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Abstract

This paper considers an optimal control problem of nonlinear Markov jump systems with
continuous state inequality constraints. Due to the presence of continuous-time Markov
chain, no existing computation method is available to solve such an optimal control prob-
lem. In this paper, a derandomisation technique is introduced to transform the nonlinear
Markov jump system into a deterministic system, which simultaneously gives rise to an
equivalent deterministic dynamic optimisation problem. The control parametrisation tech-
nique is then used to partition the time horizon into a sequence of subintervals such that
the control function is approximated by a piecewise constant function consistent with the
partition. The heights of the piecewise constant function on the corresponding subinter-
vals are taken as decision variables to be optimised. In this way, the approximate dynamic
optimisation problem is an optimal parameter selection problem, which can be viewed as
a finite dimensional optimisation problem. To solve it using a gradient-based optimisa-
tion method, the gradient formulas of the cost function and the constraint functions are
derived. Finally, a real-world practical problem involving a bioreactor tank model is solved
using the method proposed.

1 INTRODUCTION

A continuous-time Markov jump system, which contains a num-
ber of modes, is described by a series of differential equations,
each being defined on a specific mode. The switch between the
dynamic equations is random, which is determined by a tran-
sition rate matrix. The continuous-time Markov jump systems
have found many practical applications, such as economic sys-
tems [1], DC motor systems [2], robot systems [3], power sys-
tems [4], and networked systems [5]. For these systems, their
system parameters and structures may change randomly caused
by factors, such as data loss in communication, abrupt changes
in environment, or failure of components. Due to the impor-
tant nature of such systems, there is a growing interest among
research community towards the study of Markov jump sys-
tems. See, for instance, stability analysis [6–8], controller design
[9–11], filtering [12–14], and fault detection [15–17].
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Optimal control is an important field in the control com-
munity. It can deal with many practically important issues,
such as reducing energy consumption and improving pro-
duction efficiency. Due to its practical importance, it has
received continuous attention among scholars over the past
several decades [18–24]. For an optimal control problem,
the purpose is to find a control strategy such that a spe-
cific performance measure is minimised subject to specific
dynamic systems and various constraints on the state and con-
trol variables. Nowadays, the real-world problems are becom-
ing more and more complex and hence they can only be
solved by numerical means. Subsequently, there are many
effective numerical methods available in the literature for
solving various optimal control problems. Examples include
iterative dynamic programming [25], control parametrisation
[26–31], collocation methods [32, 33], and full parametrisation
[34–38].
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For the control parametrisation method, the time horizon is
partitioned into several subintervals, and the control functions
are approximated by piecewise constant functions with the
heights on the respective subintervals considered as decision
variables to be optimised. Then, the original optimisation
problem is approximated by an optimal parameter selection
problem, which can be solved numerically based on gradient-
based optimisation methods and interior point methods.
Many important results related to the control parametrisa-
tion methods have been reported in ref. [26–31]. However,
there exist many challenging issues yet to be resolved. For
example, no numerical methods exist in the literature for
solving optimal control problems involving nonlinear Markov
jump systems, particularly in the presence of state inequality
constraints. This is the motivation behind the study being
carried out in this paper. More specifically, we consider an
optimal control problem governed by nonlinear Markov jump
systems with state inequality constraints. A derandomisation
technique is introduced to obtain a representative deterministic
optimal problem. Then, the control parametrisation method
is used to develop a gradient-based computational method
to solve this representative deterministic optimal control
problem.

The contributions of this paper are summarised as follows:

(1) A derandomisation method is proposed to transform
Markov jump system into a deterministic system with the
information of the transition rates. Then, the correspond-
ing representative deterministic optimal control problem is
obtained.

(2) The control parametrisation technique is used to approx-
imate the transformed deterministic optimal control
problem by an optimal parameter selection problem,
which can be regarded as a nonlinear programming
problem.

(3) The continuous state inequality constraints are incorpo-
rated in the optimisation problem, which are handled by the
constraint transcription technique.

(4) The gradient formulas of the cost function and the con-
straint functions with respect to the control parameters are
derived.

The remaining parts of the paper are organised as follows.
In Section 2, problem statement is given and some prelimi-
nary results are presented. In Section 3, gradient formulas are
derived. In Section 4, a real-world practical example involving a
bioreactor tank model is considered and solved. Section 5 con-
cludes the paper.

