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ABSTRACT 

Climate change has a significant impact on regional and local water resources. Different 

climate models (General Circulation Models, GCMs) have been developed across the world 

that provide the climate data of coarser spatial resolutions. Intergovernmental Panel on Climate 

Change (IPCC) has produced several assessment reports on climate change related issues using 

GCMs. Coupled Modelled Intercomparison Project phase-5 (CMIP5) in the IPCC’s assessment 

report 5 (AR5) has predicted the climate data in decadal timescale (e.g., predicting ten years 

ahead) which attracted the climate research community due to its potential applications in many 

dimensions. However, the GCMs outputs contain systematic bias (drift) and their coarse spatial 

resolutions are inadequate for the local or catchment level applications. Most of the previous 

studies on decadal climate data were based on temperature or temperature-based climate 

indices. No study assessed CMIP5 decadal precipitation at a catchment level for a spatial 

resolution finer than 0.50 (50km × 50km). This is the first study that assessed the CMIP5 

decadal hindcast monthly precipitation at a catchment level of 0.050 spatial resolution (5km x 

5km) and showed its application for the prediction of precipitation ten years ahead (i.e., 

decadal-scale). For catchment level predictions, stochastic or statistical models including 

different forms of artificial neural networks (ANN) are commonly used in previous studies 

where only historical observed data are used to predict the future. Until now, no study used the 

GCMs derived decadal precipitation data together with the observed data for future prediction 

at the catchment level. This study predicted monthly precipitation for a ten-year period using 

GCMs and observed data through Facebook Prophet (FBP), ANN, and machine learning (ML) 

regression algorithms.  

In CMIP5 experiments, there are two core sets of decadal data available such as 10-year and 

30-year simulations and 10 GCMs contributed to reproducing the monthly hindcast 

precipitation in decadal scale. Out of these 10 GCMs, eight GCMs (MIROC4h, EC-EARTH, 

MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4) were 

selected in this study based on their resolution pattern and both 10-year and 30-year simulations 

data were collected from CMIP5 data portal for the period 1961-2015. The observed gridded 

(0.050 × 0.050  5km×5km) data were collected from the Australian Bureau of Meteorology. 

The spatial resolution of these 8 GCMs datasets ranges from 0.56250 to 2.81250 (56.25km to 

281.25km) which were then interpolated onto 0.050 × 0.050 (5km×5km) spatial resolution 

matching with the grids of observed data using eight spatial interpolation methods (linear, 
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bilinear, distance weighted average, inverse-distance weighted average, nearest neighbour, 

first-order conservative, second-order conservative, and bi-cubic). The wide range of 

interpolation methods were used to select the most suitable method for the use of decadal 

precipitation data at the catchment scale. The interpolated datasets were then subset for the 

Brisbane River catchment in Queensland, Australia. Brisbane River catchment was selected 

for this study because of its tropical climate nature and low to moderate yearly rainfall 

variability. All analyses were done for this selected catchment through several skill tests that 

include correlation coefficient (CC), Pearson correlation coefficient (PCC), anomaly 

correlation coefficient (ACC), index of agreement (IA), fractional skill scores (FSS), mean 

absolute error (MAE), root-mean-square error (RMSE), and total precipitation over time and 

space.  

Based on the skill test results, the second-order conservative (SOC) was found as the most 

suitable spatial interpolation method for the GCMs derived gridded data as it conserves the 

precipitation flux during the interpolation process. The 10-year simulation data was found 

better than the 30-year simulation because of its shorter lead-time and higher number of 

ensembles. Hence, 10-year simulation data interpolated with SOC method were used in the 

subsequent analyses. The catchment level GCM data shows significant model bias (drift) which 

was quantified comparing with the observed data. This shows the necessity of drift correction 

of interpolated data for using it in the catchment scale for practical purposes. The model bias 

was investigated for monthly and seasonal (mean of three months considering four seasons in 

a year) data and the results revealed lower drifts for seasonal precipitation. Next, different drift 

correction alternatives (Nested bias correction, Standardization and re-scaling approach, 

Relative drift correction or linear scaling, and a Modified drift correction method) were 

investigated for seasonal data to select a suitable drift correction method. The results revealed 

that the new modified drift correction method proposed in this study shows better 

performances, especially for the models with higher drifts for seasonal data. However, there 

remains a necessity for developing a forecast model for monthly precipitation on a decadal 

scale. For this, at first, a method of formulation of suitable multi-model ensemble mean 

(MMEM) has been proposed in this study by categorizing the selected GCMs as there is no 

such formulation in the literature. Considering this suitable MMEM, forecast models for 

monthly precipitation in decadal-scale have been developed through FBP, ML Regression 

algorithms and a deep ANN (Bidirectional LSTM) using the CMIP5 decadal data and the 

corresponding observed values. In FBP, MMEM and all individual models were used as 
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additional regressor in addition to the observed values. In ANN and ML algorithms, MMEM 

was used as a feature and the corresponding observed values were used as target variables 

following a supervised training approach. The results revealed that the new ANN and FBP 

model developed in this study using the GCM and observed data could predict the monthly 

rainfall on a decadal scale comparatively better than the models forecasted using the observed 

data only. This was because of following a supervised training approach in the ANN model 

and multiplicative seasonality function along with other tuneable parameters in FBP models 

that enabled both models to reproduce the dry events more accurately. Comparing the 

prediction skills, FBP was found a little better than the ANN model whereas ANN was found 

comparatively better in reproducing the wet events. However, the overall methodology 

presented herein and the information on rainfall prediction in decadal-scale (ten years ahead) 

found in this research will be very useful for managing future water resources, agricultural 

practices, farming processes, and other water-related infrastructures. This study was conducted 

for one catchment only but the method developed in this study could be used in any catchment 

for predicting future rainfall for a decadal time scale. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) is a standard experimental 

protocol established by the Working Group on Coupled Modelling (WGCM) under the World 

Climate Research Programme (WCRP). CMIP5 provides a wide range of future climate data 

derived through general circulation models (GCMs). To support the Intergovernmental Panel 

for Climate Change (IPCC) Fifth Assessment Report (AR5), the CMIP5 were designed with 

the three suites of experiments; (i) decadal hindcast and predictions simulations, (ii) ‘long-

term’ simulations, and (iii) ‘atmosphere-only’ simulations for, especially computationally 

demanding models. There are two core sets of decadal hindcasts and predictions, (i) 10-year 

simulations (hindcasts or prediction) initialized based on the climate state in 1960, 1965 and 

thus every five years until 2015, (ii) 30-year simulations (hindcasts or prediction) initialized in 

1960, 1980 and 2005 (Taylor et al., 2012). The observational records were prescribed as 

external forcing to the GCMs for generating the hindcasts data whereas the mid-range scenario 

(RCP4.5) was adopted for future predictions. Two common approaches of initialization are 

used in CMIP5 decadal experiments; full-field initialization and anomaly initialization. In full-

field initializations, models’ initial state is forced away from its equilibrium state to match as 

close as possible to its observed climate state while in the anomaly initialization, observed 

anomalies are added to the model climatology. Multiple runs carried out either for hindcasts or 

forecasts, of the same model with slightly different initialized conditions are referred to as 

ensemble members. 

Precipitation is a very important hydrological aspect and a precious natural resource for all 

forms of animal beings and ecosystems. It influences our livelihood and agriculture in many 

dimensions. An early prediction of precipitation has many positive benefits from 

socioeconomic perspectives as it enables more efficient management of agriculture, water 

resources, power development, and planning and development of infrastructure (Apurv et al., 

2015; Hansen et al., 2011; J.W. Jones et al., 2000; Mehta et al., 2013). However, prediction of 

this important climate variable has become a very challenging task, in terms of accuracy, due 

to its chaotic nature over time and space. Moreover, due to ongoing climate change, the 

https://pcmdi.llnl.gov/mips/cmip5/
https://www.wcrp-climate.org/wgcm-overview
https://www.ipcc.ch/
https://www.ipcc.ch/
https://www.ipcc-data.org/guidelines/pages/glossary/glossary_r.html
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temporal and spatial variations of precipitation have been intensified in the past few decades. 

Over the past few years, precipitation prediction has been paid much attention from the climate 

research community (Ali et al., 2019; George et al., 2016; Hossain et al., 2020; Hung et al., 

2009; Mekanik et al., 2011; Mislan et al., 2015; Ouyang et al., 2016). The precipitation 

prediction approaches are broadly classified into two main categories; (i) a knowledge-driven 

approach, and (ii) a data-driven approach. A knowledge-driven approach uses a scientific 

understanding on hydrological processes, thermodynamic balance, laws of physics, and the 

interaction between earth, atmosphere, and ocean. Climate models such as General Circulation 

Models (GCMs) use the knowledge-driven approach for the future prediction of climate 

variables. However, the knowledge-driven approach needs extensive data and intensive 

computational facility that sometimes becomes unavailable (Hong, 2008).  

The stochastic, empirical, or statistical models use the data-driven approach for future 

precipitation prediction. Stochastic or statistical models are mainly based on different forms of 

regression analysis such as simple regression analysis (SRA), exponential smoothing, 

decomposition, and auto-regressive integrated moving average (ARIMA). Every individual 

stochastic or statistical method has its strengths and weaknesses. For instance, ARIMA is a 

popular stochastic model for time series prediction with greater flexibility. But, as a stochastic 

model, it needs stationarity of the data (Machiwal and Jha, 2012) and its presumed linear form 

of the associated data sometimes makes it inappropriate for complex nonlinear time series data 

like precipitation (Zhang, 2003). However, technological development in combination with the 

research innovations in this modern arena enhanced the computation facility that enabled 

higher accuracy of precipitation prediction of which Artificial Neural Networks (ANN) is the 

best example. Applications of the machine and deep learning algorithms, of which ANN of the 

different forms of architecture, have been popular for many time series predictions including 

time series of precipitation (Hung et al., 2009; Lee et al., 2018; Meinke et al.,  2007; Mekanik 

et al., 2011; Mislan et al., 2015) because of its enhanced prediction accuracy. ANN is capable 

of modelling complex nonlinear real-world problems. Based on the level of complexity, ANN 

can be combined with different types of algorithms due to its highly flexible character. 

However, based on the requirements, researchers have come up with different research interests 

and periods for the application of ANN. Though the ANN is good to capture the nonlinear 

relationship of data, the presence of outliers in the time-series data can critically affect the 

reliability of ANN as it is a grey box model (Unnikrishnan and Jothiprakash, 2020). Thus ANN 

requires proper data pre-processing before its application especially for the climatic data 
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(Committee, 2000; Ramírez et al., 2006).Climate change is an ongoing dynamic process that 

depends on many factors and it will also continue to change in the future (IPCC, 2014). But 

the rate of change in future climate is not certain. This is why the GCMs’ simulations of the 

future climate variables for longer timescales ahead may become more uncertain compared to 

the simulations of shorter timescales. Among the three suits of experiments of CMIP5, the 

“decadal hindcasts and predictions simulations” has been received huge attention from the 

climate research community (Barsugli et al., 2009; Means et al., 2010). It is due to its potential 

applications in policymaking, urban planning, infrastructure management, agriculture and 

agriculture-dependent business (Barsugli et al., 2009; Crawford et al., 2006; Kirtman et al., 

2013; Means et al., 2010; Meehl et al., 2014; Smith et al., 2012). 

1.2 Background and problem statement 

Climate change is an ongoing dynamic process that is being changed continuously and will 

continue to change in the future. However, the rate of future climate change and its potential 

impact on precipitation is not certain as it depends on numerous factors. Due to the ongoing 

climate change, precipitation has been affected more compared to the other climate variables. 

Changes in precipitation patterns, seasonal shifting, longer dry spells, and extreme wet events 

along with overall reduction of total precipitation amount have been observed around the globe 

in the last few decades. In the last decades, these changes have been intensified due to the 

higher rate of ongoing climate change (IPCC, 2014). According to the IPCC report, the change 

in the future total precipitation and its extreme events (e.g., heavy precipitation, droughts) will 

be higher compared to the past depending on the geographical locations. As every year the 

climate condition is being changed and it would be intensified in the future, researchers should 

not rely only on the data-driven approach for the future precipitation prediction at the local 

level. However, application of both the knowledge-driven and data-driven approaches together 

in predicting the precipitation at the local level is not a common practice whereas application 

of CMIP5 decadal data for the same has not been seen yet.  

Applications of ANN, of different forms of architecture, following the data-driven approach, 

have been seen in many previous pieces of research (Hung et al., 2009; Lee et al., 2018; Meinke 

et al.,  2007; Mekanik et al., 2011; Mislan et al., 2015) where only the historically observed 

data were used as input for predicting the local precipitation. However, there is no study in 

which both the GCMs derived hindcast and corresponding historically observed data are used 
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as ANN model input to follow a supervised training approach. It may be due to the matter of 

research interest or unavailability of the decadal datasets at the local level.  

The GCMs provide precipitation data for the global scale with spatial resolutions of 

approximately 100-250 km. These spatial resolutions are inadequate for the studies at the local 

level, such as the catchment level, because of the lack of regional information (Fowler et al., 

2007; Grotch and MacCracken, 1991; Salathé, 2003). The use of the regional climate models 

(RCMs) for transferring the GCMs derived precipitation to the local level is prevalent 

nowadays but albeit computationally intensive as well as not easily available everywhere. For 

this reason, the application of spatial interpolations for re-gridding the GCMs derived 

precipitation is commonly used in practice (Amengual et al., 2012; Mehrotra et al., 2014; Miao 

et al., 2016). Another reason to use the spatial interpolation methods is, transforming the 

GCMs’ different native spatial resolutions to a unique spatial resolution, for the assessments 

and skill comparison of the GCMs. However, in most cases, spatial interpolation methods are 

randomly selected and clarification behind selecting the method was not provided. For 

instance, bilinear interpolation has been used in many studies (Amengual et al., 2012; 

Kamworapan and Surussavadee, 2019; Miao et al., 2016) but the reason behind selecting the 

bilinear method was not well explained. As the precipitation shows high spatial variability in 

frequency and magnitude, Wagner et al. (2012) suggested using such a spatial interpolation that 

will consider the spatial distribution of the precipitation over the entire study area. Therefore, 

the selection of an appropriate spatial interpolation method is important to provide the accurate 

spatial distribution of the precipitation while transforming GCMs data from coarser to a finer 

spatial resolution. However, there is no study evaluating the performance of spatial 

interpolation methods for GCMs derived gridded precipitation at catchment level. To consider 

both the knowledge and data-driven approach in predicting future precipitation at the 

catchment level, selection of the GCMs, suitable data pre-processing, and sorting them for the 

best outcome through different assessments are the prerequisite works.  

In the last decade, the CMIP5 decadal experiment has attracted climate researchers due to its 

potential applications in many dimensions. As a result, the evaluation of CMIP5 decadal 

prediction has been run far from the early stage based on different evaluation aspects such as 

different regions, different climate variables, and their different spatial and temporal 

resolutions. For instance, Choi et al. (2016) investigated the prediction skill of CMIP5 decadal 

hindcast near-surface air temperature for the global scale while other researchers investigated 
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other climate variables in continental or regional scales (Gaetani and Mohino, 2013; Lovino et 

al., 2018; McKellar et al., 2013). Lovino et al. (2018) evaluated decadal hindcast precipitation 

and temperature over northern Argentina and reported higher skills of models to reproduce the 

temperature as opposed to precipitation where precipitation skills were found remarkably 

lower. McKellar et al. (2013) investigated decadal hindcast maximum and minimum 

temperature over the state of California and reported the best performing model. Likewise, 

Gaetani and Mohino (2013) evaluated model performances to reproduce Sahelian precipitation 

and reported better performing models. However, these studies were for different geographical 

locations with coarser spatial resolutions for considered variables. For instance, the spatial 

resolution of models used by Kumar et al. (2013) and Choi et al. (2016) was 2.50, Gaetani and 

Mohino (2013) used models of more than 1.10, and Lovino et al. (2018) used precipitation data 

of 1.00 spatial resolution. At the regional level, Mehrotra et al. (2014) assessed the multi-model 

decadal hindcast of precipitation for different hydrological regions over Australia using 0.50 

spatial resolution and reported lower skills for precipitation as opposed to temperature and 

geopotential height. Climate data of 0.50 spatial resolution covers a ground area equivalent to 

a square of 50 km length. Comparatively, a 50 km × 50 km area is very big where climate 

variabilities are also large and frequency and magnitude of precipitation vary in a few 

kilometers. As the precipitation shows higher spatial and temporal variations than temperature 

and the model performances vary region to region, therefore the GCMs derived precipitation 

should be assessed at the local level before any application. Numerous studies evaluated 

CMIP5 models (Bhend and Whetton, 2015; Choudhury et al., 2019; Flato et al., 2013; Mehrotra 

et al., 2014; Moise et al., 2015) but there is no study evaluating CMIP5 decadal precipitation 

either 10 or 30-year simulation at a catchment level with a spatial resolution finer than 0.50. 

The fundamental problem with the CMIP5 decadal data is the drift (a time varying systematic 

bias) (Mehrotra et al., 2014), which is a long-term time-varying systematic bias generated by 

the GCMs while they revert to their equilibrium state from the forced initialized state. Now 

drift has been an important issue in decadal experiments where little systematic directional bias 

from model to model and/or region to region is seen (Gupta et al. 2012, Gupta et al. 2013). As 

‘drift’ in the climate model (GCMs) outputs hinders the credible applications of models output, 

therefore, drift correction is an essential prerequisite step before the application of climate 

model forecasts (or hindcasts). ICPO (2011) recommended a mean drift correction method that 

has been employed and critically reviewed in previous studies (Choudhury et al., 2016; 

Mehrotra et al., 2014) but not for the precipitation. Taylor et al. (2012) recommended drift 
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correction by applying relatively sophisticated bias correction methods. To date, the drift of 

temperature and temperature-based climate indices have been paid much attention in many 

previous studies (Chikamoto et al., 2013; Choudhury et al., 2016; Hawkins et al., 2014; Kharin 

et al., 2012; Narapusetty et al., 2014) but drift in precipitation has been given a little attention 

(Gupta et al., 2013). It may be due to the higher prediction skill of models for reproducing the 

temperature (Masanganise et al., 2013; Meehl et al., 2014; Mehrotra et al., 2014) than the 

precipitation. However, no study was conducted on quantifying the drift of CMIP5 decadal 

precipitation and finding the drift correction alternatives so far at the catchment level. 

GCMs are not perfect enough and their outputs contain systematic biases (Randall et al., 2007) 

that need rigorous correction before any application (Islam et al., 2011, 2014; Maurer and 

Hidalgo, 2008; Mehrotra and Sharma, 2010). To alleviate the biases, many researchers 

suggested using the multi-model ensemble mean (MMEM) while using GCMs data including 

the CMIP5 decadal experiment (Choudhury et al., 2016; Islam et al., 2014; Knutti et al., 2010; 

McSweeney et al., 2015). The use of MMEM may enhance the prediction performances 

(Kumar et al., 2013; Sheffield et al., 2013) by reducing the biases to some extent. However, 

there is no study on the ranking of the CMIP5 models, contributed to the decadal hindcast or 

prediction to reproducing the monthly precipitation, based on this how many and which of 

them should be considered to produce MMEM so that it could provide better outcome. 

Therefore the current research will be focusing on the assessment of the CMIP5 decadal 

precipitation at a catchment level and the outcome of the assessments will be employed to 

predict the future precipitation through multi-model approaches. At first, this assessment will 

sort out the best spatial interpolation method for precipitation and a better simulation (either 10 

or 30-year) of the CMIP5 decadal experiment. Then it will quantify the model drifts and will 

investigate the drift correction alternatives. In the next step, this study will rank the models, 

which contributed to reproducing the monthly precipitation of CMIP5 decadal hindcast or 

prediction and optimize their number to form the best MMEM. Finally, the best MMEM along 

with the historically observed data will be employed in the machine and deep learning 

algorithms to predict the future precipitation at the catchment level. 

1.3 Research objectives 

The main objective of this research is to assess the monthly hindcast precipitation of CMIP5 

decadal experiment at a catchment level for a spatial resolution of 0.050 and its application to 

the future prediction of precipitation using a combination of knowledge and data-driven 
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approach through the machine and deep learning algorithms. The following specific objectives 

will be carried out to achieve the overall goal and all analyses will be done at a catchment level 

for a spatial resolution of 0.050: 

i. To select the suitable interpolation method by comparing the performance of different 

spatial interpolation methods for the monthly hindcast precipitation of CMIP5 decadal 

experiment at a catchment level. 

ii. To select the suitable data from the available GCM simulation by comparing the 

performance of 10 and 30-year simulations for the monthly hindcast precipitation of 

CMIP5 decadal experiment at a catchment level. 

iii. To investigate the drift in monthly and seasonal mean (aggregated from monthly 

values) hindcast precipitation of CMIP5 decadal experiment at a catchment level and 

assess the suitability of a mean-drift correction method. 

iv. To investigate the drift correction alternatives for the seasonal precipitation of the 

CMIP5 decadal experiment at a catchment level. 

v. To categorize the models contributed to the CMIP5 decadal experiment based on their 

performances for monthly hindcast precipitation at catchment level and identify their 

best combination that would provide a better performance as MMEM. 

vi. To predict the monthly precipitation by Facebook Prophet Model using a combination 

of knowledge and a data-driven approach at a catchment level. 

vii. To predict the monthly precipitation for a decadal timescale using CMIP5 decadal 

experiment data through a deep neural network at a catchment level.  

1.4 Significance and novelty of this research 

Decadal prediction of CMIP5 was the first attempt to examine the climate predictability and 

explore the prediction capabilities of the forecasting systems on decadal time scales. For its 

potential applications in many dimensions, it attracted huge attention from the climate research 

community (Crawford et al., 2006). So far, temperature and temperature-based climate indices 

from CMIP5 decadal prediction have been paid much attention whereas very limited attention 

is paid to the precipitation in general and no attention was paid to a catchment level and of a 

spatial resolution finer than 0.50. This study is the first attempt that assesses monthly 

precipitation of CMIP5 decadal hindcast data at a catchment level for a spatial resolution of 

0.050. It comprises three different phases; Phase-I (objective i, and ii), Phase-II (objective; iii, 

iv, and v), and Phase-III (objective; vi, and vii).  
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In the previous studies, spatial interpolation methods were randomly selected and a similar 

method was applied for different climate variables (Amengual et al., 2012; Kamworapan and 

Surussavadee, 2019; Mehrotra et al., 2014; Miao et al., 2016) and the reason behind selections were 

not well explained. According to Wagner et al. (2012) and Jones, (1999), researchers should take 

care before selecting the interpolation methods, especially for the precipitation. The first phase 

of this study will help the potential users as well as researchers to select the suitable interpolation 

methods for the GCMs derived precipitation and simulation type of the decadal predictions. 

The second phase will- 

(i) quantify the drifts and assess the suitability of the mean drift correction method, 

(ii) compare drift correction alternatives and propose a new drift correction method, 

(iii) categorize the models based on their performances over the entire catchment 

and sort out the best combination of the selected models to form the best 

MMEM. 

It will help the potential researchers to identify the uncertainty in the decadal prediction at the 

catchment level, finding the better approach reducing uncertainty, categorising the models and 

their best combination as MMEM that are important for model-based decision and 

policymaking for future water availability, climate impact assessments, and planning, design, 

and development of water supply infrastructures. 

In the third phase, this study will develop a novel approach to predict monthly precipitation for 

decadal timescale using machine learning algorithms and a deep neural network where both 

the knowledge and data-driven approach will be employed. In the previous research, ANN was 

used following a data-driven approach where ANN was trained based on the observed data 

only (Hung et al., 2009; Lee et al., 2018; Meinke et al.,  2007; Mekanik et al., 2011; Mislan et 

al., 2015). For the first time, this study will use MMEM of CMIP5 decadal hindcast 

precipitation and corresponding observed data for a supervised training approach of a deep 

neural network (Bidirectional LSTM). This will give a new insight into the future prediction 

of climate variables and may resolve some limitations of the existing bias correction methods 

as the technological developments in combination with the research innovations enhanced the 

computation facility in this modern arena of artificial intelligence.  

The precipitation prediction in ten years ahead in this study will be beneficial for mitigating 

the floods, managing water resources, agriculture, agro-businesses, decision and policy-
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making (Hansen et al., 2011; J. W. Jones et al., 2000) for infrastructure development, and for 

some other sectors such as retail industry, finance, insurance, fishery, transport, tourism, and 

others. It will be more beneficial for the Australian economy, as well as communities and 

government by informing decision-making in areas such as risk and natural asset management 

as Australia possesses the most variable climate and its water resources are highly vulnerable 

to climate change. 

1.5 Organization of the thesis 

This thesis has been organized with both published articles and unpublished works. Five 

articles have been published, four of them in journals and one in an international conference. 

One article is under review and one more will be submitted soon. All chapters are formatted as 

articles (either published and/or draft) and the sequence of the chapters will reflect the sequence 

of the specific objectives of this study. The status, either published or unpublished, of the 

articles are mentioned in the footnotes of the first page of each chapter. The organization of 

this entire thesis has been presented in Fig. 1-1. Note that specific objective-based literature 

reviews are provided in the introduction part of individual chapters. For this reason, no 

separated literature review chapter has been added in this thesis.  
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Fig. 1-1 Organization of the thesis 

The first chapter provides the research background, identifies the problems, and outlines the 

research objectives. This chapter also provides the significance and novelty of this research 

and the organization of the thesis. 

Chapter two describes the study area, data source and their processing steps used in this study. 

It also describes the research steps followed in the different phases of this study. 
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Chapter three compares the performance of different spatial interpolation methods, at a single 

grid and also over the entire catchment, and suggests the best method for re-gridding the GCMs 

derived precipitation. It also describes the number of models considered and the evaluation 

strategy, from both temporal and spatial perspectives, for sorting the best spatial interpolation 

method. The reason for being the best method for precipitation is explained in this chapter. 

Chapter four compares the performance between 10 and 30-year simulations of the CMIP5 

decadal hindcast precipitation and suggests a better simulation. It describes the importance, 

evaluation methodology, number of models used, and the reason for being a better simulation. 

Chapter five quantifies the model drifts and assesses the suitability of the widely used mean 

drift correction method for the CMIP5 decadal hindcast precipitation at a catchment level. This 

chapter will also present the importance of drift quantification and its corrections at a catchment 

level. Suggestions for drift correction alternatives, a transformation of monthly data to seasonal 

mean, considering MMEM, and sorting the number of models to form MMEM are made in this 

chapter. 

Chapter six, is a follow-up chapter of chapter five, investigates the drift correction alternatives 

for the seasonal mean precipitation and proposes a new drift correction method. It also explains 

the pros and cons of different alternatives and suggests no best method for the decadal dataset. 

It also suggests a further investigation to find a better drift correction method for the monthly 

dataset. 

Chapter seven evaluates the performance of all selected models over the entire catchment and 

ranks them based on their performance metrics from both temporal and spatial perspectives. It 

also categorizes the models and optimizes the number of models to form a better MMEM that 

was suggested in chapter five.  

Chapter eight predicts the monthly precipitation for a decadal timescale using Facebook 

Prophet Model and demonstrates that a combination of knowledge and a data-driven approach 

gives comparatively better prediction skills than only the data-driven approach. It also explains 

the importance of considering the knowledge and data-driven approach together instead of 

using only the data-driven approach and suggests the application of a deep neural network 

using a similar prediction approach. 
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Chapter nine also predicts the monthly precipitation for a decadal timescale using MMEM 

(categorised in chapter seven) and the corresponding observed values following a supervised 

training approach in a deep neural network (Bidirectional LSTM) to demonstrate an application 

of knowledge and a data-driven approach in the future prediction. Upon comparing the skills 

of predicted values and the MMEM for the monthly data, this study suggests that the supervised 

training approach can be considered as an alternative to the existing bias/drift correction 

methods that were suggested in chapter six. 

Chapter ten presents the overall conclusions of this research. The conclusions are mainly 

derived from the conclusions drawn in different chapters (papers). It also outlines the 

limitations of this study and presents the recommendation for future study. 
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CHAPTER 2 

STUDY AREA AND RESEARCH FRAMEWORK 

2.1 Study Area 

In this study, the Brisbane River catchment (Fig. 2-1) in Queensland has been selected as the 

study area which is located in the eastern states of Australia in between the latitudes 

26.50S~28.150S and the longitudes 151.70E ~ 153.150E. It is bounded by the Great Dividing 

Range to the west and several smaller coastal ranges including the Brisbane, Jimna, D’Aguilar, 

and Conondale Ranges to the north and east. Most of the Brisbane River catchment lies to the 

west of the coastal ranges. The catchment topography is a mixture of natural forest, rural land, 

and urban development where the river system consists of the Brisbane River with small to 

large tributaries (Syme et al., 2016). 

Brisbane River catchment has an area of 13549 square kilometers and a sub-tropical climate 

where most of the precipitation occurs during summer (December-January-February) and 

minimum precipitation in winter (June-July-August) (Climate-Data, 2020). Monthly observed 

precipitation (1911-2015) over the Brisbane River catchment varied from nil to 1360 mm with 

an annual average precipitation of 628 mm (BoM, 2020) and the number of upper and lower 

extremes are not quite small. Brisbane catchment was selected because of its tropical climate 

nature with low to moderate yearly precipitation variability. The variability of precipitation 

across the catchment is very important as it causes relative changes in the timing of floods from 

different tributaries. There are two flood mitigation dams, notably Wivenhoe and Somerset, 

both of which were built to supplement Brisbane’s water supply. Flooding in the lower reaches 

is affected by tidal ranges. The annual and seasonal average precipitation is variable, affected 

by local factors that include topography, vegetation, and broader scale weather patterns, such 

as the El Niño– Southern Oscillation. The average annual temperature is 19°C. The average 

temperature range during summer, autumn, winter and spring are 21-29.8°C, 15-25°C, 11-

21°C, and 15-25°C respectively.  

There are 30 rain gauge stations across the catchments, operated by the Bureau of Meteorology 

(BoM), Australia. The observed rain gauge stations, including the stations across the Brisbane 

River catchment, were used to produce the gridded data for the entire Australia through the 

Water Resources Assessment Landscape model (AWRA-L V5) as described by Frost et al. 
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(2016). This study used an observation station located at latitude 27.480 S and longitude 153.040 

E (marked in a circle in Fig. 2-1) as a reference station as it lies closest to a grid (latitude 27.50 

S and longitude 153.050 E) of the observed gridded (5.0 km x 5.0 km) dataset. The BoM 

operated all rain gauge stations, Rivers, tributaries, water storages, Bioregions along with the 

catchment boundary are presented in Fig. 2-1. 

 

Fig. 2-1 Study Area, Brisbane River catchment (Source: Rassam et al., 2014) 

 

2.2 Research framework 

2.2.1 Data collection 

CMIP5 involves 20 climate modelling groups with 40 GCMs around the globe. It includes 

historical simulations from 1850 to 2005, near-term projections until 2035, and long-term 

projection until 2100 (and beyond) considering four representative concentration pathways 
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(RCPs). However, for the monthly precipitation, only 10 models; MIROC4h, MRI-CGCM3, 

MPI-ESM-LR, MIROC5, CMCC-CM, HadCM3, EC-EARTH,  MPI-ESM-MR, CanCM4, and 

IPSL-CM5A-LR contributed to the decadal experiment (near-term) for the years 1961-2005 

and five of them (first five) contributed to 30-year simulation for future projection until 2035. 

For the different calendar systems and relatively coarser spatial resolution, HadCM3 (spatial 

resolution 3.75° x 2.5°) and IPSL-CM5A-LR (spatial resolution 3.75° x 1.89°) models were 

not considered in this study. Monthly decadal hindcasts precipitation from the rest eight GCMs 

are downloaded from CMIP5 data portal (https://esgf-node.llnl.gov/projects/cmip5/). For the 

10-year simulation, initialized every five years from 1960 to 2005, and for 30-year simulation, 

initialization years 1960, 1980, and 2005 are used in this study. The details of the selected 

models are given in Table 2-1.  

Table 2-1: Name of the models, modeling group, and initialization years used in this study 

Modelling Centre (or Group) 

Model 

(Resolutions lon 

× lat)) 

Initialization Year (1960-2005) 

60 65 70 75 80 85 90 95 00 05 

Number of ensembles 

EC-EARTH Consortium 
EC-EARTH 

(1.125 X  1.1215) 
14 14 14 14 14 14 14 14 10 18 

Meteorological Research 

Institute 

MRI-CGCM3* 

(1.125 X  1.1215) 
06 08 09 09 06 09 09 09 09 06 

Max Planck Institute for 

Meteorology 

MPI-ESM-LR* 

(1.875 X  1.865) 
10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR* 

(1.875 X  1.865) 
03 03 03 03 03 03 03 03 03 03 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), 

National Institute for 

Environmental Studies, and 

Japan Agency for Marine-

Earth Science and 

Technology 

MIROC4h 

(0.5625 X  

0.5616) 

03 03 03 05 05 05 05 05 05 05 

MIROC5* 

(1.4062 X  

1.4007) 

06 06 06 06 04 06 06 06 06 06 

Canadian Centre for Climate 

Modelling and Analysis 

CanCM4* 

(2.8125 X  

2.7905) 

20  20 20 20 20 20 20 20 20 20 

Centro Euro-Mediterraneo 

per I Cambiamenti Climatici 

CMCC-CM 

0.75 X 0.748 
03 03 03 03 03 03 03 03 03 03 

(* indicates model has historical run until the initialization year 2010) 

The observed gridded monthly precipitation of 0.050 × 0.050 ( 5km × 5km) was collected from 

the Australian Bureau of Meteorology (BoM).  

https://esgf-node.llnl.gov/projects/cmip5/


23 

 

2.2.2 Data processing 

GCMs, provide climate data for the entire globe in netCDF format that requires suitable pre-

processing depending on the users’ interests. The common data processing steps along with 

tools used in this study are mentioned in Fig. 2-2. CMIP5 decadal gridded precipitation unit 

was in flux and the data processing steps it was converted to mm to match with the unit of the 

observed dataset. Python programming and climate data operator tool (CDO) are used in the 

data processing of this study. There are a few differences in data processing steps for individual 

chapters based on the specific objectives. 
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Fig. 2-2 Data processing flow diagram (Image source for steps 1-4: Internet)
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2.2.3 Skill tests 

Several quantitative performance metrics (skill tests) are used in all steps of assessing, 

measuring, and comparing the skills. The descriptions of these skill tests are given below. 

 Correlation Coefficient (CC):  

The correlation coefficient is a good measure of linear association or phase error between two 

datasets. Statistically, it means, how well the values of two datasets correspond to each other. 

Its values range from -1 (no correlation) to perfect correlation, 1 (Rodwell et al., 2010). 

𝐶𝐶 =  
∑(𝑃−𝑃)(𝑂−𝑂)

√∑(𝑃−𝑃)2√∑(𝑂−𝑂)2

  (2.1) 

Here, 𝑃 and 𝑂 represent the modeled and observed values respectively and 𝑃̅, 𝑂̅ are the mean 

values, computed for an individual year.  

 Pearson correlation coefficient (PCC):  

PCC also measures the linear correlation between two datasets. The basic difference between 

CC and PCC is in the calculation of mean values. In PCC, mean values (𝑃̅, 𝑂̅) are calculated 

from the entire dataset whilst in CC, mean values are calculated for individual years of the 

considered datasets.  

𝑃𝐶𝐶 =  
∑(𝑃−𝑃)(𝑂−𝑂)

√∑(𝑃−𝑃)2√∑(𝑂−𝑂)2

  (2.2) 

 Anomaly Correlation Coefficient (ACC):  

Wilks, (2011) suggested ACC, which shows how well the modeled anomalies correspond to 

the observed anomalies. It measures the correspondence between anomalies, calculated by 

subtracting the observed mean (mean over the entire time-span) from both the modeled and 

observed values.  Its value ranges from -1 (no match) to 1 for perfect anomaly matching.  

𝐴𝐶𝐶 =  
∑{(𝑃−𝐶)−(𝑃−𝐶̅̅ ̅̅ ̅̅ )}×{(𝑂−𝐶)−(𝑂−𝐶̅̅ ̅̅ ̅̅ )}

√∑(𝑃−𝐶)2√∑(𝑂−𝐶)2
  (2.3) 

C represents the mean of the observed (BoM) data for the entire period.  
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 Index of agreement (IA):  

Wilmot, (1982) suggested an index of agreement, that measures the accuracy of model data. 

Index of agreement can be calculated as follows: 

𝐼𝐴 = 1 −
∑(𝑃−𝑂)2

∑(|𝑃−𝑂̅|+|𝑂−𝑂̅|)2  (2.4) 

 Fractional Skill Score (FSS): 

Fractional skill score directly compares the model and observed fractional coverage of the grid-

box events (e.g., precipitation exceeding a certain threshold) for the entire catchment. FSS is a 

measure of how the spatial variability of the model values matches with the spatial variability 

of the observed values. FSS can be defined as: 

𝐹𝑆𝑆 = 1 −
1

𝑛
∑ (𝑃𝑓,𝑚−𝑃𝑓,𝑜)

2
𝑛

1

𝑛
[∑ 𝑃𝑓,𝑚

2 + ∑ 𝑃𝑓,𝑜
2

𝑛𝑛 ]
  (2.5) 

Where 𝑃𝑓 indicates the calculated fraction, n indicates the number of events, and the subscript 

m and o indicate modeled and observed respectively. Fractions are calculated following 

Roberts and Lean (2008). In this study, the entire catchment is considered a whole unit, and 

the temporal averages are taken instead of the spatial averages. Two threshold values are 

considered; ≥85 percentile for the wet events (DJF) and <15 percentile for the dry events (JJA). 

To calculate the fractions for individual events, the number of grid points covered for a 

specified threshold value (for instance, 85 percentile of specific wet events) are counted and 

then divided by the total number of grids available in the Brisbane River catchment.  

 Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE):  

MAE and RMSE are used to measure the average magnitude of the errors between model (drift 

corrected) and observed values. MAE is the average of the absolute values of the differences 

between forecasted and corresponding observed values and it is weighted equally in the 

average. The RMSE is a quadratic scoring rule which is squared before it is averaged and 

provides a relatively high weight to large errors. RMSE is useful when large errors are 

especially undesirable. The value of both RMSE and MAE ranges from 0 to ∞ where lower 

values indicate higher accuracy and vice versa. 

𝑀𝐴𝐸 =  
1

𝑛
∑(|𝑃 − 𝑂|)  (2.6) 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(|𝑃 − 𝑂|)2 (2.7) 

Two correlations, two errors, two spatial skills (for extreme dry and wet events), one accuracy, 

and one anomaly correlation metric are used in this study. Every individual skill metric is 

different and presents skills from different perspectives. For instance, the mean of every 

individual year is used to calculate CC whilst the mean over a decade is used for PCC 

calculation. For this reason, CC will present a more robust correlation compared to PCC. Both 

of them are used in this study as PCC is well known and widely accepted. The anomaly 

correlation coefficient would present, how the models are able to reproduce the anomalies 

which are calculated by subtracting the observed mean from both the models and observed 

values. Similarly, both error metrics; MAE and RMSE are used considering the performance 

ranges (low to high) of the models. For instance, all models will not show similar performances 

and few of them may show big differences from the observed values. In that case, RMSE will 

provide comparatively higher error values due to its quadratic scoring rule which will not the 

case for MAE. For this, both error metrics are used to make the comparison easy among the 

models and draw conclusions. Similarly, the accuracy metric is used to show the accuracy of 

the models’ predicted values compared to the observed values. One can assume the accuracy 

in percentage as its values range from 0 to 1.0. 

FSSb15 and FSSa85 are used to compare the model performances in reproducing the extreme 

dry and wet events respectively over the entire catchment. These two skills will play as the key 

indicators for sorting the models from the hydrological viewpoint and extreme dry and wet 

events as well. Note that, the number of skill tests will vary in different chapters depending on 

the research objective. 

