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Abstract

The study of convex polyhedra has attracted many researchers in mathematics, sci-

ences, and arts. Most of the previous studies focused on geometrical properties, such

as polyhedron unfolding, polyhedral intersection, and pattern combinations. An early

discussion of regular polyhedra concerned the five Platonic solids—tetrahedron, cube,

octahedron, icosahedron and dodecahedron—traces back to Plato in Timaeus when

they were identified as fire, air, earth, water, and quintessence or aether elements.

Path planning for polyhedra through edge-rolling has been suggested by several re-

searchers, but not validated, except for solving the rolling-cube puzzle.

The aim of this study was to develop discrete path-planning algorithms for rolling a

convex polyhedron from an initial pose (position and orientation) to a goal pose on a

plane. This thesis first applied a breath-first search (BFS) based algorithm to edge-

roll a tetrahedron, cube, octahedron, icosahedron, and dodecahedron, which consists

of 4 regular triangles, 6 regular squares, 8 regular triangles, 20 regular triangles, and

12 regular pentagons, respectively, on prescribed grids. It then applied a randomly

explored tree (RRT) based algorithm to edge-roll a truncated icosahedron (the ge-

ometry is associated with a soccer ball), which consists of 12 regular pentagons and

20 regular hexagons.

In the first part, polygon tiling was used to generate different grids on the plane for

the Platonic solids: square grids for the cube, triangular grids for the tetrahedron,
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octahedron and icosahedron, and pentagon grids for the dodecahedron, where the

Penrose tiling was chosen from several tiling patterns because it has five-fold sym-

metry. Two scenarios were considered depending on the size of the search space. If

the search space is limited leading to the acceptability of the computation time of

collision check and graph expansion of the BFS algorithm, a one-step approach would

be used to find the shortest path for each solid to reach both the goal position and

goal orientation. On the other hand, if the search space is largely resulting in the

failure to find potential paths in a reasonable computational time due to the curse

of dimensionality, a two-step approach would be applied: the first step entailed path

planning to reach the goal position; the second step generated a closed path so that

the goal orientation was achieved.

In the second part, the RRT-based algorithm was applied to the truncated icosahe-

dron on a non-prescribed plane, where both its initial and goal poses were randomly

chosen. Sampling poses were generated from the unfolded truncated icosahedron on

the plane. The potential poses were chosen outside of the collision zones defined

by an offset distance equal to the circumradius of the truncated icosahedron. The

proposed algorithm achieved an increased convergence rate by imposing a strong bias

to guide the growth of the randomized tree in the direction of the goal position while

some other RRT variants searched the whole space, resulting in slow convergence.

However, the truncated icosahedron cannot always reach the exact goal position be-

cause of the discretised steps. Thus, a path would be only deemed successful if the

distance between the truncated icosahedron’s centre and the goal centre is less than
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the radius of the truncated icosahedron, and the goal orientation is reached.

The BFS-based algorithm traversed the nodes in a graph to construct the shortest

paths. Compared with the A* algorithm and its variants, the proposed BFS algo-

rithm performed a complete search by pre-orderly extending the parent node and all

neighbours of the child nodes until achieving the goal. It is guaranteed to generate

the shortest path at a higher computational cost than the A* variants which some-

times fail to find a feasible path. In this thesis, the search space is limited for path

planning for the Platonic solids on prescribed grids, thus the BFS-based algorithm

was preferred, and it produced the desired results—shortest paths.

Path planning for the truncated icosahedron on a non-prescribed plane posed a great

challenge: the search space is large, which rendered the BFS-based algorithm in-

adequate. The proposed RRT-based algorithm first constructed a convex hull that

included the initial and goal positions of the truncated icosahedron and all the ob-

stacles and then sampled nodes inside this convex hull. In this way, the algorithm

can enforce a strong bias guide to expand the randomized tree to the goal position,

which increased the convergence rate. In comparison, some RRT variants, such as

CL-RRT and RT-RRT*, can generate sub-optimal paths by exploring a large num-

ber of nodes, which was computationally expensive. Other RRT variants, such as

A*-RRT*, combine RRT* with A* to accelerate the convergence rate. However, the

initial path generated by A* took a large number of nodes with a Euclidean distance

as the heuristic function prior to guiding the RRT* sampling process.
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In summary, this thesis solved the path-planning problem of the Platonic solids and

truncated icosahedron through edge-rolling on a plane with obstacle avoidance, which

hitherto had not been solved. The BFS-based algorithm found the shortest paths for

the Platonic solids on a prescribed plane while the RRT-based algorithm generated

feasible paths with efficient tree exploration on a non-prescribed plane. The results

can be readily applied to a variety of applications: path planning for general convex

polyhedral, dexterous robotic in-hand manipulation, video games, and locomotion of

polyhedral tensegrity robots.
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Chapter 1: Introduction

1.1 Motivation

The path planning problem is to determine a path of an object from its source (ini-

tial) position to a destination (goal) position through a workspace populated with

obstacles. The obstacles may be either stationary or moving. The desired path is

an optimal one with no collisions between the object and the obstacles. The term

path planning was developed in many fields, such as robotics, artificial intelligence

and control theory. That is why scientists use their definition of this term [1]. There

are many different aspects of the path planning problem for a moving object. These

include optimal path planning among rectangular obstacles, optimal path finding

among weighted regions, and path planning to traverse narrow passages (the ’Piano

Movers Problem’). The task is defined with a precise model of a house and a piano

as input to an algorithm. The algorithm must determine how to move the piano

from one room to another without hitting anything. A robot’s path planning is de-

fined in a similar way. However, path planning usually ignores dynamics and other

constraints and focuses primarily on the translations and rotations of the controlled

object. Recent research in this area also considers other aspects such as uncertain-

ties [2], differential constraints [3] and optimality [4, 5].
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The problem of dexterous manipulation of objects, for example, arbitrary relocation

and reorientation of rigid bodies by the action of some mechanism, is considered a

path planning problem. In some cases, the problem is that of reorienting a large

number of parts in random positions and orientations, to a given posture within

assembly tolerances. Dexterous manipulation of the position and/or orientation of

polyhedral is a nonholonomic behaviour achieved by pushing, tilting, re-grasping,

rolling and translating. Rolling polyhedral has been suggested, but not validated in

any path planning algorithm, except for solving the rolling-cube puzzles for a cubic

dice [6].

Finding a collision-free path from a given starting pose to a goal pose for a polyhe-

dron through edge-rolling around static obstacles is called the discrete path planning

problem. Path-finding algorithms are developed from graph search techniques in gen-

eral. For each node of the graph, there are only a discrete number of choices to decide

in which direction to move next. Discrete search algorithms do not actually require

an explicit graph to existing. It is enough to have a state transition function f that

returns the next state for every possible action to be taken from the current state.

Let u denote action and x the current state. The next state obtained after applying

action u will be x′ = f(x, u). This notation is more generic since it does not require

the entire state graph of the problem to be explicitly available, it only requires the

moves between states to be known. Function f can represent the possible moves of

an agent and as well of any system that is described by states. For example, when

solving a Rubik’s cube puzzle, the transition function f is well defined because all
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the discrete number of possible rotation moves to change the cube from the current

state to any adjacent state are known. This thesis focuses on the path-finding al-

gorithm for the convex polyhedron through edge-rolling and surface contact. The

discrete path has consisted of curves that indicate the rotation of the centre of the

polyhedron from a current state to the next state.

1.2 Aims and Objectives

The aim of this study is to develop discrete path planning algorithms for rolling

convex polyhedra to achieve a goal pose (position and orientation) from an initial

pose on a plane.

The following objectives have been proposed to fulfill the aims of the thesis.

(a) Analysing the geometrical structure of the Platonic solids and the truncated

icosahedron which is representative of a soccer ball structure.

(b) Applying the breadth-first search (BFS) based algorithm to find a path for

the Platonic solids through edge-rolling with obstacle avoidance on prescribed

grids.

(c) Implementing the path planning for the Platonic solids in two case scenarios.

The first scenario is to find a path through edge-rolling from an initial pose
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to a goal pose, which is applied for the limited search space. On the other

hand, if the search space is large, the shortest path from the initial position to

the goal position is achieved without orientation consideration. The BFS-based

algorithm then is applied to find a closed path so that the goal orientation is

reached.

(d) Applying the rapidly-exploring random tree (RRT) based algorithm to the trun-

cated icosahedron on a non-prescribed plane. By imposing a strong bias to guide

the growth of the randomized tree in the direction of the goal position, the con-

vergence rate of the algorithm is increased. Achieving the goal orientation with

the closed path would be only supposed successful if the distance between the

truncated icosahedron’s centre and the goal centre is less than the radius of the

truncated icosahedron.

1.3 Thesis Outline

The thesis is organised into 7 chapters; the details are as follows:

Chapter 1 is an introduction to the thesis. It begins with the motivation and back-

ground of the path planning algorithms for rolling polyhedra. The aims and objectives

of the thesis are then proposed to solve the problem. The outline of the structure of

the thesis ends the chapter.
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Chapter 2 is an introduction to the mathematical tools used in the thesis. It first

describes the rigid body transformations in the 3D space before analyzing the rotation

matrix which is applied in the path planning algorithms for polyhedra through edge-

rolling.

