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Abstract 
 

A clustered computing system is a High Performance Computing (HPC) 

system that is used to capture the combined processing power of all cluster nodes. 

Clusters are developed to process large data sets and programs by breaking them down 

into smaller tasks. These tasks are then sent for processing to individual computing 

nodes. Clusters are used for tasks such as processor-intensive scientific computing 

work. Hosting all the HPC nodes in a single premise has always been the simplest HPC 

implementation. It is designed using costly computer nodes that have a high number 

of CPU cores and plenty of computer memory. In terms of scaling and upgrading of 

an on-premise only HPC cluster, organizations normally just purchase more nodes, 

upgrade CPUs, upgrade RAM or storage for each node. However, buying more 

hardware is quite ineffective as it takes time to procure new hardware and upgrade the 

existing HPC systems, yet the demand for computing power may be immediate. New 

hardware could also be potentially underutilized. As HPC clusters are normally built 

with peak demand in mind, organizations try to anticipate demand spikes and to make 

sure that the HPC system can handle that maximum or peak load. However, demand 

spikes are normally only seasonal and as a result, the extra CPU and memory resources 

are left underutilized. One alternative to physically upgrading an HPC cluster is to 

utilize cloud computing. Cloud Computing is a new paradigm for computing 

infrastructure establishment. This paradigm moves the placement of the computing 

infrastructure to the internet to lessen the expenses related to hardware and software 

resources management. The HPC+Cloud framework has been implemented to enable 

on-premise HPC jobs to use resources from cloud computing nodes. As part of 

designing the software framework, Public Cloud providers: Amazon AWS, Microsoft 

Azure and NeCTAR have been benchmarked and Microsoft Azure has been 

determined to be the most suitable cloud component in the proposed HPC+Cloud 

software framework. Finally, an HPC+Cloud cluster was built using the HPC+Cloud 

software framework and then was validated by conducting HPC processing 

benchmarks. The HPC benchmarks, namely the most important ones being OpenMP 

and High Performance Linpack, have demonstrated that the HPC+Cloud cluster can 

support, sustain, and complete High Performance Computing workloads successfully. 
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1 Introduction 
 

This chapter discusses the concept of HPC+Cloud and details the reason this 

implementation is suitable to solve the current shortcomings of on-premise HPC 

clusters. It introduces concepts of cloud computing and high performance clusters 

(HPC) and how these separate computing models are combined in the HPC+Cloud 

implementation framework. 

 

1.1 Motivation 

A clustered computing system[1] is a High-Performance Computing (HPC) 

system that is used to capture the combined processing power of all cluster nodes. 

Clusters are developed to process large data sets and programs by breaking them down 

into smaller tasks. These tasks are then sent for processing to individual computing 

nodes. Clusters are used for tasks such as modeling, data analytics, web services, data 

mining, and many other types of processor-intensive work. Hosting all the HPC nodes 

in a single premise has always been the simplest HPC implementation. It is designed 

using costly computer nodes that have a high number of CPU cores and plenty of 

computer memory. Organizations typically only buy more nodes, update CPUs, 

upgrade RAM or storage for each node when it comes to scaling and upgrading an on-

site only HPC cluster[2]. It is very ineffective to purchase more hardware as it takes 

time to procure new hardware and update the current HPC systems. New hardware 

may also be underused theoretically. However, the demand for computing power could 

be immediate. As HPC clusters are typically designed with peak demand in mind, 

organizations are trying to predict demand requests and ensure that the HPC system 

can support the unique limit or peak load. Demand spikes, however, are typically only 

seasonal and the extra CPU and memory resources are thus left underutilized during 

off-peak season. Therefore, using cloud computing to physically upgrade an HPC 

cluster is one of the alternative solutions. Cloud computing[1] is a  new model for 

computer technology development. This model shifts the location of the computer 

infrastructure to the internet to minimize the costs associated with it. The HPC+Cloud 

software framework[3] enables on-premise HPC systems to scale up without 

expensive capital investments in computer hardware. Organizations that currently 
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have existing HPC clusters will be able to use the HPC+Cloud framework to scale and 

upgrade their HPC clusters at a lower cost compared to other HPC implementation 

architectures. Existing HPC clusters can also increase the breadth of applications 

supported as now additional storage and computing power are easily available on 

demand from the cloud. As part of this research study, the HPC+Cloud architecture 

will be deployed in a HPC cluster. It will have the significant impact of increasing the 

amount of processing power available to researchers and students for scientific 

computing. Scientific computing (also known as computational science) is a branch of 

science that deals with developing mathematical models and numerical solution 

approaches, as well as employing computers to assess and solve scientific and 

technical problems. In practice, it refers to the use of computer simulation and other 

forms of computation to solve issues in a variety of scientific fields. Traditional HPC 

clusters are built to amplify computing power and allow higher amounts of computing 

power to be pooled together to solve scientific computing problems. The HPC+Cloud 

framework will help the adoption of cloud resources for the HPC cluster and allay 

privacy concerns by only allowing processes that meet user privacy requirements to 

migrate to cloud nodes for processing. Organizations that create new HPC clusters 

using the HPC+Cloud architecture no longer need to make a large up-front investment 

in expensive high performance and high storage machines just to get started with high 

performance computing. 

In summary: 

 There is a demand for a cost-effective way to scale up and upgrade HPC 

clusters and the existing approach of buying new hardware to upgrade 

computing clusters are expensive if underutilized. 

 The HPC+Cloud architecture provides a seamless way for existing HPC 

users to use cloud resources for scientific computing without having to 

learn a new method of working.  

 

1.2 Research Gap 

HPC+Cloud[4] is a proposed HPC software framework that allows current 

HPC applications to scale out into the public cloud. The local HPC application can 

leverage the extra computing nodes from the public cloud. In previous years, on-
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premise HPC scaling was carried out by either manual hardware procurement to scale 

on-premise hardware[5], or by grid computing[6], or by totally abandoning the on-

premise cluster and moving the HPC onto the cloud[7]. The proposed HPC+Cloud 

framework is an intermediate solution that utilizes existing on-premise HPC hardware. 

Work performed by Li et al.[8] which proposes the MyCloud framework that works in 

concept in a similar way to the proposed HPC+Cloud framework. However, the 

MyCloud framework is specifically geared to the Openstack cloud platform built on 

GNU/Linux, meanwhile our proposed HPC+Cloud framework is geared to the 

Windows HPC cluster as Curtin University’s HPC cluster is currently built on 

Windows HPC[9]. Currently, Microsoft[10]  does provide tools for migrating jobs 

from on-premise to the cloud, however the solution is a piecemeal solution that is 

applied  manually by the administrator  and does not check the suitability of the process 

before migrating it to the cloud. Another similar framework that provisions cloud 

nodes is created by Ding et al.[11] which uses the Windows HPC cluster based on 

Microsoft’s approach[10]. However, unlike Li et al.[8], Microsoft[10] and Ding et 

al.[11], the proposed HPC+Cloud adds an element of administrative control allowing 

administrators to make sure only suitable and allowable HPC jobs that meet privacy 

and legal concerns can be migrated to the Cloud. Privacy and legal concerns are an 

issue when adopting cloud based technology as seen in [12] and [13]. Another more 

recent framework that achieves similar goals as the HPC+Cloud framework is the 

WoBinGO software framework proposed by Simic et al.[5] in 2019. This framework 

allows migration from the on-premise cluster to HPC. However, it is built only for the 

Linux Openstack platform and does not check the suitability of the process before 

migrating it to the cloud as opposed to the proposed HPC+Cloud framework. Another 

advantage of the proposed HPC+Cloud framework is that cloud nodes are promptly 

decommissioned and deallocated when not in use, unlike Li et al.[8], Microsoft[10] 

and Ding et al.[11] approaches to migrating on-premise jobs to cloud nodes. This is an 

effective way to save cost as cloud resources are charged per-minute on time regardless 

of usage[14]. 

 

1.3 Research Questions 

a) What is the best available public cloud that can be used to build an HPC+Cloud 

cluster? 



4 
 

b) How to model a software framework that can build an HPC+Cloud cluster 

using the best available public cloud and on-premise cluster, and handle legal 

and privacy data issues in processing HPC jobs in the cloud? 

c) How to determine HPC+Cloud cluster’s relative performance to existing 

architectures such as HPC on Premise and HPC on Cloud? 

Figure 1.1 HPC+Cloud 

1.4 Aim, Objectives, and Scope 

 The primary aim of this research is to design, implement and deploy high 

performance computing (HPC) solution that utilizes on-premise HPC compute nodes 

and HPC on cloud nodes as seen in Figure 1.1. The key objectives of this research are 

as follows: 

1. To determine the right public cloud provider to combine with the 

HPC+Cloud software framework architecture. 

2. To design and implement an HPC cluster that works seamlessly for 

scheduling jobs on the integrated public cloud using the HPC+Cloud 

software framework. 

3. To ensure the proposed framework must be able to filter the HPC processes 

that can be scalable to the cloud as there are privacy, and legal concerns. 
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4. To validate the deployed HPC+Cloud software framework cluster by 

benchmarking its performance. 

 

To achieve these research objectives, the scope of activities includes the following: 

1. Benchmarking various public clouds to determine a suitable candidate for 

integrating with a local HPC cluster. 

2. Configuring the local HPC cluster to use the HPC+Cloud software 

framework. 

3. Implementing the HPC+Cloud cluster by building a test HPC+Cloud 

cluster. 

 

1.5 Research Contributions 

This research produces two major contributions as follows: 

1.  The proposed HPC+Cloud framework specifies and models a software framework 

for moving on-premise HPC jobs onto cloud nodes built on the Microsoft Azure 

Public Cloud platform. It further refines the work performed by Li et al.[8] that 

used the Openstack on GNU/Linux.  

2.   The proposed research also improves Ding et al.[11] ‘s work on the Microsoft 

Azure Public Cloud platform and Microsoft Windows HPC platform by checking 

the suitability of HPC processing jobs based on privacy and legal concerns before 

moving them to cloud nodes for processing. Privacy[12] and legal[13] concerns 

are main obstacles to the adoption of cloud technology for HPC computing. The 

HPC+Cloud software framework examines every job before it is allowed to leave 

the on-premise HPC cluster.  

Finally, the research objective of determining the right public cloud provider 

to combine with the HPC+Cloud software framework architecture was achieved. To 

achieve this objective, HPC benchmarks were utilized and then it was concluded that 

Microsoft Azure Public Cloud was the best cloud node to be used with the HPC+Cloud 

framework. The next objective achieved is to design and implement an HPC cluster 

that works seamlessly for scheduling jobs on the integrated public cloud using the 

HPC+Cloud software framework. The framework determined the scalability of the 

process. Not all HPC processes could be scalable to the cloud as there are privacy, and 

legal concerns. The final objective that has been achieved is to validate the deployed 
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HPC+Cloud software framework cluster by benchmarking its performance against 

existing alternatives such as HPC on Premise and HPC on Cloud. 

