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Abstract 

Biomathematical models (BMMs) are parametric models that quantitatively predict fatigue 

and are routinely implemented in fatigue risk management systems in increasingly diverse 

workplaces. There have been consistent calls for an improved "next generation” of BMMs 

that provide more accurate and targeted predictions of human fatigue. This review examines 

the core characteristics of next-generation advancements in BMMs, including tailoring with 

field data, individual-level parameter tuning and real-time fatigue prediction, extensions to 

account for additional factors that influence fatigue, and emerging nonparametric 

methodologies that may augment or provide alternatives to BMMs. Examination of past 

literature and quantitative examples suggests there are notable challenges to advancing 

BMMs beyond their current applications. Adoption of multi-model frameworks, including 

quantitative joint modelling and machine learning, was identified as crucial to next-

generation models. We close with general recommendations for researchers and model 

developers, including focusing research efforts on understanding the cognitive dynamics 

underpinning fatigue-related vigilance decrements, applying emerging dynamic modelling 

methods to fatigue data from field settings, and improving the adoption of open scientific 

practices in fatigue research. 
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cognitive modelling 
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1 Introduction 

Fatigue is often defined as a physiological state of reduced mental or physical 

performance capability resulting from sleep deprivation, circadian processes, or other 

situational factors (Noy et al., 2011). In situations where failures of sustained vigilance can 

have serious consequences, fatigue prediction is often implemented to mitigate risk.  

Biomathematical models (BMMs) are often applied to predict the neurobehavioral outcomes 

of fatigue (e.g., alertness or response time) using time of day and sleep/wake history (for an 

overview, consult Civil Aviation Safety Authority, 2014). For example, airlines utilize crew 

management systems that coordinate workforce allocation across the globe using projected 

fatigue, and militaries utilize BMMs to implement watchkeeping schedules that optimize 

operational readiness. The proliferation of BMM tools (e.g., Hursh et al., 2004; Roach et al., 

2004) has supported fatigue management in safety-critical work domains such as aviation, 

transportation, construction, and defence. In these contexts, practitioners typically predict 

fatigue using pre-configured ‘default’ BMM implementations that provide population average 

fatigue forecasts. Such implementations have several applications, for example they help to 

compare the relative fatigue risks of alternative work rosters, facilitate the design and 

planning of future technical systems (Boeing et al., 2020), and support accident investigation 

procedures (Price & Coury, 2015). 

Due to the success of BMMs, the increasing abundance of data in modern workplaces, 

and the rise of increasingly powerful automation technologies, there have been calls to 

develop new fatigue prediction methods with additional capabilities (Dawson et al., 2011; 

Gunzelmann et al., 2019). We refer to these desired advancements as next-generation fatigue 

modelling, consistent with prior literature (e.g., Dawson, 2012; Dawson et al., 2011; Stone et 

al., 2020). Although next-generation fatigue prediction could be developed using a range of 

approaches, we focus primarily on development of models that are extensions or adaptations 
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to BMMs. This is because BMMs are routinely employed in fatigue-risk management 

systems in industry applications and continue to receive significant research interest. Where 

relevant, we discuss complementary non-parametric approaches to fatigue prediction (2.4) 

and alternative approaches for latent variable estimation (3.1). The need for improved BMMs 

has been recognized for some time by both industry and researchers (Flight Safety 

Foundation, 2005; Hursh et al., 2004; Klerman & Hilaire, 2007; Reifman, 2004) and the core 

limitations of existing BMMs have been previously reviewed (Dawson, 2012; Dawson et al., 

2011). The most thoroughly researched approaches to improve BMMs include tailoring them 

to match the fatigue dynamics of work environments and populations of interest; 

individualizing them to specific operators or individuals (Liu et al., 2017; Reifman et al., 

2007; Van Dongen et al., 2012); and expanding them to incorporate a wider range of fatigue-

related factors, such as workload (e.g., Honn et al., 2016; H. T. Peng et al., 2018). The central 

theme across these advancements is a need for more accurate and targeted predictions of 

human fatigue. Such models would have significant implications for safety-critical job 

domains in which teams must contend with significant environmental and workplace 

demands (e.g., time pressure, confinement, danger), and maintain high levels of vigilance, 

performance, and safety over lengthy missions (Bell et al., 2016; Bishop, 2004; Mallis & 

DeRoshia, 2005). 

Enthusiasm for next-generation BMMs remains high (e.g., Bendak & Rashid, 2020; 

Civil Aviation Safety Authority, 2014; Flynn-Evans et al., 2020; Stone et al., 2020) and is 

stimulated by growth in fatigue science, advances in artificial intelligence, and emerging 

sensor technologies that detect physiological fatigue responses. Despite this enthusiasm, and 

substantial research efforts, progress is still in early stages. Research is limited primarily to 

experimental proof-of-concepts, with few next-generation features validated in or applied to 

the industries where predictive improvements are most crucially needed. Further, calls for 
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next-generation models have echoed throughout scientific and industry-focused publications 

since the early 2000s, yet there remains a scarcity of successful implementations. In 2004, 

Dinges concluded that “Most current models of fatigue and its effects on performance appear 

to be more descriptive curvefitting, than theoretically driven, hypothesis-generating, data-

organizing, mathematical approaches” (p. A182). There have been few changes in this regard 

in the years since. 

A pressing question of concern is why has this research plateaued? Are there barriers, 

such as statistical constraints, that have slowed down the enhancement of BMMs and their 

application to relevant industries? In this article, we aim to describe the limitations of current 

methods and stimulate new avenues of research and development. In doing so, this paper also 

serves to consolidate the heterogeneous research on fatigue prediction into a more complete 

analysis of current development and progress, including emerging methods that can support a 

better understanding of the dynamics of fatigue. Elucidating the limits of BMMs does not 

preclude their continued use or refinement, instead it improves the certainty practitioners and 

researchers can have regarding their realistic effectiveness, in turn, fostering new avenues of 

research and safety optimization. 

