.0054 2.2507 0.0888 26.8876 2.6957 0.0344 

DS4 26.5255 3.7473 0.0835 26.8113 2.9532 0.063 26.6932 3.3992 0.0227 

DS5 26.328 4.4640 0.2179 26.5308 3.9685 0.0822 26.4779 4.1784 0.0181 
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     (a)                                                                 (b) 

Figure 8-19. Statistical distributions of the identified instantaneous frequencies by VMD-HT 

method: (a) The first order; and (b) The second order. Red and black lines represent the mean 

value and median, respectively. 

 

 

       (a)                                             (b)                                         (c) 

Figure 8-20. (a) Frequencies from Fourier spectrum analysis; (b) IF mean values ; (c) DMD 

eigen-frequencies under different damage scenarios. The symbols , ⁕ ,  ∆, +,   and □ 

represent the damage scanerios DS0, DS1, DS2, DS3, DS4 and DS5, respectively. 

8.5 Conclusions  

The effect of inherent nonlinear behavior in structures on the vibration responses can 

mask the effect of structural damage, when using the damage feature extracted from those 

methods based on linearity assumption. This chapter introduces a nonlinear linearization 

method by integrating the phase space embedding and the Koopman operator for damage 

detection of nonlinear structures. A DI based on the eigenvalues of Koopman operator is used 

to monitor structural condition change with initial nonlinear behavior. The applicability of the 

proposed damage feature is verified through two experimental structures exhibiting inherent 

nonlinearity, namely, a magneto-elastic system and a precast prestressed segmental beam. 

These results demonstrate that the proposed approach identifies correctly the structural 

condition changes in different damage scenarios. Furthermore, the introduced opt-DMD eigen-

frequencies provide a reliable damage detection performance, when the influence factors such 

as loading effect and measurement noise are considered. However, it should be noted that the 

vibration responses of both experimental structures utilized in this study exhibit discrete 
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frequency spectral peaks. The finite dimension Koopman operator for vibration signals with 

continuous spectrum cannot be accurately approximated using the coordinate basis discovered 

by SVD. As a result, the proposed method may not suitable for a system that does not exhibit 

a discrete frequency spectrum. 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 Main conclusions 

        This thesis focuses on addressing three main issues namely, operational condition change, 

nonlinearities and measurement noise that adversely affect the feasibility and accuracy of 

vibration-based SHM techniques for civil engineering structures. The major conclusions and 

findings in this thesis are summarized below: 

Chapter 2 proposes a novel high resolution time-frequency analysis approach based on 

an adaptive Duffing oscillator array to identify the instantaneous frequency of nonstationary 

signals under strong noise. To avoid the use of a large array of oscillators, improvement is 

made by recursively adjusting the central reference frequency in each time window according 

to the frequency estimated in the previous time window. The proposed method is compared 

with EWT-HT based time frequency analysis method. The numerical and experimental 

validation results reveal that a more stable and clear time-frequency transient feature and 

instantaneous frequency can be estimated by using the proposed method than the EWT-HT 

based method.  

Chapter 3 proposes an output-only Volterra series model to identify structural nonlinear 

effects by quantifying the nonlinear contribution in structural vibration responses. Compared 

with the conventional input-output based Volterra series model-based methods, the proposed 

method does not require the measurement of external excitation. Numerical and experimental 

results demonstrate that the nonlinear behavior can be modelled qualitatively by using the 

proposed method with the optimally selected parameters. The proposed method can accurately 

locate the nonlinear structural damage by using measurement data under different structural 

conditions. Furthermore, the damage extent can be estimated by comparing the evolution of 

nonlinearity contribution index value obtained in each structural region.   

Chapter 4 proposes a novel SSA-based PST technique to improve the identifiability of 

structural damage by using higher order responses. The proposed method extends the 

feasibility of PST method to high dimensional structural responses. Numerical and 

experimental studies demonstrate that the occurrence, location and progressive damage 

evolution can be detected effectively by the decomposed high order response component with 

the developed approach. Numerical results on a planar truss model demonstrate that the 

proposed method is not only sensitive to structural damage, but also robust to a significant 

level of white noise, pink noise and modelling uncertainties. 