 

1.6 Thesis Structure 

 This chapter consists of the introduction of the research topic, where the 

research motivation, research gap, research aim, objectives, and scope are identified. 

Chapter two discusses the background information about cloud computing, high 

performance computing clusters, and the various existing implementation approaches 

that are being used currently. Discussions will be detailed on the strengths and 

weaknesses of current approaches and how the HPC+Cloud software framework 

addresses them. Chapter three then describes the algorithms and modeling of the 

proposed HPC+Cloud software framework in terms of flow chart and pseudocode. 

This is to prepare the proposed HPC+Cloud software framework for the experimental 

setup and discussions of experimental results in chapter four. In chapter four, the 

experimental results of benchmarking various public clouds to determine a suitable 

candidate for integrating with a local HPC cluster are discussed. Next, the HPC on-

premise cluster, HPC+Cloud cluster and the HPC on Cloud clusters are benchmarked 

and the results are analysed and discussed. Finally, chapter five concludes the whole 

thesis with conclusions and recommendations for future work. 

 

1.7 Summary of Chapter 

In this chapter, the motivation behind this research work is presented and the 

proposed HPC+Cloud software framework overview is presented. However, the 

presented information lacks background literature support. Thus, background 

information and literature review shall be presented in the next chapter to clarify and 

identify the core information that shapes the whole idea behind the proposed 

HPC+Cloud software framework. 
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2 Background and Literature Review 
 This chapter comprises of two parts. The first part discusses the background 

technology needed for the HPC+Cloud, namely high-performance computing cluster 

and cloud computing. The second part zooms specifically on the various approaches 

or specifically HPC implementation architectures that have been used to scale and 

upgrade on-premise only HPC clusters that compete with the proposed HPC+Cloud 

software framework.  

 

2.1 High Performance Computing  

The following section is based on the author’s work that has been published in 

the conference paper: "High Performance Computing on the Cloud via HPC+Cloud 

software framework," 2016 Fifth International Conference on Eco-friendly Computing 

and Communication Systems (ICECCS). 

 A networked clustered computing system can perform as a high performance 

computing (HPC) system[15]. The cluster Operating System is the software that 

enables a networked clustered computing system to harness the combined computing 

capability of all nodes in a cluster. Clusters are used to break down big applications 

and big amounts of data into smaller processing tasks. Individual computing nodes are 

then subsequently assigned to these tasks for processing. Despite multiple computers 

that are networked[16], the cluster seems to function as a single computer completing 

computationally heavy processing chores. Simulation, data analytics, online services, 

data mining, bioinformatics, and other computationally heavy processing 

activities[17] are solved using clusters. Clusters enhance speed and/or reliability over 

a single supercomputer for such workloads and are generally considerably more cost-

effective than utilising a single supercomputer. Only the head node[18], which serves 

as a scheduler, may be accessed in an HPC cluster system. This node serves as a 

connection point between the user and the cluster. The cluster's head node serves as a 

launchpad for tasks operating in the cluster. The computing nodes[19] that are linked 

to the head node perform the actual processing. 

Processing is completed utilizing either pipeline flows or sweep flows, 

depending on the kind of task delivered to the cluster. Processing workloads that 

execute in a sweep flow[7] in an HPC cluster are jobs that are split into processes that 
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may be processed completely in parallel with no communication between the cluster 

nodes that execute each process. Sweep flow jobs are sometimes referred to as jobs 

that are embarrassingly parallel. 

Other processing tasks in the cluster may use a pipeline flow to execute[20]. 

Threaded processing tasks are processed via pipeline flows. These threads are 

interdependent and must generally be run in a certain order. However, there are 

exceptions to this rule, such as when a job is partially pipelined. This occurs when a 

pipeline step (a processing node) completes a partial processing of the data. These 

partial results will then be transmitted to the next processing node, which will 

immediately begin processing the partial results while continuing to analyse the 

remaining data in parallel. 

Pipeline flow tasks must communicate between nodes and processes because 

job threads are spread throughout nodes in the cluster. In an HPC cluster, both pipeline 

flow nodes and sweep flow nodes must interact with the head node to provide 

processing output. In an HPC cluster, latency[21] becomes a concern due to all the 

connections required. Parallel processing techniques and middleware frameworks[8] 

have been used at the software level to optimize and decrease the amount of 

communication overhead[22] between nodes. However, the actual network 

architecture still limits the majority of these software improvements. Most existing and 

older HPC clusters are now built utilizing Fiber Channel, which employs a 

combination of copper wire and high-speed fiber optic cabling[23]. InfiniBand[23], a 

form of communications link for data flow between CPUs and I/O devices that offers 

throughput of up to 54 gigabits per second, is often used in contemporary next-

generation HPC clusters. InfiniBand is also scalable, having quality of service (QoS) 

and failover capabilities[8]. Compared to Fiber Channel, it offers a significant benefit. 

Fiber Channel is only a transmission channel between the HPC node's network 

interfaces. Meanwhile, InfiniBand skips the traditional network interface and permits 

direct connection between HPC cluster nodes at the CPU bus level, allowing nodes in 

an HPC cluster to be connected. The cost of implementing InfiniBand is the major 

deterrent to its use. Because the Layer 2 physical cabling in an existing HPC cluster 

must be removed, InfiniBand is generally employed primarily in high-end HPC 

clusters or cloud data centres. Using a cloud computing service to access more 

processing nodes and scale up the HPC cluster is one approach to take advantage of 

InfiniBand's low latency interconnects on a budget[24]. InfiniBand is a very expensive 
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technology to deploy on the premise clusters. If a person wants to get the benefits of 

InfiniBand technology, then subscribing to a cloud service and scaling up existing on 

premise HPC cluster to use cloud computing nodes would be one way to get the 

benefits and advantages of InfiniBand at a lower cost than renovating his or her current 

on-premise setup and deploying InfiniBand physically on an on premise HPC cluster. 

Processing HPC workloads transferred to the cloud would allow most HPC jobs to 

benefit from the InfiniBand used in cloud data centre networks, since most Cloud Data 

Centres are now designed utilizing InfiniBand. 

 

2.2 Cloud Computing 

Cloud computing is gradually establishing itself as a new paradigm for 

computer infrastructure setup. This paradigm shifts the network infrastructure's 

location in order to reduce the costs of managing hardware and software resources. 

Cloud computing[1] is defined by the National Institute of Standards and Technology 

as an architecture that allows for ubiquitous, convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be quickly provisioned and released with minimal 

management effort or service provider interaction. The usage of hosted services 

through the internet is referred to as cloud computing. It's also a fundamental shift in 

operational design, in which software is no longer bound to a single piece of physical 

hardware. Because of the cloud's flexibility, computing resources may be quickly 

transferred depending on the needs of the user. 

Infrastructure as a service (IaaS), Platform as a service (PaaS), and Software 

as a service (SaaS) are three different types of cloud computing service models[26]. 

These three service models differ from traditional IT design, which often requires an 

enterprise to handle all IT resources on its own. When the cloud computing paradigm 

is chosen, IT components are handled by cloud service providers, and cost reductions 

are immediately realized by the enterprise[27]. 

There are three types of cloud computing implementation architectures: public, 

private, and hybrid[28]. A public cloud computing paradigm is one that delivers hosted 

services via the internet. Public cloud services are either free (NeCTAR)[29] or require 

customers to pay each time they utilize the service (Azure, Amazon EC2)[30]. Users 

must have their own disaster recovery and data backup procedures in place. It is well 
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known that public cloud providers only provide the computing infrastructure such as 

VMs and storage, and the public using the public cloud must have their own disaster 

recovery and data backup procedures in place. Public cloud provider can provide those 

two services but there will be at extra cost on top of the cost of infrastructure. The 

cloud is usually multi-tenant and controlled and maintained at a data center owned by 

the cloud service provider. Cloud computing, which is a form of shared architecture, 

saves expenses, because the service provider owns the underlying infrastructure. 

Therefore, visibility and control are limited in a public cloud, according to Mell and 

Grance[1]. 

Behind the firewall, a private cloud is an exclusive computing paradigm that 

delivers services to a small number of individuals. Because certain businesses (such as 

banks, and hospitals) are worried about data security, they prefer private clouds to 

public clouds. Private clouds are among the least widely used of all cloud architectures, 

owing to high hardware and installation costs[31]. Although this cloud is not very cost-

effective, it offers the best level of security when compared to other cloud models. 

One or more private clouds plus one or more public clouds combined make up 

a hybrid cloud. It's a scenario in which an organization manages certain resources 

internally on a private cloud while the remainder is handled externally on a public 

cloud[32]. Because the local infrastructure interacts with the processing power of a 

public cloud, hybrid cloud helps companies to maximize the use of their IT 

infrastructure while lowering IT costs. The length of load peaks is relatively brief while 

utilizing the public cloud, which compensates for the high premium imposed by the 

public cloud provider, making the hybrid cloud more cost efficient than using the 

private cloud alone[33]. To address the latencies of internet connections, a hybrid 

cloud must be developed specifically to synchronize data and activities across the 

private and public clouds[34]. Hybrid cloud technology, specifically the application 

layer, transport layer, and session layer stack optimizations[35] that allow private and 

public clouds to seamlessly synchronize with each other[36], can now be used to 

connect a local on-premise HPC cluster with cloud-based HPC processing nodes, 

hence the term HPC+Cloud. 

The main benefit of the proposed HPC+Cloud paradigm is the ability to grow 

the HPC cluster by on-demand provisioning of new virtual processing nodes from the 

cloud. The proposed HPC+Cloud paradigm inherits all of the benefits of the hybrid 

cloud, but with less administrative overhead than a hybrid cloud because there is no 
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need to operate a private cloud on-premise. Despite the benefits of combining public 

and private clouds, hybrid clouds need a significant investment in network equipment 

to set up a private cloud on-premise. The proposed HPC+Cloud framework design, on 

the other hand, eliminates the need to construct a private cloud in order to use 

HPC+Cloud. To setup the current HPC, all that is required is to supply processing 

cloud nodes using the HPC+Cloud software framework, all of which will be discussed 

in further detail in the next section. 

 

2.3 Existing HPC Implementation Architectures 

HPC systems are clustered systems that are created to execute computationally 

heavy tasks using specialised designs. The various implementation architectures used 

in HPC clusters are discussed in this section. 

A. On-Premise Local HPC cluster 

As illustrated in Figure 2.1, the simplest HPC deployment has traditionally been to 

host all of the HPC nodes in a single premise. To guarantee that the HPC cluster is 

powerful, costly compute nodes with a large number of CPU cores and ample 

computer memory are used. Furthermore, the nodes interact through high speed 

computer networks to guarantee high-speed, low-latency communications between 

HPC computing nodes and the head node[14]. Organizations often acquire extra nodes, 

update CPUs, RAM, or hard drive storage for each node when growing and upgrading 

an on-premises only HPC cluster.  
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Figure 2.1 On-Premise Local HPC cluster 

Physically updating hardware on an HPC cluster, on the other hand, has 

drawbacks. Purchasing extra hardware is useless since procuring new hardware and 

upgrading current HPC systems takes time[37]. This is time that researchers cannot 

afford to waste since the need for computer power may be urgent, and demand for 

processing resources is growing faster than supply[38]. On the other hand, because 

most high-performance computing clusters are constructed with peak demand in mind, 

newly procured hardware upgrades may be underused. In other words, as they strive 

to predict demand surges and ensure that the HPC system can manage the highest or 

peak load. Utilization Demand peaks, on the other hand, are usually just seasonal, and 

the increased CPU and memory resources are left unused during off-peak seasons [39]. 
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B. HPC cluster implemented on grids. 