 

 

2.2.4 Research steps 

This study comprises three different phases; Phase-I, Phase-II, and Phase-III. Each phase has 

multiple objectives. Brief descriptions of all three phases are given below. 
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 Phase-I 

This phase investigated the best spatial interpolation methods and a better simulation of the 

CMIP5 decadal experiments for monthly precipitation. For finding the best spatial interpolation 

method, three datasets of the initialization year 1990 from three models (EC-EARTH, 

MIRCO4h, and MPI-ESM-LR) of different spatial resolutions are selected. The datasets are 

interpolated onto 0.050 spatial resolution from their native grids using eight interpolation 

methods: Linear (LIN), Bi-linear (BiLIN), Nearest Neighbor (NN), Distance Weighted 

Average (DWA), Inverse Distance weighted Average (IDW), First-order conservative (FOC), 

Second-order conservative (SOC), and Bi-Cubic (BIC). Several skill tests are then used to 

measure the skills of the interpolation methods at the selected location as well as over the entire 

Brisbane River catchment. Based on the skill tests, this study finds the SOC method 

outperformed all the selected methods as it conserves the precipitation flux while re-gridding 

the dataset.  

Then the SOC method was applied to 10 and 30-year simulations for all the available 

initialization years of the five models (MIROC4h, MRI-CGCM3, MPI-ESM-LR, MIROC5 and 

CMCC-CM). The interpolated datasets are then compared with the corresponding observed 

values of 0.050 spatial resolutions through the multiple skill tests over the entire catchment. 

Results show that 10-year simulation contains lower bias that corresponds to the higher skills 

as opposed to 30-year simulation. As a result, 30-year simulation datasets are discarded from 

this stage and 10-year simulation data of 0.050 spatial resolution using SOC method are used 

for the next phases of this study.  

 Phase-II 

In this phase, at first, model drifts were quantified for the monthly and seasonal mean 

precipitation of individual models along with their MMEM and then assessed the suitability of 

the widely used mean-drift correction method recommended from ICPO (2011) to alleviate the 

drift. Next, it measured the skills of both the models’ raw (interpolated) and drift corrected 

values and finds insignificant skill improvements of the models after the drift correction. It also 

finds lower drift in seasonal mean precipitation compared to the monthly values and lowest 

drift in their respective MMEMs. It suggests further investigation for drift correction 

alternatives and finding the optimum number of models to form a better MMEM.  
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In the second step, this phase investigated the drift correction alternatives and proposed a new 

drift correction method for the seasonal mean precipitation. After going through seven skill 

tests from different perspectives, this study suggested no best method for the decadal datasets 

rather suggests using the prudency of the users based on their demands. Finally, it recommends 

further investigation on drift correction approaches for different time scales e.g., monthly 

precipitation, and their application to individual ensembles. 

In the last step of this phase, this study evaluates the models based on their performance 

measured from both the temporal and spatial perspective over the entire catchment. It also 

divided the models into three different categories and found the optimum number of models to 

form the best MMEM for the selected catchment.  

 Phase-III 

In this phase, monthly precipitation was predicted for a decadal timescale using both the GCMs 

derived precipitation and the corresponding observed values. This phase has two different 

sections. In the first section, Facebook Prophet (FBP) model was used to demonstrate 

incorporating GCMs derived precipitation along with the observed values gives comparatively 

better prediction accuracy than the prediction based on the observed data only. For this, at first 

monthly precipitation was predicted for a decade (2006-2015) based on the historically 

observed data only. In the second step, the best MMEM (sorted from the second phase), and in 

the third step all individual models were used as additional regressor in FBP in addition to the 

observed data to predict monthly precipitation for the same period. To justify the prediction 

skill of the FBP model, six different Machine Learning (ML) regression algorithms were used 

to predict the monthly precipitation for the same decade where MMEM was used as a feature 

and corresponding observed values were used as target variables. Upon comparing the 

prediction skills, it was observed that incorporating GCMs derived values along with the 

observed values for the local level prediction improves the prediction accuracy where FBP 

showed better skills than the ML regression models. The first section suggests employing a 

deep neural network for the future prediction using a combination of GCMs and the 

corresponding observed data. 

In the second section, this study uses a Bidirectional LSTM (a deep neural network) model for 

the prediction of monthly precipitation in a decadal timescale (2006-2015) using the best 

MMEM (as features) and corresponding observed values (as targets) in a supervised training 
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approach. Then it compares the prediction skills over the skills of MMEM to demonstrate the 

skill improvements of the predicted values by minimizing the bias through the learning process 

of the deep neural network during its training period.  

The complete research steps mentioning the individual objectives of this study and the links 

among the steps along with objectives are presented in Fig. 2-3. 

 

Fig. 2-3 Research steps. The curved arrows on the left (with solid line) indicate the 

application of the outcome and the curved arrows on the right side (with broken lines) 

indicate the recommended studies 
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2.3 Concluding Remarks 

This chapter described the study area and marked a reference point that has been mentioned in 

all subsequent chapters (as selected grid). It also provided a clear overview of data collection 

and processing steps for the GCMs derived and observed values and provided detailed 

descriptions of the skill tests, which are employed in all subsequent chapters for measuring, 

assessing and comparing the skills to address the specific objectives mentioned in the former 

chapter. The research steps, reflecting the sequential order of the individual specific objectives, 

have been figured out in this chapter that includes links among the individual steps and their 

follow-up studies. However, based on the research objectives and their outcomes, research 

steps have been grouped into three different phases and their descriptions are provided here. 

Every individual research objective and its outcomes are organized as an individual chapter in 

this thesis. Depending on the research objective, data processing steps and the number of skill 

tests may be different but detailed descriptions are mentioned in individual chapters.  
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CHAPTER 3 

COMPARING SPATIAL INTERPOLATION METHODS FOR CMIP5 

MONTHLY PRECIPITATION AT CATCHMENT SCALE 

Abstract 

The use of Regional Climate Models (RCMs) is prevalent in downscaling the large-scale 

climate information from the General Circulation Models (GCMs) to the local scale. But it is 

computationally intensive and requires the application of a numerical weather prediction 

model. For more straightforward computation, spatial interpolation is commonly used to re-

gridding the GCM data to local scales. There are many interpolation methods available, but 

mostly they are chosen randomly, especially for GCM data. This study compared eight 

interpolation methods (linear, bi-linear, nearest neighbor, distance weighted average, inverse 

distance weighted average, first-order conservative, second-order conservative, and bi-cubic 

interpolation) for re-gridding of CMIP5 decadal experimental data to a catchment scale. For 

this, CMIP5 decadal precipitation data from three GCMs were collected and subset for 

Australia and then re-gridded to 0.050 spatial resolution matching with the observed gridded 

data. The re-gridded data were subset for Brisbane catchment in Queensland, Australia, and 

several skill tests (root mean squared error, mean absolute error, correlation coefficient, and 

index of agreement) were conducted for a selected observed grid to check the performances of 

different interpolation methods. Additionally, temporal skills were computed over the entire 

catchment and compared. Based on the skill tests over the study area, the second-order 

conservative (SOC) method was found to be an appropriate choice for interpolating the gridded 

dataset. 

Keywords— Comparison, Interpolation, Precipitation, Spatial and Catchment 
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3.1 Introduction 

General Circulation Models (GCMs) are widely used to assess climate change and its potential 

impacts at different temporal and spatial scales, but their coarse spatial resolution (100-250 

km)  is inadequate for their application at a local scale due to lack of spatial details (Fowler et 

al., 2007; Grotch and MacCracken, 1991; Salathé, 2003). The Regional Climate Models 

(RCMs) are often used to down-scale the large-scale climate information from GCMs to a local 

scale; however, RCMs are complicated, computationally intensive, and time-consuming. To 

avoid this complexity, in practice, spatial interpolations are applied (Homsi et al., 2020; Jain et 

al., 2019; McKellar et al., 2013; Yang et al., 2015) to re-grid the coarser-resolution climate 

model data onto a finer resolution. However, in most cases, spatial interpolation methods are 

randomly used. For instance, bilinear interpolation has been used in many studies (Amengual 

et al., 2012; Kamworapan and Surussavadee, 2019; Miao et al., 2016) but the reason behind 

selecting the bilinear method was not well explained. Climate variables such as precipitation 

show high spatial variability in frequency and magnitude, where, understanding the spatial 

distribution of precipitation at different spatial scales is important for water resource 

management, hydrological modeling, agricultural industries, and urban planning. Therefore, 

the selection of an appropriate spatial interpolation method is important to provide the accurate 

spatial distribution of the precipitation when transforming from a relatively coarser to a finer 

spatial resolution. 

Various spatial interpolation techniques ranging from simple to complex have already been 

used for remapping data to the desired finer resolution (Choudhury et al., 2015; McKellar et 

al., 2013). For interpolating the rain gauge station data at small and medium scale catchments 

(or basins), Nearest Neighbour (NN), Inverse Distance Weighting (IDW), Thiessen polygons, 

Spline and different forms of Kriging are frequently used (Tomczak, 1998). Many studies have 

compared the performance of these spatial interpolation methods for the rainfall data at 

different temporal and spatial scales. For instance, da Silva et al. (2019) compared seven 

interpolation methods for the monthly precipitation over Pernambuco, Brazil, and reported 

trend surface analysis to be the best followed by natural NN, IDW, and Kriging. Yang et al. 

(2015) compared four methods with the model generated daily precipitation data and reported 

that IDW performed slightly better than Spline, Kriging, and ANUDEM (Jones et al., 2009). 

Dirks et al. (1998) didn’t find any advantage of using Kriging over IDW, Thiessen, or areal-

mean while gridding rainfall data from 13 rain gauges stations on Norfolk Island. 
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Consequently, Wu et al. (2019) evaluated several spatial interpolation methods for mapping 

the bathymetry of the lowermost Mississippi River,  which includes IDW, Ordinary Kriging 

(OK), Universal Kriging (UK), Radial Basis Function (RBF), local Polynomial, and 

anisotropic form of Elliptical IDW, and OK and found that both the RBF and anisotropic form 

of OK performed best. Zhang et al. (2016) compared OK, co-Kriging with elevation as 

covariate (Cok-elevation), and co-Kriging with covariates with precipitation data from tropical 

rainfall measuring mission (Cok_TRMM) to interpolate precipitation data from 39 rain gauge 

stations in the Tibetan Plateau. They reported that Cok-TRMM is more effective than the other 

two that was also confirmed by Foehn et al. (2018). Note, the performance of the interpolation 

methods depends on several factors, in particular, temporal and spatial resolution of the 

considered data and the study region. Degré et al. (2015) reviewed several spatial interpolation 

methods from a different perspective and concluded that, for annual and monthly rainfall, geo-

statistical interpolation methods (different mode of Kriging) seem preferable to the 

deterministic methods (Thiessen, NN, IDW, etc.), but for the daily rainfall, geo-statistical 

methods and IDW can be a better option. Most of the aforementioned studies interpolated the 

rain gauge station data and evaluated the interpolation methods at selected grid within the study 

area by using error metrics; root mean squared error (RMSE), mean absolute error, mean 

standard errors. To get an idea of which method produces better interpolation at the catchment 

level, it is essential to apply the methods for the entire study area in addition to a single grid. 

Wagner et al. (2012) also suggested that evaluation of the interpolation methods should include 

the spatial distribution over the study area for precipitation data. Therefore, the objective of 

this study is to evaluate the different interpolation methods for the application of GCM data at 

a catchment level. This study will consider a single grid measure as well as an entire catchment 

for the spatial distribution of precipitation data. In addition, this study also assesses the 

performance of interpolation methods due to the change in spatial resolution of the selected 

data sets. 

3.2  Materials and methods 

3.2.1 Data collection 

CMIP5 experiments (e.g., decadal) provide global climate data for a wide range of climate 

variables generated from several climate models. The decadal simulation, once initialized, 

generates climate data for ten years and longer in some cases (Taylor et al., 2012). Monthly 

precipitation data from three GCMs; MIROC4h, EC-EARTH, and MPI-ESM-LR was 
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downloaded from the CMIP5 data portal (https://esgf-node.llnl.gov/projects/cmip5/). To 

observe the performance of interpolation methods over different spatial resolutions, three 

models of different spatial resolutions are selected here. Details of the models and the data are 

given in Table 3-1. 

The gridded monthly precipitation data with a spatial resolution of 0.050 was collected from 

the Australian Bureau of Meteorology (BoM). The gridded observed data of BoM were 

produced by the Australian Water Availability Project (AWAP) and the details can be found 

here (Frost, A. J., Ramchurn, A., and Smith, 2016). 

Table 3-1 Model used in this study 

Modelling Centre (or Group) 

Model 

Name 

 

(Atmospheric 

Resolutions in 

degree) 

Time span 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for Marine-

Earth Science and Technology 

MIROC4h 

 
(0.5625 X 0.5616) 10 Year;  

From 

January 1991 

to December 

2000 
Meteorological Research Institute 

EC-

EARTH 
(1.125 X  1.1215) 

Max Planck Institute for Meteorology 
MPI-ESM-

LR 
(1.875 X  1.865) 

3.2.2 Data processing 

Firstly, the model datasets were subset for the Australian region, thereafter, all the available 

ensembles (i.e., multiple runs of the same model with slightly perturbed initial conditions) of 

the individual models are averaged to produce a single dataset for each model. These datasets 

were then interpolated from their native grids onto 0.05 x 0.05 degree matching with the grid 

of the observed dataset. Finally, the interpolated data were subset for the selected Brisbane 

catchment (i.e., longitude from 151.70 E to 153.150 E and latitude from 26.50 S to 28.150 S) 

in Queensland, Australia. 

3.2.3 Interpolation methods 

In this study, eight different interpolation methods were evaluated. The six methods; Bi-linear 

(BiLIN), Nearest Neighbor (NN), Distance Weighted Average (DWA), First-order 

conservative (FOC), Second Order conservative (SOC), and Bi-Cubic (BIC) interpolation were 

performed by the Climate Data Operator (CDO) (Schulzweida, 2019) tool, whilst Linear (LIN) 

https://esgf-node.llnl.gov/projects/cmip5/
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and Inverse-Distance Weighted Average (IDW) were performed by the Matplotlib and Scipy 

libraries in Python. It is worth noting that DWA is also an IDW method, where four nearest 

neighbor grids (by default) are used, whilst in the Scipy based IDW method, only three nearest 

neighbor grids are considered. 

Linear interpolation is the concatenation of linear interpolants between each pair of data points. 

But the “LinearTriInterpolator” from Matplotlib performs linear interpolation on a triangular 

grid. Each triangle is represented by a plane so that interpolated values lie on that plane of the 

triangle containing the interpolants. For the Inverse-Distance Weighted Average, Scipy spatial 

algorithm described by Maneewongvatana and Mount (2001) is used to locate the neighboring 

points for a given set of points. 

CDO uses adapted interpolation methods from the SCRIP library. SCRIP is a software package. 

It computes the addresses and weights for remapping and interpolating variables between grids 

on the spherical coordinates. Initially, it was written for remapping the fields to desired grids 

in a coupled climate model but can also be used for other applications. 

3.2.4 Performance Assessment 

The observed dataset has 496 grids (5.0 km X 5.0 km) within the Brisbane catchment, and the 

skill tests are performed at the grid (latitude 27.50 S and longitude 153.050 E) located closest 

to an AWS (Automated weather stations) rain gauge (the observed grid at latitude 27.480 S 

and longitude 153.040 E) operated by the Bureau of Meteorology, Australia. To assess the 

performance, five skill tests: root mean squared error (RMSE), mean absolute error (MAE), 

correlation coefficient (CC), anomaly correlation coefficient (ACC) according to Wilks, 

(2011), and index of agreement (IA) suggested by Wilmot, (1982) were used.  

(𝑖)    𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐹𝑖 − 𝑂𝑖)2𝑁

𝑖=1  (3.1) 

(𝑖𝑖)  𝑀𝐴𝐸 =  
1

𝑁
∑ |𝐹𝑖 − 𝑂𝑖|

𝑁
𝑖=1  (3.2) 

(𝑖𝑖𝑖)   𝐶𝐶 =  
∑(𝐹−𝐹)(𝑂−𝑂)

√∑(𝐹−𝐹)
2

√∑(𝑂−𝑂)
2
 (3.3) 

(𝑖𝑣)  𝐴𝐶𝐶 =  
∑{(𝐹−𝐶)−(𝐹−𝐶̅̅ ̅̅ ̅̅ )}×{(𝑂−𝐶)−(𝑂−𝐶̅̅ ̅̅ ̅̅ )}

√∑(𝐹−𝐶)2√∑(𝑂−𝐶)2
 (3.4) 

(𝑣)  𝐼𝐴 = 1 −
∑ (𝐹𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝐹𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

 (3.5) 
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𝐹 and 𝑂 present modeled (interpolated) and observed values respectively whilst  𝐹̅, 𝑂̅ present 

their annual mean, and C is the decadal mean of the observed (BoM) data.  

3.3  Result and analyses 

The monthly precipitation data from three CMIP5 models are evaluated against the observed 

data, and the results are presented in Table 3-2. These models with three different spatial 

resolutions were chosen (see Table 3-1) to assess the effect on skills of the interpolation 

methods due to the variations of atmospheric spatial resolution (before interpolation) of the 

interpolant dataset. The results for the interpolation methods aren’t significantly different, but 

to some extent, some of them are slightly better than others. Overall, the DWA method has 

comparatively lower errors for all three selected models with varying values for the skill tests; CC, 

ACC, and IA. However, the performances of the interpolation methods are sensitive to the choice 

of models; and the spatial resolution of the interpolant dataset. DWA has the lowest errors (RMSE 

and MAE) and IA, whereas LIN has the highest values for CC and ACC for the coarse spatial 

resolution model followed by DWA (see Table 3-2), whilst SOC and FOC performed poorly on all 

skill tests except IA. 

Overall, the DWA method has the lowest errors for all three models and outperforms all 

methods on all temporal skills for the MIROC4h model at a single grid. With the change in 

spatial resolutions, the skill specifically CC, ACC, and IA varied a little with little to no change 

in RMSE and MAE.  

  



39 

 

Table 3-2 Skill comparison of interpolation methods at the selected grid 

Interp. 
 

MIROC4h 
 

EC-EARTH 
 

MPI-ESM-LR 

  RMSE CC ACC IA  RMSE CC ACC IA  RMSE CC ACC IA 

BiLIN  80.991 0.368 0.354 0.539  79.377 0.437 0.362 0.458  77.432 0.338 0.306 0.414 

LIN  80.948 0.368 0.355 0.539  79.377 0.437 0.362 0.458  77.407 0.343 0.307 0.414 

NN  82.634 0.345 0.334 0.520  79.207 0.438 0.364 0.462  80.083 0.325 0.289 0.437 

IDW  80.998 0.366 0.353 0.536  79.221 0.438 0.364 0.461  77.994 0.334 0.301 0.423 

DWA  79.744 0.380 0.365 0.540  79.060 0.436 0.363 0.458  77.284 0.339 0.306 0.405 

FOC  82.303 0.350 0.338 0.525  79.204 0.438 0.364 0.462  80.100 0.325 0.289 0.437 

SOC  82.307 0.350 0.338 0.525  79.207 0.438 0.364 0.462  80.083 0.325 0.289 0.436 

BIC  81.414 0.362 0.349 0.536  79.480 0.438 0.363 0.458  78.085 0.332 0.300 0.424 

This study also compared the spatial variations of these temporal skills over the entire 

catchment for all three models, but only IA (Fig. 3-1) and RMSE (Fig. 3-2) for the MIROC4h 

models are presented here. From the spatial comparison, it is evident that NN along with 

conservative methods found little better in CC, ACC (not shown), and RMSE whilst DWA 

outperforms other methods for IA. An overview of the spatial comparison of all three models 

based on the specified thresholds of individual skills is presented in Table 3-3. From this 

comparison, it is evident that NN, DWA, and the conservative methods perform better than 

others with little variations in skills over model types where SOC found more consistent, 

followed by FOC in better performance than DWA and NN. 

 

Fig. 3-1 Spatial comparison of Index of Agreement (IA) of different interpolation methods 

(MIROC4h) over the catchment. Labels on the right of each plot indicate more the brightest 

area higher the performance of the interpolation methods 
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Fig. 3-2 Comparison of the spatial variations of Root Mean Squared Error (RMSE) of 

different interpolation methods (MIROC4h) over the catchment. Labels on the right of each 

plot indicate more the brightest area higher the performance of the interpolation methods 

Table 3-3 Number of grids covered by the interpolation methods for the specific thresholds of 

the skills. Selected models, Skills, and corresponding thresholds are presented in the first, 

second, and third row respectively. Higher the number in the respective columns presents 

better the performance of the interpolation methods over the catchment and vice versa 

Interp 
 

MIROC4h 
 

EC-EARTH 
 

MPI-ESM-LR 

 
 RMSE CC ACC IA  RMSE CC ACC IA  RMSE CC ACC IA 

 <= 

55 

>= 

0.55 

>= 

0.5 

>= 

0.65 

 <= 

55 

>= 

0.55 

>= 

0.45 

>= 

0.6 

 <= 

55 

>= 

0.45 

>= 

0.35 

>= 

0.6 

BiLIN  47 5 11 102  22 9 0 5  20 3 8 87 

LIN  45 9 16 102  22 11 0 5  20 2 2 84 

NN  52 14 20 88  56 0 3 22  19 1 16 85 

IDW  50 6 12 92  19 0 0 3  19 3 2 79 

DWA  45 2 8 103  20 11 1 6  19 11 27 86 

FOC  52 14 21 88  56 0 3 21  19 1 15 85 

SOC  52 14 21 88  58 0 3 22  19 1 14 87 

BIC  51 11 19 112  23 12 0 5  17 3 5 97 

3.4  Discussion and Conclusion 

This study compared different spatial interpolation methods at a catchment scale, where the 

temporal errors and skills were evaluated at an observed grid within the catchment and spatial 

comparison of temporal skills for the whole catchment. Preliminary results show no significant 

difference among the interpolation methods when compared at observed stations. This may be 

due to not capturing the spatial variations at a single grid because of using regularly gridded 
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interpolant datasets which demonstrate considering the entire study area for the comparison. 

The difference among the interpolation methods may appear even at a single grid for 

interpolating the irregularly distributed data like point rain gauge stations. For instance, IDW 

(k=3) and DWA (k=4) followed a similar interpolation approach but their different 

performances were evident due to considering the different number of neighbouring points. 

This may be because the interpolant datasets are regularly gridded as opposed to the irregularly 

distributed point rain gauge stations. For irregular datasets such as point rain gauge stations, 

the difference in skills for the interpolation methods may appear, even for IDW (k=3) and 

DWA (k=4), where the only difference between these two methods is the number of 

neighboring grids used for the interpolation. Upon comparison of the errors and skills at a 

single grid within the catchment, DWA was found to be better than other interpolation methods, 

also reported in other studies (Chen and Liu, 2012; Hsieh et al., 2006; Yang et al., 2015). Note, 

Chen and Liu, (2012) and Hsieh et al. (2006) used rainfall data from the rain gauge stations, 

whereas Yang et al. (2015) used regional climate models’ generated data, but all reported that 

IDW performs better. 

For the sake of brevity, when comparing temporal skill over the catchment, only RMSE, CC, 

ACC, and IA are considered. For the spatial comparison, a specific threshold for skill values is 

set, and the number of grids covered for the thresholds is counted. The spatial comparison 

reveals that the conservative methods performed much better than the other five interpolation 

methods, with SOC outperforming FOC. It appears that maintaining the spatial distribution of 

the precipitation by interpolating conservatively is the main reason behind the better spatial 

skills of these conservative methods. In conservative methods, the precipitation flux is 

conserved when interpolated from the source grid onto an interpolated grid. The conservation 

of flux while interpolating spatially is important, especially for the discontinuous variable like 

precipitation and due to its high temporal and spatial variability. For instance, if a few grids 

have no precipitation while others have large values, then bilinear interpolation can make all 

grids zero, including the large values as it uses four grids nearest the 2-degree target grid. In 

this case, conservative interpolation would be a good approach. During the spatial 

interpolation, it is presumed that an accurate approximation of the flux on a source grid leads 

to a more accurate remapping, as evidenced by the use of SOC. In the SOC method, the area-

weighted distance from the source cell centroid is considered as the gradient of flux for the 

interpolated cell (Jones, 1999).  Jones (Jones, 1999) compared first and second-order 

conservative with the other different interpolation methods and found that conservative 
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methods perform much better for the dataset on a regular rectangular grid, where second-order 

conservative shows an order-of-magnitude improvement over the first order. 

Wagner et al. (2012) suggested that the spatial skills of the interpolation methods must be 

considered rather than the skill measured at points/grids. Maintaining the spatial distribution is 

more important to assess climate variability at a local scale, especially for the precipitation. 

said the results revealed that the conservative methods would suit better for spatial interpolation 

of precipitation as they maintain the spatial distribution of the interpolated variables by 

conserving the flux. Furthermore, SOC may be the best option for spatial interpolating the 

gridded precipitation dataset like those from the GCMs as found in this study. This finding is 

in line with the previous study (Jones, 1999), where the second-order conservative (SOC) 

method was found to be an appropriate choice for interpolating the gridded dataset. For the 

cross-validation, similar studies at other catchments/regions are recommended. 

List of symbols 

𝐶  :  Mean of the observed values for the total time span of each dataset 

𝐹  :  Model predicted/forecasted precipitation values 

𝐹  :  Yearly Mean of the model predicted/forecasted precipitation values 

𝑂  : Observed precipitation values 

𝑂̅  :  Yearly Mean of the observed values 

𝐹 − 𝐶  :  Model anomaly 

𝐹 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the model anomalies 

𝑂 − 𝐶  :  Observed anomaly 

𝑂 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the observed anomalies 
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CHAPTER 4 

A COMPARATIVE STUDY ON 10 AND 30-YEAR SIMULATION OF 

CMIP5 DECADAL HINDCAST PRECIPITATION AT CATCHMENT 

LEVEL 

Abstract 

Early prediction of precipitation has many positive benefits as it enables a longer time for 

proper planning and decision making especially for the water managers, agricultural 

stakeholders, and policy and decision-makers. However, due to ongoing climate change along 

with the chaotic nature of precipitation, a too early prediction may lead to inefficient planning 

and decision making due to higher uncertainty and poor skills of the predicted data as the 

climate models are imperfect replicas that need continuous improvement to predict future 

change. To investigate the difference between the short (a decade) and near-term (30 years) 

time simulation, this study aimed to compare the performance of 10 and 30-year simulation of 

CMIP5 decadal hindcast data of 0.050 spatial resolution at catchment level. For this, monthly 

hindcast precipitation of five general circulation models (GCMs): MIROC4h, MRI-CGCM3, 

MPI-ESM-LR, MIROC5, and CMCC-CM were downloaded from the CMIP5 data portal. 

Firstly, the model data were cut for the Australian region and then the unit of the GCMs data 

was converted to the millimetre. In the next step, the GCMs data were spatially interpolated 

onto 0.050 spatial resolution using the second-order conservative method by Climate Data 

Operator (CDO) tool. Monthly observed gridded data of 0.050 spatial resolution were collected 

from the Australian Bureau of Meteorology (BoM). In the last step, both the observed and 

GCMs data were cut for the Brisbane River catchment in Queensland, Australia. Models’ 

performances are assessed compared with the corresponding observed values through four skill 

tests; mean bias, mean absolute error, anomaly correlation coefficient, and index of agreement. 

The results show that 30-year simulations have comparatively higher mean bias and lower 

skills than 10-year simulated data that seems related to the higher number of ensembles in 10-

 
This chapter has been published as: Hossain, M.M., Garg, N., Anwar, A.H.M.F., Prakash, M., Bari, M., 

2021. A comparative study on 10 and 30-year simulation of CMIP5 decadal hindcast precipitation at 

catchment level, in: Vervoort, R.W., Voinov, A.A., Evans, J.P. and Marshall, L. (Ed.), MODSIM2021, 

24th International Congress on Modelling and Simulation. Modelling and Simulation Society of 

Australia and New Zealand, pp. 609–615. https://doi.org/10.36334/modsim.2021.K5.hossain. 

However, few textual changes have been made to address the examiners’ comments. 
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year simulations and the external forcing from increasing GHGs that models were not able to 

capture due to longer simulation period. 

Keywords:  Comparison, decadal, hindcast, precipitation, catchment 

4.1 Introduction 

The Coupled Model Intercomparison Project phase 5 (CMIP5) includes two types of modelling 

experiments; (i) long-term, which were usually designed for century timescales, and (ii) near-

term, which were usually designed for 10-30 years’ timescale called as decadal experiments 

(Meehl et al., 2009). In the near-term, there are two core sets of experiments; (i) 10-year 

hindcasts or predictions initialized in 1960, 1965, 1970 and thus every 5 years to 2005, (ii) 30-

year simulation initialized in 1960, 1980, and 2005 and ending simulation by an additional 20 

year (Taylor et al., 2012). Both the 10 and 30-year hindcasts predictions were initialized from 

the similar observed climate states, for a particular initialization year, but predicted for a 

different time span (either 10 or 30). However, based on the number of ensembles, multiple 

runs of a model with slightly different initialization conditions, the initialization conditions 

may be slightly different. In addition to the slightly different initialization conditions due to the 

different number of ensembles, the external forcing from increasing GHGs may dominate more 

the model response for 30-year simulation compared to 10-year (Taylor et al., 2012).  

Due to the potential applications in many dimensions, decadal experiments have been paid 

much attention in the past decade in which temperature and temperature-based climate indices 

have been paid more attention compared to precipitation. However, precipitation is an 

important climate variable and hydrological aspect that has been significantly affected around 

the globe due to ongoing climate change. High temporal and spatial variability along with 

chaotic nature made it difficult for the climate models to project the change in the future 

precipitation than temperature (Zeke Hausfather, 2018). Climate change is an ongoing dynamic 

process that is being continuously changed and will continue in the future. However, the rate 

of change of future climate and its potential impact on precipitation is not certain. According 

to the IPCC report (IPCC, 2014), the change in the precipitation amount and its extreme events 

(e.g., heavy rainfall, droughts) will be higher in the future compared to the past depending on 

the geographical locations. As every year the climate condition is being changed, that would 

be intensified in the future, models’ projected precipitation for longer timescale may become 

with higher uncertainty compared to shorter timescale predictions. However, there are always 
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some agreements and disagreements among the models as they are imperfect replicas but they 

are continuously improving to project the change in future precipitation (Zeke Hausfather, 

2018). 

Information of local climate features, especially precipitation, are very important for local 

water managers, developers of water supply infrastructures, and water-related other 

stakeholders. That is why research on the local level’s climate variables and their potential 

applications are high in demand for transferring research-based scientific knowledge to 

increase the resilience of the society to climate change (Kumar et al., 2013). Since climate 

change and its impact on precipitation varies from region to region, therefore, it is important to 

assess the models’ predicted precipitation for every individual region and for finer spatial 

resolutions for the regions where the most variable climate exists, like in Australia. Few studies 

(Gaetani and Mohino, 2013; Lovino et al., 2018; Mehrotra et al., 2014) are carried out to assess 

the CMIP5 decadal precipitation around the globe but no study was at the catchment level and 

finer than 0.5-degree spatial resolution. Early prediction of precipitation allows longer time for 

proper planning and decision-making process for managing water resources, assessing future 

water availability, agricultural planning, and large-scale investment for infrastructure 

development (Hansen et al., 2011; Jones et al., 2000; Mehta et al., 2013). However, too early 

may lead to inefficient planning and decision making due to higher uncertainty in the models 

predicted longer timescale precipitation data. The reason behind this is, the chaotic nature of 

precipitation over time and space as well as the climate models are not perfect enough. To 

examine that, this study aimed to compare the performance of 10 and 30 years simulated 

precipitation for CMIP5 decadal hindcast precipitation at a catchment level of 0.050 spatial 

resolution. 

4.2 Data collection and processing 

Monthly observed precipitation of 5km × 5km gridded data, produced through the Water 

Resources Assessment Landscape model (AWRA-L V5), was collected from the Australian 

Bureau of Meteorology (BoM). A detailed description of the observed data is available here 

(Frost et al., 2016). 

Monthly hindcast precipitation data from five GCMs (Table 4-1), who have both the 30 and 10 

years simulations, are collected from the CMIP5 data portal (https://esgf-

node.llnl.gov/projects/cmip5/). There are three initialization years; 1960 (1961-1990), 1980 

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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(1981-2010), and 2005 (2006-2035) which have 30-year simulations. However, in this study, 

the initialization years 1960 and 1980 for 30-year simulation were selected as the observed data 

available until 2020 only. For better comparison, 30-year datasets were divided into three equal 

decades thus matching with the time span of 10-year simulation data initialized in 1960, 70, 

80, 90, and 2000. Firstly, all available ensembles were averaged to produce a single dataset for 

each initialization and then the averaged datasets were subset for the Australian region. 

Secondly, the precipitation unit was converted to the millimetres and the datasets were spatially 

interpolated onto 0.05° × 0.05° (5km × 5km) grids matching with the grids of observed data. 

The second-order conservative (SOC) method was employed through Climate Data Operator 

(CDO) tool as SOC was found comparatively better than other commonly used spatial 

interpolation methods (Hossain et al., 2021a). Finally, both the observed and GCMs’ data of 

5km × 5km spatial resolution were cut for Brisbane River catchment, Queensland, Australia. 

Table 4-1 List of models used in this study 

Models 
Resolutions  

(lon × lat) 

10-year simulation. 
 30-year 

simulation. 

1961-

70 

1971-

80 

1981-

90 

1991-

00 

2001-

10 

 1961-

90 

1981-

10 

 Number of ensembles 

MIROC4h 
(0.5625 X  

0.5616) 
03 03 06 06 06 

 
03 04 

MRI-CGCM3 
(1.125 X  

1.1215) 
06 09 06 09 09 

 
03 03 

MPI-ESM-LR 
 (1.875 X  

1.865) 
10 10 10 10 10 

 
03 03 

MIROC5 
(1.4062 X  

1.4007) 
06 06 04 06 06 

 
06 04 

CMCC-CM 0.75 X 0.748 03 03 03 03 03  03 03 

4.3 Study area 

Brisbane River catchment is in Queensland, the eastern state of Australia. It lies in between the 

latitudes 26.50S and 28.150S and the longitudes 151.70E and 153.150E. It has an area of 13549 

square kilometres and a sub-tropical climate where maximum precipitation occurs during 

summer (December-January-February) and minimum precipitation in winter (June-July-

August) (Climate Data, 2020). 
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4.4 Methodology 

The comparisons between the 10 and 30-year simulations were performed based on the 

corresponding observed values through four quantitative performance metrics; Mean Bias, 

Mean Absolute Error (MAE), Anomaly Correlation Coefficient (ACC), and Index of 

Agreement (IA) which are usually referred to as skill tests. 

4.4.1 Mean Bias  

Choudhury et al., (2017) presented the difference between the raw ensembles’ mean and the 

corresponding observed values as mean bias.  As this study used the mean of all available 

ensembles, the mean bias can be obtained from the absolute differences between the models’ 

raw ensembles’ mean and the corresponding observed values [henceforth the mean bias will 

be referred to as bias]. 

 𝐵𝑖𝑎𝑠 =  |𝑃𝑖 − 𝑂𝑖|   (4.1) 

Where 𝑃 and 𝑂 present models’ raw and observed values respectively and the subscript i varies 

from 1 to n where n is the number of months in each dataset. These notations are the same also 

for the following skills. 

4.4.2 Mean Absolute Errors (MAE)  

As the name suggests, MAE presents the average magnitude of the differences between 

modelled and observed values. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1   (4.2) 

4.4.3 Anomaly Correlation Coefficient (ACC) 

 The centered ACC suggested by Wilks, (2011) measures the correspondence between the 

anomalies of model-predicted and observed values. A higher ACC value does not represent the 

higher accuracy of the predicted data but the anomalies of the predictions. 

𝐴𝐶𝐶 =  
∑{(𝑃𝑖−𝑂̅)−(𝑃𝑖−𝑂̅̅̅ ̅̅ ̅̅ ̅)} × {(𝑂𝑖−𝑂̅)−(𝑂𝑖−𝑂̅̅̅ ̅̅ ̅̅ ̅)}

√∑(𝑃𝑖−𝑂̅)2√∑(𝑂𝑖−𝑂̅)2
  (4.3) 

Here, 𝑂̅ presents the decadal mean of the observed values and the bar over the anomalies 

presents the mean of them. 
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4.4.4 Index of Agreement (IA) 

 IA suggested by Wilmot (1982), measures the accuracy of models’ predicted values 

corresponding to observed values. IA is bounded between 0 and 1 where, the closer the value 

to 1, the more efficient the prediction is 

𝐼𝐴 = 1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖−𝑂′|+|𝑂𝑖−𝑂′|)2𝑛
𝑖=1

  (4.4) 

Here 𝑂′ presents the mean of every individual year of the predicted period. 

4.5 Results and discussion 

In the Brisbane River catchment, there are 496 grids of 5km × 5km spatial resolution. The 

aforementioned skills tests are performed for every individual grid of all the selected models 

and initialization years. For simplicity, the results are presented here for a single grid point 

(27.50S and 153.050E), which is closest to a BoM operated automated weather station (AWS, 

located at 27.480S and 153.040E which is in the northern-east of the Wivenhoe). The bias was 

calculated for the monthly data and accumulated into yearly values for the sake of brevity in 

presentation. Fig. 4-1 presents the yearly total bias at the selected grid of the MRI-CGCM3 

model. It is evident that 30-year simulation data shows comparatively higher bias as opposed 

to 10-year simulations and similar results were found for other models. However, the 

magnitude of the bias varies over the models, initialization years, and simulation periods. For 

instance, in 30 years simulation initialized in 1980 [henceforth, referred to as 1980(30)] all 

models showed comparatively lower bias as opposed to initialized in 1960 [henceforth, referred 

to as 1960(30)] with few exceptions during 1981-1990. In 10 years simulation, models also 

showed comparatively lower bias during 1991-2010 as compared to other initialization years. 

Taylor et al., (2012) mentioned that models might show higher biases at the beginning of the 

simulation period as compared to the other times. However, in this study for decadal timescale, 

models showed higher bias in the first decade for 1980(30) and in the second decade for 

1960(30) except for MIROC4h, which showed higher bias in the first decade of both 30 years 

simulations. 
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Fig. 4-1 Yearly total bias (obtained from monthly bias) comparisons of 10 and 30 years 

simulation for MRI-CGCM3 model. The vertical axis presents the yearly total of bias and the 

horizontal axis presents lead time (in a year). The initialization years are mentioned in the 

parenthesis of labels 

For 10-year simulations, higher biases were observed after 2-3 years from the starting of the 

simulation of all selected models. During 1981-1990 all models showed their highest bias in 

the case of both 30 and 10 years simulations (Table 4-2) of individual models which was also 

evident in the skill tests. As individual models, MIROC4h and MRI-CGCM3 showed 

comparatively lower bias along with higher skills where MRI-CGCM3 is a little ahead of 

MIROC4h for both the 10 and 30-year simulations except in the last decade of 30 years 

simulations. On the contrary, CMCC-CM and MIROC5 showed higher bias along with lower 

skills where CMCC-CM is a little ahead during 1991-2010 and behind during 1971-1990 than 

MIROC5. Lower bias along with higher skills of models seems highly relevant to models’ 

atmospheric resolutions where higher resolutions may reason comparatively lower bias and 

vice-versa that was also reported in previous studies (Jain et al., 2019; Lovino et al., 2018). 

