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ABSTRACT Like other Artificial Intelligence (AI) systems, Machine Learning (ML) applications cannot
explain decisions, are marred with training-caused biases, and suffer from algorithmic limitations. Their
eXplainable Artificial Intelligence (XAI) capabilities are typically measured in a two-dimensional space
of explainability and accuracy ignoring the accountability aspects. During system evaluations, measures of
comprehensibility, predictive accuracy and accountability remain inseparable. We propose an Accountable
eXplainable Artificial Intelligence (AXAI) capability framework for facilitating separation andmeasurement
of predictive accuracy, comprehensibility and accountability. The proposed framework, in its current form,
allows assessing embedded levels of AXAI for delineating ML systems in a three-dimensional space. The
AXAI framework quantifies comprehensibility in terms of the readiness of users to apply the acquired
knowledge and assesses predictive accuracy in terms of the ratio of test and training data, training data
size and the number of false-positive inferences. For establishing a chain of responsibility, accountability
is measured in terms of the inspectability of input cues, data being processed and the output information.
We demonstrate applying the framework for assessing the AXAI capabilities of three ML systems. The
reported work provides bases for building AXAI capability frameworks for other genres of AI systems.
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INDEX TERMS Explainable artificial intelliegence, accountable XAI, machine learning system design,
interactive graphical user interface.

I. INTRODUCTION17

Experts from the domains of logic programming, automated18

reasoning and software engineering are believed to lead Arti-19

ficial Intelligence (AI) and Machine Learning (ML) system20

design efforts [1], [2], [3]. Practitioners, usually less involved21

in these efforts, find the prevailing eXplainable Artificial22

Intelligence (XAI) frameworks algorithm-centric, neglect-23

ing domain-specific needs and, missing practical explana-24

tions [4]. Contemporary literature highlights several gaps in25

computing experts’ view of eXplainable Artificial Intelli-26

gence and practitioners’ explainability requirements [5], [6],27

[7]. From practitioners’ perspectives, these gaps result in28

(a) no or little utility of the system explainability features and29

(b) users’ inability to interpret the given reasoning. Such gaps30

inhibit automation of tedious practices and impede adoption31

of AI systems [8], [9], [11], [12]. Statistical and probabilistic32
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explanations are considered limited and less effective [13], 33

[14]. The relevant literature suggests that the prevailing XAI 34

frameworks do not fully comply with the norms of reg- 35

ulatory bodies and industry [5], [6]. A proven method of 36

measuring the non-explainability of an AI or ML system is 37

not available yet [15]. As availability of better XAI frame- 38

works would boost user confidence in ML and AI systems, 39

attempts are underway to develop holistic XAI frameworks 40

[8], [9], [11], [12]. Since AI systems are still regarded as 41

difficult to understand, adopt and trust [16], several groups 42

and are engaged in holistic XAI framework development 43

efforts [17], [18], [19], [20]. 44

This work posits that perceiving XAI in a two-dimensional 45

space of predictive accuracy and comprehensibility results in 46

mixing factors of accuracy, explainability and accountabil- 47

ity [1]. Such a convoluted representation does not help prac- 48

titioners, cannot fulfil regulators’ expectations and, offers 49

limited transparency for establishing a chain of responsibility 50

[8], [9], [10], [11], [12]. In order to formulate a better XAI 51

99686 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2769-2380
https://orcid.org/0000-0002-3951-1188
https://orcid.org/0000-0001-7535-141X


M. M. Khan, J. Vice: Toward Accountable and Explainable Artificial Intelligence Part One: Theory and Examples

FIGURE 1. The three-level Galois-lattices structure leading to
development of a holistic representation of explainability in ML and AI
system.

framework, we formulated a three-level (narrow and shallow)52

Galois-lattices structure [21], shown in Fig. 1.53

The Galois-lattices structure contains nine important54

elements that allow separating the convoluted factors of55

XAI. This separation is achieved by constructing a three-56

dimensional (3D) space using the nine terminal elements of57

the Galois-lattices structure. The perceived 3D space com-58

prises of three mutually perpendicular vectors: accuracy,59

comprehensibility and accountability, each having the same60

units of length [22]. Each of the three axes of this Accountable61

eXplainable Artificial Intelligence (AXAI) space is an inde-62

pendent vector in a Cartesian coordinate system. Hence, each63

vector would be of the form: A =
√
a1i+ a2j+ a3k where64

i, j and k are unit vectors. In this 3D AXAI space, quanti-65

tatively separable vectors would allow for the deconvolution66

of predictive accuracy, comprehensibility and accountability.67

In Section III, Table 1 we report the data type and numerical68

values assigned to each element of the three vectors. These69

assigned values would determine the length of each vector in70

the 3D space. Displaying these system attributes would make71

it easy to quantitatively delineate various ML systems. This72

novel approach was built upon prevailing XAI paradigms [1],73

[3], [4], [6], [7], [8], [9], [11], [12], [13], [14] to propose an74

AXAI capability framework to:75

1) Provide an easy to incorporate AXAI capability frame-76

work, mainly for ML systems;77

2) Enable incorporating and measuring predictive78

accuracy;79

3) Enable incorporating and quantifying the level of com-80

prehensibility of the system;81

4) Enable incorporating and quantifying the level of82

accountability of the system and;83

5) Allow practitioners to visually and quantitatively84

examine various pieces of information and easily assess85

the system AXAI capability.86

The AXAI capability framework, in its current form, is appli-87

cable to the ML systems. Henceforth, any reference to the88

framework’s application would mean design and/or assess- 89

ment of ML aspects of AI systems. In the following sec- 90

tions, we demonstrate the framework application by assessing 91

and comparing three affective state classification systems. 92

As shown in Fig. 2, the AXAI capability framework would 93

allow for incorporating theoretical guarantees, empirical evi- 94

dences and statistical assurances in AI systems. 95

In order to present the theoretical foundations of the 96

AXAI and demonstrate its utility, this paper is organized 97

in seven sections. After introducing this work in Section I, 98

Section II provides a brief overview of the XAI related issues 99

citing relevant works. We establish theoretical foundations 100

of the proposed AXAI framework in Section III. The fol- 101

lowing Section IV demonstrates application of the proposed 102

framework in designing and assessing AXAI capabilities of 103

three ML systems. The three systems’ assessment results 104

are presented in Section V. The proposed framework and 105

its applications are analysed and discussed in Section VI. 106

Finally, Section VII identifies the possible directions of future 107

work and concludes this work. 108

II. ISSUES IN EXPLAINABLE ARTIFICIAL INTELLIGENCE 109

Issues pertaining to algorithmic biases embedded in ML 110

systems were first realized in the late 1970s [23]. Initial 111

ML systems had nothing but predictive accuracy to offer as 112

explanations. Later, it was realized that predictive accuracy 113

alonewould not suffice dealingwith biases. It was understood 114

that several embedded factors like the historical background, 115

political constraints, and institutional context of ML systems 116

also induce biases in ML system [17]. Such realizations are 117

still valid for all genres of AI systems including supervised 118

learning-supported classifiers, regression systems, unsuper- 119

vised learning-supported clustering and labelling systems, 120

reinforcement learning systems and deep neural networks. 121

With time, the importance of explaining inferences, proving 122

system accuracies, addressing accountability in the context 123

of AI systems has increased [25], [26]. Recently, govern- 124

ments and business entities have also started to emphasize 125

the need to account for the ethical implications of using 126

AI systems [5], [6]. A recent report jointly published by 127

the Ada Lovelace Institute, AI Now Institute and the Open 128

Government partnership lists some forty algorithmic account- 129

ability mechanisms and their respective jurisdictions [28]. 130

Hence, XAI has emerged as a topic of interest for com- 131

puter scientists, AI theorists and practitioners across various 132

domains [8], [18]. 133

Though rule-based expert systems and ML systems were 134

traditionally assessed on the basis of their predictive accu- 135

racy alone [29], recent developments made it possible to 136

delineate them in a two-dimensional space of orthogonal 137

axes viz., predictive accuracy and comprehensibility [30]. 138

Consequently, ML systems are becoming relevant in solving 139

both routine and complex problems [31] and in some domains 140

they outperform humans and are becoming inevitable assets 141

[24]. Thus, ML systems are now being used in critical 142

tasks like disease diagnosis, psychological and psychiatric 143
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FIGURE 2. A three-dimensional representation of the AXAI capability framework, showing all quantifiable elements of system accountability,
comprehensibility and predictive accuracy in the three vectors. Each vector comprises of three unique elements. The proposed framework allows for the
quantitative assessment and delineation of ML and AI systems in the three-dimensional AXAI space.