Chapter 3 shows how the study in the thesis fits within the literature by introducing

a detailed review of related works and highlighting the gaps in the previous stud-

ies. It first provides a comprehensive review of rolling contact and explains how

this work proposed the algorithm to tackle the problem. The 3D convex polyhedra

will be utilised and the two convex polyhedra groups: Platonic solids and the Trun-

cated icosahedron are analysed in the geometrical properties. Finally, it presents the

review of path planning methods and highlights two main algorithms used in the

thesis: breadth-first search (BFS) and rapidly-exploring random tree (RRT) based

algorithms. The chapter provides the summary and gaps in the literature at the end.

Chapter 4 introduces details of the BFS and RRT-based algorithm which will be

applied to find the feasible paths for rolling polyhedra. The chapter first reviews

the literature on the BFS algorithms and previous applications. Although the BFS

algorithm has the disadvantage of computation time, the algorithm can find the

optimal rolling path for the convex polyhedra if it exists through the analysis in the

chapter (there is no guarantee to find the paths for the general convex polyhedra due

to the geometrical complexity). The implementations of the BFS algorithm for the

Platonic solids are shown in Chapter 5. In the second part, the chapter presents the
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RRT-based algorithm to solve the path planning for the general convex polyhedra

through edge-rolling. An overview of the RRT algorithm and its previous academic

and industrial applications are presented. A preliminary of the algorithm consistently

with the defined environment for a polyhedron edge-rolling is then introduced. The

proposed RRT-based algorithm for a convex polyhedron to find the rolling path

through edge-contact is presented in detail. Its implementations for the truncated

icosahedron are detailed in Chapter 6.

Chapter 5 adopts the BFS-based algorithm from the first part of Chapter 4 to solve

the path planning problem for the Platonic solids through edge-rolling on the pre-

scribed grids. First, it introduces the related works of rolling polyhedra and the

previous gaps needing to be solved. The detailed properties of Platonic solids are

presented belong the discretized grids problems which support the environment for

the rolling motions. Finally, the chapter shows the significant results by using the

BFS-based algorithm for the Platonic solids to find the shortest paths from an initial

pose to a goal pose while avoiding obstacles.

Chapter 6 adopts the RRT-based algorithm from the second part of Chapter 4 to

find a closed path for the truncated icosahedron through edge-rolling on a plane

while avoiding obstacles. The chapter firstly introduces the related works of the

RRT path planning algorithms and their applications. The truncated icosahedron

properties are then provided with the rolling contact. The chapter then shows the

results of closed path-findings for the truncated icosahedron to reach the goal pose

from the start pose with and without obstacles on a plane.
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Chapter 7 presents the general conclusion of the thesis. The contributions of the

work and the main achievements of the thesis for solving the path planning problems

of the convex polyhedra on a plane are highlighted. Future work is also presented.
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Chapter 2: Preliminaries

Polyhedra rolling contact through edge-rolling is considered a nonholonomic system

in terms of changing the orientation of the objects while maintaining the edge con-

tact. This chapter firstly summarises the concept of the rigid body transform in

Euclidean space, then summarises the preliminaries of the transformation matrix

used throughout this work.

2.1 Rigid Body Transformations

Transformation is simply defined by changing the position and orientation of a frame

attached to an object with respect to a frame attached to another object. A rigid

body is a set of points or articles in Euclidean space in which mutual distances are

fixed regardless of trajectories at each instant of time, relative to an inertial Cartesian

coordinate frame. By the definition, a rigid body transform is a mapping from this

set to another subset of the Euclidean space [7]. In this thesis, the triple (x, y, z) ∈

R3 represents the set of three orthonormal axes, where each coordinate gives the

projection of the object’s position onto the corresponding axis. The rigid body can

move on a trajectory represented by a parameterized curve p(t) = (x(t), y(t), z(t)) ∈

R3.



9

In the three-dimensional (3D) space, the rigid body transforms are composed of

translations along 3D vectors and rotations around the coordinate axes. A 3D trans-

form T is represented by a 4 matrix when the points are defined with homogeneous

coordinates.

T =



i1 j1 k1 tx

i2 j2 k2 ty

i3 j3 k3 tz

0 0 0 1


(2.1)

where i = [i1 i2 i3]T , j = [j1 j2 j3]T and k = [k1 k2 k3]T are the unit vectors of the

transformed coordinate system, while t = [tx ty tz]T is the position of its origin with

respect to the original coordinate system.

A rigid motion of an object which is described as a subset O of R3 is represented by

continuous mappings. The generation of Eq. 2.1 is used for mapping the individual

points which is represented as



x
′

y
′

z
′

1


=



i1 j1 k1 tx

i2 j2 k2 ty

i3 j3 k3 tz

0 0 0 1





x

y

z

1


(2.2)



10

2.2 Rotation Matrix

2.2.1 Properties of Rotation Matrices

The orientation of the body can be described through the relative orientation between

a fixed coordinate frame (A) and the coordinate frame (attached to the body) (B).

A basic rotation 3 × 3 matrix Rab = [xab yab zab], and xab, yab, zab ∈ R3. The set

of all 3 × 3 matrices is denoted SO(3) which is a group using the identity matrix

I. SO(3) is a short form for the special orthogonal group in the three-dimensional

space. It is also called the rotation group which represents the rotations around a

line or an axis. Every rotation can be represented uniquely by an orthogonal matrix

with a unit determinant. A (positive, orthonormal) frame is a list of three mutually

perpendicular unit vectors in R3 which, when viewed as the columns of a 3×3 matrix,

lie in the group SO(3) = {R : RRT = I3 and det(R) = 1}.

SO(3) denotes the Special Orthogonal Group and is a subgroup of the Orthogonal

Group and the general linear group. To sum up, the matrix R ∈ R3×3 is said to

represent the attitude of a rigid-body if and only if R ∈ SO(3) which, in turn, is true

when the following two above conditions are satisfied. R is called rotation by inversion

if det(R) = −1, which does not belong to SO(3) and therefore, will not be considered

in this section. The focus of this analysis is R ∈ SO(3), which satisfies both of the

above-mentioned conditions. The main advantage of the R ∈ SO(3) representation
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is that the attitude R is global and unique, implying that each physical orientation

of a rigid-body corresponds to a unique rotational matrix.

Rotation matrix has the property of the rotation of the cross product of two vectors

is the cross product of the rotation of each of the vectors by R with R(a × b) =

R(a)×R(b). The basic cross product between two vectors a⃗, b⃗ ∈ R3 is denoted as:

a⃗× b⃗ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k (2.3)

The rotation matrix R ∈ SO(3) also presents the transformation which transfers

the coordinate of a point from one frame to another frame. Let consider a point

q with qb = (xb, yb, zb) is its coordinate and xb, yb, zb ∈ R3 are the projections of

q onto the coordinate axes of the body. Then, the coordinate of q is defined as

qa = xabxb + yabyb + zabzb = Rabqb.

2.2.2 Rodrigues Rotation Matrix

In this thesis, the Rodrigues’ rotation matrix from the axis-angle representation [8]

was used to calculate the orientation of the convex polyhedra (the Platonic solids

and truncated icosahedron are considered in this thesis) from a current position to
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the next position after edge-rolling. A unit vector ω ∈ R3 and a rotation angle β,

which are specific with respect to each polyhedron, were used to generate a rotation

matrix R ∈ SO(3) (Eq (2.5)). In a three-dimensional Euclidean coordinate system,

an axis-angle representation is given by a unit vector ω = (ωx, ωy, ωz) ∈ R3 and an

angle β. The rotation angle β of each polyhedron is the supplementary angle of the

dihedral angle α, which is the angle between two intersecting faces (more detail in

Fig. 3.7 - Chapter 3).

Let S be the Rodrigues’ vector of this rotation with the angle θ about an orientated

axis through the origin of the coordinates (Fig. 2.1). The vector P1P is tangent to

the arc described by point P1 as it rotates about the axis. In this figure, the diagonal

P1P2 and OP that are perpendicular to each other, its intersection at the point Pm.

A half rotation angle can be obtained by tan θ
2 = P1Pm

OPm

Figure 2.1 Geometrical derivation of the Euler–Rodrigues formula.
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A skew-symmetric matrix As is determined by taking the vector cross product of s

with a vector,

As = [s×] =



0 −sz sy

sz 0 −sx

−sy sx 0


(2.4)

The Euler-Rodrigues rotation formula is constructed regarding to the property of

skew-symmetric matrix As with AsAs = ssT = I (the 3 × 3 identity matrix I).

The basic Euler-Rodrigues formula is as R = I + sin θ[s×] + (1− cos θ)ssT [9]. The

formula can be rewritten in a standard form as R = I + sin θAs + (1− cos θ)AsAs

The Euler-Rodrigues formula is used to construct a rotation matrix R as:

R =



ωx
2 + (1− ωx

2)c ωxωy(1− c)− ωzs ωxωz(1− c) + ωys

ωxωy(1− c) + ωzs ωy
2 + (1− ωy

2)c ωyωz(1− c)− ωxs

ωxωz(1− c)− ωys ωyωz(1− c) + ωxs ωz
2 + (1− ωz

2)c


(2.5)

where s = sin θ, c = cos θ.

