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Abstract 

Structural health monitoring (SHM) techniques have been widely developed and 

applied for the condition monitoring and safety evaluation of aerospace, civil and 

mechanical infrastructure. Recently, vibration-based damage identification and 

quantification methods have been explored to assess and evaluate structural health 

conditions. Many ways have been developed based on vibration data using various 

techniques to understand the condition of ageing structures. For civil engineering 

structures, SHM systems take the measurements by sensing technology and evaluation 

is carried out by data interpretation algorithms. Numerous studies have used modal 

information, such as mode shapes and natural frequencies for vibration-based damage 

identification. Accurate extraction of modal information, i.e., mode shapes, requires 

several sensors to measure responses at many locations on the structures. Vibration 

tests and measurements are time-consuming and may not be practical for large-scale 

structures. Time domain responses measured with few sensors can be used for damage 

identification and quantification. Acceleration responses are sensitive to structure 

condition changes and can easily be measured.  

Furthermore, impulse response functions (IRFs), represented as time domain 

responses under the input of an impulse excitation, can be obtained from the measured 

time domain responses. IRF is an ideal inherent vibration property for structural 

damage identification and quantification. It has the advantage over directly using the 

measured responses because it is an inherent system property.  

Supervised machine learning and deep learning algorithms can generate knowledge of 

the structure with the data collected from the physical sensors and numerical 

simulations. Both conventional machine learning and deep learning models have been 

extensively used for damage identification and quantification. Ensemble or 

committee-based methods improve machine learning performance using the results 

from multiple models. It can achieve better prediction results than a single model with 

reduced variance and bias.  Deep learning models have been used for the SHM of civil 

engineering structures when the sensor data size is big. Many of such studies use data 

generated from numerical simulations, mainly finite element modelling (FEM), for 

training the proposed machine or deep learning algorithm considering uncertainties in 

the measurements. The models are further validated and tested with vibration 
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measurement data from experimental studies using structures fabricated in a laboratory 

or real in-field structures. The model can also be trained and validated with the field 

measurement data when sufficient data size or data augmentation techniques are 

adopted. Furthermore, dimensional reduction techniques are often used to reduce the 

computational cost of machine learning models before feeding the measured data to 

the network models.  

In this study, acceleration responses measured from a small number of sensors on the 

structures and machine learning algorithms, the Random Forest (RF) together with 

principal component analysis (PCA) for dimensionality reduction are explored for 

damage identification and quantification. RF is a tree-based ensemble machine 

learning algorithm and is developed as a regressor to predict multiple output variables 

in this study.  Damage severity is defined in terms of reduction in elemental stiffness 

parameters. Numerical studies are carried out on a simply supported beam. The 

acceleration responses are measured with different levels of damage. The input 

variable to RF is the processed acceleration responses, and the target variable is the 

corresponding stiffness reduction. This study is further verified by an experimental 

study using a steel frame structure with 70 elements. The performance of the proposed 

method is investigated by considering four scenarios. The first scenario assumes 

acceleration responses without measurement noise and uncertainty in stiffness 

parameters. For the second scenario, noisy acceleration responses are used for 

identification. The third scenario considers uncertainties in stiffness parameters but 

without noise effect in vibration measurements. The last scenario is the most 

challenging, considering both the noisy measures and uncertainties in stiffness 

parameters. The proposed approach provides good damage identification and 

quantification results with less computational time.  

This study is extended further by using IRFs extracted from acceleration responses as 

the input to machine learning algorithms. Numerical studies are conducted on a simply 

supported beam, and experimental studies are performed on a steel frame structure. 

The IRFs are obtained for identification, and another extended tree-based ensemble 

machine learning algorithm, the extremely randomised tree (ERT), is adopted. The 

performance of RF and ERT are evaluated for the four scenarios mentioned above. 

Moving averaging (MA) and PCA are performed to reduce random input variations 
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and dimensionality reduction. The damage identification using RF and IRFs has 

demonstrated a slight improvement in the performance compared to using acceleration 

response directly. The results also show that using ERT outperforms RF. 

A deep learning model based on Long Short-Term Memory (LSTM) autoencoder is 

used to improve further the damage identification and quantification for the same 

problem. Deep learning models have various ways to tune and obtain better results. 

LSTM networks have been used widely for sequence prediction problems, including 

sequences that may differ in length. The same IRF datasets generated from a simply 

supported beam for ERT are used for damage identification based on the LSTM 

autoencoder. For the proposed LSTM autoencoder model, a noise layer is included on 

the input layer, which helps generalise different datasets, especially the input with the 

noise. The datasets used in the first and third scenarios are combined and used to train, 

validate, and test the proposed LSTM autoencoder model. Further, the model is also 

tested with datasets from Scenarios 2 and 4. The proposed model has produced good 

damage identification and quantification results and is more robust to noise than RF 

and ERT. Furthermore, the performance is measured by reducing the sensor numbers 

from five to three. The results are close to those obtained using five sensors.  

For all the studies mentioned, the damage has been defined in terms of stiffness 

reduction in structural elements. Civil infrastructure such as bridges can be exposed to 

external conditions, such as wind, temperature, vehicle loads and other types of 

damages. Therefore, it may experience different levels of damage for each damage 

type. The proposed model mentioned earlier may not be suitable for damage 

identification and quantification when structures have different damage types and 

levels. Therefore, each type needs to quantify the damage level of each kind. The Z24 

bridge in Switzerland has measured vibration responses during the short-term 

progressive damage tests under different types and damage levels for each damage 

type. A regressor model or sequence-to-sequence prediction discussed earlier may 

become too complex or not be suitable to predict damage type and quantify the damage 

for each damage type. A classification model using a One-dimensional convolutional 

network (1D-CNN) is proposed for this task. 1D-CNN has the advantage over other 

convolutional networks in terms of computational complexities since it is a relatively 

simple architecture. The time domain measurements of the Z24 bridge during the 
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progressive damage tests are used for damage identification with the proposed 1D-

CNN. The performance demonstrated by experimental studies shows that the proposed 

method provides better results than the existing methods, using a small number of 

sensor measurements. 

Following are some of the contributions of the thesis:  

1. Development and application of traditional ensemble-based machine learning 

model, random forest with PCA, using time-domain responses from a small 

number of sensors for structural elemental damage identification and 

quantification. In this study, using random forest together with PCA can make 

structural element damage quantification and identification comparable to the 

existing deep learning model and significantly less training time. Further, it 

uses raw acceleration responses from the structure, which requires a small 

number of sensors, unlike modal information.  

2. The structural elemental damage identification and quantification are improved 

by computing IRFs from acceleration response together and using it with 

moving averaging and PCA and then using it as the input to RF and ERT. The 

use of IRFs has an advantage over the acceleration response because it is an 

inherent system property. The use of moving averaging with a suitable window 

further helped to get an improved result.  

3. Further, damage identification and quantification are improved by developing 

a robust LSTM Autoencoder using the same dataset. Unlike the previous two 

studies and existing deep learning models on structural elemental damage 

identification and quantification using both acceleration responses and modal 

information, the model is made more robust to noise in the measurement using 

a noise layer before the LSTM autoencoder network. In this approach, the 

model need not be trained, validated and tested separately for the damage 

scenarios considered, unlike in the first two proposed methods and existing 

studies. The proposed model provided good results even with a reduced 

number of sensors.  

4. A novel 1D-CNN for damage classification is developed for a large-scale 

bridge structure, namely, the Z24 bridge, by using acceleration responses 

measured with a small number of sensors. The number of sensor measurements 

used in the analysis is less than that in a current study to demonstrate the 
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superiority of the proposed method. The data pre-processing technique is 

straightforward, involving autocorrelation,  normalisation and splitting into 

smaller lengths.   
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CHAPTER 1 

1 Introduction 

This thesis presents the development and application of efficient ensemble-based 

machine learning and deep learning algorithms to identify and quantify damage in the 

civil engineering infrastructure using time domain responses measured from a small 

number of sensors.  

1.1 Background 

Structures have a finite life span. Processes such as corrosion, overloads, wears, 

erosion etc., would deteriorate structures with time until they cannot be used 

(Esfandiari et al., 2020; Gopalakrishnan et al., 2011). The deficiencies in these 

structures may lead to catastrophic consequences associated with substantial economic 

losses, casualties and disruptions in daily activities if proper monitoring is not carried 

out (Zhu et al., 2010). Structural health monitoring (SHM) techniques have been 

widely developed in the aerospace, civil and mechanical engineering communities for 

monitoring structural conditions (Farrar & Worden, 2007). Traditional visual 

inspection has been widely used to monitor the condition of structures in the early 

days. The US Federal Highway Administration (FHWA) report (Moore et al., 2001) 

stated the following limitations of visual inspection:  

i. Accessibility  

Structures may have no clear access for inspectors to conduct condition 

assessments.  

ii. Interpretability  

There are possibilities of obtaining inappropriate and inadequate condition 

assessment results since this could depend on inspectors’ subject 

experiences; and   

iii. Timing  

Visual inspection is static, which might be ineffective in making 

maintenance and restoration decisions.  

SHM studies have been carried out to understand better the ageing structure condition, 

which helps reduce risk, increase durability, and reduce maintenance expenses.  

Wired-based SHM collects data at different points on the structure, which are 

transmitted to the monitoring unit. The data is then processed, and decisions are made 
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about the structure (Farrar & Worden, 2007). SHM using wireless sensor (Hu, 2013) 

aims to assess the structural integrity using wireless transmission and signal processing 

approaches. The advancement of wireless sensing technology significantly reduces 

costs and provides flexible and powerful functionalities. The structure's performance 

can be evaluated for different loads, and damage can be identified in the real-time 

(Chae et al., 2012). With the increasing complexity and heterogeneity of data, efficient 

and effective data analysis has become an essential issue for decision-making 

concerning the diagnosis of the structural condition and the prognosis of structural 

damage (Smarsly et al., 2016).  

The information obtained from sensor data is used to assess structural conditions such 

as the life cycle management (Hartmann et al., 2011) and life prediction (Smarsly et 

al., 2013). There exist two ways of assessing structural conditions, physics-based and 

data-driven.  Physics-based approaches are more computationally intensive than data-

driven approaches. In these approaches, the extraction of damage information from the 

sensor data relies primarily on the physical laws that govern the behaviour of the 

structure (Yuan et al., 2020). The application of physics-based techniques to the SHM 

has been limited due to the difficulties in modelling complex real-world structures, 

environmental variation, boundary conditions, operation, and uncertainty in material 

properties. The sensing technologies advancement has helped monitor many 

parameters on large and complex real-world structures, motivating the application of 

data-driven techniques in SHM. Machine learning algorithms, including deep learning 

models, have been extensively used to generate the knowledge of the structure from 

the data measured using sensors (Alvandi & Cremona, 2006; Doebling et al., 1998; 

Smarsly et al., 2016; Wu, 1992) and numerical simulations. It has become useful when 

(Smarsly et al., 2016) 

i. the structures are complex to model,  

ii. the computational efforts are to be reduced, 

iii. there are a huge number of data, and  

iv. the structure is isolated and unsafe 

Recently, vibrational-based SHM techniques (Doebling et al., 1998; Fan & Qiao, 

2011; Rafiei & Adeli, 2019) have been explored. The variation in physical properties, 

such as mass, stiffness and damping, can be derived from the measured vibration 

characteristics (Doebling et al., 1998). Vibration characteristics can be used along with 
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machine learning models for damage identification and quantification (Wang et al., 

2021).  Studies (Figueiredo et al., 2019; Pathirage et al., 2018; Pathirage et al., 2019; 

Rafiei & Adeli, 2019; Wang et al., 2018) have been conducted for the damage 

identification and quantification of civil engineering structures using vibration 

responses and machine learning algorithms. Damage identification and quantification 

are the essential components of the  SHM (Wang et al., 2021). Recent studies by 

(Pathirage et al., 2018; Pathirage et al., 2019; Wang et al., 2020; Wang et al., 2018) 

have used mode shapes and natural frequencies to identify and quantify elemental 

structural damage.  

Most traditional machine learning models are fast. However, it is generally not 

efficient when it must process large amounts of data in its raw form (Yuan et al., 2020). 

Ensemble or committee-based methods improve machine learning performance using 

the results from multiple models, defined as the base learners. Better prediction results 

can be achieved than a single model with reduced variance, bias, and training time. In 

many cases, the base learners use the same type of algorithms, while some methods 

use different algorithms. The base learners must be reasonably accurate and diverse 

enough to build an efficient ensemble model (Sun, 2018). Deep learning models are 

computationally expensive compared to traditional machine learning models. Still, it 

can be made more efficient if proper feature selection can be performed on the input 

data before feeding it into the learning pipeline.  

1.2 Problem statement 

Structural damage identification and quantification using modal information require 

more sensors to measure the responses, usually from the whole structure, to obtain 

mode shapes and related parameters accurately to ensure that enough modal 

information is available. This may not be practical for large-scale structures. 

Moreover, the cost incurred from the centralised data acquisition system, e.g., long 

cables, a large number of sensors, and an in-field server, is generally high (Cao & Liu, 

2016). It also takes a long time to install the monitoring system when the 

measurements must be taken from the whole structure. Time domain responses such 

as acceleration responses are sensitive to structure condition changes and can be easily 

measured. Measurements from a small number of sensors can be used directly or along 

with signal processing techniques with a machine learning model for damage 
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identification and quantification. However, the acceleration response is dependent on 

other conditions such as loading. It can contain noise, making it hard for the algorithm 

to map the input pattern with the target of damage assessment. Traditional machine 

learning models are fast and give good results when the data size is small. However, 

they are no longer effective when the data size is big. Deep learning models generally 

work better for large datasets. They can automatically extract features from the raw 

input (Yuan et al., 2020), but it takes longer to get trained. The research is carried out 

to develop suitable and effective methods for damage identification and quantification 

using acceleration responses with both traditional machine learning and deep learning 

models.  

1.3 Research Objectives 

The proposed research uses time domain responses, such as acceleration, to develop 

robust machine learning models for damage identification and quantification for 

different scenarios. The following research objectives are explicitly set: 

1. Explore using a smaller number of sensor measurements to monitor the health 

of the civil infrastructure.  

2. Propose machine learning models that can provide good damage identification 

and quantification with reduced computational time and a smaller number of 

sensor measurements.  

3. Study the effect of external conditions such as noise and system modelling 

error for damage identification and quantification.  

4. Explore performing signal processing techniques like computing impulse 

response functions (IRFs) and autocorrelation on acceleration response and use 

it as an input to machine learning models and measure the performance.  

1.4 Significance  

Vibration-based damage identification and quantification methods have been explored 

recently using modal information and machine learning models. The proposed 

methods in this thesis use acceleration responses measured from a smaller number of 

sensors for damage identification and quantification. Further, the study explores using 

impulse response functions (IRF) extracted from acceleration responses together with 

machine learning algorithms for damage identification and quantification. IRF has the 

advantage of being an inherited system property.  
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The existing studies on structural elemental damage identification and quantification 

using deep learning models like autoencoders and deep residual networks are 

computationally expensive. An ensemble-based technique, random forest, used in 

many fields due to its high accuracy and stability, is developed together with PCA for 

dimensionality reduction. The proposed method using processed raw acceleration 

response gave good damage identification results with significantly less computation 

time than the existing deep learning models. Further, damage identification and 

computation time are improved using another ensemble-based technique, an extremely 

randomised tree (ERT) using IRF and PCA. The existing deep learning and proposed 

two methods in Chapter 3 and Chapter 4 are trained separately for the damage 

scenarios considered. Using the same IRF dataset in Chapter 4, a robust noise LSTM-

autoencoder that is trained, validated, and tested on combined datasets without noise 

measurement data is proposed. The dataset for damage scenarios with noise 

measurements is used as another testing dataset for the trained model. The proposed 

method does not need to be trained and tested for the damage scenarios with noise 

measurements. It uses a noise layer before the LSTM-autoencoder helps generalise test 

datasets. The computation time is reduced using PCA as the dimensionality tool.  

Further, civil engineering structures are exposed to different external conditions. The 

vibration measurements from the Z24 bridge in Switzerland during the short-term 

progressive damage tests were obtained under different damage types and levels for 

each damage type. The proposed methods in Chapters 3, 4 and 5 may become too 

complex or may not be suitable for predicting damage type and quantifying the 

damage. The current study using Z24 bridge data presented good damage 

classification, but there is the possibility to achieve better results using the same 

dataset. Moreover, it has used different data augmentation methods and measurements 

from five sensors. A classification model using a One-dimensional convolutional 

network (1D-CNN) using three sensor measurements is proposed for this task. 1D-

CNN has the advantage over other convolutional networks in terms of computational 

complexities since it is a relatively simple architecture. The proposed D-CNN model 

uses two 1D-CNN with different kernel lengths, resulting in better damage 

classification than the current study.  
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1.5 Thesis outline 

Chapter 1 

It briefly provides an introduction and background to the thesis stating SHM and 

earlier techniques, followed by problem statements, research objectives, and the 

significance of the study.  

Chapter 2 

The literature review is presented in this chapter. It states the importance of SHM, and 

vibration based SHM. Further, a study on machine learning and deep learning models’ 

application in SHM is discussed.   

Chapter 3 

A supervised ensemble-based traditional machine learning multi-output regression 

model, Random Forest (RF) with PCA using acceleration responses, is proposed. The 

input to RF is the principal components selected, and the output is the stiffness 

parameter reduction in the elements. A numerical study is carried out on a simply 

supported beam, and performance is measured for different damage scenarios; an 

experimental study is done on a seven-story steel frame structure.  

Chapter 4 

The RF model proposed in Chapter 3 is extended using impulse response functions 

(IRFs) computed from acceleration responses and compared with another ensemble-

based traditional machine learning algorithm constructed from the decision tree, ERT.  

The IRFs is calculated from the acceleration response generated from the simply 

supported beam and the seven-storey steel frame structure. PCA is again employed on 

the processed IRFs for dimensionality reduction. The input to RF and ERT is the 

principal components selected, and the output is the stiffness parameter reduction in 

the elements.  ERT output performs the RF. Further, the performance of ERT with IRF 

is measured using a smaller number of sensors.  

Chapter 5 

The proposed models were trained and tested separately for all the damage scenarios 

considered in the first two methods and existing deep learning models for the damage 

identification in structural elements. A deep learning model based on Long Short-Term 

Memory (LSTM) is proposed, which gets trained and validated on the dataset of 
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combined two scenarios without noise in the measurement and tested with datasets 

with noise. The proposed approach uses the IRF dataset obtained in Chapter 4. It has 

the advantage of generalising data over RF and ERT. PCA is employed on the 

processed IRF and used as an input to the proposed LSTM autoencoder to reduce the 

computational time. The performance is measured for scenarios considered in 

Chapters 3 and chapter 4.   

Chapter 6 

Chapter 3-5 proposed models based on machine learning for structural damage 

identification and quantification, defined in terms of stiffness parameter reduction. A 

real large-scale structure can undergo many damage types and be exposed to many 

external conditions that may impact the acceleration responses. The regressor models 

proposed in earlier chapters can become complex due to the need to identify different 

damage scenarios and then quantify the damage level for other damages when the data 

available are small. A 1D-Convolutional Neural Network (1D-CNN) is proposed for 

damage classification using a smaller number of sensors and provides higher damage 

classification accuracy than the current study. 

Chapter 7 

The last chapter of the thesis concludes with the findings of the studies carried out for 

damage identification and quantification. Further, it presents future works that can be 

explored to improve the performance considering more uncertainties.
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CHAPTER 2 

2 Literature review 

This chapter provides a literature review on the development and applications of 

machine learning techniques for structural health monitoring (SHM) and discusses the 

limitation of model-based SHM. In the vibration-based SHM section, the traditional 

vibration-based damage identification methods are reviewed, followed by discussions 

on artificial neural network applications. Both machine learning techniques and deep 

learning models using vibration responses are presented. The discussions on structural 

element damage identification and quantification are explained in detail to understand 

the problems in existing studies. Further, studies on using ensemble learning methods 

for SHM have been presented. It also discusses using the impulse response functions 

(IRF) extracted from time domain responses for SHM. Studies on principal component 

analysis (PCA), which is used as a dimensionality reduction technique for SHM, are 

also reviewed. 

2.1 Structural health monitoring 

SHM techniques have been developed to perform condition evaluation and monitoring 

of civil and mechanical engineering structures. It assists structural engineers in 

ensuring structural integrity and safety, reduces capital maintenance expenditure and 

increases the service lifespan of engineering structures (Karbhari & Ansari, 2009). 

SHM in civil engineering uses various types of sensors to collect response and loading 

information from the structures and interpret these measurements to monitor the health 

condition and performance of the structure (Ye et al., 2019). The increasing 

complexity and heterogeneity of the sensor data make it difficult for decision-makers 

to diagnose structural conditions and prognosis of structural damage (Smarsly et al., 

2013). Many techniques have been explored to monitor the structure’s health 

condition. The methods can be model-based methods or data-driven methods. Model-

based approaches use finite element models and strategies for model updating for 

damage identification and quantification. The parameters of the FEM model are 

updated concerning the measured responses for the damage identification (Kim & 

Kawatani, 2998; Weber & Paultre, 2010). In the study (Nicknam et al., 2011), a 

damage identification method is proposed for damage detection using fundamental 

mode shape transformation and curvelet transform. The proposed study was 
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investigated with 5% and 10% noise. Amiri et al. (2013) studied two damage 

identification and quantification in shear frames. In the first method, residual modal 

force is adopted for damage computation. In the second method, the damage 

computation is carried out based on the static displacements under unique static force 

using modal data. More studies (Amiri et al., 2015; Li et al., 2018; Roy, 2017; 

Rucevskis et al., 2016; Yong & Hao, 2003) utilise modal information like natural 

frequencies and mode shapes for damage detection.  

Further, model-updating techniques have been explored for more efficient structural 

damage detection. Haidarpour and Tee proposed a model updating approach for 

damage identification and characterisation in structural and mechanical systems 

(Haidarpour & Tee, 2020) by examining the change in the responses. A hybrid 

experimental/computation model-based framework (Giagopoulos et al., 2018) was 

proposed for fatigue damage and remaining lifetime estimation in a linear steel 

substructure of a lignite grinder assembly at a power plant. Operational vibration 

measurements collected from the limited number of sensors are used to update the 

numerical FEM model. Sipple and Sanayei presented a new method for FEM updating 

using frequency response and numerical sensitivities to solve the inverse problems 

(Sipple & Sanayei, 2013).  However, model-based methods have difficulty modelling 

a complex real-world structure due to uncertainty in material properties, environmental 

conditions, construction flaws and boundary conditions (Yuan et al., 2020).  

