
A Note on the Finite Convergence of Alternating Projections

Hoa T. Bui1, Ryan Loxton, Asghar Moeini

ARC Training Centre for Transforming Maintenance through Data Science, Curtin University, Australia

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Australia

Abstract

We establish sufficient conditions for finite convergence of the alternating projections method for two non-intersecting
and potentially nonconvex sets. Our results are based on a generalization of the concept of intrinsic transversality,
which until now has been restricted to sets with nonempty intersection. In the special case of a polyhedron and closed
half space, our sufficient conditions define the minimum distance between the two sets that is required for alternating
projections to converge in a single iteration.
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1 Introduction

Throughout this paper, X is a Hilbert space with inner
product 〈·, ·〉 and associated norm ‖·‖. The method of al-
ternating projections for two nonempty sets A,B ⊂ X in-
volves iterating the following steps, starting with x0 ∈ A:

yn ∈ PB(xn),

xn+1 ∈ PA(yn).

Here, PB(xn) is the set of all projections of xn onto B
and PA(yn) is the set of all projections of yn onto A. The
study of the convergence of this method in the consistent
case (i.e. A ∩ B 6= ∅) has a long history that can be
traced back to von Neumman; see [1, 2, 3, 4] for historical
comments. In particular, for convex settings, Bregman [5]
showed that the method always converges, and a linear
convergence rate was established by Gubin et al. [6] and
Bauschke & Borwein [7]. For nonconvex settings, condi-
tions such as superregularity and intrinsic transversality
can be imposed to ensure linear convergence (see the re-
sults by Dao et al. [8] and Drusvyatskiy et al. [2]). Fur-
thermore, Noll and Rondepierre in [4] studied a general
setting that allows for nonlinear convergence under more
subtle nonlinear regularity assumptions.

For the inconsistent case, when A∩B = ∅, the method
of alternating projections does not converge to a single
point, but under certain conditions it will converge to a
pair of points of minimum distance. For example, Cheney
and Goldstein showed in [9] that in Euclidean spaces when
the two sets are closed and convex, and one of the sets is
compact, the method converges and attains the minimum
distance between the two sets. In particular, this result
holds for two polytopes. Because of this important con-
vergence property, alternating projections for inconsistent
cases has been widely applied [6, 10, 11]; see also [12, 13]
for reviews.

There has been a handful of research papers aimed at
establishing certain convergence rates for the alternating

projections method in the inconsistent case (see for ex-
ample [14]), but almost all results consider convergence
in the limit rather than finite convergence. To the best
of our knowledge the only exception is a recent paper by
Behling et al. [15], which considers finite convergence for
two non-intersecting closed convex sets satisfying some er-
ror bound conditions. Our work in this paper also aims at
finding sufficient conditions to ensure finite convergence,
but for the general nonconvex setting.

Our approach is to extend the concept of intrinsic
transversality, first defined for consistent cases in [2], to
the more general setting when the intersection can be
empty or nonempty (Conditions 1 and 2 in Section 3).
Under either condition, we show that the number of iter-
ations depends on the distance between the two sets, the
starting point and the maximum angle between vectors of
type (a − b), where a ∈ A and b ∈ B, and the proximal
normal cones Nprox

A (a) and Nprox
B (b). In particular, these

results are applicable when the two sets are a polyhedron
and a closed half space.

The alternating projections method can be used to
solve linear programming problems. Indeed, a minimiza-
tion linear program can be formulated as finding the clos-
est points of the following sets:

(1) the problem’s feasible region; and
(2) the closed half space containing all vectors whose

objective function value is strictly less than a spec-
ified lower bound for the objective over the feasible
region.

Finite convergence of the alternating projections
method for this setting is guaranteed by our sufficient
conditions. This idea of solving linear programming prob-
lems using alternating projections was also independently
considered in [15]. However, our approach has some ad-
vantages. First, we can estimate the number of iterations
required for convergence. Second, we can also determine
the minimum distance (or lower bound), relative to the
starting point that is needed to ensure convergence after
one iteration (see Figure 1).
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(a) Linear convergence (b) Finite convergence (c) 1 step convergence

Figure 1: Convergence of the alternating projections method.

The paper is organized as follows. In Section 2, we
recall some essential results that will be used in subse-
quent sections, and we provide a new proof for one of
these results. Section 3 contains our main results on the
finite convergence of the alternating projections method.
Finally, Section 4 explores the new finite convergence re-
sults for the special case of a polyhedron and a closed half
space, which is related to linear programming.

2 Preliminaries and auxiliary results

Let B, B∗ denote the open unit balls in the primal and
dual spaces X, X∗ and furthermore let Bδ(x) and Bδ(x)
denote, respectively, the open and closed balls with center
x and radius δ > 0. We use R and R+ to denote the real
line (with the usual norm) and the non-negative subset
of the real line. We use the notation R+(v) for the cone
{λv : λ ≥ 0} generated by a vector v in X. The bound-
ary and interior of a set A are denoted as bdA and intA,
respectively. The distance from a point x to a set A is
defined by d(x,A) := inf

u∈A
‖u−x‖, and we use the conven-

tion d(x, ∅) = +∞. The set of all projections of x onto A
is

PA(x) := {a ∈ A : d(x, a) = d(x,A)}.

