
Department of Electrical and Computer Engineering

Hybrid High Performance Computing (HPC) + Cloud for Scientific

Computing

Suresh Reuben A/L Balakrishnan

 0000-0002-0539-1499

This Thesis is presented for the Degree of

Master of Philosophy (Electrical and Computer Engineering)

of

Curtin University

 June 2022

i

Declaration
To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Signature: ………………………………………….

Date: 5th June 2022

Redacted Signature

ii

Acknowledgement
 I would like to express my sincere appreciation and gratitude to my Main

Supervisor, Associate Professor Dr. Ling Huo Chong, and Co-Supervisor, Professor

Amandeep S. Sidhu who have given me their enormous support, advice, assistance,

and wisdom to help me in this research endeavour. Their inspiration in helping me

start the research and then finally helping me cross the finish line has been tremendous.

My sincere thanks to the following co-authors who have contributed to the research

thesis through the papers that we have co-authored together: Professor Amandeep S.

Sidhu, Shanmugam Veeramani, John Alan Leong, Amalina Mohamad Sabri, Sun Veer

Moolye, Chung Yik Cho, Professor Sarinder K. Dhillon, and Professor lain Murray.

iii

Related Thesis Publications

1. S. R. Balakrishnan, S. Veeramani, J. A. Leong, I. Murray, and A. S. Sidhu,

“High Performance Computing on the Cloud via HPC+Cloud software

framework,” Proc. 5th Int. Conf. Eco-Friendly Comput. Commun. Syst.

ICECCS 2016, pp. 48–52, 2017, doi: 10.1109/Eco-friendly.2016.7893240.

2. A. M. Sabri, S. R. Balakrishnan, S. V. Moolye, C. Y. Cho, S. K. Dhillon, and

A. S. Sidhu, “Benchmarking large scale cloud computing in Asia Pacific,” Proc.

Int. Conf. Parallel Distrib. Syst. - ICPADS, pp. 693–698, 2013, doi:

10.1109/ICPADS.2013.123.

3. A. S. Sidhu, S. R. Balakrishnan and S. K. Dhillon, "HPC+Azure environment

for bioinformatics applications," 2013 IEEE International Conference on

Bioinformatics and Biomedicine, 2013, pp. 12-15, doi:

10.1109/BIBM.2013.6732615.

iv

Abstract

A clustered computing system is a High Performance Computing (HPC)

system that is used to capture the combined processing power of all cluster nodes.

Clusters are developed to process large data sets and programs by breaking them down

into smaller tasks. These tasks are then sent for processing to individual computing

nodes. Clusters are used for tasks such as processor-intensive scientific computing

work. Hosting all the HPC nodes in a single premise has always been the simplest HPC

implementation. It is designed using costly computer nodes that have a high number

of CPU cores and plenty of computer memory. In terms of scaling and upgrading of

an on-premise only HPC cluster, organizations normally just purchase more nodes,

upgrade CPUs, upgrade RAM or storage for each node. However, buying more

hardware is quite ineffective as it takes time to procure new hardware and upgrade the

existing HPC systems, yet the demand for computing power may be immediate. New

hardware could also be potentially underutilized. As HPC clusters are normally built

with peak demand in mind, organizations try to anticipate demand spikes and to make

sure that the HPC system can handle that maximum or peak load. However, demand

spikes are normally only seasonal and as a result, the extra CPU and memory resources

are left underutilized. One alternative to physically upgrading an HPC cluster is to

utilize cloud computing. Cloud Computing is a new paradigm for computing

infrastructure establishment. This paradigm moves the placement of the computing

infrastructure to the internet to lessen the expenses related to hardware and software

resources management. The HPC+Cloud framework has been implemented to enable

on-premise HPC jobs to use resources from cloud computing nodes. As part of

designing the software framework, Public Cloud providers: Amazon AWS, Microsoft

Azure and NeCTAR have been benchmarked and Microsoft Azure has been

determined to be the most suitable cloud component in the proposed HPC+Cloud

software framework. Finally, an HPC+Cloud cluster was built using the HPC+Cloud

software framework and then was validated by conducting HPC processing

benchmarks. The HPC benchmarks, namely the most important ones being OpenMP

and High Performance Linpack, have demonstrated that the HPC+Cloud cluster can

support, sustain, and complete High Performance Computing workloads successfully.

v

Contents
Declaration .. i

Acknowledgement.. ii

Related Thesis Publications .. iii

Abstract ... iv

List of Figures ... viii

List of Tables... ix

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Research Gap ... 2

1.3 Research Questions ... 3

1.4 Aim, Objectives, and Scope .. 4

1.5 Research Contributions ... 5

1.6 Thesis Structure ... 6

1.7 Summary of Chapter ... 6

2 Background and Literature Review .. 7

2.1 High Performance Computing ... 7

2.2 Cloud Computing .. 9

2.3 Existing HPC Implementation Architectures .. 11

A. On-Premise Local HPC cluster .. 11

B. HPC cluster implemented on grids. ... 13

C. HPC cluster implemented on the Cloud ... 14

D. HPC cluster implemented on the Hybrid Cloud 15

2.4 HPC+Cloud Contrasted with Existing Implementation Architectures 16

2.5 Summary of Chapter ... 18

3 Methodology of the HPC+Cloud Software Framework 19

3.1 HPC+Cloud Software framework Algorithm .. 20

vi

3.2 HPC+Cloud Software Framework Flowchart ... 22

3.3 HPC+Cloud Software Framework Pseudocode .. 23

3.4 Implementation Method .. 28

3.5 Summary of Chapter ... 29

4 Experimental Results and Discussions ... 30

4.1 Choosing a Public Cloud provider to be the Cloud component of the

HPC+Cloud through benchmarking ... 30

4.2 Cloud Benchmarking Instance Specifications and Assumptions 31

4.3 Classic Benchmark Test Categories. ... 32

4.3.1 Classic Benchmark Overall Comments ... 33

4.3.2 Disk, USB, and LAN Benchmarks .. 35

4.3.3 Disk, USB, and LAN Benchmarks Overall Comments 35

4.4 Multithreading Benchmarks .. 36

4.4.1 Multithreading Benchmark Overall Comments 38

4.5 OpenMP Benchmarks for Parallel Processing Performance 39

4.5.1 OpenMP Benchmarks Overall Comments ... 40

4.5.2 Memory Bus Speed Benchmark .. 41

4.5.3 BusSpeed Benchmark Overall Comments ... 42

4.6 Benchmarking Overall Results and Conclusion .. 43

4.6.1 Conclusion of Benchmarking Public Cloud Providers 43

4.7 Benchmarking HPC On-Premise vs HPC+Cloud vs HPC on Cloud 44

4.7.1 The main purpose of Benchmarking .. 44

4.7.2 Experimental Setup and Assumptions. .. 45

4.8 Classic Benchmark Test Categories .. 47

4.8.1 Classic Benchmark Overall Comments ... 48

4.9 I/O Operations Benchmark .. 50

4.9.1 I/O Operations Benchmark Overall Comments 50

vii

4.10 Multithreading Benchmarks .. 51

4.10.1 Multithreading Benchmark Overall Comments 53

4.10.2 OpenMP Benchmarks for Parallel Processing Performance 54

4.10.3 OpenMP Benchmarks Overall Comments ... 55

4.11 High Performance Linpack Benchmark via Windows Lizard 56

4.11.1 High Performance Linpack Benchmark Overall Comments 57

4.11.2 Summary of Benchmarking Overall Results.. 58

4.12 Significance of The Benchmarking Results of HPC+Cloud Cluster 60

4.13 Summary of the Chapter .. 60

5 Conclusions and Future Work .. 62

5.1 Conclusions ... 62

5.2 Summary of Objectives Accomplished ... 62

5.3 Future Work .. 63

References .. 64

List of Symbols and Acronyms .. 70

Authorship Acknowledgement... 71

viii

List of Figures

Figure 1.1 HPC+Cloud .. 4

Figure 2.1 On-Premise Local HPC cluster ... 12

Figure 2.2 HPC cluster implemented on grid... 14

Figure 2.3. HPC cluster implemented on the cloud ... 15

Figure 2.4. HPC cluster implemented on the hybrid cloud .. 16

Figure 2.5. Key Distinctives of various HPC implementation architectures 18

Figure 3.1. HPC+Cloud framework components ... 20

Figure 3.2. Software framework flowchart .. 22

Figure 4.1. Classic Benchmark Results.. 34

Figure 4.2. Disk, USB and LAN Benchmarks. (higher is better) 36

Figure 4.3. Multithreading Benchmarks .. 39

Figure 4.4. OpenMP Benchmarks .. 41

Figure 4.5. Memory BusSpeed Benchmark results .. 42

Figure 4.6. Classic Benchmark Results (higher is better). ... 49

Figure 4.7. I/O Operations Benchmark. (higher is better) ... 51

Figure 4.8. Multithreading Benchmarks (higher is better) ... 54

Figure 4.9. OpenMP Benchmarks (higher is better) .. 56

Figure 4.10. High Performance Linpack Benchmark (higher is better) 57

Figure 4.11. Summary of Chapter Four ... 61

ix

List of Tables

Table 3.1. HPC+Cloud Main Function Pseudocode .. 23

Table 3.2. HPC+Cloud Resource Monitor (A) Pseudocode 24

Table 3.3. HPC+Cloud Batching (B) Pseudocode ... 24

Table 3.4 HPC+Cloud Sending (C) Pseudocode ... 25

Table 3.5. HPC+Cloud WorkerOutPutMonitor (D) Pseudocode 26

Table 3.6. HPC+Cloud Output Storage (E) Pseudocode ... 27

Table 3.7 HPC+Cloud Bad Request Sweeper (F) .. 28

Table 4.1. Cloud Benchmarking Instance Specifications. ... 32

Table 4.2. Classic Benchmark Test Results (higher is better). 33

Table 4.3. Disk, USB, and LAN Benchmark Test Results .. 35

Table 4.4. Multithreading Benchmarks Test Results ... 38

Table 4.5. OpenMP Benchmarks Test Results... 40

Table 4.6. Memory BusSpeed Benchmark results (higher is better) 42

Table 4.7. Overall results (higher is better).. 43

Table 4.8 HPC+Cloud framework functionality test results 45

Table 4.9. Benchmarking Instance Specifications. .. 46

Table 4.10. Classic Benchmark Test Results (higher is better). 48

Table 4.11. I/O Operations Benchmark Test Results (higher is better). 50

Table 4.12. Multithreading Benchmarks Test Results (higher is better). 53

Table 4.13. OpenMP Benchmarks Test Results (higher is better). 55

Table 4.14. High Performance Linpack Benchmark (higher is better) 58

Table 4.15. Benchmarking Overall Results ... 58

1

1 Introduction

This chapter discusses the concept of HPC+Cloud and details the reason this

implementation is suitable to solve the current shortcomings of on-premise HPC

clusters. It introduces concepts of cloud computing and high performance clusters

(HPC) and how these separate computing models are combined in the HPC+Cloud

implementation framework.

1.1 Motivation

A clustered computing system[1] is a High-Performance Computing (HPC)

system that is used to capture the combined processing power of all cluster nodes.

Clusters are developed to process large data sets and programs by breaking them down

into smaller tasks. These tasks are then sent for processing to individual computing

nodes. Clusters are used for tasks such as modeling, data analytics, web services, data

mining, and many other types of processor-intensive work. Hosting all the HPC nodes

in a single premise has always been the simplest HPC implementation. It is designed

using costly computer nodes that have a high number of CPU cores and plenty of

computer memory. Organizations typically only buy more nodes, update CPUs,

upgrade RAM or storage for each node when it comes to scaling and upgrading an on-

site only HPC cluster[2]. It is very ineffective to purchase more hardware as it takes

time to procure new hardware and update the current HPC systems. New hardware

may also be underused theoretically. However, the demand for computing power could

be immediate. As HPC clusters are typically designed with peak demand in mind,

organizations are trying to predict demand requests and ensure that the HPC system

can support the unique limit or peak load. Demand spikes, however, are typically only

seasonal and the extra CPU and memory resources are thus left underutilized during

off-peak season. Therefore, using cloud computing to physically upgrade an HPC

cluster is one of the alternative solutions. Cloud computing[1] is a new model for

computer technology development. This model shifts the location of the computer

infrastructure to the internet to minimize the costs associated with it. The HPC+Cloud

software framework[3] enables on-premise HPC systems to scale up without

expensive capital investments in computer hardware. Organizations that currently

2

have existing HPC clusters will be able to use the HPC+Cloud framework to scale and

upgrade their HPC clusters at a lower cost compared to other HPC implementation

architectures. Existing HPC clusters can also increase the breadth of applications

supported as now additional storage and computing power are easily available on

demand from the cloud. As part of this research study, the HPC+Cloud architecture

will be deployed in a HPC cluster. It will have the significant impact of increasing the

amount of processing power available to researchers and students for scientific

computing. Scientific computing (also known as computational science) is a branch of

science that deals with developing mathematical models and numerical solution

approaches, as well as employing computers to assess and solve scientific and

technical problems. In practice, it refers to the use of computer simulation and other

forms of computation to solve issues in a variety of scientific fields. Traditional HPC

clusters are built to amplify computing power and allow higher amounts of computing

power to be pooled together to solve scientific computing problems. The HPC+Cloud

framework will help the adoption of cloud resources for the HPC cluster and allay

privacy concerns by only allowing processes that meet user privacy requirements to

migrate to cloud nodes for processing. Organizations that create new HPC clusters

using the HPC+Cloud architecture no longer need to make a large up-front investment

in expensive high performance and high storage machines just to get started with high

performance computing.

In summary:

 There is a demand for a cost-effective way to scale up and upgrade HPC

clusters and the existing approach of buying new hardware to upgrade

computing clusters are expensive if underutilized.

 The HPC+Cloud architecture provides a seamless way for existing HPC

users to use cloud resources for scientific computing without having to

learn a new method of working.

