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Abstract
The main aim of this paper is to present a Bayesian analysis of Multivariate
GARCH(l,m) (M-GARCH) models including estimation of the coefficient param-
eters as well as the model order, by combining a set of existing MCMC algorithms
in the literature. The proposed algorithm focuses on the BEKK formulation of the
multivariate GARCH model. The estimation procedure will be designed as a custom
MCMCwith embedded Reversible JumpMCMC (RJMCMC) and Delayed Rejection
Metropolis-Hastings (DRMH) steps implemented using the statistical software R. The
RJMCMC steps allow three variants of BEKK models (constant, diagonal and full)
to be indexed and this index included as a parameter to be estimated. The proposed
MCMC algorithms are validated using extensive simulation experiments followed by
a case study using bivariate data derived from the daily share prices for BHP Group
Limited, Rio Tinto Group, and FortescueMetals Group Limited on the ASX over from
September 2013 to December 2021.

Keywords Gibbs Sampler · Metropolis-Hastings · Reversible Jump MCMC ·
Delayed Rejection MH · MGARCH

1 Introduction

The model that is most commonly suggested in the literature to capture changing
volatility in time series is the Generalised Autoregressive Conditional Heteroskedastic
(GARCH) model (Bollerslev 1986). For univariate GARCH models, there are several
representations of the conditional variance equation. Some examples are the regu-
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lar GARCH (Bollerslev 1986), the EGARCH (Nelson 1991) and the GJR-GARCH
(Glosten et al. 1993) models.

Within a multivariate setting it is just as important, if not more so, to allow the
conditional covariance to change over time. By doing so, it is possible to gauge how
changes in volatility for one series affect the volatility of another. This transmission
of volatility from one series to another is sometimes referred to as a spill over effect.
Financial contagion is an example of this type of effect. For the multivariate GARCH
(M-GARCH) model, as one might expect, there are a number of different representa-
tions of the conditional covariance equation. There have been several valuable reviews
and surveys of the rapidly changing literature on M-GARCHmodels. Some examples
are Bauwens et al. (2006), Bauwens et al. (2012), Silvennoinen and Teräsvirta (2009),
Francq and Zakoïan (2010) and Tsay (2013).

Under a multivariate setting, the number of parameters requiring estimation is
significantly increased. Assuming that both model orders are equal to one, the number
of parameters in the bivariateGARCHmodel under theVECH formulation (Bollerslev
et al. 1988) is 21. When three series are analysed, the number of parameters that must
be estimated is increased to 78. This is a considerable increase over the number of
parameters for two or three separate univariate GARCH models, and is an example
of the curse of dimensionality. As a result of the increased number of parameters, the
amount of data required to perform meaningful estimation increases, which, in turn,
makes estimation by numerical methods more time consuming and difficult.

Another formulation of the conditional covariance equation was proposed by the
Engle and Kroner (1995) and is referred to as the BEKK model. The name is an
acronym made out of the initials of those who contributed to the development of M-
GARCH models, namely, Baba, Engle, Kraft and Kroner. The BEKK formulation of
the conditional covariance equation ensures that the conditional covariance equations
are positive definite and also has less parameters than the VECH formulation.

Practical applications of the BEKK formulation lie in the fields of finance and
economics. Often, the subject of investigation is the transfer of volatility between
markets. Kearney and Patton (2000) looked at the transfer of volatility in exchange
rate data.A spill over of volatility from theHongKong stock exchange to the exchanges
in mainland China was found to be unidirectional in a study by Li (2007) that applied
the BEKK model. Saleem (2009) measured the effect of the 1998 Russian financial
crisis on other international financial markets using several bivariate BEKK models.

There has been a comparatively small amount of literature produced onM-GARCH
models through a Bayesian setting. Several multivariate ARCH and GARCH type
models were applied to bivariate foreign exchange rate data in Vrontos et al. (2003).
Differences in inference between the Bayesian method and classical estimation were
found for scenarios in which the posterior distribution was non-normal. The poste-
rior predictive distribution was used to compare the applied models: an M-GARCH
model with diagonal covariance was found to be preferable, based on one step ahead
prediction. A Bayesian non-parametric modelling approach for M-GARCH models
was proposed by Jensen and Maheu (2013). Their approach was applied to a ten asset
portfolio, with model selection performed using Bayes factors. They found that their
best semi-parametric model performed significantly better in density forecasts than
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models with Student-t innovations. The paper also provides guidance on expanding
their approach to include a VAR model as the conditional mean.

The main aim of this paper is to present a Bayesian analysis of M-GARCHmodels
which includes parameter estimation and model section into the one task. The algo-
rithm combines a set of existing MCMC algorithms in the literature. The estimation
procedure will be designed as a custom MCMC with embedded Reversible Jump
MCMC (RJMCMC) ( Green (1995)) and Delayed Rejection Metropolis-Hastings
(DRMH) ( Tierney and Mira (1999); Metropolis et al. (1953); Hastings (1970)) steps
implemented using the statistical software R ( R Development Core Team (2012)).
The RJMCMC step allows different variants of the BEKK model to be included as a
parameter to be estimated as part of the procedure. This removes the need for estima-
tion of multiple models with differing conditional covariance equations, followed by a
comparison and selection based on a scoring technique such as Deviance Information
Criterion (DIC) ( Spiegelhalter et al. (2002)). The DRMH steps are used for the coef-
ficient parameter vectors, implemented in two stages which involves the prescription
of proposal distributions in both stages of the algorithm for a faster convergence.

To achieve the aim of this paper, the organization is outlined as follows. Section
2 presents the methods including the details of the model, the prior distributions, the
joint likelihood function and the joint posterior distribution function. Following this,
the proposed MCMC algorithms and the design of simulation experiments will be
detailed in Sect. 3. The results including posterior summaries of the parameters for
extensive simulation studies and a case study are presented in Sect. 4. Finally, summary
and future work are discussed in Sect. 5.