Owing to the limitation of physics-based techniques, machine learning algorithms are 

used to generate knowledge of the structure with the data collected from the sensors 

and numerical simulations. It has been applied for the safety assessment and health 

monitoring of civil engineering infrastructure through its capability of deriving 

relationships in the datasets (Chencho et al., 2020). Thus, machine learning algorithms 

have become powerful when the structure is complex to model. There is a need to 

reduce computational effort owing to generating a massive amount of data (Smarsly 

et al., 2016).  

2.2 Vibration-based SHM 

Vibration-based methods (Doebling et al., 1998; Figueiredo et al., 2019; Rafiei & 

Adeli, 2019; Wang et al., 2021; Wu & Jahanshahi, 2018) have been extensively 

developed for SHM to identify and quantify damage based on vibration responses. 
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These methods have been widely used in the health monitoring of machines and their 

components by measuring vibration responses such as displacement, strain, and 

acceleration (Heng et al., 2009; Jardine et al., 2006; Kan et al., 2015). Vibration-based 

methods have also been developed for SHM of civil engineering infrastructure that 

ultimately overcomes the issues with the traditional structural condition monitoring 

and safety evaluation of the monitored structures (Avci et al., 2021b; Mansouri et al., 

2015; Shadan et al., 2016). Magalhaes et al. (2012) installed force balance 

accelerometers within the deck box girders to measure both vertical and lateral 

accelerations to examine the aging and degradation of a bridge. The natural frequency 

changes over time were monitored with the surrounding temperature to observe 

possible changes in the bridge's condition. The natural frequency variation over time 

with the RMS value of the vertical acceleration and the average day evolution of the 

modal damping ratios and natural frequency changes during working days were also 

obtained. A method was proposed to minimise the effects of environmental and 

operational factors on the natural frequencies, which helped to identify the structural 

anomalies in the subsequent stage (Magalhaes et al., 2012).   

Artificial neural networks (ANN) were used along with the feature extraction methods 

for damage identification and localisation. A study (Mehrjoo et al., 2008) conducted a 

numerical study on a simple warren truss and Louisville bridge truss for damage 

detection of joints using modal characteristics extracted from acceleration responses. 

Damage was introduced by reducing the truss member’s stiffness, and blending modes 

were used for training the model. The first four modes of truss bridge and five modes 

of Louisville bridge were used for training the model. The results indicated good 

damage identification performance. However, the complete training process took 

75,000 epochs, which is quite large. An application of Bayesian model class selection 

to select an optimal ANN model class was proposed for detecting damage in a four-

story, 22-bay steel frame with 120 degrees-of-freedom (Ng, 2014) using modal 

characteristics of the model under several structural damage states. A combined 

method (Betti et al., 2015) consisting of ANN and genetic algorithm for structural 

damage identification of a three-story steel structure was developed. Structural damage 

was introduced by partial cuts of flanges on a column. Acceleration measurements 

under ambient conditions from undamaged and damaged levels were recorded to 

obtain natural frequencies and mode shapes through a neural network. The inputs to 
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the neural network are four-frequency dependent indexes and output an estimate of the 

likelihood of finding a structural eigenfrequency. The minimisation of modal 

characteristics between the experimental and numerical studies was carried out using 

two fitness functions, and the damage identification was tested using the genetic 

algorithm. Other studies (Cury & Cremona, 2012; Goh et al., 2013; Lee & Lam, 2011; 

Xhou et al., 2014) have also used modal information with machine learning models 

for damage identification and localisation.  

Machine learning algorithms have also been used for damage identification and 

localisation with time domain measurements, mostly the structures' acceleration 

responses. It does not require extracting the parameters like the modal information 

from the measurements recorded from the sensors. Autoregressive model (AR) and 

Residual Error (RE) were used to extract damage-sensitive features for the support 

vector machine (SVM) in the study by Gui et al. (2017) to detect damage in frame 

structure and using time series measurement. The hyperparameters of SVM were tuned 

with three different optimisation techniques. The numerical results demonstrated the 

improvement in the performance over the conventional methods in terms of sensitivity, 

accuracy, and effectiveness.  

A numerical study by (Dackermann et al., 2016) using principal component analysis 

(PCA) with ANN and ensembles of ANN was conducted for the damage identification 

and localisation of pin-pin supported steel beam. Modal parameters were extracted 

from the time domain responses, and the modal strain energy-based damage index was 

derived. PCA was applied to the damage index, and significant principal components 

were selected as an input to the ANN for damage identification and localisation. PCA 

was utilised to reduce the effect of noise, and performance measurement was measured 

with different levels of white noise. A three-stage ANN method for damage assessment 

of building structures was proposed in the study. The first stage determined the 

damaged floor, and a specific damaged element was identified in the second. The 

damage severity was identified in the third stage. The study was carried out on a 

numerical model of a 10-storey frame structure with the frequency response function 

obtained from the acceleration measurements. The result indicated that the PCA-based 

damage index was suitable for structural damage detection. PCA was used with noise 

filtering for feature extraction. Some researchers (Abdeljaber & Avci, 2016) proposed 

a nonparametric structural damage detection method using self-organising maps to 
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extract damage indices from ambient acceleration measurements. The study was 

conducted to identify and locate damage due to stiffness reduction and change in 

boundary conditions of a numerical model of a hot-rolled steel grid structure. Machine 

learning models are fast to train and do not require a high system configuration for 

training.  

Deep learning models have been extensively used for the damage identification and 

quantification of civil engineering structures. It is a subset of machine learning 

methods. It can learn from the data in an unsupervised manner and extract the optimal 

input representation from the raw data without the user's intervention. Thus, deep 

learning models can learn how to correlate features to the desired output, and extract 

features (Avci et al., 2021b). An ensemble classification method for structural damage 

assessment was proposed using FRF generated from a numerical model (Fallahian et 

al., 2017). Deep neural network and couple sparse coding are two classifiers used for 

the damage classification, and the decision is made based on the majority voting. The 

input to the classifiers is the features extracted by using PCA. A numerical study was 

carried out on a truss bridge with 25 elements and validated with data obtained from 

the I-40 bridge. Good damage classification results were provided, considering 

temperature variations.  

Auto-encoders perform hierarchical non-linear mapping to learn features representing 

datasets (Vincent et al., 2010) and have also been used for dimensionality reduction. 

In studies (Fallahian et al., 2017; Fallahian et al., 2018; Pathirage et al., 2019), 

autoencoders have been used for damage identification and quantification. Recent 

studies (Pathirage et al., 2018; Wang et al., 2020; Wang et al., 2018) on structural 

elemental damage identification and localisation using auto-encoders have the natural 

frequencies and mode shapes as the input, and the stiffness reduction in the structural 

elements as the output. The variation in physical properties, such as mass, stiffness, 

and damping, can be derived from the measured vibration characteristics of (Doebling 

et al., 1998), including natural frequencies and mode shapes.  

A numerical study by (Pathirage et al., 2018) investigated an application of a deep 

autoencoder model for damage identification and quantification using modal 

information, natural frequencies and modes shapes. The input to the proposed model 

were natural frequencies and mode shapes of the first seven modes, and the elemental 
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stiffness parameter is taken as the output. For training and testing the proposed model, 

an updated finite element model (FEM) of seven storied frame structures is used for 

the data generation. The performance was measured for stiffness prediction for single 

and multiple element damage cases. In another numerical study, using the same 

dataset, a novel parallel auto-encoder framework (Wang et al., 2018) was proposed 

using the same seven-storey steel structure to predict structural elemental stiffness 

reduction. The sparse dimensionality reduction is performed parallelly for natural 

frequencies and mode shapes. The reduced dimension of natural frequency and modes 

shapes are combined and used as an input to predict stiffness reduction in the structural 

elements. The performance was measured for single and multiple element damage 

cases. However, no uncertainties in the modelling system and noise measurements are 

considered in those studies.  

The same study was further extended using autoencoders (Pathirage et al., 2018) with 

noise measurement and uncertainty effect in the modelling system with experimental 

verification. There were two components, one to reduce the dimensionality of the input 

and another component to map features with reduced dimensionality and elemental 

stiffness parameter. The inputs to the model are natural frequencies and mode shapes, 

and labelled outputs are elemental stiffness parameters.  In the study, four scenarios 

were considered to measure the performance of their proposed model. The four 

scenarios were defined based on the noise measurement and uncertainty in the system 

modelling. Scenario 1 has no noise measurement and uncertainty effect. Scenario 2 

considers measurement with 1% random noise in frequencies and 5% in mode shapes. 

Scenario 3 takes a 1% uncertainty effect in elemental stiffness parameters. Scenario 4 

considers both noise measurement and uncertainty effect. For every scenario, damage 

identification and quantification were predicted for single element and multiple 

element damage cases. The model was trained, tested, and validated with natural 

frequencies and mode shapes generated from the FEM model of a frame structure. It 

was demonstrated that their proposed model gave good damage prediction results. 

However, it is observed that the performance degrades when noise measurement and 

uncertainty effects are considered.  

Pathirage et al. (2019) proposed a deep learning-based sparse autoencoder framework 

to improve the performance of the same problem. A sparse dimensionality reduction 

was performed, followed by relation learning between the reduced dimension input 
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and output. It compresses the dimensionality of the features, preserving helpful 

information but also robust to the effect of noise and uncertainties (Pathirage et al., 

2019). With sparse dimensionality reduction as the additional component, the 

performance was measured for four scenarios considered in their previous study for 

both single and multiple element damage cases. The sparse autoencoder-based deep 

learning model has improved damage identification and quantification. Further, a deep 

residual network framework (Wang et al., 2020) for structural damage quantification 

was proposed using the natural frequencies and mode shapes. The proposed framework 

comprises a residual neural network for feature extraction and a fully connected layer 

as a regressor. The same dataset of the seven-storey frame structure used in studies 

(Pathirage et al., 2018; Pathirage et al., 2019) was used in the study. The performance 

was measured and compared with the sparse autoencoder network by Pathirage et al. 

(2019), considering all four scenarios, and it outperformed in all the scenarios.   

Several sensor measurements were required at several locations of the structure to 

obtain accurate modal information, such as the mode shapes (Chencho et al., 2020; 

Wang et al., 2021). This can be expensive because of the costs incurred on long cables, 

sensors, and data acquisition systems. Time domain responses can overcome the issue 

by measuring modal information for damage identification and localisation. 

Abdelijaber (2017) proposed a real-time damage detection and localisation method 

using adaptive one-dimensional (1D) CNN and raw signal measurements with 

accelerometers. Wang et al. (2021) used only a few sensors and time-domain responses 

and achieved excellent damage identification and quantification results using densely 

connected neural networks. Chencho et al. (2020) conducted a similar study using 

principal component analysis (PCA) and an ensemble-based machine learning 

algorithm, namely, the random forest. The damage identification and quantification 

results were close to those from the deep learning models at a relatively low 

computational cost. PCA has been used to extract information from high-dimensional 

data that can be represented using a few principal components (Sarbu & Pop, 2005). 

PCA is faster than auto-encoder when used for dimensionality reduction.  

Convolutional neural networks (CNNs) are supervised, deep learning models. They 

are widely used in SHM owing to a strong capability for an efficient and robust feature 

learning (Wang et al., 2020). CNN's were first introduced for digit recognition tasks 

and have also been widely used in SHM (Abdeljaber et al., 2017; Azimi & Pekcan, 
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2020; Seventekidis et al., 2020). Standard two-dimensional convolutional neural 

networks (2D-CNN) models are used for classification problems based on images. 

These models can learn representative features from two-dimensional input variables. 

The kernel slides along two data dimensions; hence, it is called a 2D-CNN. Similarly, 

when the kernel slides along one dimension, this convolutional neural network is 

called a one-dimensional convolutional neural network (1D-CNN). The only 

difference among these networks is the input dimensions and how the filter or kernel 

slides across the data.  

2D-CNN has been used for damage identification and localisation using vibration 

responses. Khodabandehlou et al. (2018) carried out vibration-based SHM using a 2D-

CNN to classify four damage classes using the vibration measurements from a shaking 

table testing of a reinforced concrete highway bridge. The 48 measurements from 

shake table experiments were used for training and testing the CNN model. A deep 

convolutional neural network based on 2D-CNN was proposed by Yu et al. (2018). 

The study was carried out on a five-level benchmark building model for damage 

identification.  Fast Fourier Transform (FFT) was performed on the vibration signal 

measurements to convert the time domain signal into the frequency domain. The 

selected frequency bands from different sensors were converted to a two-dimensional 

(2D) feature matrix for their proposed model.  However, 2D-CNN is best used when 

the data are 2D, and this can increase the computational cost. Further, the deep 2D-

CNNs hardware requirement is more expensive due to the need for special parallelised 

hardware setups (Avci et al., 2021a), and recent studies have explored 1D-CNN for 

the structural damage identification and localisation using vibration responses.   

1D-CNN networks have the advantage over the other CNN work in terms of 

computational complexities and shallow architecture; this makes the network easy to 

train and implement. Further, 1D-CNN does not require high system configuration, 

making it suitable for real-time and low-cost applications (Mitiche et al., 2020). In the 

study (Goodfellow et al., 2016), it was demonstrated that the 1D-CNN outperformed 

other machine learning algorithms like support vector machine and random forest. In 

the study (Abdeljaber et al., 2017), a structural damage detection system using 1D-

CNN was designed to fuse feature extraction and classification blocks into a single 

learning body.  Zhang et al. (2019) conducted a study using 1D-CNN and a wireless 

sensor network for structural health monitoring of bridge structures. 
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The damage detection in a steel frame using only two sets of measured acceleration 

signals regardless of the size of the structure using 1D-CNN was proposed (Abdeljaber 

et al., 2018). The proposed study provided good damage detection but required one 

1D-CNN for each sensor measurement for training.  A hybrid model consisting of 1D-

CNN and Long Short-Term memory network (Hung et al., 2020) was proposed for 

damage identification using a series of experimentally measured vibration data from a 

frame structure constructed in the laboratory. Data augmentation was performed to 

increase the size of the experimental data. A similar study (Hung et al., 2021) using 

1D-CNN and LSTM was carried out and tested on many structures, including the Z24 

bridge. Large-scale civil infrastructures like bridges are exposed to external conditions 

such as wind, temperature, vehicle loads (Hung et al., 2021) and different types of 

damage. Z24 bridge progressive damage test (PDT) dataset might contain much noise, 

which is inevitable in a real structure due to external conditions. This can make it hard 

for the machine learning models to map input patterns with the damaged label or the 

type. The existing hybrid model using data fusion techniques (Hung et al., 2021) on 

Z24 data has shown damage classification accuracy of 90.1%. In their study, different 

methods were adopted initially to extract the features from the raw data and then fused 

to feed as the input to the hybrid model. Further, data augmentation techniques were 

performed to have sufficient data to train and test their proposed hybrid model. Five 

sensor measurements were used in their study.  

Li et al. (2015) proposed a structural damage identification model that used a 

sensitivity-based method and the impulse response functions (IRFs) extracted from the 

acceleration responses. Lin et al. (2019) proposed a method to estimate IRFs from 

structural responses recorded from multiple unknown excitations and utilised IRFs for 

structural damage identification and quantification. An equivalent single excitation 

problem was obtained for various general excitations, and IRFs were estimated using 

wavelet and regularisation methods. The performance was measured with and without 

noise for a simply supported plane truss numerical model. Smith and Hernandez 

(2017) explored impulse response sensitivity and least absolute shrinkage and 

selection operator (LASSO) regularisation for sparse damage detection in terms of 

stiffness reduction of a numerical model of a non-uniform shear beam with noise 

measurement limited model parameters and limited sensor locations. The results 

demonstrated that sparse damage could be detected using changes in identified impulse 
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responses. A study (Todorovska & Trifunac, 2008) carried out on damage detection of 

a full-scale building damaged by the earthquake. The changes in wave travel times of 

seismic waves propagation through structural members were measured to detect the 

changes in stiffness. The recorded horizontal responses before, during, and after the 

earthquake were used to compute the impulse response function (IRFs), and wave 

travel times were obtained from the IRFs (Todorovska & Trifunac, 2008). A  study 

was conducted to identify damage within wall structures using the Hilbert marginal 

energy ratio spectrums of IRFs and virtual IRFs (Xu, 2021).  Hilbert damage feature 

vector was created based on selected feature bands that were more sensitive to damage 

within the retaining walls. IRFs can be an ideal inherent vibration property for 

structural damage identification. IRFs are one of the dynamic characteristics of 

structures, representing the time domain response of a structure under the input of an 

impulse excitation. It will vary owing to the change in physical properties of the 

structure, and it is related only to the excitation location (Lin et al., 2019). IRF has the 

advantage of using measured time domain responses directly as input to machine 

learning algorithms (Li et al., 2015). 

2.3 Ensemble learning 

Ensemble learning-based techniques have been developed to improve the performance 

of machine learning algorithms. It uses several similar or different models, resulting 

in better predictions by decreasing the variance and bias. Ensembles of artificial neural 

networks (ANNs) have been used and improved further for damage detection, 

localisation, and quantification of an aeronautical structure with strain field 

modification (Francesco et al., 2017; Sbarufatti, 2017; Sbarufatti et al., 2013). 

Ensemble-based models can be either regression or classification or predictive models. 

Knowing the difference between them is essential and choosing the best that suits the 

problem. The predicted results can fall into one or more classes with classification 

models, even when the input does not belong to any classes. This is not the case with 

the regression problem. The regression problems have numerical or continuous 

labelled output.  

Ensemble methods based on traditional machine learning models like decision trees 

are developed for structural monitoring. Decision trees are non-parametric supervised 

machine learning algorithms used for regression and classification problems (Chencho 
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et al., 2020). However, a single decision tree usually suffers from overfitting, resulting 

in high variance and a low bias. Breiman (1996) proposed Random Forest (RF) to 

reduce the variance and increase the bias. RF is a homogenous ensemble-based 

supervised algorithm built from several decision trees as a base learner. The variance 

problem is reduced by introducing randomness, taking ensembles of decision trees, 

using bootstrapped samples, and splitting nodes at the best split (Breiman, 1996; 

Chencho et al., 2020; Lawson et al., 2017; Mariniello et al., 2020). 

RF was used as a classifier to identify damage in a shear frame structure (Zhou et al., 

2013). Further, a study (Zhou et al., 2014) was carried out using the RF as a feature 

extractor to eliminate the least important features. Structural damage detection and 

localisation using decision tree ensemble and modal information have been discussed 

by Mariniello et al. (2020). Mode shapes and natural frequencies are input to the 

decision tree ensemble model. The RF output is the average of the outputs from all 

decision trees in the case of regression problems.  For classification problems, the 

majority vote of the classes is taken as the final output.  In all the above studies, RF is 

used as a classifier. Kundu et al. (2020) proposed a method using RF as the regressor 

to predict the remaining useful life of spur gears under natural pitting progression by 

correlation coefficient parameter based on residual vibration signals.  

Although RF requires growing several decision trees using bootstrap data, it is still 

popular owing to the low computational cost of growing the decision trees. RF 

provides some degree of randomisation by taking a random subset of features and 

bootstrapped samples, unlike a decision tree. It gives a better result than a decision tree 

in terms of accuracy. In a current study (Chencho et al., 2020), the development and 

application of RF for elemental level structural damage quantification were presented 

to overcome the limitations of existing structural elemental damage quantification. The 

principal component analysis was performed on the input for dimensionality reduction. 

The study used acceleration responses measured from a smaller number of sensors and 

a machine learning algorithm. A numerical study was carried out on a simply 

supported beam with 10 elements, and experimental validation was carried out on a 

seven-storey steel frame structure with 70 elements. The input to RF was the processed 

acceleration measurement, and the output is the reduction and stiffness parameter. The 

RF developed gave good structural elemental damage identification. The 
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computational cost was far less than the deep learning models for structural elemental 

damage quantification.  

Another ensemble technique, Extremely Randomised Trees (ERT), is a multi-output 

regressor. Both RF and ERT are homogenous ensemble-based algorithms. ERT uses 

multiple decision trees and takes the average of all the outputs. However, compared 

with RF, there are two essential differences. RF selects the best feature with the high 

information gain or minimum error for the best split. To find the best feature, it has to 

thoroughly evaluate all the features in the set of randomly selected features (Lawson 

et al., 2017). For a given problem, ERT randomly selects a feature from a set of 

randomly chosen features to split at the node (Geurts et al., 2006; Lawson et al., 2017), 

providing a higher level of randomisation. The other difference is that ERT does not 

bootstrap the initial dataset. It uses whole learning samples to grow the trees. The 

performance of ERT in terms of accuracy can be slightly better than RF. However, the 

computational time for ERT will be less than RF because it does not have to check all 

the features for the best split.  

2.4 Dimensionality reduction technique: Principal component analysis 

Dimensionality reduction can help machine learning models to avoid the curse of 

dimensionality, which does not occur with low dimensional data. The high-

dimensional data can be projected into a lower dimension without losing much 

information. There are many feature projection techniques like principal component 

analysis (PCA), t-distributed stochastic neighbourhood embedding (T-SNE), linear 

discriminant analysis (LDA), autoencoders etc. Autoencoders are unsupervised 

artificial neural networks that can map higher dimensional data into a linear or non-

linear lower dimensional data (Lin et al., 2021; Pathirage et al., 2019; Zabalza et al., 

2016). However, its neural network architecture is slower than the other techniques. 

An analysis of dimensionality reduction techniques on big data was conducted to 

investigate the performance of traditional machine learning models with PCA and 

LDA (Reddy et al., 2020). It has shown that the performance of machine learning 

models with PCA outperforms models with LDA. For the study on using machine 

learning techniques for detecting and classifying structural damage, Nick et al. (2015) 

investigated the supervised and unsupervised machine learning algorithms to classify 
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acoustic signals and associated crack growth. The results were tested with and without 

PCA for dimensionality reduction.  

