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Abstract

In this thesis, we study the freeway traffic flow dynamics to reduce traffic con-

gestion so as to optimize road management by implementing effective control

strategies. Two types of methods are used in this study, including the model-

based methods and data-driven methods. The first one is the macroscopic traffic

flow model (cell transmission model (CTM)), which is used to describe the dy-

namical system of the freeway. Based on this model, an optimization program

of the freeway system with consideration of partial information, for example, the

demand mean and variance, is first proposed, and an effective solution technique

is developed. Then, an optimal control model with ramp metering (RM) is pro-

posed to solve the flow holding-back problem caused by that the ‘min’ operators

are directly relaxed by inequality constraints. Theoretical analysis is established

and a customized solution method is designed to solve this model. Finally, a

smooth optimization model with a combination of RM and variable speed limits

(VSL) is developed with consideration of the capacity drop. Convergency anal-

ysis is also established and an efficient solution method is designed to optimize

this model. The second one is a data-driven Deep Koopman model, which applies

the Koopman operator theory to characterize the dynamical freeway system with

RM. A real-time controller is obtained by solving the designed optimal control

problem. The main contributions are presented in two aspects as follows:

(1) The proposed models have theoretical guarantees.

(i) With available partial information of random traffic demands, the distri-

butionally robust chance constrained optimization model is rewritten as a semi-

definite programming. This transformation has the theoretical guarantee. Fur-

thermore, an optimal control is obtained by solving the approximated problem

with the objective of total delay of main road and on-ramps.

(ii) Two novel smooth optimization models on the basis of the CTM are

proposed to solve the flow holding-back problem resulted from the impractical

fundamental diagram if the ‘min’ operators are relaxed into inequality constraints

directly. The former only considers the freeway RM, and the latter takes both
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RM and VSL into account under the capacity drop. Theoretical analyses have

been carried out for both proposed models. Theoretical results show that the

solution obtained from the proposed model converges that of the primal CTM

when ε approaches to zero.

(iii) A data-driven model on the basis of the Koopman operator is utilized

to formulate the freeway dynamical system due to its interpretability and lin-

earity. To learn a finite-dimensional approximation of the Koopman operator, a

Deep Koopman model is proposed using neural networks with an encoder-decoder

structure. The LSTM units are used to process the sequential traffic data in the

encoder.

(2) The numerical results obtained from the study verify the efficiency and

performance of the proposed models.

(i) The numerical results of the deterministic optimization model, robust op-

timization model and the proposed model, are showed and compared. These

results indicate that the proposed model is efficient to control the total delay of

the system when the considered dynamical system encounters uncertainties in a

series of scenarios. The result also shows that the proposed model is more efficient

in reducing traffic congestion of the system.

(ii) The proposed smooth optimal control models can effectively handle the

flow holding-back problem under practical and synthetic applications. Further-

more, both RM and VSL are efficient control strategies of mitigating traffic con-

gestion. Finally, the performance is the best when RM and VSL are implemented

cooperatively.

(iii) A real-time control of RM is provided based on the Deep Koopman model.

Compared to the baseline methods, the proposed Deep Koopman model shows a

better precision in the predictions of the states. The performance of the real-time

control of RM between the Deep Koopman model and other methods is assessed.

The Deep Koopman model outperforms other baselines on all metrics.
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CHAPTER 1

Introduction

1.1 Background

The road transportation system is an important link connecting cities and an

important channel of transportation and logistics, which brings great convenience

to our daily production and life and promotes the rapid development of economy

and society. With the development of economy, the increase of population and

the expansion of urban cities, people’s demands for travel have increased sharply,

and the number of private vehicles has also been rising. Although increasing

traffic facilities can improve traffic conditions to a certain extent, the speed of

infrastructure construction has fallen far behind the growth of traffic demand due

to the constraints of land and capital. This has led to the increasingly serious

contradiction between traffic supply and demand, resulting in a series of traffic

problems not only for the urban traffic in big cities but also for freeways. Traffic

congestions could trigger serious consequences, such as time delays, air pollution

and economic losses [1]. Thus, strengthening the management of transportation

and developing advanced transportation system are very important and valuable.

The common occurrence of traffic congestion on road networks is not only

due to the lack of road capacity, but also due to unreasonable road network plans

and unscientific traffic managements such as the decrease of traffic capacity at

intersections and bottlenecks, the unreasonable proportion of diversion, and the

lack of implementation of traffic guidance and other management measures.

From the perspective of traffic supply, the main reasons leading to traffic

congestions are the lack of static traffic capacity, traffic management facilities

and scientific managements caused by the disharmony between urban planning

and traffic planning.

From the perspective of traffic demand, traffic congestion is mainly caused by

the weak awareness of traffic laws and regulations of urban traffic participants

1



1.1 Background 2

and the low degree of traffic civilization. Therefore, to alleviate traffic conges-

tion, on the one hand, we should continue to increase and improve road traffic

infrastructures, such as increasing the public transport construction, improving

the transfer, improving the level of intelligent traffic management, reasonably

inducing the traffic travel, etc. On the other hand, traffic participants should

fully abide by traffic rules, follow the traffic guidance, strengthen green and low-

carbon travel awareness, and make full use of buses and bicycles. New York and

Stockholm have adopted traffic information systems to ease congestion. Copen-

hagen and Paris are tackling traffic congestion by investing more in the public

transports and encouraging the green travel.

It is an urgent problem to explore the internal characteristics of traffic flows

and the cause of traffic jams and take effective measures. At present, the develop-

ment of intelligent information technology has brought not only great changes to

the society, but also intelligences and conveniences to the field of transportation.

Unilateral measures such as strengthening regulations, restricting vehicles, and

increasing road constructions do not comprehensively consider people, cars, roads

and the environment. The ideal approach is to combine these four elements of

transportation, and the Intelligent Transportation System (ITS) gives full play

to its advantages. ITS effectively applies the advanced science and technology

(such as data communication technology, information technology, electronic con-

trol technology, sensor technology, etc.) to the transportation, the service control

and the vehicle manufacturing. Enhancing the connection among vehicles and

roads as well as commuters may form a comprehensive transportation system

that guarantees safety, improves efficiency, saves energy and improves environ-

ment. ITS can make maximum use of the potential of the existing transportation

infrastructure, so it has become one of the most important approaches to alleviate

traffic problems.

With the development of ITS, Connected Vehicle (CV) has gradually been de-

veloped and become the core technology of ITS. CV is the specific application of

Internet of Things in ITS field. By integrating various communication technolo-

gies, CV connects various components inside the vehicle and between the vehicle

and the outside world into a network, forming an integrated network integrating

internal network, inter-vehicle network and on-board mobile Internet.

In the past decades, on the one hand, from the perspective of models, many

effective traffic flow models have been developed (such as the Car-following Model

[2–4], the Cellular Automata Model [5–7] and the Macro-Hydrodynamics Model

[8–11]) to study the production mechanism of traffic jams and mitigate traffic
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congestion. Among them, the macro-hydrodynamics model focuses on the overall

traffic flow characteristics, and applies partial differential equations modelling. It

is easy to be solved mathematically due to few parameters and characteristics of

physical significance.

On the other hand, from the data-driven perspective, machine learning tech-

niques (such as Deep learning (DL) [12–15] and Reinforcement learning (RL)

[16–18]), and Koopman Operator Theory [19–21] have been applied to transporta-

tion systems. Among them, Koopman decomposition can not only analyze the

physical properties of transportation system, but also provide the low-dimensional

system approximation of the high-dimensional system, so as to achieve pattern

reduction. Therefore, it is of great significance to design optimization models to

mitigate traffic congestion on roads and networks by using the macroscopic model

and the Koopman operator.

1.2 Objectives of the thesis

Using traditional mathematical models and data-driven methods to model and

study the evolution dynamics of freeway traffic flows has important guiding sig-

nificance, which can help us to find the corresponding effective control methods,

for example, ramp metering (RM) and variables speed limits (VSL), to alleviate

traffic congestion, so as to improve traffic operations.

This thesis mainly focuses on the study of both macroscopic traffic flow mod-

els, especially CTM, and data-driven models, particularly Koopman operator.

The control of freeway traffic flow dynamics is modeled as an optimal control

problem. The main goal of this work is to find the optimal control approaches to

mitigate and solve traffic jams on freeways.

The main objectives of this work are stated below:

(1) Propose an optimal control model governing the freeway traffic flow system

with partial information (demand mean and variance) to implement RM.

(2) Develop a smooth optimal control model governing the freeway traffic flow

dynamics with RM to solve the flow holding-back problem.

(3) Design an optimal control model with consideration of the capacity drop to

implement both VSL and RM.

(4) Establish a data-driven model (Koopman operator) to optimize the freeway

management by RM.
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1.3 Outline of the thesis

In this thesis, different models governing the dynamical freeway traffic flow system

taking various scenarios into account have been proposed. This thesis is divided

into seven chapters, where the main content in each chapter is stated as follows:

Chapter 1 : The overview of research background and the objective of research

have been introduced in section 1.1 - 1.2, respectively.

Chapter 2 : A literature review of the existing work and corresponding results

have been presented, including various traffic flow models, control methods.

Chapter 3 : A distributionally robust optimization model is proposed to ad-

dress the optimal control problem with RM under the random traffic demand flow.

Applying the Worst-Case Conditional Value-at-Risk (WCVaR) constraints to ap-

proximate the distributionally robust chance constraints, the considered problem

is conservatively approximated as a semi-definite programming (SDP), which has

high computational efficiency.

Chapter 4 : An optimization model is developed for the RM on the basis

of CTM. This problem considered is modeled as an optimal control problem to

regulate traffic inflows from the on-ramp. A smooth approximation method is

introduced to approximate the ‘min’ operator and then an efficient computation-

al method is proposed to resolve the problem. Theoretical analysis shows that

optimal solutions derived from the approximate problem converge to that of the

original CTM.

Chapter 5 : A novel RM and VSL control model is proposed, in which the

influences of RM and VSL are incorporated into the CTM as control compo-

nents. The problem of traffic control in the highway network via RM and VSL

is modeled as a optimal control problem with constraints. A smoothing method

is introduced to approximate this non-smooth ‘min’ operators in this model, and

an efficient MPC solution technique based on co-state system is used to solve this

smooth approximate control problem.

Chapter 6 : A data-driven modelling method using neural networks, denoted

by the Deep Koopman model, is developed to learn a finite-dimensional approx-

imation of the Koopman operator. To consider the sequential relations of the



1.3 Outline of the thesis 5

ramps and main roads on the freeway, a long-short term memory (LSTM) net-

work is applied. Furthermore, a MPC controller with the trained Deep Koopman

model is proposed for the real-time control of the ramp metering on the freeway.

Chapter 7: A conclusion and discussion on future work are presented.



CHAPTER 2

Literature Review

2.1 General

In this chapter, we present a brief review of the development of traffic flow theory

in 2.2.1, the fundamental diagrams of the macroscopic traffic flow models in 2.2.2,

the classical macroscopic traffic flow models in 2.2.3, and finally the development

and definition of the Koopman operator in 2.3.1 and 2.3.2, respectively.

2.2 Traffic flow theory

2.2.1 A brief review of the development of traffic flow

theory

The goal of traffic flow theory research is to establish a traffic flow model that

can explain the general characteristics of actual traffic, and reveal the basic laws

of traffic flow, so as to better guide the design, management and control of traffic

system.

Traffic flow theory originated in the 1930s. In the 1930s and 1940s, the free

flow theory was mainly studied. In this phase, the traffic flow is mainly manifested

as the free flow, which is characterized by low vehicle density on the road, large

distance between vehicles, and free driving of vehicles. Therefore, the probability

theory and mathematical statistics can be utilized to establish a mathematical

model to study the internal relationship between traffic flows and speeds.

In the 1950s and 1960s, the non-free flow theory entered the research stage.

During this period, with the rapid growth of highway mileage and the sharp

increase of road traffic flows in developed countries, the independence of vehicles

in traffic flow became smaller and smaller, and various new models emerged one

after another. Representative theories include the Car-following Model [22–25],

6



2.2 Traffic flow theory 7

the traffic wave theory based on fluid dynamics and queuing theory. Lighthill

and Whitham [8] proposed the hydrodynamic simulation theory. They assumed

that the road was closed with no entrances and exits. Considering that vehicular

traffic flow satisfies the law of conservation, the equilibrium velocity was adopted

to establish a one-dimensional continuous model, which could describe traffic

shock waves. However, due to the adoption of equilibrium velocity, the model

could not effectively describe traffic flow phenomena, for instance, capacity drop

and stop-and-go.

From 1970s to 1980s, the number of vehicles on highways further increased.

Some scholars believed that when the traffic density on the road reached a certain

level, the traffic flow could be regarded as the water flow. Based on the fluid dy-

namics equation of vehicle motion and the flow conservation equation of Lighthill

and Whitham [8], a continuous fluid dynamics model was obtained. Since 1990s

the Cellular Automata Model has become a hot topic in traffic flow theory.

In short, after decades of development, traffic flow models mainly include mi-

croscopic, mesoscopic and macroscopic models. The microscopic models describe

individual behaviors between individual vehicles and are discrete in spatial and

temporal distribution in research methods. The macroscopic models consider a

fleet of vehicles on the road as a continuous fluid and the average behavior of a

large number of vehicles rather than the individual behavior of a single vehicle.

The research method is continuous both in spatial and temporal distribution. The

mesoscopic model is a kind of model between the microscopic and macroscopic

model, mainly referring to the gas dynamic model based on probability theory.

Among them, the macroscopic model is modeled by partial differential equation,

which has few parameters, easy to obtain mathematical solutions, and has the

characteristics of physical significance. The basic parameters and fundamental

diagrams of traffic flow are the basis for macroscopic traffic flow models.

2.2.2 Fundamental diagrams of macroscopic traffic flow

models

Fundamental diagrams of traffic flow refer to the relationship between traffic flow

and density, which describes the functional relationship among vehicle density

and traffic flow.

The flow is the number of vehicles passing a certain observation point in unit

time, usually denoted by f = N/T , in which N represents the number of vehicles

passing the observation point in time period T .
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The speed usually refers to the average velocity of traffic flows, including the

temporal average velocity and spatial average velocity. The temporal average

velocity is the arithmetic average of velocity of multiple cars passing a point on

the road in a period of time, expressed by vt =
∑N

i=1 vi/N , where vi represents

the velocity of the ith car passing the point. The spatial average speed is the

arithmetic average of all the time that takes for multiple vehicles to pass a certain

section of road in a certain time, usually expressed by vs = L/(
∑N

i=1 ti/N), where

L denotes the length of observed road and ti = L/vi refers to the time that takes

for the ith vehicle to pass the section of road.

The density refers to the number of vehicles per unit length of road at a given

moment, usually expressed by ρ = N/L.

The three parameters of traffic flow, density and speed meet the following

basic relation:

f = ρv, (2.1)

where the traffic flow f is the product of the density ρ and velocity v. The relation

(2.1) connects the three parameters, so as long as any two parameters are known,

the third parameter can be determined. This relation can be expressed in the

coordinate system by the diagrams, namely, the fundamental diagrams, which

includes the measured fundamental diagrams and the theoretical fundamental

diagrams.

Based on a large number of measured results, it is generally considered that

when the density ρ → 0, the flow f → 0; when ρ = ρmax (jam density), the

vehicle can hardly run, so f = 0. Between these two extremes, the flow f must

has a maximum C (also known as the road capacity). This maximum inflection

point should has a critical density ρcr. When ρ < ρcr, the traffic flow is in the

condition of free flow; when ρ > ρcr, the traffic flow is in the congestion state.

Common theoretical fundamental diagrams include: the Greenshields funda-

mental diagram [26, 27]: the Greenberg fundamental diagram [28]: the Newell

fundamental diagram [29]: the Underwood fundamental diagram [30], the Drake

fundamental diagram [31], the Pipes-Munjal fundamental diagram [32].

Moreover, Newell [33] proposed a triangular fundamental diagram, where the

speed-density model is denoted by:

v(ρ) =

 vf , 0 ≤ ρ ≤ ρcr,
ρcr

ρmax − ρcr
vf (

ρmax
ρ
− 1), ρcr ≤ ρ ≤ ρmax.

(2.2)
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and the flow-density model is described as:

f(ρ) =

 vfρ, 0 ≤ ρ ≤ ρcr,
ρcr

ρmax − ρcr
vf (ρmax − ρ), ρcr ≤ ρ ≤ ρmax.

(2.3)

Furthermore, Kerner and Konhäuse [34] and Herrmann and Kerner [35] proposed

a nonconvex fundamental diagram

v(ρ) = vf{1− exp[1− exp(
|cj|
vf

(
ρmax
ρ
− 1))]}. (2.4)

Among these mentioned fundamental diagrams, the Greenshields fundamental

diagram and the triangular fundamental diagram are commonly used in the re-

search.

2.2.3 Macroscopic traffic flow models

The macroscopic traffic flow model describes the traffic flow as a compressible

continuous fluid medium composed of a large number of vehicles, and studies the

average behavior of vehicles rather than characteristics of individual vehicles.

A Continuous model

The macroscopic model of traffic flow was independently proposed by Lighhill

and Whitham [8] and Richards [9], also known as LWR model. The LWR model

is a first-order continuum model describing the traffic motion and demonstrates

the existence and characteristics of traffic shock waves. According to the basic

principle of conservation of the number of vehicles in the traffic system, the traffic

flow of system without ramps satisfies the following equation:

∂f

∂x
+
∂ρ

∂t
= 0, (2.5)

where ρ denotes the density, f refers to the flow, and t and x are the time and

the location, respectively.

In the LWR model, the traffic flow is assumed to satisfy the velocity-density

relation of equilibrium state:

v = ve(ρ), (2.6)

where v is the average speed of traffic flow, subscript e denotes the equilibrium

state of traffic flow. Combined with (2.5) and (2.6), the closed hyperbolic equation
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can be obtained as follows:

(ve + ρ
∂ve
∂ρ

)
∂ρ

∂x
+
∂ρ

∂t
= 0, (2.7)

where fe(ρ) = ρve(ρ). This model describes the propagation of nonlinear density

wave and its solution can be obtained by using the method of characteristic

equation and numerical simulation. However, this model usually assumes that the

vehicle speed always satisfies the equilibrium relation, and thus it cannot describe

the unbalanced traffic phenomena, for example, the instability of traffic flow and

the formation of stop-and-go traffic phenomenon under certain conditions.

To address the shortcoming of LWR model, Payne [10] and Whitham [36]

proposed a higher-order model (called PW model for short), which replaced the

equilibrium speed-density relationship in the LWR model with the kinetic equa-

tion of velocity, allowing the velocity to deviate from the equilibrium speed. The

kinetic equation is expressed as follows:

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p(ρ)

∂x
=
ve(ρ)− v

τ
, (2.8)

where r is the relaxation time, which describes that the driver adjusts the speed

v to reach the equilibrium speed ve within the time; p(ρ) refers to the pressure

term, which satisfies p
′
(ρ) > 0 and 2p

′
(ρ) + ρp

′′
(ρ) > 0. After that, many higher-

order continuous models were developed, such as the Papageorgiou model [37],

the Kühne equation model [38], and the Berg model [39], etc. Because the dy-

namics equations of these models all have density gradient terms, these models

are also called density gradient models. Daganzo [40] criticized the density gradi-

ent model, believing that there is a case that the characteristic velocity is greater

than the macroscopic traffic flow speed. This indicates that vehicles will be af-

fected by rear vehicles in the operation, which is contrary to the anisotropy of

the traffic flow, thus causing the phenomenon of vehicle regression. To handle

this issue, Aw-Rascle [41] designed a new high-order macroscopic model, where

the kinetic equation is formulated as:

∂(v + p(ρ))

∂t
+ v

∂v

∂x
+
∂vp(ρ)

∂x
= 0, (2.9)

where p(ρ) has various expressions. Classically, p(ρ) = ργ, γ > 0.

Zhang [42] proposed a similar model, where the kinetic equation is denoted
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by:

∂v

∂t
+ v

∂v

∂x
+ ρv

′

e(ρ)
∂v

∂x
= 0. (2.10)

By the connection between microscopic and macroscopic variables, Jiang et al.

[11] deduced a higher-order model from the microscopic-following model, whose

dynamics equation is:

∂v

∂t
+ v

∂v

∂x
− c0

∂v

∂x
=
ve(ρ)− v

τ
, (2.11)

where c0 = ∆xλ. Xue and Dai [43] further proposed a similar model with relax-

ation terms.

Furthermore, researchers have extended and developed all kinds of mixed

traffic flow models. The hydrodynamic models of mixed traffic flow can be divided

into two categories: the multi-lane model and the multi-class vehicle model. The

former establishes a governing equation for each lane and considers the influence

of vehicle lane change behavior in the equation. In the latter, the conservation

equation is established for each type of vehicles, and the speed density function

is set to obtain the model. Both multi-lane and multi-class vehicle models can

be divided into LWR model and high-order model.

Michalopoulos et al. [44] proposed a multi-lane LWR model, which introduced

variable lane change intensity parameters and lane change time delay when calcu-

lating the lane change flow. The model proposed by Holland and Woods [45] was

mainly aimed at the situation with small density of two lanes. Lava and Dagan-

zo [46] proposed a discrete multi-lane LWR model. [47] proposed a macroscopic

model that could reveal the non-equilibrium characteristics of vehicle flow such

as the small disturbance instability.

In reference [48], the multi-class vehicle LWR model was proposed, which

can simulate the interaction between vehicles at different speeds on the road,

and predict and explain many phenomena in the traffic flow. Zhang et al. [49]

thoroughly discussed the hyperbolic properties of the model. This model was

extended to non-uniform roads, in which the number of lanes and traffic capacity

change with space [50]. The model proposed by Benzoni-Gavage and Colombo [51]

took into account the effect of vehicle length. Chanut and Buisson [52] introduced

the concept of critical density.
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B Lattice hydrodynamic model

Nagatani [53] simplified the macroscopic model proposed in [54] and referred to

the idea of Car-following model to obtain the lattice hydrodynamic model, whose

dynamic equation is written as below:

∂tρ+ ∂x(ρv) = 0, (2.12)

∂t(ρv) = aρ0V (ρx+δ)− aρv, (2.13)

where ρ and v denote the local average density and the local average speed,

respectively; ρ0 is the average density; δ = 1/ρ0 is the average headway; ρx+δ

denotes the local density at the location x + δ and at the time t; and a refers

to the driver’s sensitivity coefficient. For the spatial variable x in (2.12) to be

dimensionless, let:

x̂ =
x

δ
, (2.14)

we can get:

∂(ρv)

∂x
=
∂(ρv)

δ∂x/δ
= ρ0

∂(ρv)

δ∂x̂
. (2.15)

For convenience, x̂ is still denoted as x, and the following model is obtained:

∂tρ+ ρ0∂xρv = 0, (2.16)

∂t(ρv) = aρ0V (ρx+1)− aρv. (2.17)

Discretization of variable x in (2.16) and (2.17), we can obtain the following

lattice fluid dynamics model:

∂tρi + ρ0(ρivi − ρi−1vi−1) = 0, (2.18)

∂t(ρivi) = aρ0V (ρi+1,t)− aρivi. (2.19)

where ρi and vi represent the local density and velocity at the i grid point on

the one-dimensional grid at the time t, respectively; V (ρi+1,t) is the optimization
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velocity, which depends on the density at the i+ 1 grid point ahead; ρ0V (ρi+1,t)

represents the expected flow. Formula (2.19) indicates that the driver obtains the

expected flow based on the observed density ahead, and relaxes the traffic flow

to the expected flow.

In recent years, many scholars have done a lot of studies and generalizations

for the Nagatani model [53], and proposed the delayed lattice hydrodynamics

model [55–57], and the multi-expectation lattice hydrodynamics model [58–61].

Nagatani [62] extended the model to two lanes by introducing the change lane

effect. Furthermore, Nagatani [63] proposed a two-dimensional lattice model,

where the evolution of traffic flow density waves is different from that of the

one-dimensional model.

C Cell transmission model

Both the macroscopic LWR model and the higher-order macroscopic model have

discrete schemes for finding numerical solutions, such as the Godunov scheme [64]

and the Lax-Wendroff scheme [65]. Daganzo [66–68] further simplified the flow-

density relationship and the solving process of the traffic flow in the model, and

established the CTM through the mathematical processing method of finite dif-

ferentiation and Godunov scheme. The model can not only describe the discon-

tinuous phenomena, for example, the generation and dissipation of shock waves in

traffic flow, but also easily model the real road network and calculate the solution.

CTM proposed by Daganzo [66,67] divides the road into several cells, and the

time is discretized. The length of each cell refers to the distance traveled by free

flow in a time step. The change of traffic flow on the whole road is described by

the number of vehicles Ni,t in each cell i and the change of the number of vehicles

flowing into and out of each cell at different times.

CTM assumes that the flow-density follows the fundamental diagram, as

shown in Fig. 2.1. We introduce the flow-density relation as follows:

f = min{vρ, C, w(ρmax − ρ)}, (2.20)

where ρmax represents the jam density, C denotes the traffic capacity, v refers

to the free flow speed, w is the speed of backward wave. Further, using the

trapezoidal fundamental diagram to discretize LWR model of one-way freeway

section, we can get the evolution of traffic density and flow as time changes:

ni,t+1 = ni,t + fi,t − fi+1,t, (2.21)
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Figure 2.1: Trapezoidal fundamental diagram

fi,t = min{ni−1,t, C,
w

v
(Ni,t − ni,t)}, (2.22)

where Ni,t denotes the maximum number of vehicles that can be carried at the

cell i and the time t.

In the past two decades, scholars have made many improvements and pro-

motions on CTM, such as Lagged CTM (LCTM) [69], Improved LCTM (ILCT-

M) [70], Modified CTM (MCTM [71, 72], State switching model (SSM), Asym-

metric CTM (ACTM) [73,74], Location specific CTM (LSCTM) [75].

Because of its advantages of describing the discontinuous phenomena such as

the generation and dissipation of shock waves in traffic flow, CTM has been widely

utilized in traffic signal optimization control [76–79], dynamic traffic prediction

[80], dynamic traffic simulation [81], dynamic traffic allocation [82–84] and other

fields [85, 86].

