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ABSTRACT
This paper considers an optimal train control problem with two challenging, non-
standard constraints: a speed constraint that is piecewise-constant with respect to
the train’s position, and control constraints that are non-smooth functions of the
train’s speed. We formulate this problem as an optimal switching control prob-
lem in which the mode switching times are decision variables to be optimized, and
the track gradient and speed limit in each mode are constant. Then, using control
parameterization and time-scaling techniques, we approximate the switching con-
trol problem by a finite-dimensional optimization problem, which is still subject
to the challenging speed limit constraint (imposed continuously during each mode)
and the non-smooth control constraints. We show that the speed constraint can
be transformed into a finite number of point constraints. We also show that the
non-smooth control constraints can be approximated by a sequence of conventional
(smooth) inequality constraints. The resulting approximate problem can be viewed
as a nonlinear programming problem and solved using gradient-based optimization
algorithms, where the gradients of the cost and constraint functions are computed
via the sensitivity method. A case study using data for a real subway line shows
that the proposed method yields a realistic optimal control profile without the un-
desirable control fluctuations that can occur with the pseudospectral method.

KEYWORDS
Optimal train control; switched system; control parameterization; time-scaling
transformation; state-dependent control constraint

1. Introduction1

Rail transit systems consume vast amounts of energy, of which 70-90% is due to train2

traction [4]. Accordingly, there is now a large body of work on optimal train driving3

strategies for the purpose of reducing tractive energy consumption. The aim is to find4

the optimal control law—that is, the optimal sequence of tractive and braking forces5

applied to the train—such that the tractive energy consumption is minimized while6

the train moves from one station to the next within a given time frame. In general,7

the railway line consists of various segments with different gradients and thus the line8

resistance varies along the track. Moreover, when the train is moving, the running9

resistance—normally a quadratic function of speed—also affects the train, resulting in10

motion that is governed by complex nonlinear dynamics. There are also typically two11
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core constraints that must be satisfied: the train’s speed is prohibited from exceeding1

the speed limit in each track segment because of operational safety, and the tractive2

and braking forces must be restricted within maximum physical limits, which may3

depend nonlinearly on the train’s speed. Therefore, obtaining the optimal train driving4

strategy requires solving a nonlinear optimal control problem with complex state and5

control constraints.6

There are two types of dynamic models for describing the train’s motion in op-7

timal train control: time-based models [2, 5, 6, 18], where time is the independent8

variable of the system, and position-based models [1, 7, 10, 16, 17, 20], where position9

is the independent variable. Since the line resistance and speed limit constraints are10

both functions of position, the latter models are more common in the literature. They11

lead to an optimal control problem in standard form that can be readily solved, either12

analytically with the Pontryagin maximum principle [1, 7, 10] or numerically by imple-13

menting various approximation schemes [16, 17, 20]. However, position-based models14

usually contain the reciprocal of the train’s speed or kinetic energy, which means the15

differential equations are undefined when the speed or kinetic energy equals zero. This16

can lead to numerical difficulties when solving the train differential equations near the17

initial point, where the speed and kinetic energy are indeed zero because the train18

starts from rest [7, 16, 17, 20].19

Time-based models do not include a reciprocal term and hence they are unaffected20

by these numerical difficulties. However, they lead to a more complex optimal control21

problem with three non-standard features, as we now describe. First, the line resis-22

tance, which governs the train dynamic equations, is piecewise constant (and thus23

non-smooth) with respect to the train’s position, which is a state variable in time-24

based models. Second, the speed constraint is also piecewise constant with respect to25

the train’s position because the speed limit can change along the track. Third, the up-26

per bounds for the tractive and braking controls both depend on the train’s speed, with27

different profiles for low and high speeds and a non-smooth transition point [17, 18].28

In several previous studies using time-based train control models, the three non-29

standard features described above were circumvented by simplifying the line condi-30

tions, running resistance or state constraints [2, 5, 6]. In [18, 19], the full model with-31

out simplifications—including varying line gradients, piecewise-constant speed limits,32

and state-dependent control constraints—was tackled using the Gauss pseudospectral33

method (GPM). However, the control profiles obtained by the GPM and reported in34

[18, 19] fluctuate rapidly in some sections along the track, making them unrealistic to35

implement in practice. Similar fluctuations appear in [16], where the GPM was applied36

to solve the optimal train control problem for a position-based model. As explained37

in [18, 19], these fluctuations are likely caused by the presence of singular arcs in the38

respective optimal control problems [11, 12].39

Given the undesirable control fluctuations experienced with the pseudospectral40

method, in this paper we propose an alternative approach based on the control param-41

eterization and time-scaling methods [8, 14, 15]. We first formulate the optimal train42

control problem (with time-based model) as an optimal switching control problem,43

where the line gradient and speed limit are constant within each subsystem but can44

change from subsystem to subsystem. Then, by applying control parameterization and45

the time-scaling transformation to each subsystem, the tractive and braking control46

variables are approximated by piecewise constant functions whose heights and switch-47

ing time points are regarded as decision variables. In this way, the optimal train control48

problem is approximated by a constrained finite-dimensional optimization problem,49

albeit one with two complex sets of constraints: the speed limit constraints and the50
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non-smooth bound constraints governing the tractive and braking controls. To handle1

the speed constraints, we use the analytical solution of the train differential equations2

to equivalently convert these constraints (essentially an infinite number of point con-3

straints) into a finite number of point constraints. To handle the non-smooth control4

constraints, we first smooth the sharp corner between the upper bound profiles for5

low and high speeds to yield a set of approximate constraints, which are then trans-6

formed into a sequence of conventional inequality constraints. The resulting optimiza-7

tion problem can be viewed as a nonlinear programming (NLP) problem and solved8

by gradient-based optimization algorithms, such as the sequential quadratic program-9

ming (SQP) algorithm. Gradient formulae for the cost and constraint functions are10

derived using the sensitivity method. The method has been tested using data for the11

Yizhuang subway line in Beijing and the results show that the proposed approach12

can efficiently solve the complex optimal train control problem, with all constraints13

satisfied and without any control fluctuations.14

The rest of this paper is organized as follows. Section 2 introduces the time-based15

train dynamics and the corresponding optimal control problem. Then, Section 3 intro-16

duces an equivalent switched system formulation for the train control problem. Based17

on the switched system formulation, Section 4 presents the key computational proce-18

dures for generating the optimal control profiles for the tractive and braking forces.19

Section 5 demonstrates the performance of our method using data for the Yizhuang20

line and Section 6 concludes the paper.21

2. The optimal train control problem22

The motion of a point-mass train with time as the independent variable can be de-
scribed as follows [10, 19]:

ẋ1(t) = x2(t), (1)

ẋ2(t) =
1

mρ

[
u1(t) + u2(t)− rb(x2(t))− rl(x1(t))