PCA tries to retain information on the global structure of data, and it is widely used 

across different fields for data compression and extracting information from high-

dimensional data.  It has been used in the area of SHM for performing the 

dimensionality reduction of the input dataset and for removing the uncertainties, e.g., 

measurement noise and environmental effects (Nie et al., 2020), whilst retaining most 

of the information of the original data (Brownlee, 2019a; Jolliffe & Cadima, 2016; 

Reddy et al., 2020). For the datasets measured for a long duration, the number of 

sampling points becomes significantly large, which increases the computational time 

for obtaining the covariance matrix and principal components. The principal 

components are obtained by performing Eigen decomposition of covariance matrix 

from the input data. The eigenvectors can be arranged in the descending order of the 

eigenvalues. The number of components can be selected based on certain criteria on 

the singular values or energy of the covariance (Brownlee, 2019a; Nie et al., 2020). 

Posenta et al. (2008) proposed using a moving window of a constant size, and the 

covariance matrix was carried out inside the window. Nie et al. (2020) utilised fixed 

moving principal component analysis with a sliding fixed window to detect the time 

instant of damage occurrence for real-time SHM of bridge structures. 

2.5  Discussions  

Structural damage identification methods using auto-encoders and deep residual 

networks using modal information data are discussed. Many sensors are required to 

extract accurate modal information. The measurements should be taken from several 

locations on the structure. Obtaining the measurement for modal information can be 

expensive. Installation and maintenance of these systems are time-consuming and have 

problems with accessibility when there are regions on the structure which could not be 

reached.  Further, the deep learning models are computationally more expensive than 

the traditional machine learning models.  

The ensemble technique can improve the performance. However, using ensembles of 

deep learning models can further increase the computation time because the results are 

mostly the average of all the models. Traditional ensemble machine learning models 

are computationally less expensive and have demonstrated good results for 
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classification and regression problems. Performing dimensionality reduction using 

PCA can reduce the computational time of both deep learning and traditional machine 

learning models. Besides, it helps remove the noise and the uncertainty effects in the 

datasets. The existing studies (Chencho et al., 2020; Wang et al., 2021; Zhang et al., 

2019) demonstrated good damage identification and quantification results using a 

smaller number of sensors and time domain responses. Using acceleration responses 

for structural elemental damage identification and quantification does not require more 

sensors. Moreover, it is sensitive to structural conditions. Using IRFs extracted from 

the acceleration response as the input to the machine learning model may give better 

damage identification results.  

It was also observed in the studies (Chencho et al., 2020; Pathirage et al., 2018; 

Pathirage et al., 2019; Wang et al., 2020; Wang et al., 2021; Wang et al., 2018), that 

the input data are modal information or acceleration responses generated or measured 

for the reduction in the stiffness parameter considering the problem as a regression 

problem. The damage identification was carried out for single element and multiple 

element damage cases for four scenarios considering noise measurement and 

uncertainty in system modelling. There were four different sets of datasets, one for 

each scenario. Their proposed models’ performance for each scenario was measured 

using the specific dataset for training, testing and validation. However, it would be 

more appropriate to come up with a model which can be trained with a dataset and be 

able to generalise for all the dataset without the need to train, test and validate each 

scenario. Moreover, input data were either modal information or time domain 

responses measured for a uniform step size of stiffness reduction. This makes it 

suitable to develop machine learning models as regression models. A civil 

infrastructure may experience different types of damage and different levels for each 

damage type. The data available may not be sufficient to develop a regression model. 

For example, the Z24 bridge in Switzerland considers the other kind of damage and 

levels for each damage type.  The time domain measurements were made for different 

levels for each damage type. A regression model may not be suitable or become too 

complex when the problem consists of more damage types, and there is the need to 

quantify each damage type.  Therefore, an appropriate classification model may be 

suitable for this problem.  
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2.6 Summary  

Table 2.1. lists the advantages and disadvantages of some of the methods discussed. 

Based on the above discussions, the limitations of existing methods on structural 

elemental damage identification and quantification may be mitigated with ensemble-

based traditional machine learning techniques and an LSTM-based model, which can 

generalise the dataset with noise measurement and system modelling uncertainty. For 

training and testing the proposed models, numerical simulation of updated FEM 

models can be used for data generation and validated with experimental studies.  

Further, the 1D-CNN model can be used for damage classification or identification 

when time domain responses are available for large-scale civil engineering structures. 

The use of five sensor measurements in the current study for Z24 using a hybrid deep 

learning model has indicated that a smaller number of sensor measurements of time 

domain responses can be used for damage classification and quantification in the 

structure. The accuracy can still be improved to get good damage classification using 

smaller number of sensors. The research methodologies are developed based on the 

gaps mentioned, and numerical and experimental studies are conducted in the 

following chapters. 
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Table 2.1 Advantages and disadvantages of some machine learning methods for 

damage identification and localization 

Reference Models Inputs Advantage Disadvantage 

Dackermann et 
al. (2016) 

PCA with 
ANN 
ensemble 

Modal 
Information  

Good damage 
identification and 
localization. The effect 
noise is reduced using 
PCA. 

Requires more 
sensors to obtain 
modal information. 

Fallahian et al. 
(2017) 

Deep neural 
network and 
couple sparse 
coding 

Frequency 
Response 
Function 
(FRF) 

Good damage 
identification 
considering noise and 
temperature variations. 

Long training time. 

Pathiriage et al. 
(2018) 

Autoencoder Modal 
Information 

Comprises of two 
components for 
dimensionality 
reduction and 
relationship learning. 
Good damage 
prediction in structural 
elements. 

Require more 
sensors, long 
training time, 
Difficult to obtain 
measurement from 
complex structure. 

Wang et al. 
(2018) 

Parallel 
Autoencoder  

Modal 
Information 

Processes natural 
frequency and mode 
shapes separately and 
provides good damage 
prediction in structural 
elements. 

Require more 
sensors, long 
training time, 
Difficult to obtain 
measurement from 
complex structure. 

Pathariage et al. 
(2019) 

Sparse 
Autoencoder 

Modal 
Information 

Enhances the capability 
of dimensionality 
reduction and 
relationship learning. 
Good damage 
prediction in structural 
elements. More robust 
to noise and 
uncertainty considered 
in their study 

Require more 
sensors, long 
training time, 
Difficult to obtain 
measurement from 
complex structure. 
requires separate 
training for all 
damage scenarios 
considered.  
Requires separate 
training for all 
damage scenarios 
considered.  

Wang et al. 
(2020) 

Residual 
Network  

Modal 
Information 

Avoids the problem of 
vanishing gradient by 
using skip connection. 
Good damage 
prediction in structural 
elements 

Require more 
sensors, long 
training time, 
Difficult to obtain 
measurement from 
complex structure. 
Requires separate 
training for all 
damage scenarios 
considered.  
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Abdelijaber 
(2017) 

Adaptive 1D-
CNN 

Acceleration 
responses  

Real time damage 
detection and 
localization from raw 
acceleration response 
and has an inherent 
adaptive design to fuse 
both feature extraction 
and damage 
localization. 

Takes longer 
training time 
because it uses 1D-
CNN for each 
acceleration 
response 

Wang et al. 
(2021) 

Densely 
Connected 
Network 

Acceleration 
responses  

Strengthen feature 
propagation through 
the network and 
reduces the parameters 
making easy for 
training. Does not 
require a lot of sensor 
measurement.  

Large training time 
and requires 
separate training for 
all damage 
scenarios 
considered.  

Yu et al. (2018) 2D-CNN Frequency 
bands 
obtained 
from time 
domain 
signals 

Capable of 
automatically 
extracting high-level or 
low-level features. 
Good damage 
classification 

Requires 2D data 
which increases 
computational cost. 
More expensive 
due to the need of 
special hardware 
setups.  

Abdelijaber et 
al. (2018) 

1D-CNN Acceleration 
responses  

Requires only two sets 
of measurements for 
damage identification 
regardless of size of the 
structure and gives 
good damage detection 
result.  

Takes longer 
training time 
because it uses 1D-
CNN for each 
acceleration 
response. 

Hung at al. 
(2021) 

Hybrid LSTM 
and 1D-CNN 

Acceleration 
responses  

Uses only five sensor 
measurement from a 
large-scale bridge, Z24 
and provide good 
damage classification. 

Used data 
augmentation 
methods to increase 
data size and uses 
features extracted 
by using different 
methods. Longer 
training time.   

Mariniello et al. 
(2020) 

Decision tree 
ensemble 

Modal 
Information 

Low computational 
cost and provides some 
degree of 
randomization giving 
better results. 

Uses modal 
information which 
requires more 
sensors to take 
measurement. 
Difficult to obtain 
measurement from 
a complex 
structure. 
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CHAPTER 3 

3 Damage Identification and Quantification Using Acceleration Response and 

Random Forest  

3.1 Introduction 

This chapter presents element-level structural damage quantification using an 

ensemble-based machine learning technique, the random forest (RF), with acceleration 

responses from the structure. A random forest is a machine learning algorithm with 

several decision trees to perform a task. The proposed approach develops a random 

forest as a regressor to predict multiple output variables,  which are structure’s 

elemental stiffness reductions. The acceleration responses for single-element and 

multiple-element damage cases are generated and further processed to feed as input to 

the random forest. The acceleration responses from the sensor nodes are concatenated, 

and principal component analysis (PCA) is applied to reduce the uncorrelated input 

dimension. To measure the performance of the proposed method, a simply supported 

beam is used as an example in numerical studies. Experimental studies on a steel frame 

structure with 70 elements are also conducted to investigate the performance of the 

proposed approach for structural damage quantification.  

3.2 Random Forest Technique 

Random forest is a supervised machine learning algorithm that uses a homogenous 

ensemble technique. It uses several decision trees as the base learners. A decision tree 

is a non-parametric supervised learning method. It can be used to predict the value of 

output variables by learning simple rules inferred from the features. It can be used for 

both regression and classification problems. A decision tree-based classifier can 

classify both binary and multiclass problems. It takes an input array of size 

[N_samples, M_features] and an output array values (class labels) with size 

[N_samples] for a binary class and size of [N_samples, n_outputs] for the multiclass 

problem, where ‘N’ is the number of samples, ‘M’ is the total number of features, and 

‘n’ is the number of the target output variable. The output array is expected to have 

floating-point values instead of integer values when used as a regressor.  

A decision tree-based regression model breaks down the training dataset of size 

[N_samples, M_features] recursively into smaller subsets until each subset contains a 
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constant value with a minimum error (Hastie et al., 2009) or until it reaches the 

maximum depth. There are different types of tree algorithms. Some typical algorithms 

include Iterative Dichotometer 3 (ID3), classification algorithms (C4.5, C5.0), and 

Classification and Regression Trees (CART). They differ based on their applicability 

to numerical and categorical features. CART supports numerical target values, and a 

CART-based decision tree is used in this study.  

3.2.1 Decision Tree as a regressor 

A regression problem can have an output or multiple outputs. The model uses input 

variables (predictors) to predict output. For a decision tree, the leaf node will contain 

a constant value. Assuming that there are ‘n’ outputs, the decision tree will have to 

predict multiple outputs from the input variables. In this case, the tree stores ‘n’ outputs 

instead of a constant value and uses the splitting criteria to compute the average 

reduction across all the ‘n’ outputs. In this study, the model predicts the stiffness 

reduction of all the structure elements when it receives a sample dataset of measured 

acceleration responses from the sensors. Therefore, the problem is a multi-output 

regression problem.  

A decision tree recursively partitions the space such that the samples with the same 

labels are grouped. The decision node ‘d’ is considered to have a data size ‘N’.  For 

each split consisting of a feature ‘f’ and threshold ‘tf’, ‘N’ is split into Left and Nright 

subsets. x and y are, respectively, the input sample and labelled output   

Nleft=(x,y) for ‘f’ when less than or equal to threshold ‘tf’              (3.1) 

Nright=N\Nleft                                                                   (3.2) 

After every split, the impurity at the decision node ‘d’ is computed using the impurity 

function. For a proposed regression model, the impurity at node ‘d’ is computed using 

Mean Square Error (MSE). The mean value is calculated as follows  

  𝑦"d= !
"!

 ∑ 𝑦##$"!                                                                      (3.3) 

where ‘i’ is the sample at the decision node, and ‘Nd’ is the number of samples at the 

decision node ‘d’.  Then MSE is obtained as 

  MSE= !
"!
∑ (𝑦#	#$"! − 𝑦"𝑑)2                                                                      (3.4) 
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Subsets Nleft and Nright are recursive until the maximum allowable depth is reached, 

where Nd < minsamples or Nd=1.  For ‘n’ target variables, the average MSE is calculated 

across all ‘n’ target variables. 

Figure 3.1 shows an example of a decision tree for a multi-output regression problem 

considering ten samples. At the decision node, a feature is selected as the best splitting 

feature, and outputs are constant values since the problem considered is a multi-output 

regression problem. Mean squared error (MSE) is mainly used as the splitting criteria, 

the average reduction across all ‘n’ outputs. For the given an example, the minimum 

number of samples required to split at the decision node is four. However, the decision 

tree may fit data too well and cause overfitting resulting in a high variance. A single 

random forest model that can simultaneously predict all ‘n’ outputs is built to alleviate 

the overfitting problem. 

 

Figure 3.1  A schematic example of a decision tree model 
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3.2.2 The random forest as a regressor 

A random forest consists of several decision trees. Each decision tree in a random 

forest is trained on a different dataset taken from the actual dataset with a replacement. 

This method is called bagging or bootstrapping. Bagging combines the predictions of 

different models while their predictions are not correlated.  Each tree randomly selects 

a set of features from the total feature in the training dataset, making them 

uncorrelated. The number of decision trees and features selected are the 

hyperparameters that need to be tuned to obtain optimal performance. All the decision 

trees produce constant values when testing the model with new data. The mean of all 

the outputs is the final output, which improves to limit overfitting. This process is 

shown in Figure 3.2. The result is more accurate than the decision trees (Drakos, 2019).  

 

Figure 3.2 Random Forest as Multi-Output Regressor
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Considering that the sample size of training data is ‘N’, ‘M’ variable and ‘f’ variables 

are randomly selected at each decision node (Aldrich & Auret, 2010). The following 

steps are conducted:  

1. Draw a bootstrap sample of size N from the training data for the number of 

trees considered.  

2. Build each tree using the bootstrapped data by recursively selecting f variables 

and choosing a suitable variable to split the data into leaf nodes at the decision 

node. Repeat the process until the maximum depth size is reached.  

3. Test the model with testing data, feed the testing data to all the trees built, and 

take the average of all the outputs as a result, i.e., the regression output can be 

expressed as 

            𝑓(𝑥) = !
&
∑ 𝐷𝑇'(𝑥)&
'(!                                                  (3.5) 

where ‘x’ is the test sample, T is the total number of trees and DT are the trees.  

In this study, acceleration responses from the selected four nodes are concatenated. 

Each response has 100 sample points making 400 points included in the concatenated 

response. This increases the dimension of the input to the random forest. PCA is 

applied to the concatenated response to reduce the input dimension. The number of 

principal components is selected to preserve 99% of the total variance of the data. The 

selected principal components are the inputs to the random forest regressor, and the 

output variables are the percentage reductions in stiffness parameters of structural 

elements.  

3.3 Numerical Studies 

This section presents numerical studies on a beam model to investigate the feasibility 

and accuracy of using the proposed approach based on the developed random forest 

technique as a regressor for elemental level structural damage quantification. A simply 

supported beam is used in this study as an example. The beam has ten elements of two 

meters each. It has a beam width of 0.6 meters and a height of 1 meter. Young’s 

Modulus of 3.3×104 MPa is initially assumed for all the elements. The mass density 

and moment of inertia of the beam are 2500 kg/m3 and 0.05 m4, respectively. The first 

five natural frequencies of the undamaged beam model are 4.12 Hz, 16.48 Hz, 37.10 

Hz, 66.04 Hz, and 103.425 Hz, respectively. Each node has two degrees of freedom, 

including one vertical translational displacement and one rotational displacement. In 
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the simulations below, only the acceleration response in the vertical deflection at 

randomly chosen four nodes are considered the measured responses. 

 

Figure 3.3 A simply supported beam model 

3.3.1 Data Generation 

The finite element model of the beam model is built for data generation. The beam is 

subjected to an impact force at node 6 in the vertical direction, as shown in Figure 3.3. 

The duration of the applied force is set as 0.1 seconds. Acceleration responses from 

selected nodes (2, 5, 8 and 9) are measured when an impact force is applied. Data are 

generated for both the damaged and undamaged cases for a second with a sampling 

rate of 100 Hz. For the damage cases, specific elements' stiffness parameters (i.e., 

Young’s modulus) are reduced to reduce percentage stiffness.  

The stiffness reduction of an element is taken as 30% if the stiffness parameter 

considered is 70% of the undamaged value for that element. The maximum stiffness 

reduction of 30% is used for simulating the damage in the elements for data generation. 

This has been used in existing studies for validating the accuracy of deep learning-

based methods (Pathirage et al., 2018; Wang et al., 2018). Data are generated with 0% 

- 30% stiffness reduction of each element in steps on 1% increment. The dataset has 

‘n’ labelled outputs, where ‘n’ is the number of elements, and the output represents 

the stiffness reduction. 

For the multiple damage cases, damages in two and three elements are considered. 

The elements and stiffness parameters are randomly selected. Four samples are 

generated using different amplitudes for every damage case to consider the loading 

effect. Ideally, it is expected to have elements with the same stiffness parameters if all 

the elements are made from the same material. However, having the same stiffness 

parameter is impossible owing to several factors, such as inhomogeneity and different 

manufacturing quality. This will introduce some differences in the stiffness parameters 
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of structural elements, which are considered as uncertainty or modelling error. This 

study considers four cases; the first two cases are assumed with and without noise in 

the acceleration response and have no structural parameter uncertainty. The other two 

are with and without noise but considering uncertainty. These four cases are defined 

as: 

Case 1: No uncertainties are considered in structural modelling, and no measurement 

noise is considered in acceleration responses.  

Case 2: No uncertainties are considered in structural modelling, but measurement 

noise is considered in accelerations. White noise is added to the acceleration 

responses with a Signal-to-Noise Ratio (SNR) of 30dB and 20dB, 

respectively. No noise is added to the labelled output. 

Case 3: Uncertainties are considered in structural modelling, but no measurement 

noise in acceleration responses. Uncertainties within the range of ± (1% – 3%) 

are included randomly in the stiffness parameters of structural elements to 

simulate the discrepancies in the finite element modelling.  

Case 4: Uncertainties are considered in structural modelling and measurement noise 

in accelerations. Similar to Case 2, white noise is added to the acceleration 

responses in the datasets of Case 3 with an SNR of 30dB and 20dB, 

respectively. 

Thirty-nine thousand five samples, including undamaged, single and multiple element 

damage cases, are generated from the beam model for the first two cases. One hundred 

thirty-five thousand five hundred samples are generated for the third and fourth cases. 

A sample is defined here as the concatenation of acceleration data measured from four 

nodes. Each sample has a dimension of 400 variables since response data from each 

node has 1s data with 100 sampling points per second. Each sample is generated with 

a randomly selected force from a force vector matrix with a varying magnitude 

following a normal distribution. The force is used only for data generation. It is not 

used as the input to the random forest. It is important to note that the impact force must 

be applied to the same node that is used for data generation to train and test the model 

for monitoring the structure to avoid the variations in structural responses associated 

with the loadings applied at different locations of the structure.  
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3.3.2 Data Pre-processing 

The recorded data at the four nodes are concatenated and taken as input. PCA is 

performed on input variables to reduce the dimensionality since some of them can be 

irrelevant (Brownlee, 2019a; Esfandiari et al., 2020). It transforms the dataset into 

compressed form while retaining the essence of the original dataset (Pal, 2017), 

resulting in fewer uncorrelated variables (Malekzadeh & Catbas, 2016). Figure 3.4 

shows the correlation between the 400 input variables, and Figure 3.5 shows the 

correlation of selected principal components. This demonstrates that the proposed 

approach is robust and provides good prediction results even with noisy measurements 

since the principal components of acceleration responses are used as the input to the 

developed algorithm. 

 
Figure 3.4 Correlation between the input variables before performing PCA 

 
Figure 3.5 Correlation chart for the 13 principal components



53 

Thirteen principal components are considered for the study since more than 99% of 

the total variance of the data is preserved, as seen in Figure 3.6. The thirteen principal 

components are used as input to the random forest. 85% of the dataset is used for 

training, and the remaining for testing the trained model. Figure 3.7 shows the 

variances of those 13 selected principal components for three sets of datasets, i.e., 

without noise, with 30dB and 20dB noises, respectively. It is observed that the 

variances of those components from the datasets are close to each other, except for the 

first component from the data with 20dB noise. 

 

Figure 3.6 Variance plot of principal components  

 

Figure 3.7 Variances of selected principal components of noise-free and noisy 
measurement
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3.3.3 Results and discussions 

Element level stiffness reductions are predicted using the proposed approach. MSE, 

R-squared and training time are used as performance metrics. R-squared provides the 

fitness of a set of predictions to the actual stiffness reductions (Brownlee, 2019c). The 

numbers of decision trees, the minimum number of samples required to split, and the 

minimum number of samples at a leaf node are tuned using the random search 

approach by Scikit-Learn tools (Koehrsen, 2018). In the random search approach, a 

framework of hyper-parameter values is set up, and arbitrary blends are selected to 

train the model. The performance of the proposed method is measured for both the 

beam model's major and minor stiffness reductions. Numerical computations are done 

on a system with Intel® Core (TM) i7-0750H, 16GB RAM and Nvidia RTX2070. The 

training time is also provided to demonstrate the efficiency of the developed approach.   

The performance of the proposed approach is evaluated for the first two cases together. 

The splitting occurs when the number of samples in each leaf has ten or more samples, 

not allowing each leaf to have a single sample. This helps to limit overfitting. Table 

3.1 shows MSE, R-squared and training time for the first two cases. It can be observed 

from Table 3.1 that the training is efficient. R-squared values are above 0.9, even when 

significant measurement noise is considered.  

