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Competitive epidemic spreading over networks
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Abstract—In this letter, we consider an epidemic model
for two competitive viruses spreading over a metapopula-
tion network, termed the ‘bivirus model’ for convenience.
The dynamics are described by a networked continuous-
time dynamical system, with each node representing a pop-
ulation and edges representing infection pathways for the
viruses. We survey existing results on the bivirus model be-
ginning with the nature of the equilibria, including whether
they are isolated, and where they exist within the state
space with the corresponding interpretation in the context
of epidemics. We identify key convergence results, includ-
ing the conclusion that for generic system parameters,
global convergence occurs for almost all initial conditions.
Conditions relating to the stability properties of various
equilibria are also presented. In presenting these results,
we also recall some of the key tools and theories used to
secure them. We conclude by discussing the various open
problems, ranging from control and network optimization,
to further characterization of equilibria, and finally exten-
sions such as modeling three or more viruses.

Index Terms—infectious disease, multivirus, bivirus,
complex networks, Susceptible-Infected—Susceptible,
compartmental model

[. INTRODUCTION

ATHEMATICAL models of infectious disease spread

have become a central tool for scientists and policy-
makers to study and respond to epidemic outbreaks [1], [2].
The recent COVID-19 pandemic has resulted in an explosion
in interest in such models across multiple research disciplines,
including the systems and control community [2]-[5].

The most popular and well-studied paradigm is that of
compartmental models: each individual in a population be-
longs to one of several different health compartments that
represent the state of the disease for that individual, with
transitions between states capturing the disease progression
characteristics for the particular disease of interest. Two sem-
inal frameworks are that of Susceptible—Infected—Susceptible
(SIS) and Susceptible-Infected—Removed (SIR) [1], [3], [4]. In
both, infected individual can transmit the disease to susceptible
individuals at a given infection rate. Infected individuals can
recover from the disease at a given recovery rate, and the key
difference is that for the SIS framework, there is no temporary
or permanent immunity following recovery, i.e. an individual
immediately becomes susceptible again. In contrast, the SIR
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framework posits that permanent immunity is endowed to
recovered individuals who are hence removed from the pool
of individuals susceptible to the disease.

COVID-19 has resulted in a surge of interest and literature:
initial assumptions that permanent immunity was acquired
after recovery led to use of SIR and SIR-type models, while
recent recognition that immunity may be temporary or wane
has led to consideration of SIRS-type models [1], [6]. How-
ever, this paper will focus instead on an SIS framework, not
only to shed light on other interesting models and results, but
to establish the concrete understanding needed as a precursor
to more complex SIRS-type competitive virus dynamics.

This paper is concerned with the competitive spread of two
infectious diseases (termed virus 1 and virus 2 for convenience
— for the purposes of this paper, we can ignore the medical
nonequivalence of ‘disease’ and ‘virus’.) over a networked
metapopulation in the SIS framework. Each node of the
directed network represents a population, and each individual
can be infected with virus 1 only, infected with virus 2
only, or susceptible to both viruses — the competitive nature
means an individual cannot be infected with both viruses
simultaneously. Infection can occur between a susceptible
and an infected individual of the same population, or from
different populations — the (directed) edges of the network
represent infection pathways. The infection pathways for the
two viruses can be different (as can the infection rates and
recovery rates), meaning the edge sets defining the spread
of the two viruses can be different. A standard assumption
imposed in the literature is that the spreading network for each
virus is strongly connected, which means that there exists a
path of edges from every node to every other node.

We term the model as the ‘SIS bivirus network model’, or
‘bivirus model’ for short, and it is studied as a continuous-
time dynamical system. Used to study two generic competing
viruses in [7] and two different strains of gonorrhea in [8], it
has since been studied by various communities under different
application contexts [9]-[12], and has recently found its way
into the systems and control literature [13]-[16], including
works by the authors [17], [18]. This paper will aim to survey
the known results for the bivirus model, including the state-
of-the-art in terms of convergence, equilibria, and stability
properties. We then discuss a number of open directions, such
as expansion to three or more viruses [14], [15], and control
problems, including understanding the use of one virus to
render the other extinct [15]. Our paper is focused on the
analysis of the dynamical properties of the system, rather than
on identification and estimation, and integration of data, which
are other key issues for epidemic models in general [2], [5].

The key results can be summarized as answers to a set of
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problems concerning the bivirus dynamical system. Namely,

1) What is the limiting behaviour that is possible? E.g. do
trajectories converge to an equilibrium, are there limit
cycles, and can chaos occur?

2) What is the nature of the equilibria, including whether
they are isolated, and if so, how many equilibria can there
be? Importantly, we must consider what the equilibria
represent in the modeling context, e.g. whether no virus
is present in any population in the network, or one virus
is endemic and the other extinct, or both viruses coexist.

3) What are the stability properties of the equilibria, and
what are the regions of attraction, global and otherwise,
for equilibria or limit cycles?