Chapter 5 proposes a novel data driven approach, which combines the phase space 
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embedding strategy and Koopman operator for the damage detection of structure subjected to 

stochastic excitation. The proposed method extends the feasibility of PST-based damage 

detection method by using the structural responses under ambient load. The numerical study 

on a truss bridge with minor damage and experimental study on an in-field bridge reveals that 

the proposed method is sensitive to structural condition change, but insensitive to 

environmental conditions and measurement noise.  

Chapter 6 proposes an innovative approach based on the phase space based manifold 

learning technique for the damage detection of in-situ civil engineering structures subjected to 

operational conditions. The natural frequencies identified from operational modal analysis are 

used to span a high-dimensional phase space that can unfold the inherent nonlinear relationship 

between temperature variation and structural vibration properties. Then, manifold learning is 

introduced to project the high-dimensional PST to the low-dimensional topological structure 

of the underlying system. DSF is extracted from the low-dimensional manifold structure via 

Gaussian process regression model. The applicability and performance of the developed 

method are demonstrated by using vibration responses measured from two real-world bridges. 

Results verify that the proposed approach is sensitive to structural damage but not sensitive to 

environmental and loading conditions, even when only observations from the healthy state 

under partial environmental and operational variations are available and included in the 

training datasets. 

Chapter 7 proposes a data-driven finite linear representation of nonlinear structural 

dynamics using phase space embedding technique with the consideration of measurement 

noise. The evolution of underlying nonlinear system can be linearly represented in the 

coordinate system spanned by singular vectors of the phase space embedded Hankel matrix. 

Numerical and experimental studies are conducted to validate the feasibility and accuracy of 

the presented method by using vibration responses measured from linear and nonlinear 

structure systems. For linear structures, the proposed method can accurately identify the modal 

parameters, namely natural frequencies and mode shapes. For nonlinear structures, the 

proposed method exhibits highly predictive performance with limited training dataset. In 

conclusion, the proposed method is efficient to generate a linearized representation of 

deterministic nonlinear systems, which is useful in understanding and predicting structural 

parameter nonlinear variations during dynamic responses. 

Chapter 8 proposed a damage detection approach for structures that exhibit inherent 

nonlinearities based on the nonlinear dynamic linearization model presented in Chapter 7. The 

eigen-frequencies extracted from the finite linearization model (Koopman operator) are used 

as damage features, which provide a new perspective to conduct nonlinear structural damage 
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detection in a linear manner. The superiority of the proposed method is verified by comparing 

the damage detection performance with the natural frequencies obtained from FFT and the 

time-frequency analysis methods. The feasibility and effectiveness of the proposed method are 

validated by using two experimental structures exhibiting inherent nonlinearities. Results 

prove that the developed nonlinearity linearization framework and the damage feature defined 

in this study are applicable for reliably identifying the condition change in structures with 

inherent nonlinearities. 

9.2 Recommendations for future works  

The research that has been undertaken for this thesis has highlighted several topics that 

can be further studied. 

1. In Chapter 2, the measurement noise is considered as Gaussian white noise with 

constant power spectral density at different frequencies. However, the distribution of actual 

noise may not strictly satisfy this assumption. Therefore, the superiority of the proposed high 

resolution time-frequency analysis method subjected to pink noise and other types of strong 

noise and system uncertainties should be further investigated.  

2. The basic principle of the proposed output-only Volterra series model based method is 

based on the nonlinearity contribution in structural vibration responses. Many nonlinear 

sources, such as geometric nonlinearity, nonlinear boundary conditions, joints of prefabricated 

structures and material nonlinearity, etc., may complicate the damage detection performance. 

Therefore, how to distinguish different sources of nonlinear characteristics could be further 

investigated.   

3. The methods presented in Chapter 4 and Chapter 5 focus on extending the feasibility 

of PST technique to high dimensional vibration responses and stochastic excitations, 

respectively. However, the damage detection performance may be influenced when the 

excitation type is not the same before and after damage. Therefore, in the future study, a better 

normalisation method could be further developed to eliminate the effect of load conditions and 

detect the damage in structures under different types of stochastic excitations before and after 

damage. 