Though having finer atmospheric resolutions, CMCC-CM showed higher bias and lower skills, 

it may be due to the different principle of CMCC-CM for predicting precipitation (Sakamoto 

et al., 2012) at the local level but may show better performance for different locations and 

variables (Lovino et al., 2018). 
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Table 4-2 Comparison of total bias at the selected grid 

Models 

10 years simulation  30 years simulation (1960)  10 years simulation  30 years simulation (1980) 

1961-70 
1971-

80 

1981-

90 
 

1961-

70 

1971-

80 

1981-

90 
 

1981-

90 

1991-

00 

2001-

10 
 

1981-

90 

1991-

00 

2001-

10 

MIROC4h 7986.7 7582.1 7387.3  7986.7 7629.8 7935.1  7387.3 6295.3 6840.1  8154.6 6762.9 6649.3 

MRI-CGCM3 6830.2 7039.4 7128.3  7910.0 8775.2 7975.3  7128.3 6276.4 6185.8  7250.2 6646.2 6886.0 

MPI-ESM-LR 7912.7 8356.9 7234.4  8593.6 8827.3 8045.1  7234.4 6930.5 7646.4  7145.3 7470.9 7141.8 

MIROC5 7401.8 8250.5 7903.1  7743.3 8811.1 8530.2  7903.1 7716.8 7814.2  7903.1 7407.1 8900.8 

CMCC-CM 8150.6 9063.1 8212.5  8150.6 9008.2 8093.3  8212.4 6454.2 7112.9  8212.4 6703.6 7046.1 

 

Table 4-3 Comparison of MAE at the selected grid 

Models 

10 years simulation  30 years simulation (1960)  10 years simulation  30 years simulation (1980) 

1961-

70 

1971-

80 

1981-

90 
 

1961-

70 

1971-

80 

1981-

90 
 

1981-

90 

1991-

00 

2001-

10 
 

1981-

90 

1991-

00 

2001-

10 

MIROC4h 66.55 63.18 61.56  66.55 63.58 66.12  61.56 52.46 57.0  67.95 56.36 55.41 

MRI-CGCM3 56.91 58.66 59.40  65.91 73.12 66.46  59.40 52.30 51.55  60.42 55.38 57.38 

MPI-ESM-LR 65.93 69.64 60.28  71.61 73.56 67.04  60.28 57.75 63.72  59.54 62.26 59.51 

MIROC5 61.68 68.75 65.85  64.52 73.42 71.08  65.86 64.31 65.12  65.86 61.72 74.17 

CMCC-CM 67.92 75.52 68.43  67.92 75.06 67.44  68.43 53.78 59.27  68.43 55.86 58.72 
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Table 4-4 Comparison of ACC at the selected grid 

Models 10 years simulation  30 years simulation (1960)  10 years simulation  30 years simulation (1980) 

1961-

70 

1971-

80 

1981-

90 

 1961-

70 

1971-

80 

1981-

90 

 1981-

90 

1991-

00 

2001-

10 

 1981-

90 

1991-

00 

2001-

10 

MIROC4h 0.11 0.37 0.28  0.11 0.47 0.16  0.28 0.34 0.35  0.21 0.30 0.42 

MRI-CGCM3 0.30 0.43 0.26  0.22 0.10 0.24  0.26 0.27 0.28  0.23 0.22 0.22 

MPI-ESM-LR 0.24 0.20 0.26  0.10 0.27 0.20  0.26 0.28 0.17  0.32 0.29 0.29 

MIROC5 0.23 0.30 0.27  0.24 0.19 0.04  0.27 0.17 0.20  0.14 0.22 0.20 

CMCC-CM 0.15 0.13 0.06  0.15 0.10 0.16  0.06 0.28 0.20  0.06 0.19 0.15 

 

Table 4-5 Comparison of IA at the selected grid 

Models 

10 years simulation  30 years simulation (1960)  10 years simulation  30 years simulation (1980) 

1961-

70 

1971-

80 

1981-

90 
 

1961-

70 

1971-

80 

1981-

90 
 

1981-

90 

1991-

00 

2001-

10 
 

1981-

90 

1991-

00 

2001-

10 

MIROC4h 0.34 0.51 0.48  0.34 0.58 0.40  0.48 0.52 0.56  0.43 0.51 0.62 

MRI-CGCM3 0.41 0.44 0.45  0.41 0.24 0.42  0.44 0.40 0.39  0.39 0.39 0.38 

MPI-ESM-LR 0.41 0.30 0.41  0.34 0.43 0.42  0.41 0.43 0.37  0.50 0.48 0.51 

MIROC5 0.35 0.33 0.30  0.30 0.31 0.35  0.30 0.31 0.35  0.30 0.31 0.35 

CMCC-CM 0.15 0.11 0  0.15 0.06 0.25  0 0.35 0.3  0 0.25 0.19 
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This study also compared the total bias over the entire catchment and found that MRI-CGCM3 

showed the lowest total bias during 1981-2010 and 1960-1990 in 10-year case only (Fig. 4-2). 

This may be due to capturing temporal variations comparatively better than other models. 

 

Fig. 4-2 Comparison of total (sum over 120 months) bias (in mm) between 10 and 30-year 

simulations across the catchment for the period of 1981-2010 of MRI-CGCM3 model. The 

periods are mentioned on the top of individual columns the initialization years are mentioned 

at the bottom left corner of individual plots 

For 1960(30), MIROC4h showed a little higher bias than MPI-ESM-LR. In the case of longer 

time simulations (e.g., 30-year), only MIROC5 showed higher bias over the entire catchment 

during the ending of the predicting periods (not presented) whereas other models showed either 

the first or in the second decade. CMCC-CM showed the highest bias during the last decade of 

1960 (30) only. Other skills; MAE, ACC, and IA for the selected grid point are presented in 

Table 4-3, 4-4, and 4-5 respectively.  From the skill tests results, it is revealed that the model’s 

skills correspond to the magnitude of bias and MAE. Higher bias resulted in lower skills and 

vice versa. During 1981-1990, models show the lowest skills and the highest errors whilst 

higher skills are observed during 1991-2010 which was also reported in a previous study 

(Hossain et al., 2021b). It is assumed that during 1961-1970 and 1981-1990, for both the 30 

years and 10 simulations, models had the same initialization conditions except slight 

perturbation for different ensembles. However, 30 years simulations showed comparatively 
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higher bias and lower skills compared to corresponding 10 years simulations that may be due 

to the lower number of ensembles in 30-year simulation as opposed to 10-year. Higher bias in 

30-year simulation during 1971-1990 and 1991-2010 due to the different initialization 

conditions where 10-year simulation had updated climatic condition for models’ initialization 

compared to the 30-year. This may indicate that models may not capture the dynamic change 

of precipitation over time for a longer lead time. In addition, the models were dominated by 

the external forcing from increasing GHGs that may result in more time-varying bias which is 

referred to as drift (Choudhury et al., 2017; Mehrotra et al., 2014) encountered more in 30-year 

simulation than the 10-year. Though a 30-year time is not long enough in the climate studies 

perspective but compared to a decade it is longer. 

4.6 Conclusion 

This study aimed to compare the performance of 10 and 30-year simulations of CMIP5 decadal 

hindcast precipitation of 0.05-degree spatial resolution at catchment level. The skills of two 

30-year simulation data were assessed and compared with their corresponding 10-year 

simulations. However, this study considered only two 30-year simulations; 1960(30) and 

1980(30), and did not consider the 30-year simulation which was initialized in 2005 as the 

observed data until 2035 yet to observe. The performances are compared based on the 

calculated skills; bias, MAE, ACC, and IA. Based on the presented skills at the observed station 

and total bias over the entire catchment, this study finds comparatively higher bias and lower 

skills of 30-year simulation compared to 10-year simulations. Though the differences of bias 

are not significant, stakeholders may require prudence before making model-based decisions 

and planning. However, this study was limited to only the Brisbane River catchment that is 

why further investigation for other catchments at other locations is highly encouraged. 
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List of symbols 

P  : Model predicted values 

O  : Observed values 

𝑂̅  : Mean of the observed values for a decade 

𝑂′  : Mean of the observed values for individual years 

i  :  Number of events (months) 
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CHAPTER 5 

DRIFT IN CMIP5 DECADAL PRECIPITATION AT CATCHMENT 

LEVEL 

Abstract 

Over the last few years, the decadal prediction has been paid much attention for its potential 

applications in agriculture, hydrology and for assessing the climate impact on the various 

aspects of human life. Though the fidelity of decadal prediction specifically the hindcasts 

experiments through Coupled Model Inter-comparison Project Phase 5 (CMIP5) has been 

examined for many climate variables and at different temporal and spatial scales, the drift in 

CMIP5 decadal precipitation at a local scale remains unknown. Drift is the long-term time-

varying systematic bias generated by GCMs while they revert to their equilibrium state from 

the forced initialized state. This study used seven general circulation models (GCMs) from five 

different modelling groups to examine the drift in monthly and seasonal mean precipitation 

from the CMIP5 decadal hindcasts for Brisbane River catchment, Australia. Drifts of individual 

model’s ensemble mean (IMEM) and multi-model ensembles’ mean (MMEM) at monthly and 

seasonal time scales were quantified and examined using four different skill tests. Results 

revealed that the magnitudes of drifts are higher in monthly precipitation than the seasonal 

mean precipitation. Next, the drift in hindcast precipitation was corrected using the mean drift 

correction method and found that the mean drift correction method is not sufficient to alleviate 

the drift in CMIP5 decadal precipitation. This suggests further research for an appropriate drift 

correction method for decadal precipitation. Comparing the drift and skill test results over the 

entire catchment, this study finds, MMEM showing the lowest drifts and outperformed in all 

models in skill tests. 

Keywords: CMIP5, drift, precipitation, decadal, monthly, seasonal, catchment 
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5.1  Introduction 

In recent years, decadal climate predictions of Coupled Model Inter-comparison Project phase 

5 (CMIP5) have attracted climate scientists due to their potential applications in many different 

fields such as agriculture, hydrology and socio-economic impacts due to climate hazards. A 

reliable prediction of climate variables (such as precipitation and temperature) from season to 

decade is very important especially for agriculture and agro-related businesses in order to plan 

for future water resources requirements (Hansen et al., 2011; Jones et al., 2000). Effective 

rainfall/streamflow prediction for longer time scales can help policymakers and water 

managers in reducing the impact of hydro-climatic extremes such as droughts and floods 

(Apurv et al., 2015; Mehta et al., 2013).  

CMIP5 includes a set of decadal climate prediction experiments conducted using different 

general circulation models (GCMs) that provide both hindcasts and future predictions of 

climate variables (Taylor et al., 2012). Decadal hindcasts can be used to quantify the model 

biases and other systematic errors in model output that will help to correct the predicted future 

climate variables (e.g. precipitation). This will also enable us to use the corrected future rainfall 

variables as model input for hydrological modelling to predict the river streamflow (Islam et 

al., 2014). Prediction of river streamflow in a decadal scale will provide very important 

information for future infrastructure development. In CMIP5, the decadal hindcasts are from 

two core sets of experiments; the first set consists of 10-yr hindcasts initialized in 1960, 1965, 

and every five years to 2005 and the other set is the 30-yr simulations initialized in 1960, 1980 

and 2005 (Taylor et al., 2012). Two common approaches of initialization are used in CMIP5 

decadal experiments; full-field initialization and anomaly initialization. In full-field 

initializations, models’ initial state is forced away from its equilibrium state to match as close 

as possible to its observed climate state while in the anomaly initialization, observed anomalies 

are added to the model climatology. Multiple runs carried out either for hindcasts or forecasts, 

of the same model with slightly different initialized conditions are referred to as ensemble 

members. As the climate models are the imperfect replica of the real-world phenomena, after 

running from an initialized state, the model tends to revert to its equilibrium state from the 

forced initialized states (Mehrotra et al., 2014). This results in spurious long-term linear or non-

linear systematic errors in climate models (GCMs) which are referred to as “drift”. 
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The model drift and its evolution over time can depend on various factors such as the variables 

of concern and their temporal and spatial variabilities, the models’ type and the study regions. 

For instance, lower drifts have been reported in CMIP5 models than the CMIP3 models (Gupta 

et al., 2013). It has also been reported that the drift generally becomes less important at a global 

scale or over a larger area, and when considering average across multiple models (Gupta et al., 

2012), but at a local scale it might be important when internal variability is large. Therefore, 

drift should not be neglected in predicting climate variables (Taylor et al., 2012). In terms of 

time scale, drift in decadal prediction experiments may affect most of the variables in a more 

complicated way than the long-term runs. Now drift has been an important issue in decadal 

experiments where little systematic directional bias from model to model and/or region to 

region is seen (Gupta et al. 2012, Gupta et al. 2013). As ‘drift’ in the climate model (GCMs) 

outputs hinders the credible applications of models output, therefore, drift correction is an 

essential prerequisite step before the application of climate model forecasts (or hindcasts). 

Taylor et al. (2012) recommended drift correction by applying relatively sophisticated bias 

correction methods. International Climate and Ocean: Variability, Predictability and Change 

Project Office (ICPO) has recommended removing lead time-dependent mean bias for drift 

correction of CMIP5 decadal prediction (ICPO, 2011). This method has been so far applied for 

the sea-surface temperature or temperature-based climate indices for drift correction. Kharin et 

al. (2012) used the CMIP5 decadal near-surface temperature of the CanCM4 model where they 

reported that the mean drift correction method would introduce errors due to the initialization 

date if the observation and models have different long-term trends. Other studies (Ho et al. 

2012; Meehl et al. 2014; Meehl and Teng 2012) also argued that drift correction itself may 

introduce additional errors if proper data and methods are not considered. Choudhury et al., 

(2016) investigated sampling effects of two differently initialized CMIP5 decadal sea surface 

temperature (SST) and found that the mean drift correction introduces large biases in the 

considered variables.  

To date, the drift of temperature and temperature-based climate indices have been paid much 

attention in many previous studies (Chikamoto et al., 2013; Choudhury et al., 2016; Hawkins 

et al., 2014; Kharin et al., 2012; Narapusetty et al., 2014). It may be because of the higher 

prediction skill of models found for temperature (Masanganise et al., 2013; Meehl et al., 2014; 

Mehrotra et al., 2014) than the precipitation. To the best of our knowledge, drift in precipitation 

has been given little attention (Gupta et al., 2013) and no studies conducted so far for CMIP5 
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decadal precipitation at the local scale. In Australia, only Mehrotra et al. (2014) used mean 

drift correction for precipitation along with two other atmospheric variables and reported lower 

skills of models for precipitation than the air temperature and geopotential height. However, 

Mehrotra et al. (2014) used 0.50 spatial resolution that covers 50 km × 50 km area over 

Australian ground which is a large spatial resolution for a region where climate variabilities 

are high. As precipitation is an important climate variable that has direct economic, 

environmental and social impacts especially for the agriculture-dependent countries, it is 

essential to check the drift in models’ precipitation before taking any decision based on the 

model output. For this, precipitation drift should be studied at a local scale with finer spatial 

resolutions especially for a country like Australia where the precipitation shows high temporal 

and spatial variability (Gupta et al., 2013). Therefore, the objective of this study is to investigate 

the characteristics of drift in precipitation of CMIP5 decadal experiments by quantifying the 

drift and assessing the suitability of mean drift correction for CMIP5 decadal precipitation at a 

catchment level (0.050 × 0.050  5km×5km). To assess the applicability of time-aggregated 

data for practical applications, this study uses monthly and seasonal mean precipitation and 

their skill tests results are presented for individual model’s ensemble mean (IMEM) and multi-

model ensembles’ mean (MMEM). 

5.2 Data collection and processing 

5.2.1 Data collection 

For monthly hindcasts decadal precipitation, there are ten GCMs available in the CMIP5 data 

portal (https://esgf-node.llnl.gov/projects/cmip5/). Among them, seven GCMs (MIROC4h, 

EC-EARTH, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, MIROC5 and CanCM4) were 

selected for this study based on their spatial resolution and preliminary investigation. Relatively 

coarser spatial resolutions were found for IPSL-CM5A-LR (3.75 × 1.89) and HadCM3 (3.75 

× 2.5) and hence they were excluded. Though CMCC-CM has a relatively finer resolution 

(0.75 × 0.75) its simulation period was taken 121 months instead of 120 months for a decadal 

experiment. Because of this longer period of data set compared to other models, CMCC-CM 

was also not considered in this study. The data with a simulation length of 10 years (120 

months) and models simulated with full-filled initialization for every five years during 1960-

2005 was selected for this study. The number of ensembles for different models are different 

https://esgf-node.llnl.gov/projects/cmip5/
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and all available ensembles are averaged to produce their respective ensemble mean for each 

initialization. The name of models, their modelling groups, the available historical runs, and 

the ensemble number of individual models are given in Table 5-1. 

Monthly gridded observed precipitation of 0.050 × 0.050 (5km × 5km) spatial resolution for 

entire Australia was collected from the Bureau of Meteorology (BoM), Australia. The gridded 

observed data was produced by BoM using the water resources assessment landscape model 

(AWRA-L V5) (Frost et al., 2016). 

Table 5-1 List of models, their spatial resolutions and number of ensembles used in this study 

Modelling Centre (or Group) 

Model Name 

(Resolutions in 

degree) 

Initialization Year (1960-2005) 

60 65 70 75 80 85 90 95 00 05 

Number of ensembles 

EC-EARTH Consortium 

EC-EARTH 

(1.125 X  

1.1215) 

14 14 14 14 14 14 14 14 10 18 

Meteorological Research 

Institute 

MRI-CGCM3 

(1.125 X  

1.1215) 

06 08 09 09 06 09 09 09 09 06 

Max Planck Institute for 

Meteorology 

MPI-ESM-LR 

(1.875 X  1.865) 
10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR 

(1.875 X  1.865) 
03 03 03 03 03 03 03 03 03 03 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), 

National Institute for 

Environmental Studies, and 

Japan Agency for Marine-

Earth Science and Technology 

MIROC4h 

(0.5625 X  

0.5616) 

03 03 03 06 06 06 06 06 06 06 

MIROC5 

(1.4062 X  

1.4007) 

06 06 06 06 04 06 06 06 06 06 

Canadian Centre for Climate 

Modelling and Analysis 

CanCM4 

(2.8125 X  

2.7905) 

10  10 10 10 10 10 10 10 10 10 

5.2.2 Data processing 

GCMs’ spatial resolutions (e.g., 100-250km grids) are inadequate for regional studies as they 

have lack of information at local scales (Fowler et al., 2007; Grotch and MacCracken, 1991; 

Salathé, 2003). The regional climate models (RCMs) typically use dynamic downscaling for 

GCMs’ large-scale information to local scales that are computationally intensive and it may 

introduce further bias of their own. Spatial interpolations of GCMs data from their native grids 

to finer resolutions are also common practice (Amengual et al., 2012; Mehrotra et al., 2014; 
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Miao et al., 2016) in climate research. This study used a spatial interpolation method for re-

gridding the GCM data onto its finer spatial resolution. Skelly and Henderson-Sellers (1996) 

suggested that GCMs derived precipitation data should be treated as areal or grid box 

quantities. They also stated that spatial interpolation does not create any new information for 

the grid box quantities but only increases the spatial precisions. One can sub-divide the grid 

box in almost any manner until the original volume remains the same. For this, GCMs’ data 

were subset for the Australian region and interpolated onto 0.05 × 0.05 spatial resolution 

using the second-order conservative (SOC) method in this study. Jones (1999) suggested that 

the precipitation flux must be remapped in a conservative manner in order to maintain the water 

budget of the coupled climate system. While sub-gridding the GCM data using the SOC 

method, the total precipitation volume of the original grid of GCM data are basically conserved 

over subsequent grids. The SOC method was selected here as it maintains a conservative 

manner (conserves precipitation flux) while sub-gridding the GCMs derived precipitation from 

their native grids to subsequent grids (Jones, 1999). Moreover, the SOC method was found 

suitable for spatial interpolation of precipitation data of regular rectangular grids (Hossain et 

al., 2021; Jones, 1999). For the suitability of direct comparison, spatial interpolation grids were 

set similar to the grids of observed data. Before interpolation, the precipitation unit was 

converted into millimetres. 

For the seasonal precipitation, all ensemble members for each initialization were averaged, and 

the ensemble means were temporally aggregated to seasonal mean for the Australian seasons; 

Summer (December-January-February [DJF]), autumn (March-April-May [MAM]), winter 

(June-July-August [JJA]) and spring (September-October-November [SON]). Each dataset 

spans ten years, starting from January (1st year) and ending in December (10th Year). To make 

the complete seasons, January and February from the 1st year and December from the 10th 

year were discarded, thus resulting in the reduction of one DJF season in each dataset. To 

produce the multi-model ensembles’ mean (MMEM), ensembles’ mean of every individual 

initialization of all selected models were averaged to produce a single dataset.  Finally, both 

monthly and seasonal mean precipitation data were subset for the selected Brisbane River 

catchment in Queensland, Australia (Fig. 5-1). There are 496 grids (at 0.050 × 0.050) within 

the Brisbane River catchment. It has an area of 13549.2 square kilometres and a sub-tropical 

climate where maximum rainfall occurs during summer (December-January-February) and 

minimum rainfall in winter (June-July-August) (Climate Data, 2020). This low to moderate 
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yearly rainfall variability along with the tropical climate nature is the main reason for selecting 

this catchment. 

 

 

Fig. 5-1 Location of the Brisbane River catchment (inset) 

5.3 Methods 

5.3.1 Model drifts 

The climate variables simulated in CMIP5 decadal experiments show systematic differences 

between the model hindcast and corresponding observed data. With time, models’ simulated 

data initialized with the historical climate conditions tend to drift towards the model 

climatology and it produces systematic bias. This makes it necessary to correct the model drift 

in order to validate or interpret the predicted variables. To correct the drift of CMIP5 decadal 

experiments output, a simple drift correction method (known as mean drift correction) is 

suggested by ICPO (2011) which has also been used by Mehrotra et al. (2014) and Choudhury 

et al. (2016). This method assumes that the drift in monthly prediction is just a function of lead-

time and is not affected by the external radiative forcing or model state. According to ICPO 
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(2011) method, the average value of the model’s prediction (𝐹̅t) and the corresponding average 

of observed data (𝑂̅t) at a lead-time 𝑡 are calculated as follows: 

𝐹̅𝑡 =
1

𝑛
∑ 𝐹𝑖𝑡

𝑛
𝑖=1  (5.1) 

𝑂̅𝑡 =
1

𝑛
∑ 𝑂𝑖𝑡

𝑛
𝑖=1             (5.2) 

where 𝐹𝑖𝑡 and 𝑂𝑖𝑡 are the model’s predicted and observed data respectively at lead-time 𝑡 

initialized at 𝑖 = 1, 2, … 𝑛. Here, 𝑛 is the initialization years (n=10, corresponding to 1960, 

1965 …. to 2005). For monthly precipitation, the lead-time 𝑡 = 1, 2, … … 120 and for seasonal 

precipitation, lead-time  𝑡 = 1, 2, … . 39. The lead-time dependent drift (𝑑𝑡) is the difference 

between 𝐹̅𝑡 and 𝑂̅𝑡 for the lead-time 𝑡. 

𝑑𝑡 =  𝐹̅𝑡 − 𝑂̅𝑡   (5.3) 

Quantitatively drift (Eq 5.3) is the mean of the biases over time (e.g., different initialization 

years). In Equations 5.1-5.3, the drift is calculated as the arithmetic mean of all biases over 

different initialization years (n value). That means the drift would be the same for all 

initialization years for each model.  

Finally, the drift corrected values (𝐹̂𝑖𝑡) are calculated by subtracting the estimated drift (𝑑𝑡) 

from the model’s predicted values: 

𝐹̂𝑖𝑡 =  𝐹𝑖𝑡 − 𝑑𝑡   (5.4) 

In this study, the model drifts in both monthly and seasonal mean precipitation are calculated 

at all 496 grids of the study area. For all initialization years, the model drifts were quantified 

for IMEM and their MMEM respectively. 

5.3.2 Skill tests 

The skills may be assessed by comparing the models’ predicted historical values with the 

corresponding observations. At initialization year i and lead-time t, the model predicted decadal 

precipitation (𝐹𝑖𝑡) and the drift corrected precipitation (𝐹̂𝑖𝑡) are assessed against the observed 

precipitation (𝑂𝑖𝑡) using the following four statistical skill tests. These skill tests are performed 
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at each grid for all IMEM and MMEM, of all individual initialization years. As skill tests are 

carried out for all initialization years, the model predicted and drift corrected values are 

referred, in general, as 𝐹𝑡 and the corresponding observed precipitation is referred as 𝑂𝑡 in all 

skill tests. 

 Pearson correlation coefficient (PCC):  

PCC measures the linear correlation between two datasets. PCC is used to measure the linear 

correlation between the modelled (and drift corrected) and observed values. Its value varies 

between -1 and 1 (perfect correlation).  

𝑃𝐶𝐶 =  
∑ (𝐹𝑡−𝐹)𝑁

𝑡=1 (𝑂𝑡−𝑂̅)

√∑ (𝐹𝑡−𝐹)2𝑁
𝑡=1 √∑ (𝑂𝑡−𝑂̅)2𝑁

𝑡=1

                              (5.5) 

where 𝐹̅ and 𝑂̅ represent the mean of all 𝐹𝑡 and 𝑂𝑡 respectively. Here, t = 1, 2, ……to N. N is 

the maximum lead-time (e,g., the maximum number of months-120 or the maximum number 

of seasons -39).  

 Index of Agreement (IA):  

Wilmot (1982) suggested IA measures the accuracy of predicted data with respect to the 

observed data. IA values bounded between 0 and 1, where, the value closer to 1 presents the 

more efficient prediction (drift correction). 

𝐼𝐴 = 1 −
∑ (𝐹𝑡−𝑂𝑡)2𝑁

𝑡=1

∑ (|𝐹𝑡−𝑂′|+|𝑂𝑡−𝑂′|)2𝑁
𝑡=1

                (5.6) 

Here 𝑂′ presents the mean of every individual year of the predicted period. 

Root mean squared error (RMSE) and mean absolute error (MAE):   

The RMSE and MAE both are used to measure the average magnitude of errors, the differences 

between the modelled and observed values. The RMSE is a quadratic scoring rule measuring 

the average magnitude of the errors and provides a relatively high weight to large errors 

because of squaring the errors before taking the average. This means RMSE is useful when 

large errors are undesirable. The MAE measures the average of the errors in a set of predicted 

and observed values. The MAE provides a linear score, which means it is weighted equally in 
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the average. RMSE and MAE values range from 0 to ∞, where the lower value indicates higher 

accuracy and vice versa.  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐹𝑡 − 𝑂𝑡)2𝑁

𝑡=1                  (5.7) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝐹𝑡 − 𝑂𝑡|𝑁

𝑡=1                               (5.8) 

5.4 Data analyses and results 

The model drifts are calculated at all 496 grids of the study area. Because of too many results 

produced for all grids, the results are presented here for the most representative single grid 

point (lat. -27.5 and lon. 153.05) which is closest to the observed rain gauge station (latitude -

27.48 and longitude 153.04) of the Bureau of Meteorology, Australia. This might have less 

effect produced by the diffusive characteristics of the interpolation method. The drifts are 

calculated for IMEM and MMEM respectively for both monthly and seasonal data. Individual 

ensembles initialized in 1990 and their mean for MIROC4h, and IMEMs along with MMEM 

of the same initialization, for monthly precipitation, are presented in Fig. 5-2 and for seasonal 

mean precipitation are presented in Fig. 5-3 respectively. 
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Fig. 5-2 Monthly precipitation of (a) individual ensembles (initialized in 1990) and their 

mean for MIROC4h and (b) the IMEMs along with MMEM of the same initialization 
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Fig. 5-3 Seasonal mean precipitation of (i) individual ensembles (initialized in 1990) and 

their mean for MIROC4h, and (ii) the IMEMs along with MMEM of the same initialization 

The overall results considering all initialization years for all individual models show that their 

ensembles’ means represent better with the observed values than their individual ensembles.  

The results for MMEMs were found showing better resemblances than the IMEMs. 

5.4.1 Model drifts 

 Monthly precipitation 

Drifts for monthly precipitation were calculated for all available grids and the results of the 

selected grid are shown in Fig. 5-4. All models show variations of drifts over time but the 

frequency and magnitude of variations are different for different models. Over the period of 

120 months, the magnitude and frequency of negative drifts are found more pronounced albeit 

dependent on the model type. For instance, the CanCM4 model has a higher number of negative 

drifts while EC-EARTH shows more positive drifts. 
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Fig. 5-4 Drifts of different models over 120 months (decade) at the selected grid point for 

monthly precipitation 

In drift calculation, negative (or positive) drifts mean models tendency of under (or over) 

prediction. This under (or over) prediction varies over periods and seasons within the data. For 

monthly precipitation, almost all models showed higher negative drifts in the months of 10-12, 

36-39, 57-60, and 97-100, with MIROC4h showing lower drifts for months 57-60 compared to 

other models.  

As the climate models are not perfect to simulate reality, their output will differ from the 

observed values. In full-field initialization, the models are initialised based on the observations 

and they will be initially forced away from the equilibrium to match with the observed climate 

states and thus will revert to its equilibrium states over a period of time (Mehrotra et al., 2014; 

Taylor et al., 2012). This resulting spurious linear or nonlinear transition referred as drift (in 

this paper) depends on the time scale and the variables of concern being assessed in the models 

(Gupta et al., 2012).  In this study, variations of peaks of calculated drift were observed along 

the time span and over the models. All models show multiple higher peaks of drifts for the 

months of 36-100 except CanCM4, which showed a high drift in the second month of the model 

run.  

To investigate how the drift varies over the decadal time span, this study compared total drifts 

at the observed point as well as over the entire catchment after splitting the time span into three 

equal spells; 1st 40 (1-40 months), 2nd 40 (41-80 months) and 3rd 40 (81-120 months). The 



73 

 

higher drift was found in the 1st 40 months for EC-EARTH and CanCM4, 2nd 40 months for 

MRI-CGCM3, MIROC5, and MPI-ESM-MR and the 3rd 40 months for MIROC4h 

respectively.  However, the MPI-ESM-LR showed an almost similar drift in all three spells. 

MMEM also showed a higher drift in the 3rd 40 months spell while the lowest drift was found 

in the 2nd 40 months.  

The spatial comparison of mean drifts (average of the absolute values over each time spell) for 

monthly precipitation of MIROC4h and the MMEM are presented in Fig. 5-5 and all other 

models are presented in the supplementary materials in Fig. 5-S1. The lowest drift was found 

in the 2nd 40 months for MIROC4h and CanCM4 whilst EC-EARTH showed the lowest drift 

in the 3rd 40 months. MMEM showed an almost similar drift in all three spells.  At the observed 

station, MMEM showed the lowest total drift followed by IMEM of MIROC4h, EC-EARTH 

and MRI-CGCM3 while CanCM4 showed the highest total followed by the IMEM of MIROC5 

and MPI-ESM-MR respectively. 

 

Fig. 5-5 Spatial variations of temporal mean drifts of MIROC4h (1st row) and MMEM (2nd 

row) for monthly precipitation.  The temporal mean of the 1st, 2nd and 3rd spell, each of 40 

months, are presented in the 1st, 2nd and 3rd column respectively 
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Nevertheless, over the entire catchment, MMEM showed the lowest total drift followed by 

IMEM of MPI-ESM-MR, MIROC4h, and EC-EARTH while MIROC5 showed the highest 

total followed by the IMEM of CanCM4. The drift comparison of IMEM and MMEM shows 

that the drift values of CanCM4 and MRI-CGCM3 are always lying underneath the drift values 

of MMEM’s, whereas the drift in EC-EARTH and MIROC5 always remain above the drift in 

MMEM. Models MIROC4h, MPI-ESM-LR, and MPI-ESM-MR show almost similar types of 

drifts, which are more (less) than the MMEM drift in case of positive (negative) drift. However, 

the drifts observed in monthly precipitation of CMIP5 decadal experiments vary over time but 

depend on the model types (Fig. 5-4) which are similar to Gupta et al. (2013). 

Seasonal mean precipitation 

The drifts of all selected models and MMEM for seasonal mean precipitation at the selected 

grid are presented in Fig. 5-6.  The spatial variations of mean drift (average of the absolute 

values over each time spell) over the catchment for seasonal precipitation of MIROC4h and 

MMEM are presented in Fig. 5-7 and all other models are presented in Fig. 5-S2. The results 

show that the higher drifts in seasonal mean precipitation are corresponding to the months 

showing higher drifts in monthly precipitation. However, there is a dampening in the overall 

magnitude and the frequency of the drift because of seasonal aggregations. For all models, the 

highest negative drifts were observed in the 19th season and the second-highest in the 12th 

season. Some other peaks were also observed but weren’t as pronounced as in the monthly 

precipitation.  

Similar to monthly precipitation, the highest negative drifts were found in CanCM4 whereas 

the higher positive drifts were found in EC-EARTH. The spatial variations of the drift in 

seasonal mean precipitation were very similar to monthly variations but with considerably 

lower magnitude (Fig. 5-S2). 
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Fig. 5-6 Drifts of different models over the time span of 39 seasons at the selected grid point 

for seasonal precipitation 

 

Fig. 5-7 Spatial variations of temporal mean drifts of MIROC4h (1st row) and MMEM (2nd 

row) for seasonal precipitation.  The temporal mean of the 1st, 2nd and 3rd spell each of 13 

seasons are presented in the 1st, 2nd and 3rd column respectively 
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5.4.2 Drift correction 

 Monthly precipitation 

Drift corrections are performed by subtracting the calculated drift from the individual 

ensembles of the models, IMEM and MMEM for all initialization years using the mean drift 

correction method. Drift corrected individual ensembles and their mean of MIROC4h (the 

initialization year 1990) and drift corrected IMEM along with the MMEM of same initialization 

are presented in Fig. 5-8. 

 

Fig. 5-8 Drift corrected (DC); (a) individual ensembles initialized in 1990 and their mean of 

MIRCO4h and (b) IMEMs along with MMEM for the same initialization of monthly 

precipitation 

The drift corrected and uncorrected ensembles’ mean precipitation are compared with the 

corresponding observed values for all initialization years of all models. It is observed that drifts 

are reduced after applying mean drift correction but also introduce additional errors for some 

models that were evident in skill tests. The magnitude of drift reduction varies over model 
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types. However, the overall drift reduction seems insufficient for the monthly precipitation as 

evidenced by the results of the skill tests. 

 Seasonal mean precipitation 

Drift corrected individual ensembles of MIROC4h, IMEMs, and MMEM for seasonal mean 

precipitation are shown in Fig. 5-9. Comparison of the seasonal mean precipitation before and 

after drift correction shows improvements in the reduction of drift albeit the improvement is 

insignificant (p>0.05). It is worth noting that the drift in both monthly and seasonal 

precipitation was also assessed at other randomly selected grids within the Brisbane catchment 

but no noticeable changes were seen. 

 

Fig. 5-9 Drift corrected (DC); (a) individual ensembles initialized in 1990 and their mean of 

MIRCO4h, and (b) IMEMs along with MMEM for the same initialization of seasonal mean 

precipitation 

5.4.3 Skill test analysis 

Model skills are analysed based on the skill tests results before and after drift correction.  The 

results of four skill tests such as RMSE, MAE, PCC, and IA are presented in this section. These 

skill tests are performed for the ensemble mean of each initialization for each model for both 
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monthly and seasonal mean precipitation. The higher values of PCC and IA but lower values 

of errors (e,g., MAE and RMSE) represent the higher skill of models. 

 Monthly precipitation 

The skill assessment of monthly precipitation before and after drift correction was performed 

and the change in skills (PCC, IA, MAE and RMSE) is shown in Fig. 5-10. The skill scores of 

PCC, IA, MAE, and RMSE before and after drift correction for monthly precipitation are 

shown in Fig. 5-S3 and S4 respectively in the supplementary materials. The results revealed 

that all models show lower skills in all performance metrics in the initialization years 1965 and 

1980 while the second-highest RMSE is in 1970. As an individual model, MIROC4h shows 

higher IA followed by EC-EARTH and MPI-ESM-LR whereas CanCM4 shows the lowest 

skill in IA and PCC but it is almost similar to MPI-ESM-MR for MAE and RMSE. The highest 

RMSE and MAE were observed at the initialization year 1965 and the lowest was observed at 

1975 for almost all models. MMEM showed the highest performance skills and outperformed 

all selected individual models in all skill tests and it remained almost similar after drift 

correction. After drift correction, the differences between IMEMs and observed values are 

minimized resulting reduction in errors (RMSE and MAE) and raising in skills (PCC and IA).  

From Fig. 5-10, it is noted that models with higher skills before drift corrections are showing 

little to no improvement after drift correction and vice versa (see in Fig. 5-S3). For instance, 

MMEM, MIROC4h and EC-EARTH showed comparatively better skill before drift correction 

than the other models but did not improve much after drift correction. Consequentially, 

CanCM4 and MIROC5 showed the lowest performance before drift correction and benefitted 

enormously from the drift correction as evidenced by the notable improvements in PCC and 

IA. Except for MIROC4h, all models showed significant change (p<0.05) in PCC and IA whilst 

no model showed significant change (p>0.05) in errors (MAE and RMSE) after drift correction 

of monthly precipitation. In addition, MIRCO4h, MRI-CGCM3 and CanCM4 showed a drop 

of skills in some initialization years after the drift correction.  

Interestingly, at the selected grid the temporal variation of PCC, IA, MAE and RMSE can be 

noted, where the models performed poorly (higher values of RMSE) in the earlier years 

especially before 1980 (Fig. 5-S3).  Change in skills before and after drift correction was also 

studied for the entire catchment and observed that the improvements in model skill varied over 
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the catchment and initialization years where larger improvements in skill were noted in the 

earlier years than the latter. The changes of skills over the catchment for monthly precipitation 

of MIROC4h and CanCM4 (initialization 1990) are shown in Fig. 5-11. The results revealed 

that the grids with higher skills before drift correction were found with little improvement 

and/or drop-in skills after drift correction and vice versa. 

 

Fig. 5-10 Change in skills; PCC, IA, MAE and RMSE in between before and after drift 

correction of the models’ monthly precipitation at the selected grid. The positive value 

indicates an increase in skills and vice-versa 
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Fig. 5-11 Change in skills before and after drift correction for monthly precipitation of 

MIROC4h and CanCM4 initialized in 1990 

 Seasonal mean precipitation 

Skill assessment of seasonal precipitation before and after drift correction at the selected grid 

was performed and the results are presented in Fig. 5-S5 and Fig. 5-S6 respectively and their 

changes are presented in Fig. 5-12. The results revealed that all models, except CanCM4, show 

higher skills for seasonal precipitation as compared to their corresponding monthly values 

before drift correction. It is due to minimizing the drift by the aggregation of monthly 

precipitation to the seasonal mean. By this aggregation, drifts of individual months were 
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averaged over the considered months, of respective seasons, hence lowering the drift of 

individual months to seasons and consequently resulting in higher skills. However, the value 

of IA for CanCM4 model precipitation dropped but no such reduction was noticed for the 

corresponding monthly values. After the drift correction, the skills of all models including 

CanCM4 improved (see Fig. 5-S6). Fig. 5-12 shows CanCM4 having the largest improvement, 

which is similar to that of monthly precipitation.  

 

Fig. 5-12 Change in skills; PCC, IA, MAE and RMSE in between before and after drift 

correction of the models’ seasonal mean precipitation. The positive value indicates an 

increase in skills and vice-versa 



82 

 

All models, except MIROC4h and EC-EARTH, showed significant change (p<0.05) in PCC 

and IA at the selected grid for seasonal precipitation while no model showed significant change 

(p>0.05) in errors (MAE and RMSE) after drift correction. Similar to monthly precipitation, 

changes in skills before and after drift corrections over the catchment for seasonal precipitation 

of MIROC4h and CanCM4 (initialization 1990) are shown in Fig. 5-13. 

 

Fig. 5-13 Change in skills before and after drift correction for seasonal precipitation of 

MIROC4h and CanCM4 initialized in 1990 

The changes of skills were found similar to monthly precipitation where the grids with higher 

skills before drift correction were found with little improvement and/or drop-in skills after drift 
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correction and vice versa. Upon comparing, the changes in skills of drift corrected monthly and 

seasonal precipitation; it was found that few models showed a drop of skill score after drift 

correction. For instance, the negative values of IA of MIROC4h and positive values of MAE 

of MRI-CGCM3, MIROC4h and CanCM4 (Fig. 5-10) show a drop of skills for monthly 

precipitation. For the seasonal mean precipitation, this drop of skills is more pronounced (see 

Fig. 5-12), which is an indication of introducing additional errors by the mean drift correction 

method that was also reported in other studies (Meehl et al. 2014; Meehl and Teng 2012). 

