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Abstract 

Aminoacyl-tRNA molecules deliver amino acids to the A-site of a translating ribosome. The 

availability of these tRNA molecules at the ribosome is crucial for the maintenance of optimal 

translation rates. The tRNAs that bind to the ribosome occur in ternary complexes with 

elongation factor proteins, and the diffusion of these protein complexes is affected by the 

cytoplasmic environment of cells. Cells are densely packed with macromolecules with 5-40% 

of their volume inaccessible for free diffusion, leading to excluded volume effects. Molecules 

inside cells also form short-lived clusters leading to further reduction of their diffusion. The 

extent to which these phenomena affect translation is not well understood. This study reports 

the use of a Brownian dynamics simulation approach to characterize the diffusion properties 

of tRNAs and ternary complexes in a model yeast cell environment. The protein composition 

of this environment was defined following a rigorous analysis of yeast proteomics datasets. 

The robustness of the Brownian dynamics approach suited for a study of this scale was 

investigated using an experimentally well-studied system comprising chymotrypsin inhibitor 2 

as tracer, and bovine serum albumin or lysozyme as crowders, with a focus on characterization 

of slow- and sub-diffusion. The findings of this study indicate that, under normal cell-like 

conditions, the diffusion of tRNAs and ternary complexes is reduced by ~7-fold (compared 

with dilute conditions), whilst the diffusion under simulated severe osmotic stress conditions 

showed 70-fold decrease. The molecules also exhibited sub-diffusive behaviour which was 

stronger in the presence of osmotic stress. Investigations into the diffusion in crowded protein 

solutions revealed that cage effect causes sub-diffusion, and microsecond-scale slow diffusion 

is caused by excluded volume effects. The findings of this study can be readily used to 

accurately predict protein translation dynamics, including the crucial process of tRNA delivery 

to the ribosome, under a variety of conditions. 
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Chapter 1 Introduction 

1.1 The molecular biology of gene expression 

The information necessary for survival and reproduction of living organisms is encoded in the 

sequence of nucleotides in the DNA. It is decoded as the sequence of amino acids in proteins, 

that govern the functioning of the cell in a process mediated by RNA. The first step in this 

process is termed ‘transcription’, in which the sequence information is copied onto an RNA 

molecule. RNA thus synthesized undergoes post-transcriptional modifications to produce 

messenger RNA (mRNA). Ribosomes translate the information in the mRNA in the presence 

of aminoacyl transfer RNAs (aa-tRNAs), in a process called ‘translation’, leading to the 

production of proteins. (Figure 1.1) A gene is the sequence of nucleotides in the DNA upon 

which RNA and eventually proteins are synthesized, and the process of formation of these 

molecules from a gene is called ‘gene expression’.1 Gene expression can therefore be regulated 

at the level of transcription and/or translation. The mechanism of regulation of translation can 

be understood by inspecting more closely its biochemistry.  

 

 

Figure 1.1 Schematic representation of transcription and translation processes. 

Translation is divided into three steps: initiation, elongation and termination. During the 

initiation step, a complex of the small ribosomal subunit, initiation factors and the initiator 

tRNA binds to the start codon on the mRNA located near its 5’ end. The large ribosomal subunit 
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then binds to this complex, releasing the initiation factors. There are three tRNA-binding sites 

on a ribosome, referred to as E, P, and A sites. An aminoacyl tRNA (aa-tRNA) transports the 

amino acid to the A-site of the ribosome, where it binds through its anti-codon to the mRNA 

codon at the A-site (acceptor site). The polypeptide-carrying tRNA is accommodated at the P-

site (peptidyl site) and during the elongation step the polypeptide is transferred to the aminoacyl 

tRNA at the A-site through the formation of a peptide bond between the new amino acid and 

the polypeptide chain. Following this, the ribosome ‘hops’ to the next codon on the mRNA 

and, as a result, the new codon now occupies the A-site. The P-site is occupied by the tRNA 

with the polypeptide chain, and the tRNA that just transferred the polypeptide chain leaves the 

ribosome from the E-site (exit site). Following their exit, tRNAs are covalently bonded to the 

corresponding amino acids in a reaction catalysed by aminoacyl tRNA synthetases, resulting 

in the formation of aa-tRNAs. The elongation step takes place in a recursive manner until the 

ribosome encounters a stop codon, following which the ribosome exits the mRNA at the 3’ 

end. (Figure 1.2) 
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Figure 1.2 Schematic representation of different steps in the translation process. It should 
be noted that the start/stop codons vary depending on the organism.  

1.2 The role of transfer RNAs as carriers of amino acids 

Transfer RNAs (tRNAs) play a crucial role in the elongation step of protein translation. A total 

of 64 types of triplet codons are present in mRNA, 61 of which code for amino acids and the 

rest act as stop codons. The 20 amino acids present in the cells are coded by these 61 codons. 

Unconventional (wobble) base pairing allows the 61 codons to be read by fewer tRNAs, which 
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amounts to 41 in the case of Saccharomyces cerevisiae.2 This results in different species of 

tRNAs carrying the same amino acid, and such tRNAs are termed isoacceptors.  

The concentration of different species of tRNAs in the cytoplasm is not the same.2 The rate at 

which a codon in mRNA is decoded is a function of the concentration of corresponding 

tRNAs.3,4 The concentration of tRNAs depends on the supply of tRNAs, maintained by their 

gene expression, and the demand for them, regulated by the codon composition of mRNAs 

present in the cytoplasm at that moment in time.2 In the case of ‘rare codons’, the concentration 

of required tRNAs is low, which causes ribosomal pausing or drop off.5,6 Rare codons can be 

replaced with synonymous codons, which translate to the same amino acid but make use of 

isoacceptors that are more readily available to optimize translation rate. Such ‘codon 

optimization’ has applications in gene therapy and nucleic acid based vaccines.7 Highly 

expressed genes in a functional class were shown to have fewer rare codons in a genome level 

study of protein translation.8 It was also observed that polyglutamine-associated mRNAs, 

which repeatedly call for a single species of tRNA and deplete the corresponding tRNA, are 

associated with Huntington’s disease.9 The timely supply of aa-tRNAs is thus a crucial aspect 

of translation.  

The aa-tRNAs reach the A-site in the form of a ternary complex which consists of translational 

elongation factor (EF1α), aa-tRNA, and GTP. Three types of such complexes arrive at the A-

site classified based on the degree of codon-anticodon complementarity; (i) complexes with 

aa-tRNAs showing complementarity (including wobble pairing) termed ‘cognate complexes’, 

(ii) complexes with a lower degree of complementarity called ‘near-cognate complexes’, (iii) 

complexes with no complementarity termed ‘non-cognate complexes’. Ribosomes read and 

filter these complexes with a high degree of accuracy at an error rate of 10-5 to 10-3 across 

prokaryotes and eukaryotes.10 The kinetics of the steps between the binding of ternary 

complexes and the formation of peptide bond regulate the error rates. More specifically, the 

hydrolysis of GTP by the elongation factor (in the ternary complex) and the accommodation 

of aa-tRNA following this hydrolysis exhibit widely different kinetics for cognate and near-

cognate complexes.11 Mismatches at a level of single base-pair result in a 1000-fold increase 

in the rate of disassociation of ternary complexes.11 Although the error rates are low, due to the 

sheer number of tRNA reading events occurring in a cell, there is at least one mistranslated 

amino acid in 15% of the average-sized proteins. Erroneously translated proteins exhibit 
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misfolding and may lead to cell death.12 Therefore, availability of cognate ternary complexes 

in adequate numbers at the A-site is crucial. 

1.3 tRNA diffusion and channelling: the journey between the 
tRNA synthetase and the ribosome 

Once the aa-tRNA is delivered, the complex of EF1α and GDP exits the ribosomal A-site. The 

tRNAs exiting the ribosome, following the delivery of an amino acid, need to reach the 

synthetases to undergo aminoacylation. In a cascade of reactions executed by multiple enzymes 

(or multiple reaction centres in a single molecule), the transport of the intermediates between 

the reaction centres often occurs in a controlled manner. This is in contrast to the expected free 

diffusion of intermediates into bulk environment. Such controlled transfer of intermediates 

between the enzymes is termed ‘channelling’. Intramolecular channelling is known to occur 

via electrostatic guidance in Krebs cycle13 and through intramolecular tunnels during the 

transport of ammonia, aldehydes, and carbamates14. Spatial proximity of the reacting enzymes 

is also shown to increase reaction rates.15 This occurs when the products of the first reaction 

do not diffuse fast (compared with their production rate) leading to increase in their local 

concentration, and the presence of the second enzyme in the proximity leads to higher reaction 

rates.14 This type of channelling is controlled by the diffusion rates and the environment of 

diffusing particle. A similar channelling mechanism has been postulated to explain the delivery 

of ternary complexes to the A-site, delivery of uncharged tRNAs to the synthetases and the 

subsequent formation of ternary complexes.  

A series of experiments conducted by Deutscher and co-workers provided evidence for ‘tRNA 

channelling’ in mammalian cells. In the first set of experiments, 3H-labelled aa-tRNAs were 

transfected into permeabilized CHO cells along with free 14C-labelled amino acids and, due to 

significantly low incorporation of 3H in the proteins compared with 14C, it was concluded that 

the aa-tRNAs are transferred to the ribosome through a channelling mechanism.16 The second 

set of experiments indicated that the exogenous uncharged tRNAs do not enter the tRNA 

channelling cycle, which was inferred based on their inability to affect protein synthesis.17 In 

both sets of experiments protein synthesis was observed for ~20 min. However, recent single 

cell level observations at time scales of ~7h following transfection and employing fluorescent 

labelled uncharged tRNAs transfected into CHO cells, indicated that the exogenous tRNAs co-

localize with the translation machinery and participate in the translation process.18 In a 
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sequence analysis study it is found that the consecutive occurrence of an amino acid is coded 

to use the same tRNA repeatedly in a phenomenon termed ‘codon auto-correlation’.19 Although 

tRNA channelling can be inferred from codon auto-correlation in Saccharomyces cerevisiae19, 

there is no direct evidence for channelling in lower eukaryotes.  Although there is evidence for 

channelling in higher eukaryotes, similar detailed data is not available for lower eukaryotes. 

Secondly, the more recent experiments on the CHO cells, as described above, indicate that 

exogenous tRNAs can enter the elongation cycle hinting at the possibility of diffusion of 

tRNAs into bulk. The simple dichotomy that arises here is the presence or absence of 

channelling. In the presence of channelling, the enzymes involved are in the proximity of each 

other, and slower diffusion of molecules ensures that the intermediates reach the target 

enzymes before leaking into the bulk. Therefore, diffusion of tRNAs and ternary complexes 

plays a crucial role in the manifestation of channelling. In the other scenario, free diffusion of 

these molecules occurs resulting in a similar important role for the diffusion of tRNAs and their 

complexes. (Figure 1.3) 

 

Figure 1.3 Schematic representing the channelling process postulated in eukaryotes. 
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Diffusion in vivo is different from that in dilute conditions. Cells are densely packed with 

macromolecules, typically at a concentration of 100-450g/L. About 5-40% of the cellular 

volume is occupied by macromolecules, leading to so-called excluded volume effects.20 The 

extent of ‘macromolecular crowding’ depends on the cell type, its volume, growth rate, and 

differentiation stage.21 As a result of excluded volume effects, the diffusion properties of 

metabolites and macromolecules are significantly affected. Molecular simulation studies on 

crowded protein solutions have shown that the solvent is mostly confined to first and second 

solvation layers.22 It is believed that this leads to an altered dielectric response in water22, which 

in turn affects molecular interactions. Such change in dielectric constant has been observed 

experimentally in yeast cells.23 Excluded volume effects and altered interactions as a 

consequence of macromolecular crowding affect reaction processes in cells. For example, the 

binding and release of the substrate of alcohol dehydrogenase is shown to be affected by 

crowding.24 The effect of crowding on the diffusion properties of barnase and barstar explains 

their association.25 The diffusion coefficient of green fluorescent protein (GFP) has been 

reported to be a magnitude lower in vivo compared with that in an infinitely dilute system.26 

Multiple molecular simulation and experimental studies have shown that diffusion properties 

are significantly affected, leading to slow- and sub-diffusion due to crowding. This will be 

discussed in detail in Chapter 2.  

Depending on its type, there are 76-90 nucleotides in a tRNA molecule.27 The Stokes radius of 

the ternary complex calculated using HYDROPRO28 is nearly 28 Å. In HYDROPRO, the 

surface of the molecule is represented as a shell of beads and the diffusion properties are 

calculated, in the presence of a medium with appropriate viscosity, using this simplified 

system.29 Given these properties of the ternary complex and tRNAs, crowding is expected to 

significantly affect their diffusion in cells. The in vivo diffusion coefficient of tRNA has been 

measured using fluorescent labelled tRNAs in E.coli. The position of a single tRNA particle 

was captured every 5 ms over a period of 1.5 s, based on which the diffusion coefficient of free 

tRNAs (unbound to elongation factors or ribosomes) was measured to be 8.1 µm2/s.30 This is 

nearly ten times slower than the diffusion coefficients calculated using HYDROPRO under 

dilute conditions.31 Due to the timescales explored, these experiments do not capture key 

characteristics, such as the sub-diffusion typically observed in crowded protein solutions at 

sub-microsecond scales.32,33 The kinetic properties, of translation in E. coli, derived assuming 

diffusion-controlled binding of ternary complexes to the ribosome, match closely to those 

obtained from experimental data.34 However, a mechanistic approach detailing the role of 
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crowding in a more specific manner is necessary to characterize these effects quantitatively. In 

eukaryotes, however, these effects have not been characterized either at a mechanistic or 

phenomenological level of detail.  

1.4 Mathematical models of translation 

Several mathematical models have been developed to explain translation dynamics in a 

quantitative manner.2,8,35–40 Translation is often modelled as a totally asymmetric simple 

exclusion process (TASEP), in which mRNA is treated as a unidimensional lattice with the 

lattice sites corresponding to codons. The ribosomes enter the lattice at a certain rate, move 

stochastically along the lattice during the elongation process at a certain hopping rate (k), 

before exiting the lattice. The particles can only enter a lattice site that is unoccupied, and the 

particles cannot overtake each other during their unidirectional movement across the lattice. In 

the mean-field approach, which is an approximation, the states of individual lattice sites, 

represented by the presence or absence of particles in them, are assumed to be uncorrelated. 

Gillespie’s stochastic simulation algorithm41, is often used to simulate this process 

numerically.42 The conclusions of numerical simulations and mean-field approach indicate the 

presence of phases that depend on the rates of entry(α), exit(β), and hopping (k) of the particles. 

The phase of the system is defined by its characteristic current and density of the particles on 

the lattice. The rate of protein synthesis is equivalent to the current on the lattice. There are 

four phases identified in a simple TASEP model, and assuming the hopping rate (k) to be 

constant, the following conclusions can be drawn. In the low-density (LD) phase the entry rate 

is low (α < k/2) and the exit rate is greater than the entry rate (α< β). The low entry rate and 

higher exit rate lead to low density (average density=α/k) of particles on the lattice. The current 

in this phase is α(1-α/k). In high-density (HD) phase, exit rate is low (β<k/2) and the exit rate 

is lower than the entry rate (β< α) leading to high particle density on the lattice. The average 

density and current in this phase are (1-β/k) and β(1-β/k) respectively. Maximal current (MC) 

phase is observed for α, β> k/2, where the density of the lattice is 0.5. Finally, shock phase is 

observed when α=β and α, β< k/2. (Figure 1.4).  The results of the mean-field approximation 

can be shown to be exact in the limit of an infinite lattice.43  
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Figure 1.4 Density(rho) of the particles calculated using numerical simulations at different 
entry (α) and exit (β) rates. The thick lines represent boundaries calculated from the mean-field 
approach. 

This simple TASEP model can be improved further to represent the translation process more 

accurately. For example, ribosomes wait for aa-tRNAs upon reaching A-site, and this waiting 

time is accounted for in a two-state model.38 The model has been further improved by treating 

synthetase activity explicitly and its consequences on the supply of aa-tRNAs.2 The translating 

ribosomes can also erroneously drop-off before reaching the non-sense codon towards the 3’ 

end of the mRNA.44 Some mathematical modelling approaches also account for such drop-off 

events while estimating the translation rates.36,40,44 Ribosomes exiting the mRNA re-enter it by 

binding at the 5’ end in a process termed ‘ribosome recycling’, which is often seen in 

eukaryotes.44 Such recycling of ribosomes was also included in the modelling approaches.44,45 

The dynamics of simultaneous translation of multiple lattices competing for shared resources 

have also been characterized.42  
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1.5 Considering the role of tRNA diffusion in models of 
translation 

Despite these improvements in the mathematical description of translation, the crucial role 

played by macromolecular crowding in regulating translation is not captured in these 

approaches. In an approach developed for yeast by Shah et al., tRNA and ribosomal diffusion 

are accounted for in an implicit manner while calculating the probability of initiation and 

elongation.46 The diffusion coefficients31 used in this model were computed for dilute 

conditions, hence not accounting for crowding effects. The ternary complexes are treated 

equivalently to free tRNAs and ternary complex formation dynamics are not treated 

explicitly.46 The model proposed for E. coli by Zhang et al. is by far the best approach to 

describe the role of crowding on the diffusion of ternary complexes and the subsequent effects 

on translation. In their stochastic simulations, diffusion coefficients estimated based on 

molecular weight under crowded conditions are used to simulate the Brownian random walk 

of ternary complexes. Use of this approach indicated that local depletion of ternary complexes, 

caused by repeated request for a particular tRNA molecule, is a function of their diffusion 

coefficient, which in itself is affected by crowding. The global depletion induced by crowding, 

through the restricted diffusion of ternary complexes, was also shown to have a significant 

effect on translation rates.40 However, since crowding effects are not treated explicitly, sub-

diffusion observed in E.coli47 is unaccounted for in these simulations.  

In summary, the mathematical modelling approaches developed so far for translation have not 

accounted properly for the effects of macromolecular crowding in eukaryotes. Some of the 

models proposed for bacteria underline the importance of crowding in regulating translation 

dynamics. However, it is important to note that these models do not take into account the true 

complexity of the problem and fail to capture sub-diffusion potentially arising from crowding. 

A comprehensive understanding of the diffusion properties of ternary complexes and tRNAs 

is an essential first step to building mathematical models that account for macromolecular 

crowding effects on translation dynamics.  
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1.6 Investigating the role of tRNA diffusion and channelling in 
translation using molecular dynamics simulation 

There are no in vivo, in vitro or in silico studies that have characterized the diffusion properties 

of eukaryotic ternary complexes or tRNAs taking into consideration the macromolecular 

crowding effect. tRNAs inside cells exist as free molecules or bound as ternary complexes or 

bound to ribosomes, and as a result of this it is not easy to experimentally characterize the 

diffusion properties of tRNAs at the resolution of individual complexes. Moreover, key 

properties like sub-diffusion, usually observed at sub-microsecond timescales, cannot be easily 

captured in experiments. A computational approach employing molecular dynamics (MD) 

simulation can capture crowding effects on tRNA molecules and their complexes. The 

timescales explored in MD simulations enable the study of sub-microsecond scale diffusion 

phenomena. A precise definition of the molecular simulation environment in which the 

diffusion properties of tRNA complexes are to be studied is an important prerequisite for MD 

simulation studies. Such a model cytoplasm system is not readily available for eukaryotes. 

Proteins and nucleic acids predominantly contribute to macromolecular crowding in the 

cytoplasm and characterization of diffusion properties in crowded systems requires simulation 

times of the order of a few microseconds. An MD simulation approach that can accommodate 

these two criteria is another prerequisite.  

1.7 Aims of the study 

The effect of macromolecular crowding on the diffusion of tRNAs and ternary complexes in 

eukaryotes is not well understood. A model yeast cytoplasmic environment that is essential to 

accurately characterize the diffusion properties using a molecular dynamics simulation 

approach is not available in literature. The origin of altered diffusion properties like slow and 

sub-diffusion in crowded conditions needs further investigation. In this study the diffusion 

properties of eukaryotic ternary complexes and tRNAs were characterized using yeast 

cytoplasm as the model system. Simulation of diffusional association (SDA)48 was chosen as 

the appropriate MD simulation approach. As SDA (with soft-core repulsive, electrostatic 

desolvation, hydrophobic desolvation, and electrostatic energy terms) had never been tested 

before for a crowded environment with more than one type of protein solute, its robustness for 

simulating tens of solute species was carefully assessed. A yeast cytoplasm model was defined 
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following a rigorous statistical analysis of available proteomics datasets and single-cell 

observations. The diffusion properties affected by altered crowding, as a result of stimuli like 

osmotic stress, were studied by simulating a reduced model cytoplasm at high concentrations 

of proteins.   

1.8 Structure of the thesis 

This thesis is organized as follows.  

Chapter 1: Introduction (current chapter)  

Chapter 2 contains a detailed literature review of the studies on diffusion in the crowded 

environment (both experimental and computational). Various models of sub-diffusion and their 

properties are also discussed here.  

Chapter 3 contains the details of the investigations into crowded protein solutions. The causal 

relations of slow and sub-diffusion in protein solutions are characterized in this chapter. The 

robustness of SDA in predicting these properties in solutions with multiple types of protein 

solutes is carefully established.  

Chapter 4 details the process of development of minimal contents of the model yeast cytoplasm. 

Several yeast proteomic datasets were analysed carefully to determine the species and numbers 

of crowders to be incorporated in the model cytoplasm.   

Chapter 5 contains the details of pre-processing of the yeast simulation cell contents and the 

results of the simulations.  

Chapter 6 outlines the conclusions and future directions.  
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Chapter 2 Literature review 

The research described in this thesis aimed to characterize the diffusion properties of tRNAs 

and ternary complexes under crowded conditions. The diffusion properties under crowded 

conditions are altered, resulting in slow and sub-diffusive behaviour. There are multiple 

explanations for both of these phenomena. More specifically, in the case of sub-diffusion, an 

understanding of the underlying stochastic process that mediate sub-diffusion is necessary to 

correctly interpret the data. The properties of different stochastic models cannot be used 

interchangeably. Therefore, in order to understand sub-diffusion in tRNAs and their 

complexes, an understanding of the features of such sub-diffusion is necessary.  

Diffusion under crowded conditions has been characterized using in vivo, in vitro, and in silico 

approaches. Various experimental techniques have been employed to study diffusion and they 

vary in terms of time resolution, invasiveness of the procedure, and the ability to characterize 

both slow and sub-diffusion. On the other hand, diffusion can be characterized by molecular 

simulation approaches, which can also provide valuable insights into the causal relations 

behind the altered diffusion properties.  

In this chapter, a brief recapitulation of the theory of diffusion and a review of models of sub-

diffusion that can potentially be used to characterize the diffusion of tRNAs and ternary 

complexes is provided in the first section. The second section deals with experimental 

approaches used to characterize diffusion in vitro and in vivo. These approaches are reviewed 

with a focus on their suitability for characterizing the diffusion properties of tRNAs. In the 

final section computational studies of diffusion in monodisperse and polydisperse crowded 

solutions are reviewed, identifying gaps in knowledge.  

