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Abstract: This paper investigates the dual lattice structures of self-bounded and self-hidden subspaces of
linear time-invariant systems arising in the solution of disturbance decoupling, regulator and unknown-
input observation problems. The case that we are addressing in this paper is the one where the algebraic
feedthrough matrices are allowed to be nonzero. We show that, in this general case, the additional
constraints that need to be taken into account for the solution of the aforementioned control/estimation
problems are no longer simple subspace inclusions as in the strictly proper case. As a consequence,
mathematical apparatus underpinning the structure of the dual lattices of self bounded and self hidden
subspaces in this more general framework becomes more challenging and richer.
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1. INTRODUCTION

The two cornerstone problems that are traditionally addressed
with geometric techniques are the disturbance decoupling
problem by state feedback and the unknown-input observa-
tion problem Trentelman et al. (2001). Another fundamental
control problem, which essentially combines the two above-
mentioned problems, is the disturbance decoupling by dynamic
output feedback. When asymptotic stability of the closed-loop
is not required, the classical solution of these problems in-
volves supremal output-nulling and infimal input-containing
subspaces. When the additional stability constraint is intro-
duced, the simplest adaptation of the classic solution involves
the supremal stabilizability and the infimal detectability sub-
spaces in place of the output-nulling and input-containing
subspaces, respectively Trentelman et al. (2001), Stoorvogel
and van der Woude (1991). An alternative solution, which is
methodologically richer and computationally more efficient,
relies on the concepts of self-boundedness and self-hiddenness.
This solution avoids the computation of eigenspaces, which can
lead to numerical issues, Basile and Marro (1986b).

A geometric theory of self-bounded and self-hidden subspaces
requires characterizing lattices of structural invariants of the
system. The so-called dual lattices show the interplay of output-
nulling and self-bounded subspaces with their duals: they show
in particular that these subspaces are not independent objects,
but they are related by means of well-defined mappings, Basile
and Marro (1986a). However, this analysis becomes crucial
when dealing with the problem of disturbance decoupling by
dynamic output feedback and the regulator problem, because
in these contexts the solution involves the simultaneous use of
self-bounded and self-hidden subspaces which in turn hinges
on the universal bounds of these lattice structures.

In particular, a stream of literature flourished in the past twenty
years showing that a controller that solves the problem by
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maximizing the freedom in the assignability of the closed-
loop eigenvalues builds onto a pair of subspaces, one of which
is self-bounded, and the other is self-hidden, see Del-Muro-
Cuéllar (1997), Del-Muro-Cuéllar and Malabre (1997), Mal-
abre et al. (1997). This pair is not unique: one can choose a
self-hidden subspace from a certain lattice of subspaces and
associate the correct self-bounded subspace, or, dually, one
can select a self-bounded subspace from a certain lattice of
subspaces and associate the correct self-hidden subspace. The
analysis of the interplay between the two lattices provides a
clear understanding of this mechanism.

Consequently, in this paper, we study the mathematics underly-
ing this mechanism for systems that are not necessarily strictly
proper by extending the dual lattice theory introduced in Basile
and Marro (1986a). In the case of non-strictly proper systems,
the structure of the lattices is considerably more complex. The
disturbance decoupling problem by dynamic output feedback
using the concepts of self boundedness and self hiddenness
has only been addressed very recently in Padula and Ntogra-
matzidis (2019). The main challenge in addressing this general
case is the fact that, while for purely dynamical systems the
constraints on the lattices are expressed in terms of simple
subspace inclusions in the state space, when we have nonzero
feedthrough the constraints are given by inclusions in extended
spaces (in the state + input space or in the state + output space).

We begin our investigation by first considering simple lattices
of self-bounded and self-hidden subspaces of a biproper LTI
system described by a quadruple (A, B,C,D). We prove the
existence of a map between the set of output-nulling subspaces
and the set of input-containing subspaces, which induces a bi-
jection between self-bounded and self-hidden subspaces. Build-
ing on this result, we extend the theory of dual lattices to the
interaction of different quadruples, as is standard in the context
of the regulator problem and in the disturbance decoupling
problem by dynamic output feedback. In this general frame-
work we have 8 lattices whose interplay is analyzed in this
paper under the conditions which arise in the solution of the
aforementioned problems. Unlike the classical (strictly proper)
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case, where these solvability conditions are simple subspace
inclusions, when we have feedthrough matrices we need to
generalize the conditions in extended vector spaces.