Grid computing is a type of distributed computing technology that uses the internet 

to supply computing power[40]. Figure 2.2 depicts a simple implementation of an HPC 

cluster based on grid computing. It is made up of a grid of clusters that are dispersed 

around the globe in diverse geographical areas. To make HPC software compatible 

with the grid computing architecture, a grid computing solution necessitates rewriting 

HPC software and developing a middleware software. This code reworking and 

middleware development is not a simple task. Grid takes advantage of distant clusters 

located all over the world. Latency becomes an issue as a result of this. Although there 

is a built-in grid software middleware available to aid with latency, the grid cluster's 

wide geographic diversity remains a significant issue to overcome[41]. Grid does not 

address the issue of scaling HPC cluster hardware and software. In comparison to the 

proposed HPC+Cloud design, which allows HPC hardware to be updated on demand, 

decreasing the cost of upgrading an HPC cluster, the grid still requires significant 

hardware and software[41] costs to expand and upgrade. Furthermore, cloud hardware 

is controlled by cloud service providers with excellent fault tolerance and scalability 

[44]. Typical grid computing systems, on the other hand, provide no such assurances 

and offer services on a best-effort basis[42]. 
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Figure 2.2 HPC cluster implemented on grid 

C. HPC cluster implemented on the Cloud 

A fully cloud-based HPC cluster is another HPC implementation design. Both the 

cluster head node and the processing nodes are cloud-based[43]. Figure 2.3 shows a 

HPC on cloud cluster setup. When an HPC cluster is deployed on a public cloud, the 

public cloud architecture, which is elastic in nature, takes care of the expanding and 

updating the capabilities of an HPC cluster[2]. The upfront expense of using the public 

cloud alone to replace a complete existing on-premise HPC infrastructure is the 

primary flaw in using HPC on Cloud to upgrade an HPC cluster. Because all current 

on-premise local hardware and software must be virtually replicated on the Public 

Cloud IaaS, add to that the cost of discarding existing hardware from the local on-

premise HPC cluster, and because the entire cluster processing will take place outside 

of the local on-premise boundary, the cost per unit of computing for HPC on cloud 

would be quite high[42].  
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Figure 2.3. HPC cluster implemented on the cloud 

D. HPC cluster implemented on the Hybrid Cloud 

As previously stated, a hybrid cloud is made up of one or more private clouds and 

one or more public clouds. Figure 2.4 shows how a hybrid cloud may be used to run 

an HPC cluster. An environment in which an organization manages some resources 

internally on the private cloud while the rest is handled externally on the public cloud. 

In the hybrid cloud, HPC clusters can be implemented[44]. The hybrid cloud appears 

to be a suitable option since workloads from on-premise private clouds may be 

effortlessly moved to the public cloud on demand, and software licenses for the private 

cloud are only purchased once. The primary issue is the cost of establishing a private 

cloud on a local level[45]. The hardware and software costs of establishing a private 

cloud on a company's premises are exorbitant. There's also the administrative cost of 

running a private cloud, as well as the public cloud's HPC cluster and virtual HPC 
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nodes[46]. The present on-premise HPC cluster's hardware and software architecture 

would have to be modified to suit the private cloud. 

 

Figure 2.4. HPC cluster implemented on the hybrid cloud 

2.4 HPC+Cloud Contrasted with Existing Implementation 

Architectures 

The proposed HPC+Cloud architecture's main distinguishing feature is that it 

allows for on-demand scalability at a low initial cost. The relatively cheaper setup cost 

is due to the fact that it makes use of existing on-premise HPC cluster processing nodes 

while also utilizing cloud processing nodes[47]. The proposed HPC+Cloud 

architecture utilizes existing hybrid cloud technologies to alleviate the high latency 

concerns that cloud technology has. The proposed HPC+Cloud also takes advantage 

of existing architecture application layer, transport layer, and session layer stack 

optimizations that allow private cloud and public cloud to synchronize flawlessly. 

HPC On Cloud appears to be a fantastic option at first sight, as it also offers 

on-demand scalability. However, moving an existing HPC cluster fully to the cloud is 

too expensive, particularly in terms of start-up expenses. This is due to the fact that 

HPC on Cloud requires current on-premise hardware and software to be virtually 
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duplicated in the cloud[48]. In contrast, the proposed HPC+Cloud simply uses the 

cloud to provide more processing nodes as needed, and therefore only has a portion of 

its infrastructure in the cloud. 

HPC on Hybrid Cloud appears to be a viable option as well, since it allows for 

on-demand scaling[49]. However unlike the proposed HPC+Cloud, which uses 

existing on-premises infrastructure, HPC on hybrid cloud requires considerable 

additional hardware and software investment[3] to transform existing on-premises 

equipment to become a Private Cloud in order to build an Hybrid Cloud. The expense 

of running a Private Cloud as part of the Hybrid Cloud inside an existing organization 

might also be exorbitant depending on the computational and redundancy needs.  

HPC on grid does enable on-demand scalability, but only to a limited extent, 

because processes can be spread throughout the grid cluster's numerous nodes[50]. 

This is a big issue because grids are generally dispersed geographically[6], resulting 

in latency issues that influence HPC processing time while on the grid. Grid computing 

platforms provide no assurances about demand scaling and deliver services with the 

best effort possible. In contrast to the proposed HPC+Cloud architecture, which 

includes service level agreements with bandwidth and uptime assurances from the 

cloud service provider. Figure 2.5 depicts an overview of the differences between the 

various implementation architectures. 

When compared to alternative HPC implementation architectures, the 

HPC+Cloud implementation architecture offers the most benefits. Relatively lower 

start-up costs, ability to leverage existing infrastructure from the on-premise cluster, 

and ability to work effectively even with relatively lower bandwidth are three major 

aspects that distinguish HPC+Cloud from alternative architectures. 



18 
 

 

Figure 2.5. Key Distinctives of various HPC implementation architectures 

  

2.5 Summary of Chapter 

This chapter is divided into two sections. The first section covers the 

HPC+Cloud background technologies, such as high-performance computing clusters 

and cloud computing. The second section focuses on the several techniques, or HPC 

implementation architectures, that have been utilised to grow and update on-premise 

only HPC clusters that compete with the proposed HPC+Cloud software framework. 

Different implementation architectures were compared and contrasted with the 

proposed HPC+Cloud. 

In the next chapter, the HPC+Cloud software framework will be examined in 

detail by describing the algorithms and modeling the software framework in flowchart 

and pseudocode.
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3 Methodology of the HPC+Cloud Software 

Framework 
 

The main goal of the HPC+Cloud software framework is to allow the sending 

of HPC applications jobs to the cloud when the resource on the local HPC cluster 

exceeds a prefixed utilization threshold. Also, the framework selectively chooses 

which processes can be migrated to the cloud and if it is scalable according to user 

requirements. 

HPC+Cloud is the module that enables the HPC to link up with the public 

cloud. The HPC+Cloud consists of the following processes as illustrated in Figure 3.1. 

Workload Monitoring (A) monitors the HPC cluster utilization threshold. When the 

utilization threshold is reached by the HPC cluster, HPC jobs are sent to Batching (B) 

component. Batching (B) component analyses the suitability of the job by checking 

that a job’s Privacy Flag Variable. This variable determines the job’s suitability for 

entering the cloud. The Sending part of (C) sends the suitable processes to the Cloud 

input Queue for processing in the cloud. Upon process job completion, process jobs 

are placed on Cloud Output Queue. Worker Output monitoring component (D) 

continuously monitors the Cloud Output Queue. Once there are completed jobs in the 

Cloud Output Queue, the Worker Output Monitoring component (D) triggers the 

Output Storage Component (E) to copy and store the data generated by the job in the 

local storage facility. Bad Request Timeout Sweeper (F) runs continuously in the 

background during steps A, B, C and D. It Appends the Job_Pid of jobs that are not 

migrated to the system log. Jobs that do not migrate to the cloud continue their 

processing on on-premise cluster. 
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Figure 3.1. HPC+Cloud framework components 

3.1 HPC+Cloud Software framework Algorithm 

The framework HPC+Cloud framework is designed only to process one job at 

a time. If multi jobs are needed, another instance of the application is run in parallel. 

Every time a new job comes, a new instance of the application is run. If there is sharing 

of common resources across application instances, the operating system takes care of 

it. 

An HPC application job consists of a compute task or a data transfer task and 

the job’s resource requirements. An HPC job j can be represented by the tuple that 

describes the HPC job:  

   

Job Description:  

Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩ 

Where:  

 Resj  are the resources such as compute nodes and memory allocated to the 

job.  

 Execj is the application to be executed,  

 Envj   is the software stack (e.g., operating system and libraries),  

 Dj      is the Data of the job. 
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 Sj   is the suitability of the job as determined by the user, application, or the 

HPC+Cloud is stored into the Privacy_Flag variable. 

if a job is not allowed to migrate to the cloud for privacy, or legal reasons 

the status is stored here in this flag variable. 

 Job_Pidj is the process Identifier of the job. 

 

The Resource Monitor (A) runs a service monitoring the HPC system utilization 

threshold (UT). 

1. When UT is reached by the HPC system, HPC jobs are sent to Batching(B) and 

Sending (C) components. 

a. Batching component analyzes the suitability of the job (from the information 

found in Sj) according to the following constraint: Job meets user requirements 

of privacy as stated in privacy flag variable. 

b. The Sending component (C) queues and sends the job to the Cloud input Queue 

(C-In) based on the process id (Job_Pid) of the HPC job. 

2. Upon Job completion, jobs are placed on Cloud Output Queue (C-Out). 

3. Worker Output monitoring component (D) continuously monitors the Cloud 

Output Queue(C-Out). 

a. Once there are completed jobs in the Cloud Output Queue (C-Out), Worker 

Output Monitoring component (D) triggers the Output Storage Component (E) 

to copy and store the Dj generated by the job in the local storage facility. 

4. Bad Request Timeout Sweeper (F) runs continuously during steps 1,2 and 3. It 

appends the Job_Pid of jobs that are not migrated to the system log. Jobs that do 

not migrate to the cloud continue their processing on on-premise cluster.
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3.2 HPC+Cloud Software Framework Flowchart 

 

 Figure 3.2 illustrates the HPC+Cloud software framework algorithm described 

in Section 3.1, in the form of flowchart. 