5.5 Discussion 

This study reports drift in monthly and seasonal mean precipitation from CMIP5 decadal 

experiments at a catchment level. The efficacy of applying the mean drift correction method to 

individual models as well as MMEM precipitation was assessed through four skill tests.  In this 

study, MMEM showed the lowest drifts (highest skills) prior to drift correction and remained 

similar after drift correction which is also supported by previous studies (Jain et al., 2019; 

Lovino et al., 2018; Mehrotra et al., 2014).  Gupta et al., (2013) mentioned that the drift may 

be negligible if MMEM is considered. However, the selection of models to produce MMEM 

is very challenging as averaging the model’s output may further lead to loss of signals (Knutti 

et al., 2010) and the combination of all models may not provide better results always. For 

instance, MIROC4h and EC-EARTH showed comparatively lower drifts and higher skills 

while CanCM4 and MIROC5 showed higher drifts (lowest skills) and the models with higher 

drifts will influence the lower skill of MMEM. In this case, ignoring CanCM4 and MIROC5 

to produce MMEM may result in better skills than the skills shown in Fig. 5-S3 to 5-S6. 

However, prioritising the models to produce better MMEM was not investigated in this study.  

The results in Fig. 5-S3 to 5-S6 revealed that the skills of seasonal mean precipitation are higher 

than the corresponding monthly precipitation. From the comparison of drift in monthly and 

seasonal mean precipitation (before and after drift correction), the monthly precipitation was 

found with relatively higher drift. It is due to the high temporal frequency of monthly data 

where drifts are encountered for individual events and causes lower skills. However, the 

reduction in drift by the mean drift correction method seems insufficient for few models as 

evident from the skill tests results. Caution and care must be taken about the drift before 

selecting the temporal frequency of the precipitation data. The drift can be reduced by 
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considering the MMEM and/or aggregating the monthly precipitation to a seasonal mean. 

Aggregating to seasonal mean will give a reasonable reduction compared to the reduction from 

the mean drift correction of the monthly precipitation but in that case, the temporal frequency 

of the data will be different that may change the suitability of its applications. In addition to 

considering MMEM and aggregating to seasonal mean, further drift reduction was attained by 

applying the mean drift correction method but it did not show a significant change in skills for 

CMIP5 decadal precipitation for seasonal time scale at a catchment level. The comparison of 

skills before and after drift corrections at a selected grid point over all the models and 

initialization years for monthly and seasonal mean precipitation is shown in Fig. 5-14 by a Box-

Whisker plot. From this comparison, it is observed that the overall skills of models’ improved 

after the drift correction but this improvement were not much for monthly precipitation. For 

instance, IA and PCC are two important indicators that measure the accuracy and linear 

correlation respectively, but their lower scores were noted even after drift correction. In Fig. 

5-14(a), the averages (over the models) of PCC and IA of monthly precipitation after the drift 

correction are 0.42 and 0.55 respectively but these were 0.285 and 0.38 respectively before the 

drift correction. This means, these values are raised by 30% after drift correction but their drift 

corrected values are still rather low.  Similarly, average errors (MAE and RMAE) of monthly 

precipitation after the drift correction have been dropped by 6-7% but their values (57.7 and 

84.5 respectively) are relatively still high (see Fig. 5-14a). For the seasonal precipitation (Fig. 

5-14b), the improvements in the average (over the models) PCC and IA before and after drift 

correction are slightly higher than the improvements observed in the average errors (MAE and 

RMSE). However, the drift corrected overall skills for seasonal precipitation are considerably 

higher than their counter monthly values. 
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(a) Monthly precipitation 

 

(b) Seasonal precipitation 

Fig. 5-14 Comparison of skills for monthly and seasonal mean precipitation before and after 

drift corrections at a selected grid point over all the initialization years 
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Several researchers have shown that the rainfall/and or streamflow predictions at the longer 

lead time have positive benefits both from an environmental and social perspective (Hansen et 

al., 2011; Jones et al., 2000; Shams et al., 2018). It has a direct and indirect influence on the 

national economy for both developing and developed countries, especially those who 

experience large variations in climates, and where agriculture is a significant contributor to the 

national economy (Carberry et al., 2002; Jones et al., 2000). The climate variability can have 

drastic consequences on the Australian economy, where a typical major drought in a season 

can cause about a 10% reduction of agricultural production and about 1% reduction of the gross 

national product (White, 2000). Seasonal climate prediction plays an important role in 

agricultural management activities like crops type selections, seeding, irrigation planning, 

harvesting and so on (Jones et al., 2000). Furthermore, seasonal climate prediction may result 

in higher public benefit than private benefit (Mjelde et al., 2000). The importance, benefits and 

potential application of seasonal climate prediction have been reviewed by Paull (2002) and 

others, where conclusions were based on different case studies, surveys and model-based 

outcomes. Careful consideration of the spatial and temporal scale of climate prediction is 

important for any practical application. For instance, predicting climatic variables at a lead time 

of several months to a couple of seasons are important for the farmers and other stakeholders 

in making their decision for farming or agricultural management at a local scale to a district 

level (Paull, 2002). Moreover, water resources managers, groups of wholesalers, agronomic 

business organizations, processors of agronomic products, different public and private 

investors (e.g., insurance companies) demand predictions with longer lead times (Paull, 2002). 

On one hand, farmers who form the majority of the potential users of climate prediction have 

identified increased confidence in using climate predictions at high spatial resolutions as a 

research priority (White, 2000). On the other hand, groups handling agronomic products and 

those who play role in planning and decision-making demand climate prediction beyond the 

seasons to annual time scale. CMIP5 decadal precipitation prediction can be a good choice for 

the above-mentioned stakeholders who are interested in future precipitation data for the decadal 

timescale with a finer spatial resolution at the catchment scale. This paper presents the 

application of CMIP5 decadal precipitation at the catchment scale and identifies the presence 

of significant drift within the decadal model data. The drift may be reduced by using MMEM 

instead of IMEM and seasonal mean precipitation instead of monthly precipitation, which may 

be further reduced by the application of a suitable drift correction method. The application of 
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the mean drift correction method shown in this study provides its inadequacy in correcting the 

drift in model precipitation that suggests investigating the alternative drift correction methods 

for correcting the drift of decadal precipitation of CMIP5 experiments.   

However, decadal prediction in CMIP5 was the first attempt to examine climate predictability 

and explore the predictive capabilities of forecast systems on decadal time scales. Boer et al. 

(2016) reported that the models participating in CMIP5 may show considerably lower skills in 

reproducing precipitation using different initialization methods and the lessons learned from 

CMIP5 have been taken into consideration in the Decadal Climate Prediction Project (DCPP), 

which has contributed to the sixth Coupled Model Intercomparison Project (CMIP6). Decadal 

data of CMIP6 includes more frequent hindcast start dates (yearly instead of 5-yearly) with 

larger ensembles of hindcasts dates than CMIP5 but there was no study using CMIP5 decadal 

precipitation for an Australian catchment in a finer resolution. The current study was 

undertaken as a first step to investigate the drift characteristics of CMIP5 decadal precipitation 

for an Australian catchment. As a follow-up study, further research is recommended to compare 

the drift produced by the CMIP6 decadal precipitation with that of CMIP5 model output in a 

catchment scale. This would provide more robust understandings about the characteristics of 

drifts for the practical uses of models’ predicted precipitation data. 

5.6 Conclusion 

This paper investigates the characteristics of drifts in the precipitation of CMIP5 decadal 

experiments. Prediction of climate variables using CMIP5 decadal experiments is an emerging 

research area for longer timescales (e.g., beyond the season to annual time-scales). Most of the 

previous researches used CMIP5 data for temperature or temperature-based indices but none 

of the previous studies investigated the CMIP5 decadal precipitation for a finer resolution of 

0.050 × 0.050 (5km × 5km) at catchment level. This study made the first attempt to use CMIP5 

decadal precipitation data at this finer resolution of 0.050 × 0.050 matching with the observed 

data for an Australian catchment (Brisbane catchment, Queensland). First, the CMIP5 decadal 

precipitation data was interpolated to this resolution using the second-order conservative 

method and next, drift was evaluated comparing with the observed data. The results from four 

skill tests show significant model drifts in CMIP5 output for decadal precipitation. Analysis of 

seasonal and monthly precipitation revealed that MMEM could produce lesser drift than IMEM 



88 

 

or individual ensembles. MMEM was calculated using all seven GCMs in this study but the 

lesser drift also could be obtained if the MMEM was estimated after prioritising the GCMs 

based on their individual model drift. However, drift cannot be eliminated using MMEM only 

and hence there is a necessity of correcting the model drift by the use of a suitable drift 

correction method. A simple drift correction method (mean drift correction) was used in this 

study for both monthly and seasonal precipitation but the results were found not very promising 

which indicates for further investigations to select from an alternative drift correction methods. 
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List of symbols 

𝐹𝑖𝑡   : Model forecasted precipitation at lead time 𝑡 of initialization year 𝑖 

𝑡   :  Lead time 

𝑖   : Initialization year 

𝑂𝑖𝑡   :  Observed Precipitation (corresponding of 𝐹𝑖𝑡 ) 

𝑑𝜏   : Drift 

𝐹̂𝑖𝑡   : Drift corrected model precipitation at lead time 𝑡 of initialization year 𝑖 

𝐹𝑡   : Model forecasted precipitation at lead time t (Raw/Drift corrected,  

   where applicable) 

𝑂𝑡   : Observed precipitation at lead time t 
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𝑂̅   : Mean (decadal) of observed precipitation 

𝑂′   : Mean of individual year of observed data 

𝐹̅   : Mean (decadal) of forecasted precipitation 

𝑁    : Number of months/ Seasons 
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Fig. 5-S1 Spatial comparison of the drifts for monthly precipitation of all selected models except MIROC4h. Temporal mean of the 1st, 2nd and 

3rd spell each of 40 months are presented in the 1st, 2nd and 3rd row respectively 
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Fig. 5-S2 Spatial comparison of the drifts for seasonal mean precipitation of all selected models except MIROC4h. Temporal mean of the 1st, 

2nd and 3rd spell each of 13 seasons are presented in the 1st, 2nd and 3rd row respectively 
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Fig. 5-S3 Time series skills; PCC, IA, MAE and RMSE for monthly precipitation at the 

selected grid point before drift correction 
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Fig. 5-S4 Time series skills; PCC, IA, MAE and RMSE for drift corrected monthly 

precipitation at the selected grid point 
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Fig. 5-S5 Time series skills; PCC, IA, MAE and RMSE of models’ for seasonal mean 

precipitation before drift correction at the selected grid point 
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Fig. 5-S6 Time series skills; PCC, IA, MAE and RMSE of models for drift corrected seasonal 

mean precipitation at the selected grid point.



101 

 

CHAPTER 6 

INTERCOMPARISON OF DRIFT CORRECTION ALTERNATIVES 

FOR CMIP5 DECADAL PRECIPITATION 

Abstract 

Decadal experiments’ output of the coupled model inter-comparison project phase-5 (CMIP5) 

contains significant model drift. For practical use of CMIP5 decadal climate variables, it is 

necessary to correct this model drift. In previous studies, drift correction of CMIP5 decadal 

data of temperature and temperature-based climate indices have been investigated, but there is 

no study that investigated the drift correction of decadal precipitation at a catchment scale. This 

study investigates the practical use of CMIP5 decadal precipitation data on the seasonal scale 

using different drift correction alternatives for the Brisbane catchment in Australia. For this, 

decadal monthly precipitation data from eight GCMs (EC-EARTH, MRI-CGCM3, MPI-ESM-

LR, MPI-ESM-MR, MIROC4h, MIROC5, CMCC-CM, and CanCM4) were cut for the 

Australian region. By using the bi-linear interpolation, the GCM data were re-gridded to 

0.050×0.050 spatial resolution matching with the observed gridded precipitation data collected 

from the Australian Bureau of Meteorology. Both model and observed data were subset for the 

Brisbane catchment and aggregated into seasonal means for Australian seasons. Four drift 

correction alternatives including one new modified method were employed for the selected 

GCM models and the models were categorized based on their performances using different 

skill scores. The results revealed that the performances of drift correction alternatives vary 

among different models and initialization years. Though some drift correction methods showed 

better performances than others for a given model it is still difficult to suggest the most suitable 

method for seasonal precipitation. Drift correction approaches for other time scales such as 

monthly precipitation, and their application for individual ensemble members may be 

investigated further to better understand the implications of alternative drift corrections for 

decadal forecasting. 

 
This chapter has been published as: Hossain, M.M., Garg, N., Anwar, A.H.M.F., Prakash, M., Bari, M., 2021. 

Intercomparison of drift correction alternatives for CMIP5 decadal precipitation. International Journal of 

Climatology 42, 1015-1037.  https://doi.org/10.1002/joc.7287 (First published online: 16 July 2021). However, 

few textual changes have been made to address the examiners’ comments.  

https://doi.org/10.1002/joc.7287
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6.1 Introduction 

In order to assess the near-term forecasting, the Coupled Model Intercomparison Project-Phase 

5 (CMIP5) has experimented with the forecast of inter-annual to decadal-scale. The CMIP5 

includes a set of decadal climate experiments for both hindcasts and predictions (Taylor et al., 

2012). The experiment designs were finalized with three suites of experiment among which 

near-term (or decadal) experiments aimed to improve our understanding of the physical climate 

system and our capability to predict the climate parameters for longer timescales from season 

to decades (Taylor et al., 2012). There are two sets of core near-term integration; a set of 10-

year hindcasts initialized from observed climate states near the years 1960, 1965, and every 

five years to 2005, and the other is 30-year hindcasts initialized in 1960, 1980 and 2005. From 

these two sets of integrations, the decadal experiments explored the potential of decadal 

predictability of the climate parameters (precipitation, temperature, humidity, wind speed, and 

others) on 10 to30-year time scales (Meehl et al., 2009) through General Circulation Models 

(GCMs). Climate models like GCMs are the imperfect replica of the real-world phenomena 

and contain systematic biases (Randall et al., 2007) which require post-processing for further 

uses (Islam et al., 2011, 2014; Maurer and Hidalgo, 2008; Mehrotra and Sharma, 2010). This 

also includes the uncertainty involving the teleconnection between climate indices and 

catchment hydrology (Shams et al., 2018). Depending on the time scales and type of variables, 

the magnitude of biases may be different. It has been reported by Sun et al. (2007) that GCMs 

tend to overestimate the number of wet days and underestimate the more intense events. This 

was also confirmed by Stephens et al. (2010), who found model precipitation is approximately 

double the observed value. In order to assess the climate change impacts on water resources, it 

is necessary to correct the model biases (Liang et al., 2008).  

Currently, there is no standard approach for bias (or drift) correction (Taylor et al., 2012). The 

bias correction method may be different depending on locations, climate variables, time scales, 

and the application field of the data. (Chen et al., 2013; Gangstø et al., 2013; Kruschke et al., 

2016). Some bias correction techniques use transformation functions (Ines and Hansen, 2006) 

such as downscaling, quantile mapping (QM), histogram equalizing, and rank matching (Bates 

et al., 1998; Charles et al., 2004; Piani et al., 2010; Wood et al., 2004). Others use stochastic 
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and/or dynamic downscaling (Bates et al., 1998; Charles et al., 2004; Mehrotra and Sharma, 

2006; Wilby et al., 1998). Maraun, (2016) has presented a critical review on commonly used 

bias correction methods for simulating climate change such as the Delta change approach, 

simple mean bias correction, and QM. The QM technique developed by Wood et al., (2004) 

and also used by other researchers (Ines and Hansen, 2006; Maurer and Hidalgo, 2008; Sharma 

et al., 2007) demonstrates an improvement of bias correction of precipitation on daily, monthly, 

and annual scale. However, traditional QM assumes model biases are stationary over time 

which is not supported for a longer time scale (Chen et al., 2015) and thus it may result in 

poorer performance of bias-corrected data. For instance, Ines and Hansen (2006) applied QM 

to daily precipitation for predicting wheat yields in Africa and found this method could not 

change the length of wet and dry spells. On the contrary, after using the traditional QM on daily 

precipitation, Maurer and Pierce, (2014) suggested that QM improves the correspondence with 

observed changes but does not represent a future, especially where natural variability is much 

smaller than that due to external forcing. They also suggested that the influence of QM on 

seasonal precipitation trends does not systematically degrade projected differences at least for 

the next several decades. The stationarity limitation of traditional QM has been overcome by 

an updated nonstationary cumulative-distribution-function-matching (CNCDFm) technique 

developed by Miao et al., (2016), equidistance quantile-matching method developed by Li et 

al., (2010), a new quantile-quantile calibration method developed by Amengual et al., (2012). 

Cardoso Pereira et al., (2020) used CNCDFm technique for daily precipitation and Viceto et 

al., (2019) used the new quantile-quantile calibration method (Amengual et al., 2012) for daily 

maximum and minimum temperature and both of these research reported good performances. 

Piani et al.(2010) and Hempel et al., (2013) proposed bias correction for daily precipitation 

where the number of dry and wet days are considered while Mehrotra and Sharma, (2016, 

2015) and Johnson and Sharma, (2012) proposed the method for a wide range of time scales. 

But till now, there hasn’t been a study on the bias correction of seasonal precipitation. Simply, 

the bias in climate models is the difference between the model outputs and the observed values 

but there are systematic errors in climate models arising from different factors including limited 

spatial resolution, simplified physics, and thermodynamic processes, numerical schemes, or 

incomplete understanding of climate systems. Every climate model has an equilibrium 

climatology that differs from the real-world phenomena. Models start from an observed climate 
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state at the beginning of the simulation and tend to converge to their equilibrium state thus 

resulting in systematic time-varying biases also referred to as “drift”(Choudhury et al., 2017). 

In decadal predictions, the drift is more pronounced than the longer-term projections (Taylor 

et al., 2012). The impact of drift may be different depending on the initial conditions, variables, 

regions, and time scales (Fučkar et al., 2014; Taylor et al., 2012). For the decadal climate 

prediction, some drift correction method has been recommended for CMIP5 GCMs outputs by 

Boer et al., (2016) and Taylor et al., (2012). But the appropriate choice of the drift correction 

methods depends on the temporal and spatial scale of the variables and finally, the applications 

of drift corrected variables and their acceptance. In recent years, the drift correction of 

temperature and temperature-based indices has been paid more attention than the precipitation 

for CMIP5 decadal experiments (Choudhury et al., 2017, 2016, 2015; Kim et al., 2012). It may 

be due to the additional complexity of atmospheric precipitation than that of temperature 

(Doblas-Reyes et al., 2011) or better performance of climate models in simulating temperature 

as opposed to precipitation (Kumar et al., 2013; Lovino et al., 2018; Masanganise et al., 2013; 

Mehrotra et al., 2014). In Australia, recently Mehrotra et al., (2014) used the CMIP5 decadal 

hindcast precipitation (0.5 × 0.5 ≈ 55km × 55km) to assess GCMs skill using a drift 

correction, suggested by International Climate and Ocean: Variability, Predictability and 

Change (CLIVAR) Project Office (ICPO), (CLIVAR, 2011) in different hydrological regions 

and found greater skill for temperature and geopotential height than for precipitation. Notably, 

rainfall shows more temporal and spatial variability than temperature, therefore, climate model 

outputs (especially rainfall) at higher resolution (finer) are more useful than those at the coarser 

resolutions are. For this, CMIP5 decadal experiments’ precipitation data might be a good 

opportunity to forecast precipitation for longer time scales (seasons to a decade) in finer 

resolution (Boer et al., 2016; Taylor et al., 2012). That is why a suitable drift correction method 

for a longer lead-time precipitation forecast has become essential to investigate. 

To date, there is no study investigating the drift correction alternatives for the CMIP5 decadal 

precipitation at a finer spatial resolution for an Australian catchment. Therefore, the objective 

of this study is to assess the drift correction alternatives for seasonal mean precipitation of 

CMIP5 decadal data in a finer spatial resolution of 0.050×0.050 ( 5km × 5km) for an Australian 

catchment (Brisbane catchment, Queensland, Australia). Four drift correction methods, 

including a new proposed modified method, are investigated in this study and their 
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performances are evaluated using different skill tests. The alternative drift correction methods 

are also used to investigate the performance of different GCMs through these skill scores. 

6.2 Data collection and processing 

6.2.1 Data collection 

Monthly hindcasts precipitation data of decadal time scale from eight (EC-EARTH, 

MIROC4h, MRI-CGCM3, MPI-ESM-LR, MPI-ESM-MR, MIROC5, CanCM4, and CMCC-

CM) out of ten available GCMs were downloaded from CMIP5 data portal (https://esgf-

node.llnl.gov/projects/cmip5/). For the initialization period 1960-2005 data for 10-year 

periods, initialized every five years are selected (few models have historical run until 2010). 

The other two models, HadCM3 (spatial resolution 3.75 x 2.5) and IPSL-CM5A-LR (spatial 

resolution 3.75 x 1.89) were not considered in this study because of their relatively coarser 

spatial resolution and different calendar system (HadCM3). The models selected in this study 

have spatial grids with resolutions smaller than 2 except CanCM4, which has a resolution 

smaller than 3 (see Table 1). However, the number of ensembles for selected models varied 

from 3 to 18, and all available ensembles of each initialization year are used in this study.  The 

name of models, their group number, spatial resolutions, and the available historical run 

including ensemble numbers of individual models are given in Table 6-1.  

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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Table 6-1 Selected GCMs used in this study 

Modelling Centre (or Group)  
Model (Resolutions °lon × 

°lat))  

Initialization Year (1960-2005)  

60  65  70  75  80  85  90  95  00  05  

Number of ensembles  

EC-EARTH Consortium  
EC-EARTH  

(1.125 X  1.1215)  
14 14 14 14 14 14 14 14 10 18 

Meteorological Research Institute  
MRI-CGCM3*  

(1.125 X  1.1215)  
06 08 09 09 06 09 09 09 09 06 

Max Planck Institute for 

Meteorology  

MPI-ESM-LR*  

(1.875 X  1.865)  
10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR*  

(1.875 X  1.865)  
03 03 03 03 03 03 03 03 03 03 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology  

MIROC4h  

(0.5625 X  0.5616)  
03 03 03 05 05 05 05 05 05 05 

MIROC5*  

(1.4062 X  1.4007)  
06 06 06 06 04 06 06 06 06 06 

Canadian Centre for Climate 

Modelling and Analysis  

CanCM4*  

(2.8125 X  2.7905)  
20 20 20 20 20 20 20 20 20 20 

Centro Euro-Mediterraneo per I 

Cambiamenti Climatici  

CMCC-CM  

0.75 X 0.748  
03 03 03 03 03 03 03 03 03 03 

(* indicates model has historical run until the initialization year 2010)  

The observed monthly gridded rainfall of 0.05 × 0.05 (5km × 5km) spatial resolution for 

entire Australia are collected from the Australian Bureau of Meteorology (BoM). The BoM has 

produced the gridded data using the Australian Water Resources Assessment Landscape model 

(AWRA-L V5) (Frost et al., 2016). 

6.2.2 Data processing 

The GCMs’ resolution of approximately 100-250km is inadequate for regional studies because 

of the lack of regional information at catchment scales (Fowler et al., 2007; Grotch and 

MacCracken, 1991; Salathé, 2003). The use of the regional climate models (RCMs) for 

downscaling large-scale climate information from GCMs to local scales, is prevalent 

nowadays, albeit a computationally intensive approach. Conversely, this study uses spatial 

interpolation to re-grid the GCM data onto 0.05× 0.05 resolution from the spatial resolution 

of respective models.    

First, the GCM outputs were subset for the Australian region and then bi-linearly interpolated 

onto 0.05×0.05 spatial resolution thus matching with the grid used in observed data. Bi-linear 
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interpolation was used here because of its suitability for monthly precipitation, as there was no 

zero precipitation values in the interpolant dataset, and it has been routinely used in similar 

studies (Jain et al., 2019; Kamworapan and Surussavadee, 2019; Liang et al., 2008).  Secondly, 

all model calendars were transformed to Proleptic_Gregorian and the precipitation unit were 

converted to the millimetre. Afterward, the ensemble mean of different GCM ensembles for 

every initialization year was computed and aggregated to the seasonal mean for the Australian 

seasons. In Australia, four seasons; summer (December-January-February, (DJF)), autumn 

(March-April-May, (MAM)), winter (June-July-August, (JJA)), and spring (September-

October-November (SON)) contrary to the Northern Hemisphere. Each dataset is for ten years, 

starting from January (1st year) and ending at December (10th Year). For a continuous seasonal 

dataset, the first two months (January and February) at the start of a 10-year period and the last 

one-month (December) at the end of the said period were discarded. Finally, the processed data 

were subset for the selected catchment. In this study, Brisbane catchment in Queensland, 

Australia was selected for investigating the seasonal precipitation on the decadal time scale        

(Fig. 6-1). This catchment was selected because of its tropical climate nature and having low 

to moderate yearly rainfall variability.  

 

Fig. 6-1 Map of the Australian catchments with the Brisbane catchment in the inset 
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6.3 Methods 

6.3.1 Drift correction 

In this study, the first three drift correction methods are employed, namely Nested Bias 

Correction (NBC), Standardization and re-scaling, and Relative drift (linear scaling). 

Standardization and linear scaling methods are commonly used in statistical drift correction 

approaches (Graham et al., 2007; Hawkins et al., 2013; Sperna Weiland et al., 2010). 

Additionally, a modified method combining standardization and delta method is also suggested 

in this study.  

 Nested Bias Correction (NBC):  

The NBC method was proposed by Johnson and Sharma, (2012) and works well to correct 

means, standard deviations, and lag-1 autocorrelations when the biases/drift in GCMs are not 

too large. In the first step, the model values were standardized as 

 𝑝𝑖𝑡 =  
𝑃𝑖,𝑡

𝑚−𝜇𝑡
𝑚

𝜎𝑡
𝑚  (6.1) 

Where, P, p = precipitation, µ = mean, 𝜎 = standard deviation, the subscript, t = lead time in 

year, i = individual season of time t, the superscript m represents model, and o represents 

observed (in the following equations). Hereafter the same notations will be used. 

Then, the lag-1 autocorrelations (𝑟𝑖
𝑚) present in the standardized time series of the model data, 

were replaced with the lag-1 autocorrelations (𝑟𝑖
𝑜) of the observed data as per equation 6.2. 

𝑝𝑖,𝑡
𝑚 = 𝑟𝑖

𝑜 ∗ 𝑝𝑖−1,𝑡
𝑚 + √1 − (𝑟𝑖

𝑜)2 ∗ (
𝑝𝑖,𝑡

𝑚−𝑟𝑖
𝑚∗𝑝𝑖−1,𝑡

𝑚

√1−(𝑟𝑖
𝑚)

2
)           (6.2) 

Afterward, it was rescaled by the observed mean and standard deviation to obtain a nested time 

series on a seasonal scale. 

𝑃̃𝑖,𝑡
𝑚 =  𝑝𝑖,𝑡 

𝑚 ∗ 𝜎𝑡
𝑜 + 𝜇𝑡

𝑜               (6.3) 

Note, Johnson and Sharma, (2012) used monthly precipitation values in Eq. 6.1-6.3, but in this 

study seasonal mean precipitation values are used instead. In the second step, the nested 
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seasonal precipitation (𝑃̃𝑖,𝑡
𝑚) were aggregated to annual scale (𝑃𝑡

𝑚) followed by standardization 

and lag-1 removal using Eq. 6.4-6.6. 

For standardization,  𝑝𝑡
𝑚 =  

𝑃𝑡
𝑚−𝜇𝑚

𝜎𝑚
 and for lag-1 autocorrelation, the following equation was 

used. 

𝑝𝑡
𝑚 = 𝑟𝑜 ∗  𝑝𝑡−1

𝑚 + √1 − (𝑟𝑜)2 (
𝑝𝑡

𝑚−𝑟𝑚∗𝑝𝑡−1
𝑚

√1−(𝑟𝑚)2
)        (6.4) 

Afterward, the nested annual time series precipitation (𝑝̃𝑡
𝑚) was rescaled by observed mean 

and standard deviations. 

𝑃̃𝑡
𝑚 =  𝑝𝑡

𝑚 ∗ 𝜎𝑜 + 𝜇𝑜         (6.5) 

Finally, the drift corrected seasonal precipitation was obtained using equation (6.6). 

𝑃𝑐𝑜𝑟,𝑖,𝑡 =  𝑃̃𝑖,𝑡
𝑚 ∗ (

𝑃̃𝑡
𝑚

𝑃𝑡
𝑚)            (6.6) 

 Standardization and Re-scaling approach (STD)  

Ho (2010) suggests that if two datasets are from the same (normal) distribution with the same 

shape but different mean and variances then the following equations can map a point between 

the two distributions which effectively equates the normalized difference between the points. 

𝑋1−𝑀1

𝜎1
=

𝑋2−𝑀2

𝜎2
 (6.7) 

Re-arranging this gives, 

𝑋2 =  𝑀2 +
𝜎2

𝜎1
(𝑋1 − 𝑀1)           (6.8) 

Where, X1, X2 are two points, M1, M2 are the mean and 𝜎1, 𝜎2 are the standard deviations of 

two data sets respectively. Here, Eq. 8 is used for the drift correction, where observed and 

modeled data are the two different datasets. The datasets were transformed to log-normal 

distribution to make them form the same distribution, where the normality (log-normal) of both 

datasets were confirmed by the Shapiro-Wilk test, D’Agostino’s K2 test, and Anderson-Darling 

test. Re-arranging Eq. 8 gives 

𝑃𝑐𝑜𝑟,𝑖𝑡 = 𝜇𝑡
𝑜 + 

𝜎𝑡
𝑜

𝜎𝑡
𝑚 (𝑃𝑖,𝑡

𝑚 − 𝜇𝑡
𝑚)                (6.9) 
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 Relative drift correction (RDT) or linear scaling  

The simplest way of drift correction is to add (for temperature) or multiply (for precipitation) 

the change of mean to the observed data of base line. To avoid encountering negative values in 

precipitation, multiplicative approach is used. It is widely used for preparing climate change 

scenario at local scale and is defined as - 

𝑃𝑐𝑜𝑟,𝑖𝑡 =  𝑃𝑖𝑡 ∗  
𝜇𝑡

𝑜

𝜇𝑡
𝑚            (6.10) 

 Modified Method (MDM) 

It was noticed that the STD method overestimated the peaks of maximum precipitation with 

higher ranges of extremes as well as number of outliers while RDT methods fluctuated around 

the mean thus giving a lower range of spread with no or minimal outliers. To minimize the 

range of over estimation (both upper and lower) and number of outliers, the values from these 

two methods are averaged and used in this study as MDM.  The average equation can be written 

as- 

𝑃𝑐𝑜𝑟,𝑖𝑡 = 0.5 ∗ (𝑃𝑖𝑡
𝑚 ∗  

𝜇𝑡
𝑜

𝜇𝑡
𝑚  +

𝑃𝑖,𝑡
𝑚−𝜇𝑡

𝑚

𝜎𝑡
𝑚 ∗ 𝜎𝑡

𝑜 + 𝜇𝑡
𝑜)           (6.11) 

Note, the mean and standard deviations in the equations for all drift correction methods are 

calculated for individual years. It is also worth noting that all the drift correction methods are 

applied at all grids in the catchment and grid cells are assumed spatially independent. To 

compare the performance of different drift correction methods, the skill tests are performed at 

few randomly selected grids distributed over the catchment. 

6.3.2 Skill assessment 

To evaluate the different drift correction methods, seven skill tests are performed. These 

include, correlation coefficient, anomaly correlation coefficient, index of agreement, root mean 

squared error, mean absolute error and fractional skill scores.  

 Correlation Coefficient (CC)  

Correlation coefficient is a good measure of linear association or phase error. Statistically it 

means, how well the model (drift corrected) values correspond to the observed values, whereas 
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visually it illustrates how close the scatter plot points are to a diagonal line. The value of CC 

ranges from -1 (no correlation) to perfect correlation, 1 (Rodwell et al., 2010). 

𝐶𝐶 =  
∑(𝐹−𝐹)(𝑂−𝑂)

√∑(𝐹−𝐹)2√∑(𝑂−𝑂)2

           (6.12) 

Here, 𝐹 and 𝑂 represent the seasonal model (drift corrected) and observed values respectively. 

Whereas  𝐹̅ , 𝑂̅ are the mean of the respective season values for each individual year. Note, the 

mean value is calculated for each individual year, and the seasonal anomaly for each individual 

year is the difference between the modelled/ observed values and its mean value.  

Anomaly Correlation Coefficient (ACC)  

ACC shows how well the bias corrected anomalies correspond to the observed anomalies. It 

measures the correspondence (or phase difference) between the model (drift corrected) and 

observed values by subtracting the decadal mean. It is frequently used for the verification of 

output from the numerical weather prediction models. However, it is not sensitive to the bias 

i.e., a high anomaly correlation coefficient does not represent the accuracy of bias corrected 

values but the accuracy of the anomalies of the bias corrected values. Its value ranges from -1 

(no match) to 1 for perfect anomaly matching. Wilks, (2011) reported centered and uncentered 

ACC. Centered ACC is computed according to Pearson correlation, which operates on the 

number of grid pairs of forecast and observations referring to the climatological mean of each 

grid. The uncentered ACC differs from centered ACC where map-mean anomalies are not 

subtracted. However, we used centered ACC in this study to calculate the temporal anomalies 

over the decadal time span.   

𝐴𝐶𝐶 =  
∑{(𝐹−𝐶)−(𝐹−𝐶̅̅ ̅̅ ̅̅ )} ×{(𝑂−𝐶)−(𝑂−𝐶̅̅ ̅̅ ̅̅ )}

√∑(𝐹−𝐶)2√∑(𝑂−𝐶)2
        (6.13) 

Where C represents decadal mean of the observed (BoM) data. The ACC was calculated for 

each grid but the climatological mean was taken as the decadal mean (C) for each grid. Thus 

ACC may also be referred to spatio-temporal correlation if each grid is compared with 

corresponding years. However, ACC was calculated on a temporal scale only for each 

individual grids in this study.   
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Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 

MAE and RMSE are used to measure the average magnitude of the errors between model (drift 

corrected) and observed values. MAE is the average of the absolute values of the differences 

between forecasted and corresponding observed values and it is weighted equally in the 

average. The RMSE is a quadratic scoring rule that is squared before it is averaged and provides 

a relatively high weight to large errors. RMSE is useful when large errors are especially 

undesirable. The value of both RMSE and MAE ranges from 0 to ∞ where lower values 

indicate higher accuracy and vice versa. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝐹𝑖 − 𝑂𝑖|

𝑁
𝑖=1             (6.14) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐹𝑖 − 𝑂𝑖)2𝑁

𝑖=1           (6.15) 

Index of agreement (IA)  

To visualize the errors with respect to climatology, Wilmot, (1982) suggested an index of 

agreement that is directly related to the accuracy of drift-correction methods. Index of 

agreement can be calculated as follows: 

𝐼𝐴 = 1 −
∑ (𝐹𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝐹𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

          (6.16) 

The IA is bounded between 0 and 1 (0≤IA≤ 1), where, the closer the value is to 1 the more 

efficient is the drift correction. The observed mean and the difference between model (drift 

corrected) values and the observed mean are calculated for individual years in this study. 

 Fractional Skill Score (FSS)   

Fractional Skill Score directly compares the model (drift corrected) and observed fractional 

coverage of the grid-box events (e.g., rain exceeding a certain threshold) for the entire 

catchment. FSS is a measure of how the spatial variability of the drift corrected values matches 

with the spatial variability of the observed values. FSS can be defined as: 

𝐹𝑆𝑆 = 1 −
1

𝑁
∑ (𝑃𝑓,𝑚−𝑃𝑓,𝑜)

2
𝑁

1

𝑁
[∑ 𝑃𝑓,𝑚

2 + ∑ 𝑃𝑓,𝑜
2

𝑁𝑁 ]
                 (6.17) 
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Where 𝑃𝑓 indicates the calculated fraction, N indicates the number of years, and the subscript 

m and o indicate modelled and observed respectively. Fractions are calculated following 

Roberts and Lean (2008). In this study, the entire catchment is considered a whole unit, and 

the temporal averages (from every season) are taken instead of the spatial averages. Two 

threshold values are considered; ≥85 percentile for the wet seasons (DJF) and <15 percentile 

for the dry seasons (JJA). To calculate the fractions for individual seasons, the number of grids 

covered for a specified threshold value (for instance, 85 percentile of a specific wet season) are 

counted and then divided by the total number of grids within the Brisbane catchment. The 

differences between the fractions (the numerator of the equation) of models are calculated for 

individual wet/dry seasons.  The FSS computed here will be a temporal average score for the 

entire catchment, as every dataset contains nine wet and ten dry seasons. FSS ranges from 0 to 

1 (perfect match). 

In addition to the FSS, we performed a spatial comparison of drift correction methods based 

on another fraction. It was computed as the number of grids covered by the models’ simulated 

precipitation for a certain threshold (precipitation > 85 percentile and <=15 percentile of 

observed values for wet and dry events respectively) divided by the number of grids covered 

by the observed values for the same threshold. 

In addition to the above skill tests, the distribution of both corrected and un-corrected 

precipitation were checked and visually compared using Box-Whisker plots. 

6.4 Results and analyses 

6.4.1 Assessment of models 

Modelled seasonal precipitation values are compared with the corresponding observed 

precipitation and their skills are assessed. These comparisons are performed for all models; for 

all initialization years and the skills are assessed before and after the drift correction. As the 

initialization method for the same year is determined by each model group, one may assume 

problematic while comparing the models.  However, this study mainly compares the drift 

correction methods for each model and their initialization years to find the suitable drift 

correction method for decadal GCM data. Comparing drift correction methods for the same 

model for the same year, in this case, the initialization condition would not be a problem. Model 



114 

 

performances are compared based on the quantitative performance metrics with the assumption 

that higher performance skills will present the lower models’ drift and vice versa. Seven skill 

tests (CC, ACC, IA, FSSa85, FSSb15, RMSE, and MAE) are used and the skill test results are 

used to compare different models and different drift correction methods. Mehrotra et al., (2014) 

assessed CMIP5 multi-model decadal hindcasts using performance skill measures such as 

RMSE, BIAS, and correlation. These skill measures were evaluated over each grid within their 

study area. They used BIAS as the averaged absolute difference of observations and predictions 

and correlation as the Pearson correlation. The RMSE provides a simple, transparent 

quantitative measure of the difference between the models (corrected) and observed values. 

However, we used CC as the measure of the correlation between observed and forecasted 

values in the annual time scale while ACC measures the correlation of their anomalies for the 

decadal time scale. 

The metrics CC, ACC, IA, RMSE, and MAE are used to assess skill at a single grid whereas 

FSSa85 and FSSb15 are used for the entire catchment. The observed dataset has 496 grids (5.0 

km X 5.0 km) within the Brisbane catchment and the skill tests are performed for several 

randomly selected grids distributed over the entire catchment. Here, the results of the temporal 

skill test (CC, ACC, IA, RMSE, and MAE) and their comparison over time are presented for a 

single grid (latitude 27.5oS and longitude 153.05oE) which is closest to an automated weather 

station (AWS, located at latitude 27.48oS and longitude 153.04oE) operated by BoM. Although 

skill is generally estimated for a large regional area and for slow varying variables such as 

temperature, it is equally important to have skill assessment over a small area (i.e., for each 

region and at different spatial scales) for precipitation as it exhibits high temporal and spatial 

variability. 

In general, the skill of all models improved with time with exception of initialization years 

1980 and 1985, where the skill of all models dropped significantly. This decline was especially 

pronounced for the year 1980. During 1981-1990, for both 1980 and 1985, the lower 

performance is attributed to the higher than observed peak values in the modeled precipitation 

with a shifting (early peak) of seasons relative to the observed precipitation. However, the 

highest skill was noted for the initialization year 1990 for almost all the models. MPI-ESM-

MR showed the lowest skill in the initialization year 2005 which persisted even after the drift 

correction. The reason behind lower skill in 1980 and highest skill 1990 is not well studied 
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here. However, Meehl et al. (2015) investigated the effect of volcanic eruption on the decadal 

hindcast skill of Pacific sea surface temperature and reported that Agung (erupted in 1963) and 

El Chichón (1982) did not significantly degrade the hindcast skill but Fuego (1974) and 

Pinatubo (1991) degraded the decadal hindcasts skill. However, Fuego was a smaller eruption 

with a lower amplitude climate forcing compared to Mount Pinatubo and this was the reason 

for lower degradation of skill in the mid-1970s whilst a significantly higher reduction in the 

mid-1990s (Meehl et al., 2015). In this study, models’ higher skills in the 1990s and lower 

skills in the 1980s, seems to be irrelevant to the volcanic eruption but either the post-eruption 

sequences may be affected the observed precipitation or the quality and coverage of ocean 

observation to initialize the model was not as much realistic as other initialization years. 