]
, (2)

and23

x1(0) = 0, x2(0) = 0, (3)

where x1(t) is the train’s position along the track at time t, x2(t) is the train’s speed24

at time t, m is the train’s mass, ρ is a factor that depends on the train’s rotary mass,25

u1(t) is the train’s tractive force, u2(t) is the train’s braking force, rb(x2(t)) is the basic26

resistance caused by mechanical friction and air, and rl(x1(t)) is the line resistance27

caused by gravity.28

In general, the control forces u1(t) and u2(t) are continuous subject to the following
constraints:

0 ≤ u1(t) ≤ umax
1 (x2(t)), (4)

−umax
2 (x2(t)) ≤ u2(t) ≤ 0, (5)

where both umax
1 (x2(t)) and umax

2 (x2(t)) are non-smooth functions of the speed. The29

precise formulas for umax
1 (x2) and umax

2 (x2) depend on the specific train under consid-30

eration, but they typically have the shape shown in Fig. 1, where there are two distinct31
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Figure 1. Shape of the upper bounds for the tractive and braking forces.

profiles for low and high speeds with a non-smooth transition point. The behavior at1

low speeds is less variable and normally linear. The basic resistance rb(x2) is described2

by the Davis formula [3] as given below:3

rb(x2) = a+ bx2 + cx2
2,

where a ≥ 0, b ≥ 0 and c > 0 are coefficients determined by the train’s characteristics.4

Furthermore, the line resistance can be expressed as:5

rl(x1) = mg sinβ(x1) ≈ mg tanβ(x1), (6)

where g is the acceleration due to gravity, β(x1) is the slope angle at x1 (measured6

anti-clockwise from the horizontal), and tanβ(x1) is the line gradient at x1. Note that7

β(x1) is positive along uphill sections of the track and negative along downhill sections.8

See Fig. 2 for a diagram showing the forces acting on the train. The approximation9

in (6), which holds on non-steep tracks where β(x1) is not too far from zero, is often10

used when the railway line data is expressed in terms of track gradients.

Run Direction

β

u1(t)

rb(x2)

u2(t)

mg

rl(x1)

Figure 2. Forces acting on the train.
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β(x1) > 0 β(x1) < 0

Figure 3. An example of a track with three line gradients and four speed limits.

The train’s speed is subject to the following bound constraint:1

0 ≤ x2(t) ≤ Vmax(x1(t)), (7)

where Vmax(x1(t)) is a piecewise-constant function with respect to x1(t), defining sep-2

arate speed limits along different sections of the track. A simple scenario involving3

three line gradients and four speed limits is shown in Fig. 3.4

Let T be the trip time determined by the timetable. The position and speed at the5

terminal point of the route must satisfy6

x1(T ) = L, x2(T ) = 0, (8)

where L is the length of the route. The tractive energy consumed by the train during7

the trip is given by8

J =

∫ T

0
u1(t)x2(t)dt. (9)

Then, the optimal train control problem can be formally stated as follows.9

Problem P. Given the train dynamics (1)-(2) with initial conditions (3) and terminal10

conditions (8), find a control law u = [u1, u2]>, such that the objective function (9) is11

minimized subject to the control constraints (4)-(5) and the state constraint (7).12

3. Switched system model13

Since the track consists of a finite set of straight-line gradients, the line resistance14

rl(x1) is piecewise-constant with respect to x1. The upper speed limit Vmax(x1) is15

also piecewise-constant because different segments of track may have different speed16

limits. Furthermore, the control boundary functions umax
1 (x2) and umax

2 (x2) are speed-17

dependent and non-smooth. These characteristics make the optimal train control prob-18
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lem difficult to solve using traditional optimal control methods. In this section, we will1

re-formulate Problem P as a switched system optimization problem.2

To begin, let the track [0, L] be divided into N subsections in such a way that the3

line gradient and speed limit in each subsection are constant. The dividing positions4

along the line satisfy5

0 = x0
1 < x1

1 < · · · < xN−1
1 < xN1 = L,

where xi1, i = 1, . . . , N − 1, are fixed switching points, and x0
1 and xN1 represent the6

start and end points of the line, respectively. Let ti denote the corresponding switching7

time at xi1, i = 1, . . . , N − 1. Then ti, i = 1, . . . , N − 1, satisfy8

x1(ti) = xi1, i = 1, . . . , N, (10)

and9

0 = t0 < t1 < · · · < tN−1 < tN = T.

Equation (10) can be viewed as a set of interior point constraints for the new decision10

variables ti, i = 1, . . . , N − 1.11

On each interval [ti−1, ti], the line resistance rl(x1(t)) is constant because the track
gradient is constant. Thus, the original system (1)-(2) can be viewed as a switched
system:

ẋ1(t) = x2(t), t ∈ [ti−1, ti), (11)

ẋ2(t) =
1

mρ

[
u1(t) + u2(t)− rb(x2(t))− ril

]
, t ∈ [ti−1, ti), (12)

where ril = rl(x1(t)), t ∈ [ti−1, ti), is the constant line resistance in the ith subsystem.12

The state constraint (7) becomes13

0 ≤ x2(t) ≤ V i
max, t ∈ [ti−1, ti), (13)

where V i
max = Vmax(x1(t)), t ∈ [ti−1, ti), is the constant speed limit in the ith subsys-14

tem. The cost function (9) can then be expressed as15

JN =

N∑
i=1

∫ ti

ti−1

u1(t)x2(t)dt. (14)

Thus, Problem P can be restated as the following switching control problem, in which16

the line resistance and speed limits are constant in each subsystem.17

Problem PN . Given the switched system (11)-(12) with the initial conditions (3)18

and terminal conditions (8), find a control law u = [u1, u2]> and switching times19

ti, i = 1, . . . , N − 1, such that the objective function (14) is minimized subject to the20

control constraints (4)-(5), interior point constraints (10), and state constraints (13).21
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4. Solution procedure1

4.1. Control parameterization2

To solve Problem PN , we partition each subsystem [xi−1
1 , xi1] into a set of smaller3

subsections [xi,j−1
1 , xi,j1 ], j = 1, . . . , Ni, of equal length satisfying4

xi−1
1 = xi,01 < xi,11 < · · · < xi,Ni−1

1 < xi,Ni

1 = xi1,

where Ni is the number of subsections and xi,j1 represents the jth dividing point in5

[xi−1
1 , xi1]. The value of Ni can be chosen as6

Ni =
⌈
(xi1 − xi−1

1 )/Lb
⌉
,

where d·e is the ceiling function and Lb is a given base length. In this way, the length7

of each subsection never exceeds Lb, since (xi1 − x
i−1
1 )/Ni ≤ Lb.8

Denote the switching time point at xi,j1 as tji . Then9

ti−1 = t0i < t1i < · · · < tNi−1
i < tNi

i = ti.