1.2 Research Gap

HPC+Cloud[4] is a proposed HPC software framework that allows current

HPC applications to scale out into the public cloud. The local HPC application can

leverage the extra computing nodes from the public cloud. In previous years, on-

3

premise HPC scaling was carried out by either manual hardware procurement to scale

on-premise hardware[5], or by grid computing[6], or by totally abandoning the on-

premise cluster and moving the HPC onto the cloud[7]. The proposed HPC+Cloud

framework is an intermediate solution that utilizes existing on-premise HPC hardware.

Work performed by Li et al.[8] which proposes the MyCloud framework that works in

concept in a similar way to the proposed HPC+Cloud framework. However, the

MyCloud framework is specifically geared to the Openstack cloud platform built on

GNU/Linux, meanwhile our proposed HPC+Cloud framework is geared to the

Windows HPC cluster as Curtin University’s HPC cluster is currently built on

Windows HPC[9]. Currently, Microsoft[10] does provide tools for migrating jobs

from on-premise to the cloud, however the solution is a piecemeal solution that is

applied manually by the administrator and does not check the suitability of the process

before migrating it to the cloud. Another similar framework that provisions cloud

nodes is created by Ding et al.[11] which uses the Windows HPC cluster based on

Microsoft’s approach[10]. However, unlike Li et al.[8], Microsoft[10] and Ding et

al.[11], the proposed HPC+Cloud adds an element of administrative control allowing

administrators to make sure only suitable and allowable HPC jobs that meet privacy

and legal concerns can be migrated to the Cloud. Privacy and legal concerns are an

issue when adopting cloud based technology as seen in [12] and [13]. Another more

recent framework that achieves similar goals as the HPC+Cloud framework is the

WoBinGO software framework proposed by Simic et al.[5] in 2019. This framework

allows migration from the on-premise cluster to HPC. However, it is built only for the

Linux Openstack platform and does not check the suitability of the process before

migrating it to the cloud as opposed to the proposed HPC+Cloud framework. Another

advantage of the proposed HPC+Cloud framework is that cloud nodes are promptly

decommissioned and deallocated when not in use, unlike Li et al.[8], Microsoft[10]

and Ding et al.[11] approaches to migrating on-premise jobs to cloud nodes. This is an

effective way to save cost as cloud resources are charged per-minute on time regardless

of usage[14].

1.3 Research Questions

a) What is the best available public cloud that can be used to build an HPC+Cloud

cluster?

4

b) How to model a software framework that can build an HPC+Cloud cluster

using the best available public cloud and on-premise cluster, and handle legal

and privacy data issues in processing HPC jobs in the cloud?

c) How to determine HPC+Cloud cluster’s relative performance to existing

architectures such as HPC on Premise and HPC on Cloud?

Figure 1.1 HPC+Cloud

1.4 Aim, Objectives, and Scope

 The primary aim of this research is to design, implement and deploy high

performance computing (HPC) solution that utilizes on-premise HPC compute nodes

and HPC on cloud nodes as seen in Figure 1.1. The key objectives of this research are

as follows:

1. To determine the right public cloud provider to combine with the

HPC+Cloud software framework architecture.

2. To design and implement an HPC cluster that works seamlessly for

scheduling jobs on the integrated public cloud using the HPC+Cloud

software framework.

3. To ensure the proposed framework must be able to filter the HPC processes

that can be scalable to the cloud as there are privacy, and legal concerns.

5

4. To validate the deployed HPC+Cloud software framework cluster by

benchmarking its performance.

To achieve these research objectives, the scope of activities includes the following:

1. Benchmarking various public clouds to determine a suitable candidate for

integrating with a local HPC cluster.

2. Configuring the local HPC cluster to use the HPC+Cloud software

framework.

3. Implementing the HPC+Cloud cluster by building a test HPC+Cloud

cluster.

1.5 Research Contributions

This research produces two major contributions as follows:

1. The proposed HPC+Cloud framework specifies and models a software framework

for moving on-premise HPC jobs onto cloud nodes built on the Microsoft Azure

Public Cloud platform. It further refines the work performed by Li et al.[8] that

used the Openstack on GNU/Linux.

2. The proposed research also improves Ding et al.[11] ‘s work on the Microsoft

Azure Public Cloud platform and Microsoft Windows HPC platform by checking

the suitability of HPC processing jobs based on privacy and legal concerns before

moving them to cloud nodes for processing. Privacy[12] and legal[13] concerns

are main obstacles to the adoption of cloud technology for HPC computing. The

HPC+Cloud software framework examines every job before it is allowed to leave

the on-premise HPC cluster.

Finally, the research objective of determining the right public cloud provider

to combine with the HPC+Cloud software framework architecture was achieved. To

achieve this objective, HPC benchmarks were utilized and then it was concluded that

Microsoft Azure Public Cloud was the best cloud node to be used with the HPC+Cloud

framework. The next objective achieved is to design and implement an HPC cluster

that works seamlessly for scheduling jobs on the integrated public cloud using the

HPC+Cloud software framework. The framework determined the scalability of the

process. Not all HPC processes could be scalable to the cloud as there are privacy, and

legal concerns. The final objective that has been achieved is to validate the deployed

6

HPC+Cloud software framework cluster by benchmarking its performance against

existing alternatives such as HPC on Premise and HPC on Cloud.

1.6 Thesis Structure

 This chapter consists of the introduction of the research topic, where the

research motivation, research gap, research aim, objectives, and scope are identified.

Chapter two discusses the background information about cloud computing, high

performance computing clusters, and the various existing implementation approaches

that are being used currently. Discussions will be detailed on the strengths and

weaknesses of current approaches and how the HPC+Cloud software framework

addresses them. Chapter three then describes the algorithms and modeling of the

proposed HPC+Cloud software framework in terms of flow chart and pseudocode.

This is to prepare the proposed HPC+Cloud software framework for the experimental

setup and discussions of experimental results in chapter four. In chapter four, the

experimental results of benchmarking various public clouds to determine a suitable

candidate for integrating with a local HPC cluster are discussed. Next, the HPC on-

premise cluster, HPC+Cloud cluster and the HPC on Cloud clusters are benchmarked

and the results are analysed and discussed. Finally, chapter five concludes the whole

thesis with conclusions and recommendations for future work.

1.7 Summary of Chapter

In this chapter, the motivation behind this research work is presented and the

proposed HPC+Cloud software framework overview is presented. However, the

presented information lacks background literature support. Thus, background

information and literature review shall be presented in the next chapter to clarify and

identify the core information that shapes the whole idea behind the proposed

HPC+Cloud software framework.

7

2 Background and Literature Review
 This chapter comprises of two parts. The first part discusses the background

technology needed for the HPC+Cloud, namely high-performance computing cluster

and cloud computing. The second part zooms specifically on the various approaches

or specifically HPC implementation architectures that have been used to scale and

upgrade on-premise only HPC clusters that compete with the proposed HPC+Cloud

software framework.

2.1 High Performance Computing

The following section is based on the author’s work that has been published in

the conference paper: "High Performance Computing on the Cloud via HPC+Cloud

software framework," 2016 Fifth International Conference on Eco-friendly Computing

and Communication Systems (ICECCS).

 A networked clustered computing system can perform as a high performance

computing (HPC) system[15]. The cluster Operating System is the software that

enables a networked clustered computing system to harness the combined computing

capability of all nodes in a cluster. Clusters are used to break down big applications

and big amounts of data into smaller processing tasks. Individual computing nodes are

then subsequently assigned to these tasks for processing. Despite multiple computers

that are networked[16], the cluster seems to function as a single computer completing

computationally heavy processing chores. Simulation, data analytics, online services,

data mining, bioinformatics, and other computationally heavy processing

activities[17] are solved using clusters. Clusters enhance speed and/or reliability over

a single supercomputer for such workloads and are generally considerably more cost-

effective than utilising a single supercomputer. Only the head node[18], which serves

as a scheduler, may be accessed in an HPC cluster system. This node serves as a

connection point between the user and the cluster. The cluster's head node serves as a

launchpad for tasks operating in the cluster. The computing nodes[19] that are linked

to the head node perform the actual processing.

Processing is completed utilizing either pipeline flows or sweep flows,

depending on the kind of task delivered to the cluster. Processing workloads that

execute in a sweep flow[7] in an HPC cluster are jobs that are split into processes that

8

may be processed completely in parallel with no communication between the cluster

nodes that execute each process. Sweep flow jobs are sometimes referred to as jobs

that are embarrassingly parallel.

Other processing tasks in the cluster may use a pipeline flow to execute[20].

Threaded processing tasks are processed via pipeline flows. These threads are

interdependent and must generally be run in a certain order. However, there are

exceptions to this rule, such as when a job is partially pipelined. This occurs when a

pipeline step (a processing node) completes a partial processing of the data. These

partial results will then be transmitted to the next processing node, which will

immediately begin processing the partial results while continuing to analyse the

remaining data in parallel.

Pipeline flow tasks must communicate between nodes and processes because

job threads are spread throughout nodes in the cluster. In an HPC cluster, both pipeline

flow nodes and sweep flow nodes must interact with the head node to provide

processing output. In an HPC cluster, latency[21] becomes a concern due to all the

connections required. Parallel processing techniques and middleware frameworks[8]

have been used at the software level to optimize and decrease the amount of

communication overhead[22] between nodes. However, the actual network

architecture still limits the majority of these software improvements. Most existing and

older HPC clusters are now built utilizing Fiber Channel, which employs a

combination of copper wire and high-speed fiber optic cabling[23]. InfiniBand[23], a

form of communications link for data flow between CPUs and I/O devices that offers

throughput of up to 54 gigabits per second, is often used in contemporary next-

generation HPC clusters. InfiniBand is also scalable, having quality of service (QoS)

and failover capabilities[8]. Compared to Fiber Channel, it offers a significant benefit.

Fiber Channel is only a transmission channel between the HPC node's network

interfaces. Meanwhile, InfiniBand skips the traditional network interface and permits

direct connection between HPC cluster nodes at the CPU bus level, allowing nodes in

an HPC cluster to be connected. The cost of implementing InfiniBand is the major

deterrent to its use. Because the Layer 2 physical cabling in an existing HPC cluster

must be removed, InfiniBand is generally employed primarily in high-end HPC

clusters or cloud data centres. Using a cloud computing service to access more

processing nodes and scale up the HPC cluster is one approach to take advantage of

InfiniBand's low latency interconnects on a budget[24]. InfiniBand is a very expensive

9

technology to deploy on the premise clusters. If a person wants to get the benefits of

InfiniBand technology, then subscribing to a cloud service and scaling up existing on

premise HPC cluster to use cloud computing nodes would be one way to get the

benefits and advantages of InfiniBand at a lower cost than renovating his or her current

on-premise setup and deploying InfiniBand physically on an on premise HPC cluster.

Processing HPC workloads transferred to the cloud would allow most HPC jobs to

benefit from the InfiniBand used in cloud data centre networks, since most Cloud Data

Centres are now designed utilizing InfiniBand.

2.2 Cloud Computing

Cloud computing is gradually establishing itself as a new paradigm for

computer infrastructure setup. This paradigm shifts the network infrastructure's

location in order to reduce the costs of managing hardware and software resources.

Cloud computing[1] is defined by the National Institute of Standards and Technology

as an architecture that allows for ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be quickly provisioned and released with minimal

management effort or service provider interaction. The usage of hosted services

through the internet is referred to as cloud computing. It's also a fundamental shift in

operational design, in which software is no longer bound to a single piece of physical

hardware. Because of the cloud's flexibility, computing resources may be quickly

transferred depending on the needs of the user.

Infrastructure as a service (IaaS), Platform as a service (PaaS), and Software

as a service (SaaS) are three different types of cloud computing service models[26].

These three service models differ from traditional IT design, which often requires an

enterprise to handle all IT resources on its own. When the cloud computing paradigm

is chosen, IT components are handled by cloud service providers, and cost reductions

are immediately realized by the enterprise[27].

There are three types of cloud computing implementation architectures: public,

private, and hybrid[28]. A public cloud computing paradigm is one that delivers hosted

services via the internet. Public cloud services are either free (NeCTAR)[29] or require

customers to pay each time they utilize the service (Azure, Amazon EC2)[30]. Users

must have their own disaster recovery and data backup procedures in place. It is well

10

known that public cloud providers only provide the computing infrastructure such as

VMs and storage, and the public using the public cloud must have their own disaster

recovery and data backup procedures in place. Public cloud provider can provide those

two services but there will be at extra cost on top of the cost of infrastructure. The

cloud is usually multi-tenant and controlled and maintained at a data center owned by

the cloud service provider. Cloud computing, which is a form of shared architecture,

saves expenses, because the service provider owns the underlying infrastructure.

Therefore, visibility and control are limited in a public cloud, according to Mell and

Grance[1].

Behind the firewall, a private cloud is an exclusive computing paradigm that

delivers services to a small number of individuals. Because certain businesses (such as

banks, and hospitals) are worried about data security, they prefer private clouds to

public clouds. Private clouds are among the least widely used of all cloud architectures,

owing to high hardware and installation costs[31]. Although this cloud is not very cost-

effective, it offers the best level of security when compared to other cloud models.

One or more private clouds plus one or more public clouds combined make up

a hybrid cloud. It's a scenario in which an organization manages certain resources

internally on a private cloud while the remainder is handled externally on a public

cloud[32]. Because the local infrastructure interacts with the processing power of a

public cloud, hybrid cloud helps companies to maximize the use of their IT

infrastructure while lowering IT costs. The length of load peaks is relatively brief while

utilizing the public cloud, which compensates for the high premium imposed by the

public cloud provider, making the hybrid cloud more cost efficient than using the

private cloud alone[33]. To address the latencies of internet connections, a hybrid

cloud must be developed specifically to synchronize data and activities across the

private and public clouds[34]. Hybrid cloud technology, specifically the application

layer, transport layer, and session layer stack optimizations[35] that allow private and

public clouds to seamlessly synchronize with each other[36], can now be used to

connect a local on-premise HPC cluster with cloud-based HPC processing nodes,

hence the term HPC+Cloud.