2.3 Koopman operator

2.3.1 Overview of the Koopman operator

The Koopman operator was proposed by B.O.Koopman [87]. The author showed

that any observable evolution in dynamic systems can be expressed by infinite

dimensional linear operators. The early work mainly focused on the spectrum

properties of the Koopman operator in statistical mechanical systems and non-

linear dynamical systems [88–90]. Recently, the dynamic mode decomposition
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algorithm (DMD) on the basis of Koopman operator and other improved al-

gorithms have been applied to different fields, such as biological networks [91],

power systems [92, 93], human motion analysis [94], building energy efficiency

models [95, 96], transportation systems [21].

Theoretically, the Koopman operator can transform the nonlinear evolution of

dynamic system into the linear evolution of infinite dimensional space. However,

in practice, it is very difficult to use infinite dimensional operator, and so how

to calculate the finite dimensional approximation of Koopman operators is a big

challenge. One of the most commonly used algorithms to approximate the Koop-

man operator is DMD, which can obtain the spectrum of Koopman operators

from the associated data of time or space, that is, eigenvalues and eigenfunctions.

Murshed and Uddin [97] indicated that DMD can predict the future state infor-

mation of dynamic system, such as the distribution of electric field [98] and the

change of temperature [99].

Using the Krylov subspace to construct a unitary matrix that approximate the

Koopman operator, Rowley et al. [100] proposed a Koopman spectrum analysis

and pattern decomposition method by Arnoldi algorithm. By analyzing the ad-

vantages and disadvantages of Arnoldi algorithm, Schmid [101] pointed out that

the Arnoldi algorithm relies too much on the last observation data, and the results

obtained by the Arnoldi algorithm are unstable when the influence of system noise

or measurement error large. Hence, the method of singular value decomposition

(SVD) was developed to obtain the spectrum of Koopman operator [101].

Budisic [102] summarized the theory and application of Koopman spectrum

analysis, and pointed out that in the given data, the tuple of Koopman operator

can be obtained, that is, eigenvalues, eigenfunctions and Koopman modes. The

eigenfunctions can be used to divide the ergodic states of the system, and the

Koopman mode is used to simplify the model and study the correlation between

different variables. After that, an exact DMD algorithm was proposed in [103].

William [104] proposed the extension of DMD algorithm, and named it EDMD.

Both approaches depend on more standard methods to represent linear operators

with respect to a particular basis, rather than DMD sampling methods based

solely on adjoint matrices [105]. Korda and Mezić [106] further proved the re-

lation between the spectrum of EDMD matrix and the eigenvalues of Koopman

operator. Drmac et al. [105] proposed a data-driven mode decomposition (D-

DMD) algorithm, which can scale the original data, so that the Koopman mode

corresponding to small singular values can also be obtained. Moreover, DDMD

adopted more accurate eigenvalues and modes, thus reducing the residual term.
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Recently, by combining neural networks with the Koopman operator, Yeung et

al. [107] has introduced a computational framework using deep learning to obtain

the Koopman operator for nonlinear dynamical systems, and quantitatively pre-

dict the oscillation behavior of several steps in the future. Similarly, an optimal

control method for dynamic systems using the same principle was also proposed

in [108].

2.3.2 Definition of Koopman operator

The Koopman operator describes the evolution of observable in the phase space

of dynamic system. Observable is a function of the state space, so the Koopman

operator is acting on the infinite dimensional function space [102]. Consider a

nonlinear dynamic system represented by discrete model in the phase space M:

xk+1 = f(xk),xk ∈M, (2.23)

where k ∈ N represents the time variable, f is a nonlinear mapping between

different states in the phase space M. Define the observation function of the

system yk = g(xk), g : M → C, where C represents the complex field. The

Koopman operator K is defined as follows:

Kg(xk) = g(f(xk)) = g(xk+1). (2.24)

The Koopman operator defines a new dynamic system, where the evolution of g

is described. If the initial state is x0, the observation function value after time

step t ∈ N+ steps is written as yt = g(xt) = Ktg(x0).

Assuming g
′
(x) = g(f(x)), we can get by applying the Koopman operator

Kg(x) = g
′
(x). (2.25)

Therefore, the function of K can be regarded as the evolution of the value of

function g(x) under the nonlinear mapping f , as well as the evolution of function

form of (g(x) → g
′
(x)). The Koopman operator K is a linear operator, even

though the dynamical system f is nonlinear. Hence, it holds:

K(αg1(x) + βg2(x)) = αKg1(x) + βKg2(x), (2.26)

where g1(x), g2(x) denote the scalar functions in the phase spaceM, and α, β ∈ C.

Note that the Koopman operator is infinite-dimensional unless the state space is
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finite.

The Koopman operator can be used in various fields due to the linearity,

especially for real-time control in traffic management. Thus, using Koopman

operators to model the freeway traffic flow evolution to obtain optimal control is

valuable.



CHAPTER 3

Distributionally Robust Ramp Metering

Under Traffic Demand Uncertainty

3.1 Introduction

In this Chapter, we presents a distributionally robust optimization model to ad-

dress the ramp metering problem with uncertain traffic demand flows. The aim

of this model is to minimize the total travel delay of the system based on the

macroscopic CTM of traffic flow. In our model, the only required data is the par-

tial distributional information of stochastic demand flows. Using the Worst-Case

Conditional Value-at-Risk (WCVaR) constraints to approximate the distribu-

tionally robust chance constraints, the proposed problem can be conservatively

approximated as a semi-definite programming (SDP), which is computationally

efficient. The performances of our proposed model are illustrated by practical

applications. Experimental results show that the distributionally robust control

strategy can achieve reliable performances over a range of uncertain scenarios.

The seminal research of optimization-based ramp metering can be traced back

to the work [109], where a static model of traffic behavior was used to for-

mulate the problem. This model was subsequently investigated and extended

by [110–112]. One of the most widely adopted classes of models in the freeway

control design is the macroscopic models, including the first order CTM mod-

el and the second order model (Metanet). The CTM model initially proposed

by [66,67] can be regarded as a first-order Godunov approximation of the contin-

uous Lighthill-Whitham-Richards-model (LWR) [8,9], and Metanet was proposed

in [113]. Particularly, Papageorgiou et al. [114, 115] concluded that the freeway

ramp metering is an useful and effective tool to improve traffic flows on congestion-

prone freeways. Kotsialos and Papageorgiou [116] proposed a model-predictive

framework for coordinated ramp metering rooted in the METANET model and

18



3.1 Introduction 19

formulated the considered problem as a nonlinear optimization problem. Based

on the asymmetric cell transmission model, Gomes and Horowitz [73] considered

an on-ramp metering problem, where both free flow and congested conditions can

be captured by the problem formulation. Gomes et al. [74] further provided a

theoretical analysis to study the behavior of the CTM model of a freeway with

steady demand. To analyse traffic flow density on freeway sections with random

demand and supply, Sumalee et al. [117] developed a stochastic cell transmission

model by characterizing the probability distributions of occurrence of each mode.

Recently, Chow and Li [118] proposed a robust optimization model of dynamic

motorway traffic flow to optimize the total travel delay of the system with ran-

dom traffic flow demands as well as set-valued fundamental diagrams [119]. The

problem was reformulated as a minimization and maximization problem when an

ellipsoidal likelihood set was considered. Roncoli et al. [120] developed a novel

first-order multi-lane macroscopic traffic flow model for motorways to consider

lane changing and capacity drop via appropriate procedures for computing later-

al and longitudinal flows. Based on the work [120], Roncoli et al. [121] proposed

a linearly constrained optimal control model by permitting the deployment of

lane changing control, variable speed limits, and ramp metering. Han et al. [122]

proposed a general first-order traffic flow model to simulate the capacity drop at

the on-ramp bottleneck and lane drop bottleneck. On this basis, a linear quadrat-

ic model for predictive control strategy was proposed to realize the integration

of dynamic path guidance and ramp metering. Furthermore, Han et al. [123]

considered the propagation of shockwave on the freeway network, and modified

the supply function that depends on the density difference between cell i and its

upstream cell i − 1, where both cells are congested. In addition, on the arterial

links where shockwave is generated during each cycle, if the upstream is in a free-

flow condition, as in the modification made by Han [123], the demand function

of the target cell will have the same structure as the traditional CTM, and it will

overestimate the actual discharge rate in the target cell. Under the assumption

that equipped vehicles can bidirectionally communicate with the infrastructures,

a novel feedback based integrated control strategy was proposed by [124] to im-

plement ramp metering and lane-changing control. By adjusting the adaptive

cruise control (ACC) settings of equipped and connected vehicles in real time

on the basis of the current traffic conditions, a simple and effective ACC-based

control strategy is proposed by [125], where this control strategy relies only on

real-time information about the current traffic conditions (no network topology

information is required). Kontorinaki et al. [126] proposed a local and coordinat-
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ed ramp metering strategy based on the nonlinear adaptive control scheme, which

consists of a nominal feedback law and a nonlinear observer aimed at estimating

some unknown system variables.

However, solutions obtained from the deterministic optimization models (DOM)

and robust optimization models (ROM) are overly conservative. An adjustable

robust optimization approach has been developed to alleviate the conservatism

[127]. Based on the work, Zymler et al. [128] proposed a novel method to approx-

imate the distributionally robust individual and joint chance constraints with the

first- and second-order moments and the support of the uncertainties of parame-

ters. The approach is effective and outperforms the approximation proposed by

Chen [129] and Bonferroni approximation. Although a number of researches have

studied the robust solutions of ramp metering optimization, little has been done

on problems where only partial information (such as mean and variance) of traffic

parameters is available. Since the information provided by loop detectors may be

incomplete in practice, using exact information of traffic parameters to study the

traffic problem is often not possible in practice. It is an interesting point that we

can conduct our research.

The rest of the chapter is organized as follows: Section 3.2 models the traffic

flow dynamics. In section 3.3, we introduce a DRCCOM rooted in the determinis-

tic cell transmission model. The approximation of distributionally robust chance

constraints are presented in Section 3.4. In Section 3.5, the performances of

various control strategies are illustrated and compared using practical examples.

Finally, Section 3.6 gives some conclusions.

3.2 Modeling Traffic Flow Dynamics

The CTM proposed by Daganzo in [66] is one of the most widely utilized discrete

models. Due to the popularity and credibility of CTM, we utilize CTM to model

the traffic flow dynamics in this work.

In the formulation of CTM, a freeway is divided into I subsections or cells

(see Fig. 3.1). Each cell has an external incoming flow ri,t from an on-ramp i to

the freeway and an external outgoing flow si,t from the freeway to an off-ramp i

at time step t, and the flow fi,t and density ρi,t in each cell i at each time step

t can be used to characterize the traffic flow dynamics. Let fi−1,t denote the

traffic inflow to downstream cell i at each simulation time step t and, hence fi,t

(inflow to downstream cell i + 1) denotes the traffic outflow from cell i at the

same simulation time step t. Based on the conservation equation, the evolution
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Figure 3.1: Schematic diagram

of density in cell i is described as follows:

ρi,t+1 = ρi,t +
∆t

∆xi
(fi−1,t − fi,t + ri,t − si,t), (3.1)

where ∆xi and ∆t are the length of the cell i and the size of the simulation time

step t, respectively. Depending on the network topology, some terms of Equation

(3.1) may not be present. In particular, the inflow f0,t does not exist for the first

cell of the network, the inflow ri,t does not exist for the cell without an on-ramp,

while the outflow si,t exists only for the cell with an off-ramp. It is noted that the

time step ∆t is defined such that ∆t ≤ mini(∆xi/vi), which is the smallest ratio of

the cell length ∆xi to the corresponding free flow velocity vi on the freeway. The

condition is used in traffic flow modeling to guarantee the numerical stability and

nonnegativity of traffic quantities by limiting the distance traveled by vehicles in

one simulation time step to no more than the length of the cell.

In the case of a given cell density, the outflow from the cell i during the time

step t is controlled by the min(.) function as follows:

fi,t = min{viρi,t, Ci, Ci+1, wi+1(ρmax,i+1 − ρi+1,t)}, (3.2)

where Ci represents the capacity flow of cell i and Ci+1 denotes the capacity

flow of cell i+ 1. Due to the heterogeneous segments with different capacities at

different locations, we consider both capacity flows in adjacent cells. Furthermore,

vi represents the free flow velocity of cell i, wi+1 denotes the backward wave speed

of cell i+1 and can be obtained from the equality wi+1 = Ci+1/(ρmax,i+1−ρcr,i+1),

where ρmax,i+1 is the jam density and ρcr,i+1 corresponds to the critical density

and can be derived as ρcr,i+1 = Ci+1/vi+1. Define ydi,t = min{viρi,t, Ci} and

ysi+1,t = min{Ci+1, wi+1(ρmax,i+1−ρi+1,t)}, where ydi,t denotes the demand function

corresponding to the maximum outflow from cell i at the time step t, and ysi+1,t

is the supply function corresponding to the maximum flow received by cell i+ 1
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at the same time step t. Note that variables vi, Ci, wi, ρmax,i, ρcr,i represent the

model parameters of CTM, which can be calibrated using collected data by loop

detectors [130]. Based on the results of [73, 76], equation (3.2) is reformulated

as a linear programming problem, which is the key of the optimization model

presented in the next section.

3.3 Optimization Model

In this section, we firstly review the CTM-based deterministic optimization model

adopted by [73, 76, 118], and then rewrite it as a distributionally robust chance

constrained problem with consideration of the uncertain demand flows.

3.3.1 Deterministic Optimization Model

We rewrite the CTM-based freeway optimization model as follows:

(DOM) min
r
D =

I∑
i=1

T∑
t=1

(ρi,t∆xi∆t−
fi,t∆xi∆t

vi
) +

J∑
j=1

T∑
t=1

qj,t∆t, (3.3)

s.t.

ρi,t+1 = ρi,t +
∆t

∆xi
× (fi−1,t − fi,t + ri,t − si,t),∀i, t, (3.4)

fi,t ≤ viρi,t,∀i, t, (3.5)

fi,t ≤ Ci,∀i, t, (3.6)

fi,t ≤ Ci+1,∀i, t, (3.7)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t),∀i, t, (3.8)

qj,t+1 = qj,t + (dj,t − rj,t)∆t,∀j, t, (3.9)

qj,t ≤ qmax,j,∀j, t. (3.10)
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0 ≤ rj,t ≤ rmax,j,∀j, t. (3.11)

To seek the optimal ramp metering r, the optimization problem above is to

minimize the total delay D of the system over cells i = 1, 2, . . . , I and time

t = 1, 2, . . . , T . The objective function D includes the total delay in both main-

line and on-ramps, where ρi,t∆xi∆t− fi,t∆xi∆t

vi
represents the mainline delay in cell

i at time t (see [118]), and qj,t denotes the queue length on the on-ramp j at time

t. The constraint set (equations (3.4)-(3.8)) is equivalent to the CTM, as stated

by [73, 76, 131]. Both constraints (3.5) and (3.6) specify the demand limitations

when the flow is under the free flow condition, whereas the constraints (3.7) and

(3.8) characterize the supply limitations when the flow is under congested condi-

tion. We assume that the exit flow si,t is given throughout the paper. Constraint

(3.9) characterizes the evolution of queues qj,t on the on-ramps j = 1, 2, . . . , J at

time step t, where J denotes the total number of on-ramps. We use dj,t to denote

the variable of the demand flow intending to enter the freeway from on-ramp j

at time step t and rj,t to denote the actual incoming demand flow entering the

freeway from on-ramp j at time step t. Constraint (3.10) is used to govern the

maximum queue size on the on-ramps avoiding that the unacceptably long queue

on the on-ramps will be adopted as an optimal solution. Finally, the constraint

(3.11) gives the lower and upper bounds of the control variable r. The optimal

ramp metering r is used to obtain the optimal control, which can also be realized

through the hard shoulder running as well as the mainline speed control [132].

3.3.2 Distributionally Robust Chance Constrained Opti-

mization Model

Before presenting the distributionally robust chance constrained optimization

model, we summarize the state-of-the-art of work in solving chance constraints in

Table 3.1. By comparison, we adopt the approach proposed by Zymler in [128] to

approximate distributionally robust chance constraints because of its established

theoretical analysis and computational efficiency.

The deterministic optimization model (DOM) can be extended to the distri-

butionally robust chance constrained optimization model (DRCCOM) with con-

sideration of uncertain demand flows. Since the optimization problem (3.3) is a

minimization problem and the constraint (3.9) is the only constraint associated to

the traffic demand flows on the source links (such as on-ramps), both constraints
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Table 3.1: Methods for solving chance constraints

Type Handling technique Disadvantage
Scenario approx-
imation [133]

Using the constraints for the scenari-
o sample points to replace the chance
constraints

Prohibitively
time consuming

Generator-based
approxima-
tion [134]

The chance constraints are approxi-
mated by CVaR inequalities

The approximat-
ed problem might
be intractable

Chebyshevs Re-
laxation [135]

Relaxing the chance constraints by
Chebyshevs inequality

Solution is too
conservative

Robust chance
constraints
[128,136]

Replacing the chance constraints by
the Worst-case chance constraints un-
der moment information, which can be
transformed into a convex optimization
problem with SDP or conic constraints

High computa-
tional cost

(3.9) and (3.10) can be rewritten as the following constraints:

qj,t+1 = qj,t + (d̃j,t − rj,t)∆t,∀j, t. (3.12)

and

P(qj,t − qmax,j ≤ 0) ≥ εd,∀j, t, (3.13)

where d̃j,t denotes the random demand flow variable on the on-ramp j at time

step t and εd ∈ (0, 1) is the confidence parameter. The violation of constraint

(3.13) means that the waiting queue length is longer than the maximum queue on

source links. Due to the fact that the mean and covariance of uncertain demand

flows are given, the chance constraint (3.13) can be rewritten as follows:

inf
P∈P

P(qj,t − qmax,j ≤ 0) ≥ εd,∀j, t, (3.14)

where P is the set of all probability distributions.

By equation (3.4), the density ρi,t can be rewritten as

ρi,t = ρi,1 +
t−1∑
l=0

∆t

∆xi
(fi−1,l − fi,l + ri,l − si,l),∀i, t. (3.15)
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Similarly, the queue length qj,t can be reformulated as

qj,t = qj,1 +
t−1∑
l=0

(d̃j,l − rj,l)∆t. (3.16)

Let d̃j = {0, d̃j,1, d̃j,2, . . . , d̃j,T−1}> ∈ RT , and Bt−1 = {∆t,∆t,∆t, . . . ,∆t, 0, . . . ,
0}> ∈ RT . By the above relationship (3.16), the relationships (3.12) and (3.13)

can be simplified as follows:

inf
P∈P

P{qj,1 −
t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j ≤ 0} ≥ εd,∀j, t. (3.17)

Then, the robust ramp metering problem with uncertain demand can be rewritten

as:

(DRCCP) min
r
D =

I∑
i=1

T∑
t=1

(
[ρi,1 +

t−1∑
l=0

∆t

∆xi
(fi−1,l − fi,l + ri,l − si,l)]∆xi∆t

−fi,t∆xi∆t
vi

)
+ E

[ J∑
j=1

T∑
t=1

(qj,1 −
t−1∑
l=0

rj,l∆t+B>t−1d̃j)∆t
]
,

(3.18)

subject to constraints (3.6), (3.7), (3.15), (3.17) and

fi,t ≤ vi[ρi,1 +
t−1∑
l=0

∆t

∆xi
(fi−1,l − fi,l + ri,l − si,l)],∀i, t, (3.19)

fi,t ≤ wi+1[ρmax,i+1 − ρi+1,1 −
t−1∑
l=0

∆t

∆xi
(fi,l − fi+1,l + ri+1,l − si+1,l)], ∀i, t. (3.20)

Due to the distributionally robust chance constraint (3.17), we have difficulties to

solve the Problem (DRCCP) directly. Thus, we need to transform the problem

into a solvable problem, which is presented in the next section.
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3.4 Approximation of Distributionally Robust

Chance Constraint

An approximation approach proposed by [128] is utilized to approximate the

constraint (3.17) in this section.

We let µj ∈ RT be the mean vector and Σj ∈ ST be the covariance ma-

trix of the random demand flow vector d̃j under true distribution P throughout

this paper. Thus, we implicitly assume that P has finite second-order moments.

Without loss of generality, we assume that Σj � 0. To simplify the notation, we

let

Ωj =

[
Σj + µ>j µj µ>j

µj 1

]
(3.21)

denote the second-order moment matrix of d̃j. Chen et al. [129] has proved that

the constraint (3.17) can be approximated by the Worst-Case CVaR constraint.

Thus, we have

R(αj,t)

=
{

(f, r) : sup
P∈P

CVaR1−εd(qj,1 −
t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j) ≤ 0
}
, ∀j, t,

(3.22)

where

CVaR1−εd(qj,1 −
t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j)

= inf
αj,t∈R

{
αj,t +

1

1− εd
EP
[
(qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j − αj,t)+
]}
,∀j, t,

(3.23)

where αj,t is the decision variable in chance constraints, EP(•) denotes the ex-

pectation of the distribution P, and (•)+ = max{•, 0} (see [137, 138] for more

details).

An approximation approach proposed in [128] based on semidefinite program-

ming (SDP) is utilized to approximate the constraint (3.22). By supposing that

the mean and covariance matrix of stochastic variables are available, Zymler et
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al. [128] firstly used the Worst-case Conditional Value-at-Risk (WCVaR) con-

straints to approximate distributionally robust chance constraints, and then the

WCVaR constraints were reformulated into SDP constraints. The results indicate

that the approximation is exact when the roust individual chance constraint is

a concave or quadratic function. In this work, the approximation approach pro-

posed in [128] is adopted to approximate the constraint (3.17) and the equivalent

form of constraint (3.22) is presented as the following theorem.

Theorem 3.1. If the demand flow d̃j follows an unknown probability distribution

with given mean µj and covariance matrix Σj, then the constraint (3.17) can be

approximated as follows:

R(αj,t) =


(f, r) :

∃(αj,t,Aj,t) ∈ R× ST+1

αj,t +
1

1− εd
〈Ωj,Aj,t〉 ≤ 0,Aj,t � 0

Aj,t −


0

B>t−1

2

Bt−1

2
qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j − αj,t

 � 0

,∀j, t


,

where Aj,t ∈ ST+1 is the T + 1-dimensional real symmetric matrices, 〈Ωj,Aj,t〉 =

trace(Ωj,Aj,t), which denotes a trace scalar product of matrices Ωj and Aj,t, and

Aj,t � 0 implies that the matrix Aj,t is semidefinite.

Proof of Theorem 1: It is noted that the constraint (3.22) can be equiva-

lently expressed as J(f, r, αj,t) ≤ 0, where

J(f, r, αj,t) = sup
P∈P

CVaR1−εd(qj,1 −
t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j)

= sup
P∈P

inf
αj,t∈R

{
αj,t +

1

1− εd
EP
[
(qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j

−αj,t)+
]}
. (3.24)

By the stochastic saddle point theorem [139], the maximization and minimization

operations can be interchanged as follows:

J(f, r, αj,t) = inf
αj,t∈R

{
αj,t +

1

1− εd
sup
P∈P

EP
[
(qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j

−αj,t)+
]}
. (3.25)
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Next, a SDP reformulation of the following worst-case expectation problem

can be derived:

sup
P∈P

EP

[
(qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j − αj,t)+

]
, (3.26)

which can be regarded as the subordinate maximization problem in (3.25). Based

on the Lemma 1 in [128], we obtain

inf
Aj,t∈ST+1

〈Ωj,Aj,t〉

s.t. Aj,t � 0,

[d̃>j 1]Aj,t[d̃
>
j 1]> ≥ qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j − αj,t,

∀d̃j ∈ RT , j ∈ J, t ∈ T. (3.27)

The constraint (3.27) can be written as follows:

[d̃>j 1]Aj,t[d̃
>
j 1]>

≥ qj,1 −
t−1∑
l=0

rj,l∆t− qmax,j +B>t−1d̃j − αj,t,∀d̃j ∈ RT , j ∈ J, t ∈ T.(3.28)

Furthermore, constraint (3.28) can be equivalently expressed as

Aj,t −


0

Bt−1

2

B>t−1

2
qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j − αj,t

 � 0,∀j, t. (3.29)

Therefore, the worst-case expectation problem (3.26) can be reformulated into

inf
Aj,t∈ST+1

〈Ωj,Aj,t〉

s.t. Aj,t � 0,

Aj,t −


0

Bt−1

2

B>t−1

2
qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j − αj,t

 � 0,∀j, t.

(3.30)
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Substituting (3.30) into (3.25) yields

J(f, r, αj,t) = inf
αj,t∈R

αj,t +
1

1− εd
〈Ωj,Aj,t〉

s.t. Aj,t ∈ ST+1,Aj,t � 0,

Aj,t −


0

Bt−1

2

B>t−1

2
qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j − αj,t

 � 0,∀j, t,

(3.31)

and thus the proof of Theorem 3.1 is completed.

Based on Theorem 3.1, the optimization problem (DRCCP) can be reformu-

lated into a problem with SDP constraints as follows:

(DRCCOM) min
f,r,α,A

D =
I∑
i=1

T∑
t=1

(
[ρi,1 +

t−1∑
l=0

∆t

∆xi
(fi−1,l − fi,l + ri,l − si,l)]∆xi∆t

−fi,t∆xi∆t
vi

)
+ E

[ J∑
j=1

T∑
t=1

(qj,1 −
t−1∑
l=0

rj,l∆t

+B>t−1d̃j)∆t
]
, (3.32)

subject to constraints (3.6), (3.7), (3.15), (3.19), (3.20) and

αj,t +
1

1− εd
〈Ωj,Aj,t〉 ≤ 0,∀j, t, (3.33)

Aj,t −


0

Bt−1

2

B>t−1

2
qj,1 −

t−1∑
l=0

rj,l∆t− qmax,j − αj,t

 � 0,∀j, t,

(3.34)

Aj,t � 0,Aj,t ∈ ST+1,∀j, t. (3.35)

Based on the result in [128], we get that DRCCOM can be solved efficiently.
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3.5 Case Study

We select a 13 km road of the Kwinana Freeway in the vicinity of Perth in

Australia (refer to Fig. 3.2). We discretize the section into 26 cells with 500 m

for each cell. The road section covers eight on-ramps and four off-ramps, and is

one of the busiest sections in Perth. We select the duration from 6 : 00am to

10 : 00am, which represents the peak hours. The on-ramps are located at cells

2, 5, 8, 9, 10, 16, 17, 25 and the off-ramps are located at cells 3, 7, 15, 26. The data

of flow and density collected from loop detectors are used to obtain the piecewise

linear fundamental diagram for each cell. We use the least square method to

compute model parameters and summarize them in Table 3.2.