Throughout this paper, ℜn and ℜn×m denote the set
of real n-dimensional vectors and the set of real n × m

matrices, respectively. In and ΛT denote an n × n iden-
tity matrix and the transpose of the matrix Λ, respec-
tively. diag{⋯} stands for a block-diagonal matrix. qi (⋅) ∈
ℜN denotes the ith value of the vector q(⋅). E {⋅} and ⊗
represent the expectation operator and Kronecker product,
respectively.

2 PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following class of nonlinear Markov jump systems
with N modes, defined on a fixed time interval [0, tf] in a given
probability space (Ξ, Ω, P).

⎧⎪⎨⎪⎩
ẋ(t ) = fr (t )(x(t )) + gr (t )(x(t ))u(t ),

fr (t )(0) = 0, gr (t )(0) = 0,

x(0) = x0, r (0) = r0,

(1)

where x(t ) ∈ ℜn and u(t ) ∈ ℜq are the system state and con-
trol variables, respectively; fr (t )(x(t )) and gr (t )(x(t )) are the
functions with respect to x(t ), respectively. x0 and r0 denote
the system initial state and mode, respectively. For conve-
nience, when r (t ) = i, fr (t )(x(t )) and gr (t )(x(t )) will be writ-
ten as fi (x(t )) and gi (x(t )), respectively. Here, we suppose
that the stochastic jump process {r (t ), t ≥ 0} is a continuous-
time Markov chain which takes values in a finite state set K =
{1, 2, … ,N } and involves a transition rate matrixΛ = [𝜆i j ]N×N .
The transition probability of the continuous-time Markov jump
systems is defined as follows:

Pr{r (t + Δt ) = j |r (t ) = i}

=

{
𝜆i jΔt + o(Δt ), if i ≠ j ,

1 + 𝜆iiΔt + o(Δt ), if i = j ,
(2)

where Δt > 0, limΔt→0+ (
o(Δt )

Δt
) = 0, 𝜆i j denotes the transition

rate from mode i at time t to mode j at time t + Δt , satisfying

𝜆i j ≥ 0 and 𝜆ii = −
∑N

j=1,i≠ j
𝜆i j , ∀i, j ∈ K , i ≠ j .

Let U be the control restraint set defined by

U = {v ∈ ℜq ∶ u ≤ v ≤ ū}

where u and ū are the given lower and upper bounds of the
control u(t ), respectively. Any measurable function u(t ) defined
on [0, tf] taking values in U is an admissible control. Let U be
the set containing all such measurable functions. Furthermore,
let x(⋅) be the solution of the dynamic system (1) corresponding
to u(t ) ∈ U .

The optimisation problem under consideration, denoted as
(OP), is stated as follows.

Given the dynamistic system (1) with the initial state x0,
find an admissible control u(t ) ∈ U to minimise the following
objective function:

F0 = E

{
Φ0(x(tf )) + ∫

tf

0
L0(t ,x(t ), u(t ))dt

}
, (3)

subject to the state inequality constraints

Fv = E
{

hv (t ,x(t ))
} ≥ 0, v = 1, 2, … , v1, (4)
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as well as the control constraint

u ≤ u(t ) ≤ ū, (5)

whereΦ0, L0, and hv , v = 1, 2, … , v1, are given real-valued func-
tions; E {⋅} denotes expectation; u and ū are the given lower and
upper bounds of the control u(t ), respectively.

Since the system is a Markov jump system defined by Markov
chain, problem (OP) is a stochastic optimal control problem.
It appears that no computational method is available in the
literature for solving such stochastic optimal control problem
directly. In this paper, the derandomisation method introduced
in ref. [39] is utilised to obtain a representative deterministic
optimal control problem involving the information of the tran-
sition rates. On this basis, the control parametrisation technique
is used to develop a computational method to solve the repre-
sentative deterministic optimal control problem.

Let 𝜁{i}(r (t )) be the indicator function defined by

𝜁{i}(r (t )) =

{
1, if r (t ) = i,

0, otherwise.
(6)

For system (1), the expectations of the states of different
jump modes are defined as given below:

𝜼i (t ) = E {x(t )𝜁{i}(r (t ))}. (7)

From Equations (1), (6) and (7), we obtain

d𝜼 j (t ) = E {dx(t )𝜁{ j }(r (t )) + x(t )d𝜁{ j }(r (t ))}

= E {( f j (x(t )) + g j (x(t ))u(t ))𝜁{ j }(r (t ))}

+ E {x(t )}E {d𝜁{ j }(r (t ))}.