The main benefit of the proposed HPC+Cloud paradigm is the ability to grow

the HPC cluster by on-demand provisioning of new virtual processing nodes from the

cloud. The proposed HPC+Cloud paradigm inherits all of the benefits of the hybrid

cloud, but with less administrative overhead than a hybrid cloud because there is no

11

need to operate a private cloud on-premise. Despite the benefits of combining public

and private clouds, hybrid clouds need a significant investment in network equipment

to set up a private cloud on-premise. The proposed HPC+Cloud framework design, on

the other hand, eliminates the need to construct a private cloud in order to use

HPC+Cloud. To setup the current HPC, all that is required is to supply processing

cloud nodes using the HPC+Cloud software framework, all of which will be discussed

in further detail in the next section.

2.3 Existing HPC Implementation Architectures

HPC systems are clustered systems that are created to execute computationally

heavy tasks using specialised designs. The various implementation architectures used

in HPC clusters are discussed in this section.

A. On-Premise Local HPC cluster

As illustrated in Figure 2.1, the simplest HPC deployment has traditionally been to

host all of the HPC nodes in a single premise. To guarantee that the HPC cluster is

powerful, costly compute nodes with a large number of CPU cores and ample

computer memory are used. Furthermore, the nodes interact through high speed

computer networks to guarantee high-speed, low-latency communications between

HPC computing nodes and the head node[14]. Organizations often acquire extra nodes,

update CPUs, RAM, or hard drive storage for each node when growing and upgrading

an on-premises only HPC cluster.

12

Figure 2.1 On-Premise Local HPC cluster

Physically updating hardware on an HPC cluster, on the other hand, has

drawbacks. Purchasing extra hardware is useless since procuring new hardware and

upgrading current HPC systems takes time[37]. This is time that researchers cannot

afford to waste since the need for computer power may be urgent, and demand for

processing resources is growing faster than supply[38]. On the other hand, because

most high-performance computing clusters are constructed with peak demand in mind,

newly procured hardware upgrades may be underused. In other words, as they strive

to predict demand surges and ensure that the HPC system can manage the highest or

peak load. Utilization Demand peaks, on the other hand, are usually just seasonal, and

the increased CPU and memory resources are left unused during off-peak seasons [39].

13

B. HPC cluster implemented on grids.

Grid computing is a type of distributed computing technology that uses the internet

to supply computing power[40]. Figure 2.2 depicts a simple implementation of an HPC

cluster based on grid computing. It is made up of a grid of clusters that are dispersed

around the globe in diverse geographical areas. To make HPC software compatible

with the grid computing architecture, a grid computing solution necessitates rewriting

HPC software and developing a middleware software. This code reworking and

middleware development is not a simple task. Grid takes advantage of distant clusters

located all over the world. Latency becomes an issue as a result of this. Although there

is a built-in grid software middleware available to aid with latency, the grid cluster's

wide geographic diversity remains a significant issue to overcome[41]. Grid does not

address the issue of scaling HPC cluster hardware and software. In comparison to the

proposed HPC+Cloud design, which allows HPC hardware to be updated on demand,

decreasing the cost of upgrading an HPC cluster, the grid still requires significant

hardware and software[41] costs to expand and upgrade. Furthermore, cloud hardware

is controlled by cloud service providers with excellent fault tolerance and scalability

[44]. Typical grid computing systems, on the other hand, provide no such assurances

and offer services on a best-effort basis[42].

14

Figure 2.2 HPC cluster implemented on grid

C. HPC cluster implemented on the Cloud

A fully cloud-based HPC cluster is another HPC implementation design. Both the

cluster head node and the processing nodes are cloud-based[43]. Figure 2.3 shows a

HPC on cloud cluster setup. When an HPC cluster is deployed on a public cloud, the

public cloud architecture, which is elastic in nature, takes care of the expanding and

updating the capabilities of an HPC cluster[2]. The upfront expense of using the public

cloud alone to replace a complete existing on-premise HPC infrastructure is the

primary flaw in using HPC on Cloud to upgrade an HPC cluster. Because all current

on-premise local hardware and software must be virtually replicated on the Public

Cloud IaaS, add to that the cost of discarding existing hardware from the local on-

premise HPC cluster, and because the entire cluster processing will take place outside

of the local on-premise boundary, the cost per unit of computing for HPC on cloud

would be quite high[42].

15

Figure 2.3. HPC cluster implemented on the cloud

D. HPC cluster implemented on the Hybrid Cloud

As previously stated, a hybrid cloud is made up of one or more private clouds and

one or more public clouds. Figure 2.4 shows how a hybrid cloud may be used to run

an HPC cluster. An environment in which an organization manages some resources

internally on the private cloud while the rest is handled externally on the public cloud.

In the hybrid cloud, HPC clusters can be implemented[44]. The hybrid cloud appears

to be a suitable option since workloads from on-premise private clouds may be

effortlessly moved to the public cloud on demand, and software licenses for the private

cloud are only purchased once. The primary issue is the cost of establishing a private

cloud on a local level[45]. The hardware and software costs of establishing a private

cloud on a company's premises are exorbitant. There's also the administrative cost of

running a private cloud, as well as the public cloud's HPC cluster and virtual HPC

16

nodes[46]. The present on-premise HPC cluster's hardware and software architecture

would have to be modified to suit the private cloud.

Figure 2.4. HPC cluster implemented on the hybrid cloud

2.4 HPC+Cloud Contrasted with Existing Implementation

Architectures

The proposed HPC+Cloud architecture's main distinguishing feature is that it

allows for on-demand scalability at a low initial cost. The relatively cheaper setup cost

is due to the fact that it makes use of existing on-premise HPC cluster processing nodes

while also utilizing cloud processing nodes[47]. The proposed HPC+Cloud

architecture utilizes existing hybrid cloud technologies to alleviate the high latency

concerns that cloud technology has. The proposed HPC+Cloud also takes advantage

of existing architecture application layer, transport layer, and session layer stack

optimizations that allow private cloud and public cloud to synchronize flawlessly.

HPC On Cloud appears to be a fantastic option at first sight, as it also offers

on-demand scalability. However, moving an existing HPC cluster fully to the cloud is

too expensive, particularly in terms of start-up expenses. This is due to the fact that

HPC on Cloud requires current on-premise hardware and software to be virtually

17

duplicated in the cloud[48]. In contrast, the proposed HPC+Cloud simply uses the

cloud to provide more processing nodes as needed, and therefore only has a portion of

its infrastructure in the cloud.

HPC on Hybrid Cloud appears to be a viable option as well, since it allows for

on-demand scaling[49]. However unlike the proposed HPC+Cloud, which uses

existing on-premises infrastructure, HPC on hybrid cloud requires considerable

additional hardware and software investment[3] to transform existing on-premises

equipment to become a Private Cloud in order to build an Hybrid Cloud. The expense

of running a Private Cloud as part of the Hybrid Cloud inside an existing organization

might also be exorbitant depending on the computational and redundancy needs.

HPC on grid does enable on-demand scalability, but only to a limited extent,

because processes can be spread throughout the grid cluster's numerous nodes[50].

This is a big issue because grids are generally dispersed geographically[6], resulting

in latency issues that influence HPC processing time while on the grid. Grid computing

platforms provide no assurances about demand scaling and deliver services with the

best effort possible. In contrast to the proposed HPC+Cloud architecture, which

includes service level agreements with bandwidth and uptime assurances from the

cloud service provider. Figure 2.5 depicts an overview of the differences between the

various implementation architectures.

When compared to alternative HPC implementation architectures, the

HPC+Cloud implementation architecture offers the most benefits. Relatively lower

start-up costs, ability to leverage existing infrastructure from the on-premise cluster,

and ability to work effectively even with relatively lower bandwidth are three major

aspects that distinguish HPC+Cloud from alternative architectures.

18

Figure 2.5. Key Distinctives of various HPC implementation architectures

2.5 Summary of Chapter

This chapter is divided into two sections. The first section covers the

HPC+Cloud background technologies, such as high-performance computing clusters

and cloud computing. The second section focuses on the several techniques, or HPC

implementation architectures, that have been utilised to grow and update on-premise

only HPC clusters that compete with the proposed HPC+Cloud software framework.

Different implementation architectures were compared and contrasted with the

proposed HPC+Cloud.

In the next chapter, the HPC+Cloud software framework will be examined in

detail by describing the algorithms and modeling the software framework in flowchart

and pseudocode.

19

3 Methodology of the HPC+Cloud Software

Framework

The main goal of the HPC+Cloud software framework is to allow the sending

of HPC applications jobs to the cloud when the resource on the local HPC cluster

exceeds a prefixed utilization threshold. Also, the framework selectively chooses

which processes can be migrated to the cloud and if it is scalable according to user

requirements.

HPC+Cloud is the module that enables the HPC to link up with the public

cloud. The HPC+Cloud consists of the following processes as illustrated in Figure 3.1.

Workload Monitoring (A) monitors the HPC cluster utilization threshold. When the

utilization threshold is reached by the HPC cluster, HPC jobs are sent to Batching (B)

component. Batching (B) component analyses the suitability of the job by checking

that a job’s Privacy Flag Variable. This variable determines the job’s suitability for

entering the cloud. The Sending part of (C) sends the suitable processes to the Cloud

input Queue for processing in the cloud. Upon process job completion, process jobs

are placed on Cloud Output Queue. Worker Output monitoring component (D)

continuously monitors the Cloud Output Queue. Once there are completed jobs in the

Cloud Output Queue, the Worker Output Monitoring component (D) triggers the

Output Storage Component (E) to copy and store the data generated by the job in the

local storage facility. Bad Request Timeout Sweeper (F) runs continuously in the

background during steps A, B, C and D. It Appends the Job_Pid of jobs that are not

migrated to the system log. Jobs that do not migrate to the cloud continue their

processing on on-premise cluster.

20

Figure 3.1. HPC+Cloud framework components

3.1 HPC+Cloud Software framework Algorithm

The framework HPC+Cloud framework is designed only to process one job at

a time. If multi jobs are needed, another instance of the application is run in parallel.

Every time a new job comes, a new instance of the application is run. If there is sharing

of common resources across application instances, the operating system takes care of

it.

An HPC application job consists of a compute task or a data transfer task and

the job’s resource requirements. An HPC job j can be represented by the tuple that

describes the HPC job:

Job Description:

Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩

Where:

 Resj are the resources such as compute nodes and memory allocated to the

job.

 Execj is the application to be executed,

 Envj is the software stack (e.g., operating system and libraries),

 Dj is the Data of the job.

21

 Sj is the suitability of the job as determined by the user, application, or the

HPC+Cloud is stored into the Privacy_Flag variable.

if a job is not allowed to migrate to the cloud for privacy, or legal reasons

the status is stored here in this flag variable.

 Job_Pidj is the process Identifier of the job.

The Resource Monitor (A) runs a service monitoring the HPC system utilization

threshold (UT).

1. When UT is reached by the HPC system, HPC jobs are sent to Batching(B) and

Sending (C) components.

a. Batching component analyzes the suitability of the job (from the information

found in Sj) according to the following constraint: Job meets user requirements

of privacy as stated in privacy flag variable.

b. The Sending component (C) queues and sends the job to the Cloud input Queue

(C-In) based on the process id (Job_Pid) of the HPC job.

2. Upon Job completion, jobs are placed on Cloud Output Queue (C-Out).

3. Worker Output monitoring component (D) continuously monitors the Cloud

Output Queue(C-Out).

a. Once there are completed jobs in the Cloud Output Queue (C-Out), Worker

Output Monitoring component (D) triggers the Output Storage Component (E)

to copy and store the Dj generated by the job in the local storage facility.

4. Bad Request Timeout Sweeper (F) runs continuously during steps 1,2 and 3. It

appends the Job_Pid of jobs that are not migrated to the system log. Jobs that do

not migrate to the cloud continue their processing on on-premise cluster.

22

3.2 HPC+Cloud Software Framework Flowchart

 Figure 3.2 illustrates the HPC+Cloud software framework algorithm described

in Section 3.1, in the form of flowchart.

Figure 3.2. Software framework flowchart

23

3.3 HPC+Cloud Software Framework Pseudocode

The following tables contain the HPC+Cloud software framework that is

further refined into detailed pseudo code.

Table 3.1. HPC+Cloud Main Function Pseudocode

Pseudo-code: HPC+Cloud Main Function

Input: Job Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩

Output: Select Jobs suitable for migration to the cloud.

START MAIN

SET Utililization_Threshold to User_Defined_Preset

CALL ResourceMonitor FUNCTION Find Current Utilization Value RETURN

Current_Utilization

 IF Current_Utilization is bigger than or equal to Utililization_Threshold

 THEN

 CALL Batching FUNCTION Select a suitable Job RETURN Job_Pid

 CALL Sending FUNCTION with INPUT: Job_Pid

 CALL WorkerOutPutMonitor FUNCTION

 ENDIF

END MAIN

Table 3.1 describes the main function of the HPC+Cloud framework. The main

function accepts user input of an HPC processing job Desc(j). The utilization pre-set

is set according to user defined pre-set. Meaning the user can determine ahead of time

at what level of on-premise cluster utilization should be reached before processes can

be migrated to the cloud for processing. The ResourceMonitor function checks the on-

premise utilization, if the on-premise cluster current utilization is bigger than or equal

to the utilization pre-set utilization threshold, the process of migrating jobs to the cloud

is begun. Next the Batching function is called to determine if the process is suitable

24

for migration, the Batching function returns the process id if the job is allowed to

migrate. Next the Sending function uses this process id and migrates the job to the

cloud. Next the WorkerOutPutMonitor function returns the state of the job. Whether

the job is completed or still processing.

Table 3.2. HPC+Cloud Resource Monitor (A) Pseudocode

Pseudo-code: Resource Monitor (A)

Input: None.

Output: Current Utilization Value of the on-premise cluster.

START FUNCTION

CALL HPC_Cluster_Utilization_Library FUNCTION

IF Current Utilization is NULL Return Error Terminate Proc with

Utilization_Library_ERRMSG

RETURN Current_Utilization

END FUNCTION

In Table 3.2, the resource Monitor function is called by the main function. The

function then uses the built-in library function for the on-premise HPC to get the given

cluster utilization.