4) Are there special cases of interest, such as a continuum of
equilibria where both viruses coexist, or multiple attrac-
tive equilibria representing initial condition-dependent
virus propagation outcomes?

The results we cover revolve around identifying model
parameter properties or values, which are infection and re-
covery rates in our situation, that provide answers to the
above questions. This includes establishing the notion of
generic parameters, and necessary and sufficient conditions,
and sufficient conditions. There are key tools that we can
draw upon from a range of dynamical systems, and control-
theoretic literature, including monotone systems theory [19],
linear algebra, Lyapunov theory, and algebraic geometry.

Next, we present the notations. Following this, Section II
introduces the bivirus network model, and we then survey key
results in Section III. The paper is concluded with a discussion
on open problems in Section IV.

A. Notation

The n-column vector of all ones and zeros are given by
1,, and 0, respectively. The n x n identity and n X m zero
matrices are given by [,, and 0,,x,, respectively. For a vector
a and matrix A, we denote the i'" entry of a and (i,7)"
entry of A as a; and a;j, respectively. For any two vectors
a,b € R", we write a > b, a > b and a > b if for all i €
{1,2,...,n}, there holds respectively a; > b;, a; > b; with
a; > b; for some j, and a; > b;. The same notation is used
for real matrices A, B € R"*™ when the particular property
is satisfied by vec(A) and vec(B). For scalars a,b € R, a > b
and a > b are equivalent. For a real square matrix M with
spectrum (M), we use p(M) = max {|A| : A € o(M)} and
s(M) = max{Re(A) : A€ o(M)} to denote respectively
the spectral radius of M and spectral abscissa of M, viz. the
largest real part among the eigenvalues of M. A matrix M is
said to be Hurwitz if s(M) < 0.

[I. MODEL FOR MULTIVIRUS SPREADING DYNAMICS

Understanding a model for multivirus spreading rests on a
prior understanding of single virus spreading. For survey mate-
rial on such problems, with much contextual content, see [3]—
[5]. Here, we provide only a concise summary. Our work
focuses on the Susceptible-Infected-Susceptible framework,
which implies that no (temporary or permanent) immunity is
gained by an individual after recovery from infection.
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A. Single virus model

1) Modeling in a single population: Consider a single popu-
lation of constant size, and suppose that individuals can transi-
tion between two compartments, viz. infected and susceptible
(see Fig. la and consider only the green and orange com-
partments). We let x(t) denote the fraction of the population
infected with a virus at time ¢. The deterministic SIS model
describes the transition between the compartments by positing
that infections increase due to direct interaction between
members of the infected fraction x(t) and the susceptible
fraction 1 — x(¢), while infected members recover from the
disease over time [3]. The dynamics are:

&= —dr+b(1 —x)z. (1)

Here d > 0 is the recovery rate parameter and b > 0 is the
infection rate parameter. It is easy to see that with z(0) €
[0,1], there results x(t) € [0, 1] Vt. Moreover, x = 0 and, if
the infection rate is greater than the recovery rate, z = 1 — d/b
are the only equilibria in [0, 1], and they are termed ‘healthy’
and ‘endemic’ respectively. A more detailed analysis shows
that 0 is exponentially stable if d/b > 1, asymptotically but
not exponentially stable if b = d, and unstable if d/b < 1.
Further, convergence always occurs to an equilibrium.

Since populations involve an integer count, the real value of
a must be rational, and Eq. (1) can at best be an approximation.
Sophisticated Markov chain models exist, whose mean field
approximation as n — oo is given by Eq. (1), see Refs. [3]-
[5] for more details and original references.

2) Modeling a metapopulation: Next one can consider a
single virus in a set of n > 1 populations, constituting a
metapopulation, with infection pathways between populations
potentially constrained by a network structure (see Fig. 1b). A
key underlying assumption is that we assume intra-population
homogeneity but allow for inter-population heterogeneity with
respect to the disease. l.e., individuals within a population
have the same recovery rate, and disease transmission between
individuals depends only on the population they are in. Such an
assumption is quite general, allowing a population to contain
individuals distinguished by e.g. location, gender, or age'.

In addition to the infection-recovery dynamics of the single
population model, the disease may be transmitted to sus-
ceptible members of population ¢ by infected members of
population j (with j = ¢ permitted), thereby increasing the
fraction z; of infected individuals. This arrangement can be
described by a simple generalization of Eq. (1), and is

xZ:—dlxl—i—(l—xl)Zb”xj z=1,2,,n (2)

j=1

with all 0 < d; < oo, while 0 < b;; < co. With D = diag(d;),
B = (b;;) and X = diag(x;), we can write

i =—Dax+ (I, — X)Bz 3)

It is useful to associate B with a network (graph) G with
each node corresponding to a population, and an edge from

The pioneering Ref. [20] considered the disease gonorrhea. In a simple
n = 2 example, the two populations may represent males and females.
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node j to node ¢ if and only if b;; > 0. Almost all works
assume B is irreducible, which is equivalent to G being
strongly connected [21, p. 418]. If the strong connectivity
condition fails, the metapopulation can be broken into two
(or more) components, each component being a strongly con-
nected subnetwork, with only unidirectional transmission from
one component to the other. By interpreting unidirectional
transmission (if any) as a time-varying input into a given
component, each component can be analyzed separately using
notions of Input-to-State stability, see Ref. [22] for details.