Table 3.1 MSE and R-squared for Cases 1 and 2 

Performance Metrics Case 1 
Case 2 

30dB 20dB 

MSE 3.8 x 10 -05 3.5 x 10-04 5.5x 10-04 

R-Squared 0.98 0.97 0.90 

Training Time (Seconds) 13.77 13.99 13.84 

Sample size  39505 

 

The model performance is evaluated when uncertainties in the stiffness parameter are 

considered with and without measurement noise (i.e., Cases 3 and 4), as listed in Table 

3.2. Very efficient training is achieved in less than 100 seconds, and the minimum 

regression value is 0.86. These results indicate that proper training is completed. 
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Table 3.2: MSE and R-values for Case 3 and 4. 

Performance Metrics Case 3 
Case 4 

30dB 20dB 

MSE 8.6 x 10-05 3.8 x 10-04 7.8 x 10-04 

R-Squared 0.98 0.93 0.86 

Training Time (Seconds) 84.61 89.73 89.43 

Sample size  135500 

 

3.3.3.1 Single Element Damage Case 

The prediction results are measured for stiffness reduction less than and greater than 

10%, defined in the study as minor and major damage cases, respectively.  Figures 3.8 

and 3.9 show the prediction results of two randomly selected samples from the testing 

dataset. The actual stiffness reduction is 24% at the 9th element for the major damage 

case in Figure 3.8 and 5% for the minor damage case at the 6th element in Figure 3.9. 

The trained random forest model provides excellent identification results with no noise 

in the input variable. Few false positives are observed in undamaged elements for the 

cases with measurement noise, but the magnitudes are less than 1% even for the minor 

damage case. The predicted stiffness reductions for major and minor damage cases are 

very close to the actual values.  

 

Figure 3.8 Damage quantification results of the major damage case 

The accuracy level decreases with the increasing noise level, and false positives are 

observed in undamaged elements. However, with noise added at SNR of 20dB, the 

proposed method can still provide results close to actual damage for major damage 
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cases, although small false identification results are obtained. For the minor damage 

case, the location of the damage is identified accurately, but the severity is 

underestimated.  

 

Figure 3.9 Damage quantification results of the minor damage case 

Figures 3.10 and 3.11 show the quantification results for major and minor damage 

cases of 16% and 4% stiffness reductions in elements. No. 7 and 5, respectively, when 

both the uncertainty and measurement noise are considered. Robust results are 

obtained when uncertainties are considered only. For the case with 30dB noise, the 

identified results are promising. The accuracy degrades with the increasing noise level. 

For the case with a 20dB noise level, the identification results for the major damage 

case are not affected. However, only the damage location is accurately identified for 

the minor damage case.  Its extent is underestimated due to the significant noise effect. 

 

Figure 3.10 Damage quantification results for the major damage case with both 
measurement noise and uncertainty (modelling errors) 
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Figure 3. 11 Damage quantification results for the minor damage case with both 
measurement noise and uncertainty (modelling errors) 

3.3.3.2 Multiple Damage Case 

For the multiple element damage case, the results obtained for both two-element and 

three-element damage cases are good when there is major damage in the elements. 

Figure 3.12 shows the damage identification result for the cases of two elements with 

major damages. The actual damages are 24% and 26% stiffness reductions in elements 

No. 5 and 9, respectively. The damage identification results for all the cases are good, 

with some insignificant false positive results observed in undamaged elements with 

the increase in noise level. Similar damage identification results are observed for the 

cases of three elements with major damages.  

 

Figure 3.12 Two-element damage quantification results for the major damage case 
with measurement noise  
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When the number of damaged elements increases to three, as shown in Figure 3.13, 

more false positive results are observed in undamaged elements and increase with the 

noise level. The stiffness reductions are 16.2%, 20.9% and 12.78% in elements No. 2, 

7 and 9, respectively. The damage identification with 20 dB noise is not as good as the 

clean dataset and 30 dB noise case.  

 

Figure 3.13 Three-element damage quantification results for the major damage case 
with measurement noise  

However, when the damage level in elements is less than 5%, the results are not as 

good as those with major damages. Figure 3.14 shows the results for the cases of two 

elements with minor damages. The stiffness reductions are 8% and 6% in elements 

No. 2 and 3, respectively. In all the cases, there are false positives in undamaged 

elements. With the increasing noise level, a higher level of false positive is observed.  

 

Figure 3.14 Two-element damage quantification results for the minor damage case 
with measurement noise 
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The problems seem more severe with the increasing number of damaged elements in 

the structure, as indicated in Figure 3.15. The three-element minor damage case has 

more false positives in the undamaged elements than the two-element minor damage 

case.  Generally, good identification results are obtained in these cases.  

 

Figure 3.15 Three-element damage quantification results for the minor damage case 
with measurement noise   

Figures 3.16-3.19 show the damage identification results for multiple element damage 

cases when uncertainty and noise are included. The resulting pattern obtained is 

similar to when only measurement noise is considered. The performance of the 

proposed approach degrades with the inclusion of uncertainty and noise. The 

increasing level of noise further degrades the performance. With uncertainties and 

measurement noise, damage locations and severities are identified with reasonable 

accuracy.  

 

Figure 3.16 Two element damage quantification results for the major damage case 
with both measurement noise and modelling errors  
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Figure 3.17 Three-element damage quantification results for the major damage case 
with both measurement noise and modelling error  

 

Figure 3.18 Two element to-element damage quantification results for the minor 
damage case with both measurement noise and modelling error 

 

Figure 3.19 Three-element damage quantification results for the minor damage case 
with both measurement noise and modelling error 
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3.4 Experimental Validations 

A seven-storey steel frame structure has been fabricated in the laboratory. The frame  

is 2.1 m tall, with each story being 0.3 m tall. The beam measures 0.5 m in length. The 

column and beam elements’ cross-sections are measured at 49.98 mm ´ 4.85 mm and 

49.89 mm ´ 8.92 mm, respectively. The column and beam elements’ measured mass 

densities are 7850 kg/m3 and 7734 kg/m3, respectively. Initial Young’s modulus for 

each member is assumed to be 210 GPa. At the top and bottom of the beam section, 

welds are used continuously to link the beam and column parts. To replicate the mass 

from the floor of a building structure, two pairs of mass blocks with a weight of about 

4 kg each are installed at the quarter and three-quarters lengths of the beam in each 

storey. The detailed structure dimensions, experimental setup, sensors used, and 

placements for single and two-element damage scenarios can be found in a previous 

study (Li et al., 2012).  

The finite element model of the entire frame structure is depicted in Figure 3.20. It has 

70 planar frame elements and 65 nodes. The weights of the steel blocks are added as 

the concentrated masses at the relevant nodes of the finite element model. The system 

has 195 degrees of freedom (DOFs) in total, with two translational and a rotational 

displacement per node. Nodes 1 and 65 act as translational and rotational restrictions 

and are initially represented by a large stiffness of 3´109 N/m and 3´109 Nm/rad 

stiffness. Initial finite element model updating is conducted to reduce the difference 

between the analytical finite element model and the experimental model in the lab. A 

two-stage technique is used to carry out the model update process. The elastic modulus 

of each element and stiffness values of the restraints at the two supports are chosen as 

the parameters to be updated in the first stage of the model. Experimental modal 

analysis is used from the measured acceleration responses to obtain natural 

frequencies and mode shapes of the frame structure. The first seven natural frequencies 

and mode shape values are determined. The first-order modal sensitivity-based 

updating method minimises the discrepancy between the experimentally measured 

frequencies and mode shapes and those estimated from the analytical finite element 

model. The updating procedure uses the measured natural frequencies and mode 

shapes to update the 70 elastic modulus values and support stiffness values.  
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The second stage of model updating uses the dynamic response sensitivity method to 

refine the updated model based on the updated result. This stage of model updating is 

to as nearly as possible align the computed dynamic responses from the finite element 

model with the observed ones using measured available impact force. In the second 

stage of analysis, the elastic modulus of each frame element is updated. The updated 

finite element model minimises inconsistencies between the built finite element model 

and the experimental model. The detailed model updating process can be found in Li 

et al. (2012). The data generated from the updated finite element model are used for 

training and validating the random forest model. The measured data during the 

laboratory tests with introduced damage are used to test the accuracy and performance 

of the proposed approach for element-level structural damage quantification. For the 

single element damage case, the stiffness of the 12th element is reduced by 12.5%. For 

the multiple damage case, 12.5% stiffness reductions are introduced into elements No. 

6 and 12.  

3.4.1 Data Generation and pre-processing 

In this study, two damage cases are considered, i.e., single element damage and two-

element damage cases. For each damage case, eight nodes on the structure are selected 

to measure the acceleration responses. Figure 3.20 shows the finite element model of 

the frame structure and sensor placement configurations for the single-element 

damage case and two-element damage case, respectively. The selected nodes are 7x, 

9x, 11x, 17x, 47x, 50x, 53x and 56x for the single element damage case and 5x, 11x, 

14x, 19x, 50x, 53x, 56x and 59x for the two-element damage case, where 9x denotes 

the acceleration response at node 9 along the x direction. 

An impact force is randomly selected and applied at node 44x for every damage case 

considered when generating the training data, accounting for the possible variations in 

applying impact force in forced vibration tests. Figure 3.21 shows 1000 force vectors 

for the initial 0.025 seconds. Acceleration responses are measured from selected nodes 

at a sampling rate of 1000 Hz.  
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Figure 3. 20 The finite element model and sensor placement 

 

Figure 3.21 Applied random impact forces  

For the single element damage case, samples are generated taking stiffness reduction 

in each element from 0% to 30% in an interval of 1%. Each sample is a concatenation 
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of acceleration responses from the selected nodes. Initially, 8400 samples of damage 

cases and four samples of undamaged cases are generated. Each sample is generated 

using a different impact force, i.e., with different amplitude and frequency to consider 

the loading effect. The duration of the applied impact force is changed by 1-2% of the 

measured test force to simulate the variance in the frequency of the applied force.  For 

the second case, the stiffness is reduced in any two elements from element 1 to element 

15 with a maximum stiffness reduction of 15%.  

The data pre-processing technique remains the same as that in the numerical study. 

Acceleration responses measured for a damage case from the selected nodes are 

concatenated. For a damage case, the concatenated acceleration response has 4000 

input dimensions since each response of 0.5 seconds has 500 sample points. The input 

dimension of 4000 is reduced to a lower dimension by applying PCA to analyse input. 

The number of principal components is selected to retain more than 99% variance. 

The sensor locations for single-element damage and two-element damage cases are 

different. The proposed approach is trained separately for the single-element and two-

element cases for damage identification. Therefore, the PCA components for cases 

with two damages are different (29 for single damage case, 13 for two-element damage 

case). However, it is selected based on the principle of 99% variance in data. The 

selected principal components are used as input to the random forest. The model is 

trained with 80% of the datasets and validated with 20% of datasets generated from 

the updated finite element model. Acceleration data measured from the experimental 

tests of the damaged structure are finally used as the testing data to investigate whether 

the proposed approach can provide good identification results.  

In the experimental study, the sensor positions are altered for single and multiple 

damage cases because the sensor setups are arbitrarily defined throughout the test. It 

should be emphasised that this positioning is not based on examining the optimal 

sensor placement. The positioning of sensors would affect the performance of the 

damage identification process. However, it is outside the scope of this study to analyse 

the optimal sensor placement for damage identification using the suggested 

methodology.  
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3.4.2 Results and discussions  

The performance of the proposed approach is assessed using the first 0.5 seconds of 

acceleration responses as input. It is evaluated with different samples for the single 

element damage case. Hyperparameter tuning is performed using a random search 

approach. The numbers of decision trees, the minimum number of samples required 

to split, and the minimum number of samples at a leaf node are tuned. The optimal 

hyperparameters are obtained separately for the single and multiple damage cases.  

Deep learning methods (Pathirage et al., 2018; Wang et al., 2020) using mode shapes 

and frequencies demonstrated good identification results with relatively small data 

size. The training time of such methods requires 1-1.5 hours for each model training. 

However, the proposed method takes much less training time even though the data 

size is larger, as evidenced in Tables 3.3.  

3.4.2.1 Single Element Damage  

Figure 3.22 shows the damage identification results for the initial data size of 8804 

samples. The identified stiffness reduction is 9.52 % at the 12th element. Some false 

positives are observed in the undamaged elements. MSE and R-squared values on 

testing data are 6.98 x 10-5 and 0.84%, respectively.  The sample size is increased to 

investigate whether the performance can be improved. Figure 3.23 shows the 

identification results with 16804 samples. MSE and R-squared values are 5.46 x 10-6 

and 0.88%.  The identified stiffness reduction at the element No. 12 is 9.54%. Some 

false positives of less than 2% are also observed in the undamaged elements. With the 

increase in the data size, MSE and R-squared values indicate that the results are 

improved. Furthermore, the sample size is increased to 23104. MSE and R-square 

values are 4.99 x 10-5 and 89.2%, respectively. The identified stiffness reduction is 

12.28% and is very close to the true stiffness reduction, as shown in Figure 3.24. Few 

and minimal false positives, less than 1%, are observed in undamaged elements. Table 

3.3 summarises the obtained MSE and R-squared values and the training time for 

different training data sizes. These results indicate that the accuracy will be 

significantly improved when the data size is increased, and excellent identification 

results can be obtained. It is noted that only 45 seconds are required for the case with 

23104 samples in the training datasets, which is significantly less than that of deep 

learning-based models as indicated in (Pathirage et al., 2018; Wang et al., 2020). 
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Table 3.3 Summary of Single Element Damage Cas 

Performance Metrics 
Sample Size 

8404 16805 23104 

MSE 6.98 x 10 -05 5.4 x 10-04 4.99x 10-04 

R-Squared 0.84 0.88 0.89 

Training Time (Seconds) 12.9 28.44 43.29 

 

 

Figure 3.22 Damage identification results for the single damage case in the 
experimental test using 8404 samples 

 

Figure 3.23  Damage identification results for the single damage case in the 
experimental test using 16804 samples 



67 

 

Figure 3.24 Damage identification results for the single damage case in the 
experimental test using 23104 samples 

3.4.2.2 Two-Element Damage  

For the two-element damage case, 15440 samples are generated.  The model is trained 

with 80% of the dataset and validated with the remaining dataset. The model is tested 

with a sample of measured data for the multiple damage case in elements No. 6 and 

12 when the stiffness reduction in both elements is 12.5%. The identified stiffness 

reduction in the element No. 6 is 8.35%, and in the element, No. 12 is 11.83%, as 

shown in Figure 3.25. Some false positives are observed in the undamaged elements.  

 

Figure 3.25 Damage identification results for two-element damage case in the 
experimental test 

Generally, experimental data obtained good identification results for the multiple 

damage case. The results of the experimental study demonstrate that the proposed 
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approach using the random forest with PCA can locate the damage with satisfactory 

quantification of the damage level in the structure.  MSE for the testing data is 5.04 x 

10-05, and R-squared is 95.3%. The training time is 98.99 seconds. 

3.5 Conclusion 

This chapter presented an element-level structural damage quantification approach 

using the random forest technique with time domain acceleration responses. The 

ensemble machine learning technique provided better predictive performance. The 

proposed method based on the random forest technique can achieve a good correlation 

between structural damage and acceleration responses, hence good damage 

localisation and quantification. Measured acceleration responses from selected nodes 

are concatenated, and PCA is applied to have fewer uncorrelated input dimensions. It 

helped further to reduce the computational cost. Compared to the deep learning 

techniques for SHM, the proposed approach provides good damage identification with 

substantially less training time, as demonstrated in the numerical and experimental 

studies. Therefore, it is observed that the traditional ensemble-based machine learning 

models can be used for structural elemental damage identification and quantification. 

Computing responses like IRFs, which can be an ideal inherit vibration property and 

other fast decision tree-based ensemble machine learning models, may improve the 

damage prediction result of an existing problem. This is explored in the following 

study.  
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CHAPTER 4 

4 Damage Identification and Quantification Using Impulse Response 

Functions with Extremely Randomised Tree 

4.1 Introduction 

This chapter presents the development and application of another decision tree-based 

ensemble technique, extremely randomised tree (ERT) and using IRFs. The 

performance is measured and compared with RF as a multi-output regression model. 

Impulse response functions (IRFs) as structural vibration properties are extracted from 

measured acceleration response. In Chapter 3, the proposed method using acceleration 

response and RF is presented to overcome the limitations of existing structural damage 

quantification using modal information. In this method, IRFs are extracted from the 

acceleration responses and are processed to use as the input to ERT and RF. Moving 

averaging with a suitable window size is performed to reduce the effect of noise, and 

PCA is performed further for dimensionality reduction. The damage level is defined 

in terms of elemental stiffness reduction. Both numerical and experimental studies are 

conducted to investigate the capability of using the proposed approach for structural 

damage identification and quantification. Numerical studies are carried out on a simply 

supported beam and experimental validation on a steel frame structure in the 

laboratory.  

4.2 Extremely randomised trees as a multi-output regressor 

The proposed study in this chapter quantifies the damage in the structural elements in 

terms of stiffness reductions considering the same scenarios and single and multiple 

element damage cases in the previous chapter.  The input dataset to the ERT is a 2d - 

array of shape [N_samples, M_features] where N_sample is the number of 

observations or instances for N damage cases and M_features is the number of 

principal components selected. Each observation is a vector with length M_features. 

The output dataset is also a 2d-array of shape [N_samples, n_outputs] and are the 

stiffness reductions in the structural elements. For each input observation, there will 

be an output vector of shape [1, n_outputs] where n is the number of elements in the 

structure and gives the values of stiffness reduction. For every observation, the model 

must predict stiffness reduction in n elements of the structure; therefore, the problem 
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is a multi-output problem. The output values are continuous numerical values, making 

it suitable for ERT to work as a regression model. Also, the output variables are likely 

correlated, and a single multioutput regressor is proposed resulting in a lower training 

time and reducing the overfitting (Chencho et al., 2020). Tree algorithm, Classification 

and Regression Trees (CART) are used in this study to build the ERT as it supports 

numerical target values.  ERT and RF are both grown with multiple decision trees. A 

decision tree-based multioutput regressor recursively partitions the samples until the 

same output values are grouped, or the maximum allowable depth is reached.  

Considering that here are N_samples with M_features and n_outputs at the root node 

of the decision tree. The initial dataset is the root node of the decision tree. A decision 

tree grows recursively, splitting the nodes into the child nodes. The splitting procedure 

is stated below in steps and is illustrated in Figure 4.1. 

Step1:  Select the suitable metric for the regression model for the best split. Variance 

measurement using mean square error (MSE) is selected for the proposed 

study. Calculate variance at the root node using equation 4.1.  

𝑉)*+ =
!

"_-./012-
	∑ (𝑦 − 𝑦3)45∈"_-./012	                 (4.1) 

 

𝑦3 =
!

"_-./012-
	∑ 𝑦5∈"_-./012 	     (4.2) 

where y is the output and yd is the predicted mean value.  

Step 2: Select a random feature from a random subset of M_features and split the root 

node into child nodes. Calculate the variance of each child node and take the 

weighted average of each node for the calculation of a split variance.  

Step 3: For RF, calculate variances for each feature in M_features and take the 

weighted average of each split. Select the feature which maximises variance 

reduction after the split.   

Step 4: Repeat steps 1-4 until the child nodes contain an observation or reach the 

maximum defined depth.  

The tree size can be controlled by selecting values of parameters, such as the maximum 

depth of the tree, the minimum number of samples required to split at a node, and the 

minimum number of samples needed for a leaf node. To illustrate how a decision tree 

is built, Figure 4.1 shows an example of building a decision tree for a multi-output 
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regression problem. For the given an example, the minimum number of samples at a 

leaf is set to three.  

 

Figure 4.1 An example of a decision tree for a regression problem 

Ensembles of decision trees are used to build RF and ERT.  Each decision tree in RF 

is built on different bootstrapped datasets (Breiman, 1996; Chencho et al., 2020; 

Geurts et al., 2006), while ERT uses initial datasets to grow each tree. The mean of all 

the outputs of decision trees is the final output. The number of decision trees in both 

RF and ERT is one of the hyperparameters that can be tuned to obtain good results.  

Figures 4.2 and 4.3 show the processes of growing RF and ERT, respectively.  Their 

algorithms are shown in Algorithms 1 and 2, respectively.  
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Figure 4.2 A schematic of a random forest 

 

Figure 4.3. A schematic example of an ERT mode
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Algorithm 1: Random Forest 

S: Training Dataset 

M: Features 

T: Total number of trees 

𝑓 ⊆ 𝑀 

𝑆#	: bootstrapped	data	for	𝑖 = 1…𝑇 

𝐻#: Prediction	of	the	ith	tree 

H: RF Output 

Train_RF (S, F) 

for i = 1,2… T,  

draw Si from S: 

at each node:  

randomly select f 

split on best feature in f 

if |𝑆#| < 𝑛/#',	 stop split 

Test_RF (Test Data, F) 

for all i=1, 2,…,T 

Input: Test_Data 

Output: Hi  

RF output H 

																											𝐻 = 	
1
𝑇J𝐻#

&

#(!
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Algorithm 2: Extremely Random Forest 

S: Training Dataset 

M: Features 

T: Total number of trees 

𝑓 ⊆ 𝑀 

𝐻𝑖: Prediction	of	the	ith	tree 

H: ERT Output 

Train_ERT (S, F) 

for i = 1,2… T, 

at each node: 

randomly select f 

split on a random feature in f 

if |𝑆| < 𝑛/#',	 stop split 

Test_ERT (Test Data, F) 

for all i=1,2,.,T 

Input: Test_Data 

Output: Hi 

ERT output H 

𝐻 =	
1
𝑇J𝐻#

&

#(!
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4.3 Impulse response function 

Impulse response function (IRF) is one of the dynamic properties of structures and can 

be extracted from time domain responses. IRF is an inherent system property, therefore 

it is more advantageous than using the measured time domain response. (Li et al., 

2015). In Refs. (Li & Law, 2008; Robertson et al., 1998), the estimation of IRFs using 

discrete wavelet transform has been discussed. It can be analytically derived from the 

general equation of motion (Law & Li, 2007; Li et al., 2015) and is summarised here 

briefly. For a structure under a unit excitation, the structural equilibrium equation can 

be written as  

     [𝑀]{𝑥̈(𝑡)} + [𝐶]{𝑥̇(𝑡)} + [𝐾{𝑥(𝑡)}] = 𝐷𝛿(𝑡)    (4.3) 

where 𝛿(𝑡) is the Dirac delta function. IRF is represented as a free vibration state with 

specific initial conditions. Considering that the initial condition is in static equilibrium, 

the unit IRF is computed from the equation of motion using the Newmark −𝛽 method 

as   

																													W
[𝑀]ℎ̈(𝑡) + [𝐶]ℎ̇(𝑡) + [𝐾]ℎ(𝑡) = 0

ℎ(0) = 0, ℎ̇(0) = 𝑀7!𝐷
             (4.4) 

where ℎ(𝑡),	ℎ̇(𝑡)and ℎ̈(𝑡)are the unit IRFs for displacement, velocity, and acceleration 

responses in the time domain, respectively. For a structural system with zero initial 

conditions under the general external excitation 𝑓(𝑡), the acceleration response 	𝑥̈1(𝑘) 

at location l at time instant k can be expressed as  

𝑥̈1(𝑘) = ∫ ℎ̈1
8
9 (𝜏)𝑓(𝑡 − 𝜏)𝑑𝜏              (4.5) 

where ℎ̈1(𝑡) is the temporal unit IRF at location 𝑙. The discrete form of Equation (4.5) 

can be written as  

𝑥̈1(𝑘) = ∑ ℎ̈18
#(9 (𝑖)𝑓(𝑘 − 𝑖)              (4.6) 

The matrix multiplication for the entire time domain response at location 𝑙 can be 

written as  

𝑋 = 𝐻 ∙ 𝐹                           (4.7) 

where 𝑋 is the output response vector, H is the IRF vector, and 𝐹  is the input force 

matrix.  