2.1 Theory of diffusion and sub-diffusion 

Albert Einstein, in his seminal work on Brownian motion49, derived an equation for the 

diffusion coefficient of a particle in a system in dynamic equilibrium by balancing the flux due 

to diffusion and the flux due to a position-dependent force: 

𝐷𝐷 =  
𝑅𝑅𝑅𝑅
𝑁𝑁𝐴𝐴

 .
1

6𝜋𝜋𝜋𝜋𝜋𝜋
  

Equation 2.1 
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where ‘D’ is the diffusion coefficient, ‘R’ is gas constant, ‘NA’ is Avogadro’s constant, ‘η’ is 

coefficient of viscosity, ‘r’ is the radius of the particle, and ‘T’ is the temperature.  

While describing the irregular thermal motion of particles, Einstein derived a relation between 

the diffusion coefficient and the mean square displacement of a particle. Equation 2.2 describes 

this relation for a particle diffusing in three-dimensional space. The term on the left-hand side 

of the equation is called the mean squared displacement (MSD) 

 
< 𝑥𝑥2(𝑡𝑡) > = 6𝐷𝐷𝑡𝑡 

Equation 2.2 

The assumptions made in doing so are that 

 (i) the movement of a particle is independent of that of the other particles in the system, 

(ii) for a very small interval of time (compared with observation time) the consecutive 

displacements are independent of each other, 

(iii) the particle follows a mean free path during the aforementioned small interval of time and 

the displacement during this time is small, 

(iv) the distribution of displacements is symmetric i.e., the probabilities of displacements ‘x’ 

and ‘-x’ are the same. 

Anomalous diffusion, where Equation 2.2 takes a power law form given by,  

< 𝑥𝑥2(𝑡𝑡) > ~ 𝑡𝑡𝛼𝛼  
Equation 2.3 

arises when one/more of the above assumptions is/are not satisfied. Depending on the value of 

α, the anomalous diffusion behaviour is referred to as sub-diffusive (0<α<1.0) or super-

diffusive (α>1.0). In the context of biological systems, sub-diffusion can arise as a consequence 

of macromolecular crowding in cells. For example, sub-diffusion is observed in in vitro 

experiments of streptavidin50, in the in vivo studies of membrane proteins51, globular proteins 

in muscle cells52, and fluorescent labelled polymers microinjected into cells.53 Sub-diffusion 

can arise from different phenomena and multiple models (or their combinations) explain such 

anomalous behaviour. Some of the most popular models of sub-diffusion are discussed below.  
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2.1.1 Continuous time random walk (CTRW) 

In CTRW the particle or the entity under consideration takes steps of size ‘x’ that follow a 

distribution d(x) and waits for a time ‘τ’ between steps. The waiting time ‘τ’ is not a constant 

and is chosen from a distribution g(τ). 54,55 When the characteristic waiting time, given by <τ>, 

and the second moment of d(x) are finite, the diffusion is normal and the process is ergodic.56 

In an ergodic process, the ensemble average of a property (for example, MSD) is equal to its 

time average. However, when g(τ) decreases according to a power law for large values of τ, it 

results in sub-diffusive behaviour with weak ergodicity breaking.56 The waiting time(τ) varies 

between different visits of the same spatial point and this is called  annealing.57 The sub-

diffusion of nanoparticles in the cytosol of mammalian cells is explained by CTRW. The sub-

diffusion arises as a result of long-tailed waiting times arising from the non-specific 

interactions of the nanoparticles with the cytoplasmic components.58 

2.1.2 Fractional Brownian motion (fBm) and fractional Langevin equation motion 

fBm, developed by Mandelbrot and van Ness59, has been recently used to explain the diffusion 

behaviour in confined crowded environment60 and polysaccharide dextran  crowded 

solutions.61 The ‘fractional’ part of the fBm refers to the associated fractional Gaussian noise. 

In a discrete-time fBm, the total displacement of a particle at time ‘t’ is given by, xt= xt-1+ξt. ξt 

corresponds to fractional Gaussian noise, with zero mean, which is correlated according to the 

function62 given in Equation 2.4, 

𝐶𝐶(𝑗𝑗) =< 𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖+𝑗𝑗 >=
1
2
σ2�|𝑗𝑗 − 1|𝛽𝛽 − 2|𝑗𝑗|𝛽𝛽 + |𝑗𝑗 + 1|𝛽𝛽�  

Equation 2.4 

where ‘σ2’ is the variance of Gaussian noise distribution. fBm is a Gaussian process63 without 

ergodicity breaking,56 whereby the time averaged and ensemble averaged properties deviate 

from each other. The ensemble averaged MSD (EAMSD) is proportional to tβ where  ‘α’ in 

Equation 2.3 is equal to ‘β’. The nature of ‘β’ in Equation 2.4 determines if the system is 

persistent or anti-persistent. For β <1.0, the system is anti-persistent with C(j) being negative 

and when β >1.0 it is persistent with a positive C(j). Since the anomalous diffusion coefficient 

is equal to ‘β’, sub-diffusion in fBm is associated with an anti-persistent correlation function. 
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Recently, the behaviour of a particle executing fBm in the presence of reflective boundary at 

x=0, was characterized by Wada and Vojta.62 In their simulations, the particle is bound by a 

reflective wall and for α deviating from 1.0, non-Gaussian behaviour is observed in the 

displacement distribution. The simulations conducted by Guggenberger et al.,64 where a 

particle executing fBm in a finite interval, captured similar features. Figure 2.1 depicts the 

displacement distribution calculated for long time intervals, which shows deviations from 

Gaussian behaviour. These two examples show that although fBm is a Gaussian process, 

deviations from Gaussian are observed under certain conditions. 

Fractional Langevin motion on the other hand constitutes fractional Gaussian noise coupled 

with friction kernel as given by65 Equation 2.5 

𝑚𝑚
𝑑𝑑2𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡2

= −𝛾𝛾∗𝛤𝛤(𝛽𝛽 − 1)
𝑑𝑑2−𝛽𝛽𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡2−𝛽𝛽

+ 𝜋𝜋∗𝜉𝜉𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) 

Equation 2.5 

where γ* is the friction coefficient and η* is the noise amplitude. The equation considers that 

there are two forces acting on the particle: a frictional force and a force due to the Brownian 

motion of particles. The strength of the frictional force depends on the fractional derivative of 

the particle position with respect to time. EAMSD in the short time limit is given by56 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷~
𝑘𝑘𝐵𝐵𝑅𝑅𝑡𝑡2

𝑚𝑚
  

Equation 2.6 

where T is the temperature and ‘m’ is the mass of the particle. For long time limit however, the 

equation changes to56  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷~2𝑘𝑘𝐵𝐵𝑅𝑅(𝛤𝛤(𝛽𝛽 − 1)𝛾𝛾∗ )−1𝑡𝑡2−𝛽𝛽 
Equation 2.7 

which resembles Equation 2.3, where the anomalous diffusion coefficient α=2-β, such that the 

system shows sub-diffusive behaviour for 1< β <2, indicating that positive correlations in the 

fractional Gaussian noise give rise to sub-diffusion. This is in contrast to what is seen in fBm 

where an β>1.0 gives rise to super-diffusive behaviour. Some of the places where fractional 

Langevin equation is applied are, intramolecular motion in proteins, where the fluctuation of 
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the distance between an electron donor and acceptor pair is explained using FLE66, and the 

anomalous diffusion of lipid molecules in a bilayer.67 

 

Figure 2.1 The displacement distributions of the simulations conducted using fBm in a 
finite interval under (a) sub-diffusive, (b)normal diffusive and (c) super-diffusive conditions.  
A clear deviation from Gaussian distribution is observed for long time simulations. The solid 
lines represent ideal Gaussian distributions at corresponding times. This figure was taken from 
the work of Guggenberger et al.64 (doi: https://doi.org/10.1088/1367-2630/ab075f) 

2.1.3 Other models or combination of models of anomalous diffusion 

In contrast to fBm, ‘scaled Brownian motion’ and ‘heterogeneous diffusion process’, both 

show weak ergodicity breaking. In scaled Brownian motion the diffusion coefficient is 

modelled as a time varying quantity, whereas it is modelled as a space varying quantity in 

heterogeneous diffusion process.56 Interestingly, there were experimental observations 

depicting normal Brownian motion with non-Gaussian distribution of displacements.68 This 
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anomalous motion was later explained by invoking the concept of ‘diffusing diffusivity’, where 

the diffusion coefficient at every step is taken from a distribution indicating the random walk 

behaviour of diffusivity itself.69  

In their experimental observations on the diffusion of  insulin granules in vivo, Tabei et al.,57 

observed mixed features of fBm and CTRW. While the p-variation test,70 which is used to 

delineate fBm from CTRW, favoured fBm, the tests for ergodicity showed CTRW like 

behaviour. This mixed behaviour is explained by a unified model where the individual steps 

are generated using a correlation function similar to that of fBm and the waiting times are 

generated using a distribution that takes power law form like that of CTRW.57 The resulting 

model successfully explains the hybrid nature of the insulin granule diffusion observed in the 

experiments. A similar hybrid model combining diffusion on fractal like structures with CTRW 

was earlier proposed by Meroz et al.71 

In summary, sub-diffusion arises as a consequence of different processes. An understanding of 

the underlying model is essential before ergodicity or Gaussianity of the displacement 

distributions is assumed. The experimental or simulation data can be analysed keeping in mind 

the key features of these models which can provide crucial insights into the causal relations of 

sub-diffusion.  

2.2 Experimental approaches to characterizing diffusion under 
crowded conditions 

Diffusion under crowded conditions is characterized experimentally using different types of 

techniques that differ in terms of the nature of data acquired, invasiveness of the approach and 

the timescales explored. Some of the popular techniques are fluorescence correlation 

spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), nuclear magnetic 

resonance (NMR), neutron backscattering, and single particle tracking (SPT) using fluorescent 

probes. The techniques and some of their applications are described briefly in the sub-sections 

below.  

2.2.1 FRAP 

FRAP is one of the foremost techniques used to monitor diffusion in vivo. In this approach, a 

cell expressing a fluorescent molecule (like green fluorescent protein) is exposed to a beam of 
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high intensity light which results in the loss of fluorescent activity in the exposed area. The 

fluorescence in the photobleached area is recovered by the means of the diffusion of fluorescent 

molecules from unirradiated parts of the cell. The rate at which this recovery occurs is a 

measure of diffusion. The characteristic diffusion time, τD is extracted from the fluorescence 

recovery rate and is the time at which the fluorescence recovered is half the maximum 

fluorescence attained after bleaching. In the simplest case of diffusion in two dimensions, ‘τD’ 

is related to the diffusion coefficient(D) by the following equation72 (Equation 2.8): 

𝜏𝜏𝐷𝐷 =
𝜔𝜔2𝛾𝛾
4𝐷𝐷

   

Equation 2.8 

‘ω’ in Equation 2.8 corresponds to disc radius for laser beam with circular disc profile or half-

width at 1/e2 height for a beam with Gaussian intensity profile, and ‘γ' is the correction factor 

that accounts for the difference between the user-defined and effective bleaching.73 FRAP was 

later extended to study anomalous diffusion in crowded systems.74 Even with the most recent 

advances like modified Line-FRAP approach75, the lower limit in the timescales explored in 

FRAP is of the order of a few milliseconds. The time resolution can go up to one second 

depending on the microscope used.76 FRAP can be easily used to characterize diffusion in 

vitro75 or in vivo in membranes,77,78 nucleus,79,80 and cytosol.81,82   

2.2.2 FCS 

In FCS, the fluorescence intensity of tracer molecules is monitored as a function of time. The 

fluctuations in the fluorescence intensity, in the volume sampled by the beam, arise due to 

changes in the chemistry of the tracer and/or as a result of its translation motion. The 

autocorrelation of the intensity fluctuations, observed as a function of time, is calculated using 

Equation 2.983, 

𝐺𝐺(𝜏𝜏) =
〈𝛿𝛿𝛿𝛿(𝑡𝑡)𝛿𝛿𝛿𝛿(𝑡𝑡 + 𝜏𝜏)〉

〈𝛿𝛿(𝑡𝑡)2〉
  

Equation 2.9 

where I(t) corresponds to fluorescence intensity at time t and δI(t) is equal to I(t)-<I(t)>. The 

autocorrelation function calculated is fitted to a function that is dependent on ‘τD’ and using 
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Equation 2.10 for  ‘τD’, the diffusion coefficient can be calculated by substituting beam waist 

(which is half-width at 1/e2 height for a beam with Gaussian intensity profile)  for ‘ro’.83  

𝜏𝜏𝐷𝐷 =
𝜋𝜋𝑜𝑜2

4𝐷𝐷
  

Equation 2.10 

The function used to fit the autocorrelation data can be modified to accommodate anomalous 

diffusion. However, models corresponding to diffusion of multiple molecules also give rise to 

similar trends in the autocorrelation function, delineation of these two effects is therefore 

challenging.83 In contrast to FRAP, the timescales explored in FCS are of the order of 

microseconds. The lower limit on the timescales is imposed by the deadtime of the detector 

and afterpulsing.83 FCS has been used to study diffusion in vitro in crowded protein solutions33 

and in vivo.84,85  

2.2.3 Pulsed field gradient NMR 

Pulsed field gradient is used to study rotational and translational diffusion properties of 

molecules in crowded protein solutions.86,87 A gradient pulse is used for spin spatial encoding, 

which creates a position dependent phase shift in the spins. The molecules are then allowed to 

diffuse for a period called ‘diffusion time’ and this is followed by a decoding pulse that is 

applied to nullify the phase shift of spins. In an ideal scenario where there is no diffusion the 

decoding pulse removes the phase shift perfectly, however due to diffusion of the molecules 

the phases are not reset, such difference in the expected and observed nature of spins acts as 

the signal for molecular motion. The ‘diffusion time’ allotted varies between a few 

milliseconds to seconds which is the timescale of diffusion explored in these experiments.88 A 

more detailed description of these experiments is available in references 89,90.  

2.2.4 Neutron backscattering 

Neutron backscattering was employed to study the diffusion properties of bovine serum 

albumin (BSA)91,92 and immunoglobulin tracers in the cell lysate solutions.93 The set up 

requires deuterated crowding environment in which the tracer diffusion is studied. The relation 

between the intensity of the signal and energy (ω) is given by a scattering function. The 

scattering function may vary with respect to the magnitude of the scattering vector.93 The 

scattering vector is the vector difference between the scattered wave vector and the incident 
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wave vector.94 The scattering function obtained from the experiments can be expressed as a 

sum of three Lorentzian functions, corresponding to the internal motion of molecules (fast 

process), diffusion (slow process) and solvent contribution.93 The width of the Lorentzian 

corresponding to diffusion provides information about the diffusion coefficient. The slope of 

the curve between the ‘square of the scattering vector’ and the ‘width of the Lorentzian’ is 

equal to the diffusion coefficient. 92,93 The deviations from the linearity of this curve are used 

to infer anomalous diffusion.92 The timescales accessible vary from picoseconds to 

nanoseconds,93 which is a lot smaller than that of the other techniques explored in this section.  

2.2.5 Single particle tracking (SPT) 

Single particle tracking is the most straightforward technique to measure diffusion coefficients 

and anomalous diffusion in cells. The technique dates back to Nordlund’s observations, in 

1914, leading to the collection of timeseries data on the motion of mercury droplets.56 In recent 

times, single particle tracking typically involves fluorescence tagging of the target molecule 

and following its motion inside the living cells.95 The technique has been applied to study the 

diffusion properties of tRNAs inside bacterial cells.30 In this experiment, fluorescent labelled 

tRNA were transfected into the E.coli cells; tracking them (as shown in Figure 2.2) revealed a 

bimodal distribution of the diffusion coefficients. The authors attribute these diffusion 

coefficients to free tRNAs and tRNAs bound to ribosomes. The timescales explored in these 

simulations are of the order of milliseconds to seconds.  
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Figure 2.2 The trajectories of tRNAs in E.coli cells revealed from the tracking of 
fluorescently labelled tRNAs is shown in palette ‘a’ and palette ‘c’ indicates that the 
distribution of apparent diffusion coefficient arises from the diffusion properties of two species, 
the red line corresponding to ribosome bound slow species and blue line corresponds to fast-
diffusing, presumably unbound tRNAs. This figure is taken from the work of Plochowietz et 
al.30 (doi: https://doi.org/10.1093/nar/gkw787) 

2.2.6 Discussion  

The methods described above were used to describe the slow diffusion of proteins and 

polymers under a variety of crowded conditions (both in vivo and in vitro). However, the time 

scales explored in each of these methods varied. While FRAP, SPT, and pulsed field gradient 

NMR allowed exploration of milliseconds to second timescales, FCS and neutron 

backscattering facilitated exploration of phenomena at the microsecond and nanosecond time 

scales, respectively.  

Konopka et al. investigated the diffusion properties of GFP in bacterial cells adapted to high 

osmolality conditions, and also cells that are subjected to plasmolysis (using NaCl) with the 

help of FRAP. Their experiments showed that the diffusion of GFP, under the highly crowded 

conditions of plasmolyzed cells, reduced by 70 times as the volume fraction of the 

macromolecules increased from 0.16 to 0.33.96 FRAP has been extended to study diffusion in 

three dimensions where a volume of the sample is photobleached.97 This technique was used 
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to study the anomalous diffusion of GFP in HeLa cells. While the diffusion of GFP in 

phosphate buffered saline and glycerol showed normal behaviour, anomalous diffusion was 

observed in vivo. This anomalous diffusion was attributed to the largely immobile obstacles 

present in the cells.97 However, it is important to note that the FRAP signal obtained as a result 

of the reversible nature of photobleaching is similar to the one obtained for a fluorophore 

exhibiting anomalous diffusion.97 Therefore care must be taken when inferring anomalous 

diffusion from FRAP experiments. The in vivo diffusion properties of the microinjected dextran 

molecules, studied using FCS, indicated that anomalous sub-diffusion in cells exists even after 

the disruption of cytoskeletal elements.98 Variable-length scale FCS has been used to 

characterize the nature of sub-diffusion in agarose gels and dextran. While the sub-diffusion in 

agarose gels exhibited non-Gaussian displacements, Gaussian sub-diffusion was observed in 

dextran solutions.99 However, sub-diffusion that may arise at sub-microsecond scales as shown 

in the simulations of Weiss et al.98 cannot be captured by FRAP or FCS. The same holds true 

for SPT or pulsed field gradient based studies due to the lower limit on the accessible 

timescales.  

Although most of the SPT approaches are confined to studying motion in two dimensions, 

recent advances in SPT like 3D-SMART100 facilitated investigations of low concentration BSA 

solutions in three dimensions. Similar 3D SPT approaches like MINFLUX allowed monitoring 

the x, y, and z coordinates of a molecule in vivo.101 Inferring sub-diffusion in SPT studies is 

straightforward, where the MSD calculated from the trajectory can be used to estimate the α-

exponent. Autofluorescence of molecules (like elastin102) poses a challenge while studying the 

in vivo diffusion using FRAP, FCS or SPT (with fluorescently labelled probe). Neutron 

backscattering, on the other hand, does not have this drawback and allows characterization of 

sub-microsecond scale sub-diffusion. However, the upper limit for timescales monitored in this 

approach is of the order of nanoseconds.93  

Pulsed-field gradient NMR was used to study the diffusion properties of CI2 in the presence of 

BSA, lysozyme, ovalbumin, ficoll, glycerol, and cell lysates. The diffusion of properties of CI2 

in the presence of protein crowders resembled that of cell lysates, which was not the case for 

the polymer crowders.87 The diffusion of CI2 was measured in the presence of 50-300 g/L 

concentrations of the protein crowders (lysozyme, BSA and ovalbumin). However, the 

mechanism behind the slow-diffusion observed in these experiments, in the time scale of 

milliseconds to seconds, is not well understood. There are multiple experimental techniques 
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that can be potentially employed to study the diffusion properties of tRNAs and ternary 

complexes. The timescales of these techniques vary as described above and a single experiment 

that can monitor the diffusion properties at the order of few nanoseconds as well as few 

microseconds is not readily available. This is necessary to investigate sub-microsecond scale 

anomalous diffusion associated with macromolecules in highly crowded environments.33 

Secondly, a novel approach needs to be developed to track both tRNAs and ternary complexes, 

as the ternary complexes lead to the formation of individual tRNAs and vice-versa, tracking 

them separately in vivo is a challenge. Although the experimental approaches provide valuable 

insights into the diffusion behaviour of these molecules, the causal relations, in terms of 

molecular interactions, of slow diffusion or sub-diffusion that might arise in these molecules 

cannot be easily understood with experimental approaches alone. 

2.3 Computational approaches to characterizing diffusion under 
crowded conditions 

Diffusion can be studied computationally using molecular dynamics (MD) simulations. 

Computational approaches provide insights into the phenomena occurring at timescales that 

are inaccessible to experiments. Moreover, computational studies also enable detailed 

investigations into the molecular processes that underlie modified diffusion characteristics. 

Computationally, diffusion in monodisperse solutions is studied extensively using protein or 

polymer crowders. Such studies, as detailed below, provide key insights into the causal 

relations of modified diffusion characteristics. Fewer studies looked into the effects of 

polydisperse media like cytosol. The first sub-section deals with computational studies of 

mono- or bi-disperse crowded media with a focus on understanding the role of molecular 

interactions and excluded volume effects. In the second sub-section, computational studies on 

cytosol like crowding are reviewed. This part of the review focuses on the characterization of 

the model cytosol system, details of the simulation approach, and the key findings of the 

studies. This is followed by a short discussion delineating the gaps in the current understanding 

while reflecting on the agreement/disagreement between different approaches. 

2.3.1 Macromolecular crowding and diffusion 

Crowding effect is studied computationally using different levels of description of the 

crowders. The entire protein or polymer crowder molecule can be represented as a single 
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sphere, and the properties of such a sphere remain the same across its surface. However, since 

the properties of a molecule, such as electrostatic potential, vary across its surface, this can be 

captured by embedding beads on the surface of the sphere. Proteins can also be coarse grained 

as a chain of beads, or a few atoms in a residue can be combined to form a bead whose 

characteristics are specific to the group of atoms. For example, Cheung et al. and Minh et al. 

used a spherical description of the crowders to study the properties of WW domain103 and HIV 

protease104 respectively. A similar crowder representation was used by Oh et al. to study the 

properties of polymers in the environment of crowders of different sizes.105 The crowder 

particles are represented as spheres with beads in Elcock’s studies on protein trapped in GroEL 

cage106, Kurniawan et al.’s studies on the folding kinetics of β-hairpin,107  and Trovato et al.’s 

studies on bacterial cytoplasm.108 A combined approach with both coarse-grained and atomistic 

level of detail is employed by O’Brien et al. in their studies on the effect of nanoparticles on 

amyloidogenic proteins,109 and in the simulations of trp-cage by Bille et al.110 Some of the 

studies32,33,111–114 conducted at atomistic level of detail focussed on the mechanisms underlying 

the diffusion behaviour observed in crowded systems. 