2 Methods

2.1 TheM-GARCHmodel

The structure ofM-GARCHmodels is similar to that of the univariate GARCHmodels
presented in Bollerslev (1986). For a given vector of data xt , the structure outlined in
Bauwens et al. (2006) for a model with zero conditional mean is as follows:

xt = εt

εt = H
1
2
t ηt .

(1)

Here, ηt is an independent identically distributed random vector of length p such
that E [η] = 0 and E

[
ηηT

] = Ip. The conditional covariance matrix at time t is
given by Ht ∈ R

p×p, and is required to be positive definite for all t . The p× 1 vector
εt is a vector of errors for the process. Under the assumption that η is distributed
as a multivariate normal distribution, the errors of the process are distributed via a
multivariate normal distribution, that is, εt ∼ Np (0, Ht ).

To derive the likelihood function and posterior distributions, it is best to write the
model in matrix form as follows:
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X = E

vec
(
ET

)
= H

1
2 η,

where

X =

⎡

⎢⎢⎢
⎣

xTs+1
xTs+2

...

xTN

⎤

⎥⎥⎥
⎦

, E =

⎡

⎢⎢⎢
⎣

εTs+1
εTs+2

...

εTN

⎤

⎥⎥⎥
⎦

, H =

⎡

⎢⎢⎢
⎣

Hs 0 · · · 0
0 Hs+1 · · · 0
... · · · . . . 0
0 · · · 0 HN

⎤

⎥⎥⎥
⎦

. (2)

The matrix H ∈ R
np×np in (2) is a block diagonal matrix in which each Hi is cal-

culated using the conditional covariance equation relevant to the M-GARCH model
being employed for i = s, . . . , N . The other matrices in (2) have the following dimen-
sions: X ∈ R

n×p and E ∈ R
n×p. In the following section, the BEKK formulation is

described.

2.2 BEKK conditional covariance equation

The conditional covariance equation for the full BEKK model was originally defined
as follows:

Ht = C0C
T
0 +

Q∑

q=1

l∑

i=1

Aqiεt−iε
T
t−i A

T
qi +

Q∑

q=1

m∑

j=1

Bq j Ht− j B
T
q j , (3)

where Aqi , Bq j and C0 are p× p parameter matrices, with C0 being lower triangular.
The parameters l and m are the model orders for the ARCH and GARCH parts of
the model. The parameter Q is included in the model to accommodate more general
representations of the conditional covariance equation.When Q > 1, an identification
problem arises due to the existence of several parametrisations that lead to the same
model. Conditions to eliminate redundant, observationally equivalent, models were
provided by Engle and Kroner (1995).

Silvennoinen and Teräsvirta (2009) suggested that, due to numerical difficulties in
estimation of BEKK models, it is often assumed that l = m = Q = 1. In fact in
many applications of BEKKmodels, the simpler diagonal BEKKmodel is employed.
Based on the advice of Silvennoinen and Teräsvirta (2009), we also restrict our model
orders to those satisfying l = m = Q = 1. In addition, (3) shall be redefined so that
the intercept matrix is defined directly to be a positive definite matrix, C ∈ R

p×p. In
repeated trials,we found that itwas very difficult to estimate the interceptmatrixC0 due
to an identifiability issue caused by the calculation of C0CT

0 . We shall, consequently,
employ the following formof theBEKKconditional covariance equation in this paper:

Ht = C + Aεt−1ε
T
t−1A

T + BHt−1B
T . (4)
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Table 1 Index of M-GARCH models

Index N1 N2 N3

Model Constant: l = 0, m = 0 DBEKK: l = 1, m = 1 BEKK: l = 1, m = 1

The number of parameters requiring estimation for the full BEKK model shown
in (4) is (l + m) p2Q + p

2 (p + 1). While this is fewer than for a VECH model, even
for small p, it is still a considerable number. The diagonal BEKK (DBEKK) model is
a simpler form of the full BEKK model in which the coefficient parameter matrices
A and B are diagonal. This form of the BEKK model has (l + m) pQ + p

2 (p + 1)
parameters that require estimation. For some sets of data, for example those in which
there is little transmission of volatility between series, the DBEKK model will be
sufficient to account for the conditional covariance.

Rather than searching over BEKK models of differing model orders l and m, we
shall search over a different variants of the conditional covariance equation. They
are, a constant conditional covariance model, a DBEKK model and a full BEKK
model, as shown in Table 1. The purely constant conditional covariance model is not a
particularly interesting model to fit to time series data. However, it has been included
here as it may be interesting if a model for the conditional mean was to be introduced.
Use of a model index to search over is in line with the method used in Vrontos et al.
(2000) and Livingston (2018).

The parameters that require estimation for the DBEKK and BEKK models are the
intercept matrix C and the coefficient matrices A and B. For the constant conditional
covariance model, only the intercept matrix C is estimated. The prior distributions are
outlined in the following section.

2.3 Prior distribution

For the purposes of estimation, the coefficient matrices will be combined into a single
vector of matrices, A = [A, B]T . We shall decompose the prior distribution for the
M-GARCH estimation algorithm as follows:

p
(N j ,A,C

) = p
(
A,C |N j

)
p

(N j
)
.

The individual prior distributions are

p
(
A,C |N j

) ∝ IA (A)

p
(N j

) ∝ 1

jτN
,

(5)

where j is the model index.
Stationarity will be enforced through the prior distribution of the coefficient matri-

ces. This is achieved using the indicator function, IA (A). This function takes the value
of one when the conditions for covariance stationarity are met, and zero otherwise.
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The BEKK model will be covariance stationary when the eigenvalues of the matrix

Q∑

q=1

l∑

i=1

Aqi ⊗ Aqi +
Q∑

q=1

m∑

j=1

Bq j ⊗ Bq j ,

all have modulus less than one (Engle and Kroner 1995).
The prior distribution for themodel type is defined in away that allows simplermod-

els with lower indices ( j) to have greater prior probabilities. This obviously requires
the models to be indexed from the simplest model to most complex. Setting the param-
eter τN = 0 incorporates the case where all prior model probabilities are proportional
to one into the prior. In practice, the prior distribution can be set to any vector of prior
probabilities that the user decides upon.