Table 3.3. HPC+Cloud Batching (B) Pseudocode

Pseudo-code: Batching (B)

Data Processed: Job Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩

Output: Returns Process id (Job_Pid) of the job suitable for cloud migration

START FUNCTION

While (Not End of Jobs List in Cluster)

 CALL SystemLibrary FUNCTION Read_cluster_Job_data Return Desc(j)

25

 CALL SystemLibrary Extract Job Data FUNCTION with INPUT: Desc(j)

RETURN Job_Pid, Privacy_Flag

IF Job_Pid is NULL OR Privacy_Flag is NULL `THEN Return Error Terminate

Proc with SystemLibraryExtract_ERRMSG

IF PrivacyFlag equal to 0

THEN

 RETURN Job_Pid

ELSE

 RETURN ERROR: Job is unsuitable for Migration. Trigger: Inform HPC

Head node

 CALL Bad Request Timeout Sweeper FUNCTION INPUT: Job_Pid

END WHILE LOOP

END FUNCTION

Table 3.3 highlights the Batching function, which checks the job for its

suitability to be migrated to the cloud from the list of jobs currently on the cluster. It

achieves this by checking the privacy flag variable. SystemLibrary Extract function is

used to extract the flag variable from Desc(j).

This ensures only HPC jobs that meet user privacy requirements be migrated

to the cloud. If the Job is suitable the process id of the job that is returned. The way

this mechanism works is that users can determine ahead of time which jobs are

exclusively meant to stay within the organization. The Privacy flag variable is

initialised by the user when the HPC job is created and stored in the data structure

Desc(j).

 Table 3.4 HPC+Cloud Sending (C) Pseudocode

Pseudo-code: Sending (C)

Input: Job_Pid

26

Output: Sends suitable Jobs to Cloud Input Queue (C-In)

START FUNCTION

SET INPUT=Job_Pid

 CALL Cloud library Cloud_Input.Enqueue FUNCTION with INPUT:

Job_Pid

If Process_Status is Failed to Enqueue Return Error Terminate Proc with

Cloud_Input.Enqueue_ERRMSG

RETURNING Process_Status

END FUNCTION

Table 3.4 highlights the Sending function which sends HPC processing jobs to

the cloud for processing via Cloud library Cloud_Input.Enqueue function which

queues the job for processing on the cloud nodes. Once This process is completed a

process status is returned denoting the job has been successfully migrated to cloud.

Table 3.5. HPC+Cloud WorkerOutPutMonitor (D) Pseudocode

Pseudo-code: WorkerOutPutMonitor (D)

Output: Monitors Cloud Output Queue (C-Out)

START FUNCTION

Flag set to 1

WHILE Flag == 1

 CALL Cloud library Cloud_OutPut.Monitor FUNCTION RETURNING

Process_Status

If Process_Status is 1 THEN Flag is set 0

ENDWHILE

 IF Process_Status equal to 1 // Completed Job is on Queue.

27

 THEN

 CALL Output Storage FUNCTION

 ELSE Return Error Terminate Proc with Cloud_OutPut.MonitorERRMSG

END FUNCTION

Table 3.5 highlights the WorkerOutPutMonitor which continuously monitors

the Cloud Output Queue by utilizing Cloud library Cloud_OutPut.Monitor function

which returns status of the job via process status variable. If the job is completed the

Job is put on Cloud Output Queue and the Output Storage is triggered to write

Completed job to the local storage.

Table 3.6. HPC+Cloud Output Storage (E) Pseudocode

Pseudo-code: Output Storage (E)

Output: Sends Completed Jobs to Local Storage

START FUNCTION

CALL Cloud library Cloud Output Dequeue FUNCTION`RETURNING HPC_Job

 IF HPC_Job equal to 1 AND NOT NULL

 THEN

 CALL SystemLibrary WriteIO FUNCTION with Input:HPC_Job

RETURN WriteSuccessStatus

 IF WriteSuccessStatus is 0

 THEN Return Error Terminate Proc with WriteIO_ERRMSG

 IF WriteSuccessStatus is 1

 THEN CALL Cloud_Nodes_DeAllocate RETURN DeallocateSuccess

 IF DeallocateSuccess is 0

 THEN Return Error Terminate Proc with DeAllocate_ERRMSG

28

 ELSE IF HPC_Job is NULL Return Error Terminate Proc with

Cloud_Output_Dequeue_ERRMSG

END FUNCTION

Table 3.6 highlights the Output Storage function which Sends Completed Jobs

to Local Storage. A series of validations are conducted to ensure data is dequeued from

the cloud and written to local storage medium on the on-premise cluster accurately.

Table 3.7 HPC+Cloud Bad Request Sweeper (F)

Pseudo-code: Bad Request Sweeper (F)

Input:Job_Pid

Output: Writes data System logger.

START FUNCTION

 CALL SystemLibrary WriteIO FUNCTION Input: Job_Pid

 // Appends Job_Pid to System Logger.

END FUNCTION

 Table 3.7 highlights The Bad Request Sweeper Component. This function

appends the Job_Pid of jobs that are not migrated to the system log. Jobs that do not

migrate to the cloud continue their processing on on-premise cluster.

3.4 Implementation Method

First, an on-premise Windows HPC cluster was built, and Microsoft Azure

Cloud nodes were allocated to the cluster. The HPC+Cloud framework code was

implemented and installed on the head node of the cluster so that it can interface the

Windows HPC scheduler. Then users submit jobs to the HPC using the job submission

script. Users can edit the privacy flag to flag the job so that the HPC+Cloud framework

is allowed to filter the job and stop it from migrating to the cloud. The rest of the jobs

can be migrated to the cloud to use HPC resources on the cloud.

29

3.5 Summary of Chapter

In this chapter, the HPC+Cloud software framework is modeled using

algorithm descriptions, flowchart, and pseudo code. With this modelling completed,

the HPC+Cloud framework was implemented and then an HPC+Cloud cluster was

created by using the framework.

30

4 Experimental Results and Discussions

In this chapter, benchmarking was first performed to choose a public cloud

provider that will be used with the HPC+Cloud cluster. Upon choosing the public

cloud component, the proposed HPC+Cloud framework was implemented and then an

HPC+Cloud cluster was built based on the framework. Next, the functionality of the

HPC+Cloud cluster was benchmarked to show that the HPC+Cloud cluster can support,

sustain, and complete High Performance Computing workloads successfully.

4.1 Choosing a Public Cloud provider to be the Cloud

component of the HPC+Cloud through benchmarking

 The purpose of benchmarking cloud platforms is to determine which cloud

platform is suitable for implementing the HPC+Cloud algorithm proposed in Chapter

3. After the HPC+Cloud framework is implemented, the next step is to build an

HPC+Cloud cluster. This HPC+Cloud cluster is benchmarked to test its functionality.

The success of the implementation is measured by observing whether the algorithm

can migrate jobs to the cloud for processing and successfully generate and store results

or not. A traditional HPC benchmark is not suitable due to inherent latency in on-

premise to on cloud communication. In a traditional HPC, professional HPC nodes are

connected via Fiber Optic network. If two similarly specified HPC clusters with one

purely on-premise networked via Fiber and another uses a mixture of on-premise and

cloud nodes, naturally the on-premise would outperform the HPC+Cloud

implementation. If additional HPC resources are only needed on a non-regular basis,

therefore some latency affected by transferring data to and from cloud nodes for

processing can be tolerated when using the HPC+Cloud cluster. Also, the cost of

upgrading physical resources outweighs the cost using resources from the cloud.

 The following section is based on the author’s work that has been published in

the conference paper: “Benchmarking large scale cloud computing in Asia Pacific,”

2013 19th IEEE International Conference on Parallel and Distributed System

(ICPADS): Curtin University Malaysia campus currently uses Windows HPC software

platform for its high-performance computing needs. So, the Public Cloud partner

chosen to form the Cloud component of the HPC+Cloud software framework has to

31

integrate well with the existing Microsoft Windows HPC software platform. The

platform of choice favored by Curtin Malaysia is the Windows HPC software

platform[9]. Therefore, the Public Cloud provider of choice is Microsoft’s Azure

Cloud[10]. However, there are two other platforms that are commonly used as public

cloud providers by academic institutions. Australian institutions utilize the Australian

National eResearch Collaboration Tools and Resources Cloud (NeCTAR)[29].

NeCTAR is an Australian Government project to provide public cloud resources to

Australian universities. And the other player of choice among both industry and

academic institutions is the Amazon Public Cloud or commonly known as Amazon

EC2 which is a subsidiary of retail giant Amazon.com[16]. The main reason that the

Amazon EC2 is popular with both academia and industry is that Amazon was an early

pioneer in providing public cloud services. Compared to both NeCTAR and Amazon

Public, Microsoft Azure is a relative newcomer that only started to provide its services

in 2012.

 These three public clouds, namely Microsoft Azure, Amazon EC2, and

NECTAR are benchmarked against one another to determine the best performing

public cloud among the three. The software used to benchmark the cloud is Roy

Longbottom’s Linux benchmarking tools [11].

4.2 Cloud Benchmarking Instance Specifications and

Assumptions

For cloud computing instances (an instance is a unit of computing resource

provided by a cloud provider), the cloud provider provides a fixed computing instance

specification meaning there is no way to adjust the CPU option and memory option to

ensure parity between the different providers. The specifications as seen in Table 4.1

are all in the medium instance for each provider at the time of running the benchmark.

32

Table 4.1. Cloud Benchmarking Instance Specifications.

 Windows

Azure

Amazon NECTAR

Processor AMD Opteron

Processor 4171

HE

Intel Xeon@

CPU E5-2650 0

@ 2.OO GHz

Intel@ Core 2

Duo CPU T7700 @

2.40GHz

Clock Rate Minimum 2095

MHz,

Maximum

2095 MHz

Minimum 1800

MHz,

Maximum

1800 MHz

Minimum 2600

MHz, Maximum

2600 MHz

CPUs 2 2 2

RAM Size 3.36GB 3.66GB 7.80GB

4.3 Classic Benchmark Test Categories.

A. Dhrystone Benchmark

 It is a benchmark[51] used to assess integer processing performance. Table 4.2

shows a comparison between the 3 platforms that the benchmark tests were run on,

namely Amazon, NeCTAR, and Azure. The ratings obtained are that of VAX MIPS

where VAX stands for Virtual Address Extension and MIPS means Million Instruction

per Second.

B. Linpack Benchmark

 Linpack Benchmark[52] measures the floating-point computing power of a

system. Floating point shows a way of representing the approximation of a real number

in such a way that it can support a wide range of values. The Millions Floating-point

Operations per Second (MFLOPS) is the unit by which the benchmark test is

measured.

C. Livermore Loops

 Livermore loops[53] is a benchmark test that is usually run for parallel

computers. Produced for supercomputers consisting of numerous kernels, three

specific types of data sizes are run, and the results obtained are in MFLOPS.

33

 The results generated for overall ratings consist of Maximum, Average,

Geometric mean (Geomean), Harmonic mean (Harmean) and Minimum, whereby

Geomean is the official overall rating. All tests for Livermore loops were completed

over 24 loops and the geometric mean was the one recorded.

D. Whetstone Benchmark

 The Whetstone Single Precision C Benchmark[54] is related to CPU performance

and is meant to check speed ratings in Millions of Whetstone Instructions per Second

(MWIPS).

Table 4.2. Classic Benchmark Test Results (higher is better).

Windows

Azure

Amazon NECTAR

Dhrystone Benchmark

(VAX MIPS rating)

8155 10455.5 10752.28

Linpack Double

Precision Benchmark

(MFLOPS)

1317.95 1603.02 1609.31

Livermore Loops

Benchmark Maximum

Rating (MFLOPS)

2588.9 2733.8 2634.1

Whetstone Single

Precision C Benchmark

MWIPS

(MFLOPS)

2135.854 2111.706 2644.834

4.3.1 Classic Benchmark Overall Comments

 Results for the classic benchmark can be viewed in Table 4.2 and Figure 4.1.

In the Dhrystone Benchmark performance, NECTAR scores 1.3x better than Windows

Azure. However, between NECTAR and Amazon, NECTAR scores 1.03x better.

NECTAR is the best for this benchmark.

 In the Linpack Benchmark performance, NECTAR scores 1.22x better than

Windows Azure. However, between NECTAR and Amazon, NECTAR scores 1.004x

better. NECTAR is the best for this benchmark.

34

 In the Livermore Loops Benchmark performance, Amazon scores 1.056x better

than Windows Azure and between Amazon and NECTAR, Amazon scores 1.038x

better. Amazon is the best for this benchmark.

 In the Whetstone Single Precision C Benchmark performance, NECTAR scores

1.24x better than Windows Azure. However, between NECTAR and Amazon,

NECTAR scores 1.25x better. NECTAR is the best for this benchmark.

 Overall, NECTAR is the best in the classic benchmarks category followed by

Amazon and Windows Azure since NECTAR is superior in 3 benchmark results

compared to others.

Figure 4.1. Classic Benchmark Results.

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

Dhrystone Benchmark
(VAX MIPS rating)

Linpack Double
Precision Unrolled

Benchmark (MFLOPS

Livermore Loops
Benchmark Maximum

Rating
(MFLOPS)

Whetstone Single
Precision Ci Benchmark

MWIPS
(MFLOPS)

Windows Azure Amazon NECTAR

35

4.3.2 Disk, USB, and LAN Benchmarks

This test makes use of direct Input-Output (I/O) for the speed of Local Area

Network (LAN) to avoid data from being cached in the main memory of the Operating

System. Also involved in the benchmark tests are the read/write speed. In this test, a

64Kb file was written, read, and deleted 500 times and the result can be seen in Table

4.3.

