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ABSTRACT 

In recent years, mega-constellation Low Earth Orbit (LEO) satellites have been proposed as an augmentation to the Global 

Navigation Satellite System (GNSS) for positioning on the ground, especially for those in measurement environments with limited 

satellite visibility. The fast geometry change of these LEO satellites also reduces the convergence time of Precise Point Positioning 

(PPP) techniques. To realize the benefits brought by these LEO satellites, their precise orbits and clocks need to be delivered to users, 

which would typically be based on processing the GNSS signals collected onboard LEO satellites. Assuming that this will be possible 

in the future, during data reception, storage and transmission, however, data gaps could exist in the collected GNSS measurements, 

which would result in gaps in the LEO clock estimates. The transmission of the LEO satellite clock corrections to users could also 

experience outages. In this study, taking the Ultra-Stable Oscillator (USO) onboard GRACE FO-1 as an example of LEO satellites 

that has similar operational conditions to the expected LEO mega-constellations, three different models are proposed for bridging 

clock gaps varying from 1 to 60 minutes. Model A considers its mid- to long-term systematic effects, Model B bridges the gaps using 

low-order polynomials employing the data near the gap, and Model C exploits the benefits of both Models A and B. Results show 

that Model A results in larger errors than the other two models for short clock gaps, while Model B could lead to a dramatic increase 

in the bridging errors for long gaps, e.g., 1h. Applying Model C for the USO on GRACE FO-1, the mean absolute bridging errors 

(in range) are within 1cm for gaps shorter than 10min, and within 0.2m for gaps not exceeding 1h. Increasing the polynomial degree 

of Model C from quadratic to cubic can lead to a reduction in the mean absolute bridging errors to mm- to cm-level. 

INTRODUCTION 

The Global Navigation Satellite System (GNSS)-based positioning augmented by mega-constellation Low Earth Orbit (LEO) 

satellites has become a popular topic in recent years [1-4]. Thousands of LEO satellites, which will form a dense network from 

altitudes of a few hundred kilometres to over 1000km in the near future, would significantly increase the satellite visibility and thus 

improve the measurement geometry for ground-based positioning users. These improvements would be especially meaningful for 
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users operating in difficult measurement environments, e.g., in “urban canyon” areas, the bottom of open pit mines, etc. In addition 

to the improved measurement geometry, due to the low altitudes of the LEO satellites compared to GNSS satellites at Medium Earth 

Orbit (MEO) or even the Geostationary Orbit (GEO), the signal strength of LEO satellite transmissions will be much higher than 

those of GNSS satellites, e.g., 300 to 2400 times higher for the LEO satellites Iridium [5]. This could enable the positioning in deep 

signal attenuation areas, e.g., high-density urban areas, or even in some indoor areas. Besides, the LEO satellite signals are shown to 

be more resilient to jamming [1] and the fast satellite-to-ground speed whitens the multipath effects [6], which have been a significant 

bottleneck in the development of high positioning accuracy techniques in complicated measurement environments such as urban 

areas. The higher (relative to ground) speed of LEO satellites compared to GNSS satellites also results in a rapid change in the 

measurement geometry. This is essential to resolving the carrier-phase ambiguities and shorten the convergence time for Precise 

Point Positioning (PPP) techniques from tens of minutes to only a few minutes [7-8]. 

 

To realize all the advantages mentioned above in the field of Positioning, Navigation and Timing (PNT), especially for 

applications having high accuracy requirements that take advantage of the PPP techniques, the use of high-accuracy LEO orbit and 

clock information is an indispensable condition. Benefiting from their altitudes, the LEO satellites can serve as GNSS “users” at the 

same time as they are treated as signal transmitters for ground-based PNT users. With GNSS receivers equipped onboard, the precise 

orbits and clocks of LEO satellites can be determined using appropriate GNSS measurement processing techniques. Without the 

influences of the tropospheric delays and the complicated multipath effects on the ground, combining undifferenced GNSS signals 

and dynamic models, LEO Precise Orbit Determination (POD) in the so-called “reduced-dynamic mode” can achieve positional 

accuracy of centimetres [9-11]. At the same time, high-precision LEO satellite clock estimates at a similar accuracy level can also 

be obtained [12]. With the signal receiver and transmitter synchronized by the same clock [13], the estimated LEO satellite clocks 

can be used for LEO-augmented ground-based positioning, when not considering the hardware delays in between the time of the 

signal reception of GNSS measurements and transmission of LEO satellite’s signals. These hardware delays could have uncalibrated 

variations and this will be further investigated. For the moment they can be treated as time-constant terms [13], which can be absorbed 

by the estimated float ambiguities of the ground positioning users.   