(8)

Considering the constraints fi (0) = 0, gi (0) = 0 in Equa-
tion (1), we have

d𝜼 j (t ) =

(
f j (𝜼 j (t )) + g j (𝜼 j (t ))u(t ) +

N∑
i=1

𝜆i j𝜼i (t )

)
dt . (9)

Taking all j = 1, 2, … ,N into account, the system (9) can be
written explicitly as:

⎡⎢⎢⎢⎢⎢⎣

d𝜼1(t )

d𝜼2(t )

⋮

d𝜼
N

(t )

⎤⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

f1(𝜼1(t ))

f2(𝜼2(t ))

⋮

fN (𝜼
N

(t ))

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

g1(𝜼1)u(t )

g2(𝜼2)u(t )

⋮

gN (𝜼
N

)u(t )

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣

𝜆11 𝜆21 ⋯ 𝜆N 1

𝜆12 𝜆22 ⋯ 𝜆N 2

⋮ ⋮ ⋱ ⋮

𝜆1N 𝜆2N ⋯ 𝜆NN

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜼1(t )

𝜼2(t )

⋮

𝜼
N

(t )

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dt ,

(10)

which can be written in vector form as:

𝜼̇(t ) = f (𝜼) + g(𝜼)ũ(t ) + (ΛT ⊗ In )𝜼(t ), (11)

where f (𝜼) = [ f1(𝜼1)T f2(𝜼2)T ⋯ fN (𝜼
N

)T ]T , g(𝜼) = diag{g1(𝜼1),
g2(𝜼2), … , gN (𝜼

N
)}, Λ = [𝜆i j ]N×N ,

𝜼(t )=[𝜼T
1 (t )𝜼T

2 (t )⋯𝜼T
N

(t )]T , ũ(t )= [uT (t )uT (t )⋯ uT (t )
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

N

]T .

Remark 1. It is obvious that system (11) is a nonlinear deter-
ministic system containing the information of the transition
rates. There are many methods, such as T–S fuzzy tech-
niques, that have been utilised to study the control of such
systems.

Next, we will obtain a representative deterministic optimal
control problem for the stochastic optimisation problem (OP)
through the use of derandomisation theory.

Let the probability distribution of the initial mode be
described by

Pr{r0 = i} = 𝛽i ≥ 0, i = 1, 2, … ,N . (12)

Define

P0 = [𝛽1 𝛽2 ⋯ 𝛽N ]T ,

where 𝛽1 + 𝛽2 +⋯+ 𝛽N = 1.
By Equation (7), we have the initial conditions

𝜼1(0) = x0𝛽1, 𝜼2(0) = x0𝛽2, ⋯ , 𝜼N (0) = x0𝛽N . (13)

To obtain the information of probability distribution of mode
as a function of time t , we need the following backward Kol-
mogorov differential equation with the initial condition.

⎧⎪⎨⎪⎩
dΓ(t )

dt
= ΛΓ(t ),

Γ(0) = IN ,

(14)

where Γ(t ) denotes the transition probability matrix of Markov
jump systems (1), and Γ(0) is the initial transition probabil-
ity matrix.

By the Markov chain property and the definition of the
expectation, it follows from the use of the derandomisation
technique that the cost function and the constraint functions
are transformed to be in the form given below:

F0 = Φ0

(
N∑

i=1

𝜼i (tf )q
i (tf )

)

+ ∫
tf

0
L0

(
t ,

N∑
i=1

𝜼i (t )qi (t ),
N∑

i=1

ũi (t )qi (t )

)
dt , (15)
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Fv = hv

(
t ,

N∑
i=1

𝜼i (t )qi (t )

)
≥ 0, v = 1, 2, … , v1, (16)

where 𝜼i (⋅) represents the ith block vector of 𝜼(⋅), qi (⋅) denotes
the ith value of the vector q(⋅) and q(⋅) = ΓT (⋅)P0, and ũi (t ) is
the ith block vector of ũ(t ) and ũi (t ) = u(t ), i = 1, 2, … ,N .

Then, the representative deterministic optimisation problem,
described by (NP), is stated as follows:

Given the deterministic system (11) with the initial condition
𝜼(0), find a control ũ(t ) ∈ Ũ such that the cost function (15) is
minimised subject to the state inequality constraints (16), where
Ũ is the set which contains all control functions satisfying the
following constraints.