Table 4.3. Disk, USB, and LAN Benchmark Test Results

4.3.3 Disk, USB, and LAN Benchmarks Overall Comments

Disk, USB, and LAN performance are critical in determining the processing

throughput of a high-performance computing cluster, as no matter how fast the CPU

is, final processing times are constrained by I/O operations that are ultimately

determined by the read and write speed of the Disc, USB, and Local Area Network

(LAN) interfaces of the processing node. Results for the Disk, USB and LAN

Benchmark Test results can be viewed in Table 4.3 and Figure 4.2.

In the Disk, USB, and LAN Benchmarks, for the write category, Windows

Azure is the best followed by Amazon and NECTAR meanwhile for the read category,

Windows Azure is still the best followed by NECTAR and Amazon. Overall, Windows

Azure is the best followed by Amazon and NECTAR.

Windows

Azure

Amazon NECTAR

Write MB/sec 122.83 25.34 6.23

Read MB/sec 274.74 67.75 92.84

36

Figure 4.2. Disk, USB and LAN Benchmarks. (higher is better)

4.4 Multithreading Benchmarks

 Multithreading influences high performance computing as it shows the efficiency

at which a high-performance computer manages multiple concurrent processes.

A. Simple Add Tests

 The tests involved in Simple Add Tests execute 32-bit and 64-bit integer

instructions as well as 128-bit SSE floating point. The performance is very relative to

the amount of CPU cores available in the system. Since the benchmark test is about

multithreading, each thread is given an independent and different adding code to test

for each thread. The values taken for this test is the average of two aggregates tested

individually.

B. Whetstone Benchmark

 As opposed to the previous Whetstone benchmark, this test focuses on

multithreading applications OpenMP. Again, the number of cores present is a

determinant factor on the speed of the test run. The results taken as reference for the

test are based on the time taken for the last thread to finish and measured in Millions

of Whetstone Instructions per Second (MWIPS).

C. MP SSE (Multi Process Streaming SIMD Extensions) MFLOPS Benchmark

 The purpose of this test is to check for the multiplication of floating-point

calculations with data from higher level of caches or from RAM. These programs can

be used as a burn-in/reliability test and similar functions can be run on a different

0

50

100

150

200

250

300

Write MB/sec Read MB/sec

Windows Azure Amazon NECTAR

37

segment of data. The last Million Floating Point Instructions per Second (MFLOPS)

value from the test is taken as reference.

D. MP Memory Speed Tests

 This test makes use of single and double precision floating point numbers and

integers to test for the speed of the memory. The average value of the read, write and

delete were taken individually and then graphed to figure out the best out of the cloud

systems.

E. MP Memory Bus Speed Tests

 The bus/memory speed is tested by reading all the data at the same time. The

value taken for this test is the ReadAll value of the largest file. This accounts for a

sizeable cache and RAM usage stressing the bus and allowing for an estimation of

maximum bus/memory speed.

F. MP Memory Random Access Speed Benchmark

 This benchmark test is about read and read/write tests that cover cache and RAM

data sizes. The largest file (96MB) is chosen since it uses all the resources and

maximises the stress on the cores for the test giving a very relatable value. The average

of the serial read, read/write, and random read, read/write as well as mutex read,

read/write is taken to give a general idea of how it performs on various platforms.

38

Table 4.4. Multithreading Benchmarks Test Results

 Windows Azure Amazon NECTAR

Multithreading Simple Add

Test (Million Instruction Per

Second)

13874 6343 14552.5

Multithreading Double

Precision Whetstones

(MWIPS)

4257 1981 5012

MP SSE MFLOPS

Benchmark (MFLOPS)
18418 10018 27839

MP Memory Speed Test

(MB/Second)
5902.44 6183.44 6715.44

MP Memory Bus Speed

(MB/Second)
5582 7574 4961

RandMemMP Speeds

(Memory Random Access

Speed Benchmark)

(MB/Second)

2372.33 2608.33 2622.67

4.4.1 Multithreading Benchmark Overall Comments

 Results are illustrated in Table 4.4 and Figure 4.3. For multithreading

benchmarks, NECTAR is the best in 5 out of 6 categories while Amazon is the best in

1 out of 6 categories. Windows Azure fared badly in all categories. However, in the

multithreading add test and multithreading double precision Whetstones, it was close

to NECTAR and the overall best performer in multithreading is NECTAR followed

by Amazon and Windows Azure.

39

Figure 4.3. Multithreading Benchmarks

4.5 OpenMP Benchmarks for Parallel Processing

Performance

A. MemSpeed

 This test makes use of single and double precision floating point numbers and

integers to test for the speed of the memory. The average value of the read, write,

0

5000

10000

15000

20000

25000

30000

Bus Speed
(MB/Second)

MP Memory
Reading Speed
(MB/Second)

Multithreading
Add Test
(Million

Instruction Per
Second)

MP SSE
MFLOPS

Benchmark
(MFLOPS)

Multithreading
Double

Precision
Whetstones

MWIPS)

RandMemMP
Speeds

(Mbytes Per
Second)

Windows Azure Amazon NECTAR

40

and delete were taken individually and then graphed to figure out the best out of the

cloud systems.

B. Original OpenMP Benchmark

 Taking the MFLOPS value, this test behaves in a similar way as Windows

compilation, meaning the performance gains of the number of cores present is relative

to the time taken for the test to complete as compared to a single core. The average

value for data in and out is taken as the comparison value for the different platforms.

Table 4.5. OpenMP Benchmarks Test Results

Windows

Azure
Amazon NECTAR

Memory Reading Speed Test

(MB/Second)
4147.33 6457.78 4095

OpenMP MFLOPS Benchmark

(MFLOPS)
4781 10035 13886

4.5.1 OpenMP Benchmarks Overall Comments

 OpenMP benchmark results are summarized in Table 4.5 and Figure 4.4. For the

OpenMP benchmarks, Amazon is the best in memory reading speed test followed by

Windows Azure and NECTAR, while for OpenMP MFLOPS benchmark, NECTAR

is the best followed by Amazon and Windows Azure. Overall, NECTAR and Amazon

are the best followed by Windows Azure.

41

Figure 4.4. OpenMP Benchmarks

4.5.2 Memory Bus Speed Benchmark

A. Bus Speed Test

 This test makes use of single and double precision floating point numbers and

integers to test for the speed of the memory. The average value of the read, write and

delete were taken individually and then graphed to figure out the best out of the cloud

systems.

B. Random/Serial Memory Test

 This test shows the behaviour of the memory with increasing file size in terms of

data transfer. The values taken are similar to that of the MP Memory tests.

C. SSE And SSE2 Memory Reading Speed Test

 This variation of the SSE (Streaming Single Instruction Multiple Data

Extensions) benchmark measures Single Precision and Double Precision, floating

point speeds, data streaming from caches and RAM. The alterations in this test avoid

intermediate register to register operations to produce much faster speeds. Again, the

largest value is taken as reference and compared across platforms.

0

2000

4000

6000

8000

10000

12000

14000

16000

Memory Reading
Speed Test (MB/Second)

OpenMP MFLOPS
Benchmark (MFLOPS)

Windows Azure Amazon NECTAR

42

Table 4.6. Memory BusSpeed Benchmark results (higher is better)

 Windows Azure Amazon NECTAR

Bus Speed Test
(MB/Second)

5455 7461 2525

Random/Serial Memory
Test (MB/Second)

1850.25 3113.625 1910.375

SSE & SSE2 Memory
Reading Speed Test

(MFLOPS)
4935.25 4267.25 5956.125

4.5.3 BusSpeed Benchmark Overall Comments

 BusSpeed benchmark results can be examined in Table 4.6 and Figure 4.5. In

BusSpeed benchmark, Amazon is the best in bus speed test followed by Windows

Azure and NECTAR, while in random/serial memory test, Amazon is still the best

followed by NECTAR and Windows Azure. For SSE & SSE2 memory reading speed

test, NECTAR is the best followed by Windows Azure and Amazon. Overall, in this

BusSpeed benchmark, Amazon is the best followed by NECTAR and Windows Azure.

Figure 4.5. Memory BusSpeed Benchmark results

0

1000

2000

3000

4000

5000

6000

7000

8000

Bus Speed Test
(MB/Second)

Random/Serial
Memory Test
(MB/Second)

SSE & SSE2 Memory
Reading Speed Test

(MFLOPS)

Windows Azure Amazon NECTAR

43

4.6 Benchmarking Overall Results and Conclusion

Table 4.7. Overall results (higher is better)

 Windows Azure Amazon NECTAR

Classic Benchmarks for

CPU Performance
Third Second First

Disk, USB, and LAN

Benchmarks
First Second Third

Multithreading

Benchmarks
Third Second First

OpenMP Benchmark for

Parallel Processing

Performance

Third Second First

Memory BusSpeed

Benchmark
Third First Second

4.6.1 Conclusion of Benchmarking Public Cloud Providers

 The main aim of this exercise was to identify the best possible candidate for

building an HPC+Cloud high performance cluster that can be deployed quickly and

easily. Windows Azure came in last in almost all categories. However, given that

HPC+Cloud requires high I/O throughput between on-premise HPC which is currently

in the organization and the public cloud, the high I/O throughput is necessary to avoid

data bottlenecks between the HPC and the Cloud.

 Therefore, Windows Azure, despite coming in the last place in all categories

except Disk USB and LAN benchmarks, still is the prime candidate for deployment

for the HPC+Cloud in Curtin Malaysia. Also noted was that many academic

44

institutions that are already using Windows HPC will find easier integration with

Windows Azure than any other public cloud. This is particularly true as Curtin

University Malaysia’s current on-premise HPC is built on Windows HPC[9] and the

choice of Windows Azure will facilitate rapid deployment of existing software and

hardware resources to be quickly combined with the Cloud using the HPC+Cloud

software framework.

4.7 Benchmarking HPC On-Premise vs HPC+Cloud vs HPC

on Cloud

4.7.1 The main purpose of Benchmarking

In this section, benchmarking was conducted to gauge the performance of the

HPC+Cloud cluster against HPC on-premise and HPC on Cloud cluster. To understand

the purpose of the benchmarking exercise, the objective of building the HPC+Cloud

infrastructure must be known. The objective is to test the ability of an on-premise HPC

cluster to use resources on the Cloud using the proposed HPC+Cloud framework. If

the HPC+Cloud cluster configuration produces results when benchmarked and the

results are comparable to existing HPC on-premise and HPC on Cloud cluster

configurations, then it means that HPC+Cloud cluster configuration has the ability to

sustain and complete High Performance Computing loads[55]. HPC+Cloud is an

infant framework that is new, therefore it is important to prove that it is functional.

These benchmarks will prove that the HPC+Cloud framework is functional and able

to deliver results.

It is important to know that the purpose of these benchmarks is not to set up or

expect the HPC+Cloud to be the best performing cluster configuration. By its nature,

HPC+Cloud hardware infrastructure is heterogeneous due to the lack of uniformity

between node configurations. Therefore, the HPC on Cloud is predicted to be the most

likely best performing cluster configuration due to its hardware homogeneity, and the

fact that the hardware software infrastructure is managed entirely by the public cloud

provider Microsoft Azure. Hence, it benefits from hardware vendor optimizations that

are exclusive to Microsoft.

45

4.7.2 Experimental Setup and Assumptions.

Before starting to benchmark the performance of an HPC+Cloud cluster, first

some preliminary testing must be completed to ensure basic functionality of

HPC+Cloud cluster is functional and therefore ready to have its performance

benchmarked against HPC On Premise and HPC on Cloud. The test results are

observed in table 4.8:

Table 4.8 HPC+Cloud framework functionality test results

Test Criteria Test Result

On Premise Cluster Links to Cloud

Nodes

Link is successful. HPC Nodes from

cloud to on-premise nodes can ping each

other.

On-premise cluster can transfer jobs to

on cloud nodes

Transfer is successful. It Is observed that

time to transfer is job data dependent.

Jobs that have higher input data take

longer to transfer.

HPC jobs filtering for jobs with privacy

flag

Filter functions appropriately. The

privacy flag worked to make sure jobs

that users have designated suitable only

for processing on-premise do not

migrate.

HPC+Cloud framework can deallocate

cloud nodes upon successful job

completion

Deallocation of cloud nodes is

successful.

In the previous section, the various public cloud solutions were benchmarked,

and it was determined that Microsoft Azure will be used as the public cloud provider.

Microsoft Azure provides a fixed computing instance specification for cloud

computing instances (a cloud computing instance is a unit of computing resource

provided by a cloud provider). Therefore, it is quite difficult to have the exact same

CPU configuration between on-premise HPC cluster and Microsoft Azure HPC cluster

46

instance. To ensure parity, all CPUs are made to be the same class, that is Xeon based

system from the same generation with a turbo clock speed of 4.8 GHz and a maximum

single-core base frequency of 3.8 GHz. As for the on Cloud HPC instance, Azure

Instance Standard_F4s_v2 is used. However, in a Microsoft Azure HPC cluster,

instances by nature are shared hardware because they belong to the public cloud

provider shared pool of cloud infrastructure. It is the nature of cloud computing where

all CPU, RAM, and storage resources are virtually pooled together. The basic cluster

configuration for HPC+ Cloud are one head node and two compute nodes. One

compute node is on-premise with two CPUs and another compute node is on the Azure

Cloud with Standard_F4s_v2 Cloud instances that provides 4 Virtual CPU cores.

There is a VPN connection between the HPC on-premise and HPC nodes on the cloud.

The on-premise cluster configuration consists of a single cluster with one head

node and two compute nodes with a total of 8 Virtual CPU cores. The On Cloud HPC

cluster configuration consists of a single cluster with 8 CPUs consisting of one head

node and two compute nodes with four Virtual CPUs each. The On Cloud HPC cluster

is a control benchmark to observe how the benchmark will run if purely executed on

Cloud. Head nodes for all three setups are the central control nodes and not used in

processing the problem. Benchmarking is carried out via Roy Longbottom’s Windows

benchmarking tools and Microsoft Lizard. All network, storage, and RAM

configuration are controlled to be as close a like as possible using current Microsoft

Azure hardware configuration information. Table 4.9 summarizes the experimental

setup for benchmarking the various types of cluster configurations.

Table 4.9. Benchmarking Instance Specifications.