Therefore, IRF can be extracted by solving Equation (4.7) 

𝐻 = 𝑋 ∙ (𝐹& ∙ 𝐹)7! ∙ 𝐹&              (4.8) 

where FT is the transpose of the force matrix. 𝑋, H and 𝐹  are expressed as  

𝑋 = {𝑥̈1(0), 𝑥̈1(1), . . , 𝑥̈1(𝑚 − 1), 𝑥̈1(𝑚)}&    (4.9) 
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𝐻 = cℎ̈1(0), ℎ̈1(1), . . , ℎ̈1(𝑚 − 1), ℎ̈1(𝑚)d
&
   (4.10) 

𝐹 = e

𝑓(0) 𝑓(1)	⋯𝑓(𝑚 − 1) 					𝑓(𝑚)
						0 				𝑓(0)⋯𝑓(𝑚 − 2) 𝑓(𝑚 − 1)

⋮ 									⋮ 				⋯										 ⋮ 															⋮
				0						 	0				⋯									0										 	𝑓(0)

i  (4.11) 

in which 𝑚 is the number of sampled data in the acceleration response. For Equation 

(4.8), it should be noted that the pseudo-inverse is used to extract the impulse response 

function. Normally the condition number for the excitation force matrix F is not a large 

value since the columns are independent. However, when the matrix F is badly ill-

conditioned, the truncated Singular Value Decomposition (TSVD) can be employed 

to eliminate those minimal singular values and the corresponding vectors to have a 

better and more stable solution for the pseudo-inverse. A more detailed explanation of 

the solution for obtaining IRF can be found in (Juang, 1994). 

The IRF is extracted from the acceleration responses generated from the finite element 

model for numerical and experimental studies using the impact force and Equation 

(4.8).  The detailed acceleration response generation is given in the following sections 

of numerical and experimental studies. The error in identifying IRF is reduced by using 

an ensemble of 50 and averaging the results, as explained in the study by Li et al. 

(2015).  IRFs extracted from the acceleration responses from different locations are 

concatenated and moving average with a selected window size is performed to remove 

high-frequency random fluctuations in the data. The window size gives the number of 

observations used to calculate the moving average value. For a window width of seven, 

the trailing moving average is calculated as: 

  			𝑚𝑎(𝑡) = "
#
(𝑜𝑏(𝑡 − 6), 𝑜𝑏(𝑡 − 5), 𝑜𝑏(𝑡 − 4), 𝑜𝑏(𝑡 − 3), 𝑜𝑏(𝑡 − 2), 𝑜𝑏(𝑡 − 1), 𝑜𝑏(𝑡))          (4.12) 

The new series comprises the average of IRFs observations in the concatenated IRFs. 

PCA is then performed on the new series for dimensionality reduction. The number of 

principal components is selected to retain most information in the new series. The 

selected principal components are used as the input to ERT.  

4.4 Numerical Studies 

A simply supported beam with material properties of concreted structure is used for 

numerical studies to validate the accuracy of the proposed approach. The beam is 20 

metres long, 0.6 metres in width and 1 metre1-metre height. The mass density is 2500 
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kg/m3. Ten elements are used in the finite element model of the beam structure, as 

shown in Figure 4.4. Young’s Modulus of 3.3 x 104 MPa is considered for modelling 

the initial beam structure. There are eleven nodes, and each node has a vertical, 

translational and rotational degree of freedom. The first five natural frequencies are 

4.12 Hz, 16.48 Hz, 37.10 Hz, 66.04 Hz and 103.43 Hz, respectively. This study uses 

vertical acceleration responses from randomly chosen five nodes, as shown in Figure 

4.4. The acceleration responses are measured when an impact force is applied at node 

3.  

 

Figure 4.4. Simply supported beam and sensor locations 

4.4.1 Data Generation and Pre-processing 

To study the feasibility of the proposed method, datasets are generated from finite 

element model analysis. The acceleration responses are measured at a sampling rate of 

100 Hz for one second when an impact force with a duration of 0.1 seconds is applied 

at node 3, as shown in Figure 4.4. The measurement duration of one second from a 

randomly selected sensor position is used for the study. Datasets are generated 

considering undamaged and damaged cases. Single element and multiple element 

damage cases are simulated. The stiffness parameters (Young’s Modulus) are reduced 

to introduce damage in an element or various elements. The damage is taken as the 

percentage of stiffness reduction in specific elements. For the single element case, data 

are generated, taking a percentage of stiffness reduction from 0% to 20% in steps of 

0.5 %. For multiple element damage cases, the maximum stiffness reduction is 15% in 

steps of 1.5% for two-element damage cases and 4.5% for three-element damage cases. 

For all the undamaged and damaged cases, there are ‘n’ outputs, where ‘n’ is the 

number of elements in the structure. For all the undamaged and damaged cases, 

acceleration responses from each of the selected nodes are measured using random 
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impact forces generated with a Gaussian distribution with a mean value of 8000 N and 

a standard deviation of 50.  

The material of structural elements is the same. Still, it is not possible to have the exact 

Young’s Modulus for all the elements in the structure owning to factors like 

inhomogeneity and manufacturing quality. There is inevitable uncertainty in the 

stiffness parameters of the structure. This is considered an error or uncertainty in 

system modelling in this study. Besides, the measured responses may contain noise. 

Therefore, to take care of noise measurement and uncertainty in the system modelling, 

acceleration responses are recorded with and without noise measurement for two 

cases: one considering system modelling error and the other without system modelling 

error. IRFs are extracted from the four cases of acceleration responses using Equation 

(4.8), and ensembles of 50 are averaged to reduce errors in IRFs. Figures 4.5, 4.6, and 

4.7 show the acceleration responses of the undamaged beam measured at node 2, its 

extracted IRF and corresponding impact force, respectively.  

 

Figure 4.5 Acceleration response at Node 2  
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Figure 4.6 IRF at node 2 

 

Figure 4.7 Impact Force 

The error in IRFs for a particular damage case is severe when the acceleration 

responses contain noise. The effect of using 50 ensembles and the result of IRF taking 

averaging is shown in Figure 4.8. The IRF extracted from the clean acceleration 

response is shown in yellow colour. 5% white noise is added to the acceleration 

response, and IRF is extracted from it without averaging. It can be observed that the 

ensemble of 50 and averaging effectively reduces the error in the estimation of IRF.  
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Figure 4.8 IRF obtained using ensemble averaging 

This study considers four scenarios to evaluate the performance of the proposed 

approach for elemental damage quantification. These scenarios are defined as:  

Scenario 1: IRFs are generated from the acceleration responses with no noise 

measurement and system modelling error.  

Scenario 2: IRFs generated from the acceleration responses with noise measurement 

and no system modelling error. White noise is added to acceleration 

responses before extraction of IRFs, and then IRFs are extracted. 

Different levels of noise are considered. 5% and 10% noise levels are 

added to the input data to check the method's robustness to noise and 

uncertainties for structural condition monitoring. The same noise levels 

were also assumed in existing studies to investigate the noise effect on 

the performance of the damage identification methods. 

Scenario 3: IRFs generated from the acceleration responses with no noise 

measurement and system modelling error. Uncertainty within the range 

of ± (1-3%) is included randomly in the stiffness parameters for the finite 

element modelling, and acceleration responses are then generated for 

obtaining IRF.  

Scenario 4: Both uncertainty and measurement noise are considered. Uncertainty 

within the range of ± (1-3%) is included randomly in the stiffness 
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parameters for the finite element modelling and generation of 

acceleration responses. Then, 5% and 10% white noises are added to the 

acceleration responses, and IRFs are extracted.  

For a damage case, averaged IRFs with 50 ensembles are extracted from acceleration 

responses measured at selected nodes. Each averaged IRF has 100 sampling points 

since measured acceleration response for a second is considered for the study. These 

IRFs are concatenated and labelled as the input for the damage case, and the element 

stiffness parameters are used as labelled output in the datasets. A total of 33902 

samples are generated for undamaged, single element, two-element, and three-element 

damage cases. Trailing moving average defined by Equation (4.12) is applied to 

smooth the concatenated IRFs by removing random fluctuations. Figure 4.9 shows the 

original IRF extracted for a case in Scenario 1. The moving average is used, and a 

much smoother IRF result is obtained. The window size must be defined for the trailing 

moving average to get optimal performance. For the current study, a window size of 

seven is selected. The performance of the proposed method is evaluated for different 

window sizes, and the window size which gives optimal performance is determined. 

A larger window size can provide either the same or degraded performance. 

 

Figure 4.9 Concatenated IRF with and without performing moving averaging 

Moreover, it can also help reduce the effect of noise.  In Figure 4.10, the blue response 

is the averaged IRF extracted from the acceleration response with 10% noise. By 

applying the moving averaging, the effect of noise is reduced, and the obtained IRF 
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from noisy responses is very close to that obtained from responses without noise, 

indicating that the accuracy in getting IRF can be improved.  

The concatenated IRF after performing moving averaging has 500 data points, 

bringing the proposed model's significant training demand. Therefore, PCA is applied 

to process the concatenated data to reduce the input data dimensionality. PCA is 

essential to remove irrelevant variables resulting in fewer uncorrelated variables 

(Brownlee, 2019a; Esfandiari et al., 2020; Malekzadeh & Catbas, 2016). The number 

of principal components is selected by preserving a minimum variance of 98.5% of 

the data. Figures 4.11(a), 4.11(b) and 4.11(c) show the total variance for 19 principal 

components when PCA was performed on the new series obtained after completing 

moving averaging on the clean dataset, 5% noise and 10% noise, respectively. It is 

noted that 98.71% of the variance can be preserved with 19 principal components with 

10% noise added on acceleration response.  

 

Figure 4.10 IRF extracted from noisy acceleration response with and without moving 
averaging. 
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(a) 

 

(b) 

 

(c)  

Figure 4.11 Variance plot
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4.4.2 Results and Discussions 

These 19 selected principal components are input to the ERT, and the percentage of 

stiffness reduction (damage level) across the elements is used as target variables. The 

number of variables in the output depends on the number of elements in the structure. 

The structural beam model has ten elements, and the number of variables in the output 

will be ten. The first target variable indicates the percentage of stiffness reduction in 

the first element. Likewise, the 2nd, 3rd, and 10th target variables denote the damage 

severities in elements No. 2, 3, and 10, respectively. The proposed approach is trained 

with 85% of the datasets and tested with the remaining 15%.   

A system with Intel ® Core ™ i7-0750H, 16GB RAM and Nvidia RTX2070 is used 

for the study. Random search (Koehrsen, 2018) method by Scikit-Learn library is used 

for tunning the hyper-parameters.  The number of decision trees, the minimum number 

of samples required to split the internal nodes and the minimum number of pieces in a 

leaf node are taken as the hyperparameters. For the proposed study, 120 decision trees 

with four samples are required at the internal node to split further, and two samples in 

the leaf node are selected. The performance of the proposed method is evaluated using 

mean squared error (MSE), R-squared and training time.  

The MSE and R-squared are calculated between the predicted values and true damage 

severities. The training time is measured for the proposed learning method from the 

training dataset. The MSE, R-squared and training time are calculated for all four 

scenarios. Results obtained using the proposed approach based on ERT and IRFs are 

compared with those from RF with the same hyper-parameters. The results 

demonstrate that the proposed method can better identify damage locations and 

severities than RF. The results also indicate that the training time taken by ERT is less. 

Considering both uncertainty and measurement noise, the worst scenario among these 

four scenarios, the R-square value, MSE and training time obtained are 0.89, 1.39×10-

4 and 15.3 seconds, respectively, for ERT and MSE of 1.79 x 10-4 and R-squared of 

0.86 for RF. The detailed damage identification results for all four scenarios for single 

and multiple element damage cases are shown below. 

The performance of the proposed method is evaluated for the four scenarios on the 

testing data. Table 4.1 shows the performance measurement of Scenario 1. It is 
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observed that both RF and ERT can identify the damage quite well when no noise and 

system modelling error is considered. The MSE and R-squared values are close, with 

ERT performing slightly better than RF, but ERT and RF significantly differ in training 

time. ERT takes less time to train or learn from the training dataset. For this study, 

ERT takes approximately 3.5 times less than RF. ERT gets trained faster as it saves 

time when splitting at the internode node. It randomly selects a feature from the subset 

of features to split rather than computing for all the features in the subset to find the 

feature for the best split. 

Table 4.1 Performance measurement for Scenario  

Performance Metrics ERT RF 

MSE. 3.6 ×10-6 1.6 × 10-5 

R-Squared 0.998 0.99 

Training Time (Seconds) 14.5 56.22 

To investigate the performance with the noise measurement, different levels of white 

noise are added to the acceleration response without considering system modelling 

error. IRFs are extracted, processed, and used to quantify the elemental damage. The 

performance degrades with the increase in the noise level. For 5% noise, MSE and R-

squared values are close to Scenario 1. However, with the rise in the noise level, MSE 

increases, and the R-squared value decreases by more than 2%, as seen in Table 4.2. 

As in Scenario 1, ERT performs slightly better than RF. The training time is not much 

affected for all the scenarios since the data size is the same for all the scenarios.  

Table 4.2 Performance measurement for Scenario 2 

 

Performance Metrics 

5% Noise 10% Noise 

ERT RF ERT RF 

MSE 1.2×10-5 3.3×10-5 9.2×10-5 1.4×10-4 

R-Squared 0.993 0.981 0.954 0.93 

Training Time (seconds) 14.8 56.2 14.9 54.73 

Further, the performance is measured by system modelling error without considering 

measurement noise.  From Table 4.3, the results demonstrate that the performance is 

affected when uncertainty in stiffness parameter is considered. RF performance 



86 

degrades more than the ERT. The R-squared value of ERT is 0.98, 1.8% less than that 

in Scenario 1, but R-square for RF is 4% less than that in Scenario 1. 

Table 4.3 Performance measurement for Scenario 3 

Performance Metrics ERT RF 

MSE 6.5 x 10-05 9.1 x 10-05 

R-Squared 0.98 0.948 

Training Time (Seconds) 14.9 55.75 

Finally, the performance of the proposed method is evaluated for the worst scenario in 

the study. Scenario 4 considers both noise measurement and system modelling error.  

As in Scenario 2, 5% and 10% noise levels are taken to investigate the effect of noise 

level when ±	(1% − 3%)  uncertainty in the stiffness parameter. Both noise and 

uncertainty in the stiffness parameter affect the performance of the proposed approach, 

as observed in Scenarios 2 and 3. The performance further degrades when both noise 

and uncertainty are considered. The R-square decreases by 4% to 5% for both ERT 

and RF when 5% measurement noise and uncertainty in stiffness parameters are 

considered. The effect is severe when the noise level is increased. R-square values for 

ERT and RF in Scenario 4 reduce by more than 10% of those obtained in Scenario 1 

when a noise level of 10% is considered. Table 4.4 shows the results for Scenario 4. 

In all four scenarios, the performance of ERT is better than RF. 

Table 4.4 Performance measurement for scenario 4 

Performance Metrics 
5% Noise 10% Noise 

ERT RF ERT RF 

MSE 7.5 x 10-05 1.04 x 10-04 1.39 x 10-04 1.79 x 10-04 

R-Squared 0.956 0.94 0.89 0.869 

Training Time (Seconds) 15.26 56 15.3 55.60 

The prediction result for a single-element damage case and a two-element damage case 

are presented below for all four scenarios. The damage cases are taken from 

predictions made for the testing data by ERT. Figure 4.12 shows the damage 

identification for a case with a 17.5% stiffness reduction in element No. 8. ERT can 

give good predictions close to the actual damage. When the measurement noise and 



87 

uncertainty are considered, minor false positives are observed in the undamaged 

elements.  

 

Figure 4.12 Damage identification results for a single element damage case 

Another single element damage case with less than 10% stiffness reduction is selected 

to investigate whether the proposed method can identify minor damage. The actual 

damage in the element No. 1 is a 7% stiffness reduction. As shown in Figure 4.13, the 

prediction results show that the damage identification is close to the true damage for 

all scenarios. However, more false positives are observed in the undamaged elements 

compared to the previous single element damage case. More false positive values are 

observed in Scenarios 3 and 4 when both measurement noise and uncertainty in the 

stiffness parameter are considered.  

 

Figure 4.13 Damage identification results for a single element minor damage case 

For multiple element damage cases, the prediction is shown for a case with damages 

in elements No. 3 and 8. The stiffness reductions are 6% and 12% in elements No. 3 
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and 8, respectively. The identification results corresponding to all four scenarios are 

presented in Figure 4.14.  

 

Figure 4.14 Damage identification results for a two-element damage case 

Like the single element damage case, the damage locations are identified accurately, 

and damage quantification results are close to actual damage severities when 

uncertainty and noise are not considered. The performance is affected when a severe 

noise is considered and degrades further when uncertainty is also included. The 

prediction is not as close as the actual damage case, and slightly more false positive 

damage identifications are observed in the undamaged elements. However, the 

proposed method can still provide good damage identification and quantification for 

all four scenarios and damage cases, as demonstrated in the above numerical studies. 

For Scenario 4, when uncertainty and measurement noise are considered, the damage 

identification results are reasonably good. The damage quantification results 

demonstrate that damage larger than 2% stiffness reduction can be well identified 

under the effect of uncertainties and noise. In general, better results are obtained when 

damage levels are higher. 

4.4.3 Performance Measurement with Reduced Sensors 

The performance of the proposed method is further assessed by reducing the number 

of sensors from five to three.  The sensors at node 2, node 8, and node 9 in Figure 4.4 

are randomly selected. The variance plot for 10% noise in the acceleration dataset is 

shown in Figure 4.15 after performing PCA on concatenated IRF of the three sensors.  
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Figure 4.15 Variance plot  

With 19 principal components, the variance of 98.71% is preserved when five sensors 

are used.  However, when only three sensors are used, the variance is 96.68%.  Table 

4.5 - 4.8 shows the results for four scenarios using three sensors. Like the performance 

of using five sensors, the performance degrades with the inclusion of noise 

measurement and uncertainty.  

Table 4.5 Performance measurement for Scenario 1 

Performance Metrics ERT RF 

MSE. 2.4×10-6 1.63× 10-5 

R-Squared 0.998 0.99 

Training Time (Seconds) 14.28 56 

 

Table 4.6 Performance measurement for Scenario 2 

 

Performance Metrics 

5% Noise 10% Noise 

ERT RF ERT RF 

MSE 1.2×10-5 3.3×10-5 1.34×10-4 1.78×10-4 

R-Squared 0.95 0.936 0.62 0. 61 

Training Time (Seconds) 14.41 53 1.16 54.9 
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Table 4.7 Performance measurement for Scenario 3 

Performance Metrics ERT RF 

MSE. 6.71×10-5 1.0× 10-4 

R-Squared 0.962 0.943 

Training Time (Seconds) 14.5 57.2 

 

Table 4.8 Performance measurement for Scenario 4 

Performance Metrics 
5% Noise 10% Noise 

ERT RF ERT RF 

MSE 1.0×10-4 6.7×10-4 1.3×10-4 1.7×10-4 

R-Squared 0.943 0.88 0.623 0. 61 

Training Time (Seconds) 14.41 53 15.16 54.9 

It is observed that when there is no noise measurement in acceleration response, using 

three sensors and 19 principal components obtained from IRF can give almost the same 

R-squared and MSE as using five sensor measurements. However, the performance 

difference is significant when the noise is present in the acceleration response. This 

could be due to the variance preserved with 19 principal components when five and 

three sensors are used. The study investigated further the performance of the proposed 

method using three sensors and taking principal components which can retain 98.71% 

variance. For three sensors, 40 principal components can preserve 98.71% variance. 

The performance is measured using 40 principal components, and the results are 

shown in Tables 4.9 - 4.12.  