If A is a closed subset of a finite dimensional space, then
PA(x) 6= ∅. Additionally, if A is a closed convex set of an
Euclidean space, then PA(x) is a singleton. The identity
d (v/ ‖v‖ ,R+(u)) = d (u/ ‖u‖ ,R+(v)) for u, v ∈ X \ {0}
is used in subsequent sections. This assertion is proved as
follows:[
d

(
v

‖v‖
,R+(u)

)]2

= min
λ≥0

∥∥∥∥ v

‖v‖
− λu

∥∥∥∥2

= min
λ≥0

(
1 + λ2 ‖u‖2 − 2λ

‖v‖
〈v, u〉

)

=

1− 〈v, u〉2

‖u‖2 ‖v‖2
, if 〈u, v〉 > 0,

1, if 〈u, v〉 ≤ 0,

and similarly

[
d

(
u

‖u‖
,R+(v)

)]2

=

1− 〈v, u〉2

‖u‖2 ‖v‖2
, if 〈u, v〉 > 0,

1, if 〈u, v〉 ≤ 0.

As defined in [16], the proximal normal cone to A at a ∈ A
is:

Nprox
A (a) := cone (P−1

A (a)− a)

= {λ(x− a) : λ ≥ 0, a ∈ PA(x)} .

For convenience, we will use the notation NA(a) instead
of Nprox

A (a) throughout. Observe that if a ∈ PA(x), then
x − a ∈ NA(a). The proximal normal cone is related to
the proximal subdifferential of a proper semicontinuous
function f , denoted ∂P f , or ∂f for simplicity. Indeed,
∂1A(a) = NA(a) for any a ∈ A, where here 1A is the indi-
cator function of the set A defined by 1A(x) = 0 if x ∈ A
and 1A(x) = +∞, otherwise. The proximal subdifferen-
tial satisfies the following fuzzy sum rule (see [16], page
240).

Lemma 1 (Fuzzy sum rule). Suppose f1 is lower semicon-
tinuous and f2 is Lipschitz continuous in a neighbourhood
of x̄. Then, for any x∗ ∈ ∂(f1 + f2)(x̄) and ε > 0, there
exist x1, x2 ∈ X with ‖xi − x̄‖ < ε, |fi(xi) − fi(x̄)| < ε
(i = 1, 2), such that x∗ ∈ ∂f1(x1) + ∂f2(x2) + (εB∗).

The following result has been proved in [2] and here
we give an alternative proof. Our proof consists of two
key ingredients: (1) Ekeland’s Variational Principle [17],
and (2) the fuzzy sum rule in Lemma 1.

Theorem 2 (Distance decrease). [2, Theorem 5.2] Con-
sider a Hilbert space X, a closed set A, and points a ∈ A,
b /∈ A with ρ := ‖a− b‖ and α > 0. If there is δ > 0 such
that

inf

{
d

(
b− x
‖b− x‖

, NA(x)

)
: x ∈ Bρ(b) ∩Bδ(a) ∩A

}
≥ α,

(1)
then d(b, A) ≤ ‖a− b‖ − αδ.

Proof. Consider the function f(x) = ‖x− b‖ and suppose
to the contrary that (1) holds but d(b, A) > ‖a− b‖−αδ.
Take α′ ∈ (0, α) such that d(b, A) > ‖a− b‖−α′δ. This is
equivalent to inf

x∈A
f(x) > f(a) − α′δ. By Ekeland’s Vari-

ational Principle, there is a vector x0 ∈ A ∩ Bδ(a) such
that

f(x0) < f(a), (2)

f(x0) ≤ f(x) + α′ ‖x− x0‖ , ∀x ∈ A. (3)

Due to (2), ‖x0 − b‖ < ‖a− b‖ = ρ, or x0 ∈ A ∩ Bρ(b).
By (3), it follows that x0 is a global minimizer of the sum
function f(x) + α′ ‖x− x0‖+ 1A(x). Thus,

0 ∈ ∂ (f(x) + 1A(x) + α′ ‖x− x0‖) |x=x0 .

Take ε > 0 such that

ε < min {α− α′, ρ− ‖x0 − b‖ , δ − ‖x0 − a‖} .

By the fuzzy sum rule applied at x0 for the functions
f(x) + 1A(x) and α′ ‖x− x0‖, there exist x̄, x′ ∈ Bε(x0)
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such that |f(x̄) + 1A(x̄)− f(x0)− 1A(x0)| < ε and

0 ∈ ∂(f(x) + 1A(x)) |x=x̄ +∂(α′ ‖x− x0‖) |x=x′ +εB∗

⊂ ∂(f(x) + 1A(x)) |x=x̄ +α′B∗ + εB∗

⊂ ∂(f(x) + 1A(x)) |x=x̄ +αB∗.

Therefore, x̄ ∈ A ∩ Bε(x0) and ∂(f(x) + 1A(x)) |x=x̄

∩(αB∗) 6= ∅. On the other hand, since X is a Hilbert
space and

f(x̄) = ‖x̄− b‖ ≥ d(b, A) > 0,

the function f is differentiable at x̄ and ∇f(x̄) =
x̄− b
‖b− x̄‖

.

Thus,

∂(f(x) + 1A(x)) |x=x̄=
x̄− b
‖b− x̄‖

+NA(x̄).

Recall that

(
x̄− b
‖b− x̄‖

+NA(x̄)

)
∩ (αB∗) 6= ∅, or

d

(
b− x̄
‖b− x̄‖

, NA(x̄)

)
< α.

Furthermore, by the choice of ε, x̄ ∈ A ∩Bρ(b) and

‖x̄− a‖ ≤ ‖x̄− x0‖+ ‖x0 − a‖ < ε+ ‖x0 − a‖ < δ,

which shows that x̄ ∈ Bδ(a), and hence the previous in-
equality contradicts (1).

The next proposition is a supplementary result that
provides a characterization for two points in disjoint con-
vex sets that are of minimum distance apart.