Paralleling the single population case, one finds that if
1, > x(0) > 0,, the same inequalities apply with z(t) re-
placing z(0) for all ¢ > 0 [23]. We define the reproduction
number? of the metapopulation as R = p(D~!B), and if R <
1, then the healthy equilibrium 0,, is globally exponentially
stable, while if R = 1, convergence still occurs (globally)
to 0, but it is not exponential. If however R > 1, then
from all initial states except the healthy state, convergence
occurs to a unique nonzero endemic equilibrium, call it z,
with 1,, > > 0,. For general n,D and B, no explicit
expression for z is available (though computation is possible,
either through simulation of the differential equations or
recursive solution of the equilibrium equation). The proofs
of convergence can be sophisticated, using as noted in [3]
Lyapunov theory and positive systems theory.

It is perhaps remarkable that a nonlinear n-dimensional
differential equation gives rise to such comparatively simple
behavior, at least in the region of interest. As will be seen,
there is a great contrast with the bivirus case.

B. Bivirus model

Bivirus models capture the situation where two viruses may
be active, and most attention has been given to the competitive
case, where each member of a population may be healthy,
or infected with virus 1, or infected with virus 2, but never
infected with both. See Fig. 1a. Work on metapopulations with
two active viruses goes back some decades, see e.g. [8].

Going straight to a metapopulation scenario, let x},z?
denote the fractions of population ¢ infected with viruses 1
and 2 respectively, so that 1 — x} — 2? denotes the healthy
fraction, which is ‘susceptible’ to infection by an individual
belonging to the fraction z} or 23 for any j € {1,2,...}.
Building on the single virus model, that for the bivirus model
involves adjusting the healthy fraction in the relevant equations
appropriately, yields

n
b = —djx} + (1 -z} —a7) ) bjaj, (4a)
j=1
¥ = —djal + (1 -2} —a22) ) ba;. (4b)
j=1

In epidemiology, the basic reproduction number Ro of a disease is
the number of secondary infectious contacts a single infected individual
is expected to generate in an entirely susceptible population. An epidemic
outbreak is predicted to occur if Rg > 1. This concept maps conveniently to
the relation between R and the limiting state of Eq. (3).
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Fig. 1: Schematic of (a) the compartmental transitions and (b)
metapopulation network. (a) Each individual exists in one of
three health compartments: Susceptible (.5), infected with virus
1 (I, orange), or infected with virus 2, (I, purple). Arrows
represent possible transition paths between compartments. (b)
Each black node represents a single population. The (directed)
edge sets of the two viruses do not need to match, so that virus
1 (orange edges) can spread between a particular node pair,
but virus 2 (purple edges) cannot, and vice versa.

With z* k = 1,2 an n-dimensional vector of the x%’s, the
more compact form is given by

it = —D'2' + (I, — X' — X?)B'2! 5)
i? = —D*2* + (I, — X' — X?)B?*2?,

with obvious definition of D* B* and X* = diag(z}),
k =1,2. We impose the following standing assumption.

Assumption 1: For k = 1,2, the matrices D* are diago-
nal with positive diagonal entries, and the matrices B are
nonnegative and irreducible.

Similar to the single virus case, we can thus consider
two strongly connected directed networks associated with
irreducible B' and B2, capturing the infection pathways of
virus 1 and virus 2 within and between the populations, see
Fig. 1b. While the node set is the same (since we consider the
n populations), the edge sets and their weights certainly are
not necessarily the same. Indeed, it would be almost counter-
intuitive to assume that two different viruses have the same
edge set (transmission pathways) and the same edge weights
(transmission intensity/strength).

1) The single population case: Models such as the above can
of course be constructed for a single population, rather than a
metapopulation. In that case there are just two scalar equations
for fractions x' and 2, and it is possible to perform an
analysis rather like that for single virus systems. See Ref. [9]
for a treatment. For generic values of the parameters, and
if the healthy equilibrium is not attractive, a phenomenon
termed winner-takes-all or survival-of-the-fittest is encoun-
tered, meaning that from any nonzero initial condition, one
ends at an equilibrium state in which one virus is completely
suppressed by the other. The ‘winning’ virus is that with the
larger reproduction ratio (which is b°/d® for virus 7).

Remark 1 (Stochastic vs. deterministic models): Although
we consider deterministic metapopulation models, real-
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world epidemic processes are in fact stochastic [1], [3].
We touched on stochastic single virus models below
Eq. (1), and connections between Eq. (5) and Markov chain
models, including accuracy of approximation, are explored
in Ref. [13]. Deterministic models are easier to analyze
(computationally and theoretically), and may be suitable for
modeling long term dynamics (convergence to equilibria,
recurrent outbreaks, etc.). Meanwhile, stochastic models may
better capture probabilistic events which may play important
roles in the initial epidemic outbreak and transient dynamics,
e.g. superspreader events [1], [6].