Table 4.9 Performance measurement for Scenario 1  

Performance Metrics ERT RF 

MSE. 1.5×10-6 1.06× 10-5 

R-Squared 0.999 0.994 

Training Time (Seconds) 24.60 109.8 
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Table 4.10 Performance measurement for Scenario 2  

 

Performance Metrics 

5% Noise 10% Noise 

ERT RF ERT RF 

MSE 5.6×10-5 9.5×10-5 1.6×10-5 2.9×10-4 

R-Squared 0.969 0.949 0.87 0. 84 

Training Time (Seconds) 25.63 113.02 26.10 109.23 

Table 4.11 Performance measurement for Scenario 3 

Performance Metrics ERT RF 

MSE. 6.6×10-5 9.9× 10-5 

R-Squared 0.962 0.94 

Training Time (Seconds) 25.8 113.8 

Table 4.12 Performance measurement for Scenario 4 

Performance Metrics 
5% Noise 10% Noise 

ERT RF ERT RF 

MSE 1.0×10-4 1.4×10-4 2.7×10-4 3.2×10-4 

R-Squared 0.936 0.918 0.82 0. 80 

Training Time (Seconds) 26.75 116.34 26.97 111.68 

It is observed that the performance of the proposed method has improved, especially 

in scenarios 2 and 4, by using principal components that can retain 98.71% variance, 

i.e., 40 principal components. However, using more principal components increases 

the training time. Figure 4.16 and 4.17 shows the damage identification result for 

single-element and two-element damage cases using 40 principal components, 

respectively. Some false positive damages are observed in undamaged elements, like 

in the case with five sensor measurements. 
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Figure 4.16 Single element damage identification 

 

Figure 4.17 Two-element damage identification 

4.5 Experimental Validation 

Experimental studies are conducted on a steel frame structure in the laboratory (Li et 

al., 2012) to validate the effectiveness of the proposed approach. The detailed 

descriptions of the structure can be found in Refs. (Chencho et al., 2020; Li et al., 

2012). The steel frame structure and the developed finite element model are shown in 

Figures 4.18 and 4.19, respectively. The number of sensors is reduced to six in the 

present study. The finite element model of the steel frame has 70 elements. The target 

output will have 70 labelled output variables, which are the percentage of stiffness 

reduction in the elements. Training datasets are extracted from the acceleration 
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responses measured from the updated finite element model. 15% of the total dataset is 

used as the validation dataset. During the laboratory testing, two samples of 

acceleration responses for the single-element damage and two-element damage cases 

are measured. The measured data are used as testing data in this study. 

 

Figure 4.18 Frame Structure 
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Figure 4.19 FEM of the frame structure 

4.5.1 Data Generation and pre-processing  

Datasets consisting of IRFs extracted from the acceleration responses obtained from 

the undamaged, single element and two-element damage cases are used to train and 

validate the proposed method. Acceleration responses are obtained when an impact 

force is applied at node 44 in the horizontal direction. Four samples of acceleration 

responses are collected for every damage case using random impact forces with a 1-

2% variance of the measured force. Measurement is taken for one second at the 

sampling rate of 1000 Hz.  Acceleration responses in the x-direction at nodes 7, 11, 

17, 47, 53 and 56 are used for single-element damage cases, and at nodes 4, 11, 19, 50, 

53 and 56 for the two-element damage case. IRFs are extracted using Equation (4.8), 

and the error is reduced by averaging the ensembles. A total of 8404 samples are 
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generated for the single element damage case. The stiffness reduction in each element 

is taken from 0% to 30% in steps of 1% for the single element damage case. The 

damage is introduced in any two elements with a maximum stiffness reduction of 20% 

for the two-element damage case. The damage is introduced in any two elements with 

a maximum stiffness reduction of 20% for the two-element damage case 20,883 

samples are generated for the two-element damage case. The training of ERT models 

for single-element damage cases and two-element damage cases is carried out 

separately since the sensor locations used in the experimental tests under these two 

damage cases are different.  

The data pre-processing process remains the same as discussed in the numerical study. 

IRFs generated using Equation (4.8) from the acceleration responses measured at six 

sensors are concatenated. Moving averaging is performed for smoothing the 

concatenated series. Further, PCA is performed for dimensionality reduction. The 

number of principal components is selected, taking more than 98.5% variance. For the 

single-element damage case, 29 principal components are selected, and 19 principal 

components are selected for the two-element damage case. 85% of the dataset is used 

for training, and the remaining is used for validation.  

4.5.2 Results and Discussions 

Experimental tests are conducted for single-element damage cases and two-element 

damage cases. The proposed method is tested with two sample datasets from the 

laboratory's real experimental data for the single-element and two-element damage 

cases, respectively. It should be noted that no ensembles are used in this test since only 

a limited number of experimental tests are conducted. For single element damage 

cases, the stiffness reduction in element No. 12 is 12.5%. For the two-element damage 

case, 12.5% stiffness reduction is introduced in elements 6 and 12. The performance 

of using ERT and RF is compared here to demonstrate the superiority of the proposed 

approach for a relatively complex structure with more elements and parameters to be 

identified. Both ERT and RF are grown using 120 decision trees and setting a 

minimum requirement of six samples at the internal node for further split and three 

pieces in each leaf.  

For both single-element and two-element damage cases, ERT performs better than RF, 

as seen in Tables 4.13 and 4.14. The results demonstrate that the proposed approach 
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provides good damage identifications for a structure with many elements. Less training 

time is required by using ERT.  

Table 4.13 Performance evaluation for single element damage case 

Performance Metrics ERT RF 

MSE 1.07 ×10-6 1.11×10-6 

R-Squared 0.999 0.997 

Training Time (Seconds) 13.42 65.73 

Table 4.14 Performance evaluation for two-element damage case 

Performance Metrics ERT RF 

MSE 2.8×10-5 3.89×10-5 

R-Squared 0.985 0.975 

Training Time (Seconds) 22.70 101.59 

Figure 4.20 shows the damage identification results for the single element damage case 

from a sample experimental testing data. The identified stiffness reduction is 12.3% 

against the true stiffness reduction of 12.5% at element No.12 with ERT and 9.5% 

with RF. Some false positives are observed in other elements, which are less than 2%. 

Figure 4.21 shows the damage identification results of the two-element damage case. 

The identified stiffness reductions are respectively 13.4% and 11.68% in elements No. 

6 and 12 with ERT, compared with 12.51% and 5.58% by using RF. The identified 

damage locations are very accurate, and the predicted severities are very close to the 

true stiffness reductions by ERT. For this multiple damage case, better identification 

results are obtained using ERT, compared with those from RF, as shown in Figure 

4.21. The identification results in these experimental studies indicate that ERT 

outperforms the RF for identifying the damage more accurately and efficiently.  



97 

 

Figure 4.20 Single element damage identification results of the experimental frame 
structure 

 

Figure 4.21 Multiple damage identification results of the experimental frame 
structure 

4.6 Conclusion 

This study presents a novel structural damage identification approach using an 

ensemble technique based on ERT and IRFs. The performance is compared with RF. 

IRFs extracted from acceleration responses are processed and used as the input to ERT 

and RF. The results in numerical and experimental studies demonstrated that the 

proposed approach based on ERT outperforms RF, as indicated by MSE, R-squared 

and training time. ERT's training time is significantly less than RF using the same 

structure and measurement data. It is also demonstrated that the proposed approach 
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performs well for structures with a relatively greater number of elements and unknown 

parameters to be identified.  

However, it is known that the existing deep learning models and two studies carried 

out in Chapter 3 and Chapter 4 of this thesis needs the model to be trained and tested 

separately for each of the four scenarios considered. This may have problems with 

generalising the data ,i.e., if the model is trained with scenario 3 dataset and tested 

with scenario 4 dataset, overfitting may occur.  Exploring and developing a machine 

learning model which can be trained with a set of datasets and tested with other 

scenario datasets to get good damage identification and quantification is a motivation 

behind the study carried out in the next chapter.  
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CHAPTER 5 

5 Damage Identification and Quantification Using Impulse Response 

Functions with Long Short-Term Memory Auto-encoder 

5.1 Introduction 

This chapter presents an approach for structural elemental damage identification and 

quantification using Long Short-Term Memory (LSTM) autoencoder and impulse 

response functions (IRFs). The same datasets generated from a simply supported beam 

in chapter 4 are used with the proposed model. IRF extracted from the acceleration 

responses are concatenated. Moving averaging with a suitable window size reduces 

random variations in the concatenated responses. Further, principal component 

analysis (PCA) is carried out on standardised datasets for dimensionality reduction. 

The selected principal components are then fed to the LSTM autoencoder for damage 

identification. The encoder of the LSTM autoencoder encodes the input sequence to a 

variable sequence of a fixed length vector, and the decoder maps the vector 

representation to a target variable. A noise layer is added as an input layer to the LSTM 

autoencoder, which can provide regularisation to the model. The proposed model 

consists of two phases, one for the reconstruction of principal components selected to 

extract the features and the other for the structural element damage identification. The 

reconstruction network is tuned to get good reconstruction results. After getting a good 

result, the encoder network of the reconstruction network is kept the same, and the 

decoder is further tuned to get a good damage identification considering the stiffness 

reduction in the elements as the target variable.  

Numerical studies are carried out on a simply supported beam, and data are generated 

using finite element model (FEM) analysis. This study provides 1). A deep neural 

network using LSTM auto-encoder for structural damage identification; 2) IRFs 

extracted from the time-domain acceleration responses using a small number of 

sensors are explored.  

5.2 LSTM Auto-encoder 

LSTM has been widely used in sequence prediction problems, such as sequence 

classification and sequence-to-sequence prediction, which may differ based on the 

input and output sequences. LSTM is a type of recurrent neural network (RNN); it has 
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recurrent connections that use the state of neuron activation from the previous time 

step to determine the output (Brownlee, 2018). RNNs are designed for sequence 

prediction, for example, multi-layer perceptron by adding loops. RNNs face the 

challenge of getting trained effectively owing to vanishing gradient problems; LSTM 

is designed to overcome this challenge. Moreover, LSTM can learn long-term 

dependencies better than an RNN (Lecun et al., 2015). LSTM use gates that process 

the information contained in the incoming data sequences, stored in the network, and 

leaving the network. The gates include a forget gate, an input gate, and an output gate, 

each of which can be considered a neural network (Xu & Yonedal, 2021; Zhang et al., 

2020).  The output from an LSTM cell depends on the long-term memory (referred to 

as the cell state), output from the previous time step, and data of the input sequence of 

the current time step.  Figure 5.1 shows the LSTM cell.  

 

Figure 5.1 LSTM Cell 

The forget gate determines which information of the cell state is useful based on the 

previous hidden state and the current input data. The previous hidden state and the 

current input data are fed to the forget gate, which generates a vector in the interval 

between 0 and 1 using sigmoid activation. A value of 0 indicates that the input 

component is irrelevant, whereas 1 show that the input component is relevant. In the 

following equations, W and Wh are the input and hidden state weights for the forget 

gate f, input gate i, and output gate o.  

𝑓: = 𝜎n𝑥: ×𝑊; + ℎ:7! ×𝑊<;q               (5.1) 
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where xt  denotes data at time t, ht-1 denotes previous hidden state, and ft is the forget 

gate at t.  

The amount of information sent is based on this value. More information is sent when 

the 𝑓:value is closer to 1. The output from this part of the forget gate is multiplied 

pointwise by the previous cell state. The output of pointwise multiplication is given by 

Equation (5.2) or equation (5.3) when ft is 0 or 1, respectively. When 𝑓: is 1, all the 

previous cell states are sent.  

𝐶:7! ∗ 𝑓: = 0	𝑓𝑜𝑟	𝑓: = 0                (5.2) 

𝐶:7! ∗ 𝑓: = 𝐶:7!	𝑓𝑜𝑟	𝑓: = 1                (5.3) 

where  Ct-1 denotes the previous cell state. 

The next stage is the input gate. The input gate uses the current input and the previous 

hidden states to quantify the amount of new information to be retained along with the 

previous cell state. The equation for the input gate can be expressed as: 

𝑖: = 𝜎(𝑥: ×𝑊# + ℎ:7! ×𝑊<#)             (5.4) 

where it is input gate at time instant t. 

Using a sigmoid function, the input gate outputs a vector ranging from 0–1. The new 

information is also a function of the previous hidden state and current input data. It 

uses the tanh activation function to output the new information ranging from -1 and 1. 

The new information is determined by: 

𝐼" = 𝑡𝑎𝑛ℎ(𝑥: ×𝑊= + ℎ:7! ×𝑊<=)              (5.5) 

The new information IN generated using the input gate can help to reduce the 

information in the cell state from the previous, if necessary. A negative value using 

‘tanh’ helps to achieve this. However, the necessity of retaining all the new input data 

is unknown. The output from the input gate is multiplied pointwise by the new input 

vector to determine the amount of new input data that can be retained. This output is 

added to the cell state. The current cell state, 𝐶: is given by: 

𝐶: = 𝐶:7! ∗ 𝑓: +	𝐼" ∗ 𝑖:             (5.6) 

The output gate is the last gate; it determines the new hidden state. It uses the current 

input data and previous hidden states like the forget and input gates. The equation for 
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the output gate can be expressed as: 

𝑜: = 𝜎(𝑥: ×𝑊9 + ℎ:7! ×𝑊<>)               (5.7) 

The new hidden state will be the output of the pointwise multiplication of the output 

gate and the new cell state. The tanh function is applied to the current cell state 

resulting in new output in the range of -1 and +1. The new hidden state, ℎ: can be 

expressed as: 

ℎ: = 𝜎(𝑥: × 𝑤> + ℎ:7! × 𝑤<9) ∗ 𝑡𝑎𝑛ℎ	(𝐶:)              (5.8) 

LSTM auto-encoder is an LSTM-based architecture (also called encoder-decoder 

LSTM); it is shown in Figure 5.2. The encoder reads the input sequence and encodes 

it into a vector (Hochreiter & Schmidhuber, 1997). The decoder decodes this vector 

and outputs the predicted sequence. LSTM auto-encoders have been used for 

unsupervised problems, especially those related to the video generation (Srivastava et 

al., 2015) and speech synthesis (Wan et al., 2017).  

 

Figure 5.2 LSTM Auto-encoder 

5.3 Proposed network configuration 

The proposed LSTM autoencoder consists of two phases. Figure 5.3 shows the 

proposed network implemented using Keras Functional API (Fchollet, 2019) for deep 

learning. The first phase involves reconstructing the input sequence to extract the best 

feature representing the input sequence, and the second phase consists of the 

relationship learning for structural damage identification. A network may learn 

effectively from a training dataset to train the input samples and the corresponding 

outputs. Still, it may perform poorly on new datasets, such as testing and validation 

datasets. This results in a generalisation error, which can often be improved by adding 

random noise, resulting in effective network learning of the training dataset (Brownlee, 
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2019b). The Keras API enables the addition of white noise to the network via a 

Gaussian layer, as shown in Figure 5.3.   

 

Figure 5.3 The proposed LSTM-Autoencoder 

The addition of a Gaussian layer adds noise with a mean of zero. The standard 

deviation of noise can be tuned to obtain the best results for the network. For the 

proposed network, a standard deviation of 0.03 is used, and the Gaussian layer is added 

as an input layer to the encoder. The encoder outputs internal representations of the 

input sequences. The input to the network for both the network requires 3-dimensional 

input of [samples, timestep and features]. Here the samples denote the observation, the 
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timestep is the length of the sequence, and features is the number of features in the 

input. Both encoder and decoder are stacked LSTM network. A stacked LSTM 

network has multiple hidden layers, and each layer will have numerous memory cells. 

The output from the encoder is 2-dimensional output, and the decoder requires 3-

dimensional input. Repeat Vector layer is used here to create 2-dimensional output 

from the encoder to 3-dimensional data for the decoder. The decoder maps the learned 

internal representation of the input sequence to the output sequence. A dense layer is 

used as the output for the network.  

In the first phase, the encoder and decoder are tuned to obtain the maximum R-squared 

for reconstructing the input sequence. The input sequence is the PCA compressed 

IRFs. IRFs are extracted from acceleration measurements from the structure. IRFs 

extraction is described in Chapter 4. The decoder uses the learned internal 

representations of the input signal by the encoder as the input to reconstruct the input 

sequence. Both the encoder and decoder are tuned to get a reasonable reconstruction 

of the input sequence from the decoder. The damage identification network is 

developed using the same encoder when the maximum R-squared is achieved in the 

rebuilding input sequence. The output is to predict structural elemental stiffness 

reduction. The decoder of the damage identification network are tuned to get good 

damage identification results.  Therefore, in the damage identification phase, the 

learned internal representation of the input sequence is mapped to stiffness reduction. 

Figure 5.3(b) shows the network model of the proposed method for structural damage 

identification.  

5.4 Methodology 

Under this section, data generation, data pre-processing and the network configuration 

are explained.  

5.4.1 Data Generation and Pre-Processing 

The study is carried out on a simply supported beam with 10 elements used in Chapter 

4. The same dataset generated for ERT is used here to improve the damage 

identification further. Figure 5.4 shows the beam structure and selected sensor 

locations. IRFs is generated using equation (4.8) of Chapter 4. A summary of data 

generation is given below.  
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Figure 5.4 Simply supported beam and the sensor locations 

IRFs extracted from five sensor locations shown in Figure 5.4 are concatenated, 

making the sequence length 500 sample points. Moving averaging removes random 

variations by selecting a suitable window size. 500 sample points in a sequence are 

pretty long for the LSTM, which can increase the computational cost of the LSTM 

network. PCA is performed on the concatenated input sequence to reduce the overall 

computational cost by reducing the sample length. 19 principal components are 

selected. A minimum total variance of 98.71% of the data is preserved while selecting 

the number of principal components. These 19 principal components are taken as the 

input sequence to the LSTM auto-encoder network. Therefore, the input to the LSTM 

Autoencoder will have 19-time steps and one feature. The entire dataset is reshaped 

into [samples, timesteps, features].  

The previous study considers noise measurement and uncertainty in system modelling. 

The damages in the structural elements are defined as the stiffness reduction by 

reducing the stiffness parameter, Young's modulus. The Young’s modulus of all ten 

elements cannot be the same due to impurity in the material or manufacturing quality, 

which is inevitable. This was defined herein as ‘uncertainty’. Accordingly, four 

scenarios were considered for measuring the performance of the proposed framework. 

Scenario 1: Acceleration responses measured from selected sensor locations 

without noise or uncertainty. The IRFs are extracted from the measurement 

responses. 

Scenario 2: White noise is added to acceleration responses recorded in Scenario 

1. The IRFs are extracted from the acceleration responses along with noise 

measurements. Two different levels of white noise, 5% and 10%, are 

considered to determine the effect of the noise level on the performance. 
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Scenario 3: Acceleration responses measured with uncertainty. Uncertainty 

ranging ±1%–3% are included randomly in the stiffness parameters in the 

FEM. The IRFs are extracted from the acceleration responses. No noise 

measurements are considered herein. 

Scenario 4: Acceleration responses are measured considering the uncertainty 

and noise measurements. Acceleration responses are measured, including 

uncertainties ranging from ±1%–3%. Noises of 5% and 10% are added to the 

measured acceleration responses, and the IRFs are extracted. 

Only the IRFs extracted from Scenarios 1 and 3 are used for training and testing the 

framework. For Scenario 1, 11,300 damage cases of single- and multiple-element 

damage cases are simulated. Three samples are generated for each damage case, and 

each sample is generated under a different impact force. For the same damage cases, 

uncertainty (ranging ±1%–3%) is included in the stiffness parameter, and the 

acceleration responses are measured, from which the IRFs are extracted and 

considered as Scenario 3. Scenarios 1 and 3 had the same damage cases (11,300). Both 

the scenarios are combined to yield 22,600 damage cases, and with three samples for 

each damage case, 67,800 samples are generated. Four undamaged samples are added 

to the dataset, forming the final dataset with shape [67804, 19, 1] for the study. 

Scenarios 1 and 3 are combined to train and test the proposed framework. The network 

is trained using 85% of the entire dataset. The remaining 15% is used as one set for 

testing the proposed model. Fifteen percentage of the training dataset was used to 

validate the proposed method. Three sets of test data are used to test the performance 

of the proposed method. 

i. Random 15% of the dataset to test Scenarios 1 and 3 

ii. Scenario 2 dataset 

iii. Scenario 4 dataset 

5.4.2 Results 

During the reconstruction phase, the 19 principal components are used as the input 

sequence to the LSTM auto-encoder, and the same sequence is used as the output for 

the reconstruction. The first and second principal components are considered the 

values for the first- and second-time steps, respectively. The number of LSTM cells 

and layers in both the encoder and decoder are tuned to obtain the maximum R-square 
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for 15% of the test dataset. The reconstruction network is compiled using the Adam 

optimiser by considering the mean square (MSE) error as the loss function. An R-

squared of 0.996 is achieved with the reconstruction network configuration. Table 5.1 

presents the reconstruction results of the two random samples; the reconstructed 

sequence is almost identical to the input sequence. 

Table 5.1 Input sequence and reconstructed sequences 

Time steps 

Sample 1 Sample 2 

Input 

Seq. 

Reconstructed 

Seq. 

Input 

Seq. 

Reconstructed 

seq. 

1 -9.05 -9.07 -11.31 -11.24 

2 1.70 1.69 -10.72 -10.72 

3 -0.68 -0.68 6.77 6.89 

4 -1.49 -1.52 5.00 5.07 

5 0.89 0.84 0.99 0.89 

6 0.10 0.11 1.16 1.26 

7 -1.24 -1.24 -1.83 -1.88 

8 -1.97 -1.98 2.27 2.25 

9 0.87 0.83 -1.62 -1.65 

10 -0.28 -0.29 -1.26 -1.31 

11 0.05 0.02 -1.19 -1.19 

12 0.32 0.35 -0.59 -0.57 

13 0.06 0.10 0.37 0.29 

14 -0.09 -0.10 -0.17 -0.24 

15 0.21 0.19 0.38 0.41 

16 -0.72 -0.69 0.02 0.03 

17 0.11 0.10 -0.69 -0.66 

18 -0.22 -0.19 0.39 0.33 

19 -0.12 -0.12 -0.07 -0.03 

The learning plot for the reconstruction network over 100 epochs is shown in Figure 

5.5. The plot provides information on the network performance of the training and 

validation datasets and can be used to determine whether the network underfits, 

overfits, or learns well. The training curve (obtained from the training dataset) provides 
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information on the learning performance of the network. In contrast, the validation 

curve (calculated for 15%–85% of the total dataset) includes information on the 

generalisation performance of the network. The plot shows that training and validation 

losses decrease up to their respective stability points; a small gap exists between the 

training and validation loss curves. This curve nature indicates a good fit. 