assessments, loan approvals, autonomous driving and threat144

analysis. Their critical roles and decisions might also cause145

negative consequences [32]. AI theorists and practitioners146

acknowledge that a measure of ‘accountability’ needs to be147

added to AI-supported reasoning [1]. Hence, accountabil-148

ity is becoming a new dimension that would transform the149

two-dimensional space of predictive accuracy and compre-150

hensibility [30] into a three-dimensional space.151

Until now, incorporation of accountability features in AI152

systems’ XAI capabilities is not common. For example, [29]153

reported that accuracy of predictions and comprehensibil-154

ity of knowledge provided bases for proposing a set of155

criteria for delineating ML systems [2]. A weak criterion156

was used to identify ML systems whose predictive perfor-157

mance could improve using larger amounts of training data.158

A strong criterion would identify systems that symbolically159

provided reasons. An ultrastrong criterion was able to delin-160

eate ML systems that would teach reasoning [2]. Building161

upon these works, the description and scope of AI system162

comprehensibility was further refined in [3]. As evident in 163

IEEE standard P2840, researchers are trying to go beyond 164

the current XAI capabilities for building responsible AI 165

systems [33]. 166

Accountability, in the context of AI systems, connotes 167

compliance with ethical, procedural and legal norms while 168

processing information, invoking rules and making deci- 169

sions [34]. A widely adopted definition of accountability 170

defines it as a relationship between an actor and a forum, 171

in which the actor has an obligation to explain and justify the 172

conduct. Also, the actor may face consequences [35] for the 173

impact of actions. Therefore, accountability is perceived as a 174

multi-factor issue that deals with transparency, interpretabil- 175

ity, post hoc inspection of outputs, pre- and post-market 176

empirical performances and system design processes [1]. 177

The 2019 Algorithmic Accountability Act discussed in the 178

US senate required businesses to assess AI and decision 179

support system for risks associated with privacy and security 180

of personal information. The act also emphasized on assesing 181
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risks of ‘‘inaccurate, unfair, biased, or discriminatory deci-182

sions.’’ The act further asked businesses to address the out-183

comes of AI systems’ assessments [36]. Several applicable184

elements of AI system accountability could be extracted from185

the bill. Furthermore, as AI systems now perform highly186

critical tasks, they are also considered liable to adjudica-187

tion, legislation and litigation [1]. For example, the use of188

COMPAS, a system that assesses offenders’ criminogenic189

needs and risks of recidivism instigated legal debate and190

deliberations on accountability and lack of transparency in191

AI systems [23].192

Philosophically, explanation is the act of making some-193

thing intelligible or understandable [36]. Explainability194

in the context of AI-supported systems has been treated195

as a core software engineering issue but accountabil-196

ity is typically assessed in the context of application.197

Thus, an intelligent tutor would be deemed responsible198

for coaching and an autonomous vehicle would be held199

accountable for safety-centred issues. Typical ML algo-200

rithms rely on robust and accurate models based on the201

given data. Nonetheless, during their application, these ML202

systems fail to provide user-centred descriptions of how203

models were developed and how inferences or predic-204

tions were made. Incorporating acceptable, trustworthy and205

explainable artificial intelligence poses many challenges,206

mainly for application-related sensitivities and domain-207

specific requirements of various professions. It has been208

realized that practitioners’ inputs had been minimal in209

an almost four-decade long journey - from relying on the210

one-dimensional predictive accuracy to the integration of211

explainability and accountability in AI-supported systems212

[1], [2], [3], [33]. An added issue that complicates incor-213

poration of explainability in ML systems is that any two214

people would see the relevance and quality of explanations215

differently. In recent literature, evaluation of explanations216

is connected with data visualization techniques [37] as217

stated in [13]. The Palo Alto Research Centre (PARC) pro-218

posed incorporation of an interactive system for explaining219

the capabilities of an XAI system that controls a sim-220

ulated unmanned aerial system. The PARC posited that221

system explanations should reveal all information used in222

decision-making by showing that the system understood how223

things worked and was aware of its goals. In order to achieve224

these capabilities, the PARC’s Common Ground Learning225

and Explanation (COGLE) initiative established the terms to226

use in explanations and their meaning. The PARC used an227

introspective discourse model, which interleaves learning and228

explaining processes [13].229

Based on the cited works, it could be argued that assessing230

AI-supported systems in a two-dimensional space of explain-231

ability and accuracy provides limited information on systems’232

capabilities. Given the emerging roles and applications ofML233

systems, a three-dimensional framework of AXAI capabil-234

ity assessment that includes accountability is required. The235

following section is dedicated to establishing the theoretical236

foundations of a three-dimensional AXAI capability space.237

III. THEORETICAL FOUNDATIONS OF THE ACCOUNTABLE 238

EXPLAINABILITY (AXAI) CAPABILITY FRAMEWORK 239

Although several recent works discuss incorporating mea- 240

surable parameters of accountability and explainability [17], 241

[27], little work has been done for developing a holistic 242

framework and providing a set of quantifiable features to 243

assess the AXAI capabilities of a system. A framework for 244

assessing the AXAI capabilities must be built upon con- 245

siderations pertaining to personal, social, moral and legal 246

factors used to hold an individual accountable and liable for 247

explaining personal actions and decisions [41]. Significant 248

moral and legal factors that make a decision system liable to 249

explain decisions are [39]: 250

1) Significance of the impact (effect) of a decision on 251

others excluding the decision maker; 252

2) Possibility of contesting or overturning a decision; 253

3) Possibility of seeking compensation for damages 254

caused by the decision, and 255

4) Existence of doubts about any one or a combination 256

of: the provided information, the produced information 257

and the process of making inferences and decisions. 258

While suggesting enhancements to the prevailing XAI 259

capabilities, need for algorithmic accountability has been 260

highlighted in the recent works [19], [39], [40]. Account- 261

ability of an AI system would depend on the context of the 262

confronted issue [19]. For example, how a medical AI system 263

chooses which one of two patients should be treated first or 264

how a search and rescue robot would pick one of several 265

injured victims [41]. Hence, an ML system should be aware 266

of the context of ethical values and should have the capacity 267

to understand the moral consequences of its actions and deci- 268

sions [42]. Accountability should therefore be derived from 269

both information/data and the algorithmic approach [36]. The 270

employed algorithmic approach and data must be sensitive 271

to the context while making inferences and decisions [22], 272

[39], [41]. It is also argued that a system should be operated 273

in such a manner that the chain of responsibility is clear and 274

identifiable [25], [38]. 275

In order to address such needs, our proposed AXAI frame- 276

work includes a system accountability vector comprising of 277

three components viz., inspectability of input data models or 278

cues, inspectability of data being processed, and inspectabil- 279

ity of output models or cues. In order to hold either a system 280

developer or a user accountable for the impact of system 281

decisions, relevant information must be presented to them in 282

a meaningful manner [42]. We posit that inspectability, in the 283

context of XAI, must allow users to examine the relevant 284

system details and let them determine if the system is able to 285

fulfil the decision-making requirements. Inspectability is also 286

referred to as verifiability and traceability in the literature and 287

is considered as one of the core features that ensure system 288

transparency [43], [44]. 289

The proposed AXAI framework posits that system devel- 290

opers and system users should be able to inspect the input 291

data, important details on data being processed and the output 292
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information. Both developer and user would be expected to293