4. The phase space based manifold learning technique shows a promising performance 

for structural damage detection based on long term SHM data. However, it can only alarm the 

presence of damage. It is beneficial for the decision maker to formulate more reasonable 

maintenance strategy if more detailed information can be provided. Therefore, future studies 

can be conducted to classify different types of damage by integrating the proposed methods 

with hierarchical clustering algorithms.  
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5. In Chapter 7 and Chapter 8, the finite linear representation of nonlinear structural 

dynamics using the coordinate system spanned by singular vectors of the phase space 

embedded Hankel matrix exhibits highly predictive performance and reliable nonlinear 

structural damage detection performance. However, a main limitation is that the introduced 

linearization framework is not applicable to nonlinear vibration responses without discrete 

frequency spectral peaks. As a result, the proposed method is not suitable for systems with a 

strong hysteresis effect without clean and discrete peaks in the frequency spectrum. This 

limitation may be addressed in future study by using the unsupervised deep learning network, 

such as auto-encoder to discover a low-dimensional coordinate system that is most 

representative of the vibration responses with hysteresis effect.  
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APPENDIX I 

In this appendix, the derivation and implementation of obtaining the unbiased stochastic 

Koopman operator with the consideration of process noise and observation noise are detailed. 

The key objective is to isolate the finite-dimension unbiased stochastic Koopman operator 𝑨Ω 

with the process noise and observation noise term. The proof is based on the following 

assumptions: 

Assumption 1: the process noise 𝒆𝑡 and observation noise 𝒘𝑡 considered in this study are 

independent and identically distributed in time, with zero mean, time-invariant finite variance 

and is temporally uncorrelated, namely, [𝒆𝑡] = 0; 𝐸[𝒆𝑡𝒆𝑡
∗] = 𝑷𝜎𝑡,𝑡; 𝐸[𝒘𝑡] = 0; 𝐸[𝒘𝑡𝒘𝑡

∗] =

𝑸𝜎𝑡,𝑡. For ∀𝑡and𝑡 + 𝜏, we have 

𝐸[𝒆𝑡+𝜏𝒆𝑡
∗] = 𝐸[𝒆𝑡+𝜏]𝐸[𝒆𝑡] + 𝐶𝑜𝑣(𝒆𝑡+𝜏, 𝒆𝑡) = 𝑂𝑛×𝑛;                           (A.1) 

𝐸[𝒘𝑡+𝜏𝒘𝑡
∗] = 𝐸[𝒘𝑡+𝜏]𝐸[𝒘𝑡] + 𝐶𝑜𝑣(𝒘𝑡+𝜏, 𝒘𝑡) = 𝑂𝑛×𝑛;                           (A.2) 

𝐸[𝒆𝑡+𝜏𝒘𝑡
∗] = 𝑹𝜎𝑡+𝜏,𝑡                                                      (A.3) 

with P, Q and R∈ 𝑛,𝜏 > 0. 

Setting 𝑮𝑡+𝜏,𝑡 = 𝐸Ω[𝑔(𝒙𝑡+𝜏)𝑔(𝒙𝑡)
∗], from Eqs. (11) and (12), we have   

𝑮𝑡+𝜏,𝑡 = 𝐸Ω[𝑔(𝒙𝑡+𝜏)𝑔(𝒙𝑡)
∗]                                                       

           =𝐸Ω[(𝑔(𝒙𝑡))(𝑨Ω
𝜏 𝑔(𝒙𝑡)

∗ + ∑ 𝑨Ω
𝑖−𝑡𝒆𝑖𝑨Ω

𝑖−𝑡𝒆𝑖
∗𝑡+𝜏−1

𝑖=𝑡 )]                                       (A.4) 

           =𝐸Ω[𝑨Ω
𝜏 𝑔(𝒙𝑡)𝑔(𝒙𝑡)

∗] + 𝐸Ω[𝑔(𝒙𝑡)∑ 𝑨Ω
𝑖−𝑡𝑡+𝜏−1

𝑖=𝑡 𝒆𝑖
∗] 

           =𝐸Ω[𝑨Ω
𝜏 𝑔(𝒙𝑡)𝑔(𝒙𝑡)

∗] = 𝑨Ω
𝜏 𝑮𝑡,𝑡 

where 𝑮𝑡,𝑡 = 𝑮 for simplification. The above derivation implies that the process noise can be 

eliminated by the inner product of 𝑔(𝒙𝑡) and𝑔(𝒙𝑡+𝜏).  