Feig et al. have studied the diffusion properties of chymotrypsin inhibitor 2 (CI2) in the 

presence of bovine serum albumin (BSA) and lysozyme (LYS). The all-atom simulations with 

explicit solvent were set up with one molecule of CI2 and 8 molecules of the crowder at a 

concentration of 100 g/L.32 Based on these simulations, run for 117 ns (CI2 in BSA) and 244 

ns (CI2 in LYS), it is inferred that LYS interacts preferably with CI2 whereas BSA molecules 

mostly interact with each other. This knowledge is then used to explain the sub-diffusion of 

CI2 in the presence of BSA, and predominantly normal diffusion in the presence of LYS. The 

absence of extensive interactions between CI2 and BSA allows the manifestation of cage 

effects leading to anomalous diffusion.32 In their all-atom simulations with villin, Nawrocki et 

al115 explained the slow-diffusion observed in the crowded solutions by invoking the formation 

of transient clusters. The simulations were set up at different concentrations of villin and the 

maximum number of villins in the simulation cell is 64. The composition of clusters of different 

sizes in the simulations is calculated. The weighted-average of the diffusion coefficients of the 

representative clusters, calculated using HYDROPRO28, was used to calculate the overall 

diffusion coefficients of villins. The agreement between the directly measured diffusion 

coefficients and those calculated from clusters showed high correspondence, reinforcing the 

role of transient clusters in slow diffusion. Similarly, in the simulations conducted by Bulow 

et al.,113 dynamic cluster formation explains the slow diffusion in the dense protein solutions 



26 

of ubiquitin, third IgG-binding domain of protein G, villin head piece, and lysozyme. These 

monodisperse-all-atom simulations were performed at different concentrations of the solute 

with a maximum concentration of 200 g/L. It is important to note that in all of the above 

simulations, the diffusion properties investigated are in the time scales of few tens of 

nanoseconds.  

On the other hand, atomistic detailed simulations conducted by Mereghetti et al111,112,116 and 

Balbo et al.33 explored the diffusion properties of crowded protein solutions in the microsecond 

timescales. The motion of macromolecules in the solution results in flows of solvent molecules. 

This movement of solvent molecules results in the movement of solutes in the vicinity. This 

coupling of the movements of macromolecules is termed ‘hydrodynamic interactions’ between 

the molecules. A mean-field approach was used to treat hydrodynamic interactions in these 

simulations. In the simulations by Mereghetti et al., the observed diffusion properties of 

lysozyme (at <60 g/L)  agree well with that of a theoretical model that does not invoke cluster 

formation.116 Based on their simulations with highly crowded myoglobin, hemoglobin A and 

hemoglobin S, it was concluded that shape effects, excluded volume effects, and hydrodynamic 

interactions play a major role in the slowing of diffusion. The simulations on haemoglobin A 

and IgG show that the absence of hydrodynamic interactions in the former resulted in 

deviations between the predicted and experimental diffusion coefficients, whereas the 

simulations of IgG did not show such behaviour.111 This indicates that the importance of 

different types of interactions is dependent on the nature of the solute under consideration. In 

another simulation study with BSA and IgG by Balbo et al., transient anomalous diffusion was 

observed in the sub-microsecond time scales in highly concentrated solutions. The simulations 

conducted in the absence and presence of attractive forces showed that the sub-diffusion is less 

pronounced in the latter due to the formation of transient oligomers.33  

The causal relations of this sub-diffusion occurring at the given timescales (in Feig et al. (2012) 

and Balbo et al. (2013)) have not been thoroughly investigated. Given that long-time diffusion 

coefficients are mostly affected by excluded volume effects, the role played by transient 

clusters or dynamic clusters needs to be further investigated in a manner specific to the protein 

type. The role played by the transient clusters in inducing or mitigating the anomalous sub-

diffusive behaviour needs to be thoroughly investigated. The simulations described above deal 

with solutions of one or two protein types, an extensive review of the studies into the 

polydisperse, cytoplasm-like, crowded solutions is given below.  
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2.3.2 Cytosol like crowding and its effects 

In this sub-section, the simulations conducted with model cytoplasm and the findings of these 

simulation studies are presented. This is followed by a discussion comparing the different types 

of simulation approaches, their evolution over time, and their limitations.   

2.3.2.1 The Bicout and Field simulation approach 

In 1995, Bicout and Field studied the effects of a polydisperse crowded medium using a 

computational approach for the first time.117 Ribosomes, proteins, tRNAs and mRNAs were 

considered as the main constituents of their model cytoplasm, the composition of which is 

based on the details provided in Goodsell’s paper118 aptly titled, ‘Inside a living cell’. A total 

of 12 ribosomes, 188 proteins, and 136 tRNAs, eventually chosen as the major ingredients, 

were represented as spherical particles. The densities of the atom types, hydrogen, carbon, 

nitrogen, oxygen and phosphorus were considered for calculating the interaction energies. All 

the proteins are treated as the same and therefore have the same atom densities. Such atom 

densities are also defined for tRNAs and ribosomes. In addition to this, the particles belonging 

to tRNAs, protein and ribosome molecules have different radii, diffusion coefficients, and mass 

density. The interaction energy between two particles is given as the sum of the Lennard-Jones 

and electrostatic term. Repulsive and dispersive interaction energy term between particles ‘i’ 

and ‘j’ is given by Lennard-Jones like potential. (Equation 2.11)  

𝜀𝜀𝑖𝑖𝑗𝑗
𝐿𝐿𝐿𝐿 = �𝑑𝑑𝜋𝜋𝑖𝑖 �𝑑𝑑𝜋𝜋𝑗𝑗  (

𝐸𝐸𝑖𝑖𝑗𝑗
𝐿𝐿𝐿𝐿

𝜋𝜋𝑖𝑖𝑗𝑗12
− 2.

𝐵𝐵𝑖𝑖𝑗𝑗
𝐿𝐿𝐿𝐿

𝜋𝜋𝑖𝑖𝑗𝑗6
)  

Equation 2.11 

Where Aij takes the form, 

𝐸𝐸𝑘𝑘𝑘𝑘 = ��𝜌𝜌𝑘𝑘𝛼𝛼

𝛽𝛽∈𝑘𝑘𝛼𝛼∈𝑘𝑘

𝜌𝜌𝑘𝑘
𝛽𝛽�𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽𝑠𝑠𝛼𝛼𝛽𝛽12  

Equation 2.12 

In Equation 2.12 the densities of different atom types in a particle (denoted by ‘k’ or ‘l’) are 

given by ‘ρ’, ‘d’ and ‘s’ are the Lennard-Jones parameters. The DLVO (Derjaguin-Landau-

Verwey-Overbeek) approach was used for calculating the electrostatic term.119 The effect of 

counter-ions is accounted for implicitly in this approach and as a result, there is a very high 
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charge on the ribosomes. Multiple systems with varying charge on ribosome are set up to study 

the effects of such high charge on ribosome. The positions of the particles are evolved in time 

using Langevin approach, as the conditions required for the applicability of Ermak-

McCammon equation are not met in the simulations, due to the steep potentials that require 

smaller time-steps. The Ermak-McCammon equation is derived by averaging Langevin 

equation in a time span of Δt>mD/kBT, where m, D, kB and T are mass, diffusion coefficient 

under dilute conditions, Boltzmann constant and temperature respectively. The simulations are 

run for 7.5 μs. The findings of their study primarily show a decrease in diffusion coefficients 

with an increase in the size of the particles and tRNAs are the fastest of the group. An 

interesting finding is that with an increase in the volume fraction (i.e. the volume ratio of  the 

solute to the solution) the diffusion coefficients of tRNAs resembled the average of the 

diffusion coefficients of all the particles  in the system, whereas the diffusion of proteins 

deviated from it. The findings of the variation of the diffusion coefficients with an increase in 

volume fraction should be taken with caution due to an associated change in the total charge 

of the system with an increase in the volume fraction.  

2.3.2.2 The Ridgway et al. reaction-diffusion model  

Ridgway et al. used a reaction-diffusion model approach to study the diffusion properties and 

reaction rates in crowded media.25 The virtual cytoplasm in their approach considered 118 

polypeptides (Figure 2.3). These polypeptides were described as monomers, homo- or hetero-

complexes. The positions of the particles were evolved based on the diffusion coefficients 

estimated from the diffusion coefficient of green fluorescent protein (GFP). The particles were 

represented as spheres with a radius corresponding to its mass. Unlike the simulations of Bicout 

and Field117, the forces between the particles were not calculated explicitly. This simplified 

approach allowed the study of properties on the scale of 10 μs. These simulations explained 

the diffusion-controlled association of barnase and barstar. Most importantly, their findings 

showed the presence of anomalous diffusion in crowded systems and a positive correlation 

between such anomalous behaviour and molecular mass.  

2.3.2.3 The McGuffee and Elcock model of prokaryotic cytoplasm 

Elcock and McGuffee’s investigations into the crowding effects on diffusion constitute one of 

the most extensive studies in the field.47 Fifty types of macromolecules in E.coli, contributing 

to nearly 85% of the total macromolecular mass of the cytoplasmic proteins, were chosen along 
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with GFP. Fourty five of these macromolecular species are proteins and the other five are RNAs 

or protein-RNA complexes(ribosomes). The molecules are represented as rigid structures with 

atomistic level of detail. The simulations are conducted with Brownian dynamics approach 

using Ermak-McCammon equation with a total simulation time of 15 μs. The electrostatic 

forces between the molecules are calculated using the effective charge model developed by 

Gabdoulline and Wade.120 A 12-6 Lennard-Jones(LJ) energy term was used to describe the van 

der Waals, steric and hydrophobic interactions. The well depth parameter of LJ term was 

optimized to accurately predict the diffusion coefficients. These simulations explain the 10-

fold decrease in the in vivo diffusion rate of GFP. One of the most interesting results is the sub-

diffusion observed in proteins. The transient sub-diffusion reached a maximum between 10-

100 ns with normal diffusion prevailing in the timescales above and below that range. 

Interestingly, higher values of α-exponent are observed in the presence of repulsive (1/r12) only 

interactions hinting at the role of attractive interactions in inducing sub-diffusion.  

2.3.2.4 The Wang and Cheung study of a coarse-grained cytoplasm 

In this study by Wang and Cheung, the cytoplasm described in McGuffe and Elcock’s work47 

was taken and coarse-grained further depending on the shape and size of the molecule. The 

underlying assumption in this approach is that the level of detail necessary to describe a 

crowder depends on the size of the tracer (or molecule of interest). If the tracer is larger than 

the molecule of interest no further coarse graining of the molecule is necessary else the 

molecule is coarse-grained accordingly. The cytoplasm environment defined in the previous 

sub-section was coarse-grained and replica exchange simulations were carried out using the 

molecular dynamics program AMBER10, employing Langevin equations of motion to 

characterize the thermodynamic properties of apoazurin. The structure of the coarse-grained 

crowders was maintained by defining bond, bond angle and dihedral angle energies between 

the beads of the crowders.   

2.3.2.5 The Hasnain et al. model of cytoplasm 

In this model121 of E.coli cytoplasm, 159 protein species were represented using single or 

multiple beads depending on the size of the protein (Figure 2.3). Stretching and bending 

energies, modelled using harmonic potentials, constitute intramolecular interactions whereas 

the intermolecular interactions were modelled using a harmonic potential, the purpose of which 

was to avoid protein overlaps. This harmonic potential constituted the only type of inter-
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molecular interaction apart from hydrodynamic interactions. Langevin dynamics were used to 

simulate this system with a cubic simulation cell of 406 Å edge length. The simulations predict 

the in vivo diffusion coefficient of GFP with a high degree of accuracy. Anomalous diffusion 

is observed in the timescales of 10 ns-1μs. The presence of fBm was inferred from the 

displacement auto-correlation function. However, other features of fBm like Gaussianity of the 

displacements and ergodicity were not thoroughly investigated. Secondly, the possible role of 

other sub-diffusive models or combinations of sub-diffusive models as described in the earlier 

sections was not explored. Despite these caveats, the simulations provided insights into the 

possible presence of fBm like sub-diffusive behaviour in polydisperse crowded media.  

 

Figure 2.3 Evolution of the detail at which model cytoplasm is represented over the course 
of years. (i) Cytoplasm model of Ridgway et al.25 at three different volume fractions 
represented by a, b and c. (Appendix: figure permissions 1). (ii) Hasnain et al.’s cytoplasm 
model121 with macromolecules represented as spheres or cluster of spheres. (doi: 
https://doi.org/10.1371/journal.pone.0106466) (iii) Palette B cropped out of figure 1 in Yu et 
al.’s paper.114 The figure shows macromolecules represented at the atomistic level of 
description with explicit solvent. (doi: https://doi.org/10.7554/eLife.19274.001)  

2.3.2.6 The Trovato and Tozzini SpoB model 

In Trovato and Tozzini’s approach108, 12 crowders were used to represent a cytosol-like model. 

The crowders were represented as a sphere of beads (SpoB). The beads were either 

hydrophobic or polar, contributing to soft and non-specific interactions, or purely repulsive 

interactions, respectively. The beads interacted according to a single-well potential, the 

parameters of which were obtained using a top-down approach from the diffusion properties 

of GFP. The interactions between the spherical particles were given by the sum of the pairwise 

https://doi/
https://doi/
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interactions between the beads on the particles. This sum was calculated for different 

orientations of the particles and the average of the sum was the interaction energy between the 

particles. The diffusion coefficients were calculated in the timescale of 5-20 μs. The 

simulations were carried out with and without attractive interactions. Interestingly, in the 

presence of attractive forces the system showed more pronounced sub-diffusion, consistent 

with the findings of McGuffee et al.;47 however, the timescales of sub-diffusion varied between 

these models. The intensity of sub-diffusion varied depending on the size of the crowder, as 

shown in Figure 2.4. There is a clear correlation between the increased sub-diffusion and non-

ergodicity, as inferred from Figure 2.4, hinting at non-ergodic origins of sub-diffusion. 

Although the ergodicity breaking (EB) parameter (Equation 2.13) of the nucleoid indicated the 

absence of ergodicity breaking in their simulations, it is important to note that the average 

TAMSD, calculated by averaging TAMSD over the particles of same type, used in the 

calculation of the EB parameter was only averaged across three particles.  

𝐸𝐸𝐵𝐵 𝑝𝑝𝑝𝑝𝜋𝜋𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝜋𝜋 = 1 −
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷

𝑝𝑝𝑎𝑎𝑝𝑝𝜋𝜋𝑝𝑝𝑎𝑎𝑝𝑝 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷
  

Equation 2.13 

 

Figure 2.4 Palette ‘a’ of figure 6 in Trovato et al.’s paper.108 The figure shows the variation 
of α-exponent and ergodicity breaking parameter(EB) with respect to the size of the crowder. 
The system is ergodic when EB is 0 and is non-ergodic when EB=1. A clear correlation 
between increase in non-ergodicity and sub-diffusion can be seen. The green colored lines 
correspond to simulations with attractive and repulsive interactions, whereas the black colored 
lines show the data from simulations with repulsive-only interactions. The three regions in the 
plot labelled as region I, II, and III correspond to particles of different sizes. Region II 
corresponds to particles of the size of ribosomes, region I and III correspond to particles that 
are smaller (most of the protein molecules) and larger than ribosomes (nucleiod)  respectively. 
(Appendix: figure permissions 2) 
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2.3.2.7 The Ando and Skolnick cytoplasm model 

The representative cytoplasm of E.coli developed by Ando and Skolnick26 consists of 15 

species of proteins and tRNA. The molecules are represented in two different ways: (i) each 

macromolecule is represented by a single sphere, (ii) C-alpha atoms and P, C4′, N1, and N9 in 

the tRNAs are treated as a single bead each. The simulations were conducted using Stokesian 

dynamics which facilitated easy implementation of hydrodynamic interactions. The rate of 

change of velocity of a particle in Stokesian dynamics simulations is given by the sum of the 

forces arising from hydrodynamic interactions, intermolecular interactions, and Brownian 

motion (due to random movement of particles). The intermolecular interaction energy is 

described by a Lennard-Jones potential. The simulations revealed that at very high 

concentrations of the crowder, representation of a macromolecule as a single sphere is 

sufficient to capture the diffusion properties. The reduction in the diffusion coefficient as a 

consequence of crowding was explained by hydrodynamic interactions alone. However, the 

role of non-specific interactions was not conclusively described in these simulations and 

requires further investigations.  

2.3.2.8 The Feig et al. cytoplasm model and simulations 

This is the most recent cytoplasm model developed by Feig and co-workers122. The model 

represents the cytoplasm of Mycoplasma genitalium and, so far, is the most extensive and 

detailed model. The model consists of 992 metabolic proteins, 40 ribosomes, 76 translation 

factors, 42 aminoacyl synthetases, 275 tRNAs, 48 RNA polymerases and other proteins 

represented in atomistic detail (Figure 2.3). The model also includes metabolities, ions, and a 

total of 26 million water molecules placed in a cubic simulation cell of length 100 nm, 

corresponding to 1/10th of the size of the whole cell. The structures of the proteins in the model 

were obtained using homology modelling with the protein structure prediction program 

MODELLER.123,124 In a follow up paper published in 2016, Yu et al114 have subjected the 

above system to molecular dynamics simulations. The simulations were performed using 

GENESIS125 using CHARMM c36126 forcefield parameters for proteins and RNA, and 

CGenFF127 based parameters for metabolites. Using the entire system described above, the 

simulations were run for 20 ns. Two further smaller systems (1/8th of the original system) were 

run for 60 and 140 ns each. Simulations were also set up with spherical representation of the 

particles with only repulsive forces using Brownian dynamics and Stokesian dynamics 

approaches. The diffusion coefficients measured in the Stokesian dynamics simulations with 
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hydrodynamic interactions showed good agreement with those of the atomistic simulations. It 

is interesting to see that the diffusion coefficients in crowded environment showed 1/R 

dependency, mimicking behaviour under dilute conditions. (‘R’ is the Stokes radius)  

2.3.3 Discussion 

In all of the models described above, microsecond scale timescales were explored, with the 

exception of Yu et al.’s all-atom simulations of Mycoplasma cytoplasm. The sub-diffusion 

observed in Trovato et al.’s and McGuffee et al.’s simulations can potentially be explained by 

CTRW-like behaviour. This can be understood by interpreting the non-specific interactions as 

the cause of long-tailed waiting times associated with CTRW. Since the sub-diffusion was 

more pronounced in the absence of attractive interactions108,128 and is weakly non-ergodic,108 

this hypothesis is reasonable. In contrast to this, the sub-diffusion observed in Hasnain et al.’s 

model showed features of fBm, although a rigorous investigation into the sub-diffusive model 

was not carried out in this study. This lack of consistency needs to be investigated further, 

although the timescales at which sub-diffusion was observed in each of these simulations varied 

greatly. While hydrodynamic interactions (HI) were treated explicitly, due to the use of explicit 

solvent in Yu et al.’s simulations114, a mean-field approach was employed by Hasnain et al.,121 

and Stokesian dynamics with the implementation of hydrodynamic interactions was used by 

Ando and Skolnick.26 While hydrodynamic radii were used in the description of spheres in 

Bicout and Field’s model, hydrodynamic interactions were not treated either explicitly or 

implicitly, and the same applies to other models. The trends observed in the diffusion 

coefficient vs Stokes radius curves in the all-atom model114 mirror those in the simulations 

conducted by Ando and Skolnick (using spherical particles) with van der Waals forces (without 

HI). However, in terms of the absolute values of the diffusion coefficients in atomistic 

simulations, Stokesian dynamics with HI compare better, indicating the importance of both 

non-specific interactions and HI.114 Recently, Grimaldo et al.93 conducted simulations using 

Stokesian dynamics at two different levels of polydispersity index (PDI) corresponding to the 

model cytoplasm of McGuffee et al47. and Ando et al.26, the former being high in PDI. Their 

simulations indicate that if the size of the tracer is close to the average size of the particles in a 

polydisperse medium, then the diffusion of the tracer is similar to that in the monodisperse 

media.  
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In all of the simulations described above, the cytosol corresponds to prokaryotic systems. The 

evolution of the resolution of  model cytoplasm from macromolecules represented by 

spheres117 to a cluster of spheres121 and eventually to atomistic level resolution114,122 is 

interesting to note (Figure 2.3). One can also notice the increasing complexity of the model 

cytoplasmic composition over the years. Despite a significant improvement in the models of 

bacterial cytoplasm in the past 20 years, there are no equivalent studies looking into the 

properties of the eukaryotic cytosol. It is also important to note that more comprehensive 

proteomics dataset for eukaryotes like yeast were only reported recently.129 In addition, none 

of the studies mentioned above focussed on the sub- and slow-diffusive properties of tRNA 

ternary complexes (containing tRNAs, elongation factors and GTP). Although Feig et al.’s 

model accounted for elongation factors and McGuffee et al.’s included different types of 

tRNAs, the time scales explored in the former (few 10s of nanoseconds) and the absence of 

explicit treatment of ternary complexes in both, leave gaps in the understanding of translation 

mechanisms even in bacterial systems. A model eukaryotic cytoplasm, similar to Feig’s 

cytoplasm model,122 rigorously constructed using proteomics data, with which MD simulations 

can be readily performed, is not available. Given the importance of hydrodynamic 

interactions,26 the importance of accounting for the polydisperse nature of the cytoplasm,93 the 

role played by non-specific interactions in effecting sub-diffusion in a model cytosol,47,108 an 

optimized molecular dynamics approach to study the diffusion in the eukaryotic cytosol in the 

microsecond time scale accounting for these effects has, to our knowledge, not been reported 

thus far. 
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Chapter 3 Characterization of slow and sub-diffusive 
behaviour in crowded protein solutions and discerning 
the underlying causal relations 

3.1 Introduction 

A computational approach that allows the simulation of multiple copies of RNAs, including 

tRNAs with modified bases, and different protein species simultaneously is necessary to 

accurately characterize diffusion in a model cytoplasmic environment. Simulation of 

diffusional association (SDA) facilitates such a study, at microsecond timescales, under 

implicit solvent conditions using Brownian dynamics. In this approach, the molecules are 

represented as rigid structures at an atomistic level of detail. This method has earlier been 

applied to study the diffusion properties of the monodisperse crowded solutions of bovine 

serum albumin (BSA)33, γ-globulin33, T4 and hen-egg-white-lysozymes116, bovine pancreatic 

trypsin inhibitor (BPTI)116, myoglobin112 and, haemoglobin A112 and haemoglobin S112. This 

approach has also been applied to understand the molecular mechanisms underlying the 

formation of nanoparticle-protein aggregates.130  However, the method has not been tested for 

multiple species of proteins at a range of concentrations. Here, the diffusion properties of 

chymotrypsin inhibitor 2 (CI2) in the presence of bovine serum albumin (BSA) or lysozyme 

(LYS) were investigated using SDA and compared with predictions from all-atom MD 

simulations as well as experiments.  

Wang et al. characterized the diffusion of CI2 under dense crowder conditions that varied from 

50 to 300g/L, using NMR.87 Additionally, atomistic simulations  showed that chymotrypsin 

inhibitor 2 (CI2) exhibits significant sub-diffusive behaviour in the presence of bovine serum 

albumin (BSA) as the crowder protein, whereas no appreciable sub-diffusive behaviour was 

observed in the presence of lysozyme.32 The absence of sub-diffusive behaviour in the 

lysozyme crowded environment was attributed to stronger interactions between lysozyme and 

CI2. However, it is important to note that the spatiotemporal scale explored in these simulations 

is relatively small, whereby a single molecule of CI2 was simulated in the presence of eight 

protein crowder molecules for 117-244 ns at a crowder concentration of 100 g/L. Nawrocki et 

al. later explained the sub-diffusive behaviour of CI2 by invoking cage effects.115 ‘Cage effects’ 

arise when molecules are trapped in a transient cage formed by the surrounding molecules and 
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exhibit back-and-forth (rattling) motion, and the intensity of such an effect can be 

quantified.131,132 However, to the best of our knowledge, no attempt has yet been made to 

quantitatively associate cage effects and sub-diffusive behaviour in crowded protein solutions. 