 

Similar to the GNSS orbits and clocks, the LEO products can have different transmission modes. Nowadays, high-precision 

GNSS products can be transmitted to users via the Internet or satellite links through, e.g., GEO satellites or even GNSS satellites. 

For the former case, diverse real-time GNSS services such as the International GNSS Service (IGS) Real-Time Service (RTS) [14-

16] and the real-time service provided by the National Centre for Space Studies (CNES) in France [17] are good examples. For the 

latter case, satellite-broadcast precise GNSS products like those from the Multi-GNSS Advanced Demonstration of Orbit and Clock 

Analysis (MADOCA) service of the Japanese Quasi-Zenith Satellite System (QZSS) and those from the Australian/New Zealand 

(AU/NZ) second generation Satellite Based Augmentation System (SBAS) will also find more applications in the future. In a similar 

manner, high-precision LEO orbit and clock information can be processed on the ground and transmitted to users via the Internet or 

via satellite links. However, in addition to the signal outages due to problems of transmission or signal blockage in difficult 

measurement environments [18], the operators of LEO satellites for PNT users face new challenges in generating and providing 

continuous high-precision products. Due to the much lower altitude of the LEO satellites compared to the GNSS satellites, i.e., from 

about 300 to 1500km [19], the sub-satellite footprint of an LEO satellite is very limited. Figure 1 shows the area in which the LEO 

satellite GRACE FO-1 (with an altitude of about 500km) is visible on August 14, 2018, at 10:30 GPS Time (GPST). With an elevation 

cut-off angle of 5 degrees, the range of the latitude and longitude of this area only amounts to about 36 to 37 degrees. This could be 

a problem for, e.g., users in remote areas or on the ocean, for which their visible LEO satellites are not visible by any ground reference 

stations, and the onboard GNSS measurements cannot be transferred and processed on the ground in real-time. Inter-satellite links 

could be a solution to this problem. Bridging the gaps in the high-precision LEO products could thus be essential for LEO-augmented 

positioning service in near-real-time, or even for post-processing mode users.  

 



 

 
Figure 1. The ground area able to observe the LEO satellite GRACE FO-1 on August 14, 2018, at 10:30 GPST. The elevation angle 

refers to that from the corresponding ground point to the satellite with a cut-off angle of 5 degrees. 

 
Bridging the gaps in the LEO orbital products would not be a significant problem as adequate dynamic models exist for LEO 

satellites. As shown in [20], even in cases when the GNSS measurements are not continuously available, i.e., with duty cycles (i.e. 

the percentage of the period when GNSS is operable) lower than 100%, the orbital accuracy can still reach the level of a few 

centimetres when high-precision GNSS products are available. For the LEO satellite clock estimates, however, the situation is 

different. The clock errors are generally not estimated with a strong and long-term model due to the lower stability of the clocks 

onboard LEO satellites. They are typically estimated as independent epoch parameters [21], or short-term models applied when good 

clocks are used [22]. The determination of the LEO satellite clock errors to high precision is thus dependent on the GNSS 

measurements at the corresponding epochs, which can provide results even though the randomness of the clock errors is difficult to 

model. In case GNSS measurements are not available during a certain period, the estimates of the time series of LEO satellite clock 

errors would then need to be bridged somehow using the deterministic characteristics of the onboard LEO satellite clocks, such as 

Ultra-Stable Oscillators (USOs). 

 

In this study, the focus is on bridging the clock error gaps of the USOs, a type of frequency oscillator having good short-term 

stabilities [22-23] used on LEO satellites of a few scientific missions, e.g., GRACE [24], GRACE Follow-On [25], and Sentinel-3B 

[26]. In addition to the stochastic and deterministic behaviours of the frequency oscillator itself and the noise introduced by GNSS 

estimation, systematic effects due to external sources also need to be considered. In this contribution, the strategy for measurement 

processing for LEO satellite clock estimation is first introduced. It is followed by an analysis of the clock estimates of the LEO 

satellite GRACE FO-1 as an example with the models for bridging the clock gaps. Finally, the bridging errors are assessed for 

different models and gap lengths. The conclusion is given at the end of the paper. 