 Models’ performances without drift correction  

Fig. 6-2 presents models’ skills of all initialization years before drift corrections at the selected 

location where EC-EARTH, MIROC4h, MPI-ESM-LR, and MRI-CGCM3 showed the highest 

skill throughout the time span of the data and consequently, MPI-ESM-MR, MIROC5, 

CanCM4, and CMCC-CM had the lower skill. Overall, highest skill was noticed for the EC-

EARTH whereas CMCC-CM has the lowest skill for all initialization years (see Fig. 6-2). EC-

EARTH performed best on all skill tests except Fractional Skill Score above 85 percentile 

(FSSa85) and had the lowest values for RMSE and MAE. The lower value of FSSa85 indicates 

the poorer skill of EC-EARTH in reproducing the extreme events during the wet seasons, 

whereas MRI-CGCM3, MPI-ESM-LR, and MPI-ESM-MR had a comparatively higher skill. 

MIROC4h lags behind MRI-CGCM3 and MPI-ESM-LR for CC and FSSa85, however, 

perform considerably better on ACC, IA, FSSb15, RMSE, and MAE. In terms of accuracy and 

the reproducibility of anomalies, MIROC4h lags only EC-EARTH, and it surpasses both MRI-

CGCM3 and MPI-ESM-LR on IA, ACC, FSSb15, RMSE, and MAE (not shown). When 

categorizing models on their average skill scores for the time period of initialization from 1960 

to 2005, EC-EARTH, MIROC4h, and MRI-CGCM3 will be in the first category, and MPI-

ESM-LR, MPI-ESM-MR, and MIROC5 will be in second, whereas, CanCM4 and CMCC-CM 

will be in the third category. Note, this categorization is based on the skill assessment of models 

before drift corrections. This will likely change after drift corrections. 

This study also compared the differences between observed and models’ hindcasts raw 

precipitation at the selected grid and the comparisons show that the models exhibit large 
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differences from the observed precipitation. Although models can reproduce the temporal 

variations but are unable to reproduce the extreme wet and dry values. Models’ response to 

temporal variations was relatively higher for the initialization years 1990 and onward compared 

to the initialization years 1960 to 1980 (not shown) that could also explain the lower differences 

noted from 1990 onwards. For the time period 1981-1990, models showed shifting of seasonal 

peaks (early) and wider difference from observed precipitation in both initialization years 1980 

and 1985 (not shown).  
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Fig. 6-2 Skill test results of different models prior to drift corrections. Fig. (a) presents 

Correlation Coefficient (CC), (b) Anomaly Correlation Coefficient (ACC), (c) Index of 

Agreement (IA), (d) Fractional Skill Score above 85 percentile of the observed precipitation 

(FSSa85), (e) Fractional Skill Score below 15 percentile of the observed values (FSSb15), 

and (f) Root Mean Squared Error (RMSE) of models raw precipitation 
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 Models’ performance after drift corrections  

Models’ performances after drift corrections are assessed based on the same skill tests used to 

assess the models’ performance prior drift corrections. Fig. 6-3 presents the models’ skills after 

drift correction (NBC method) at the selected location and the results indicate the 

improvements varied for different models and for the different drift correction methods. A two-

sided t-test was performed and found more than 95% of all skills have changed significantly 

(p< 0.05) for all models. For all drift correction methods, EC-EARTH and MRI-CGCM3 show 

similar scores on all skill assessments except FSS where EC-EARTH performed better than 

MRI-CGCM3. From the skill tests results, it is noticed that EC-EARTH has the highest skill 

among the selected models. Before the drift correction, MIROC4h followed EC-Earth in all 

skill assessments, however, after the drift corrections, the skill of MRI-CGCM3 improved 

considerably, and was behind EC-EARTH, whereas MIROC4h followed MRI-CGCM3. 

Relative to other models, MIROC5 has the lowest skill, thus positioned behind CanCM4 and 

CMCC-CM. It doesn’t mean that after drift correction the performance of MIROC5 declined, 

rather the improvements in other models are much more than in MIROC5. It is worth noting 

that the model skill was evaluated for all the drift correction methods, however, for the sake of 

brevity, only the NBC method is presented.  Using the skill assessment (Fig. 6-2, 6-3), eight 

models are categorized into two types; Category-I (models which showed comparatively better 

performance and consistently were in the top four positions in all initialization years) and 

Category-II (comparatively lower skill than Category-I). EC-EARTH, MRI-CGCM3, 

MIROC4h, and MPI-ESM-LR are found in Category-I, while MPI-ESM-MR, CanCM4, 

CMCC-CM, and MIROC5 are in the Category-II. Hereafter, these two categories will be 

referred to in the following sections. The skill assessment results of individual models for 

different drift correction methods are shown in the following section. 
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Fig. 6-3 Skill test results of different models after drift corrections (NBC method). Fig. (a)  

Presents Correlation Coefficient (CC), (b) Anomaly Correlation Coefficient (ACC), (c) Index 

of Agreement (IA), (d) Fractional Skill Score above 85 percentile (FSSa85) of observed 

values, (e) Fractional Skill Score below 15 percentile (FSSb15) of observed precipitation, and 

(f) Root Mean Squared Error 
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6.4.2 Performance of drift correction methods 

Modelled precipitation are drift corrected using four methods: NBC, STD, RDT, and MDM 

are compared with the observed precipitation for all initialization years and it is noticed that all 

drift corrected precipitations can reproduce the observed precipitation anomalies, but 

differences exist for different drift correction methods and the model categories. For instance, 

the STD method overestimates the wet extremes in both model categories, but, the range and 

the number of overestimations were higher in the Category-II models than in the Category-I 

models. NBC and MDM showed fewer overestimations for the wet extremes, but, for dry 

extremes (dry seasons) MDM performed better than NBC.  The skill comparison of drift 

correction approaches for the EC-EARTH model presented in Fig. 6-4 whilst skills for the 

CanCM4 model presented in Fig. 6-5 and spatial comparison of the drift correction approaches, 

for RMSE and initialization year 1990, is presented in Fig. 6-6. 
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Fig. 6-4 Skill comparison of different drift correction methods, obtained from EC-EARTH. 

The vertical axis presents initialization years and the horizontal axis are presenting different 

drift correction methods including model (RAW) values 
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Fig. 6-5 Skill comparison of different drift correction methods, obtained from CanCM4. The 

vertical axis presents initialization years and the horizontal axis are presenting different drift 

correction methods including model (RAW) values 
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Fig. 6-6 Comparison of drift correction approaches for the skill (RMSE) over the catchment. 

The first row is presenting the spatial distribution of RMSE of the EC-EARTH model 

(initialization year 1990) after drift correction and the second row is presenting the spatial 

distribution of RMSE of the CanCM4 model (initialization year 1990) after drift correction 

For all selected models, among the considered drift correction methods, NBC has the highest 

score on all skill tests except FSSb15. For FSSb15, NBC follows the STD method, however, 

still outperforms all other drift correction methods. This is in line with the lower performance 

of NBC in reproducing dry extremes in dry seasons, also evident from Fig. 6-7. It should be 

noted that NBC improves the reproducibility of wet extremes in wet seasons (Fig. 6-8).  Note, 

the fractional skill scores are computed only for dry (JJA) and wet seasons (DJF). 

STD and MDM perform similarly on all skill tests, albeit with slight differences for different 

model categories. For EC-EARTH, MRI-CGCM3, and MPI-ESM-LR models, the STD 

method outperforms MDM on CC, ACC, and IA but for the other skill tests, the reverse is true. 

For FSSb15, the STD method outperforms all other drift correction methods but lags MDM for 

RMSE and MAE.  

This suggests that the STD method can reproduce dry seasons better than all other methods, 

albeit with larger errors than MDM. For models other than EC-EARTH, MRI-CGCM3, and 

MPI-ESM-LR, MDM outperforms the STD method, thus implying that MDM is more suited 

for Category-II models. From the different skill tests and drift correction methods used here, it 

is difficult to conclude which method has the best overall performance. However, it was found 

that STD is more suitable for Category-I, whereas, MDM is suitable for Category-II models. 
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Fig. 6-7 Spatial variability comparison for an example dry season before and after correction 

(Initialization year 1990, Season JJA 1992). The black-coloured grids in different drift 

correction methods (STD, RDT, MDM, and NBC), model raw values (EC-EARTH), and the 

observed data (BoM) present precipitation values below 15 percentile (23.6 mm) of BoM 

(observed).  
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Fig. 6-8 Spatial variability comparison of different drift correction methods for an example 

wet season (initialization year 1990, Season DJF composed of December 1993 & January-

February of 1994). The black-coloured grids in different drift correction methods (STD, 

RDT, MDM, and NBC), model raw values (EC-EARTH), and the observed data (BoM) 

present precipitation above 85 percentile values (100.2 mm) of BoM (observed) data. 

RDT is worst for all skill assessments of all models except for total annual rainfall and 

accumulated rainfall over five years or over a decade, where it performs the best. For the 

accumulated rainfall, all four drift correction methods performed well, with minimal 

differences when compared to the observed rainfall with RDT being the best. From the 

comparison of accumulated rainfall over a given time period, it is noticed that the RDT method 

can reproduce the accumulated rainfall accurately for almost all the models and all of the 

initialization years, but is unable to improve the temporal and spatial variability, anomalies and 

the phase differences, as noted for all the other methods. 

CC measures correspondence between the drift corrected values and the observed values, ACC 

measures the correspondence between the anomalies of drift corrected values and observations, 

and IA measures the accuracy of the drift correction methods. It can be said that these three 
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skill tests measure the accuracy of the drift corrections over a given time span for each 

initialization year and at each grid individually. Consequently, fractional skill score; both 

FSSa85 during the wet season and FSSb15 during dry season, measures the spatial and 

temporal accuracy of the modeled precipitation (corrected or uncorrected) across the 

catchment. Fig. 6-7 and Fig. 6-8 exemplify the spatial variability of the precipitation extremes 

for a single dry and wet season of a specific year respectively, while the spatial variability of 

the total rainfall during a single wet season across the entire catchment is shown in Fig. 6-9. It 

is evident model EC-EARTH has a wet bias during the wet season (Fig. 6-8) and dry bias 

during the dry seasons (Fig. 6-7), similar characteristics are exhibited by all of the models. 

However, for different initialization years or different lead-time for the same initialization year, 

the model skill prior to and after the drift correction varies. Moreover, FSS also provides the 

temporal average scores where the performance of different models and of different drift 

correction methods for individual years (or lead-time) is overlooked. 

The spatial variability from different drift correction methods for individual years is evaluated 

by investigating the number of grids with the two thresholds. To that end, four models (i.e., 

EC-EARTH, MRI-CGCM3, MPI-ESM-LR, and CanCM4) and two initialization years (1990 

and 2000) are chosen. It is compared by the ratio of the number of grids for different models, 

both before and after drift correction, to the number of grids with the said threshold in the 

observed precipitation. Fig. 6-10 and Fig. 6-11 compare the ratios for individual years and for 

the four models, where, the models were initialized in 1990. It is obvious that, before the drift 

correction, models exhibit a wet (dry) bias in the wet (dry) season.  



127 

 

 

Fig. 6-9 Comparison of spatial variability of total precipitation of a sample wet season of EC-

EARTH model (initialization year 1990, season=DJF,1991[Dec] &1992[Jan & Feb]) of 

different drift correction methods. The color bar on the right of each plot presents the 

precipitation in millimetres 

However, during the wet season, over-prediction is more pronounced than under-prediction in 

the dry season. After the drift correction, the dry and wet bias in model outputs decreased with 

an improved representation of spatial variability. NBC corrected data is closest to 1.0, followed 

by the MDM method (Fig. 6-10). Consequently, the STD method outperforms other methods 

in reproducing dry extremes (Fig. 6-11), also noted from FSSb15 scores. 

Qualitatively, similar results were found at other grids, albeit with quantitative differences in 

skill scores. The improvement from STD and MDM vary for different model categories and 

different skill tests. For instance, when comparing CC and IA, both STD and MDM methods 

show similar improvements. When comparing ACC, MDM performs best for Category-II 

models, with similar improvements Category-I models. Finally, it is worth noting that for the 

other skill tests: FSSa85, RMSE, and MAE, MDM outperforms for Category-II models, 

whereas STD is best for Category-I models. As there are 7 skill tests, 4 drift correction methods, 

8 models, and 10 initialization years used in this study, there might be too many results to 

present here. 
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Fig. 6-10 Example comparison of reproducing extreme wet events among different drift 

correction methods. This comparison is based on the ratio of the number of grids covered by 

the models’ simulated (initialized in 1990) values to the number of grids covered by the 

observed values. These ratios are for the threshold equal and above 85 percentile of the 

observed data (in the wet season, DJFs only). Values 1.0 presents the exact correspondence 

whilst values more and less than 1.0 indicate over and underestimation by the drift correction 

methods (models) 

The change of skills for all initialization years and drift correction methods for two 

representative models (EC-EARTH and CanCM4; one from each category) after drift 

correction are given in Table 6-S1 and Table 6-S2 in supplementary materials. Reduction of 

error (such as average RMSE) of different models and the relative change for different drift 

correction methods are presented in Table 6-2. 
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Fig. 6-11 Example comparison of reproducing extreme dry events among different drift 

correction methods. This comparison is based on the ratio of the number of grids covered by 

the models’ raw (initialized in 1990) value to the number of grids covered by the observed 

data (in the dry season, JJAs only). The values 1.0 present the exact correspondence whilst 

values above and below 1.0 indicate over and underestimation by the drift correction methods 

(models) 
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Table 6-2 Reduction in average RMSE in percent of individual drift corrections. Negative 

values indicate the reduction in RMSE values of model data without drift correction (RAW). 

Relative changes of individual drift corrections are in the right columns of respective drift 

correction methods. Average RMSE means, the average of RMSE values of all initialization 

years started from 1960 to 2005 at the selected grid 

Models RAW NBC 
Change  

in % 
STD 

Change  

in % 
RDT 

Change  

in % 
MDM 

Change  

in % 

EC-EARTH 51.51 36.49 -29.15 41.53 -19.38 37.64 -26.93 36.84 -28.47 

MRI-CGCM3 53.16 40.85 -23.15 49.75 -6.40 40.56 -23.70 41.57 -21.79 

MPI-ESM-LR 53.44 39.89 -25.35 45.69 -14.50 39.78 -25.56 39.74 -25.63 

MIROC4h 54.75 40.83 -25.42 49.52 -9.56 45.17 -17.49 44.93 -17.94 

MPI-ESM-MR 55.44 49.01 -11.58 56.09 1.18 44.29 -20.11 46.33 -16.42 

MIROC5 54.69 43.45 -20.56 59.58 8.93 43.92 -19.69 45.21 -17.33 

CMCC-CM 71.79 45.78 -36.23 50.03 -30.31 51.11 -28.81 48.52 -32.41 

CanCM4 56.05 40.49 -27.76 52.18 -6.90 42.78 -23.67 39.95 -28.73 

In general, all drift correction methods show a significant reduction in RMSE for all 

initialization years, but the reductions for individual models varied for different drift correction 

methods. For instance, the NBC method reduces RMSE of EC-EARTH by 29.15%, whereas, 

MDM, STD, and RDT reduce it by 28.47%, 19.38%, and 26.93% respectively.  NBC 

outperforms all other methods in reducing RMSE, followed by MDM, similar reductions are 

noted for MAE (not described here). Furthermore, RDT performed better than STD in reducing 

RMSE and MAE. EC-EARTH and CMCC-CM had the highest reduction in RMSE for all drift 

correction methods, however, the reduction in RMSE/ MAE varied for MIROC5. Contrary to 

expectation, for the STD method, the overall RMSE in MIROC5 and MPI-ESM-MR increased. 

This unusual increase in RMSE was not seen for other models, as RMSE was reduced for all 

other models.  When comparing the relative change in RMSE values for different drift 

correction methods, minimal changes are noted for MIROC5 and MPI-ESM-MR as opposed 

to the other models. Upon further investigation, the STD method was found to perform better 

in reproducing the observed wet extremes, especially for MIROC5, where, the wet peaks were 

reproduced for almost all initialization years. For the MIROC5 model, the range between wet 

and dry peaks is comparatively higher, with more outliers than in other models, (see Fig. 6-12). 
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Fig. 6-12 Box Whisker plot of four selected models, initialization year 1990 (January 1991- 

December 2000). Y-axis presents precipitation in millimeters and the x-axis presents drift 

correction methods including model and BoM data 

6.5 Discussion 

This study assesses the drift correction alternatives for CMIP5 decadal experiments’ hindcast 

precipitation (seasonal mean) from different models at the catchment scale. Three existing drift 

correction methods namely NBC, STD, RDT, and one modified method (MDM) were 

employed and their skills were assessed for the individual models and all initialization years. 

Previous studies compared the performance of the drift/bias correction methods on their 

efficacy in reducing errors like RMSE or MAE (Purwaningsih and Hidayat, 2016) only. Some 

other studies used ACC (Choi et al., 2016) and CC along with RMSE (Kamworapan and 

Surussavadee, 2019) but their applications were for different spatial scales. In this study, we 

used a comprehensive list of skill tests developed from different perspectives, thus enabling 

skill assessment in resembling both temporal and spatial variability. Moreover, these methods 

are applied at catchment scales and a higher spatial resolution of 0.05-degree. Here, the 

ensembles’ mean (of all available ensembles) for every initialization year of all models were 

used, as in chapter 5 it has been seen that the ensemble mean has higher skill than the individual 

ensembles which was also confirmed in previous studies (Choudhury et al., 2015; Kim et al., 

2012; Schepen et al., 2014). All the available ensembles are considered regardless of the 

initialization conditions; full field or anomaly. Furthermore, the monthly precipitation was 
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aggregated to a seasonal mean. This overlooks the drift in individual ensemble members and 

over different months. However, when comparing different drift correction methods, the 

overall effects of a method are of more relevance. 

The results presented in this study showed how the skill of drift correction methods and of 

different models varied over the initialization years. After going through a comprehensive 

assessment, it is revealed that different drift correction methods have their own advantages and 

disadvantages. Overall, the NBC method performed best unless the drift is not too high, 

whereas improvements from other methods varied over different skill tests and for different 

models. For instance, the STD method performed better than MDM on CC and FSSb15 while 

lagging on RMSE and MAE.  When comparing for different model categories, MDM showed 

better improvement in ACC and FSSa85 for the Category-II models but similar improvements 

for category-I models. However, both STD and MDM methods showed similar improvements 

in the case of IA. The lower ACC and FSSa85 for STD may be attributed to the overestimation 

of higher wet peaks and a larger range of outliers not noticed for the MDM method. 

When comparing models for different initialization years, it is noticed that, after the drift 

correction, the skill was higher for those initialization years where the models performed better 

before drift correction. This suggests that models, which perform better prior to drift correction, 

do so even after the drift correction. It is also noticeable that the models could reproduce both 

the anomalies and extreme events of observed precipitation after the drift correction while it 

could not do so before the drift correction. The model skill in reproducing extreme events and 

anomalies was higher for the initialization year from 1990 to 2005 than for the earlier 

initialization years, i.e., 1960 to 1980 (not shown). 

From both qualitative and quantitative skill measurements, it was found that models with 

higher skill before drift correction also have higher skill after the drift correction. But the 

improvement from drift correction differed for different models. For instance, in all drift 

correction methods, MRI-CGCM3 showed the highest improvement in CC while MPI-ESM-

LR showed the highest in ACC and IA, and similar results were found for other models for 

other skill tests. But highest improvement does not necessarily mean the highest performance 

of the model, rather it is the change in the skill of a given model before and after the correction. 

Actually, model performance depends on various factors such as variables affecting earth-

climate interaction, geographical locations (Choi et al., 2016; Homsi et al., 2020; Purwaningsih 
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and Hidayat, 2016), the spatial resolution of model structure (Jain et al., 2019; Lovino et al., 

2018), the temporal resolution of simulating variables, and spatial and temporal scales of the 

considered variables (Sheffield et al., 2013; Ta et al., 2018). Comparison of model 

performances of different categories (as identified in this study) revealed that the models in 

category-I are more skilful than models in Category-II for decadal hindcast precipitation. This 

may be because of the models with an atmospheric finer spatial resolution (see Table 1) could 

reproduce local climate features better than the coarser one (Jain et al., 2019; Lovino et al., 

2018). However, the skill of the CMCC-CM model for precipitation was found low which is 

similar to the findings of Lovino et al. (2018). But this model performs better for temperature 

forecasting as reported by Lovino et al. (2018). Among the individual models, EC-EARTH 

outperforms all models both before and after the drift corrections.    

For simulating future climate, it is reasonable to assume that the drift of hindcast and future 

simulated data would not change as the observed and modelled statistics of current climate are 

used to adjust for the future model result (Johnson and Sharma, 2012).  This assumption may 

have a shift of statistics but allows to have a similar relationship (e.g. drift) between the current 

and future climate. In this study, this assumption seems more reasonable for decadal data where 

the drift may not change drastically within a ten years’ time period as climate change is a slow 

evolving process. 

The assessment and applicability of forecasted rainfall at a higher spatial resolution is important 

for the local stakeholders. In Australia, the climate shows high year-on-year variability and can 

have an enormous economic impact. For instance, a typical major drought in a season can 

reduce agricultural production by about 10% and gross national product by 1% (White, 2000). 

The rainfall forecasting can be beneficial for agriculture and agriculture depended businesses, 

decision and policymaking (Hansen et al., 2011; Jones et al., 2000) for water resource 

management, and other sectors like the retail industry, finance, insurance, fishery, transport, 

tourism, and others. The stakeholders from these sectors have different spatial and temporal 

requirements for such data. For instance, in agriculture sector, farmers demand rainfall data at 

local scale or even at district level (Paull, 2002), with a lead time of few months or couple of 

seasons, to aid in their decision making process for farming and agricultural management. 

While, wholesalers, retailers of production, grain/fibre handling and marketing organizations, 

processors, forward sellers and purchasers of agronomic products, water resources managers, 
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different public and private investors like insurance companies demand more accurate forecasts 

with longer lead times (Paull, 2002). These stakeholders need future rainfall forecast at local 

level and for longer time span for their businesses. For the practical use of CMIP5 data, the 

outcomes of this study of using alternative drift correction methods will be very useful for 

taking any informed decision in order to expand or plan for their businesses in future. 

6.6 Conclusions 

Forecasting precipitation of high spatial resolution at the local level for a longer time span (e.g. 

seasons to decades) has great societal importance. CMIP5 decadal experiment data explored 

climate features for decadal timescale that has attracted stakeholders for their suitable 

applications. However, drift correction is required to improve the quality of outputs from the 

GCMs of CMIP5 decadal experiments before they can be used. This study employed four drift 

correction methods on CMIP5 decadal precipitation and compared the improvement in 

individual skills from different drift corrections for individual models. Based on the 

comprehensive assessment undertaken here, this study concludes that the NBC method 

performs best for CMIP5 decadal precipitation unless the drifts are not too high. However, the 

advantages and disadvantages of STD and MDM made it difficult to conclude which one of 

these two methods is better, thus requiring prudence when selecting a method. Depending on 

the desired skill and the potential applications, drift correction methods and models can be 

selected. For instance, when the accuracy of dry seasons is weighed higher than that of wet 

seasons, the STD method can be a better option, while in instances where the accuracy of wet 

seasons and the seasonal anomalies is desired, MDM might be a better option. However, when 

only considering the reduction in error (both RMSE and MAE) like in past studies, then MDM 

is always superior to the STD method. While considering the total accumulated precipitation, 

the RDT method outperformed all other methods and it can be the best option to choose for 

relevant uses. Finally, it should be noted that the statistical drift correction methods employed 

here are not enough to decide the best drift correction approach for the decadal hindcast 

precipitation at seasonal timescale and at high spatial resolution. Further investigation on drift 

correction approaches for different time scales e.g., monthly precipitation, and their application 

to individual ensembles is recommended. 
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List of symbols 

C  :  Mean (over the total time span) of the observed values 

F  :   Model forecasted (corrected) values 

O  :   Observed values 

𝐹 − 𝐶  :   Anomaly of the model values 

𝐹 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :   Mean of the model anomalies 

𝑂 − 𝐶  :   Observed anomaly 

𝑂 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the observed anomalies 

P (or p) :   Precipitation 

𝑃𝑓  :  Calculated fraction in FSS 

µ   :  Mean 

𝜎    :   Standard deviation,  

t (subscript) :  Lead time in year 

i (subscript) :  individual season of time t 
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m (superscript):  Represents the model 

o (superscript):  Represent the observed 

 𝑝𝑖𝑡  :  Standardized time series (seasonal) 

𝑝𝑖,𝑡
𝑚   :  Standardized time series (seasonal) after replacing models’       

    lag-1 autocorrelation by the corresponding observed values 

𝑃̃𝑖,𝑡
𝑚  :  Nested time series (seasonal) 

𝑝𝑡
𝑚  :  Standardized time series (yearly) 

𝑝𝑡
𝑚  :  Standardized time series (yearly) after replacing models’ lag-1 

    autocorrelation by the corresponding observed values 

𝑃̃𝑡
𝑚  :  Drift corrected seasonal precipitation (NBC) 

𝑃𝑐𝑜𝑟,𝑖𝑡  :  Drift corrected seasonal precipitation (for STD, RDT and MDM)  

 𝑟𝑖
𝑚  :  Lag-1 autocorrelations 
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Table 6-S1 Change of Skills after drift correction of EC-EARTH. The Positive values indicate increase in skills and vice versa 

Initialization 

year 

ACC Change in %  IA Change in %  FSSa85 Change in %  RMSE Change in % 

NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT 

1960 20.27 31.12 25.44 33.90  11.77 15.75 15.60 10.04  30.12 16.76 18.15 21.74  4.0 -3.7 7.1 -9.5 

1965 44.81 43.99 39.84 45.03  56.24 51.83 51.45 38.42  71.40 52.18 39.70 34.64  -12.6 -14.8 -0.7 -17.8 

1970 53.10 54.75 50.58 56.60  -0.55 0.00 -2.41 -2.70  117.60 48.36 52.31 40.67  -31.9 -33.6 -17.9 -37.9 

1975 44.63 44.91 42.90 37.73  26.19 26.35 25.48 19.29  51.12 31.61 40.24 17.95  -26.9 -27.0 -18.5 -24.2 

1980 57.63 52.72 56.45 35.53  41.72 36.03 41.35 17.94  58.07 56.86 59.39 36.02  -29.1 -27.6 -27.2 -16.9 

1985 42.89 36.81 34.08 35.16  29.57 24.65 24.21 16.98  47.66 35.32 26.87 44.19  -29.4 -25.6 -14.7 -24.4 

1990 80.59 79.89 79.85 73.00  55.26 53.83 54.76 44.81  187.57 129.56 101.17 92.44  -55.2 -55.1 -51.9 -47.0 

1995 82.81 70.89 67.65 64.36  50.23 43.95 40.63 36.13  128.82 58.88 34.36 92.60  -51.9 -42.4 -28.4 -41.3 

2000 57.87 50.68 50.03 43.12  33.88 31.09 29.97 23.22  101.37 39.21 39.28 41.15  -32.4 -27.3 -16.5 -28.2 

2005 33.08 31.56 32.71 26.39  31.57 28.14 31.22 19.15  47.79 29.49 35.87 21.42  -32.9 -32.3 -33.1 -23.5 

    

Initialization 

year 

MAE Change in %  FSSb15 Change in %  CC Change in %  

NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT  

1960 -1.52 -6.94 -10.99 -10.99  25.88 10.03 17.39 -6.47  -10.19 -0.95 -3.02 -2.16  

1965 -15.91 -13.32 -14.87 -14.87  10.74 2.15 10.93 -16.16  11.64 8.01 7.87 8.50  

1970 -32.03 -31.96 -36.33 -36.33  39.26 27.97 25.93 11.64  13.96 13.12 13.46 16.62  

1975 -29.11 -28.41 -24.66 -24.66  14.29 -4.19 25.06 -9.25  10.01 9.50 10.47 1.29  

1980 -28.01 -25.56 -13.44 -13.44  73.07 20.75 61.80 43.45  38.53 24.12 37.05 12.05  

1985 -39.00 -31.24 -23.02 -23.02  239.64 95.01 207.77 108.79  16.16 8.41 7.85 7.50  

1990 -57.08 -57.41 -46.10 -46.10  107.90 41.65 105.59 46.48  17.16 13.83 16.97 9.79  

1995 -54.53 -46.00 -43.04 -43.04  171.00 128.69 183.30 137.90  25.64 13.41 15.03 8.49  

2000 -35.66 -32.17 -31.95 -31.95  89.79 41.51 81.17 50.02  17.88 9.45 12.76 0.20  

2005 -37.19 - -21.05 -21.05  17.99 23.45 51.73 19.52  20.81 15.83 20.36 13.91  
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Table 6-S2 Change of skills after drift correction of CanCM4. The positive values indicate increase in skills and vice versa 

Initialization 

year 

 ACC Change in %  IA Change in %  FSSa85 Change in %  RMSE Change in % 

 NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT 

1960  150.24 236.10 199.84 257.26  980.01 1043.34 1048.61 651.10  88.23 95.51 36.78 111.57  11.4 -9.8 14.5 -16.6 

1965  847.30 778.02 756.99 615.82  480.59 454.54 443.56 289.97  113.68 73.09 71.05 22.14  -41.9 -37.0 -10.1 -26.7 

1970  246.40 239.79 210.86 238.56  4.10 0.00 -6.19 -25.06  99.82 57.90 47.04 -1.23  -32.8 -32.6 -1.8 -33.1 

1975  252.41 239.53 236.79 189.22  474.10 448.21 452.51 269.23  63.36 33.16 38.69 26.38  -41.3 -39.6 -24.9 -25.7 

1980  247.60 263.67 237.28 270.88  6248.58 6217.14 6084.87 4469.50  85.84 77.23 73.14 102.57  -3.8 -12.6 13.3 -20.1 

1985  60.39 47.83 41.76 42.25  151.35 132.60 131.33 68.62  38.89 29.27 10.00 108.12  -18.7 -15.7 7.2 -14.3 

1990  76.19 67.20 60.46 60.38  178.78 164.72 157.31 115.25  184.76 141.42 89.46 149.42  -39.5 -32.2 -8.6 -27.1 

1995  75.52 75.86 68.58 67.36  100.94 98.09 93.00 60.12  155.69 105.65 47.59 159.36  -19.8 -23.57 0.73 -20.1 

2000  58.76 56.55 52.63 45.59  109.68 102.24 104.39 55.67  98.63 96.72 61.28 117.30  -25.9 -27.35 -12.9 -18.3 

2005  204.15 195.93 196.57 155.32  336.68 318.86 328.71 209.35  63.38 48.20 37.69 46.10  -51.44 -47.58 -41.9 -27.7 

                     

                     

Initialization 

year 

 MAE Change in %  FSSb15 Change in %  CC Change in %  

 NBC MDM STD RDT  NBC MDM STD RDT  NBC MDM STD RDT  

1960  6.90 -12.01 0.13 -12.67  81.31 48.49 87.48 31.10  -35.51 -4.25 -7.19 -4.88  

1965  -38.99 -31.00 -20.95 -21.08  58.26 22.04 43.00 9.87  66.83 49.02 51.30 16.71  

1970  -28.01 -22.42 -2.49 -23.15  157.36 130.19 148.13 59.62  13.04 5.79 0.51 20.15  

1975  -42.13 -37.49 -32.04 -25.91  71.60 51.86 69.49 38.96  32.20 24.40 27.12 -0.29  

1980  -10.64 -10.61 3.53 -13.43  334.25 296.46 471.72 336.68  6.69 9.90 8.68 1.54  

1985  -22.90 -16.20 -7.42 -8.04  65.37 38.21 70.67 35.02  16.88 2.36 1.71 -0.01  

1990  -41.23 -33.31 -22.10 -24.83  121.64 31.76 131.60 -0.58  14.59 4.60 3.10 1.84  

1995  -16.06 -14.77 -0.93 -11.07  81.32 6.77 112.82 -74.74  10.77 10.44 9.43 4.04  

2000  -36.22 -28.58 -21.59 -14.31  89.71 42.66 80.90 12.16  12.91 9.53 8.49 5.14  

2005  -44.19 -38.63 -37.99 -20.00  42.66 27.81 49.41 46.46  35.28 30.81 31.77 15.70  
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CHAPTER 7 

EVALUATION OF CMIP5 DECADAL PRECIPITATION AT 

CATCHMENT LEVEL 

Abstract 

Coupled Model Inter-comparison Project Phase-5 (CMIP5) performed the decadal experiments 

for a wide range of GCMs. Previous studies using CMIP5 decadal data were conducted mainly 

for temperature or temperature-based climate indices. Very few studies were conducted using 

CMIP5 decadal precipitation but none of them evaluated the performances of GCMs for 

CMIP5 decadal precipitation at a catchment level. Evaluation of CMIP5 decadal precipitation 

is an important step to perform reliable estimation for future water availabilities at a local level. 

This study evaluates the performances of CMIP5 decadal precipitation for eight selected GCMs 

(GCMs; MIROC4h, EC-EARTH, MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, 

CMCC-CM, and CanCM4) for the Brisbane River catchment in Queensland, Australia. First, 

the dataset was subset for the entire Australia and then interpolated onto a finer resolution of 

0.050×0.050 (5 km×5 km), using the second-order conservative method, matching with the 

grids of observed data. Secondly, the interpolated datasets are cut for the Brisbane River 

catchment. Next, models’ outputs are evaluated for temporal skills, dry and wet periods, and 

total precipitation based on the observed values. Correlation coefficient (CC), anomaly 

correlation coefficient (ACC), and index of agreement (IA) are used to measure the temporal 

skills whereas fractional skill scores (FSS) are used to measure the dry and wet periods. To 

measure the model skills for total precipitation over the entire catchment, the field-sum and 

total-sum are used. These skills are measured at individual grids and for the entire catchment. 

Based on the skill scores, models are divided into three categories (Category-I: MIROC4h, EC-

EARTH and MRI-CGCM3; Category-II: MPI-ESM-LR and MPI-ESM-MR; and Category-III: 

MIROC5, CanCM4, and CMCC-CM) and suggestions are made for the formation of suitable 

multi-model ensembles’ mean (MMEM). Three MMEMs are formed using the arithmetic mean 

of models in Category-I (MMEM1), Category-I and II (MMEM2), and all eight models 

 
This chapter has been submitted as:  Hossain, M M, Anwar, A.H.M.F., Garg, N., Prakash, M., Bari, M., 2022. 

Evaluation of CMIP5 decadal precipitation at catchment level. International Journal of Climatology  (Under 

review). 
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(MMEM3). The performance of all of these three MMEMs are also assessed using the same 

skill tests and found MMEM2 performed better. 

Keywords: Performance, CMIP5, decadal, precipitation, catchment, multi-model ensemble 

7.1 Introduction 

Performance evaluation of General Circulation Models (GCMs) has become a very important 

task to measure the models’ credibility on future prediction of climate variables. Evaluation of 

models’ predicted historical data based on their corresponding observed values determines how 

well the GCMs represent historical climate and thus forms an integral part of the confidence-

building exercise for climate predictions. It is assumed that the better performance of models 

over the historical period will lead to developing more confidence in their future predictions. 

As the GCMs are used to explore the future climate variabilities and potential impacts on the 

Earth, evaluation of GCMs has been a growing need in the climate research community. 

However, depending on the requirements, available resources, geographical locations, and 

variables considered to assess the model performances, the evaluation strategies become 

different. Since the change of climate and its potential impact on this planet varies from region 

to region, it is important to evaluate the models based on different regions and spatial scales 

though the evaluation of climate models and their ensembles is crucial in climate studies (Flato 

et al., 2013). Researches on regional or local climate variability and their potential impacts are 

high in demand for transferring research-based scientific knowledge to increase the resilience 

of the society to climate change. This will help in planning the future development of the 

infrastructures of a region (Kumar et al., 2013). 

Coupled Model Inter-comparison Project Phase-5 (CMIP5) provides an unprecedented 

collection of global climate data of different time scales including decadal experiments which 

were produced by a wide range of GCMs (Taylor et al., 2012). Evaluation of CMIP5 decadal 

prediction has been run far from the early stage based on different evaluation aspects such as 

different regions, different climate variables, and their different spatial and temporal 

resolutions. For instance, Choi et al. (2016) investigated the prediction skill of CMIP5 decadal 

hindcast near-surface air temperature for the global scale while other researchers investigated 

other climate variables in continental or regional scales (Gaetani and Mohino, 2013; Lovino et 

al., 2018; McKellar et al., 2013). Lovino et al. (2018) evaluated decadal hindcast precipitation 
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and temperature over northern Argentina and reported higher skills of models to reproduce the 

temperature as opposed to precipitation where precipitation skills were found remarkably 

lower. McKellar et al. (2013) investigated decadal hindcast maximum and minimum 

temperature over the state of California and reported the best performing model. Likewise, 

Gaetani and Mohino (2013) evaluated model performances to reproduce Sahelian precipitation 

and reported better performing models. However, these studies were for different geographical 

locations with coarser spatial resolutions for considered variables. For instance, the spatial 

resolution of models used by Kumar et al. (2013) and Choi et al. (2016) was 2.50, Gaetani and 

Mohino (2013) used models of more than 1.10, and Lovino et al. (2018) used precipitation data 

of 1.00 spatial resolution. At a regional level, Mehrotra et al. (2014) assessed the multi-model 

decadal hindcast of precipitation for different hydrological regions over Australia using 0.50 

spatial resolution and reported lower skills for precipitation as opposed to temperature and 

geopotential height. Climate data of 0.50 spatial resolution covers a ground area equivalent to 

a square of 50 km length over the Australian region. Comparatively, a 50 km × 50 km area is 

very big where climate variabilities are also large and frequency and magnitude of precipitation 

vary in a few kilometres (such as in Australia). As the precipitation shows more spatial and 

temporal variability than temperature and the model performances vary region to region, 

therefore the model performances at the local level for finer spatial resolution is essential for 

precipitation. 

Numerous studies evaluated CMIP5 models over Australia (Bhend and Whetton, 2015; 

Choudhury et al., 2019; Flato et al., 2013; Mehrotra et al., 2014; Moise et al., 2015) but study 

on evaluating CMIP5 decadal precipitation at catchment scale can hardly be found. After 

Mehrotra et al. (2014), who assessed the CMIP5 decadal hindcast precipitation over different 

hydrological regions (0.50 ×.0.50) in Australia, recently Hossain et al. (2021a, 2021b) used the 

CMIP5 decadal precipitation at a further finer resolution of 0.050 ×0.050 (5km×5km) for 

Brisbane catchment Australia for the first time. Hossain et al. (2021a, 2021b) compared the 

model performances for investigating the model drift and their subsequent correction using 

alternative drift correction methods for both the monthly and seasonal mean precipitation. 

However, they compared the model performances at a single grid point within the Brisbane 

River catchment. On the contrary, Mehrotra et al. (2014) used only a multi-model approach but 

did not consider individual models finer than 0.50.  Local climate variables of finer temporal 

and spatial resolution, especially for precipitation, are very important for water managers for 
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planning and developing infrastructures as well as decision making for local businesses and 

agricultures. To maintain sustainable development with effective future planning based on the 

models’ projected precipitation, it is important to evaluate the performance of the CMIP5 

models’ hindcasts precipitation. 

Many researchers have suggested using MMEM (Choudhury et al., 2016; Islam et al., 2014; 

Knutti et al., 2010; McSweeney et al., 2015) while using GCMs data to reduce the model biases. 

The use of MMEM may enhance the model performances (Kumar et al., 2013; Sheffield et al., 

2013) by reducing the biases to some extent but there is no information available on the ranking 

of GCM models and based on this, which and how many models should be considered to 

produce MMEM so that it could provide better outcome. This is more essential for CMIP5 

decadal precipitation because of its wide range in spatial and temporal variability in providing 

the model output ten years ahead. That is why the objective of this paper is, first, to categorize 

the models based on their performances at catchment level with a spatial resolution of 0.050 

and next, to identify the best combination of different models that would provide better 

performance. This would help the water managers and policymakers to sort out models 

depending on their specific needs while assessing the future water availability based on the 

GCMs derived precipitation on a decadal scale through CMIP5. 