Thus, the time interval [ti−1, ti] is also partitioned into Ni subintervals [tj−1
i , tji ], j =10

1, . . . , Ni.11

Let Q =
∑N

i=1Ni and τN1+···+Ni−1+j = tji , j = 0, . . . , Ni, i = 1, . . . , N . Clearly,12

τ0 = 0 and τQ = T . The control function u can be approximated by a piecewise13

constant function in the form given below:14

u(t) ≈ uQ(t) =

Q∑
k=1

δkχ[τk−1,τk)(t), (15)

where δk = [δk1 , δ
k
2 ]> is the constant control value on the kth subinterval [τk−1, τk) and15

χ[τk−1,τk)(t) is the characteristic function defined by16

χ[τk−1,τk)(t) =

{
1, if t ∈ [τk−1, τk),

0, if t /∈ [τk−1, τk).

This is the control parameterization approach for approximating an optimal control17

problem by a finite-dimensional optimization problem [8, 14]. Obviously, smaller values18

of Lb lead to larger values of Q, and the approximation accuracy of uQ(t) improves as19

Q→∞.20

With u(t) taking the form of (15), the switched system (11)-(12) becomes

ẋ1(t) = x2(t), t ∈ [τk−1, τk), (16)

ẋ2(t) =
1

mρ

[
δk1 + δk2 − rb(x2(t))− r̃kl

]
, t ∈ [τk−1, τk), (17)

where r̃kl = rl(x1(t)), t ∈ [τk−1, τk), is the constant line resistance during the kth21

subinterval.22
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The control bound constraints (4)-(5) become

0 ≤ δk1 ≤ umax
1 (x2(t)), t ∈ [τk−1, τk), k = 1, . . . , Q, (18)

−umax
2 (x2(t)) ≤ δk2 ≤ 0, t ∈ [τk−1, τk), k = 1, . . . , Q, (19)

and the state constraint (13) becomes1

0 ≤ x2(t) ≤ Ṽ k
max, t ∈ [τk−1, τk), (20)

where Ṽ k
max = Vmax(x1(t)), t ∈ [τk−1, τk), is the constant speed limit in the kth subin-2

terval.3

The cost function (14) now takes the form given below:4

JN,Q =
∑

sQk=1

∫ τk

τk−1

δk1x2(t)dt =

Q∑
k=1

δk1
[
x1(τk)− x1(τk−1)

]
. (21)

Let x̃
N1+···+Ni−1+j
1 = xi,j1 for each i = 1, . . . , N , j = 0, . . . , Ni. Then x̃k1 is the position5

at switching time point τk and thus we have the interior-point constraints6

x1(τk) = x̃k1, k = 1, . . . , Q, (22)

where each τk is a decision variable to be determined.7

Clearly, x̃k1 > x̃k−1
1 and thus τk − τk−1 > 0, since the train cannot instantaneously8

move between two distinct points. In fact, given that the maximum speed during the9

kth subsection is Ṽ k
max,10

τk − τk−1 ≥
x̃k1 − x̃

k−1
1

Ṽ k
max

> 0, k = 1, . . . , Q. (23)

Problem PN can then be rewritten as follows.11

Problem PN,Q. Given the dynamics (16)-(17) with the initial conditions (3) and12

terminal conditions (8), choose δ = [(δ1)>, . . . , (δQ)>]> and τ = [τ1, . . . , τQ]>, such13

that the cost function (21) is minimized subject to the control bound constraints14

(18)-(19), state constraints (20), interior point constraints (22) and switching time15

constraints (23).16

In Problem PN,Q, the control values δ and switching times τ are regarded as decision17

parameters to be determined optimally. To solve this problem using gradient-based op-18

timization techniques, the derivatives of the cost and constraint functions with respect19

to δ and τ are needed. However, as discussed in [8], it is difficult to obtain and im-20

plement the derivatives with respect to the switching times τk, k = 1, . . . , Q. Thus, in21

the next subsection, we will employ the time-scaling transformation [15] to map the22

variable switching time points in [0, T ] into fixed time points in the new time horizon23

[0, Q].24
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4.2. Time-scaling transformation1

Define θk = τk − τk−1, k = 1, . . . , Q, and consider the following time-scaling transfor-2

mation [15]:3

t(s) =


bsc∑
l=1

θl + θbsc+1(s− bsc), if s ∈ [0, Q),

T, if s = Q,

(24)

where s ∈ [0, Q] is a new time variable and b·c is the floor function. Evaluating (24)4

at s = k gives5

t(k) =

k∑
l=1

θl = τk, k = 1, . . . , Q,

and thus the time-scaling transformation maps s = k to the kth switching time t = τk.
Let θ = [θ1, . . . , θQ]> be a new decision vector replacing τ = [τ1, . . . , τQ]>. Then the
following constraints are required:

θk = τk − τk−1 ≥
x̃k1 − x̃

k−1
1

Ṽ k
max

> 0, k = 1, . . . , Q, (25)

Q∑
k=1

θk = T. (26)

Under transformation (24), the state variables x1(t) and x2(t) become6

y1(s) = x1(t(s)), y2(s) = x2(t(s)), s ∈ [0, Q].

Thus, system (16)-(17) can be recast as

ẏ1(s) = θky2(s), s ∈ [k − 1, k), (27)

ẏ2(s) =
θk
mρ

[
δk1 + δk2 − rb(y2(s))− r̃kl

]
, s ∈ [k − 1, k), (28)

for k = 1, . . . , Q, subject to the initial conditions7

y1(0) = 0, y2(0) = 0, (29)

and terminal conditions8

y1(Q) = L, y2(Q) = 0. (30)

The state constraints (20) become9

0 ≤ y2(s) ≤ Ṽ k
max, s ∈ [k − 1, k), k = 1, . . . , Q, (31)
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and the control bound constraints (18)-(19) become

0 ≤ δk1 ≤ umax
1 (y2(s)), s ∈ [k − 1, k), k = 1, . . . , Q, (32)

−umax
2 (y2(s)) ≤ δk2 ≤ 0, s ∈ [k − 1, k), k = 1, . . . , Q. (33)

Furthermore, the interior point constraints (22) become1

y1(k) = x̃k1, k = 1, . . . , Q. (34)

Finally, the cost function (21) is transformed into2

GN,Q =

Q∑
k=1

∫ k

k−1
θkδ

k
1y2(s)ds =

Q∑
k=1

δk1
[
y1(k)− y1(k − 1)

]
. (35)

Now, Problem PN,Q can be reformulated equivalently as follows.3

Problem SN,Q. Given the system (27)-(28) with initial conditions (29), find δ and4

θ such that (35) is minimized subject to the constraints (25)-(26) and (30)-(34).5