understand, analyse and interpret the inspected data.294

In the AXAI framework, an explanation is viewed as a295

deductive argument containing universal laws. Following this296

premise, the explainability vector comprises of the inspection297

time, the predicate recognition time and the time required298

to recognize or connect with a situation. The three factors299

of explainability improve user understanding of the situation300

(contextual inference) - from superficial knowing to a deeper301

knowing. In explainability, the inspection time serves as a302

substitution for incomprehension [28]. The predicate recog-303

nition time is grounded in the idea that humans understand304

an encountered situation by mapping the situation to those305

situations they would have encountered in the past. The last306

factor, the predicate naming time represents the time required307

to recognize or connect with a situation reflecting on system’s308

ability to provide readily understandable explanations.309

The predictive accuracy of a system in our AXAI frame-310

work includes three factors viz., ratio of the test data size311

and the training data size), the training data size and the312

number of occurrences of false-positive results. The ratio of313

test and training data informs how well a model performs on314

new data that were not used during the model development315

and system training [45]. The size of training data is impor-316

tant, as sufficient data are required for both developing an317

ML model and evaluating the model with a high degree of318

confidence. Without an adequately sized dataset, it will be319

dangerous and difficult to generalize results. Several good320

practices have been recommended for determining the ade-321

quecy of the validation dataset. For example, power calcu-322

lations can be helpful for determining the sample data size323

that would be required to confidently evaluate the ML model324

performance and compare the model with a pre-determined325

baseline [46]. In addition, in the context of ML systems,326

the cross-validation approaches need a particular minimum327

size of the training data. In the absence of sufficient data for328

training and evaluating amodel, makingmeaningful forecasts329

would not be possible. However, the required minimum size330

of the training data varies with the complexity of the model331

[45]. The last factor, occurrences of false positive results,332

helps in estimating the risks associated with a model [47].333

The three components of accuracy vector work together to334

inform system developers and users on the perceived accu-335

racy of the model and various inferences made using the336

model.337

A. THE THREE-DIMENSIONAL SPACE OF ACCOUNTABLE338

EXPLAINABILITY (AXAI)339

Building upon previous works [1], [3], [13], [14], [28], [38],340

we propose an AXAI capability framework for effectively341

incorporating accuracy, comprehensibility and accountability342

in ML systems. Following subsections discuss assumptions,343

definitions and hypotheses leading to the design of our pro-344

posed AXAI capability framework. These assumptions and345

definitions were inspired by and adopted from the relevant346

literature [3], [10], [28], [29], [49], [50].347

We assume that an ML system is a definite program P . 348

Our definition of a definite program considers P as having a 349

set of stages or series of steps that help in transforming a set 350

of inputs into some desired outputs [28]. This definition of 351

P also considers a system as a holistic system comprising of 352

one or multiple systems, sub-systems or algorithms, capable 353

of producing the desired outputs that enable making infer- 354

ences and decisions [28]. Such systems include: supervised 355

learning-supported classifiers and regression systems, unsu- 356

pervised learning-supported clustering and labelling systems 357

and, reinforcement learning systems including deep neural 358

networks. Therefore, such a system would include definite 359

symbols, definite functions, definite propositions, definite 360

predicates, logical symbols, object variables and proposi- 361

tional variables [48], [50]. 362

In the following sections, C denotes a constant, p repre- 363

sents a predicate symbol and � shows a human population 364

having an individual human represented as ‘s’. In this paper, 365

� shows a first-order variable and � is the background 366

knowledge. A human possessing the background knowledge 367

� is considered tantamount to a definite program P . Dn 368

denotes a definition D having a number n and � in this 369

paper denotes a domain. Having these notations borrowed 370

fromm the previous works [7], [38], [41], [48], the following 371

subsections describe all measurable parameters belonging to 372

each of the three vectors forming the 3D AXAI measurement 373

space shown in Fig. 2. 374

B. DEFINITIONS 375

D1: A predicate symbol, usually called in queries, is such that 376

p ε �. Declared in a ML system (P) is p, which is public 377

with respect to a human population � if p forms part of the 378

background knowledge� of each human s (sε�). Otherwise, 379

p is a private predicate symbol contained in P . 380

D2: Let� be a system. If the background knowledge� of 381

P is extended such that � ∪ � is formed, then the predicate 382

symbol p ε P becomes a predicate invention since p was 383

originally defined in � but not in �. 384

D3: The AXAI capability denoted by CAXAI is a repre- 385

sentation in a three-dimensional space. We posit that CAXAI 386

comprises of three independent vectors: � (comprehensibil- 387

ity), PA (predictive accuracy) and SA (system accountability). 388

Also, each one of the three vectors �, PA and SA comprises 389

of three independent components whose details are given in 390

the following definitions D4 – D6C. 391

D4: The comprehensibility � of P in the context of a 392

human population � is represented as �(�,P) where � is 393

a vector comprising of three components: the inspection 394

time (Tit ), the predicate recognition time (Tpr ) and the time 395

required to name a predicate (Tpn) such that: 396

�(�,P) =
√
(T 2
it + T

2
pr + T 2

pn) (1) 397

Here naming, an important goal of learning, means express- 398

ing the ‘‘object-property’’ relation, and naming object and/or 399

groups of objects. Hence, the comprehensibility of P in the 400
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context of AXAI refers to the mean readiness (�) of a human401

s (s ε �) for applying the knowledge given in program P to402

assign a public name to a new definition q with respect to the403

domain � after inspecting P for times Tit , Tpr and Tpn. It is404

worth mentioning that clustering, primarily an unsupervised405

method can also be combined with supervised learning in406

a system such that each cluster can be given an intended407

definition [49].408

D4A: The inspection time (Tit ) is the mean time that a409

human s (s ε �) requires for inspecting the information pre-410

sented by P before using the knowledge provided by P for411

solving a new problem within the domain �.412

D4B: The predicate recognition time (Tpr ) is the mean time413

that a human s (s ε �) requires for assigning a correct public414

name to a predicate symbol p within the domain �.415

D4C: The predicate naming time (Tpn) is themean time that416

a human s (s ε �) requires for naming a predicate symbol p417

presented as a privately named definition qwithin the domain418

� for correctly assigning a public name to the predicate419

symbol p after inspecting P .420

D5: The predictive accuracy PA of a system P with respect421

to a human population � and a domain � is represented as422

PA(�,P) where PA is a vector comprising of three compo-423

nents; rtst−trn (the ratio of test data size and training data size),424

dtrn (the training data size) and Ofp (number of occurrences425

of false-positive results) such that:426

PA(�,P) =
√
r2tst−trn + d

2
trn + O

2
fp (2)427

The predictive accuracy in the context of AXAI refers to the428

mean ability (�) of a human s from a population � to correctly429

name a predicate symbol p presented as a privately named430

description q with respect to the domain �.431

D5A: The ratio of the size of data used for testing and432

training the system P , expressed as rtst−trn with respect to433

a domain� is an indicator of the level of rigour �Rig applied434

in training and testing the program P for enabling correct435

naming of a predicate symbol p represented as a privately436

named definition q within a domain �.437

D5B: The absolute size of data (dtrn) used in training an AI438

system P , with respect to a domain � is an indicator of the439

exposure of the program P for correctly naming a predicate440

symbol p represented as a privately named definition qwithin441

the domain �. The value associated with dtrn indicates the442

ability of P to identify variations in new samples of data443

belonging to the domain �.444

D5C: Occurrences of false-positive naming of predicate445

symbols pn(n = 1, 2, 3, . . . , n) presented as named defini-446

tions qn(n = 1, 2, 3, . . . , n) observed while testing a sys-447

tem P is expressed as Ofp. In the context of AXAI, Ofp is448

an indicator of the ability of the system P to compare the449

models used in its training with models of new and unknown450

symbols belonging to the same domain. Themagnitude ofOfp451

therefore indicates the level of errors built into the system P452

for accurately naming a predicate symbol p represented as a453

named inference q with respect to a domain �. Please note454

TABLE 1. The AXAI capability assessment parameters and their data
types proposed for estimating the explainability attributes and
determining the overall AXAI capability of definite programs.

that, to the best of authors’ understanding, the cited literature 455

highly recommends integration of a human component in 456

assessing the system accuracy [27], [29], [30], [48]. 457

D6: The system accountability SA of a system P with 458

respect to a human population � is represented as SA(�,P) 459

where SA is a vector comprising of three components: Iin 460

(inspectability of input models or cues), Ipro (inspectability 461

of data being processed) and Iout (inspectability of output 462

models or cues) such that: 463

SA(�,P) =
√
I2in + I

2
pro + I

2
out (3) 464

The system accountability in the context of AXAI refers to the 465

mean accuracy with which a human s (s ε �) can realize any 466

occurrences of constants C, predicate symbols � and variable 467

� to correctly recognize a new definition with respect to the 468

domain �. 469

D6A: The mean score of inspectability Iin of input mod- 470

els/cues, supplied as named definitions qn(n = 1, 2, 3, . . . , n) 471

to a programP is an indicator of the mean clarity observed by 472

a human s (s ε �) with which s would inspect the definition q 473

before q is named as a predicate symbol p with respect to the 474

domain �. Therefore Iin reflects on the form and format of 475

the input models/cues with definitions qi(i = 1, 2, 3, . . . , i) 476

and predicate symbols pj(j = 1, 2, 3, . . . , j). 477

D6B: The mean score of inspectability of data after being 478

processed, Ipro in a program/system P is an indicator of the 479

mean clarity of the processed (or conditioned) definition q 480

as observed by a human from a population �(s ε �). Hence 481

mean Ipro is the mean clarity with which a human s inspects 482

the processed form of definition of q before q is named as a 483

predicate symbol pwith respect to a domain�. Therefore Ipro 484

reflects on the form and format of the intermediary models 485

of definitions qn(n = 1, 2, 3, . . . , n) while any qn is being 486

transformed into a predicate symbol p. 487
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FIGURE 3. The high-level system architecture of the ASAM highlighting how signals {X1, X2, X3} traverse through the system in the processing and output
stages. The mechanism of displaying various information and the nature of data displayed to users via the graphical user interface (GUI) are shown
in Fig. 4.

D6C: The mean inspectability score of output signals Iout488

provided by P is an indicator of the mean clarity of the489

definition q as observed by a human s (s ε �) with which s490

would inspect the output definition of q for naming it as a491

predicate symbol p with respect to a domain �. Therefore,492

this parameter reflects on the form and format of the output493

models/cues of definitions qn(n = 1, 2, 3, . . . , n) after q is494

processed by the program P .495

C. HYPOTHESES496

We now present the set of hypotheses that enable the assess-497

ment of an ML program P in terms of its AXAI capability.498

Hypothesis 1: The comprehensibility (�) in the context499

of AXAI capability refers to the mean readiness (�) of a500

human s to use the knowledge gained after understanding the501

program P to accurately solve new problems in a domain502

�. We hypothesize that comprehensibility is directly propor-503

tional to the mean readiness of s (s ε �) : �∞�.504

Hypothesis 2: The larger the norm of the comprehensi-505

bility vector ||�||, the more comprehensible an ML program506

P is.507

Hypothesis 3: The predictive accuracy (PA) of a human s508

from a population � to correctly name a predicate symbol p509

given as a privately named definition q is directly proportional510

to the mean ability (�) of an individual s (s ε �) : PA∞�.511

Hypothesis 4: The larger the norm of the predictive accu-512

racy vector ||PA|| of a definite programP the better predictive513

accuracy P offers.514

Hypothesis 5: The system accountability (SA) refers to the515

mean accuracy (�cc) with which a human s from a popu-516

lation � (s ε �) recognizes any occurrences of constant �,517

predicate symbol � and variable � to correctly recognize a518

new model belonging to the domain � : SA∞�cc.519

Hypothesis 6: The larger the norm of the system account-520

ability vector ||SA|| of a definite programP the better the level521

of incorporated accountability in the program P .522

Hypothesis 7: The inverse of the mean time 1
Tit

that a 523

human s (s ε �) requires for inspecting the information 524

presented by the program P before using the knowledge 525

provided by that P for solving a new problem in domain �, 526

is directly proportional to the presentation quality (�p) of P 527

given as 1
Tit
∞�p. 528

Hypothesis 8: The inverse of the mean predicate recog- 529

nition time 1
Tpr

that a human s (s ε �) requires to assign a 530

correct public name to a predicate symbol p in a system is 531

proportional to the ability (�p) of recognizing and accurately 532

assigning a public name to a predicate symbol p. Hence, 533
1
Tpr
∞�p. Note that an incorrect assignment of a public name 534