7.2 Data collection and processing 

7.2.1 Data collection 

CMIP5 decadal experiment provides 10 and 30-year long ensemble predictions from multiple 

modelling groups [henceforth mentioned as CMIP5 decadal hindcasts, (Meehl and Teng, 

2014)]. Monthly decadal hindcasts precipitation from eight GCMs (out of ten); MIROC4h, EC-

EARTH, MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4 

for which decadal hindcast precipitation are downloaded from CMIP5 data portal (https://esgf-

node.llnl.gov/projects/cmip5/). The other two models, HadCM3 (spatial resolution 3.75° x 

2.5°) and IPSL-CM5A-LR (spatial resolution 3.75° x 1.89°) were not considered in this study 

because of their relatively coarser spatial resolution and different calendar system (HadCM3). 

For the initialized period 1960-2005, data simulated over 10 years that are initialized every five 

years during this period are selected for this study as they were found comparatively better than 

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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the 30-year simulation (Hossain et al., 2021d). The details of the selected models are given in 

Table 7-1. 

The observed gridded monthly precipitation of 0.050 ×.0.050 ( 5km × 5km) was collected 

from the Australian Bureau of Meteorology (BoM). This data was produced using the 

Australian Water Resources Assessment Landscape model (AWRA-L V5) (Frost et al., 2016). 

Table 7-1 Selected models with the initialization year 1960-2005 

Model name  

(Modelling center or group) 

Resolutions:lon × lat 

Initialization Year (1960-2005)  

60 65 70 75 80 85 90 95 00 05 

Number of ensembles  

EC-EARTH 

(EC-EARTH Consortium) 

1.125 X  1.1215 

14 14 14 14 14 14 14 14 10 18 

MRI-CGCM3 

(Meteorological Research Institute) 

1.125 X  1.1215 

06 08 09 09 06 09 09 09 09 06 

MPI-ESM-LR 

(Max Planck Institute for Meteorology) 

1.875 X  1.865 

10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR 

(Max Planck Institute for Meteorology) 

1.875 X  1.865 

03 03 03 03 03 03 03 03 03 03 

MIROC4h 

(AORI-Tokyo University, NIES and JAMEST)* 

0.5625 X  0.5616 

03 03 03 06 06 06 06 06 06 06 

MIROC5 

(AORI-Tokyo University, NIES and JAMEST)* 

1.4062 X  1.4007 

06 06 06 06 04 06 06 06 06 06 

CanCM4 

(Canadian Centre for Climate Modelling and 

Analysis) 

2.8125 X 2.7905 

20  20 20 20 20 20 20 20 20 20 

CMCC-CM 

(Centro Euro-Mediterraneo per I Cambiamenti 

Climatici) 

0.75 X 0.748 

03 03 03 03 03 03 03 03 03 03 

*Atmosphere and Ocean Research Institute-The University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology) 
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7.2.2 Data processing 

The GCMs’ resolutions (100-250 km) are found inadequate for regional studies due to lack of 

information at catchment levels (Fowler et al., 2007; Grotch and MacCracken, 1991; Salathé, 

2003). The regional climate model (RCM) is useful to transfer the coarse spatial GCMs’ data 

to local scale but it needs a wide range of climate variables as well as rigorous efforts to 

develop. For this reason, GCMs data are spatially interpolated onto 0.050×0.050 spatial 

resolution using the second-order conservative (SOC) method matching with the grids of 

observed data. For the gridded precipitation data, the SOC method was found comparatively 

better than other commonly used spatial interpolation methods (Hossain et al., 2021a). Skelly 

and Henderson-Sellers (1996) suggested GCM derive gridded precipitation to consider as areal 

quantities and spatial interpolation will not create any new information except the spatial 

precision of the data. Skelly and Henderson-Sellers (1996) also suggested that researchers 

could sub-divide the grid box in almost any manner until the original volume remains the same. 

On the contrary, Jones (1999) suggested that precipitation flux must be remapped in a 

conservative manner to maintain the water budget of the coupled climate system. While sub-

gridding the GCM data using the SOC method, it conserves precipitation flux from their native 

grids to subsequent grids (Jones, 1999). For this reason, this study used the SOC method for 

spatial interpolation as it was followed in other research (Hossain et al., 2021c). Brisbane 

catchment was selected for this study because of its tropical climate that produces low to 

moderate variability of annual precipitation values. 

7.3 Evaluation methodology 

A simple and direct approach for the model evaluation is to compare the model output with the 

observations and analyze the differences. In this study, models are evaluated for temporal 

skills, dry and wet periods, and total precipitation based on the observed values. Here, CC, 

ACC, and IA are used to measure the temporal skills, FSS are used to measure the skills over 

dry and wet periods, field-sum and total-sum are used to measure the skills for total 

precipitation. There are 496 grids in the Brisbane River catchment with a spatial resolution of 

5.0 km × 5.0 km. The descriptions of the skills are given below. 
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7.3.1 Correlation Coefficient (CC)  

CC measures the linear association and presents the scale of temporal agreement between 

predicted and observed values. Statistically, it measures how much closer the scatter plot points 

to a straight line. CC ranges from -1 to 1 for no to perfect correlation respectively.  

𝐶𝐶 =  
∑(𝐹𝑖−𝐹)(𝑂𝑖−𝑂)

√∑(𝐹𝑖−𝐹)2√∑(𝑂𝑖−𝑂)2

                               (7.1) 

Here, 𝐹 and 𝐹̅, represent models’ predicted and their mean whereas 𝑂 and 𝑂̅ represent observed 

precipitation and their mean respectively.  In the following skill tests, these notations will 

remain the same. Note that the mean is calculated for every individual year.  

7.3.2 Anomaly Correlation Coefficient (ACC) 

ACC was suggested by Wilks, (2011) to measure the temporal correlation between anomalies 

of the observed and predicted values. For the verification of numerical weather models’ 

prediction ACC is frequently used. Its value ranges from -1 to 1 for no to perfect anomaly 

matching. 

𝐴𝐶𝐶 =  
∑{(𝐹𝑖−𝐶)−(𝐹−𝐶̅̅ ̅̅ ̅̅ )}×{(𝑂𝑖−𝐶)−(𝑂−𝐶̅̅ ̅̅ ̅̅ )}

√∑(𝐹𝑖−𝐶)2√∑(𝑂𝑖−𝐶)2
                    (7.2) 

Here, C represents the mean of the entire time-span (ten years) of the observed (BoM) data. 

The higher value of ACC will indicate the higher performance in reproducing the monthly 

anomalies.  

7.3.3 Index of agreement (IA) 

Wilmot, (1982) suggested IA to measure the accuracy of predictions. The index of agreement 

can be calculated as follows. 

𝐼𝐴 = 1 −
∑ (𝐹𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝐹𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

                                  (7.3) 

The index is bounded between 0 and 1 (0≤IA≤ 1). The value closer to 1 indicates the most 

efficient predicting of the models. 
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7.3.4 Fractional Skill Score (FSS)   

FSS is a grid-box event that directly compares the fractional coverage of models’ predicted and 

observed values for the entire catchment. It measures how the spatial variability of models’ 

predicted values corresponds to the spatial variability of the observed values. FSS can be 

obtained as: 

𝐹𝑆𝑆 = 1 −
1

𝑁
∑ (𝑃𝑓,𝑚−𝑃𝑓,𝑜)

2
𝑁

1

𝑁
[∑ 𝑃𝑓,𝑚

2 + ∑ 𝑃𝑓,𝑜
2

𝑁𝑁 ]
                                         (7.4) 

Where 𝑃𝑓 and N refers to calculated fraction and number of years respectively. The subscript 

m and o present modelled and observed respectively. In this study, fractions are calculated 

according to Roberts and Lean (2008) but considered entire catchment as a whole unit, and the 

temporal averages (for considered months) are taken instead of the spatial averages. For doing 

this, threshold values; ≥85 percentile for the months of wet seasons (December to February -

DJF) and <15 percentile for the months of the dry seasons (June to August - JJA) are 

considered. To get the fractions (say for January), the number of grid points covered for a 

specified threshold value is counted and then divided by the total number of grids within the 

catchment. The differences between predicted and observed fractions (the numerators of 

equation 4) are calculated for individual months.  The FSS will be a temporal average score for 

the catchment for each considered month. It ranges from 0 to 1 for no to perfect match 

respectively. 

7.3.5 Field-sum and total-sum 

Models’ ability to reproduce the total precipitation over the entire catchment is considered as 

the spatial skills of the models. Field-sum is the sum of precipitation over the entire catchment 

for individual time steps and the total-sum is the field-sum over the total time span. Field-sum 

and total-sum of the models’ precipitation are compared with the corresponding observed 

values. 



156 

 

7.4 Results and analysis 

7.4.1 Evaluation for temporal skills 

The temporal skills are computed at every individual grid (total 496 grids) of the catchment for 

all initialization years of each model. Spatial variations of model temporal skills across the 

catchment for the initialization year 1990 (1991-2000) are presented in Fig. 7-1. The models 

are evaluated from the spatial perspective by counting the number of grids covered by different 

models for different threshold values of CC, ACC, and IA (Fig. 7-2). The higher number of 

grids represents the higher spatial skill of models across the catchment. From the comparison 

of temporal skills, it is evident that model performance varies over the initialization years and 

also across the catchment. From the initialization year 1990 and onward, all models show a 

comparatively higher number of grids for the same thresholds of CC, ACC, and IA and the 

lowest skill observed in 1980. With the increase of threshold values, the number of grids 

declines for all models in all three temporal skills except CMCC-CM in ACC as it shows no 

grid in all three threshold of ACC presented in Fig. 7-2. Compared to other selected models, 

MIROC4h, EC-EARTH, and MRI-CGCM3 show a higher number of grids for all thresholds 

in which MIROC4h is much ahead of EC-EARTH and MRI-CGCM3. It means temporal 

agreement, the resemblance of anomalies, and the prediction accuracy of MIROC4h and EC-

EARTH spatially higher than other models. This study also checked the number of grids for 

the threshold >=0.6 for CC and ACC but no model could reproduce CC and ACC >=0.6 at any 

grid. However, MIROC4h, EC-EARTH, and MRI-CGCM3 show a significant number of grids 

for the IA threshold >=0.6 where MIROC4h outperformed EC-EARTH and MRI-CGCM3 

(Fig. 7-2). Comparing the models, MIROC4h shows higher temporal skills from the spatial 

perspective, followed by EC-EARTH and MRI-CGCM3 whilst MPI-ESM-MR, MIROC5, and 

CMCC-CM show low to lowest temporal skills.  Over the catchment MIROC5, MPI-ESM-

MR, CanCM4 show little better scores than CMCC-CM. 
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Fig. 7-1 Spatial variations of temporal skills (CC, ACC, and IA) of the models initialized in 1990 (period; 1991-2000) over the Brisbane River 

catchment 
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Fig. 7-2 Number of grids covered by different models for different thresholds of CC, ACC, 

and IA. The vertical axis presents the initialization years and the horizontal axis presents the 

model name. Threshold values are provided on the top of each subplot 
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7.4.2 Evaluation for dry and wet periods 

Skills to reproduce the dry and wet events are assessed at the selected grid and also over the 

entire catchment. For the selected grid all months are considered against four different 

thresholds (25, 50, 75, and 90 percentiles correspond to 25, 60, 110, and 175 mm respectively) 

whereas for the entire catchment, FSS are used for the months of dry (JJA) and wet (DJF) 

periods only.  

 At the selected grid 

A comparison to reproduce the dry and wet events based on the selected precipitation 

thresholds at the selected grid is presented in Fig. 7-3. This comparison was based on the ratio 

of the number of months of respective precipitation thresholds (mentioned on the top of the 

individual plot in Fig. 7-3) in model data to observed data. It is observed that EC-EARTH and 

MIROC5 could reproduce no dry events (Pr<=25mm) whilst CMCC-CM overestimates the 

number of dry events which is almost double the dry events in observed data. Meanwhile, 

MIROC4h performed better to produce dry events as well as 50 and 75 percentile values as 

compared with the other models. However, MIROC4h is a little behind the MPI-ESM-MR for 

the extreme wet events (Pr>=175mm). It means MPI-ESM-MR can reproduce extreme wet 

events better than the other models. EC-EARTH, MPI-ESM-LR, and MPI-ESM-MR 

underestimated the events of threshold Pr<=60mm whereas overestimated the events of 

threshold Pr>=110mm which is an indication of models’ tendency to reproduce a higher 

number of wet events than opposed to dry. However, MRI-CGCM3 performed similarly to 

MIROC4h in reproducing the number of events for the threshold of <= 60mm but 

underestimated the number of events thresholds of >= 110mm. To reproduce the extreme wet 

events (Pr>=175mm), all models show underestimation in which MPI-ESM-MR and 

MIROC4h showed considerably higher skills. The CMCC-CM and CanCM4 showed poorest, 

and no skill respectively for extreme wet events. 
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Fig. 7-3 Comparison of model skills to reproduce dry and wet events at a selected grid point. 

Values 1.0 present perfect matching whilst values below and above 1.0 present under and 

over prediction respectively 

 Over the entire catchment 

FSSs are calculated for the months of winter (dry) and summer (wet) seasons only. FSS of all 

the initialization year of all models are shown in Fig. 7-4. 
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Fig. 7-4 Fractional skill score for the months of winter and summer seasons 

Results show that for the months of summer seasons (DJF), MRI-CGCM3 shows higher skills 

in December and January but little behind than EC-EARTH in February. On the contrary, 
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CMCC-CM shows the lowest skill in December but shows similar skill with other models in 

January and February. However, except higher skill of MRI-CGCM3 and the lowest skill of 

CMCC-CM in December, all other models show similar skill scores with few variations in 

winter seasons. This indicates different models’ skills are almost similar to reproducing wet 

events. In the dry season, MIROC5 shows the lowest skill while EC-EARTH shows the higher 

skills, which is even higher than MIROC4h and MRI-CGCM3. The FSSb15 scores of EC-

EARTH, MIROC4h, and MRI-CGCM3 are much better than the score obtained for FSSa85. 

This reveals that these models are better to reproduce dry events as opposed to wet events and 

the reverse is true for MIROC5, MPI-ESM-MR, and CanCM4 respectively. 

7.4.3 Evaluation for total precipitation 

 At the selected grid 

To evaluate the model performances in reproducing the total precipitation, models’ cumulative 

(over time) precipitation at several randomly selected grids (evenly distributed across the 

catchment) within the catchments and total precipitation over the entire catchment are 

compared. The cumulative sum of monthly precipitation of different models at the selected 

grid for different initialization years is presented in Fig. 7-5. The model skills show both 

temporal and spatial variations in predicting accumulated precipitation but no model could 

reproduce the accumulated precipitation as observed. However, only a few models (MIROC4h, 

MPI-ESM-LR, and MPI-ESM-MR) could reproduce the accumulated precipitation close to the 

observed accumulation. Nevertheless, CMCC-CM, CanCM4, and MRI-CGCM3 

underestimated the accumulated precipitation whilst EC-EARTH and MIROC5 overestimated 

the accumulated values. With the change of grid locations, model performances may change 

but the relative performances among the models will remain the same. 
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Fig. 7-5 Cumulative sum of monthly precipitation of different models at the selected grid 

point in different initialization years. The vertical axis presents accumulated precipitation and 

the horizontal axis presents the number of months over the decade. 

 Over the catchment 

For comparing the model performances on total precipitation over the entire catchment, this 

study calculated the field-sum of the models and observed values then assessed through the 

temporal skills as shown in Fig. 7-6. The total sum of the models and observed values are also 

calculated and assessed through the ratio between model and observed values (Fig. 7-6). From 

the comparison, it is observed that the field sum of MIROC4h, EC-EARTH, and MRI-CGCM3 

show comparatively higher accuracy (IA), temporal agreement (CC), and the resemblance of 
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anomalies (ACC) with the field-sum of the observed precipitation. The model performances 

on reproducing the total precipitation vary over the initialization years (Fig. 7-6.d). Before and 

after 1985, MRI-CGCM3 and MPI-ESM-MR showed comparatively better resemblance with 

the observed total precipitation followed by MIROC4h and EC-EARTH. On the contrary, 

CMCC-CM showed the lowest performance to reproduce total-sum precipitation throughout 

all initialization years. 

 

Fig. 7-6 Performance indicators of the models to reproduce the total precipitation of the entire 

catchment 
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From the skill assessments, it is revealed that the MIROC4h surpasses other models in almost 

all performance indicators followed by EC-EARTH and MRI-CGCM3 whilst MPI-ESM-LR 

and MPI-ESM-MR show medium skill scores. Lower skill scores were observed for MIROC5, 

CanCM4, and CMCC-CM respectively. MIROC4h was also marked as the best model to 

reproduce precipitation in other studies (Jain et al., 2019; Lovino et al., 2018) though they did 

not use the decadal experiments data. It may be due to the finer resolution of the atmospheric 

component of MIROC4h that enhanced its ability to capture the more realistic climate features 

(Jain et al., 2019; Sakamoto et al., 2012) at the local level. 

The overall skill assessment results revealed that all models show the lowest skill in all 

performance indicators for the initialization year 1980 but the highest performance was noticed 

for the initialization year 1990. However, all models show comparatively better skills from the 

initialization year 1990 and onward as compared to 1960-1985. 

7.4.4 Model categorisation and formulation of MMEM  

Based on the skill comparisons, this study divided the models into three different categories; 

Category-I, Category-II, and Category-III. While categorizing the models based on their skills 

at the selected grid and over the catchment, MIROC4h, EC-EARTH, and MRI-CGCM3 fall in 

the first category (Category-I) as they consistently performed in the top three and their 

performance metrics were found very close to each other. Similarly, MPI-ESM-LR and MPI-

ESM-MR are in the second (Category-II) category as they have shown medium skill scores in 

all skill tests over the initialization years. Lastly, MIROC5, CanCM4, and CMCC-CM fall in 

Category-III. 

GCMs’ outputs indeed contain uncertainties and biases which will cause the lower skill score 

but multi-model ensembles mean (MMEM) may enhance the models’ skills (Hossain et al., 

2021c; Islam et al., 2014; Kumar et al., 2013; Sheffield et al., 2013) by reducing uncertainties 

(Hossain et al., 2021c; Islam et al., 2014; Knutti et al., 2010; McSweeney et al., 2015). In this 

study, the skill tests are employed on the ensembles’ mean of individual models’ interpolated 

raw values only. Here the arithmetic mean of multiple models has referred to as MMEM. The 

performances of MMEMs were also assessed based on the similar skill tests that are employed 

on individual models and the results are summarised below. To form the MMEMs, three 

different combinations are considered. The arithmetic mean of Category-I models is referred 
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to as first MMEM (MMEM1), the arithmetic mean of the Category-I and Category-II models 

is referred to as the second MMEM (MMEM2) and finally arithmetic mean of all models is 

referred to as the third MMEM (MMEM3). 

7.4.5 Performance of MMEMs 

The temporal skills at individual grids of the different thresholds, temporal skills along with 

the ratios of the field-sum, and skill on reproducing dry and wet events of different thresholds 

for MMEMs are presented in Fig. 7-7, 7-8 and 7-9 respectively. In general, MMEMs show 

better performance than the individual models for comparatively lower thresholds of the 

performance metrics. For instance, the MIROC4h model showed the highest number of grids 

for CC and ACC at the threshold 0.5 (Fig. 7-2) but no MMEMs could reproduce this number 

of grids at the same threshold (Fig. 7-7). The same results were also observed for IA at the 

threshold 0.6 (see Fig. 7-7i) but for the lower thresholds, MMEM2 shows better skill than 

MIROC4h in CC and ACC but not in IA. Among the three combinations, MMEM2 surpasses 

the other two combinations in reproducing CC and ACC. Nevertheless, in the case of IA, 

MMEM2 is little behind than MMEM1. 

Similar results are evident for performance indicators obtained from the field-sum of MMEM 

and the observed values (Fig. 7-8), where MMEM2 shows best for the CC and ACC but both 

MMEM2 and MMEM1 show similar skills for IA. However, to produce the dry and wet events, 

MMEMs show lower performance as compared to individual models. For instance, MIROC4h, 

MRI-CGCM3, and MPI-ESM-MR captured some dry events (Pr<=25mm) at the selected grid 

points (Fig. 7-3) but no combination could capture it (Fig. 7-9) whilst for the wet events, 

MMEM shows very poor skills. 
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Fig. 7-7 Number of grids covered by different combinations of models for different threshold 

values of performance metrics. Thresholds and the performance indicators are mentioned on 

the top of the individual blocks 
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Fig. 7-8 Performance indicators obtained from the field-sum of different MMEMs and 

corresponding observed values. 

Meanwhile, MMEMs show better performance indicators (CC, ACC, and IA) for the total 

precipitation of the entire catchment (field-sum) which is even better than the individual 

models. Nevertheless, MMEM is a little behind the MIROC4h and MRI-CGCM3 for the ratio 

of total-sum (sum over total time span and catchment) model combinations over the 

corresponding observed values (see Fig. 7-8. d)  
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Fig. 7-9 Skill comparison of three MMEMs to reproduce dry and wet events at the selected 

grid point. This comparison was based on the ratio, obtained from the number of months of 

respective precipitation thresholds (mentioned on the top of the individual plot) in model data 

to the number of months of observed values for different initialization years (Y-axis) 

7.5 Discussion 

This study evaluated the performance of eight selected GCMs simulation of CMIP5 decadal 

precipitation at a catchment level of 0.05-degree spatial resolution. Different skill metrics were 

employed from both temporal and spatial perspectives in this evaluation assessment. The 

performance metrics; CC, ACC, and IA measured the temporal skills of the models. The 

number of grids corresponding to individual metrics’ thresholds represents the spatial skills of 

the models. These metrics are also calculated for the spatial sum (sum over the entire 

catchment) of the precipitation for all models. In addition to these, FSSa85 and FSSb15 

presented the spatial skill of the models for wet and dry seasons respectively. The CC and ACC 

measured the phase and correspondence (or anomalies) of the model time series concerning the 

observed values. The models showed a wide range of performance scores over the initialization 

years as well as across the catchments. It may be due to the difference in understanding of 

models on local climate features or the precipitation data of finer temporal and spatial 

resolutions or the combination of both.  

Indeed, the model performances are dependent on the model assumptions or basic principle on 

understanding the earth climate system, its processes, and interactions among atmosphere, 
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oceans, land, and ice-covered regions of the planet. Besides them, decadal prediction skill also 

depends on the method of model initialization, and quality and coverage of the ocean 

observations (Taylor et al., 2012). Different initializations also may cause models’ internal 

variability that is still open for further discussion. For the decadal prediction, one of the most 

important aspects is the model drift and its correction (Mehrotra et al., 2014). However, to 

evaluate the performances of models’ derived raw data, neither the drifts were investigated nor 

any drift correction methods are employed. The reason is, the drift correction method itself 

may introduce additional errors that may not reflect the real performance of the models 

(Hossain et al., 2021c, 2021b). Based on the understanding of physical, chemical, and 

biological mechanisms of earth systems, different modelling groups have come up with 

different models with reproducing capabilities of climate variables that may vary over different 

regions (Choi et al., 2016; Homsi et al., 2020; Purwaningsih and Hidayat, 2016) and climate 

variables (Kamworapan and Surussavadee, 2019; Kumar et al., 2014, 2013). For instance, 

Kumar et al. (2013) analyzed the precipitation and temperature trends of the twentieth century 

from nineteen CMIP5 models and reported that the models’ relative performances are better 

for temperature as opposed to precipitation trends. Generally, models show lower skill to 

simulate precipitation than they do for temperature. This is because that the temperature is 

obtained from a thermodynamic balance, while precipitation results are from simplified 

parameterizations approximating actual processes (Flato et al. 2013; see also references 

therein). In addition, temporal and spatial scale (considered area) of the considered variables 

including seasons of the year (Sheffield et al., 2013; Ta et al., 2018) may also be the reason to 

vary the model performances. For instance, few models can reproduce winter precipitation very 

well but the other may not and vice versa. Likewise, Lovino et al. (2018) evaluated 

performances of CMIP5 model for the decadal simulation and reported the best models for the 

different climate variables (precipitation and temperatures). They also suggested that the 

MMEM could reproduce large-scale features very well but fail to replicate the smaller scale 

spatial variability of the observed annual precipitation pattern. These show clear evidence that 

there is a spatial variation in the climate model performances across the globe as they are 

developed by different organizations (Chen et al., 2017). This study noticed the highest skill in 

the initialization year of 1990 and the lowest skill in the initialization year 1980, but the reason 

behind the highest and lowest skill remains unknown. However, Meehl et al. (2015) reported 

that the consequences of Fuego (in 1974) and Pinatubo (1991) eruption degraded the decadal 
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hindcasts skill of Pacific sea surface temperature in the mid-1970s to mid-1990s respectively. 

As Fuego was smaller than Mount Pinatubo and a lower degrade of skill in the mid-1970s and 

higher degrade of skill in the mid-1990s were evident but no degrade on the hindcast skill was 

evident due to Agung (erupted in 1963) and El Chichón (1982) (Meehl et al., 2015). In this 

study, models’ higher and lower skills of initialization 1990s and 1980s, seem neither relevant 

to volcanic eruption nor the post-eruption sequences. Nevertheless, the observed precipitation 

or coverage of the ocean observed state to initialize the models have been affected. 

The CC and ACC values of all the selected models in all initialization years remained under 

the threshold>= 0.6, which was marked as the threshold of significant level in previous studies 

(Choi et al., 2016; Lovino et al., 2018) though those studies were for coarser spatial resolutions 

and one of them for different climate variables. Lovino et al. (2018) compared CMIP5 model 

performances over two variables at the local level and reported higher skill scores for the 

temperature than precipitation of the same models where the skill scores for precipitation were 

remarkably lower than the scores for temperature. Similar results were also reported by Jain et 

al. (2019). In this sense, it seems precipitation data with higher spatial resolution may be the 

reason for not capturing the significant level of skills on linear association (CC) and phase 

differences or anomalies (ACC). However, few models show that the level of significance 

(threshold>=0.6 if we say) for the performance metric IA, which is a measure of the predicting 

accuracy that seems promising predictive skill of the models. But the studies that mentioned 

0.6 as the level of significance for CC and ACC, used either coarser resolution data (Lovino et 

al., 2018) or different climate variables (Choi et al., 2016). For the local or regional level as 

well as models’ raw precipitation data of higher spatial and temporal resolution, 0.50 seems a 

significant score, which is also the same for the similar performance metrics for the case of 

total precipitation. 

This study also investigated the model performances to reproduce the summer and winter 

precipitation. Upon comparing the model skills to reproduce the extreme wet (>=85 percentile 

of the observed values) and dry events (<15 percentile of the observed values) across the 

catchment and also at the selected grid, this study reveals that except CMCC-CM, all models 

show almost similar skills to reproduce the summer precipitation but exhibits some variations 

to produce the winter precipitation. Similar skills are also noted for other intermediate 

thresholds. It is due to the maximum and minimum precipitation occurring in Brisbane during 
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summer and winter respectively. This means that models’ responses to reproduce summer 

precipitation are better than the winter with the tendency to overestimate higher precipitation 

events. However, the Category-I model comparatively performed better to capture the dry 

events (Fig. 7-4) than the wet events, but this may vary for different regions around the globe. 

For instance, MRI-CGCM3 showed very good skills and has been marked as the first category 

model in this study but to reproduce the Sahelian precipitation, MRI-CGCM3 showed 

insignificant or no skills whilst MPI-ESM-LR and MIROC5 are categorized as the second and 

third category model but were marked as improved skilled models for Sahelian precipitation 

(Gaetani and Mohino, 2013). 

Previous studies (Jain et al., 2019; Lovino et al., 2018) reported that MMEM improves the 

models’ skills to reproduce climate variables but the selection of models to form MMEM is 

very challenging as the arithmetic means of the models’ output may further lead to loss of 

signal (Knutti et al., 2010). This study also examined the performance of MMEM and revealed 

that MMEM improves the performance metrics to some extent but not always and the 

performances are highly dependent on models’ combination to form MMEM. For instance, 

MMEM2 shows better performance metrics than the other two combinations in reproducing 

the extremely dry and wet events where MMEM3 showed worse performance (Fig. 7-9). On 

contrary for the highest thresholds of individual metrics where few individual models were 

found better than MMEM3. Similar results were also reported in some other studies (Kumar et 

al., 2013; McKellar et al., 2013) where individual models were found better to some extent 

than the MMEM. However, lower skills of CMIP5 models for decadal precipitation as 

compared to temperature is also true for the MMEM which was also reported by Mehrotra et 

al. (2014).  

In addition to understanding the climate system, models’ configuration structuring spatial and 

temporal resolutions of the simulating variables also play a vital role in determining the model 

performance (Sakamoto et al., 2012). In this study except for CMCC-CM, models with finer 

atmospheric resolutions performed better than the coarser resolutions’ models (see Table 7-1, 

Category-I model). It means, models of finer atmospheric resolutions can reproduce local 

climate features better than the models of coarser spatial resolutions and similar results were 

also reported in previous studies (Jain et al., 2019; Lovino et al., 2018). However, the lower 

skill of CMCC-CM may be due to the difference in understanding or geographical locations. 
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However, for different climate variables like temperature, the performance of CMCC-CM may 

be different (Lovino et al., 2018). This study will help the water manager, infrastructure 

developers, agricultural stakeholders to sort out the models before taking any decision in 

planning and developing infrastructures based on the models’ predicted future precipitation. 

Findings of this study will also help the researchers for hydrological modelling, and other 

relevant stakeholders to increase the resilience of the society to climate change in relation to 

future water availability and uncertainty. 

7.6 Conclusion 

In order to use CMIP5 decadal precipitation at the catchment level, performances of eight 

selected GCMs were assessed in this study using different performance matrices (skill tests). 

Model performances to reproduce the hindcast data are necessary to check their credibility for 

the projection of future water availabilities. However, assessments of the decadal predictions 

have run long away in the last decade but no attention was paid to precipitation at the catchment 

level. For the CMIP5 decadal hindcast monthly precipitation, this is the first attempt that 

assessed the model performances at a catchment level with finer spatial resolution. Models are 

categorized based on the performance of individual models for temporal skills, dry and wet 

periods, and total precipitation (over time and space) at a selected grid and over the entire 

catchment. In addition, this study assessed the performance of different MMEMs formed from 

the combinations of different model categories. Considering a wide range of skill tests from 

both the temporal and spatial perspectives, the following conclusions are drawn. 

• Models with higher atmospheric resolutions show comparatively better performances 

as opposed to the models of coarse spatial resolutions. 

• Model performances vary over the initialization years and across the catchment. From 

1990 onward, the skills of all models improved across the catchment where MIROC4h 

shows the highest skills followed by EC-EARTH and MRI-CGCM3 respectively. The 

internal structure of high atmospheric resolutions may be the main reason for 

MIROC4h reproducing the local climate variables comparatively better than the other. 

• To reproduce the dry events and total precipitation over the entire catchment, EC-

EARTH and MRI-CGCM3 respectively outperformed all models whilst CMCC-CM 

shows the lowest scores in all forms of skills. For capturing the wet periods, all models 



174 

 

showed almost similar skills with little exceptions for CMCC-CM and CanCM4 but for 

the dry periods, models show a range of skill scores. 

• Based on the performance skills, the GCM models were ranked into three categories in 

ascending order: Category-I (MIROC4h, EC-EARTH, and MRI-CGCM3), Category-

II (MPI-ESM-LR and MPI-ESM-MR), and category-III (MIROC5, CanCM4, and 

CMCC-CM). MMEMs were formulated as MMEM1 of Category-I models, MMEM2 

combining Catergory-I and Category-II models, and MMEM3 as the combination of all 

three categories. Out of these three different MMEMs, MMEM2 was found performing 

better than other MMEMs based on the overall skills but MMEM1 performed relatively 

better for the case of extreme wet events. This shows the necessity of forming suitable 

MMEM for practical purposes of GCM data use especially for the decadal precipitation. 

The outcomes presented in this study are based on one catchment in Australia only, but the 

process could be carried out in any catchment that has the availability of observed gridded data. 
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List of symbols 

C  :  Mean (over the total time span) of the observed values 

F  :   Model forecasted (corrected) values 

O  :   Observed values 

𝐹 − 𝐶  :   Anomaly of the model values 

𝐹 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :   Mean of the model anomalies 
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𝑂 − 𝐶  :   Observed anomaly 

𝑂 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the observed anomalies 

Pr.  :   Precipitation 

𝑃𝑓  :  Calculated fraction in FSS 
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CHAPTER 8 

MONTHLY PRECIPITATION PREDICTION AT CATCHMENT 

LEVEL BY FACEBOOK PROPHET MODEL USING OBSERVED AND 

CMIP5 DECADAL DATA 

Abstract 

Early prediction of precipitation is important for the planning of agriculture, water 

infrastructure, and other socio-economic developments. Near-term prediction (e.g., 10 years) 

of hydrologic data is a recent development in GCM (General Circulation Model) simulations 

such as CMIP5 (Coupled Modelled Intercomparison Project phase-5) decadal experiments. 

The prediction of monthly precipitation on a decadal time scale is an important step for 

catchment management. Previous studies considered stochastic models using the observed 

time-series data only for precipitation prediction but no studies used the GCM decadal data 

together with the observed data at the catchment level. This study used the Facebook prophet 

(FBP) model and six machine-learning (ML) regression algorithms for the prediction of 

monthly precipitation on the decadal time scale for the Brisbane river catchment in Queensland 

Australia. Monthly hindcast decadal precipitation data of eight GCMs (EC-EARTH, 

MIROC4h, MRI-CGCM3, MPI-ESM-LR, MPI-ESM-MR, MIROC5, CanCM4, and CMCC-

CM) were downloaded from the CMIP5 data portal, and the observed data were collected from 

the Australian Bureau of Meteorology. At first, the FBP has been used for the predictions based 

on; (i) the observed data only, and (ii) a combination of observed and CMIP5 decadal data. In 

the next step, predictions are performed through ML regressions where CMIP5 decadal data 

are used as features and corresponding observed data are used as target variables. The 

prediction skills are assessed through several skill tests including Pearson Correlation 

Coefficient (PCC), Anomaly Correlation Coefficient (ACC), Index of Agreement (IA), and 

Mean Absolute Error (MAE). Upon comparing the skills, this study finds that predictions based 

on the combination of observed and CMIP5 decadal data through FBP provides better skills 

 
This chapter has been published as: Hossain, M.M., Anwar, A.H.M.F., Garg, N., Prakash, M., Bari, M., 2022. 
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than the predictions based on the observed data only. The performance of FBP showing higher 

skills, especially for the dry periods is mainly due to its multiplicative seasonality function. 

Keywords: Facebook Prophet, precipitation, prediction, monthly, knowledge-driven, data-

driven. 

8.1  Introduction 

Rainfall is a very important climate variable and precious natural resource, which affects our 

livelihood and agriculture in many dimensions. An early and accurate prediction of 

precipitation enables more efficient management of floods, agriculture, water resources, power 

development, and planning and development of infrastructure (Apurv et al., 2015; Hansen et 

al., 2011; Jones et al., 2000; Mehta et al., 2013). However, the prediction of this most important 

hydrological aspect has become a very challenging task in terms of accuracy due to its peculiar 

variations over time and space. Due to ongoing climate change, the temporal and spatial 

variations of precipitation have been intensified in the past few decades. Over the past few 

years, precipitation prediction has become a greater concern to the climate research community 

(Ali et al., 2019; George et al., 2016; Hossain et al., 2020; Hung et al., 2009; Mekanik et al., 

2011; Mislan et al., 2015; Ouyang et al., 2016). The precipitation prediction approaches are 

broadly classified into two main categories; (i) a knowledge-driven approach, and (ii) a data-

driven approach. Knowledge-driven approaches use scientific understanding, thermodynamic 

balance, and physical mechanisms of hydrological processes such as General Circulation 

Models (GCMs). GCMs predict climate variables of coarse spatial resolutions on a global scale. 

However, the knowledge-driven approach needs extensive data and computational facility that 

sometimes becomes unavailable (Hong, 2008). The data-driven approach is the stochastic 

and/or empirical statistical modelling approach that is widely used in precipitation prediction 

at the local level based on the observational relationship of the predictand variable. The data-

driven approaches have some limitations and all approaches could not perform well in 

predicting for longer time spans as they cannot capture the non-linearity and dynamic 

behaviour of precipitation over time (Rajeevan, 2001; Zhang, 2003). Several 

statistical/stochastic methods have been used for precipitation prediction and most of them are 

based on regression analysis such as simple regression analysis (SRA), exponential smoothing, 

decomposition, and auto-regressive integrated moving average (ARIMA). Every individual 
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method has its strengths and weaknesses. For instance, ARIMA is a popular stochastic model 

for time series prediction with greater flexibility. But, as a stochastic model, it needs 

stationarity of data (Machiwal and Jha, 2012) and its presumed linear form of the associated 

data sometimes makes it inappropriate for complex nonlinear time series data like precipitation 

(Zhang, 2003). This is why, a better output from ARIMA heavily depends on the expertise of 

the modeller (Machiwal and Jha, 2012). Dastorani et al., (2016) compared different forms of 

the ARIMA model and concluded that the model parameters need to be tuned to get a certain 

level of accuracy based on location and data type.  

Applications of machine learning algorithms, of which artificial neural networks (ANN) of the 

different forms of architecture, have been popular for many time series predictions including 

time series of precipitation and enhanced the prediction accuracy (Hung et al., 2009; Lee et al., 

2018; Lin et al., 2022; Meinke et al.,  2007; Mekanik et al., 2011; Mislan et al., 2015; Shen et 

al., 2022). According to the level of complexity of the dataset, ANN can be combined with 

different types of algorithms due to its highly flexible characteristics. However, based on the 

need and opportunities, different researchers have come up with different research interests and 

time scales with the application of ANN. For instance, Wu et al., (2001) predicted monsoon 

precipitation in China over 10 years ahead whereas Chakraverty and Gupta, (2008) predicted 

Indian Monsoon precipitation 6 years in advance. To predict the summer monsoon of India for 

1 year in advance, Chattopadhyay and Chattopadhyay (2008) used 129 years of historical data. 

Though the ANN is good to capture the nonlinear relationship of data, the presence of outliers 

in the time-series data can critically affect the reliability of ANN as it is a grey box model. 

Thus ANN requires proper data pre-processing before its application, especially for the climatic 

data (Committee, 2000; Ramírez et al., 2006). Some other hybrid models also came into 

existence and showed very good skills in precipitation predictions (Khandelwal et al., 2015; 

Unnikrishnan and Jothiprakash, 2020; Zhang, 2003). However, all of the above-mentioned 

data-driven approaches used the historically observed data, and based on the historical 

relationship they performed the predictions for several years ahead assuming the climatic 

conditions remain the same in the historical and prediction period.   

Compared to the other climatic variables, precipitation has been affected mostly due to ongoing 

climate change. Over the past few decades, temporal change and shifting of precipitation 

patterns, extreme precipitation during wet periods, extreme longer dry spells during dry 



183 

 

periods, an overall reduction of total precipitation amount have been very common phenomena 

around the globe. In the last decades, these changes have been intensified due to the ongoing 

climate change (IPCC, 2014). Climate change does exist that will continue to change, but the 

rate of change may be higher in the future. The future higher rate of climate change may 

adversely affect the future precipitation and its level of impact may be significant (IPCC, 2014). 

Therefore, researchers should not rely only on data-driven approaches (based on the historical 

data only) for future precipitation prediction. For this reason, this study aimed to predict future 

precipitation for decadal time scales in a combination of both the knowledge and data-driven 

approach where both the GCMs derived precipitation and historically observed data are 

employed. To do this, this study used Facebook Prophet (description provided later) model 

where historically observed precipitation was used as an input variable and GCMs derived 

precipitation data from the decadal experiment of Coupled Model Intercomparison Project 

Phase-5 (CMIP5) (description provided in the data collection section) data were used as an 

additional regressor to guide Prophet in the prediction process. Though the application of 

Prophet in time series prediction is not new (Samal et al., 2019; Subashini et al., 2019; 

Toharudin et al., 2020) but it is rarely found in the literature for predicting precipitation. 