2. GEOMETRIC BACKGROUND

Let T denote either N or R+ in the discrete and continuous time,
respectively. Consider a quadruple Σ = (A, B,C,D) associated
with the non-strictly proper LTI system{

Dx(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t), (1)

where the operator D denotes either the time derivative in the
continuous time or the unit time shift in the discrete time and,
for all t ∈ T, x(t) ∈ X = Rn is the state, u(t) ∈ U = Rm is
the input and y(t) ∈ Y = Rp is the output. We denote by Cg
a (continuous or discrete) self-conjugate stability domain. We
denote by R the reachable subspace from the origin. We recall
thatR is also the smallest A-invariant subspace containing im B,
i.e., R = 〈A | im B〉. Dually, we denote by Q the unobservable

subspace, i.e., Q = ker

 C
C A
...

C An−1

, which is also the largest A-

invariant subspace contained in ker C, i.e., Q = 〈ker C | A〉.

A subspace V is said to be an output-nulling subspace if, for
any initial state x0 ∈ V, there exists a control function u such
that the state trajectory generated by the system remains in V
and the output remains identically at zero; equivalently, V is
output-nulling if the subspace inclusion

[
A
C

]
V ⊆ (V ⊕ {0}) +

im
[

B
D

]
holds. Such a control function can again be expressed

as the static state feedback u(t) = F x(t). The condition of
output-nullingness can be equivalently expressed by saying that
there exists a feedback matrix F such that

[
A+B F
C+D F

]
V ⊆ V ⊕

{0}. In this case, we say that F is a friend of V. We denote
by FΣ(V) the set of friends of V. The set of output-nulling
subspaces V(Σ) of Σ is closed under addition. Thus, we can
define the largest output-nulling subspace V? def

= maxV(Σ) =∑
V∈V(Σ)V (also denoted as V?

Σ
when we need to specify the

system), which can be interpreted as the set of all initial states
for which a control function exists for which the output can be
maintained at zero. The sequence

V0 = X

Vi+1 =

[
A
C

]−1(
(Vi ⊕ {0}) + im

[
B
D

])
, i ∈ N

(2)

is monotonically non-increasing and converges to V? in at
most n − 1 steps, i.e., V0 ⊃ V1 ⊃ . . . ⊃ Vh = Vh+1 = . . .
impliesV? = Vh, with h ≤ n − 1.

Given an output-nulling subspaceV, we define the reachability
subspace RV on V as the set of points that can be reached
from the origin by means of control functions that maintain
the state on V and the output at zero. Given a friend F of V,
there holds RV = 〈A + B F |V ∩ B ker D〉. The eigenvalues of
A + B F, for F ∈ FΣ(V), can be divided into two multi-sets:
the eigenvalues of the mapping A + B F |V and the eigenvalues
of A + B F | X

V
. In turn, the eigenvalues of A + B F |V can be

divided into two multi-sets: the eigenvalues of A + B F |RV are
freely assignable with a suitable choice of F ∈ FΣ(V), whereas
those of A + B F | V

RV
are fixed, i.e., they are independent from

F ∈ FΣ(V). Likewise, the eigenvalues of A + B F | V+R
V

are
assignable with a suitable choice of F ∈ FΣ(V), whereas those
of A + B F | X

V+R
are fixed for all F ∈ FΣ(V). We say thatV is:

• internally stabilizable if there exists F ∈ FΣ(V) such that
σ(A+ B F |V) is asymptotically stable, or, equivalently, if
σ(A + B F | V

RV
) is asymptotically stable;

• externally stabilizable if there exists F ∈ FΣ(V) such that
σ(A + B F | X

V
) is asymptotically stable, or, equivalently, if

σ
(
A + B F | X

V+R

)
is asymptotically stable.

An output-nulling subspace which is internally stabilizable is
also referred to as a stabilizability output-nulling subspace. The
set of stabilizability output-nulling subspaces is closed under
addition, and thus it admits a maximum, that we denote byV?

g :
this subspace is the set of all initial states for which an input
exists that maintains the output at zero and the state trajectory
converges to the origin.

An output-nulling subspace V for which a friend F exists
such that the spectrum of A + B F |V is arbitrary is called a
reachability output-nulling subspace. The set of reachability
output-nulling subspaces is closed under addition, and thus it
admits a maximum, that we denote by R? or R?

Σ
: there holds

R
?
⊆ V?

g ⊆ V
?. The subspace R? is also the output-nulling

reachability subspace on V?, i.e., R? = RV? . This subspace
can be interpreted as the set of all initial states that are reachable
from the origin by control inputs that maintain the output at
zero. The eigenstructure of A + B F | V

?

R
? is the invariant zero

structure of the system, and it is denoted byZΣ.

An output-nulling subspaceV is self-bounded if, for any initial
state x0 ∈ V, any control that gives an identically zero output is
such that the entire state trajectory is forced to evolve onV. In
terms of inclusions, V is self-bounded if one of the following
equivalent conditions holds:

(1) V ⊇ V? ∩ B ker D; (2) V ⊇ R?.
Thus, R? and V? are self-bounded. If V1 and V2 are self-
bounded andV1 ⊆ V2, then every friend ofV2 is also a friend
of V1, i.e., FΣ(V2) ⊆ FΣ(V1). Since R? ⊆ V?, every friend
of V? is also a friend of R?. The intersection of self-bounded
subspaces is self-bounded. We define ΦΣ to be the set of self-
bounded subspaces; then ΦΣ admits both a maximum, which is
V?, and a minimum, which is R?.