In this thesis, the coordinates of the Platonic solids and truncated icosahedron before

and after edge-rolling were represented by matrices M and M ′, where M ′ = MR,

respectively.
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Chapter 3: Literature Review1

Computing collision-free paths, addressing clearance, and designing dynamic repre-

sentations are examples of important problems with roots in computational geometry

and discrete artificial intelligence search methods, and which are being revisited with

innovative new perspectives from researchers in computer graphics, animation and

robotics. Path planning of polyhedrons by rolling on edges includes arbitrary reloca-

tion, obstacle avoidance and goal achievement. These tasks have various applications

in robotics fields such as autonomous vehicles, navigation and robotic surgery. This

chapter reviewed path planning approaches applied to rolling contact with different

types of polyhedral parts. The advantages and disadvantages of some mainstream

algorithms were analyzed and compared. The chapter further pointed out the direc-

tions of future research on rolling polyhedron path planning in discrete space.

3.1 Introduction

Path planning algorithms pose one of the most challenging problems in nonholonomic

systems to achieve the dexterous manipulation of objects in an unknown or partially

known environment. This problem is mainly applied within the fields of robotics,
1This chapter is reproduced from the paper: N. T. Lam, I. Howard and L. Cui, "A Literature

Review on Path Planning of Polyhedrons with Rolling Contact," 2019 4th International Conference
on Control, Robotics and Cybernetics (CRC), 2019, pp. 145-151, doi: 10.1109/CRC.2019.00038.
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artificial intelligent and autonomous vehicles. In robotics, the motivation of path

planning is to find a possible path from an initial configuration, avoid the obstacles

and achieve the goal configuration [10]. When assessing robot performance, there are

two main kinds of planning: feasibility and optimality. The former is to find a plan

for only achieving the path while the latter is to find an optimal path. In the artificial

intelligence field, searching for actions to attain the desired goal state to receive the

reward is employed including decision-theoretic methods. Each specific path planning

algorithm is usually implemented in a parameter space such as a configuration space

or a free space in which it generates a feasible path connecting the two given points.

Defining the state space is also one of the important steps for planning purposes. The

configuration space or C-space which includes all possible configurations in a physical

system is applied for solving path planning problems in n dimensions. Examples of

solving the path planning problems are presented by Lavelle [1] and Kavraki [11]

showing feasible paths avoiding obstacles in high dimensional configuration space.

Rolling contacts between rigid bodies have been considered a nonholonomic system

in order to solve the problem of dexterous manipulation of industrial parts. The

goal of rolling manipulation is to roll the part from an initial configuration to a

goal configuration. It can be divided into three types of rolling contacts: point con-

tact [12, 13], line contact [14] and surface contact [15]. The simple experiment of

a rolling polyhedral part on a table, mentioned in [16], showed that object manip-

ulation with polyhedral surfaces without sliding can be executed by nonholonomic

constraints through rolling. Some cases of rolling polyhedral objects through gras-
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pless manipulation have been studied in the robotics field [17, 18]. Due to the lack

of complete research on contact kinematics and rolling manipulation with discretized

objects, planning for rolling polyhedral parts under reorientation with smooth and

non-smooth systems still attracts attention from the research community.

With such path planning problems for polyhedra rolling contact as motivation, this

chapter analyses and compares the different path planning algorithms and their ap-

plication for rolling contact of polyhedra. The literature review is organized first and

covers the properties of rolling polyhedra with the properties of polyhedra and rolling

contact. The next section describes an overview of polyhedra and the two specific

models - Platonic solids and Truncated icosahedron used in the study. The chapter

then presents an overview of path planning algorithms and specifies two main path

planning algorithms used for convex polyhedra rolling. Finally, the summary and

gaps in the literature review will be presented.

3.2 Polyhedron Path Planning by Rolling Contact

Given a planar environment, the navigable space of the environment can be decom-

posed into cells such that the adjacency graph of the cells can be processed by discrete

search methods. The process transforms the continuous path planning problem into

a discrete graph search problem. For each node of the graph, there are only a dis-

crete number of choices to decide in which direction to move next. While classical
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differential geometry mainly focuses on smooth geometric shapes, discrete differen-

tial geometry investigates geometric shapes with a finite number of elements such as

polyhedrons [19]. In terms of rolling contact in discrete space (the plane is discretized

into different grids for each type of polyhedra), discrete paths include multiple curves

which represent the rolling from a state to another state.

Multi-object or robot path planning in both simple and complex environments has

received quite a lot of attention in the past while only a few studies have focused

on discrete space. In particular, the combination of computation frameworks and

discrete algorithms was considered in recent studies to capture the complex environ-

ment [20]. Previous studies of path planning for rolling contact between two rigid

bodies focused on the contact of discrete surfaces to generate the path from an initial

configuration to the final configuration [21, 22]. In this study, the polyhedral parts

will be reviewed in the discrete path planning problems by changing their orientation.

3.2.1 3D Convex Polyhedra

This study mainly focuses on the path planning methods for convex polyhedral. It

first introduces an overview of the 3D convex polyhedra. The geometric models are

represented as polygonal objects, splines, or algebraic surfaces. They have different

applications in computer-aided design and machining (CAD/CAM), robotics and



18

automation, manufacturing, computer graphics, animation and computer-simulated

environments [23]. The 3D models are generally categorised into two main groups:

non-polygonal models and polygonal models, as shown in Fig. 3.1.

Figure 3.1 An overiew of 3D geometry models [23]

The first group of the 3D model is the non-polygonal models including constructive

solid geometry (objects from primitives such as spheres, cones, or tories), implicit

surfaces (the loci of points or called closed manifolds) and parametric surfaces (a

description of surface boundary). In another hand, the second group is the polygonal

models which are categorised into structured and polygon soups, which are the used

models in modelling and computer graphic. The term "polygon soup" has evolved

for describing arbitrary collections of polygons that carry no warranties concerning

their structure. The structured models include convex and non-convex models. In

this thesis, the path-finding algorithms through edge-rolling are applied to the convex

polyhedra including the Platonic solids and the truncated icosahedron.
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Figure 3.2 The Platonic and Archimedean solids [24].
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Fig. 3.2 shows the relationship between convex polyhedra including the Platonic solids

and the Archimedean polyhedra which are generated from the Platonic solids. It can

be seen from the figure with the highlighted polyhedra, that the Platonic solids and

Archimedean solids are completed regular or semi-regular with 3D shapes. Either

the cube and octahedron (left) or the icosahedron and dodecahedron (right) can be

derived from the tetrahedron (middle). Any truncated polygon is truncated from

the Platonic solids. For example, the truncated icosahedron is truncated from the

icosahedron or the truncated dodecahedron is truncated from the dodecahedron. The

Archimedean solids have the same properties with regular length edges while having

different faces. The truncated icosahedron is considered as an implementation of the

path planning algorithm in this thesis. The literature reviews of the Platonic solids

and the truncated icosahedron are detailed below.

3.2.2 Platonic Solids

The history of the Platonic solids —tetrahedron, cube, octahedron, dodecahedron,

and icosahedron —can be traced back over 2000 years ago. In ancient Greece,

Pythagoras (c.570-c.495 BC) knew of the tetrahedron, cube, and dodecahedron [25].

Plato (c.427-347 B.C), to whom the names of these five regular polyhedra are at-

tributed, assigned them to the four basic elements —fire, air, water, and earth —as

well as the heavens [26] (Fig. 3.3). In the 1600s, Kepler proposed a model of the

solar system consisting of the Platonic solids set inside one another, distanced by
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the inscribed and circumscribed spheres of each solid [27] (Fig. 3.4). The Platonic

solids are all convex polyhedra bounded by a finite number of regular polygons. Be-

ing highly symmetric, Platonic solids have found many applications in mathematics,

science, and art. For example, in studying molecules, they have been used to predict

structure of crystals [28] or to reconstruct colloidal crystals from symmetric hard

particles [29]. In mathematics, each Platonic solid was modelled on a 3D billiard

table to demonstrate how a cube ball can move to hit every face and return to its

starting point [30].

Figure 3.3 Platonic solids were represented as cosmic assignments by Kepler 1619 [31].
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Figure 3.4 A model of the solar system consisting of the Platonic solids set inside one
another, distanced by the inscribed and circumscribed spheres of each solid
[32].
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Figure 3.5 The Platonic solids consist of a cube, a tetrahedron, an octahedron, an icosa-
hedron and a dodecahedron.