Figure 3.2: Road map

3.5.1 Results from the Deterministic Model

The objective of deterministic optimization model (DOM) is to find an optimal

ramp metering by minimizing the total travel delay with consideration of deter-

ministic demand flows under triangular fundamental diagrams. We use MATLAB

R2019a with SeDuMi [140] solver and YALMIP interface [141] to solve the pro-

posed models in numerical application. For the no control model and DOM, we

show the corresponding results on the June 11, and June 13, 2018, in Figs. 3.3-

3.4, respectively. The bar on the right side shows the size of mainline density that

increases from bottom to top. The lighter color in the figures implies smaller val-

ue of density and better traffic condition and vis versa. For the no control model

on June 11, 2018, the total system delay with zero ramp delay is 1074.6552veh-

hr and the total system delay for DOM is 488.8045veh-hr and the associated

ramp delay is 174.8159veh-hr. On June 13, 2018, the total system delay for no
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Table 3.2: Model parameters

Name of parameter Value
vi, i = 1, . . . , 24 27.7778m/s
vi, i = 25, 26 22.2222m/s

wi, i = 1, 3, 4, 6, . . . , 24 9.8029m/s
wi, i = 2, 5 9.7895m/s
wi, i = 25, 26 10.7830m/s

Ci, i = 1, 3, 4, 6, . . . , 24 1.6667veh/s
Ci, i = 2, 5, 25, 26 2.2222veh/s
qmax,j, j = 7 120veh

qmax,j, j = 1, . . . , 6, 8 60veh
rmax,j, j = 1, . . . , 8 0.5500veh/s

ρmax,i, i = 1, 3, 4, 6, . . . , 24 0.2300veh/m
ρmax,i, i = 2, 5, 25, 26 0.3067veh/m

∆t 15s
∆xi, i = 1, . . . , 26 500m

control with zero ramp delay is 1583.9869veh-hr and the total system delay for

DOM is 1105.5529veh-hr and the associated ramp delay is 474.3417veh-hr. By

comparison, we can see that there are 54.5152% and 30.2045% improvement for

total delay, respectively. Therefore, ramp metering can reduce the congestion on

freeway and is an effective strategy to improve freeways operations.
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(a) Actual density (veh/m) on June 11, 2018
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Figure 3.3: Traffic density (veh/m) for no control and DOM on June 11, 2018
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(a) Actual density (veh/m) on June 13, 2018
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Figure 3.4: Traffic density (veh/m) for no control and DOM on June 13, 2018

3.5.2 Results from the Disributionally Robust Chance Con-

strained Optimization Model

Now, we show the corresponding results of the disributionally robust chance con-

strained optimization model (DRCCOM), where we take into account ten sce-

narios (refer to Table 3.3 for more details) based on the measured data of the

demand flows. On the second column in Table 3.3, ”1.00” denotes the situation

where the demand flow d̃j,t is set as the mean demand flow dmeanj,t ; ”0.96” denotes

the situation where the demand flow d̃j,t is reduced to 0.96dmeanj,t ; ”1.05” refers to

the situation in which the demand flow d̃j,t is increased to 1.05dmeanj,t . A demand

multiplier more than 1 refers to the situation where the actual demand flow is

being underestimated and vis versa. Fig. 3.5 shows the mean mainline demand,

mean on-ramp demands and mean out-going flows.

For comparison, the robust optimization method (ROM) proposed by Chow

and Li [118] is adopted in this paper, where we suppose that there is an uncertain-

ty of ±0.05 associated with the demand flows based on the collected data from de-

tectors and utilize triangular fundamental diagrams. This gives d̃minj,t = 0.95 ∗ d̃j,t
and d̃maxj,t = 1.05 ∗ d̃j,t. First, we take into account the scenario 5, i.e., letting

d̃j,t = dmeanj,t . Table 3.4 shows the corresponding results. By analysing, we can

see that the performance of DRCCOM is the best when εd = 0.95. For this

case, the total delay and ramp delay for the DRCCOM are 731.6660veh-hr and

215.0415veh-hr, respectively. Compared to ROM, there are, respectively, 0.2442%

and 0.0670% improvement. Compared with DOM, the total delay of DRCCOM
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Table 3.3: Ten scenarios based on the measured data of the demand flows

Case Demand flows control strategy

1 0.96*d̃j,t deterministic, robust, distributionally robust

2 0.97*d̃j,t deterministic, robust, distributionally robust

3 0.98*d̃j,t deterministic, robust, distributionally robust

4 0.99*d̃j,t deterministic, robust, distributionally robust

5 1.00*d̃j,t deterministic, robust, distributionally robust

6 1.01*d̃j,t deterministic, robust, distributionally robust

7 1.02*d̃j,t deterministic, robust, distributionally robust

8 1.03*d̃j,t deterministic, robust, distributionally robust

9 1.04*d̃j,t deterministic, robust, distributionally robust

10 1.05*d̃j,t deterministic, robust, distributionally robust
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Figure 3.5: Mean mainline demand, mean on-ramp demands and mean out-going flows

is less, but the ramp delay is more than that of DOM. The performances of total

delay of DRCCOM when εd = 0.90 or εd = 0.97 do not outperform those of DOM

and ROM. Furthermore, we can seen that the ramp delay is increasing with the

value of εd decreasing, which is consistent with our theoretical analyses because

smaller εd implies more probability of violation of constraint in terms of that the

waiting queue length is longer than the maximum queue on an on-ramp.

Table 3.4 also shows the total delay and ramp delay over 10 scenarios for the

three different control strategies. We can see that the total delay and ramp delay

increase with the demand increasing for the three control strategies. In particular,

the total delay of DRCCOM when ε = 0.95 is less than those of ROM for the
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Table 3.4: Total delay and ramp delay for ten scenarios

Demand DOM ROM DRCCOM
with εd = 0.90

DRCCOM
with εd = 0.95

DRCCOM
with εd = 0.97

Total
delay(veh-
hr)

Total
delay(veh-
hr)

Total
delay(veh-
hr)

Total
delay(veh-
hr)

Total
delay(veh-
hr)

Ramp
delay(veh-
hr)

Ramp
delay(veh-
hr)

Ramp
delay(veh-
hr)

Ramp
delay(veh-
hr)

Ramp
delay(veh-
hr)

0.96*dmean
j,t 332.6767 338.9177 334.7076 328.2172 329.8285

40.0145 48.1446 48.5633 45.3767 42.9587
0.97*dmean

j,t 411.3381 420.2148 417.3771 410.2358 413.6383

82.0282 94.3712 89.4254 85.7465 83.1289
0.98*dmean

j,t 502.4933 500.5120 503.7418 498.2489 500.9168

102.9199 102.9337 110.8222 105.0563 102.9788
0.99*dmean

j,t 599.4085 602.6364 605.5120 598.6296 603.5045

185.6659 208.0696 202.9336 196.4971 186.2164
1.00*dmean

j,t 734.4483 733.4570 736.4828 731.6660 733.4828

213.7042 216.4920 218.5041 215.0415 214.7027
1.01*dmean

j,t 909.7404 906.5402 915.7383 896.2559 907.6203

346.3851 357.6635 366.2991 356.7829 350.5417
1.02*dmean

j,t 1174.9983 1081.2249 1168.0312 1084.1379 1164.1543

397.6578 446.8358 429.1136 418.0353 408.7932
1.03*dmean

j,t 1338.1348 1336.3029 1344.1208 1304.6056 1321.0637

503.1153 564.3454 592.6797 551.3854 529.0421
1.04*dmean

j,t 1569.6749 1521.8225 1581.2552 1555.3102 1571.8093

629.6253 659.5434 663.7006 658.4050 646.6241
1.05*dmean

j,t 1845.0960 1805.6598 1838.0398 1798.5056 1824.0285

727.3990 725.9099 787.2781 765.9304 743.8254

cases that d̃j,t 6= 1.02 ∗ dmeanj,t , 1.04 ∗ dmeanj,t . Compared to DOM, the total delay

of DRCCOM when ε = 0.95 is less than those of DOM for all the 10 different

scenarios, while the ramp delay of DRCCOM shows a opposite trend. Moreover,

the performances of total delay and ramp delay of DOM are better than those

of DRCCOM when ε = 0.90 for most cases. When ε = 0.97, the total delay of

DRCCOM is less than those of DOM for most cases, but the ramp delay is longer

than DOM. This is reasonable because the objective function is to minimize total

delay rather than ramp delay. When more vehicles are holding on on-ramps, total

delay may reduce but ramp delay will increase.

3.6 Conclusion

A distributionally robust chance constrained optimization model is presented in

this chapter to address the ramp metering problem with uncertain demand flows.

The model is formulated as a semidefinite programming using the Worst-Case

Conditional Value-at-Risk (WCVaR) constraints to approximate distributionally

robust chance constraints. Given partial information (such as mean and covari-

ance matrix) of stochastic demand flows and the triangular fundamental dia-

grams, an optimal ramp metering strategy can be obtained by minimizing the
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total delay of mainline and on-ramps. The associated results of three different

ramp metering strategies, i.e., deterministic optimization model, robust optimiza-

tion model and distributionally robust chance constrained optimization model,

are presented and compared. The results show that, considering the uncertainty

encountered by the system over a range of scenarios, distributionally robust opti-

mization is an effective and useful method to control the total delay of the system

and mitigate traffic congestions. The results also show that the distributionally

robust optimization is more effective in managing the total system delay.



CHAPTER 4

A Smoothing Method for Ramp Metering

4.1 Introduction

In this Chapter, we propose an optimization program for freeway dynamic ramp

metering based on CTM. This problem has been formulated as a discrete time

optimal control problem with smooth state equations and constraints to meter

traffic inflow from on-ramps. In the proposed model, the ‘min’ operators in the

primal CTM are non-differentiable and thus, the corresponding optimal control

problem cannot be solved directly using conventional gradient based methods. In

this work, we introduce a smooth approximation to approximate the ‘min’ opera-

tors and then a unified computational approach is developed to solve the problem.

Theoretical analysis is carried out, showing that the optimal solution obtained

from the approximated problem converges to the optimal solution of the primal

CTM. Compared to the classical inequality relaxation method, our method can

resolve the flow holding-back problem and reduce under fundamental diagram

phenomenon. Compared with the Big-M method, our method has better efficien-

cy. To achieve the desired traffic response control in real application, a series of

online optimal control problems are solved using MPC. Simulation studies show

that our method can significantly improve freeway traffic management efficiency.

Queue-spill overs decrease the capacity of freeway in handling vehicles, thus

wasting commuting time in congested traffic conditions, especially during peak

hours. Ramp metering is an efficient way to protect congested areas of the freeway

from oversaturated flow conditions. ALINEA, which is one of the first ramp

metering controllers, is a feedback control of integral type [142]. Based on the

ALINEA, a proportional integral regulator known as Pi-ALINEA [143, 144] was

then proposed. Tracking a reference point for the traffic density (or occupancy) is

the main purpose of these regulators. There are also some other rule-based control

systems, for example coordinated control HERO [145], and others (see [146,147]).

36
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In addition to these simple regulators, many complex controllers have been

designed based on optimization approaches. To alleviate the freeway traffic con-

gestion, different cost functions, for maximising the system throughput or min-

imizing the total travel time spent by drivers in a traffic network system, are

proposed. One of the most widely adopted optimization-based models in free-

way control with ramp metering design is the macroscopic model, including the

first order models [66, 67]) and the second order models [113]. The second or-

der models have obvious advantages because they can show the phenomenon of

capacity drop. However, compared with first-order models, they contain more

parameters that are required to be customized. To date, the constructed opti-

mization problems based on these models have only been solved in the sense of

local optimality [148,149] due to the complexity of these optimization problems.

Various formulations and solution techniques have been proposed for the opti-

mal ramp metering problems. The seminal research of optimization-based ramp

metering can be traced back to [109], where a static model of traffic behavior

was utilized for the formulation of the problem. This model has been extended

in various forms in [112]. In particular, a deterministic ramp metering optimiza-

tion program was proposed in [73] based on the Asymmetric Cell transmission

model (ACTM), where it was demonstrated that the solution to the linear relax-

ation problem is feasible for freeway segments with only on-ramp and off-ramp

junctions.

In [150], the Link-Node Cell Transmission Model (LN-CTM) was used to

reformulate this problem as a linear program under relaxed piecewise-affine fun-

damental diagrams. Similarly, the ‘min’ operators were relaxed in [151] to obtain

a feasible solution by employing traffic demand control in each cell. Particulary,

if the fundamental diagrams are assumed to be symmetric triangular, meaning

that the backward wave speed equals to the free flow speed of each cell, the so-

lution of the relaxed problem is feasible. In [120], a novel first-order multi-lane

macroscopic traffic flow model was first proposed for motorways, which considers

the changes of lateral flow and longitudinal flow. In [121], the model proposed

in [120] was formulated as a discrete time optimal control problem with linear re-

laxation through the use of ramp metering and variable speed limits. Recently, a

traffic network finite-horizon optimal control model with exact linear relation for

ramp metering controls and variable speed limits is proposed in [152], for which

the distributed alternating direction method of multipliers (ADMM) is used to

optimize the proposed model. A decentralized MPC approach is proposed in [153]

for the freeway system on lossy communication networks under the mainline de-
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mand control. The priority parameter is used to ensure the flow of vehicles from

both cells.

In [154], a Modified Cell Transmission Model (MCTM) is formulated as a

Linear Complementarity System (lCS) which can be efficiently solved, thus suc-

cessfully avoiding the hard nonlinearity caused by the ‘min’ operators. In [155], it

is shown that if the objective is to minimize the total time spent and the turning

rates are invariant, then through the use of ramp metering and partial mainline

demand control, convex relaxation can be used to accurately obtain the opti-

mal solution of the original problem by introducing an alternative representation

system.

Literature review shows that many ramp metering studies used CTM for free-

way network loading. According to their approaches of reducing the complexity of

the problem, the papers mentioned above can be divided into two categories: (i)

The ‘min’ operators are directly replaced by a set of linear inequality constraints,

where the effect of the flow holding-back problem is ignored; and (ii) The ‘min’

operators are relaxed through the use of inequality constraints under specific as-

sumptions, such as symmetric triangular fundamental diagrams, or combined with

traffic demand control; and (iii) The original ‘min’ operators are transformed e-

quivalently to a series of linear inequality constraints using the Big-M method [78]

through the introduction of binary variables. Although this transformation is e-

quivalent, the transformed problem is computationally demanding because many

auxiliary binary variables are being introduced, and hence it is not possible to

rely on online computation. However, even for methods based on the equivalent

transformations, they are specific methods and hard to calculate, and are hard

to be extended to solve general problems. Based on the above discussion, these

methods either cannot ensure the optimality of the solution obtained or lack the

generality.

The rest of the chapter is organised as follows. Section 4.2 formulates and

models the optimization problem of freeway ramp metering. In Section 4.3, our

approximate model is proposed and the main convergent results are established.

Solution techniques are developed in Section 4.4. Sections 4.5 shows the numerical

studies and Section 4.6 gives the conclusion.

4.2 Optimization problem

In this section, we will formulate the traffic flow dynamic as an optimal control

problem to optimize the inflow from on-ramps to the freeway. Dynamic inflows
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from on-ramps are the main control variables over the study period. The aim

is to improve freeway network performance by regulating the number of vehicles

to enter the freeway. The problem is formulated and modeled based on the

proposed CTM [66, 67]. The CTM is a numerical method developed based on

the space-time discretization of the hydrodynamic traffic flow model [8]. See, for

example, [156, 157]. In the formulation of CTM, each freeway is discretized into

several homogenous segments, called subsections or cells, and the traffic flow is

analysed in each cell through discretize time steps.

We summary in Table 4.1 the definitions of all the parameters, sets and deci-

sion variables used in this study.

Table 4.1: Models’ variables and parameters

Parameters
∆xi length of cell i
∆t size of the simulation time step t
Ci capacity of cell i
vi free flow speed at cell i
ρmax,i jam density at cell i
wi backward wave speed at cell i
qmax,j maximum queue length at on-ramp j
rmax,j maximum ramp metering at on-ramp j
ε parameter for adjusting approximate error
Sets
T set of all time steps
I set of all cells
J set of all on-ramps
F feasible set of Problem PCTM
F ε feasible set of Problem APCTM
V convex and compact subset of RJ

U set of admission controls
Control
variable
rj,t ramp metering at on-ramp j and time step t
Variables
ρi,t density at cell i and time step t
fi,t flow at cell i and time step t
dj,t demand flow to enter freeway from on-ramp j at time

step t
qj,t queue length waiting for on-ramp j at time step t
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4.2.1 Primal cell transmission model

The proposed cost function of the optimization problem is to optimize the total

delay, including the mainline delay and the ramp delay. As shown in [118], this

cost function is suitable for the oversaturation of the freeway system, and it tries

to allow as many vehicles as possible to reach the destinations. The problem can

be formally stated as follows:

(PCTM) min
r
D =

T∑
t=1

I∑
i=1

(ρi,t∆xi∆t−
fi,t∆xi∆t

vi
) +

T∑
t=1

J∑
j=1

qj,t∆t, (4.1)

s.t.

ρi,t+1 = ρi,t +
∆t

∆xi
× (fi−1,t − fi,t + ri,t − si,t),∀i = 1, . . . , I,∀t,

(4.2)

fi,t = min{viρi,t, Ci, Ci+1, wi+1(ρmax,i+1 − ρi+1,t)},∀i, t, (4.3)

qj,t+1 = qj,t + ∆t(dj,t − rj,t),∀j, t, (4.4)

0 ≤ ρi,t ≤ ρmax,i,∀i, t, (4.5)

0 ≤ qj,t ≤ qmax,j, ∀j, t, (4.6)

0 ≤ rj,t ≤ rmax,j,∀j, t. (4.7)

The dynamics of the density in each cell i at time step t is governed by (4.2).

The outflow from the cell i during the time step t is controlled by a piecewise linear

fundamental diagram described in (4.3). The dynamics of the queue length for

each on-ramp j at time step t is given by (4.4). The upper and lower bounds for

the density ρi,t, queue length qj,t and ramp-metering rj,t are given by (4.5)-(4.7),

respectively.

Let V = {r = [r1, r2, . . . , rJ ] ∈ RJ : 0 ≤ rj ≤ rmax,j,∀j}, where rmax,j is a

given constant. It is noted that V is a compact and convex subset of RJ . Let r

be a control sequence {rt : t = 1, . . . , T −1} in V . Then, r is called an admissible

control. We use U to denote the class of all such admissible controls. For a control

r in U , if it satisfies the constraints (4.5)-(4.7), then it is called a feasible control

sequence. Let F be the class of all such feasible controls.

Note that the constraint (4.3) is equivalent to the following constraint:

fi,t = min{min{viρi,t, Ci},min{Ci+1, wi+1(ρmax,i+1 − ρi+1,t)}},∀i, t, (4.8)

where fDi,t = min{viρi,t, Ci} and fSi+1,t = min{Ci+1, wi+1(ρmax,i+1 − ρi+1,t)} repre-

sent the demand function and supply function, respectively.



4.2 Optimization problem 41

4.2.2 Existing Solution Methods

A Linear inequality relaxation based method

Due to the ‘min’ operators in constraint (4.3), the optimization problem PCTM

is difficult to solve directly. To overcome this difficulty, the ‘min’ operators are

relaxed to the following inequality constraints in [73]:

fi,t ≤ viρi,t,∀i, t, (4.9)

fi,t ≤ Ci,∀i, t, (4.10)

fi,t ≤ Ci+1,∀i, t, (4.11)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t),∀i, t. (4.12)

In general, the optimal value of fi,t obtained for solving the Optimal Control

Problem PCTM with the constraint (4.3) being relaxed to constraints (4.9)-(4.12)

is strictly less than the right-hand sides of all the constraints (4.9)-(4.12). This

problem is known as the flow holding-back problem. In [73], it was shown that for

ramp metering control problems, the traffic flow states caused by the inequality

relaxation constraints are lower than the fundamental diagram of the CTM. In

fact, it is observed that for some cases in our experiments, the traffic flow values

of some cells are even zero due to the flow holding-back problem as shown in Fig.

4.1. In this chapter, we will introduce a smoothing approximation of the ‘min’

operator to resolve the flow holding-back problem (or under the fundamental

diagram problem) approximately.
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Under some strong assumptions, such as symmetric triangular fundamental

diagrams, or using the traffic demand control in each cell, the ‘min’ operators can

be relaxed equivalently to the inequality constraints (4.9)-(4.12), see [150–153].

However, it is doubtful whether the assumption of demand control in every cell

is realistic. Thus, this method is not a general method.

B Big-M method

Another approach is to convert the ‘min’ operators in constraint (4.3) into equiva-

lent standard inequality constraints through the introduction of binary variables.

This method is known as Big-M method [78]. In fact, constraint (4.3) can be

written equivalently as the following constraints:

fi,t ≤ viρi,t,∀i, t, (4.13)

fi,t ≤ Ci,∀i, t, (4.14)

fi,t ≤ Ci+1,∀i, t, (4.15)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t),∀i, t, (4.16)

fi,t ≥ viρi,t −M(1− αi,t),∀i, t, (4.17)

fi,t ≥ Ci −M(1− βi,t),∀i, t, (4.18)

fi,t ≥ Ci+1 −M(1− γi,t),∀i, t, (4.19)

fi,t ≥ wi+1(ρmax,i+1 − ρi+1,t)−M(1− χi,t),∀i, t, (4.20)

αi,t + βi,t + γi,t + χi,t = 1, ∀i, t, (4.21)

αi,t ∈ {0, 1}, βi,t ∈ {0, 1}, γi,t ∈ {0, 1}, χi,t ∈ {0, 1}. (4.22)

Note that after the reformation of the constraints, the resulting optimization

problem can be solved only for small-size networks using traditional optimal al-

gorithms. Due to the introduction of a large number of binary variables, it is

not feasible to be solved even for medium-sized networks. In this work, using the

structure of the model, an effective solution approach is designed to avoid the

flow holding-back problem and it is applicable for large-size networks. Details

are given in the next section.
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4.3 Approximate Model

4.3.1 Min Approximation

It is difficult to solve Problem PCTM directly because the flow fi,t between cells is

required to equal to the minimum value in constraint (4.3). However, as discussed

before, constraint (4.3) is the key to eliminating internal metering and removing

inflow holding-back. To resolve this problem, we propose a novel smoothing

approach to approximate the ‘min’ operators in constraint (4.3) and show that

the solution obtained from the approximate problem converges to the solution of

Problem PCTM.

The main technical challenge of constraint (4.3) is how to deal with its non-

smoothness. Based on (4.8), we can equivalently represent the demand function

as fDi,t = min{viρi,t, Ci} = 1
2
(viρi,t +Ci − |viρi,t −Ci|), and the supply function as

fSi+1,t = min{Ci+1, wi+1(ρmax,i+1 − ρi+1,t)} = 1
2
(wi+1 (ρmax,i+1 − ρi+1,t) + Ci+1 −

|wi+1(ρmax,i+1 − ρi+1,t) − Ci+1|). Let ε > 0 be a small number, we use fDεi,t and

fSεi+1,t to approximate fDi,t and fSi+1,t, respectively, i.e.,

fDεi,t = 1
2
[viρi,t + Ci −

√
(viρi,t − Ci)2 + ε2

4
], (4.23)

and

fSεi+1,t =
1

2

[
wi+1(ρmax,i+1 − ρi+1,t) + Ci+1

−
√

(wi+1(ρmax,i+1 − ρi+1,t)− Ci+1)2 +
ε2

4

]
. (4.24)

It is obvious that the functions fDεi,t and fSεi+1,t are smooth and differentiable.

Fig. 4.2 shows the demand function and supply function for the ‘min’ and the

approximate operators with ε = 10−5. From Fig. 4.2, we can observe that

the approximate functions not only retain the main characteristics of the ‘min’

operators, such as the trend, but also ensure differentiability at the inflection

point.

Before carrying out further analysis, we estimate the bounds of fDi,t− fDεi,t and

fSi+1,t − fSεi+1,t. By the definitions of fDεi,t and fSεi+1,t, it holds that

0 ≤ fDi,t − fDεi,t ≤
ε

4
, (4.25)
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Figure 4.2: Demand and supply function for ‘min’ and approximate operators

Similarly, we can show that

0 ≤ fSi+1,t − fSεi+1,t ≤
ε

4
. (4.26)

By virtue of relation (4.8), we have

fi,t =
1

2
(fDi,t + fSi+1,t − |fDi,t − fSi+1,t|). (4.27)

Similarly, let

f εεi,t =
1

2
(fDεi,t + fSεi+1,t − |fDεi,t − fSεi+1,t|). (4.28)

Using the same approximation method, we obtain

f εi,t =
1

2
(fDεi,t + fSεi+1,t −

√
(fDεi,t − fSεi+1,t)

2 +
ε2

4
). (4.29)

Based on inequalities (4.28) and (4.29), we have

0 ≤ f εεi,t − f εi,t ≤
ε

4
. (4.30)



4.3 Approximate Model 45

4.3.2 Approximate model

Now, the approximate problem of Problem PCTM may be stated as follows:

(APCTM) min
r
Dε =

T∑
t=1

I∑
i=1

(ρεi,t∆xi∆t−
f εi,t(ρ

ε
i,t)∆xi∆t

vi
) +

T∑
t=1

J∑
j=1

qj,t∆t,

(4.31)

s.t.

ρεi,t+1 = ρεi,t +
∆t

∆xi
× (f εi−1,t(ρ

ε
i−1,t)− f εi,t(ρεi,t) + ri,t − si,t),∀i, t,

(4.32)

0 ≤ ρεi,t ≤ ρmax,i,∀i, t, (4.33)

and constraints (4.4), (4.6), (4.7), (4.23), (4.24) and (4.29).