We begin the paper by reviewing the key characteristics of next-generation models, 

focusing on tuning model parameters using field-derived data (2.1), individual-level 

parameter tuning and real-time fatigue prediction (2.2), and extensions to modelling 

algorithms to account for additional factors that influence fatigue (2.3). We then review 

alternative emerging methodologies in statistical learning and artificial intelligence which 

may augment or provide alternatives to BMMs (2.4). Throughout these sections, we 

summarize recent research progress, identify practical and theoretical constraints limiting 

real-world applications, and where appropriate utilize simulations and use quantitative 



 NEXT-GENERATION BMMs 6 

examples to explicate our arguments. We conclude the paper with a general summary of our 

findings, and discuss key challenges and opportunities facing the field of fatigue science. 

2 Next-generation Fatigue Prediction Methods 

Next-generation models offer opportunities to extend the applicability of fatigue 

prediction beyond their current capabilities of forward scheduling and population-average 

roster analysis. Three capabilities are core to the propositions of how BMMs can be adapted 

to meet next-generation goals. The first is that next-generation BMMs should be tailored 

appropriately to work populations and contexts of interest. At present, current generation 

BMMs are largely developed in tightly controlled laboratory settings, with research samples 

of convenience. Thus, there is general consensus that BMMs lack extensive validation in 

many operational contexts and bear only a coarse relationship with real-world risk (Dawson, 

2012; Dawson et al., 2017; Gander et al., 2011; James et al., 2018; Reifman et al., 2007; 

Riedy et al., 2020). The second capability is an important related case of model tailoring 

known as individualisation — that is, the capability to individualize predictions to specific 

employees of interest. Many fatigue prediction scenarios, such as identifying the risk of 

nonoptimal performance or human error in a work environment, require specific predictions 

about the performance of each operator. Unsurprisingly, current generation BMMs, that focus 

on group-level average predictions, have proved to be poor predictors of individual-level 

performance in the field (e.g., in simulated lunar habitation see, Flynn-Evans et al., 2020; in 

naval submarine activities see, Wilson et al., 2021). The third capability is that next-

generation BMMs should be extended to incorporate additional fatigue-relevant factors into 

projections. Current research has focused predominantly on the influence of pharmaceutical 

fatigue counter-measures (Ramakrishnan et al., 2013), chronic sleep dept (Rajdev et al., 

2013), and task demands or workload (Honn et al., 2016; H. T. Peng et al., 2018). Though not 

a core capability, the incorporation of non-parametric methods has been argued to be essential 
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to the realisation of next-generation models (Reifman, 2004). Below, we detail each of these 

key areas further. In doing so, we directly assess the limitations of BMMs for next-generation 

fatigue modelling and also provide readers with practical directions for future research. 

2.1 Tailoring BMMs to Work Populations and Contexts 

A frequently raised concern about current generation BMMs is that the laboratory 

conditions under which they are developed do not accurately represent the fatigue dynamics 

that occur in the work populations and scenarios of application (Dawson et al., 2017; Dean et 

al., 2007; Williamson et al., 2011). Indeed, many operational contexts involve challenges that 

make the assumptions of default BMM parameterizations inappropriate. For instance, in the 

submarine context, the lack of exposure to natural light sources in conjunction with artificial 

sleep-wake patterns (demanded by rostering constraints) is thought to disrupt circadian 

processes and rhythmicity, potentially altering the predictive contribution of the circadian and 

ultradian processes in BMMs (Cham et al., 2021; Guo et al., 2020; Sandal et al., 2006). 

Similarly, sleep quality can be disrupted by environmental factors such as motion or ambient 

noise, potentially influencing the homeostatic recovery rate (Beare et al., 1981; Guo et al., 

2020). Thus, the use of BMMs estimated based on laboratory data may limit the accuracy of 

workplace fatigue predictions. In turn, this limitation may compromise risk mitigation efforts 

when performing forward-scheduling or mission planning (Flynn-Evans et al., 2020; Reifman 

et al., 2007; Wilson et al., 2021).  

There are several ways that BMMs could be augmented or adjusted to represent the 

dynamics of a work population of interest more appropriately. One conceptually 

straightforward method is parameter tuning. BMMs include free parameters, which 

theoretically can index variations in fatigue dynamics across individuals or work contexts 

(Van Dongen et al., 2007). It follows, that a straightforward way to ‘tailor’ or ‘tune’ a BMM 

is to adjust model parameters to better describe the observed fatigue measurements from a 
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work setting of interest. In later sections, we will discuss more complex approaches, such as 

augmenting the actual underlying BMM formulae to take account of additional variables.  

However, the importance of tuning the parameters of current generation BMMs can reveal 

important statistical constraints underlying the models. 

Tailoring BMMs to specific populations or contexts requires representative fatigue 

data that models can be trained and parameterized with. Obtaining appropriate fatigue data 

that improves BMM predictions, relative to using default parameterizations, is challenging. 

One solution is to conduct high-fidelity laboratory studies with a relevant workplace 

population sample and simulate their expected workplace conditions in terms of tasks and 

work composition, for example with the use of synthetic task environments (Flynn-Evans et 

al., 2020; Gonzalez et al., 2005). This approach allows for exposure to natural light to be 

experimentally manipulated, the timing and duration of sleep periods, or timing of work-

representative tasks (and workload), to be controlled. This method dramatically improves 

external validity while retaining the experimental control required for model estimation and 

development (e.g., Vital-Lopez et al., 2021). 

Applying an experimental approach may not be feasible in many industries due to the 

constraints associated with how accurately the relevant factors affecting fatigue in a 

workplace can faithfully represented with laboratory resources. For many industries, it can be 

costly to retain experts in laboratory studies for the durations necessary to ascertain fatigue 

trajectories, which may be on the order of several days (e.g., in maritime domains, van 

Leeuwen et al., 2020). Therefore, an appealing alternative is to capture relevant fatigue and 

sleep data directly in the work environment (i.e., measure individuals in the operational 

context). The prospective benefits of this approach are: 1) it inherently offers the best chance 

of capturing the strain and recovery dynamics directly as they unfold in response to the 

environmental stressors that influence the underpinning neurobiological fatigue process; and 
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2) field fatigue measurement is essential for ‘real time’ prediction, in which future fatigue 

forecasts are updated based on incoming observations of field data. In this way, efforts to 

improve field measurement can concurrently support the development of methods which do 

not require all fatigue data to be collected prior to prediction. 