Remark 2 (Bivirus applications): The bivirus model was
first presented in [8] to consider gonorrhea (virus 1) and a
strain of drug-resistant gonorrhea (virus 2), and Eq. (5) has
clear applications for studying two viruses (either different
strains or entirely different pathogens) which cannot simul-
taneously occupy a host. Such a phenomenon is sometimes
termed “viral interference”, whereby the infection of a host
by one virus prevents host infection by a second virus, and
has been observed with rhinovirus and influenza [24], and
between different influenza lineages [25]. Other works have
considered the bivirus SIS models in more abstract contexts,
such as competing internet rumours or products [9], and virus
(virus 1) and vaccine (virus 2) dynamics [11].

I1l. KEY RESULTS FOR THE BIVIRUS MODEL

This section deals with the model Eq. (5) under Assump-
tion 1. We discuss a number of properties, noting in each case
the technical issues involved in obtaining the particular result,
and discussing their importance from an epidemiological or
dynamical systems perspective.

A. Invariance property

Obviously, one never expects the fractions of a population
infected with either virus to be negative or for the two
combined fractions to exceed one. This invariance property, as
reported in [13, Lemma 8] and [17, Lemma 3.2], is formally
captured as follows.

Lemma 1: If the initial conditions for Eq. (5) satisfy 0,, <
z*(0) <1, (or 0, < 2¥(0) < 1,,) for k = 1,2 and 2'(0) +
22(0) < 1,,, then for all finite ¢ > 0, there holds 0,, < z*(t) <
1, (or0, < zF(t) < 1,) fork = 1,2 and ' (t)4+22%(¢t) < 1,
(or 21 (t) + 22(t) < 1,).

For future reference, we shall define = to be the set

Z={(z"2%]0, <z* <1, fork=1,2nz" +2? <1,},

and =° to be its interior.

The result, showing that = is an invariant set, can be ob-
tained by a fairly standard argument encountered for positive
or compartmental systems. In the light of this result, no atten-
tion is given to studying the model outside =. There are also
two invariant sets within Z: for k = 1 or 2, if 2¥(0) = 0, then
the system equation evidently yields 2¥(¢) = 0Vt. Logically,
if one virus is not initially present, it is never present, and
the system is effectively a single virus system. Lemma 1 also
ensures that 2¥(¢) retain their physical interpretations for all
t > 0, i.e., the model is well-defined.
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B. Are equilibria isolated?
Observe that (z',72) is an equilibrium of Eq. (5) if:

D'zt + (1, - X' - X*B'z' = 0,, (6)
-D*z* + (I, - X' - X*)B%*z* = 0,

where X* = diag(z¥) for k = 1,2. There are 2n scalar
equations and 2n scalar unknowns. Unsurprisingly, for generic
values of D* B, ie. for all values obeying the sign con-
straints in Assumption 1 and avoiding certain algebraic sets
defined by equalities in the entries of the matrices, the number
of equilibria can be shown to be finite. A formal proof based
on algebraic geometry can be found in Ref. [17].
Remark 3 (Importance of the genericity assumption):

The qualification that the matrices D*, B¥ are generic is
important. Several works have identified that a connected
set containing an infinite number of equilibria can exist in
Z° for special choices of D¥, B¥: [17] provides a general
result dealing with such special choices, extending the
earlier work of Ref. [9], [13]. In all cases, the set forms a
segment of a straight line. It is an open question whether
there are other nongeneric sets of parameter matrices which
yield equilibrium sets with other geometric shapes. One can
appreciate that for policymakers and public health planners,
knowing a priori that one should expect isolated equilibria
allows for more straightforward planning (which may be
based on simulations), because the alternative is to have a
continuum of equilibria.

C. Where are the equilibria?

The equilibria of the bivirus system can be split into three
types, as we now describe.

1) The healthy equilibrium: There is self-evidently always
the healthy equilibrium, with (z! = 0,,,22 = 0,,).

2) Boundary equilibria: There can also be zero, one or
two boundary equilibria. Define R* = p((D?)~1B?) as the
reproduction number of virus 4, for ¢ = 1,2. If one starts
a trajectory with 22(0) = 0, then as earlier argued, z°(t)
is identically zero, and the system behaves as a single virus
system. Accordingly, if and only if R' > 1, there will be an
equilibrium of the form (z! > 0,,,22 = 0,,), where Z' is the
unique endemic equilibrium of the single virus system defined
by D!, B!. Likewise, if and only if R? = p(D~2B?) > 1,
there will be an equilibrium of the form (z! = 0,,72),
where z2 is the unique endemic equilibrium of the single virus
system defined by D?, B2

If there should hold R! < 1 for the bivirus system, one
can argue formally, see [13], or heuristically, see [17], that the
presence of virus 2 simply ‘speeds up’ the decay to zero of
x(t) as t — oo, which is the behavior that would occur in the
absence of virus 2. When that occurs, the behavior of virus 2,
as indicated by x2(t), follows what would occur in the single
virus case, as predicted by the value of R2. An important
consequence follows. If either or both of the reproduction
numbers R* do not exceed 1, behavior of the bivirus system is
essentially nothing more than the behavior of two single virus
systems. Only if R¥ > 1,k = 1,2 can we anticipate some
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kind of behavior specific to the bivirus context, i.e. not just
mimicking the single virus case.