Now that we have considered the prior distributions, the next step is to derive the
likelihood function for the M-GARCH model.

2.4 Likelihood function

The derivation of the likelihood function hinges upon the distribution of ηt . When
ηt is distributed from a multivariate normal distribution, the likelihood function is
the product of n multivariate normal densities with zero mean vector and covariance
matrix Ht .

In general, if l and m are model orders for the conditional covariance equation,
the likelihood function will be calculated using the first s = max(l,m) data points
as initial values. The data available for the likelihood calculation is therefore indexed
from s + 1 to N and the useful data has length n = N − s. The conditional likelihood
is calculated as follows:

p
(
X|N j ,A,C

) =
N∏

t=(s+1)

p
(
xt |N j ,A,C

)

= (2π)−
np
2

⎡

⎣
N∏

t=(s+1)

|Ht |
⎤

⎦

− 1
2

exp

⎡

⎣−1

2

N∑

t=(s+1)

xTt H
−1
t xt

⎤

⎦ .

(6)

Focusing on the sum in the exponent in (6), we calculate

N∑

t=(s+1)

xTt H
−1
t xt = xTs+1H

−1
s+1xs+1 + xTs+2H

−1
s+2xs+2 + · · · + xTN H−1

N xN

=
[
xTs+1, x

T
s+2, . . . , x

T
N

] [
H−1

] [
xs+1, xs+2, . . . , xN

]T

=
[
vec

(
XT

)]T [
H−1

] [
vec

(
XT

)]
.

(7)
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The matrix H in (7) is a block diagonal matrix in which the i th diagonal entry
corresponds to Hi . Substituting the expression for the sum from equation (7) back
into the likelihood function gives us the final likelihood function for the M-GARCH
model:

p
(
X|N j ,A,C

) = (2π)−
np
2 |H|− 1

2 exp

[
−1

2

[
vec

(
XT

)]T [
H−1

] [
vec

(
XT

)]]
. (8)

2.5 Posterior distribution

Combining the likelihood function in (8) with the prior distributions in (5) results in
the following joint posterior distribution:

p
(N j ,A,C |X) ∝ p

(
X|N j ,A,C

)
p

(N j ,A,C
)

∝ (2π)−
np
2 |H|− 1

2 exp

[
−1

2

[
vec

(
XT

)]T [
H−1]

[
vec

(
XT

)]]
IA (A)

jτN
.

(9)

The parameters that are of interest are the model index,N j , the collection of coef-
ficient parameter matrices A and the intercept matrix C . As we move from one model
index to another, the dimension of the parameter space changes. Therefore, an RJM-
CMC algorithm is required for parameter estimation.

The RJMCMC algorithm will be a Gibbs-style algorithm. In addition to the full
posterior distribution in (9), Gibbs-style algorithms require the conditional posterior
distribution for the coefficient matrix and intercept matrix. Therefore, the posterior
distribution in (9) together with the following posterior distribution will be employed
in the MCMC estimation procedure:

p
(
A,C |X,N j

) ∝ (2π)−
np
2 |H|− 1

2 exp

[
−1

2

[
vec

(
XT

)]T [
H−1

] [
vec

(
XT

)]]
.

(10)

We can now design the required posterior simulator.

3 Posterior simulator

Outlined below is the RJMCMC scheme for estimating the parameters of the BEKK
model. The models to be included in the search are a constant conditional covariance
model, a diagonal BEKK model and a full BEKK model.
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3.1 M-GARCH: main algorithm

Algorithm 1M-GARCH - Main Algorithm

Require:
(
N (0)

j ,A(0),C(0)
)
either randomly or deterministically.

for i = 1 . . . K do
RJN Step - Simulate the GARCH model index, the intercept matrix and coefficient parameter matrix

using
(
N (i)

j ,A(i),C(i)
)

∼ p
(N j ,A,C |X)

shown in (9)

if RJN Step is rejected then
DRA Step - Simulate the intercept and coefficient parameter matrices from the full conditional

posterior distribution:
(
A(i),C(i)

)
∼ p

(
A,C |X,N (i)

j

)
shown in (10).

end if
end for

Next, we expand the steps from the main algorithm that employ the RJMCMC and
DRMH algorithms.

3.2 Reversible jump: RJN step

Step 2(a) in the main algorithm will be a Reversible Jump step as the move to another
model index changes the dimension of the parameter space. The acceptance probability
for a Reversible Jump step where the complete parameter matrix is proposed and there
is no transformation from one space to the other will be

r(N j , j→ j∗) = min

(

1,
p
(N j∗ ,A∗,C∗|X)

q
(
A,C |A∗,C∗,N j ,N j∗

)

p
(N j ,A,C |X)

q
(
A∗,C∗|A,C,N j ,N j∗

)

)

. (11)

The proposals for the candidate intercept and coefficient matrices will be obtained
separately. If we assume that A and C are independent, the proposal distributions will
have the following structures:

q
(
A∗,C∗|A,C,N j ,N j∗

) = q
(
A∗|A,N j ,N j∗

)
q

(
C∗|C,N j ,N j∗

)
.

As the intercept matrix must be positive definite, the proposal distribution for C
will be a Wishart distribution. There are two options for the coefficient matrices. The
first is to simply use separate Matrix Normal distributions for each Ai and Bj . While
this is perfectly acceptable, it results in the multiplication of l + m densities when
models of orders l,m > 1 are allowed. This will add complexity to the coding of the
algorithm.