8.2 Study area, data, and methods 

8.2.1 Study area 

The Brisbane River catchment in Queensland was selected as the study area that lies in the 

eastern states of Australia in between the latitudes 26.50S ~28.150S and the longitudes 151.70E 

~153.150E (Fig. 8-1). It has an area of 13549 square kilometers and a sub-tropical climate 

where maximum precipitation occurs during summer (December-January-February) and 

minimum precipitation in winter (June-July-August) (Climate-Data, 2020). Monthly observed 

precipitation (1911-2015) over the Brisbane River catchment varied from nil to 1360 mm with 

an annual average precipitation of 628 mm (BoM, 2020) and the number of upper and lower 

extremes are not quite small.  

https://facebook.github.io/prophet/docs/quick_start.html
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Fig.  8-1 Study Area 

8.2.2 Data collection 

The observed monthly gridded precipitation of 0.05° × 0.05° (5km × 5km) spatial resolution 

for entire Australia were collected from the Australian Bureau of Meteorology (BoM). The 

BoM has produced the gridded data using the Australian Water Resources Assessment 

Landscape model (AWRA-L V5) (Frost et al., 2016). Monthly hindcasts precipitation 

(precipitation) data of decadal time scale from eight (EC-EARTH, MIROC4h, MRI-CGCM3, 

MPI-ESM-LR, MPI-ESM-MR, MIROC5, CanCM4, and CMCC-CM) GCMs were 

downloaded from CMIP5 data portal (https://esgf-node.llnl.gov/projects/cmip5/) for the period 

1960-2005; initialized at 1960, 1965, 1970, 1975… thus every five years up to 2005. The name 

of models, spatial resolutions, and the available historical run are given in Table 8-1. 
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Table 8-1 List of models (GCMs) used as additional regressors in this study 

Model 
Resolutions  

(lon × lat)) 

Initialization Year (1960-2005) 

60 65 70 75 80 85 90 95 00 05 

Number of ensembles 

EC-EARTH  (1.125 X  1.1215) 14 14 14 14 14 14 14 14 10 18 

MRI-CGCM3  (1.125 X  1.1215) 06 08 09 09 06 09 09 09 09 06 

MPI-ESM-LR  (1.875 X  1.865) 10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR  (1.875 X  1.865) 03 03 03 03 03 03 03 03 03 03 

MIROC4h  (0.5625 X  0.5616) 03 03 03 06 06 06 06 06 06 06 

MIROC5  (1.4062 X  1.4007) 06 06 06 06 04 06 06 06 06 06 

CanCM4  (2.8125 X  2.7905) 20  20 20 20 20 20 20 20 20 20 

CMCC-CM 0.75 X 0.748 03 03 03 03 03 03 03 03 03 03 

8.2.3 Data processing 

In the first step, all the available ensembles of individual initializations were averaged to 

produce a single dataset and then were subsets for the Australian region. Secondly, the 

averaged ensembles were spatially interpolated, using the second-order conservative (SOC) 

method, onto 0.05°×0.05° spatial resolution thus matching with the grid used in the observed 

data. This study used SOC as it conserves the precipitation flux while sub-gridding the GCMs 

data (Jones, 1999) and marked it as the most suitable spatial interpolation method, especially 

for the GCMs derived gridded dataset (Hossain et al., 2021a). Then both the models’ and 

observed datasets were subsets for the Brisbane River catchment. Every initialization spans a 

dataset of 10 years that overlaps five years with the dataset of the next initializations. In the 

third step, the last five years of each initialization, except 2005, were discarded and the first 

five years were combined to produce a single time series from 1961 to 2015. For the 

initialization year 2005 (2006-2015), the whole dataset was taken instead of the first five years 

to make the dataset longer. 
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8.2.4 Model description 

This study used FBP Model to predict monthly precipitation for a decade (2006/Jan-2015/Dec) 

and then the performance of FBP’s predicted values was compared with the predictions from 

six different machine learning regression models; Multi-Layer Perceptron (MLP), Epsilon-

Support Vector Regression (SVR), Light Gradient Boosting (LGB), Extreme Gradient 

Boosting (XGB), Random Forest (RDF) and the combination of these five models. The 

descriptions of all models are given below. 

 Facebook Prophet (FBP) 

 FBP is a fully automatic open-sourced time-series forecasting library developed by Facebook's 

Core Data Science team. Though Prophet was built for business purposes, it works for observed 

hourly, daily, weekly, and monthly time series data that has strong seasonality. It predicts time 

series as a generalized additive model combining the trend function, seasonality function, 

holiday effects, and an error term as given in equation 8.1. 

𝑌(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + ∈𝑡    (8.1) 

Where 𝑔(𝑡) and 𝑠(𝑡) represent the trend and seasonality respectively whilst ℎ(𝑡) presents the 

holiday effect and ∈𝑡 is the error term. As this study uses the monthly precipitation data as an 

input variable, therefore, holiday effect will be invalid here. FBP provides a decomposition 

regression model that is extendable and easy to use for time series forecasting with a wide 

range of tunable parameters. FBP has many default parameters’ values that maintain its fully 

automatic nature. However, a little change of its parameters values does not make a big 

difference in the prediction process. It has functionality for cross-validation to measure the 

forecasting errors and provision to include additional regressor and customize the seasonality. 

The additional regressor feature enhances forecasting accuracy, makes the prediction process 

more transparent, and helps to tune the prediction process. The additional regressor must be a 

separately forecasted variable that should be available for both the training and prediction 

periods.    

Prophet can handle outliers, without any requirement for imputation, and missing data but the 

best way to handle the outliers is to remove them. Taylor and Letham (2018) described further 

information about Prophet on simulating historical forecasting. Compared to the other data-
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driven approaches, Prophet has two main advantages; (i) Prophet automatically detects changes 

in trends by selecting change points from the historical data and it is much more straightforward 

to create a reasonable, accurate forecast, (ii) Its predictions are customizable in ways that are 

intuitive to non-expert users and does not need rigorous data pre-processing. It is easy to use 

and the components are easily explainable. Its predictions are decent, however, in some cases, 

certain parameters need to be tweaked compared to the default setting and that can be easily 

done. 

 Multi-Layer Perceptron (MLP) Regressor  

MLP is a class of feedforward artificial neural networks (ANN) that utilizes a supervised 

learning algorithm. It learns by training the dataset using backpropagation with no activation 

function in the output layer.  

 Epsilon-Support Vector Regression (SVR)  

SVR is also a supervised learning algorithm that acknowledges the presence of non-linearity 

of the data and provides a proficient prediction using the similar principle of Support Vector 

Machines (SVMs). The basic idea of SVR is to find the best-fit line that has the maximum 

number of points. To fit the best line within a threshold, SVR tries to minimize the errors 

between the real and predicted values.  

 Gradient Boosting  

Boosting is a strategy that combines several simple models into a composite single model. 

Gradient boosting is a type of boosting and a very popular supervised machine learning 

technique for regression problems. Light Gradient Boosting (LGB) uses histogram-based 

learning algorithms following a leaf-wise splitting approach whilst (Extreme Gradient 

Boosting) XGB uses a level-wise tree growth approach. XGB is a more regularized form of 

gradient boosting that delivers a more accurate prediction by using the strengths of the second-

order derivative of the loss function.  

 Random Forest Regressor (RDF)  

RDF is a supervised learning algorithm that uses the ensemble-learning method for regression 

problems. RDF builds multiple decision trees during the training period and merges them to 
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get a more stable and accurate prediction. To control the overfitting problem, a bootstrap 

technique was used in RDF. 

In addition to the five regression models, another combined regression model was developed 

by stacking the above-mentioned five regression models (referred to as STC) and was used to 

predict the precipitation for the same period, 2006-2015. 

For the predictions, at first, all models were trained from 1911/1961 to 2005 and then predicted 

for 2006-2015. This study considered two different cases: (i) only the observed data to 

demonstrate the data-driven approach (Case-I), (ii) observed data along with GCMs derived 

precipitation data as the additional regressor (Case-II) to demonstrate the combination of data 

and knowledge-driven approach. For ease of comparison, each of these two cases is further 

divided into two different sub-cases; Case-I (a, b) and Case-II (a, b). For Case-I, the FBP model 

was trained from 1911 [referred to as Case-I (a)] and 1961 [referred as Case-I (b)]. For Case-

II, two different modes of additional regressor are added to FBP. The first additional regressor 

is the arithmetic mean of the best five GCMs; MIRCO4h, EC-EARTH, MRI-CGCM3, MPI-

ESM-LR, and MPI-ESM-MR [henceforth referred as MMEM] among the eight considered 

GCMs in Table 8-1. The arithmetic mean of these five models showed comparatively better 

performance in separate research in chapter 7 (of the same authors). FBP with MMEM as an 

additional regressor is referred to as case-II (a) whilst FBP with all the eight GCMs (in Table 

8-1) as eight individual regressor (together) is referred to as case-II (b). As the CMIP5 decadal 

data are available since 1961, Case-II and all regression models were trained from 1961 to 

2005. For training the regression models, GCMs derived precipitation (MMEM) was used as 

the independent variable (feature) and corresponding observed data was used as the dependent 

variable (target variable). After training the regression model from 1961 to 2005, GCMs 

derived data from 2006 to 2015 was provided to the trained regression models to predict the 

dependent variable (the observed data). 

However, to train the model, the most important task is to optimize the model parameters. To 

optimize the models’ parameters, a wide range of parameter values were given and the best 

parameters combinations were chosen based on the minimum mean absolute errors (FBP) using 

the Scikit-Learn Parameter Grid function. For FBP, optimization of the parameters' values was 

performed at a single grid point (latitude 27.50S and longitude 153.050E, henceforth referred 

to as Point-I). The same parameter values were then applied to the two other points as FBP is 
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automatic and a little change in parameter values does not make a big difference. In addition, 

this study assumed there will not be a big change in the optimized parameters’ values at the 

selected points as the study area was small. However, it can be considered as a limitation of 

this study. A multiplicative seasonality function with cap and floor values 600 mm and 0 mm 

respectively are used for PFB prediction. For the regression models, parameters were optimized 

for all three points and MMEM for the training and used prediction purposes. In the training 

process, the regression models eventually developed transfer functions (GCMs to observed 

values) using the best combination of the used parameters (see Table S1) based on the 

minimum mean squared errors after going through 10-times cross-validation. These transfer 

functions, obtained from the training period, were then used to transfer the GCMs data (2006-

2015) to the target variable (referred to as predated data).  

As Prophet performs better without outliers, the monthly precipitation values above 250 mm 

in the observed dataset were set to 250 and zero values were replaced by 1.0 mm. Note that 

Prophet shows predicted values from its training periods to predicted period. In addition to the 

predicted values, it also provides upper and lower limits of the predicted values along with 

other statistical parameters. Preliminary results revealed that FBP could not reproduce the 

upper (in summer) and lower extreme precipitation (in winter). For this reason, few correction 

factors are employed. For instance, a factor of 0.85 for the months of July and August, 1.15 for 

December, and an average of the upper limit, and the raw predicted values were employed for 

January and February. These correction factors were obtained based trial and error basis from 

the comparisons between the observed and the raw predictions at several randomly selected 

locations within the Brisbane River catchment.. The final predicted values were then examined 

using four different skills such as Pearson Correlation Coefficient (PCC), Anomaly Correlation 

Coefficient (ACC), Index of Agreement (IA), and Mean Absolute Error (MAE). A brief 

description of the skill tests is given below and the detailed descriptions can be found in 

(Hossain et al., 2021b). 



190 

 

8.2.5 Skill tests 

 Pearson correlation coefficient (PCC):  

PCC is a very commonly used performance metric that measures the linear correlation between 

two datasets. Here, it is used to measure the linear correlation between the predicted and 

observed values. Its value varies between -1 and 1 (perfect correlation).  

𝑃𝐶𝐶 =  
∑ (𝑃𝑡−𝑃̅)𝑁

𝑡=1 (𝑂𝑡−𝑂̅)

√∑ (𝑃𝑡−𝑃̅)2𝑁
𝑡=1 √∑ (𝑂𝑡−𝑂̅)2𝑁

𝑡=1

 (8.2) 

Where 𝑃 and 𝑂 present the predicted and observed values respectively and this notation will 

be the same for the following skill tests also. A bar over the predicted (𝑃̅) and observed (𝑂̅) 

represent the mean of the predicted and observed values respectively. N is the maximum lead-

time (e,g., the maximum number of months-120).  

 Anomaly Correlation Coefficient (ACC):  

ACC was suggested by Wilks, (2011) for measuring the  correlation between the anomalies 

between two datasets. Here, ACC is used to measure the temporal anomaly correlation between 

the anomalies of predicted and observed values. Anomalies are calculated by subtracting the 

mean (𝐶, mean of the observed values over the entire prediction period) from both the predicted 

and corresponding observed values.  

𝐴𝐶𝐶 =  
∑{(𝑃−𝐶)−(𝑃−𝐶̅̅ ̅̅ ̅̅ )}×{(𝑂−𝐶)−(𝑂−𝐶̅̅ ̅̅ ̅̅ )}

√∑(𝑃−𝐶)2√∑(𝑂−𝐶)2
  (8.3) 

ACC values range from zero to 1.0 and higher values of ACC do not represent the higher 

accuracy of the prediction values but the anomalies. 

 Index of Agreement (IA): 

Wilmot (1982) suggested IA for measuring the accuracy of predicted data based on the 

corresponding observed values. IA values bounded between 0 and 1, where, the value closer to 

1 presents the more efficient prediction. 

𝐼𝐴 = 1 −
∑ (𝑃𝑡−𝑂𝑡)2𝑁

𝑡=1

∑ (|𝑃𝑡−𝑂′|+|𝑂𝑡−𝑂′|)2𝑁
𝑡=1

 (8.4) 
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Here 𝑂′ presents the mean of every individual year of the predicted period. 

 Mean Absolute Error (MAE):  

MAE measures the average magnitude of errors, the differences between the predicted and 

observed values. MAE values range from 0 to ∞, where the lower value indicates higher 

accuracy and vice versa. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑃𝑡 − 𝑂𝑡|𝑁

𝑡=1   (8.5) 

8.3  Results and discussion 

There are 496 grids, of 5.0 x 5.0 km spatial resolution, available in the Brisbane River 

catchment. This study predicted monthly precipitation for a decade at three different locations 

(see 

Table 8-2), which are closest to the automated weather stations operated by the Australian 

Bureau of Meteorology. Precipitation predictions for a few months, seasons, or to some extent 

for a few years are commonly seen in the literature. This study predicted precipitation for a 

decade because of using the additional regressor for a decadal time scale that was derived 

through the GCMs contributed to the decadal experiment of CMIP5. In the first section, FBP’s 

predictions of different cases are compared and assessed through different skill tests. In the 

second part, the performances of FBP for the monthly precipitation predictions are compared 

with the performance of six different regression models. 

8.3.1 Prediction using FBP 

Fig. 8-2 presents the comparison between observed and FBP predicted monthly precipitation 

values of different cases at Point-I where Case-I presents the data-driven, MMEM presents the 

knowledge-driven and Case-II presents the combination of knowledge and data-driven 

approach. From the comparison, it is evident that FBP can reproduce the seasonal variability 

with better performance in producing dry events but none of the cases of FBP could reproduce 

the extreme peak values of the observed precipitation. However, Case-II(a) shows 

comparatively better performance to catch the upper peaks followed by Case-I(a). For the dry 

events, Case-II shows a considerably better resemblance with the observed values compared to 

Case-I. It means prediction skills improve, especially in dry events, when the combination of 
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knowledge and data-driven approach is employed. These improvements are also observed in 

the skill tests of all considered cases.  

Table 8-2 presents the different skill test results and the percentage of over and under prediction 

of total precipitation, cumulative sum over the different periods, of different cases of FBP along 

with MMEM at three selected points.  

 

Fig. 8-2 Comparison of FBP predicted monthly precipitation of different cases with the 

corresponding observed values 

Comparing the predicted values and their skill tests at all three points, it is evident that Case-

I(a) shows comparatively better skills and comparatively a lower percentage of under/over 

prediction of total precipitation than Case-I(b). This is due to the higher training period (1911- 

2015) of Case-I(a) which is about double the training period of all other cases. This means, 

with the higher training period, FBP can come up with better prediction performance. Among 

the cases of similar training periods, Case-II(a) shows comparatively better skill scores at 

Point-I, where FBP model parameter values were optimized. However, at points II and III, 

Case-II(b) showed the highest skills than Case-II(a). Better performance of case-II(b) may be 

due to involving of a range of climate responses provided by the different GCMs as individual 

regressors or their higher skills than of MMEM. The better skills of case-II(a) at Point-I may 

be either due to better skills of MMEM (Table 8-2) that guided FBP as additional regressor or 

tuning the FBP parameters (whereas at other two points FBP models’ parameters values were 

not tuned). 
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Table 8-2 Comparison of skills and total precipitation prediction among the different cases of 

FBP models 

Location 

(Lon/Lat) 

 
Cases 

 
Skills 

 Under and overestimation of 

total Precipitation (%) 

  MAE PCC ACC IA  1Y 3Y 5Y 8Y 

Point-I 

(153.05E/ 

27.50S) 

 I-(a)  53.6 0.549 0.536 0.615  35.9 14.6 -7.2 -11.2 

 I-(b)  55.9 0.526 0.418 0.491  11.9 -5.94 -24.6 -28.7 

 II-(a)  54.9 0.533 0.517 0.622  33.5 15.1 -8.34 -12.8 

 II-(b)  55.1 0.528 0.488 0.577  24.8 5.25 -16.0 -19.3 

 MMEM  58.11 0.434 0.433 0.510  48.6 35.6 5.64 -3.1 

Point-II 

(152.0E/ 

27.0S) 

 I-(a)  40.8 0.497 0.496 0.603  50.2 26.5 2.12 -10.4 

 I-(b)  41.0 0.484 0.484 0.581  50.7 27.1 2.46 -6.4 

 II-(a)  40.8 0.489 0.486 0.593  47.3 26.3 0.53 -8.4 

 II-(b)  39.8 0.519 0.517 0.611  38.5 22.7 -1.42 -8.2 

 MMEM  41.4 0.494 0.493 0.612  58.2 39.3 13.8 -5.6 

Point-III 

(152.05E /  

27.30S) 

 I-(a)  46.1 0..491 0.490 0.588  54.4 24.1 3.4 -6.7 

 I-(b)  48.1 0.471 0.470 0.583  65.5 32.1 10.6 -0.15 

 II-(a)  46.9 0.464 0.460 0.567  51.7 23.1 1.1 -9.9 

 II-(b)  45.2 0.490 0.485 0.580  44.6 18.7 -1.6 -10.2 

 MMEM  44.7 0.489 0.474 0.571  48.7 23.9 -0.8 -14.2 

It is difficult to attach here any valid reason behind why case-II(b) is performing better in the 

other two points but not at Point-I as no comparison are conducted on the performance of 

MMEM and all selected GCMs between the points. Anyway, case-II (either a or b) is the 

combination of knowledge and data-driven approach that provided better prediction skills than 

only the data-driven approaches. From the predicted values and their skill comparisons at all 

three selected points, this study reveals that the skill improvement of FBP predictions with the 

combination of the knowledge and data-driven approach was due to better capturing the dry 

events that were even better than the MMEM (Fig. 8-3). For reproducing the peak values (upper 

extremes), the knowledge-driven approach (MMEM) has been found better than FBP 

predictions. From Fig. 8-3, it can be observed that for the dry events (lower values), FBP 

predictions show a comparatively better resemblance with the observed values and worse for 

the upper peaks (wet events).  
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Fig. 8-3 Comparison of the resemblance of dry and wet events produced by FBP and MMEM 

For capturing the dry events, the combination of knowledge and data-driven approaches was 

found better than any of the individual approaches where case-II(b) little better than II(a) in 

terms of all skills, as well as total precipitation predictions over different time spans. 

8.3.2 Prediction using regression models 

Comparison of monthly precipitation prediction at Point-I by five supervised machine-learning 

regression algorithms and their stacking models (STC) using MMEM as the feature is presented 

in Fig.  8-4. From the comparison it is observed that the regression models are also able to 

reproduce seasonal variations with very little improvement in reproducing the lower extremes 

than the MMEM. This study also used all selected models as independent variables, but the 

results were not as good as MMEM. For this reason, only the skills of regression models using 
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MMEM as a feature are presented here. From the comparisons, it is observed that all regression 

models, except RDF, show similar skills in monthly precipitation prediction. Among them 

MLP and SVR are comparatively better than others (see Table 8-3).  

 

Fig.  8-4 Monthly precipitation predicted from different regression models 

Table 8-3 Skill comparison of different regression models 

Models 
 Point-I  Point-II  Point-III 

 MAE PCC ACC IA  MAE PCC ACC IA  MAE PCC ACC IA 

MLP  57.1 0.430 0.371 0.445  39.3 0.480 0.450 0.515  43.5 0.476 0.427 0.494 

SVR  57.6 0.430 0.361 0.418 39.3 0.481 0.447 0.516  43.5 0.478 0.430 0.487 

LGB  56.6 0.432 0.374 0.442 39.5 0.469 0.432 0.510  43.7 0.466 0.425 0.493 

XGB  57.2 0.427 0.370 0.439 39.7 0.451 0.417 0.503  44.1 0.444 0.410 0.484 

RDF  57.2 0.426 0.369 0.441  39.9 0.427 0.372 0.433  44.0 0.421 0.359 0.412 

STC 57.1 0.434 0.365 0.435 39.1 0.483 0.425 0.475  43.4 0.464 0.405 0.464 

FBP(II-

a) 
54.9 0.533 0.517 0.622 40.9 0.489 0.486 0.593 

 
46.9 0.464 0.460 0.567 

MMEM 58.1 0.434 0.433 0.510 41.4 0.494 0.493 0.612  44.7 0.489 0.474 0.571 
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Fig.  8-5  Comparison of the resemblance of dry and wet events produced by regression 

models 

From the comparison of the predicted monthly precipitation values and the skill tests, this study 

finds the regression models showing little improvement in reproducing the lower extremes than 

the MMEM and the reverse in reproducing the peak values (upper-extremes). 

In reproducing the lower extremes, FBP showed better performance than the regression models 

and it was the same even for the upper extremes. Note that correction factors are employed in 

FBP predictions but no such correction factors are considered for the regression models. 

However, the reason behind the better performance of FBP to catch the dry events is due to 
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employing the correction factor or due to choosing the multiplicative seasonality function or 

combination of both that enabled FBP to reproduce wider seasonal variations compared to the 

regression models (Kourentzes, 2014). The skill test results show little weak prediction where 

IA values varied between 0.5 to 0.62 and MAE values varied 40 to 50. The main reason behind 

these weak skills is very frequent extreme peaks in the observed values (see Fig. 8-2 or 8-4) 

which are used to measure the skills. Another reason may be, comparatively shorter training 

period (1960-2005) where FBP was not familiar with the rainfall values above 250 mm in the 

target variable during the training process as they were set to 250 mm to remove the outliers 

from the observed datasets. Upon comparing Fig. 8-2, 8-3, 8-4, and 8-5, it can be seen that FBP 

and the regression models show a comparatively better resemblance of the lower extreme 

values (dry events) than the MMEM. Note that GCMs are imperfect replicas of real-world 

phenomena and contain systematic biases (Randall et al., 2007). They intend to overestimate 

the wet events and underestimate the dry events (Stephens et al., 2010; Sun et al., 2007). GCMs 

output needs rigorous correction before applications (Islam et al., 2014, 2011; Maurer and 

Hidalgo, 2008; Mehrotra and Sharma, 2010). This study reveals that precipitation prediction at 

the local level using any time-series models that will enable to use a combination of both GCMs 

and observed data would enhance the overall prediction accuracy. It may provide better skill 

in reproducing the dry events and a longer training period with a longer period of GCMs 

derived hindcast data will enhance the prediction accuracy that has been seen in the first case 

(Case-I).  

Note that, this study used two different types of datasets (GCMs and observed) of the same 

time span and followed a supervised training approach where known observed values are used 

for both the training and prediction period (for comparison with the predicted values). As no 

real future data was predicted here, one can consider the training period as verification and 

assessed prediction skills as validation. Every individual future prediction model, either ANN 

or any of ML algorithms, is different and shows different performance depending on their 

functions, tuning parameters, and variables considered for predictions. In addition, every 

individual precipitation time series are different at different geographical locations. For the 

prediction purpose, researchers used different models with different input variables, and data 

pre-processing techniques. Then performances are assessed based on the corresponding 

observed values. That is why it is difficult to compare and contrast different types of models 

for different regions and periods with the results obtained in this study. 
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Early prediction of upper and lower extremes can help in managing floods and droughts 

respectively. However, in this study, it is observed that neither the FBP nor the ML regression 

model could reproduce extreme wet events. Rather, they could reproduce the dry events 

considerably better than the wet events. Reproducing the dry events is also important to 

agriculture-dependent countries like Australia, where the most variable climate exists. In 

Australia, a typical major drought in a season may reduce agricultural production by about 10% 

and gross national product by 1% (White, 2000). This study will be beneficial for water 

resources managers for assessing the future water availability, managing agriculture, 

agricultural-dependent business, and other water-related stakeholders for planning and 

development of infrastructure.  

8.4 Conclusions 

Precipitation prediction is highly important from both social and economic perspectives. 

Predictions through GCMs and other time-series models have been seen individually, but the 

application of GCMs derived precipitation together with the observed values in a time-series 

model has not been found yet. On the contrary, as a relatively new time-series forecasting 

library, the application of Facebook Prophet in precipitation prediction can hardly be found in 

the literature. Time-series data, which has strong seasonality, Facebook Prophet works well for 

their future prediction. As the climate variables show seasonality over the cycle of a year, this 

study aimed to predict monthly precipitation, using the combination of both GCMs derived and 

observed data through the Facebook Prophet Model. In doing so, this study used historically 

observed monthly precipitation as input and GCMs derived monthly precipitation of CMIP5 

decadal experiment as the additional regressor. Multiple additional regressors are implemented 

and compared with the performance of a single additional regressor. Few correction factors are 

introduced for the predicted values of different months that enabled FBP to provide better 

prediction accuracy. From the comparison of skills, this study finds that the combination of 

both GCMs derived and observed values gives better prediction accuracy compared to the 

prediction based on the observed data only. It is due to using GCMs derived data as the 

additional regressor that guided the FBP model in future prediction. GCMs derived data 

includes not only the scientific understanding but also the historical records that guided FBP 

to come up with higher prediction accuracy. Based on the outlined skill assessments the 

following conclusions are drawn  



199 

 

(i) FBP can reproduce the dry events considerably better than the wet events that may 

be due to a better understanding of FBP over the dry periods through the training 

and its multiplicative seasonality function.  

(ii) Following the combination of GCMs derived data (as additional regressor) and the 

corresponding observed values FBP would be able to reproduce the future 

precipitation with more prediction accuracy than only the prediction based on the 

observed values. 

(iii)  A higher number of regressor will provide comparatively better prediction 

accuracy than a single additional regressor. In this case, a longer period of GCMs 

hindcast data would enhance the higher prediction accuracy.  

However, this study compared the performance of FBP with six regression models, for the 

same places and same datasets, and finds FBP outperformed. This study highly encourages 

cross-validation of a similar approach by using different forms and architecture of deep 

ANN that may increase the prediction accuracy by utilizing their different tunable features. 

Acknowledgments 

This project was supported by the CIPRS scholarship of Curtin University and Data61 student 

scholarship of CSIRO (Commonwealth Scientific and Industrial Research Organisation) which 

is jointly provided to the first author for his Ph.D. study at Curtin University, Australia. The 

authors would like to thank the working groups of CMIP5 for producing the model data and 

making it available for the researchers. The authors also acknowledge the support of the 

Australian Bureau of Meteorology for providing the observed gridded data and catchment’s 

shapefiles. 

  



200 

 

List of symbols 

C  :  Mean (over the total time span) of the observed values 

P  :   Model predicted values 

O  :   Observed values 

𝑃 − 𝐶  :   Anomaly of the model values 

𝑃 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :   Mean of the model anomalies 

𝑂 − 𝐶  :   Observed anomaly 

𝑂 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the observed anomalies 
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CHAPTER 9 

MONTHLY PRECIPITATION PREDICTION FOR DECADAL 

TIMESCALE USING BIDIRECTIONAL LSTM AND CMIP5 NEAR-

TERM EXPERIMENT DATA 

Abstract 

Early prediction of precipitation enables efficiently managing floods, water resources, 

agriculture and harvesting, and infrastructure development by providing a longer time for the 

proper planning and action. Climate models such as general circulation models (GCMs) predict 

climate variables including precipitation for the global scale based on the scientific 

understanding whereas stochastic or statistical models including different forms of artificial 

neural network (ANN) predict precipitation at the local levels based on the historical observed 

data only. For the precipitation prediction at a local level, the applications of both GCMs 

derived precipitation and corresponding observed values through the ANN models are not in 

practice whilst the use of decadal precipitation data from the Coupled Model Intercomparison 

Project phase-5 (CMIP5) for the same has not been seen yet. This is the first study that aimed 

to predict monthly precipitation for a decadal timescale through the ANN model using both the 

CMIP5 decadal precipitation and corresponding observed values. For this, monthly hindcast 

precipitation from five GCMs (MIROC4h, EC-EARTH, MRI-CGCM3, MPI-ESM-LR, and 

MPI-ESM-MR) of CMIP5 decadal experiment are collected from the CMIP5 data portal, and 

observed monthly gridded precipitation data were collected from the Australian Bureau of 

Meteorology. The arithmetic mean of the selected models (MMEM) was used as a feature and 

the corresponding observed value was used as the target variable of a Bidirectional LSTM, a 

form of ANN models where supervised training approaches were employed. The predicted 

results were compared with the observed as well as MMEM of the CMIP5 through different 

skill tests. Results revealed that the combination GCMs derived and observed precipitation in 

the ANN model following the supervised training approach could give better prediction 

accuracy, especially for the dry events compared to MMEM of CMIP5. This study also reveals 

that GCMs derived hindcast data of longer training period, which contains more than 1000 

 
This chapter will be submitted as: Hossain, M.M., Anwar, A.H.M.F., Garg, N., Prakash, M., Bari, M., 2022. 

Monthly rainfall prediction for decadal timescale using Bidirectional LSTM and CMIP5 near-term experiment 

data. Journal of Advances in Modelling Earth Systems (to be submitted). 
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events, following the supervised training approach of the BiLSTM model would enhance the 

prediction accuracy and can be considered as an alternative to existing bias correction methods. 

Keywords: Precipitation, prediction, decadal, cmip5, Bidirectional, LSTM 

9.1 Introduction 

Early prediction of precipitation has many positive benefits though it is a very difficult task in 

terms of accuracy. The large variations of precipitation over time and space, due to the impacts 

of ongoing climate change, imposed additional complexity on the accurate prediction of this 

valuable natural resource. Prediction of precipitation has two main categories; (i) knowledge-

driven approach, and (ii) data-driven approach. For the precipitation prediction, climate models 

such as General Circulation Models (GCMs) use the former approach whilst some stochastic, 

statistical, and empirical models use the data-driven approach. While predicting the future 

precipitation, GCMs consider laws of thermodynamic balance, physics, scientific 

understanding of the hydrological process, and the interaction among ocean, earth, and 

atmosphere. However, GCMs predict the climate variables for the entire globe and of coarse 

spatial resolutions. The spatial resolution of approximately 100-250 km is not adequate for 

local or catchment level studies because of the lack of information (Fowler et al., 2007; Grotch 

and MacCracken, 1991; Salathé, 2003). The use of the regional climate models (RCMs) for 

transferring the GCMs derived information to local levels is prevalent nowadays but 

computationally intensive and may not easily be available. In addition, GCMs are not perfect 

enough and their outputs contain systematic biases (Randall et al., 2007) that need rigorous 

correction before any application (Islam et al., 2014, 2011; Maurer and Hidalgo, 2008; 

Mehrotra and Sharma, 2010). Sun et al. (2007) reported that GCMs tend to overestimate the 

number of wet events and underestimate the intense events. This was also confirmed by 

Stephens et al. (2010), who found model precipitation is approximately double the observed 

value. To assess the future climate change impacts on water resources, it is necessary to correct 

the model biases (Liang et al., 2008).  

On the contrary, some stochastic/statistical/empirical models and applications of machine 

learning/deep learning algorithms of which different forms and architecture of artificial neural 

networks (ANN) use the data-driven approach (Mekanik et al., 2011) for the prediction at the 

local or catchment levels. Stochastic or statistical models are mainly based on different forms 
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of regression analysis such as simple regression analysis (SRA), exponential smoothing, 

decomposition, and auto-regressive integrated moving average (ARIMA). Every individual 

stochastic or statistical method has its strengths and weaknesses. For instance, ARIMA is a 

popular stochastic model for time series prediction with greater flexibility. But, as a stochastic 

model, it needs stationarity of the data (Machiwal and Jha, 2012) and its presumed linear form 

of the associated data sometimes makes it inappropriate for complex nonlinear time series data 

like rainfall (Zhang, 2003). However, technological development in combination with the 

research innovations in this modern arena enhanced the computation facility that enabled 

higher accuracy of precipitation prediction of which ANN is the best example. Applications of 

the machine and deep learning algorithms, of which ANN of the different forms of architecture, 

have been popular for many time series predictions including time series of precipitation (Hung 

et al., 2009; Lee et al., 2018; Meinke et al.,  2007; Mekanik et al., 2011; Mislan et al., 2015) 

because of its enhanced prediction accuracy. ANN is capable of modelling complex nonlinear 

real-world problems. Based on the level of complexity, ANN can be combined with different 

types of algorithms due to its highly flexible character. However, based on the need and 

opportunities, different researchers have come up with different research interests and periods 

with the application of ANN. Though the ANN is good to capture the nonlinear relationship of 

data, the presence of outliers in the time-series data can critically affect the reliability of ANN 

as it is a grey box model (Unnikrishnan and Jothiprakash, 2020). Thus ANN requires proper 

data pre-processing before its application, especially for the climate data (Committee, 2000; 

Ramírez et al., 2006). However, using only the historical data, after splitting it into training and 

test set (for validation), as the input of ANN is a very common practice (Abbot and Marohasy, 

2012; Hossain et al., 2020; Mekanik et al., 2011). In this case, the ANN model will only learn 

the historical change, variability, and relationship between input datasets throughout the 

training period and that historical relationship may or may not reflect in the future as the future 

changing rate will be higher (IPCC, 2014) than the past.  

Climate change is an ongoing dynamic process that is being changed continuously and will 

continue to change in the future. However, the rate of future climate change and its potential 

impact on precipitation is uncertain. Compared to the other climate variables, precipitation has 

been affected more due to the ongoing climate change. Changes in precipitation pattern, 

seasonal shifting, longer differences between the dry and wet periods, longer dry spells, and 

extreme wet events along with overall reduction of total precipitation amount have been 



209 

 

observed around the globe in the last few decades. In the last decades, these changes have been 

intensified due to the ongoing climate change (IPCC, 2014). According to the IPCC report, the 

change in the future precipitation amount and its extreme events (e.g., heavy rainfall, droughts) 

will be higher compared to the past depending on the geographical locations. As every year, 

the climate condition is being changed and it would be intensified in the future, precipitation 

prediction must not rely on the approaches based on the historically observed data only. 

Applications of ANN of different forms of architecture have been seen in many previous types 

of research where only the historically observed data were used as input and followed the data-

driven approach only. Through Facebook Prophet (FBP) model, Chapter 8 demonstrated that 

the inclusion of GCMs derived precipitation together with the observed data provides better 

prediction accuracy compared to the prediction based on the observed data only. To the best of 

our knowledge, until now, no study used both the historically observed and GCMs derived 

hindcast (knowledge-driven) data as the input of the ANN model. However, Chapter 8 

demonstrated that the inclusion of GCMs derived precipitation together with the observed data 

results in better prediction accuracy compared to the prediction based on the observed data 

only. Chapter 8 also suggested using a deep neural networks model to improve the prediction 

accuracy. To incorporate the GCMs derived precipitation in the local level prediction and 

following the suggestion made in chapter 8, this chapter aimed to predict the monthly 

precipitation in decadal timescale by ANN model using both the historically observed and 

CMIP5 decadal experiment precipitation data.  

9.2 Data and methods 

9.2.1 Data collection 

The observed monthly gridded precipitation of 0.05° × 0.05° (5km × 5km) spatial resolution 

for entire Australia were collected from the Australian Bureau of Meteorology (BoM). The 

BoM has produced the gridded data using the Australian Water Resources Assessment 

Landscape model (AWRA-L V5) (Frost et al., 2016). 

Monthly hindcasts precipitation data of decadal time scale from five GCMs (EC-EARTH 

MIROC4h, MRI-CGCM3, MPI-ESM-LR, and MPI-ESM-MR) were downloaded from CMIP5 

data portal (https://esgf-node.llnl.gov/projects/cmip5/). The reason behind selecting these five 

models is their arithmetic mean was found as the best combination as multi-model ensembles 

https://esgf-node.llnl.gov/projects/cmip5/
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mean (MMEM) in chapter seven. Data for the period 1960-2005, initialized at 1960, 1965, 

1975… thus every five years up to 2005 are used in this study. There are two core sets of 

CMIP5 decadal experiment; 10-year and 30-year simulation. In this study, only the 10-year 

simulation data are selected as it was found comparative better as opposed to 30-year 

simulation (Hossain et al., 2021b). The details of the selected models are presented in Table 

9-1. 

Table 9-1 List of models, their initializations, and number of ensembles used in this study 

Model Resolutions (lon × lat)) 

Initialization Year (1960-2005) 

60 65 70 75 80 85 90 95 00 05 

Number of ensembles 

MIROC4h  (0.5625 X  0.5616) 03 03 03 06 06 06 06 06 06 06 

EC-EARTH  (1.125 X  1.1215) 14 14 14 14 14 14 14 14 10 18 

RI-CGCM3  (1.125 X  1.1215) 06 08 09 09 06 09 09 09 09 06 

MPI-ESM-LR  (1.875 X  1.865) 10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR  (1.875 X  1.865) 03 03 03 03 03 03 03 03 03 03 

9.2.2 Data Processing 

In the first step, all the available ensembles of individual initializations were averaged to 

produce a single dataset and then were subsets for the Australian region. Secondly, the 

averaged ensembles were spatially interpolated using the second-order conservative (SOC) 

method onto 0.05°×0.05° spatial resolution thus matching with the grids used in the observed 

data. This study used SOC as it conserves the precipitation flux while sub-gridding the GCMs 

data (Jones, 1999) and marked it as a better spatial interpolation method, especially for the 

GCMs derived gridded dataset (Hossain et al., 2021a). Then both the models’ and observed 

datasets were subsets for the Brisbane River catchment. Every initialization spans a dataset of 

10 years that overlaps five years with the dataset of the next initializations. In the third step, 

the last five years of each initialization except 2005 were discarded and the first five years from 

each initialization were combined to produce a single time series from 1961 to 2015. For the 

initialization year 2005 (2006-2015), the whole dataset was taken instead of the first five years 

to make the dataset longer. For the rest of this chapter, this dataset will be referred to as MMEM 

of CMIP5. A Box-cox power transformation, from Scikit-learn power transformation, was 

employed for both the MMEM of CMIP5 and the observed dataset.  
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9.2.3 Model description 

Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network (RNN) that 

is capable of learning long-term dependencies. RNNs are the first kind of neural network that 

can remember the previous input in memory and due to the vanishing gradient problem; they 

cannot handle the lengthy sequences. LSTM was initially proposed by Hochreiter and 

Schmidhuber (1997) and then was refined and popularized by many researchers (see Greff et 

al., 2017 and references therein). To avoid such long-term dependency problems faced by 

RNNs, LSTMs are explicitly designed to maintain information for longer periods in their 

memory cells. However, LSTMs are easy to overfit, sensitive to different random weight 

initialization, and require a longer dataset for the training. 