3) Coexistence equilibria: Some bivirus-specific behavior is
instanced by the third type of equilibria, which are termed
coexistence equilibria. These are equilibria (z!,Z?) in which
neither ¥ is zero, with mild restrictions on their location.

Lemma 2: ([17, Lemma 3.1]). Any coexistence equilibrium
has ! > 0,,,7% > 0,, and 7' + 7% < 1,,. If (z%,7?) and
(', %?) are two coexistence equilibria, then 72 = 2.

At a coexistence equilibrium, each node has a fraction
of individuals in each health compartment, and there cannot
exist two coexistence equilibria in which the equilibrium
vector is the same for one virus and different for the other.
The properties of a coexistence equilibrium (z!,z?) are tied
directly to the irreducibility of B*, k = 1,2 (or equivalently
the strong connectedness of the associated graphs). Details on
the arguments are found in the proof of [17, Lemma 3.1].

The existence of the boundary equilibria is directly tied to
the values of R?,i = 1,2, while their location is secured
from existing results for Eq. (2). Significantly less can be
said concerning coexistence equilibria, and characterization
of their existence and associated properties remain important
open questions, especially on directed networks. Obviously,
if R < 1 for either k = 1,2, then based on the prior
arguments dealing with boundary equilibria, there cannot exist
a coexistence equilibrium. However, if Rk > 1 for k = 1,2,
a key open challenge is in fact to establish how many (if any)
coexistence equilibria exist as a function of the parameter
matrices D¥, B¥ k = 1,2. There are obvious public health
management reasons for understanding the conditions for
coexistence, as this informs health practitioners whether one
requires medicine, health infrastructure, and trained personnel
to deal with just one or both viruses in the long term.

So far, for n = 1, Ref. [9] establishes that there are
never isolated coexistence equilibria, but rather for nongeneric
parameter values there exists a continuum of coexistence
equilibria; see Remark 3. The case of n = 2 was studied in
[17, Section 3.2]- there can either be one or zero coexistence
equilibrium (though this is by no means obvious)- and n = 3
with a special tree network topology was considered in [8].
For arbitrary n > 3, the findings in [12] were substan-
tially extended in [26] (but for the highly restrictive case of
undirected networks with homogeneous infection rates). For
general directed networks, limited results are available [13],
[15], [17]. Sufficient conditions on D¥, B for there to be
no coexistence equilibria are given implicitly in [11], and
explicitly in [15], [17].

It would be natural at this point to consider the stability of
equilibria. It is however opportune to first address a number
of properties of trajectories, before we investigate further their
associated limits and equilibria generally.

D. Key properties of general trajectories and their limits

Having characterized the three distinct types of equilibria
and some of their characteristics, we now state a general result,
due to [17, Theorem 3.6] on the limiting points of trajectories.
We comment on its implications, before discussing the key
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arguments used to secure this conclusion, arguments which
form the foundation of additional results reported in the sequel.

Theorem 1: Suppose Eq. (5) has generic parameter matrices
D!, B? i = 1,2, and hence there are a finite number of
equilibria. Then, for all initial conditions (z'(0),z%(0)) € =,
except possibly for a set of measure zero, the system Eq. (5)
will converge to an equilibrium. This set of measure zero (if
it exists) consists of nonattractive limit cycles and points on
trajectories that converge to them.

This result establishes that chaos is not possible for the
bivirus system in Eq. (5), and if a limit cycle exists, it is
nonattractive. A nonattractive limit cycle is like a nonattractive
equilibrium point. There may exist initial conditions for which
the trajectories will approach the limit cycle as ¢ — oo, but
no point on the limit cycle has an open neighborhood such
that all trajectories entering that neighborhood approach the
limit cycle. As elaborated upon in [17] through arguments
concerning basins of attraction, in addition to the convergence
statement in Theorem 1, we further know that for all initial
conditions except possible a set of measure zero, convergence
occurs to a stable equilibrium. This is due to the fact that
an unstable equilibrium may have associated with it a stable
manifold of dimension less than 2n, defined by trajectories
which converge to it. Ruling out periodic behaviour for the
bivirus model is important from an epidemiological context,
as other epidemic model dynamics can in fact yield stable and
attractive limit cycles, i.e., recurrent epidemic outbreaks [1].