 

Figure 3.2. Software framework flowchart 
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3.3 HPC+Cloud Software Framework Pseudocode 

The following tables contain the HPC+Cloud software framework that is 

further refined into detailed pseudo code. 

Table 3.1. HPC+Cloud Main Function Pseudocode 

Pseudo-code: HPC+Cloud Main Function  

Input: Job Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩ 

Output: Select Jobs suitable for migration to the cloud. 

START MAIN 

SET Utililization_Threshold to User_Defined_Preset 

CALL ResourceMonitor FUNCTION Find Current Utilization Value RETURN 

Current_Utilization  

        IF Current_Utilization is bigger than or equal to Utililization_Threshold 

            THEN 

            CALL Batching FUNCTION Select a suitable Job RETURN Job_Pid 

            CALL Sending   FUNCTION with INPUT: Job_Pid 

            CALL WorkerOutPutMonitor FUNCTION 

      ENDIF 

END MAIN          

Table 3.1 describes the main function of the HPC+Cloud framework. The main 

function accepts user input of an HPC processing job Desc(j). The utilization pre-set 

is set according to user defined pre-set. Meaning the user can determine ahead of time 

at what level of on-premise cluster utilization should be reached before processes can 

be migrated to the cloud for processing. The ResourceMonitor function checks the on-

premise utilization, if the on-premise cluster current utilization is bigger than or equal 

to the utilization pre-set utilization threshold, the process of migrating jobs to the cloud 

is begun. Next the Batching function is called to determine if the process is suitable 
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for migration, the Batching function returns the process id if the job is allowed to 

migrate. Next the Sending function uses this process id and migrates the job to the 

cloud. Next the WorkerOutPutMonitor function returns the state of the job. Whether 

the job is completed or still processing. 

Table 3.2. HPC+Cloud Resource Monitor (A) Pseudocode 

Pseudo-code: Resource Monitor (A)  

Input: None. 

Output: Current Utilization Value of the on-premise cluster. 

START FUNCTION 

CALL HPC_Cluster_Utilization_Library FUNCTION  

IF Current Utilization is NULL Return Error Terminate Proc with 

Utilization_Library_ERRMSG  

RETURN Current_Utilization   

END FUNCTION 

In Table 3.2, the resource Monitor function is called by the main function. The 

function then uses the built-in library function for the on-premise HPC to get the given 

cluster utilization. 

Table 3.3. HPC+Cloud Batching (B) Pseudocode 

Pseudo-code: Batching (B) 

Data Processed: Job Desc(j) = ⟨Resj, Execj, Envj, Dj, Sj, Job_Pidj ⟩ 

Output: Returns Process id (Job_Pid) of the job suitable for cloud migration 

START FUNCTION 

While (Not End of Jobs List in Cluster) 

        CALL SystemLibrary FUNCTION Read_cluster_Job_data Return Desc(j) 
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        CALL SystemLibrary Extract Job Data FUNCTION with INPUT: Desc(j) 

RETURN Job_Pid, Privacy_Flag 

IF Job_Pid is NULL OR Privacy_Flag is NULL `THEN Return Error Terminate 

Proc with SystemLibraryExtract_ERRMSG       

IF PrivacyFlag equal to 0 

THEN 

         RETURN Job_Pid 

ELSE 

         RETURN ERROR: Job is unsuitable for Migration. Trigger: Inform HPC 

Head node 

         CALL Bad Request Timeout Sweeper FUNCTION INPUT: Job_Pid 

END WHILE LOOP 

END FUNCTION 

Table 3.3 highlights the Batching function, which checks the job for its 

suitability to be migrated to the cloud from the list of jobs currently on the cluster. It 

achieves this by checking the privacy flag variable. SystemLibrary Extract function is 

used to extract the flag variable from Desc(j).  

This ensures only HPC jobs that meet user privacy requirements be migrated 

to the cloud. If the Job is suitable the process id of the job that is returned. The way 

this mechanism works is that users can determine ahead of time which jobs are 

exclusively meant to stay within the organization. The Privacy flag variable is 

initialised by the user when the HPC job is created and stored in the data structure 

Desc(j). 

  Table 3.4 HPC+Cloud Sending (C) Pseudocode 

Pseudo-code: Sending (C) 

Input: Job_Pid 
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Output: Sends suitable Jobs to Cloud Input Queue (C-In) 

START FUNCTION 

SET INPUT=Job_Pid 

 CALL Cloud library Cloud_Input.Enqueue FUNCTION with INPUT:  

Job_Pid 

If Process_Status is Failed to Enqueue Return Error Terminate Proc with 

Cloud_Input.Enqueue_ERRMSG 

RETURNING Process_Status 

END FUNCTION 

Table 3.4 highlights the Sending function which sends HPC processing jobs to 

the cloud for processing via Cloud library Cloud_Input.Enqueue function which 

queues the job for processing on the cloud nodes. Once This process is completed a 

process status is returned denoting the job has been successfully migrated to cloud. 

Table 3.5. HPC+Cloud WorkerOutPutMonitor (D) Pseudocode 

Pseudo-code: WorkerOutPutMonitor (D) 

Output: Monitors Cloud Output Queue (C-Out) 

START FUNCTION 

Flag set to 1 

WHILE Flag == 1 

 CALL Cloud library Cloud_OutPut.Monitor FUNCTION RETURNING 

Process_Status 

If Process_Status is 1 THEN Flag is set 0 

ENDWHILE 

 IF Process_Status equal to 1 // Completed Job is on Queue. 
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      THEN    

         CALL Output Storage FUNCTION  

            ELSE Return Error Terminate Proc with Cloud_OutPut.MonitorERRMSG 

END FUNCTION 

Table 3.5 highlights the WorkerOutPutMonitor which continuously monitors 

the Cloud Output Queue by utilizing Cloud library Cloud_OutPut.Monitor function 

which returns status of the job via process status variable. If the job is completed the 

Job is put on Cloud Output Queue and the Output Storage is triggered to write 

Completed job to the local storage. 

Table 3.6. HPC+Cloud Output Storage (E) Pseudocode 

Pseudo-code: Output Storage (E)  

Output: Sends Completed Jobs to Local Storage  

START FUNCTION 

CALL Cloud library Cloud Output Dequeue FUNCTION`RETURNING HPC_Job 

 IF HPC_Job equal to 1 AND NOT NULL 

      THEN    

         CALL SystemLibrary WriteIO FUNCTION with Input:HPC_Job  

RETURN WriteSuccessStatus 

                    IF WriteSuccessStatus is 0  

                    THEN Return Error Terminate Proc with WriteIO_ERRMSG 

                    IF WriteSuccessStatus is 1  

                    THEN CALL Cloud_Nodes_DeAllocate RETURN DeallocateSuccess 

                    IF DeallocateSuccess is 0  

                    THEN Return Error Terminate Proc with DeAllocate_ERRMSG 
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                    ELSE IF HPC_Job is NULL Return Error Terminate Proc with 

Cloud_Output_Dequeue_ERRMSG 

END FUNCTION 

Table 3.6 highlights the Output Storage function which Sends Completed Jobs 

to Local Storage. A series of validations are conducted to ensure data is dequeued from 

the cloud and written to local storage medium on the on-premise cluster accurately. 

Table 3.7 HPC+Cloud Bad Request Sweeper (F) 

Pseudo-code: Bad Request Sweeper (F) 

Input:Job_Pid 

Output: Writes data System logger.   

START FUNCTION 

 CALL SystemLibrary WriteIO FUNCTION Input: Job_Pid 

                  // Appends Job_Pid to System Logger. 

END FUNCTION 

 Table 3.7 highlights The Bad Request Sweeper Component. This function 

appends the Job_Pid of jobs that are not migrated to the system log. Jobs that do not 

migrate to the cloud continue their processing on on-premise cluster. 

3.4 Implementation Method 

First, an on-premise Windows HPC cluster was built, and Microsoft Azure 

Cloud nodes were allocated to the cluster. The HPC+Cloud framework code was 

implemented and installed on the head node of the cluster so that it can interface the 

Windows HPC scheduler. Then users submit jobs to the HPC using the job submission 

script. Users can edit the privacy flag to flag the job so that the HPC+Cloud framework 

is allowed to filter the job and stop it from migrating to the cloud. The rest of the jobs 

can be migrated to the cloud to use HPC resources on the cloud. 
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3.5 Summary of Chapter 

In this chapter, the HPC+Cloud software framework is modeled using 

algorithm descriptions, flowchart, and pseudo code. With this modelling completed, 

the HPC+Cloud framework was implemented and then an HPC+Cloud cluster was 

created by using the framework. 
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4 Experimental Results and Discussions 
 

In this chapter, benchmarking was first performed to choose a public cloud 

provider that will be used with the HPC+Cloud cluster. Upon choosing the public 

cloud component, the proposed HPC+Cloud framework was implemented and then an 

HPC+Cloud cluster was built based on the framework. Next, the functionality of the 

HPC+Cloud cluster was benchmarked to show that the HPC+Cloud cluster can support, 

sustain, and complete High Performance Computing workloads successfully. 

 

4.1 Choosing a Public Cloud provider to be the Cloud 

component of the HPC+Cloud through benchmarking 

 The purpose of benchmarking cloud platforms is to determine which cloud 

platform is suitable for implementing the HPC+Cloud algorithm proposed in Chapter 

3. After the HPC+Cloud framework is implemented, the next step is to build an 

HPC+Cloud cluster. This HPC+Cloud cluster is benchmarked to test its functionality. 

The success of the implementation is measured by observing whether the algorithm 

can migrate jobs to the cloud for processing and successfully generate and store results 

or not. A traditional HPC benchmark is not suitable due to inherent latency in on-

premise to on cloud communication. In a traditional HPC, professional HPC nodes are 

connected via Fiber Optic network. If two similarly specified HPC clusters with one 

purely on-premise networked via Fiber and another uses a mixture of on-premise and 

cloud nodes, naturally the on-premise would outperform the HPC+Cloud 

implementation. If additional HPC resources are only needed on a non-regular basis, 

therefore some latency affected by transferring data to and from cloud nodes for 

processing can be tolerated when using the HPC+Cloud cluster. Also, the cost of 

upgrading physical resources outweighs the cost using resources from the cloud. 

 The following section is based on the author’s work that has been published in 

the conference paper: “Benchmarking large scale cloud computing in Asia Pacific,” 

2013 19th IEEE International Conference on Parallel and Distributed System 

(ICPADS): Curtin University Malaysia campus currently uses Windows HPC software 

platform for its high-performance computing needs. So, the Public Cloud partner 

chosen to form the Cloud component of the HPC+Cloud software framework has to 
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integrate well with the existing Microsoft Windows HPC software platform. The 

platform of choice favored by Curtin Malaysia is the Windows HPC software 

platform[9]. Therefore, the Public Cloud provider of choice is Microsoft’s Azure 

Cloud[10]. However, there are two other platforms that are commonly used as public 

cloud providers by academic institutions. Australian institutions utilize the Australian 

National eResearch Collaboration Tools and Resources Cloud (NeCTAR)[29]. 