to a predicate symbol should not be counted and considered 535

in assessing a system. 536

Hypothesis 9: The ratio of the size of test data and the size 537

of the training data (rtst−trn) of a program P is directly pro- 538

portional to the level of rigour (�Rig) applied in training and 539

testing P with respect to a domain �, hence, rtst−trn∞�Rig. 540

Hypothesis 10: The mean score of inspectability of data 541

after being processed (Ipro) shows how understandable the 542

intermediary data representation/models (�mod ) in a definite 543

program P are. Thus, Ipro∞�mod . 544

Hypothesis 11: The instances of the false-positive naming 545

of predicate symbols with privately named definitions Ofp 546

indicate the level of errors Ebp built into the program P with 547

respect to a domain �, hence, Ofp∞Ebp. 548

Table 1 presents a complete list of measurable parameters 549

used to determine the overall AXAI capability of a definite 550

program P . 551

IV. ASSESSING AXAI CAPABILITIES OF THREE ML 552

SYSTEMS 553

In order to test the relevance of the AXAI capability frame- 554

work, the AXAI scores of three ML systems were calculated. 555

The following subsections present details of the threeML sys- 556

tems whose CAXAI scores were estimated using the proposed 557

AXAI framework. 558
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TABLE 2. Guidelines for assessing, scoring and determining the AXAI capabilities of the three definite programs. The ASAM and ASAM-2 use multimodal
input (facial expressions and speech cues) and the DAS uses facial thermal variations to analyse and recognize affective states.

A. AN AFFECTIVE STATE ASSESSMENT MODULE (ASAM)559

The first assessed ML system was designed to have the560

proposed AXAI framework built into it. The Affective State561

Assessment Module (ASAM) is a multimodal definite sys-562

tem [53] implemented as a portable affective state assessment563

sub-system for integration into robotic systems. The tested564

version of the ASAM is an improved system of our previously565

developed and published system [53]. The ASAMwas devel-566

oped for real time multimodal analysis of facial expressions567

and speech for assessing affective states. The design and568

implementation of the ASAM is detailed in an accompanying569

paper entitled ‘‘Toward Accountable Explainable Artificial570

Intelligence Part two: The Framework Implementation’’ pub-571

lished in this journal [55]. The provisions of explainability572

and accountability in the ASAM were ensured by adding the573

AXAI features listed in Table 1. Figure 3 shows the high-level574

architecture of the ASAM.575

As the ASAM was designed to showcase AXAI576

capabilities in an affective state assessment system, it pro-577

vides transparency by showing the input and feedback578

data and graphical and tabular information. As such, it is579

capable of providing users with scrutiny and debugging580

opportunities. The explanations are made available through581

display of Bayesian probability measures and high-level582

feature attributions. The three components of accountabil-583

ity viz., inspectability of input cues, inspectability of data584

being processed and inspectability of output cues were built585

into an intuitive and user-centered Graphical User Interface586

(GUI). Figure 4 shows input, data under processing and587

output information that ASAM presents to users through588

its GUI.589

B. ASSESSMENT OF THE AXAI CAPABILITIES OF ASAM 590

Ten qualified industry professionals and postgraduate stu- 591

dents who were well-versed with ML and other AI-supported 592

systems had volunteered to assess the AXAI capabilities of 593

the ASAM. The parameters outlined in Table 1 were used for 594

assessment of the AXAI capabilities. During an introduction 595

session, these assessors who were educated in the fields of 596

engineering, social science and psychology were briefed and 597

informed on the objectives and outcomes of the assessment. 598

After the briefing, participants were given ASAM’s system 599

user manual. Assessors had the opportunity to use the ASAM 600

before starting to assess its functionality. The ASAM asses- 601

sors tested the ASAM for an average time of twenty minutes. 602

While testing, assessors awarded scores for parameters 4-6 603

and 10-12 on a 0-to-5 scale detailed in Table 2. Assessing 604

the ASAM on parameters 7-9 was not required as these 605

scores were supposed to be provided by the team of system 606

designers. The scores were normalised and converted to unit 607

vector forms (in the range of 0 to 1) allowing to delineate the 608

AXAI-capabilities of the ASAM in a 3D space as discussed 609

in previous sections and visualised in Fig. 2. 610

C. AN ENHANCED AFFECTIVE STATE ASSESSMENT 611

MODULE ASAM-2 612

The second system tested for its AXAI capabilities was 613

a modified and enhanced version of the ASAM called 614

ASAM-2. We designed ASAM-2 as a continuous assessment 615

tool capable of classifying 114 unique states across affec- 616

tive speech and facial expression signals using a hierarchi- 617

cal classification approach. In ASAM-2, a combination of 618

42 ternary/binarymodels was used. Similar to its predecessor, 619
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FIGURE 4. (A) The ASAM GUI. The home screen shows the mechanism of displaying the input information. The GUI shows data pertaining to all three
input signals. This figure also shows how the lower-level functions of the system can be accessed from the home window (shown in Figure 4B). This GUI
window is shown to users upon execution of the software. The image shown in the frame was taken from the RAVDESS dataset [56]. (B) The shown
windows help in monitoring the ASAM’s and allow inspecting the processing and output information. Note: CYAN = Facial Expression Analysis,
ORANGE = Linguistic Analysis, PURPLE = Paralinguistic Analysis and LIME = Multimodal Analysis. All windows are executed on separate threads
allowing for parallel processing and viewing of information.

ASAM-2 is a real-time embedded system capable of being620

added to an existing robotic system for affective state assess-621

ment of humans.622

At each level of classification, ASAM-2 uses different623

decision-making protocols to discern between the affective624

states. ASAM-2 uses data on: affective state groups, temporal625

phases, affective state intensities and discrete affective state 626

models. As shown in the flowchart in Fig. 5, all classification 627

results and intermediate information are displayed to the 628

user via the GUI. The GUI in ASAM-2 was improved and 629

redeveloped from the ground-up and was different to those 630

shown in Figs. 4A and 4B. 631
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FIGURE 5. Flow of execution and a high-level description of ASAM-2. The hierarchical architecture shows various steps leading to classification of
affective states in ASAM-2. During the process the originally invisible, intermediate and processed data stages are gradually revealed to users through the
GUI. Each stage of the classification process is shown to users.

FIGURE 6. The flow of execution is DAS and a visual description of its functional architecture. The white boxes show visible and inspectable information.
The blue boxes show the back-end, invisible processes and information.

The decision to expand the classification capabilities and632

reveal ASAM-2’s decision-making processes was at the core633

of its design process. Thus, ASAM-2 has enhanced levels of634

accountability and comprehensibility vis-à-vis maintaining a635

high degree of classification accuracy. Through an iterative636

design process and feedback received during the ASAM637

assessment, ASAM-2 was equipped with improved AXAI638

capabilities. Results are discussed in section V to inform639

readers about ASAM-2’s AXAI capabilities.640

D. ASSESSMENT OF ASAM-2’s AXAI CAPABILITIES641

ASAM-2 was assessed by eight trained assessors. The642

assessors who volunteered for ASAM-2’s assessment were643

well-trained and had professional background in applied644

science, engineering, and behavioural studies. All assessors645

were given a brief to introduce ASAM-2 before providing646

them access to ASAM-2. On average, assessors spent approx-647

imately 17 minutes in assessing ASAM-2 AXAI capabilities.648

Table 5 highlights the 5-point scores given to ASAM-2 by the649

users while assessing its AXAI capabilities.650

E. A SYSTEM FOR DYNAMIC ASSESSMENT OF AFFECTIVE651

STATES AND AROUSAL LEVELS652

A third ML system tested for its AXAI capabilities was653

also a definite program that was designed to work as a654

two-step system of dynamic assessment of affective states 655

and arousal levels called DAS [54]. It uses thermal infrared 656

images (TIRI’s) of facial expressions and was not designed to 657

have AXAI capabilities built into it. Hence, post-production 658

assessment of AXAI capabilities was performed in this case. 659

The DAS would first analyse TIRI’s for examining the 660

hæmodynamic variations caused by changes in affective 661

states. The algorithmic execution of DAS starts by analysing 662

the hæmodynamic variations along the facial muscles. The 663

observed variations are used to estimate the affect induced 664

facial thermal variations. In the first step, ‘between-affect’ 665

and ‘between-arousal-level’ variations are subject to Princi- 666

pal Components Analysis (PCA). Themost influential princi- 667

pal components are then used to cluster the features belonging 668

to different affective states. Subsequently each set of ther- 669

mal features is assigned to an affective state cluster. In the 670

second step, the affective state clusters are partitioned into 671

high, medium and mild arousal levels. The distance between 672

a test TIRI and centroids of sub-clusters at three arousal 673

levels belonging to a single affective state, identified from 674

the first step, is used to determine the arousal level of the 675

identified affective state. Figure 5 shows the flow of execution 676

in DAS - white boxes show the visible and inspectable infor- 677

mation and blue boxes show the information hidden in the 678

program. 679
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F. ASSESSING AXAI CAPABILITIES OF THE DAS680