The key to establishing this result is by analysis of the
linearization of Eq. (5) about a general point (z!,22) € =,
viz. the Jacobian of Eq. (5), which we denote by J(z!, z?).
Defining P = diag([,,, —1I,), one can compute that

_ Zl(x17x2)

PJ(z',2?)P = B2(s2) Bl(z")

Zy(xt,2?)|’ M
where B¥(z*) £ diag (B*z¥), i.e. B¥(2*) is diagonal with
i-th diagonal entry Y, bfaf, and Zy(z',2%) = —DF —
BF(2*) + (I, — X' — X%)B* for k =1,2.

With all off-diagonal entries of P.J(x!,2?)P nonnegative,
we call such a matrix a Metzler matrix. This matrix is also
irreducible for all (2!, z?) € =°. These properties can be used
to establish that Eq. (5) is a monotone dynamical system [17],
and more specifically a cooperative system in the literature
terminology. The results of Theorem 1 are established by
drawing on the comprehensive literature on monotone systems.

A key property of cooperative monotone systems is a
trajectory ordering property, which can be summarized as
follows. Consider two initial conditions (z(0),2%(0) and
(%(0),2%(0)) in =°, satisfying the inequality conditions

24(0) > zp(0),  2%(0) < 2%(0). (®)
Then for all ¢ > 0, the inequality conditions propagate, i.e.
h(t) > apt), 254(t) < ag(t). 9)

Below, we present a number of results established by exploit-
ing monotone systems theory, along with traditional tools such
as Lyapunov theory.
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E. Stability of equilibria

At this point in the development, we can explain some of
the simpler aspects of the stability of equilibria, noting that
the equilibria are finite in number and isolated. The stability
properties can usually be examined by looking at the stability
properties of the system linearized about the equilibrium.

Equivalently, with (!, 72) an equilibrium, the eigenvalues
of the associated Jacobian matrix, J(z!, z?) usually determine
the stability or otherwise of the equilibrium. This matrix
is similar to the corresponding specialization of Eq. (7).
Since this latter matrix is an irreducible Metzler (off-diagonal
entries nonnegative) matrix, by a simple variant on the Perron-
Frobenius theorem [21, p. 534], s(J(z',z?%)) is a simple
eigenvalue, and there are no other eigenvalues with the
same abscissa — see [17] for a concise summary. Assuming
s(J(z1,2%)) # 0, its sign then determines the stability
properties of the equilibrium.

1) Healthy equilibrium stability properties: It is straightfor-
ward to study the healthy equilibrium and boundary equi-
librium. The relevance of Jacobian use is clearly set out
in Ref. [13] — this reference and [14] also explore use of
Lyapunov functions to study equilibria. Indeed, [14] goes
further to consider time-varying B*(t), sometimes attributable
to mutating/time-varying infection pathways.

The Jacobian associated with the healthy equilibrium is:

—D1+Bl

OHX'I'L

OHXTL

J(O’ﬂ70’ﬂ) = 7D2 + BQ

The condition R* = p((D*)"!B¥) < 1 is equivalent to
s(—D*+B*) < 0. Thus, (0,,,0,) is stable, i.e. the associated
Jacobian is Hurwitz, if and only if RF < 1, £k = 1,2, as
discussed to above. Convergence to the healthy equilibrium
thus requires taming and controlling both viruses separately.
2) Boundary equilibria stability properties: Now consider the
stability of the boundary equilibria. As explained already,
distinctive behavior for the bivirus problem (as compared with
a single virus problem) can only arise when R¥ > 1, k = 1,2.
Under this condition, and supposing that Z' is the single virus
equilibrium, J(z!,0,,) is immediately obtained as

—D'+ (I, — X")B' — B(z') —BY(z')
0n><n _D2+(IH_X1)32]

The upper diagonal block matrix is Hurwitz, see [17], [23].
Thus, the stability of (Z!,0,,) is determined by the eigenvalues
of [-D?+ (I, — X')B?], which are functions of D, B¥ for
both k = 1,2 (with X' an implicit function of D', B'). In
other words, the survival or extinction of virus j around its
boundary equilibrium depends nontrivially on the dynamics
of virus i. Depending on the precise values of D, B* for
k =1, 2, examples exist in fact where both boundary equilibria
are locally exponentially stable [8], [17], [18], both are unsta-
ble [8], [12], [15], [17], and one locally exponentially stable
and the other unstable [11], [12], [15], [17]. Indeed, several of
the aforementioned works secure sufficient conditions for any
desired stability configuration of the two boundary equilibria.

Tightly intertwined with the key open challenge discussed
in Section III-C.3 is the need to further our understanding of
how D* B* determine the stability properties of the boundary
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equilibria. A desirable objective is to identify conditions on
D, B* which simultaneously establish the stability properties
of boundary equilibria, and establish if there exist coexis-
tence equilibria (and how many and stability properties). So
far, results are limited to undirected networks (a restrictive
assumption) [12], a special n = 3 network [8], and two
conditions discussed in Section III-E.4 below.