ũ ≤ ũ(t ) ≤ ̃̄u for all t ∈ [0, t f ],

where ũ = [uT uT ⋯ uT

⏟⎴⎴⏟⎴⎴⏟
N

]T and ̃̄u = [ūT ūT ⋯ ūT

⏟⎴⎴⏟⎴⎴⏟
N

]T .

By means of the control parametrisation method, the time
interval [0, t f ] is subdivided into several uniform or nonuniform
subintervals [tk−1, tk], k = 1, 2, … ,M , where tk , k = 0, … ,M ,
are such that the following conditions are satisfied.

0 = t0 ≤ t1 ≤⋯ ≤ tM−1 ≤ tM = tf. (17)

Let 𝜛[tk−1,tk )(t ) be the indicator function defined by:

𝜛[tk−1,tk )(t ) =

{
1, if t ∈ [tk−1, tk ),

0, otherwise.
(18)

Let ul (t ), l = 1, 2, … , q, be the l th element of the control
vector u(t ) ∈ ℜq , where u(t ) = [u1(t ), … , uq (t )]T , and for l =
1, 2, … , q, ul (t ) is in the form given below:

ul (t ) =
M∑

k=1

ul ,k(t )𝜛[tk−1,tk )(t ). (19)

Here, ul ,k(t ) denotes the value of the control component
ul (t ) in the kth time subinterval. In this paper, ul ,k(t ) is taken
to be a constant parameter 𝜎k

l
. In other words, ul (t ) is approxi-

mated as:

ul (t ) ≈
M∑

k=1

𝜎k
l
𝜛[tk−1,tk )(t ). (20)

Therefore, the control u(t ) is approximated as a piecewise
constant function given by

u(t ) ≈
M∑

k=1

𝝈k𝜛[tk−1,tk )(t ), (21)

where 𝝈k = [𝜎k
1 , 𝜎

k
2 , ⋯ , 𝜎k

q ]T , k = 1, 2, … ,M , and
𝝈 = [(𝝈1)T , (𝝈2)T , ⋯ , (𝝈M )T ]T .

Thus, the control ũ(t ) is approximated as

ũ(t ) ≈
M∑

k=1

𝝈̃k𝜛[tk−1,tk )(t ), (22)

where 𝝈̃k = [(𝝈k )T , (𝝈k )T , ⋯ , (𝝈k )T

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
N

]T , k = 1, 2, … ,M ,

and 𝝈̃ = [(𝝈̃1)T , (𝝈̃2)T , ⋯ , (𝝈̃M )T

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
N

]T .

With ũ(t ) restricted to take the form of Equations (22), the
cost function, the dynamic system and the constraints become,
respectively,

F̃0(𝝈̃) = Φ0

(
N∑

i=1

𝜼i (tf|𝝈̃)qi (tf )

)

+ ∫
tf

0
L̃0

(
t ,

N∑
i=1

𝜼i (t |𝝈̃)qi (t ), 𝝈̃

)
dt , (23)

𝜼̇(t ) = f (𝜼(t |𝝈̃)) + g(𝜼(t |𝝈̃))
M∑

k=1

𝝈̃k𝜛[tk−1,tk )(t )

+ (ΛT ⊗ In )𝜼(t |𝝈̃), t ∈ [0, tf], (24)

𝜼(0) = [𝜼T
1 (0) 𝜼T

2 (0) ⋯ 𝜼T
N

(0)]T , (25)

F̃v (𝝈̃) = hv

(
t ,

N∑
i=1

𝜼i (t |𝝈̃)qi (t )

)
≥ 0, v = 1, 2, … , v1, (26)

ũ ≤ 𝝈̃ ≤ ̃̄u, (27)

where L̃0(t ,
∑N

i=1 𝜼i (t |𝝈̃)qi (t ), 𝝈̃)=L0(t ,
∑N

i=1 𝜼i (t )qi (t ),∑N

i=1

∑M

k=1 𝝈̃
k
i qi (t )𝜛[tk−1,tk )(t )), 𝝈̃k

i denotes the ith block
vector of 𝝈̃k and 𝝈̃k

i = 𝝈
k, i = 1, 2, … ,N , 𝜼i (⋅|𝝈̃) rep-

resents the ith block vector of 𝜼(⋅|𝝈̃), where 𝜼(⋅|𝝈̃) =
[𝜼T

1 (⋅|𝝈), 𝜼T
2 (⋅|𝝈), … , 𝜼T

N
(⋅|𝝈)]T is the solution of the dynamic

system (24) corresponding to 𝝈̃, and qi (⋅) denotes the ith value
of the vector q(⋅) and q(⋅) = ΓT (⋅)P0.