There are challenges to this approach that must be considered. To successfully 

estimate BMM parameters from field data representative of important work contexts, data 

must be minimally invasive to collect, and yet comprehensive enough to identify the complex 

non-linear dynamics specified by BMMs. Given there are many possible processes that may 

underlie fatigue in the field, it is probable that fatigue and sleep measurement is subject to 

significant noise. If field measurements are too sparse or of insufficient quality to provide 

reliable estimates of true underlying fatigue dynamics, a BMM trained on that sample could 

fail when used to predict new data. Cross validating trained BMMs on new data can provide 

some level of assurance (e.g., Ramakrishnan et al., 2016). However, cross validation does not 

speak to the ability of BMMs to measure the fatigue processes of an individual or group, a 

goal which has been pursued in the literature (Ramakrishnan et al., 2015). It speaks only to 

predictive accuracy for a particular set of data, and therefore provides no guarantees that a set 

of BMM parameter estimates will generalize to data ranges (e.g., sleep schedules) outside of 

those that have been tested. Thus, a key step in determining the feasibility of tailoring BMMs 

is to understand their estimation properties in simulations with field-like data. 

In the following section, we explore the feasibility of estimating a BMM using field 

data with a simulated parameter recovery study. With this approach, estimation properties are 

interrogated by simulating data from a set of known parameter values, then (treating the 

synthetic data as if it were real data) applying an estimation technique and checking the 

extent to which estimated values match the true values. Parameter recovery has been called 

for in the fatigue science literature (e.g., Reifman et al., 2007) and can inform the capability 
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of BMMs to meet next-generation needs. To foreshadow, our results indicate that under 

highly favourable assumptions (regarding sampling frequency, measurement accuracy, and 

underlying fatigue dynamics) some model parameters can be well-estimated from field data, 

but important parameters relating to the homeostatic process are poorly estimated. 

2.1.1 Parameter Recovery Study 

The parameter recovery data structure is derived from an intensive longitudinal study 

of 64 navy submariners, across three submarine activities which lasted from 8 to 12 days each 

(see Wilson et al., 2021, for further details). Compliance was high, with the protocol 

embedded in work routines. Thus, we believe the data are of the upper bound of quality for a 

field scenario without risking extraneous demands to submariners. We generated a simulated 

dataset that matched the actual data with respect to sleep/wake patterns and fatigue 

observation timing and frequency (N = 1749). Further details of the measurement protocol, 

data structure, and model fitting procedure are included in the supplementary materials.  

We examined the parameter recovery properties of the “unified model of 

performance” (Rajdev et al., 2013) because it is analytically tractable and it includes a sleep 

debt mechanism that theoretically accounts for the chronic fatigue accumulation likely to 

occur in operational environments (Liu et al., 2017; Rajdev et al., 2013; Ramakrishnan et al., 

2013). 100 different sets of unified model parameter values were sampled (see supplementary 

materials for parameter ranges and sampling approach). Note that some BMM parameters 

depend on the scale of the outputted prediction (e.g., psychomotor vigilance task [PVT] mean 

response time, PVT lapses). We scaled the outputted fatigue prediction to approximately 

cover the number of lapses expected on a 10-minute PVT in order to match the BMM 

literature (e.g., Rajdev et al., 2013). For each of the 100 parameter sets, we simulated fatigue 

data from the model (with the respective parameter set), using the true recorded submariner 

sleep/wake patterns and fatigue measurement timestamps as inputs. We then fit the unified 
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model to this simulated data in order to obtain the recovered parameter estimates. A match 

between the recovered parameter values and the original generating parameters (ground truth) 

indicates identifiability (i.e., good parameter recovery) — which is, the extent that parameters 

unambiguously describe the observed data better than any other set of parameters. 

We used Stan (Carpenter et al., 2017) for the R Language (R Core Team, 2020) which 

estimates parameters with Bayesian Markov Chain Monte Carlo methods. This provides 

information not only about the most likely parameter estimates, but also the distribution of 

possible values, thus capturing uncertainty. Figure 1 shows the results of the analysis, with 

the recovered parameter estimates plotted against the generating parameters. In each panel, 

wider error bars indicate greater uncertainty and accuracy is shown by dispersion from the 

centre line. To characterize the posterior mean parameter estimates, we also present mean 

absolute bias error (MABE = �1
𝑛𝑛
�∑ �𝜃𝜃𝚤𝚤� − 𝜃𝜃𝑖𝑖�𝑛𝑛

𝑖𝑖=1  ) and normalized root mean square error  

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
�1
𝑁𝑁∑ �θ𝑖𝑖−θ𝚤𝚤��

2𝑁𝑁
𝑖𝑖=1

maxθ−𝑚𝑚𝑖𝑖𝑛𝑛(θ)
 ⋅  100), where 𝜃𝜃� is the estimated posterior mean parameter value and 𝜃𝜃 

is the true parameter value. NRMSE provides a descriptive summary of the apparent scaled 

relative differences in error across parameters. 
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Figure 1. Recovery of group-estimated unified model parameters from an applied data 
structure. 

 
Note: The x-axis indexes the generating parameter values. The black circles correspond to estimated posterior 
means of the parameters and the grey lines correspond to 95% credible intervals. The line y = x is depicted, with 
estimates near the line indicating good recovery. Parameter ranges roughly correspond to the number of lapses 
on a 10-minute PVT. Parameter were bounded by transforming the homeostatic parameters L (0) and S (0): l (0) 
= L (0) / U and s (0) = [S (0) - L (0)] / [U – L (0)], and it is these scaleless parameters that are depicted. For all 
other parameters, scale is specified in the panel headings. 
 