Proposition 3. Consider two closed convex subsets A,B
of a Hilbert space X with d(A,B) > 0 and a ∈ A, b ∈ B.
Then ‖a− b‖ = d(A,B) if and only if

(b− a) ∈ NA(a), and (a− b) ∈ NB(b). (4)

Proof. If ‖a− b‖ = d(A,B) > 0 with a ∈ A, b ∈ B, then
a ∈ PA(b) and b ∈ PB(a). By the definition of the proxi-
mal normal cones, b− a ∈ NA(a) and a− b ∈ NB(b).

Consider the distance function restricted to the sets A
and B defined by f(x, y) := ‖x− y‖+ 1A×B(x, y), where
1A×B is the indicator function of the set A × B. The
product space X×X is equipped with the usual L2 norm.
When the two sets A,B are convex, the function f is con-
vex. The pair (a, b) is the global minimizer of f , or equiv-
alently a pair of shortest distance between A and B, if and
only if

0 ∈ ∂f(a, b) = ∂ (‖x− y‖) |(x,y)=(a,b) +NA×B(a, b)

= ∂ (‖x− y‖) |(x,y)=(a,b) +NA(a)×NB(b).

Since A ∩B = ∅, then a− b 6= 0 and

∂(‖x− y‖) |(x,y)=(a,b)=

{(
a− b
‖a− b‖

,
b− a
‖b− a‖

)}
.

The inclusion 0 ∈ ∂f(a, b) is equivalent to (4).

Note that in nonconvex settings inclusion (4) is a nec-
essary but not sufficient condition for ‖a− b‖ = d(A,B).

The following definition was introduced in [2]. Our
convergence results rely on a modification of this defini-
tion to the inconsistent setting.

Definition 4 (Intrinsic transversality). [2, Definition 3.1]
Given two closed sets A,B of a Hilbert space X, x̄ ∈ A∩B,
we say that {A,B} is intrinsically transversal at x̄ with
degree α ∈ (0, 1) if there is ρ > 0 such that for all
x ∈ (A \B) ∩Bρ(x̄), y ∈ (B \A) ∩Bρ(x̄), we have

max

{
d

(
x− y
‖x− y‖

, NB(y)

)
, d

(
y − x
‖x− y‖

, NA(x)

)}
≥ α.

(5)

The key result linking intrinsic transversality with lin-
ear convergence of the alternating projections method is
restated from [2] below.

Theorem 5 (Linear convergence). [2, Theorem 6.1] If
two closed sets A,B of an Euclidean space X are intrinsi-
cally transversal at a point x̄ ∈ A ∩B, with degree α > 0,
then, for any constant c in the interval (0, α) the method of
alternating projections, initiated sufficiently near x̄, con-
verges to a point in the intersection A∩B with linear rate
1− c2.

3 Convergence results

We extend the definition of intrinsic transversality in
Definition 4 to more general frameworks without the as-
sumption A∩B 6= ∅, removing the need for x̄ and its local
neighbourhood Bρ(x̄). Condition 1 below is a global con-
dition that requires (5) to hold across the entire sets A,B.
Condition 1’ is a weaker condition that only requires (5)
to hold in certain neighbourhoods around two points in
A,B that are of minimum distance apart.
Condition 1. Given two closed sets A,B of a Hilbert
space X, and α ∈ (0, 1), inequality (5) holds for all
x ∈ A \B, y ∈ B with d(y,A) > d(A,B).
Condition 1’. Given two closed sets A,B of a Hilbert
space X, a ∈ A, b ∈ B such that ‖a− b‖ = d(A,B) = d,
and α ∈ (0, 1), there exists ρ > 0 such that inequal-
ity (5) holds for all x ∈ (A \ B) ∩ B2d+ρ(b) and y ∈
(B \A) ∩B2d+ρ(a) with d(y,A) > d(A,B).

Remark 6. If A ∩ B 6= ∅, then d(A,B) = 0 and Condi-
tion 1’ reduces to Definition 4 and Condition 1 reduces to
the following condition.
Condition 1”. Given two closed sets A,B of a Hilbert
space X, A ∩B 6= ∅, and a constant α ∈ (0, 1), inequality
(5) holds for all x ∈ A \B, y ∈ B \A.
Condition 1” is an extension of Definition 4 to the global
framework. Indeed, under Condition 1”, the pair {A,B}
is intrinsically transversal at any x̄ ∈ A ∩B.

We will show later in this section that under Condi-
tions 1 or 1’, when A ∩ B = ∅, the method of alternating
projections converges after a finite number of steps. To
do this, we need the following key result.

Lemma 7. Consider two closed subsets A,B of a Hilbert
space X, x ∈ A \ B and y ∈ PB(x) satisfying d(y,A) >
d(A,B), and α ∈ (0, 1), δ := α ‖x− y‖. Suppose that the
following inequality holds for all z ∈ A ∩Bδ(x) \B:

max

{
d

(
z − y
‖z − y‖

, NB(y)

)
, d

(
y − z
‖z − y‖

, NA(z)

)}
≥ α.

(6)
Then,

d(y,A) ≤ (1− α2) ‖x− y‖ . (7)
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Proof. Take x ∈ A \B and y ∈ PB(x) such that d(y,A) >
d(A,B). We have x 6= y. Let ρ := ‖x− y‖ > 0 and
δ := α ‖x− y‖ > 0. For any z ∈ A∩Bδ(x), we have z 6= y
and

d

(
z − y
‖z − y‖

, NB(y)

)
≤ d

(
z − y
‖z − y‖

,R+(x− y)

)
= d

(
x− y
‖x− y‖

,R+(z − y)

)
≤
∥∥∥∥ x− y
‖x− y‖

− z − y
‖x− y‖

∥∥∥∥
=
‖z − x‖
‖x− y‖

< α.