For a control r in U , if it satisfies the constraints (4.6), (4.7) and (4.33), then

it is called a feasible control sequence. Let F ε be the class of all such feasible

controls. Clearly, Problem APCTM is a smooth discrete time optimal control

problem which can be efficiently solved using traditional optimization approaches,

such as sequential quadratic programming algorithm (SQP) [158].

Next, we will give some auxiliary lemmas, which are used in the convergence

analysis. Lemma 4.1 is to estimate upper and lower bounds of fi,t − f εi,t, which

play an essential role in the proofs of Lemma 4.2 and Theorem 4.1.

Lemma 4.1. Consider (4.23), (4.24) and (4.29). Then, for all ε > 0, it holds

that − ε
4
≤ fi,t − f εi,t ≤ 3ε

4
, and limε→0 f

ε
i,t = fi,t.

Proof. First, we estimate an upper bound of fi,t − f εi,t for any i and t. By (4.27)

and (4.29), it gives

fi,t − f εi,t = fi,t − f εεi,t + f εεi,t − f εi,t

=
1

2
[fDi,t + fSi+1,t − |fDi,t − fSi+1,t| − (fDεi,t + fSεi+1,t − |fDεi,t − fSεi+1,t|)]

+f εεi,t − f εi,t

≤ ε

2
+

1

2
(|fDεi,t − fSεi+1,t| − |fDi,t − fSi+1,t|),

(4.34)

where the last inequality is due to (4.25), (4.26) and (4.30). We next discuss the

positivity and negativity of fDεi,t − fSεi+1,t and fDi,t − fSi+1,t. Let

a = fDεi,t − fSεi+1,t, b = fDi,t − fSi+1,t. (4.35)
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1): When a ≥ 0, b ≥ 0, we obtain

|a| − |b| = fDεi,t − fSεi+1,t − fDi,t + fSi+1,t ≤
ε

4
,

and thus

fi,t − f εi,t ≤
5ε

8
. (4.36)

2): When a < 0, b < 0, we have

|a| − |b| = fSεi+1,t − fDεi,t + fDi,t − fSi+1,t ≤
ε

4
,

and thus

fi,t − f εi,t ≤
5ε

8
. (4.37)

3): When a ≥ 0, b < 0, we have

|a| − |b| = fDεi,t − fSεi+1,t + fDi,t − fSi+1,t ≤
ε

2
,

and thus

fi,t − f εi,t ≤
3ε

4
. (4.38)

4): When a < 0, b ≥ 0, we obtain

|a| − |b| = fSεi+1,t − fDεi,t − fDi,t + fSi+1,t ≤
ε

2
,

and thus

fi,t − f εi,t ≤
3ε

4
. (4.39)

By (4.36), (4.37), (4.38) and (4.39), it follows that

fi,t − f εi,t ≤
3ε

4
. (4.40)

Next, we estimate a lower bound of fi,t − f εi,t for any i and t. By (4.27) and

(4.29), it gives

fi,t − f εi,t ≥
1

2
(|fDεi,t − fSεi+1,t| − |fDi,t − fSi+1,t|). (4.41)
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Similarly, we study the positivity and negativity of fDεi,t − fSεi+1,t and fDi,t − fSi+1,t.

1): When a ≥ 0, b ≥ 0,

|a| − |b| = fDεi,t − fSεi+1,t − fDi,t + fSi+1,t ≥ −
ε

4
,

and thus

fi,t − f εi,t ≥ −
ε

8
. (4.42)

2): When a < 0, b < 0,

|a| − |b| = fSεi+1,t − fDεi,t + fDi,t − fSi+1,t ≥ −
ε

4
,

and thus

fi,t − f εi,t ≥ −
ε

8
, (4.43)

3): When a ≥ 0, b < 0,

|a| − |b| = fDεi,t − fSεi+1,t + fDi,t − fSi+1,t ≥ −
ε

2
,

and thus

fi,t − f εi,t ≥ −
ε

4
. (4.44)

4): When a < 0, b ≥ 0,

|a| − |b| = fSεi+1,t − fDεi,t − fDi,t + fSi+1,t ≥ −
ε

2
,

and thus

fi,t − f εi,t ≥ −
ε

4
. (4.45)

By (4.42), (4.43), (4.44) and (4.45), we have

fi,t − f εi,t ≥ −
ε

4
. (4.46)

Due to (4.40) and (4.46), we obtain the first part of the result. The second part

of the result is obvious when ε→ 0, and thus the proof is completed.

Lemma 4.2. Let r∗ε be an optimal solution to Problem APCTM. Then, there
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exists a subsequence of {r∗ε}, which is again denoted by the original sequence,

and a control vector r ∈ F such that

lim
ε→0
||r∗ε − r|| = 0, (4.47)

lim
ε→0

ρ∗εi,t = ρi,t, ∀i, t. (4.48)

Similarly, let r∗ be an optimal solution to Problem PCTM. Then, there exists a

sequence {rε}, which is again denoted by the original sequence, such that

lim
ε→0
||rε − r∗|| = 0, (4.49)

lim
ε→0

ρεi,t = ρ∗i,t, ∀i, t. (4.50)

Proof. Note that V is a compact subset of RJ . Since {r∗ε} as a sequence in ε is

in V , it is clear that there exists a subsequence, which is again denoted by the

original sequence, and a control vector r ∈ F such that

lim
ε→0
||r∗ε − r|| = 0. (4.51)

We prove limε→0 ρ
∗ε
i,t = ρi,t by exploiting the mathematical induction. The

result is true when t = 1 for each i, because limε→0 ρ
∗ε
i,1 = ρi,1. Next, we prove

that the result is true when t = 2 for any i = 1, . . . , I. Based on Equations (4.2)

and (4.32), we have, for each i,

ρi,2 = ρi,1 +
∆t

∆xi
× (f i−1,1 − f i,1 + ri,1 − si,1),

and

ρ∗εi,2 = ρ∗εi,1 +
∆t

∆xi
× (f εi−1,1(ρ∗εi−1,1)− f εi,1(ρ∗εi,1) + r∗εi,1 − si,1),

where ρi,1 = ρ∗εi,1 = ρi,1 for each i. Using Lemma 4.1, we obtain for any i

lim
ε→0

f εi,1(ρ∗εi,1) = f i,1. (4.52)

Since 0 < ∆t
∆xi

< 1, by (4.51) and (4.52), we have

lim
ε→0

ρ∗εi,2 = ρi,2,∀i. (4.53)
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Now, we assume that the result is true when t = T − 1 for any i = 1, . . . , I, i.e.,

lim
ε→0

ρ∗εi,T−1 = ρi,T−1. (4.54)

Next, we shall prove that it is also true when t = T . Based on equations (4.2)

and (4.32), we have, for any i = 1, . . . , I,

ρi,T = ρi,T−1 +
∆t

∆xi
× (f i−1,T−1 − f i,T−1 + ri,T−1 − si,T−1), (4.55)

and

ρ∗εi,T = ρ∗εi,T−1 +
∆t

∆xi
× (f εi−1,T−1(ρ∗εi−1,T−1)− f εi,T−1(ρ∗εi,T−1) + r∗εi,T−1 − si,T−1).

(4.56)

Using Lemma 4.1, we obtain, for any i = 1, . . . , I,

lim
ε→0

f εi,T−1(ρi,T−1) = f i,T−1. (4.57)

Furthermore, f εi,t is continuously differentiable with respect to each of the com-

ponents of ρ and r. Thus, it follows from (4.51) and (4.54) that

lim
ε→0

f εi,T−1(ρ∗εi,T−1) = lim
ε→0

f εi,T−1(ρi,T−1). (4.58)

The following result follows readily from (4.57) and (4.58)

lim
ε→0

f εi,T−1(ρ∗εi,T−1) = f i,T−1. (4.59)

Then, limε→0 ρ
∗ε
i,T = ρi,T is obvious by virtue of (4.54), (4.55), (4.56) and (4.59).

The second part of the result follows readily by using a similar approach, and

thus the details are omitted. The proof is completed.

Theorem 4.1 below shows that the solution of our approximate model APCT-

M will converge to the solution of the Problem PCTM through appropriately

controlling the parameter ε.

Theorem 4.1. Under the conditions of Lemma 4.2, r is an optimal control vector

of Problem PCTM.

Proof. By induction, it follows from Lemma 4.2 and the differentiability of qj,t
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that, for each j = 1, . . . , J, t = 1, . . . , T ,

lim
ε→0

q∗εj,t = qj,t, (4.60)

and

lim
ε→0

qεj,t = q∗j,t. (4.61)

Based on Lemma 4.1, we have, for each i, t,

lim
ε→0

f εi,t(ρi,t) = f i,t, (4.62)

and

lim
ε→0

f εi,t(ρ
∗
i,t) = f ∗i,t. (4.63)

By Lemma 4.2, limε→0 ρ
∗ε
i,t = ρi,t and limε→0 ρ

ε
i,t = ρ∗i,t for each i and t. Since f εi,t

is continuously differentiable with respect to each of the components of ρ and r,

we have

lim
ε→0

f εi,t(ρ
∗ε
i,t) = lim

ε→0
f εi,t(ρi,t). (4.64)

and

lim
ε→0

f εi,t(ρ
ε
i,t) = lim

ε→0
f εi,t(ρ

∗
i,t). (4.65)

Combining (4.62) and (4.64) yields

lim
ε→0

f εi,t(ρ
∗ε
i,t) = f i,t. (4.66)

By (4.63) and (4.65), we have

lim
ε→0

f εi,t(ρ
ε
i,t) = f ∗i,t. (4.67)

By virtue of (4.48) of Lemma 4.2, (4.60) and (4.66), we obtain

lim
ε→0

D∗ε(ρ∗ε, r∗ε, q∗ε) = D(ρ, r, q), (4.68)

where D∗ε(ρ∗ε, r∗ε, q∗ε) is the optimal function value of Problem APCTM and

D(ρ, r, q) is the associated objective function value of Problem PCTM. Similarly,
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by (4.50) of Lemma 4.2, (4.61) and (4.67), we obtain

lim
ε→0

Dε(ρε, rε, qε) = D∗(ρ∗, r∗, q∗), (4.69)

where Dε(ρε, rε, qε) is the associated objective function value of Problem APCTM

and D∗(ρ∗, r∗, q∗) is the optimal function value of Problem PCTM.

For any r ∈ F and rε ∈ F ε, we have

D∗(ρ∗, r∗, q∗) ≤ D(ρ, r, q), (4.70)

and

lim
ε→0

D∗ε(ρ∗ε, r∗ε, q∗ε) ≤ lim
ε→0

Dε(ρε, rε, qε). (4.71)

Combining (4.68), (4.69), (4.70) and (4.71), we obtain

D∗(ρ∗, r∗, q∗) ≤ D(ρ, r, q) ≤ lim
ε→0

Dε(ρε, rε, qε) = D∗(ρ∗, r∗, q∗).

Thus,

D(ρ, r, q) = D∗(ρ∗, r∗, q∗).

This completes the proof.

Problem APCTM is a smooth discrete time optimal control problem which

can be solved efficiently using gradient-based optimization methods. The required

gradient formulas for the objective and constraint functions will be derived in the

next section.

4.4 Gradients of the Objective and Constraint

Functions

To solve Problem APCTM, we need the gradients of the objective and the con-

straint functions with respect to the variable r.

4.4.1 Gradient formulas

Let yt = {ρε1,t, ρε2,t, . . . , ρεI,t, q1,t, q2,t, . . . , qJ,t}> ∈ RI+J and rt = {r1,t, r2,t . . . , rJ,t}>

∈ RJ be the state and control vectors, respectively. Then, for any t = 1, 2, . . . , T−
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1, the state equations of (4.4) and (4.32) are written in compact form as follows:

yt+1 =



ρε1,t

ρε2,t
...

ρεI,t
q1,t

q2,t

...

qJ,t


+



∆t
∆x1
· r0,t

∆t
∆x2
· f ε1,t
...

∆t
∆xI
· f εI−1,t

0

0
...

0


−



∆t
∆x1
· f ε1,t

∆t
∆x2
· f ε2,t
...

∆t
∆xI
· f εI,t
0

0
...

0


+



∆t
∆x1
· r1,t

∆t
∆x2
· r2,t

...
∆t

∆xI
· rI,t

−∆t · r1,t

−∆t · r2,t

...

−∆t · rJ,t



+



− ∆t
∆x1
· s1,t

− ∆t
∆x2
· s2,t

...

− ∆t
∆xI
· sI,t

∆t · d1,t

∆t · d2,t

...

∆t · dJ,t


. (4.72)

Let F (t, yt, rt) denote the right hand side of the difference equation (4.72). It

contains state variables, control variables and time. The initial condition for the

system of difference equations is

y1 = [ρ1,1, . . . , ρI,1, q1,1, . . . , qJ,1]> ∈ RI+J . (4.73)

We now consider the following class of discrete time optimal control problems

in canonical formulation. Let

Φ0(yT (r)) =
I∑
i=1

(ρεi,T∆t∆xi −
f εi,T∆t∆xi

vi
) +

J∑
j=1

qj,T∆t,

L0(yt(r)) =
I∑
i=1

(ρεi,t∆t∆xi −
f εi,t∆t∆xi

vi
+

J∑
j=1

qj,t∆t.
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Then,

g0(r) = Φ0(yT (r)) +
T−1∑
t=1

L0(t, yt(r)),

where g0(r) is the objective function which is to be optimized subject to r ∈ U .

Similarly, we rewrite the constraints as follows:

gl(r) = Φl(yT (r)) +
T−1∑
t=1

Ll(t, yt(r), rt)

= −ρεi,t, 1 ≤ l ≤ IT, i = 1 . . . , I, t = 1, . . . , T,

gl(r) = Φl(yT (r)) +
T−1∑
t=1

Ll(t, yt(r), rt)

= ρεi,t − ρmax,i, IT + 1 ≤ l ≤ 2IT, i = 1 . . . , I, t = 1, . . . , T,

gl(r) = Φl(yT (r)) +
T−1∑
t=1

Ll(t, yt(r), rt)

= −qj,t, 2IT + 1 ≤ l ≤ (2I + J)T, j = 1 . . . , J, t = 1, . . . , T,

gl(r) = Φl(yT (r)) +
T−1∑
t=1

Ll(t, yt(r), rt)

= qj,t − qmax,i, (2I + J)T + 1 ≤ l ≤ 2(I + J)T,

j = 1 . . . , J, t = 1, . . . , T.

These constraint functions are said to be in canonical form, because they are

in the same form as the objective function. Now, we can derive the gradient

formulas of the objective and constraint functions in a unified way. Define

r = [(r1)>, (r2)>, . . . , (rT−1)>]>.

Let the control vector r be perturbed by ξr̂, where ξ > 0 is a small constant and

r̂ is an arbitrary but fixed perturbation of r given by

r̂ = [(r̂1)>, (r̂2)>, . . . , (r̂T−1)>]>.

Then, we have

r(ξ) = r + ξr̂ = [(r1(ξ))>, (r2(ξ))>, . . . , (rT−1(ξ))>]>,
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where

rt(ξ) = rt + ξr̂(ξ), t = 1, . . . , T − 1.

Consequently, the state of the system will be perturbed, and so are the objective

and constraint functions.

Define

yt(ξ) = yt(r(ξ)), t = 2, . . . , T. (4.74)

Then,

yt+1(ξ) = F (t, yt(ξ), rt(ξ)). (4.75)

The variation of the state for t = 1, 2, . . . , T − 1 is:

∆yt+1 =
∂F (t, yt, rt)

∂yt
∆yt +

∂F (t, yt, rt)

∂rt
r̂t (4.76)

with

∆y1 = 0. (4.77)

For the l−th function (l = 0 is the objective function), we have

∂gl(r)

∂r
r̂ =

∂Φl(yT )

∂yT
∆yT +

T−1∑
t=1

[
∂Ll(t, yt, rt)

∂yt
∆yt +

∂Ll(t, yt, rt)

∂rt
r̂t]. (4.78)

For each l = 0, 1, . . . , 2(I + J)T , define the Hamiltonian

Hl(t, yt, rt, λ
l
t+1) = Ll(t, yt, rt) + (λlt+1)>F (t, yt, rt),

where λlt ∈ RI+J , t = T, T − 1, . . . , 2, denotes the co-state sequence for the l−th

canonical constraint. Then, it follows from (4.78) that

∂gl(r)

∂r
r̂ =

∂Φl(yT )

∂yT
∆yT +

T−1∑
t=1

{
∂Hl(t, yt, rt, λ

l
t+1)

∂yt
∆yt − (λlt+1)>

∂F (t, yt, rt)

∂yt
∆yt

+
∂Hl(t, yt, rt, λ

l
t+1)

∂rt
r̂t − (λlt+1)>

∂F (t, yt, rt)

∂rt
r̂t}. (4.79)
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Based on (4.76) and (4.77), we have

∆yt+1 =
∂F (t, yt, rt)

∂yt
∆yt +

∂F (t, yt, rt)

∂rt
r̂t. (4.80)

Let the co-state λlt be determined by the following system of difference equations:

(λlt)
> =

∂Hl(t, yt, rt, λ
l
t+1)

∂yt
, t = T − 1, T − 2, . . . , 2, (4.81)

and

(λlT )> =
∂Φl(yT )

∂yT
. (4.82)

By virtue of (4.79), (4.80), (4.81), (4.82), (4.74) and (4.75), we obtain

∂gl(r)

∂r
r̂ = [

∂Hl(1, y1, r1, λ
l
2)

∂r1

, . . . ,
∂Hl(T − 1, yT−1, rT−1, λ

l
T )

∂rT−1

]r̂.

Because r̂ is arbitrary, we have the following gradient formula:

∂gl(r)

∂r
= [

∂Hl(1, y1, r1, λ
l
2)

∂r1

, . . . ,
∂Hl(T − 1, yT−1, rT−1, λ

l
T )

∂rT−1

]. (4.83)

Now we summarize the gradient computation in the following theorem.

Theorem 4.2. Consider Problem APCTM. Then, for each l = 0, 1, . . . , 2(I +

J)T , the gradient of gl(r) with respect to control vector r is given by (4.83), where

r = [(r1)>, (r2)>, . . . , (rT−1)>]>.

4.4.2 Algorithm

Problem APCTM is essentially a nonlinear mathematical programming problem

where the decision vector is the control vector r. Many gradient-based optimiza-

tion methods, such as SQP, can be used to solve it. To apply gradient-based

optimization methods, for each r ∈ V , we need the values of the objective func-

tion g0(r) and the constraint functions gl(r), l = 1, 2, . . . , 2(I + J)T , together

with their corresponding gradients. Detailed computation is given in Algorithm

1.

Step 2 in Algorithm 1 is to compute the values of yt(r) corresponding to each

given r. Then, gl(r) is computed in Step 9 based on Step 4 and Step 8. After

that, the co-state system (4.81) and (4.82) is solved backward in time from t = T

to t = 2 to acquire λlt(r). Finally, the gradients of the objective function and the
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Algorithm 1 : Algorithm to Compute Gradients of Objective function and
Constraints

1: Initialization: For a given r ∈ V and initial condition (4.73).
2: Output: Compute the solution yt+1(r), t = 1, 2, . . . , T − 1 of system (4.72)

forward in time from t = 1 to t = T − 1.
3: for l = 0 to 2(I + J)T do
4: Compute Φl(yT (r)).
5: for t = 1 to T − 1 do
6: Compute Ll(t, yt(r), rt).
7: end for
8: Compute

∑T−1
t=1 Ll(t, yt(r), rt).

9: Compute gl(r) = Φl(yT (r)) +
∑T−1

t=1 Ll(t, yt(r), rt).
10: for t = T to 2 do
11: Solve the system of the co-state system (4.81) and (4.82) backward in

time. Let λlt(r) be the solution obtained.
12: end for
13: Calculate the gradients of gl using (4.83).
14: end for

constraint functions are calculated using the gradient formulas given in Theorem

4.2.

4.5 Numerical Studies

In this section, the numerical performance of a ramp metering method based

on the proposed model is given. A MPC approach is utilized to achieve traffic

response controls.

The MPC approach has been widely utilized in freeway traffic control prob-

lems, see [123,159,160]. Based on the current state of the traffic system, the MPC

approach utilizes a traffic model to predict dynamic of the state, and finds an op-

timal control signal which gives the optimal value of the objective function. This

property guarantees that the controller can take advantage of potentially larger

future gains at a current (smaller) cost, thereby avoiding short-sighted control

action.

After optimization, the values for the control variables of the first sample of the

optimal control action are applied to the process. The remaining control signals

are recalculated in a finite rolling horizon scheme. Readers can refer to [161] for

a detailed description of the MPC method.
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4.5.1 MPC Design

In this section, we first redefine the MPC objective function, which minimizes the

total delay of the freeway system, including mainline delay and on-ramp delay

for l = t, . . . , t+ Np− 1. It is similar to the cost function defined in (4.31). The

optimization problem is reformulated as follows:

Dt =

t+Np−1∑
l=t

[
I∑
i=1

(ρi,l∆xi∆t−
fi,l∆xi∆t

vi
) +

J∑
j=1

qj,l∆t]. (4.84)

Note that the tuning rules used to select the appropriate value of the prediction

horizon Np and control sample time Nc are very important to the performance of

MPC [162]. Normally, the value of Np should be larger than the typical travel time

from the controlled segment to the exit of the network. The reason is that if the

prediction horizon Np is shorter than the typical travel time, the vehicles affected

by the current control action have no effect on the network operation before

exiting. On the other hand, Np should not be too large due to the computational

complexity of the MPC optimization problem. Hence, we choose Np as the typical

time in the network based on this reasoning. For the control sample time Nc,

we will choose a value that represents the trade-off between performance and

computational effort.

Performances of the following models are compared:

• Primal cell transmission model (PCTM)

• Linear inequality relaxation based method (LICTM)

• Big-M method (BMM)

• Approximate model (APCTM)

• Generalized non-holding back linear programming formulation (GNHBLP)

proposed by Zhu [163] to address holding back problems.

All the experiments were run on a computer with Intel(R) Core(TM) i7-8565U

CPU-1.80GHz 1.99 GHz and RAM 16GB. We use the MATLAB implementation

of the SQP algorithm (fmincon) to solve the models PCTM, LICTM, APCTM

and GNHBLP, and use the GUROBI [164] to solve the model BMM.
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4.5.2 Example 1

A Scenario

The example is selected from the Kwinana Freeway in the vicinity of Perth in

Australia. This section of freeway is divided into I = 26 cells with J = 8 on-

ramps and 4 off-ramps. Each segment has a longitude of ∆xi = 500m for any

i = 1, . . . , I. Fig. 4.3 shows the details of this example.

Figure 4.3: Road graph

There are eight control signals: ramp metering in cells 2, 5, 8, 9, 10, 16, 17,

25, respectively. We measured density, flow, speed, on-ramp demands and out-

going flows at each sample time t. We can obtain the flow-density fundamental

diagrams from the data measured by detectors installed in the Kwinana Freeway.

These model parameters are calculated using the least square method and are

given in Table 4.2. The mainline demand, ramp demands and out-going flows are

measured from the detectors, see Fig. 4.4. Traffic control can be used to improve

the performance of the freeway system. The time chosen is 4h from 6 : 00 am to

10 : 00 am, which corresponds to 960 steps. In this example, we select Np = 33,

i.e., 8 minutes as predictive horizon, and Nc = 8, i.e., 2 minutes for control sample

time, which meet the above requirements.

B Experiment Results

The density results for the six models (actually being measured, PCTM, LICTM,

BMM, APCTM and GNHBLP) are shown in Fig. 4.5. The bars on the right side

of each of Figs. 4.5(a)-4.5(f) show the changes in the values of the corresponding

state variables that increase from bottom to top. From Figs. 4.5(a)-4.5(f), we can

observe the evolution for density for each of the models (PCTM, LICTM, BMM,

APCTM and GNHBLP). As the demands for the mainline and on-ramps increase,
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Table 4.2: Model parameters

Name of parameter Value
vi, i = 1, . . . , 24 27.7778m/s
vi, i = 25, 26 22.2222m/s

wi, i = 1, 3, 4, 6, . . . , 24 9.8029m/s
wi, i = 2, 5 9.7895m/s
wi, i = 25, 26 10.783m/s

Ci, i = 1, 3, 4, 6, . . . , 24 1.6667veh/s
Ci, i = 2, 5, 25, 26 2.2222veh/s
qmax,j, j = 7 120veh

qmax,j, j = 1, . . . , 6, 8 60veh
rmax,j, j = 1, . . . , 8 0.55veh/s

ρmax,i, i = 1, 3, 4, 6, . . . , 24 0.23veh/m
ρmax,i, i = 2, 5, 25, 26 0.3067veh/m

∆t 15s
ε 0.00000001
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(a) Mainline demand and on-ramp demands
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Figure 4.4: Mainline demand, on-ramp demands and out-going flows

the density at the junctions of the mainline and on-ramps increases. Consequent-

ly, the speed decreases, congestion gradually occurs, and the congestion wave

propagates upstream from the junction. This situation lasts approximately two

hours, which is consistent with the traffic flow during the morning rush hour, i.e.,

from 7:00 am to 9:00 am. From Figs. 4.5(b), 4.5(d) and 4.5(e), we observe that

the changing trend of our model APCTM is almost the same as that of PCTM

and BMM. This is consistent with our theoretical analysis.