3) Simplifying the parameter set: Consider two dif-
ferent systems, one defined by a generic quadruple
{D', B!, D% B2} and the second defined by the quadruple
{I,,(DY)™1B' I,,,(D?)7'B?}. It is an immediate conclu-
sion from Eq. (6) that the equilibria associated with the two
systems are identical. What is perhaps more surprising is the
fact that the stability properties of any given equilibrium point
are unchanged between the two systems [17]. On the other
hand, the basins of attraction of a common stable equilibrium
points across the two systems will not necessarily be the same,
and hence trajectories originating from the same point across
the two systems may not end up at the same equilibrium. The
associated analyses primarily rely on the fact that the Jacobian
matrix is similar to a Metzler matrix as noted by Eq. (7), and
then further drawing on linear algebra results related to a class
of matrices know as M-matrices [21, p. 533].

One can find at least two immediate uses of this result. First,
for many purposes, especially theoretical analysis concerning
stability properties, one can without loss of generality assume
that D' = D? = I,,. This significantly simplifies any relevant
analysis, useful for both theoretical analysis and for practical
applications. Second, we can assert that a mere time scaling
of the operation of one virus, equivalent to the replacement
of {D', B, D?, B?} by {eD*,eB*, D?, B?} for some ¢ > ()
capturing this time scale separation, gives the same equilib-
rium points with the same stability properties. This is exploited
in Ref. [18] to examine the effects of having one virus evolving
significantly faster than the other.

4) Survival-of-the-fittest outcome: Some of the earlier work
focused on questions relating to survival-of-the-fittest scenar-
ios, in which the only stable equilibrium is one of the two
boundary equilibria. In such a scenario, and from Theorem 1, it
immediately follows that for any (z'(0),2%(0)) € Z°, Eq. (5)
will converge to the stable boundary equilibrium, ensuring
only one virus survives. A very early analysis was for the case
n = 1: D* B* become scalars, and taking D' = D? = 1,
the virus 2 boundary equilibrium is (globally) asymptotically
stable if and only if B? > B! [9]. The most comprehensive
extensions to the case of general n are probably to be found in
[11], [15], [17] and they are based on matrix generalizations of
the scalar inequality condition between B2 and B!, identified
in Ref. [9]. Assume, without loss of generality that D' =
D? = I,,. Under either of the conditions

1) B? > BY;

2) The minimum row sum of entries of B? exceeds the
maximum row sum of entries of B!,

the boundary equilibrium (0,,,%2) is the only stable equi-

librium of Eq. (5). Note that neither of the two conditions

implies the other, and both permit intuitive epidemiological

interpretations. The first condition simply relates the topology

(edge presence) and transmission strength (edge weight) of
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the two viruses. To interpret the second condition, notice that
> 05—y by, for k €V can be viewed as the “incoming infection
rate” of virus ¢ at node k. Then, the second condition is
satisfied if the smallest total incoming infection rate for virus 2
among all nodes exceeds the largest total incoming infection
rate for virus 1 among all nodes. The only other results are for
undirected networks [12], [26], and a complex necessary and
sufficient condition for survival-of-the-fittest in a special n = 3
tree network structure [8]. Whether other generalizations again
would give rise to a survival-of-the-fittest outcome is unknown.

5) Testing for a single stable coexistence equilibrium: The
second result from [17] drawing on monotone systems prop-
erties incorporating both trajectories and equilibria concerns a
test for the existence of a single stable coexistence equilibrium,
and its computation, at least by simulation. As discussed
above, characterizing coexistence equilibria, including location
and stability properties, is still an open challenge.

Consider two initial conditions for two trajectories A and
B defined by ‘corner points’ of the region of interest, viz.
24(0) = [(1 — €)1,,€el,] and 25(0) = [el,, (1 —€)1,] and
imagine that e > 0 goes to zero. Let 2¢(0) be an arbitrary ini-
tial condition in =°. Then evidently, !, (0) > z},(0) > z%(0)
and 2% (0) < 24(0) < 2%(0), and the inequalities propagate
with ¢t (see Eq. (8) and Eq. (9)). We need to simulate
just two trajectories, beginning at x4(0) and xp(0), with
convergence assured by Theorem 1 (we simply perturb any
initial conditions that yield nonconvergence). Suppose the two
trajectories converge to equilibria 4 € =° and Tp € Z=°,
respectively. If there is a single stable coexistence equilibrium,
then T4 = Tp and because the x¢ trajectory is ‘squashed’
between the x4 and zp trajectories, it too must converge to
this common equilibrium. Evidently, this will occur if and only
if there is a single coexistence equilibrium, and it is globally
convergent for initial conditions in =°.

6) Patterns of equilibria: We conclude Section III by com-
menting briefly on patterns of equilibria, rather than individual
equilibria. The fact that there is one healthy equilibrium and
two boundary equilibria (assuming R* > 1,k = 1,2 of
course) is an example of a result encompassing a pattern. The
literature contains further examples, as we now explain.