Since SDA facilitates microsecond-scale simulations at all the experimentally studied 

concentrations, sub-diffusion associated with these solutions and its origins were investigated. 

The consistency of the predictions of SDA-based simulations with the molecular interactions 

characterized in the atomistic simulations were carefully investigated. The findings of this 

analysis provided insights into the robustness of this approach for cytoplasm-scale simulations.  

3.2 Approach and methods 

The experimentally determined 3D structures of BSA (PDB: 3V03), CI2 (PDB: 2CI2) and LYS 

(PDB: 1AKI) were obtained from the Protein Data Bank (PDB). The Simulation of Diffusional 

Association (SDA, version 7.2.2) program was used to conduct Brownian dynamics 

simulations48. Pre-processing of the proteins, as described below, was done with webSDA133. 

The protonation states of amino acids in all proteins were assigned assuming a pH of 5.4 in 

order to emulate experimental conditions. Atomic charges and radii were taken from the 

AMBER force field 99.134 Electrostatic grids of 1.0 Å resolution were calculated assuming an 

ionic strength of 200 mM (to also reproduce experimental conditions), with an ion radius of 

1.5 Å, a protein dielectric constant of 4.0, a solvent dielectric constant of 78.0, and a 

temperature of 300 K, using the linearized Poisson-Boltzmann equation approach.135 The 

electrostatic grids of LYS and CI2 were 129 x 129 x 129 Å3 in size and the grid size of BSA 

was 193 x 129 x 161 Å3, reflecting the differences in size and shape of these proteins. Effective 

charges were calculated using webSDA. Electrostatic desolvation, hydrophobic desolvation 

and Lennard-Jones energy grids were calculated at a resolution of 1.0 Å.  The grid sizes of the 

electrostatic desolvation and Lennard-Jones (repulsive) energies of BSA, LYS and CI2 were 

133 x 92 x 109 Å3, 45 x 55 x 67 Å3, and 43 x 44 x 45 Å3, respectively. The size of the 

hydrophobic desolvation energy grids of BSA, LYS, and CI2 were 104 x 76 x 87 Å3, 45 x 52 

x 60 Å3, and 44 x 44 x 45 Å3, respectively. The energy grid files obtained were then used to set 

up simulations with protein crowder concentrations of 50, 100, 200 and 300 g/L, with CI2 as 

the tracer. Initial configurations were generated using the genbox tool in SDA by placing the 

proteins randomly in a cubic box of 350 Å length. To account for the potential influence of the 
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initial configuration of the proteins in each system, three systems with different initial 

configurations were set up for every concentration.  

The simulations were performed using SDAMM (program used for simulations with multiple 

molecules) in SDA with a time step of 0.5 ps at the default SDA temperature of 300K. Each of 

the simulations was run with the softcore repulsive term only for one microsecond in order to 

remove any protein overlaps. The simulations were then run for one microsecond with the full 

energy term for equilibration purposes, followed by 5 microseconds of production runs. The 

self-diffusion coefficients of BSA and LYS were monitored to evaluate convergence, which 

was reached before one microsecond. Since both these crowders are larger than CI2, the 

convergence of the diffusion of BSA and LYS was expected to be slower and hence was used 

in this evaluation. Diffusion coefficients were calculated from the plots of time-averaged MSD 

(TAMSD) (obtained by averaging over all possible time origins) vs time (lag time). The 

simulations with the soft-core repulsive term (decaying at a rate of 1/r6) only were performed 

using the same approach as above except that both the equilibration and production runs did 

not include attractive interactions (the scaling factor of electrostatic, electrostatic desolvation, 

and hydrophobic desolvation terms is set to zero) in the energy term. The trajectories were 

unfolded assuming that any given particle does not move more than half the simulation cell 

length between time frames considered.136  

3.2.1 Calculation of the α-exponent 

The value of the α-exponent was calculated from the log(TAMSD/τ) vs log(τ) curve using an 

approach similar to that of Balbo et al.33 Since the α-exponent is a time-varying quantity in our 

simulations, the straight-line region of the plot is chosen by fitting the parts of the curve to a 

linear fit in such a way that the R2 value is maintained above a cut-off of 0.95. The regions at 

long timescales usually showed high levels of noise, which affected the quality of the fit. This 

is due to the use of TAMSD in our calculations, such that the MSD calculation is affected at 

large lag time values due to poor statistics. Therefore, long time scale regions with poor 

statistics were omitted from the calculations of the α-exponent. The average of the α-exponents 

calculated using the data from the three different initial configurations is reported below, and 

the error bars in the plots correspond to the standard deviation (STD), and p-values are 

calculated using two-tailed t-tests assuming unequal variance. It is important to note that, since 

log plots are used, the data at long timescales is crowded in a small region of the graph and, as 
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a result, while one can reliably calculate diffusion coefficients up to the order of a microsecond 

(in the TAMSD vs τ plots), it is not feasible to do a similar calculation of the α-exponent at 

long timescales with a stringent cut-off. However, since the α-exponent converges back to 

normal diffusion values within the range of timescales explored, this does not have any impact 

on our conclusions.  

3.2.2 Quantification of cage effects  

Cage effects were quantified using Doliwa and Heuer’s approach.132 Here, the displacement 

vector of a particle is given by rmn(τ) = r(nτ) - r(mτ), where r(nτ) and r(mτ) are the position 

vectors at corresponding time points. The first and second displacement vectors are therefore 

termed r01 and r12, respectively. The component of r12 along r01 is termed x12. The component 

of r12 along an arbitrary vector perpendicular to r01 is termed y12. According to this approach, 

it is expected that x12 be negative and decrease linearly with an increase in the magnitude of r01 

in the presence of caging effects. This anti-correlation is due to the rattling motion of the 

particles. The vector y12 acts as control since it is the component along an arbitrary vector, so 

it would be expected that in the absence of caging, y12 and x12 exhibit similar behaviour upon 

the increase in the magnitude of r01.131,132 (Figure 3.1) The |r01| vs x12 (or y12)  plot is obtained 

by calculating the values of |r01| and x12 (or y12) across all possible time origins along the length 

of the trajectory for a given protein, and combining the data for all the protein molecules (of a 

given species) in the simulation. The values of (|r01|) are binned with a width of 0.05 Å and the 

corresponding x12 values are averages. The plots are presented and discussed in Figure 3.2. The 

approach described here is similar to that of the previous workers. The function used by Weiss61 

to infer anti-correlation is given by  

𝐶𝐶𝜏𝜏(𝑡𝑡) = 〈
𝑎𝑎𝜏𝜏(𝑅𝑅)

|𝑎𝑎𝜏𝜏(𝑅𝑅)|
.
𝑎𝑎𝜏𝜏(𝑅𝑅 + 𝑡𝑡)

|𝑎𝑎𝜏𝜏(𝑅𝑅 + 𝑡𝑡)|
〉 𝑇𝑇  

Equation 3.1 

where vτ(t)=r(t+τ)-r(t), ‘r’ being the position vector.  When t= τ, this function is equivalent to 

the dot product of r01 and r12, which is proportional to x12. In the presence of anti-correlation, 

Cτ (t) <0 when t~ τ, which implies that x12 is negative, which is consistent with the above 

approach.  
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Figure 3.1 Quantification of cage effects. The particle is represented in yellow. Arbitrary 
vector perpendicular to r01 is represented as a dotted vector.  

3.3 Results 

3.3.1 Diffusion coefficients and sub-diffusive behaviour 

Time-averaged translational diffusion coefficients of CI2, LYS and BSA were calculated from 

the curve of time-averaged mean squared displacement (TAMSD) vs time, averaging over all 

time origins and the molecular species of interest. The experimental diffusion coefficient of 

CI2 at concentrations of 50, 100, 200, and 300 g/L of LYS and BSA had been determined 

previously87. The long-time diffusion coefficients were calculated in the 0-1000 ns time range 

and the predicted diffusion coefficients of CI2 were compared with experimental values. Figure 

3.2A shows that the predicted diffusion coefficients are of the same order of magnitude as 

experimental ones. However, the difference in the predicted and experimental diffusion 

coefficients increased at higher concentrations. This could potentially be due to the lack of 

flexibility in the protein structures, which could contribute to a reduction in the tendency to 

form clusters. A more detailed description of the role played by such clusters is provided further 

below. Figure 3.2B shows that the predicted diffusion coefficients of BSA and LYS decrease 

in magnitude with an increase in the concentration of the crowder, as expected.  
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The sub-diffusive behaviour of the proteins was characterised.  In solutions with a crowder 

concentration of 50 g/L, the α-exponent value of CI2 hovered above 0.95 in the presence of 

both crowding proteins (Figure 3.3A and Figure 3.3C). The same behaviour was observed for 

the self-diffusion of the crowders, as shown in Figure 3.3E and Figure 3.3G. The α-exponent 

did not exhibit pronounced variation with respect to lag time in each of the systems. The 

increase in the concentration of the crowder led to sub-diffusion. At a crowder concentration 

of 300 g/L, the value of the α-exponent decreased to 0.83 (STD = 0.002) in the range 10.4-38.8 

ns for CI2 in BSA, 0.87 (STD = 0.002) in the range 2.0-9.8 ns for CI2 in LYS, 0.74 (STD = 

0.005) in the range 8.0-39.8 ns for BSA, and 0.80 (STD = 0.001) in the range 2.0-10.0 ns for 

LYS, in all cases indicating the presence of sub-diffusive behaviour. However, the observed 

sub-diffusion was transient and normal diffusion was gradually reached after a few hundreds 

of nanoseconds. In all of these cases a clear trend can be discerned, whereby diffusion is normal 

at short time scales, sub-diffusive in the sub-microsecond time scale, and back to normal at 

longer time scales. This behaviour is observed in all the three proteins, which are of different 

sizes and have a different total charge. An intermediate behaviour was observed in crowder 

concentrations of 100 and 200 g/L (Figure 3.4). Such transient sub-diffusive behaviour has 

been predicted for γ-globulin and BSA self-crowded solutions.33 
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Figure 3.2 Predicted diffusion properties in crowded protein solutions. (A) Comparison of 
experimental and predicted CI2 diffusion coefficients. The predicted values are within the same 
order of magnitude of experiment, revealing good agreement. (B) The predicted and observed 
diffusion coefficients of the CI2 tracer in the presence of the protein crowders BSA and 
lysozyme, and of the protein crowders themselves are plotted as a function of crowder 
concentration. As expected, the increase in crowder concentration results in a downward trend 
of the diffusion coefficient of CI2. (C) Average x12 as a function of |r01| (green), whilst the 
dashed red line corresponds to the reference x = 0 curve, and the dotted vertical line separates 
the regions of low and high noise. The yellow line corresponds to the linear fit for the less noisy 
region, whose slope is used in the calculation of α-exponent. The slope is negative, indicating 
the presence of caging effects. (D) Average y12 as as a function of |r01| (green), whilst the 
dashed dotted line corresponds to the reference y = 0 curve, and the blue dotted line (which is 
very close to the y = 0 curve) corresponds to the linear fit of the less noisy region. |r01|, x12 
and y12 are all provided in Å. Plots C and D correspond to data at a BSA concentration of 300 
g/L at 5ns. 
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Figure 3.3. Sub-diffusive and non-Gaussianity properties of the crowders and tracer (50 and 
300g/L concentration of crowder). The blue, orange and grey lines in all the curves represent 
the α-exponent calculated from the log(TAMSD/τ) vs log(τ) curves, α-exponent calculated 
from cage effects, and non-Gaussianity parameter (NGP) measured at different lag times 
respectively. All the curves on the left side of the figure represent the data for low concentration 
of the crowder at 50g/L and the ones on the right side represent data for high crowder 
concentration. The data for CI2 in BSA is in the first row highlighted in green, followed by 
data for CI2 in LYS in next row highlighted in yellow, followed by data for LYS and BSA 
highlighted in orange and red respectively. Error bars represent the standard deviation of the 
value of the α-exponent between simulations started with different configurations. The time 
ranges in the individual graphs are different from each other due to the variation in the 
emergence of noise in the log(TAMSD/τ) vs log(τ) curves. 
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Figure 3.4. Sub-diffusive and non-Gaussianity properties of the crowders and tracer (at 
concentrations of 100 and 200 g/L of the crowder). The data is represented in the same way as 
in Figure 3.3. 

3.3.2 Cage effects in the protein crowded solutions 

The protein dynamics of the above-described crowded systems is consistent with sub-diffusive 

behaviour arising due to macromolecular crowding. However, the underlying molecular 

mechanism by which protein crowding causes this phenomenon and its physical origins are not 
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very well understood. The cage effect hypothesis proposed by previous workers115 is rigorously 

tested here. The hypothesis states that macromolecules in a crowded protein solution behave 

like colloidal particles and exhibit motion akin to rattling in a cage, termed cage effect132, 

wherein they are trapped in a transient cage for a finite period of time before ”hopping” to 

another cage. In contrast to regular Brownian motion, particles do not move freely whilst they 

are trapped in these cages. Therefore, these particles are expected to exhibit normal diffusion 

at very short time scales when they are not in close proximity to surrounding particles, but at 

intermediate time scales these particles would exhibit rattling dynamics, and then exhibit 

normal Brownian motion at sufficiently long-time scales. In order to quantitatively assess this, 

Doliwa and Heuer’s approach132 was used to investigate the presence of rattling-in-a-cage type 

of motion in our simulations. A plot of <x12> against |r01| is shown in Figure 3.2C, which was 

obtained from unfolded trajectories. It is evident from these plots that there is a clear anti-

correlation between r01 and x12. At higher values of |r01| the plots become noisy because there 

are very few particles that make very long jumps, reducing the number of data points available 

for analysis. There is also a higher probability for the particles that make long jumps to exit the 

transient cage, leading to cessation of the rattling motion.132 Figure 3.2D shows that, unlike x12, 

y12 does not depend on the magnitude of r01.  These findings suggest the presence of a caging 

effect in crowded protein solutions. The slope of the linear section of the plot is an indicator of 

the strength of this caging effect. The slope calculated at different ‘τ’ values in solutions with 

crowders at concentrations of 50 g/L and 300 g/L is shown in Figure 3.5. As expected, the 

slope of the tracer CI2 and protein crowders in the 50 g/L solutions was ~0. In the 300 g/L 

solutions, the slope was initially ~0 but at intermediate time scales the slope was minimum, 

indicating the existence of a strong cage effect, whilst at longer time scales the slope recovered 

back to ~0. The x12 slopes calculated at intermediate timescales are significantly higher than 

y12 slopes calculated at the same timescales indicating pronounced cage effect as shown in 

Figure 3.5. These results indicate low cage effect at short timescales followed by maximum 

cage effect at intermediate timescales and restoration of low cage effect at long timescales. 

(Figure 3.5) 
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Figure 3.5. Variation of the intensity of cage effects with respect to time and crowder 
concentration. The straight lines plotted are representative of the slope calculated from the less 
noisy regions of plots of <x12> or <y12> vs |r01|. The blue, red and yellow lines represent 
slopes at short, intermediate and long time scales, respectively. The first and second rows 
highlighted in green and yellow represent the data for the diffusion of CI2 in BSA and 
lysozyme, respectively. The next two rows highlighted in orange and red represent the data for 
the self-diffusion of lysozyme and BSA, respectively. The first two columns of every row 
contain plots of <x12> vs |r01| and <y12> vs |r01| (in that order) at the low protein crowder 
concentration of 50 g/L. The last two columns contain the same plots at the high protein 
crowder concentration of 300 g/L.  

Weeks and Weitz have shown analytically that the slope of the |r01| vs <x12> curve can be used 

to estimate the value of the α-exponent using the equation below:131  
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𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜏𝜏) = 1 +
𝑙𝑙𝑙𝑙�1 + 𝑠𝑠𝑙𝑙𝑠𝑠𝑝𝑝𝑝𝑝(𝜏𝜏)�

𝑙𝑙𝑙𝑙(2)    

Equation 3.2 

Using this approach, the α-exponent is calculated from caging effect data for a given lag time 

τ. The same data at different ‘τ’ values is obtained by skipping the appropriate number of time 

frames in a simulation trajectory whilst calculating the displacement vectors. The predicted 

values of the α-exponent (from the caging effect) of the tracers and crowders in all the 

simulations (50-300 g/L of both crowders) were calculated and compared with the ones 

reported in the previous section, as shown in Figure 3.3 and Figure 3.4. The predicted values 

of the α-exponent are in good agreement with the calculated values for both crowders and tracer 

under all concentrations of the crowders at all lag times. The consistency in our predictions 

across different types of proteins with different sizes, net charges and other properties is 

encouraging. Since sub-diffusive behaviour is the manifestation of multiple mechanisms that 

do not necessarily constitute anti-correlated displacements56, the fact that the computed value 

of the α-exponent obtained from anti-correlated displacements induced by caging effect is 

consistent confirms the validity of the hypothesis of caging effects causing sub-diffusive 

behaviour in crowded protein solutions. The same approach described here was earlier used to 

establish cage effects in the experimental data of protein diffusion on the plasma membrane.137 

However, the cage effect observed in those experiments was in the time scale of a few seconds.  

The observed anti-correlation of consecutive displacements is similar to the one noted in single 

particle tracking experiments with dextran crowded solutions, which was explained by 

fractional Brownian motion.61  

3.3.3 Non-Gaussianity and ergodicity 

In order to probe further the nature of the sub-diffusive behaviour described in the previous 

section, we investigated the magnitude of deviations from a Gaussian distribution of 

displacements (Δr) by using a non-Gaussian parameter (NGP, Equation 3.3), in an approach 

similar to that of previous studies:138  
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𝑁𝑁𝐺𝐺𝑁𝑁 =
3 < ∆𝜋𝜋4(𝜏𝜏) >
5 < ∆𝜋𝜋2 >2 − 1   

Equation 3.3 

The NGP of both crowders and tracers was calculated at all the concentrations and different 

lag times by choosing appropriate values of τ. It is clear from Figure 3.3 and Figure 3.4 that at 

low concentrations NGP is very low for both the crowders and tracer with no significant 

variation with respect to lag time. However, at the highest concentration of 300 g/L there is a 

clear rise in NGP in all the cases at intermediate time scales. Non-Gaussianity is more 

prominent around the time scales where anomalous diffusion was identified, as described in 

the previous sections. More importantly, there is a clear pattern with a slight deviation from 

Gaussian behaviour at short time scales followed by a rise in non-Gaussianity that eventually 

reduces at longer time scales. Xue et al. observed increased non-Gaussianity in nanoparticles 

of comparable size to that of the mesh size of the polymer solution surrounding them.138 BSA 

molecules are larger than lysozyme molecules and, therefore, for a given concentration of the 

crowder, the BSA solution is expected to form larger voids compared to the lysozyme solution. 

Therefore, the tracer molecule CI2, which is a smaller protein than lysozyme, should exhibit 

more non-Gaussianity in crowded BSA systems. In line with this argument, the maximum 

value of NGP for CI2 in a 300 g/L solution of BSA was predicted to be nearly twice as high as 

that predicted in LYS. The sudden rise in NGP observed in the case of BSA could be due to its 

larger size, which results in the molecule reaching the cage boundaries in a shorter time. These 

observations point to a non-Gaussian origin of sub-diffusion, unlike fractional Brownian 

motion in the case of dextran solutions.61 

Stochastic processes like fBm are predominantly ergodic in nature, whereas in CTRW 

deviation from ergodicity have been reported.56 Whilst investigating the transport of insulin 

granules inside cells, Tabei et al. used the convergence of TAMSD, which was in turn averaged 

over the number of particles to infer ergodicity. The authors argued that in an ergodic system, 

the average TAMSD calculated at a given lag time using simulation trajectories of different 

lengths should converge once sufficiently long trajectories are chosen.57 This approach mirrors 

the way we have assessed convergence in our simulations (Figure 3.6 - 3.9). We chose 

trajectories of different lengths and calculated diffusion coefficients in all these cases and, for 

all trajectories beyond certain length, minimal variation in diffusion coefficients was observed. 
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It can thus be inferred that TAMSD had converged for sufficiently long trajectories, implying 

ergodicity in our simulation systems.  

 

Figure 3.6. Convergence of the diffusion coefficient of BSA at different concentrations in 
simulations with the full energy term. The error bars represent the standard deviation (n=3). 
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Figure 3.7. Convergence of the diffusion coefficient of BSA at different concentrations in 
simulations with the soft-core repulsive term only. The error bars represent the standard 
deviation (n=3). 

 

Figure 3.8. Convergence of the diffusion coefficient of lysozyme at different concentrations 
in simulations with the full energy term. The error bars represent the standard deviation (n=3). 
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Figure 3.9. Convergence of the diffusion coefficient of lysozyme at different concentrations 
in simulations with the soft-core repulsive term only. The error bars represent the standard 
deviation (n=3). 

The above findings on ergodicity, non-Gaussianity and anti-correlation show that the behaviour 

of our simulation systems is similar to that of fBm in finite time intervals, as reported with the 

numerical simulations of Guggenberger et al.64 These authors showed that a space-confined 

particle, whose motion is calculated using a sub-diffusive fBm simulator, initially shows 

Gaussian behaviour that becomes non-Gaussian at long time scales. This long term non-

Gaussianity is attributed to the presence of reflective boundaries. However, in our simulations, 

at longer time-scales a trend pointing to recovery of Gaussianity is observed. This is due to the 

fact that, unlike in simulations with a strict reflective boundary, in the case of crowded solutions 

a particle can cross this boundary at longer time scales and move to a different cage-like 

structure. Therefore, the movement of a particle in long time scales can be described as being 

more akin to slow Brownian motion, whereas at intermediate time scales non-Gaussianity due 

to the reflective nature of cage-like structures is manifested.  
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3.3.4 Excluded volume effects 

Protein molecules in crowded solutions are predicted to form dynamic/transient clusters and 

exhibit significantly low diffusion rate.33,112,113 This slow diffusion, especially when the protein 

molecules form clusters with particularly slow diffusing partners, can potentially be modelled 

as trapping in CTRW (for a random amount of time), which then gives rise to anomalous 

diffusion, making cluster formation a possible cause of sub-diffusive behaviour. On the other 

hand, cluster formation has been proposed as a potential hindrance to caging and, therefore, as 

reducing anomalous diffusive behaviour.32,115 However, the role of protein shape and size in 

regulating sub-diffusive behaviour has not been explored.  