The traffic flow results for the six models (actually being measured, PCTM,
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(a) Actual density (veh/m)
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(b) Density (veh/m) for (PCTM) with Np =
33, Nc = 8
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(c) Density (veh/m) for (LICTM) with Np =
33, Nc = 8

6:00 7:00 8:00 9:00 10:00
Time

5

10

15

20

25

T
he

 lo
ca

tio
n 

of
 c

el
l

0

0.05

0.1

0.15

0.2

(d) Density (veh/m) for (BMM) with Np =
33, Nc = 8
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(e) Density (veh/m) for (APCTM) with Np =
33, Nc = 8
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(f) Density (veh/m) for (GNHBLP) with
Np = 33, Nc = 8

Figure 4.5: Traffic density for actually being measured, PCTM, LICTM, BMM, APCTM and
GNHBLP
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Table 4.3: The Sizes of Variables and Constraints of The Five Models with Different Predictive
Horizon Np

Model
Np = 33 Np = 121 Np = 481

Nv Nc Nv Nc Nv Nc

PCTM 256 2244 960 8160 3840 30784

LICTM 1088 5610 4080 20570 16320 81770

BMM 4352 9834 16320 36058 65280 143338

APCTM 256 2244 960 8160 3840 30784

GNHBLP 1089 5611 4081 20571 16321 81771

LICTM, BMM, APCTM and GNHBLP) are shown in Fig. 4.6. From Figs.

4.6(a)- 4.6(f), we can observe the evolution of traffic flow of the models (PCTM,

LICTM, BMM, APCTM and GNHBLP). Compared the result of LICTM with

those of other models, we see that PCTM, BMM, APCTM and GNHBLP can

solve the flow holding-back problem. However, the performance of PCTM, BMM

and APCTM is better than that of GNHBLP. The experimental results agree

with the theoretical analysis.

We show the ramp metering and queue length of the five models (PCTM,

LICTM, BMM, APCTM and GNHBLP) in Fig. 4.7 and Fig. 4.8. From Figs.

4.7(a), 4.7(c) and 4.7(d), we see that the solution of our model APCTM converges

to those of PCTM and BMM when the parameter ε is appropriately chosen. Due

to the flow holding-back problem arising from linear relaxation, the solution of

LICTM shows a different trend. GNHBLP only solves the flow holding-back

problem to a certain extent.

We compare the sizes of the fives models (PCTM, LICTM, BMM, APCTM,

GNHBLP) with different prediction horizon Np in Table 4.3, where Nv and Nc de-

note, respectively, the numbers of variables and constraints. We find that PCTM

and APCTM have considerably fewer numbers of variables and constraints than

LICTM, BMM and GNHBLP. Even though PCTM and APCTM have the same

numbers of variables and constraints, we find that the time cost of APCTM is

far less than that required by PCTM model (Table 4.4). In particular, the trend

is more evident when the number of the variables increases. BMM equivalently

represents the ’min’ operators by introducing a large number of auxiliary vari-

ables, so the CPU time is more than that required by APCTM. Since LICTM and

GNHBLP are linear program problems, the computational time will obviously be

less than that of APCTM. However, they are relaxation problems of the original

problem, so the total delay and ramp delay obtained tend to be longer.

For comparison, we summarize the total delay, ramp delay and total CPU

time (in seconds) of the above five models in Table 4.5. Clearly, we can see that
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(a) Actual flow (veh/s)
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(b) Flow (veh/s) for (PCTM) with Np = 33,
Nc = 8
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(c) Flow (veh/s) for (LICTM) with Np = 33,
Nc = 8
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(d) Flow (veh/s) for (BMM) with Np = 33,
Nc = 8
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(e) Flow (veh/s) for (APCTM) with Np = 33,
Nc = 8
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(f) Flow (veh/s) for (GNHBLP) with Np =
33, Nc = 8

Figure 4.6: Flow for actually being measured, PCTM, LICTM, BMM, APCTM and GNHBLP



4.5 Numerical Studies 63

6:00 7:00 8:00 9:00
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

R
am

p 
m

et
er

in
g 

(v
eh

/s
)

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

(a) Ramp metering (veh/s) for (PCTM) with
Np = 33, Nc = 8
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(b) Ramp metering (veh/s) for (LICTM) with
Np = 33, Nc = 8
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(c) Ramp metering (veh/s) for (BMM) with
Np = 33, Nc = 8
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(d) Ramp metering (veh/s) for (APCTM)
with Np = 33, Nc = 8
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(e) Ramp metering (veh/s) for (GNHBLP)
with Np = 33, Nc = 8

Figure 4.7: Ramp metering for PCTM, LICTM, BMM, APCTM and GNHBLP
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(a) Queue length (veh) for (PCTM) with
Np = 33, Nc = 8
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(b) Queue length (veh) for (LICTM) with
Np = 33, Nc = 8
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(c) Queue length (veh) for (BMM) with Np =
33, Nc = 8
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(d) Queue length (veh) for (APCTM) with
Np = 33, Nc = 8
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(e) Queue length (veh) for (GNHBLP) with
Np = 33, Nc = 8

Figure 4.8: Queue length for PCTM, LICTM, BMM, APCTM and GNHBLP
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Table 4.4: The CPU time (in Seconds) Required for Application (4.84) with Different Predic-
tive Horizon Np

Model
Np = 33 Np = 121 Np = 481

CPU time CPU time CPU time

PCTM 2.0598 35.8489 10938.5695

LICTM 0.2289 2.0629 22.2301

BMM 1.3830 20.7851 2686.0885

APCTM 0.8402 8.3765 767.0149

GNHBLP 0.2521 2.3057 22.4705

the total delay of APCTM is better than LICTM and GNHBLP because our

model APCTM does not have a flow holding-back problem. In Table 4.5, we

can also see that the total delay and ramp delay of APCTM are, respectively,

99.9965% and 99.8162% of those of PCTM. Compared to the case with no control,

our model can reduce the total delay by 55.6279%. Compared with the LICTM,

our approximate model reduces the total delay and ramp delay by 2.0455% and

2.0192%, respectively. Furthermore, the total delay and ramp delay of APCTM

are also better than those of GNHBLP. The total CPU time taken by APCTM

is 119.1033s. Since in the real application, the control sample time is 2 minutes,

it means that the CPU time taken by APCTM can meet the requirements of

online control applications. By comparison, we can find the total CPU time of

PCTM and BMM are, respectively, 2.6856 and 1.8263 times of that of APCTM.

Compared with LICTM and GNHBLP, APCTM requires more computational

time due to the involvement of nonlinearity. On the other hand, the total delay

and ramp delay are shorter when compared with those of LICTM and GNHBLP.

Table 4.5: Total delay, ramp delay and Total CPU time (in Seconds) Required for Application
(4.84) with Np = 33, Nc = 8

Model Total delay Ramp delay Total CPU time

No control 1074.6552h 0h 0

PCTM 476.8305h 276.6920h 345.6726

LICTM 486.8045h 282.4111h 51.3336

BMM 476.8338h 276.6953h 217.5161

APCTM 476.8471h 276.7086h 119.1033

GNHBLP 480.2179h 279.5597h 53.6784
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4.5.3 Example 2

A Scenario

The example is built based on the actual situation of the Freeway in the vicinity

of Shapingba, Chongqing in China. The section of freeway under consideration is

divided into I = 15 cells with J = 2 on-ramps. Cells i = 1, 2, . . . , 9 have 4 lanes

and cells i = 10, 11, . . . , 15 have 3 lanes. Fig. 4.9 shows the information of road

map. For this example, we use SUMO to simulate the traffic flow dynamic from

6:00 am to 10:00 am to obtain the required data. Mainline demand and on-ramp

demands are presented in Fig. 4.10. The values of parameters are listed in Table

4.6. In this example, we let Np = 17, i.e., 2 minutes and 40 seconds as predictive

horizon, and Nc = 6, i.e., 1 minute for control sample time, which can meet the

above requirements. Note that this example aims to validate that our proposed

method is also efficient for the simulated case.

Figure 4.9: Road graph

Table 4.6: Model parameters

Name of parameter Value Name of parameter Value

vi, i = 1, . . . , 15 22.2222m/s qmax,j, j = 1 60veh

wi, i = 1, 2, . . . , 9 6.0206m/s qmax,j, j = 2 70veh

wi, i = 10, 11, . . . , 15 11.6436m/s rmax,j, j = 1 1veh/s

Ci, i = 1, 2, . . . , 9 2.3685veh/s rmax,j, j = 2 0.55veh/s

Ci, i = 10, 11, . . . , 15 2.1916veh/s ∆t 10s

ρmax,i, i = 1, 2, . . . , 9 0.5veh/m ε 0.00000001

ρmax,i, i = 10, 11, . . . , 15 0.2868veh/m
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Figure 4.10: Road graph

B Experiment Results

We compare the sizes and CPU time (in seconds) of the five models (PCTM,

LICTM, BMM, APCTM, GNHBLP) for each iteration with Np = 17,Nc = 6 in

Table 4.7. Similar to Example 1, PCTM and APCTM have fewer numbers of

variables and constraints than those of LICTM, BMM and GNHBLP. APCTM

can be solved more efficiently than PCTM and BMM, but not better than LICTM

and GNHBLP.

Table 4.7: The Sizes and CPU Time (in Seconds) Required for Application (4.84) with Np =
17, Nc = 6

Model Nv Nc CPU time

PCTM 32 578 0.3502

LICTM 272 1564 0.0609

BMM 1200 2550 0.2686

APCTM 32 578 0.1736

GNHBLP 273 1565 0.0641

The total delay, ramp delay and total CPU time (in seconds) of the five mod-

els are summarized in Table 4.8. From Table 4.8, we clearly observe that the

total delay of APCTM is better than those of LICTM and GNHBLP, because

APCTM can solve the flow holding-back problem if the parameter ε is appro-

priately chosen. In addition, we can also observe that the total delay and ramp
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delay of our APCTM are, respectively, 99.9775% and 99.678% of those obtained

using PCTM. Compared with the case of no control, APCTM can reduce the

total delay by 52.4996%, but the ramp delay increases by 18.6882%. Compared

with LICTM and GNHBLP, APCTM reduces the total delay by 1.7654% and

0.872%, respectively. As for the total CPU time, PCTM and BMM are, respec-

tively, 2.0173 and 1.6762 times of that of APCTM, but LICTM and GNHBLP

take shorter times than that of APCTM. In this example, the total CPU time

taken by APCTM is 38.8343s. Since in the real application, the control sample

time is 1 minute, it means that the CPU time taken by APCTM can also meet

the requirements of online control applications.

Table 4.8: Total delay, ramp delay and Total CPU time (in Seconds) Required for Application
(4.84) with Np = 17, Nc = 6

Name of model Total delay Ramp delay Total CPU time

No control 520.7225h 64.0275h 0

PCTM 247.2868h 75.9776h 78.3409

LICTM 251.7902h 81.0918h 12.8565

BMM 247.2896h 75.9931h 65.0922

APCTM 247.3452h 76.2231h 38.8343

GNHBLP 249.5209h 77.4397h 13.8184

Based on the results obtained for Example 1 and Example 2, we can conclude

that the total delay and ramp delay of APCTM are better than those of LICTM

and GNHBLP. Furthermore, the CPU time of APCTM is at least 2 and 1.5

times of those of PCTM and BMM. Therefore, APCTM is efficient in terms of

computational time and the reduction of total delay and ramp delay.

4.6 Conclusion

This study proposed a novel approximate optimization model based on the CTM

to overcome the flow holding-back problem caused by unrealistic fundamental

diagrams if inequality convex relaxation is used directly. Theoretical analysis

shows that the solution obtained from our model converges to the solution of

the original CTM as ε approaches to zero. To obtain a feedback control law,

a customized MPC approach is designed under the framework of our proposed
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optimization problem. Experimental results show that our approach is better

than the existing methods.



CHAPTER 5

Freeway Ramp Metering and Variable

Speed Limit Control Based on Cell

Transmission Model

5.1 Introduction

In this Chapter, a novel RM and VSL control model is developed, in which the

influences of RM and VSL are incorporated into a macroscopic CTM as control

components. The problem of traffic control in highway network via RM and VS-

L is modeled as a discrete-time optimal control problem with constraints. Due

to non-smoothness of the ‘min’ operators, a smoothing method is introduced to

approximate this non-smooth model, and an efficient MPC solution technique

based on co-state system is used to solve this smooth approximate control prob-

lem. This approach is applicable to large-scale networks. Two practical examples

of freeway stretching under different control scenarios are utilized to validate

the performance of the developed model. The results show that the use of VSL

control measures, especially in combination with the coordinated ramp metering

control, can significantly improve the traffic flow efficiency and mitigate traffic

congestion.

The purpose of RM is mainly focused on alleviating the traffic congestion to

improve traffic operations by adjusting or restricting the inflows from on-ramps

to the freeway main road. Due to the limited storage space and equity considera-

tions, RM has been applied to multiple ramps (coordinated ramp metering) [114]

to achieve maximum efficiency. The coordinated RM strategies take advantage of

measurements across the entire network to control all metered ramps. Although

RM leads to ramp queue delays, the total traffic throughput increases because

the traffic congestion on mainstream of freeways is reduced, thereby reducing the

70



5.1 Introduction 71

total time spent and delays for most drivers. In the past, extensively studies have

been conducted on coordinated ramp metering, such as multivariable control s-

trategies [165] and optimal control strategies [120,159,166]. Previous studies have

shown that the influence of VSL on aggregate traffic flow behaviours on freeway

networks is similar to that of RM, especially when addressing potential active bot-

tlenecks. This strategy for controlling freeway traffic flow is to implement VSL on

appropriate variable message signs (VMS) based on prevailing traffic conditions.

Nowadays, there are mainly three kinds of VSL control methods in literatures,

and for a review of using VSL for the freeway traffic control for readers is referred

to [167].

• VSL for traffic safety: The aim of this kind of control methods is mainly

to improve the traffic safety by decreasing the velocity limit when vehicles

are approaching jammed roads or accidents. Relevant studies rooted in the

traffic safety [168, 169] have found that VSL control system can help to

improve the traffic safety in certain restricted scenarios. For instance, the

finding in [168] showed that the number of crashes was reduced by 30%.

• VSL for pollution reduction: These VSL control methods aim to design a

controller for improving the traffic efficiency while offering a tradeoff be-

tween the travel time, emissions, and fuel consumptions. However, the

results obtained in [170] indicated that the emission reduction achieved is

usually relatively low if the traffic efficiency did not decrease (2.5% for the

case study considered in [170]).

• VSL for traffic operation improvement: The purpose of these VSL control

methods is mainly to decrease the fluctuation of traffic behaviors by reg-

ulating or limiting the flow of arriving vehicles, so as to reduce, or avoid

the traffic congestion on the freeway, thereby mitigating or avoiding the

capacity drop and maximizing the out-going flow from activation bottle-

necks [162,166,171–173]. These studies of these control methods are main-

ly through simulation. Thus, their potentially significant improvement in

traffic operation efficiency depends on how the model is constructed. In

addition, the application of model-based optimal control approaches (such

as MPC [161,162]) can significantly reduce the total time spent (TTS), fuel

consumptions, and other performance indicators. However, the success is

highly dependent on the precision of the proposed model [162].

From the literature review given above, we see that many VSL and RM collab-

orative studies use the second order models [113] for the freeway network loading.
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The second order models have evident strengths due to the fact that they can

explicitly characterize speeds and show the very common phenomena, such as ca-

pacity drop. However, in comparison with the first order model (CTM) [66,67]),

the accuracy of these models relies highly on model parameters that need to be

customized. Up to now, the proposed optimal control models on the basis of

second order models have only produced local optimality [148] on account of the

nonconvexity and the complexity. Even though few models proposed based on

the first-order model can cooperatively implement VSL and RM, they have some

limitations [171]. For instance, a mode dependent VSL control strategy is de-

veloped in [171] based on CTM for freeway networks, but this model can only

resolve such problem without on-ramps. In this work, we propose a novel optimal

control model based on CTM, which considers the capacity drop. In this model,

VSL and RM are control variables that are simultaneously implemented.

The layout of this chapter is govern as follows: Section 5.2 formulates the traf-

fic dynamics based on CTM by incorporating ramp metering as well as variable

speed limits. In Section 5.3, a novel smooth model is proposed by approximating

the ‘min’ operators of the model designed in Section 5.2. A customized solu-

tion technique is designed in Section 5.4. Numerical Application is conducted in

Section 5.5. Finally, Section 5.6 draws some conclusions.

5.2 Modeling Traffic Flow Dynamics

5.2.1 The application framework

We take into account freeway traffic flows with a sufficient proportion of Vehicle

Automation and Communication System (VACS)-equipped vehicles. Sufficien-

t proportion implies that the considered decision variables in the optimization

model can be actually carried out by obtaining information from real-time traffic

conditions and installing appropriate actuators. This assumption is reasonable

and can be currently satisfied due to the fact that VACS-equipped vehicles can

obtain traffic information from different proprioceptive sensing technologies inte-

grated within the vehicle such as cameras, sonar, navigation, radar, and lidar.

Ramp metering (RM): Controls are designed to regulate inflows from on-

ramps to the freeway main road and have been used on a lot of freeways (see

e.g. [174]). Because they can be implemented directly on on-ramps, any specific

in-vehicle equipment does not necessarily be required to perform. The calculated

inflows can be applied immediately by traffic signals.
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Variable Speed Limits (VSL): Controls implement VSL on the appropriate

variable message signs (VMS) on the basis of current traffic states. In the past

decades, many countries have implemented these control methods (see e.g. [175]).

The work in [166] has been studied and extended in many existing literatures.

The work assumes that the exiting flows are specified by a central Decision Maker

(DM) by computing the solution of the optimization problem for each segment-

lane. Hence, all equipped vehicles traveling on the segment-lane will accept and

apply their respective speeds or speed limits. This is also sufficient to impose a

speed limit on unequipped vehicles based on the assumption that the proportion

of equipped vehicles is sufficient.

Since the main purpose is to reduce and even eliminate traffic jams, these

control strategies are considered as the decision variables in the optimal control

model. To solve the considered problem for large freeway networks, it is ap-

proximated as a smooth discrete-time optimal control problem with constraints,

described by a global cost function and constraints.

5.2.2 The CTM Model for the Problem

We write the conservation equation of flow and density relationship for each cell

as follows:

ρi,t+1 = ρi,t +
∆t

∆xi
(fi−1,t − fi,t + ri,t − si,t). (5.1)

where ρi,t and fi,t denote the density and flow at cell i and time step t, respec-

tively; ri,t denotes the ramp metering at on-ramps i and time step t; and si,t

representees the out-going flow from off-ramps i at time step t; ∆t refers to the

size of simulation time step and ∆xi is the length of cell i. Eq. (5.1) describes the

evolution of density ρi,t and is directly derived from the CTM model proposed

in [66,67].

From the triangular fundamental diagram (FD) displayed in Fig. 5.1, the out-

flow from the cell i with a given density during the time step t can be controlled.

In particular, Fig. 5.1 shows the demand function, which controls the outgoing

flow according to the current density, and the supply function, which controls

the inflow that relies also on the current density. It is noted that, as elaborated

in [80], the displayed FD demand function offers the possibility to describe the

capacity drop phenomenon when the upstream density exceeds the critical densi-

ty ρcr, i.e., ρ > ρcr. Moreover, if the downstream cell has an on-ramp, the supply

function needs to provide partial space to process the vehicles entering from the
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Figure 5.1: Fundamental diagram with capacity drop

on-ramp. Without control, the actual outflow is equal to the minimum between

the demand part and supply part. In case of adopting the optimal control strat-

egy, the outflows can be controlled by implementing VSL for travel vehicles or

employing RM on metered on-ramps. Hence, by the model proposed in [80], the

outflow at cell i during time step (t, t+ 1]∆t is formulated as follows:

fi,t = min{fDi,t, fSi+1,t − θri+1,t}, (5.2)

where the demand part and the supply part are:

fDi,t = min

{
vf,iρi,t,

[
Ci + αCi(

ρi,t − ρcr,i
ρcr,i − ρmax,i

)

]}
, (5.3)

and

fSi+1,t = min{Ci+1, wi+1(ρmax,i+1 − ρi+1,t)}, (5.4)

where θ > 0 describes the size of the space that the downstream cell i+1 provides

to hold vehicles going from the on-ramp i+ 1; α > 0 shows the level of capacity

drop; vf,i representees the free flow velocity at cell i; Ci denotes the capacity of

cell i; ρmax,i refers to the jam density of cell i; wi+1 refers to the speed of backward

wave of cell i+1. Here, wi = Ci

ρmax,i−ρcr,i =
vf,iρcr,i

ρmax,i−ρcr,i , and α and θ are pre-defined

parameters, which can be determined according to obtained data. Equation (5.3)

is equivalent to that in the CTM in [66, 67], without taking capacity drop into

consideration. The min(.) operators in the constraints (5.2)-(5.4) ensure that the
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traffic flow follows the fundamental diagram of the CTM by controlling the flow of

vehicles between adjacent cells to be exactly equal to one of the terms contained

in the min(.) operators [79].

5.2.3 Incorporating the RM impact

In this section, the impact of RM is incorporated into the developed model. Due

to the uncertainty of external demand flows to each on-ramp, each on-ramp i

accepts an uncontrollable demand flow di,t. Moreover, due to the limited space

of the mainstreams of the freeway, each on-ramp outflow ri,t is controlled by the

corresponding ramp metering measures, which may give rise to the production of

ramp queue qi,t. Therefore, the evolution on the on-ramps is expressed as follows:

qi,t+1 = qi,t + ∆t(di,t − ri,t). (5.5)

Furthermore, due to the limited storage capacities on freeway networks and on-

ramps and non-negativity of the decision variables, they need to be imposed

as hard constraints in the optimization problem. More specifically, the hard

constraints on the on-ramp queues qi,t and the ramp metering actions ri,t are in

the form of lower and upper bounds as given below:

0 ≤ qi,t ≤ qmax,i, (5.6)

and

0 ≤ ri,t ≤ rmax,i. (5.7)

Note that Constraint (5.6) specifies the limited capacities on the on-ramps. It

is important in practical situations where the on-ramp queues over-spill onto the

freeway main road causing substantial congestions and delays. Under this con-

straint, the model can capture the potential excessive overflow, and the obtained

optimal control strategies can resolve this problem.

5.2.4 Incorporating the VSL Impact

In this section, we derive a simple linear model to reflect the influence of VSL on

the traffic flow.

To begin with, special VSL values are reflected in the cell-specific VSL rates bt

during (t, t+ 1]∆t. The VSL rates are ideal decision variables taking values from
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the admissible value range bt ∈ [bmin, 1], where bmin ∈ (0, 1) is a lower feasible

bound for VSL rates. Based on the simulation data obtained from simulation as

detailed in section 5.5, we can obtain the relationship between the fundamental

diagrams and different VSL rates, see Fig. 5.2. From Fig. 5.2, we can observe

that implementing VSL (for any VSL values) does not increase capacity, which

is consistent with the result obtained in [166]. Furthermore, using a lower VSL

value may lead to capacity drop, resulting in a decrease in traffic efficiency.

(a) Fundamental diagram
for free flow speed=120 (k-
m/h)

(b) Fundamental diagram
for free flow speed=110 (k-
m/h)

(c) Fundamental diagram
for free flow speed=100 (k-
m/h)

(d) Fundamental diagram
for free flow speed=90 (k-
m/h)

(e) Fundamental diagram
for free flow speed=80 (k-
m/h)

(f) Fundamental diagram
for free flow speed=70 (k-
m/h)
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Figure 5.2: Fundamental diagrams for different VSL rates

By the assumption of VACS-equipped vehicles, drivers can control vehicle’s

speeds based on the obtained information of current traffic states, for instance,

the density and mean speed, thereby reducing time spent to downstream. Due

to the limited data available, we can only obtain partial fundamental diagrams
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that are characterized for special VSL values, such as bt = 1, 0.9, 0.8, . . . , bmin.

This is too limited to find any VSL value to improve traffic operation efficiency.

In order to obtain the corresponding free flow velocity and critical density of any

VSL rate bt, we want to propose a model to express the relationship.

Now, we apply the characterized VSL rates to the CTM model (5.1)-(5.4) as

the control variables. Based on the work of [166, 175, 176], we use the following

two linear functions to denote the relation of bt in (5.3)-(5.4) by introducing one

auxiliary variable A as given below:

vf,i[bi,t] = vf,ibi,t, (5.8)

and

ρcr,i[bi,t] = ρcr,i(1 + Ai(1− bi,t)), (5.9)

where vf,i and ρcr,i are the free flow velocity and critical density for the specific

non-VSL values, and Ai is a constant parameter estimated based on obtained

data. In this study, the least squares method is utilize to obtain the Ai.

As shown in (5.8), bi,t = 1 if VSL is not employed or is equal to VSL-induced

vf,i[bi,t] divided by the free flow speed without VSL. Therefore, bi,t = 1, no VSL is

applied; otherwise bi,t < 1. From Equation (5.9), we see that Ai > 0 and that it

is a linear increasing function with reference to the decrease of bi,t starting from

the usual non-VSL value for bi,t = 1.

Since the VSL rate bt should not be too large nor too small when taking into

consideration of the traffic safety and practical requirements, constraints in the

form of upper and lower bounds are imposed on the VSL rate bt, i.e.,

bmin,i ≤ bi,t ≤ 1. (5.10)

Note that in our model, we can implement any VSL values to control the

outflow of each cell to reduce traffic congestion. This model is different from that

in [171], where a mode dependent VSL control action based on CTM is proposed

for freeway networks without on-ramps. Compared with the model in [172], our

proposed model does not require to customize many parameters, and due to its

simplicity, it is applicable to much larger networks.
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5.2.5 The Integrated Optimal Control Problem

With the preparations given above, we introduce a freeway optimization model

on the basis of Model Predictive Control (MPC), which takes into account of VSL

and RM, as shown below:

(DMP) min
r,b

Z =

Np∑
t=0

I∑
i=1

(ρi,t∆xi∆t+ qi,t∆t) + λr

Np∑
t=1

I∑
i=1

(ri,t − ri,t−1)2

+λbt

Np∑
t=1

I∑
i=1

(bi,t − bi,t−1)2 + λbs

Np∑
t=0

I∑
i=2

(bi,t − bi−1,t)
2,

(5.11)

subject to (5.1), (5.2), (5.3), (5.4), (5.5), (5.6), (5.7), (5.8), (5.9) and (5.10). Np

is the predictive horizon of MPC and I is the number of cells. The objective

function given by (5.11) consists of the weighted sum of four different terms,

where the first term is linear and the last three terms are quadratic.