A bidirectional LSTM (BiLSTM) is a redesign of traditional LSTMs. As the name suggests, 

BiLSTM offers to learn in both forward and backward directions. In recent years, a BiLSTM 

model has been investigated and found it provides better prediction accuracy by offering 

additional training capability through receiving information from past (backward) and future 

(forward) instances simultaneously (Abduljabbar et al., 2021; Siami-Namini et al., 2019). This 

study used Keras’s sequential model of three BiLSTM (henceforth referred to as BiLSTM) 

hidden layers (Fig. 9-1) to predict the monthly precipitation for a decade (2006-2015) by using 

MMEM of CMIP5 decadal precipitation as a feature and the corresponding observed monthly 

values as the target variable. The reason behind choosing the BiLSTM is to get the higher 

prediction accuracy (Ezen-Can, 2020) from our comparatively shorter training dataset 

(Abduljabbar et al., 2021; Siami-Namini et al., 2019). Two sets of observed rainfall data are 

used here; (i) observed monthly precipitation without removing outliers (referred to as 

BiLSTM) and (ii) observed monthly precipitation after removing outliers (referred to as 

BiLSTM*).  

The ‘tanh’ activation function is used in all three hidden layers with three different dropouts: 

0.2, 0.1, and 0.05 for the first, second, and third hidden layers respectively. Learning rate of 

0.005, ‘Adam’optimizer, ‘mean_squared_error’ loss function with accuracy metrics are used 

for compiling the model. After going through numerous approaches of parameter selection, 

based on trial and error basis, batch sizes of 12 and 1000 epochs are employed.  
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Training the ANN model before the prediction is a mandatory task by which the ANN model 

learns the relationship between the datasets. In the ANN models, splitting the observed data 

into train and test sets is a very common practice (Abbot and Marohasy, 2012). However, 

instead of using only the observed data after splitting it into training and test set, this study used 

a supervised training approach where BiLSTM models were trained (1961/Jan-2005/Dec) for 

the GCMs derived monthly precipitation (as a feature) and corresponding observed values (as 

a target). From this training period, the BiLSTM models learned the historical relationship 

between the GCMs derived precipitation and corresponding observed values (Chakraverty and 

Gupta, 2008). This trained BiLSTM model was provided MMEM of CMIP5 for the period 

2006-2015 as a test-set for the prediction. BiLSTMs predicted monthly rainfall for the period 

of test-set data that is presented in the result section. 

 

Fig. 9-1 The structure of the BiLSTM used in this study 

9.2.4 Skill Tests 

 Pearson correlation coefficient (PCC)  

PCC measures the linear correlation between two datasets. PCC is used to measure the linear 

correlation between the predicted and observed values. Its value varies between -1 and 1 

(perfect correlation).  

𝑃𝐶𝐶 =  
∑ (𝑃𝑡−𝑃̅)𝑁

𝑖=1 (𝑂𝑡−𝑂̅)

√∑ (𝑃𝑡−𝑃̅)2𝑁
𝑖=1 √∑ (𝑂𝑡−𝑂̅)2𝑁

𝑖=1

             (9.1) 
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Where 𝑃 and 𝑂 present models’ predicted and observed values respectively and the subscript i 

varies from 1 to N where N is the number of months in the prediction periods. These notations 

are the same also for the following skills.  

 Anomaly Correlation Coefficient (ACC) 

A Wilks, (2011) suggested ACC that measures the correspondence between the anomalies of 

model-predicted and observed values. A higher ACC value does not represent the higher 

accuracy of the predicted data but the anomalies of the predictions. 

𝐴𝐶𝐶 =  
∑{(𝑃𝑖−𝑂̅)−(𝑃𝑖−𝑂̅̅̅ ̅̅ ̅̅ ̅)}×{(𝑂𝑖−𝑂̅)−(𝑂𝑖−𝑂̅̅̅ ̅̅ ̅̅ ̅)}

√∑(𝑃𝑖−𝑂̅)2√∑(𝑂𝑖−𝑂̅)2
   (9.2) 

Here, 𝑂̅ presents the decadal mean of the observed values and the bar over the anomalies 

presents the mean of them. 

 Index of Agreement (IA)   

IA suggested by Wilmot (1982), measures the accuracy of model-predicted values 

corresponding to observed values. IA is bounded between 0 and 1 where, the closer the value 

to 1, the more efficient the prediction is 

𝐼𝐴 = 1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (|𝑃𝑖−𝑂′|+|𝑂𝑖−𝑂′|)2𝑁
𝑖=1

   (9.3) 

Here 𝑂′ presents the mean of every individual year of the predicted period. 

 Mean Absolute Errors (MAE)  

As the name suggests, MAE presents the average magnitude of the differences between 

modelled and observed values. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑃𝑖 − 𝑂𝑖|

𝑁
𝑖=1   (9.4) 

9.3 Data analysis and results 

9.3.1 Training and test datasets 

The hindcast precipitation from MMEM of CMIP5 and corresponding observed values are 

compared for both training (1961-2005) and prediction (test-set) period (2006-2015). Fig. 9-2 
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presents a comparison between MMEM of CMIP5 and the corresponding observed values for 

the training period. This comparison shows that MMEM could reproduce the seasonal 

variations with little to moderate variations in reproducing the wet events (events in December-

January-February). However, MMEM was neither able to reproduce the dry events (events in 

June-July-August) nor the extreme wet events (events equal and above 200 mm). It was evident 

in the shape and distribution (Box-plot) along with the cumulative distribution function (CDF) 

of the data, used for both training (1961-2005) and test periods (2006-2015) for the BiLSTM 

model, presented in Fig. 9-3.  

From the comparisons, the noticeable differences in the minimum, median, maximum, and 

interquartile ranges are evident between the observed and the MMEM of the CMIP5. In the 

observed data, a huge number of outliers and a long range of upper quartiles’ values do exist 

whereas neither such outliers nor the lower and upper quartile values do exist in the MMEM 

of CMIP5. Both the Box-plot and the CDF show that MMEM was not able to reproduce the 

events of no and/or lower precipitation and the extreme higher precipitation events also (Fig. 

9-3). 
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Fig. 9-2 Comparison of MMEM and corresponding observed values for the training period (January/1961-December/2005)
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Fig. 9-3 Comparison of upper, lower quartiles along with interquartile ranges (Box plot) and 

the cumulative distribution function (CDF) for the training (1961-2005) and test set (2006-

2015) of the data used in this study 

9.3.2 BiLSTM vs MMEM of CMIP5 and observed values  

The BiLSTM models’ predicted values are compared mainly with the observed values and the 

MMEM of the CMIP5. The main reason to compare with the MMEM of CMIP5 is to 

investigate how the skills of MMEM of CMIP5 improve through the BiLSTM following a 

supervised learning approach. Fig. 9-4 presents the comparison between the predicted and 

corresponding observed values for the selected location. For clear visibility, prediction by using 
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BiLSTM is presented only in   Fig. 9-4 but in other comparisons, both BiLSTM and BiLSTM* 

are presented 

 

Fig. 9-4 Comparison of the predicted values by BiLSTM with the corresponding observed 

(BoM) and CMIP5 decadal experiment data (MMEM) 

From the comparison, this study reveals that BiLSTM can reproduce the seasonal variations by 

capturing upper and lower extremes up to a certain limit. To reproduce the dry events, BiLSTM 

models are showing comparatively better resemblance with the observed values whereas no 

such resemblance was captured by the MMEM of the CMIP5 decadal dataset. In capturing the 

dry events, BiLSTM performed slightly better than BiLSTM* (not shown). The quartile ranges 

along with the CDF of the predicted values are presented in Fig. 9-5, where improvements in 

the interquartile ranges and the range of upper and lower quartiles values are evident. In this 

case, BiLSTM predicted values show a comparatively better resemblance with the observed 

values than the prediction from BiLSTM*. BiLSTM predicted values show almost similar 

lower quartile values and median as in the observed data but a little lower interquartile range 

with the lower number of outliers. However, both BiLSTM and BiLSTM* showed very similar 

performance for resembling the CDF (see Fig. 9-5). 
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Fig. 9-5 Comparison of upper and lower quartiles along with interquartile range (Box plot) 

and cumulative distribution function (CDF) of the predicted and observed values 

Over the prediction period, BiLSTM showed the best resemblance with the observed values in 

the first year whilst the lowest resemblance was observed in the last year. For this reason, this 

study assumes that the predicted values may show higher skills in the earlier years than the 

latter. 

9.3.3 Comparison of skill tests 

The aforementioned skill tests are performed for both the predicted values and the MMEM of 

CMIP5 decadal data based on the observed values. From the comparison of skills, it is observed 

that BiLSTM predicted values showed comparatively better resemblance with the observed 

values in the earlier years of the prediction period than the latter. To investigate this, this study 

calculated the skills for the first five years and for the entire prediction period (10 years) that 

are presented in Table 9-2. From the skill comparison of the predicted values, it can be seen 

that there is no significant difference between the skills of the five and 10-years predicted 

values whereas certain differences are observed between the skills of MMEM and the predicted 

values. While comparing the skill between the MMEM and the predicted values, noticeable 

differences can be noted for the first five years whereas no such difference can be seen for 10-
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years skills except IA. In the first five years, MMEM of CMIP5 shows a comparatively lower 

skill score than the skill score for a total of ten years period. It seems, comparatively 

overestimations for the wet periods as well as wider gaps between MMEM and observed values 

in the dry events are the main reason for a lower-skill score in the first five years than the latter. 

Overall, both the BiLSTMs models improved the prediction skills where BiLSTM* was little 

better than BiLSTM. It may be due to removing the outliers from the training period. 

Table 9-2 Skill comparison for the first five years and over the decadal time-span 

Models 

First 5 years 
 

Total 10 years 

PCC ACC IA MAE 
 

PCC ACC IA MAE 

MMEM 0.241 0.241 0.354 64.8 
 

0.434 0.434 0.510 58.1 

BiLSTM 0.426 0.425 0.585 57.4 
 

0.425 0.425 0.572 59.8 

BiLSTM* 0.437 0.433 0.612 58.8 
 

0.437 0.447 0.603 59.8 

9.3.4 Comparison for individual seasons 

From the comparison between Fig. 9-3 and Fig. 9-5, it can be seen that the predicted values 

show noticeable improvement in the lower and upper quartiles with comparatively lower 

improvement in the interquartile range. The lower quartile values usually come from the dry 

events that occur during the winter (JJA) whilst the upper quartiles and the outliers come from 

wet periods that occur during the summer (DJF). To investigate the improvement in individual 

seasons, this study also compared the predicted values with the corresponding MMEM of 

CMIP5 through the scatter plots that are presented in Fig. 9-6. From the comparison, it is seen 

that the MMEM of CMIP5 overestimated the lower precipitation values during autumn and 

winter and underestimated the higher values. However, for the lower values or dry events, the 

predicted values from both datasets show considerably better correspondence with the observed 

values during autumn whereas no such improvement was observed for summer and spring  (see 

Fig. 9-6). 
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Fig. 9-6 Seasonal comparisons of the predicted values (monthly) with the corresponding 

MMEM of CMIP5 

9.4 Discussion 

This study predicted monthly precipitation for a decadal timescale using BiLSTM in which 

both the MMEM of CMIP5 decadal experiment data and the corresponding observed values 

are used as model input. The hindcast data of CMIP5 decadal monthly precipitation is available 

from 1961 until 2015 (55 years, 660-time steps). The First 45 Years (540-time steps) are used 

for training the BiLSTM models and the rest 10 years (2006-2015) are used for the test period. 

BiLSTM is a complex area of deep learning and a series of 540-time steps is not quite small 
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for the training period. However, a longer training period enables the ANN models better 

understand the relationship between the inputs that result in higher prediction accuracy. In this 

study, the prediction skills, PCC, and ACC values below 0.5, for both the five and ten-year 

prediction period, seem a bit lower scores. Numerous outliers from frequently extreme peak 

values, those were unable to catch by the BiLSTMs are the main reason for lower prediction 

skills. IA values around 0.6 along with a good response to dry and wet events are really 

promising, especially for the precipitation. In the first year of the prediction period, BiLSTM 

showed the best resemblance with the observed values whereas the reverse scenario is noted in 

the last year. This reveals that with the increasing length of the prediction period, the prediction 

skills may drop. Capturing dry events, which was not evident in the MMEM, would be very 

useful for the local level agriculture for dry periods and irrigation requirements, water 

managers for assessing the future water availability, and other stakeholders. However, every 

individual time series precipitation at different geographical locations is different. The 

researcher used different models with different input variables for rainfall prediction and their 

performances were assessed based on the observed values. Selection of model parameters, 

model architecture, and the period of the training and test dataset is open for discussion with 

the changing of locations. For this reason, it is difficult to compare and contrast different types 

of models for different regions and time series with the results obtained in this study. 

 In the previous studies, ANN models followed only the data-driven approach in which they 

were trained with only the observed data of two different periods after splitting into train and 

test sets (Abbot and Marohasy, 2012; Hossain et al., 2020; Mekanik et al., 2011). In that cases, 

ANN models were used to learn the temporal relationship between two different time-period 

of the observed values. This study is the first attempt in which the ANN model (BiLSTM) was 

trained with the GCMs derived precipitation (MMEM of CMIP5) and their corresponding 

observed values. The results reveal that BiLSTM is showing comparatively better prediction 

skills than the skill of MMEM of CMIP5. In other words, it can be said that BiLSTM reduced 

the prediction errors from MMEM that enhanced the prediction accuracy. In chapter 8 higher 

prediction skills were achieved through the FBP model when MMEM was used as an additional 

regressor, however, the best skills were achieved when all models were considered as eight 

additional regressor. This study (chapter 9) was limited to only MMEM as a feature where 

individual models were not considered. Upon comparing the prediction skills of FBP (in 

chapter 8) and BiLSTM, it is seen that, in all skill tests FBP is little better than BiLSTM. It 
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may be due to the correction factor that was employed in FBP but not in BiLSTM. These factors 

may be different for using FBP at different places for different datasets that would require 

cautions. In that case, users may need to utilize their prudence while using either FBP or 

BiLSTM or both. 

As the GCMs contain systematic biases (Randall et al., 2007) that ANN models can read as the 

difference (or relation) between the GCMs’ simulated and observed values. In this study, 

BiLSTM was trained with MMEM as a feature and corresponding observed values as a target 

that represents a supervised training approach. During the training period, BiLSTM learned the 

relationship (biases) between the MMEM of CMIP5 and the corresponding observed values, 

and based on this learning, BiLSTM predicted the future. From the obtained results and their 

corresponding skill tests, this study reveals that prediction skills of BiLSTM models are 

achieved by minimizing the biases in the MMEM of the CMIP5 dataset. The predicted values 

showed a comparatively better skill score than the MMEM of CMIP5, especially during the 

first five years of the prediction period where wider gaps between the observed and MMEM of 

CMIP5 exist (Fig. 9-4).  

The fundamental problem with CMIP5 decadal simulation is the drift (Mehrotra et al., 2014) 

which was shown by Hossain et al. (2021c) for the precipitation at the Brisbane River 

catchment. Hossain et al. (2021c) quantified the drift of CMIP5 decadal hindcast precipitation 

and assessed the applicability of the widely used mean drift correction method proposed by 

ICPO (2011). Hossain et al. (2021c) reported that the mean drift correction method is not 

enough to alleviate the drift-bias (a time varying systematic bias of GCMs) and the 

improvement in the model skills after the drift correction is highly dependent on the model 

types. Taylor et al. (2012) recommended a sophisticated bias correction method to remove the 

drift-bias from CMIP5 decadal simulations. However, to correct the GCMs derived future 

rainfall, there is no standard bias correction approach (Taylor et al., 2012) but depending on 

locations, climate variables, time scales, and the application field of the data the correction 

approach may be different (Chen et al., 2013; Gangstø et al., 2013; Kruschke et al., 2016). 

Different transformation functions such as downscaling, quantile mapping (QM), histogram 

equalizing, and rank matching (Bates et al., 1998; Charles et al., 2004; Piani et al., 2010; Wood 

et al., 2004) stochastic and/or dynamic downscaling (Bates et al., 1998; Charles et al., 2004; 

Mehrotra and Sharma, 2006; Wilby et al., 1998) are commonly used in practice. Every 
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correction method has its strengths and weaknesses depending on its underlying assumptions. 

Among the many commonly used approaches (mentioned earlier), a statistical bias correction 

method proposed by Piani et al. (2010) has been used in many studies. Equalizing the 

cumulative distribution function (CDF) of the observed and simulated values was the main 

principle of that statistical method. In this study, the CDF of BiLSTM models’ predicted values 

showed a very good resemblance with the CDF of the corresponding observed values (see Fig. 

9-5) that indicate application of ANN models can be considered as a new dimension of drift 

correction approach for decadal data. In that case, the selection of the climate variable and their 

time span for the correction, ANN model types and their architecture, time span of training, 

and the test data set need further investigation.  

9.5 Conclusion 

The application of ANN models in precipitation prediction is an emerging research area as it 

enhanced the prediction accuracy by using the updated computational facility in this modern 

arena. Precipitation prediction for a couple of years using ANN models based on the 

historically observed values has been found in the literature. However, precipitation prediction 

for a decadal timescale is not common whereas incorporating GCMs derived data together with 

the observed values in the ANN model was not seen before. This study predicted for decadal 

timescale as it used decadal experiment data derived through GCMs in CMIP5. As GCMs 

follow the knowledge-driven approach considering many factors including future climate 

scenarios for the prediction, this study assumed that using the GCMs derived climate variables 

as features and corresponding observed values as target variables following a supervised 

training approach in ANN models will provide higher prediction accuracy by reducing the 

errors in GCMs derived values. This study also assumed that using BiLSTM would provide 

additional accuracy as it receives information from both the forward and backward direction 

simultaneously. Results revealed that using GCMs derived data together with the observed 

values through BiLSTM enhanced the prediction accuracy by reducing the gaps between the 

observed and GCMs values. This study also reveals that following a supervised training 

approach enables the BiLSTM models to reproduce the dry events better than the GCMs.   

As the BiLSTM can capture the non-linear relationship between the features and the target 

variables through the supervised training, it can be used as a new approach of drift/bias 



224 

 

correction method. In that case, GCMs derived longer time hindcast data for training the 

BiLSTM would be useful but training period, correction period and model parameters need to 

be investigated further. 

List of symbols 

C  :  Mean (over the total time span) of the observed values 

P  :   Model predicted values 

O  :   Observed values 

𝑃 − 𝐶  :   Anomaly of the model values 

𝑃 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :   Mean of the model anomalies 

𝑂 − 𝐶  :   Observed anomaly 

𝑂 − 𝐶̅̅ ̅̅ ̅̅ ̅̅   :  Mean of the observed anomalies 

References 

Abbot, J., Marohasy, J., 2012. Application of artificial neural networks to rainfall forecasting 

in Queensland, Australia. Advances in Atmospheric Sciences 29, 717–730. 

https://doi.org/10.1007/s00376-012-1259-9 

Abduljabbar, R.L., Dia, H., Tsai, P.W., 2021. Unidirectional and bidirectional LSTM models 

for short-term traffic prediction. Journal of Advanced Transportation 2021. 

https://doi.org/10.1155/2021/5589075 

Bates, B.C., Charles, S.P., Hughes, J.P., 1998. Stochastic downscaling of numerical climate 

model simulations. Environmental Modelling and Software 13, 325–331. 

https://doi.org/10.1016/S1364-8152(98)00037-1 

Chakraverty, S., Gupta, P., 2008. Comparison of neural network configurations in the long-

range forecast of southwest monsoon rainfall over India. Neural Computing and 

Applications 17, 187–192. https://doi.org/10.1007/s00521-007-0093-y 



225 

 

Charles, S.P., Bates, B.C., Smith, I.N., Hughes, J.P., 2004. Statistical downscaling of daily 

precipitation from observed and modelled atmospheric fields. Hydrological Processes 18, 

1373–1394. https://doi.org/10.1002/hyp.1418 

Chen, J., Brissette, F.P., Chaumont, D., Braun, M., 2013. Finding appropriate bias correction 

methods in downscaling precipitation for hydrologic impact studies over North America. 

Water Resources Research 49, 4187–4205. https://doi.org/10.1002/wrcr.20331 

Choudhury, D., Sen Gupta, A., Sharma, A., Mehrotra, R., Sivakumar, B., 2017. An Assessment 

of Drift Correction Alternatives for CMIP5 Decadal Predictions. Journal of Geophysical 

Research: Atmospheres 122, 10282–10296. https://doi.org/10.1002/2017JD026900 

Committee, A.S. of C.E.T., 2000. Artificial Neural Networks in Hydrology. II: Hydrologic 

Applications By the ASCE Task Committee on Application of Artificial Neural Networks 

in Hydrology. Journal Of hydrologic engineering 5, 115–123. 

Ezen-Can, A., 2020. A Comparison of LSTM and BERT for Small Corpus 1–12. 

Fowler, H.J., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to impacts 

studies: recent advances in downscaling techniques for hydrological modelling. 

International Journal of Climatology 27, 1547–1578. https://doi.org/10.1002/joc.1556 

Frost, A.J., Ramchurn, A., Smith, A., 2016. The Bureau’s Operational AWRA Landscape 

(AWRA-L) Model. Bureau of Meteorology Technical Report. 

Gangstø, R., Weigel, A.P., Liniger, M.A., Appenzeller, C., 2013. Methodological aspects of 

the validation of decadal predictions. Climate Research 55, 181–200. 

https://doi.org/10.3354/cr01135 

Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J., 2017. LSTM: A 

Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems 28, 

2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924 

Grotch, S.L., MacCracken, M.C., 1991. The Use of General Circulation Models to Predict 

Regional Climatic Change. Journal of Climate 4, 286–303. https://doi.org/10.1175/1520-

0442(1991)004<0286:TUOGCM>2.0.CO;2 



226 

 

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation 9, 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Hossain, I., Rasel, H.M., Imteaz, M.A., Mekanik, F., 2020. Long-term seasonal rainfall 

forecasting using linear and non-linear modelling approaches: a case study for Western 

Australia. Meteorology and Atmospheric Physics 132, 131–141. 

https://doi.org/10.1007/s00703-019-00679-4 

Hossain, M.M., Garg, N., Anwar, A.H.M.F., Prakash, M., 2021a. Comparing Spatial 

Interpolation Methods for CMIP5 Monthly Precipitation at Catchment Scale. Indian 

Water Resources Society I, 285. 

Hossain, M.M., Garg, N., Anwar, A.H.M.F., Prakash, M., Bari, M., 2021b. A comparative 

study on 10 and 30-year simulation of CMIP5 decadal hindcast precipitation at catchment 

level, in: Vervoort, R.W., Voinov, A.A., Evans, J.P. and Marshall, L. (Ed.), 

MODSIM2021, 24th International Congress on Modelling and Simulation. Modelling and 

Simulation Society of Australia and New Zealand, pp. 609–615. 

https://doi.org/10.36334/modsim.2021.K5.hossain 

Hossain, M.M., Garg, N., Anwar, A.H.M.F., Prakash, M., Bari, M., 2021c. Drift in CMIP5 

decadal precipitation at catchment level. Stochastic Environmental Research and Risk 

Assessment 8, 5. https://doi.org/10.1007/s00477-021-02140-8 

Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K., 2009. An artificial neural network 

model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System 

Sciences 13, 1413–1425. https://doi.org/10.5194/hess-13-1413-2009 

ICPO, 2011. Data and bias correction for decadal climate predictions. CLIVAR Publication 

Series No. 150, 6 pp. 

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 

and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 

Core Writing Team, R.K. Pachauri and L.A. Meyer. 

https://doi.org/10.1017/CBO9781107415324.004 

Islam, S.A., Bari, M., Anwar, A.H.M.F., 2011. Assessment of hydrologic impact of climate 



227 

 

change on Ord River catchment of Western Australia for water resources planning: A 

multi-model ensemble approach, in: Chan, F., Marinova, D. and Anderssen, R.S. (Eds) 

MODSIM2011, 19th International Congress on Modelling and Simulation. Modelling and 

Simulation Society of Australia and New Zealand (MSSANZ), Inc. 

https://doi.org/10.36334/modsim.2011.I6.islam 

Islam, S.A., Bari, M.A., Anwar, A.H.M.F., 2014. Hydrologic impact of climate change on 

Murray–Hotham catchment of Western Australia: a projection of rainfall–runoff for future 

water resources planning. Hydrology and Earth System Sciences 18, 3591–3614. 

https://doi.org/10.5194/hess-18-3591-2014 

Jones, P.W., 1999. First- and Second-Order Conservative Remapping Schemes for Grids in 

Spherical Coordinates. Monthly Weather Review 127, 2204–2210. 

https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 

Kruschke, T., Rust, H.W., Kadow, C., Müller, W.A., Pohlmann, H., Leckebusch, G.C., 

Ulbrich, U., 2016. Probabilistic evaluation of decadal prediction skill regarding Northern 

Hemisphere winter storms. Meteorologische Zeitschrift 25, 721–738. 

https://doi.org/10.1127/metz/2015/0641 

Lee, J., Kim, C.G., Lee, J.E., Kim, N.W., Kim, H., 2018. Application of artificial neural 

networks to rainfall forecasting in the Geum River Basin, Korea. Water (Switzerland) 10. 

https://doi.org/10.3390/w10101448 

Liang, X.Z., Kunkel, K.E., Meehl, G.A., Jones, R.G., Wang, J.X.L., 2008. Regional climate 

models downscaling analysis of general circulation models present climate biases 

propagation into future change projections. Geophysical Research Letters 35, 1–5. 

https://doi.org/10.1029/2007GL032849 

Machiwal, D., Jha, M.K., 2012. Hydrologic Time Series Analysis: Theory and Practice. 

Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-1861-6 

Maurer, E.P., Hidalgo, H.G., 2008. Utility of daily vs. monthly large-scale climate data: An 

intercomparison of two statistical downscaling methods. Hydrology and Earth System 

Sciences 12, 551–563. https://doi.org/10.5194/hess-12-551-2008 



228 

 

Mehrotra, R., Sharma, A., 2010. Development and application of a multisite rainfall stochastic 

downscaling framework for climate change impact assessment. Water Resources 

Research 46, 1–17. https://doi.org/10.1029/2009WR008423 

Mehrotra, R., Sharma, A., 2006. A nonparametric stochastic downscaling framework for daily 

rainfall at multiple locations. Journal of Geophysical Research Atmospheres 111, 1–16. 

https://doi.org/10.1029/2005JD006637 

Mehrotra, R., Sharma, A., Bari, M., Tuteja, N., Amirthanathan, G., 2014. An assessment of 

CMIP5 multi-model decadal hindcasts over Australia from a hydrological viewpoint. 

Journal of Hydrology 519, 2932–2951. https://doi.org/10.1016/j.jhydrol.2014.07.053 

Meinke, H., Sivakumar, M.V.K., Motha, R.P., Nelson, R., 2007. Preface: Climate predictions 

for better agricultural risk management. Australian Journal of Agricultural Research 58, 

935–938. https://doi.org/10.1071/ARv58n10_PR 

Mekanik, F., Lee, T.S., Imteaz, M.A., 2011. Rainfall modeling using Artificial Neural Network 

for a mountainous region in west Iran. MODSIM 2011 - 19th International Congress on 

Modelling and Simulation - Sustaining Our Future: Understanding and Living with 

Uncertainty 3518–3524. https://doi.org/10.36334/modsim.2011.i5.mekanik 

Mislan, Haviluddin, Hardwinarto, S., Sumaryono, Aipassa, M., 2015. Rainfall Monthly 

Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East 

Kalimantan - Indonesia. Procedia Computer Science 59, 142–151. 

https://doi.org/10.1016/j.procs.2015.07.528 

Piani, C., Weedon, G.P., Best, M., Gomes, S.M., Viterbo, P., Hagemann, S., Haerter, J.O., 

2010. Statistical bias correction of global simulated daily precipitation and temperature 

for the application of hydrological models. Journal of Hydrology 395, 199–215. 

https://doi.org/10.1016/j.jhydrol.2010.10.024 

Ramírez, M.C., Ferreira, N.J., Velho, H.F.C., 2006. Linear and Nonlinear Statistical 

Downscaling for Rainfall Forecasting over Southeastern Brazil. Weather and Forecasting 

21, 969–989. https://doi.org/10.1175/WAF981.1 

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, 



229 

 

A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. Climate Models 

and Their Evaluation. 

Salathé, E.P., 2003. Comparison of various precipitation downscaling methods for the 

simulation of streamflow in a rainshadow river basin. International Journal of Climatology 

23, 887–901. https://doi.org/10.1002/joc.922 

Siami-Namini, S., Tavakoli, N., Namin, A.S., 2019. The Performance of LSTM and BiLSTM 

in Forecasting Time Series. Proceedings - 2019 IEEE International Conference on Big 

Data, Big Data 2019 3285–3292. https://doi.org/10.1109/BigData47090.2019.9005997 

Stephens, G.L., L’Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J.C., Bodas-Salcedo, A., 

Suzuki, K., Gabriel, P., Haynes, J., 2010. Dreary state of precipitation in global models. 

Journal of Geophysical Research Atmospheres 115, 1–14. 

https://doi.org/10.1029/2010JD014532 

Sun, Y., Solomon, S., Dai, A., Portmann, R.W., 2007. How often will it rain? Journal of 

Climate 20, 4801–4818. https://doi.org/10.1175/JCLI4263.1 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment 

design. Bulletin of the American Meteorological Society 93, 485–498. 

https://doi.org/10.1175/BAMS-D-11-00094.1 

Unnikrishnan, P., Jothiprakash, V., 2020. Hybrid SSA-ARIMA-ANN Model for Forecasting 

Daily Rainfall. Water Resources Management 34, 3609–3623. 

https://doi.org/10.1007/s11269-020-02638-w 

Wilby, R.L., Wigley, T.M.L., Conway, D., Jones, P.D., Hewitson, B.C., Main, J., Wilks, D.S., 

1998. Statistical downscaling of general circulation model output: A comparison of 

methods. Water Resources Research 34, 2995–3008. https://doi.org/10.1029/98WR02577 

Wilks, D.S., 2011. Statistical Methods in the Atmospheric Sciences, 3rd ed, International 

Geophysics. Elsevier, 676 pp. 

Wilmot, C.J., 1982. Some Comments on the Evaluation of Model Performance. Bulletin 

American Meteorological Society 63, 1309–1313. 



230 

 

Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of 

dynamical and statistical approaches to downscaling climate model outputs. Climatic 

Change 62, 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e 

Zhang, P.G., 2003. Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0 

 

Every reasonable effort has been made to acknowledge the owners of copywrite material. It 

would be my pleasure to hear from any copywrite owner who has been incorrectly 

acknowledged or unintentionaly omitted.  

https://doi.org/10.1016/S0925-2312(01)00702-0


231 

 

CHAPTER 10 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

10.1 Summary  

CMIP5 introduced the decadal experiment, for the first time, to examine the predictive 

capabilities of the forecasting system on decadal timescales. Previous studies examined the 

fidelity of the decadal experiment over different climate variables of their different temporal 

and spatial scales. Most of the studies were, however, for the temperature and temperature-

based climate indices. Quite limited research was conducted on decadal precipitation and no 

attention was paid to a catchment level for the spatial resolution finer than 0.50. This study 

assessed the CMIP5 decadal hindcast precipitation at a catchment level for a spatial resolution 

of 0.050 and then applied the assessment outcomes in the future prediction of monthly 

precipitation for a decadal timescale. It comprises three different phases in which a wide range 

of skill tests was employed for measuring, comparing, and assessing the skills. In the first 

phase, it was focused to investigate the suitable spatial interpolation method for re-gridding the 

GCMs derived precipitation from their native grids into the finer spatial resolution of 0.050 

(chapter 3). It was also checked either 10 or 30-years simulations of the CMIP5 decadal 

experiment (chapter 4) work better for future prediction. In the second phase, it quantified the 

drifts of the models contributed to the CMIP5 decadal experiment, and their MMEM, for 

monthly and seasonal mean precipitation (aggregated from monthly data) and then assessed 

the suitability of widely used mean-drift correction method at a catchment level (chapter 5). 

Next, the drift correction alternatives were investigated for the seasonal mean precipitation and 

proposed a modified drift correction method for the seasonal data (chapter 6). In the last step 

of the second phase, models’ performances were measured, categorized the models based on 

their performances over the entire catchment, and then sorted the optimum number of models 

for forming the best MMEM from both the temporal and spatial skills perspectives (chapter 7). 

In the third phase, this study predicted the monthly precipitation for a decadal timescale using 

Facebook Prophet, Machine Learning regression algorithms, and a Bidirectional LSTM where 

a combination of GCMs derived and observed data was employed (chapter 8 and 9). Prediction 

skills were measured and compared based on several skill tests. Each chapter has specific 
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conclusions that address the chapters’ objectives. In this chapter, overall conclusions are drawn 

and some recommendations are made for further study. 

10.2 Conclusions 

Assessment of the GCMs’ performances over every individual location is important to build 

confidence in their future predicted values and form their multi-model ensembles’ mean. This 

study finds, GCMs with the higher atmospheric resolutions performed considerably better and 

the inclusion of GCMs derived values in the stochastic or time-series models along with the 

observed values for the future prediction enhances the prediction accuracy at the local or 

catchment levels. Individual chapters also presented specific conclusions while addressing the 

research questions. A summary of the conclusions is presented below.   

➢ Spatial interpolations are commonly used in practice to transfer the GCMs derived 

coarse spatial resolution data to required finer spatial resolutions. The second-order 

conservative (SOC) method is an appropriate choice for re-gridding GCMs derived 

precipitation as it conserves the precipitation flux over the study area while re-gridding 

onto subsequent grids. It will help the researchers along with other potential users to 

sort out the best spatial interpolation methods, especially for the GCM derived 

precipitation in decadal scale. 

➢ Due to the higher rate of ongoing climate change, GCMs predicted climate data of 

longer lead-time might contain higher uncertainty than the data of comparatively shorter 

lead-time. This study finds, the 10-year simulations of the CMIP5 decadal experiment 

show comparatively lower bias and higher skills as opposed to the 30-year simulations 

due to its shorter lead-time and higher number of ensembles. It reveals models’ inability 

to adapt to the higher changing rate of future climate as well as a higher number of 

ensembles. 

➢ Drift is the fundamental problem of the models for decadal predictions. This study finds 

drifts in monthly and seasonal (aggregated from the monthly values) hindcast 

precipitation of the CMIP5 decadal experiment and demonstrates that the mean-drift 

correction method is not sufficient to alleviate the drift. It refers to investigating drift 

correction alternatives. To minimize the drift up to a certain limit, aggregating monthly 
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values into seasonal mean and multi-model ensemble mean instead of individual models 

are suggested. 

➢ Drift correction is the prerequisite work for the application of GCMs derived decadal 

climate variables. For the seasonal mean precipitation (aggregated from the monthly 

hindcast values), the Nested bias correction (NBC) method may work better if drifts are 

not too high but the modified drift correction (MDM) method proposed in this study 

found comparatively better for the models with higher drifts. The relative drift (RDT) 

correction method was found best while considering the correction for the total 

precipitation. Users need to utilize their prudence while selecting the drift correction 

methods based on their specific needs. 

➢ Evaluation of GCMs’ predicted historical data based on their corresponding observed 

values determines how well they represent the historical climate and thus develop 

confidence in their future predictions. This study finds that the ranking of models based 

on their skills and optimizing the number of models is an important requirement before 

forming a multi-model ensemble mean (MMEM). Models with higher atmospheric 

resolutions show comparatively better performance compared to the coarse spatial 

resolutions and MIROC4h outperformed all the selected models because of its high 

atmospheric resolutions. A combination of MIROC4h, MRICG-CM3, EC-EARTH, 

MPI-ESM-LR, and MPI-ESM-MR provides the best outcome as MMEM over the 

Brisbane River catchment. It will help the water manager, infrastructure developers, 

agricultural stakeholders in selecting the best models before making any decision in 

planning and developing infrastructures based on the models’ predicted future values. 

➢ Early and accurate predictions of precipitation have become very challenging as it is 

highly variable over time and space. For the precipitation prediction at the local level, 

considering GCMs derived data in addition to the observed values provide better 

prediction skills compared to the prediction based on the observed data only. Facebook 

Prophet (FBP) Model was found comparatively better over the Machine Learning 

regression models due to its wide range of tuneable features including seasonality 

functions. 

➢ Application of GCMs derived precipitation as a feature and the corresponding observed 

values as target variables in a BiLSTM model following a supervised training approach 

enhance the prediction accuracy. The supervised training approach enabled the 
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BiLSTM model to reproduce the dry events comparatively better than the wet events. It 

reveals that a BiLSTM can be used as an alternate of drift/bias correction for a decadal 

timescale after following a supervised training approach for a longer training period.  

Both the BiLSTM and FBP model showed comparatively better prediction skills than 

MMEM and the prediction based on the observed data only. Compared to wet events, both 

models performed considerably better in reproducing the dry events that may be due to 

following supervised training approach in BiLSTM, multiplicative seasonality function in 

FBP, and both models’ capability to read the boundary limit (zero values) of dry events that 

was not possible for wet events. This study reveals a BiLSTM can be used as a sophisticated 

drift/bias correction method following a supervised training approach with a longer training 

period. Upon comparing the skills between FBP and BiLSTM, FBP was found little better 

BiLSTM. However, in reproducing the extreme wet events, BiLSTM seems performed 

better than FBP. These skills may change with the changes of locations for different 

datasets, different architecture, and features of models.  

10.3 Limitations and the further recommendations 

This study has been enclosed a comprehensive assessment through a wide range of skill tests 

for the CMIP5 decadal precipitation at the catchment level and predicted monthly precipitation 

for a decadal timescale using ANN and ML algorithms. For re-gridding the GCMs data from 

their native coarse to desired finer spatial resolutions, the spatial interpolation method was 

used. Though downscaling are prevalent, use of the spatial interpolation method is very 

common practice to avoid the complexity and time consuming.  Downscaling requires rigorous 

computational facility as well as many other climate variables, which are not the scope of this 

study. Due to the limited scope and specified period, this study used spatial interpolation 

methods and was limited to only the Brisbane River catchment.  

For the future prediction, Facebook Prophet and BiLSTM models are used and both of which 

have huge tuneable features. Though most of the parameter values were optimized, however, 

still there are a few time series models with different features, and other issues can be resolved 

in future studies which are listed below. 
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1. Using the downscaled data may provide a different presentation of the model 

performances over the catchment that can be considered in further study. A comparative 

study between downscaling and spatially interpolated precipitation data following the 

SOC method can be carried out to justify the model performance and their categories. 

2. Other catchments at different hydrological regions in Australia and also in different 

locations around the globe can be carried out for the cross-validation of this study. 

3. Recently, CMIP6 decadal data have been released that includes more frequent (yearly, 

instead of 5-yearly) hindcast start dates, larger ensembles of the hindcasts for individual 

start date, finer atmospheric resolution of the models, enhanced parameters of the cloud 

microphysical process, additional earth-system processes such as biogeochemical 

cycles and ice sheets. For the decadal prediction, CMIP5 used the mid-range future 

scenario (RCP4.5) based on 2100 radiative forcing whilst CMIP6 used socioeconomic 

pathways (SSPs), which is a more realistic scenario. This study recommends further 

research to compare the drift as well as models performances produced by the CMIP6 

decadal precipitation with that of the CMIP5 model output at a catchment level. This 

would provide a more robust understanding of the characteristics of drifts and model 

performances for the practical uses of models’ predicted precipitation data. 

4. For future prediction, a few time series models such as Auto-Regressive Integrated 

Moving Average (ARIMA), Seasonal Auto-Regressive Integrated Moving Average 

(SARIMA), and Seasonal Auto-Regressive Integrated Moving Average with 

exogenous factors (SARIMAX) can be considered using both the GCMs derived 

precipitation and the corresponding observed data together. 

5. For future prediction through BiLSTM, this study used only the Box-cox power 

transformation and ‘tanh’ activation function in all hidden layers of a BiLSTM model. 

A different form of architecture such as a higher number of hidden layers and different 

activation functions can be used for further investigation. In addition, different data 

processing such as ‘Normalization’, ‘StandardScaler’, and ‘MinMaxScaler’ 

transformation can also be investigated in further studies. 