Problem SN,Q is a finite-dimensional optimization problem with δ and θ as decision6

variables. Although simpler than Problem PN,Q (which has variable switching times),7

Problem SN,Q still has two features that prevent it from being solved directly using8

standard gradient-based optimization techniques:9

(a) The constraints (31) restrict the state variable y2(s) at an infinite number of10

time points in the horizon [0, Q]; and11

(b) The control bound constraints (32) and (33) are state-dependent and non-12

smooth.13

Regarding issue (a), state constraints like (31) are typically handled using constraint14

transcription [8, 14] or exact penalty methods [9]. However, these methods introduce15

approximations and require manually adjusting at least one approximation parameter16

to ensure convergence. In the next section, we show that such approximation techniques17

are unnecessary because y2(s) is monotonic on each subinterval and thus the infinite18

number of point constraints in (31) can be expressed equivalently as a finite set of19

point constraints.20

Regarding issue (b), constraints (32) and (33) are more complex than (31) because21

they include both the control and the state and are defined by non-smooth functions22

(recall Fig. 1). Nevertheless, in Section 4.4, we show how to handle these non-smooth23

constraints by introducing a smooth approximation scheme.24

4.3. State constraints25

Since the basic resistance has the form rb(y2(s)) = a+ by2(s) + cy2
2(s), equation (28)26

can be rewritten as follows:27

ẏ2(s) =
θk
mρ

(δk1 + δk2 − a− by2(s)− cy2
2(s)− r̃kl ), s ∈ [k − 1, k].

10



By completing the square on the right-hand side, this equation becomes1

ẏ2(s) = −θkc
mρ

((
y2(s) +

b

2c

)2
+
ωk
4c2

)
, s ∈ [k − 1, k], (36)

where2

ωk = 4c
(
a+ r̃kl − δk1 − δk2

)
− b2.

Thus, if ωk ≥ 0, then3

ẏ2(s) = −θkc
mρ

((
y2(s) +

b

2c

)2
+
ωk
4c2

)
≤ 0, s ∈ [k − 1, k],

which implies that y2(s) is non-increasing on [k − 1, k]. This leads to the following4

result when ωk ≥ 0:5

0 ≤ y2(s) ≤ Ṽ k
max, s ∈ [k − 1, k] ⇐⇒ y2(k) ≥ 0, y2(k − 1) ≤ Ṽ k

max,

which shows that the state constraint (31) for the kth subsystem is equivalent to just6

two point constraints, one at either end of the subsystem.7

To deduce a similar result when ωk < 0, we need the analytical solution for y2(s),8

which was derived in [19]. The analytical solution depends critically on the sign of ωk9

and in Appendix A we improve the results in [19] and give a thorough analysis of each10

case ωk = 0, ωk > 0, and ωk < 0. In particular, when ωk < 0, the solution of (36) is11

y2(s) =

√
|ωk|φ+

k (y2(k − 1))

cφ+
k (y2(k − 1))− cφ−k (y2(k − 1)) exp

(
−θk

√
|ωk|(s− k + 1)/mρ

)−√|ωk|
2c
− b

2c
,

where12

φ±k (y2(k − 1)) = 2cy2(k − 1) + b±
√
|ωk|.

Clearly, y2(s) is non-increasing on [k − 1, k] if φ−k (y2(k − 1)) ≥ 0 and non-decreasing13

if φ−k (y2(k − 1)) < 0. Hence,14

0 ≤ y2(s) ≤ Ṽ k
max, s ∈ [k−1, k] ⇐⇒

{
y2(k) ≥ 0, y2(k − 1) ≤ Ṽ k

max, if φ−k (y2(k − 1)) ≥ 0,

y2(k) ≤ Ṽ k
max, y2(k − 1) ≥ 0, if φ−k (y2(k − 1)) < 0.

The above arguments lead to the following proposition.15

Proposition 4.1. State constraint (31) is equivalent to the following interior point16

constraints:17

0 ≤ y2(k) ≤ min{Ṽ k
max, Ṽ

k+1
max }, k = 1, . . . , Q− 1. (37)

Proposition 4.1 shows that the infinite-index state constraints (31) for Problem SN,Q18

can be converted into 2× (Q−1) interior point constraints. With this transformation,19

we can avoid the well-known constraint transcription method, which is the standard20
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approach for handling state constraints and requires introducing an approximation1

governed by two adjustable parameters.2

4.4. Non-smooth control bound constraints3

Recall from Fig. 1 that the bounds for the tractive and braking controls each consist
of two regimes, one for low speeds and one for high speeds, with the regimes joining
at a non-smooth transition point. For example, the bound constraints in [18] are

umax
1 (y2) =

{
310, if 0 ≤ y2 ≤ 36,

310− 5(y2 − 36), if 36 < y2 ≤ 80,
(38)

umax
2 (y2) =

{
260, if 0 ≤ y2 ≤ 60,

260− 5(y2 − 60), if 60 < y2 ≤ 80,
(39)

where umax
1 (y2) and umax

2 (y2) are measured in kN and y2 is measured in km/h.4

In general, the control bounds umax
1 (y2) and umax

2 (y2) are non-increasing functions5

of y2 that are smooth everywhere except at the respective transition points p∗1 and p∗2,6

which mark the transition from low to high speeds. In the example above, p∗1 = 367

and p∗2 = 60.8

The sharp corners at p∗1 and p∗2 will pose challenges for gradient-based optimization9

methods. Thus, we approximate umax
1 (y2) and umax

2 (y2) as follows:10

umax
1 (y2) ≈ umax

1,α (y2) =

{
umax

1 (y2), if y2 < p∗1 − α, y2 > p∗1 + α,

ψ1,α(y2), if p∗1 − α ≤ y2 ≤ p∗1 + α,

umax
2 (y2) ≈ umax

2,α (y2) =

{
umax

2 (y2), if y2 < p∗2 − α, y2 > p∗2 + α,

ψ2,α(y2), if p∗2 − α ≤ y2 ≤ p∗2 + α,

where α is a small positive number, and ψi,α(y2), i = 1, 2, are cubic arcs satisfying11

ψi,α(p∗i − α) = umax
i (p∗i − α), ψi,α(p∗i + α) = umax

i (p∗i + α),

and12

dψi,α
dy2

∣∣∣∣
p∗i−α

=
dumax

i

dy2

∣∣∣∣
p∗i−α

,
dψi,α
dy2

∣∣∣∣
p∗i +α

=
dumax

i

dy2

∣∣∣∣
p∗i +α

.

These conditions ensure that umax
1,α (y2) and umax

2,α (y2) are continuously differentiable on13

[0,+∞). The approximations umax
1,α (y2) and umax

2,α (y2) for (38) and (39) are shown in14

Fig. 4. With the approximations above, the upper constraints (32) become15

δk1 ≤ umax
1,α (y2(s)), s ∈ [k − 1, k), k = 1, . . . , Q,

and the lower constraints (33) can be approximated as16

−umax
2,α (y2(s)) ≤ δk2 , s ∈ [k − 1, k), k = 1, . . . , Q.