The dual of Σ = (A, B,C,D) is Σ> = (A>,C>, B>,D>). A sub-
spaceS is input-containing if [ A B ]

(
(S ⊕U) ∩ ker[ C D ]

)
⊆

S. A subspace L is input-containing for Σ if and only if L⊥ is
output-nulling for Σ>. The input-containingingness condition
can be equivalently expressed by saying that there exists an
output-injection matrix G such that

[
A+G C
B+G D

]
(S ⊕U) ⊆ S. In

this case, we say that G is a friend ofS. We denote byGΣ(S) the
set of friends of S. The set of input-containing subspaces S(Σ)
of Σ is closed under intersection. Thus, we can define the small-
est input-containing subspace S? def

= minS(Σ) =
⋂
S∈S(Σ)S

(also denoted as S?
Σ

). The sequence{
S0 = {0}
Si+1 = [ A B ]

(
(Si ⊕U) ∩ ker[ C D ]

)
, i ∈ N (3)

is monotonically non-decreasing and converges toS? in at most
n − 1 steps, i.e., S0 ⊂ S1 ⊂ . . . ⊂ Sh = Sh+1 = . . . implies
S
? = Sh, with h ≤ n−1. There holds also S?

Σ
=

(
V?

Σ>

)⊥. Given



an input-containing subspace S and a corresponding friend G,
we define the detectability subspace associated to it as QS

def
=

〈S + C−1 im D | A + G C〉, and is the orthogonal complement of
the reachability subspace onS⊥. The eigenvalues of A+G C, for
G ∈ GΣ(S), can be divided into the eigenvalues of the mapping
A + G C |S and those of A + G C | X

S
. In turn, the eigenvalues of

A + G C |S can be divided into two multi-sets: the eigenvalues
of A + G C | (S ∩ Q) are fixed, while those of A + G C | S

S∩〈Q

are assignable with a suitable choice of G ∈ GΣ(S). The
eigenvalues of A+G C | QS

S
are fixed, while those of A+G C | X

QS

are assignable with a suitable G ∈ GΣ(S). We say that S is

• internally detectable if there exists G ∈ GΣ(S) such that
σ(A + G C |S) is asymptotically stable, or, equivalently, if
σ(A + G C |S ∩Q) is asymptotically stable;

• externally detectable if there exists G ∈ GΣ(S) such that
σ(A +G C | X

S
) is asymptotically stable, or, equivalently, if

σ(A + G C | QS
S

) is asymptotically stable.

An input-containing subspace that is externally detectable is
also referred to as a detectability input-containing subspace.
The set of detectability input-containing subspaces has a min-
imum denoted by S?g . An input-containing subspace S for
which a friend G exists such that the spectrum of A + G C | X

S

is arbitrary is called an unobservability input-containing sub-
space. The set of unobservability input-containing subspaces is
closed under intersection, and thus it admits a minimumQ? (or
Q
?
Σ

): there holds S? ⊆ S?g ⊆ Q
?. There holds also Q? = QS? .

The eigenstructure A + G C | Q
?

S
? coincides with the invariant

zero structure of the system, so that ZΣ = σ
(
A + B F

∣∣∣∣ V?

R
?

)
=

σ
(
A + G C

∣∣∣∣ Q?S? ). Finally, we recall that Q?
Σ

=
(
R
?
Σ>

)⊥.

An input-containing subspace S is self-hidden if one of the
equivalent conditions

(1) S ⊆ S? + C−1 im D; (2) S ⊆ Q?.
holds. Thus, Q? and S? are self-hidden subspaces. If S1 and
S2 are self-hidden subspaces and S1 ⊆ S2, then every friend of
S1 is also a friend of S2, i.e., GΣ(S1) ⊆ GΣ(S2). In particular,
every friend of S? is also a friend of Q?. The sum of self-
hidden subspaces is self-hidden. We define ΨΣ to be the set of
self-hidden subspaces; then ΨΣ admits both a maximum, which
is Q?, and a minimum, which is S?. Finally, we recall the
identities R? = V? ∩ S

? and Q? = V? + S?.