Similarly, defining the inner product of ℎ(𝒙𝑡) andℎ(𝒙𝑡+𝜏) as follows 

 𝑯𝑡+𝜏,𝑡 = 𝐸Ω,𝑆[ℎ(𝒙𝑡+𝜏)ℎ(𝒙𝑡)
∗] = 𝐸Ω,𝑆[(𝑔(𝒙𝑡+𝜏) + 𝒘𝑡+𝜏)(𝑔(𝒙𝑡) + 𝒘𝑡)

∗] 

= 𝐸Ω,𝑆[𝑔(𝒙𝑡+𝜏)𝑔(𝒙𝑡)
∗ + 𝑔(𝒙𝑡+𝜏)𝒘𝑡

∗ +𝒘𝑡+𝜏𝑔(𝒙𝑡)
∗ +𝒘𝑡+𝜏𝒘𝑡

∗] 

= 𝑨Ω
𝜏 𝑮𝑡,𝑡 + ∑ 𝑨Ω

𝑡−𝑖𝑡+𝜏
𝑖=1 𝐸Ω,𝑆[𝒆𝑖𝒘𝑡

∗] + ∑ 𝑨Ω
𝑡−𝑖𝑡

𝑖=1 𝐸Ω,𝑆[𝒘𝑡+𝜏𝒆𝑖
∗] + 𝐸Ω,𝑆[𝒘𝑡+𝜏𝒘𝑡

∗]     (A.5) 

= 𝑨Ω
𝜏 𝑮𝑡,𝑡 + 𝑨Ω

𝜏−1𝑹𝜎𝑡,𝑡+𝜏 

= 𝑨Ω
𝜏−1(𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏)                                                                                    



229 

 

where 𝜏 > 0. The expression of 𝑯𝑡,𝑡+𝜏 for 𝜏 < 0 is similar as that of 𝜏 > 0, namely, 𝑯𝑡+𝜏,𝑡 =

𝑯𝑡,𝑡+𝜏
∗ . 

When 𝜏 = 0, we have 

𝑯𝑡,𝑡 = 𝐸Ω,𝑆[ℎ(𝒙𝑡)ℎ(𝒙𝑡)
∗] 

= 𝐸Ω,𝑆[(𝑔(𝒙𝑡) + 𝒘𝑡)(𝑔(𝒙𝑡) + 𝒘𝑡)
∗]                                                                         (A.6) 

= 𝐸Ω,𝑆[𝑔(𝒙𝑡)𝑔(𝒙𝑡)
∗ + 𝑔(𝒙𝑡)𝒘𝑡

∗ +𝒘𝑡𝑔(𝒙𝑡)
∗ +𝒘𝑡𝒘𝑡

∗] = 𝑮 + 𝑸𝜎𝑡,𝑡+𝜏 

        Overall, the expression of 𝑯𝑡,𝑡+𝜏 is summarized as 

𝑯𝑡+𝜏,𝑡 = {

𝑨Ω
𝜏−1(𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏),𝜏 > 0

𝑮 + 𝑸𝜎𝑡,𝑡+𝜏𝜏 = 0

𝑯𝑡,𝑡+𝜏
∗ 𝜏 < 0

                                       (A.7) 

        In this study, 𝑯𝑡+𝜏,𝑡 can be explicitly expressed by substituting Eq. (8.14) into Eq. (A.5) 

𝑯𝑡+𝜏,𝑡 = 𝐸Ω,𝑆[ℎ(𝒙𝑡+𝜏)ℎ(𝒙𝑡)
∗] =

1

𝑚
𝒀𝑡+𝜏
𝑡+𝜏+𝑚−1𝒀𝑡

𝑡+𝑚−1 = 𝑯𝜏                   (A.8) 

        The last equality holds because of the assumption of ergodicity [29, 41].  