The results show high estimation accuracy and certainty was present for three critical 

parameters: U which informs the relative upper-bound contribution of the homeostatic 

process (MAB = 0.28, NRMSE = 2.38%); κ which controls the relative contribution of the 

circadian process (MAB = -0.14, NRMSE = 4.2%); and Φ which controls circadian phase 

(MAB = -0.18, NRMSE = 2.01%). The time constant parameters that control the rate of 

fatigue accumulation τw (MAB = 0.04, NRMSE = 8.08%) and recovery τs (MAB = 0.25, 

NRMSE = 5.71%) were mostly accurate, but estimation was highly uncertain. The parameter 

τLA controlling long-term sleep deprivation processes recovered particularly poorly (MAB = 

5.85, NRMSE = 27.99%). One Bayesian technique to address this would be to place a tight 
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prior distribution on the value of τLA, centred on the parameter values obtained from previous 

studies. The recovery of the initial level of homeostatic fatigue (S0; MAB = -0.14, NRMSE = 

21.83%) was also poor, but this is not necessarily problematic as the initial level of fatigue is 

unlikely to have a long-running effect (particularly over extended timeframes).  

The analysis presented here is probably near the upper limit on expected parameter 

estimation in field settings. We included a large sample with a high within-person 

measurement sampling rate over a broad time scale. The fatigue observations here were 

generated assuming that the unified model is the true model of fatigue dynamics, and 

assuming normally distributed noise without any systematic biases. In other words, our 

analysis does not assume there are any additional factors (e.g., workload or fatigue 

countermeasures) that bear systematic influence on fatigue, which is not what would be 

expected in naturalistic environments. We have also assumed individuals within the sample 

are homogenous in terms of parameters (e.g., identical circadian phase), and we did not place 

constraining bounds on the data ranges that the models can predict (e.g., by fixing the 

minimum or maximum number of lapses). In realistic field conditions, these assumptions are 

likely to be violated (i.e., differences in parameters across individuals and bounded possible 

observed fatigue scores), reducing the quality of estimation.  

Overall, the results here are consistent with prior research on the unified model (Liu et 

al., 2017). The relative contributions of the homeostatic and circadian process to fatigue 

recovered reasonably well. Although circadian phase also recovered quite well, in practice it 

would be more appropriate to estimate phase using alternative data (e.g., core body 

temperature, sleep timing, light exposure) (Brown et al., 2021; Stone et al., 2020). The 

parameters requiring most attention were the time constants of the homeostatic process. 

These parameters recovered poorly, implying that the time course of the fatigue response to 

sleep/wake time was difficult to estimate, even under ideal conditions. As identifying the time 
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course of the homeostatic process is one of the primary interests of field estimation, this 

result suggests there may be little added utility provided by BMMs estimated from field data 

as compared with standard BMMs trained on laboratory data. However, there are other 

potential mechanisms of model advancement which we explore in more detail below, 

including model individualization and extension. 

2.2 Model Individualization and Real-Time Prediction 

The so called “Holy Grail in fatigue and performance modeling” is complete fatigue 

prediction individualization through tailoring model parameterizations to the individual 

person (Reifman, 2004, p. A177). The theory of individualization is that between-person 

differences in circadian phase, or potentially the biological dynamics governing sleep 

regulation, can be directly included within the modelling framework by adjusting 

parameterizations for each person uniquely. Consistent with group-level estimation, 

parameters can be estimated based on either observation within a controlled laboratory 

context, or from data collected in field operations. This latter approach is the basis of “real-

time” fatigue-prediction tools, in which parameters are estimated for individuals in response 

to real-time incoming data streams, with the possibility of reactively identifying fatigue risks 

in the workplace (e.g., see Liu et al., 2017). Although this approach requires considerable 

amounts of data per person (i.e., both sleep and fatigue observations), there are strong 

justifications to assume that characterizing between-person differences may improve model 

performance. 

From a practical perspective, in many safety-critical workplaces it is often of most 

interest to obtain fatigue projections for specific employees over a period of hours to a few 

days (fitness to work), rather than whether on average they stay below fatigue safety 

thresholds given a particular roster. In complex, inter-dependent work systems, such as those 

often required in extreme work environments, unsafe levels of fatigue in even one team 
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member could have serious consequences (Cham et al., 2021). The real-time fatigue forecasts 

made possible by individualization promise improved tactical decision making (e.g., deciding 

on ideal times to execute mission scenarios) and crew rotation decisions (e.g., which staff 

may be at heightened performance risk). 

There are also strong justifications from research and theoretical perspectives. 

Individuals are known to vary with respect to chronotype (Brown et al., 2021), the timing of 

rest-periods (Archer et al., 2008), and vulnerability to sleep deprivation (Chua et al., 2019). 

Early research has indicated individualized models are possible (Dawson et al., 2011; 

Ramakrishnan et al., 2015) with uncertainty regarding which parameters should be 

considered as stable trait difference, relative to state differences that may fluctuate within-

person (Ramakrishnan et al., 2015; Van Dongen et al., 2007). A key benefit of 

individualization is that BMM parameters can be informed by measures other the 

performance criterion. For instance, recent circadian modelling research has indicated that 

lighting conditions bear strong predictive influence over circadian angle of entrainment and 

preferred sleep timing (Papatsimpa et al., 2021; Phillips et al., 2019). Allowing BMM 

circadian phase parameters to be informed from actigraphy and photometry data passively 

(see Brown et al., 2021) would reduce model complexity and improve predictive accuracy. 

Thus, leaving individualized parameter estimation using behavioral data for only a subset of 

the full model parameters. 

Despite the appeal of BMM individualization, there are several notable challenges in 

implementing the approach. The parameter recovery issues outlined in the last section apply 

even more strongly when the requirement is to tune BMM parameters to the sparse fatigue 

observations of each individual. As a result, existing individualized models either require 

prior knowledge of a reliable group-average model (e.g., Liu et al., 2017; Van Dongen et al., 

2007), or are applied to unrealistically simplified conditions such as total sleep deprivation 
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(Rajaraman et al., 2008, 2009; Van Dongen et al., 2007). Further, in field contexts there are 

no guarantees that the variation in fatigue observations are uniquely associated with the 

processes assumed within the BMM (unlike laboratory contexts whereas many factors as 

possible are controlled for) (Reifman et al., 2007). For example, if employees face high levels 

of work-induced fatigue during waking hours, and this is not directly instantiated in the 

BMM, it is likely that BMM fitting would falsely attribute this work-induced fatigue to 

increased homeostatic pressure. Further, the extent of inter-individual differences in 

vulnerability to sleep loss can depend on the performance measure (see Chua et al., 2019). 