12
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Figure 4. Shapes of the original (non-smooth) and approximate (smooth) control bounds for the locomotive
in [18].

Rearranging the above inequalities yields

hk1(s) = δk1 − umax
1,α (y2(s)) ≤ 0, s ∈ [k − 1, k), (40)

hk2(s) = −δk2 − umax
2,α (y2(s)) ≤ 0, s ∈ [k − 1, k), (41)

where k = 1, . . . , Q. These are joint state-control constraints imposed at an infinite
number of time points. By using the constraint transcription method [8, 14], constraints
(40) and (41) can be approximated by the following integral constraints:∫ k

k−1
θkϕε(h

k
1(s))ds ≤ γ, k = 1, . . . , Q, (42)∫ k

k−1
θkϕε(h

k
2(s))ds ≤ γ, k = 1, . . . , Q, (43)

where ϕε(·) is defined by1

ϕε(η) =


η, if η > ε,

(η + ε)2/4ε, if η ∈ [−ε, ε],
0, if η < −ε,

and γ > 0 and ε > 0 are adjustable parameters.2

Thus, the control bound constraints (32)-(33) have been approximated by the con-3

ventional constraints (42)-(43). This leads to the following approximation for Problem4

SN,Q.5

13



Problem Sα,ε,γN,Q . Given the system (27)-(28) with initial conditions (29), find δ and1

θ such that (35) is minimized subject to the constraints (25)-(26), (30), (34), (37),2

and (42)-(43).3

In principal, this problem can be viewed as a nonlinear programming problem. To4

solve such problems efficiently using existing nonlinear programming methods (e.g.,5

sequential quadratic programming), the gradients of the cost and constraint functions6

with respect to δ and θ are required. We derive these gradients in the next subsection7

using the sensitivity method [8, 13].8

4.5. Gradient formulae9

To calculate the gradients of the cost and constraint functions with respect to δ and
θ, we first differentiate (28) to yield the the following linear differential equations for
the sensitivity functions ∂y2(s)/∂δqi and ∂y2(s)/∂θq on each subinterval [k − 1, k]:

d

ds

(
∂y2(s)

∂δqi

)
=

θk
mρ

(
σkq − b

∂y2(s)

∂δqi
− 2cy2(s)

∂y2(s)

∂δqi

)
, i = 1, 2, (44)

d

ds

(
∂y2(s)

∂θq

)
= − θk

mρ

(
b
∂y2(s)

∂θq
+ 2cy2(s)

∂y2(s)

∂θq

)
(45)

+
σkq
mρ

(
δk1 + δk2 − a− by2(s)− cy2

2(s)− r̃kl
)
,

where10

σkq =

{
1, if k = q,

0, if k 6= q.

The initial conditions for (44)-(45) are11

∂y2(s)

∂δqi
= 0,

∂y2(s)

∂θq
= 0, s ∈ [0, q − 1].

Using the integrating factor method, the solutions of (44)-(45) satisfy

Ik(s)
∂y2(s)

∂δqi
=
∂y2(k − 1)

∂δqi
+
θkσkq
mρ

∫ s

k−1
Ik(η)dη, i = 1, 2, (46)

Ik(s)
∂y2(s)

∂θq
=
∂y2(k − 1)

∂θq
+
σkq
mρ

∫ s

k−1
Ik(η)

(
δk1 + δk2 − a− by2(η)− cy2

2(η)− r̃kl
)
dη,

(47)

where12

Ik(s) = exp

(
θk
mρ

∫ s

k−1
(2cy2(η) + b)dη

)
= exp

(
2c

mρ
(y1(s)− y1(k − 1)) +

θkb

mρ
(s− k + 1)

)
.

14



The sensitivity functions can then be calculated numerically by applying a cumulative1

integration scheme, such as Simpson’s rule, to the integral terms in (46) and (47).2

Alternatively, the sensitivity functions can also be obtained by differentiating the an-3

alytical solutions in Appendix A, but the algebra becomes very messy. The tedious4

algebraic manipulations can be avoided by using numerical approximation.5

Now, differentiating (27) with respect to δ and θ yields the the following differential6

equations for the sensitivity functions ∂y1(s)/∂δqi and ∂y1(s)/∂θq on [k − 1, k]:7

d

ds

(
∂y1(s)

∂δqi

)
= θk

∂y2(s)

∂δqi
, i = 1, 2,

d

ds

(
∂y1(s)

∂θq

)
= θk

∂y2(s)

∂θq
+ σkqy2(s),

with initial conditions8

∂y1(s)

∂δqi
= 0,

∂y1(s)

∂θq
= 0, s ∈ [0, q − 1].

Hence,

∂y1(s)

∂δqi
= θk

∫ s

k−1

∂y2(η)

∂δqi
dη, i = 1, 2, (48)

∂y1(s)

∂θq
= θk

∫ s

k−1

∂y2(η)

∂θq
dη +

σkq
θk

(y1(s)− y1(k − 1)). (49)

As with ∂y2(s)/∂δqi and ∂y2(s)/∂θq, these integrals can be evaluated numerically using9

standard numerical integration methods. Once the sensitivity functions have been10

determined using the equations above, the cost function (35) can be differentiated to11

yield12

∂GN,Q
∂δqi

=

Q∑
k=1

δk1

(
∂y1(k)

∂δqi
− ∂y1(k − 1)

∂δqi

)
+

{
y1(q)− y1(q − 1), if i = 1,

0, if i = 2,

and13

∂GN,Q
∂θq

=

Q∑
k=1

δk1

(
∂y1(k)

∂θq
− ∂y1(k − 1)

∂θq

)
.

Moreover, the terminal and interior point constraints (30), (34) and (37) are all in the14

form y1(k) or y2(k) minus a constant, and thus their gradients can be immediately15

obtained by evaluating the sensitivity functions at each time point k = 1, . . . , Q.16

Finally, for the approximate control bound constraints (42) and (43), denote17

Gkui
=

∫ k

k−1
θkϕε(h

k
i (s))ds− γ ≤ 0, k = 1, . . . , Q, i = 1, 2.