NeCTAR is an Australian Government project to provide public cloud resources to 

Australian universities. And the other player of choice among both industry and 

academic institutions is the Amazon Public Cloud or commonly known as Amazon 

EC2 which is a subsidiary of retail giant Amazon.com[16]. The main reason that the 

Amazon EC2 is popular with both academia and industry is that Amazon was an early 

pioneer in providing public cloud services. Compared to both NeCTAR and Amazon 

Public, Microsoft Azure is a relative newcomer that only started to provide its services 

in 2012. 

 These three public clouds, namely Microsoft Azure, Amazon EC2, and 

NECTAR are benchmarked against one another to determine the best performing 

public cloud among the three. The software used to benchmark the cloud is Roy 

Longbottom’s Linux benchmarking tools [11].  

 

4.2 Cloud Benchmarking Instance Specifications and 

Assumptions 

For cloud computing instances (an instance is a unit of computing resource 

provided by a cloud provider), the cloud provider provides a fixed computing instance 

specification meaning there is no way to adjust the CPU option and memory option to 

ensure parity between the different providers. The specifications as seen in Table 4.1 

are all in the medium instance for each provider at the time of running the benchmark. 
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Table 4.1. Cloud Benchmarking Instance Specifications. 

 Windows 

Azure 

Amazon NECTAR 

Processor AMD Opteron 

Processor 4171 

HE 

Intel Xeon@ 

CPU E5-2650 0 

@ 2.OO GHz 

Intel@ Core 2 

Duo CPU T7700 @ 

2.40GHz 

Clock Rate Minimum 2095 

MHz, 

Maximum 

2095 MHz 

Minimum 1800 

MHz, 

Maximum 

1800 MHz 

Minimum 2600 

MHz, Maximum 

2600 MHz 

CPUs 2 2 2 

RAM Size 3.36GB 3.66GB 7.80GB 

 

4.3 Classic Benchmark Test Categories. 

A. Dhrystone Benchmark  

        It is a benchmark[51] used to assess integer processing performance. Table 4.2 

shows a comparison between the 3 platforms that the benchmark tests were run on, 

namely Amazon, NeCTAR, and Azure. The ratings obtained are that of VAX MIPS 

where VAX stands for Virtual Address Extension and MIPS means Million Instruction 

per Second. 

B. Linpack Benchmark 

        Linpack Benchmark[52] measures the floating-point computing power of a 

system. Floating point shows a way of representing the approximation of a real number 

in such a way that it can support a wide range of values. The Millions Floating-point 

Operations per Second (MFLOPS) is the unit by which the benchmark test is 

measured.  

C. Livermore Loops  

         Livermore loops[53]  is a benchmark test that is usually run for parallel 

computers. Produced for supercomputers consisting of numerous kernels, three 

specific types of data sizes are run, and the results obtained are in MFLOPS. 
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        The results generated for overall ratings consist of Maximum, Average, 

Geometric mean (Geomean), Harmonic mean (Harmean) and Minimum, whereby 

Geomean is the official overall rating. All tests for Livermore loops were completed 

over 24 loops and the geometric mean was the one recorded. 

D. Whetstone Benchmark 

        The Whetstone Single Precision C Benchmark[54] is related to CPU performance 

and is meant to check speed ratings in Millions of Whetstone Instructions per Second 

(MWIPS). 

 

Table 4.2. Classic Benchmark Test Results (higher is better). 

 
Windows 

Azure 

Amazon NECTAR 

Dhrystone Benchmark 

(VAX MIPS rating) 

8155 10455.5 10752.28 

Linpack Double 

Precision Benchmark 

(MFLOPS) 

1317.95 1603.02 1609.31 

Livermore Loops 

Benchmark Maximum 

Rating (MFLOPS) 

2588.9 2733.8 2634.1 

Whetstone Single 

Precision C Benchmark 

MWIPS 

(MFLOPS) 

2135.854 2111.706 2644.834 

 

4.3.1 Classic Benchmark Overall Comments  

        Results for the classic benchmark can be viewed in Table 4.2 and Figure 4.1. 

In the Dhrystone Benchmark performance, NECTAR scores 1.3x better than Windows 

Azure.  However, between NECTAR and Amazon, NECTAR scores 1.03x better. 

NECTAR is the best for this benchmark.   

        In the Linpack Benchmark performance, NECTAR scores 1.22x better than 

Windows Azure. However, between NECTAR and Amazon, NECTAR scores 1.004x 

better. NECTAR is the best for this benchmark. 
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        In the Livermore Loops Benchmark performance, Amazon scores 1.056x better 

than Windows Azure and between Amazon and NECTAR, Amazon scores 1.038x 

better.  Amazon is the best for this benchmark.   

        In the Whetstone Single Precision C Benchmark performance, NECTAR scores 

1.24x better than Windows Azure. However, between NECTAR and Amazon, 

NECTAR scores 1.25x better.  NECTAR is the best for this benchmark.   

        Overall, NECTAR is the best in the classic benchmarks category followed by 

Amazon and Windows Azure since NECTAR is superior in 3 benchmark results 

compared to others. 

 

 

Figure 4.1. Classic Benchmark Results. 
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4.3.2 Disk, USB, and LAN Benchmarks 

This test makes use of direct Input-Output (I/O) for the speed of Local Area 

Network (LAN) to avoid data from being cached in the main memory of the Operating 

System. Also involved in the benchmark tests are the read/write speed. In this test, a 

64Kb file was written, read, and deleted 500 times and the result can be seen in Table 

4.3. 

 

Table 4.3. Disk, USB, and LAN Benchmark Test Results 

 

4.3.3 Disk, USB, and LAN Benchmarks Overall Comments  

Disk, USB, and LAN performance are critical in determining the processing 

throughput of a high-performance computing cluster, as no matter how fast the CPU 

is, final processing times are constrained by I/O operations that are ultimately 

determined by the read and write speed of the Disc, USB, and Local Area Network 

(LAN) interfaces of the processing node. Results for the Disk, USB and LAN 

Benchmark Test results can be viewed in Table 4.3 and Figure 4.2. 

In the Disk, USB, and LAN Benchmarks, for the write category, Windows 

Azure is the best followed by Amazon and NECTAR meanwhile for the read category, 

Windows Azure is still the best followed by NECTAR and Amazon. Overall, Windows 

Azure is the best followed by Amazon and NECTAR.  

 
Windows 

Azure 

Amazon NECTAR 

Write MB/sec 122.83 25.34 6.23 

Read MB/sec 274.74 67.75 92.84 
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Figure 4.2. Disk, USB and LAN Benchmarks. (higher is better)  

4.4 Multithreading Benchmarks  

        Multithreading influences high performance computing as it shows the efficiency 

at which a high-performance computer manages multiple concurrent processes. 

A. Simple Add Tests 

        The tests involved in Simple Add Tests execute 32-bit and 64-bit integer 

instructions as well as 128-bit SSE floating point. The performance is very relative to 

the amount of CPU cores available in the system. Since the benchmark test is about 

multithreading, each thread is given an independent and different adding code to test 

for each thread. The values taken for this test is the average of two aggregates tested 

individually. 

B. Whetstone Benchmark 

        As opposed to the previous Whetstone benchmark, this test focuses on 

multithreading applications OpenMP. Again, the number of cores present is a 

determinant factor on the speed of the test run. The results taken as reference for the 

test are based on the time taken for the last thread to finish and measured in Millions 

of Whetstone Instructions per Second (MWIPS). 

C. MP SSE (Multi Process Streaming SIMD Extensions) MFLOPS Benchmark 

         The purpose of this test is to check for the multiplication of floating-point 

calculations with data from higher level of caches or from RAM. These programs can 

be used as a burn-in/reliability test and similar functions can be run on a different 
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segment of data. The last Million Floating Point Instructions per Second (MFLOPS) 

value from the test is taken as reference. 

D. MP Memory Speed Tests 

        This test makes use of single and double precision floating point numbers and 

integers to test for the speed of the memory. The average value of the read, write and 

delete were taken individually and then graphed to figure out the best out of the cloud 

systems. 

E. MP Memory Bus Speed Tests 

        The bus/memory speed is tested by reading all the data at the same time. The 

value taken for this test is the ReadAll value of the largest file. This accounts for a 

sizeable cache and RAM usage stressing the bus and allowing for an estimation of 

maximum bus/memory speed. 

F. MP Memory Random Access Speed Benchmark 

       This benchmark test is about read and read/write tests that cover cache and RAM 

data sizes. The largest file (96MB) is chosen since it uses all the resources and 

maximises the stress on the cores for the test giving a very relatable value. The average 

of the serial read, read/write, and random read, read/write as well as mutex read, 

read/write is taken to give a general idea of how it performs on various platforms. 
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Table 4.4. Multithreading Benchmarks Test Results 

 Windows Azure Amazon NECTAR 

Multithreading Simple Add 

Test (Million Instruction Per 

Second) 

13874 6343 14552.5 

Multithreading Double 

Precision Whetstones 

(MWIPS) 

4257 1981 5012 

MP SSE MFLOPS 

Benchmark (MFLOPS) 
18418 10018 27839 

MP Memory Speed Test 

(MB/Second) 
5902.44 6183.44 6715.44 

MP Memory Bus Speed 

(MB/Second) 
5582 7574 4961 

RandMemMP Speeds  

(Memory Random Access 

Speed Benchmark) 

(MB/Second) 

2372.33 2608.33 2622.67 

 

4.4.1 Multithreading Benchmark Overall Comments   

        Results are illustrated in Table 4.4 and Figure 4.3. For multithreading 

benchmarks, NECTAR is the best in 5 out of 6 categories while Amazon is the best in 

1 out of 6 categories.  Windows Azure fared badly in all categories. However, in the 

multithreading add test and multithreading double precision Whetstones, it was close 

to NECTAR and the overall best performer in multithreading is NECTAR followed 

by Amazon and Windows Azure.  
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Figure 4.3. Multithreading Benchmarks 

4.5 OpenMP Benchmarks for Parallel Processing 

Performance  

A. MemSpeed  

        This test makes use of single and double precision floating point numbers and 
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and delete were taken individually and then graphed to figure out the best out of the 

cloud systems.  

B. Original OpenMP Benchmark  

        Taking the MFLOPS value, this test behaves in a similar way as Windows 

compilation, meaning the performance gains of the number of cores present is relative 

to the time taken for the test to complete as compared to a single core. The average 

value for data in and out is taken as the comparison value for the different platforms. 

 

Table 4.5. OpenMP Benchmarks Test Results 

 
Windows 

Azure 
Amazon NECTAR 

Memory Reading Speed Test 

(MB/Second) 
4147.33 6457.78 4095 

OpenMP MFLOPS Benchmark 

(MFLOPS) 
4781 10035 13886 

 

 

4.5.1 OpenMP Benchmarks Overall Comments  

        OpenMP benchmark results are summarized in Table 4.5 and Figure 4.4. For the 

OpenMP benchmarks, Amazon is the best in memory reading speed test followed by 

Windows Azure and NECTAR, while for OpenMP MFLOPS benchmark, NECTAR 

is the best followed by Amazon and Windows Azure. Overall, NECTAR and Amazon 

are the best followed by Windows Azure.  
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Figure 4.4. OpenMP Benchmarks 

 

4.5.2 Memory Bus Speed Benchmark  

A. Bus Speed Test  

        This test makes use of single and double precision floating point numbers and 

integers to test for the speed of the memory. The average value of the read, write and 

delete were taken individually and then graphed to figure out the best out of the cloud 

systems. 