 

PROCESSING OF LEO SATELLITE CLOCKS 

 
The LEO satellite clock errors are estimated in a least-squares adjustment together with the reduced-dynamic POD parameters. 

The a priori LEO satellite clock synchronization (with the GPS satellite clocks) is performed using the L1 and L2 GPS code 

measurements after forming the Ionosphere-Free (IF) combination. After pre-processing for outlier removal and cycle slip detection, 

the IF GPS phase and code observations are used to estimate the LEO satellite clock errors Δ𝑇L, the float ambiguities 𝑁IF
𝑠 , and the 

orbital parameters:  

 

E(∆𝜙IF
𝑠 ) = 𝐴K
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where ∆𝜙IF
𝑠  and ∆𝑃IF

𝑠  denote the IF phase and the code “Observed-minus-Computed” (O-C) terms for GPS satellite 𝑠, respectively. 

E(∙) is the expectation operator. 𝑝K, 𝑝D and 𝑝a are the six Keplerian elements at the initial state, the 3-dimensional (3D) time-constant 

orbital dynamic parameters, and the time-constant stochastic accelerations, respectively. The stochastic accelerations are estimated 

in 6min intervals and are constrained to zeros with a standard deviation of 5 × 10−9 m/s2. Correspondingly, 𝐴K
𝑠 , 𝐴D

𝑠  and 𝐴a
𝑠 are the 

partial derivatives of the observations from satellite 𝑠 with respect to 𝑝K, 𝑝D and 𝑝a, respectively. The estimable LEO satellite clock 

Δ𝑇L contains, in addition to the LEO satellite clock error Δ𝑡L, the IF LEO satellite code bias 𝑑L,IF. The estimable float ambiguity 𝑁IF
𝑠  

comprises, in addition to the IF float ambiguity term 𝑛IF
𝑠 , the IF LEO satellite phase and code biases 𝜉L,IF and 𝑑L,IF, as well as the 

GPS satellite phase and code biases 𝜉IF
𝑠  and 𝑑IF

𝑠 . In this study, the final GPS orbits and clocks from the Center for Orbit Determination 

in Europe (CODE) [27] are used to form the O-C terms. The GPS clocks contain the IF GPS code biases of P1 and P2. The forms of 

the IF wavelength 𝜆IF and the IF float ambiguity 𝑛IF
𝑠  are: 

 

𝜆IF =
𝑐

𝑓1+𝑓2
      (3) 

 

 𝑛IF
𝑠 =

𝑓1
2𝜆1𝑛1

𝑠−𝑓2
2𝜆2𝑛2

𝑠

𝑐(𝑓1−𝑓2)
              (4) 

 

where 𝑐 denotes the speed of light. 𝑓𝑗, 𝜆𝑗 and 𝑛𝑗 denote the frequency, the wavelength and the ambiguity on frequency 𝑗 (with 𝑗 =

1, 2), respectively. The estimated LEO satellite clock Δ𝑇L is to be provided to the ground users despite the additional hardware delays 

between the receiving time of the GNSS signals and the transmission time of the LEO signals. These hardware biases are to be 

calibrated on the ground, where the uncalibrated part is assumed to be a constant that can be absorbed by the estimable float ambiguity 

terms of the ground users. The uncalibrated time-variant part caused by, e.g., the environment, is present but is not accounted for in 

this study.  