Noted that constraints (26) are continuous state inequality
constraints. Clearly, constraints (26) are equivalent to the fol-
lowing equality constraints:

∫ tf

0
min

{
0, hv

(
t ,

N∑
i=1
𝜼

i
(t |𝝈̃)qi (t )

)}
dt = 0, v = 1, 2, … , v1.

(28)
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Since the function min{0, 𝛾} is non-smooth and non-
differentiable, it is approximated by a smooth and differential
function L𝜀 (𝛾), given by

L𝜀 (𝛾) =

⎧⎪⎪⎨⎪⎪⎩

𝛾, if 𝛾 < −𝜀,

−
(𝛾 − 𝜀)2

4𝜀
, if − 𝜀 ≤ 𝛾 ≤ 𝜀,

0, otherwise,

(29)

where 𝜀 > 0 is an adjustable parameter.
This approximation technique is referred to as constraint

transcription technique. See ref. [29]. Then, constraints (28) are
approximated as

F̃
𝜀,𝜌

v (𝝈̃) = 𝜌 + ∫
tf

0
L𝜀

(
hv

(
t ,

N∑
i=1

𝜼i (t |𝝈̃)qi (t )

))
dt

≥ 0, v = 1, 2, … , v1, (30)

where 𝜌 is a positive number.
We now consider the optimisation problem, which is an

approximate problem of (NP), as stated below:
Given the dynamic system (24) with the initial condition (25),

find a control parameter vector 𝝈̃ which satisfies the control
constraint (27) such that the cost function (23) is minimised
subject to the constraints (30). Let this problem be referred to
as Problem (CVP-NP).

Remark 2. It is noted that the optimal cost function value of
Problem (CVP-NP) is an approximate optimal cost value of
the original Problem (NP). In order to improve the accuracy of
the approximate optimal cost function value of Problem (CVP-
NP), the value of M should be increased. However, it will give
rise to more decision variables, and hence the computational
burden will increase.

3 GRADIENT FORMULAS

To develop a gradient-based optimisation method to solve
Problem (CVP-NP), the gradient formulas are required. The
gradient formula of the cost function (23) with respect to the
control parameter 𝝈̃ is given in the following theorem.

Theorem 1. The gradient formula of F̃0(𝝈̃) with respect to the control

parameter 𝝈̃ is given by

𝜕F̃0(𝝈̃)

𝜕𝝈̃
= ∫

tf

0

𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁0(t ))

𝜕𝝈̃
dt

= ∫
tf

0

⎧⎪⎪⎨⎪⎪⎩
𝜕L̃0

(
t ,

N∑
i=1
𝜼

i
(t |𝝈̃)qi (t ), 𝝈̃

)
𝜕𝝈̃

+𝝁T
0 (t )g(𝜼(t |𝝈̃))

𝜕
M∑

k=1
𝝈̃k𝜛[tk−1,tk ) (t )

𝜕𝝈̃

⎫⎪⎪⎬⎪⎪⎭
dt , t ∈ [0, tf],

(31)

where

S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁0(t )) = L̃0(t ,
∑N

i=1 𝜼i (t |𝝈̃)qi (t ), 𝝈̃) +

𝝁T
0 (t )( f (𝜼(t |𝝈̃)) + g(𝜼(t |𝝈̃))

∑M

k=1 𝝈̃
k𝜛[tk−1,tk )(t ) + (ΛT ⊗

In )𝜼(t |𝝈̃)), 𝜼i (⋅|𝝈̃) represents the ith block vector of 𝜼(⋅|𝝈̃), where

𝜼(⋅|𝝈̃) = [𝜼T
1 (⋅|𝝈), 𝜼T

2 (⋅|𝝈), … , 𝜼T
N

(⋅|𝝈)]T is the solution of the

dynamic system (24) corresponding to 𝝈̃, and qi (⋅) denotes the ith value

of the vector q(⋅) and q(⋅) = ΓT (⋅)P0, and 𝝁0(⋅) is the solution of the
following costate system:

𝝁̇0(t ) = −

(
𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁0(t ))

𝜕𝜼(t |𝝈̃)

)T

= −

⎛⎜⎜⎜⎜⎝
𝜕( f (𝜼(t |𝝈̃)) + g(𝜼(t |𝝈̃))

M∑
k=1
𝝈̃k𝜛[tk−1 ,tk ) (t ))

𝜕𝜼(t |𝝈̃)
+ ΛT ⊗ In

⎞⎟⎟⎟⎟⎠

T

𝝁0(t )

−

⎛⎜⎜⎜⎜⎝
𝜕L̃0

(
t ,

N∑
i=1
𝜼

i
(t |𝝈̃)qi (t ), 𝝈̃

)
𝜕𝜼(t |𝝈̃)

⎞⎟⎟⎟⎟⎠

T

,

(32)
with the terminal condition:

𝝁0(t f ) =

⎛⎜⎜⎜⎜⎝
𝜕Φ0

(
N∑

i=1
𝜼

i
(tf|𝝈̃)qi (tf )

)
𝜕𝜼(tf|𝝈̃)

⎞⎟⎟⎟⎟⎠

T

. (33)

Proof. Define

S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝉0(t ))

= L̃0

(
t ,

N∑
i=1

𝜼i (t |𝝈̃)qi (t ), 𝝈̃

)
+ 𝝉T

0 (t )𝜼̇(t |𝝈̃)

where 𝝉0(t ) is an absolutely continuous function yet to be deter-
mined. Then, F̃0(𝝈̃) can be written as:

F̃0(𝝈̃) = Φ0

(
N∑

i=1

𝜼i (tf|𝝈̃)qi (tf )

)
+ ∫

tf

0
S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝉0(t ))dt

− ∫
tf

0
𝝉T

0 (t )𝜼̇(t |𝝈̃)dt . (34)
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246 JIN ET AL.

Taking integration by parts of the last term gives

F̃0(𝝈̃) = Φ0

(
N∑

i=1

𝜼i (tf|𝝈̃)qi (tf )

)
+ ∫

tf

0
S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝉0(t ))dt

−𝝉T
0 (tf )𝜼(tf|𝝈̃) + 𝝉T

0 (0)𝜼(0) + ∫
tf

0
𝝉̇

T
0 (t )𝜼(t |𝝈̃)dt .

(35)

Thus,

𝜕F̃0(𝝈̃)

𝜕𝝈̃
= ∫

tf

0

𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝉0(t ))

𝜕𝝈̃
dt

+

⎛⎜⎜⎜⎜⎝
𝜕Φ0

(
N∑

i=1
𝜼

i
(tf|𝝈̃)qi (t f )

)
𝜕𝜼(tf|𝝈̃)

− 𝝉T
0 (tf )

⎞⎟⎟⎟⎟⎠
𝜕𝜼(tf|𝝈̃)

𝜕𝝈̃

+ ∫
tf

0

(
𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝉0(t ))

𝜕𝜼(t |𝝈̃)
+ 𝝉̇

T
0 (t )

)
𝜕𝜼(t |𝝈̃)

𝜕𝝈̃
dt .

(36)

Selecting 𝝉0(t ) = 𝝁0(t ), we obtain

𝜕F̃0(𝝈̃)

𝜕𝝈̃
= ∫

tf

0

𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁0(t ))

𝜕𝝈̃
dt

+

⎛⎜⎜⎜⎜⎝
𝜕Φ0

(
N∑

i=1
𝜼

i
(tf|𝝈̃)qi (tf )

)
𝜕𝜼(tf|𝝈̃)

− 𝝁T
0 (tf )

⎞⎟⎟⎟⎟⎠
𝜕𝜼(tf|𝝈̃)

𝜕𝝈̃

+ ∫
tf

0

(
𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝀0(t ))

𝜕𝜼(t |𝝈̃)
+ 𝝁̇

T

0 (t )

)
𝜕𝜼(t |𝝈̃)

𝜕𝝈̃
dt .

(37)

From the costate system (32) with the terminal condition
(33), the gradient formula of the function F̃0(𝝈̃) with respect
to control parameter 𝝈̃ is obtained readily as given below:

𝜕F̃0(𝝈̃)

𝜕𝝈̃
= ∫

tf

0

𝜕S0(t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁0(t ))

𝜕𝝈̃
dt (38)

This completes the proof. □

Next, we give the gradient formulas of the constraint func-
tions (30) with respect to the control parameter 𝝈̃.