The first linear part denotes the Total Time Spent (TTS) by taking into

account both the mainstream travel time of freeways as well as the on-ramps

queuing time. It is the most important indicator for the evaluation of the traffic

flow efficiency. The quadratic terms are penalty terms and are designed to punish

the variation of decision variables within two consecutive time steps or adjacent

cells. They are used to reduce, or even restrain, the temporal and spatial fluc-

tuations of the control variables, which contribute little to the result. The first

penalty part (weighted by λr) is associated to the time-variations of the on-ramp

flows; and the last two terms (weighted by λbt and λbs) have purposes of penal-

ising, respectively, the time and space variations of VSL rates bi,t. Parameters

λr, λbt, λbs are given constants, and they are set as λr = λbt = λbs = 0.00001.

It is challengeable to resolve Problem DMP directly due to the appearing of

the min(.) operators in Constraints (5.2), (5.3) and (5.4). Traditionally, there

are two methods (Big-M method and inequality relaxation) to solve it. The

min(.) operators can be equivalently denoted as linear constraints using the big-

M technique [78]. This approach requires a lot of auxiliary binary variables to

be introduced into the problem, thereby increasing the complexity of the prob-

lem. Alternatively, one constraint involving the min(.) operator can be relaxed

into several linear inequality constraints without inserting any auxiliary binary

variables. These relaxed constraints can guarantee the conservation of flow. How-

ever, they do not ensure that the minimum values of the right-hand-side of these

constraints can be taken by the vehicle flow between neighbouring cells. As a re-
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sult, the flow may be less than the minimum and the flow holding-back problem

may occur. Even though this method decreases the complexity of the problem,

the vehicle flow does not satisfy the fundamental diagram of CTM, and thus the

vehicle flow may be impractical [78]. To efficiently handle Problem DMP for

large scale networks, we will develop a novel smooth model and a more efficient

solution technique later.

5.3 Approximation Approach and Model Con-

struction

5.3.1 Smooth approximation

In Section 5.2, we model traffic flow dynamics with VSL and RM being taken

into consideration based on CTM. Due to computational difficulties, we propose

an approximate smoothing model in this section.

Let V = {c = [r1, r2, . . . , rI , b1, b2, . . . , bI ] ∈ R2I : 0 ≤ ri ≤ rmax,i, bmin,i ≤ bi ≤
1,∀i = 1, . . . , I}, where rmax,i and bmin,i are given constants. Let c be a control

sequence {ct : t = 1, . . . ,Np − 1} in V . Then, c is called an admissible control

and U represents the class of all such admissible controls. For a control c in U ,

if it satisfies constraints (5.6), (5.7) and (5.10), then c is called a feasible control

sequence. Based on Equations (5.3), (5.4), (5.8) and (5.9), for any i and t, we

can denote fDi,t and fSi+1,t equivalently as follows:

fDi,t

=
1

2
[vf,i[bi,t]ρi,t + Ci[bi,t] + αCi[bi,t](

ρi,t − ρcr,i[bi,t]
ρcr,i[bi,t]− ρmax,i

)

− |vf,i[bi,t]ρi,t − Ci[bi,t]− αCi[bi,t](
ρi,t − ρcr,i[bi,t]
ρcr,i[bi,t]− ρmax,i

)|],

and

fSi+1,t =
1

2
[wi+1[bi+1,t](ρmax,i+1 − ρi+1,t) + Ci+1[bi+1,t]

− |wi+1[bi+1,t](ρmax,i+1 − ρi+1,t)− Ci+1[bi+1,t]|].

Let ε > 0 be a given small number. fDεi,t and fSεi+1,t are used to approximate fDi,t



5.3 Approximation Approach and Model Construction 80

and fSi+1,t respectively as follows:

fDεi,t =
1

2
[vf,i[bi,t]ρi,t + Ci[bi,t] + αCi[bi,t](

ρi,t − ρcr,i[bi,t]
ρcr,i[bi,t]− ρmax,i

)−√
(vf,i[bi,t]ρi,t − Ci[bi,t]− αCi[bi,t](

ρi,t − ρcr,i[bi,t]
ρcr,i[bi,t]− ρmax,i

))2 +
ε2

4
],(5.12)

and

fSεi+1,t =
1

2
[wi+1[bi+1,t](ρmax,i+1 − ρi+1,t) + Ci+1[bi+1,t]

−
√

(wi+1[bi+1,t](ρmax,i+1 − ρi+1,t)− Ci+1[bi+1,t])2 +
ε2

4
]. (5.13)

Note that the functions fDεi,t and fSεi+1,t are smooth and differentiable, and keep the

properties of fDi,t and fSi+1,t (including the changing trends). To characterize the

precision of the approximative model, we need to estimate the bounds of fDi,t−fDεi,t

and fSi+1,t − fSεi+1,t. By the definitions of fDεi,t and fSεi+1,t, it is easy to obtain that

0 ≤ fDi,t − fDεi,t ≤
ε

4
. (5.14)

Inequality (5.14) gives an estimate on the bound between the primal demand

functions fDi,t and the approximate demand function fDεi,t . Clearly, the difference

can be controlled arbitrarily small by reducing the value of the parameter ε.

Similarly, we have

0 ≤ fSi+1,t − fSεi+1,t ≤
ε

4
. (5.15)

Next, we introduce the following auxiliary variable f εεi,t:

f εεi,t =
1

2
(fDεi,t + fSεi+1,t − θri+1,t − |fDεi,t − fSεi+1,t + θri+1,t|). (5.16)

Using the same approximating method, we obtain

f εi,t =
1

2
[fDεi,t + fSεi+1,t − θri+1,t −

√
(fDεi,t − fSεi+1,t + θri+1,t)2 +

ε2

4
]. (5.17)

Based on equality (5.16) and equality (5.17), we have

0 ≤ f εεi,t − f εi,t ≤
ε

4
. (5.18)
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Note that we can control the parameter ε to adjust the approximation accuracy

of inequalities (5.14), (5.15) and (5.18). As ε → 0, the difference between the

primal variables and the approximating variables will converge to zero. Based on

the above preparatory work, we can formulate our approximation model in the

next section.

5.3.2 Proposed approximation model

After approximating the ’min’ operators, we can obtain the corresponding optimal

control model. Hence, the new optimization model can be described as follows:

(DMPε) min
r,b

Z =

Np∑
t=0

I∑
i=1

(ρεi,t∆xi∆t+ qi,t∆t) + λr

Np∑
t=1

I∑
i=1

(ri,t − ri,t−1)2

+λbt

Np∑
t=1

I∑
i=1

(bi,t − bi,t−1)2 + λbs

Np∑
t=0

I∑
i=2

(bi,t − bi−1,t)
2,

subject to

ρεi,t+1 = ρεi,t +
∆t

∆xi
× (f εi−1,t − f εi,t + ri,t − si,t),∀i, t, (5.19)

0 ≤ ρεi,t ≤ ρmax,i,∀i, t, (5.20)

and (5.5), (5.6), (5.7), (5.8), (5.9), (5.10) and (5.17). Note that Problem DMPε is

a discrete and smooth optimal control problem, and it can be resolved effectively

utilizing gradient decent algorithms, for example, SQP [158].

Remark 1. Solutions of Problem DMPε will converge to that of Problem

DMP as ε → 0. The proof can be divided into three parts. The first part

is to compute the lower and upper bounds of fi,t − f εi,t followed by the proof

limε→0 fi,t − f εi,t = 0. The second part is to prove that limε→0 ρ
∗ε
i,t = ρi,t and

limε→0 ρ
ε
i,t = ρ∗i,t by the mathematical induction, where {ρ∗εi,t} and {ρεi,t} denotes

the state variables of Problem DMPε, and ρi,t and ρ∗i,t denotes state variables

of Problem DMP. The superscript ∗ indicates that the variable concerned is

optimal. Finally, we use the squeeze theorem to prove the solution convergence.

The detail of proof is similar to that given in [177,178] and hence is omitted here.

5.4 Customized Solution Technique

In order to resolve Problem DMPε, we need to calculate the gradients of the

objective and the constraint functions with respect to the control variables. In
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this section, the required gradient formulas are derived.

5.4.1 Gradients of objective and constraint functions

Let zt = {ρε1,t, ρε2,t, . . . , ρεI,t, q1,t, q2,t, . . . , qI,t}> ∈ R2I denote the state variable and

ct = {r1,t, r2,t . . . , rI,t, b1,t, b2,t, . . . , bI,t}> ∈ R2I be the decision variable. Then, we

reformulate the state equations of (5.19) and (5.5) in the form given below:

zt+1 =



ρε1,t

ρε2,t

...

ρεI,t

q1,t

q2,t

...

qI,t



+



∆t
∆x1
· d0,t

∆t
∆x2
· f ε1,t
...

∆t
∆xI
· f εI−1,t

0

0

...

0



−



∆t
∆x1
· f ε1,t

∆t
∆x2
· f ε2,t
...

∆t
∆xI
· f εI,t

0

0

...

0



+



∆t
∆x1
· c1,t

∆t
∆x2
· c2,t

...

∆t
∆xI
· cI,t

−∆t · c1,t

−∆t · c2,t

...

−∆t · cI,t



+



− ∆t
∆x1
· s1,t

− ∆t
∆x2
· s2,t

...

− ∆t
∆xI
· sI,t

∆t · d1,t

∆t · d2,t

...

∆t · dI,t



, (5.21)

where d0,t refers to the demand from the upstream of cell 1 at the time step t and

di,t denotes the demand from the on-ramp i and the same time step t and they

are given. Let F(t, zt, ct) be the right hand side of the difference equation (5.21).

It includes the state variable, the decision variable and the time. Let the initial
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condition be

z0 = [ρ1,0, . . . , ρI,0, q1,0, . . . , qI,0]> ∈ R2I . (5.22)

Let

Φ0(Np, zNp, cNp) =
I∑
i=1

(ρεi,Np∆t∆xi + qi,Np∆t) + λr

I∑
i=1

(ci,Np − ci,Np−1)2

+λbt

2I∑
i=1+I

(ci,Np − ci,Np−1)2 + λbs

2I∑
i=2+I

(ci,Np − ci−1,Np)2,

L0(t, zt, ct) =
I∑
i=1

(ρεi,t∆t∆xi + qi,t∆t) + λr

I∑
i=1

(ci,t − ci,t−1)2

+λbt

2I∑
i=1+I

(ci,t − ci,t−1)2 + λbs

2I∑
i=2+I

(ci,t − ci−1,t)
2,

t = 1, . . . ,Np− 1,

L0(0, z0, c0) =
I∑
i=1

(ρεi,0∆t∆xi + qi,0∆t) + λbs

2I∑
i=2+I

(ci,0 − ci−1,0)2.

Then,

h0(c) = Φ0(Np, zNp, cNp) +

Np−1∑
t=0

L0(t, zt, ct), (5.23)

where h0(c) denotes the objective function. Similarly, the constraints (5.20) and

(5.6) can be rewritten as below:

hk(c) = −ρεi,t, 1 ≤ k ≤ I(Np + 1), i = 1 . . . , I, t = 0, . . . ,Np,

hk(c) = ρεi,t − ρmax,i, I(Np + 1) + 1 ≤ k ≤ 2I(Np + 1),

i = 1 . . . , I, t = 0, . . . ,Np,

hk(c) = −qi,t, 2I(Np + 1) + 1 ≤ k ≤ 3I(Np + 1),

i = 1 . . . , I, t = 0, . . . ,Np,

hk(c) = qi,t − qmax,i, 3I(Np + 1) + 1 ≤ k ≤ 4I(Np + 1),

i = 1 . . . , I, t = 0, . . . ,Np.
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Note that these constraint functions are in the same standard form as the objec-

tive function. Thus, a unified method can be used to calculate the gradients of

the objective and constraint functions. Define

c = [(c0)>, (c1)>, . . . , (cNp−1)>]>.

Let the decision vector c be perturbed by ηĉ, where η > 0 denotes a real number

and ĉ refers to a random but fixed disturbance of c given by

ĉ = [(ĉ0)>, (ĉ1)>, . . . , (ĉNp−1)>]>.

Then, we have

c(η) = c+ ηĉ = [(c0(η))>, (c1(η))>, . . . , (cNp−1(η))>]>,

where

ct(η) = ct + ηĉt, t = 0, . . . ,Np− 1.

Therefore, the state of the system will be disturbed, and the objective and con-

straint functions will also be disturbed.

Let

zt(η) = zt(c(η)), t = 1, . . . ,Np. (5.24)

Then,

zt+1(η) = F(t, zt(η), ct(η)). (5.25)

The variation of the state for t = 0, 1, . . . ,Np− 1 is:

∆zt+1 =
dzt+1(η)

dη
|η=0 =

∂F(t, zt, ct)

∂zt
∆zt +

∂F(t, zt, ct)

∂ct
ĉt (5.26)

with

∆z0 = 0. (5.27)
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For the k−th function (k = 0 refers to the objective function), we get

∂hk(c)

∂c
ĉ = lim

η→0

hk(c(η))− hk(c)
η

≡ dhk(c(η))

dη
|η=0

=

Np−1∑
t=0

[
∂Lk(t, zt, ct)

∂zt
∆zt +

∂Lk(t, zt, ct)

∂ct
ĉt] +

∂Φk(zNp)

∂zNp

∆zNp.

(5.28)

For each k = 0, 1, . . . , 4I(Np + 1), define the Hamiltonian

Hk(t, zt, ct, λ
k
t+1) = Lk(t, zt, ct) + (λkt+1)>F(t, zt, ct),

where λkt ∈ R2I , t = Np,Np − 1, . . . , 1, represents the co-state sequence for the

k−th standard constraint. Then, by (5.28), we get that

∂hk(c)

∂c
ĉ =

∂Φk(zNp)

∂zNp

∆zNp +

Np−1∑
t=0

{
∂Hk(t, zt, ct, λ

k
t+1)

∂zt
∆zt

−(λkt+1)>
∂F(t, zt, ct)

∂zt
∆zt +

∂Hk(t, zt, ct, λ
k
t+1)

∂ct
ĉt

−(λkt+1)>
∂F(t, zt, ct)

∂ct
ĉt}.

By (5.26) and (5.27), it holds

∆zt+1 =
∂F(t, zt, ct)

∂zt
∆zt +

∂F(t, zt, ct)

∂ct
ĉt. (5.29)

Using the following system of difference equations, the co-state λkt can be deter-

mined:

(λkt )
> =

∂Hk(t, zt, ct, λ
k
t+1)

∂zt
, t = Np− 1,Np− 2, . . . , 1, (5.30)

with

(λkNp)> =
∂Φk(zNp)

∂zNp

. (5.31)

By virtue of (5.29), (5.30), (5.31), (5.24), (5.25) and the arbitrariness of ĉ, the

following gradient formula follows readily:

∂hk(c)

∂c
= [

∂Hk(0, z0, c0, λ
k
1)

∂c0

, . . . ,
∂Hk(Np− 1, zNp−1, cNp−1, λ

k
Np)

∂cNp−1

]. (5.32)
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Now the gradient calculation is summarized as the following theorem.

Theorem 5.1. Taking Problem (DMPε) into account, for each k = 0, 1, . . . , 4I(Np

+1), the gradient of hk(c) with respect to the control variable c is denoted by

(5.32), where c = [(c0)>, (c1)>, . . . , (cNp−1)>]>.

5.4.2 Algorithm

Problem DMPε is in essence a nonlinear mathematical optimization problem

with control vector c. Many approaches can be used to solve it, such as SQP.

To apply these optimization algorithms, for each c ∈ U , the values and corre-

sponding gradients of objective function h0(c) and constraint functions hk(c),

k = 0, 1, . . . , 4I(Np + 1), are required. Detailed computation is shown in Algo-

rithm 2.

Algorithm 2 : Algorithm to Calculate Gradients

1: Initialization: For a given c ∈ U and initial condition (5.22).
2: Output: Calculate the solution zt+1(c), t = 0, 1, . . . ,Np− 1 of system (5.21)

forward in time from t = 0 to t = Np− 1.
3: for k = 0 to 4I(Np + 1) do
4: Compute Φk(Np, zNp, cNp).
5: for t = 0 to Np− 1 do
6: Compute Lk(t, zt, ct).
7: end for
8: Calculate

∑Np−1
t=0 Lk(t, zt, ct).

9: Compute hk(c) = Φk(Np, zNp, cNp) +
∑Np−1

t=0 Lk(t, zt, ct).
10: for t = Np to 1 do
11: Resolve the co-state system (5.30) and (5.31) backward in time. Let

λkt (c) denote the solution.
12: end for
13: Compute the gradient of hk(c) based on (5.32).
14: end for

In Algorithm 2, Step 2 is to calculate the value of zt(c) with respect to each

given c. Then, hk(c) can be obtained in Step 9. Furthermore, the co-state system,

(5.30) and (5.31), is computed backward in time from t = Np to t = 1 to acquire

λkt (c). Finally, Step 13 obtains the corresponding gradients by (5.32).

5.5 Numerical Application

In this section, the proposed approximation model is verified in the microscopic

simulated environment SUMO (Simulation of Urban Mobility) for various de-
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mands scenarios. We compare the obtained results with baselines.

5.5.1 Case one

A The application framework

For this case, we select one road network, which is in the Perth vicinity and is

one of the most congested freeway roads in the city of Perth, Australia. The road

layout is shown in Figure 5.3. The extracted section has a total length of around

7 km with 5 on-ramps and 2 off-ramps, and is divided into 14 cells with each cell

500 m. For cells i = 3, 4, 5, 11, 12, a ramp metering control is utilize to limit the

in-flow of vehicles. Off-ramps are located at cell i = 2, 10.

Figure 5.3: Road layout
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Figure 5.4: Mainline demand and on-ramp demands

The required data is collected through the simulation with no control on var-

ious scenarios. We randomly generate 100 scenarios with different traffic demand

flows. The duration of each simulation is set as 4 hours (i.e. 14400 seconds). The

simulation period is divided into peak and off-peak hours. For peak hours, the
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in-flows for the main road and the on-ramps are generated stochastically within

the range of [3000, 6000] and [200, 1000], respectively. For off-peak hours, the

total in-flows for the main road and the on-ramps would vary within the range

of [1000, 3000] and [100, 400], respectively. 90 scenarios are utilized for obtaining

the fundamental diagrams and parameter A. We randomly choose a scenario to

be the test case in the last 10 scenarios. Corresponding demand flows of main

road and on-ramps are shown in Fig. 5.4. For the out-going flow si,t leaving from

off-ramps, let si,t = 0.1fi,t. We use the least square method to compute model

parameters and summarize them in Table 5.1.

Table 5.1: Model parameters

Name of parameter Value Name of parameter Value

Ai, i = 1, . . . , 14 1.04 vi, i = 1, . . . , 14 27.778m/s

wi, i = 1, . . . , 14 5.2m/s ∆xi, i = 1, . . . , 14 500m

rmax,j, j = 1, . . . , 5 0.5veh/s qmax,i, i = 1, . . . , 5 60veh

Ci, i = 1, . . . , 12 1.708veh/s Ci, i = 13, 14 2.278veh/s

ρmax,i, i = 1, . . . , 12 0.52veh/m ρmax,i, i = 13, 14 0.39veh/m

ρcr,i, i = 1, . . . , 12 0.062veh/m ρcr,i, i = 13, 14 0.082veh/m

α 0.34 θ 0.2

∆t 15s I 14

Np 17 Nc 8

B Results and Analysis

The evolutions of density obtained from simulation, using our model with no

control, only RM, only VSL, and both VSL and RM are in Fig. 5.5, respectively.

Note that there is a difference between the simulation and our model with no

control. This reason is that the proposed model highly dependent on the pa-

rameters obtained and the some assumptions. Due to limited data, the obtained

model based on these parameters cannot fully reproduce the simulated model.

By observing, we find all models can show the change of traffic condition such

as free flow state and congestion state. Compared the results, our model with

both VSL and RM control outperforms those with no control or with only RM

or VSL.

The corresponding results of the total time spent and ramp delay are shown
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(a) Density (veh/m) for
simulation
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(b) Density (veh/m) for
no control
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(c) Density (veh/m) for
RM
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(d) Density (veh/m) for
VSL
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(e) Density (veh/m) for
RM and VSL

Figure 5.5: Traffic density for simulation, our model with no control, only RM, only VSL and
both VSL and RM

in Table 5.2. Obviously, our model only with RM, VSL and RM and VSL can op-

timize the time spent and improve the traffic jams. By comparison, collaborative

implementation of our approximate model of RM and VSL is better than other

models. Compared with results obtained from simulation with no control, our ap-

proximate model with both RM and VSL being implemented can reduce 29.36%

and 95.265% of the total time spent and ramp delay, respectively. Moreover, we

find that holding more vehicles on on-ramps to keep main road decongested might

not improve the total performance. This result is consistent with case one.

5.5.2 Case two

A The application framework

In this application, we carry out a practical study using OpenStreeMap to extract

the road layout and simulating in the SUMO simulation environment, refer to Fig.

5.6 for the road layout. The selected road is in the Shapingba vicinity, which is

one of the most congested freeway roads in the city of Chongqing, China. The

extracted section has a total length of around 24 km with 6 on-ramps and 4 off-

ramps, and is divided into 30 cells with each cell 800 m, where cells i = 5, . . . , 21,

have two lanes and others have three lanes. For each ramp i = 4, 16, 17, 19, 22, 25,
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Table 5.2: Total time spent and ramp delay with Np = 17, Nc = 8

Name of mod-
el

Total time
spent (h)

Ramp de-
lay (h)

Percentage
of reduc-
tion for
total time
spent

Percentage
of reduc-
tion for
ramp delay

Simulation 1255.655h 434.3h 0% 0%

No control 1251.744h 0h 0.311% 100%

Only RM 994.756h 144.673h 20.778% 66.689%

Only VSL 1000.716h 0h 20.303% 100%

VSL and RM 886.999h 20.562h 29.36% 95.265%

there is a ramp metering to control the in-flow of vehicles. Off-ramps are located

at cell i = 4, 15, 21, 24.

The required data for the proposed approximation model is sampled through

the simulation with no control on varied scenarios. We generate 60 scenarios

with different traffic flows. The duration of each simulation is set as 4 hours (i.e.

14400 seconds). The simulation period is divided into peak and off-peak hours.

For off-peak hours, the total in-flows for the main road and the on-ramps are

generated randomly within the range of [1000, 2000] and [100, 400], respectively.

For peak hours, the in-flows for the main road and the on-ramps would vary

within the range of [3000, 5000] and [200, 800], respectively. 50 scenarios are used

for obtaining the fundamental diagrams and parameter A. We stochastically

choose a scenario to be the test case in the last 10 scenarios. Related demand

flows of main road and on-ramps are presented in Fig. 5.7. For the out-going flow

si,t leaving from off-ramps, we let si,t = 0.1fi,t. We summarize model parameters

in Table 5.3.

B Results and Analysis

Fig. 5.8 presents the evolution of density obtained from the simulation, using our

model with no control, only RM, only VSL, and both VSL and RM, respectively.

From Figs. 5.8(a)-5.8(e), it is obvious that all models can show the change of

traffic condition such as free flow state and congestion state. By observing, we

find that the models with only RM, only VSL and both VSL and RM can decrease

the density especially for congested conditions, and hence mitigate traffic jams.

Obviously, our model with both VSL and RM control outperforms those with no
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Table 5.3: Model parameters

Name of parameter Value Name of parameter Value

Ai, i = 1, . . . , 30 1.09 vi, i = 1, . . . , 30 33.333m/s

wi, i = 1, . . . , 30 6.414m/s ∆xi, i = 1, . . . , 30 800m

Ci, i = 5, . . . , 21 1.42veh/s Ci, i =
1, 2, 3, 4, 22, . . . , 30

2.13veh/s

rmax,j, j = 1, . . . , 6 0.5veh/s qmax,i, i = 1, . . . , 6 60veh

ρmax,i, i = 5, . . . , 21 0.264veh/m ρmax,i, i =
1, 2, 3, 4, 22, . . . , 30

0.396veh/m

ρcr,i, i = 5, . . . , 21 0.043veh/m ρcr,i, i =
1, 2, 3, 4, 22, . . . , 30

0.064veh/m

α 0.5 θ 0.1

Np 36 Nc 6

∆t 20s I 30

Figure 5.6: Road layout
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Figure 5.7: Mainline demand and on-ramp demands

control or with only RM or VSL.

Fig. 5.9 presents the evolution of flow obtained from simulation, using our

model with no control, only RM, only VSL, and both RM and VSL, respectively.

Observing Figs. 5.9(a)-5.9(e), we conclude that all models can show the change

trend of traffic flow. Moreover, our proposed model with only RM, only VSL, and

both RM and VSL can overcome the flow holding-back problem, which implies

that our proposed approximated model is efficient. In comparison with models

for only RM, only VSL, and both RM and VSL, our model with both RM and

VSL has the best performance. This is consistent with the results in Fig. 5.8.

The evolution of queue length and ramp metering for our model with only

RM, and with both RM and VSL are shown in Figs. 5.10 and 5.11. From Figs.

5.10(a)-5.10(b), we find that the queue length of our model is maximum in peak

hours and is minimum in the off-peak hours, which is reasonable. In our model,

the mainstream of the freeway will be congested when traffic flow exceeds the

capacity, and thus ramps will meter the inflows from on-ramps to the main road

of freeways to mitigate traffic congestion on freeway mainstream. Less vehicles

entering the main road may produce the queue vehicles waiting on on-ramps.

This evolution continues until the ramp queue length reaches its maximum due

to limited capacity space on on-ramps, and then keep maximum ramp queue

length until the density on main road reduces. This trend will last around two

hours, namely peak hours, which is consistent with practical situation.