Thus, for operational contexts, the relationship between an individual’s actual task 

performance and model prediction may depend on the variable used in the model.  

In summary, individualizing BMMs is a priority of next-generation modelling and 

promises many potential benefits. Although fitting BMMs to the behavioral data of 

individuals holds some promise towards this goal, it is constrained by substantial data 

limitations. Future approaches to individualization, particularly involving field data, are 

likely to greatly benefit from incorporating other individualized sources of data, such as light 

exposure (Phillips et al., 2019; Stone et al., 2020)  

2.3 Extending the BMM Processes 

In real-world conditions, the causes of fatigue are heterogenous and are not driven 

purely by homeostatic and circadian processes (S. Banks et al., 2019; Desmond & Hancock, 

2001; Wilson et al., 2021). To accurately model these exogenous influences, and thereby 

increase prediction accuracy, parametric model extension has been pursued as a key direction 

for future BMMs. This involves adjusting model equations to directly specify how additional 

processes of interest affect the functional form of fatigue. Conventional BMMs predict 

fatigue based purely on sleep history and time of day, with some including processes for 

chronic sleep restriction (e.g., Rajdev et al., 2013). Research has focused predominantly on 
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the influence of pharmaceutical fatigue counter-measures (Ramakrishnan et al., 2013), 

chronic sleep dept (Rajdev et al., 2013), and task demands or workload (Honn et al., 2016; H. 

T. Peng et al., 2018).  

Here we consider whether parametric model extension of BMMs is likely to meet 

next-generation demands. To illustrate parametric model extension, and assumptions or 

decisions embedded within, we formally detail a worked example of the extension process. 

We focus on the salient example of how workload may modulate fatigue in order to 

demonstrate the benefits and barriers involved in parametric model extension. It is 

uncontroversial that fatigue can be influenced by work factors, such as shift duration and 

workload (Desmond & Hancock, 2001; Dorrian et al., 2011; Grech et al., 2009; Wilson et al., 

2021). Consequently, there has been much discussion of extending BMMs to describes the 

process of how work demands (or simply work hours) influence fatigue.  

Consistent with the recovery analysis, we selected the unified model of performance 

as the starting point for the workload extension (Rajdev et al., 2013). Our extended model 

includes an additional process wherein fatigue from work demands, referred to as D, accrues 

over time spent working, with the exact rate dependent upon the level of homeostatic fatigue 

(i.e., fatigue resulting from sleep processes). The model specifies that work demands 

primarily influence an individual’s sensitivity to fatigue (Baulk et al., 2007). That is, task 

demands only additively increase fatigue when homeostatic pressure is high. The model 

implicates that high work demands can be more effectively managed by well-rested 

individuals with lower performance costs, relative to individuals with high homeostatic 

fatigue. This is consistent with how other groups have implemented workload BMM 

extensions. For example, Peng et al. (2018) proposed a model in which working-related 

fatigue accrues over time spent working, at a rate proportional to workload and current 
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homeostatic fatigue. Further, Honn et al. (2016) incorporated a similar approach into the 

McCauley state-space model.  

Equation 1 specifies how workload-related fatigue accrues over time spent working, 

with the speed of accrual at each time depending on homeostatic pressure. Equation 2 

specifies how recovery from work-related fatigue follows an exponential function. A 

computational implementation of the model can be found in the supplementary materials. 

𝐷𝐷𝑡𝑡 = 𝐷𝐷0 +  𝛾𝛾 × � max(𝑁𝑁𝑡𝑡, 0)
𝑡𝑡

0
𝑑𝑑𝑑𝑑 (1) 

𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑙𝑙 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏𝑟𝑟(𝐷𝐷𝑙𝑙 − 𝐷𝐷0) (2) 

In both equations, 𝑑𝑑 represents the total time spent working or resting, 𝐷𝐷𝑡𝑡 represents the total 

fatigue from work demands at t hours, 𝐷𝐷0 represents the initial level of work-related fatigue 

(at the start of a rest or work episode), 𝛾𝛾 is a free parameter that controls the rate of fatigue 

accrual due to work demands, 𝑁𝑁𝑡𝑡 represents the homeostatic pressure after working for time 𝑑𝑑. 

The integral of 𝑁𝑁𝑡𝑡 is only taken for values above 0, to avoid the possibility of negative work-

induced fatigue (i.e., work decreasing fatigue). Finally, 𝜏𝜏𝑟𝑟 is a time constant controlling the 

rate of recovery. Figure 6 shows the impact of adding this workload-related fatigue module 

onto the overall fatigue predictions from the unified model for the standard 9-5 working 

arrangement (across 16 different r parameter values). 
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Figure 6. Sensitivity plot for work fatigue process on total fatigue in the simulation. 

 
Figure note. The grey area denotes time at work (9AM-5PM), while the pale-blue area denotes sleep. The y-axis 
shows the total level of fatigue accrued during the simulation, while the x-axis shows the time into the 
simulation (in decimal hours). The parameter modulated is the work-related fatigue accrual rate, 𝛾𝛾. In the plot, 
16 values of this beta coefficient are modulated (range from 0.1 to 0.4, incremented by .02). Prior to the first 
work episode (dark grey), all participants have an identical level of fatigue. Note the increase in fatigue during 
second sleep is due to the strong circadian influence in this simulation. 
 

The workload model above is representative of the typical process of a parametric 

BMM extension. Evidently, extensions require researchers to make explicit assumptions 

about the functional form of fatigue accrual and recovery processes, and how the added 

process links to the criterion performance variable. This is conceptually straightforward to 

implement, and in our experience, simple sensitivity estimates are useful for practitioners to 

identify possible high-risk situations. However, the example above also highlights challenges 

that prevent this approach from solving the question of next-generation predictive 

performance gains. 
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The obvious limitation of this model, shared with many other BMM extensions, is the 

lack of comprehensive validation. Ideally, researchers progress beyond a proposed model 

extension towards a well validated model component with theoretical rigor (e.g., the sleep-

inertia component of the three-process model, Åkerstedt & Folkard, 1997). Validation 

requires many of the same considerations as those for parameter estimation discussed in 

section 2.1. For example, to determine appropriate parameterizations, researchers would need 

to conduct a controlled laboratory study in which workload was systematically manipulated. 