 

Figure 5.5 Loss curve for reconstruction network 

After achieving an R-squared value of 0.996, the decoder of the reconstruction network 

is replaced with another stacked LSTM network. The decoder is tuned further to map 

the features extracted by the encoder to stiffness reduction. However, the same 

decoder, which comprised a layer less than that in the reconstruction network, yields 

good results. The performance of the LSTM auto-encoder in damage identification is 

measured using the MSE and R-square for the scenarios. For Scenario 2, 5% and 10% 

noises are considered for investigating the effect of the measurement noise. Table 5.2 

lists the MSE and R-squared for scenarios 1 and 2. Table 5.3 shows the results for 

scenarios 3 and 4. The proposed method exhibits good damage-identification 

performance. The performance is slightly affected when noise is present in the 

acceleration response. The performance further degrades with the increasing noise 

level. The learning curve for damage identification is shown in Figure 5.6, which 

indicates a good fit. 
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Figure 5.6 Loss curve for damage identification network 

Table 5.2 Performance measurements using five sensor measurements for scenario 

one and Scenario 2 

Performance 

Metrics 
Scenario 1 

Scenario 2 

5% Noise 10% Noise 

MSE 3.21 x 10-06 6.15 x10-06 2.5 x 10-05 

R-Squared 0.998 0.996 0.985 

Table 5.3 Performance measurements using five sensor measurements for scenario 3 

and Scenario 4 

Performance 

Metrics 
Scenario 3 

Scenario 4 

5% Noise 10% Noise 

MSE 4.16 x 10-05 4.9 x 10-05 7.08 x 10-05 

R-Squared 0.974 0.971 0.953 

The R-square decreases by 0.2% and 1.3% at 5% and 10% noise level, respectively. 

When uncertainty is considered without any noise measurement in the acceleration 

response, as in Scenario 3, the R-squared decreases by 2.4%. With both noisy 

measurement and uncertainty effect, the performance degrades further, depending on 

the noise level. Decreases of 2.7% and 4.6% in R-squared values are observed at 5% 

and 10% noise levels, respectively. Some negative stiffness reductions are observed in 

the non-damaged elements, but they are nearly zero.  
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The damage identification results for the single- and multiple-element cases for all 

scenarios are presented below. Damages of the stiffness reductions smaller than 10% 

are defined herein as minor and major damages, respectively. Figure 5.7 shows the 

damage identification results for the single-element damage case with a 7% decrease 

in the stiffness reduction in element No. 4. The predicted damage is 6.75% when no 

noise measurement is considered. For the 5% and 10% noise measurements, the 

predicted damage identification results are 6.03% and 5.87%, respectively. In Scenario 

3, the predicted result is 8.8%. The performance degrades when both the uncertainty 

and noisy measurements are considered. With uncertainty and noise measurements of 

5% and 10% noise levels, the predicted results are 9.09% and 9.24%, respectively. 

Some false positive damage identification results are observed in the undamaged 

elements, but the values are less than 0.5%. 

 

Figure 5.7 Damage identification of single element damage (minor) 

Figure 5.8 shows the single-element damage identification results with a 20% stiffness 

reduction in the first element under different scenarios. In all the scenarios, the 

introduced damage can be reliably identified. The performance degrades with an 

increase in the noise level and degrades further when uncertainty is considered.  
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Figure 5.8 Damage identification of single element damage (major) 

For the multiple-element damage cases, two-and three-element damage cases are 

considered. In Figure 5.9, stiffness reductions are observed in elements No. 1 and 5. 

True damages of 6% and 9% stiffness reductions are considered for elements No. 1 

and 5, respectively. Figure 5.9 shows the damage identification results in another two-

element damage case. The stiffness reductions are 13.5% for element No. 1 and 12% 

for element No. 6. As shown in these figures, the proposed approach obtains good 

damage identification results. However, the identification results are good even when 

the measurement noise and uncertainty in the stiffness parameter are considered. Very 

few and small false positive stiffness reductions are observed in Figure 5.10 

 

Figure 5.9 Damage identification of two element damage (minor) 
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Figure 5.10 Damage identification of two element damage with more than 10% 
stiffness reduction 

For a three-element minor damage case, stiffness reductions of 6%, 10.5%, and 6% 

are introduced in elements No. 2, 4, and 7, respectively. For a major damage case, the 

stiffness reductions are 10.5%, 15%, and 15% for elements No. 2, 4, and 9, 

respectively. The identification results for minor and major damages herein are 

consistent with those in the single- and two-element damage cases. Figures 5.11 and 

5.12 show the identification results for the minor and major three-element damage 

cases, respectively. The prediction results for both single- and multiple-element 

damage cases are pretty close to those of the true damage case, even when the 

measurement is considered.  

 

Figure 5.11 Damage identification of three element damage (minor) 
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Figure 5.12 Damage identification of three element damage (major) 

Next, the number of sensors is reduced from five to three. The vertical acceleration 

responses are measured from three sensors at nodes. No. 2, 8 and 9, and these responses 

are processed in a similar way as in the above cases of using five sensors. The same 

damage cases in the training, validation and testing datasets of the above case with five 

sensors are used. The 19 principal components selected from the concatenated IRFs 

are used as inputs to the network with the same architecture, and the performance is 

measured. For five sensor cases, the variance retained is 98.71% with 19 principal 

components. When the sensor number is reduced to three, with 19 principal 

components, 96.68% variance is preserved. The proposed approach is trained and 

tested using 19 principal components to compare the performance with the extremely 

randomised tree in Chapter 4 using the same sensor locations. In Chapter 4, when 19 

principal components are used using three sensors, the performance is not good. The 

performance is improved using 40 principal components which retain 98.71% 

variance. It is observed that the proposed approach in this chapter can still give good 

damage identification close to using five sensor datasets. However, as presented in 

Figure 5.13, 40 principal components must be considered if the number of principal 

components is selected to retain 98.71% variance using three sensors. This will 

increase the training time of the proposed model since the sequence length is more 

than twice the length using five sensors.  
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Figure 5.13 Variance plot 

Tables 5.4 and 5.5 present the performance measurements of the proposed method 

using three sensor measurements. R-squared and MSE values are measured for all 

scenarios considered in the five-sensor measurement case. Both the MSE and R-

squared values indicate good damage identification. The results are close to those 

obtained using the five-sensor measurements.  

Table 5.4 Performance measurements using three sensor measurements for scenario 

1 and 2 

Performance 

Metrics 
Scenario 1 

Scenario 2 

5% Noise 10% Noise 

MSE 5.7 x 10-06 8.5 x 10-06 2.7 x 10-05 

R-Squared 0.996 0.994 0.984 

Table 5.5 Performance measurements using three sensor measurements for scenario 

3 and 4 

Performance 

Metrics 
Scenario 3 

Scenario 4 

5% Noise 10% Noise 

MSE 5.3 x 10-05 6.21 x 10-05 8.69 x 10-05 

R-Squared 0.967 0.961 0.945 

Figures 5.14 – 5.16 shows the comparative damage identification results for Scenario 

1 using five- and three-sensor measurements. The introduced stiffness reduction in 

element No. 5 is 9.5%. The predicted stiffness reductions are 9.18% and 9.07% when 



115 

using five and three sensors, respectively. For a randomly selected two-element 

damage case, the actual stiffness reductions are 13.5% for element No. 2 and 6% for 

element No. 8. The predicted stiffness reductions are 13.3% for element No. 2 and 

5.91% for element No. 8 (five sensors), and 13.4% for element No. 2 and 5.17% for 

element No. 8 (three sensors), respectively. 

 

Figure 5.14 Damage identification for single element damage case (scenario 1) 

 

Figure 5.15 Damage identification for two-element damage for case (scenario 1) 

The results for a three-element damage case are also shown here. The simulated 

stiffness reductions in the three elements, No. 2, 5 and 9, are 10.5%, 15%, and 15%, 

respectively. Five-sensor measurements yield predicted stiffness reductions of 

10.44%, 14.91%, and 14.90% for elements No. 2, 5, and 9, respectively. On the other 

hand, the three-sensor measurements yield predicted stiffness reductions of 10.46%, 

14.97%, and 14.96% for elements No. 2, 5, and 9, respectively. Some false positive 
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damages are detected in both single- and multiple-element damage cases. However, 

the results show that the proposed approach enables good damage identification using 

a small number of sensors. 

 

Figure 5.16 Damage identification for three-element damage case (scenario 1) 

Figure 5.17 - 5.19 show the damage identification results for Scenario 2 with a 10% 

noise level. The damage prediction results are like those of true stiffness reduction. 

Some false positives with higher values than those in Scenario 1 are observed. The 

true damage in element No. 6 is 5%. The prediction results demonstrate that using five 

sensors can provide stiffness reduction close to the true damage. However, it is 

observed that using three sensors can also give entirely accurate stiffness reduction, 

and very few false identification results can be obtained.  

 

Figure 5.17 Damage identification for single element damage case (scenario 2) 
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Figure 5.18 Damage identification for two-element damage case (scenario 2) 

 

Figure 5.19 Damage identification for three-element damage case (scenario 2) 

As in scenario 1, the prediction results for the multi-element pattern are like single-

element damage cases. The prediction results are close to the true damage using either 

five or three sensors. Figure 5.20 – 5.22 show the damage identification examples for 

both single- and multiple-element damage cases in scenario 3. As in the case of five 

sensors, the prediction results show a similar pattern, and the results are pretty close to 

those of the true damage case with some false positive damages in the undamaged 

elements. 
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Figure 5.20 Damage identification for single element damage case (scenario 3) 

Figure 5.20 shows the stiffness reduction in the elements for the single-element 

damage case.  The true damage is in element No. 4.  The prediction results in element 

No.4 using three sensors look closer to true damage than the five sensors. Still, it is 

observed that using three sensors gives higher value of false positive in undamaged 

elements. The damage identification result for multi-element damage cases shows 

good damage identification results using a small number of sensors.  It can be observed 

in both Figures 5.21 and 5.22 that the damage prediction results are close to actual 

damage using both five and three sensors. 

 

Figure 5.21 Damage identification for two-element damage case (scenario 3) 
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Figure 5.22 Damage identification for three-element damage case (scenario 3) 

Figures 5.23–5.25 shows the damage identification results for scenario 4 with 10% 

noise for single-, two-, and three-element damage cases. As observed in previous 

scenarios, the damage prediction results are close to true damage, or the results 

obtained using five sensors. Some false positive damages are observed in the 

undamaged elements, but the damages are less than 1%, which is negligible. 

 

Figure 5.23 Damage identification for single element damage case (scenario 4) 
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Figure 5.24 Damage identification for two-element damage case (scenario 4) 

 

Figure 5.25 Damage identification for three-element damage case (scenario 4) 

The model herein implements the same network architecture and pre-processing data 

methods using five sensors. The damage identification results indicated that the 

developed model could provide good damage identification in structural elements 

using a small number of sensors. The identification results show that even reduced 

number of sensors, the performance of the proposed approach is not significantly 

affected when the measurement noise and uncertainty in the stiffness parameter are 

considered. Further, the model is tested with one sensor, but the performance is not 

good. Therefore, the number of sensors in a practical application can be decided by 

carrying out a numerical study. The measurements from the FEM analysis can be used 

to train and test the model using a different number of sensors.  



121 

5.5 Conclusion 

The performance measurement for the proposed structural elemental damage 

identification approach using IRF and LSTM autoencoder indicated good damage 

identification and outperformed the traditional machine learning model proposed in 

chapters 3 and chapter 4. The computation time for the proposed model is reduced by 

performing PCA. The reconstruction network after tuning can give good 

reconstruction results, and the same internal vector representation of the input 

sequence is used for damage identification. The results for all the four scenarios 

considered are close to true damage. Further, the model is trained with one dataset and 

tested with another scenario’s dataset. The performance demonstrated that the model 

could generalise quite well. The study considers the noise measurement and 

uncertainty in stiffness parameters. The performance of the proposed method is also 

measured, reducing sensor numbers from five to three. The damage identification 

results demonstrated that with three sensors, enough information can be obtained with 

the proposed method to give good damage prediction in structural elements. Tables 

5.4 and 5.5 shows that there is no significant difference in MSE and R-Squared using 

five sensors and three sensors.  

The damage is defined in terms of stiffness reduction in structural elements 

considering only noise and uncertainties in the stiffness parameter. A large-scale 

infrastructure like a bridge can be exposed to several external conditions such as 

vehicle loads and weather. It can also experience different types of damage and 

different levels for each damage type. The proposed multioutput regressions models 

may not be suitable or can become too complex due to identifying the damage and 

then quantifying the damage when the data available is insufficient. The next chapter 

of this thesis considers a real civil infrastructure and proposes a suitable machine 

learning model.  
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CHAPTER 6 

6 Structural Damage Classification of a Large-scale Bridge using 1D 

Convolutional Neural Network and Time Domain Responses  

6.1 Introduction 

Convolutional neural networks are widely used in SHM due to their capability of 

efficient and robust feature learning (Wang et al., 2020). It is also commonly used in 

SHM (Abdeljaber et al., 2017; Khodabandehlou et al., 2019). 1D-CNN networks have 

the advantage over the other CNN work in terms of computational complexities and 

shallow architecture; this makes the network easy to train and implement. Further, 1D-

CNN does not require high system configuration, making it suitable for real-time and 

low-cost applications (Mitiche et al., 2020). This chapter proposes a 1D-CNN for the 

damage of a large-scale civil structure considering several damage scenarios using 

fewer time domain responses from the Z24 bridge. The measurements made from the 

Z24 bridge in Switzerland during the short-term progressive damage test (PDT) are 

used for the study. The PDT took over a month.  Two hundred ninety-one degrees of 

freedom have been measured for both forced and ambient excitation. The study 

considers only the measurement under ambient excitation, which has the advantage 

over forced excitation of not needing to arrange the excitation for the measurement. 

Further, to reduce the overall cost of monitoring the structure, the study attempts to 

use a small number of sensor measurements. The performance of the proposed method 

is measured in terms of accuracy supported by a confusion matrix. It is compared with 

the existing study conducted on Z24 by Hung et al. (2020).  

6.2 Proposed 1D-CNN 

The acceleration responses from three sensors are pre-processed and used as input to 

the proposed 1D-CNN. The number of sensor measurements used is less than that in 

the previous study (Hung et al., 2020) on the Z24 bridge. In addition, no data 

augmentation is performed, and only real measurement data are used for training and 

validation. The data pre-processing technique is straightforward, involving 

autocorrelation, normalisation and splitting into smaller lengths. Figure 6.1 shows the 

basic architecture of 1D-CNN. It has building layers, namely, convolutional, pooling, 

flattening and fully connected neural networks.   
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Figure 6.1 Convolution Neural Network 

6.3 Convolution layer 

The convolutional layer is the core layer of the CNN, and it performs convolution 

operations on the input data (Wang et al., 2020). Convolution is performed on the input 

dimension and involves dot product multiplication between the input data and the 

filters or kernel, with an array of weights (Xu et al., 2018). The kernels have a small 

receptive field, but the operation occurs at different points on the input. Each filter 

produces an activation or feature map by convolving across the input volume. The 

dimension of the activation map depends on the type of CNN. A CNN can learn 

multiple features using multiple filters, which allows the network to be equipped with 

different means of extracting features from the input. Multiple convolutional layers 

can be employed depending on the problem to be solved. This allows a hierarchical 

decomposition of the raw input and the extraction of higher-level features.  

The convolution layer has the activation function as its last component to increase non-

linearity in the output and is obtained through a nonlinear activation function. Linear 

activation functions are easy to train but are challenging to be used to learn complex 

mapping functions. Nonlinear activation functions allow the nodes to remember more 

complex mapping functions. Three widely used nonlinear activation functions are the 

sigmoid, hyperbolic tangent (‘tanh’) and rectified linear unit (RELU). The sigmoid 

function transforms the input into a value between zero and one. The ‘tanh’ function 
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converts the input to values between -1 and 1. The ‘sigmoid’ and ‘tanh’ functions 

become saturated since the input values are between 1 and 0 or -1, respectively. RELU 

outputs positive values when inputs are positive and outputs zero otherwise. The 

RELU function is nearly linear for input values greater than zero, which makes it easy 

to train the model. However, it is a nonlinear function since the negative output values 

are always taken as zero.  

 

Figure 6.2 The proposed 1D-CNN 

Figure 6.2 shows the structure of the proposed 1D-CNN model. The proposed 1D-

CNN framework consists of two 1D-CNN networks with the same number of filters 

but different kernel lengths. Using different kernel lengths can interpret input data at 

various resolutions. Each 1D-CNN network comprises two convolutional layers with 

the same number of filters. A total of 256 filters are used in each 1D-CNN, allowing 

256 different kernel models to extract features from pre-processed data. The length of 

the 1D convolution window of the first 1D-CNN is 75, and that of the other 1D-CNN 

is 70 and is selected based on the rial-and error; increasing the length further does not 

improve the performance while decreasing degrades the performance. A stride length 
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of one is used for the proposed framework. The convolution output is obtained through 

a RELU activation function to introduce nonlinearity. 

6.4 Pooling layer 

The pooling layer reduces the dimensionality of a given mapping, consolidating the 

prominent features, and is performed after the convolution layer (Xu et al., 2018). 

Pooling is performed on each feature map independently and reduces the number of 

parameters and computational load. Different types of pooling methods are used in 

CNNs, such as max pooling, average pooling, and global pooling, as shown in Figure 

6.3. When using the max pooling, the maximum element is selected from the region 

covered by the pooling window. Average pooling takes the average of the elements 

covered by the pooling window, and global pooling reduces each channel to a single 

element. Max pooling provides the most prominent feature and is one of the most 

common pooling methods used in CNNs. This method leaves the maximum activation 

in the rectangular neighbourhood (Goodfellow et al., 2016).  

 

Figure 6.3 (a) Average Pooling (b) Max Pooling (c) Global Average Pooling (d) 

Global Max Pooling 

6.5 Flatten layer and fully connected component 

Two main processes in a CNN are feature learning and classification. The 

convolutional and pooling layers learn the feature representation of the datasets. The 

classification is performed by the flattening layer and fully connected layer. The 
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pooling layer's output, a pooled feature map, is converted into a long one-dimensional 

vector by the flattening layer, making it suitable for the subsequent fully connected 

layer. The next layer is a fully connected artificial neural network. It can have several 

densely connected layers to learn the nonlinear properties of the feature representation. 

However, it cannot use multi-dimensional data. Therefore, flattening layers are 

incorporated before the fully connected artificial neural network. Activation functions, 

such as the sigmoid or SoftMax function, can be used in a fully connected layer to 

obtain the probabilities of the classes. It is noted that SoftMax is used in this study.  

6.6 Regularisation 

Deep neural networks face generalisation challenges. A neural network with a strong 

capacity may cause overfitting, whereas a network with limited power cannot learn the 

relationship effectively. The number of neural network nodes, the used layers of the 

network and the weights of parameters define the network's capacity. A good model 

should learn the mapping relationship from the training dataset and generalise well on 

the testing dataset. Underfitting problems can be addressed by varying the network 

structure, such as increasing the numbers of network nodes and layers (Brownlee, 

2019b). Using a large dataset and changing the complexity of the network can reduce 

the overfitting problem in deep learning networks. The network complexity can be 

altered by changing the network structure and the parameters (Bishop, 1995). 

Regularisation can also be used to reduce overfitting and provide better overall 

performance. There are many regularisation methods, such as weight regularisations 

(L1 regularisation, L2 regularisation and soft weight sharing) (L1, L2 and soft weight 

sharing), (Nowlan & Hington, 1992), activity regularisation, weight constraints, 

dropout, make robust with noise, and stop training at the right time with early stopping. 

Each method aids the network in generalisation performance, configuration, and 

computational complexity (Zhang et al., 2019). Training several models and averaging 

the outputs improve the network's performance and help prevent overfitting. However, 

training different networks or architectures is computationally expensive since the 

optimal hyperparameters must be determined for each network (Srivastava et al., 

2014). 

Srivastava et al. (2014) demonstrated that a restricted Boltzmann machine (RBM) 

performed better with a dropout layer, and experimental studies are conducted with 
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neural networks for classification problems on different datasets. Dropout is defined 

as the temporary deactivation of some nodes in neural networks. This includes 

incoming and outgoing connections (Brownlee, 2019b; Xu et al., 2018). Figure 6.4 

shows a thinned network resulting from applying the dropout technique. Dropout can 

be used to feed-forward networks and graphical models. 

A good dropout value in the hidden layer is between 0.5 and 0.8 for the input layers, 

where 1.0 represents no dropout and 0 means no output from the layer. 1D-CNNs learn 

rapidly from a dataset, which can make the model prone to overfitting. In this study, a 

dropout layer is used for regularisation to reduce overfitting and improve the 

generalisation of the proposed framework. Thus, some of the outputs are dropped 

during the training process, as shown in Figure 6.4. The best method to determine the 

optimal dropout value is to perform a grid search between 1.0 and 0.1. Dropout layers 

can be used after the convolutional layers or the pooling layer. In the proposed 

framework, the dropout layer is included after the convolutional layers, as shown in 

Figure 6.2, since its placement after the pooling layer or convolution layers does not 

affect the performance of the classification problem considered here classification 

problem's performance. A dropout layer is used in this study with the Keras application 

programming interface (API). The definition of the dropout rate discussed previously 

is different in the Keras API. The dropout rate of 0.2 means that 20% of data are set to 

zero and 80% of the input is retained. The proposed model is trained with 90% of the 

dataset and tested with the remaining 10%. A mini-batch gradient descent of 128 is 

used and trained, and testing is carried out using 100 epochs. An epoch means that the 

proposed algorithm runs through the dataset once.  

 

Figure 6.4 Dropout Technique 
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6.7 Experimental Verifications on Z24 Bridge 

The performance of the proposed method for the classification of damage scenarios is 

evaluated using real bridge data from the classical post-tensioned two-cell box-girder 

Z24 bridge in Canton Bern, Switzerland. The bridge is part of the road connecting 

Koppigen and Utzenstorf, passing over the A1 highway between Bern and Zurich. This 

bridge has three spans, a middle span of 30 m and two lanes, as shown in Figure 6.5 

(Kramar et al., 1999). It has an overall length of 60 m and rests on four pillars. More 

detailed descriptions of the Z24 bridge and the tests are provided in a previous study 

by (Roeck, 2003). 

 

Figure 6.5 Z24 Bridge (Kramar et al., 1999) 

6.8 On-site test descriptions 

The bridge was tested under the European Brite EuRam research project BE-3157, 

“System Identification to Monitor Civil Engineering Structures” (SIMCES). 