 

The reduced-dynamic POD process uses existing dynamic models for LEO satellite. In this study, the spherical harmonic 

coefficients of EGM2008 [28] up to a degree of 120 are used as the model for the Earth’s non-sphericity and non-homogeneous mass 

distribution. The gravitational attraction of other planets is considered using ephemerides provided by the Jet Propulsion Lab (JPL) 

[29]. The solid Earth and pole tides are considered following the International Earth Rotation and Reference Systems Service (IERS) 

conventions 2010 [30], and the ocean tides are modelled with FES2004 [31]. Data of 24h duration, with a sampling interval of 10s, 

are processed in a batch mode least-squares adjustment. The resulting orbital parameters are used for computing the final Cartesian 

orbit parameter information during the entire test period via numerical integration [32]. Taking the POD of the LEO satellite GRACE 

FO-1 on December 1, 2019, as an example, using the orbits produced by the JPL [33] as the reference, the 3-dimensional root-mean-

square error (RMSE) of the estimated orbits amounts to about 2cm, which verifies the proposed processing strategy. 

 

CLOCK MODELLING 

 

The estimated LEO satellite USO clocks Δ𝑇̂L are referenced to the reference clock in the CODE final clock products, i.e., a H-

Maser, which exhibits higher stability than the USOs analysed in this study for an averaging time of 10s and above [22]. As such, 

the clock bridging investigated for the post-processing mode here, which is mainly related to the deterministic characteristics of the 

LEO satellite clocks, is in general free from the influences of the time reference. After detrending with a quadratic polynomial, as 

discussed in [12], LEO satellite USO clocks could exhibit large long-term periodic effects. Figure 2 shows the periodic effects of the 

satellite clocks for GRACE FO-1 on December 1, 2019. To explain the contents of the different coloured lines in Figure 2, the clock 

model is given as follows: 

 

E(Δ𝑇̂L(𝑡𝑖)) = 𝑎0 + 𝑎1(𝑡𝑖 − 𝑡0) + 𝑎2(𝑡𝑖 − 𝑡0)
2 + 𝐴1 sin (

2𝜋

𝑇̂1
(𝑡𝑖 − 𝑡0) + 𝜑1) + 𝐴2 sin (

2𝜋

𝑇̂2
(𝑡𝑖 − 𝑡0) + 𝜑2) (5) 

 

with the polynomial coefficients 𝑎0, 𝑎1 and 𝑎2 estimated in the least-squares adjustment with the corresponding estimates denoted 

as 𝑎̂0, 𝑎̂1 and 𝑎̂2, respectively. The periods 𝑇̂1 and 𝑇̂2 were estimated separately before the least-squares adjustment of Eq. (5) [12], 

and amounts to about 11h 57min and 5h 59min, respectively, for the test day. The amplitudes 𝐴1 and 𝐴2 of the periodic effects have 

their estimates denoted as 𝐴̂1 and 𝐴̂2, respectively, and the phases 𝜑1 and 𝜑2 have their estimates denoted as 𝜑̂1 and 𝜑̂2. 𝑡𝑖 and 𝑡0 

denote the time at epoch 𝑖 and the processing start time, respectively. In Figure 2, the blue and green lines refer to the terms δ𝑇̂1 and 



 

δ𝑇̂2 in Eqs. (6) and (7), respectively, which describe the overlapped (6h+12h) and the 6h periodic effects. The red and magenta lines 

illustrate the two modelled periodic effects with amplitudes 𝐴̂1 and 𝐴̂2, respectively: 

 

δ𝑇̂1(𝑡𝑖) = Δ𝑇̂L(𝑡𝑖) − (𝑎̂0 + 𝑎̂1(𝑡𝑖 − 𝑡0) + 𝑎̂2(𝑡𝑖 − 𝑡0)
2)        (6) 

 

δ𝑇̂2(𝑡𝑖) = δ𝑇̂1(𝑡𝑖) − 𝐴̂1 sin (
2𝜋

𝑇̂1
(𝑡𝑖 − 𝑡0) + 𝜑̂1)           (7) 

 

 
Figure 2. The periodic effects in the clocks of the LEO satellite GRACE FO-1 on December 1, 2019.  

 
From Figure 2 it can be seen that the periodic effects reach several metres and need to be taken into account during clock bridging 

over long gaps. After detrending with these systematic effects, the remaining clock residuals still contain systematic effects as shown 

in Figure 3a, which can be represented by the term  δ𝑇̂3: 

 

δ𝑇̂3(𝑡𝑖) = δ𝑇̂2(𝑡𝑖) − 𝐴̂2 sin (
2𝜋

𝑇̂2
(𝑡𝑖 − 𝑡0) + 𝜑̂2)     (8) 

 

         
               (a)                                                                                             (b) 

Figure 3. LEO satellite clock residuals (a) after removing the long-term systematic effects (see Eq. (8)) and (b) after further detrending 

with a fourth-order polynomial over 4h interval. The clock estimates of GRACE FO-1 on December 1, 2019, are used for the plots. 