The role played by attractive forces between protein molecules in regulating diffusion in 

timescales of the order of tens of nanoseconds has been previously reported.113 These studies 

indicate that the Stokes-Einstein equation is valid in crowded protein solutions, and the slow 

diffusion of proteins can be explained by the modified Stokes radius as a result of the formation 

of dynamic clusters.113 However, it is important to note that the pivotal role played by protein-

protein interactions is dependent on the proteins under investigation. Furthermore, given that 

the time scales of dynamic cluster formation are predicted to be of the order of 1-50 ns113, the 

effect of dynamic cluster formation on long-time diffusion coefficients, measured in the 

microsecond time scale, needs further investigation. 
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Figure 3.10 The properties of tracer and crowder in the absence of attractive interactions (at 
concentrations of 50 and 300 g/L of the crowder).The data is represented in the same way as 
in Figure 3.3. The value of the α-exponent calculated using the log plot and cage effect, and 
NGP are computed for systems without attractive interactions. 
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Figure 3.11 The properties of tracer and crowder in the absence of attractive interactions 
(100 and 200 g/L of the crowder). Error bars represent standard deviation (n=3). The data is 
represented in the same way as in Figure 3.10. 

In order to delineate the effects of cluster formation from those arising from excluded volume, 

the same set of simulations as described above were conducted using only a soft-core repulsive 

term to remove attractive interactions between protein molecules. The α-exponent of crowders 

and tracers was calculated at all concentrations, as shown in Figure 3.10 and Figure 3.11. It can 
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be seen that sub-diffusion persists despite the lack of attractive interactions. As expected, anti-

correlation in the successive displacements due to caging effects is also observed in these 

simulations with a soft-core repulsive term. At a crowder concentration of 300 g/L, the 

anomalous diffusion coefficient of BSA reached a minimum value of 0.74 (STD = 0.005) in 

simulations with the full energy term, and a value of 0.70 (STD = 8x10-4) in simulations with 

a soft-core repulsive term, whereas it had a value of 0.80 (STD is 0.001 for both the cases) in 

the case of LYS in both types of simulation. This is consistent with observations made by Feig 

and Sugita using all-atom simulations of a single CI2 molecule and eight molecules of 

BSA/LYS at a concentration of 100 g/L.32 In their simulations it was shown that BSA has 

stronger self-interactions than lysozyme does. Therefore, the presence or absence of attractive 

forces did not significantly affect the α-exponents of LYS (p = 0.1). By contrast, due to the 

relatively stronger interactions between BSA molecules, the absence of attractive forces led to 

a significant drop in the value of the α-exponent (p = 0.006), indicating an increase in sub-

diffusive behaviour. In the presence of attractive forces, the value of the α-exponent of CI2 in 

the crowded environment of LYS was 0.87 (STD = 0.002), indicating minimal sub-diffusion. 

However, when attractive forces were turned off, the value of the α-exponent reduced (p = 

0.002) to 0.82 (STD = 0.006). With BSA as a crowder, the value of the α-exponent reduced (p 

= 3x10-5) from 0.83 (STD = 0.002) to 0.80 (STD = 0.002) when attractive forces were turned 

off. These observations are also consistent with the findings of Feig and Sugita32, since CI2 

interacts more strongly with LYS compared with BSA, and hence there is a larger effect on the 

value of the α-exponent when attractive forces are turned off. In addition, the value of the α-

exponent of BSA was 0.70 and that of LYS was 0.80 in the absence of attractive forces (the 

significance of this difference was measured using a t-test, p = 1.5 x 10-6). This suggests that 

caging effects vary between protein species even though neither of them forms clusters. The 

more pronounced sub-diffusion in BSA in the absence of attractive forces might be due to its 

large size. Since large-sized crowders can create larger voids in the solution, the probability of 

protein localization is thus higher. This suggests that the extent of caging effects depends not 

only on the strength of protein-protein interactions but also on the size of the crowders. 

Consequently, in systems with the full energy term, overall caging effects are likely to be a 

function of the basal caging effect (observed in the absence of attractive forces) and the strength 

of protein-protein interactions. Therefore, caging effects and sub-diffusion are specific to the 

crowders and tracers present. It is important to emphasise that the maximum caging effect in a 

given system is observed in the absence of attractive forces. Therefore, sub-diffusion beyond 

what is predicted from the maximum caging effect must arise from other phenomena. The more 
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pronounced non-Gaussianity observed in the case of CI2 in BSA and LYS, compared with 

simulations with the full energy term, could be explained by an increase in excluded volume 

effects in the absence of attractive forces in the system.  

 50 g/L 100 g/L 200 g/L 300 g/L 
CI2 in BSA 1.07 1.05 0.98 1.21 
CI2 in LYS 1.01 1.02 1.09 0.97 
LYS 0.96 0.94 0.98 1.03 
BSA 1.10 0.88 0.96 0.95 

Table 3.1 Ratios of the long-time diffusion coefficients measured in simulations with only 
soft-core repulsive interactions in simulations with the full energy term. Dark green colours 
indicate a high ratio. 

The diffusion coefficients calculated using only the soft-core repulsive term (Dsr) did not vary 

significantly from those computed with the full energy term (Dsim). The extent of change in the 

diffusion coefficients when the attractive forces were removed is presented in Table 3.1. Across 

different concentrations with both crowders the change is nearly 10% in most of the cases, with 

no specific increasing or decreasing pattern when comparing Dsr and Dsim. This suggests that 

the long-term diffusion coefficients measured in the order of one microsecond are largely 

dependent on excluded volume effects. The decreased diffusion rate of CI2 in the BSA crowded 

environment in the absence of attractive forces could be due to increased crowding as a result 

of the increased effective volume occupied by BSA molecules, as described in Figure 3.12. 

These observations are consistent with those made by Mereghetti et al. on self-crowded 

solutions myoglobin and haemoglobins.112 However, the diffusion coefficients of BSA 

measured in the 0-2 ns time scale in the 300 g/L solutions showed nearly 16% increase when 

the attractive forces were removed. Diffusion coefficients of LYS in their equally crowded 

solutions showed a slight decrease in the absence of attractive forces. These findings can be 

understood by considering the relatively high attractive forces between BSA molecules 

compared with those between LYS molecules, as noted in the relatively high second order 

coefficient ‘b’ in the quadratic function used by Bulow et al.113 to describe the relation between 

viscosity and protein volume fraction. The dominance of monomers in LYS solutions under 

concentrations of less than 0.15% volume fraction (the maximum crowder protein volume 

fraction in our simulations is 0.135%) has also been experimentally noted.139 Therefore, in the 

case of LYS, when weak attractive forces are removed there is a slight increase in the effective 

radius of the protein, as evidenced by the radial distribution function (RDF) shown in Figure 
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3.12. This may lead to a minor increase in volume fraction, resulting in a slight decrease in 

diffusion rates when attractive forces are removed. The short-time diffusion of CI2 in BSA 

increased by nearly 5% when attractive forces were removed and increased by 10% in LYS. 

This may be due to the more pronounced interactions between CI2 and LYS, as described 

above. In summary, our simulations indicate that although the short-time diffusion coefficients 

in the protein solutions are significantly affected by attractive forces, long-time diffusion 

coefficients are mostly determined by excluded volume effects. 

 

 

Figure 3.12. Radial distribution functions of BSA and LYS. The red curves correspond to 
simulations with the soft-core repulsive term only and the blue curves correspond to 
simulations with the full energy term. The effective radius was approximated as the maximum 
distance (r) at which RDF~0, and it increases in value by 2.8 Å and 1.6 Å in BSA and LYS 
respectively, when only the soft-core repulsive term is used. Due to the larger size of BSA 
compared with LYS, the change in excluded volume due to the small change in the effective 
radius is more pronounced in the former.  

3.4 Discussion and conclusions 

Our findings suggest that sub-diffusive behaviour is present in crowded protein solutions and 

the extent of it depends on the nature of the proteins under consideration. For a given protein 

solution with a certain crowder species at a given concentration, sub-diffusion mediated by 

caging effects has a maximum limit. This limit is a function of the proteins under consideration 

and, therefore, any sub-diffusion stronger than this limit would be the result of phenomena 

other than caging, such as non-specific interactions mediating sub-diffusion and explained 

using CTRW models.140 However, it is evident from the use of a soft-core repulsive energy 

term only that such non-specific interactions do not play a role in the sub-diffusion observed 

in our systems, reinforcing the role of caging effects. Recently, it has been shown 

mathematically that extreme first passage time, the minimum time taken by a searcher in a 
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group of searchers to reach a target, is lower in the case of sub-diffusive searchers compared 

with normally diffusing counterparts.141 This suggests that sub-diffusive behaviour has a vital 

role to play in biological systems, where molecular encounters drive cellular processes. The 

implications of caging effects and the subsequent sub-diffusive phenomenon are important in 

the context of diffusion-limited reactions. Normal diffusion is the underlying assumption made 

in the derivation of rate constants of diffusion-limited reactions. However, since deviations 

from normal diffusion are apparent and with varying intensity depending on the protein species 

and time scales investigated, it is important to account for such deviations using approaches 

like that of Haugh’s142 especially in the framework of treating biological reaction networks as 

complex systems. Combining the fact that protein crowded systems emulate the cellular 

environment87 and our findings indicating that the strength of sub-diffusion is a result of such 

crowding, in light of the above mathematical findings, it is possible to infer that cells should 

maintain crowding for optimal execution of the cellular processes. In fact, such mechanism has 

already been proposed by Van Den Berg et al. and is termed ‘homeocrowding’.143  

The sub-diffusive behaviour in our systems exhibited features of fractional Brownian motion. 

However, a more rigorous numerical approach is necessary to establish whether there is 

fractional Brownian motion in crowded protein systems. It would be interesting to use soft 

reflective walls that allow particles to escape the confined space in order to explain the 

restoration of normal diffusion with Gaussian behaviour in long time scales.  

The long-time diffusion coefficients in the microsecond timescale appear to be predominantly 

dependent on excluded volume effects, whilst short-time diffusion coefficients are affected 

depending on the protein crowder-tracer system. These findings are consistent with the 

observations of both Mereghetti et al.112 and Bulow et al.113 It is also important to note that the 

simulations reported in this work used rigid protein structures, which could potentially reduce 

the rates of clustering as a result of their reduced ability to achieve more optimal conformations 

necessary to maximize protein-protein interactions. However, since the clusters formed have 

lifetimes of a few tens of nanoseconds113 one would expect microsecond time scale diffusion 

coefficients to be affected primarily by excluded volume effects. It is therefore clear that the 

sub-diffusive and long-time slow diffusive behaviour observed in crowded protein solutions 

can be explained by volume exclusion. Since the short-time diffusion coefficients and the sub-

diffusion observed are dependent on the properties of the proteins (i.e. surface properties such 

as charge, size and shape), it is important to carefully account for the composition of the 
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cytoplasmic protein and nucleic acid species when investigating the diffusive behaviour of 

macromolecules in cell-like environments in these timescales. Finally, this work has shown 

that SDA can reliably predict the diffusion properties of crowded solutions with more one 

species of protein.  
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Chapter 4 Definition of the minimal contents for the 
molecular simulation of the yeast cytoplasm 

4.1 Introduction 

Brownian dynamics (BD) simulations performed with SDA can be used to characterise the 

complex nature of the effects of macromolecular crowding, including the effects on the 

diffusion of tRNAs. However, a well-defined simulation environment that can accurately 

predict the crowding effects is necessary to perform such BD simulations. As discussed in 

chapter 2, there have been many computational studies on the effects of cytoplasmic crowding, 

in which the crowders are represented at varying levels of detail. All these studies focussed on 

the effects of prokaryotic cytoplasm, and as a result there have been many attempts in defining 

a model cytoplasmic environment in prokaryotes. To our knowledge, an equivalent 

representative definition of the eukaryotic cytoplasm has not been reported in the literature. 

The key challenges in defining such a simulation cell include identification of the required 

proteomics datasets and defining appropriate criteria to minimize the size of the simulation cell 

whilst retaining the properties of the cytoplasmic environment. 

In this study, we sought to address the lack of a standard molecular simulation environment for 

eukaryotes by defining the contents of a simulation cell based on the abundance of proteins, 

tRNAs and ribosomes in the yeast cytoplasm. A recent yeast proteomics dataset 129 unified 

abundance data from 21 different datasets, comprising a range of mass spectrometry (MS)-

derived datasets, datasets based on green fluorescent protein (GFP)-tagging of yeast proteins 

and GFP flow cytometry  and also a tandem affinity purification (TAP-tagging)-immunoblot 

dataset. We employed an in-depth proteomics survey of these datasets in order to define a 

molecular simulation environment for a model eukaryote cell. However, these datasets vary in 

terms of the growth conditions used to culture the cells, the cellular growth phase, the units in 

which abundances are reported, and the technique used to measure them. It was therefore 

necessary to investigate how these factors affect protein abundances reported across the range 

of datasets. We characterised the internal consistency amongst the datasets and their agreement 

with other published experimental data, leading to the selection of a proteome composition for 

the yeast cytoplasmic environment. Consideration of additional experimental data on the 

macromolecular density and the mass ratio of ribosomal-to-cytoplasmic proteins in the 
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cytoplasm was also used, allowing the definition of the contents of a molecular simulation cell 

representative of the yeast cytoplasm. 

4.2 Methods 

4.2.1 Definition of a eukaryote cell simulation environment 

Previous reports of the number of ribosomes in yeast cytoplasm were taken from cell 

population scale experiments 144 and from cell tomography experiments at single cell level 145, 

and were compared with the numbers calculated from proteomics datasets. The volume 

percentage of individual components of the yeast cell were also obtained from cell tomography 

studies 145, which are in agreement with other cell tomography experiments 146. Furthermore, 

we used the recently published unified yeast proteomics dataset that covers a total of 5391 

proteins 129.  

Proteins associated with the nucleus, cell wall, ribosomes, mitochondria, endoplasmic 

reticulum and vacuoles were removed from the dataset with the help of GO-slim annotations 

(http://www.yeastgenome.org/) to assign cellular location to a given protein. Gene ontology 

analysis of the function of encoded proteins was performed using the webserver Funcassociate 

3.0 (http://llama.mshri.on.ca/funcassociate/) 147.  

4.2.2 Statistical analysis 

The abundances reported for individual ribosomal proteins by any dataset were treated as 

multiple observations of the number of ribosomes (described in detail in the Results section). 

Based on this, pairwise statistical two-tailed t-tests for unequal variances between proteomics 

datasets were performed using an in-house code in MATLAB (https://github.com/BMMG-

Curtin/FMOLB) to quantitatively understand the differences and similarities between datasets 

(Figure 4.3). Where multiple pairwise t-tests were conducted, the Bonferroni correction was 

applied to address type-I errors, whereby the critical alpha value is divided by the number of 

pairwise tests. In addition, p-values were adjusted using the Benjamini-Hochberg approach to 

address type-I errors and the results obtained were found to be qualitatively the same (Figure 

4.4 at the end of the chapter). The data was assumed to be normally distributed whilst 

conducting the above t-tests; therefore, a non-parametric Mann-Whitney U test with the 

Bonferroni correction was also employed (Figure 4.5 at the end of the chapter). The results of 

http://llama.mshri.on.ca/funcassociate/
https://github.com/BMMG-Curtin/FMOLB
https://github.com/BMMG-Curtin/FMOLB
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the U test were also found to be qualitatively similar to the results obtained with the t-tests. 

Pairwise correlations between the functional ontological classes of proteins across different 

datasets were quantified using the Pearson’s correlation coefficient. The Jaccard index was 

used to quantify the similarities between the ontological profiles obtained for each of the 

datasets. 

4.3 Results 

4.3.1 Analysis of internal consistency of yeast proteomics datasets 

In order to define the protein composition of a eukaryote molecular simulation cell, the recently 

published unified yeast proteomics dataset was used 129. This covers 5391 genes with a total 

protein mass per yeast cell of 2.7 x 1012 Da, which is in good agreement with the total protein 

mass of a yeast cell previously reported to be 3 x 1012 Da 148. This proteomics dataset comprises 

data integrated from 21 different datasets, which vary in the type of growth medium used to 

culture cells, their growth phase and the technique used to measure protein abundances. 

The top 200 most abundant proteins were taken from each of the 21 datasets based on their 

mass (i.e. molecular mass multiplied by their abundance) and were found to account for 

approximately 70% of the total cytoplasmic protein mass (Figure 4.1). In order to assess the 

possible influence of cell culture conditions, growth phase and the method used to measure 

protein abundance on the composition of the yeast cytoplasm, the ontological classes of these 

proteins were assessed. The systematic names of these proteins were submitted to the 

Funcassociate 3.0 webserver,147 which detects over-representation of gene ontologies in a gene 

list. The number of proteins associated with each gene ontology class was identified for every 

dataset. Each pair of datasets was then compared by calculating the Pearson’s correlation 

coefficient between the number of proteins associated with each gene ontology class. The 

Jaccard index was used to quantify the similarities between the sets of gene ontology classes 

obtained for every dataset. Despite the above differences between the datasets, a similar 

ontological landscape for the top 200 proteins in each of the datasets was observed, except for 

one dataset that used N-terminal GFP tagging, YOF 149 (Figure 4.2).  
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Figure 4.1. Distribution of protein mass (calculated as the product of molecular weight 
times abundance) per cell plotted as a function of the mass rank of each protein. Proteins in the 
yeast proteomics dataset were ranked according to their mass, exhibiting a clear exponential 
decrease as a function of their mass rank in the cell. In the inset the cumulative percentage of 
mass is plotted as a function of rank. The top 200 cytoplasmic proteins contribute to 
approximately 70% of the total cell protein mass. 
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Figure 4.2. Statistical analyses of proteomics datasets. (A) Pairwise correlations between 
the ontological profiles obtained for the individual datasets. Correlations were measured using 
the Pearson correlation coefficient, whose values are colour-coded (from the highest 
correlation in yellow to the lowest correlation in blue). (B) The ontology profile overlap 
between datasets is quantified using the Jaccard index and the colour-code is the same as in the 
previous panel.  In both panels mass spectrometry based datasets are indicated in red on the 
axes labelled as LU 150, PENG 151, KUL 152, LAW 153, LAHT 154, DGD 155, PIC 156, LEE2 157, 
THAK 158, NAG 159 and WEB 160; GFP datasets are shown in green on the axes and are labelled 
as TKA 161, BRE 162, DEN 163, MAZ 164, CHO 165, YOF 149, NEW 166, LEE 167 and DAV 168; 
and the TAP-immunoblot dataset is shown in white on the axes and is labelled as GHA 169. The 
top 200 proteins are shown to have a similar gene ontology profile across all of the datasets.  

Although the gene ontology profiles of the top 200 cytoplasmic proteins are similar across 

datasets, significant differences in protein abundances were observed. For example, the average 

coefficient of variation (CV) (measured across the 21 datasets) for the cytoplasmic proteins is 

78%. The differences are more marked in the case of ribosomal proteins (CV = 106%).  

In order to investigate the internal consistency of the proteomic datasets and their agreement 

with other published data, ribosomal proteins were examined separately. The protein 

composition of ribosomes can be assumed to be fixed 170 and there are 79 ribosomal proteins 

per ribosome. Since the stoichiometry for each ribosomal protein with respect to the ribosome 
171 is 1:1, it should be expected that the numbers of each of these ribosomal proteins in a given 

dataset will lie within a very small range. The identity of the ribosomal proteins was taken from 

the crystal structure of the eukaryotic ribosome (PDB code 4V88) 172. The CV of these proteins 

was computed in every dataset and the average CV of all MS datasets is 69%, whereas the 
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average CV of GFP datasets is 103%, indicating better internal consistency in MS datasets 

compared to GFP datasets.  

Depending on the consistency between datasets, the numbers reported for a given ribosomal 

protein across different datasets are expected to vary showing patterns in terms of experimental 

conditions. In order to test this, the abundances of different ribosomal proteins were compared 

across different datasets. Given the 1:1 stoichiometry for each ribosomal protein with respect 

to the ribosome 171, the abundance of each ribosomal protein in each dataset provided an 

estimate of the number of ribosomes per cell. The average number of ribosomal proteins was 

therefore calculated to derive an average ribosome per cell value for each dataset. The resulting 

values were then compared between datasets by performing multiple pairwise t-tests to 

determine any patterns arising from the growth media, growth phase or the technique used to 

measure protein abundance (Figure 4.3). High p-values were observed in the pairwise tests 

between the datasets derived from GFP-tagging of proteins, indicating consistency between 

them. On the other hand, no clear consistency was apparent within the MS datasets, and no 

patterns were observed that might be accounted for by the growth media or growth phase used 

during cell culture. 
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Figure 4.3. Testing of statistical difference between the abundance of ribosomal proteins in 
each of the datasets. Mass spectrometry-based datasets are shown in red on the axes, GFP 
datasets are shown in green on the axes and the TAP-immunoblot dataset is shown in white. 
Ribosomal protein numbers were not reported in the YOF dataset and, therefore, it is not 
included. The results of t-tests with p > (0.05/190) are coloured dark blue and all others are 
coloured light blue. GFP datasets exhibit a high level of consistency. There is also consistency 
among the first five MS datasets. However, there are no discernible patterns in terms of the 
growth media, growth phase or protein abundance units. 

It has previously been reported that there are ribosomal proteins with extra-ribosomal functions 

in yeast 173. In order to test if the differences in the abundance (Table 4.1 at the end of the 

chapter) of ribosomal proteins arise from the fact that some of them perform additional 

functions and might therefore be produced in excess of the requirements for ribosome 

synthesis, the mean of means and the mean of medians (across 21 datasets) of ribosomal 

proteins with extra functions (set I) and other ribosomal proteins (set II) were computed. If 
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excess production of some ribosomal proteins was due to additional functions, their numbers 

might be expected to be higher than those of other proteins. However, the mean of means of 

set I is ~88,400 units, whilst that of set II is ~86,000 units. By contrast, the mean of medians 

of set I is ~61,700 and that of set II is ~53,157 units. Whilst ribosomal proteins with other 

functions seem to be abundant, it should be noted that the standard deviations of both sets of 

proteins are ~25,000. A t-test carried out comparing the means reported for ribosomal proteins 

in set I and set II has a p-value of 0.85 and a similar calculation with medians showed a p-value 

of 0.23. These high p-values suggest that the differences in mean/median abundances do not 

have statistical significance, suggesting that the differences in the abundances of ribosomal 

proteins are not due to the extra-ribosomal functions carried out by some of them. The causal 

relationships of this phenomenon will need to be further investigated.   

4.3.2 Selection of datasets  

Whilst the gene ontology profiles of the proteomics datasets are similar, they vary widely in 

the protein abundances reported. The ratio of the median of abundances reported by GFP 

datasets to the median of MS datasets was calculated for cytoplasmic and ribosomal proteins. 

We determined that for 74% of cytoplasmic proteins and 84% of ribosomal proteins the 

medians differ by more than 25%. The differences in the individual protein abundances 

between the GFP and MS datasets were reported to be possibly due to changes in protein or 

mRNA stability following GFP tagging 129. More specifically, in the case of ribosomal proteins, 

GFP tagging can alter their packing in the ribosome, thereby affecting their turnover dynamics 

and therefore their abundances 174.  

The number of ribosomes, calculated by taking the median of all ribosomal proteins reported 

in the GFP datasets, revealed an estimated 51,800 ribosomes per cell, whereas previously 

reported figures are 150,000-300,000 144 and 169,000-265,000 145 ribosomes per cell. As 

discussed earlier, the abundances of ribosomal proteins reported in the GFP datasets are also 

widely spread, with an average CV of 103%, in contrast to the average CV of 69% in the MS 

datasets. It was thus decided to omit the GFP datasets from further consideration. 