Therefore, by inequality (6),

inf

{
d

(
y − z
‖y − z‖

, NA(z)

)
: z ∈ A ∩Bδ(x) \B

}
≥ α. (8)

Furthermore, for any z ∈ A ∩ Bδ(x), by the triangle in-
equality,

d(z,B) ≥ d(x,B)− ‖x− z‖
= ‖x− y‖ − ‖x− z‖
≥ ‖x− y‖ − δ = (1− α) ‖x− y‖ > 0,

which implies z ∈ A \ B. Thus, A ∩ Bδ(x) ∩ Bρ(y) \ B =
A ∩Bδ(x) ∩Bρ(y), and from (8),

inf

{
d

(
y − z
‖y − z‖

, NA(z)

)
: z ∈ A ∩Bδ(x) ∩Bρ(y)

}
≥ α.

Then, applying Theorem 2, we obtain

d(y,A) ≤ ‖x− y‖ − αδ = (1− α2) ‖x− y‖ ,

as required.

Note that Conditions 1 and 1” meet the conditions
required for Lemma 7. Now, consider three consecutive
alternating projections:

x2n ∈ A, x2n+1 ∈ PB(x2n), x2n+2 ∈ PA(x2n+1).

Under Condition 1, if d(x2n+1, A) > d(A,B) (i.e., conver-
gence has not been achieved after 2n+ 1 iterations), then
by Lemma 7 we have

‖x2n+2 − x2n+1‖ = d(x2n+1, A) ≤ (1−α2) ‖x2n+1 − x2n‖ .

This idea plays the core role in the following theorem.

Theorem 8. Consider two closed sets A,B of a Hilbert
space X and suppose Condition 1 holds for some α ∈
(0, 1). Consider a sequence of alternating projections (xn)
where x2n ∈ A and x2n+1 ∈ B (n ≥ 0).

(i) If d(A,B) > 0, then the sequence (xn) attains the
minimum distance in at most 2N + 1 steps, where

N :=

⌊
log1−α2

(
d(A,B)

d(x0, B)

)⌋
. (9)

(ii) If d(A,B) = 0, then the sequence (xn) converges lin-
early to a point in the intersection A ∩ B with rate
(1− α2), i.e.,

‖xn+1 − xn‖ ≤ (1− α2)n ‖x1 − x0‖ . (10)

Proof. Let d(A,B) > 0. If convergence has not occurred
after 2n+ 1 steps (n ≥ 0), then by induction,

d(A,B) < d (x2n+1, A) ≤ (1− α2)n+1 ‖x1 − x0‖ . (11)

Indeed, for n = 0, (11) follows from applying Lemma 7
with x0 and x1, and assuming that (11) holds for n ≥ 0,
if convergence has not occurred in 2(n+ 1) + 1 steps, then
again by Lemma 7,

d(A,B) < d(x2n+3, A) ≤ (1− α2) ‖x2n+3 − x2n+2‖
= (1− α2)d(x2n+2, B)

≤ (1− α2)d(x2n+1, A)

≤ (1− α2)n+2 ‖x1 − x0‖ ,

which completes the induction argument. Now, if
d(A,B) < d(x2n+1, A), then from (11),

n < log1−α2

(
d(A,B)

d(x0, B)

)
− 1 < N,

where N is defined in (9). Therefore, convergence must
have occurred when n = N , which gives 2N + 1 as the
upper bound for the number of iterations.

Let d(A,B) = 0. Observe that the condition d(y,A) >
d(A,B) is equivalent to y ∈ B \ A. Therefore, the sets A
and B can be used interchangeably in Lemma 7. If the
alternating projections have converged at step n, then

‖xn+1 − xn‖ = d(A,B) = 0,

and inequality (10) holds trivially. If, on the other hand,
the alternating projections have not converged at step n,
then by Lemma 7, applied to xn and xn−1,

‖xn+1 − xn‖ ≤ (1− α2) ‖xn − xn−1‖ ,

from which an induction argument proves (10).

The following examples demonstrate the application of
Condition 1 in Theorem 8.

Example 9. Consider the space X = R2 equipped with the
Euclidean norm and two closed sets A := {(u, v) : v ≤ 0},
B := {(u, v) : v ≥ |u|} and x0 ∈ A; see Figure 2(a). We
show that Condition 1 holds in this setting.

If y ∈ intB or x ∈ intA, the proximal normal
cones at these points are trivial, i.e., NB(y) = {0} or

NA(x) = {0}, and thus d

(
x− y
‖x− y‖

, NB(y)

)
= 1 or

d

(
y − x
‖x− y‖

, NA(x)

)
= 1, respectively. Hence, it is suffi-

cient to consider x ∈ bdA and y ∈ bdB. Take x = (x1, 0)
and y = (x2, |x2|) with x1, x2 ∈ R, x2 6= 0. Observe that

NA(x) = R+(0, 1); NB(y) =

{
R+(1,−1), x2 > 0,

R+(−1,−1), x2 < 0.

We have

x− y = (x1 − x2,− |x2|), ‖x− y‖ =
√

(x1 − x2)2 + x2
2.

Therefore,

d (y − x,NA(x))
2

= min
t≥0

(
(x2 − x1)

2
+ (t− |x2|)2

)
= (x2 − x1)

2
. (12)
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A
x0

(a) Linear convergence (Example 9)

B + b

A
x0

(b) Finite convergence (Example 10)

Figure 2: Alternating projections between a half space and the epigraph of |x|.