It must also be determined if work-related fatigue processes elicited using simple laboratory 

tasks are adequate for generalizing to situated workplace contexts. Honn et al. (2016) 

developed a workload extension using PVT performance of pilots performing simulated take-

offs and landings. Their workload model was calibrated by estimating a parameter φ, that 

controlled how severely cognitive task load impacted fatigue. All other model parameters 

were fixed, presumably to enable estimation. Such tightly constrained approaches are useful 

during initial development, but neglects possible parameter trade-offs, raising concerns of 

model identifiability. Indeed, the recovery behavior of even baseline BMMs (section 2.1.2) 

suggests significant challenges exist in freely estimating extended BMMs. 

Arguably, the most significant challenge associated with parametric model extension 

is grappling with the complexity growth of model exploration and validation. Unlike more 

descriptive conventional statistical approaches (e.g., general linear modelling), BMMs 

attempt to precisely specify the functional form of their component processes, and the 

relationships of the processes and their relationships to each other. The current state of 

knowledge of complex forms of fatigue, such as work-induced fatigue, provide few 

constraints on the most appropriate model form. Ideally, model extensions should be 

compared to theoretical viable alternative models. For instance, the workload model we 

introduced above could account for situations of underload induced fatigue (Shultz et al., 
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2010; Young & Stanton, 2002) and does not account for the known “carry over” effects of 

high workload situations on subsequent sleep (Crain et al., 2018). Each such point of 

complexity needs to be weighed against the relative improvement in predictive gains offered. 

Further, such model selection is likely to suffer from identifiability issues analogous to the 

parameter identifiability issues discussed earlier, given the numerous theoretically plausible 

ways that work could affect fatigue, and the relative scarcity of work and fatigue data.  

Despite these critiques, parametric BMM extensions do hold clear benefits. 

Practically, even approximate estimations of how factors such as pharmaceutical counter-

measures impact fatigue can inform the development of safety-promotion strategies (Reifman 

et al., 2016, 2019). Similarly, imperfect models of workload still provide a methodology for 

practitioners to evaluate possible high-risk roster scenarios and formalize assumptions in a 

manner that would otherwise remain as qualitative verbal theory (Ballard et al., 2021). These 

techniques thus offer practical benefits to practitioners, but are unlikely to provide step-

changes in predictive accuracy, theoretical advancement, or operational safety gains. 

2.4 Joint and Non-Parametric Modelling 

The key aim of next-generation fatigue models is to enhance our prediction in ways 

more relevant to the individual operator and the context in which they are situated. This can 

involve both increased precision in multi-factorial prediction as well as improving our 

knowledge of the theoretically relevant factors underpinning fatigue. Given the limitations of 

BMMs, there is a need to examine the alternative methodological approaches, and how they 

may help address these goals. A promising direction frequently noted is adoption of non-

parametric, or machine-learning, based approaches.  

Reifman (2004) distinguished between parametric fatigue models (i.e., BMMs), and 

non-parametric fatigue models (i.e., machine learning approaches), such as artificial neural 

networks, which can generate predictions without necessarily requiring an a priori model 
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structure (see also Breiman, 2001). A core benefit of machine learning approaches is that, in 

principle, they can incorporate any number of predictors (Jordan & Mitchell, 2015), including 

urine output, cortisol levels, workload, and light exposure (Reifman, 2004). Reifman (2007) 

proposed several variants of fatigue prediction involving non-parametric approaches, 

including so-called "hybrid methods" in which BMMs could even be embedded within neural 

network architectures to support prediction. Machine learning may also better enable 

integration of real-time physiological indicators of fatigue, such as cardiovascular state 

(Aryal et al., 2017; Hu & Lodewijks, 2020), although to-date these have been argued to have 

limited utility and validity (Dawson et al., 2014). Given sufficiently mature data and 

computational infrastructure, machine learning approaches could predict fatigue during 

operations, potentially recommending interventions when fatigue is likely to be high. The 

prospect of deploying such systems, in even extreme workplace environments, is increasingly 

possible due to advances in statistical methods, data storage systems, and computational 

processing power.  

It would be timely to begin identifying and validating applications of machine 

learning methods (and related nonparametric approaches) into the fatigue prediction toolkit. 

Even in the case of researchers who continue to pursue BMM extension, machine learning 

methods may also be of significant advantage by integrating with BMMs indirectly. For 

instance, by generating estimates of individuals’ sleep quality and quantity from wearable 

technologies ― referred to as activity classification (Lewicke et al., 2008; Piotrowski & 

Szypulska, 2017). Indeed, Sundararajan et al. (2021) recently applied used random forest 

machine learning models to classify wrist-worn accelerometry data into sleep/wake and non-

wear. The approach was superior to existing methods and is accessible under a direct access 

license. BMMs and machine learning could function synergistically, for example by using 

BMMs to improve machine learning predictions (e.g., model fusion), or by using 
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nonparametric approaches to model whatever residual performance data cannot be fitted by a 

BMM (Bourgin et al., 2019; Sense et al., 2021). This may help overcome some of the 

limitations raised with estimating BMMs directly. 

Due to their lack of a priori structure, machine learning methods have substantial data 

requirements, and can only provide ‘black box’ fatigue estimates that are difficult to 

decompose into the underlying phenomenological processes (e.g., circadian rhythm, 

homeostatic). The lack of a specified underlying process can lead to unexpected and 

intractable failures when predicting data outside of the model’s range of training (e.g., when 

simulating alternative sleep schedules or attempting to generalize predictions across different 

work environments). Recently, Cochrane et al., (2021) used an ensemble machine learning 

model to predict the performance effects of sleep-loss in a forced desynchrony protocol 

dataset. However, the data requirements for accurate prediction were significant, requiring 

required 10-minute PVT administration every 2-8 hours, and is still grounded in laboratory 

validation. Nevertheless, there is a range of emerging non-parametric methods that may 

support fatigue researchers in development predictive frameworks that exceed the capabilities 

afforded by parametric BMMs alone. Overall, this would appear to be the most promising 

pathway forward for the next-generation  of BMM research and practice. 