The first five (LU, PENG, KUL, LAW and LAHT) MS datasets report abundances in absolute 

numbers, whereas the other MS datasets report normalized abundances (with respect to the 

average of the five MS datasets) 129. When the median of the first five MS datasets was 

compared to the median of the other MS datasets individually for every protein, 78% of 
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cytoplasmic proteins and 96% of ribosomal proteins showed more than 25% difference. These 

differences may potentially be an artefact of the normalization process. The number of 

ribosomes inferred from the median abundance of ribosomal proteins of the first five MS 

datasets was ~130,000, whereas it was only 30,500 when calculated from the other MS datasets. 

This latter, lower figure is significantly different to previous reports 144,145, as discussed above. 

The five MS datasets also showed high internal consistency in the pairwise t-tests performed 

on ribosomal protein abundance compared to the other MS datasets (Figure 4.3). The five MS 

datasets were originally reported to be highly correlated (with the Pearson correlation 

coefficient varying from 0.43 to 0.81) 129, which is consistent with our findings. Consequently, 

it was decided that only the first five MS datasets would be used for the definition of the 

contents of a molecular simulation cell.  

4.3.3 Constraints for the definition of the contents of a simulation cell 

A molecular simulation cell should be designed to mimic the environment of the yeast 

cytoplasm. This requires the inclusion of three important constraints: macromolecular density, 

the mass ratio of ribosomal-to-cytoplasmic proteins, and the number of ribosomes in the 

simulation cell.  

Macromolecular density is an indirect measure of the excluded volume and, therefore, 

crowding. The volume of yeast cell has been reported to be 42 µm3 175 and from the cell 

tomography determinations 145 we estimated the cytoplasm in yeast to be 65% of the total cell 

volume (27.3µm3). The mass of all the 1374 cytoplasmic proteins in the dataset, excluding 

ribosomes, was calculated using the mean abundances of all proteins with the above chosen 

five MS datasets. There are 3 million tRNAs in a yeast cell 144 and, using an average mass of 

25,500 Da per tRNA (calculated assuming that there are 75 nucleotides in tRNAs, each 

weighing an average mass of 340 Da), the total tRNA mass was calculated. The median number 

of all ribosomal proteins across the five MS datasets was determined to be 126,213, which was 

used to calculate the ribosomal mass in the yeast cell. The total masses of tRNAs, ribosomes 

and cytoplasmic proteins was then used to estimate the macromolecular density of the yeast 

cytoplasm as 90 g/L.  

It has been reported that the fractions of ribosomal protein (R-protein), translation protein (T-

protein), fixed protein (Q), the proportion of which is independent of growth rate, and 



68 

metabolic protein (P-protein), given by, ΦR, ΦT, ΦQ and ΦP, respectively, are unique for a 

specific growth rate 34. Therefore, 

 ΦQ + ΦP = 
Q-Protein

A
 + 

P-Protein
A

 = C(growth rate)    
Equation 4.1 

where A is the total protein mass and C is the growth rate specific constant. The total Q- and 

P-protein content can be divided into cytoplasmic and non-cytoplasmic fractions. Therefore, 

the previous equation can be rewritten as 

 ΦQ + ΦP = 
non-cytoplasmic(Q+P) 

A
 + 

cytoplasmic(Q+P)

A
= C(growth rate) 

Equation 4.2 

non-cytoplasmic(Q+P) 
A

: 
cytoplasmic(Q+P)

A
 = k(growth rate) 

Equation 4.3 

The last equation (Equation 4.3) states the assumption that the mass ratio of cytoplasmic to 

non-cytoplasmic proteins is constant at a given growth rate, from which it follows that 

cytoplasmic fraction in Q- and P-proteins remains constant. Since the T-protein fraction is a 

growth rate-dependent constant, the mass ratio of ribosomal-to-total cytoplasmic proteins is 

constant at a given growth rate. This is the second constraint for the definition of the contents 

of a simulation cell. The mass ratio of ribosomal-to-cytoplasmic proteins (rib/cyt) was 

determined to be 0.2229. 

The crystal structure of the ribosome is composed of 75 ribosomal proteins 172 and, at such 

size, it would be computationally challenging to include multiple ribosomes in a single 

simulation cell. Equally, ignoring the contribution of the ribosome to the excluded volume and 

macromolecular density would affect the accuracy of a simulation. Therefore, addition of a 

single ribosome to the simulation cell was decided as the third constraint for the definition of 

its contents. 
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4.3.4 Definition of the contents of the simulation cell 

The choice of five MS datasets reduced the number of cytoplasmic proteins with abundance 

data from 1594 to 1374; however, when calculating the macromolecular density of the 

cytoplasm, data from all 1594 proteins was considered. The total mass of cytoplasmic proteins 

calculated using abundances in the unified dataset is 7.56 x 1011 Da. The median of the number 

of molecules reported for a given protein by the five chosen MS datasets was taken as the 

measure of its abundance in a typical yeast cell. The total mass of a given type of protein was 

calculated by multiplying its abundance (number of proteins per cell) by its molecular mass, 

and the protein list was then sorted in descending order of total mass. The top 200 proteins 

contribute, as mentioned earlier, about 70% of the total cytoplasmic protein mass. The top 

proteins from the list were chosen due to their significant contribution to the protein mass in 

the cytoplasm and their abundances were subsequently scaled down to their corresponding 

value in proportion to only one ribosome (calculated as the abundance ‘n’ of a protein divided 

by the 126,213 ribosomes predicted in the MS datasets).  

Each of the less abundant cytoplasmic proteins does not contribute significantly to the overall 

protein mass. However, their collective removal results in a significant loss in protein mass 

which needs to be accounted for in order to maintain the desired macromolecular density of 

the simulation cell. Additionally, a number of proteins will contribute to the cytoplasm in 

fractional units that are lost due to rounding. The number of protein molecules of each of the 

cytoplasmic proteins was thus multiplied by a scaling factor aimed at maintaining the overall 

macromolecular density of the simulation cell. The number of protein types was chosen such 

that their total mass contribution reflects the expected value of the rib/cyt ratio. This was 

achieved by testing multiple scaling factors under the above-described constraints. Use of a 

large scaling factor (e.g. 3.0) meant that the rib/cyt ratio could be reached with just 20 different 

types of proteins, amounting to 119 protein molecules. By contrast, the rib/cyt ratio could not 

be reached with very low scaling factors (e.g. < 1.8). Although the total number of protein 

molecules remained in the range 120-130 with all of the scaling factors tested, the observed 

protein composition was affected significantly with the use of large scaling factors. A range of 

scaling factors meet the constraints of macromolecular density, rib/cyt ratio and the presence 

of one ribosome in the simulation cell. However, in order to maintain the most representative 

composition of cytoplasmic proteins, the lowest possible scaling factor of 1.803 was chosen. 

This resulted in a final list containing 128 protein molecules belonging to 70 types of proteins 

(Table 4.2 at the end of the chapter).  
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Based on the constraint that there should be only one ribosome, the size of the simulation cell 

was calculated. A total of 126,213 ribosomes are assumed to be present in the cytoplasm, which 

has a volume of 27.3µm3. This volume was scaled down to one ribosome unit, which for a 

cubic simulation cell results in a length of 560 Å. The number of tRNAs was scaled down from 

3 million units per cell to the volume of the simulation box, resulting in 22 tRNA units. With 

one 80S ribosome, 132 protein molecules and 22 tRNAs, the resulting simulation cell has the 

required total macromolecular density of 90 g/L. 

4.4 Discussion 

This study shows that the ontological profiles of the most abundant proteins in yeast remains 

constant despite differences in growth medium and growth phase, indicating that the most 

abundant proteins constitute the fundamental biochemical framework of the cell. The 

abundances reported in GFP datasets are affected by tagging, particularly in the case of 

ribosomal proteins. This has been explained previously on the basis that ribosomal proteins 

form a compact structure in a single ribosome molecule and the tag attached to them affects 

their packing. Although this explains the low numbers of ribosomal proteins reported, the cause 

of the high CV of ribosomal proteins in GFP datasets (CV = 103%), indicating a selective effect 

of tagging, compared with that of MS datasets (CV = 69%) remains unclear. Moreover, the 

average number of ribosomes calculated using MS datasets that report abundances in relative 

units is very low (30,500 units). The causes behind this remain undetermined, although 

normalization of the data is a possible factor.  

Unlike prokaryotic cells, eukaryotic cells have a sophisticated organization of cellular 

machinery into different organelles with varying macromolecular environments. In order to 

study the influence of this macromolecular environment, an accurate description of its 

composition is needed. This was achieved by assigning the cellular location of a protein from 

its gene annotation data (GO-slim data) and determining the volume percentage of cytoplasm 

in yeast from cell tomography experiments. The macromolecular density of yeast cytoplasm 

was found to be 90 g/L, which is three times lower than that of the cytoplasm of E. coli. 

Measurements of the diffusion coefficient of GFP in eukaryotic and prokaryotic cells indicate 

that the eukaryotic cytoplasm is less crowded,176 in line with our findings. Crowding in 

eukaryotic cells is also non-uniform. For example, in the nucleus we have calculated the protein 

density to be 346 g/L (using the 10-11 volume percentage obtained from cell tomography 
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experiments 145 and nuclear protein abundances from the dataset 129). These large 

macromolecular density differences indicate that an accurate estimate of the macromolecular 

density of the organelle of interest is necessary.  

In conclusion, a simulation cell was defined such that the yeast cellular composition of proteins, 

the ribosome-to-cytoplasmic protein mass ratio and the macromolecular density are retained. 

This was achieved by increasing the relative proportion of the most abundant proteins under 

specific constraints. The resulting simulation cell contains 128 protein molecules belonging to 

70 protein types, 22 tRNAs and one 80s ribosome within a cubic cell of 560 Å in length. The 

simulation cell contents act as a generic representation of the cytoplasm that can be used to 

study the diffusion and interactions of molecules in the yeast cytoplasmic environment.  

 

Figure 4.4 Results of the t-tests corrected for type-I errors using the Benjamini-Hochberg 
approach (an alternative to the Bonferroni correction) with FDR=0.05. Dataset pairs for which 
p-values > 0.05 are colored in dark blue. Squares in red show deviations from the t-test 
predictions. The results are qualitatively similar to the t-test predictions and the conclusions 
drawn from t-tests remain valid.  
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Figure 4.5. Results of the Mann-Whitney U test performed in pairwise manner across the 
datasets. The Bonferroni correction was applied to address type-I errors. Squares in dark blue 
show p-values > (0.05/190). Squares in red show the dataset pairs for which the p-values 
predicted using the Mann-Whitney U test are different from the p-values predicted with the t-
tests. The results are qualitatively similar to the t-test results and the conclusions drawn from 
the t-tests remain valid. 

Table 4.1. Mean abundances (averaged over 21 datasets) of ribosomal proteins.  

Ribosomal protein Mean abundance 
RPL8A 188027.73 

RPP0 130202.95 

RPS7A 202553.26 

RPS2 152569.09 

RPL3 89802.65 

RPL5 96389.57 

RPS0A 115555.92 

RPL4A 81725.33 

RPS5 123613.53 

RPS4A 103019.95 
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RPS3 102188.04 

RPS1A 88136.51 

RPS26A 181591.82 

RPL22A 165100.58 

RPL7A 80549.23 

RPS18A 130570.40 

RPL9A 102286.11 

RPL10 85701.46 

RPL19A 99641.26 

RPL31A 162099.18 

RPS8A 92966.31 

RPS13 118213.17 

RPS6A 72525.95 

RPL36A 168796.39 

RPS9A 81059.75 

RPS20 119954.71 

RPL18A 79537.21 

RPS17A 103341.74 

RPL25 103276.00 

RPS11A 89415.05 

RPS15 94003.66 

RPL15A 61326.79 

RPS12 92317.14 

RPL28 83111.26 

RPL2A 50517.13 

RPL24A 74903.49 

RPL17A 62827.69 

RPL14A 80322.78 

RPS16A 71760.17 

RPL13A 50041.38 

RPL21A 61140.15 

RPS10A 82701.84 

RPL35A 74545.27 

RPL20A 50252.89 

RPL43A 101502.12 

RPS24A 65998.10 

RPL11A 51004.52 

RPS31 58390.66 

RPS14A 68873.54 

RPS25A 82158.97 

RPL32 66342.15 

RPL26A 66121.02 

RPS19A 58515.32 

RPL27A 59677.32 
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RPL33A 75015.30 

RPL6A 44425.88 

RPL30 74292.39 

RPL39 126124.28 

RPL16A 35233.79 

RPS22A 53336.31 

RPS21A 80034.68 

RPL34A 55699.59 

RPS23A 45213.45 

RPL38 70481.00 

RPL29 80524.73 

RPS27A 58361.28 

RPL42A 37748.62 

RPS28A 57906.56 

RPL23A 30148.74 

RPL37A 42091.50 

RPL41A 95917.02 

RPS30A 38135.39 

RPL40A 10587.84 

RPS29A 18070.34 

ASC1 155688.35 

STM1* 78257.70 

*STM1 is the non-ribosomal protein found in the crystal structure of ribosome. 

Table 4.2 The final list of proteins and their structural information. The first column is the 
rank of the protein when the list is sorted in descending order of mass contributed to the 
simulation cell. Rows are colour-coded such that green denotes proteins that have an 
experimentally-determined structure (completely or partially), white denotes proteins that do 
not have structures but the structures can be predicted using homology modelling, and yellow 
denotes proteins that do not show sequence similarity to any known structure. There are 
structures readily available for 34 of the protein types, whilst 32 of the protein types show 
significant sequence identity with protein structures available and, therefore, their structures 
can readily be obtained using homology modelling. The remaining 4 types of proteins show no 
sequence similarity to any structures publicly available and, therefore, ab initio modelling 
approaches can be used to predict their structures. 

 
Systematic 
name 

Standard 
name Description 

Number of 
molecules in 
simulation 
cell 

PDB ID 
of the 
structure / 
template  

1 YBR118W TEF2 
Translational elongation factor 
EF-1 alpha 13 1F60_A 

2 YNL209W SSB2 

Cytoplasmic ATPase that is a 
ribosome-associated molecular 
chaperone 5 3GL1_A 

https://www.ncbi.nlm.nih.gov/protein/1F60_A?report=genbank&log$=prottop&blast_rank=1&RID=PYXUBRZ3015
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3 YDR385W# EFT2 
Elongation factor 2 (EF-2), 
also encoded by EFT1 3 1N0U_A 

4 YOL086C ADH1 Alcohol dehydrogenase 8 4W6Z_A 

5 YAL038W CDC19 Pyruvate kinase 5 1A3W_A 

6 YOR133W# EFT1 
Elongation factor 2 (EF-2), 
also encoded by EFT2 3 1N0U_A 

7 YLR303W MET15 
O-acetyl homoserine-O-acetyl 
serine sulfhydrylase 5 2CTZ_A 

8 YLR249W YEF3 Translation elongation factor 3 2 2IWH_A 

9 YER091C MET6 
Cobalamin-independent 
methionine synthase 1 3PPC_A 

10 YKR059W TIF1 
Translation initiation factor 
eIF4A 3 2VSO_A 

11 YLR109W AHP1 Thiol-specific peroxiredoxin 6 4H86_A 

12 YMR116C ASC1 

G-protein beta subunit and 
guanine dissociation inhibitor 
for Gpa2p 3 3RFG_A 

13 YPL106C SSE1 

ATPase component of heat 
shock protein Hsp90 
chaperone complex 1 3C7N_A 

14 YAL003W EFB1 
Translation elongation factor 1 
beta 4 1IJE_B 

15 YPR074C TKL1 Transketolase 1 1GPU_A 

16 YLL039C UBI4 Ubiquitin 2 4NNJ_B 

17 YCL018W LEU2 
Beta-isopropylmalate 
dehydrogenase (IMDH) 2 3U1H 

18 YER043C SAH1 
S-adenosyl-L-homocysteine 
hydrolase 2 1B3R 

19 YDL229W SSB1 

Cytoplasmic ATPase that is a 
ribosome-associated molecular 
chaperone 1 3GL1_A 

20 YJR109C CPA2 
Large subunit of carbamoyl 
phosphate synthetase 1 5DOT_A 

21 YGL009C LEU1 Isopropylmalate isomerase 1 4NQY 
22 YML028W TSA1 Thioredoxin peroxidase 3 3SBC_A 

23 YDL055C PSA1 
GDP-mannose 
pyrophosphorylase 2 1TZF_A 

24 YPL240C HSP82 Hsp90 chaperone 1 2CG9_A 

25 YLR058C SHM2 
Cytosolic serine 
hydroxymethyl transferase 1 5Z0Y_A 

26 YJL138C TIF2 
Translation initiation factor 
eIF4A 2 1FUU_A 

27 YDR502C SAM2 
S-adenosylmethionine 
synthetase 1 1O90_A 

28 YDR023W SES1 
Cytosolic seryl-tRNA 
synthetase 1 3QNE_A 

29 YHR064C SSZ1 
Hsp70 protein that interacts 
with Zuo1p 1 5MB9_A 

30 YLL050C COF1 Cofilin 3 1CFY_A 

31 YPR145W ASN1 Asparagine synthetase 1 1CT9_A 

32 YCL030C HIS4 

Multifunctional enzyme 
containing phosphoribosyl-
ATP pyrophosphatase 1 5VLB_A 

33 YLR180W SAM1 
S-adenosylmethionine 
synthetase 1 2OBV_A 

https://www.ncbi.nlm.nih.gov/protein/1N0U_A?report=genbank&log$=prottop&blast_rank=1&RID=PYYCC50H014
https://www.ncbi.nlm.nih.gov/protein/4W6Z_A?report=genbank&log$=prottop&blast_rank=1&RID=PYYGV8J3014
https://www.ncbi.nlm.nih.gov/protein/1A3W_A?report=genbank&log$=prottop&blast_rank=1&RID=PYYJJ0UR015
https://www.ncbi.nlm.nih.gov/protein/1N0U_A?report=genbank&log$=prottop&blast_rank=1&RID=PYYT7P1Y015
https://www.ncbi.nlm.nih.gov/protein/2CTZ_A?report=genbank&log$=prottop&blast_rank=1&RID=NM4XU0FU015
https://www.ncbi.nlm.nih.gov/protein/2IWH_A?report=genbank&log$=prottop&blast_rank=1&RID=PYYY1D5C014
https://www.ncbi.nlm.nih.gov/protein/3PPC_A?report=genbank&log$=prottop&blast_rank=1&RID=NM54WBVY015
https://www.ncbi.nlm.nih.gov/protein/2VSO_A?report=genbank&log$=prottop&blast_rank=1&RID=PYZU238R015
https://www.ncbi.nlm.nih.gov/protein/4H86_A?report=genbank&log$=prottop&blast_rank=1&RID=PYZWDW58015
https://www.ncbi.nlm.nih.gov/protein/3RFG_A?report=genbank&log$=prottop&blast_rank=3&RID=PZ01GJKP015
https://www.ncbi.nlm.nih.gov/protein/3C7N_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ05150C014
https://www.ncbi.nlm.nih.gov/protein/1IJE_B?report=genbank&log$=prottop&blast_rank=3&RID=PZ0Y7HSD01R
https://www.ncbi.nlm.nih.gov/protein/1GPU_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ13FKUG01R
https://www.ncbi.nlm.nih.gov/protein/4NNJ_B?report=genbank&log$=protalign&blast_rank=15&RID=PZ16R9UR01R
https://www.ncbi.nlm.nih.gov/protein/3GL1_A?report=genbank&log$=prottop&blast_rank=2&RID=PZ1JBCKF01R
https://www.ncbi.nlm.nih.gov/protein/3SBC_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ1R228B01R
https://www.ncbi.nlm.nih.gov/protein/2CG9_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ1SPEWP01R
https://www.ncbi.nlm.nih.gov/protein/5Z0Y_A?report=genbank&log$=prottop&blast_rank=1&RID=NM6J5YDJ015
https://www.ncbi.nlm.nih.gov/protein/1FUU_A?report=genbank&log$=prottop&blast_rank=2&RID=PZ1UJNNM01R
https://www.ncbi.nlm.nih.gov/protein/1O90_A?report=genbank&log$=prottop&blast_rank=1&RID=NM6N3P35015
https://www.ncbi.nlm.nih.gov/protein/5MB9_A?report=genbank&log$=prottop&blast_rank=1&RID=NM6WSHPT014
https://www.ncbi.nlm.nih.gov/protein/1CFY_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ1XA94Z01R
https://www.ncbi.nlm.nih.gov/protein/1CT9_A?report=genbank&log$=prottop&blast_rank=1&RID=NM72CRK6015
https://www.ncbi.nlm.nih.gov/protein/5VLB_A?report=genbank&log$=prottop&blast_rank=1&RID=NM757D3Y015
https://www.ncbi.nlm.nih.gov/protein/2OBV_A?report=genbank&log$=prottop&blast_rank=1&RID=NM7B1AKD015
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34 YOR027W STI1 Hsp90 cochaperone 1 3UQ3_A 

35 YHR019C DED81 
Cytosolic asparaginyl-tRNA 
synthetase 1 5XIX_A 

36 YBR025C OLA1 

P-loop ATPase with similarity 
to human OLA1 and bacterial 
Ych 1 1NI3_A 

37 YMR120C ADE17 
Enzyme of 'de novo' purine 
biosynthesis 1 1THZ_A 

38 YBR126C TPS1 

Synthase subunit of trehalose-
6-P synthase/phosphatase 
complex 1 5HUT_A 

39 YGR124W ASN2 Asparagine synthetase 1 1CT9_A 

40 YLR027C AAT2 

Cytosolic aspartate 
aminotransferase involved in 
nitrogen metabolism 1 1YAA_A 

41 YNL220W ADE12 Adenylosuccinate synthase 1 5I33_A 

42 YHR193C EGD2 

Alpha subunit of the nascent 
polypeptide-associated 
complex (NAC) 2 3MCE_A 

43 YLR432W IMD3 
Inosine monophosphate 
dehydrogenase 1 5MCP_A 

44 YMR217W GUA1 GMP synthase 1 5TW7_A 

45 YNL138W SRV2 
CAP (cyclase-associated 
protein 1 1K4Z_A 

46 YBR143C SUP45 

Polypeptide release factor 
(eRF1) in translation 
termination 1 4CRN_X 

47 YLR150W STM1 

Protein required for optimal 
translation under nutrient 
stress 1   

48 YKL035W UGP1 
UDP-glucose 
pyrophosphorylase (UGPase) 1 2I5K_A 

49 YLR359W ADE13 Adenylosuccinate lyase 1 5VKW_A 

50 YOL058W ARG1 Arginosuccinate synthetase 1 1VL2_A 

51 YNL064C YDJ1 Type I HSP40 co-chaperone 1 1NLT 

52 YOR184W SER1 
3-phosphoserine 
aminotransferase 1 6CZY_A 

53 YGL105W ARC1 

Protein that binds tRNA and 
methionyl- and glutamyl-
tRNA synthetases 1 4R1J_A 

54 YPL037C EGD1 

Subunit beta1 of the nascent 
polypeptide-associated 
complex (NAC) 1 NO 

55 YKL142W MRP8 

Protein of unknown function; 
undergoes sumoylation; 
transcription induced under 
cell wall stress 1   