Moreover, for the case x2 > 0,

d (x− y,NB(y))
2

= min
t≥0

(
(t− (x1 − x2))

2
+ (t− x2)

2
)

=

{
1
2 (x1 − 2x2)

2
, x1 ≥ 0,

(x1 − x2)2 + x2
2, x1 < 0;

and for the case x2 < 0,

d (x− y,NB(y))
2

=

{
1
2 (x1 − 2x2)

2
, x1 ≤ 0,

(x1 − x2)2 + x2
2, x1 > 0.

Since (x1 − 2x2)
2

= ((x1 − x2)− x2)
2 ≤ 2(x1−x2)2+2x2

2,
the following inequality always holds:

d (x− y,NB(y))
2 ≥ 1

2 (x1 − 2x2)
2
.

This inequality combined with (12) yields

d

(
y − x
‖y − x‖

, NA(x)

)2

+ d

(
x− y
‖x− y‖

, NB(y)

)2

≥ 2 (x1 − x2)
2

+ (x1 − 2x2)
2

2(x1 − x2)2 + 2x2
2

=
(x1 − x2)2 + [(x1 − x2)2 + (x1 − 2x2)2]

2(x1 − x2)2 + 2x2
2

≥
(x1 − x2)2 + 1

2x
2
2

2(x1 − x2)2 + 2x2
2

≥
1
2 (x1 − x2)2 + 1

2x
2
2

2(x1 − x2)2 + 2x2
2

=
1

4
.

Hence,

max

{
d

(
y − x
‖x− y‖

, NA(x)

)
, d

(
x− y
‖x− y‖

, NB(y)

)}
≥ 1

2
√

2
.

According to Theorem 8(ii), the method of alternating
projections converges linearly to the origin with rate 7/8.

Example 10. Consider the setting in Example 9. By shift-
ing B with a vector b = (0, k), k > 0, we obtain non-
intersecting sets {A,B + b} with d(A,B + b) = ‖b‖ = k;
see Figure 2(b). The points (0, 0) and (0, k) are the clos-
est points between the two sets. Take x ∈ bdA and
y ∈ bd (B + b) with x = (x1, 0), y = (x2, |x2| + k),
x1, x2 ∈ R, x2 6= 0. We introduce the points x′ and y′

defined by x′ = (x1 + k, 0) and y′ = (x2 + k, |x2| + k) if
x2 > 0, and x′ = (x1 − k, 0) and y′ = (x2 − k, |x2|+ k) if
x2 < 0. Then clearly, x′ ∈ bdA, y′ ∈ bdB, y′ 6= (0, 0),
and x′ − y′ = x − y. Furthermore, by the results in Ex-
ample 9, NA(x′) = NA(x), NB(y′) = NB+b(y), and

max

{
d

(
x− y

‖x− y‖ , NB+b(y)

)
, d

(
y − x

‖x− y‖ , NA(x)

)}
= max

{
d

(
x′ − y′

‖x′ − y′‖ , NB(y
′)

)
, d

(
y′ − x′

‖x′ − y′‖ , NA(x
′)

)}
≥ 1

2
√
2
.

According to Theorem 8(i), the alternating projections

converge after 2

⌊
log7/8

(
k

d(x0, B + b)

)⌋
+ 1 steps. Note

that for a fixed starting point (x0, 0), when k is suffi-
ciently large, PB+b((x0, 0)) = {(0, k)}, d((x0, 0), B + b) =√
x2

0 + k2, and only one step is required.

We now give two examples where Condition 1 is not
satisfied.

Example 11. Let A := {(x, y) : y ≤ 0} and B := {(x, y) :
y ≥ x2}; see Figure 3(a). Since A and B are convex,
intrinsic transversality and subtransversality are equiva-
lent [18]. Consider two sequences of points (an) ⊂ A and
(bn) ⊂ B defined by an = (1/n, 0) and bn = (1/n, 1/n2).
For all n ≥ 1,

NA(an) = R+(0, 1); NB(bn) = R+(2/n,−1).

(See normal cone of a function’s epigraph in [16].) We
have

d

(
bn − an
‖an − bn‖

, NA(an)

)
= 0

d

(
an − bn
‖an − bn‖

, NB(bn)

)
= min

t≥0

∥∥(0,−1)− t(2/n,−1)
∥∥

= min
t≥0

√
(2t/n)2 + (t− 1)2 ≤ 2

n
.

Therefore,

max

{
d

(
bn − an
‖an − bn‖

, NA(an)

)
, d

(
an − bn
‖an − bn‖

, NB(bn)

)}
≤ 2

n
.

Since the right-hand side approaches 0 as n→∞, intrin-
sic transversality (and hence subtransversality) does not
hold for any α ∈ (0, 1), and therefore Condition 1 also does
not hold. The method of alternating projections cannot
converge linearly because subtransversality is a necessary
condition for linear convergence [19, Theorem 8].

Example 12. Consider the setting in Example 11. Shifting
B by b = (0, k), k > 0, we obtain {A,B + b} with closest
points (0, 0) ∈ A and (0, k) ∈ (B + b); see Figure 3(b).
Suppose that the alternating projections have not con-
verged to the minimum distance in n ≥ 0 steps. If xn =
(v1, v

2
1 + k) ∈ B + b with v1 6= 0, then xn+1 = (v1, 0) 6=

(0, 0). If xn = (v1, 0) ∈ A with v1 6= 0, then b /∈ PB+b(xn)
since d (xn − b,NB+b(b)) = d ((v1,−k),R+(0,−1)) > 0,
and hence xn+1 6= (0, k). Therefore, if the alternating
projections have not converged after n steps, then they
also do not converge after n + 1 steps, and there is no
finite convergence.
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B

A
x0

(a) No linear convergence (Example 11)

B + b

A
x0

(b) No finite convergence (Example 12)

Figure 3: Alternating projections between a half space and the epigraph of x2.