Finally, 𝑶𝑎𝑢𝑔 ∈ 2𝑛×𝑟 predefined in Section 2.2 is expanded to  

𝑶𝑎𝑢𝑔 = 𝒀𝑓
𝑎𝑢𝑔

(𝒀𝑝
𝑎𝑢𝑔

)
∗
[𝒀𝑝
𝑎𝑢𝑔
(𝒀𝑝

𝑎𝑢𝑔
)
∗
]
−1
𝒀𝑝
𝑎𝑢𝑔

 

= [𝒀3
𝑚+2; 𝒀4

𝑚+3][𝒀1
𝑚; 𝒀2

𝑚+1]∗ [[𝒀1
𝑚;𝒀2

𝑚+1][𝒀1
𝑚;𝒀2

𝑚+1]∗]
−1
𝒀𝑝
𝑎𝑢𝑔

 

= [
𝑯3,1 𝑯3,2
𝑯4,1 𝑯4,2

] [
𝑯1,1 𝑯1,2
𝑯2,1 𝑯2,2

]
−1

𝒀𝑝
𝑎𝑢𝑔

= [
𝑯2 𝑯1
𝑯3 𝑯2

] [
𝑯0 𝑯1

∗

𝑯1 𝑯0
]
−1

𝒀𝑝
𝑎𝑢𝑔

                   (A.9) 

= [
𝑰
𝑨Ω
] [
𝑨Ω
𝜏−1(𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏)

𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏
]

𝑻

[
𝑮 + 𝑸𝜎𝑡,𝑡+𝜏 (𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏)

∗

𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏 𝑮 + 𝑸𝜎𝑡,𝑡+𝜏
]

−1

𝒀𝑝
𝑎𝑢𝑔

 

= 𝑶1
𝑎𝑢𝑔

𝑶2
𝑎𝑢𝑔

 

in which, 𝑶1
𝑎𝑢𝑔

= [
𝑰
𝑨Ω
] ; 

𝑶2
𝑎𝑢𝑔

= [
𝑨Ω
𝜏−1(𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏)

𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏
]

𝑻

[
𝑮 + 𝑸𝜎𝑡,𝑡+𝜏 (𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏)

∗

𝑨Ω𝑮+ 𝑹𝜎𝑡,𝑡+𝜏 𝑮 + 𝑸𝜎𝑡,𝑡+𝜏
]

−1

𝒀𝑝
𝑎𝑢𝑔

. 

        It should be noticed that the stochastic Koopman operator 𝑨Ω in 𝑶1
𝑎𝑢𝑔

 is separated with 

the process noise and observation noise terms included within𝑶2
𝑎𝑢𝑔

. Therefore, in theory, the 

change of process noise and observation noise amplitudes will only affect the specific values 

of P, Q and R, while not affect the approximation of Koopman operator 𝑨Ω. 
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SVD is performed on the augmented matrix given by  

𝑶𝑎𝑢𝑔 ≝ [𝑼1:𝑞1; 𝑼1:𝑞2]𝑺1:𝑞𝑽1:𝑞
∗                                              (A.10) 

where  𝑼1:𝑞1 and 𝑼1:𝑞2 are associated with 𝑰 and 𝑨Ω of 𝑶1
𝑎𝑢𝑔

. 

The Koopman operator 𝑨Ω is estimated by 

𝑨Ω ≝ �̃�1:�̃�
∗ 𝑼1:𝑞2�̃�1:�̃��̃�1:�̃�

−1                                                    (A.11) 

where �̃�1:�̃� ∈ 𝑛×�̃�, �̃�1:�̃� ∈ �̃�×�̃�, �̃�1:�̃� ∈ 𝑞×�̃�  are calculated by [�̃�1:�̃�, �̃�1:�̃�, �̃�1:�̃�] ←

SVD(𝑼1:𝑞1, �̃�), with �̃� = 𝑟𝑎𝑛𝑘(𝑼1:𝑞1). 
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