Fig. 5.12 shows the VSL rate and the free flow speed for our model involving

only VSL and our model involving both RM and VSL. By observing, we find

that the models with only VSL and both RM and VSL show a similar trend,

which is that VSL is implemented in peak periods. This is reasonable that the
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(a) Density (veh/m) for simulation
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(b) Density (veh/m) for no control
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(c) Density (veh/m) for RM
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(d) Density (veh/m) for VSL
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(e) Density (veh/m) for RM and VSL

Figure 5.8: Traffic density for simulation, our model with no control, only RM, only VSL and
both VSL and RM
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(a) Flow (veh/s) for simulation
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(b) Flow (veh/s) for no control
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(c) Flow (veh/s) for RM
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(d) Flow (veh/s) for VSL
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(e) Flow (veh/s) for RM and VSL

Figure 5.9: Flow for simulation, our model with no control, only RM, only VSL and both
RM and VSL
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(a) Queue length (veh) for RM
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(b) Queue length (veh) for RM and VSL

Figure 5.10: Queue length for our model with only RM, and both RM and VSL
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(a) Ramp metering (veh/s) for RM
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(b) Ramp metering (veh/s) for RM and VSL

Figure 5.11: Ramp metering for our model with only RM, and both RM and VSL
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out-going flow will increase by adjusting the VSL rate in congestion sate, but

the maximum out-going flow does not be improved no matter any VSL rate is

implemented. By comparison, it can be clearly seen that the highest efficiency is

achieved by simultaneous adoption of both RM and VSL.
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(a) VSL rate for VSL
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(b) VSL rate for RM and VSL
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(c) Free flow speed (m/s) for VSL
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(d) Free flow speed (m/s) for RM and VSL

Figure 5.12: VSL rate and free flow speed for our model with only VSL, and both RM and
VSL

Table 5.4 shows the results related to the total time spent and ramp delay.

By comparison, collaborative implementation of our approximate model of RM

and VSL is better than other models. Compared with results obtained from

simulation with no control, our approximate model with both RM and VSL being

implemented can reduce 11.564% and 53.21% of the total time spent and ramp

delay, respectively. This indicates that our model is effect and useful, and RM and

VSL are efficient control strategies for mitigating traffic congestion. Furthermore,
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if we hold more vehicle on on-ramps, the congestion on main road can be improved

but the total time spent is bigger compared with other models.

Table 5.4: Total time spent and ramp delay with Np = 36, Nc = 6

Name of mod-
el

Total time
spent (h)

Ramp de-
lay (h)

Percentage
of reduc-
tion for
total time
spent

Percentage
of reduc-
tion for
ramp delay

Simulation 5295.806h 1109.444h 0% 0%

No control 5206.285h 0h 1.69% 100%

Only RM 4866.275h 532.361h 8.111% 52.016%

Only VSL 5019.833h 0h 5.211% 100%

VSL and RM 4683.424h 519.106h 11.564% 53.21%

5.6 Conclusion

In this work, we developed a optimal control model (DMP) by incorporating the

effect of RM and VSL. The proposed model was developed on the basis of CTM

with consideration of the capacity drop. To describe the influence of VSL, we

proposed a linear model by adding an auxiliary variable which is estimated using

obtained data. Due to the complexity and difficulty in computation of the ‘min’

operators, a smoothing method is used to obtain an approximate smooth discrete

optimal control problem (DMPε). Furthermore, the supporting theoretical anal-

ysis is carried out. Particularly, we have shown that the optimal solutions of the

approximate problem (DMPε) converge to that of Problem (DMP) as the param-

eter ε approaches to zero. A customised MPC method was designed to resolve

Problem (DMPε) to implement a feedback control law. To calibrate and validate

the efficiency of the proposed model (DMPε), two experimental applications are

verified using the simulation data obtained in SUMO simulation environment.



CHAPTER 6

Deep Koopman Traffic Modeling for

Freeway Ramp Metering

6.1 Introduction

In this Chapter, we design a data-driven modelling method with neural networks,

denoted by deep Koopman model, to learn a finite-dimensional approximation

of the Koopman operator. To consider the sequential relations of the ramps

and main roads on the freeway, a long short-term memory network is applied.

Furthermore, a model predictive controller with the trained deep Koopman model

is proposed for the real-time control of the ramp metering on the freeway. To

validate the performance of the proposed approach, experiments based on the

simulation in the SUMO environment are conducted. The results validate the

effectiveness of the developed approach on both the dynamics prediction and the

real-time control of the ramp metering.

Traditionally, the control strategies of ramp metering control are designed as

fixed or traffic responsive. The fixed control approach is easy to implement, but

the main shortcoming is that the fixed parameters do not respond to the chang-

ing traffic states, which greatly reduces the performance of approach [179]. The

traffic responsive strategies can be divided into as rule-based and model-based

methods. The most widely used rule-based approaches, the ALINEA [142] and its

variants [143,145,180], aim at regulating the occupancy approaching a predefined

target value. However, the rule-based methods control the metering rate accord-

ing to traffic conditions passively. Rule natures greatly limit the performance of

approaches, especially in a rapidly changing traffic environment. Furthermore,

the control parameters in the rule-based controllers depend on human prior knowl-

edge [179]. On the other hand, the model-based approaches optimize the control

strategies based on the conventional data collected by loop detectors [118] (such

98
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as flow, density, speed). The MPC [162] framework considering the interaction

between ramp control and future traffic conditions is often used to forecast the

traffic evolution and realize the active traffic control [181]. However, the models

used to describe traffic dynamics may result in nonlinear control problems, which

generates difficulties in computing the optimal metering rate [174,182–184]. Some

studies [73,118,120,121] propose the CTM-based approaches, which simplify the

macroscopic fundamental diagrams with a piecewise-point linear model. Because

of reformulating as a linear framework, these approaches could obtain optimal

solutions. However, such a simplification could result in the inaccurate modeling

of non-linear dynamics. Therefore, it is still challenging to model the non-linear

dynamics system in ramp metering problem.

With the development of big data technologies in recent years, real-time traffic

data can be obtained through the sensors deployed on vehicles and road infras-

tructures. Compared with the conventional loop detector data, real-time sensory

data has the ability to better describe the underlying traffic dynamics [185–187].

Machine learning techniques, for example, deep learning (DL) and reinforcemen-

t learning (RL), have been applied to learn the freeway traffic flow dynamics

and ramp metering controlling strategies [16–18, 188]. However, the deep neural

network-based traffic models in these studies suffer from a lack of interpretabili-

ty [189]. Therefore, they might have unknown sensitive modes and be influenced

by the model uncertainty. More importantly, due to the non-linearity of the ac-

tivation functions in the deep neural networks, it is hard to integrate the learned

dynamical models in the design of well-adjusted controllers, such as MPC and

Linear Quadratic Regulator (LQR) [190]. Furthermore, deep neural networks are

sometimes over-parameterized and computational time-consuming [191].

Recently, the Koopman operator theory, which provides a data-driven frame-

work for learning non-linear dynamical systems with the theoretical guarantee,

has drawn a lot of attentions from researchers in the field of control [189,192]. The

Koopman operator is an invariant linear operator acting on the infinite dimen-

sional lifted observable space of the state of the dynamical system [87, 104, 193].

The spectral properties of Koopman operator are helpful to describe the intrinsic

properties of complex system dynamics by decomposition it into spatial-temporal

coherent structures [104]. The Koopman operator could formulate a linear dy-

namical system instead of a black-box mapping of deep neural networks, which is

more suitable to be used with controllers such as the linear MPC [189]. Therefore,

the idea of the Koopman operator is theoretically widely applicable and useful for

modelling dynamical systems that can not be accurately approximated by local
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linearized models [104].

Various approaches have been designed to approximate the properties of the

Koopman operator including the Koopman eigenvalues, eigenfunctions and modes.

Three main classic algorithms that approximate these properties with finite-

dimensional matrix have been widely studied: Ulam Galerkin Method [194,195],

Generalized Laplace Analysis (GLA) [102,196,197], and Dynamic mode Decom-

position (DMD) [100,101,103]. All these algorithms are data-driven and require

no explicit formulas, while none of them can approximate all properties of the

Koopman operator. For example, the Ulam Galerkin Method can be applied

to approximate directly both the Koopman eigenfunctions and eigenvalues [195],

while DMD is used to approximate the Koopman modes and eigenvalues [100,103].

Despite this disadvantage, they have been successfully applied for the analysis of

non-linear dynamics, such as fluid flows [101, 198], buildings and power system-

s [92, 95], and traffic management [21, 199]. Based on the DMD method, an

extended dynamic mode decomposition algorithm (EDMD) [104] has been pro-

posed to approximate all three properties of Koopman operator with a dataset of

snapshot pairs and a dictionary of observable functions. In EDMD, the observable

functions that map the system state into a lifted space are normally manually

selected. In studies [104, 200], the standard procedure of function selection is to

choose a commonly used observable function, such as the radial basis function

or the polynomial function. However, such approach does not take any empirical

information or data of dynamics into consideration.

Deep neural networks have been demonstrated as an alternative approximator

of the Koopman operator, which directly learn the observable functions [189].

Inspired by these works, we propose a Deep Koopman method, a variant of the

EDMD, which uses neural networks to approximate the Koopman operator with

finite-dimensional feature space. This is different from the aforementioned traffic

models [16–18, 188]. More specifically, an encoder-decoder network is designed

to learn the representation of the system state in the lifted space as well as the

mapping process of converting features from the lifted space back to its original

space. The LSTM unit is used to process the sequential data of the traffic flow

on the freeway. To realize a reliable real-time controlling of the ramp metering

on the freeway, we design a linear MPC controller to produce an online optimal

control with the objective of maximizing the total throughput of leaving vehicles

within a time frame. A few studies of combining the Koopman operator and

the MPC have been conducted [189, 206]. In this work, the simulation study is

conducted in SUMO environment due to its real-time visualization, the inclusion
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of various vehicle behaviour models, and the supportive built-on computational

frameworks for DL. The applications of SUMO can be referred to [201–203].

The chapter is organized as follows: Section 6.2 shows the modelling of dy-

namics of freeway traffic flows and the ramp metering control problem. Section

6.3 develops the Deep Koopman model for the freeway traffic flow dynamics and

Section 6.4 describes the MPC controller with the dynamical system approximat-

ed by the Deep Koopman model. Numerical studies and conclusions are given in

Section 6.5 and Section 6.6, respectively.

6.2 The freeway traffic model and ramp meter-

ing controls

We consider a multi-lane freeway road consisting of M main road segmentsM =

{m1 ... mM}, N on-ramps N = {n1 ... nN}, and L off-ramps L = {l1 ... lL}. Fig.

6.1(a) illustrates the freeway network, where each on-ramp has a ramp metering

controller adjusting the traffic flow merging into the main road. At each time

step t ∈ {0 1 ... T}, the state xt ∈ X ⊆ Rn of the freeway traffic is defined by the

vehicle out-flow through each off-ramp ot,i, i ∈ L and the main road ot,i, i = mM ,

the vehicle queue length at each on-ramp qt,i, i ∈ N , and the number of vehicles

on each main road segment qt,i, i ∈M, where n = M +N +L+ 1. The sequence

of state features should be consistent with the flow direction of the main road

segments and ramps, such as Fig. 6.1(b). We define the sequence of main road

segments and on-ramps as J = {j1 ... jJ}, where jj ∈ M ∪ N . The decision

variables of the ramp metering control are defined as the proportion of green light

duration over the decision interval t for each on-ramp, denoted by at,i, i ∈ N .

Except for the features in the traffic state xt, the estimated in-flow demand of

vehicles for each on-ramp would also affect the control variables at,i. Therefore,

we also include the demand of each on-ramp, dt,i, i ∈ N and in-flow of main road

dt,i, i = m1 as a fixed variable in the system control input ut ∈ U ⊆ Rm, where

m = 2N + 1. In this section, we describe the dynamics system of the freeway

traffic as a discrete-time control model:

xt+1 = f(xt, ut),

xt = [ot,l1 , ..., ot,lL , ot,mM
, qt,j1 , ..., qt,jJ ]>,

ut = [at,n1 , ..., at,nN
, dt,n1 , ..., dt,nN

, dt,m1 ]
>, (6.1)

Based on the nonlinear system (6.1), we define an optimal control problem as
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(a)

(b)

Figure 6.1: Schematic diagrams: (a) ramp metering for a freeway, (b) an example of describing
the state xt and control ut with ramp metering

follows:

max
ut,t=0,...,T−1

T =
T∑
t=0

v>t xt − λ
T−2∑
t=0

||ut+1 − ut||2, (6.2)

s.t.

xt+1 = f(xt, ut), t = 0, . . . , T − 1, (6.3)

xmin ≤ xt ≤ xmax, t = 0, . . . , T, (6.4)

umin ≤ ut ≤ umax, t = 0, . . . , T − 1, (6.5)

where the first linear part in (6.2) denotes the throughput of the freeway road

including vehicles leaving through the main road and the off-ramps, where vt ∈
Rn. Let vt,i = 1, i = 1, . . . , N+1, others are 0. In our design of the ramp metering

control, we anticipate the control variables to be as stable as possible. Therefore,

the second term in (6.2) is a penalty term that penalizes the variation of control

variables within two consecutive time steps, and the coefficient λ is a pre-defined

hyperparameter adjusting the weight of penalty. (6.4) and (6.5) define the upper

and lower bounds of state variables x and control inputs u, respectively.

One of the main challenges of resolving the problem (6.2) - (6.5) is the mod-

elling of the non-linear dynamics system presented in (6.3). Thus, we introduce
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a Deep Koopman model to learn a linear approximation with convergence guar-

antees of the non-linear dynamics system of the freeway traffic based on the

Koopman operator.

6.3 Deep Koopman Model for the freeway traf-

fic flow dynamics

In this section, we first introduce the forced system described using the Koopman

operator. Then, we outline the extended dynamic mode decomposition (EDMD)

method developed based on the Koopman operator theory. Finally, a data-driven

Deep Koopman model is presented to construct an approximation of the appro-

priate observable functions.

6.3.1 The Koopman Operator with forced system

The Koopman operator is originally developed to describe the inherent proper-

ties of an uncontrolled non-linear dynamical system through a linear dynamical

evolution. With a slight variation, we can employ the Koopman operator for

the controlled dynamical system. In this work, we take a non-linear dynamical

system for the freeway traffic flow into account:

xt+1 = f(xt, ut). (6.6)

Equation (6.6) is a discrete-time freeway traffic flow system that evolves in

the light of an unknown nonlinear law, where xt ∈ X defined as Equation (6.1) is

the state variable at time step t; ut ∈ U defined as Equation (6.1) is the control

input variable at time step t. Let ut = (ul)
∞
l=t ∈ U and Gut = ut+1 with G being

the left shift operator, where U denotes the space of all sequences (ul)
∞
l=0 with

ul ∈ U . Then, we define the Koopman operator of the dynamics on the extended

state [x,u] as follows:

Kg(xt,ut) = g(xt+1,ut+1) = g(f(xt, ut),Gut), (6.7)

where K : H → H refers to the Koopman operator, g : X × U → RN, g ∈ H
is an observable function, H is a Banach space. The Koopman operator K is a

composition map of g and f . Note that, K is infinite-dimensional and linear even

though the dynamics f(·) is non-linear. Due to the linear characteristics of K,
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we can have the eigendecomposition of K in the standard form:

Kϕj(xt,ut) = λjϕj(xt,ut), j = 1, 2, . . . (6.8)

where ϕj(xt,ut) and λj are the eigenfunction and the associated eigenvalue of

K, respectively. Obviously, the operator is spanned by eigenfunctions that are

governed by the state and the control input. A vector-valued observable g can

be rewritten in terms of these eigenfunctions ϕj as:

g(xt,ut) = (Ktg)(x0,u0) =
∞∑
j=1

λtjϕj(x0,u0)νj, (6.9)

where Kt denotes t times Koopman operator and νj denotes the Koopman mode

[100] corresponding to the eigenvalue λj and x0 is the initial state. It is noted

that not all vector-valued observables can be formulated as Equation (6.9). For

some systematic observables, additional parts may be required to explain the rest

of the spectrum of Koopman operators, as shown in [204,205].

6.3.2 Extended Dynamic Mode Decomposition

The extended dynamic mode decomposition (EDMD) [104] is an approach of

finding the finite-dimensional approximation of the Koopman operator. The ED-

MD uses a variety of basis functions, such as radial basis functions (RBF) with

different kernel centers and widths, to represent the observable functions and the

least square method to calculate a finite-dimensional approximation K ∈ RN×N

of K. Note it is impossible if we use the least square method to compute an

approximation of the Koopman operator in a finite time because [x,u] is in gen-

eral infinite-dimensional. To obtain the finite-dimensional approximation K, we

choose the lifting function gi in a special way for any i = {1, 2, . . . ,N}, which is

written of the form

gi(xt,ut) = ψi(xt) + hi(ut), (6.10)

where ψi : X → R is in general nonlinear but hi : U → R is linear. Without

loss of generality, we can assume that the vector-valued observable function g =

[g1 . . . gN]> is of the form

g(xt,ut) = [ψ>(xt) ũ
>
t ]>, (6.11)
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where ψ(xt) = [ψ1(xt) ψ2(xt) . . . ψl(xt)]
> with l = N −m, and ũt ∈ Rm is the

first component of the sequence ut, In order not to abuse the notation, we use

ut to denote ũt throughout the Chapter. Based on Equations (6.7) and (6.11), it

gives rise

Kg(xt,ut) = K[ψ>(xt) u
>
t ]> + r(xt, ut), (6.12)

where the function r(xt, ut) is a residual term that describes the gap between

the N−dimensional approximation of the observable space and the actual lifted

space of the Koopman operator. We optimize the cost function ||r(xt, ut)||22 to

determine K. Because we do not care about the predictive future value of con-

trol sequence, we can disregard the last m components of [ψ>(xt+1) u>t+1]>. Let

Ψ(xt) = [ψ>(xt) u
>
t ]>, we write the observables dynamics with the Koopman

operator as:

ψ(xt+1) = AΨ(xt),

x̃t = Cψ(xt), (6.13)

where A = [A B] ∈ Rl×N, A ∈ Rl×l, B ∈ Rl×m. A is the former l rows of K, and

C ∈ Rn×l is the mapping from the lifted space to the original space, and x̃t ∈ Rn

is the reconstruction state of xt. Hence, we can obtain the solution of A,B by

optimizing the cost function

min
A,B
||r||22 = min

A,B

T∑
t=0

||ψ(xt+1)−Aψ(xt)− But||22. (6.14)

Furthermore, its solution can be obtained as:

[A B] = SV>(VV>)†, (6.15)

where S = [ψ(x1) ψ(x2) . . . ψ(xT+1)], V = [Ψ(x0) Ψ(x1) . . . Ψ(xT )], and † is

the Moore Penrose pseudoinverse. The matrix C can be computed by minimizing

the following problem:

min
C

T∑
t=0

||xt − Cψ(xt)||22, (6.16)
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with the solution:

C = RW>(WW>)†, (6.17)

where R = [x0 x1 . . . xT ], and W = [ψ(x0) ψ(x1) . . . ψ(xT )]. In particular, if

the set of lifting functions {ψ1 . . . ψl} includes the state variable x, i.e., after

possible reordering, ψi(x) = xi for any i ∈ {1, . . . , n}. In this case, we have that

C = [I 0], where I denotes the identity matrix of size n. More details regarding

to the calculation of A, C can be referred to literatures [104,206].

6.3.3 The Deep Koopman Method

Compared to the classic EDMD, the Deep Koopman model uses a deep neural

network to generate the observable subspace of the Koopman operator. The

proposed Deep Koopman model adopts an encoder-decoder structure, where the

encoder ψe transforms the system inputs to a lifted space and the decoder ψd

converts the lifted system features back to the original space. We can represent

the dynamical system as:

ψe(xt+1, w
e) = ÃΦ(xt, w

e, ut),

x̃t = ψd(ψe(xt, w
e), wd), (6.18)

where Ã = [Ã B̃] ∈ Rl×N, Φ(xt, w
e, ut) = [ψe(xt, w

e)> u>t ]> ∈ RN, ψe is the

encoder with parameter we, and ψd is the decoder with parameter wd. Fig. 6.2

shows the detail process of the Deep Koopman model.

For the ramp metering control problem on the freeway, there exists spatial

dependencies for elements of state x. In this case, a LSTM network is used to

process the sequential data in the encoder, i.e., ψe(x,we), which lifts the primal

state x to the higher-dimension vector-valued observables. Fig. 6.3 shows the

structure of the LSTM. The LSTM is an architecture of recurrent neural network

(RNN) consisting of feedback connections. A LSTM has a forget gate fk, an

input gate ik and an output gate ok. The forget gate utilizes the output hk−1

in the last step and the current state xk to compute the part of the cell state

ck−1 retaining in the current evaluation. Similarly, the input gate determines the

update of the cell state. Finally, the output gate uses the newly updated cell

state to determine the output. Algorithm 3 shows the process of LSTM, where ⊗
stands for the Hadamard product and σ represents the logistic sigmoid function.

W and b denote the weights and biases.
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Figure 6.2: The diagram of the proposed DKM. The original state xt is lifted with the encoder,
i.e.,ψe(xt, w

e). Then ψe(xt, w
e), ut form the lifted state for constructing the linear evolution in

the vector-valued observables. The freeway traffic flow dynamics can be recovered via a decoder
ψd(ψe(xt+1, w

e), wd) from the vector-valued observables

Figure 6.3: The diagram of the LSTM
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Algorithm 3 : Compute the output sequence of a LSTM network

1: Input: Sequence x1, x2,. . . , xK ,
2: Output: Sequence h1, h2,. . . , hK ,
3: Set h0 = 0
4: Set c0 = 0
5: for k ← k to K do do
6: fk = σ(Wf[hk−1 xk] + bf)
7: ik = σ(Wi[hk−1 xk] + bi)
8: ĉk = tanh(Wc[hk−1 xk] + bc)
9: ck = fk ⊗ ck−1 + ik ⊗ ĉk

10: ok = σ(Wo[hk−1 xk] + bo)
11: hk = ok ⊗ tanh(ck−1)
12: end for

Assuming K is the sequence length of the state inputs in the encoder, the

vector-valued observables can be estimated by the last layer hidden state:

ψe(x,we) = [x> h>K ]>. (6.19)

We utlize a feed-forward neural network to construct the decoder, i.e., ψd,

which includes K ′ fully connected layers to recover the original state from the

higher-dimensional observables. In particular, the output at any hidden layer

k ∈ {1, ..., K ′} can be written as

hdk = σdk(Wd
kh

d
k−1 + bdk). (6.20)

The predicted state can be estimated by the output of the last layer of the decoder:

x̃t = ψd(ψe(xt, w
e), wd) = σ(Wd

K′hdK′−1 + bdK′). (6.21)

Based on Equations (6.19) and (6.21), we can have the expressions of the encoder

and decoder for dynamics system in (6.18). Moreover, parameters W and b can

be determined by optimizing a fixed loss function during training.

To approximate the freeway traffic flow dynamics in a longer time window,

a multi-step prediction error rather than the single-step prediction error is con-

sidered. To formulate the multi-step loss function, we first present the state

prediction in an M time-step interval:

xt+M = ψd(ÃMΦ(xt, w
e, ut), w

d) + r(x,M), (6.22)
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where ÃMΦ(xt, w
e, ut) denotes the M -step ahead state beginning from xt with

the expression of:

ÃMΦ(xt, w
e, ut) = ψe(xt+M , w

e)

= Ãψe(xt+M−1, w
e) + B̃ut+M−1

= ÃMψe(xt, we) +
M∑
s=1

Ãs−1B̃ut+M−s.

(6.23)

Now, we define the main components of the loss function for the M time steps:

L1 =
1

M

M∑
s=1

||xt+s − ψd(ÃsΦ(xt, w
e, ut), w

d)||22, (6.24)

L2 =
1

M

M∑
s=1

||ψe(xt+s, we)− ÃsΦ(xt, w
e, ut)||22, (6.25)

L3 =
1

M

M∑
s=1

||xs − ψd(ψe(xs, we), wd)||22, (6.26)

where Equation (6.24) describes the prediction error, Equation (6.25) describes

the predicted error in the lifted vector-valued observable space, and Equation

(6.26) shows the reconstruction error. Based on the definitions of above loss

functions, we can write the optimization problem as follows:

min
we,wd,Ã,B̃

L = α1L1 + α2L2 + α3L3 + α4||we||22

+α5||wd||22, (6.27)

where αi, i = 1, 2, . . . , 5, are the weight parameters, and the last two terms of L

are regularization terms for preventing from over-fitting. Algorithm 4 shows the

training process of the Deep Koopman model.