 



 

The effects observed in δ𝑇̂3 (see Figure 3a) are overlapped effects of a high-order polynomial, which could be caused by the mid- 

and long-term noise behaviour of the USO itself, and the once- and twice-per-revolution (1/rev and 2/rev) terms caused by the more 

complicated relativistic effects on the LEO satellites, which cannot be perfectly corrected for [34]. After detrending using a fourth-

order polynomial (with the polynomial coefficients 𝑏𝑗, 𝑗 = 1,⋯ ,4) for the first 4h of the test day, these 1/rev and 2/rev effects become 

visible and can be modelled (see Figure 3b). As described in Eq. (9), the LEO orbital period 𝑇L is used for identifying two periodic 

effects, i.e., the 1/rev effects with the amplitude 𝐵1 and phase 𝜗1, as well as the 2/rev effects with the amplitude 𝐵2 and phase 𝜗2: 

 

E(δ𝑇̂3(𝑡𝑖)) = 𝑏0 + 𝑏1(𝑡𝑖 − 𝑡0) + ⋯+ 𝑏4(𝑡𝑖 − 𝑡0)
4 + 𝐵1 sin (

2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗1) + 𝐵2 sin (

4𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗2) (9) 

 

The blue and green lines in Figure 3b correspond to the terms δ𝑇̂4 and δ𝑇̂5 (see Eqs. 10 and 11), with the symbol ^ denoting the 

estimates of the corresponding parameters based on Eq. (9). The red and magenta lines represent the terms 𝐵̂1 sin (
2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂1) 

and 𝐵̂2 sin (
4𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂2), respectively: 

 

δ𝑇̂4(𝑡𝑖) = δ𝑇̂3(𝑡𝑖) − (𝑏̂0 + 𝑏̂1(𝑡𝑖 − 𝑡0) + ⋯+ 𝑏̂4(𝑡𝑖 − 𝑡0)
4)    (10) 

 

δ𝑇̂5(𝑡𝑖) = δ𝑇̂4(𝑡𝑖) − 𝐵̂1 sin (
2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂1)    (11) 

 

After detrending with the modelled clocks in Eq. (9), the remaining clock residuals (δ𝑇̂5(𝑡𝑖) − 𝐵̂2 sin (
4𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂2)) are at the 

few centimetre level (see Figure 4), which would remain after the clock bridging. Note that the higher bridging errors could occur 

since the 1/rev and 2/rev as well as the long-term periodic effects cannot always be perfectly modelled with sinusoidal functions. 

Some examples will be discussed in the next section. 

 

 
Figure 4. Remaining clock residuals after detrending with the high-order polynomial and the 1/rev and 2/rev periodic effects in 

Eq. (9). 

 
In general, using available clock estimates within 24h, the long-term systematic effects in Eq. (5) are first modelled with the 

corresponding polynomial and periodic coefficients estimated. Next, using the clock estimates near the gap with an interval 

expanding to 4h, a high-order polynomial together with the 1/rev and 2/rev periodic effects are retrieved with Eq. (9). The clock gaps 

can in this way be merged with Δ𝑇̌L based on the models in Eqs. (5) and (9), denoted as Model A with: 

Δ𝑇̌A(𝑡𝑖) = (𝑎̂0 + 𝑏̂0) + (𝑎̂1 + 𝑏̂1)(𝑡𝑖 − 𝑡0) + (𝑎̂2 + 𝑏̂2)(𝑡𝑖 − 𝑡0)
2 + 𝑏̂3(𝑡𝑖 − 𝑡0)

3 + 𝑏̂4(𝑡𝑖 − 𝑡0)
4 + ∑ (𝐴̂𝑗 sin (

2𝜋

𝑇̂𝑗
(𝑡𝑖 − 𝑡0) +

𝑘
𝑗=1

𝜑̂𝑗)) + 𝐵̂1 sin (
2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂1) + 𝐵̂2 sin (

4𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂2)      

  (12) 



 

 

Note that the clock estimates during the gap period are not used to estimate the polynomial and periodic coefficients. As the long-

term periodic effects could be satellite-specific, the number of long-term periodic effects is extended from 2 in the case of GRACE 

FO-1 to 𝑘 depending on the behaviour of the investigated LEO satellite clocks. 