Properties of polyhedron

The Platonic solids, also called regular solids or regular polyhedra, are convex poly-

hedra with equivalent faces composed of congruent convex regular polygons. There

are exactly five such solids: the cube, dodecahedron, icosahedron, octahedron, and

tetrahedron, as was proved by Euclid. The 3D Platonic solids models are shown in

the Fig. 3.5. The cube is constructed by 6 squares; the tetrahedron consists of 4

equilateral triangles joined at their edges into a triangular pyramid; the octahedron

has a double-pyramid structure with 8 equilateral triangles; the icosahedron has 20

equilateral triangles; and the dodecahedron is composed of 12 regular pentagons (Ta-

ble 3.1). The total number of vertices (V ), edges (E), and faces (F ) of the Platonic

solids satisfy Euler’s formula: V − E + F = 2 [33].
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Table. 3.1 introduces the basic geometrical parameters of each Platonic solids with

number of faces, vertices, edges, number of edges on each face and number of faces

meeting at each vertex. These parameters will be initialised in the path planning

algorithm for setting up the start-goal configuration of the polyhedra.

Table 3.1 Properties of polyhedron.

Platonic solids
Faces
(F )

Edges
(E)

Vertices
(V )

Edges on
each face

(ef )

Faces meeting
at each vertex
(fv)

Tetrahedron 4 6 4 3 3

Cube 6 12 8 4 3

Octahedron 8 12 6 3 4

Icosahedron 20 30 12 3 5

Dodecahedron 12 30 20 5 3

Table. 3.2 shows the details of geometrical parameters of the Platonic solids consist-

ings of the inradius (ri), midradius (rm), circumradius (R) and rolling angles (θ).

In this table, all the edges of the Platonic solids have the same unit length (l = 1).

Fig. 3.7 shows an example of the rolling angle θ of the icosahedron. The angle can be

calculated based on the dihedral angle ζ which is determined between two triangular

surfaces with the common edge (θ = π − ζ). The Fig. 3.6 is an example to illustrate

the dihedral angle between two surfaces. The line of intersection may be referred to

as the edge of the dihedral angle.
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Figure 3.6 Dihedral angle ζ between two surfaces P1 and P2.

Figure 3.7 The rolling angle θ is calculated based on the dihedral angle ζ = 2α of the
icosahedron. In this illustration, I is the center of the icosahedron inscribed
sphere. The current contact surface has the center O1 while the next contact
surface has the center O2 (IO1 = IO2). The angle α is calculated based on
the icosahedron midradius IK and the radius of the inscribed sphere of the
iscosahedron IO1 or IO2.
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Table 3.2 Geometrical parameters of the Platonic solids with inradius (ri), midradius
(rm), circumradius (R) and rolling angles (θ). In this table, all the edges of
the Platonic solids have the same unit length (l = 1)

Platonic solids ri rm R θ

Tetrahedron
√

6
12

√
2

4

√
6

4 2 arctan(
√

2)

Cube 1
2

√
2

2

√
3

2
π
2

Octahedron
√

6
6

1
2

√
2

2 arccos( 1
3 )

Icosahedron 1
12 (3
√

3 +
√

15) 1
4 (1 +

√
5) 1

4

√
10 + 2

√
5 arccos(

√
5

3 )

Dodecahedron 1
2

√
1

10 (25 + 11
√

5) 1
4 (3 +

√
5) 1

4 (
√

15 +
√

3) arccos(
√

5
5 )

Fig. 3.8 illustrates the geometrical parameters of the Platonic solids that are shown

in the Table. 3.2. In this figure, O is the center of the model which is also the

center of insphere (red), midsphere (green) and circumsphere (blue). I indicates the

center of surface contact while K and V are the center of each edge and the vertex,

respectively.
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Figure 3.8 The illustration of the properties of the Platonic solids including the inradius
ri, midradius rm, circumradius R, dihedral angle ζ and the rolling angle θ,
which are shown in the Table 3.2. (a) Cube. (b) Tetrahedron. (c) Octahedron.
(d) Icosahedron. (e) Dodecahedron.
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3.2.3 Truncated Icosahedron

The truncated icosahedron is an Archimedean polyhedral truncated from icosahedron

(one of the Platonic solids). A truncated icosahedron is the model represented in the

construction of soccer balls with 32 polygons including 20 hexagons and 12 pentagons

(Fig. 3.9).

Figure 3.9 A soccer ball is based on the geometric shape of a truncated icosahedron.

Table 3.3 shows the general characteristics of the icosahedron with unit length l = 1.

The golden ratio φ = (1 +
√

5)/2 is a factor to represent other dimensions in the

coordinate system. More details of the golden ratio property are shown in [34]. Path

planning for the truncated icosahedron through edge-rolling considers the dihedral an-

gles ζFhexa−Fhexa
(degree) between hexagon and hexagon faces or ζFhexa−Fpenta hexagon

and pentagon faces to find the rolling angle θ = 180− ζ. The two types of dihedral

angles in the truncated icosahedron model are represented in Fig. 3.10.
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Figure 3.10 The dihedral angle between the hexagon face contact and the hexagon face
is (ζ = 2α) while the dihedral angle between the hexagon face contact and
the pentagon is (ζ = α + β). I is the centre of the inscribed sphere of the
truncated icosahedron. The angle α is calculated based on the radius R6
of the inscribed sphere to the hexagon faces and the radius of the inscribed
circle of the hexagon face (OM). The angle β is calculated based on the
radius R5 of the inscribed sphere to the pentagon surfaces and the radius
O2N of the inscribed circle of the pentagon face.

Table 3.3 The geometrical properties of a truncated icosahedron with an unit length
l = 1

Characteristics Unit length l = 1, Golden ratio φ = 1+
√

5
2

Cartesian coordinates (0,±1,±3φ), (±1,±(2 +
φ),±2φ), (±φ,±2,±(2φ + 1))

Dimensions Circumscribed sphere radius
rcs = (1/4)

√
58 + 18

√
5

Area A = 15(2
√

3 +
√

(
√

5 + 2)/
√

5)

Volume V = (1/4)
√

125 + 43
√

5
Dihedral angles hexa_hexa ζFhexa−Fhexa

= arccos(−
√

5/3)
Dihedral angles hexa_penta ζFhexa−Fpenta =

arctan
√

7+3
√

5
2 + arctan ((tan(π

5 ))
√

125+41
√

5
10 )
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3.2.4 Rolling Contact

Rolling contact has been studied in the fields of design and manufacturing, which

mainly engaged in the knowledge of tribology [35, 36]. In this study, we briefly review

the rolling contact theory in terms of geometry and its application in the robotics

fields. The key idea of rolling contact is to maintain contact between two rigid bodies

through a rolling motion under nonholonomic constraints. Rolling contact between

multifingered robot hands and an object was studied in different research aspects such

as geometry [37], controllability [38], motion planning [39] or robotic manipulation

[7]. Due to the complex structure of the real multifingered robot hands with many

degrees of freedom, the designing features of the robotic hand for rolling objects is a

challenge for the purpose of dexterous object manipulation. Another work of rolling

contact has been investigated with respect to in-hand manipulation, which is used

for robotic grasping to manipulate objects with the tactile sensor [40]. In particular,

such a simple end-effector through the robot hands can relocate only a few 3D shape

objects, while rolling geometry between two surfaces of rigid bodies is more concerned

with dexterity and manipulation capability.

Rolling Contact in Continuous Space

Rolling contact through ball-plate and rolling sphere problems of nonholonomic sys-

tems has been intensively studied in the past by many researchers [15, 41]. Hartmann
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[42] applied a numerical blending method to develop the classical rolling ball method

in terms of the constant and variable radius by analyzing the Voronoi surface, Bezier

surface and G2-blending surface. The result of the study is achievable only by consid-

ering the parametric representation through numerical evaluation. Further, a rolling

sphere model was proposed by Brockett [43] for the asymptotic stability problem of

the five-dimensional nonholonomic systems that can be transformed into a chained

form system. A theoretical idea of the path’s optimization for nonholonomic manip-

ulation was considered in this study for a kinematic problem of rolling rigid bodies.

Another specific geometric formulation in terms of the curvature of rolling motion

between a sphere and two arbitrarily shape fingers was derived by Montana [37].

The rolling contact condition has been formulated as a contact equation via the dif-

ferential geometry concepts as a well-known nonholonomic constraint. This work

successfully examined and analyzed the curvature form of point contact of an object

while maintaining the rolling motion on a surface.

Figure 3.11 Main types of contact between two objects. (a) Edge-Suface contact. (b)
Point-Surface contact. (c) Surface-surface contact.
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Kinematic of Rolling Contact

A part of rolling contacts is considered in terms of the kinematics which are essen-

tially analyzed in different fields such as dynamics [44, 45], controllability [46, 47]

and motion planning [48, 49]. The majority of studies in multifingered robot hands

have involved differential equations based on kinematics. Cai and Roth [12] used

Taylor series expansion to derive the first and second order of kinematics of sliding-

rolling. The paper focused on the relationship between the contact speed and the

contact velocity which could be applicable to path planning tasks with motions of

point contact. Okamura [50] improved Jacobian relationships to develop dexterous

manipulation kinematics. The drawbacks of the system could be over-constrained

or under-constrained, which hardly maintain the rolling contact property. Further, a

series of studies about the kinematics of rolling contact was conducted by Cui [51, 52,

53, 54]. The author applied the theory of Darboux moving frames method from the

differential geometry theory to demonstrate the contact equation between an object

and multifingered robot hands and generate the forward and inverse kinematics of

in-hand manipulation.