56 YDL192W ARF1 ADP-ribosylation factor 1 5A1U_A 

57 YER055C HIS1 
ATP phosphoribosyl 
transferase 1 2VD3_A 

58 YIL041W GVP36 BAR domain protein 1   
59 YFL045C SEC53 Phosphomannomutase 1 5UE7_A 

60 YEL021W URA3 
Orotidine-5'-phosphate (OMP) 
decarboxylase 1 3GDK_A 

61 YDL137W ARF2 ADP-ribosylation factor 1 1MR3_F 

https://www.ncbi.nlm.nih.gov/protein/3UQ3_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ1YT2BJ01R
https://www.ncbi.nlm.nih.gov/protein/5XIX_A?report=genbank&log$=prottop&blast_rank=1&RID=NM7JR0RV015
https://www.ncbi.nlm.nih.gov/protein/1NI3_A?report=genbank&log$=prottop&blast_rank=1&RID=NM7PBS1K014
https://www.ncbi.nlm.nih.gov/protein/1THZ_A?report=genbank&log$=prottop&blast_rank=1&RID=NM7T51ZE015
https://www.ncbi.nlm.nih.gov/protein/5HUT_A?report=genbank&log$=prottop&blast_rank=1&RID=NM7VSHM1014
https://www.ncbi.nlm.nih.gov/protein/1CT9_A?report=genbank&log$=prottop&blast_rank=1&RID=NM85YBY9015
https://www.ncbi.nlm.nih.gov/protein/1YAA_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ207TT901R
https://www.ncbi.nlm.nih.gov/protein/5I33_A?report=genbank&log$=prottop&blast_rank=1&RID=NM8B1ZYT014
https://www.ncbi.nlm.nih.gov/protein/3MCE_A?report=genbank&log$=prottop&blast_rank=1&RID=NM8E25DY014
https://www.ncbi.nlm.nih.gov/protein/5MCP_A?report=genbank&log$=prottop&blast_rank=1&RID=NM8HG4WP015
https://www.ncbi.nlm.nih.gov/protein/5TW7_A?report=genbank&log$=prottop&blast_rank=1&RID=NM8RS47Z015
https://www.ncbi.nlm.nih.gov/protein/1K4Z_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ22T0SN01R
https://www.ncbi.nlm.nih.gov/protein/4CRN_X?report=genbank&log$=prottop&blast_rank=1&RID=PZ2MGDVR015
https://www.ncbi.nlm.nih.gov/protein/2I5K_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ2RFCPY015
https://www.ncbi.nlm.nih.gov/protein/5VKW_A?report=genbank&log$=prottop&blast_rank=1&RID=NMCTE7CS01R
https://www.ncbi.nlm.nih.gov/protein/1VL2_A?report=genbank&log$=prottop&blast_rank=1&RID=NMCW4D65014
https://www.ncbi.nlm.nih.gov/protein/6CZY_A?report=genbank&log$=prottop&blast_rank=1&RID=NMCYERHV014
https://www.ncbi.nlm.nih.gov/protein/4R1J_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ47SYE7014
https://www.ncbi.nlm.nih.gov/protein/5A1U_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ4B4JGE014
https://www.ncbi.nlm.nih.gov/protein/2VD3_A?report=genbank&log$=prottop&blast_rank=1&RID=NMDCAXA0014
https://www.ncbi.nlm.nih.gov/protein/5UE7_A?report=genbank&log$=prottop&blast_rank=1&RID=NMDNE2D901R
https://www.ncbi.nlm.nih.gov/protein/3GDK_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ4RXJ1T015
https://www.ncbi.nlm.nih.gov/protein/1MR3_F?report=genbank&log$=prottop&blast_rank=1&RID=PZ4UPK3D015
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62 YDR533C HSP31 

Methylglyoxalase that 
converts methylglyoxal to D-
lactate 1 4QYX_A 

63 YBR109C CMD1 Calmodulin 1 6OQQ_B 

64 YLR172C DPH5 
Methyltransferase required for 
synthesis of diphthamide 1 3I4T_A 

65 YNL079C TPM1 Major isoform of tropomyosin 1   

66 YDR071C PAA1 Polyamine acetyltransferase 1 1B6B_A 

67 YGL106W MLC1 
Essential light chain for 
Myo1p 1 1M45_A 

68 YDR177W UBC1 Ubiquitin-conjugating enzyme 1 1TTE_A 

69 YIL138C TPM2 Minor isoform of tropomyosin 1 5ND5_A 

70 YPL225W   

may interact with ribosomes, 
based on co-purification 
experiments 1 2JYN_A 

71 YMR260C TIF11 
Translation initiation factor 
eIF1A 1 3J80_i 

*STM1 is added as a component of ribosome.  

#These proteins are paralogs encoded by different genes.  

 

https://www.ncbi.nlm.nih.gov/protein/4QYX_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ4XPUMY014
https://www.ncbi.nlm.nih.gov/protein/6OQQ_B?report=genbank&log$=prottop&blast_rank=1&RID=PZ509RPE014
https://www.ncbi.nlm.nih.gov/protein/3I4T_A?report=genbank&log$=prottop&blast_rank=1&RID=PYT8AEES01R
https://www.ncbi.nlm.nih.gov/protein/1B6B_A?report=genbank&log$=prottop&blast_rank=1&RID=NME1KHMG014
https://www.ncbi.nlm.nih.gov/protein/1M45_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ52GK6M014
https://www.ncbi.nlm.nih.gov/protein/1TTE_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ599B09015
https://www.ncbi.nlm.nih.gov/protein/5ND5_A?report=genbank&log$=prottop&blast_rank=1&RID=NME7DDD2015
https://www.ncbi.nlm.nih.gov/protein/2JYN_A?report=genbank&log$=prottop&blast_rank=1&RID=PZ5B94N9014
https://www.ncbi.nlm.nih.gov/protein/3J80_i?report=genbank&log$=prottop&blast_rank=1&RID=PZ5CZT6W014
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Chapter 5 Characterization of the diffusion properties 
of tRNAs and their complexes in the model yeast 
cytoplasm  

5.1 Introduction 

The supply of tRNAs to the translating ribosomes is a crucial aspect of protein synthesis in 

cells. The tRNAs reach the ribosome as ternary complexes, and this process occurs via their 

diffusion in the cellular environment. The cellular environment, filled with macromolecules, is 

known to hinder free diffusion, and the extent of such a crowding effect on the diffusion of 

tRNAs is not well characterized. The role played by crowding effects in regulating translation 

can be understood by studying the altered diffusion of tRNAs and their complexes in the 

presence of macromolecular crowding.   

Recent studies on the high-osmolarity glycerol pathway in Saccharomyces cerevisiae show 

that nuclear localization of Hog1p is delayed as a result of severe osmotic stress.177 Osmotic 

stress triggers a cascade of reactions resulting in the nuclear localization of Hog1p, which 

further triggers a transcriptional response to mitigate the osmotic stress effects.178 Miermont et 

al. discovered that, although nuclear localization is normal in the presence moderate osmotic 

stress, severe osmotic stress significantly hinders this process.177 This behaviour and the 

associated effects on cell-signalling were attributed to macromolecular crowding arising from 

the shrinkage of yeast cells.177 Similarly, Konopka et al. discovered that osmotic stress reduced 

the diffusion of GFP in E.coli by 70-fold,  as the volume fraction increased from 0.16 to 0.33.179 

It is thus reasonable to assume that osmotic stress can affect the diffusion of molecules in the 

translation machinery. However, the magnitude of such an effect is not well understood. 

In this part of the study, the effect of macromolecular crowding on the diffusion of tRNAs and 

ternary complexes was studied using the Brownian dynamics approach employed in Chapter 

3. The model yeast cytoplasmic environment described in Chapter 4 was used to construct a 

suitable simulation system. Additionally, the effect of severe osmotic stress was studied by 

performing simulations at a higher macromolecular density. These simulations were conducted 

using a reduced version (containing only the top 4 proteins) of the model cytoplasm. As the 

high density, reduced system is different from the model cytoplasm at higher density, the 
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diffusion properties were expected to be affected as a result of the reduced polydispersity. To 

estimate the extent of such a deviation, similar reduced simulations were conducted 

maintaining the normal macromolecular density of yeast cytoplasm. The findings of this study 

suggest that the diffusion of tRNAs and ternary complexes is signicantly affected under the 

crowded conditions of the yeast cytoplasm. The diffusion is further reduced in the presence of 

severe osmotic stress, and the tRNAs and their complexes exhibited significant deviations from 

normal diffusive behaviour.  

5.2 Methods 

5.2.1 Pre-processing of Ribosome 

The structure of the eukaryotic 80s ribosome (PDB ID 4V88172) was used for the simulations. 

Multiple proteins (ribosomal proteins L6, L10, P0, S8, and S17) in the structure contained loops 

with undetermined coordinates. 25S rRNA, which is expected to contain 3396 bases, has the 

electron density determined only for residues 3-438, 491-1955, and 2093-3396, whilst 18S 

rRNA with a total of 1799 total residues has electron density determined only for residues 1-

665 and 669-1799. There are also several missing atoms in both the protein and RNA 

components. As the ribosome is an assembly of multiple protein and RNA chains, modelled 

loop structures cannot be readily accommodated in the ribosome complex without creating 

steric clashes. Most of the missing bases in the rRNAs are on the surface of the ribosome, 

which complicates the process of predicting the right conformations and assembling them onto 

the ribosome. The missing bases and loops contribute to ~7% of the mass of the ribosome. The 

effects of the missing bases and loops were not considered in the simulations because (i) the 

missing mass represents a relatively low percentage, (ii) the diffusion properties investigated 

are those of ternary complexes and tRNAs and not the ribosome per se, and (iii) it is clear from 

earlier calculations (Chapter 3) that long-term diffusion coefficients are predominantly affected 

by excluded volume effects and, therefore, the absent non-specific interactions arising from the 

missing RNA bases and protein loops likely alter only minimally the diffusion properties of 

the molecules of interest.  

Missing atoms were reconstructed using Swiss PDB viewer180 and Biovia Discovery Studio 

(Dassault Systèmes)181.. Parameters were taken from the CHARMM 36 forcefield182,183 to 

generate a PQR file containing coordinates, atomic charges and radii using PDB2PQR184,185. 

To generate the PQR file, hydrogen atoms were added assuming a physiological pH of 7.3.186 
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Electrostatic potential grids were calculated using the parallel focusing option available in 

APBS135,187,188 in an approach similar to that used by Baker et al..189 The grids were calculated 

at a 150 mM ionic strength190 and a temperature of 300 K using the linearized Poisson-

Boltzmann equation. The final processed grid had a size of 500 x 500 x 500 Å3 and a resolution 

of 1.0 Å. A modified 2.0 Å version of this grid was used for the calculation of effective charges. 

These effective charges are the charges placed on specific residues and the termini of the 

protein molecules, and the phosphate atoms of the RNA molecules such that they replicate the 

electrostatic grid generated from all the atoms in the molecule. These effective charges are then 

used in the calculation of forces. The electrostatic desolvation, hydrophobic desolvation, and 

Lennard-Jones potential grids were calculated at a resolution of 1.0 Å with sizes of 441 x 408 

x 413 Å3, 310 x 300 x 300 Å3, and 441 x 408 x 413 Å3, respectively. The Stokes radius of the 

ribosome was calculated using the ‘shell-model from residue level’ mode (to improve the 

calculation time) in HYDROPRO.28  

5.2.2 Pre-processing of tRNA and ternary complex 

The structure of the ternary complex of the phenylalanyl-tRNA of yeast and the elongation 

factor (EF-Tu) from Thermus aquaticus (PDB ID: 1TTT)191 was used as template to  build a 

homology model of the yeast elongation factor (EF-1α) using Swiss-model180,192,193. Upon 

alignment of the modelled EF-1α and EF-Tu structures (RMSD = 0.279 Å) in the complex, the 

extent of the conservation of the interactions between the tRNA and EF-Tu identified in the 

crystal structure of EF-Tu was investigated to ascertain that the structure of this predicted 

ternary complex was of sufficient quality.  

A high degree of conservation of the elongation factor residues involved in the binding of tRNA 

has been reported across bacteria, plants and animals.194 The interaction between the amino 

group of the ester group through which the amino acid is covalently attached to the tRNA and 

Asn285 and His273 of EF-Tu was retained in the structure of EF-1α. Similarly, the hydrogen 

bond between the 2’-OH group of the ester-bond-forming ribose and the conserved Glu271 of 

EF-Tu was also observed in the modelled structure. Glu271 in EF-Tu stacks to adenine, which 

was also observed in the structure of EF-1α. The hydrophobic region formed by Val237 and 

Ile231 in EF-Tu was also retained in the modelled structure. The interactions between Lys52 of 

EF-Tu and phosphate groups at positions 74 and 75 of tRNA, the salt bridge between Arg300 

and the 5’-phosphate, the interactions between ribose and Lys90 and Asn91, the co-ordination 
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of Asp87 and the phosphates of tRNA bases 3 and 64, the interaction between the main chain 

of Gly391 and the riboses of tRNA bases 63 and 64 were all retained in the structure of EF-1α. 

However, a few interactions observed between EF-Tu and tRNA were not observed in the 

complex with EF-1α. His67 in EF-Tu is replaced with Le in EF-1α and, as a result, the 

interactions between Phe and His67, and the latter’s role in the formation of the ternary 

complex191, were not retained in the structure with EF-1α. The interactions between the riboses 

in tRNA bases 64 and 65 and Gln341 and Thr350, respectively, were not retained in the structure 

with EF-1α. Since, most of the interactions observed between the tRNA and EF-Tu 191 were 

retained in the predicted ternary complex structure of EF-1α, its structure was used for further 

calculations.  

The charge and radius parameters for the modified bases in the tRNA were taken from the 

CHARMM force field.183 The protonation states considered in the parametrization of the 

forcefield correspond to physiological pH183 and, therefore, the protonation was left unaltered 

during the generation of the PQR file. The structure of EF-1α was protonated using 

PDB2PQR184,185 at a pH of 7.3. The electrostatic and other interaction potential grids were 

calculated using the same approach described above at a resolution of 1.0 Å and at a size such 

that the final grids envelope the entire protein.  

5.2.3 Pre-processing of Protein crowders 

Protein species were classified into four types: (i) proteins that have an experimentally 

determined structure, (ii) proteins with a high degree of sequence identity (>60%) with 

structures available in PDB database, (iii) proteins with intermediate sequence identity (<60%) 

with structures available in the PDB database and (iv) proteins with low sequence similarity 

with structures available in the PDB database. The first category of proteins were refined 

further using Swiss-PDB viewer180 and Biovia Discovery Studio (Dassault Systèmes)181 and, 

where necessary, MODELLER123,124 was used for loop modelling. The homology models of 

the proteins in the second category with good sequence coverage were built using Swiss-

model.180,192,193 The structures of the proteins with high sequence similarity but poor sequence 

coverage, as well as proteins in the third category, were built using I-TASSER.195–197 The 

structures of the last category of proteins were determined using ab initio modelling with 

QUARK198,199 and Rosetta (https://www.rosettacommons.org/).  
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The corresponding PQR files were generated using the same approach described above. All the 

interaction potential grids were generated at the required sizes, such that the molecules were 

fully enveloped by the grid.  

5.2.4 Determination of the composition of tRNAs 

Intracellular tRNAs can be present as charged (amino-acyl tRNAs) and uncharged (free 

tRNAs) molecules, as well as ternary complexes (aa-tRNA-EF-GTP). About 80% of tRNAs 

exist in charged form, carrying different amino acids.200 Hence, 18 out of the 22 tRNAs in the 

simulation cell were charged.  

Charged tRNAs bind to the EF-GTP complex to form a ternary complex with a dissociation 

constant (Kd) of 3 nM.201 The concentration of EF determined from the proteomics data (in this 

case, the five mass spectrometry datasets discussed in Chapter 4), using a yeast cell volume of 

42 fL,175 is 36 µM. It is clear from the observations of Gromadski et al201 that the concentration 

of the binary complex of EF and GTP reaches a near saturated value of ~7 nM at a 3 µM 

concentration of EF. The dissociation constant of the ternary complex can be written as  

𝐾𝐾𝑑𝑑 = ([𝑝𝑝𝑝𝑝𝑡𝑡𝑅𝑅𝑁𝑁𝐸𝐸] − [𝑅𝑅𝐶𝐶]).
[𝐸𝐸𝐸𝐸𝐺𝐺𝑅𝑅𝑁𝑁]

[𝑅𝑅𝐶𝐶]  

Equation 5.1 

where [aatRNA] is the concentration of total charged tRNAs, [TC] is the concentration of 

ternary complex, and [EFGTP] is the concentration of the binary complex of EF and GTP. The 

term ‘[aatRNA]-[TC]’ corresponds to the equilibrium concentration of charged tRNAs. Using 

the above figures, the total number of ternary complex molecules in the simulation cell was 

determined to be 13. Therefore, of the 22 tRNAs present in the simulation cell, 4 are included 

as uncharged tRNAs, 5 as free charged tRNAs, and 13 as ternary complex molecules.  

5.2.5 Polydispersity index (PDI) 

PDI was measured using Grimaldo et al.’s approach93, and is given by the ratio of the standard 

deviation to the mean of the Stokes radii of the particles in the simulation cell. PDI is an 

indicator of the heterogeneity in the size of the crowders.  



84 

5.2.6 Simulation system 

The processed contents of the yeast cytoplasm were placed in a cubic cell of edge length 560.0 

Å using the ‘genbox’ tool in SDA 7.3.0. ‘Genbox’ places the molecules inside the simulation 

cell randomly. The option to place the molecules in the order of their sizes was not chosen to 

avoid any bias in the resulting configuration. Three initial configurations were generated by 

randomly placing the molecules in the simulation cell. Given the large size of the ribosome, 

care was taken to ensure that none of the molecules were placed inside the ribosome. The 

number of initial configurations was chosen based on the parallelization available in SDA and 

the computational power required to run these simulations. The simulations were run on 

multiple machines; Cray XC40 machine (with 24 cores per node with a clock speed of 2.6 

GHz), a cluster with 18-core Intel Xeon E5-2695 (Broadwell) series processors with a clock 

speed of 2.1GHz, and an SGI Linux cluster with 28 cores per node. A simulation runtime of 

~0.7 μs per day was noted on all the machines with the 28-core SGI cluster showing the best 

performance. This could be due to the absence of inter-node parallelization in SDA,48 and 

higher number of cores per node in the SGI cluster. The highly crowded systems (described in 

detail below) showed notably poorer performance clocking ~0.3 μs per day on the 28-core 

cluster.  

Simulations were performed using SDAMM in SDA 7.3.0 using a time step of 0.5 ps, the 

default temperature (in SDA) of 300 K, and periodic boundary conditions (PBC). The 

simulations were conducted with just soft-core repulsive forces for 2 µs to remove overlaps 

between molecules. The simulations were then extended for a further 4.0 µs for equilibration. 

This was followed by a production run of 22.5 µs. Diffusion coefficients obtained from the 

time-averaged mean square displacement (MSD) were used to evaluate the convergence of the 

simulations.  

 
WHOLE REDUCED REDUCED 

HIGH 
Mac.mol. Density 
(g/L) 

90 90 270 

Protein types 
(no.of molecules) 

70  
(115) 

4  
(183) 

4  
(183) 

No. of tRNAC 5 9 9 
No. of tRNAUC 4 0 0 
No. of tRNAEF 13 13 12 
No. of ribosomes 1 0 0 
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Table 5.1 Simulation cell contents of the different types of simulations. Charged tRNAs, 
uncharged tRNAs and ternary complexes are represented by tRNAC, tRNAUC, and tRNAEF 
respectively.  

Two more systems were set up with reduced cytoplasmic contents to study the effects of 

osmotic stress, one at a macromolecular concentration corresponding to the yeast cytoplasm 

(90 g/L) and the other at 270 g/L corresponding to osmotic stress conditions. For these systems 

the top four protein species from the list described in Chapter 2 (with standard names SSB2, 

EFT2, ADH1, CDC19) were chosen as crowders and the simulation cell does not contain a 

ribosome. The concentrations of the crowders were scaled up to match the yeast cytoplasm 

macromolecular concentration of 90 g/L. The simulations at high concentration were set up by 

reducing the simulation cell size appropriately (Figure 5.1). The model cytoplasm simulations, 

simulations with only the top four proteins as crowders at high and normal densities are 

hereafter referred to as ‘WHOLE’, ‘REDUCED HIGH’, and ‘REDUCED’, respectively. Due 

to the similarity in their radii of gyration and diffusion properties observed in the   WHOLE 

simulations, charged and uncharged tRNAs were represented as a single species (charged 

tRNAs) in these simulations to further simplify the simulations. A total of 62 SSB2, 24 EFT2, 

59 ADH1, 38 CDC19, 9 free tRNAs and 13 ternary complex molecules (only 12 in the high 

concentration systems due to rounding) were included in these simulations (Table 5.1). All 

molecules were prepared using the same approach as in the full cytoplasm simulations. The 

simulations were set up with three different initial configurations, each in a cubic simulation 

cell of edge length 560.0 Å (90 g/L) and 388.0 Å (270 g/L). As before, a time step of 0.5ps and 

a temperature of 300 K was used. These simulations were run for 2.0 µs with soft core repulsive 

forces only, followed by 4.0 µs (90 g/L) or 10 µs (270 g/L) of equilibration and a production 

run of 22.0 µs each. Diffusion coefficients were monitored to evaluate convergence. The 

diffusion coefficient under dilute conditions was calculated using the ‘dcc’ tool in the SDA 

7.3.0 suite. Two-tailed t-test assuming unequal variance was used to calculate p-values.  
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Figure 5.1. Snapshots of the simulation systems of the crowded systems. The RNA 

molecules in all the systems are shown in red. Red lines show the boundaries of the simulation 

cell. (A) Whole cytoplasm (WHOLE). The ribosome is the largest molecule in this system, 

with its proteins shown in yellow and RNA in red. tRNAs are shown in red, elongation factor 

proteins are shown in blue, and the other crowding proteins are shown in random colours. The 

edge length of the cubic simulation cell is 560 Å. (B) REDUCED system, where the top four 

most abundant proteins are the crowders. The macromolecular density of this system is 90 g/L 

with a simulation cell edge length of 560 Å. Based on the visibly less empty space between the 

crowders, it can be inferred that the macromolecular density corresponding to the ribosome is 

distributed evenly across the simulation box. (C) REDUCED HIGH system. The edge length 

of the cubic simulation cell is 388 Å, with a macromolecular concentration of 270 g/L. Due to 

the close packing of proteins and the two-dimensional representation of the box, the spaces 

between molecules are not easily discernible but even distribution of proteins can be assumed.  

5.3 Results 

5.3.1 Slow diffusion of tRNAs in the crowded cytoplasm 

The convergence of predicted diffusion coefficients was evaluated using the same approach 

described in Chapter 3. Simulation trajectories were truncated at different incremental times 

and the resulting trajectories were used to calculate diffusion coefficients. The diffusion 

coefficients were calculated based on the time-averaged mean square displacement (TAMSD) 

averaged over all of the molecules. The diffusion coefficients computed for each simulation 
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system (‘WHOLE’, ‘REDUCED’ and ‘REDUCED HIGH’) with different initial 

configurations were then averaged and plotted as a function of time. Figure 5.2 shows the 

convergence of the predicted diffusion coefficients across all the systems.  