3. INTERMEDIATE RESULTS

Before we introduce the main dual lattice structures for LTI
systems with possibly nonzero feedthrough matrices, we give
an overview of the fundamental results which are used in the
solution of disturbance decoupling problems by state feedback
and of unknown-input observation problems. The proofs of
these results can be found in (Ntogramatzidis, 2008, Lemma
3). First, we consider the inclusion im L ⊆ V?, which is the
solvability condition of the disturbance decoupling problem by
static state feedback for a system ruled by D x(t) = A x(t) +
B u(t) + L w(t) and y(t) = C x(t). We consider the augmented
system ΣL = (A, [ B L ],C, [ D 0 ]), and we denote the cor-
responding supremal output-nulling and reachability subspaces
byV?

L and R?L , respectively.
Theorem 3.1. Let im L ⊆ V?. The following results hold:

i)V? = V?
L ;

ii) ΦΣL ⊆ ΦΣ;
iii) For allV ∈ ΦΣL , there holds im L ⊆ V.

Theorem 3.2. im L ⊆ V? if and only if im L ⊆ R?L .
Theorem 3.3. If im L ⊆ V?, the subspace R?L is the smallest of
all the self-bounded subspacesV satisfying im L ⊆ V.

The following three results are a generalization of the last three:
they are concerned with a geometric condition in the form
im

[ L1

L2

]
⊆ (V? ⊕ {0}) + im

[
B
D

]
which arises in the solution

of the decoupling problem of a measurable disturbance w with
control law in the form u(t) = F x(t) + S w(t) for a system
described byD x(t) = A x(t)+B u(t)+L1 w(t) and y(t) = C x(t)+
D u(t) + L2 w(t). We consider the augmented system Σd =
(A, [ B L1 ],C, [ D L2 ]), and we denote the corresponding
supremal output-nulling and reachability subspaces byV?

d and
R
?
d , respectively.

Theorem 3.4. Let im
[ L1

L2

]
⊆ (V? ⊕ {0}) + im

[
B
D

]
. Then:

i)V? = V?
d ;

ii) ΦΣd ⊆ ΦΣ;
iii) ∀V ∈ ΦΣd , im

[ L1

L2

]
⊆ V ⊕ {0} + im

[
B
D

]
.

Theorem 3.5. im
[ L1

L2

]
⊆ (V? ⊕ {0}) + im

[
B
D

]
if and only if

im
[ L1

L2

]
⊆ (R?d ⊕ {0}) + im

[
B
D

]
.

Theorem 3.6. If im
[ L1

L2

]
⊆ (V?⊕{0})+im

[
B
D

]
, the subspaceR?d

is the smallest of all the self-bounded subspaces V satisfying
im

[ L1

L2

]
⊆ (V ⊕ {0}) + im

[
B
D

]
.

We now dualize all the previous results. The first three involve
an inclusion in the form S? ⊆ ker M, for some matrix M.

We consider the augmented system ΣM =
(
A, B,

[ C
M

]
,
[ D

0

])
,

and we denote the corresponding infimal input-containing and
unobservability subspaces by S?M and Q?M , respectively.
Theorem 3.7. Let S? ⊆ ker M. The following results hold:

i) S? = S?M;
ii) ΨΣM ⊆ ΨΣ;
iii) For all S ∈ ΨΣM , there holds S ⊆ ker M.

Theorem 3.8. S? ⊆ ker M if and only if Q?M ⊆ ker M.
Theorem 3.9. If S? ⊆ ker M, the subspace Q?M is the largest of
all the self-hidden subspaces S satisfying S ⊆ ker M.

Finally, we consider the generalization (S?⊕U)∩ker[ C D ] ⊆
ker[ M1 M2 ] of the condition S? ⊆ ker M, which arises in the
solution of unknown-input observation problems. Correspond-
ingly, we consider the augmented system Σo =

(
A, B,

[
C

M2

]
,
[

D
M2

])
,

and we denote the corresponding infimal input-containing and
unobservability subspaces by S?o and Q?o , respectively.
Theorem 3.10. Let (S?⊕U)∩ker[C D]⊆ker[M1 M2]. Then:

i) S? = S?o ;
ii) ΨΣo ⊆ ΨΣ;
iii) ∀S ∈ ΨΣo , (S ⊕U) ∩ ker[ C D ] ⊆ ker[ M1 M2 ].

Theorem 3.11. We have (S?⊕U)∩ker[ C D ] ⊆ ker[ M1 M2 ]
if and only if
(Q?o ⊕U) ∩ ker[ C D ] ⊆ ker[ M1 M2 ].



Theorem 3.12. If (S? ⊕ U) ∩ ker[ C D ] ⊆ ker[ M1 M2 ],
the subspace Q?o is the largest of all self-hidden subspaces S
satisfying (S ⊕U) ∩ ker[C D] ⊆ ker[M1 M2].