Theorem 2. The gradient formulas of the constraints F̃
𝜀,𝜌

v (𝝈̃) with

respect to the control parameter 𝝈̃, v = 1, 2, … , v1, are given by

𝜕F̃
𝜀,𝜌

v (𝝈̃)

𝜕𝝈̃
= ∫

tf

0

𝜕Sv (t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁v (t ))

𝜕𝝈̃
dt

= ∫
tf

0
𝝁T

v (t )g(𝜼(t |𝝈̃))
𝜕
∑M

k=1 𝝈̃
k𝜛[tk−1,tk )(t )

𝜕𝝈̃
dt ,

t ∈ [0, tf], v = 1, 2, … , v1, (39)

where Sv (t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁v (t )) = L𝜀 (hv (t ,
∑N

i=1 𝜼i (t |𝝈̃)qi (t ))) +

𝝁T
v (t )( f (𝜼(t |𝝈̃)) + g(𝜼(t |𝝈̃))

∑M

k=1 𝝈̃
k𝜛[tk−1,tk )(t ) + (ΛT ⊗

In )𝜼(t |𝝈̃)), 𝜼i (⋅|𝝈̃) represents the ith block vector of 𝜼(⋅|𝝈̃), where

𝜼(⋅|𝝈̃) = [𝜼T
1 (⋅|𝝈), 𝜼T

2 (⋅|𝝈), … , 𝜼T
N

(⋅|𝝈)]T is the solution of the

dynamic system (24) corresponding to 𝝈̃, and qi (⋅) denotes the ith value

of the vector q(⋅) and q(⋅) = ΓT (⋅)P0, and 𝝁v (⋅) is the solution of the
following costate system:

𝝁̇v (t ) = −

(
𝜕Sv (t , 𝜼(t |𝝈̃), 𝝈̃, 𝝁v (t ))

𝜕𝜼(t |𝝈̃)

)T

= −

⎛⎜⎜⎜⎜⎝
𝜕( f (𝜼(t |𝝈̃)) + g(𝜼(t |𝝈̃))

M∑
k=1

𝝈̃k𝜛[tk−1 ,tk ) (t ))

𝜕𝜼(t |𝝈̃)
+ ΛT ⊗ In

⎞⎟⎟⎟⎟⎠

T

𝝁v (t )

−

⎛⎜⎜⎜⎜⎜⎝
𝜕L𝜀

(
hv

(
t ,

N∑
i=1
𝜼i (t |𝝈̃)qi (t )

))

𝜕hv

(
t ,

N∑
i=1
𝜼i (t |𝝈̃)qi (t )

) 𝜕hv

(
t ,

N∑
i=1
𝜼i (t |𝝈̃)qi (t )

)
𝜕𝜼(t |𝝈̃)

⎞⎟⎟⎟⎟⎟⎠

T

,

(40)

with the terminal condition:

𝝁v (tf ) = [0, 0, ⋯ , 0
⏟⎴⎴⏟⎴⎴⏟

n∗N

]T . (41)

Proof. The proof is similar to that given for Theorem 3.1. Thus,
we omit it. □

4 NUMERICAL EXAMPLE

In this section, we consider a practical application of a bioreac-
tor tank model with three Markov jump parameters reported in
ref. [40], which is described by

ẋ1(t ) = −u1(t )x1(t ) + x1(t )(1 − x2(t )) exp

(
x2(t )
𝛼

)
,

ẋ2(t ) = −u1(t )x2(t ) +
(1 + 𝛽i )x1(t )(1 − x2(t )) exp

(
x2 (t )

𝛼

)
1 + 𝛽i − x2(t )

,

(42)

where x1(t ) and x2(t ) represent the number of cells and the
nutrient concentration at time t , respectively. The input sig-
nal u(t ) represents the flow rate through the tank. The sys-
tem parameters 𝛼 and 𝛽i stand for the nutrient inhibition con-
stant and the growth rate, respectively. In this system, the state
variables x1(t ) and x2(t ) are assumed to evolve on the inter-
vals [0.0001,0.9999], while the control variable u(t ) is restricted
to the interval [0,2]. The Markov jump parameters are set as
𝛽1 = 0.02, 𝛽2 = 0.03, 𝛽3 = 0.04, and system parameter is given
as 𝛼 = 0.48. The terminal time tf = 0.5.
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JIN ET AL. 247

The transition rate matrix of the bioreactor tank model is
given by

Λ =

⎡⎢⎢⎢⎣
−1 0.5 0.5

1.5 −2 0.5

1 1 −2

⎤⎥⎥⎥⎦.
Then, we can obtain the transition probability matrix Γ(t )

by solving the backward Kolmogorov differential equation (14)
with the initial condition Γ(0) = I3. The detailed expressions of
the matrix are given as below.