B. Random/Serial Memory Test  

        This test shows the behaviour of the memory with increasing file size in terms of 

data transfer.  The values taken are similar to that of the MP Memory tests.   

C. SSE And SSE2 Memory Reading Speed Test 

        This variation of the SSE (Streaming Single Instruction Multiple Data 

Extensions) benchmark measures Single Precision and Double Precision, floating 

point speeds, data streaming from caches and RAM. The alterations in this test avoid 

intermediate register to register operations to produce much faster speeds. Again, the 

largest value is taken as reference and compared across platforms. 
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Table 4.6. Memory BusSpeed Benchmark results (higher is better) 

 Windows Azure Amazon NECTAR 

Bus Speed Test 
(MB/Second) 

5455 7461 2525 

Random/Serial Memory 
Test (MB/Second) 

1850.25 3113.625 1910.375 

SSE & SSE2 Memory 
Reading Speed Test 

(MFLOPS) 
4935.25 4267.25 5956.125 

 

4.5.3 BusSpeed Benchmark Overall Comments  

        BusSpeed benchmark results can be examined in Table 4.6 and Figure 4.5. In 

BusSpeed benchmark, Amazon is the best in bus speed test followed by Windows 

Azure and NECTAR, while in random/serial memory test, Amazon is still the best 

followed by NECTAR and Windows Azure. For SSE & SSE2 memory reading speed 

test, NECTAR is the best followed by Windows Azure and Amazon. Overall, in this 

BusSpeed benchmark, Amazon is the best followed by NECTAR and Windows Azure.  

 

Figure 4.5. Memory BusSpeed Benchmark results 
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4.6 Benchmarking Overall Results and Conclusion 

Table 4.7. Overall results (higher is better) 

 Windows Azure Amazon NECTAR 

Classic Benchmarks for 

CPU Performance 
Third Second First 

Disk, USB, and LAN 

Benchmarks 
First Second Third 

Multithreading 

Benchmarks 
Third Second First 

OpenMP Benchmark for 

Parallel Processing 

Performance 

Third Second First 

Memory BusSpeed 

Benchmark 
Third First Second 

 

4.6.1 Conclusion of Benchmarking Public Cloud Providers 

        The main aim of this exercise was to identify the best possible candidate for 

building an HPC+Cloud high performance cluster that can be deployed quickly and 

easily. Windows Azure came in last in almost all categories. However, given that 

HPC+Cloud requires high I/O throughput between on-premise HPC which is currently 

in the organization and the public cloud, the high I/O throughput is necessary to avoid 

data bottlenecks between the HPC and the Cloud. 

        Therefore, Windows Azure, despite coming in the last place in all categories 

except Disk USB and LAN benchmarks, still is the prime candidate for deployment 

for the HPC+Cloud in Curtin Malaysia. Also noted was that many academic 
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institutions that are already using Windows HPC will find easier integration with 

Windows Azure than any other public cloud.  This is particularly true as Curtin 

University Malaysia’s current on-premise HPC is built on Windows HPC[9] and the 

choice of Windows Azure will facilitate rapid deployment of existing software and 

hardware resources to be quickly combined with the Cloud using the HPC+Cloud 

software framework. 

 

4.7 Benchmarking HPC On-Premise vs HPC+Cloud vs HPC 

on Cloud 

 

4.7.1 The main purpose of Benchmarking  

In this section, benchmarking was conducted to gauge the performance of the 

HPC+Cloud cluster against HPC on-premise and HPC on Cloud cluster. To understand 

the purpose of the benchmarking exercise, the objective of building the HPC+Cloud 

infrastructure must be known. The objective is to test the ability of an on-premise HPC 

cluster to use resources on the Cloud using the proposed HPC+Cloud framework. If 

the HPC+Cloud cluster configuration produces results when benchmarked and the 

results are comparable to existing HPC on-premise and HPC on Cloud cluster 

configurations, then it means that HPC+Cloud cluster configuration has the ability to 

sustain and complete High Performance Computing loads[55]. HPC+Cloud is an 

infant framework that is new, therefore it is important to prove that it is functional. 

These benchmarks will prove that the HPC+Cloud framework is functional and able 

to deliver results. 

It is important to know that the purpose of these benchmarks is not to set up or 

expect the HPC+Cloud to be the best performing cluster configuration. By its nature, 

HPC+Cloud hardware infrastructure is heterogeneous due to the lack of uniformity 

between node configurations. Therefore, the HPC on Cloud is predicted to be the most 

likely best performing cluster configuration due to its hardware homogeneity, and the 

fact that the hardware software infrastructure is managed entirely by the public cloud 

provider Microsoft Azure. Hence, it benefits from hardware vendor optimizations that 

are exclusive to Microsoft. 
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4.7.2 Experimental Setup and Assumptions. 

Before starting to benchmark the performance of an HPC+Cloud cluster, first 

some preliminary testing must be completed to ensure basic functionality of 

HPC+Cloud cluster is functional and therefore ready to have its performance 

benchmarked against HPC On Premise and HPC on Cloud. The test results are 

observed in table 4.8:  

Table 4.8 HPC+Cloud framework functionality test results 

Test Criteria Test Result 

On Premise Cluster Links to Cloud 

Nodes 

Link is successful. HPC Nodes from 

cloud to on-premise nodes can ping each 

other. 

On-premise cluster can transfer jobs to 

on cloud nodes 

Transfer is successful. It Is observed that 

time to transfer is job data dependent. 

Jobs that have higher input data take 

longer to transfer.  

HPC jobs filtering for jobs with privacy 

flag 

Filter functions appropriately. The 

privacy flag worked to make sure jobs 

that users have designated suitable only 

for processing on-premise do not 

migrate. 

HPC+Cloud framework can deallocate 

cloud nodes upon successful job 

completion 

Deallocation of cloud nodes is 

successful. 

 

In the previous section, the various public cloud solutions were benchmarked, 

and it was determined that Microsoft Azure will be used as the public cloud provider. 

Microsoft Azure provides a fixed computing instance specification for cloud 

computing instances (a cloud computing instance is a unit of computing resource 

provided by a cloud provider).  Therefore, it is quite difficult to have the exact same 

CPU configuration between on-premise HPC cluster and Microsoft Azure HPC cluster 
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instance. To ensure parity, all CPUs are made to be the same class, that is Xeon based 

system from the same generation with a turbo clock speed of 4.8 GHz and a maximum 

single-core base frequency of 3.8 GHz. As for the on Cloud HPC instance, Azure 

Instance Standard_F4s_v2 is used. However, in a Microsoft Azure HPC cluster, 

instances by nature are shared hardware because they belong to the public cloud 

provider shared pool of cloud infrastructure. It is the nature of cloud computing where 

all CPU, RAM, and storage resources are virtually pooled together. The basic cluster 

configuration for HPC+ Cloud are one head node and two compute nodes. One 

compute node is on-premise with two CPUs and another compute node is on the Azure 

Cloud with Standard_F4s_v2 Cloud instances that provides 4 Virtual CPU cores. 

There is a VPN connection between the HPC on-premise and HPC nodes on the cloud.  

The on-premise cluster configuration consists of a single cluster with one head 

node and two compute nodes with a total of 8 Virtual CPU cores. The On Cloud HPC 

cluster configuration consists of a single cluster with 8 CPUs consisting of one head 

node and two compute nodes with four Virtual CPUs each. The On Cloud HPC cluster 

is a control benchmark to observe how the benchmark will run if purely executed on 

Cloud. Head nodes for all three setups are the central control nodes and not used in 

processing the problem. Benchmarking is carried out via Roy Longbottom’s Windows 

benchmarking tools and Microsoft Lizard. All network, storage, and RAM 

configuration are controlled to be as close a like as possible using current Microsoft 

Azure hardware configuration information. Table 4.9 summarizes the experimental 

setup for benchmarking the various types of cluster configurations. 

Table 4.9. Benchmarking Instance Specifications. 

 HPC on-premise HPC+Cloud  

(a combination of 

on-premise and 

Cloud nodes) 

HPC on Cloud 

Processor type 2x compute Nodes 

with Intel® Xeon® 

E-2244G 

1x Azure Instance 

Standard_F4s_v2 

(Microsoft Azure 

rated 4 virtual CPU 

cores) 

2x Azure Instance 

Standard_F4s_v2 

(Microsoft Azure 

rated 8 virtual CPU 

cores) 
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And  

1x Premise 

Compute Node 

(Intel® Xeon® E-

2244G) 

CPU speeds Turbo clock speed of 4.8 GHz and a maximum single-core base 

frequency of 3.8 GHz 

Total Number 

of Virtual 

CPUs 

8 8 8 

RAM(GB) 8 8 8 

Network 

Bandwidth 

(Mbps) per 

Node 

1750 1750 1750 

Hard drive 

Space (TB) 

2 2 2 

  

4.8 Classic Benchmark Test Categories 

A. Dhrystone Benchmark  

        It is a benchmark used to assess integer processing performance. Table 4.10 

shows a comparison between the cluster configurations. The ratings obtained are that 

of VAX MIPS where VAX stands for Virtual Address Extension and MIPS means 

Million Instruction per Second. 

B. Linpack Benchmark 

       It is a benchmark used to assess the floating-point processing power of a system. 

The Millions Floating-point Operations per Second (MFLOPS) is the unit by which 

the benchmark test is measured.  

C. Livermore Loops  

        Livermore loops is a benchmark for parallel processing. 24 kernels were run three 

times at varying Do-loop spans to create short, medium, and long vector performance 

measures and the results obtained are in MFLOPS. Maximum, Average, Geometric 
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mean (Geomean), Harmonic mean (Harmean), and Minimum are the findings 

generated for overall ratings, with the Geomean being the official overall rating.  

D. Whetstone Benchmark 

        The Whetstone benchmark, measured in Millions of Whetstone Instructions per 

Second (MWIPS) is used for evaluating the performance of scientific applications. It 

has several modules aimed to represent a variety of operations that are commonly used 

in scientific applications. A combination of Integer and floating-point math operations, 

array accesses, conditional branches, and procedure calls are all employed, together 

with C specific functions like sin, cos, sqrt, exp, and log. 

 

Table 4.10. Classic Benchmark Test Results (higher is better). 