3 Summary, Future Directions and Conclusions 

The purpose of this paper was to examine whether BMMs are sufficiently able to 

meet the demands of prominent next-generation modelling requirements and to identify limits 

of current methods and avenues for future research. We outlined themes from the literature 

regarding what is needed for improved models in operational contexts, dating back over 15 

years. We described and evaluated current directions for advancing the next-generation of 

fatigue prediction methods, focusing on the application of BMMs in operational contexts.  
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Firstly, we evaluated the practice of tailoring model parameters to populations or 

individuals of interest using in-situ data. Despite the conceptual appeal, we found no strong 

evidence from the literature supporting the feasibility of this approach and noted the logistical 

challenges to data collection are high. We then conducted a parameter recovery study, 

focused on a naval submarine context, which revealed that even under optimistic modelling 

conditions, for several critical parameters the estimation using field data was likely to 

produce highly uncertain estimates, at least for particular parameters. This finding lends 

support to Dawson’s (2011) suggestion that it may not be possible to tailor BMMs to provide 

accurate forecasts for a workplace context using field data. Secondly, we reviewed the work 

to-date regarding individualization. While we noted some promising advancements have been 

made in laboratory contexts, overall, individual estimation in such work was constrained to 

tightly controlled parameterizations of a subset of parameters. Thirdly, we examined the 

practice of parametric BMM extension, and focused on the case of extending a BMM to 

incorporate the effects of workload. Our example and review highlighted the substantial 

challenges associated with extending BMMs, noting that BMMs require tightly constrained 

and theoretically informed mappings between moderator variables and both the underlying 

fatigue function (e.g., sleepiness) and the interaction with other variables of interest. We 

concluded that next-generation BMMs involving model extensions are likely to be 

prohibitively difficult to accurately specify, and extremely challenging to validate complex 

model processes. 

It is crucial to emphasize that the limitations and barriers we have reviewed do not 

preclude continued use of BMMs for their intended purpose of risk-mitigation in average-

level scheduling. Moreover, we are not suggesting there is no merit in continuing to pursue 

existing goals for next-generation BMM features such as generating fatigue predictions that 

are targeted to populations, individuals, or that can incorporate domain-specific variables 
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such as workload. However, our review highlights significant barriers to achieving these 

goals with BMMs. In light of these barriers, in the following section, we provide a set of 

recommendations that can guide researchers and model developers toward what we believe 

are more fruitful avenues for advancing fatigue science.  

3.1 Recommendations for Advancing Fatigue Modelling 

3.1.1 Expanding Theoretical Frameworks of Fatigue and Performance 

The parametric equations underlying the BMM approach are inherently only able to 

capture some proportion of the rich and complex dynamics underlying fatigue. Moving 

forward, fatigue science will require increased emphasis on multi-model thinking, both 

numerically and conceptually, and a change in how we approach measurement of fatigue 

itself. An important pathway to improve fatigue prediction is to better specify the relationship 

between fatigue and the performance predictions of interest.  Our recovery analysis revealed 

that the behavioral response to fatigue is the element that BMMs are least effective in 

capturing (i.e., homeostatic process). There are several possible avenues to this end emerging 

in current literature. 

A particularly important shift is the need to move away from relying on coarse data 

(e.g., PVT mean response time, lapse rates, and subjective fatigue ratings) for both model 

validation and theoretical innovation. Such reliance restricts BMMs to only output 

predictions in terms of those measures, limiting their relevance to performance of complex 

workplace tasks (Williamson et al., 2011). Validation efforts to date for commercial models 

has only linked coarse predictions based on sleep opportunity against historical safety 

incidents (Hursh et al., 2006). Others have suggested that models be calibrated against task 

performance metrics obtained from real-world scenarios, or representative simulations 

(Reifman et al., 2007). This would improve ecological validity (for the relevant domain) but 

do little for generalization. The alternative pathway is to better model the latent mechanisms 
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underlying performance to ensure that performance predictions can generalize across a wide 

range of scenarios and contexts. 

3.1.1.1 Computational Cognitive Models 

To better understand how behavioral performance changes as a function of fatigue, we 

need to develop or adopt dynamic models of behavior. There have been significant 

developments in computational cognitive models that specify the processes that underlie task 

performance in detail, and thus provide an appropriate means to quantify the effects of fatigue 

on performance. For example, PVT metrics such as number of lapses and mean RT have 

ambiguous mappings to underlying cognitive processes (Chua et al., 2019; Veksler & 

Gunzelmann, 2018). It is unclear whether fatigue increases mean RT and number of lapses 

because individuals process information less efficiently when fatigued, or because they 

require more evidence to respond (i.e., increase caution). These competing explanations have 

direct implications for the safety profile of tasks under fatigue states, but they can be 

compared by applying evidence accumulation models that use detailed response choice and 

response time data to measure underlying cognitive constructs such as processing speed and 

caution. Indeed, evidence accumulation models have been applied PVT performance (Chavali 

et al., 2017; Ratcliff & Van Dongen, 2011), and integrated with BMMs to a limited extent 

(Walsh et al., 2017). These early findings implicate fatigue being associated with processing 

speed deficits in the PVT rather than response caution. Alternative work has incorporated 

fatigue into the ACT-R cognitive architecture (Baradaran Khosroshahi, 2019; Gunzelmann et 

al., 2019) which can model a broad range of cognitive tasks, offering opportunities to 

generalize fatigue-related performance predictions (Gunzelmann et al., 2019).  