A postdoctoral fellow and seven postgraduate students who681

were trained in AI and ML volunteered to assess the AXAI682

capabilities of the DAS. As in the previous cases, the AXAI683

capabilities were assessed using parameters listed in Table 1.684

All volunteers were informed on the objectives and outcomes685

of the assessment and were also given the program code,686

the executable program, relevant data and publications. The687

average time each assessor spent on running and testing DAS688

was recorded to be 27 minutes. As in the previous cases,689

assessors awarded scores for parameters 4-6 and 10-12 on a690

0-5 scale as highlighted in Table 4.691

V. RESULTS692

A. AXAI CAPABILITY ASSESSMENT OF THE ASAM693

The predictive accuracy components given in Table 2 were694

known to the system developers as they were designing the695

ASAM for having the AXAI capabilities. The test/training696

data ratio (rtst−trn) of the ASAM was kept as 80 : 20. A sim-697

ilar ratio had been used in some previous works [53], [54].698

The ASAM’s rtst−trn score therefore resulted in a normalized699

value of 1.0.700

The ASAM used 700 facial images from the extended701

Cohn-Kanade (CK+) dataset [59] and 1400 speech sam-702

ples from the Toronto Emotional Speech Set (TESS) [60]703

to train the facial expression and paralinguistic speech clas-704

sifiers. The facial expression classifier contained approxi-705

mately 100 samples per label (7 labels/classes) giving a score706

of 4/5 = 0.8. In comparison, the paralinguistic speech707

classifier contained approximately 200 samples per class708

(7 labels/class) hence it would score a 4.11/5 = 0.822,709

calculated by mapping the range of 100 − 1000nnames per710

class to a score range of 4-5 as per Table 2. The average711

score for the dtrn parameter for the ASAM was therefore712

4.055/5 resulting in a normalised value of dtrn = 0.8111.713

The false-positive naming occurrences ‘Ofp’ could714

be determined during validation tasks. The ASAM’s715

paralinguistic speech and facial expression classifiers716

were validated on the Ryerson Audio-visual Database of717

Emotional Speech and Song (RAVDESS), a multimodal718

dataset containing affective speech and facial expression719

data [56]. The data were unknown at the time of training,720

thus the validation experiments provided test results on the721

ASAM’s ability to assess foreign and real-life data. Through722

validation tasks, the ASAM achieved predicate naming errors723

of 22.71% and 18.90% respectively for the facial expression724

and paralinguistic classifiers. Hence, an average naming error725

of 20.805% resulted in a score close to 4 being observed.726

Specifically, the Ofp was calculated to be 4.2797 = 0.8559.727

Given rtst−trn = 1.0, dtrn = 0.811 and Ofp = 0.8559, as per728

(2) the norm of the predictive accuracy vector was:729

PA(�,P) =
√
r2tst−trn + d

2
trn + O

2
fp730

=

√
12 + 0.8112 + 0.85592731

=
√
1+ 0.657721+ 0.732565732

= 1.54606733

The score parameters 4-6 and 10-12 in Table 1 were 734

respectively used to determine the system accountability and 735

comprehensibility vector norms. Themean values were deter- 736

mined through user experiences and surveys of the system. 737

The system comprehensibility was found to be greater than 738

system accountability as reported in Table 3. The ||�|| and 739

||SA|| values were calculated using equations (1) and (3). 740

The data in Table 3 highlights very good comprehensibility 741

results for the ASAM, with inspection time ‘Tit ’ being the 742

highest, (average score Tit = 3.95). The lowest component 743

in terms of comprehensibility was the predicate naming time 744

(average score Tpn = 3.05). Given user responses, the general 745

feedback suggested that predicate naming was more difficult 746

and time consuming for assessors when compared to other 747

comprehensibility factors and should be addressed for future 748

works. 749

We found the system accountability scores to be compar- 750

atively lower than the scores for comprehensibility, specif- 751

ically in regard to the inspectability of the data processing 752

stages ‘Ipro’. User feedback suggested that while the ASAM’s 753

rule-based expert system output showed how a combination 754

of signals could be used to report a multimodal output, the 755

ASAM could be improved by providing a better display of 756

the processed data for the facial expression, paralinguistic 757

and linguistic channels. In comparison, the inspectability 758

of inputs and outputs were received positively, highlighting 759

the ASAM’s ability to report the system’s initial and final 760

states. 761

The ASAM’s GUI, shown in Fig. 4, was designed to dis- 762

play some processed data stage information in the form of 763

associated weights of the rule-based expert system output. 764

Applying weight numbers to facial expression, paralinguis- 765

tic and linguistic speech classification results allows for the 766

display of tabular and graphical rule-based system outputs 767

i.e., the transformation of data from input, to processed, to 768

output. 769

Using the reported scores and the consequential location of 770

theASAMwithin the 3D space of�,PA and SA, we concluded 771

that improving Ipro-related featureswould greatly enhance the 772

user experience and AXAI capabilities of the system. In sum- 773

mary, the ASAM’s scores for comprehensibility, predictive 774

accuracy and system accountability were respectively: � = 775

1.203, PA = 1.546, and SA = 1.139. Thus, the three vector 776

norms provide an estimate of the ASAM’s AXAI capabilities, 777

allowing us to visualise the ASAM’s position within the 3D 778

axes as shown in Fig. 7. 779

Using these results, we could compare the AXAI capa- 780

bilities of the three systems in terms of their levels 781

of explainability, predictive accuracy and comprehensibil- 782

ity. However, the accountability score suggests that more 783

attention should be paid to the ASAM’s accountability 784

components. The estimated SA score suggested that the infor- 785

mation being processed Ipro will not suffice user require- 786

ments. Overall, the proposed framework provided a practical 787

and easy to followmethod of assessing the AXAI capabilities 788

of the ASAM. 789
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TABLE 3. The ASAM users’ AXAI capability scores on a 0-5- scale and the normalised scores. These user scores were used to determine the ASAM’s
accountability ‘SA’ and comprehensibility ‘||�||’ capabilities.

TABLE 4. Users’ experience scores and their normalised scores for ASAM-2 on a 0-5 scale. These scores were used to determine ASAM-2’s system
accountability ‘SA’ and comprehensibility ‘||�||’ capabilities.

TABLE 5. Users’ experience scores for DAS on a 0-5 scale. Normalised scores are also reported in the table. The reported scores were used to assess
accountability ‘SA’ and comprehensibility ‘||�||’ capabilities of the DAS.

B. AXAI CAPABILITY ASSESSMENT OF ASAM-2790

Deriving the predictive accuracy vector components: Firstly,791

the test/train data ratio ‘rtst−trn’ was kept at 80 : 20 similar792

to the ASAM, resulting in a normalized score of 1. The793

RAVDESS dataset was used for both training and valida-794

tion of the facial expression and paralinguistic classification795

subsystems. The facial expression classifiers were trained796

using approximately 1500-2500 samples per class (total =797

76270 samples) giving it a dtrn score of 5/5= 1.0. The paralin-798

guistic speech classifiers in comparison, were trained using799

96 samples per class (total = 3744 samples) thus achieving a800

score of 3.92/5= 0.784, whichwas calculated bymapping the801

range of 50-100nnames per class to a score range of 3-4. Thus,802

the average dtrn score for the ASAM-2 was 4.46/5 = 0.892.803

Finally, the Ofp metric can be derived through validation804

tasks, with ASAM-2 achieving respective naming errors of805

16.93% and 4.10% for facial expression and paralinguistic806

speech classifiers, resulting in an average naming error of807

10.52% across the systems classifiers, which equates to a 808

score of 4.965/5 = 0.993. Given: rtst−trn = 1.0, dtrn = 809

0.892 and Ofp = 0.993, ASAM-2’s predictive accuracy is 810

calculated using (2) as: 811

PA(�,P) =
√
r2tst−trn + d

2
trn + O

2
fp 812

=

√
12 + 0.8922 + 0.9932 813

=
√
1+ 0.795664+ 0.986049 814

= 1.66785 815

The scores derived in Table 5 determine ASAM-2’s 816

comprehensibility and system accountability scores i.e.: 817

� = 1.275 and SA = 1.453, we can see that the 818

changes made throughout the design process using feed- 819

back from the ASAM shows significant improvements in 820

all three vectors when we compare their scores. Most sig- 821

nificant, is the improvement in the predicate naming time 822
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‘Tpn’ (3.05→ 3.75) and the inspect-ability of data process-823