4. DUAL LATTICE STRUCTURES

We begin by presenting a simple result, recalled without proof
for the sake of brevity.
Lemma 4.1. Let V be an output-nulling subspace and let S
be an input-containing subspace for Σ = (A, B,C,D). Then,
S ⊇ B ker D andV ⊆ C−1 im D.
Theorem 4.1. Let V be an output-nulling subspace and let S
be an input-containing subspace for Σ = (A, B,C,D). Then:

• V ∩ S is an output-nulling subspace for Σ = (A, B,C,D);
• V+S is an input-containing subspace for Σ = (A, B,C,D).

Theorem 4.2. LetV be a self-bounded subspace and let S be a
self-hidden subspace for the quadruple (A, B,C,D). Then:

• V + S? is a self-hidden subspace for (A, B,C,D);
• S ∩V? is a self-bounded subspace for (A, B,C,D).

As a consequence of Theorem 4.2, the two functions

f : ΦΣ −→ ΨΣ,
V 7→ V + S?

and g : ΨΣ −→ ΦΣ,
S 7→ S ∩V?

are well-defined. It is easy to see also that g is the inverse of
f , i.e., f ◦ g is the identity function in ΦΣ and g ◦ f is the
identity function in ΨΣ. Indeed, if V ∈ ΦΣ, using the modular
distributive rule we find

(g ◦ f )(V) = g(V + S?) = (V + S?) ∩V?

=V + (S? ∩V?) = V +R? = V,

where the last equality follows from the fact that, since V is
self-bounded, it contains R?. Similarly, one can verify that ( f ◦
g)(S) = S. Neither of these two maps are injective. However,
if we restrict them to the lattices ΦΣ and ΨΣ, as we have seen
above, they become bijective. Indeed

(V? ∩ S
?) + S? =S?

(V? ∩ B ker D) + S? = (V? + S?) ∩ S? = S?,

and dually

(S? + C−1 im D) ∩V? = (V? ∩ S
?) +V? = V?

(S? +V?) ∩V? =V?.

5. SYSTEMS WITH GROUPED INPUTS AND OUTPUTS

Consider the following system
D x(t) = A x(t) + B1 u1(t) + B2 u2(t)

y1(t) = C1 x(t) + D1,1 u1(t) + D1,2 u2(t)
y2(t) = C2 x(t) + D2,1 u1(t) + D2,2 u2(t)

(4)

This representation, where the inputs u1(t) ∈ U1 and u2(t) ∈
U2 and outputs y1(t) ∈ Y1 and y2(t) ∈ Y2 are divided into
subgroups, is useful in several control and estimation con-
texts, including (i) the disturbance decoupling by state feedback
(where one input is manipulable and the other can be thought
of as a disturbance), (ii) the unknown-input observation (where

one output is used to reconstruct the other output by an observer
that has no access to the system input) and (iii) the disturbance
decoupling by dynamic output feedback and the regulator prob-
lem (where the above mentioned splitting of inputs and outputs
appear simultaneously).

We consider the following sub-systems associated with (4):

Σ̂ = (A, B1,C2,D2,1)

Σ̃ =
(
A, [ B1 B2 ],C2, [ D2,1 D2,2 ]

)
Σ̌ = (A, B2,C1,D1,2)

Σ̄ =

(
A, B2,

[
C1
C2

]
,

[
D1,2
D2,2

])
.

The above quadruples play a fundamental role in the aforemen-
tioned problems. In these problems, the matrix D1,1 is solely
responsible for the well-posedness of the feedback interconnec-
tion, but it does not play any role in the subspaces associated
with the solution of the problems.

We denote by (V̂i)i∈N and (Ŝi)i∈N the two sequences (2) and (3)
written for the sub-system Σ̂, that converge in at most n−1 steps
to V̂

?
and Ŝ

?
, respectively. Likewise, we denote by (Ṽi)i∈N

and (S̃i)i∈N the two sequences (2) and (3) for Σ̃ that converge in
at most n − 1 steps to the subspaces Ṽ? and S̃

?
.

Clearly, V̂
?
⊆ Ṽ

? and Ŝ
?
⊆ S̃

?
; indeed, V̂i ⊆ Ṽi for all

i ∈ N. By induction, if Ṽi ⊇ V̂i for a certain i ∈ N, then

Ṽi+1 =

[
A

C2

]−1 (
(Ṽi ⊕ {0}) + im

[
B1 B2

D2,1 D2,2

])
⊇

[
A

C2

]−1 (
(Ṽi ⊕ {0}) + im

[
B1

D2,1

])
⊇

[
A

C2

]−1 (
(V̂i ⊕ {0}) + im

[
B1

D2,1

])
= V̂i+1.