 HPC on-premise HPC+Cloud

(a combination of

on-premise and

Cloud nodes)

HPC on Cloud

Processor type 2x compute Nodes

with Intel® Xeon®

E-2244G

1x Azure Instance

Standard_F4s_v2

(Microsoft Azure

rated 4 virtual CPU

cores)

2x Azure Instance

Standard_F4s_v2

(Microsoft Azure

rated 8 virtual CPU

cores)

47

And

1x Premise

Compute Node

(Intel® Xeon® E-

2244G)

CPU speeds Turbo clock speed of 4.8 GHz and a maximum single-core base

frequency of 3.8 GHz

Total Number

of Virtual

CPUs

8 8 8

RAM(GB) 8 8 8

Network

Bandwidth

(Mbps) per

Node

1750 1750 1750

Hard drive

Space (TB)

2 2 2

4.8 Classic Benchmark Test Categories

A. Dhrystone Benchmark

 It is a benchmark used to assess integer processing performance. Table 4.10

shows a comparison between the cluster configurations. The ratings obtained are that

of VAX MIPS where VAX stands for Virtual Address Extension and MIPS means

Million Instruction per Second.

B. Linpack Benchmark

 It is a benchmark used to assess the floating-point processing power of a system.

The Millions Floating-point Operations per Second (MFLOPS) is the unit by which

the benchmark test is measured.

C. Livermore Loops

 Livermore loops is a benchmark for parallel processing. 24 kernels were run three

times at varying Do-loop spans to create short, medium, and long vector performance

measures and the results obtained are in MFLOPS. Maximum, Average, Geometric

48

mean (Geomean), Harmonic mean (Harmean), and Minimum are the findings

generated for overall ratings, with the Geomean being the official overall rating.

D. Whetstone Benchmark

 The Whetstone benchmark, measured in Millions of Whetstone Instructions per

Second (MWIPS) is used for evaluating the performance of scientific applications. It

has several modules aimed to represent a variety of operations that are commonly used

in scientific applications. A combination of Integer and floating-point math operations,

array accesses, conditional branches, and procedure calls are all employed, together

with C specific functions like sin, cos, sqrt, exp, and log.

Table 4.10. Classic Benchmark Test Results (higher is better).

 HPC on-premise HPC+Cloud HPC on Cloud

Dhrystone

Benchmark

(VAX MIPS)

59887.5 60478.6 61979.33

Linpack

Benchmark

(MFLOPS)

19657 21347 22856

Livermore Loops

(MFLOPS)

15567.6 16402.8 17509.4

Whetstone

Benchmark

(MWIPS)

14789 15869 16566

4.8.1 Classic Benchmark Overall Comments

 Results for the classic benchmark can be viewed in Table 4.10 and Figure 4.6. In

the Dhrystone Benchmark performance, HPC on Cloud has the best performance with

61979.33 (VAX MIPS) and an average 2% performance boost compared to the other

two categories. Second is HPC+Cloud with 60478.6 (VAX MIPS), followed by HPC

on-premise 59887.5 (VAX MIPS).

 In the Linpack Benchmark performance, HPC on Cloud has the best performance

with 22856 (MFLOPS) and an average 8% performance boost compared to the other

49

two categories. Second is HPC+Cloud with 21347 (MFLOPS), followed by HPC on-

premise with 19657 (MFLOPS).

 In the Livermore Loops Benchmark performance, HPC on Cloud has the best

performance with 17509.4 (MFLOPS) and an average 6% performance boost

compared to the other two categories. Second is HPC+Cloud with 16402.86

(MFLOPS), followed by HPC on-premise with 15567.6 (MFLOPS).

 In the Whetstone Benchmark performance, HPC on Cloud has the best

performance with 16566 (MWIPS) and an average 6.5% performance boost compared

to the other two categories. Second is HPC+Cloud with 15869 (MWIPS), followed by

HPC on-premise with 14789 (MWIPS).

 The performances of HPC on Cloud, HPC+Cloud and HPC on-premise are very

close to each other given that the CPU configurations are similar using the same CPU

models with the same turbo and base clock frequencies. However, HPC on Cloud

configuration emerges ahead in each benchmark, with an average performance boost

of 6% against the two other categories. This is most likely because HPC on Cloud

system hardware and firmware is highly optimised by the CPU vendor Intel for use on

the Microsoft Azure cloud. On-premise clusters are not typically optimised as they are

COTS (completely off the shelf) hardware, meanwhile HPC+Cloud has a mixture of

optimised cloud infrastructure and on-premises COTS hardware. Overall HPC on

Cloud cluster configuration performs the best in Classic Benchmark test category.

Figure 4.6. Classic Benchmark Results (higher is better).

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

Dhrystone
Benchmark (VAX

MIPS)

Linpack Benchmark
(MFLOPS)

Livermore Loops
(MFLOPS)

Whetstone
Benchmark
(MWHIPS)

HPC on Premise HPC + Cloud HPC on Cloud

50

4.9 I/O Operations Benchmark

This benchmark tests the Read and Write Throughput Input Output Operations

on the compute nodes. To test the actual read write speed, the data is randomly varied

to avoid it being cached in the main memory of the Operating System. Randomly

varied versions of a 64Kb file were written, read, and deleted 500 times and the result

can be seen in Table 4.11.

Table 4.11. I/O Operations Benchmark Test Results (higher is better).

 HPC on-premise HPC+Cloud HPC on Cloud

Write MB/sec 189.6 257.9 308.07

Read MB/sec 489.7 567.7 686.86

4.9.1 I/O Operations Benchmark Overall Comments

I/O Operations Benchmark determines how fast unprocessed data can be read

from the network storage cluster and how fast processed data can be stored to the

network storage cluster, therefore this benchmark also reflects on the network

throughput performance of the cluster. I/O Operations are a potential bottleneck on a

High-Performance Computing cluster. Results for the I/O Operations Benchmark can

be viewed in Table 4.11 and Figure 4.7.

 HPC on Cloud has the best performance in I/O operations benchmark with a

significant average 36% performance boost compared to the other two categories.

Second is HPC+Cloud with another significant average performance boost of 26%

against third place HPC on-premise.

Public cloud systems deploy highly optimised and high throughput mass

storage networks to manage their data storage for use by the HPC cluster and provide

service level guarantees for I/O performance. Therefore, the dominance of the HPC on

Cloud is clearly seen, it is the best in this benchmark, followed by HPC+Cloud, which

partially benefits from the advantages of a mass cloud storage system. HPC on-premise

does not have the benefits of storage vendor optimisations and access to high

throughput mass storage networks provided by the cloud provider. Despite this, one

advantage of HPC on-premise against the other configurations is that storage of data

in an HPC on-premise is closer to the cluster, typically within the cluster LAN and not

51

remotely stored, therefore the performance disparity between HPC on-premise and

others is not as high as it should be.

Figure 4.7. I/O Operations Benchmark. (higher is better)

4.10 Multithreading Benchmarks

 Multithreading has an impact on high-performance computing because it

demonstrates how effectively each independent node in the cluster can manage several

multiple concurrent processing operations.

A. Simple Add Tests

 Simple Add Tests run 32-bit and 64-bit integer instructions as well as 128-bit SSE

floating point instructions. The performance is highly dependent on the number of

CPU cores in the system. Because the benchmark test is focused on multithreading,

each thread is given its own code to test. The data used in this test are the average of

two aggregates that were tested separately.

B. Whetstone Benchmark

 This test, unlike the preceding Whetstone benchmark, concentrates on

multithreading applications. The number of cores present is a determining element in

the test run's speed once again. The test results are based on the time it takes the last

thread to finish, which is measured in Millions of Whetstone Instructions per Second

(MWIPS).

0

100

200

300

400

500

600

700

800

Write MB/sec Read MB/sec

HPC on Premise HPC + Cloud HPC on Cloud

52

C. MFLOPS Program

 The goal of this test is to see if floating point calculations are being multiplied

with data from higher levels of caches or RAM. Similar procedures can be conducted

on a different section of data as a burn-in/reliability test with these programmes. The

test's most recent Million Floating Point Instructions per Second (MFLOPS) figure is

used as a benchmark.

D. Memory Speed Tests

 To measure the memory's speed, this test uses single and double precision floating

point numbers as well as integers. The average value of the read, write, and delete

operations were taken separately and then graphed to determine the optimal figure.

E. Memory Bus Speed Tests

 Reading all data at the same time is used to measure the bus/memory speed. The

ReadAll value of the largest file was used for this test. This accounts for a large cache

and RAM consumption, which puts the bus under stress and allows for an estimate of

the bus/memory speed.

F. Memory Random Access Speed Benchmark

 This benchmark test covers cache and RAM data sizes and includes read and

read/write testing. The largest file (96MB) was chosen since it utilises all of the

resources and puts the most stress on the cores during the test, resulting in a very

relevant result. To get a rough picture of how it performs on different systems, the

average of serial read, read/write, random read, read/write, and mutex read, read/write

is taken.

53

Table 4.12. Multithreading Benchmarks Test Results (higher is better).

 HPC on-premise HPC+Cloud HPC on Cloud

Multithreading

Add Test

(Million

Instruction Per

Second)

57998.6 58955.7 60392.8

Multithreading

 Double

 Precision

 Whetstones

 (MWIPS)

19455.7 20766.6 21050.4

 MFLOPS

 Program

 (MFLOPS)

98056.6 100578.5 116923.8

Memory Speed

(MB/Second)

25776.5 26455.6 27869.1

Memory Bus

Speed

(MB/Second)

29456.6 30456.4 31432.1

Memory Random

Access Speed

(MB/Second)

8997.4 9345.5 10823.2

4.10.1 Multithreading Benchmark Overall Comments

 Results are shown in Table 4.12 and Figure 4.8. For multithreading benchmarks,

HPC on Cloud is clearly the best performing with an average performance boost of 9%

over the other two categories. And HPC+Cloud coming in second place and HPC on-

premise being third. Between second placed HPC+Cloud and third placed HPC on-

premise, on average HPC+Cloud sees a 4% average performance boost over third

placed HP on-premise. Multithreading Benchmarks results are close as all 3 HPC

cluster configuration CPUs are of the same class that is Xeon based system from the

same generation. HPC on Cloud has the upper hand as Public Cloud Providers

54

typically optimise their CPU configuration for High Performance Computing

processing.

Figure 4.8. Multithreading Benchmarks (higher is better)

4.10.2 OpenMP Benchmarks for Parallel Processing Performance

 OpenMP utilizes a shared memory paradigm when doing parallel processing,

hence memory speed and CPU processing power is important to the performance of a

cluster.

A. MemSpeed- Memory Reading Speed Test

 To measure the memory's speed, this test uses single and double precision floating

point numbers as well as integers. The average value of the read, write, and delete

operations were taken separately and then graphed to determine the optimal figure.

B. Original OpenMP Benchmark

 When more than one node is available on a cluster, OpenMP is a system-

independent collection of methods and software that allows for automatic parallel

processing of shared memory data. OpenMP is a vectorizing compiler that is similar

to the High Performance Linpack Benchmark.

0

20000

40000

60000

80000

100000

120000

140000

Add Test
(MIPS)

Whetstones
(MWIPS)

MFLOPS
Program

Memory
Speed

(MB/Second)

Memory Bus
Speed

(MB/Second)

Memory
Random

Access Speed
(MB/Second)

HPC on Premise HPC + Cloud HPC on Cloud

55

Table 4.13. OpenMP Benchmarks Test Results (higher is better).

 HPC on-premise HPC+Cloud HPC on Cloud

MemSpeed

Memory Reading

Speed Test

(MB/Second)

23456.5 25566.5 26799.7

OpenMP

MFLOPS

Benchmark

(MFLOPS)

55345.5 56345.5 57543.9

4.10.3 OpenMP Benchmarks Overall Comments

 OpenMP benchmark results are summarized in Table 4.13 and Figure 4.9. For the

OpenMP benchmarks Memory Speed Test and OpenMP MFLOPS test, HPC on Cloud

comes out ahead with an average performance boost of 6% over the other two

categories. The results are somewhat close as the average performance boost of

second placed HPC+Cloud over third placed HPC on-premise is 5.5%.

 Microsoft Azure hardware optimisation for High Performance Computing allows

the HPC on Cloud to edge out HPC+Cloud and HPC on-premise cluster configurations.

OpenMP parallel processing paradigm takes advantage of the optimization carried out

in the virtual shared memory architecture at the hypervisor level in HPC on Cloud

cluster configuration.

56

Figure 4.9. OpenMP Benchmarks (higher is better)

4.11 High Performance Linpack Benchmark via Windows

Lizard

 A version of Linpack that was optimised for multicore single node processing

was used in the preceding Linpack benchmark in Section 4.3. However now the high-

performance version of Linpack[56] is going to be used to evaluate the performance

of high-performance clusters made up of many compute nodes with multicore CPUs.

High performance Linpack was chosen since it is widely used and performance data

for many public clusters are readily available. The Linpack Benchmark involves

solving a dense system of linear equations. The performance of a cluster for solving a

dense system of linear equations is reflected by the Linpack Benchmark score. Due to

the regularity of the problem, the attained performance is relatively high, and the

performance numbers provide a solid estimate of peak performance of a High-

Performance cluster. Linpack Wizard or Lizard was specially developed, which is

based on a canonical library wrapped in a convenient visual wizard (supplied with the

HPC Tool Pack 2012). This wizard allows an express test with standard parameters

automatically selected by the wizard.

0

10000

20000

30000

40000

50000

60000

70000

MemSpeed Memory Reading
Speed Test (MB/Second)

OpenMP MFLOPS Benchmark
(MFLOPS)

HPC on Premise HPC + Cloud HPC on Cloud

57

Figure 4.10. High Performance Linpack Benchmark (higher is better)

4.11.1 High Performance Linpack Benchmark Overall Comments

 High Performance Linpack Benchmark results can be examined in Table 4.14 and

Figure 4.10. HPC on Cloud comes out on top again with 182848 (MFLOPS) with a

significant average 34% performance boost over the other two categories. But there is

a reversal between HPC on-premise and HPC+Cloud. For the first time in these

benchmarks, the HPC on-premise comes in second place with 157256 (MFLOPS).