Key constraints arise from monotone systems theory; see
the key Ref. [19]. Suppose there are two stable equilibria
Ta = (z4,7%) and zp = (T}, %) (which may be boundary
equilibria) obeying the ordering conditions z, > zk and
7% < z%. Then there necessarily exists an unstable coex-
istence equilibrium, call it ¢, lying ‘between’ 4 and Zp,
in the sense that T4 > z{ > Th and 7% < 7% < T%.
Conversely, if there exists an unstable coexistence equilibrium,
there exist stable equilibria Z4,Zp (which may be boundary
equilibria) satisfying the above ordering conditions.

Evidently, if the two boundary equilibria of a system are
known to be stable, there must be an unstable coexistence
equilibrium, and such examples appear in [8], [17], [18]. It is
also not difficult to conclude from this fact that if there are
no coexistence equilibria, precisely one of the two boundary
equilibria is a stable equilibrium, and the whole of =° is in
its region of attraction, see [17, Corollary 3.16]. These results
represent a step along the road to uncovering all the possible
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ways that equilibra can arise, but are far from providing the
last word, which will yield important insight for policymakers
planning a response to an epidemic.

IV. OPEN PROBLEMS

We conclude this paper by discussing various open problems
and potential directions of future research, focusing first on
control problems and then on extensions of the model.

A. The key omission in this paper: control

To date, there has been only limited exploration of control
strategies for bivirus models [13]-[15], perhaps because until
recently [17], general convergence and equilibria properties
have been limited for large-scale networks. We hope this paper
serves as a stimulus for further consideration of control for
bivirus (and multivirus) models, perhaps along three greatly
different approaches. Pharmaceutical interventions in some
way will seek to modify most commonly the recovery pa-
rameters df, increasing them [13], [14]. Nonpharmaceutical
interventions will seek to modify the infection parameters
(entries of BF), perhaps based on quarantining or travel
and mobility restrictions. Vaccine interventions can also be
considered, as in [11], by considering virus 1 to represent the
true virus and virus 2 to represent the vaccine.

One could use the extensive literature covering a variety
of epidemic control approaches to single virus SIS and SIR
(network) models for inspiration and starting points [3]-
[5]. For example, one could consider network optimization
and design (involving both network topology and parameters
such as recovery and infection rates) [4]. By considering
the vaccine intervention idea, given D', B!, one could ask
how to design D?, B? to ensure that virus 2 emerges as the
winner of a survival-of-the-fittest scenario. Alternatively, one
could consider optimization to reduce peak infection levels
or endemic steady states. State feedback strategies used for
single virus network models, including adaptive, distributed, or
decentralized control, could also be considered [13], [23], [27],
[28]. A good theory of approximation might be welcome too,
in which populations are aggregated to reduce the integer n.

B. Gaps in knowledge regarding bivirus dynamics

Throughout the paper, several instances of open issues
were flagged for the fundamental bivirus model. We highlight
several we consider of particular importance. First, we could
pursue the application of monotone systems theory and its
consequences to the modified bivirus model due to Yang
et al. [10], anticipating that many results will carry through.
Given the success in applying monotone systems theory,
we believe that other established results from the dynamical
systems literature, such as Morse—Smale systems [29], could
also be applied to further our understanding of the bivirus
dynamics. It would also be of interest to decide whether
a nonattractive limit cycle can exist, and identify further
sufficient conditions on D*, B* for survival-of-the-fittest out-
comes. Coexistence equilibria are still understudied relative to
boundary and healthy equilibria, and several directions could
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be explored. For instance, one could determine whether a
continuum of coexistence equilibria must be an interval of a
straight line as in Remark 3, or form another geometric shape.
Alternatively, it would be especially interesting to identify
scenarios, including conditions on D¥, B* where there are
multiple isolated coexistence equilibria. In recognition of Re-
mark 1, stochastic implementations of the bivirus model could
be used to explore existence, and convergence to, boundary
and coexistence equilibria while examining robustness by
incorporating additional probabilistic features present in real-
world epidemic outbreaks.

C. Changes of scenario

Practical applications are not all so limited as to be capable
of treatment using the bivirus ideas summarized here. The
bivirus model could be varied to accommodate partial compet-
itiveness rather than full competitiveness of two viruses [16],
[30]. In another direction, the model can be adjusted to
accommodate the inclusion of an intervening medium in
the infection channel such as water, or another biological
species, work here having been initiated in Ref. [15]. And
in another direction again, consideration of three or more
competitive viruses can be contemplated, see e.g. [14], [15].
In this connection, we remark that many of results presented
are obtained by exploiting the Metzler nature of the matrix
in Eq. (7), including the monotone systems property. For
three or more viruses, the Jacobian is no longer similar to
a Metzler matrix, and so many bivirus conclusions will not
straightforwardly extend. It remains an open challenge for
three or more viruses to establish general convergence when
the reproduction number Rk > 1 for all k viruses, and
rule out the possibility of chaos and (attractive) limit cycle
behavior occurring. Other gaps identified above concerning
bivirus dynamics, such as coexistence equilibria properties, are
equally relevant to models dealing with three or more viruses.
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