 

For short clock gaps, merging the gaps simply with a low-order polynomial of degree 𝑚 using the clock estimates around the 

gaps may deliver better results. As such, a second model, denoted as Model B, is tested in this study: 

 

Δ𝑇̌B(𝑡𝑖) = ∑ 𝑐̂𝑗(𝑡𝑖 − 𝑡0)
𝑗𝑚

𝑗=0      (13) 

 

where the polynomial coefficients 𝑐̂𝑗 are fitted using the clock estimates shortly before and after the gap period. The time window 

used for estimation of the polynomial coefficients 𝑐̂𝑗 is in this study centred at the middle of the clock gap and twice the length of the 

gap, with the data during the gap period not used.  

 

To explore the benefits from both Models A and B, Model C is developed by first detrending the periodic effects Δ𝑇̂p(𝑡𝑖), and 

then estimating the polynomial coefficients 𝑑̂𝑗  using the data nearby with: 

 

E(Δ𝑇̂L(𝑡𝑖) − Δ𝑇̂p(𝑡𝑖)) = ∑ 𝑑̂𝑗(𝑡𝑖 − 𝑡0)
𝑗𝑚

𝑗=0     (14) 

 

and 

  

 Δ𝑇̂p(𝑡𝑖) = ∑ (𝐴̂𝑗 sin (
2𝜋

𝑇̂𝑗
(𝑡𝑖 − 𝑡0) + 𝜑̂𝑗))

𝑘
𝑗=1 + 𝐵̂1 sin (

2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂1) + 𝐵̂2 sin (

4𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂2)   (15) 

 

The bridged clock applying the Model C can in this way be expressed as: 

 

Δ𝑇̌C(𝑡𝑖) = ∑ 𝑑̂𝑗(𝑡𝑖 − 𝑡0)
𝑗𝑚

𝑗=0 + Δ𝑇̂p(𝑡𝑖)     (16) 

 

The performance of bridging of the LEO satellite clocks applying the three models will be discussed in the next section. 

 

TEST RESULTS 

 

Based on Models A and B in Eqs. (12) and (13), respectively, the LEO satellite clocks of GRACE FO-1 on December 1, 2019, 

are used for the tests. Figure 5a shows the real (blue), missing (red) and bridged clocks (green) for a gap of 3min around 2:00 in 

GPST based on Model A. The plotted clocks are detrended with the polynomials and the mid- to long-term periodic terms (see the 

detrended part Δ𝑇̌m in Eq. 17) for the purpose of visualization: 

 

Δ𝑇̌m(𝑡𝑖) = (𝑎̂0 + 𝑏̂0) + (𝑎̂1 + 𝑏̂1)(𝑡𝑖 − 𝑡0) + (𝑎̂2 + 𝑏̂2)(𝑡𝑖 − 𝑡0)
2 + 𝑏̂3(𝑡𝑖 − 𝑡0)

3 + 𝑏̂4(𝑡𝑖 − 𝑡0)
4 +∑ (𝐴̂𝑗 sin (

2𝜋

𝑇̂𝑗
(𝑡𝑖 − 𝑡0) +

𝑘
𝑗=1

𝜑̂𝑗)) + 𝐵̂1 sin (
2𝜋

𝑇L
(𝑡𝑖 − 𝑡0) + 𝜗̂1)     (17) 

 

The differences between the bridged (green dots in Figure 5a) and missing clocks in the gap (red dots in Figure 5a) are generally at 

the mm- to cm-level. For short clock gaps, the more complicated Model A does not necessarily work better than a low-order 

polynomial, i.e., the Model B as shown in Eq. 13. Figure 5b shows the case when Model B (with a polynomial degree of 2) is used 

for the clock bridging. The GRACE FO-1 satellite clock estimates over 6min from 1:58:30 to 2:04:30 (excluding the data gap from 

2:00 to 2:03) on December 1, 2019, are used for the processing. Similarly, Δ𝑇̌m is detrended in Figure 5b for better visualization. 