15



Then, we have1

∂Gkui

∂δq1
= θk

∫ k

k−1

∂ϕε(h
k
i (s))

∂hki

(
(2− i)σkq −

∂umax
i,α (y2(s))

∂y2

∂y2(s)

∂δq1

)
ds,

∂Gkui

∂δq2
= θk

∫ k

k−1

∂ϕε(h
k
i (s))

∂hki

(
(1− i)σkq −

∂umax
i,α (y2(s))

∂y2

∂y2(s)

∂δq2

)
ds,

∂Gkui

∂θq
= −θk

∫ k

k−1

∂ϕε(h
k
i (s))

∂hki

∂umax
i,α (y2(s))

∂y2

∂y2(s)

∂θq
ds+ σkq

∫ q

q−1
ϕε(h

q
i (s))ds,

where i = 1, 2, and2

∂ϕε(η)

∂η
=


1, if η > ε,

(η + ε)/2ε, if η ∈ [−ε, ε],
0, if η < −ε.

4.6. Computational procedure3

In summary, the computational procedure for solving Problem Sα,ε,γN,Q is given below.4

Algorithm I. Solving Problem Sα,ε,γN,Q .5

1. Initialization: Set6

0→ δk1 , 0→ δk2 , (x̃k1 − x̃k−1
1 )/Ṽ k

max → θk, k = 1, . . . , Q.

2. State trajectories: For each subinterval [k − 1, k], use the analytical solutions in7

Appendix A to evaluate y1(s) and y2(s) at discrete time points sj = k − 1 + j/Mk,8

j = 1, . . . ,Mk, where Mk is the number of points and 1/Mk is the discretization9

steplength.10

3. Cost and constraints: Use y1(s) and y2(s) from Step 2 to compute the cost and11

constraint function values.12

4. Sensitivity functions: For each subinterval [k − 1, k], use y1(s) and y2(s) from13

Step 2 to compute the sensitivity functions ∂y1(s)/∂δqi , ∂y1(s)/∂θq, ∂y2(s)/∂δqi ,14

and ∂y2(s)/∂θq, i = 1, 2, q = 1, . . . , Q, at discrete time points sj = k − 1 + j/Mk,15

j = 1, . . . ,Mk.16

5. Gradients: Use ∂y1(s)/∂δqi , ∂y1(s)/∂θq, ∂y2(s)/∂δqi , and ∂y2(s)/∂θq from Step 4 to17

determine the gradients for the cost and constraint functions.18

6. Optimization: Use a gradient-based optimization solver (e.g., fmincon in Matlab)19

together with the information in Steps 2-5 to calculate a search direction and update20

δ and θ accordingly.21

7. Return to Step 2.22

5. Case study23

To test the computational approach described in Section 4, we consider the Yizhuang24

subway line in Beijing. There are 14 stations along this line and we choose the segment25

between Songjiazhuang and Xiaocun stations to define our test problem.26

16



Table 1. Line gradients between Songjiazhuang and Xiaocun stations.

Start Point (m) End Point (m) Gradient (tanβ(x1))

0 160 −0.002

160 470 −0.003

470 970 0.0104

970 1370 0.003

1370 1880 −0.008

1880 2500 0.003

2500 2631 −0.002

Table 2. Speed limits between Songjiazhuang and Xiaocun stations.

Start Point (m) End Point (m) Speed Limit (km/h)

0 150 50

150 480 85

480 1161 65

1161 2501 85

2501 2631 60

The total length of the segment is L = 2631 metres and the operational timetable1

stipulates a terminal time of T = 190 seconds. The line gradients and speed limits are2

listed in Tables 1 and 2, respectively [18]. Note that the switching points for the line3

gradients are different to the switching points for the speed limits. The complete set4

of switching points is:5

xi1 ∈ {0, 150, 160, 470, 480, 970, 1161, 1370, 1880, 2500, 2501, 2631}.

Thus, the number of track sections is N = 11. According to the procedure in Sec-6

tion 4.1, each section [xi−1
1 , xi1] is decomposed into Ni subsections using a base length7

of Lb = 60 metres, giving8

N1 = 3, N2 = 1, N3 = 6, N4 = 1, N5 = 9, N6 = 4,

N7 = 4, N8 = 9, N9 = 11, N10 = 1, N11 = 3,

and Q = 52 subsections in total.9

For this example, the train mass is m = 2.78 × 105 kg, the rotatory mass factor is10

ρ = 1.0, the basic resistance is rb(y2) = 3.9476 + 0.0022294y2
2 kN, and the maximum11

tractive and braking control bounds are given by (38) and (39), respectively. Using12

fmincon in Matlab as the nonlinear optimization solver, we ran Algorithm I with α = 1,13

ε = 0.1, γ = 0.01, and Mk = 10 on a laptop computer with 8G RAM and Intel Core14

i5-7200U@2.5GHz processor. The optimal control and speed trajectories are shown in15

Fig. 5, where the solid blue line is the sum of the tractive and braking forces, the dot-16

dashed lines represent the speed limits and control bounds, and the solid black line is17

the track altitude. The figure clearly shows that the optimal control signal satisfies the18

speed limit and control force constraints. Moreover, the optimal control is similar to19

the optimal four-stage strategy obtained in [1, 10] via Pontryagin’s maximum principle:20

Maximum Traction→ Hold Speed→ Coast→ Maximum Brake.

17
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Figure 5. Optimal speed and control trajectories from Algorithm I (T = 190 s).

Here “Coast” means that neither tractive nor braking forces are applied to the train.1

For comparision, we solved the same problem using three other algorithms:2

• Algorithm II – same as Algorithm I except that the gradients are computed3

using fmincon’s finite difference approximation scheme instead of Steps 4 and 5;4

• Algorithm III – same as Algorithm I except that the state and sensitivity func-5

tions are evaluated numerically by applying Runge-Kutta methods (ode45 in6

Matlab) to the respective differential equations; and7

• Algorithm IV – Gauss pseudospectral method in GPOPS, a Matlab-based opti-8

mal control package [12, 18].9

Algorithms II-IV were run on the same computer as Algorithm I. Algorithms I-III are10

all based on the control parameterization method, whereby the control signal is dis-11

cretized and the state is considered a function of the control rather than an independent12

decision variable. Algorithm IV, in contrast, involves discretizing the state in addition13

to the control and treating both of them as decision variables in the optimization prob-14

lem, subject to equality constraints defined by the discretized differential equations.15

The approximation process for Algorithm IV involves transforming the independent16

variable t in each subsystem into a new variable τ ∈ [−1, 1] and then discretizing17

the state and control variables, along with the cost and constraint functions, at the18

Legendre-Gauss collocation points in [−1, 1]. This yields a nonlinear programming19

problem that, like the approximate problem obtained via control parameterization,20

can be solved using standard nonlinear programming algorithms; the GPOPS imple-21

mentation of Algorithm IV uses SNOPT as the optimization solver. More details on22

the Gauss pseudospectral method and its applications to solving optimal train control23

problems can be found in [11, 12, 16–18]. In our simulations, we used 40 collocation24

points for each subsystem.25

The differences between the four algorithms are summarized in Table 3. Note that26