 

Figure 5.2. Convergence of the predicted diffusion coefficients of the ternary complex of 
EF-1α with tRNA in the (A) whole cytoplasm (no.of molecules = 13), (B) reduced cytoplasm 
with high concentration of macromolecules (no.of molecules = 12), and (C) reduced cytoplasm 
with normal concentration of macromolecules (no.of molecules = 13).  

The diffusion coefficients were calculated from production runs totalling 22.5 µs (‘WHOLE’) 

and 22.0 µs (‘REDUCED HIGH’ and ‘REDUCED’). The slope of the average TAMSD vs  

time in the ranges of 0-4500 ns (‘WHOLE’) and 0-4400 ns (‘REDUCED HIGH’ and 

‘REDUCED’) were used to calculate the diffusion coefficients of free tRNAs (charged and 

uncharged) and ternary complexes. The diffusion coefficients reported are the averages over 

the simulations conducted with different starting configurations.  

In the ‘WHOLE’ system, the diffusion coefficients of charged and uncharged tRNAs were 

computed to be 1.44 x 10-7 cm2/s and 1.52 x 10-7 cm2/s, respectively (with standard deviations 

(STDs) of 0.21 x 10-7 cm2/s and 0.75 x 10-7 cm2/s, respectively). The diffusion of the ternary 

complex was predicted to be slightly slower than that of the free tRNAs, with a diffusion 

coefficient computed to be 1.01 x 10-7 cm2/s (STD = 0.19 x 10-7 cm2/s). The higher standard 

deviation in the diffusion coefficients of uncharged tRNAs compared with that of the other 
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tRNA forms is possibly due to their relatively lower number in the simulation cell. When 

compared with that of the dilute conditions, the diffusion of ternary complexes, charged and 

uncharged tRNAs was predicted to be slower by 7.3-, 8.0-, and 7.8-fold, respectively. In 

comparison, green fluorescent protein (GFP), which has a similar Stokes radius202, exhibited a 

10-fold decrease in diffusion (compared with dilute conditions) in the cytoplasm of E. coli47 

(with a macromolecular concentration ~275 g/L). The in vivo diffusion coefficient of the free 

tRNA molecules in the bacterial cytoplasm has been measured to be 0.8 x 10-7 cm2/s.30  The 

slower diffusion rate in bacteria can be understood from the nearly 3-fold higher 

macromolecular concentration of the bacterial cytoplasm compared to yeast, which is the same 

increase in macromolecular concentration between the REDUCED HIGH and REDUCED 

systems. However, it is important to note that the diffusion coefficients predicted from these 

simulations are within the estimated range of the experimentally observed diffusion 

coefficients in E.coli (D = 0.8 x 10-7 cm2/s)30.  It should also be noted that the polydispersity 

index (PDI) of the model yeast cytoplasm system calculated  using the approach of  Grimaldo 

et.al. 93 is 0.38, which is much lower than that of the bacterial cytoplasm simulated by Elcock 

and McGuffee (PDI=1.05) and Ando and Skolnick (PDI=0.51). This is despite the fact that the 

number of macromolecular species considered in this study for the representation of the yeast 

cytoplasm is nearly 50% and 400% more than that of Elcock and McGuffee (50 species) and 

Ando and Skolnick (15 species), respectively. It is interesting to see that, unlike in prokaryotes, 

all the most abundant protein species in eukaryotes have a similar size.  

The diffusion coefficients of the ternary complex and tRNA(charged) in the ‘REDUCED’ 

system are 5.84 x 10-8 cm2/s and 9.7 x 10-8 cm2/s, respectively (Table 5.2). The diffusion of the 

ternary complex in REDUCED system is predicted to be 13-fold slower than that under dilute 

conditions, whilst the charged tRNAs is predicted to diffuse slower by 12-fold. This 

corresponds to a 1.7- and 1.5-fold decrease in the diffusion of the ternary complex and tRNAs, 

respectively, compared with that in the ‘WHOLE’ system. Although the predicted diffusion 

coefficients are of the same order of magnitude, when compared with that of the ‘WHOLE’ 

system, this disparity points to the importance of defining a well-characterized simulation 

environment when simulating the diffusion behaviour of proteins under crowded conditions. 

This difference can be assumed to arise as a consequence of the replacement of the ribosome 

with an equivalent amount of smaller protein molecules. Since the excluded volume effects are 

more evenly distributed in the ‘REDUCED’ system, there are more events where diffusing 

particles encounter the excluded volume, resulting in a decreased measured diffusion rate.  
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Diffusion coefficients (x10-7cm2/s)  

WHOLE REDUCED REDUCED 
HIGH 

tRNAC 1.44(0.21) 0.97(0.16) 0.16(0.016) 
tRNAUC 1.52(0.75) - - 
tRNAEF 1.01(0.19) 0.58(0.11) 0.1(0.003) 

Table 5.2. Predicted diffusion coefficients of tRNA molecules. Standard deviations (n=3) 
of the data from three initial configurations are shown in the brackets.  

As expected, the diffusion of tRNAs and ternary complex molecules is highly reduced in the 

‘REDUCED HIGH’ system. The diffusion coefficients of the ternary complex and tRNA are 

9.58 x 10-9 cm2/s and 1.59 x 10-8 cm2/s respectively, which corresponds to a 77- and 73-fold 

decrease compared with that of dilute conditions. Since the diffusion rate is underestimated in 

the ‘REDUCED’ system compared with the ‘WHOLE’ system, the diffusion of these 

molecules in an osmotically stressed yeast cell would be expected to be slightly higher than 

these predictions. These predictions provide nonetheless valuable insights into the diffusion 

properties of the translation machinery under osmotic stress conditions, and can be readily used 

to understand the dynamics of protein translation under these conditions by deriving 

appropriate rate constants using the predicted diffusion coefficients.  

5.3.2 Sub-diffusion of tRNA and the EF-1α ternary complex 

Sub-diffusion, as defined in terms of the α-exponent, is characterized using a plot of the log 

(TAMSD/τ) vs log (τ), with the same approach as described in Chapter 3. The α-exponent of 

tRNAs (both charged and uncharged) and the ternary complex were predicted to have a single 

consistent slope in the time range of 0-100 ns across all the simulations, followed by a change 

in slope for the 100-1000 ns regime. (Figure 5.3 and Table 5.3) 
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Figure 5.3. Plots of log (MSD/t) vs log (t). The blue-, red- and green-coloured lines 
represent the data of tRNAC, tRNAUC and tRNAEF, respectively from the three initial 
configurations of a given system. The ranges between X-axis values 0 and 2, 2 and 3 
represented by the black vertical lines show the ranges for which the α-exponent is calculated.  

  
α-exponent   

0-100 ns 100-1000 ns  
WHOLE REDUCED REDUCED 

HIGH 
WHOLE REDUCED REDUCED 

HIGH 
tRNAC 0.87  

(9.9x10-3) 
0.82 

(2.4x10-2)  
0.62 

(4.9x10-3) 
0.91 

(2.8x10-2) 
0.84 

(8.9x10-3) 
0.81 

(3.0x10-2) 
tRNAUC 0.87  

(2.0x10-2) 
- - 0.86  

(6.8x10-2) 
- - 

tRNAEF 0.89  
(1.5x10-3) 

0.81 
(9.3x10-3) 

0.63 
(4.82x10-3) 

0.91 
(2.0x10-2) 

0.85 
(3.1x10-2) 

0.84 
(4.0x10-2) 

Table 5.3. Predicted alpha exponents of tRNA molecules. Standard deviation (n=3) 
corresponding to the data from three initital configurations is shown in the brackets.  

The α-exponents of charged tRNA, uncharged tRNA, and ternary complex in the ‘WHOLE’ 

systems were computed to be 0.87, 0.87, and 0.89, respectively, in 0-100 ns range. These values 

are close to the α-exponent of BSA (which has a similar Stokes radius) in the solution of CI2 

and BSA crowder at a concentration of 100 g/L, which is 0.89. A trend towards normal 

diffusion was observed in charged tRNA and ternary complex in the range of 100-1000 ns. The 

α-exponents of the charged tRNA, uncharged tRNA, and ternary complex in this range were 

computed to be 0.91, 0.86, 0.91, respectively. It should be noted that the high standard 

deviation in the 100-1000 ns range in all the simulations is a result of the time-averaged 

approach used to calculate MSD. Interestingly, the sub-diffusion observed in the ‘REDUCED’ 

system is more pronounced compared with that of the WHOLE simulations, with an α-

exponent of 0.81 (p=0.052) and 0.82 (p=0.005) for the ternary complex and tRNA(charged), 
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respectively. A similar argument as in the previous section can be invoked to explain this 

behaviour. Unlike the ‘WHOLE’ system, in the ‘REDUCED’ system the mass corresponding 

to the ribosome is distributed more evenly across the simulation cell, leading to more 

encounters between molecules, likely enhancing cage-effect like behaviour. A trend towards 

recovering normal diffusion was observed in this system as well, with an α-exponent of 0.84 

and 0.85 for tRNAC and tRNAEF in the 100-1000 ns range.  

The most pronounced sub-diffusion across all the systems investigated was observed in the 

‘REDUCED HIGH’ system. The α-exponents of the ternary complex and tRNA (charged) in 

this system were computed to be 0.63 and 0.62, respectively, in the 0-100 ns range. Since it 

was shown earlier that the ‘REDUCED’ system exhibits more pronounced sub-diffusion 

compared with the ‘WHOLE’ system, it should be noted that this sub-diffusion might be an 

overestimate of that in a concentrated form of the ‘WHOLE’ system. Following the same trend 

as above, the α-exponent was predicted to be higher in the 100-1000 ns range with a value of 

0.84 for the ternary complex and 0.81 for charged tRNA (Table 5.3). Therefore, sub-diffusive 

behaviour was predicted to persist to a lesser extent in this system in the long-time range. It is 

interesting to note that the sub-diffusive behaviour of tRNA and its ternary complex is almost 

the same across all the systems, despite the ternary complex carrying a large protein molecule 

along with the tRNA. The molecular weight of the EF protein in the ternary complex is ~50 

kDa, which is almost the same as that of BSA (molecular  weight ~ 60 kDa; Stokes radius = 

2.71 nm); however, the Stokes radius of the ternary complex (2.77 nm) is close to that of the 

tRNA (2.51 nm). This similarity in the Stokes radii might be the reason behind the similarity 

in their sub-diffusive behaviour. 

5.4 Conclusions 

The predicted diffusion of tRNA and its complexes was reduced by 7-fold (compared with that 

of dilute conditions) at a macromolecular concentration of 90 g/L. In contrast, a reduction in 

the diffusion of GFP by 10-fold required nearly three times the macromolecular concentration 

in prokaryotic47 (E. coli) cytoplasm conditions. On the other hand, at a macromolecular 

concentration of 270 g/L in the ‘REDUCED HIGH’ system, which is nearly the same as that 

of E. coli47, the diffusion of tRNAs was predicted to decrease by nearly 70-fold. This shows 

that the composition of the crowded environment along with the macromolecular concentration 

plays a significant role in regulating diffusion. The same can be inferred from the analysis of 
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the REDUCED simulations. Although the diffusion coefficients predicted in the REDUCED 

system are not substantially different from those of the ‘WHOLE’ system, there is a notable 

difference.  

The sub-diffusive behaviour observed in these systems follows a similar trend as in the 

crowded solutions of CI2 in BSA or LYS, where short-time sub-diffusive behaviour and a long-

time normal diffusive behaviour were observed. However, it is interesting to note that, unlike 

the simulations described in Chapter 3, the α-exponent remained constant in the range of 0-100 

ns, whereas a varying α-exponent was observed in this time-range in the simulations of CI2 in 

BSA or LYS. This can be due to long-lived cage-effects over relatively long-time scales. 

However, in agreement with the findings reported in Chapter 3, restoration of normal diffusive 

behaviour or a trend suggesting the same is observed in these cytoplasm simulations. The role 

played by non-specific interactions in inducing a CTRW-like behaviour can be ruled out due 

to the ergodicity observed (inferred from the convergence of the diffusion coefficients in Figure 

5.2) in the simulations; however, it would be interesting to verify this using further simulations 

without attractive forces.  

The sub-diffusive behaviour observed in the REDUCED HIGH system reveals that the 

diffusion of tRNA is far from normal under the high protein concentration conditions of 

osmotic stress. The role of this sub-diffusive behaviour in regulating the binding of tRNAs to 

the ribosome needs to be accounted for while studying the protein synthesis dynamics. 

Although slow diffusion hinders the ability of a molecule to search for its partner, it has been 

shown analytically141 that sub-diffusion decreases the extreme first passage time (the minimum 

time taken for at least one in a group of searchers to reach their target), increasing the frequency 

of encounters between binding partners.  Therefore, the very slow diffusion associated with 

osmotic stress accompanied by sub-diffusion may, to an extent, lead to compensatory effects.  

Due to the reduction in the diffusion coefficients of tRNAs and their complexes in the 

cytoplasm compared with dilute conditions, protein synthesis dynamics may be affected. Since 

these effects are more pronounced in cells which are subjected to osmotic stress and, in the 

case of multicellular organisms, changes in size associated with phenomena like the transport 

of cells, can contribute to similar effects, the dynamics of translation under these conditions 

should be analysed considering the associated slow diffusion. Secondly, the sub-diffusion 

associated with these molecules should be accounted for by using approaches similar to that of 

Haugh’s.142 In Haugh’s approach, anomalous sub-diffusion is considered while calculating the 
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rate constants of the associated diffusion-controlled reactions.142 The findings of the current 

study provide important insights about the diffusion properties of tRNA and ternary complex 

molecules, which play a pivotal role in characterising the effects of macromolecular crowding 

on the dynamics of protein translation.  

Overall, the study presented here has for the first time established that the diffusion of tRNAs 

and ternary complexes is slowed down significantly in the crowded environment of the yeast 

cytoplasm, and that these molecules also exhibit sub-diffusion. In the presence of severe 

osmotic stress, the diffusion is slowed down further and increased sub-diffusive behaviour is 

observed. This study establishes a foundation for future mathematical modelling approaches 

that take into account the slow- and sub-diffusive properties of tRNAs whilst characterizing 

the function of the translation machinery, which is central to the physiology of all cells.  
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Chapter 6 Conclusions and future directions 

This study investigated the effect of the crowded cytoplasmic environment of yeast on the 

diffusion properties of tRNAs and ternary complexes. This was achieved by employing a 

Brownian dynamics simulation approach, using simulation of diffusional association (SDA), 

that enabled the study of microsecond-time scale diffusion behaviour. The first part of the study 

focussed on the robustness of this approach in simulating the protein crowded environment 

with more than one species of protein solute. This was followed by a rigorous analysis of 

available yeast proteomics datasets to define the contents of a simulation system that mimics 

the yeast cytoplasmic environment. The model yeast cytoplasmic environment was then 

characterised using Brownian dynamics simulations.  

The robustness of SDA to characterize the slow- and sub-diffusive properties associated with 

crowded protein solutions with more than one type of protein solute was established by 

studying the diffusion properties of CI2 in the crowded environment of BSA/LYS. The 

diffusion coefficients of CI2 predicted using SDA are in good agreement with experiment. 

There is also good agreement between the sub-diffusion observed in these simulations and the 

properties revealed in all-atom simulations under the same conditions. Further investigation 

into the causal relations of this sub-diffusive behaviour revealed that it can be attributed to 

cage-effects (Chapter 3). Secondly, it was shown that the microsecond time scale slow 

diffusion in these crowded solutions can be explained by excluded volume effects. The findings 

of this study also indicate that short-time slow-diffusion and sub-diffusion are crowder-

dependent, indicating the importance of a well-defined environment whilst investigating the 

diffusion properties in cytoplasm-like conditions (Chapter 3).  

The model yeast cytoplasmic environment was for the first time defined considering the data 

from proteomics datasets, cell tomography experiments, and cell population scale experiments 

(Chapter 4). The simplest model cytoplasm was defined by accommodating only a single 

ribosome, maintaining the ratio of ribosomal to cytoplasmic protein mass, and the 

macromolecular density of cytoplasm. The structural information of these contents was either 

developed or obtained from the literature in order to construct a simulation system. The 

simulation system cell thus developed can be readily used to study binding and diffusion 

properties under various conditions, and thus formed the basis for the subsequent study of the 

effects of diffusion on the translation machinery.  



96 

The diffusion properties of tRNA species characterized using the simulation system cell 

revealed a ~7-fold decrease in the diffusion rate (compared with dilute conditions) of tRNAs 

and ternary complexes (Chapter 5). The tRNAs also showed mild sub-diffusive behaviour in 

cytoplasm-like conditions. However, the diffusion properties of tRNAs in a reduced model of 

the cytoplasm (containing only top 4 proteins) showed clear sub- and slow diffusion. These 

differences highlighted the importance of defining a model cytoplasm-like environment whilst 

indicating that the simulations of a reduced model can still provide valuable insights. The 

properties of tRNAs under osmotic stress were characterized by reproducing hypertonic 

conditions with a higher macromolecular concentration. These simulations revealed a massive 

(~70-fold) decrease in the diffusion rate of tRNAs (Chapter 5). However, the associated sub-

diffusion might play a compensatory role in the  search for synthetases or ribosomes while the 

tRNA is undergoing aminoacylation or supplying amino acids.141 In conclusion, the diffusion 

of tRNAs and ternary complexes is significantly affected in the crowded cytoplasmic 

environment of the yeast. In comparison, experimental observations of the diffusion of tRNAs 

in E.coli30 indicate the presence of slower diffusion. This slower diffusion can be explained by 

a nearly 3-fold higher macromolecular concentration in the cytoplasm of E.coli, compared with 

that of yeast. However, it is important to note that these experiments did not rigorously 

differentiate charged, uncharged and complexated tRNAs, which also may contribute to the 

observed differences in the diffusion rates. Secondly, since the sub-diffusion observed in the 

simulations is more pronounced in the timescales of nanoseconds to microseconds, the 

experiments, with a time-resolution of milliseconds, could not capture this phenomenon.  

In this study, we have successfully demonstrated the capabilities of SDA in simulating 73 

different types of proteins, RNAs, and protein-RNA complexes. SDA is currently designed to 

employ intra-nodal parallelization. However, the future extension of the method for inter-nodal 

parallelization would enable the execution of simulations on a larger temporal and spatial scale. 

Such an improved method could provide valuable information like extreme first passage time, 

diffusion properties over longer timescales and better statistics on the role of non-specific 

interactions in effecting sub-diffusion. Moreover, recent developments in the field of protein 

structure prediction can be taken advantage of in pre-processing of the protein crowders. 

Specifically, the neural network-based structure prediction approach developed by 

Deepmind203, Alphafold 2, has been shown to predict structures with a high degree of 

accuracy204 with the predicted models scoring above 0.9 on the TM-score (a metric used for 

assessing the accuracy of the models with a score range of 0 to 1205). A highly parallelized 
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simulation approach in combination with the availability of accurate protein structures plays a 

key role in understanding the dynamics of protein motion in crowded cell-like environments 

and the underlying molecular mechanisms, and can also shed light on the organization of 

processes like translation (as elaborated in the latter paragraphs). It should also be noted that 

the data from our simulations can also be used to predict the rotational diffusion coefficients, 

and can provide insights into how they are affected by crowding under both cell-like and 

protein crowding conditions. 

It is important to note that this study has some limitations. Firstly, it does not account for the 

crowding or sub-diffusion arising due to the cytoskeleton of yeast cells. The diffusion of 

tRNAs, therefore, can be further limited and there can be sub-diffusion arising as a result of 

transient binding to the cytoskeleton along with cage-effects. Secondly, the dielectric constant 

of the solvent in crowded systems is different from that of dilute conditions,21 and this property 

is not well characterized for the systems under consideration. Therefore, this effect could not 

be accounted for in the simulations. Future studies could aim to address these limitations for a 

better characterization of the simulation conditions.  

The experiments conducted by Robbins et al. revealed that protein synthesis decreases by 

nearly 62% when HeLa cells are exposed to osmotic stress.206 Macromolecular density in living 

cells varies in the range of 100-450 g/L,20 and such a large variation in the macromolecular 

density should affect protein translation rates. The extent of such an effect across various cell 

types under different conditions (such as salt concentrations) is not well understood. The 

simulation approach developed here could be used to estimate these effects by combining the 

knowledge derived from MD simulations with TASEP approaches.2,35,39,42 Secondly, the role 

played by anomalous sub-diffusion, which is more pronounced in systems with higher 

macromolecular density, in regulating protein translation dynamics is not well understood. This 

can be incorporated into TASEP models by using a more sophisticated approach, like that of 

Haugh’s142 for calculating rate constants. The rate constant of a diffusion-controlled reaction 

is calculated in the Smoluchowski problem by assuming normal diffusion.142 In Haugh’s 

approach rate constants of diffusion-controlled reactions are calculated without assuming 

normal diffusive behaviour. However, it is important to note that the sub-diffusive model used 

in Haugh’s approach uses time-varying or space-varying diffusion rate. Therefore, it is 

important to use an approach that suits the stochastic process underlying sub-diffusion, which 

appears to be fractional Brownian motion in the case of protein solutions.  
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Furthermore, the competition between non-cognate, near-cognate and cognate tRNAs for the 

A-site207 of the ribosome should also be considered. Along with diffusion properties, the 

demand-supply dynamics regulate the availability of cognate tRNAs at the A-site.2 A 

comprehensive model could be developed that accounts for the complexity of these underlying 

processes. The differences that may arise whilst comparing the mathematical modelling data 

with experiments could provide further insights into the channelling mechanism in yeast. In a 

channelled process, the round-trip of the tRNAs between the ribosomes and aminoacyl-RNA 

synthetases takes place without the tRNAs entering the bulk of the cytoplasm. Although there 

is evidence suggesting the existence of such a channelling mechanism in higher organisms, 

there is not enough data to conclusively prove its presence in lower eukaryotes. The presence 

of such a channelling mechanism in yeast can be established by calculating translation 

dynamics in the presence (controlled diffusion of tRNAs between the target molecules) and 

absence (free diffusion of tRNAs) of channelling, and comparing the results with that of 

experimental observations. Secondly, in higher eukaryotes, there is evidence for the 

organization of aminoacyl tRNA synthetases into complexes,208,209 and the synthetases are 

found within 40 nm of the A-site during translation.210 Such localization can result in controlled 

diffusion of tRNAs between their targets, which may lead to channelling in higher eukaryotes. 

The manifestation of channelling via such controlled diffusion could be understood better using 

the knowledge, of the diffusion properties reported in this study. The organization of the 

translation machinery, like synthetases, at the translation site hints at the possibility of 

‘translation factories’, an analogue of ‘transcription factories’211. An understanding of the 

‘channelling’ phenomenon developed using the above line of investigation would shed light on 

the organization of translation into ‘translation factories’. The insights provided by a 

comprehensive mathematical model would also assist in developing a better understanding of 

disease states like Huntington’s disease, which is associated with repeated polynucleotide 

sequences that iteratively call for a single type of tRNA. The effect of the depletion of these 

cognate-tRNAs on the overall translation dynamics of the cell could be predicted using such a 

comprehensive mathematical model.  
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