ing stages ‘Ipro’ (1.9 → 3.5), which significantly enhanced824

the user experience, and ultimately showed how the AXAI825

framework could be used to improve the usability, trans-826

parency and explainability of AI and ML systems.827

Deriving the SA, PA and � scores for the ASAM, ASAM-2828

and DAS discussed earlier allow how to plot them within829

a three-dimensional AXAI space and compare their AXAI830

capabilities as visualised in Fig. 7. Analysing this figure,831

we see that ASAM-2 has the highest level of AXAI capability832

compared with the other two systems. We could see how833

ASAM was improved in terms of the nine factors of the834

proposed AXAI capability framework. It could be argued835

that the proposed AXAI capability framework provided a836

systematic method of assessing and comparing ML systems837

for their respective levels of accuracy, accountability and838

explainability.839

C. AXAI CAPABILITY ASSESSMENT OF THE DAS840

The AXAI capability assessment results for DAS are given in841

Table 4. The predictive accuracy parameters were estimated842

using the system training and testing data. The test/training843

data ratio (rtst−trn) of the DAS was 1:1 [54] resulting in a844

score of 5.0 (normalized value of 1). The training data size845

dtrn parameter score for the DAS was given as 2.0 and the846

score for occurrences of false positive results, Ofp was 4.0.847

Based on these parameter values, the predictive accuracy (PA)848

of DAS was:849

PA(�,P) =
√
r2tst−trn + d

2
trn + O

2
fp850

=

√
12 + 0.42 + 0.82851

=
√
1+ 0.16+ 0.64852

= 1.3416853

The data in Table 4 suggest that DAS had a low level of854

comprehensibility and a less than average level of account-855

ability. However, being a statistical classifier, it was able to856

offer a high level of predictive accuracy. Specifically, through857

the DAS scores, we report comprehensibility, predictive accu-858

racy and system accountability values of: � = 0.333, PA =859

1.342, and SA = 0.489.860

VI. DISCUSSION861

The three definite (ML) programs assessed in the preced-862

ing sections were fundamentally different. The first system863

(ASAM) and its enhanced version ASAM-2 were designed864

to have the AXAI capability incorporated in them. ASAM-2,865

being an improved version of the ASAM, had improvements866

leading to better levels of accountability and comprehensibil-867

ity. The third program (DAS) was a basic classification and868

clustering system that was not designed to have the AXAI869

capability incorporated. Despite their fundamental differ-870

ences, the proposed AXAI capability framework allowed for871

assessing the three programs in terms of predictive accuracy,872

comprehensibility and accountability. Delineating the three873

FIGURE 7. The AXAI capabilities of the ASAM (BLUE), ASAM-2 (ORANGE)
and DAS (GREEN) systems are compared to show how the AXAI
framework helps in assessing various ML systems. The three system are
plotted in the tree-dimensional AXAI space. The placement of each circle
shows system scores along the axes of comprehensibility, accountability
and predictive accuracy making it easy for the system developer and
system users to compare various AXAI aspects of the same system or
multiple systems.

ML systems in a 3D AXAI capability space demonstrated 874

that the proposed framework was helpful in system design 875

and assessment ofML systems. Furthermore, the AXAI capa- 876

bility framework also provided an opportunity to systemati- 877

cally address ethical and professional issues, such as those 878

highlighted in [40], and [55] while building ML systems. 879

As evident in the above comparison, the nine measurable 880

components of the AXAI capability framework ensured pay- 881

ing attention to system details, ethical responsibilities and 882

moral duties during the conceptual design and functional 883

analysis stages. Such manifestations have been desired in AI 884

and ML systems for quite some time [41], [50]. However, the 885

AXAI framework does not work as a purpose-built forensic 886

framework would in tracing and combating any deviations 887

from the expected system norms. 888

Building upon the XAI capability centred philosophical 889

discussions in the literature [23], [42], [61], our proposed 890

AXAI capability framework provides three sets of quantifi- 891

able parameters, each having three variables, for assessing 892

levels of comprehensibility, accuracy and accountability. 893

Through these parameters, the AXAI capability frame- 894

work ensures incorporating important ethical, moral and 895

legal safeguards in AI systems. This makes the proposed 896

AXAI capability framework relevant and contemporary. The 897

accuracy, comprehensibility and accountability measures 898

also provide the required breadth and depth for designing, 899

comparing and assessing AI systems in a domain-agnostic 900

manner. Hence, incorporating the AXAI capability frame- 901

work would not limit the system developer to follow a par- 902

ticular domain-specific method [6], [9], [12]. 903
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FIGURE 8. Mapping the process of incorporating the AXAI capability onto
a typical software system design model for helping developers efficiently
build and test an ML. The model would be beneficial for embedding AXAI
capabilities while determining the user requirements and testing the
system at various stages of the system life cycle. Dark boxes highlight
stages where the AXAI framework design protocols would be added.

It is important to mention that the three components of904

the AXAI’s comprehensibility vector rely on users’ ability to905

inspect and understand information as we did not discuss or906

recommend any method of measuring the data inspectability907

in this part of the work. However, part two of our work [55]908

addresses the issue and recommends a collaborative system909

building approach that requires system developers and users910

to agree on the quality of inspectable information [64].911

It would be safe to suggest that the proposed AXAI capa-912

bility framework is step towards meeting DARPA’s perceived913

goal of developing human-centred AI systems [64] as it pro-914

vides such learning models and decision-making processes915

that would be shared, understood and trusted by the relevant916

communities [13].917

Through the aforementioned AXAI capability assess-918

ments, we have demonstrated that system comprehensibility919

can be seen in terms of the mean readiness of a human920

to apply the knowledge acquired from an AI program and921

interpreting unknown problems within the domain.922

We have modelled the predictive accuracy of an AI pro-923

gram in terms of the ratio of the test and training data,924

training data size and the number of false-positive results.925

Thus, predictive accuracy features would allow for estimating926

the ability of a human to correctly name a predicate symbol927

presented as a privately named description in a domain. It is928

important to signify that the predictive accuracy in the AXAI929

framework is domain-bound.930

Finally, system accountability in the AXAI framework is931

reflected in the level of accuracy of a human’s realization of932

occurrences of logical elements in an ML or AI system and933

would use them to solve a problem in a particular domain.934

The accountability, manifested through its three components935

(inspectability of input cues, processed data and, output cues)936

facilitates establishing a chain of responsibility. If any one937

or more of the three accountability components were not938

inspectable by users then the system design team could be 939

held responsible for the shortcomings. However, if these com- 940

ponents were inspectable then the user could be considered 941

responsible for any negative consequences. Hence, account- 942

ability in our AXAI capability framework is assessed in an 943

appropriate context [1], [34]. 944

Because of the time limitations and the scope of this work, 945

we could not test hypothesis 3 given in sub-section C of 946

Section III. However, our inability to test the predictive accu- 947

racy (PA) of a human s to correctly name a predicate symbol p 948

given as a privately named definition q does not reflect on the 949

applicability of the AXAI framework. Testing this hypothesis 950

would require identifying and approaching domain experts 951

to confirm if the hypothesis is verifiable and useful in the 952

context of the affective computing systems assessed for this 953

work. 954

VII. CONCLUSION 955

This work proposes a novel and easy to implement AXAI 956

capability framework for designing, analysing and assess- 957

ing machine learning systems. The proposed framework, 958

as demonstrated through examples, was easy to incor- 959

porate, application-agnostic and useful in comparing and 960

delineating various ML systems. While measuring AXAI 961

capabilities, the proposed framework also provides a measure 962

of non-explainability and addressed an issue raised in [15]. 963

The measure of assessing the non-explainability is given 964

as: non-explainability = 1 – explainability. Through the 965

proposed AXAI framework, automated matching of ‘levels 966

of abstraction’ [11] was also made possible as interpreta- 967

tions were connected with interpretations and explanans were 968

aligned with explanans. 969

The proposed AXAI capability framework is based on 970

the realization that ‘fundamentally complex’ prediction tasks 971

would be influenced by developments in domain-specific 972

tools and techniques. Hence, the AXAI framework pro- 973

vides an application-agnostic XAI capability incorporation 974

mechanism. It operates at a higher-level and is not affected 975

or influenced by developments in tools and techniques or 976

domain-specific changes in professional practices. 977

As explicit in this paper and part two of this paper [55], 978

the AXAI framework also provides design guidelines and 979

encourages provision of separable and quantifiable parame- 980

ters of accuracy, comprehensibility and accountability. This 981

makes the proposed AXAI capability framework differ- 982

ent from existing XAI incorporation methods. Part two of 983

this paper shows how developers and practitioners would 984

engage in the process of incorporating and evaluating the 985

efficacy of the proposed framework. Also, translating the 986

AXAI capabilities into a set of system design requirements 987

is demonstrated in part two of this paper [55]. Together, 988

the two papers will be useful in developing the system 989

requirements and producing a design process model as shown 990

in Fig. 8. The AXAI capability framework related stages 991

of the ML and AI system design are explicitly shown 992

in Fig. 8. 993
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For building upon the initial success, the ML-centred994