Sophisticated computational models of behavior help to better understand the 

differential causes of the fatigue response. The basic forms of all BMMs, including the 

workload extensions, generally ground fatigue accumulation as largely a homeostatic driven 
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process. This research is founded on findings with the PVT, initially selected as it is sensitive 

sleep-loss. The PVT is also sensitive to many other biases which BMMs do not directly 

examine. For example, Hockey (2013) argue that in many circumstances, fatigue can be 

manifest as a motivational issue with more transient influences on performance. 

3.1.1.2 Dynamic Longitudinal Models 

In considering alternative methods for understanding the latent dynamics underlying 

fatigue, a crucial relevant development, particularly for when considering field measurement, 

is the application of models that how fatigue interacts and coevolves with other individual, 

environmental, and work-related factors over time. For instance, dynamic structural equation 

modelling (Asparouhov et al., 2018) and the continuous time counterpart (Driver & Voelkle, 

2018; Ryan et al., 2018) allows researchers to model the dynamics of observed and latent 

variables. That is, how variables evolve and relate to each other over time (i.e., auto- and 

cross-regressive effects). These dynamic modelling approaches may provide insights into 

questions of causality between measures, and unlike BMMs do not require the exact 

mathematical specifications of interactions between factors. Dynamic structural equation 

models therefore can potentially detect longer-term ‘knock on’ effects of workload to sleep 

quality and quantity, and long-term burnout (Crain et al., 2018; Wilson et al., 2021). It is also 

important to consider that many of the variables related to fatigue are state dependent, that is 

the causal relationships among variables change with different states of the system (Chang et 

al., 2017; Sugihara & May, 1990). For instance, a sustained level of high workload may cause 

fatigue, but high levels of fatigue may reduce perceived cognitive capacity causing higher 

perceptions of workload (e.g., on longer-time scales, Guthier et al., 2020). Emerging methods 

such as empirical dynamic modeling (Chang et al., 2017) offer a means to decompose such 

complex interdependencies in causal systems. Adoption of these methods can improve our 



 NEXT-GENERATION BMMs 28 

ability to design better work, mitigate risk, and support individuals working in demanding 

and extreme environments. 

3.1.2 Improve Open Science Practices 

Open science practices are increasingly perceived as integral to the conduct of robust 

science. To accelerate research into fatigue prediction, we propose the field should place 

significant efforts to offering greater computational reproducibility and transparency. 

Presently, most fatigue prediction solutions are closed source and proprietary, and in many 

cases, this can make independent replication, comparison to, or extension of the work 

reported in scientific articles impractical or impossible. Generally, in cases where BMM 

formulae are provided, the respective computational implementations are not. There are 

strong arguments for going beyond this minimum state of reproducibility of providing only 

formulae, towards a gold standard in which flexible model implementations are provided 

with journal articles (G. C. Banks et al., 2018; R. D. Peng, 2011; Wilson et al., 2019). 

Notably, gold standard reproducibility lowers the ‘cost to entry’ for researchers to adopt 

fatigue prediction methods, inviting researchers with unique perspectives and skill sets that 

may be well suited to advance the other frontiers outlined in this article. It also assures that 

model implementation details (e.g., regarding parameter estimation) can be understood by 

outsiders, which is difficult to assure from textual descriptions alone. We note that initial 

steps towards computational reproducibility have been taken with the development of 2B-

Alert Web, an open-access web application that allows users to graphically examine the 

predictions of a BMM (Reifman et al., 2016), and the release of an open-source R package 

for BMMs, FIPS (Wilson et al., 2020). FIPS provides sleep and fatigue data structures, BMM 

implementations, and utility functions. Efforts such as these are crucial to encouraging 

cumulative science, mitigating research fragmentation, and preventing duplicated efforts. 
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Another valuable open scientific practice is data sharing (for an introduction to ethical 

data sharing practices, consult Meyer, 2018). Publicly available sleep and fatigue data is 

currently extremely hard to come by, for both datasets of field and laboratory contexts. The 

significant benefits and challenges of open-data practices have been widely discussed (G. C. 

Banks et al., 2018; Gewin, 2016) and there is clear consensus that engaging such practices 

accelerates methodological innovation and scientific discovery. We propose that fatigue 

prediction researchers engage substantially more in open data sharing.  

In the field of fatigue prediction, open data sharing would enable newly developed fatigue 

prediction methods to be evaluated on legacy ‘benchmark’ datasets. This would avoid the 

common situation where BMMs are extended to account for new datasets and contexts, but it 

is unclear whether the extended BMMs still adequately fit the data that the original models 

were developed on (Reifman & Gander, 2004). Further, it would enable computational 

modelling experts lacking the resources of a sleep laboratory to advance fatigue prediction 

methods and create opportunities for pooling field and laboratory-based data. These advances 

would translate to practical benefits for the employees and organizations that these models 

are intended to support. Indeed, the Flight Safety Foundation (2005) review into BMMs 

indicated a need for data sharing practices, and the importance of these practices in building 

trust with industry practitioners. 

We recognize that individuals can face barriers to open science practices, including the 

ethical concerns regarding data privacy, intellectual property and stakeholder concerns, and 

the need to justify the substantial investments in initially obtaining relevant data. We do not 

wish to discount these concerns or claim to resolve them. Indeed, practical concerns such as 

funding have long posed difficulties for the advancement of fatigue prediction methods 

(Akerstedt et al., 2004). However, such challenges do not undermine the prospective value of 
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the practices we have raised. Ultimately, engagement in open science practices is required if 

we are to overcome the barriers to achieve next-generation model features.  

3.2 Conclusions 

BMMs have played an instrumental role in the implementation of evidence-based 

fatigue management strategies in safety-critical contexts. There remains significant interest in 

the development of next-generation BMMs capable of providing tailored and more accurate 

fatigue predictions. This paper has provided review and analysis of several of the key 

directions underpinning the development of next-generation models, and has revealed there 

are significant challenges to the realization of benefits from conventionally proposed 

advancements. Just as fatigue management strategies require consideration of multiple 

factors, fatigue prediction methods appear to require the implementation of multi-model 

approaches. The integration and fusion of BMMs with other models, including approaches 

such as cognitive modelling and machine learning, will be most critical to support more 

targeted, relevant, and accurate fatigue prediction in safety-critical workplaces. 
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