18



Table 3. Summary of the four algorithms used in the case study.
Algorithm

I II III IV

Discretization
Scheme

Control
Parameterization

Control
Parameterization

Control
Parameterization

Gauss
Pseudospectral

Discretized
Variables

Control Control Control Control, State

State
Equations

Analytic
Solution

Analytic
Solution

Approximation
(Runge-Kutta)

Approximation
(Algebraic Constraints)

Gradient
Computation

Sensitivity Functions
(Equations (46)-(49))

Finite
Differences

Sensitivity Functions
(Runge-Kutta)

Automatic
Differentiation

Optimization
Solver

fmincon fmincon fmincon SNOPT

Optimization
Tolerance

10−6 10−6 10−6 10−8

Table 4. Performance of the four algorithms used in the case study.
Algorithm

I II III IV

T = 190 s

Energy
Consumption (kJ)

5.560333× 104 5.558236× 104 5.559763× 104 5.543154× 104

Computation
Time (s)

20.4 109 242 15.2

T = 170 s

Energy
Consumption (kJ)

7.055643× 104 7.049544× 104 7.054315× 104 7.020780× 104

Computation
Time (s)

13.1 96 194 11.2

“Optimization Tolerance” is the tolerance used by the optimization solver (either1

fmincon or SNOPT ) for the decision variables, cost, and constraint functions.2

We compared Algorithms I-IV for two versions of the train control problem: one3

using the scheduled time of T = 190 seconds, and the other using a shorter final4

time of T = 170 seconds. The minimum energy consumptions and computation times5

are reported in Table 4. The computation times for Algorithm I are close to those of6

Algorithm IV, and these algorithms are much quicker than Algorithms II and III. All7

four algorithms yield almost the same tractive energy consumption and the actual trip8

times are identical to the target terminal times of 190 and 170 seconds. The control9

and speed trajectories from Algorithms II-III are similar to Algorithm I (see Fig. 510

for T = 190 and Fig. 7 for T = 170), but the control trajectories from Algorithm IV11

are very different: there is severe fluctuation during the Speed-Hold stage, as shown in12

Fig. 6 and Fig. 8. This is obviously unrealistic to implement in practice, irrespective13

of whether the train is controlled by a human driver or an automatic train control14

system. Our new method does not yield any control fluctuation.15

6. Conclusion16

This paper has discussed a time-based switched system formulation for the optimal17

train control problem with variable line gradients and speed limit constraints. To18

solve this problem, we proposed a numerical approach consisting of the following key19

elements: control parameterization for discretizing the control signals, a time-scaling20

19



Position (m)

0 500 1000 1500 2000 2500

S
p
ee

d
 (

m
/s

)

0

5

10

15

20

25

T
ra

ck
 a

lt
it

u
d
e 

(m
)

-20

0

20

40

60

80

Speed
Speed limit

Position (m)

0 500 1000 1500 2000 2500

C
o
n
tr

o
l 

fo
rc

e 
(k

N
)

-300

-200

-100

0

100

200

300

Control force
Control force bound

Figure 6. Optimal speed and control trajectories from Algorithm IV (T = 190 s).
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Figure 7. Optimal speed and control trajectories from Algorithm I (T = 170 s).
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Figure 8. Optimal speed and control trajectories from Algorithm IV (T = 170 s).

transformation for converting the variable subsystem switching times into fixed integer1

points, and a smooth approximation scheme for the non-smooth control bounds. The2

“infinite-index” speed limit constraints are normally very challenging, but we showed3

that by exploiting the structure of the analytical solution to the train differential4

equations, the speed limits can be reformulated as a finite number of standard point5

constraints. The end result is a nonlinear programming problem that can be solved6

by gradient-based optimization algorithms such as sequential quadratic programming,7

for which many efficient practical implementations are available. The case study re-8

sults for the Yizhuang subway line show that the proposed approach is effective at9

handling the complex speed limit and control bound constraints in the train control10

problem. Moreover, compared with the pseudospectral method, our new method can11

avoid control fluctuations during singular arcs, without any sacrifice to the tractive12

energy consumption or computational time. This is a key advantage because, as rec-13

ognized in [18, 19] and observed in our case study, control fluctuation can be an issue14

with pseudospectral methods.15
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Appendix A. Analytical solutions for the position and speed1

From (36), the speed satisfies the following differential equation:2

ẏ2(s) = −θkc
mρ

((
y2(s) +

b

2c

)2
+
ωk
4c2

)
, s ∈ [k − 1, k],

where3

ωk = 4c
(
a+ r̃kl − δk1 − δk2

)
− b2.

We consider three cases: ωk > 0, ωk = 0, and ωk < 0. Note that five cases were4

considered in [19]; our new solution expressions derived below show that the two cases5

for ωk = 0 in [19] can be combined, and likewise the two cases for ωk < 0 can also be6

combined.7

When ωk > 0, the differential equation can be written as8 ((
y2(s) + b/2c

)2
+
ωk
4c2

)−1
ẏ2(s) = −θkc

mρ
, s ∈ [k − 1, k].

Integrating both sides and using the substitution v = y2 + b/2c gives9

s∫
k−1

((
y2(η)+b/2c

)2
+
ωk
4c2

)−1
ẏ2(η)dη =

y2(s)+b/2c∫
y2(k−1)+b/2c

1

v2 + ωk/4c2
dv = −θkc(s− k + 1)

mρ
,

and thus the speed y2(s) must satisfy10

arctan
(2cy2(s) + b

√
ωk

)
= −

θk
√
ωk(s− k + 1)

2mρ
+ ∆k(y2(k − 1)), (A1)

where11

∆k(y2(k − 1)) = arctan
(2cy2(k − 1) + b

√
ωk

)
.

If the range of the right-hand side of (A1) is not within the interval (−π/2, π/2), then12

the speed differential equation does not have a solution over the entire subinterval13

[k − 1, k]. However, since ∆k(y2(k − 1)) ∈ (−π/2, π/2) and θk,
√
ωk, m, and ρ are all14

positive, the right-hand side of (A1) satisfies15

−
θk
√
ωk

2mρ
+ ∆k(y2(k − 1)) ≤ −

θk
√
ωk(s− k + 1)

2mρ
+ ∆k(y2(k − 1))

≤ ∆k(y2(k − 1)) <
π

2
, s ∈ [k − 1, k],

and thus a solution only exists when16

−
θk
√
ωk

2mρ
+ ∆k(y2(k − 1)) > −π

2
. (A2)
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Thankfully, this condition is almost always satisfied in practice because the mass m is1

large relative to the other parameters and therefore,2

∆k(y2(k − 1))−
θk
√
ωk

2mρ
≈ ∆k(y2(k − 1)) > −π

2
,

as required. Moreover, if the right-hand side of (A1) approaches −π/2, then y2(s)3

will become negative on the kth subinterval, violating the state constraints. Hence,4

feasible trajectories will satisfy (A2). Assuming (A2) holds, the speed y2(s) is obtained5

by solving equation (A1):6

y2(s) =

√
ωk

2c
tan
(
−
θk
√
ωk

2mρ
(s− k + 1) + ∆k(y2(k − 1))

)
− b

2c
.