AXAI capability framework can be extended to others AI995

systems. The framework needs to be tested on a larger set996

of existing systems. We anticipate that parts one and two of997

this work will initiate works on building more acceptable and998

accountable intelligent systems.999

We do not claim that the nine elements used for measuring1000

AXAI capabilities provide the best set of measurable ele-1001

ments. However, these nine elements provide a set of parsi-1002

monious, swift and effective AXAI capability measurements.1003

Though the list of our proposed AXAI elements is not1004

exhaustive, it would suffice the common comprehensibil-1005

ity, accuracy and accountability measurement requirements.1006

Nonetheless, this list of AXAI elements needs more input1007

from legal practitioners, AI experts, software developers and1008

cognition scientists. Also, the AXAI framework is unable1009

to specify if a system would require root-cause analysis1010

or forensic tracing. Despite these limitations, the proposed1011

AXAI capability framework, in its current state, provides1012

foundations for moving toward accountable and explain-1013

able AI solutions. It would be innocuous to conclude that1014

the AXAI capability framework promises an era beyond1015

hypothesis-driven XAI capability frameworks.1016

REFERENCES1017

[1] B. Kim and F. Doshi-Velez, ‘‘Machine learning techniques for accountabil-1018

ity,’’ AI Mag., vol. 42, no. 1, pp. 47–52, Apr. 2021.1019

[2] D. Michie, ‘‘Machine learning in the next five years,’’ in Proc.1020

3rd Eur. Conf. Eur. Work. Session Learn., Glasgow, U.K., 1988,1021

pp. 107–122.1022

[3] U. Schmid, C. Zeller, T. Besold, A. Tamaddoni-Nezhad, and S. Muggleton,1023

‘‘How does predicate invention affect human comprehensibility?’’1024

in Proc. 26th Int. Conf. Log. Program., London, U.K., 2017,1025

pp. 52–67.1026

[4] T. Miller, ‘‘Explanation in artificial intelligence: Insights from the social1027

sciences,’’ Artif. Intell., vol. 267, pp. 1–38, Feb. 2019.1028

[5] M.-A.-T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston,1029

C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and1030

K. Dzirasa, ‘‘A shared vision for machine learning in neuroscience,’’1031

J. Neurosci., vol. 38, no. 7, pp. 1601–1607, Feb. 2018.1032

[6] U. Pawar, D. O’Shea, S. Rea, and R. O’Reilly, ‘‘Explainable AI1033

in healthcare,’’ in Proc. Int. Conf. Cyber Situational Awareness,1034

Data Anal. Assessment (CyberSA), Dublin, Ireland, Jun. 2020,1035

pp. 1–2.1036

[7] Q. V. Liao, D. Gruen, and S.Miller, ‘‘Questioning the AI: Informing design1037

practices for explainable AI user experiences,’’ in Proc. CHI Conf. Hum.1038

Factors Comput. Syst., Honolulu, HI, USA, 2020, pp. 1–15.1039

[8] A. Adadi and M. Berrada, ‘‘Peeking inside the black-box: A sur-1040

vey on explainable artificial intelligence (XAI),’’ IEEE Access, vol. 6,1041

pp. 52138–52160, 2018.1042

[9] T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady, ‘‘ExplAIner: A1043

visual analytics framework for interactive and explainable machine learn-1044

ing,’’ IEEE Trans. Vis. Comput. Graphics, vol. 26, no. 1, pp. 1064–1074,1045

Jan. 2020.1046

[10] S. Mohseni, N. Zarei, and E. D. Ragan, ‘‘A multidisciplinary survey1047

and framework for design and evaluation of explainable AI sys-1048

tems,’’ ACM Trans. Interact. Intell. Syst., vol. 11, nos. 3–4, pp. 1–45,1049

Dec. 2021.1050

[11] S. Palacio, A. Lucieri, M. Munir, J. Hees, S. Ahmed, and A. Dengel,1051

‘‘XAI handbook: Towards a unified framework for explainable AI,’’ 2021,1052

arXiv:2105.06677.1053

[12] W. Jin, J. Fan, D. Gromala, P. Pasquier, and G. Hamarneh, ‘‘EUCA: A1054

practical prototyping framework towards end-user-centered explainable1055

artificial intelligence,’’ 2021, arXiv:2102.02437.1056

[13] D. Gunning and D. Aha, ‘‘DARPA’s explainable artificial intelligence1057

(XAI) program,’’ AI Mag., vol. 40, no. 2, pp. 44–58, Jun. 2019.1058

[14] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger, ‘‘Explain- 1059

able artificial intelligence: Concepts, applications, research challenges and 1060

visions,’’ in Machine Learning and Knowledge Extraction, A. Holzinger, 1061

P. Kieseberg, T. A. Min, and E. Weippl, Eds. Cham, Switzerland: Springer, 1062

2020, pp. 1–16. 1063

[15] L. Ai, S. H. Muggleton, C. Hocquette, M. Gromowski, and U. Schmid, 1064

‘‘Beneficial and harmful explanatory machine learning,’’ Mach. Learn., 1065

vol. 110, no. 4, pp. 695–721, Apr. 2021. 1066

[16] B. J. Murray, M. A. Islam, A. J. Pinar, D. T. Anderson, G. J. Scott, 1067

T. C. Havens, and J. M. Keller, ‘‘Explainable AI for the Choquet integral,’’ 1068

IEEE Trans. Emerg. Topics Comput. Intell., vol. 5, no. 4, pp. 520–529, 1069

Aug. 2020. 1070

[17] M. Katell, M. Young, D. Dailey, B. Herman, V. Guetler, A. Tam, C. Bintz, 1071

D. Raz, and P. M. Krafft, ‘‘Toward situated interventions for algorithmic 1072

equity: Lessons from the field,’’ in Proc. Conf. Fairness, Accountability, 1073

Transparency, Barcelona, Spain, Jan. 2020, pp. 45–55. 1074

[18] J. Photopoulos, ‘‘Fighting algorithmic bias,’’ Phys. World, vol. 34, no. 5, 1075

pp. 42–47, Jul. 2021. 1076

[19] B. Goodman and S. Flaxman, ‘‘European union regulations on algorithmic 1077

decision making and a ‘Right to Explanation,’’’ AI Mag., vol. 38, no. 3, 1078

pp. 50–57, 2017. 1079

[20] N. Burkart and M. F. Huber, ‘‘A survey on the explainability of super- 1080

vised machine learning,’’ J. Artif. Intell. Res., vol. 70, pp. 245–317, 1081

Jan. 2021. 1082

[21] C. Andor, A. Joó, and L. Mérö, ‘‘Galois-lattices: A possible representa- 1083

tion of knowledge structures,’’ Eval. Educ., vol. 9, no. 2, pp. 207–215, 1084

1985. 1085

[22] H. F. Davis and A. D. Snider, Introduction to Vector Analysis. Char- 1086

lottesville, VA, USA: Wm. C. Brown, 1995. 1087

[23] H.-W. Liu, C.-F. Lin, and Y.-J. Chen, ‘‘Beyond State v Loomis: Artificial 1088

intelligence, government algorithmization and accountability,’’ Int. J. Law 1089

Inf. Technol., vol. 27, no. 2, pp. 122–141, Jun. 2019. 1090

[24] H. Hagras, ‘‘Toward human-understandable, explainable AI,’’ Computer, 1091

vol. 51, no. 9, pp. 28–36, Sep. 2018. 1092

[25] D.A.R.P. Agency. (2016). Broad Agency Announcement: Explainable Arti- 1093

ficial Intelligence (XAI). Accessed: Dec. 21, 2021. [Online]. Available: 1094

https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf 1095

[26] T. Hagendorff, ‘‘The ethics of AI ethics: An evaluation of guidelines,’’ 1096

Minds Mach., vol. 30, no. 1, pp. 99–120, Mar. 2020. 1097

[27] M. Hickok, ‘‘Lessons learned fromAI ethics principles for future actions,’’ 1098

AI Ethics, vol. 1, no. 1, pp. 41–47, Feb. 2021. 1099

[28] (2021). Algorithmic Accountability for the Public Sector Learning 1100

From the First Wave of Policy Implementation. Ada Lovelace 1101

Institute. AI Now Institute. and Open Government Partnership. 1102

Accessed: Dec. 21, 2021. [Online]. Available: https://www. 1103

adalovelaceinstitute.org/report/algorithmic-accountability-public-sector/ 1104

[29] S. H. Muggleton, U. Schmid, C. Zeller, A. Tamaddoni-Nezhad, and 1105

T. Besold, ‘‘Ultra-strong machine learning: Comprehensibility of pro- 1106

grams learned with ILP,’’ Mach. Learn., vol. 107, no. 7, pp. 1119–1140, 1107

2018. 1108

[30] D. Michie, ‘‘Learning concepts from data,’’ Exp. Syst. Appl., vol. 15, 1109

nos. 3–4, pp. 193–204. 1998. 1110

[31] K. M. Ford, P. J. Hayes, C. Glymour, and J. Allen, ‘‘Cognitive orthoses: 1111

Toward human-centered AI,’’ AI Mag., vol. 36, no. 4, pp. 5–8, Dec. 2015. 1112

[32] N. Bostrom, ‘‘Ethical issues in advanced artificial intelligence,’’ in 1113

Machine Ethics and Robot Ethics, W. Wallach, and P. Asaro, Eds. 1114

New York, NY, USA: Routledge, 2020, pp. 69–75. 1115

[33] S. K. Kwan and J. Spohrer, ‘‘Reducing industry complexity with inter- 1116

national standards: Current efforts for services, E-commerce, artificial 1117

intelligence,’’ in Advances in the Human Side of Service Engineering, 1118

vol. 266, C. Leitner, W. Ganz, D. Satterfield, and C. Bassano, Eds. Cham, 1119

Switzerland: Springer, 2021, pp. 67–76. 1120

[34] J. A. Kroll and E.W. Felten, ‘‘Accountable algorithms,’’ Ph.D. thesis, Dept. 1121

Comput. Sci., Princeton Univ., Princeton, NJ, USA, 2015. 1122

[35] M. Bovens, ‘‘Analysing and assessing accountability: A conceptual frame- 1123

work,’’ Eur. Law J., vol. 13, no. 4, pp. 447–468, 2007. 1124

[36] M. MacCarthy, ‘‘An examination of the algorithmic accountability act 1125

of 2019,’’ Inst. Inf. Law, Amsterdam, The Netherlands, Oct. 2019, doi: 1126

10.2139/ssrn.3615731. 1127

[37] R. Audi, The Cambridge Dictionary of Philosophy, 3rd ed. Cambridge, 1128

U.K.: Cambridge Univ. Press, 1995, doi: 10.1017/CBO9781139057509. 1129

[38] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale, ‘‘Empirical 1130

studies in information visualization: Seven scenarios,’’ IEEE Trans. Vis. 1131

Comput. Graph., vol. 18, no. 9, pp. 1520–1536, Dec. 2011. 1132

99700 VOLUME 10, 2022

http://dx.doi.org/10.2139/ssrn.3615731
http://dx.doi.org/10.1017/CBO9781139057509