The next theorem establishes linear and finite conver-
gence for the local setting defined by Condition 1’.

Theorem 13. Consider two closed subsets A,B of a
Hilbert space X, a ∈ A, b ∈ B such that ‖a− b‖ =
d(A,B) = d and suppose Condition 1’ holds for some
α ∈ (0, 1) and ρ > 0. Consider a sequence of alternating
projections (xn) where x2n ∈ A and x2n+1 ∈ B (n ≥ 0),
initiated sufficiently close to a.

(i) If d(A,B) > 0, then (xn) attains the minimum dis-
tance in one step.

(ii) If d(A,B) = 0, then (xn) converges linearly with
rate 1− α2.

Proof. Suppose that Condition 1’ holds with α ∈ (0, 1)
and ρ > 0.

Consider the case d(A,B) > 0. Take κ :=
min{α2d(A,B), ρ/2} and x0 ∈ A ∩ Bκ(a), x1 ∈ PB(x0).
Then

‖x1 − a‖ ≤ ‖x1 − x0‖+ ‖x0 − a‖
≤ ‖b− x0‖+ ‖x0 − a‖
≤ ‖b− a‖+ 2 ‖x0 − a‖ < 2d(A,B) + 2κ,

and so x1 ∈ B2d+ρ(a). Let δ := α ‖x0 − x1‖. For any
z ∈ A ∩Bδ(x0),

‖z − b‖ ≤ ‖z − x0‖+ ‖x0 − b‖
≤ α ‖x0 − x1‖+ ‖x0 − b‖
≤ (1 + α) ‖x0 − b‖
< 2d(A,B) + 2κ,

and hence z ∈ A ∩ B2d+ρ(b). Thus, since x1 ∈ B2d+ρ(a)
and z ∈ A∩Bδ(x0) implies z ∈ A∩B2d+ρ(b), Condition 1’
ensures that Lemma 7 can be applied to x0 and x1 when
d(x1, A) > d(A,B). This gives

d(x1, A) ≤ ‖x1 − x0‖ − α2 ‖x1 − x0‖
≤ ‖x0 − b‖ − α2d(A,B)

≤ ‖x0 − b‖ − κ
≤ ‖x0 − a‖+ ‖a− b‖ − κ < d(A,B),

which contradicts the assumption d(x1, A) > d. This im-
plies d(x1, A) = d(A,B), and hence convergence occurs
after one step when the sequence is initiated in A∩Bκ(a).

Now consider the case d(A,B) = 0. In this case, we
have a ≡ b ≡ x̄ ∈ A ∩ B. Set κ := α2ρ/(2α2 + 2). Take
x0 ∈ A ∩ Bκ(x̄). We now prove by induction that the
following holds for all n ≥ 0:

xn ∈ Bρ/2(x̄), ‖xn+1 − xn‖ ≤ (1− α2)n ‖x1 − x0‖ .
(13)

This holds immediately for n = 0. Assume now that it
holds for n = 0, . . . , k. Then,

‖xk+1 − x̄‖ ≤
k∑

n=0

‖xn+1 − xn‖+ ‖x0 − x̄‖

≤
k∑

n=0

(1− α2)n ‖x1 − x0‖+ ‖x0 − x̄‖

=

(
1− (1− α2)k+1

α2

)
‖x1 − x0‖+ ‖x0 − x̄‖

≤ ‖x1 − x0‖
α2

+ ‖x0 − x̄‖

≤
(

1

α2
+ 1

)
‖x0 − x̄‖ < 1

2ρ,

and hence xk+1 ∈ Bρ/2(x̄). If xk+1 ∈ A ∩B, then conver-
gence has been achieved and the inequality in (13) holds
trivially for n = k+1. Otherwise, d(xn+1, A) > 0 if xk ∈ A
and d(xk+1, B) > 0 if xk ∈ B. For any z ∈ Bδ(xk), with
δ := α ‖xk+1 − xk‖, we have

‖z − x̄‖ ≤ ‖z − xk‖+ ‖xk − x̄‖
< δ + ‖xk − x̄‖
= α ‖xk+1 − xk‖+ ‖xk − x̄‖
≤ 2 ‖xk − x̄‖ < ρ,

and hence z ∈ Bρ(x̄). Hence, by Condition 1’, if xk+1 /∈
A ∩ B, then when xk ∈ A, we can apply Lemma 7
to derive d(xk+1, A) ≤ (1 − α2) ‖xk+1 − xk‖, and when
xk ∈ B we can apply Lemma 7 to derive d(xk+1, B) ≤
(1− α2) ‖xk+1 − xk‖. This gives

‖xk+2 − xk+1‖ ≤ (1− α2) ‖xk+1 − xk‖
≤ (1− α2)n+1 ‖x1 − x0‖ ,

which shows that (13) holds for n = k + 1.

Remark 14. (i) Since Condition 1’ covers intrinsic
transversality, Theorem 13 covers Theorem 5.

(ii) Under Condition 1’ when d(A,B) > 0, it follows
from Theorem 13(i) that if the alternating projec-
tions converge to a and b, then they must converge
in a finite number of steps, because eventually the
sequence will enter the ball A ∩ Bκ(a), after which
only one more projection is needed. However, esti-
mating the number of steps is difficult because Con-
dition 1’ is only a local condition and it may not be
satisfied at every iteration. In Theorem 8, we could
quantify the number of steps because Condition 1
applies globally, unlike Condition 1’.
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We now define an alternative to Conditions 1 and 1’.
Condition 2. Given two closed subsets A,B of a Hilbert
space X, and α ∈ (0, 1), β ∈ [0, 1], the following inequal-
ity holds for all x ∈ A \ B and y ∈ PB(x) such that
d(y,A) > d(A,B):

inf

{
d

(
y − z
‖y − z‖

, NA(z)

)
: z ∈ A ∩Bρ(y) ∩Bδ(x),

ρ = ‖x− y‖ , δ = α(‖x− y‖ − βd(A,B))

}
≥ α.