Therefore, for the full BEKK coefficient matrix, the complete matrix A∗ will be
proposed from a Matrix Normal distribution. The dimension of this Matrix Normal
distribution is p× p (l + m). The derivation of the mathematical form of this proposal
distribution for the coefficient matrix is provided in Livingston (2017). The structure
of this derivation indicates that proposing the full coefficient parameter matrix is
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equivalent to proposing the parameter matrices separately, assuming the among row
covariance is equal for each parameter matrix, that is U1 = U2 = · · · = Ur .

For the proposal of the elements of theDBEKKmodel coefficient parametermatrix,
the diagonal elements are simply combined into a single vector and a Multivariate
Normal distribution is used.

It is essential to the success of the algorithm to have reasonable estimates of the
location parameters of the proposal distributions. A simple and effective option is to
perform a short pilot run to find location parameters that will allow the full algorithm
to make model moves under the Reversible Jump scheme.

In general, the proposal distributions for the M-GARCH Reversible Jump step will
be

q
(
A∗|A,N j ,N j∗

) = 1 (Constant)

q
(
A∗|A,N j ,N j∗

) ∼ Nl+m

(
mN j∗ , VN j∗

)
(DBEKK)

q
(
A∗|A,N j ,N j∗

) ∼ Np,p(l+m)

(
MN j∗ ,UN j∗ ,VN j∗

)
(BEKK)

q
(
C∗|C,N j ,N j∗

) ∼ Wp

(
�−1

CN j∗
CN j∗ ,�CN j∗

)
.

(12)

The Wishart distribution in (12) has a location parameter of CN j∗ . This location
parameter, along with the location parameters for the proposal distribution of the
conditional covariance coefficient parameter matrix, MN j∗ or mN j∗ , is determined
during the pilot run. We have given the parameters the subscript N j∗ to remind the
reader that these parameters have the potential to be different for each model index.
The variance parameters UN j∗ , VN j∗ , and �CN j∗ can roughly be determined during

the pilot run, but may require some adjustment to ensure an adequate acceptance rate
for the algorithm.

The proposal distributions shown in (12) for the conditional covariance coefficient
parameter matrix pertain to the general case in which the RJMCMC scheme allows
not only jumps from different model types, but also jumps to differing model orders
within a particular model. For practical reasons, the estimation algorithm implemented
will only consider the models shown in Table 1. In particular, the model orders l and
m will be fixed.

When a move to a candidate model is proposed, the proposal distributions for A
for the candidate and current models will differ. This means that at each Reversible
Jump, the acceptance probability can take a total of six different mathematical forms,
depending on the indices of the current and candidatemodels. Each of these acceptance
probabilities is will take the form as in (11).

The algorithm for the RJN Step is shown below.
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Algorithm 2 RJN Algorithm

Ensure:
(
N (i−1)

j ,A(i−1),C(i−1)
)
.

for iteration i do
• Propose a candidate model index N j∗ , from j

(N j∗ |N j
)
using the discretised Laplacian shown in

Livingston and Nur (2017). Propose a candidate intercept and coefficient matrices using the proposal
distributions in (12).

•Determine the appropriate acceptance probability, based onN j andN j∗ , and calculate the acceptance
probability, r(N j , j→ j∗

), using (11).

• Simulate u ∼ U(0, 1):
if r(N j , j→ j∗

) > u then

• Accept the candidate model indexN j∗ and set N (i)
j∗ = N j∗ .

• Accept the intercept and coefficient parameter matrices. Set C(i) = C∗ and A(i) = A∗.
else

• Reject the candidate model indexN j∗ and proposed covariance parameter matrices. SetN (i)
j =

N (i−1)
j , C(i) = C(i−1) and A(i) = A(i−1).

• Using the distribution in (10), simulate the intercept and coefficient parameter matrices,

(A,C)(i) ∼ p
(
A,C |X,N (i)

j

)
,

using the DRMH algorithm described below (DRA Step).
end if

end for

3.3 Delayed rejectionmetropolis-hastings: DRA Step

When the proposed jump to a newmodel index is rejected, the intercept and coefficient
matrices need to be simulated from their joint conditional posterior distribution. If this
did not occur, the intercept and coefficient matrices would only be updated upon
model moves. When the data presents significant evidence for one model over the
others included in the search, it is possible that model moves will not often take place.
If the intercept and coefficient matrices are not separately updated, the algorithm will
exhibit poor mixing and slow convergence.

Slow convergence of the main algorithm is a significant problem faced in this
research. Within the univariate GARCH setting, it was possible to use maximum
likelihood estimates as starting values for the algorithm. However, in the multivariate
setting, finding themaximum likelihood estimates is not a simple task in itself and thus
it is a reasonably difficult problem to identify suitable starting values quickly. Given
that our starting values are likely to be relatively poor, we need to find techniques
that allow our algorithms to move quickly towards the area of convergence. One
such technique that we have found successful is the DRMH algorithm. The DRMH
algorithm allows the use of relatively large variances for the proposal distributions so
that initially the algorithm moves quickly towards the area of convergence, but also
allows small movements if a poor proposal is made in the wrong direction, or even
past the area of convergence.

Here we shall implement a two stage DRMH algorithm. This involves the pre-
scription of proposal distributions for both stages of the algorithm. The proposal
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distributions used in the first stage will be similar to those used for the Reversible
Jump step above, but they will be centred on the most recent value in the MCMC
chain. The proposal distributions employed are

q1A
(
A∗|A) ∼ Np,l+m

(
A,UN j ,VN j

)

q1C
(
C∗|C) ∼ Wp

(
�−1

CN j
C,�CN j

)
.