Contact Theory via Cartan’s Moving Frame Method

Cartan’s moving frame method has been essentially approached for geometric objects

in contact kinematics [55, 56]. This method was widely applied in the computation
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of symmetry groups and partial differential equations [57, 58], geometrical curves and

surfaces [59] and finite-dimensional transformation groups from Lie algebra [60, 61].

Cui and Dai [62] used the moving frame and Darboux frame to derive the kinemat-

ics of rolling contact. This study was implemented in terms of curvatures of shapes

through the spin motion to establish the contact theory. Another work [63] devel-

oped Cartan’s moving method by reducing the order of derivation of three curvature

invariants from the corresponding Frenet equations to analyze the deformation of a

plane curve. These applications have been studied as a general theoretical founda-

tion of moving frames for geometric properties of surfaces in Euclidean space and

Riemannian geometry, which has not much attention to the robotic field.

Planning Motions of Polyhedra

Path planning for polyhedra by edge-rolling is scarce. Some results that have been

obtained in the study of the manipulation of objects by rolling, in the view of the

realization of a robot gripper that exploits rolling to achieve dexterity, such as the

ability to arbitrarily change the location and orientation of the manipulated objects.

An early prototype of the such a device was presented by [64], along with some

preliminary experiments in planning and controlling motions of a sphere manipulated

by rolling. Marigo et al. [65] applied manipulation by rolling to objects of polyhedral

shape. The design of grippers exploiting rolling was based on the conjecture that

a kinematic system comprised of almost any pair of rolling surfaces is controllable,
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which has been shown true lately by [38].

Formulas for predicting how the contact points and the relative orientation of the

surfaces evolve with rolling have been investigated first by Cai and Roth [13] and

Montana [37], independently. Early work on this subject has been done by Cole et

al. [66], and Li and Canny [67], who studied the problem of rolling by putting it in the

framework of nonlinear control systems theory, and showed that a ball rolling on a

plane can be displaced and reoriented at will within its five-dimensional configuration

manifold by only using two inputs. A geometric algorithm was proposed by these

authors to plan the motions of a very particular case (a sphere rolling on a plane).

Octahedron edge-rolling was firstly introduced in [68] to tackle the problem of manip-

ulating polyhedral parts from a more application-oriented viewpoint. The algorithm

is to provide an algorithm for planning such manipulation by giving an initial and

final configuration pair, to find a sequence of simple rolling motions that brings the

part from the former to the latter. However, the completed path planning failed due

to errors propagating and needs a translation step to achieve to goal.

Erdmann et al. [18] proposed a planner that determines a sequence of tiling operations

designed to mminimize the uncertainty in the orientation of the orientation of the

polyhedron. The shape is limitted to expend to a general polyhedra. Only rolling-

cube puzzles were solved by using NP-hardess Hamiltonian path in grid graphs [69].
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Summary

The literature shows that manipulation polyhedra tasks considered both changing

position and orientation. The task of rolling between rigid bodies in three-dimensional

space is a well-known case of nonholonomically constrained motion. The plate-ball

system or in-hand object manipulation is the most of the applications. The convex

polyhedra rolling is still challenging such as path-finding for the Platonic solids to

achieve the target pose on a surface. Only rolling-cube puzzles were considered but

the approach may not extend to general polyhedra.

It is evident that there currently does not exist a state-of-art technique to solve

rolling polyhedra tasks of achieving the goal configuration. More complex geometrical

polyhedra will increase the constraint in the path planning problems. The next

section considers path planning methods to apply for the polyhedra rolling task and

surveys on how to deal with the literature gaps.

3.3 Path Planning Algorithms

Path planning has been the most important task of robotics research in both static

and dynamic environments as an emerging area for a long time [10, 70]. The path

planning strategy for robotic research can be categorized into traditional methods and

AI-based approaches or also divided into two folds such as the local path planning
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and the global path planning strategy. Most of the previous studies focus on mobile

robots [10], unmanned aerial vehicles (UAV) [71] or autonomous self-driving cars [72]

while only a few pieces of research have been implemented on the rolling contact of

robotic in-hand manipulation. This section will present an overview of path planning

algorithms in terms of traditional and AI-based planning approaches as shown in

Fig. 3.12.

Figure 3.12 The path planning algorithms can be divided into traditional planning
and AI-based planning. Traditional path planning includes graph search,
sampling-based and geometrical search while AI-based path planning con-
sists of machine learning-based path planning and deep learning planning.

3.3.1 Traditional Path Planning

The basic idea of path planning in most cases is that state-space models will be

used to demonstrate the distinct situation in which the task of a planning algorithm

solves the sequence of actions transforming from an initial state to other states. For

example, Thomas [73] applied Delaunay triangulations to discretize the environment,

and cubic spline representations are proposed to meet robot kinematic constraints.
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Considering the continuous curvature on smooth curves has been integrated within

the probabilistic approaches in order to compute the piecewise smooth paths for

a car-like vehicle as a four-dimensional system [74]. Whereas when dealing with

nonholonomic constraints, a sampling-based road map technique has been proposed

in [75] which determined trajectories and re-entry trajectories for hovercrafts and

rigid spacecrafts. Based on decomposing space into cells [76], a potential field without

local minima was assigned with polygonal partitions of planar environments to solve

Laplace’s equation problems in each presence cell. Applications for these techniques

in discrete space are limited by a grid.

Graph-search Algorithm

Graph-search-based algorithms can be divided into the depth-first search, breadth-

first search, and best-first search [77]. The depth-first search algorithm builds a

search tree as deep and fast as possible from origin to destination until a proper

path is found. The breadth-first search algorithm shares similarities with the depth-

first search algorithm by building a search tree. The search tree in the breadth-

first search algorithm, however, is accomplished by extending the tree as broad and

quick as possible until a proper path is found. The best-first search algorithm adds a

numerical criterion (value or cost) to each node and edge in the search tree. According

to that, the search process is guided by the calculation of values in the search tree

to decide: (1) whether the search tree should be expanded; (2) which branch in the
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search tree should be extended. The process of building search trees repeats until a

proper path is found. Graph search algorithms are composed of many algorithms.

Randomized Potential Field Algorithm

Based on the potential function, randomized potential field methods have been pro-

posed and implemented for the classical mover’s problems, which can overcome the

local minima with low computational complexity [78]. Pre-computation of a connec-

tivity graph of the global path planning which contains the guide for grid search in

the configuration space is the high cost for the computation system to escape the

minima at the goal configuration. The technique from the first step is the best-first

search which does not require a local minimum of the potential function to be reached

in high-dimensional configuration spaces. Then the search algorithm proceeds along

the negated gradient of the potential function until achieving the goal configuration.

The most powerful aspect of this method is the discretization of the configuration

space and the workspace into a hierarchical bitmap grid that can be applied for many

degrees of freedom of robots.

Dijkstra’s Algorithm

The aim of the Dijkstra method is to determine the shortest path in a graph based

on a known source of vertices [77]. The basic Dijkstra algorithm is a breadth-first-

search which includes storing all the vertices (nodes) at a first step with a distance

of "infinity", then assigning a distance value from the first node to the other nodes.
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Next, all the connected nodes are updated with the new distances to calculate the

distances, then taking the comparison between these distances and then choosing the

shortest path from the initial node. This algorithm faces the issue of larger memory of

the storage structure which can lead to limited applications for indoor environments

in terms of autonomous robot path planning [20].

Heuristic Search Method

The fundamental robotic path planning problem is to represent the environment as

a graph involving the set of possible robot locations and a set of edges that can

generate the path. The popular method for determining the least-cost paths is A*

as the Heuristic-based search algorithm in [79]. The search algorithm must expand

the fewest possible nodes in order to make searching for an admissible path. Then

the evaluation of available nodes is needed to determine the next efficient nodes. The

initial search approached by the A⋆ algorithm takes two steps to generate an optimal

path by receiving information from one of the initial cells in free space and re-planning

from scratch when the environment has changed to expand a new cell. However, the

A* computation process needs high configuration processors to successfully reach

various nodes. In the real-world scenario, the search operation may sometimes be

performed with inaccurate planning graphs.
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D-Star (D*)

The D* algorithm [80] based on dynamic A* is applied to the mobile robot path

planning in the real-time path calculation and the optimization of replanning to

achieve the goal robot’s location from its current location. Like the A* technique, D*

can use the heuristic search to find the direction of the robot and optimize the cost

of state expansions which can be used to generate the shortest path from the current

robot’s location to other locations. To compare with the Dijkstra algorithm, D* takes

advantage of the previous search calculations incrementally requiring recomputation

of all calculation steps in the Dijkstra algorithm.