With the Deep Koopman model trained in Algorithm 4, and the approximated

dynamics for freeway traffic flow can be written as:

ψe(xt+1, w
e) = Ãψe(xt, we) + B̃ut, (6.28)

x̃t = ψd(ψe(xt, w
e), wd). (6.29)
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Algorithm 4 The Deep Koopman Method (DKM)

1: Initialization: we, wd, Ã, B̃, M . Epoch = 0, Epochmax, αi, i = 1, . . . , 5, batch
size bs, a small constant ε > 0;

2: Train: trained we, wd, Ã and B̃;
3: while Epoch > Epochmax or |L| ≤ ε do
4: Reset the training episodes;
5: while Epoch is not Terminated do
6: Sample a batch data sequence of state x and control u;
7: Compute the vector-valued observables ψe(x,we) with (6.19) and re-

construction states x̃ = ψd(ψe(x,we), wd) with (6.21);

8: Calculate the multi-step vector-valued observables ÃsΦ(x0, w
e, u0)

with (6.23) and predicted states x̃s = ψd(ÃsΦ(x0, w
e, u0), wd), where s =

1, 2, . . . ,M ;
9: Compute the loss function L with (6.27);

10: Update we, wd, Ã and B̃ via solving problem (6.27);
11: end while
12: Epoch = Epoch+ 1
13: end while

6.4 MPC-Deep-Koopman for Freeway Traffic

Flow Systems with Ramp Metering

The main idea of MPC controller aims to optimize a specified optimization prob-

lem of the control input at each time step of the closed-loop operator. In this

section, we design a MPC controller based on the linear system approximated

by the Deep Koopman model (6.28) to solve the non-linear system in (6.6). Its

computational complexity is comparable to that of a MPC controller for a linear

system with original system state space. We formulate the optimization problem
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at each time step t of the closed loop as:

max
ut,p

Tt =

Np∑
p=0

ṽ>p zt,p − λ
Np−2∑
p=0

||ut,p+1 − ut,p||2,

(6.30)

s.t.

zp+1 = Ãzt,p + B̃ut,p, p = 0, . . . ,Np− 1,

(6.31)

bmin,p ≤ Epzt,p ≤ bmax,p, p = 0, . . . ,Np, (6.32)

umin,p ≤ ut,p ≤ umax,p, p = 0, . . . ,Np− 1,

(6.33)

zt,0 = ψe(xt, w
e), (6.34)

where Np is the predictive horizon, ṽp ∈ Rl, Ep ∈ Rd×l, and umin,p and umax,p

denotes the lower and upper bounds of control input ut,p, respectively, and zt,0 is

the lifted state obtained using the Deep Koopman method at time step t. Note

that the optimization problem (6.30) is parametrized by the current state xt of

the non-linear system (6.34). We can obtain a feedback controller by solving the

problem Tt. We denote u∗t as the optimal solution and reformulate the problem

Tt in a so-called dense form:

max
ut

Tt = u>t Rut + h>ut + c>zt,0, (6.35)

s.t.

bmin ≤ Ezt,0 +Dut ≤ bmax,

umin ≤ ut ≤ umax,

zt,0 = ψe(xt, w
e),

where ut = [u>t,0, . . . , u
>
t,Np−1]> ∈ RmNp; R ∈ RmNp×mNp; h ∈ RmNp; c =

∑Np
p=0 ṽ

>
p Ãp

∈ Rl; E ∈ Rd(Np+1)×l; D ∈ Rd(Np+1)×mNp; bmin = [b>min,0 . . . b>min,Np]> ∈ Rd(Np+1);

bmax = [b>max,0 . . . b>max,Np]> ∈ Rd(Np+1); umin = [u>min,0 . . . u>min,Np−1]> ∈ RmNp;
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and umax = [u>max,0 . . . u>max,Np−1]> ∈ RmNp. In particular,

R =



−λ ∗ e λ ∗ e . . . 0 0

λ ∗ e −2λ ∗ e . . . 0 0

...
... . . . −2λ ∗ e λ ∗ e

0 0 . . . λ ∗ e −λ ∗ e


,

where e = I ∈ Rm×m is a unit matrix,

h =

[
Np∑
p=1

ṽ>p Ãp−1B̃
Np∑
p=2

ṽ>p Ãp−2B̃ . . . ṽNpB̃

]>
,

E =



E0

E1Ã
...

ENpÃNp


,

and

D =



0 0 . . . 0

E1B̃ 0 . . . 0

...
... . . . 0

ENpÃNp−1B̃ ENpÃNp−2B̃ . . . ENpB̃


.

Note that the dimension of matrix R and the number of constraints d do not

rely on the dimension of vector-valued observables z. We can solve the linear

MPC problem on the same predictive horizon if we obtain zt,0 = ψe(xt, w
e). Fig.

6.4 shows the diagram of MPC-Deep-Koopman to compute the control sequence.

Thus, we summarized the algorithm of the closed-loop operation of vector-valued

observables as follows:
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Algorithm 5 : MPC-Deep-Koopman to compute the control sequence of Prob-
lem (6.35)

1: for t = 0, 1, . . . , T do
2: Let zt,0 = ψe(xt, w

e);
3: Minimize Problem Tt to obtain an optimal solution u∗t ;
4: Let ut = u∗t (1 : m);
5: Update x̃t+1 with system (6.28).
6: Obtain the practical xt+1 with SUMO by implementing the control ut.
7: end for

Figure 6.4: The diagram of MPC-Deep-Koopman to compute the control sequence

6.5 Numerical Studies

In this section, our proposed Deep Koopman model is verified in the microscopic

simulated environment SUMO for various demand scenarios. We consider the

comparisons with baselines.

6.5.1 Experiment Design

To validate the efficiency of our developed Deep Koopman model, we conduct

two case studies in the SUMO simulation environment. SUMO is an open-source

program of traffic flow simulation. We extract two freeway road networks, which

are located in the Yubei and Perth vicinity, separately. They are one of the most

congested freeway roads in the city of Chongqing, China, and Perth, Australia.

Fig. 6.5 shows the actual map of the selected freeway road including its nearby

layout. The selected freeway roads have a total length of around 27 km and 12

km, starting from Jinxing road and ending at Modern road with 11 on-ramps

and 8 off-ramps, and beginning from Fiona Wood Road and ending at Narrows

Bridge with 7 on-ramps and 4 off-ramps, separately. At every on-ramp, there is
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(a) Road network layout in the Yubei (b) Road network layout in the Perth

Figure 6.5: Road network layout

(a) Road network layout in the Yubei (b) Road network layout in the Perth

Figure 6.6: Illustration of the SUMO simulation model for the investigated freeway traffic
network

a ramp meter controlling the in-flow of vehicles. Fig. 6.6 illustrates the freeway

traffic models in the SUMO simulation.

The training data for the proposed Deep Koopman model is sampled through

the freeway traffic simulation with randomized controls on different scenarios. We

generate 100 scenarios with varied traffic flows. The duration of each simulation

is set as 4 hours (i.e. 14400 seconds) and the control interval is set as 60s. The

simulation period is divided into peak and off-peak hours. For off-peak hours, the

total in-flows for the main road and the on-ramps are generated randomly within

the range of [1000, 4000] and [1, 400], respectively. For peak hours, the in-flows

for the main road and the on-ramps would vary within the range of [3000, 8000]

and [200, 800], respectively. 80 scenarios are used for the training data collection

resulting in a total of 19200 data triplets, i.e., (xt, ut, xt+1), while the other 20

scenarios are used for validation. Random controls are sampled uniformly within

the range of [umin, umax]. During the simulation, we convert the control variable

at,i ∈ ut, i ∈ N for each on-ramp i to the duration of green light: ∆t = 60 ∗ at,i.
In our experiment, all models are complied in Python 3.7 running on a computer

with Intel Xeon E5-1650 v4, 3.6GHz CPU.
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6.5.2 Evaluation metrics and baselines

To comprehensively evaluate the performance of the proposed Deep Koopman

model, baseline approaches are selected for comparison. Firstly, we assess the

performances of predicting the dynamics system between the proposed Deep

Koopman model and extended dynamic mode decomposition (EDMD) [31]. For

EDMD, we adopt the Gaussian radial basis function (RBF) [207] as the basis

function ψ(x):

ψ(x) = e(ε||x−C||)2 , (6.36)

where ε denotes the shape parameter and C ∈ Rl is the center points. In our ex-

periment, the kernel centers are selected using K-means clustering [208]. Secondly,

we estimate the performance of the classic traffic control models including ALIN-

EA regulator [142] and CTM-based deterministic optimization (CTM-DO) [73].

Thirdly, we validate the performance of different approaches on ramp metering

control. Besides the EDMD, we design a linear control method [209] which ap-

proximates the dynamics system with a linear model on the original state. To

illustrate the effectiveness of our proposed Deep Koopman model, we also evalu-

ate the performances of traffic simulation with a fixed control and with no ramp

meters. The fixed control means that each ramp meter would follow a fixed dura-

tion for each phase. In our experiment, we set the durations of green light, yellow

light and red light as 39s, 3s and 18s, respectively. Note that models (CTM-DO,

EDMD, Linear and Deep Koopman) are tested in MPC framework.

As indicated in Section 6.5.1, we generate 4800 testing data from 20 testing

scenarios and the mean squared error (MSE) of prediction are utilized to assess

the performance of traffic state prediction. The performance of traffic control

is evaluated based on four metrics including the number of leaving vehicles per

decision interval, the average travel time of vehicles, the total throughput of traffic

out-flow, and the deviation of control variables.

6.5.3 Example one

A Parameters setting

In our experiment, we set the dimension of the lifted space as 1000. While training

the Deep Koopman model, we run the mini-batch training with a batch size of 32

for 100 epochs. Xavier initialization [210] is adopted for initializing the weights

of neural networks in the proposed Deep Koopman model. The details of the

associated parameters are shown in Table 6.1. In particular, we define the matrix
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Ep ∈ R9×l as follows:

Ep =



1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0

...
... . . . 0 0 . . . 0

0 0 . . . 1 0 . . . 0

0 0 . . . 0 1 . . . 0


, p = 0, . . . ,Np.

Table 6.1: Model parameters for Deep Koopman

Name of param-
eter

Value Name of param-
eter

Value

α1, α2, α3 1 α4, α5 10−9

ṽi,p, i = 1, . . . , 9 1 ṽi,p, i =
10, . . . , 43

0

bmin,ip, i =
1, . . . , 9

0veh/m bmax,ip, i =
1, . . . , 8

33veh/m

bmax,ip, i = 9 66veh/m umin,ip, i =
1 . . . , 11

20%

umax,ip, i =
1 . . . , 11

70% 4T 60s

λ 10−4 Np 17m

T 240 Nc 1m

For implementing the ALINEA regulator and the CTM model, we set their

corresponding parameters as shown in Tables 6.2 and 6.3:

Table 6.2: Model parameters for ALINEA regulator

Name of param-
eter

Value Name of param-
eter

Value

ocr,i, i =
1, . . . , 11, 14, 15

10.35veh/m ocr,i, i =
12, 13, 16, . . . , 23

6.9veh/m

rmax 0.5veh/s Kp 0.02veh/s
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Table 6.3: Model parameters for CTM

Name of param-
eter

Value Name of param-
eter

Value

Qi, i =
1, . . . , 11, 14, 15

1.92veh/s Qi, i =
12, 13, 16, . . . , 23

1.28veh/s

ρmax,i, i =
1, . . . , 11, 14, 15

0.4veh/m ρmax,i, i =
12, 13, 16, . . . , 23

0.27veh/m

w 5.81m/s vf 27.78m/s

∆T 5s I 23

Np 324 Nc 12

rmax 0.5veh/s qmax 60veh

Note that Np and Nc denote the prediction horizon and control horizon, re-

spectively; ∆T is the simulation duration at each step; T represents total total

simulation step; ocr is the critical occupancy; rmax is the maximum ramp meter-

ing rate; Q denotes the capacity; ρcr is the critical density; ρmax represents the

jam density; w refers to the backward wave speed; vf is the free flow speed; I

represents the number of cells and qmax is the maximum queue length.

B Results and analysis

1) Traffic prediction: We first calculate the mean squared error of traffic state

prediction: MSE =
∑240

t=1

∑43
i=1(xt,i− x̃t,i)2. The MSE values of EDMD and Deep

Koopman are 59.062 and 47.293, respectively. Obviously, the Deep Koopman

model outperforms the EDMD with 24.885% improvement. Fig. 6.7 shows the

comparison of traffic state prediction between EDMD and the proposed Deep

Koopman for the scenario 1. The blue line is the actual traffic state. More

specifically, Figs. 6.7(a)-6.7(d) show the predictions of the real-time number of

vehicles on the on-ramp 1 and the main road segment 3, and the number of

the leaving vehicles from the off-ramp 7 and the main road. We can observe

that the Deep Koopman model has a higher accuracy compared to the EDMD.

This implies that the proposed Deep Koopman model could better predict future

states of the freeway traffic flow and have a more precise reconstruction of the

state from the lifted space.

2) Traffic control performance analysis: To assess the performance of the

controller, we present the average travel time (ATT) of the vehicles, the total

throughput of vehicles (TTV) and the deviation of the control variables (DCV)
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(a) On-ramp No.1 (b) Main Road No.3

(c) Off-ramp No.7 (d) Leaving from Main Road

Figure 6.7: The Comparison of State Prediction between EDMD and the proposed Deep
Koopman for the Scenario 1

for four testing scenarios, as shown in Table 6.4, where ATT can be retrieved from

the SUMO directly, TTV =
∑240

t=0 v
>
t xt and DCV =

∑238
t=0 λ||ut+1 − ut||2. It is

obvious that all the baseline control methods could reduce the ATT and improve

the TTV compared to No control strategy. For the traditional control meth-

ods, the ALINEA does not show a significant improve compared to the Fixed

Control strategy, while the MPC-CTM-DO model is better performed on the

ATT for all scenarios. However, their results on ATT are no better than that of

MPC-EDMD and MPC-Deep-koopman. For example, the proposed MPC-Deep-

Koopman model achieves a 18.55% lower ATT than the MPC-CTM-DO for the

scenario 1, and reduces the ATT by 23.956% for the scenario 3, and by at least

21% for the other 3 cases compared to No Control strategy. The metric of TTV

shows the performance of the controllers on optimizing the first part of the objec-

tive function in (6.30), while DCV represents the second part. While analyzing

the results of TTV, the control strategy produced by the MPC-Deep-Koopman

model allows 6391 more vehicles completing their trips during the simulation

compared to the No Control approach for the scenario 2. There are 5000 vehicles

more completing the travel for other 3 instances. It is worth mentioning that

ALINEA and MPC-CTM-DO outperform the MPC-linear in scenario 3. The D-
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CV of the MPC-EDMD is better than the MPC-Linear model for all instances,

while the proposed MPC-Deep-Koopman model has the best performance and

ALINEA performs the worst on DCV. This is reasonable because ALINEA com-

putes the control strategy based on the current state without considering future

changes. Moreover, the controls of MPC-Deep-Koopman model are more stable

and robust. We can conclude that our proposed MPC-Deep-Koopman model

is more efficient compared to the baselines. The controller integrated with the

MPC-Deep-Koopman is capable of mitigating traffic jams so that improving the

freeway management.

Table 6.4: Performance Comparison of Average Objectives (ATT: Average Travel Time, TTV:
Total Throughput, DCV: Deviation of Control)

Approach
Scenario 1 Scenario 2 Scenario 3 Scenario 4

ATT TTV DCV ATT TTV DCV ATT TTV DCV ATT TTV DCV

ALINEA 1833.23 28951 0.36130 1774.16 27643 0.33570 1688.34 31383 0.37520 1566.15 31122 0.37640

MPC-CTM-DO 1790.06 31328 0.31730 1739.92 27968 0.28430 1578.85 31355 0.29720 1496.82 32613 0.27830

MPC-EDMD 1571.74 32613 0.20779 1514.45 30948 0.20336 1459.89 32674 0.22930 1370.05 32723 0.15006

MPC-Linear 1626.27 32290 0.28700 1554.33 32195 0.21649 1549.06 31057 0.32817 1433.83 31608 0.32998

Fixed Control 1810.53 29403 0 1774.38 28662 0 1763.53 30582 0 1640.80 31029 0

No Control 1893.01 27998 - 1829.19 27560 - 1792.48 28903 - 1696.09 29106 -

MPC-Deep-Koopman 1457.96 34333 0.09384 1433.62 33951 0.13973 1363.08 34267 0.15235 1295.33 34615 0.11362

3) Number of leaving vehicles: To further visualize and validate the efficiency

of the MPC-Deep-Koopm, we monitor the real-time number of leaving vehicles

from the freeway to assess the performance of controllers on improving the traffic

throughput. We present the results of 4 different scenarios obtained by the pro-

posed MPC-Deep-Koopman model and other baselines, as shown in Fig. 6.8. As

we can observe, the performance of No Control is the worst for all 4 scenarios.

This is because the increase of traffic flow on the freeway could lead to serious

traffic jams, especially when no control actions are applied. It is obvious that the

number of leaving vehicles increases after 450s in simulation when a controller

is adopted. Compared to the MPC-Linear model, MPC-EDMD and the Fixed

Control, the proposed MPC-Deep-Koopman model has the most significant im-

provement on the real-time throughput, especially in the scenarios 1, 2 and 4. The

results imply that the developed MPC-Deep-Koopman model is more effective in

improving the traffic operation.

4) Ramp control variation: We show the results of ramp metering control for

approaches including the MPC-Linear model, the MPC-EDMD and the MPC-

Deep-Koopman in scenarios 1 and 3. Figs. 6.9(a)-6.9(b) show the control vari-

ables for the on-ramp 1. We find the variation of controls showing an opposite
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 6.8: The Comparison of Number of Leaving Vehicles between baseline approaches and
the proposed MPC-Deep-Koopman model



6.5 Numerical Studies 121

trend with the changing of the traffic demand flow. As shown in Fig. 6.9(a), we

can see that the higher demand results in shorter duration of green light. This

is consistent with the actual situation, because reducing the green phase dura-

tion of traffic light of on-ramps can stop vehicles from merging to the main road

from on-ramps so that mitigating the traffic jams on the main road. Fig. 6.10

shows the comparison of the fluctuations of the ramp control for the on-ramp

1. Red lines in Figs. 6.10(a)-6.10(b) represent the median of ramp metering

control variables. The bottom and top lines are the minimum and maximum

values, respectively. The bottom and top edges of quadrangle refer to the first

quarter and the third quarter of the quantile, respectively. By comparison, we

can observe that the MPC-EDMD produces the controls with a median value

around 0.37 and the MPC-Linear model has the controls with a median value

around 0.28, and the median value of our controller is around 0.42 in the sce-

nario 1. The MPC-Deep-Koopman and MPC-EDMD achieve similar values on

instance 3, but the MPC-Linear model has a lower median value. In addition,

the MPC-EDMD and the MPC-Linear model have greater fluctuations than the

MPC-Deep-Koopman model, which implies that the MPC-Deep-Koopman model

has a better performance on optimizing the deviation of controls.

(a) Scenario 1 (b) Scenario 3

Figure 6.9: The Comparison of Ramp Control for On-ramp No.1

5) Computational time: In this section, we present the actual computation

time for each MPC closed loop for the ALINEA, MPC-CTM-DO, MPC-Linear

model, the MPC-EDMD and our proposed MPC-Deep Koopman, as shown in

Table 6.5. As we can observe, the ALINEA and MPC-Linear are the fastest

approaches as they have simpler modeling of dynamics, while the MPC-CTM-

DO outperforms the MPC-EDMD and MPC-Deep Koopman. Moreover, the

computation time of MPC-Deep-Koopman is 0.8852s, which means that the run-

ning time is less than 1s at each time step when the optimal control strategy
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(a) Scenario 1 (b) Scenario 3

Figure 6.10: The Comparison of Ramp Control Fluctuation for On Ramp No.1

is obtained. This is acceptable for our problem and can satisfy the practical

requirements.

Table 6.5: Computation time for baselines and MPC-Deep-Koopman for each MPC compu-
tation with Np = 17m, Nc = 1m

Approaches Computation Time (s)

ALINEA 0.2388

MPC-CTM-DO 0.6992

MPC-Linear 0.3581

MPC-EDMD 2.7641

MPC-Deep-Koopman 0.8852

6.5.4 Example two

A Results and analysis

1) Traffic prediction: We first show traffic state prediction of x for EDMD, the

Deep Koopman and the Ground truth in Fig. 6.11. Obviously, the Deep Koop-

man model and DEMD can predict the traffic state evolution. By comparison,

we observe that the Deep Koopman model has a higher accuracy compared to the

EDMD. This implies that the proposed Deep Koopman model could better pre-

dict future states of freeway traffic flows and have a more precise reconstruction

of the state from the lifted space.

2) Number of leaving vehicles: We monitor the leaving vehicles from the

freeway main road to validate the efficiency of controllers. We show the results



6.5 Numerical Studies 123

EDMD

6:00 7:00 8:00 9:00 10:00

5

10

15

20

25

30

S
ta

te
 o

f x
i

0

50

100

150

200

250

300

350

400

450

500

(a) EDMD

Deep Koopman

6:00 7:00 8:00 9:00 10:00

5

10

15

20

25

30

S
ta

te
 o

f x
i

0

50

100

150

200

250

300

350

400

450

500

(b) Deep Koopman

Ground Truth
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(c) Ground truth

Figure 6.11: The Comparison of State Prediction between EDMD, the proposed Deep Koop-
man and Ground truth
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(b) Scenario two

Figure 6.12: The Comparison of Number of Leaving Vehicles between baseline approaches
and the proposed MPC-Deep-Koopman model

of 2 different scenarios obtained by the proposed MPC-Deep-Koopman model

and other basis lines, as shown in Fig. 6.12. By observing, we find that the

performance of No Control is the worst for all scenarios. Compared to the MPC-

EDMD and the Fixed Control, the proposed MPC-Deep-Koopman model has

the most significant improvement on the real-time throughput, especially in the

scenario 2. Among the baseline approaches, the Fixed Control has the least

improvement on the number of leaving vehicles. The result indicates that the

proposed MPC-Deep-Koopman model is more effective.

3) Ramp control: We show the results of ramp metering control for the MPC-

Deep-Koopman model in two different scenarios. Figs. 6.13(a)-6.13(b) show the

control evolution for all on-ramps. By observing, we find that the change trend of

control variable in on-ramp 5 is significant for different scenarios, but other control

metering has tiny change and is mainly concentrated in the interval [0.31, 0.34].

This indicates that the MPC-Deep-Koopman model is more applicable, which is

consistent with the results of example one.

6.6 Conclusion

In this Chapter, we study a ramp metering control problem on the freeway traf-

fic. Because of the high non-linearity and complexity of the freeway traffic flow

dynamics, we use the Koopman operator to model the evolution of the dynami-

cal system due to its interpretability and linearity. To learn a finite-dimensional

approximation of the Koopman operator, we propose a Deep Koopman model
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(a) Scenario one
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(b) Scenario two

Figure 6.13: The evolution of Ramp Control of the proposed MPC-Deep-Koopman

based on the neural networks with an encoder-decoder structure. LSTM unit-

s are used to process the sequential traffic data in the encoder. Compared to

the EDMD, the Deep Koopman model is a data-driven approach of learning the

lifted state of dynamics without any prior information of the basis function se-

lection. To provide a real-time control of the ramp metering, we design a model

predictive control with pre-trained Deep Koopman model to maximize the total

throughput of vehicles on the freeway. SUMO environment is used for the exper-

imental studies to assess the effectiveness of the proposed approach. By Com-

parison with the EDMD with RBF basis functions, the proposed Deep Koopman

model has shown a better precision in the predictions of the dynamical states.

We also compare the performance of the real-time control of ramp metering be-

tween the MPC-Deep-Koopman, MPC-EDMD, and classic traffic control models.

The MPC-Deep-Koopman model outperforms the baselines on all metrics, which

demonstrates the effectiveness of the proposed approach. The future research will

focus on the ramp metering problem on the freeway with dynamical speed limits.



CHAPTER 7

Conclusions and future work

7.1 Conclusions

In this thesis, we study two kinds of freeway optimization control models taking

into account of ramp metering and variable speed limits. The former is modelled

on the basis of the macroscopic traffic flow models, namely the CTM. Based

on this model, we study three different optimization control models. Firstly,

we propose an optimization model with stochastic demand flows to implement

ramp metering. Secondly, we design a ramp metering optimal control model with

smooth objective and constraint functions that handles the flow holding-back

problem. Finally, we develop a smooth model that considers capacity drop, ramp

metering and variable speed limits. The latter is a data-driven model on the basis

of the Koopman operator. The main contributions are presented in two aspects

as follows:

(1) The proposed models have theoretical guarantees.

(i) With available partial information of random traffic demands, a distribu-

tionally robust chance constrained optimization model is formulated as a semi-

definite programming using the Worst-Case Conditional Value-at-Risk (WCVaR)

constraints to approximate distributionally robust chance constraints. This trans-

formation has the theoretical guarantee. Moreover, an optimal control is obtained

by optimizing the approximated problem with the objective of total delay of main

road and on-ramps.

(ii) Two novel smooth optimization models on the basis of the CTM were

proposed to handling the flow holding-back problem resulted from the impractical

fundamental diagram if the ‘min operators are relaxed into inequality constraints

directly. The former only takes the freeway ramp metering into consideration,

and the latter considers both ramp metering and variables speed limits under

126
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the capacity drop. There are theoretical analyses for both proposed models.

Theoretical results show that the solution derived from the proposed method

converges that of primal CTM when ε approaches to zero.

(iii) A data-driven model in the framework of Koopman operator is utilized to

model the evolution of the freeway dynamical system because of its interpretabil-

ity and linearity. To learn a finite-dimensional approximation of the Koopman

operator, we propose a Deep Koopman model based on the neural networks with

an encoder-decoder structure. LSTM units are used to process the sequential

traffic data in the encoder.

(2) The numerical results obtained from the study have validated the efficiency

of our proposed models.

(i) The numerical results of three various optimization control models, i.e.,

deterministic optimization model, robust optimization model and the proposed

model, were showed and compared. These results indicate that our proposed

model is efficient to control the total delay of the system when the considered

dynamical system encounters uncertainties in a series of scenarios. The results

also demonstrate that the proposed model is more effective in reducing traffic

congestion of the system.

(ii) The proposed two smooth optimal control models can effectively solve the

flow holding-back problem under practical and synthetic applications. Moreover,

both RM and VSL are efficient control strategies of mitigating traffic congestion.

Furthermore, the performance is the best when RM and VSL are implemented

cooperatively.

(iii) A real-time control of ramp metering was provided based on the proposed

Deep Koopman model. SUMO environment was used for the experimental studies

to assess the performance of the developed approach. Compared to the EDMD

with RBF basis functions, the proposed Deep Koopman model has shown a better

precision in the predictions of the states. We also assessed the efficiency of the

real-time control of ramp metering between the Deep Koopman model, EDMD,

Linear model, and Fixed control. The Deep Koopman model outperforms other

baselines on all metrics, which demonstrates the effectiveness of the proposed

model.

7.2 Future work

The future work may involve different directions, we briefly summarize it as

follows:
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(i) In the objective one, we only consider simple case that the dynamical free-

way system has uncertain external demand flows with partial information under

triangle fundamental diagrams. However, the obtained parameters from triangle

fundamental diagrams, for example, critical density and jam density significantly

impact the performance of the proposed model, especially for limited data. Hence,

considering the set-valued fundamental diagram under the distributionally robust

optimization is necessary.

(ii) Even though the objectives two and three solve the flow holding-back prob-

lem caused by inequality relaxation making use of smooth functions to approxi-

mate the ”min” operators, but the considered scenario is simple and the problem

only has one goal. Therefore, designing multi-objective optimization model such

as the traffic safety and the pollution reduction under complex scenarios is ideal

choice. Moreover, route guidance should also be taken into consideration.

(iii) Objective four only uses ramp metering to alleviate traffic congestion,

but it can not solve the congestion problem completely. Hence, it is necessary to

propose a freeway optimal control model of the ramp metering with dynamical

speed limits and route guidance under the data-driven framework. Furthermore,

large-scale numerical applications are necessary.
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