Unlike Condition 1, which considers all vectors y ∈
B \A, Condition 2 only considers the projections of x ∈ A
onto B. Condition 2 also provides the flexibility to choose
the neighbourhood of x in A by adjusting the new pa-
rameter β. The next theorem shows that the speed of
convergence depends on the neighbourhood’s radius.

Theorem 15. Consider two closed subsets A,B of a
Hilbert space X with d(A,B) = d ≥ 0 and suppose Condi-
tion 2 holds for some α ∈ (0, 1) and β ∈ [0, 1]. Consider
a sequence of alternating projections (xn) where x2n ∈ A
and x2n+1 ∈ B (n ≥ 0).

(i) If β < 1 and d > 0, then (xn) attains the minimum
distance in at most 2N + 1 steps, where

N :=

⌊
log1−α2

(
d(1− β)

‖x1 − x0‖ − βd

)⌋
. (14)

(ii) If d = 0 or β = 1, then the sequence (xn) converges

linearly with rate
√

1− α2.

Proof. Assume that Condition 2 holds for α ∈ (0, 1) and
β ∈ [0, 1]. If d(x2n+1, A) > d(A,B), then Condition 2
ensures that we can apply Theorem 2 with x2n ∈ A and
x2n+1 ∈ B to yield

d < d(x2n+1, A) ≤ (1− α2) ‖x2n+1 − x2n‖+ α2βd. (15)

We now prove by induction that, whenever d(x2n+1, A) >
d(A,B) (n ≥ 0),

d < d(x2n+1, A) ≤ (1− α2)n+1 (‖x1 − x0‖ − βd) + βd.
(16)

This is easily proved in the base step by substituting n = 0
into (15). For the inductive step, we assume that (16)
holds for n = k ≥ 0, and then if d(x2k+3, A) > d(A,B),
using (15) gives

d(x2k+3, A) ≤ (1− α2) ‖x2k+3 − x2k+2‖+ α2βd

≤ (1− α2) ‖x2k+2 − x2k+1‖+ α2βd

= (1− α2)d(x2k+1, A) + α2βd

≤ (1− α2)k+2 (‖x1 − x0‖ − βd) + (1− α2)βd

+ α2βd

= (1− α2)k+2 (‖x1 − x0‖ − βd) + βd,

which proves (16) for n = k + 1, and hence (16) holds for
all n ≥ 0. We now consider two cases:

1. β < 1 and d > 0; and
2. β = 1 or d = 0.

For case 1, if the alternating projections have not con-
verged in 2n + 1 iterations (d(x2n+1, A) > d), then by
(16),

n < log1−α2

(
d(1− β)

‖x1 − x0‖ − βd

)
− 1 < N.

Hence, convergence must have occurred after 2N + 1 iter-
ations, proving part (i).

For case 2, we have from (16) that while convergence
has not occurred, for odd integers n ≥ 1,

‖xn+1 − xn‖ = d(xn, A)

≤
(√

1− α2
)n+1

(‖x1 − x0‖ − d) + d

<
(√

1− α2
)n

(‖x1 − x0‖ − d) + d, (17)

and for even integers n ≥ 2,

‖xn+1 − xn‖ = d(xn, B)

≤ ‖xn − xn−1‖
= d(xn−1, A)

<
(√

1− α2
)n

(‖x1 − x0‖ − d) + d. (18)

Inequalities (17) and (18) show that ‖xn+1 − xn‖ con-

verges to d linearly with rate
√

1− α2.

Remark 16. In part (i) of Theorem 15, the neighbourhood
radius δ in Condition 2 is always larger than the constant
α(1 − β)d(A,B) > 0, and in this case finite convergence
is guaranteed. In part (ii), δ → 0 as ‖x− y‖ → d(A,B)
and hence the neighbourhoods become arbitrarily small,
and the theorem only gives convergence in the limit. We
suspect that it may be possible to derive stronger conver-
gence rates by using different expressions for the radius δ
in Condition 2.

When d(A,B) = 0, Theorem 15 provides a new suf-
ficient condition for linear convergence in the consistent
case. Condition 2 is weaker than intrinsic transversality
as it only takes into account the normal cones for one of
the sets. This shows that intrinsic transversality is not a
necessary condition for linear convergence of alternating
projections in general nonconvex settings.

4 Special case: Polyhedron and closed half space

We now apply the results in Section 3 to the special
case where the two sets are a polyhedron and a closed half
space.

Proposition 17. Consider two non-intersecting closed
subsets A,B ⊆ Rn (n ≥ 1) defined by

A := {x : 〈c, x〉 ≤M}, and B := {x : Ax ≤ b},

where A is a m × n matrix with rows ai ∈ Rn (i =
1, . . . ,m), b ∈ Rm, c ∈ Rn \ {0} and M ∈ R. Then,
the pair {A,B} satisfies Condition 2 with β = 0 and

α :=
1

2
min

1, min
i=1,...,m;

〈ai,c〉>−‖ai‖‖c‖

d

(
ai
‖ai‖

,R+(−c)
) ,

(19)
with the convention min ∅ = +∞.
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Proof. Take x ∈ A and y ∈ PB(x) such that d(y,A) >
d(A,B) and let x′ ∈ PA(y). Then, x − y ∈ NB(y) and
y − x′ ∈ NA(x′) = R+(c). Furthermore, since A and
B are closed convex sets and y − x′ ∈ NA(x′), we must
have x′ − y /∈ NB(y), since otherwise by Proposition 3
d(y,A) = d(A,B), which is a contradiction. Therefore,
−c /∈ NB(y), or equivalently,