(13)

For the second stage of the proposal, our distributions will use both the information
contained within the most recently simulated parameter and that contained within the
candidate parameter that was rejected in the first stage. This gives rise to the following
proposal distributions:

q2A
(
A

′ |A∗,A
)

∼ Np,l+m

(
1

2

(
A∗ + A

)
,UN j ,�2AVN j

)

q2C
(
C

′ |C∗,C
)

∼ Wp

([
2�CN j

�2C

]−1 (
C∗ + C

)
,�CN j

�2C

)
,

(14)

where �2C and �2A are parameters included to reduce the variance of the proposal in
the second stage. Setting these values in the range of 0.50 to 0.75 yielded successful
results during testing of the algorithm.

The target distribution for this step is the joint conditional posterior distribution
shown in (10). That is,

q
(
A,C |X,N j

) ∝ (2π)−
np
2 |H|− 1

2 exp

[
−1

2

[
vec

(
XT

)]T [
H−1

] [
vec

(
XT

)]]
.

Since there are three different situations in which this algorithm could be imple-
mented, namely for the constant conditional covariance model, the DBEKK model
and the BEKK model, we only present the most complicated form of the acceptance
probability. The difference between the possible forms ultimately lies in the ratio of the
proposal distributions for the conditional covariance coefficient parameter matrices.

The acceptance probability for the first stage of the DRMH algorithm is relatively
simple. It is simply a Metropolis-Hastings acceptance probability:

r(A,1)

(
A∗,C∗,A,C

) = min

(

1,
p

(
A∗,C∗|X,N j

)

p
(
A,C |X,N j

)
q1A (A|A∗) q1C (C |C∗)
q1A (A∗|A) q1C (C∗|C)

)

.(15)

In cases where the initial proposed parameters are rejected, the DRA Algorithm
enters the second stage. This stage requires a slightly more complicated acceptance
probability to ensure convergence to the correct stationary distribution. The required
acceptance probability has the following form:
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r(A,2)

(
A

′
,C

′
,A∗,C∗,A,C

)
=

min

⎛

⎝1,
p

(
A

′
,C

′ |X,N j

)

p
(
A,C |X,N j

)
q1A

(
A∗|A′)

q1C
(
C∗|C ′)

q1A (A∗|A) q1C (C∗|C)
×

q2A
(
A|A′

,A∗
)
q2C

(
C |C ′

,C∗
)

q2A
(
A′ |A,A∗) q2C

(
C ′ |C,C∗)

(
1 − r1

(
A∗,C∗,A′

,C
′))

(1 − r1 (A∗,C∗,A,C))

⎞

⎠ .

(16)

The layout of the DRA Algorithm is outlined below.

Algorithm 3 DRA Algorithm

Ensure:
(
N (i)

j ,A(i−1),C(i−1)
)
.

for iteration i do
• Propose new intercept and coefficient parameter matrices C∗ and A∗ from the proposal densities,

q1C
(
C∗|C)

and q1A
(
A∗|A)

, respectively which are given in (13).
• Calculate the acceptance probability r(A,1)

(
A∗,C∗,A,C

)
using the formula in (15).

• Simulate u1 ∼ U (0, 1):

if r(A,2)

(
A

′
,C

′
,A∗,C∗,A,C

)
> u2 then

• Accept the new proposed intercept and coefficient parameter matrices. Set C(i) = C
′
and A(i) =

A
′
.
else

• Generate new proposed intercept and coefficient parameter matrices, C
′
and A

′
from

q2C
(
C

′ |C∗,C
)
and q2A

(
A

′ |A∗,A
)
, respectively, using the proposal distributions in (14).

• Calculate the acceptance probability, r(A,2)

(
A

′
,C

′
,A∗,C∗,A,C

)
, using the formula in (16).

• Simulate u2 ∼ U (0, 1):

if r(A,2)

(
A

′
,C

′
,A∗,C∗,A,C

)
> u2 then

• Accept the new proposed intercept and coefficient parameter matrices. Set C(i) = C
′
and

A(i) = A
′
.

else
• Reject the new proposed intercept and coefficient parameter matrices. Set C(i) = C(i−1) and

A(i) = A(i−1).
end if

end if
end for

It is relatively straight forward to extend the DRMH algorithm above to include
more stages.With the algorithms elucidated, the following section outlines simulations
studies confirming their effectiveness.
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4 Empirical analysis

4.1 Simulation study

The three models included in the search are the fixed conditional covariance model,
the DBEKK and the full BEKK formulations of the conditional covariance equation
in an M-GARCH model. These are indexed using N j , as outlined in Table 1.

Two simulation studies are presented with the first simulation study denoted as
MG-I; where N = 1,500. The following true DBEKK model was used:

xt = εt , εt = H
1
2
t ηt

Ht =
⎡

⎣
0.20 −0.05 0.25
−0.05 0.30 0.00
0.25 0.00 0.60

⎤

⎦ +
⎡

⎣
0.70 0.00 0.00
0.00 0.50 0.00
0.00 0.00 0.75

⎤

⎦ εt−1ε
T
t−1

⎡

⎣
0.70 0.00 0.00
0.00 0.50 0.00
0.00 0.00 0.75

⎤

⎦

T

+
⎡

⎣
0.55 0.00 0.00
0.00 0.65 0.00
0.00 0.00 0.45

⎤

⎦ Ht−1

⎡

⎣
0.55 0.00 0.00
0.00 0.65 0.00
0.00 0.00 0.45

⎤

⎦

T

.

An example of simulated data from MG-I is shown in Fig. 1. The pilot runs for
each of the three model indices were executed for differing numbers of iterations. The
simpler models, being the constant conditional covariance and the DBEKK model,
generally converged to the area of high posterior probability fairly quickly, when
compared with the full BEKK model. With this in mind, the lengths of the pilot runs
were set to 1,000, 4,000 and 12,000 iterations for the constant, DBEKK and BEKK
models, respectively.