Theta-Star (Theta*) and Lazy-Theta-Star (Lazy Theta*)

Theta* and its extensions - Lazy Theta* (Any-angle path planning algorithm) [81,

82] are the famous path planning techniques on grids based on A* with the much

shorter path by propagating angle ranges. These techniques are applied to solve the

shortest graph problem implemented on the grid including block and unblock cells

where block cells can be seen as obstacles. The basic algorithm is to find the shortest

path from a start vertex to the goal vertex where a continuous environment has been

discretized into a grid. In one cell, the shortest distance is represented by the diagonal

line. The shortest path called a visibility graph is connected from the goal vertex

to one of the vertices of block cells and to the start vertex. The drawback of the

Theta* algorithm is that it is not guaranteed to determine the shortest path in the

continuous environment.
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Breadth-First Search Path Planning

In this work, the BFS and RRT path planning are used to find the path for convex

polyhedra through edge-rolling. BFS is an algorithm used for traversing graphs or the

tree expansion which means visiting each node of the graph. It is of essential attention

to operations research [83, 84, 85, 86] and has wide application in computer science

[87], robotic [88, 89] and automation fields [90]. The BFS is a recursive algorithm to

search all the vertices of a tree (Fig. 3.13). Once the algorithm visits and marks the

starting node, then it moves toward the nearest unvisited nodes and analyses them.

All nodes are marked when they are visited. These iterations continue until all the

nodes of the tree have been successfully visited and marked.

Figure 3.13 BFS path planning with search tree. Starting form a node (pose of any
Platonic solid), the tree expands from the root until the leave achived the
goal pose (the red state).
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The BFS technique has several practical applications with the large network analysing.

Ahn et al. [91] used BFS to analyse a complete online social network Cyword and

validate snowball sampling method to obtain partial network topologies of Orkut

and MySpace. Mislove et al. [92, 93] studied BFS to examine multiple online social

networks Orkut, Flickr, LiveJournal and Youtube. The study discussed the core of

matching indegree of user nodes and outdegree, and the links between small clustered

groups and low-degree nodes. Wilson et al. [94] studied the user interaction graph in

the Facebook social network using several BFSs, each BFS constrained in one of the

largest 22 regional Facebook networks. Achlioptas et al. used this searching idea in

[95] to study the bias of trace route sampling in random graphs with a given degree

distribution. The basic operation in [95] is trace route ("discover a path") and is

performed from a single node to all other nodes in the graph.

The BFS algorithm is used for path-finding in the application of rolling Platonic solids

due to various reasons. There are some important aspects of the algorithm that make

it first considered for the path planning of the Platonic solids. BFS algorithm has a

simple and robust architecture for searching for the goal in configuration space. All

the nodes of the tree are visited and the shortest path through the nodes is generated

by the BFS algorithm. An advantage of the BFS is that the paths can be generated

with a high level of accuracy. Traversing through the tree graph with the lowest

number of iterations (in limited search space) which are continuous and avoiding an

infinite loop issue is also another advantage of the technique.
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Sampling-based Algorithms

Sampling-based algorithms randomly sample a fixed workspace to generate sub-

optimal paths. The rapidly-exploring random tree (RRT) and the probabilistic

roadmap method (PRM) are two algorithms that are commonly utilized in motion

planning.

Probabilistic Roadmap Planner (PRM)

The PRM technique has been applied for motion planning problems to generate a

path for robots without colliding obstacles from the environment over the past two

decades [96, 97]. These early studies were only implemented on the 2D workspace

and holonomic motion planning. The PRM algorithm is normally used in a static

scenario [11]. The PRM computation consists of two phases: the preprocessing phase

and the query phase. Repeating the step of generating random free configuration

space can generate a probabilistic roadmap in the preprocessing phase. The nodes of

the graph and the paths are computed through a local planner that can achieve the

graph edges. In the query phase, it starts with the connection between the initial and

the goal configuration by Dijkstra’s shortest path query [98]. A feasible path can be

extracted from a graph search by finding complete edges from the connecting nodes in

the roadmap. Since the PRM has these properties, this method should be optimized

due to the low quality of the searching process - the graph is a tree, not cycle graphs

- and the straight-line motion which generates the first-order discontinuities at the

nodes.
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Rapidly-exploring Random Trees (RRTs)

The RRT algorithm is more popular and widely used for commercial and indus-

trial purposes. It constructs a tree that attempts to explore the workspace rapidly

and uniformly via a random search [99]. The RRT algorithm can consider non-

holonomic constraints, such as the maximum turning radius and momentum of the

vehicle [100]. Rapidly-exploring random trees (RRT) [101, 99] is a fast probability

planning that can be extended to multidimensional spaces (Fig. 3.14). More specifi-

cally, the RRT is probabilistically complete [102] so that it guarantees the complete

discovery and exploration of the map. The RRT algorithm extends a tree structure

from the starting point and follows an expansion direction, as determined through

random selection points in the planning space. Based on the RRT algorithm, an

opportunity-constrained sub-path can be generated from the starting position to the

target [103]. The RRT path planning algorithm can be utilized to detect frontier

points in the developing map. Umari et al. [104] proposed the idea of using the RRT

to detect frontier points. Furthermore, since the RRT algorithm is biased towards

the undetected area, it can quickly detect the frontier points of the map.

RRT is also defined as a randomized data structure technique for solving planning

problems [105]. This sampling-based algorithm does not require any connections

of nearby configurations, which can be applied for path planning problems under

holonomic, nonholonomic and kinodynamic constraints. A key advantage of the RRT

technique is to handle high degrees of freedom problems for robotics but the method
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Figure 3.14 The RRT quickly expands its nodes in a few directions to randomly explore
the four corners of the square [105].

still remains on the trajectory optimization problems. Many algorithms [106, 107,

108] that extend the RRT algorithm have been studied. The study in [109] improved

the RRTs method called the RRT-Connect technique which combines the RRTs and

a greedy heuristic method to speed up the exploration of configuration (state) space

and the connection from an initial configuration to other configurations.

The above algorithms show more efficient performance by improving the RRT al-

gorithm to overcome the limitations of sampling-based methods but they are still

not perfect. Their limitations include being unable to derive the optimal length and

there is room for improvement in terms of the number of operations and time. For

example, the RRT* algorithm has rewiring (search for the parent node as a via point

nearby a newly inserted node, where the addition of path length from the start point

to the via point and path length from the via point to the newly inserted node in

the tree is the optimized, and change the neighbouring nodes to optimize the path

length) and neighbour search (search for nodes nearby the node to be newly inserted

in the tree) processes to obtain shorter path lengths than the RRT algorithm [102].
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However, there is an efficiency trade-off in this process. In other words, while the

convergence rate has improved, the planning time has significantly increased [110].

Therefore, the RRT* algorithm cannot be said to be better than the RRT algorithm

in all performance metrics and it can be said that the RRT* algorithm gets closer to

the optimum at the expense of planning time.

Geometrical Search Algorithms

Interpolating curve algorithm is defined as a process that constructs or inserts a set of

mathematical rules to draw trajectories. The interpolating curve algorithm is based

on techniques (e.g. computer-aided geometric design (CAGD)) to draw a smooth

path. Mathematical rules are used for path smoothing and curve generation. Typical

path smoothing and curve generation rules include line and circle [111], clothoid

curves [112], polynomial curves [113], Bezier curves and spline curves [114]. However,

the path-finding through interpolation curve has a high cost to reach the goal although

generating accurate paths.

3.3.2 Artificial Intelligence Approach

Artificial Neural Network (ANN)

ANN is a mathematical or computational model based on the function of a biological

neural network. Various applications of ANN have been proposed in classification,
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data compression, pattern recognition or prediction. Neural network-based path

planning for mobile robots has been widely implemented in different environments

with/without obstacles [115, 116]. The main purpose of the technique is to find the

path autonomously from the dynamic activity landscape of the neural network. It

can predict the feasible paths with obstacle avoidance which makes the robot achieve

the goal of the environment. However, the training process requires data input and

computational costs due to a large number of training samples.

Machine Learning (ML)

Machine learning is a field of computer science that is applied to various problem

domains which required data. Many of these domains involve training a system to

perform a task or finding the optimal solution to a complex problem. A full survey of

machine learning methods is beyond the scope of this thesis, but a brief introduction

of a few machine learning subfields are presented in particular relevance to specific

algorithms that have recently been applied to path-planning and/or the environmen-

tal representations used for path-planning. Supervised learning algorithms teach a

system to discriminate between various groups or classes of input, based on examples

of each class. The input is usually represented as a vector, where each dimension of

the vector corresponds to a particular attribute or feature[117]. Supervised regression

is similar to the idea described above, except that the algorithm attempts to map

feature vectors to real number values instead of non-ordinal class labels. Regression
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is useful when output is used as a measure [118]. The main applications of the ML

path planning algorithms are in robotic systems which have many parameters that

need to be turned [119].