 HPC on-premise HPC+Cloud  HPC on Cloud 

Dhrystone 

Benchmark 

(VAX MIPS) 

59887.5 60478.6 61979.33 

Linpack 

Benchmark 

(MFLOPS) 

19657 21347 22856 

Livermore Loops 

(MFLOPS) 

15567.6 16402.8 17509.4 

Whetstone 

Benchmark 

(MWIPS) 

14789 15869 16566 

 

4.8.1  Classic Benchmark Overall Comments  

        Results for the classic benchmark can be viewed in Table 4.10 and Figure 4.6. In 

the Dhrystone Benchmark performance, HPC on Cloud has the best performance with 

61979.33 (VAX MIPS) and an average 2% performance boost compared to the other 

two categories. Second is HPC+Cloud with 60478.6 (VAX MIPS), followed by HPC 

on-premise 59887.5 (VAX MIPS).  

         In the Linpack Benchmark performance, HPC on Cloud has the best performance 

with 22856 (MFLOPS) and an average 8% performance boost compared to the other 



49 
 

two categories. Second is HPC+Cloud with 21347 (MFLOPS), followed by HPC on-

premise with 19657 (MFLOPS).  

        In the Livermore Loops Benchmark performance, HPC on Cloud has the best 

performance with 17509.4 (MFLOPS) and an average 6% performance boost 

compared to the other two categories. Second is HPC+Cloud with 16402.86 

(MFLOPS), followed by HPC on-premise with 15567.6 (MFLOPS). 

        In the Whetstone Benchmark performance, HPC on Cloud has the best 

performance with 16566 (MWIPS) and an average 6.5% performance boost compared 

to the other two categories. Second is HPC+Cloud with 15869 (MWIPS), followed by 

HPC on-premise with 14789 (MWIPS). 

        The performances of HPC on Cloud, HPC+Cloud and HPC on-premise are very 

close to each other given that the CPU configurations are similar using the same CPU 

models with the same turbo and base clock frequencies. However, HPC on Cloud 

configuration emerges ahead in each benchmark, with an average performance boost 

of 6% against the two other categories. This is most likely because HPC on Cloud 

system hardware and firmware is highly optimised by the CPU vendor Intel for use on 

the Microsoft Azure cloud. On-premise clusters are not typically optimised as they are 

COTS (completely off the shelf) hardware, meanwhile HPC+Cloud has a mixture of 

optimised cloud infrastructure and on-premises COTS hardware. Overall HPC on 

Cloud cluster configuration performs the best in Classic Benchmark test category. 

 

Figure 4.6. Classic Benchmark Results (higher is better). 
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4.9 I/O Operations Benchmark 

This benchmark tests the Read and Write Throughput Input Output Operations 

on the compute nodes. To test the actual read write speed, the data is randomly varied 

to avoid it being cached in the main memory of the Operating System. Randomly 

varied versions of a 64Kb file were written, read, and deleted 500 times and the result 

can be seen in Table 4.11. 

Table 4.11. I/O Operations Benchmark Test Results (higher is better). 

 HPC on-premise HPC+Cloud  HPC on Cloud 

Write MB/sec 189.6 257.9 308.07 

Read MB/sec 489.7 567.7 686.86 

 

4.9.1 I/O Operations Benchmark Overall Comments   

I/O Operations Benchmark determines how fast unprocessed data can be read 

from the network storage cluster and how fast processed data can be stored to the 

network storage cluster, therefore this benchmark also reflects on the network 

throughput performance of the cluster. I/O Operations are a potential bottleneck on a 

High-Performance Computing cluster. Results for the I/O Operations Benchmark can 

be viewed in Table 4.11 and Figure 4.7. 

            HPC on Cloud has the best performance in I/O operations benchmark with a 

significant average 36% performance boost compared to the other two categories. 

Second is HPC+Cloud with another significant average performance boost of 26% 

against third place HPC on-premise. 

Public cloud systems deploy highly optimised and high throughput mass 

storage networks to manage their data storage for use by the HPC cluster and provide 

service level guarantees for I/O performance. Therefore, the dominance of the HPC on 

Cloud is clearly seen, it is the best in this benchmark, followed by HPC+Cloud, which 

partially benefits from the advantages of a mass cloud storage system. HPC on-premise 

does not have the benefits of storage vendor optimisations and access to high 

throughput mass storage networks provided by the cloud provider. Despite this, one 

advantage of HPC on-premise against the other configurations is that storage of data 

in an HPC on-premise is closer to the cluster, typically within the cluster LAN and not 
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remotely stored, therefore the performance disparity between HPC on-premise and 

others is not as high as it should be. 

  

Figure 4.7. I/O Operations Benchmark. (higher is better) 

4.10  Multithreading Benchmarks  

        Multithreading has an impact on high-performance computing because it 

demonstrates how effectively each independent node in the cluster can manage several 

multiple concurrent processing operations. 

A. Simple Add Tests 

        Simple Add Tests run 32-bit and 64-bit integer instructions as well as 128-bit SSE 

floating point instructions. The performance is highly dependent on the number of 

CPU cores in the system. Because the benchmark test is focused on multithreading, 

each thread is given its own code to test. The data used in this test are the average of 

two aggregates that were tested separately. 

B. Whetstone Benchmark 

        This test, unlike the preceding Whetstone benchmark, concentrates on 

multithreading applications. The number of cores present is a determining element in 

the test run's speed once again. The test results are based on the time it takes the last 

thread to finish, which is measured in Millions of Whetstone Instructions per Second 

(MWIPS). 
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C. MFLOPS Program 

        The goal of this test is to see if floating point calculations are being multiplied 

with data from higher levels of caches or RAM. Similar procedures can be conducted 

on a different section of data as a burn-in/reliability test with these programmes. The 

test's most recent Million Floating Point Instructions per Second (MFLOPS) figure is 

used as a benchmark. 

D. Memory Speed Tests 

       To measure the memory's speed, this test uses single and double precision floating 

point numbers as well as integers. The average value of the read, write, and delete 

operations were taken separately and then graphed to determine the optimal figure. 

E. Memory Bus Speed Tests 

       Reading all data at the same time is used to measure the bus/memory speed. The 

ReadAll value of the largest file was used for this test. This accounts for a large cache 

and RAM consumption, which puts the bus under stress and allows for an estimate of 

the bus/memory speed. 

F. Memory Random Access Speed Benchmark 

       This benchmark test covers cache and RAM data sizes and includes read and 

read/write testing. The largest file (96MB) was chosen since it utilises all of the 

resources and puts the most stress on the cores during the test, resulting in a very 

relevant result. To get a rough picture of how it performs on different systems, the 

average of serial read, read/write, random read, read/write, and mutex read, read/write 

is taken. 
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Table 4.12. Multithreading Benchmarks Test Results (higher is better). 

 HPC on-premise HPC+Cloud HPC on Cloud 

Multithreading 

Add Test 

(Million 

Instruction Per 

Second) 

57998.6 58955.7 60392.8 

Multithreading  

  Double  

  Precision  

  Whetstones  

  (MWIPS) 

19455.7 20766.6 21050.4 

         MFLOPS  

  Program  

  (MFLOPS) 

98056.6 100578.5 116923.8 

Memory Speed 

(MB/Second) 

25776.5 26455.6 27869.1 

Memory Bus 

Speed 

(MB/Second) 

29456.6 30456.4 31432.1 

Memory Random 

Access Speed 

(MB/Second) 

8997.4 9345.5 10823.2 

 

4.10.1 Multithreading Benchmark Overall Comments   

         Results are shown in Table 4.12 and Figure 4.8. For multithreading benchmarks, 

HPC on Cloud is clearly the best performing with an average performance boost of 9% 

over the other two categories. And HPC+Cloud coming in second place and HPC on-

premise being third. Between second placed HPC+Cloud and third placed HPC on-

premise, on average HPC+Cloud sees a 4% average performance boost over third 

placed HP on-premise. Multithreading Benchmarks results are close as all 3 HPC 

cluster configuration CPUs are of the same class that is Xeon based system from the 

same generation. HPC on Cloud has the upper hand as Public Cloud Providers 
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typically optimise their CPU configuration for High Performance Computing 

processing. 

 

 

 

Figure 4.8. Multithreading Benchmarks (higher is better) 
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Table 4.13. OpenMP Benchmarks Test Results (higher is better). 

 HPC on-premise HPC+Cloud HPC on Cloud 

MemSpeed 

Memory Reading 

Speed Test 

(MB/Second) 

23456.5 25566.5 26799.7 

OpenMP 

MFLOPS 

Benchmark 

(MFLOPS) 

55345.5 56345.5            57543.9 

 

4.10.3 OpenMP Benchmarks Overall Comments  

        OpenMP benchmark results are summarized in Table 4.13 and Figure 4.9. For the 

OpenMP benchmarks Memory Speed Test and OpenMP MFLOPS test, HPC on Cloud 

comes out ahead with an average performance boost of 6% over the other two 

categories. The results are somewhat close as the average performance boost of   

second placed HPC+Cloud over third placed HPC on-premise is 5.5%. 

        Microsoft Azure hardware optimisation for High Performance Computing allows 

the HPC on Cloud to edge out HPC+Cloud and HPC on-premise cluster configurations. 

OpenMP parallel processing paradigm takes advantage of the optimization carried out 

in the virtual shared memory architecture at the hypervisor level in HPC on Cloud 

cluster configuration.  
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Figure 4.9. OpenMP Benchmarks (higher is better) 

4.11  High Performance Linpack Benchmark via Windows 

Lizard 

        A version of Linpack that was optimised for multicore single node processing 

was used in the preceding Linpack benchmark in Section 4.3. However now the high-

performance version of Linpack[56] is going to be used to evaluate the performance 

of high-performance clusters made up of many compute nodes with multicore CPUs. 

High performance Linpack was chosen since it is widely used and performance data 

for many public clusters are readily available. The Linpack Benchmark involves 

solving a dense system of linear equations. The performance of a cluster for solving a 

dense system of linear equations is reflected by the Linpack Benchmark score. Due to 

the regularity of the problem, the attained performance is relatively high, and the 

performance numbers provide a solid estimate of peak performance of a High-

Performance cluster. Linpack Wizard or Lizard was specially developed, which is 

based on a canonical library wrapped in a convenient visual wizard (supplied with the 

HPC Tool Pack 2012). This wizard allows an express test with standard parameters 

automatically selected by the wizard. 
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Figure 4.10. High Performance Linpack Benchmark (higher is better) 

4.11.1  High Performance Linpack Benchmark Overall Comments  

        High Performance Linpack Benchmark results can be examined in Table 4.14 and 

Figure 4.10. HPC on Cloud comes out on top again with 182848 (MFLOPS) with a 

significant average 34% performance boost over the other two categories. But there is 

a reversal between HPC on-premise and HPC+Cloud. For the first time in these 

benchmarks, the HPC on-premise comes in second place with 157256 (MFLOPS). 

HPC+Cloud comes out in a distant third with 120776 (MFLOPS) showing a 23% 

performance drop against second placed HPC on-premise. Once again, Microsoft 

Azure Public cloud optimization in the internode communication helps the HPC on 

Cloud come out on top. 