Themain algorithm that allows jumps betweenmodelswas run for 50,000 iterations,
of which the first 10,000 iterations were discarded as a burn in. The results shown in
Table 2 indicate that the true model was correctly identified 977 times out of the 1,000
replications. In the other 23 runs, a full BEKKmodel was identified. The means of the
parameter estimates from the runs that incorrectly identified the BEKK model were
similar to those for the true DBEKK model.

The results in Table 2 show that the posterior mean estimates were very close to
the true values. In addition, the coverage probability was close to the notional interval
value of 95%. A set of posterior distributions from one of the estimation runs is shown
in Fig. 2. The posterior distribution for the model order is omitted as the posterior
probability was 100% at the true value for this application of the estimation scheme.

For the second study, MG-II, the data length was set to N = 1500. The example of
simulated data shown in Fig. 3 was created from the following true BEKK model:

xt = εt , εt = H
1
2
t ηt ,

with conditional covariance equation
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Fig. 1 Time plot of simulated M-GARCH data xt from MG-I

Table 2 Summary statistics for the simulated M-GARCH model of MG-I

Parameter True value Estimate CrI Coverage (%)

A [1, 1] 0.70 0.7025 (0.6555, 0.7512) 94.68

A [2, 2] 0.50 0.5028 (0.4482, 0.5590) 94.78

A [3, 3] 0.75 0.7528 (0.7040, 0.8032) 95.91

B [1, 1] 0.55 0.5422 (0.4864, 0.5951) 95.29

B [2, 2] 0.65 0.6303 (0.5311, 0.7182) 94.17

B [3, 3] 0.45 0.4415 (0.3828, 0.4987) 94.68

C [1, 1] 0.20 0.2053 (0.1722, 0.2412) 94.17

C [2, 1] −0.05 −0.0520 (−0.0732, −0.0322) 95.09

C [3, 1] 0.25 0.2570 (0.2165, 0.3009) 94.06

C [2, 2] 0.30 0.3166 (0.2334, 0.4067) 93.96

C [2, 3] 0.00 0.0005 (−0.0326, 0.0337) 94.88

C [3, 3] 0.60 0.6137 (0.5292, 0.7042) 94.06

N j 2 2 – 97.70
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Fig. 2 An example set of parameter posterior distributions from MG-I. The red lines indicate the positions
of the true values for each parameter
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Fig. 3 Time plot of simulated M-GARCH data xt from MG-II
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Table 3 Summary statistics for the simulated M-GARCH model of MG-II

Parameter True value Estimate CrI Coverage (%)

A [1, 1] 0.68 0.6820 (0.6306 0.7350) 95.0

A [2, 1] 0.35 0.3541 (0.3169 0.3924) 94.5

A [3, 1] −0.25 −0.2510 (−0.2857 −0.2170) 92.6

A [1, 2] 0.18 0.1843 (0.1257 0.2433) 93.4

A [2, 2] 0.50 0.4964 (0.4463 0.5480) 95.1

A [3, 2] 0.12 0.1192 (0.0750 0.1639) 93.3

A [1, 3] 0.40 0.4008 (0.3415 0.4611) 92.2

A [2, 3] 0.00 0.0019 (−0.0454 0.0492) 93.8

A [3, 3] 0.35 0.3474 (0.2993 0.3963) 94.0

B [1, 1] 0.55 0.5431 (0.4971 0.5872) 91.0

B [2, 1] −0.15 −0.1511 (−0.1901 −0.1117) 92.3

B [3, 1] 0.25 0.2445 (0.2061 0.2836) 90.6

B [1, 2] 0.20 0.1968 (0.1175 0.2771) 91.0

B [2, 2] 0.60 0.6000 (0.5413 0.6562) 91.0

B [3, 2] −0.40 −0.3978 (−0.4614 -0.3347) 88.9

B [1, 3] −0.20 −0.1949 (−0.2641 -0.1280) 93.3

B [2, 3] 0.30 0.2909 (0.2287 0.3555) 91.2

B [3, 3] 0.65 0.6394 (0.5749 0.7025) 89.7

C [1, 1] 0.56 0.5704 (0.4079 0.7468) 94.5

C [2, 1] 0.19 0.1906 (0.0565 0.3320) 91.0

C [3, 1] 0.08 0.0933 (−0.0353 0.2212) 91.2

C [2, 2] 0.47 0.4690 (0.2997 0.6469) 91.1

C [2, 3] 0.21 0.2321 (0.0914 0.3618) 87.9

C [3, 3] 0.42 0.4202 (0.2660 0.5829) 89.5

N j 3 3 – 100.00

Ht =
⎡

⎣
0.56 0.19 0.08
0.19 0.47 0.21
0.08 0.21 0.42

⎤

⎦ +
⎡

⎣
0.68 0.18 0.40
0.35 0.50 0.00
−0.25 0.12 0.35

⎤

⎦ εt−1ε
T
t−1

⎡

⎣
0.68 0.18 0.40
0.35 0.50 0.00
−0.25 0.12 0.35

⎤

⎦

T

+
⎡

⎣
0.55 0.20 −0.20
−0.15 0.60 0.30
0.25 −0.40 0.65

⎤

⎦ Ht−1

⎡

⎣
0.55 0.20 −0.20
−0.15 0.60 0.30
0.25 −0.40 0.65

⎤

⎦

T

.

Comparing the plots in Figs. 1 and 3, it is evident that the full BEKK formulation
of the conditional covariance equation allows for shocks to spill over to other series.
Areas of high volatility are shared by each of the plots.