Reinforcement Learning (RL)

RL is a machine learning framework based on trial and error which is applied in

discrete state spaces [120]. One of the most popular RL algorithms is Q-learning

widely used in mobile robot path planning [121]. The learning process of Q-learning

consists of determining the goal of the agent on the map by receiving the maximum

sum of rewards from the environment. With continuous and very large state spaces

which lead to a high cost of going from an initial state to the current state, the Q-

learning algorithm will be expensive for the computation process. Path planning is

realized by attaching destination and safe paths with big rewards (numerical value),

while obstacles are attached with penalties (negative reward). The optimal path is

found according to total rewards from the initial place to the destination. To better

understand optimal value RL, it is necessary to recall several fundamental concepts:

Markov chain, Markov decision process (MDP), model-based dynamic programming,

model-free RL, Monte-Carlo method (MC), temporal difference method (TD), and

State-action-reward-state-action (SARSA). MDP is based on Markov chain [121], and

it can be divided into two categories: model-based dynamic programming and model-

free RL. Mode-free RL can be divided into MC and TD which include SARSA and
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Q-learning algorithms. All the DL techniques can be used in path planning problems.

However, it is pointed out that DL requires vast amounts of hardware and energy to

train data.

3.3.3 Summary and Gaps

The literature provided an aspect of discrete path planning for the polyhedra parts

through rolling contact. Rolling contact between two objects under nonholonomic

constraints is a difficult task to work with. In terms of path planning under rolling

constraints, it is necessary to understand the problem of nonholonomic systems and

consider geometric aspects of the complex polyhedral systems.

The literature has categorized path planning algorithms into two categories. The

first category is the traditional path planning algorithms, which are more accessible

to solve the path planning related to limited constraints and simple environments.

Although their drawbacks include high computation time and intensive memory for

the planning processes, the outcomes of the algorithm can guarantee finding feasible

paths. The second category AI-based approaches, which provide efficient and fast

convergence to generate the shortest path. Although each technique has some disad-

vantages such as training time or limited hardware supports, these approaches have

been applied successfully to many complex path planning tasks in terms of the global

optimal path, uncertain environment and online real-time path planning.
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Discrete path planning has the potential to be a technique for convex polyhedra

through edge-rolling. The BFS and RRT algorithms can solve the path-finding prob-

lem for rolling-polyhedra. However, based on the literature review, the completed

path planning for polyhedra with rolling contact has not been solved. The following

comments express those gaps:

• First, manipulation polyhedra which are considered a nonholonomic system,

as it can be checked by rolling a die on a table along cyclic paths, needs a

completely different set of tools to plan rolling motions of the polyhedra without

considering the orientation [6].

• Second, it is unclear to generate the path for rolling polyhedra on a plane [18].

Furthermore, the polyhedra part rolling is solved by reorienting and displac-

ing to achieve the goal [68] while the path planning problem without object

translation has not yet been addressed.

• Third, the literature does not provide any path planning algorithms to find the

edge-rolling path for general polyhedra to achieve the goal configuration while

avoiding obstacles.
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Chapter 4: BFS and RRT Search for Path

Planning Algorithms

Path planning for rolling between rigid bodies in space is as well-known non-holonomic

system. The process of finding a feasible and optimum global path for rolling-

polyhedra usually involves determining the shortest discrete path, which will be sub-

sequently smoothed to satisfy the requirements of reaching the goal configuration.

Within this context, the first part of this chapter reviews the literature on the BFS

algorithm. Based on its performance with graph searching, the chapter then provides

the potential path planning methods to find the shortest path for rolling objects.

Due to some limitations of the BFS algorithm such as the complexity and the com-

putation time, the BFS-based algorithm is only proposed to solve the path planning

problem for the special convex-polyhedra - the Platonic solid. In the second part,

the planning algorithm by using the RRT algorithm to find rolling-paths for convex

polyhedra is proposed. The algorithm is also a kind of probabilistically complete ex-

ploration algorithm based on the tree expansion structure. A review of related works

highlights the shortcomings in the literature. The notation and problem statement

of the basic RRT and the configuration space for rolling through edge-contact using

RRT algorithm are then detailed. The details of the path planning based on RRT

method for convex polyhedra through edge-rolling to achieve the closest goal con-

figuration are then explained. Finally, the chapter highlighted the potential interest
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of the proposed methods for successfully finding rolling paths for convex polyhedra

through edge-rolling on a plane.

4.1 Configuration Space

The path planning problem is the task of finding a collision-free path for a robot

around multiple obstacles. It is also referred to by its classical name, Piano movers

problem. Consider an example of a moving object on a plane and the object needs

to get to the goal configuration from a start position. If there is a series of rotations

of the object that moves it from the starting pose to the goal pose without colliding

with any obstacles, then there exists a path for the object to reach the goal.

A configuration of the object is a specification of the positions of all the points of the

object relative to a fixed coordinate system. The configuration space of the object

with respect to the obstacles around it, is the set of all possible configurations of

the object and we denote it by Wspace. A subset of Wspace with all configurations

where the object and the obstacles do not overlap is called FreeSpace and denoted

byWfree. The blocked space is the set of configuration objects there is an overlap, we

denote it by Oobs. TheWfree and the Oobs are both open sets, the boundary between

these sets is called the ContactSpace. Oct is a subset of Wfree, which is the space of

all configurations where the objects have contact with the plane (4.1).
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Figure 4.1 An example of the configuration space (world coordinate system Oxyz), com-
posed of obstacles: the ground represents a grid for the path planning.

Assuming that the polyhedron has a state x and the subset of the workspace occupied

by the polyhedron geometry is represented by W(x), the configuration space Oobs of

the obstacle Sobs is a closed region in the Wspace yielding the following

Oct = {x ∈ Wspace :W(x) ∩ Sobs ̸= ∅} (4.1)

The idea of free space Wfree is at the core of the path planning problem. Represen-

tation of Wspace is at the discretion of the path planning algorithms. Path planning

algorithms are generally categorized by the approach they take for representing the

Wspace. The two main approaches are: explicitly computing the boundary of Oobs

and sampling configurations from the Wfree. The former type of algorithm is called

deterministic path planning algorithms. The focus of the deterministic approach is

to explicitly compute the boundary of Wfree. Whether the computed boundary is

exact or approximate, depends on the planner. The latter are called sampling-based
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planning algorithms, they take random poses of the robot and see if they are not

overlapping with the obstacles. In order words, the algorithms are operated by sam-

pling the Wfree and making a connected network from these sample poses. Collision

detection is the main component of sampling-based approaches and is done to test

whether a sample belongs to Wfree or not.

When the polyhedron is capble of rotating while considering the aforementioned

relationship between Oct and the orientation of the polyon, Oct become 3D subsets

of Wspace. The Wfree is formally defined as

Wfree =Wspace/
n⋃

ct=1
Oct =

{
x ∈ Wspace :W(x) ∩ (

n⋃
k=1
Sobs) ̸= ∅

}
(4.2)

4.2 BFS-Based Path Planning Algorithm

4.2.1 Introduction

The problem of finding the feasible path between two points has been a hot issue in

many fields of science. Many previous studies have characterized the problem in lin-

ear programming terms [122] and dynamic programming terms [84] while pragmatic

computer scientists have attempted to comprehend a simple but efficient computa-

tional method and have successful results [98, 123, 124]. The solution should not only
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guarantee a minimum travelling distance without obstacle collision but also generate

a smooth and feasible path from an initial configuration to a goal configuration. The

initial environment for the path planning problem can be either static or dynamic.

However, in the study of rolling polyhedra, only a static environment is considered

to find a feasible path.

Based on the literature in Chapter 3, BFS is an algorithm used for traversing graphs

or trees [125], which has the recursive property to search all the nodes of a tree.

To compute the shortest paths from a single source node to every other node in

a weighted graph, the Dijkstra algorithm [98] is the classical method for it. Most

other algorithms for solving this problem are based on this algorithm but have im-

proved data structures for implementation [126]. The paper [98] proposed using two

variations of the classical shortest-path algorithms for link analysis. The evalua-

tion studies assess both the effectiveness and efficiency of the proposed algorithms.

The effectiveness issue concerns whether association paths found by the proposed

algorithms are more useful for uncovering investigative leads than those found by a

modified BFS algorithm. The modified BFS algorithm to a large extent simulated

the manual approach of association search by crime investigators and was used as

a benchmark technique for effectiveness comparison. The efficiency issue concerns

which shortest-path algorithm is faster in what type of networks.

In summary, previous studies have proposed some techniques based on BFS for net-

work construction in link analysis. However, little research has been done to address
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the association search problem for rolling polyhedrons. Specifically, an effective and

efficient link analysis from BFS is needed to find association paths between two or

more source entities not directly related. Moreover, the paths found should reveal

strong associations between entities so that important investigative leads can be un-

covered. The BFS is proposed to use the shortest-path algorithms to achieve this

goal. However, such an approach from previous studies cannot guarantee to find the

strongest associations between entities and thus may not successfully generate inves-

tigative leads. In the next sections, the modified BFS algorithm is presented, which

simulates the typical association search for rolling polyhedra.