We have also Ŝi ⊆ S̃i for all i ∈ N. By induction, if S̃i ⊇ Ŝi for
a certain i ∈ N, then

S̃i+1 = [ A B1 B2 ]
(
(S̃i ⊕U1 ⊕U2) ∩ ker[ C2 D2,1 D2,2 ]

)
⊇ [ A B1 B2 ]

(
(Ŝi ⊕U1 ⊕U2) ∩ ker[ C2 D2,1 D2,2 ]

)
=

{
x
∣∣∣∃ ξ ∈ Ŝi,∃u1 ∈U1,∃u2 ∈U2 :

x = A ξ + B1 u1 + B2 u2 and

0 = C2 ξ + D2,1 u1 + D2,2 u2

}
⊇

{
x
∣∣∣∃ ξ ∈ Ŝi,∃u1 ∈U1 : x = A ξ + B1 u1

and 0 = C2 ξ + D2,1 u1

}
= Ŝi+1.

However, when the inclusion

im
[

B2
D2,2

]
⊆ (V̂

?
⊕ {0}) + im

[
B1

D2,1

]
(5)

holds, from the proof of the first statement of Theorem 3.4 we
have V̂i = Ṽi for all i ∈ N, Ntogramatzidis (2008).

Even if we still have Ŝi ⊆ S̃i for all i ∈ N, the sum Ṽi +
S̃ j = V̂i + S̃ j = V̂i + Ŝ j holds for all i, j ∈ N, as the following
result shows.



Lemma 5.1. Let (5) hold. Then, V̂i + S̃ j = V̂i + Ŝ j for all
i, j ∈ N.

Proof: We start proving that S̃ j ⊆ V̂
?

+ Ŝ j for all j ∈ N. We
proceed by induction. The statement is trivially true for j = 0.
Suppose that S̃i ⊆ V̂

?
+ Ŝi for a certain i ∈ N, and we prove

that S̃i+1 ⊆ V̂
?

+ Ŝi+1. Let x ∈ S̃i+1. There exist x1 ∈ S̃i,
u1 ∈U1 and u2 ∈U2 such that

x = A x1 + B1 u1 + B2 u2

C2 x1 + D2,1 u1 + D2,2 u2 = 0.
From (5), there exist two matrices M and N of suitable sizes
such that B2 = V M + B1 N and D2,2 = D2,1 N, where V is a
basis matrix of V̂

?
. We can rewrite the previous two identities

as x = A x1 + B1 u1 + (V M + B1 N) u2 and C2 x1 + D2,1 u1 +
(D2,1 N) u2 = 0, or, equivalently,

x = A x1 + B1 (u1 + N u2) + V M u2

C2 x1 + D2,1 (u1 + N u2) = 0.

Since x1 ∈ S̃i ⊆ V̂
?

+ Ŝi, from the inductive assumption, we
can write x1 = xv + xs, where xv ∈ V̂

?
and xs ∈ Ŝi, so that

x = A xv + A xs + B1 (u1 + N u2) + V M u2

C2 xv + C2 xs + D2,1 (u1 + N u2) = 0.

Let F ∈ FΣ̂(V̂
?

). Adding and subtracting B1 F xv in the right
hand-side of the first equation and D2,1 F xv in the right hand-
side of the second equation gives

x = A xs + B1 (u1 + N u2 − F xv) + (A + B1 F) xv + V M u2,

0 = C2 xs + D2,1 (u1 + N u2 − F xv) + (C2 + D2,1 F) xv.

Clearly, (A + B1 F) xv + V M u2 ∈ V̂
?

and (C2 + D2,1 F) xv = 0.
Defining ω = u1 + N u2 − F xv and ξ = A xs + B1 ω; since
there holds also C2 xs + D2,1 ω = 0 with xs ∈ Ŝi, it follows that
ξ ∈ Ŝi+1. Thus, x ∈ Ŝi+1 + V̂

?
as required.

We have proved that S̃ j ⊆ V̂
?

+ Ŝ j for all j ∈ N. Clearly, there
holds also V̂

?
+ S̃ j ⊆ V̂

?
+ Ŝ j for all j ∈ N. Since V̂

?
= Ṽ

?,
we have Ṽ?

+ S̃ j ⊆ V̂
?

+ Ŝ j for all j ∈ N. Since we showed
that Ṽ?

+ S̃ j ⊇ V̂
?

+ Ŝ j, we obtain V̂
?

+ S̃ j = V̂
?

+ Ŝ j

for all j ∈ N. Finally, since V̂i ⊇ V̂
?

for all i ∈ N, then also
V̂i + S̃ j = V̂i + Ŝ j for all i, j ∈ N.

As a simple consequence of Lemma 5.1, V̂n−1 +S̃n−1 = V̂n−1 +

Ŝn−1 can be written as

V̂
?

+ S̃
?

= V̂
?