HPC+Cloud comes out in a distant third with 120776 (MFLOPS) showing a 23%

performance drop against second placed HPC on-premise. Once again, Microsoft

Azure Public cloud optimization in the internode communication helps the HPC on

Cloud come out on top.

 Linpack by its nature uses a non-shared memory model of parallel processing as

it depends on the MPI (Message Passing Interface) parallel processing paradigm,

where each node has its own memory independently and hence, communication

between nodes is important. The main factor causing the HPC+Cloud to have a slower

processing speed as compared to the other two cluster configurations is the time taken

to transfer HPC jobs to cloud from the on-premise nodes. Internode communication

happens across networks via Virtual Private Network (VPN) from the on-premise

compute nodes to the on cloud compute nodes. Compare this to HPC on premise

cluster and HPC on Cloud cluster, both have internode communication happening

locally within the cluster.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

High Performance Linpack Benchmark via Windows Lizard (MFLOPS)

HPC on Premise HPC + Cloud HPC on Cloud

58

Table 4.14. High Performance Linpack Benchmark (higher is better)

 HPC on-premise HPC+Cloud HPC on Cloud

High Performance

Linpack Benchmark

via Windows Lizard

(MFLOPS)

157256 120776 182848

4.11.2 Summary of Benchmarking Overall Results

Table 4.15. Benchmarking Overall Results

 HPC on-premise HPC+Cloud HPC on Cloud

Classic

Benchmarks for

CPU Performance

Third Second First

Multithreading

Benchmarks

Third Second First

OpenMP

Benchmarks for

Parallel

Processing

Performance

Third Second First

High Performance

Linpack

Benchmark

Second Third First

 Table 4.15 shows that obviously HPC on Cloud emerges as the clear winner in

every benchmark. HPC on Cloud cluster configuration performs the best in Classic

Benchmark test category. Classic Benchmark emphasises CPU performance,

especially at the compute node level. The results are close to each other as all three

cluster configurations use similar CPU class. HPC on Cloud system hardware and

firmware is highly optimised by the CPU vendor Intel for use on the Microsoft Azure

cloud. On-premise clusters are not typically optimised as they are COTS (completely

59

off the shelf) hardware, meanwhile HPC+Cloud has a mixture of optimised cloud

infrastructure and on-premises COTS hardware.

 Multithreading benchmarks the cluster CPUs ability to handle processing threads.

HPC on Cloud is clearly the best performing, with HPC+Cloud in second place and

HPC on-premise being third. All three HPC cluster configuration CPUs are of the same

class, that is Xeon based system from the same generation. Public Cloud Providers

typically optimise their CPU configuration for High Performance Computing

processing. Therefore, once again HPC on Cloud has the upper hand.

 The next two categories, OpenMP Benchmarks and High Performance Linpack

are specifically geared to benchmarking cluster performance. HPC on Cloud is the best

in OpenMP Benchmarks, followed by HPC+Cloud and HPC on-premise. OpenMP

utilizes a shared memory paradigm, where separate parallel processes in the cluster

share a common virtual memory space. HPC on Cloud takes advantage of the

optimization carried out in the virtual shared memory architecture at the hypervisor

level in HPC on Cloud cluster configuration. What this means is that because RAM

resources are pooled together in public cloud infrastructure, OpenMP processing takes

advantage of it naturally as OpenMP is a shared memory paradigm parallel processing.

 Meanwhile in High Performance Linpack benchmark, HPC on Cloud with

182848 (MFLOPS) takes the lead once more. However, there is a significant reversal.

For the first time in these benchmarks, HPC on-premise places second with 157256

(MFLOPS), while HPC+Cloud places third with 120776 (MFLOPS) for the first time.

High Performance Linpack is built on the MPI (Message Passing Interface) which uses

a non-shared memory parallel processing paradigm, which necessitates

communication between nodes. Because it takes time to transfer HPC jobs from on-

premise computing nodes to cloud compute nodes, therefore HPC+Cloud has a slower

processing performance than the other two cluster setups. A Virtual Private Network

(VPN) connects on-premise compute nodes to cloud compute nodes, allowing

internode communication across networks. Internode communication, on the other

hand, takes place locally within the cluster in both HPC on-premise and HPC on Cloud

clusters.

60

4.12 Significance of The Benchmarking Results of

HPC+Cloud Cluster

 The benchmarking exercise met its goal of observing how well an on-premise

HPC cluster can utilise Cloud resources using HPC+Cloud framework. The

HPC+Cloud cluster combination gives similar results to existing HPC on-premise and

HPC on Cloud cluster setups when benchmarked. As a result, the benchmarks have

demonstrated that the HPC+Cloud cluster architecture can support, sustain, and

complete High Performance Computing workloads successfully. This validation is

important as the HPC+Cloud framework is a new framework. The benchmarking

exercise also exposed a weakness of HPC+Cloud cluster infrastructure as it requires

internode communication across networks that potentially can be a bottleneck to the

HPC+Cloud cluster processing performance. This bottleneck will become a significant

issue to the performance of HPC+Cloud cluster if the number of nodes increase and

potentially more internode communications occur between on-premise compute and

on-premise cloud nodes.

4.13 Summary of the Chapter

 In this chapter, three public cloud providers: Amazon, Microsoft Azure and

NeCTAR were benchmarked. It was determined that Microsoft Azure was the best fit

for HPC+Cloud software framework. The next step was that the HPC+Cloud cluster

was implemented and benchmarked against an HPC on-premise cluster and an HPC

on Cloud cluster. Figure 4.11 presents a summary of the achievements that were

concluded in Chapter 4. In this chapter, by conducting these HPC benchmarks, the

goal of demonstrating that the HPC+Cloud cluster can support, sustain, and complete

High Performance Computing workloads successfully was achieved.

61

Figure 4.11. Summary of Chapter Four

Choosing a Public Cloud provider Via

Classic
Benchmarks
for CPU
Performance

Multithreading
Benchmarks

OpenMP
Benchmarks for
Parallel
Processing
Performance

Memory
Bus Speed
Benchmark

Linpack
Benchmark

Azure VS Amazon VS

NECTAR

Azure Wins the Benchmarking test

And is used as Cloud Node for Experiments

Experiment 1.

HPC on Premise

Experiment 2.

 HPC + Cloud

Experiment 3.

HPC on Cloud

Evaluating Each Experiment

Classic
Benchmarks
for CPU
Performance

Multithreading
Benchmarks

OpenMP
Benchmarks
for Parallel
Processing
Performance

High
Performance
Linpack
Benchmark

HPC On Cloud Emerges Winner in each Benchmark

Second Place Overall is HPC+Cloud

Third Place Overall is HPC on Premise

62

5 Conclusions and Future Work

5.1 Conclusions

The HPC Cloud software framework enables on-premise HPC systems to scale

up without making costly hardware investments. Organizations with existing HPC

clusters will be able to scale and upgrade their clusters using the HPC+Cloud

framework at a lower cost than alternative HPC implementation architectures such as

the HPC cluster implemented on grids, HPC cluster implemented on the Cloud and

HPC cluster implemented on the Hybrid Cloud, all which were discussed in Chapter

two of the thesis. When using external computing resources from the public cloud,

privacy and legal concerns are an issue. However, the proposed HPC+Cloud

framework handles this issue by filtering HPC jobs and ensuring privacy and legal

compliance.

In this research, three public cloud providers: Amazon, Microsoft Azure and

NeCTAR were benchmarked. It was determined that Azure was the best fit for the

proposed HPC Cloud software framework. The HPC+Cloud cluster was implemented

and benchmarked against HPC on-premise cluster and HPC on Cloud cluster. By

conducting these HPC benchmarks, the goal of demonstrating that the proposed

HPC+Cloud cluster is functional and can support, sustain, and complete High

Performance Computing workloads successfully was achieved.

5.2 Summary of Objectives Accomplished

Alternate approaches to scale HPC implementation architectures such as the

HPC cluster implemented on grids, HPC cluster implemented on the Cloud and HPC

cluster implemented on the Hybrid Cloud were investigated and compared against the

proposed HPC+Cloud framework. The advantages and disadvantages of each

implementation architectures were discussed in Chapter 2.

In Chapter 3, the proposed HPC+Cloud framework was modelled using

flowcharts and pseudocode and then, the framework was implemented. The

framework implemented a software flag to manage privacy and legal concerns to

ensure only HPC jobs permitted by the administrator were allowed to migrate

63

externally to the cloud. Using the privacy flag variable, the HPC+Cloud framework

filters HPC jobs and does not allow those jobs to migrate to the on cloud nodes hence

ensuring privacy and legal compliance.

Next, the Microsoft Azure public cloud, Amazon and NeCTAR were

benchmarked to determine the best public cloud provider to combine with the proposed

HPC+Cloud software framework architecture. As a result, Microsoft Azure was

selected as the Public Cloud provider in Chapter 4.

The HPC+Cloud cluster was built on Microsoft Azure public cloud. The

HPC+Cloud cluster worked seamlessly for scheduling jobs on the integrated public

cloud using the HPC+Cloud framework. To validate the implemented HPC+Cloud

software framework, its functionality was further benchmarked in chapter 4.

The benchmarking exercise met its goal of observing how well an on-premise

HPC cluster can utilize Cloud resources using the proposed HPC+Cloud framework.

The HPC+Cloud cluster gave similar results to existing HPC on-premise and HPC on

Cloud cluster setups when benchmarked. The benchmarks in section 4.7 have

demonstrated that the proposed HPC+Cloud cluster architecture can support, sustain,

and complete High Performance Computing workloads successfully. This validation

is important as the proposed HPC+Cloud framework is a new framework.

The benchmarking exercise also exposed a weakness of HPC+Cloud cluster

infrastructure as it requires internode communication across networks from the

organization on-premise to the cloud. This potentially can be a bottleneck to the

HPC+Cloud cluster processing performance. This bottleneck will become a significant

issue to the performance of HPC+Cloud cluster if the number of nodes increases and

potentially more internode communications occur between on-premise compute nodes

and on cloud nodes.

5.3 Future Work

One suggested future direction for this research is to do further benchmarking

on the internode communications that occur between on-premise compute nodes and

on cloud nodes. The purposes are to investigate further on its effects on the efficiency

of the proposed HPC+Cloud framework, and to investigate ways to overcome the

communications bottlenecks between the on-premise HPC nodes and on cloud HPC

nodes.

64

References

[1] P. Mell and T. Grance, “The NIST-National Institute of Standars and

Technology- Definition of Cloud Computing,” NIST Spec. Publ. 800-145, p. 7,

2011.

[2] K. R. Sajay and S. S. Babu, “A study of cloud computing environments for High

Performance applications,” Proc. 2016 Int. Conf. Data Min. Adv. Comput.

SAPIENCE 2016, pp. 353–359, 2016, doi: 10.1109/SAPIENCE.2016.7684127.

[3] A. Calatrava, G. Molto, E. Romero, M. Caballer, and C. De Alfonso, “Towards

Migratable Elastic Virtual Clusters on Hybrid Clouds,” Proc. - 2015 IEEE 8th

Int. Conf. Cloud Comput. CLOUD 2015, pp. 1013–1016, 2015, doi:

10.1109/CLOUD.2015.139.

[4] S. R. Balakrishnan, S. Veeramani, J. A. Leong, I. Murray, and A. S. Sidhu,

“High Performance Computing on the Cloud via HPC+Cloud software

framework,” Proc. 5th Int. Conf. Eco-Friendly Comput. Commun. Syst.

ICECCS 2016, pp. 48–52, 2017, doi: 10.1109/Eco-friendly.2016.7893240.

[5] V. Simic, B. Stojanovic, and M. Ivanovic, “Optimizing the performance of

optimization in the cloud environment–An intelligent auto-scaling approach,”

Futur. Gener. Comput. Syst., vol. 101, pp. 909–920, 2019, doi:

10.1016/j.future.2019.07.042.

[6] M. Singh, “An Overview of Grid Computing,” Proc. - 2019 Int. Conf. Comput.

Commun. Intell. Syst. ICCCIS 2019, vol. 2019-Janua, pp. 194–198, 2019, doi:

10.1109/ICCCIS48478.2019.8974490.

[7] G. Zhang, Y. Yao, and C. Zheng, “HPC environment on Azure cloud for

hydrological parameter estimation,” Proc. - 17th IEEE Int. Conf. Comput. Sci.

Eng. CSE 2014, Jointly with 13th IEEE Int. Conf. Ubiquitous Comput. Commun.

IUCC 2014, 13th Int. Symp. Pervasive Syst. , pp. 299–304, 2015, doi:

10.1109/CSE.2014.83.

[8] M. Li, X. Yang, Z. Yu, and X. Li, “MyCloud: On-demand virtual cluster

provisioning on HPC resources,” Proc. - 2013 IEEE Int. Conf. High Perform.

Comput. Commun. HPCC 2013 2013 IEEE Int. Conf. Embed. Ubiquitous

Comput. EUC 2013, pp. 72–79, 2014, doi: 10.1109/HPCC.and.EUC.2013.20.

[9] J. HUTCHINSON, “Curtin trials DNA sequencing in Azure,” ITNEWS, 2012.

65

https://www.itnews.com.au/news/curtin-trials-dna-sequencing-in-azure-

271076.

[10] D. Chappell, “WINDOWS AZURE AND WINDOWS HPC Sponsored by

Microsoft Corporation,” no. March, 2012.

[11] F. Ding, D. A. Mey, S. Wienke, R. Zhang, and L. Li, “A study on today’s cloud

environments for HPC applications,” Commun. Comput. Inf. Sci., vol. 453, pp.

114–127, 2014, doi: 10.1007/978-3-319-11561-0_8.

[12] M. Bahrami and M. Singhal, “A dynamic cloud computing platform for eHealth

systems,” 2015 17th Int. Conf. E-Health Networking, Appl. Serv. Heal. 2015,

pp. 435–438, 2015, doi: 10.1109/HealthCom.2015.7454539.