The pilot runs for each of the three types of models were the same as for MG-I.
The main algorithm, however, was run for 150,000 iterations, of which the first 10,000
were discarded as a burn in. A typical set of posterior distributions from an individual
run of the algorithm is shown in Fig. 4.
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Fig. 4 An example set of parameter posterior distributions fromMG-II. The red lines indicate the positions
of the true values for each parameter
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The results shown inTable 3 indicate that themeans of the parameter point estimates
were very close to their true values at two decimal places. The coverage probabilities
indicate that the credible intervals underperformed: most coverage probabilities were
less than 95%. There were a few parameters for which the coverage probability was
less than 90%. However, the mean coverage probability over all parameters except for
the model index was 92%, which is not substantially different from the notional value
of 95%.

The application of theM-GARCHestimation scheme to real world data is discussed
in the following section.

4.2 Real world data

An illustration of theM-GARCH estimation algorithmwas implemented using trivari-
ate data derived from the daily closing prices for BHPGroupLimited (BHP); Rio Tinto
Group (RIO); and, Fortescue Metals Group Limited (FMG), all traded on the Aus-
tralian Stock Exchange. The data ranges from September 2013 to December 2021.
The data was cleaned to only include closing prices on dates for which all series had
data. We acknowledge there are more sophisticated methods for dealing with missing
data.

The closing prices are plotted in Fig. 5. From the plots it appears that BHP and
RIO are highly correlated throughout the period. The correlations of BHP and RIO
to FMG prior to May 2020 do not seem particularly high, however after May 2020
the correlation appears greater. The high correlation between BHP and RIO is to
be somewhat expected given the similarities in business activities and size of the
companies. While FMG is also a mining company, it is considerably smaller and
likely focuses on different commodities.

Rather than analysing the series directly, the observations were first transformed
into their log returns as follows:

x1,t∗ = log (BHPt ) − log (BHPt−1)

x2,t∗ = log (RIOt ) − log (RIOt−1)

x3,t∗ = log (FMGt ) − log (FMGt−1) .

Next the xi,t∗were all standardised to create xi,t by subtracting the mean and dividing
by the standard deviation of the respective series. The resulting time series have N =
2,047 observations. A time plot of the data that was analysed is shown in Fig. 6.
Comparing the conditional variance across the three series, all three exhibit increases
in conditional variance between May 2015 and January 2017, then again before May
2020.

The sample variances of a rollingwindowof length tenwere calculated for the series
and are presented in Fig. 7. The plot confirms the periods of increased conditional
variance and also indicates that for FMG, there is increased conditional variance prior
to May 2015. It appears that a DBEKK or full BEKK multivariate GARCH model
would be well suited for modelling the data, and therefore these models are used as
candidates to model the conditional covariance.
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The pilot runs of the algorithm were executed for 20,000 iterations for each of the
three models under consideration. The first 10,000 iterations were used as burn in. The
full algorithm was then executed for 200,000 iterations, again using the first 10,000
iterations as a burn in period.

The posterior evidence supporting the DBEKK formulation of the conditional
covariance equation was extremely strong. The algorithm never departed from that
model type after the first few iterations. Supporting this are the DIC values of 23,741
and 25,611 for theDBEKKandBEKKmodels respectively. The respectiveAIC values
are 23,607 and 25,387, indicating that the DBEKKmodel is incomparablymore likely.
As a comparison, estimating the full BEKK model through maximum likelihood esti-
mation using the mgarchBEKK package (Schmidbauer et al. 2016) in R resulted in a
calculated AIC value of 27,320. Some effort was put into improving the initial values
of the optimisation routine, however the improvements to the calculated AIC were
not significant. Additionally, some sets of initial values resulted in warnings from the
optim function related to the the calculation of the Hessian matrix which resulted in
some standard errors being unavailable. Documentation for the package indicates that
development ceased in 2016.

Plots of the posterior distributions for each of the parameters are shown in Fig. 8 and
the estimation results are displayed in Table 4. Several of the posterior distributions
are skewed and the distribution ofC [3, 3] appears to be bi-modal. These observations
cast doubt over the validity and usefulness of the DIC calculations.
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Fig. 8 Posterior distributions for the M-GARCH model fitted to the BHP, RIO, and FMG data

Table 4 Point estimates and credible intervals for the BHP, RIO, and FMG data

Parameter Estimate CrI Parameter Estimate CrI

A [1, 1] 0.2260 (0.1989, 0.2553) B [1, 1] 0.9593 (0.9468, 0.9687)

A [2, 2] 0.2208 (0.1852, 0.2656) B [2, 2] 0.9514 (0.9248, 0.9671)

A [3, 3] 0.1903 (0.1519, 0.2310) B [3, 3] 0.9755 (0.9640, 0.9850)

C [1, 1] 0.0239 (0.0149, 0.0358) C [2, 1] 0.0270 (0.0164, 0.0436)

C [3, 1] 0.0063 (0.0037, 0.0098) C [2, 2] 0.0425 (0.0252, 0.0728)

C [2, 3] 0.0076 (0.0042, 0.0134) C [3, 3] 0.0127 (0.0055, 0.0224)

The fitted conditional covariance and correlations over the time period are shown
in Fig. 9. The correlation plot between BHP and RIO shows that, over time, the
correlation was quite high and varied between a minimum of 0.60 and a maximum
of 0.95. The middle 95% ranged from 0.74 to 0.92, with a mean correlation of 0.84.
The correlations of FMG to BHP and RIO are much less, however are almost always
positive.