〈c, v〉 > −‖c‖ · ‖v‖ , for all v ∈ NB(y) \ {0}, (20)

since for vectors u, v ∈ Rn with ‖u‖ = ‖v‖ = 1, we have
〈u, v〉 = −1 if and only if u = −v. By [20, Theorem 6.46],
we have

NB(y) = cone {ai : i ∈ I(y)},

where I(y) := {i : 〈ai, y〉 = bi}. Note that if i ∈ I(y),
then (20) implies 〈ai, c〉 > −‖ai‖ · ‖c‖. Hence,

x− y ∈ NB(y) ⊂ cone {ai : 〈ai, c〉 > −‖ai‖ · ‖c‖} =: S,

and from (19), we obtain

d

(
y − x
‖x− y‖

,R+(c)

)
= d

(
x− y
‖x− y‖

,R+(−c)
)

≥ inf

{
d

(
v

‖v‖
,R+(−c)

)
: v ∈ S

}
= min

i=1,...,m;
〈ai,c〉>−‖ai‖‖c‖

d

(
ai
‖ai‖

,R+(−c)
)

≥ 2α.

Set δ := α ‖x− y‖, ρ := ‖x− y‖. Take z ∈ A ∩ Bδ(x) ∩
Bρ(y). Observe that either z ∈ intA and NA(z) = {0} or
z ∈ bdA and NA(z) = R+(c). Thus,

d

(
y − z
‖y − z‖

, NA(z)

)
≥ ‖y − x‖
‖y − z‖

d

(
y − z
‖y − x‖

,R+(c)

)
≥ d

(
y − x+ x− z
‖y − x‖

,R+(c)

)
≥ d

(
y − x
‖y − x‖

,R+(c)

)
− ‖x− z‖
‖y − x‖

≥ 2α− α = α.

Hence, the pair {A,B} satisfies Condition 2 with β = 0
and α defined by (19).

Note that the above derivations assume S 6= ∅, since
otherwise no such x ∈ A and y ∈ PA(x) with d(y,A) >
d(A,B) exist, and Condition 2 is redundant.

Corollary 18. Let A and B be as defined in Proposi-
tion 17 with d(A,B) > 0 and let α be defined by (19).
Then, the method of alternating projections, initiated at
x0 ∈ A, attains the minimum distance in at most 2N + 1
steps, where

N :=

⌊
log1−α2

(
d(A,B)

d(x0, B)

)⌋
.

Furthermore, if d(x0, B) <
d(A,B)

1− α2
, then the minimum

distance is attained after one step.

Proof. Observe that the constant α given in (19) is always
in (0, 1), since ai /∈ R+(−c) for ai ∈ S, and hence

0 < d(ai/ ‖ai‖ ,R+(−c)) ≤ 1, for each ai ∈ S,

where S is as defined in the proof of Proposition 17.

By Proposition 17 and Theorem 15, we conclude that
the alternating projections converge after 2N + 1 steps
with

N =

⌊
log1−α2

(
d(A,B)

d(x0, B)

)⌋
.

When d(x0, B) <
d(A,B)

1− α2
, we have N = 0 and the

method converges after one step.

Remark 19. (i) Consider two closed convex sets A, B
and let a ∈ A, b ∈ B such that ‖a− b‖ = d(A,B) >
0. Then by the definition of normal cone, b − a ∈
NA(a) and a− b ∈ NB(b). If we shift A by a vector
v := λ(b−a) with λ > 0, then b− (a−v) ∈ NA(a) =
NA−v(a−v) and a−v−b ∈ NB(b). Hence, by Propo-
sition 3, we have ‖(a− v)− b‖ = d(A− v,B). This
result is used in the next remark to determine by
how much the closed half space needs to be shifted
to ensure one-step convergence.

(ii) Consider two sets A,B as defined in Proposition 17,
and x0 ∈ A. Let a ∈ A and b ∈ B with ‖a− b‖ =
d(A,B), and then c = λ(b−a) for some λ > 0, since
b − a ∈ NA(a) = R+(c). To ensure one-step con-
vergence, we can shift A by a vector v := µc, where
µ > 0 and µ > 1

α2‖c‖
(
(1− α2)d(x0, B)− d(A,B)

)
.

Then by part (i) above, d(A − v,B) = d(A,B) +
‖v‖ = d(A,B) + µ ‖c‖. From the choice of µ, we
have

µ ‖c‖+ d(x0, B) <
d(A,B) + µ ‖c‖

1− α2
.

Therefore, d(x0−v,B) ≤ d(x0, B)+‖v‖ = d(x0, B)+

µ ‖c‖ < d(A,B) + µ ‖c‖
1− α2

=
d(A− v,B)

1− α2
. By Corol-

lary 18, the alternating projections for A−v and B,
starting from x0 − v, converge after one step.

We now propose a projection method for solving lin-
ear programming problems of the form (LP): min

x:Ax≤b
〈c, x〉,

where c ∈ Rn and A is a matrix. We assume that LP is
bounded with M as a lower bound that is strictly less than
the optimal value. Set

A := {x ∈ Rn : 〈c, x〉 ≤M},
B := {x ∈ Rn : Ax ≤ b}.

A solution of LP is obtained by applying iteratively the
alternating projections PB(x2n), PA(x2n+1) until the min-
imum distance is attained. By Remark 19(ii), the projec-

tion of x0 − µc with µ >
(1− α2)

α2 ‖c‖
d(x0, B) onto B is a

solution of LP.
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