[13] W. Nie, X. Xiao, Z. Wu, Y. Wu, F. Shen, and X. Luo, “The research of

information security for the education cloud platform based on appscan

technology,” Proc. - 5th IEEE Int. Conf. Cyber Secur. Cloud Comput. 4th IEEE

Int. Conf. Edge Comput. Scalable Cloud, CSCloud/EdgeCom 2018, pp. 185–

189, 2018, doi: 10.1109/CSCloud/EdgeCom.2018.00040.

[14] T. Passerini, J. Slawinski, U. Villa, and V. Sunderam, “Experiences with cost

and utility trade-offs on IaaS clouds, grids, and on-premise resources,” Proc. -

2014 IEEE Int. Conf. Cloud Eng. IC2E 2014, pp. 391–396, 2014, doi:

10.1109/IC2E.2014.51.

[15] F. Isaila, J. Carretero, and R. Ross, “CLARISSE: A Middleware for Data-

Staging Coordination and Control on Large-Scale HPC Platforms,” Proc. -

2016 16th IEEE/ACM Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2016, pp.

346–355, 2016, doi: 10.1109/CCGrid.2016.24.

[16] M. S. Kanna, “Loosely coupled MTC applications for multicloud deployment

of computing clusters,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016,

pp. 4785–4790, 2016, doi: 10.1109/ICEEOT.2016.7755629.

[17] R. Bevilacqua, “A brief history of the evolution of HPC at a research institution

in Argentina,” CACIDI 2016 - Congr. Aergentino Ciencias la Inform. y Desarro.

Investig., pp. 7–10, 2016, doi: 10.1109/CACIDI.2016.7785991.

[18] C. Langin, “We have an HPC system-now what?,” ACM Int. Conf. Proceeding

Ser., vol. Part F1287, 2017, doi: 10.1145/3093338.3093341.

[19] V. Karagiannis, “Compute node communication in the fog: Survey and research

challenges,” IoT-Fog 2019 - Proc. 2019 Work. Fog Comput. IoT, pp. 36–40,

2019, doi: 10.1145/3313150.3313224.

66

[20] E. S. Jung, K. Maheshwari, and R. Kettimuthu, “Pipelining/Overlapping data

transfer for distributed data-Intensive job execution,” Proc. Int. Conf. Parallel

Process., pp. 791–797, 2013, doi: 10.1109/ICPP.2013.93.

[21] R. F. E. Silva and P. M. Carpenter, “High Throughput and Low Latency on

Hadoop Clusters Using Explicit Congestion Notification: The Untold Truth,”

Proc. - IEEE Int. Conf. Clust. Comput. ICCC, vol. 2017-Septe, pp. 349–353,

2017, doi: 10.1109/CLUSTER.2017.19.

[22] M. Yang and H. Bie, “A low-overhead cluster management mechanism based

on node information storage of max-heap tree,” Proc. 2019 IEEE 3rd Inf.

Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, no. Itnec,

pp. 1578–1582, 2019, doi: 10.1109/ITNEC.2019.8729272.

[23] T. T. Nguyen, H. Matsutani, and M. Koibuchi, “Low-reliable low-latency

networks optimized for HPC parallel applications,” NCA 2018 - 2018 IEEE

17th Int. Symp. Netw. Comput. Appl., 2018, doi: 10.1109/NCA.2018.8548063.

[24] M. Kang, D. I. Kang, J. P. Walters, and S. P. Crago, “A Comparison of System

Performance on a Private OpenStack Cloud and Amazon EC2,” IEEE Int. Conf.

Cloud Comput. CLOUD, vol. 2017-June, pp. 310–317, 2017, doi:

10.1109/CLOUD.2017.47.

[25] S. Delfin, N. P. Sivasanker, A. Anand, and N. Raj, “Fog computing: A new era

of cloud computing,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC

2019, no. Iccmc, pp. 1106–1111, 2019, doi: 10.1109/ICCMC.2019.8819633.

[26] H. Castro, M. Villamizar, O. Garces, J. Perez, R. Caliz, and P. F. P. Arteaga,

“Facilitating the Execution of HPC Workloads in Colombia through the

Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace,” Proc. -

2016 16th IEEE/ACM Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2016, no.

December 2014, pp. 693–700, 2016, doi: 10.1109/CCGrid.2016.52.

[27] B. Power and J. Weinman, “Revenue growth is the primary benefit of the cloud,”

IEEE Cloud Comput., vol. 5, no. 4, pp. 89–94, 2018, doi:

10.1109/MCC.2018.043221018.

[28] K. Saritha, “Cloud in the De-Duplication Mechanism,” no. March, pp. 13–15,

2015.

[29] Z. Li et al., “NeCTAR Research Cloud System,” vol. 12, no. 2, pp. 1–12, 2016.

[30] S. Xu, S. M. Ghazimirsaeed, J. M. Hashmi, H. Subramoni, and D. K. Panda,

“Mpi meets cloud: Case study with amazon ec2 and microsoft azure,” Proc.

67

IPDRM 2020 4th Annu. Work. Emerg. Parallel Distrib. Runtime Syst.

Middleware, Held conjunction with SC 2020 Int. Conf. High Perform. Comput.

Networking, Storage Anal., pp. 41–48, 2020, doi:

10.1109/IPDRM51949.2020.00010.

[31] A. Prabhakaran and J. Lakshmi, “Cost-Benefit Analysis of Public Clouds for

Offloading In-House HPC Jobs,” IEEE Int. Conf. Cloud Comput. CLOUD, vol.

2018-July, pp. 57–64, 2018, doi: 10.1109/CLOUD.2018.00015.

[32] J. Weinman, “Hybrid Cloud Economics,” IEEE Cloud Comput., vol. 3, no. 1,

pp. 18–22, 2016, doi: 10.1109/MCC.2016.27.

[33] S. Deshmukh and S. Sumeet, “Big Data Analytics Using Public Cloud

Infrastructure: Use Cases and Cost Economics,” Proc. - 2015 Int. Conf. Comput.

Intell. Commun. Networks, CICN 2015, pp. 782–784, 2016, doi:

10.1109/CICN.2015.159.

[34] I. Pelle, J. Czentye, J. Doka, and B. Sonkoly, “Towards latency sensitive cloud

native applications: A performance study on AWS,” IEEE Int. Conf. Cloud

Comput. CLOUD, vol. 2019-July, pp. 272–280, 2019, doi:

10.1109/CLOUD.2019.00054.

[35] S. Sok, C. Plewnia, S. Tanachutiwat, and H. Lichter, “Optimization of Compute

Costs in Hybrid Clouds with Full Rescheduling,” Proc. - 2020 IEEE Int. Conf.

Smart Cloud, SmartCloud 2020, pp. 35–40, 2020, doi:

10.1109/SmartCloud49737.2020.00016.

[36] S. Wu, L. Liu, H. Jiang, H. Che, and B. Mao, “PandaSync: Network and

workload aware hybrid cloud sync optimization,” Proc. - Int. Conf. Distrib.

Comput. Syst., vol. 2019-July, pp. 282–292, 2019, doi:

10.1109/ICDCS.2019.00036.

[37] H. M. Tufo et al., “Janus: Co-designing HPC systems and facilities,” State Pract.

Reports, SC’11, 2011, doi: 10.1145/2063348.2063370.

[38] K. Ahmed, J. Liu, and K. Yoshii, “Enabling Demand Response for HPC

Systems through Power Capping and Node Scaling,” Proc. - 20th Int. Conf.

High Perform. Comput. Commun. 16th Int. Conf. Smart City 4th Int. Conf. Data

Sci. Syst. HPCC/SmartCity/DSS 2018, pp. 789–796, 2019, doi:

10.1109/HPCC/SmartCity/DSS.2018.00133.

[39] A. Souza, M. Rezaei, E. Laure, and J. Tordsson, “Hybrid resource management

for HPC and data intensive workloads,” Proc. - 19th IEEE/ACM Int. Symp.

68

Clust. Cloud Grid Comput. CCGrid 2019, pp. 399–409, 2019, doi:

10.1109/CCGRID.2019.00054.

[40] R. Guharoy et al., “A theoretical and detail approach on grid computing a

review on grid computing applications,” 2017 8th Ind. Autom.

Electromechanical Eng. Conf. IEMECON 2017, pp. 142–146, 2017, doi:

10.1109/IEMECON.2017.8079578.

[41] H. Setia and A. Jain, “Literature survey on various scheduling approaches in

grid computing environment,” 1st IEEE Int. Conf. Power Electron. Intell.

Control Energy Syst. ICPEICES 2016, 2017, doi:

10.1109/ICPEICES.2016.7853429.

[42] J. Emeras, S. Varrette, and P. Bouvry, “Amazon elastic compute cloud (EC2)

vs. in-house HPC platform: A cost analysis,” IEEE Int. Conf. Cloud Comput.

CLOUD, no. Cc, pp. 284–293, 2017, doi: 10.1109/CLOUD.2016.44.

[43] K. Goga, A. Parodi, P. Ruiu, and O. Terzo, “Performance analysis of WRF

simulations in a public cloud and HPC environment,” Adv. Intell. Syst. Comput.,

vol. 611, no. 2016, pp. 384–396, 2018, doi: 10.1007/978-3-319-61566-0_35.

[44] S. Kortas and M. A. Shaikh, “Towards an HPC Service Oriented Hybrid Cloud

Architecture Designed for Interactive Workflows,” Proc. Urgent. 2020 2020 Int.

Work. Urgent Interact. HPC, Held conjunction with SC 2020 Int. Conf. High

Perform. Comput. Networking, Storage Anal., pp. 36–46, 2020, doi:

10.1109/UrgentHPC51945.2020.00010.

[45] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Eucalyptus-based private clouds:

availability modeling and comparison to the cost of a public cloud,” Computing,

vol. 97, no. 11, pp. 1121–1140, 2015, doi: 10.1007/s00607-015-0447-8.

[46] S. Dash and S. K. Pani, “E-Governance Paradigm Using Cloud Infrastructure:

Benefits and Challenges,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 843–

855, 2016, doi: 10.1016/j.procs.2016.05.274.

[47] S. Harrell and A. Howard, “Hybrid HPC Cloud Strategies from the Student

Cluster Competition,” IEEE Int. Conf. Cloud Comput. CLOUD, vol. 2018-July,

pp. 186–193, 2018, doi: 10.1109/CLOUD.2018.00031.

[48] M. U. Tahir, M. R. Naqvi, S. K. Shahzad, and M. W. Iqbal, “Resolving Data

De-Duplication issues on Cloud,” 2020 Int. Conf. Eng. Emerg. Technol. ICEET

2020, pp. 17–21, 2020, doi: 10.1109/ICEET48479.2020.9048214.

[49] K. Vinay and S. M. D. Kumar, “Virtual Machine based Hybrid Auto-Scaling

69

for Large Scale Scientific Workflows in Cloud Computing,” Proc. 3rd Int. Conf.

I-SMAC IoT Soc. Mobile, Anal. Cloud, I-SMAC 2019, pp. 526–530, 2019, doi:

10.1109/I-SMAC47947.2019.9032507.

[50] N. Mangla and M. Singh, “Effect of scheduling policies on resource allocation

in market oriented grid,” Proc. Turing 100 - Int. Conf. Comput. Sci. ICCS 2012,

pp. 212–216, 2012, doi: 10.1109/ICCS.2012.30.

[51] J. Lee, J. Ko, and Y. J. Choi, “Dhrystone million instructions per second–based

task offloading from smartwatch to smartphone,” Int. J. Distrib. Sens. Networks,

vol. 13, no. 11, 2017, doi: 10.1177/1550147717740073.

[52] G. Tan, C. Shui, Y. Wang, X. Yu, and Y. Yan, “Optimizing the LINPACK

Algorithm for Large-Scale PCIe-Based CPU-GPU Heterogeneous Systems,”

IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2367–2380, 2021, doi:

10.1109/TPDS.2021.3067731.

[53] J. Dongarra et al., “Livermore Loops,” in Encyclopedia of Parallel Computing,

D. Padua, Ed. Boston, MA: Springer US, 2011, pp. 1041–1043.

[54] W. J. Price, “A benchmark tutorial,” IEEE Micro, vol. 9, no. 5, pp. 28–43, 1989,

doi: 10.1109/40.45825.

[55] B. Armstrong, H. Bae, R. Eigenmann, F. Saied, M. Sayeed, and Y. Zheng,

“HPC benchmarking and performance evaluation with realistic applications,”

2006 SPEC Benchmark Work., 2006.

[56] JEAN-F. TOMB et al., “Comparative benchmarking of cloud computing

vendors with High Performance Linpack,” Nature, vol. 388. pp. 539–547, 1997.

70

List of Symbols and Acronyms

HPC High Performance Computing

GNU GNU’s not Unix

SaaS Software as a Service

IaaS Infrastructure As a Service

PaaS Platform As a Service

LAN Local Area Network

RAM Random Memory Access

CPU Central Processing Unit

Resj Resj are the Resources such as compute nodes and memory allocated to the
job

Execj Execj is the application to be execute

Envj Envj is the software stack (e.g., operating system and libraries)

Dj Dj is the Data of the job

Sj Sj is the suitability of the job as determined by the user, application, or the
HPC+Cloud is stored into the Privacy_Flag variable

Job_Pidj Job_Pidj is the process Identifier of the job

UT HPC Utilization Threshold

Geomean Geometric Mean

Harmean Harmonic mean

SSE Streaming Single Instruction Multiple Data Extensions

FPU Floating Point Unit

ICECCS International Conference on Eco-friendly Computing and Communication
Systems

ICPADS International Conference on Parallel and Distributed System

MFLOPS Millions Floating-point Operations per Second

MWIPS Millions of Whetstone Instructions per Second

NeCTAR National eResearch Collaboration Tools and Resources Cloud

OpenMP Open Multi-Processing

71

Linpack Linear Equations Package

COTS Completely Off the Shelf

VPN Virtual Private Network

Authorship Acknowledgement
“Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.”