Applying Model B, the differences between the bridged and the missing clocks during the gap are reduced to millimetres. 

 



 

           
 (a)                                                                                          (b) 

Figure 5. The real and bridged LEO satellite clocks for GRACE FO-1 on December 1, 2019, with the gap assumed from 2:00 to 2:03 

GPST using (a) Model A and (b) Model B. The term Δ𝑇̌m (Eq. 17) is detrended for better visualization. 

 

For small clock gaps, as noted before, larger bridging errors, i.e., of the order of decimetres, could also occur when applying 

Model A, as the periodic behaviour of the clocks cannot be perfectly described by the suggested sinusoidal models. Figure 6 shows 

an example of the clocks after detrending with the term Δ𝑇̌m (Eq. 17). The abnormal behaviours remaining in the real clocks (blue) 

are due not only to the miss-modelled biases in the 2/rev effects, but also from those in the 1/rev and long-term effects. As stated in 

[34], the 1/rev effects could be associated with external effects (such as voltage variation) in the spacecraft. The reasons for the long-

term systematic effects are not clear. In addition, the mid- to long-term noise behaviour of the USO itself could also contribute to the 

miss-modelled bridging errors as shown in Figure 6. Hence, for small clock gaps, making use of a newly fitted low-order polynomial 

using the data near the clock gap, i.e., applying Models B and C, could be better options.  

 

 
Figure 6. The real and modelled LEO satellite clocks for GRACE FO-1 on December 1, 2019, from 7:45:30 to 11:45:20 GPST, with 

the clock gap set between 9:45 and 9:46. The term Δ𝑇̌m (Eq. 17) is detrended for better visualization. 

 

For longer time gaps, the simpler Model B is not good enough to describe the systematic effects in the clocks. Figure 7a illustrates 

the missing and bridged clocks from 2:00 to 3:00 GPST of the test day. The term Δ𝑇̌m (Eq. 17) is detrended for better visualization. 

The 4h data used for modelling the 1/rev and 2/rev effects last from 0:30:00 to 4:29:50 GPST, and the data during the 1h gap is not 

used. The differences between the missing (red dots in Figure 7a) and bridged clocks (green dots in Figure 7a) are generally at a few 

centimetres by applying Model A. Applying only a quadratic polynomial (Model B) for modelling the clocks, as shown in Figure 

7b, is not good enough to describe the different systematic effects in the clocks. Using data over 2h near the gap period, i.e., from 

1:30 to 3:30 excluding the gap between 2:00 and 3:00, the bridged clocks using Model B (green dots in Figure 7b) cannot follow the 

trend of the 1/rev effects, or even that of the long-term periodic effects. Much larger errors can result in the bridged clocks (see the 



 

green and red dots in Figure 7b). Note that the same term Δ𝑇̌m is detrended in Figure 7b for improved visualization, which does not 

mean that the periodic effects in Δ𝑇̌m are considered in Model B. In such cases, modelling the systematic effects, i.e., applying 

Models A or C, becomes necessary. 

  

             
                  (a)                                                                                             (b) 
Figure 7. The real and bridged LEO satellite clocks for GRACE FO-1 on December 1, 2019, with the gap set from 2:00 to 3:00 GPST 

using (a) Model A and (b) Model B. The term Δ𝑇̌m (Eq. 14) is detrended for improved visualization. 

 
Applying the three models, the satellite clock estimates of GRACE FO-1 on December 1, 2019, are bridged for gaps with a length 

varying from 60s to 1h with a step of 60s. For each gap length, the gap window shifts from 2:00 to 22:00 GPST of the test day with 

a step of 60s, allowing a sample number of at least more than 1140 for the test of each gap length. For consistency, the LEO clock 

estimates used for estimation of the model coefficients all originate from the 24h daily POD process as described in the second 

section above “PROCESSING OF LEO SATELLITE CLOCKS”.   