+ Ŝ
?
, (6)

and V̂1 + S̃n−1 = V̂1 + Ŝn−1, taking into account V̂1 =[ A
C2

]−1
(X ⊕ im D2,1) = C−1

2 im D2,1, becomes

C−1
2 im D2,1 + Ŝ

?
= C−1

2 im D2,1 + Ŝ
?
. (7)

We denote by Vm the largest reachability output-nulling sub-
space of the “disturbed system” with inputs u1 and u2 and
output y2, i.e.Vm

def
= R̃

?
= Ṽ

?
∩ S̃

?
= min ΦΣ̃. If the condition

im
[

B2

D2,2

]
⊆ (V̂

?
⊕ {0}) + im

[
B1

D2,1

]
is satisfied, in view of

Theorem 3.4 we have V̂
?

= Ṽ
?, and we haveVm = V̂

?
∩ S̃

?
.

We now consider the two quadruples Σ̌ = (A, B2,C1,D1,2) and
Σ̄ =

(
A, B2,

[
C1
C2

]
,
[

D1,2
D2,2

])
. We denote by (V̌i)i∈N and (Ši)i∈N the

sequences that converge in at most n − 1 steps to V̌
?

and Š
?

,
respectively. Similarly, we denote by (V̄i)i∈N and (S̄i)i∈N the
two sequences that converge in at most n − 1 steps to V̄? and
S̄
?, respectively.

In general, it is clear that V̄?
⊆ V̌

?
and S̄? ⊆ Š

?
. However,

when the inclusion ker[ C2 D2,2 ] ⊇ (Š
?
⊕U2)∩ ker[ C1 D1,2 ]

holds, we have Ši = S̄i for all i ∈ N from the dual of
(Ntogramatzidis, 2008, Lemma 3). The following result can be
proved by dualizing the proof of Lemma 5.1.

Lemma 5.2. Let ker[ C2 D2,2 ] ⊇ (Š
?
⊕U2) ∩ ker[ C1 D1,2 ].

For all i, j ∈ N there holds

V̄i ∩ Š j = V̌i ∩ Š j. (8)

Proof: Consider the statement of Lemma 5.1. We take the or-

thogonal complement in both sides of the condition im
[

B2

D2,2

]
⊆

(V̂
?
⊕ {0}) + im

[
B1

D2,1

]
, and we obtain

ker[ B>2 D>2,2 ] ⊇ (S?
Σ̂>
⊕Y2) ∩ ker[ B>1 D>2,1 ]. (9)

Taking the orthogonal complement of both sides of the equation
V̂i + S̃ j = V̂i + Ŝ j gives

V̂
⊥

i ∩ S̃
⊥

j = V̂
⊥

i ∩ Ŝ
⊥

j . (10)

Taking the orthogonal complement of each subspace of the
sequence (V̂i)i∈N gives V̂⊥0 = {0}

V̂
⊥

i+1 = [ A> C>2 ]
(
(V̂
⊥

i ⊕Y2) ∩ ker[ B>1 D>2,1 ]
)

Taking the orthogonal complement of each subspace of the
sequence (Ŝi)i∈N gives

Ŝ
⊥

0 = X

Ŝ
⊥

i+1 =

[
A>

B>1

]−1 (
(Ŝ
⊥

i ⊕ {0}) ∩ im
[

C>2
D>2,1

])
.

Finally, if we take the orthogonal complement of each subspace
of the sequence (Ŝi)i∈N we obtain

S̃
⊥

0 = X

S̃
⊥

i+1 =

 A>

B>1
B>2


−1 (S̃⊥i ⊕ {0}) ∩ im

 C>2
D>2,1
D>2,2


 .

With the substitutions A> → A, C>2 → B2, B>1 → C,
D>2,1 → D1,2, B>2 → C2, D>2,2 → D2,2, condition (9) becomes

ker[ C2 D2,2 ] ⊇ (Š
?
⊕U2) ∩ ker[ C1 D1,2 ]. With these sub-

stitutions, (V̂
⊥

i )i∈N becomes (Ši)i∈N, (Ŝ
⊥

i )i∈N becomes (V̌i)i∈N,
and (S̃

⊥

i )i∈N becomes (V̄i)i∈N. Thus, (10) is exactly (8).

From Lemma 5.2, we have in particular when i = j = n − 1



V̌
?
∩ Š

?
= V̄

?
∩ Š

?
. (11)

From i = n − 1 and j = 1, taking into account that Š1 =
[ A B2 ]

(
{0}⊕U2)∩ker[ C1 D2,2 ]

)
= [ A B2 ](({0}⊕ker D1,2) =

B2 ker D1,2, we have V̌
?
∩ B2 ker D1,2 = V̄

?.

Let SM
def
= Q̄

?
= V̄

?
+ S̄

?
= max ΨΣ̄. If ker[ C2 D2,2 ] ⊇

(Š
?
⊕U2) ∩ ker[ C1 D1,2 ], in view of Theorem 3.10 we have

S̄
?

= Š
?