Then, the position y1(s) is obtained by integrating both sides of (27), yielding7

y1(s) = y1(k − 1) + θk

∫ s

k−1
y2(η)dη

= y1(k − 1) +
mρ

c
ln
(

cos
(
−
θk
√
ωk

2mρ
(s− k + 1) + ∆k(y2(k − 1))

))
− mρ

c
ln
(
cos(∆k(y2(k − 1)))

)
− θkb

2c
(s− k + 1), s ∈ [k − 1, k].

When ωk = 0, the speed differential equation is8

ẏ2(s) = −θkc
mρ

(
y2(s) +

b

2c

)2
, s ∈ [k − 1, k].

If y2(k − 1) = −b/2c, then clearly y2(s) = −b/2c is the solution of this equation9

(although this solution clearly violates the state constraints, which prohibit negative10

speeds). Thus, we assume that y2(k − 1) 6= −b/2c and let s∗ > k − 1 denote the first11

time at which y2(s) = −b/2c, where s∗ = +∞ if y2(s) never reaches −b/2c in the kth12

subinterval. For s < s∗, the differential equation can be written as13

1(
y2(s) + b/2c

)2 ẏ2(s) = −θkc
mρ

, s ∈ [k − 1, k],

and thus integrating both sides yields14

s∫
k−1

1(
y2(η) + b/2c

)2 ẏ2(η)dη = −θkc
mρ

(s− k + 1).

Hence, by evaluating the integral on the left-hand side, we obtain15

1

y2(s) + b/2c
=
θkc

mρ
(s− k + 1) +

1

y2(k − 1) + b/2c
.
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Simplifying gives the following expression for y2(s), which holds for all s < s∗:1

y2(s) =
mρ(y2(k − 1) + b/2c)

mρ+ θkc(y2(k − 1) + b/2c)(s− k + 1)
− b

2c
.

This expression incorporates the case when y2(k − 1) = −b/2c and is always well-2

defined for non-negative speeds because in this case3

mρ+ θkc(y2(k − 1) + b/2c)(s− k + 1) > 0.

Moreover, when y2(k − 1) > −b/2c, the speed y2(s) 6= −b/2c for all s ∈ [k − 1, k] and4

thus the derivation above is valid over the entire subinterval [k − 1, k], since5

y2(s) =
mρ(y2(k − 1) + b/2c)

mρ+ θkc(y2(k − 1) + b/2c)(s− k + 1)
− b

2c
> − b

2c
.

The corresponding solution for y1(s) is:6

y1(s) = y1(k − 1) + θk

∫ s

k−1
y2(η)dη

= y1(k − 1) +
mρ

c
ln
(

1 +
θkc

mρ
(y2(k − 1) + b/2c)(s− k + 1)

)
− θkb

2c
(s− k + 1).

Finally, for ωk < 0, if 2cy2(k− 1) + b =
√
|ωk|, then y2(s) =

√
|ωk|/2c− b/2c is the7

solution of the differential equation. Hence, assume 2cy2(k − 1) + b 6=
√
|ωk| and let8

s∗ > k − 1 denote the first time at which y2(s) =
√
|ωk|/2c − b/2c. Then for s < s∗,9

the differential equation can be rewritten as10 ((
y2(s) +

b

2c

)2
−
(√|ωk|

2c

)2
)−1

ẏ2(s) = −θkc
mρ

,

or equivalently,11

( 2c

2cy2(s) + b−
√
|ωk|
− 2c

2cy2(s) + b+
√
|ωk|

)
ẏ2(s) = −

θk
√
|ωk|

mρ
.

Hence, integrating both sides gives12

ln

∣∣∣∣∣2cy2(s) + b−
√
|ωk|

2cy2(s) + b+
√
|ωk|

∣∣∣∣∣− ln

∣∣∣∣∣2cy2(k − 1) + b−
√
|ωk|

2cy2(k − 1) + b+
√
|ωk|

∣∣∣∣∣ = −
θk
√
|ωk|(s− k + 1)

mρ
,

and13

ln

∣∣∣∣∣2cy2(s) + b−
√
|ωk|

2cy2(s) + b+
√
|ωk|
·

2cy2(k − 1) + b+
√
|ωk|

2cy2(k − 1) + b−
√
|ωk|

∣∣∣∣∣ = −
θk
√
|ωk|(s− k + 1)

mρ
.

Since 2cy2(s) + b−
√
|ωk| and 2cy2(k − 1) + b−

√
|ωk| have the same sign for s < s∗,14
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when the speed is non-negative, this can be simplified to1

2cy2(s) + b−
√
|ωk|

2cy2(s) + b+
√
|ωk|

=
2cy2(k − 1) + b−

√
|ωk|

2cy2(k − 1) + b+
√
|ωk|

exp
(
−
θk
√
|ωk|(s− k + 1)

mρ

)
.

Solving for y2(s) yields2

y2(s) =

√
|ωk|φ+

k (y2(k − 1))

cφ+
k (y2(k − 1))− cφ−k (y2(k − 1)) exp

(
−θk

√
|ωk|(s− k + 1)/mρ

)−√|ωk|
2c
− b

2c
,

where φ±k (y2(k − 1)) = 2cy2(k − 1) + b ±
√
|ωk|. This solution incorporates the case3

when 2cy2(k− 1) + b =
√
|ωk| and is well-defined for non-negative speeds because the4

denominator satisfies5

c
(
2cy2(k − 1) + b+

√
|ωk|

)
− c
(
2cy2(k − 1) + b−

√
|ωk|

)
exp

(
− θk

√
|ωk|(s− k + 1)/mρ

)
= c
(
2cy2(k − 1) + b

)(
1− exp

(
−θk

√
|ωk|(s− k + 1)/mρ

))
+ c

√
|ωk|

(
1 + exp

(
− θk

√
|ωk|(s− k + 1)/mρ

))
> 0.

It is also clear that if 2cy2(k−1)+b 6=
√
|ωk|, then s∗ must be infinite and the solution6

exists over the entire subinterval. For the position y1(s) when ωk < 0, the analytical7

formula is8

y1(s) = y1(k − 1) + θk

∫ s

k−1
y2(η)dη

= y1(k − 1) +
mρ

c
ln

(
φ+
k (y2(k − 1)) exp

(
θk
√
|ωk|(s− k + 1)/mρ

)
− φ−k (y2(k − 1))

2
√
|ωk|

)
−
θk(
√
|ωk|+ b)

2c
(s− k + 1).

9
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