        Linpack by its nature uses a non-shared memory model of parallel processing as 

it depends on the MPI (Message Passing Interface) parallel processing paradigm, 

where each node has its own memory independently and hence, communication 

between nodes is important.  The main factor causing the HPC+Cloud to have a slower 

processing speed as compared to the other two cluster configurations is the time taken 

to transfer HPC jobs to cloud from the on-premise nodes. Internode communication 

happens across networks via Virtual Private Network (VPN) from the on-premise 

compute nodes to the on cloud compute nodes. Compare this to HPC on premise 

cluster and HPC on Cloud cluster, both have internode communication happening 

locally within the cluster. 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

High Performance Linpack Benchmark via Windows Lizard (MFLOPS)

HPC on Premise HPC + Cloud HPC on Cloud



58 
 

Table 4.14. High Performance Linpack Benchmark (higher is better)  

 HPC on-premise HPC+Cloud  HPC on Cloud 

High Performance 

Linpack Benchmark 

via Windows Lizard 

(MFLOPS) 

157256 120776 182848 

 

4.11.2 Summary of Benchmarking Overall Results 

 

Table 4.15. Benchmarking Overall Results 

 HPC on-premise HPC+Cloud  HPC on Cloud 

Classic 

Benchmarks for 

CPU Performance 

Third Second First 

Multithreading 

Benchmarks 

Third Second First 

OpenMP 

Benchmarks for 

Parallel 

Processing 

Performance 

Third Second First 

High Performance 

Linpack 

Benchmark 

Second Third First 

          

        Table 4.15 shows that obviously HPC on Cloud emerges as the clear winner in 

every benchmark. HPC on Cloud cluster configuration performs the best in Classic 

Benchmark test category. Classic Benchmark emphasises CPU performance, 

especially at the compute node level. The results are close to each other as all three 

cluster configurations use similar CPU class. HPC on Cloud system hardware and 

firmware is highly optimised by the CPU vendor Intel for use on the Microsoft Azure 

cloud. On-premise clusters are not typically optimised as they are COTS (completely 
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off the shelf) hardware, meanwhile HPC+Cloud has a mixture of optimised cloud 

infrastructure and on-premises COTS hardware. 

        Multithreading benchmarks the cluster CPUs ability to handle processing threads. 

HPC on Cloud is clearly the best performing, with HPC+Cloud in second place and 

HPC on-premise being third. All three HPC cluster configuration CPUs are of the same 

class, that is Xeon based system from the same generation. Public Cloud Providers 

typically optimise their CPU configuration for High Performance Computing 

processing. Therefore, once again HPC on Cloud has the upper hand. 

        The next two categories, OpenMP Benchmarks and High Performance Linpack 

are specifically geared to benchmarking cluster performance. HPC on Cloud is the best 

in OpenMP Benchmarks, followed by HPC+Cloud and HPC on-premise. OpenMP 

utilizes a shared memory paradigm, where separate parallel processes in the cluster 

share a common virtual memory space. HPC on Cloud takes advantage of the 

optimization carried out in the virtual shared memory architecture at the hypervisor 

level in HPC on Cloud cluster configuration. What this means is that because RAM 

resources are pooled together in public cloud infrastructure, OpenMP processing takes 

advantage of it naturally as OpenMP is a shared memory paradigm parallel processing. 

        Meanwhile in High Performance Linpack benchmark, HPC on Cloud with 

182848 (MFLOPS) takes the lead once more. However, there is a significant reversal. 

For the first time in these benchmarks, HPC on-premise places second with 157256 

(MFLOPS), while HPC+Cloud places third with 120776 (MFLOPS) for the first time. 

High Performance Linpack is built on the MPI (Message Passing Interface) which uses 

a non-shared memory parallel processing paradigm, which necessitates 

communication between nodes. Because it takes time to transfer HPC jobs from on-

premise computing nodes to cloud compute nodes, therefore HPC+Cloud has a slower 

processing performance than the other two cluster setups. A Virtual Private Network 

(VPN) connects on-premise compute nodes to cloud compute nodes, allowing 

internode communication across networks. Internode communication, on the other 

hand, takes place locally within the cluster in both HPC on-premise and HPC on Cloud 

clusters. 
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4.12  Significance of The Benchmarking Results of 

HPC+Cloud Cluster  

        The benchmarking exercise met its goal of observing how well an on-premise 

HPC cluster can utilise Cloud resources using HPC+Cloud framework. The 

HPC+Cloud cluster combination gives similar results to existing HPC on-premise and 

HPC on Cloud cluster setups when benchmarked. As a result, the benchmarks have 

demonstrated that the HPC+Cloud cluster architecture can support, sustain, and 

complete High Performance Computing workloads successfully. This validation is 

important as the HPC+Cloud framework is a new framework.  The benchmarking 

exercise also exposed a weakness of HPC+Cloud cluster infrastructure as it requires 

internode communication across networks that potentially can be a bottleneck to the 

HPC+Cloud cluster processing performance. This bottleneck will become a significant 

issue to the performance of HPC+Cloud cluster if the number of nodes increase and 

potentially more internode communications occur between on-premise compute and 

on-premise cloud nodes.  

 

4.13  Summary of the Chapter 

 In this chapter, three public cloud providers: Amazon, Microsoft Azure and 

NeCTAR were benchmarked. It was determined that Microsoft Azure was the best fit 

for HPC+Cloud software framework. The next step was that the HPC+Cloud cluster 

was implemented and benchmarked against an HPC on-premise cluster and an HPC 

on Cloud cluster. Figure 4.11 presents a summary of the achievements that were 

concluded in Chapter 4. In this chapter, by conducting these HPC benchmarks, the 

goal of demonstrating that the HPC+Cloud cluster can support, sustain, and complete 

High Performance Computing workloads successfully was achieved. 
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Figure 4.11. Summary of Chapter Four 
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5 Conclusions and Future Work 
 

5.1 Conclusions 

The HPC Cloud software framework enables on-premise HPC systems to scale 

up without making costly hardware investments. Organizations with existing HPC 

clusters will be able to scale and upgrade their clusters using the HPC+Cloud 

framework at a lower cost than alternative HPC implementation architectures such as 

the HPC cluster implemented on grids, HPC cluster implemented on the Cloud and 

HPC cluster implemented on the Hybrid Cloud, all which were discussed in Chapter 

two of the thesis. When using external computing resources from the public cloud, 

privacy and legal concerns are an issue. However, the proposed HPC+Cloud 

framework handles this issue by filtering HPC jobs and ensuring privacy and legal 

compliance. 

In this research, three public cloud providers: Amazon, Microsoft Azure and 

NeCTAR were benchmarked.  It was determined that Azure was the best fit for the 

proposed HPC Cloud software framework. The HPC+Cloud cluster was implemented 

and benchmarked against HPC on-premise cluster and HPC on Cloud cluster. By 

conducting these HPC benchmarks, the goal of demonstrating that the proposed 

HPC+Cloud cluster is functional and can support, sustain, and complete High 

Performance Computing workloads successfully was achieved. 

 

5.2 Summary of Objectives Accomplished 

Alternate approaches to scale HPC implementation architectures such as the 

HPC cluster implemented on grids, HPC cluster implemented on the Cloud and HPC 

cluster implemented on the Hybrid Cloud were investigated and compared against the 

proposed HPC+Cloud framework. The advantages and disadvantages of each 

implementation architectures were discussed in Chapter 2. 

In Chapter 3, the proposed HPC+Cloud framework was modelled using 

flowcharts and pseudocode and then, the framework was implemented. The 

framework implemented a software flag to manage privacy and legal concerns to 

ensure only HPC jobs permitted by the administrator were allowed to migrate 
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externally to the cloud. Using the privacy flag variable, the HPC+Cloud framework 

filters HPC jobs and does not allow those jobs to migrate to the on cloud nodes hence 

ensuring privacy and legal compliance. 

Next, the Microsoft Azure public cloud, Amazon and NeCTAR were 

benchmarked to determine the best public cloud provider to combine with the proposed 

HPC+Cloud software framework architecture. As a result, Microsoft Azure was 

selected as the Public Cloud provider in Chapter 4.  

The HPC+Cloud cluster was built on Microsoft Azure public cloud. The 

HPC+Cloud cluster worked seamlessly for scheduling jobs on the integrated public 

cloud using the HPC+Cloud framework. To validate the implemented HPC+Cloud 

software framework, its functionality was further benchmarked in chapter 4.  

The benchmarking exercise met its goal of observing how well an on-premise 

HPC cluster can utilize Cloud resources using the proposed HPC+Cloud framework. 

The HPC+Cloud cluster gave similar results to existing HPC on-premise and HPC on 

Cloud cluster setups when benchmarked. The benchmarks in section 4.7 have 

demonstrated that the proposed HPC+Cloud cluster architecture can support, sustain, 

and complete High Performance Computing workloads successfully. This validation 

is important as the proposed HPC+Cloud framework is a new framework.     

The benchmarking exercise also exposed a weakness of HPC+Cloud cluster 

infrastructure as it requires internode communication across networks from the 

organization on-premise to the cloud. This potentially can be a bottleneck to the 

HPC+Cloud cluster processing performance. This bottleneck will become a significant 

issue to the performance of HPC+Cloud cluster if the number of nodes increases and 

potentially more internode communications occur between on-premise compute nodes 

and on cloud nodes. 

 

5.3 Future Work 

One suggested future direction for this research is to do further benchmarking 

on the internode communications that occur between on-premise compute nodes and 

on cloud nodes. The purposes are to investigate further on its effects on the efficiency 

of the proposed HPC+Cloud framework, and to investigate ways to overcome the 

communications bottlenecks between the on-premise HPC nodes and on cloud HPC 

nodes. 
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List of Symbols and Acronyms 

HPC High Performance Computing 

GNU GNU’s not Unix 

SaaS Software as a Service  

IaaS Infrastructure As a Service 

PaaS Platform As a Service 

LAN Local Area Network 

RAM Random Memory Access 

CPU Central Processing Unit 

Resj Resj are the Resources such as compute nodes and memory allocated to the 
job  

Execj Execj is the application to be execute 

Envj Envj   is the software stack (e.g., operating system and libraries) 

Dj   Dj is the Data of the job 

Sj Sj is the suitability of the job as determined by the user, application, or the 
HPC+Cloud is stored into the Privacy_Flag variable 

Job_Pidj Job_Pidj is the process Identifier of the job 

UT HPC Utilization Threshold 

Geomean Geometric Mean 

Harmean Harmonic mean 

SSE Streaming Single Instruction Multiple Data Extensions 

FPU Floating Point Unit 

ICECCS International Conference on Eco-friendly Computing and Communication 
Systems 

ICPADS International Conference on Parallel and Distributed System 

MFLOPS Millions Floating-point Operations per Second 

MWIPS Millions of Whetstone Instructions per Second 

NeCTAR National eResearch Collaboration Tools and Resources Cloud 

OpenMP Open Multi-Processing 
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Linpack Linear Equations Package 

COTS Completely Off the Shelf 

VPN Virtual Private Network 
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