. Hence, in this case SM = V̄
?

+ Š
?

.

We now focus on the relationships between the remaining
lattices. We start with a simple result, the proof is omitted for
the sake of brevity.
Lemma 5.3. The following inclusions hold:

• V̄
?
⊆ V̂

?
⊆ Ṽ

?;
• S̄

?
⊆ Š

?
⊆ S̃

?
;

The following result is an immediate consequence of Lemma 5.3.

Corollary 5.1. If Š
?
⊆ V̂

?
, then S̄? ⊆ Ṽ?.

Lemma 5.4. Let Š
?
⊆ V̂

?
. Then:

• the subspaceVm + SM is self-bounded for Σ̃;
• the subspaceVm ∩ SM is self-hidden for Σ̄.

Proof: We find

Vm + SM = (Ṽ?
∩ S̃

?
) + (S̄? + V̄

?)

=
(
(Ṽ?

∩ S̃
?

) + S̄
?)

+ V̄
?

=
(
(Ṽ?

+ S̄
?) ∩ (S̃

?
+ S̄

?)
)

+ V̄
?

= (Ṽ?
∩ S̃

?
) + V̄

?
= Vm + V̄

?
, (12)

where we have used the modular distributive rule and Lemma 5.3.
We now show that Vm + SM is output-nulling for Σ̃. The

inclusion
[ A

C1

C2

]
V̄

?
⊆ (V̄?

⊕{0})+ im
 B2

D1,2

D2,2

 implies
[ A

C2

]
V̄

?
⊆

(V̄?
⊕{0}) + im

[
B2

D2,2

]
, which in turn implies

[ A
C2

]
Ṽ

?
⊆ (V̄?

⊕

{0})+ im
[

B1 B2

D2,1 D2,2

]
. Adding this inclusion to

[ A
C2

]
Vm ⊆ (Vm⊕

{0}) + im
[

B1 B2

D2,1 D2,2

]
(recall thatVm ∈ ΦΣ̃), it follows that

[
A

C2

]
(Vm+ V̄

?) ⊆
(
(Vm+V̄

?) ⊕ {0}
)
+im

[
B1 B2

D2,1 D2,2

]
. (13)

Thus,Vm +SM is output-nulling for Σ̃. The fact thatVm + V̄
?

is self-bounded follows immediately from the inclusion

Vm + V̄
?
⊇ Vm ⊇ Ṽ

?
∩ [ B1 B2 ] ker[ D2,1 D2,2 ].

The second statement follows by duality, by using the fact that

Vm ∩ SM = (S̄? + V̄
?) ∩ (Ṽ?

∩ S̃
?

)

=
(
(S̄? + V̄

?) ∩ Ṽ?)
∩ S̃

?

=
[
(S̄? ∩ Ṽ?) + (V̄?

∩ Ṽ
?)

]
∩ S̃

?

= (S̄? + V̄
?) ∩ S̃

?
= SM ∩ S̃

?
.

Corollary 5.2. Let Š
?
⊆ V̂

?
. The following results hold:

• If im
[

B2

D2,2

]
⊆ (V̂

?
⊕ {0}) + im

[
B1

D2,1

]
, thenVm +SM is self-

bounded for Σ̂.

• If ker [ C2 D2,2 ] ⊇ (Š
?
⊕U2)∩ ker [ C1 D1,2 ], thenVm ∩

SM is self-hidden for Σ̌.

Proof: Recall that im
[

B2

D2,2

]
⊆ (V̂

?
⊕ {0}) + im

[
B1

D2,1

]
implies

im
[

B2

D2,2

]
⊆ (Vm⊕{0})+ im

[
B1

D2,1

]
from Theorem 3.4. Using this

inclusion into (14) we obtain[
A

C2

] (
Vm + V̄

?
)
⊆

(
(Vm + V̄

?) ⊕ {0}
)

+ im
[

B1 B2
D2,1 D2,2

]
⊆

(
(Vm+V̄

?) ⊕ {0}
)

+ im
[

B1
D2,1

]
+ (Vm ⊕ {0}) + im

[
B2

D2,2

]
=

(
(Vm + V̄

?) ⊕ {0}
)

+ im
[

B1
D2,1

]
.

We also need to prove thatVm + SM ⊇ V̂
?
∩ B1 ker D2,1: this

follows fromVm +SM ⊇ V̂
?
∩ [ B1 B2 ] ker[ D2,1 D2,2 ]. The

second claim can be proved by duality.

6. CONCLUSION

In this paper, we have first considered simple lattices of self-
bounded and self-hidden subspaces of a biproper LTI system.
Then, we analyzed the interaction of systems described by
different quadruples in more complex lattice structures, in line
with the standard framework that is usually considered in the
regulator problem and in the disturbance decoupling problem
by dynamic output feedback.
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