Γ(t ) =

⎡⎢⎢⎢⎣
𝜋11(t ) 𝜋12(t ) 𝜋13(t )

𝜋21(t ) 𝜋22(t ) 𝜋23(t )

𝜋31(t ) 𝜋32(t ) 𝜋33(t )

⎤⎥⎥⎥⎦,
where 𝜋11(t ) =

14+11 exp(−5t∕2)

25
+

t exp(−5t∕2)

10
, 𝜋12(t ) =

6−6 exp(−5t∕2)

25
−

t exp(−5t∕2)

10
, 𝜋13(t ) =

1−exp(−5t∕2)

5
, 𝜋21(t ) =

14−14 exp(−5t∕2)

25
+

t exp(−5t∕2)

10
, 𝜋22(t ) =

6+19 exp(−5t∕2)

25
−

t exp(−5t∕2)

10
, 𝜋23(t ) =

1−exp(−5t∕2)

5
, 𝜋31(t ) =

14−14 exp(−5t∕2)

25
−

2t exp(−5t∕2)

5
, 𝜋32(t ) =

6−6 exp(−5t∕2)

25
+

2t exp(−5t∕2)

5
, 𝜋33(t ) =

1+4 exp(−5t∕2)

5
.

The initial mode probability distribution is

P0 = [1 0 0]T .

Our objective is to maximise the nutrient concentration x2(tf )
(corresponding to minimising −x2(tf )) at the terminal time tf =
0.5.

Thus, consider the optimisation problem described as fol-
lows:

Given system (42) with initial condition [x1(0), x2(0)]T =
[0.8, 0.5]T , find a control u(t ) satisfying the constraints

0 ≤ u(t ) ≤ 2 for t ∈ [0, 0.5]

such that the cost function

F0 = E {x2(0.5)}

is maximised subject to the state constraints

0.0001 ≤ E {x1(t )} ≤ 0.9999,

0.0001 ≤ E {x2(t )} ≤ 0.9999.

By applying derandomisation method followed by the control
parametrisation technique, we obtain the corresponding version
of Problem (CVP-NP). It is then solved using the optimisation
algorithm where the initial guess of the control is u(t ) = 0.1.

FIGURE 1 One evolution of system mode

FIGURE 2 Trajectory of the cells number

Here, the time interval is subdivided into M = 20. The max-
imum value of the cost function at the terminal time tf = 0.5
obtained is F0 = E {x2(0.5)} = 0.699461553.

Figures 1–4 show the evolution of system mode, the trajec-
tory of the cells number, the trajectory of the nutrient concen-
tration, and the input trajectory.

To verify the validity of the obtained control, we test run 800
times of simulations under the obtained control. The optimal
values of the cost function of the 800 test runs is mostly concen-
trated around 0.6945, which is relatively close to the obtained
optimal value.

Figure 5 shows the histogram of the results of the test runs,
and most of the results are distributed near the obtained opti-
mal results of Problem (CVP-NP), which further indicates the
effectiveness of the proposed method.
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248 JIN ET AL.

FIGURE 3 Trajectory of the nutrient concentration

FIGURE 4 Trajectory of the input

FIGURE 5 Results of the test runs

5 CONCLUSION

This paper considered the optimal control computation for
an optimal control problem described by a nonlinear Markov
jump system with continuous state inequality constraints. By
the utilisation of a derandomisation technique, a representa-
tive deterministic optimisation problem is obtained. On this
basis, we obtained an equivalent deterministic optimal con-
trol problem. Then, based on the control parametrisation tech-
nique, an approximate finite dimensional optimisation problem
is obtained, which can be computed numerically using gradient-
based optimisation methods. For this, the gradient formulas
of the cost function and the constraint functions are derived.
Finally, a real-world practical problem involving a bioreactor
tank model is solved using the method proposed.
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