 

Figure 8 shows the mean absolute bridging errors for clock gaps with a length varying from 30s to 1h. The blue, red and green 

lines correspond to the mean absolute bridging errors when applying Models A, B and C, respectively, while the term 𝑚 in the legend 

denotes the polynomial degree (see Eqs. 14 and 16). It can be observed that for small clock gap periods, i.e., shorter than about 40min, 

Models B and C tend to have smaller bridging errors than Model A, while for longer clock gaps, Models A and C outperform Model 

B, which doesn’t consider systematic effects at all. Model C (green lines) exploits the benefits of both Models A and B, i.e., delivering 

small bridging errors for short clock gaps, and having the bridging errors under control for long clock gap periods up to 1h. Having 

the polynomial degree increased from 2 (solid lines) to 3 (dashed lines), a slight decrease of the bridging errors can be observed for 

Models B and C, although with the number of unknown coefficients increased by 1.  

 



 

 
Figure 8. Mean absolute bridging errors of the LEO satellite clocks using the data of GRACE FO-1 on December 1, 2019. The red 

and green solid lines correspond to a quadratic polynomial, while the red and green dashed lines correspond to a cubic (third-order) 

polynomial. 

 
The mean absolute bridging errors are given in Table 1 for gap lengths varying from 1 to 60min applying the three models using 

the data of GRACE FO-1 on December 1, 2019. It can be observed that for a short gap length less than 40min, Models B and C 

generally behave better than Model A, while for longer gap lengths, up to 1h, Model B shows deficiencies due to its ignorance of the 

systematic effects. In general, Model C is the best option among the three models, which delivers a mean absolute bridging error 

within 1cm for gap lengths shorter than 10min, and a mean absolute error not exceeding 0.2m even with a clock gap of 1h. Increasing 

the polynomial degree from two to three for Models B and C could slightly reduce the mean absolute bridging errors, i.e., with a 

reduction down to the mm- to cm-level. 

 

Table 1. Mean absolute bridging errors applying Models A, B and C for different gap lengths. 

Gap length [min] 
Model A 

[m] 

Model B [m] Model C [m] 

𝑚=2 𝑚=3 𝑚=2 𝑚=3 

1 0.065 0.003 0.003 0.003 0.003 

5 0.075 0.004 0.003 0.004 0.003 

10 0.090 0.008 0.007 0.008 0.007 

20 0.123 0.041 0.030 0.032 0.026 

30 0.156 0.107 0.085 0.085 0.073 

40 0.181 0.189 0.153 0.153 0.135 

50 0.196 0.282 0.228 0.193 0.181 

60 0.201 0.418 0.351 0.196 0.195 

 

CONCLUDING REMARKS 

 
Mega-constellation LEO satellites are proposed as a promising strategy to improve positioning precision, efficiency and 

availability for ground-based PNT users, especially when operating in difficult measurement environments. Similar to GNSS-based 

positioning, high-precision orbital and clock products of the LEO satellites are necessary to realize the benefits of using LEO satellites 

to support diverse high-precision PNT services. During the signal reception, storage and transmission processes, there are possibilities 

that the GNSS data used for the LEO POD and clock estimation process cannot be fully collected by a ground analysis centre, which 

results in gaps in the time series of clock error estimates. Even during the transmission of the clock corrections through, e.g., satellite 

link, signal blockage could also occur, which also results in clock gaps.  



 

In contrast to the atomic clocks used in the GNSS satellites, the LEO satellites may use Ultra-Stable Oscillators (USOs), which 

exhibit different noise behaviour, especially over the long-term. Taking the USOs onboard the LEO satellite GRACE FO-1 as an 

example, mid- to long-term systematic behaviours exist due to the unmodelled relativistic effects and possibly other external 

influences. This study proposes three models for bridging the time series gaps in the USOs installed on LEO satellites: Model A 

considers the mid- to long-term systematic effects, Model B bridges the gap with low-order polynomial using the data nearby, and 

Model C exploits the benefits of both the Models A and B. Tests have demonstrated that for bridging short clock gaps up to about 

40min, Models B and C are better options, while Models A and C are shown to behave better for bridging longer clock gaps up to 

1h. Applying Model C, using real data of GRACE FO-1, the mean absolute bridging errors are shown to be within 1cm for gaps 

shorter than 10min, and are within 0.2m for gaps up to 1h. Increasing the polynomial degree from 2 to 3 did lead to a slight reduction 

in the bridging errors down to the mm- to cm-level. 
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