M. M. Khan, J. Vice: Toward Accountable and Explainable Artificial Intelligence Part One: Theory and Examples

[39] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien,1133

K. Scott, S. Schieber, J. Waldo, D. Weinberger, A. Weller, and A. Wood,1134

‘‘Accountability of AI under the law: The role of explanation,’’ 2017,1135

arXiv:1711.01134.1136

[40] A. Abdul, J. Vermeulen, D.Wang, B. Y. Lim, andM. Kankanhalli, ‘‘Trends1137

and trajectories for explainable, accountable and intelligible systems: An1138

HCI research agenda,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst.,1139

Apr. 2018, pp. 1–18.1140

[41] V. Dignum, ‘‘Responsible autonomy,’’ 2017, arXiv:1706.02513.1141

[42] E. T. Tai, ‘‘Liability for (Semi) autonomous systems: Robots and algo-1142

rithms,’’ in Research Handbook in Data Science and Law, V. Mak,1143

E. Tjong, T. Tai, and A. Berlee, Eds. Edward Elgar, 2018, pp. 55–82.1144

[43] B. Casey, A. Farhangi, and R. Vogl, ‘‘Rethinking explainable machines:1145

The GDPR’s ‘right to explanation’ debate and the rise of algorithmic1146

audits in enterprise,’’ Berkeley Tech. Law J., vol. 34, 2019. Accessed:1147

Feb. 19, 2018. [Online]. Available: https://ssrn.com/abstract=31433251148

[44] J. Zerilli, A. Knott, J. Maclaurin, and C. Gavaghan, ‘‘Transparency in1149

algorithmic and human decision-making: Is there a double standard?’’1150

Philosophy Technol., vol. 32, no. 4, pp. 661–683, 2019.1151

[45] H. Felzmann, E. Fosch-Villaronga, A. Tamò-Larrieux, and C. Lutz,1152

‘‘Towards transparency by design for artificial intelligence,’’ Sci. Eng.1153

Ethics, vol. 26, pp. 3333–3361, Nov. 2020.1154

[46] R. J. Hyndman, ‘‘Measuring forecast accuracy,’’ in Business Forecast-1155

ing, Practical Problems and Solutions. Hoboken, NJ, USA: Wiley, 2014,1156

pp. 177–183.1157

[47] P.-H. C. Chen, Y. Liu, and L. Peng, ‘‘How to develop machine learning1158

models for healthcare,’’ Nature Mater., vol. 18, no. 5, pp. 410–414, 2019.1159

[48] D. Colquhoun, ‘‘The false positive risk: A proposal concerning what to do1160

about p-values,’’ Amer. Statistician, vol. 73, no. 1, pp. 192–201, 2019.1161

[49] X. Naidenova, Machine Learning Methods for Commonsense Reasoning1162

Processes: Interactive Models. Hershey, NY, USA: IGI Global, 2009.1163

[50] W. Wallach, C. Allen, and I. Smit, ‘‘Machine morality: Bottomup and top-1164

down approaches for modelling human moral faculties,’’ AI Soc., vol. 22,1165

no. 4, pp. 565–582, 2008.1166

[51] S. Poria, A. Gelbukh, E. Cambria, A. Hussain, and G.-B. Huang,1167

‘‘EmoSenticSpace: A novel framework for affective commonsense reason-1168

ing,’’ Knowl.-Based Syst., vol. 69, pp. 108–123, Oct. 2014.1169

[52] E. T.Mueller,Commonsense reasoning: An event calculus based approach,1170

S. Elliot, Ed. Waltham, MA, USA: Elsevier Science, 2014.1171

[53] J. Vice, M. Mehmood Khan, and S. Yanushkevich, ‘‘Multimodal models1172

for contextual affect assessment in real-time,’’ in Proc. IEEE 1st Int.1173

Conf. Cognit. Mach. Intell. (CogMI), Los Angeles, CA, USA, Dec. 2019,1174

pp. 87–92.1175

[54] M. Mehmood Khan, R. D. Ward, and M. Ingleby, ‘‘Toward use of facial1176

thermal features in dynamic assessment of affect and arousal level,’’ IEEE1177

Trans. Affect. Comput., vol. 8, no. 3, pp. 412–425, Sep. 2017.1178

[55] J. Vice and M. M. Khan, ‘‘Toward accountable and explainable artificial1179

intelligence part two: The framework implementation,’’ IEEE Access,1180

vol. 10, pp. 36091–36105, 2022, doi: 10.1109/ACCESS.2022.3163523.1181

[56] R. S. Livingstone and A. F. Russo, ‘‘The Ryerson audio-visual database1182

of emotional speech and song (RAVDESS): A dynamic, multimodal set1183

of facial and vocal expressions in North American English,’’ PLoS ONE,1184

vol. 13, no. 5, pp. 1–35, May 2018.1185

[57] A. Samara, L. Galway, R. Bond, and H. Wang, ‘‘Sensing affective states1186

using facial expression analysis,’’ in Proc. 10th Int. Conf. Ubiquitous1187

Comput. Ambient Intell., Gran Canaria, Spain, 2016, pp. 341–352.1188

[58] S. L. Happy and A. Routray, ‘‘Robust facial expression classification1189

using shape and appearance features,’’ in Proc. 8th Int. Conf. Adv. Pattern1190

Recognit. (ICAPR), Kolkata, India, Jan. 2015, pp. 1–5.1191

[59] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,1192

‘‘The extendedCohn-KanadeDataset (CK+): A complete dataset for action1193

unit and emotion-specified expression,’’ in Proc. IEEE Comput. Soc. Conf.1194

Comput. Vis. Pattern Recognit. Workshops, San Francisco, CA, USA,1195

Jun. 2010, pp. 94–101.1196

[60] K. Dupuis and M. K. Pichora-Fuller, ‘‘Toronto emotional speech set,’’ 1197

Dept. Psychol., Univ. Toronto. Toronto, ON, Canada, Tech. Rep., 1198

Jun. 2010. [Online]. Available: https://tspace.library.utoronto.ca/ 1199

handle/1807/24487 1200

[61] B. Friedman, P. H. Kahn, A. Borning, and A. Huldtgren, ‘‘Value sen- 1201

sitive design and information systems,’’ in Early Engagement and New 1202

Technologies: Opening Up the Laboratory, N. Doorn, D. Schuurbiers, 1203

I. Van De Poel, and M. E. Gorman, Eds. Dordrecht, The Netherlands: 1204

Springer, 2013, pp. 55–95. 1205

[62] D. R. Desia and J. A. Kroll, ‘‘Trust but verify: A guide to algorithms and 1206

the law,’’ Harvard J. Law Technol., vol. 31, no. 1, pp. 1–64, 2017. 1207

[63] T. Panch, P. Szolovits, and R. Atun, ‘‘Artificial intelligence, machine 1208

learning and health systems,’’ J. Global Health, vol. 8, no. 2, pp. 1–8, 1209

Dec. 2018. 1210

[64] R. Hoffman, T. Miller, S. T. Mueller, G. Klein, and W. J. Clancey, 1211

‘‘Explaining explanation, part 4: A deep dive on deep nets,’’ IEEE Intell. 1212

Syst., vol. 33, no. 3, pp. 87–95, May 2018. 1213

[65] B. P. Knijnenburg, S. Bostandjiev, J. O’Donovan, and A. Kobsa, 1214

‘‘Inspectability and control in social recommenders,’’ in Proc. 6th ACM 1215

Conf. Recommender Syst. (RecSys), 2012, pp. 43–50. 1216

MASOOD M. KHAN (Member, IEEE) received 1217

the B.E. degree in mechanical from the NED 1218

University of Engineering and Technology, the 1219

M.S.M.E. degree from Colorado State Univer- 1220

sity, and the Ph.D. degree from the Univer- 1221

sity of Huddersfield. He was at the National 1222

University of Computer and Emerging Sciences, 1223

the Jefri Bolkiah College of Engineering, and the 1224

American University of Sharjah. He is with the 1225

Faculty of Science and Engineering, Curtin Uni- 1226

versity, Western Australia. He has published more than 55 peer-reviewed 1227

articles in his research areas. His research interests include machine learn- 1228

ing, affective computing, computer vision and perception, human–computer 1229

interaction, and artificial intelligence. He is a fellow of the Higher Education 1230

Academy. 1231

JORDAN VICE received the B.Eng. degree (Hons.) 1232

in mechatronic engineering from Curtin Univer- 1233

sity, where he is currently pursuing the Ph.D. 1234

degree in mechatronic engineering. His research 1235

interests include artificial intelligence, explainable 1236

artificial intelligence, machine learning, real-time 1237

assessment of affective states, and multimodal 1238

affective state assessment. He received the 2019 1239

Proxima Consulting Prize for Most Outstanding 1240

Final Year Project in mechatronic engineering. 1241

1242

VOLUME 10, 2022 99701

http://dx.doi.org/10.1109/ACCESS.2022.3163523