Dynamics tests were conducted on this bridge to verify the feasibility of vibration-

based health monitoring and civil engineering infrastructure damage detection. The 

measured vibration data from full-scale, long-term, and progressive failure tests of this 

bridge structure are used for validating the accuracy of the proposed approach for 

damage detection. Several damage scenarios are considered. Table 6.1 lists the types 

of damage introduced in sequence on the bridge, which required over a month to 

complete. The test setups and safety considerations can be found in previous reports 

(Kramar et al., 1999; Roeck, 2003).  
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Table 6.1 Types of damage scenarios 

Sl. No Damage Scenario Units 

1 Settlement of foundation  m 

2 Tilt of foundation degree 

3 Spalling of concrete of soffit m2 

4 Landslide m3 

5 Failure of concrete hinges pieces 

6 Failure of anchor heads pieces 

7 
Failure of post tensioning 

tendons 

Numbers 

The complete damage scenarios and levels introduced in the progressive damage tests 

are listed in Table 6.2. Vibration measurement data are obtained from ambient and 

forced vibration conditions for the introduced damage scenarios with different damage 

types. The vibration response measurements under ambient conditions are used in the 

present study.  

Vibration measurements in the vertical, transverse, and longitudinal directions are 

collected from a 2 × 8 grid on each of the two columns and a regular 3 × 45 grid on 

the top deck. Testing data are recorded in nine setups, owing to the limitation of the 

number of accelerometers and data acquisition channels. Vibration responses are 

collected at a sampling rate of 100 Hz using a 30 Hz cut-off frequency antialiasing 

filter. Each response measurement comprises 65,536 samples. Five sensors, namely, 

R1-V, R2-T, R2-V, R2-L and R3-V, of the 33 total sensors are commonly used 

between the test setups. R1, R2 and R3 indicate the locations of the sensors, and V, T 

and L denote the vertical, transverse, and longitudinal direction measurements, 

respectively.  

Hung et al. (2021) proposed a damage classification framework using a hybrid deep 

learning model consisting of a 1D-CNN and LSTM network. Three different 

techniques extracted features: an autoregressive model, discrete wavelet transform, 

and empirical mode decomposition. These features were then fused and used as inputs 

to the hybrid model. The developed framework was tested on the Z24 bridge for 
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damage classification considering the first 16 damage scenarios listed in Table 6.2. 

The performance of the proposed approach will be compared with the existing study.  

Table 6.2 Complete damage scenarios in the progressive damage tests 

Sl. No Damage Scenario 
Sl. 

No 
Damage Scenario 

1 Undamaged Condition 10 
Spalling of concrete of soffit, 24 

m2 

2 
Installation of pier settlement 

system 
11 Landslide of 1 m at abutment 

3 Lowering of pier, 20 mm 12 Failure of concrete hinge 

4 Lowering of pier, 40 mm 13 Failure of 2 anchor heads 

5 Lowering of pier, 80 mm 14 Failure of 4 anchor heads 

6 Lowering of pier, 95 mm 15 Rupture of 2 out of 16 tendons 

7 
Lifting of pier, tilt of 

foundation 
16 Rupture of 4 out of 16 tendons 

8 New reference condition 17 Rupture of 6 out of 16 tendons 

9 
spalling of concrete at soffit, 

12 m2 
    

6.9 Data Pre-processing 

This study aims to obtain better classification results using a smaller number of sensors 

than the existing study. In the proposed framework, three vertical measurements, R1-

V, R2-V, and R3-V, common sensors in nine setups, are used. The nine test setups and 

sensor locations are shown in Figure 6.6 (Kramar et al., 1999).  

 

Figure 6.6 Test setup and sensor measurement location field (Hung et al., 2021)
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Each time series signal has 65536 sample points. The raw measurements are detrended 

first and then processed further. The detrended measurements for the three selected 

sensors are shown in Figures 6.7, 6.8, and 6.9, respectively.   

 

 Figure 6.7 R1-V Measurement  

 

Figure 6.8 R2-V Measurement 
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Figure 6.9 R3-V Measurement 

Autocorrelation is calculated for the detrended signal and is normalised. The 

autocorrelation function helps reduce the noise in the sensor measurements and is 

much faster. Figures 6.10 (a), 6.10 (b), and 6.10 (c) are the normalised signal for R1-

V, R2-Vand R3-V, respectively.   

 
(a)  
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(b) 

 
(c) 

Figure 6.10 Normalised Autocorrelation Signal (a) R1-V (b) R2-V and (c) R3-V 

The autocorrelation measures the correlation between the samples at points 𝑥:	and 

𝑥:?8, where k denotes the time lag (k= 0, 1, 2, K), considering that 𝑥: is a stochastic 

process. Further, each of the normalised signals is split into smaller lengths of 150 

sample points with an overlap of 75 sample points in the previous and next segmented 
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signals, i.e., 50% overlap. The first three splits of R1-V for Damage Scenario 2 are 

shown in Figure 6.11.  

 

(a) 

 

(b) 
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(c) 

Figure 6.11 First three samples of R1-V measurement after split: (a) first 150 sample 

points, (b) second 150 sample points with 50% overlap with the first sequence; (c) 

third 150 sample points with 50% overlap with the second sequence 

The measurement data from all three sensors for each damage case are grouped into a 

single three-dimensional array. The measurement data with shape [Samples, Sample 

points, Number of sensors] is used to train and test the proposed 1D-CNN model for 

damage classification. The data split of 90% for training and 10% for testing is selected 

to compare the proposed approach with the existing study by Hung et al. (2020).  

The performance measurement is performed for three cases: 

1. Case 1: Autocorrelation is calculated over the entire sequence length of raw 

acceleration response. The data is pre-processed and split into smaller 

lengths of 150 sample points with a 50% overlap. There are 5400 samples 

generated from one sensor measurement for each damage scenario making 

86,400 samples in total for 16 damage scenarios.   

2. Case 2: From case 1, only 50% of a sample size of each damage scenario 

is considered, that is 2700 for each damage scenario which makes a total 

sample size of 43,200. 
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3. Case 3: Considered only 50% length of the raw acceleration response to 

calculate autocorrelation used in case 1 and case 2. For each damage scenario, 

2700 samples are used for the study.        

Figure 6.12 shows the architecture of the proposed framework, including the 

dimensions of the input and output of each layer. The performance is measured for 

the above three cases and is presented in the results section.  

 
Figure 6.12 The proposed 1D-CNN architecture 

6.10 Results and Discussions  

The performance of the proposed framework is measured in terms of the accuracy 

supported by the confusion matrix, precision, recall, and F-1 score. The accuracy 
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metric indicates the number of classes that are correctly predicted. With more classes 

considered, the accuracy alone cannot define the model's performance well, especially 

when there are unequal samples for different classes. The confusion matrix can 

describe the overall performance of the proposed approach for the damage 

classification. It can be used to determine a classifier's performance on the test data set 

for which true values are known. Precision, recall, and F-1 score are also calculated to 

indicate and measure the accuracy and performance of the proposed approach.  

6.10.1 Case 1 

The proposed framework is fine-tuned to obtain good results. A total of 256 filters or 

kernels are used in the 1D-CNN networks, with kernel sizes of 70 and 75 in the two 

1D-CNNs. A damage classification accuracy of 93.65% is achieved with the proposed 

framework, which is 3.55% higher than the previous damage classification results field 

(Hung et al., 2020). The training time by using the proposed approach is 4 hours and 

42 min with a computer of an Intel® Core (TM) i7-0750H, a graphical card Nvidia 

RTX2070.  

It can be seen in the confusion matrix presented in Figure 6.13 that there are some false 

positive damage classifications. These are observed more frequently in the last four 

damage scenarios. Damage scenarios 13 and 14 represent the failures of two and four 

anchor heads, respectively. In Damage Scenario 13, 679 out of 809 samples are 

classified as true positives, and 106 samples are classified as Damage Scenario 14, a 

similar damage type. It can be seen that the prediction accuracy for Damage Scenario 

13 is only 83.9%. However, 13% of the samples are classified as Damage Scenario 14. 

Similarly, for Damage Scenario 14, the accuracy is 89.9%, and 7.4% is classified as 

Damage Scenario 13. Similar results are observed for Damage Scenarios 15 and 16, 

which are similar damage types. The proposed model can provide a good overall 

accuracy, and many false positives are observed in the same kind of damage scenarios.  
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Figure 6.13 Confusion Matrix for case 1 

Table 6.3 lists the per class precision, recall and F-1 scores for the damage scenarios 

in Case 1. The ability of the classifier to avoid labelling a negative sample as positive 

is defined by precision, and its ability to classify all positive samples as positive is 

reflected in the recall. For an ideal classifier, both precision and recall are 1. The F-1 

score is the harmonic mean of the accuracy and recall and can be expressed as 

𝐹1 = 2 ∗ (A∗C)
(A?C)

                       (6.1) 

where P and R are the precision and recall, respectively. F-1 score is 1 for a good ideal 

classifier which can be achieved if precision and recall are 1.  

For a class, precision is given as 

𝑃 = &$
&$?E$

 ,     (6.2) 

The recall is calculated as follows 

𝑅 = &%
&%?E&

     (6.3) 

where TP, FP and FN are true positive, false positive and false negative, respectively.
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Table 6.3 Precision, Recall and F-1 score for case 1 

Class Precision Recall F-1 Score 

1 0.98 0.96 0.97 

2 0.93 0.96 0.94 

3 0.97 0.99 0.98 

4 0.96 0.94 0.95 

5 0.99 0.98 0.98 

6 0.97 0.98 0.98 

7 0.97 0.96 0.96 

8 0.96 0.94 0.95 

9 0.98 0.95 0.97 

10 0.94 0.97 0.95 

11 0.96 0.96 0.96 

12 0.94 0.93 0.94 

13 0.88 0.84 0.86 

14 0.8 0.9 0.84 

15 0.9 0.86 0.88 

16 0.92 0.91 0.92 

For the multiclass problem, as in the study with 16 classes, the macro-average F-1 

score with the proposed framework is 0.939. The macro-average precision and recall 

are 0.940 and 0.939, respectively. For case 1, it is observed that the proposed method 

can provide good damage classification.  

6.10.2 Case 2 

An accuracy of 92.03% is achieved with 50% fewer data than in case 1. The accuracy 

is decreased by 1.62%. However, it is still higher than that previous study by 1.93%. 

In addition, the training time using the same computer configuration is 2 hours and 20 

minutes. Similar patterns of classification results are observed as in Case 1. Most false 

positives are attributed to identical damage scenarios for the last four damage 

scenarios. Figure 6.14 shows the confusion matrix obtained in Case 2.  
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Figure 6.14 Confusion Matrix for case 2 

Table 6.4 lists the precision, recall and F-1 scores for each damage scenario. The F-1 

score is 0.925. Therefore, the proposed framework can still provide good damage 

classification results using 50% of the datasets. The difference in accuracy is mainly 

due to the size of the used datasets. The proposed framework tends to learn better with 

more datasets, which is understandable. However, there is a trade-off between the 

accuracy and computational demand. The training time for this case with 50% of 

datasets is approximately 50% shorter than using the whole datasets.   

For this case, the macro-average precision, recall and F-1 score are 0.925, 0.926, and 

0.925, respectively. It can be concluded that even with 50% less data size, the proposed 

model can still provide good damage classification.  
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Table 6.4 Precision, Recall and F-1 score for case 2 

Class Precision Recall F-1 Score 

1 0.97 0.95 0.95 

2 0.92 0.91 0.91 

3 0.97 0.94 0.96 

4 0.89 0.94 0.91 

5 0.98 0.98 0.98 

6 0.95 0.99 0.97 

7 0.98 0.94 0.96 

8 0.91 0.95 0.93 

9 0.96 0.97 0.97 

10 0.95 0.93 0.94 

11 0.97 0.93 0.95 

12 0.96 0.93 0.95 

13 0.83 0.85 0.84 

14 0.79 0.85 0.82 

15 0.89 0.83 0.86 

16 0.88 0.93 0.9 

6.10.3 Case 3  

In this case, only 50% of the acceleration response is considered rather than taking the 

whole length of raw acceleration measurements from the sensors. It has the advantage 

over the previous two cases in that it needs half the size of raw acceleration responses. 

The accuracy obtained is 91.77% which is not significantly less than the last two cases. 

However, in the previous two cases, the entire length of the time series is considered 

to calculate the autocorrelation. Figure 6.15 shows the confusion matrix, and Table 6.5 

lists the precision, recall, and F-1 scores.  

Like in the previous two cases, it is seen that some samples are not predicted correctly 

even when an acceleration response of shorter length is used. However, most classes 

predicted wrong falls in a similar type of damage. The performance is still better than 
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the existing study and is also very close to case 2 in this study. The macro-average 

precision is 0.921; recall is 0.917 and F-1 score is 0.921. All three values are above 

0.9, which shows that the proposed framework can provide good damage classification 

when the acceleration measurement duration is 50% less than in the previous two 

cases.  

 

Figure 6.15 Confusion Matrix for case 3 
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Table 6.5 Precision, Recall and F-1 score for case 3 

Class Precision Recall F-1 Score 

1 0.98 0.95 0.97 

2 0.88 0.91 0.94 

3 0.98 0.91 0.94 

4 0.94 0.97 0.96 

5 0.97 0.98 0.97 

6 0.99 0.94 0.97 

7 0.97 0.94 0.96 

8 0.93 0.95 0.94 

9 0.96 0.96 0.96 

10 0.92 0.95 0.93 

11 0.81 0.88 0.84 

12 0.89 0.78 0.83 

13 0.87 0.89 0.88 

14 0.89 0.89 0.89 

15 0.87 0.89 0.88 

16 0.89 0.89 0.89 

The variation in the performance of the proposed framework is dependent on the data 

size and the autocorrelation over the length of the available time series data. Cases 1 

and 2 found that the data size affects the accuracy, but the training time required is 

more significant with larger data size. In addition, the performance is slightly 

dependent on the length of the data used for calculating autocorrelation. The accuracy 

of Case 2 is slightly higher than that of Case 3, although the dataset size is the same. 

The difference is 0.26%, and the training time is the same.  

6.11 Conclusion 

This chapter presents the damage classification of a large-scale bridge 1D-CNN and 

time domain vibration response measured from three sensors. The study considers 

different types of damage scenarios under ambient excitation of the Z24 bridge. The 

pre-processing consists of detrending and finding the autocorrelation of the 

measurements. Further, it is normalised and split into shorter lengths. The performance 

measurement for all three cases demonstrated that the proposed framework can 
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accurately classify damage scenarios. There are some false positive damages observed 

but mostly in the damages of a similar type. Therefore, the result can still do good 

damage type classification.  
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CHAPTER 7 

7 Conclusion 

Recent studies on applying autoencoders and residual neural networks (ResNet) using 

modal information have been explored for structural elemental damage identification 

and quantification. However, obtaining modal information from a civil engineering 

structure requires a lot of measurement, which is time-consuming. Further, it isn't easy 

to take the measurement from a large and complex infrastructure. For this reason, the 

use of acceleration responses measured randomly from the structure and with a small 

number of sensors is explored for structural elemental damage identification using a 

densely connected convolutional network (Dense net). Deep learning models require 

a considerable dataset to give good results which ultimately increases the 

computational cost for training the model. Using expensive graphics processing units 

(GPUs) can help reduce the computational cost, but it becomes costly for the model 

developers.  

Therefore, the use of decision tree-based ensemble traditional machine learning 

models is explored for structural elemental damage identification using acceleration 

responses from a small number of sensors. An ensemble of deep learning models can 

be used for the same problem, but this can increase the computational cost due to the 

requirement of training all the deep learning models in the ensemble. The decision 

tree-based ensemble method, RF, is a popular machine learning model that performs 

well with both categorical and continuous values. Moreover, it does not require a lot 

of data pre-processing. It is robust to outliers and has a low risk of overfitting. The 

computational cost is more than a decision tree because the result is the average of all 

decision trees or the majority vote if the problem is a classification problem. The 

dataset considered in the study has continuous values. Chapters 3, 4 and 5 presented 

the proposed models as the multioutput regression model, i.e., it must output stiffness 

reduction in all the structural elements for every instance or sample. 

Chapter 3 provided a detailed study on the development of RF for structural elemental 

damage identification and quantification using acceleration response. The numerical 

and experimental studies demonstrated a good prediction of stiffness reductions in the 

structural elements with less training time. The training time was further reduced using 



146 

PCA for dimensionality reduction. RF may require a large volume of memory for 

storage due to storing information of many decision trees in it. This may increase the 

system cost but may not be as expensive as GPUs. Further, it may not be visualised 

like a decision tree. It is less interpretable.  

Chapter 4 presented the development and application of ERT ,which is also an 

ensemble machine learning model with decision trees as the base learners and is like 

RF. The training time required for ERT is significantly less than the RF and deep 

learning models due to random splitting at every node by selecting a random feature 

from the random subset of the features. In RF, the best split takes place at every node, 

i.e., it selects the best feature from a random subset of features.  Moreover, in RF, it 

builds multiple decision trees from multiple datasets drawn with replacements from 

the input dataset. So, there will be a repetition of observations. This is not the case 

with ERT. There is no repetition of observations in the datasets used for building the 

decision trees. The raw acceleration responses are not used here. IRFs, one of the 

dynamic characteristics of a structure, is extracted from the acceleration response and 

processed further for use in RF and ERT. Moving averaging is performed on the IRFs 

to remove random variations, and then PCA is computed for dimensionality reduction. 

Using IRF along with moving averaging and PCA has shown better structural 

elemental damage identification and quantification with RF than using acceleration 

responses. ERTs outperform the RF with significantly less training time and more 

accurate damage predictions in all four scenarios considered. However, ERT also 

requires a large volume of memory to keep information of all the trees in it.  

In all the existing structural elemental damage identification and quantification 

methods, both deep learning models and ensemble methods presented in Chapter 3 and 

Chapter 4 of this thesis are trained and tested with the specific scenario dataset and 

require training and testing again for other scenarios to measure the performance. 

Chapter 5 presented a solution to this by using LSTM-autoencoder with a noise layer 

which can provide good generalisation when tested using measurement datasets with 

noise. The computation of time of the LSTM autoencoder is reduced by computing 

PCA on the input observations. The same dataset in Chapter 4 is used with this method 

to compare the performance of RF and ERT. The data pre-processing technique is the 

same as in Chapter 4. The model was trained using 85% of the combined dataset of 
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scenario 1 and scenario 3 and tested with the remaining 15% of the combined dataset, 

scenario 2 and scenario 4 dataset. The performance measurement indicated that it is 

more robust to the noise measurement and has shown better damage prediction results 

than RF and ERT. The performance is further measured with fewer data, assuming the 

available number of sensors is three instead of five. There is no significant difference 

in performance using data from five and three sensors. The proposed model has the 

advantage of using fewer sensors and being robust to noise measurements. It does not 

need to be trained and tested again for all four scenarios considered.  

In all the methods presented in Chapters 3, 4, and 5 and the existing deep learning 

models for damage identification and quantification of civil engineering infrastructure, 

the damage is usually defined in terms of reduction in structural element stiffness. 

However, a civil engineering structure may experience different damage types in real-

world settings. It, therefore, can also be defined according to the damage types; each 

type can have several levels of damage. Z24 bridge dataset has considered different 

damage scenarios during the PDT, which took over a month. The measurement was 

done for both forced excitation and ambient condition. The proposed study used 

measurements under ambient conditions. The methods explained earlier may not be 

suitable when the bridge experiences combined damages of different types and levels. 

Moreover, the measurement taken from the Z24 bridge is undoubtedly exposed to 

external conditions such as the environment and vehicle loading. This can make it 

difficult for the proposed model to map the input pattern to the labelled output. 

Therefore, the proposed 1D-CNN is developed ,taking the problem as a classification 

problem. The presented data processing methods and 1D-CNN model demonstrated 

good damage classification. The classification accuracy is more than the existing 

hybrid model. The proposed model also used fewer sensors than the current methods 

and did not use any data augmentation method. Autocorrelation is computed on the 

acceleration responses before splitting them into smaller lengths.  

Future work 

The model for structural elemental damage identification and quantification is 

developed from the training and testing dataset generated from the updated FEM 

model and is further validated with the structure model fabricated in the laboratory. 

The studies considered only the measurement noise and modelling error associated 
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with the uncertainty, i.e., material properties and their influences on the stiffness 

parameter. The experimental results have demonstrated suitable damage identification. 

However, In the real-world setting, there can be other uncertainties arising from 

environment loading such as wind and vehicles on the bridges, construction flaws, 

boundary conditions etc. These sources of errors can be sensitive to the acceleration 

response and IRFs extracted from it and may affect the performance of the models 

proposed. There is a need to consider more uncertainties in the FEM which can help 

reduce errors in the training data. This can help get more accurate damage 

identification and quantification in the test dataset obtained from the fabricated 

structure in the laboratory.  

Further, the acceleration responses are measured using forced excitation. The 

acceleration responses and IRF extracted from it under ambient conditions are not 

considered. It would be an exciting topic in future to consider exploring this for the 

proposed methods for damage identification and quantification of structural elements.  

Chapter 6 presented a supervised damage classification method using the dataset 

measured from a large-scale bridge, Z24. The performance measured has shown better 

accuracy than the current study on the Z24 bridge. However, there are still spaces to 

improve to achieve more accurate damage classification. Not getting optimal 

classification accuracy could be due to uncertainties from non-structure components 

and environmental conditions, which makes it hard for the model to map the internal 

pattern of input variables with the labelled output.  Autocorrelation is computed from 

the acceleration response. It would be interesting to obtain IRFs from the acceleration 

response under ambient conditions and measure the performance in the future. 

The methods proposed are all supervised. It may not be possible to have measurements 

for all the damage scenarios considered in the Z24 bridge, e.g., data from the entire 

structure, which could only be simulated from a numerical model. It is also challenging 

to include all the uncertainties relating to external conditions in the real-world settings 

in the simulation. Therefore, unsupervised methods can be explored for damage 

detection using the undamaged dataset to detect damage in the structure. Moreover, 

finding ways to include uncertainties in the simulation model as much as possible 

could be another study to explore in the future.  
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