The mathematical form of the fitted model is
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RIO, and FMG data

xt = εt

εt = H
1
2
t ηt

Ht =
⎡

⎣
0.024 0.027 0.006
0.027 0.043 0.008
0.006 0.008 0.013

⎤

⎦ +
⎡

⎣
0.226 0.000 0.00
0.000 0.221 0.00
0.000 0.000 0.19

⎤

⎦ εt−1ε
T
t−1

⎡

⎣
0.226 0.000 0.00
0.000 0.221 0.00
0.000 0.000 0.19

⎤

⎦

T

+
⎡

⎣
0.959 0.000 0.000
0.000 0.951 0.000
0.000 0.000 0.975

⎤

⎦ Ht−1

⎡

⎣
0.959 0.000 0.000
0.000 0.951 0.000
0.000 0.000 0.975

⎤

⎦

T

.
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Fig. 10 One step ahead out of sample forecasts for 100 days for BHP, RIO, and FMG data

While forecasting is not the focus of this research, it is useful to demonstrate
model forecasting. Assessing forecast performance in volatility models is somewhat
difficult in that what we are forecasting, conditional covariance or correlation, is unob-
served. Therefore we do not have true values to make comparisons against. A common
approach to testing forecast performance of M-GARCH models is to look at a Model
Confidence Set (Hansen et al. 2003, 2011; Laurent et al. 2012; Caporin and McAleer
2014). Thismethodology is usefulwhen one has a large selection of competingmodels.
The method unfortunately requires assessment of all competing models and compar-
isons made across several metrics.

A much simpler approach is to compare forecast conditional covariances or corre-
lations to estimates of their true values. In this case, estimates of their true values are
obtained by looking at a rollingwindow of the data and calculating sample covariances
and correlations. While calculations on a rolling window are suitable for determining
indicative values and trends, the values obtained are highly sensitive to the size of the
rolling window.

To assess forecast performance, one-step ahead forecasts are made out of sample
without updating the model each day for 100 days. The proportion of observations
that are within a 95% prediction interval are 90%, 94%, and 95% for BHP, RIO, and
FMG respectively leading to an overall mean proportion of 93%. A plot of the forecast
prediction intervals are shown in Fig. 10. For comparison, the forecasts from the fitted
model using maximum likelihood estimation through the mgarchBEKK package in R
resulted in 100%, 76%, and 74% of observations within the 95% prediction intervals
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for BHP, RIO, and FMG respectively and an overall percentage of 83%. It appears as
though the fitted model underestimates the conditional variance.

5 Concluding remarks

In this article, we have performed an analysis of M-GARCH-BEKK models from a
Bayesian perspective. The resulting estimation scheme combines parameter estimation
andmodel selection into a single task by including themodel variants of BEKKmodels
and the coefficient parameters as parameters to estimate.

We have obtained that: (i) the design of a posterior simulator using a combina-
tion of MCMC algorithms which includes Reversible Jump MCMC (RJMCMC) and
Delayed Rejection Metropolis-Hastings (DRMH) algorithms respectively was com-
putationally feasible to be implemented in R; (ii) the two-stage DRMH algorithm
successfully resulted in faster convergence of the MCMC chains; (iii) the proposed
method provides reliable estimates based on the performance of extensive simulation
studies; (iv) uncertainties surrounding all parameters including the model variants are
incorporated into the estimation procedure and finally (v) model selection has been
embedded into the proposed method using a Bayesian approach.

It was found to be critically important to obtain good proposal distribution location
parameters for the covariance coefficient parameter matrix for the M-GARCHmodel.
This was achieved through pilot runs, which if not long enough, suitable location
parameters were not always obtained. This meant that the algorithm was sometimes
unable to jump to the most suitable model for the conditional covariance. This was
much more important for real world data.

Due to the irregular shapes of the posterior distributions for theM-GARCHmodels,
there was a risk that someMCMC chains would become trapped within local maxima.
In order to reduce the chance of this occurring, the proposal variances needed to be
set as large as possible, while still trying to maintain reasonable acceptance rates. The
DRMH algorithm helped to alleviate this problem. A large number of iterations of the
final stage of the algorithm was required in order to ensure convergence of the MCMC
chains. Another reason for needing to run the algorithms for many iterations relates
to the fact that the MCMC chains for the GARCH coefficient parameter matrices are
highly correlated.

Consequently, this meant the run time of the algorithm was quite long, espe-
cially compared to the time taken to obtain maximum likelihood estimates from the
mgarchBEKK package in R. The comparison here is not a fair one though as our
procedure has been implemented in the statistical software package R without taking
measures to optimise the speed of the code. The mgarchBEKK package employs the
optim function in R which is coded in C, a significantly faster language.

For the purpose of comparing the speed of model selection and estimation from
a Bayesian perspective, keeping programming language constant, assume that one
wishes to extend the pool of candidate models to include other formulations of the
covariance equation or include other types of models such as DCC and CCC. A typical
approach to selecting a model such as DIC or Bayes Factors would require estimation
of all candidate models followed by a comparison of themodels using a chosenmetric.
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Using the RJMCMC algorithm requires a single estimation run to select the model
and estimate the parameters. If the time taken to complete the pilot runs is less than
the total time to estimate all of the candidate models, the algorithm presented here will
be faster. This is likely as the pilot runs are relatively short as they are only needed to
obtain location parameters.

Overall, the aims of the research were achieved, but some limitations and possible
areas for future extensions were identified. To speed up the computation time of the
algorithm, a faster programming language such as C or C++ should be used to improve
the run time. This forms part of the first authors current research.

While some unsophisticated adaptive procedures were implemented when coding
the algorithms, there are other, more effective adaptive techniques that would allow
automatic tuning of the acceptance rates within the algorithms. This would eliminate
the need for the user to control the acceptance rates by specifying the tuning parameters
of the algorithms.

Another extension would be to include more classes of models in the searches.
There are a plethora of time series models that could easily be incorporated into the
model indices. For example, asymmetric covariance equations could be added to the
index of possible models for the conditional covariance. A limitation of this research
and an area available for extension is that the BEKKmodel orders have been fixed such
that l = m = Q = 1. While this is common, there is very little literature exploring
the advantages of not employing this restriction.

Furthermore, the error distributions used throughout this paperwere themultivariate
Normal distributions. Changing these to multivariate t-distributions for which the
degrees of freedom are a parameter to be estimated would generalise the process even
further. Some financial time series would be better suited to models that incorporate a
fatter tailed error distribution.
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