4.2.2 BFS-based Path Planning Algorithm

The BFS algorithm is useful for analysing the nodes in a graph and constructing

the shortest path of traversing through these. The technique can traverse through a

graph in the smallest number of iterations. Furthermore, the architecture of the BFS

algorithm is simple and robust while the result of the BFS algorithm holds a high

level of accuracy in comparison to other algorithms. The BFS-based algorithm in this

thesis is used to generate paths for the Platonic solids through edge-rolling from an

initial pose to the desired pose on a plane. While at rest, a face of a Platonic solid is

in contact with the plane, and the algorithm determines the edge, and subsequently

the direction, of rolling.
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Basic BFS algorithm

Breath-first search is similar to the depth-first search (DFS), except it attempts to

make the search tree as broad as possible, as quickly as possible. This is accomplished

by changing the open list into a queue, adding open nodes to the back of the queue,

and expanding nodes off the front of the queue. This way, nodes are expanded in

the same order they are discovered. BFS traversals typically require random memory

accesses for checking if a neighbouring edge has previously been found. In opposition,

determining if an edge is useful requires consecutive memory accesses, making it more

efficient.

Figure 4.2 An overview of the graph search for Depth-First search (a) and the Breadth-
First search.

Breadth-first search is complete in a finite graph. It is incomplete in a countably

infinite graph; however, it will find a solution if one exists. The BFS algorithm is

more methodical than the DFS algorithm and is usually more useful when the start

configuration only includes a few nodes. Although the BFS search may be inefficient

in large graphs and/or high-dimensional spaces, the path planning for the Platonic
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solids fits on limited prescribed grids. The algorithm is useful for analysing the nodes

in a graph and constructing the shortest path of traversing through these. BFS

selects a single node (initial or source point) in a graph and then visits all the nodes

adjacent to the selected node. The pseudo-code for the BFS algorithm is displayed

in Algorithm 1.

In the beginning, the algorithm initialises the start and goal configuration with the

input parameters with the number of edges and vertices. The Line 2 indicates that

Set O is the open (active) frontier while Set C is the closed (inactive) set (Line 6).

The parent pointers which creates spanning tree are used to enable path extraction

(Line 3). The while loop executes the main BFS search on graphs with the sorting of

the cost of optimality. But the sorting is trivial (FIFO) when the edges are uniform

cost. It firstly generates all paths of length on edge then all paths of length two edges

until reaching the goal (Return success in Algorithm 2).

Algorithm 1 Breadth-first search
1: Initialize: xstart, xgoal

2: O.insertLast(xstart) ▷ Insert at back
3: xstart.parent← null
4: while O ̸= ∅ do ▷ Terminate on failure
5: x← O.removeF irst() ▷ Remove at front
6: C.insert(x) ▷ Move state behind frontier
7: if (expandNodeBF(x)) 2 then
8: return success
9: end if

10: end while
11: return failure
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Algorithm 2 expandNodeBF(x)
1: for each (u ∈ U(x)) do
2: xnext ← f(x, u)
3: if (xnext = xg) then
4: xnext.parent← x;
5: return success ▷ Solution!
6: else if (xnext /∈ O && xnext /∈ C) then
7: xnext.parent← x; ▷ Record backpointer
8: O.insertLast(xnext) ▷ Insert at back
9: end if

10: end for
11: return failure

Search Conditions

A graph search based on BFS has potential results in solving path planning problems

to find the goal. The algorithm has some below conditions for searching.

• The BFS algorithm initiates at the root node and explores all adjacent graph

edges, adding connected nodes to a first in, first out queue, as a data structure.

• Any node in the graph is marked as root and starts traversing the data from it.

• After discovering all connected nodes, the search moves to the first node in the

queue and restarts the procedure. Then the search strategy moves to the next

node in the queue after discovering all connected nodes.

• It is noted that the previously discovered nodes are not repeated. The iteration

of the BFS algorithm will execute until traversing successfully all the vertices

in the graph and then these vertices are marked as completed.
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4.2.3 BFS Path Planning for Rolling Polyhedra

Node expansion is considered based on the unfolding polyhedron properties. Fig. 4.3, 4.4

shows examples of the basic unfolding step of a cube, a tetrahedron and a dodecahe-

dron.

Figure 4.3 The way of unfolding cube and icosahedron onto a plane.

Figure 4.4 Dodecahedron unfolding method.

The potential rolling directions of each polyhedron will be checked from the unfolded

polyhedra. The cube has four edge-contacts corresponding to the four rolling di-

rections while the tetrahedron, octahedron and icosahedron have triangular surface

contact with three edge contacts, which will consider for three rolling directions. The
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dodecahedron with five edge contacts has five potential rolling directions. The gen-

eral path-finding for the Platonic solids by using a BFS-based algorithm is mentioned

in the tree expansion technique which is shown in the next section.

Figure 4.5 Tree exploration technique. Based on the BFS method, this algorithm starts
from an initial pose represented by Node I. The branches represent the rolling
directions for each iteration. If some nodes are of the same pose, they are
merged to reduce the search space (the green node). The algorithm stops when
the desired pose, represented by the Node G, is reached and the shortest path
is generated (coloured in red).

Tree Expansion

The planning algorithm employs tree exploration (Fig 4.5), which is a variation of the

BFS algorithm [125]. Using queues, this algorithm is faster than the A⋆ algorithm,

which uses the priority queue [79], for the unweighted graph. Another advantage of

the BFS algorithm is that it can find the shortest path where the environment is

known. A⋆ can also implement to find the path but it requires a more general setting

of weighted graphs. Thus, this section describes the tree expansion technique from

the BFS-based algorithm as an efficient search algorithm to find the shortest path

for rolling convex polyhedra on a 2D plane.
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Nodes in the same layer representing the same pose are merged so that the algorithm

only generates distinct paths. The checking condition of nodes’ orientation between

the current node and the previous nodes which have the same position is added in

each search iteration. This step can reduce the latter time and space searching in

the main algorithm. The first path from the initial pose I to reach the desired pose

G is the shortest path because of the BFS algorithm. For the stopping criteria, it

is applied for only the tetrahedron cases when the final tetrahedron’s configuration

reaches the target position but a different orientation.

Complexity in Time and Space Search

Based on tree traversal, BFS search has O(m(n+1)) for time complexity and O(mn)

for the space complexity, which is based on figuring out the size of a search tree and

the number of nodes in a tree, where m is the maximum number of nodes in each

search level and n is the number of layers. Depending on the type of the Platonic

solids, O(mn) could be between O(2n) and O(4n) nodes in each layer. The first node

I, which represents the initial pose, is the root of the tree, from which m nodes in

the next layer are generated corresponding to m different directions of edge-rolling

of each Platonic solid (m = 3 for tetrahedron, octahedron and icosahedron, m = 4

for cube, and m = 5 for dodecahedron) (Fig 4.5). From the newly generated nodes,

each Platonic solid can only roll with (m − 1) directions to avoid going back to the

previous pose in the next layer.
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4.3 RRT-Based Path Planning Algorithm

4.3.1 Introduction

A key advantage of the RRT technique is to handle high degrees of freedom problems

for searching. RRT [108, 127] is a fast probability planning that can be extended

to multidimensional spaces. The RRT is probabilistically complete [107] so that

it guarantees the complete discovery and the exploration of the map. The RRT

algorithm extends a tree structure from the starting point and follows an expansion

direction, as determined through random selection points in the planning space. An

opportunity constrained sub-path based on RRT can be generated from the starting

position to the target [128]. Since the RRT algorithm is biased toward the undetected

area [109], it can quickly detect the target on the map. RRT is also defined as

a randomized data structure technique for solving planning problems, which can be

applied for path planning problems under holonomic, nonholonomic and kinodynamic

constraints [129]. RRT* improve the convergence rate but the planning time has

significantly increased [130].

Rapidly-exploring random tree (RRT) algorithm is the most representative sampling-

based path-planning algorithm. The RRT-based algorithm plans a path by gradually

expanding a tree with a root node at the start point using random sampling. It is

designed to handle non-holonomic constraints and high degrees of freedom. RRT path
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planning is a potential algorithm to find a sub-optimal path for convex polyhedral

through edge-rolling on a plane and this is the first time searching a rolling path for

a truncated icosahedron.

4.3.2 Preliminaries

This section details the path planning based on the RRT method applied to find a

path of rolling polyhedra from an initial pose (position and orientation) to a random

goal (position and orientation) on a plane. It first introduces the notation and prob-

lem statement. Then it shows the basic RRT algorithm and its improvement used to

find a path for a truncated icosahedron through edge-rolling contact on a plane.

Notations and Problem Statement

The polyhedron path planning problem is the task of finding the collision-free paths

for rolling the polygon around static obstacles to achieve the goal configuration. A

configuration of the polyhedron is a set of the positions of all the vertices of the

polyhedron relative to a world coordinate system. Let W denotes the configuration

space of the polyhedron in which Oobs is the obstacle region in the environment, such

that W \Oobs is an open set. Workspace W is a subset of R2 or R3, and denotes the

obstacle-free region is Wfree. In this study, although the rolling path is considered

on a plane, the orientation of the polyhedra changes in 3D space. We then consider
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W ⊆ R3. The tree is denoted by T and the node of the tree - including position and

orientation in the environment, is defined by qi ∈ Wfree. The initial configuration

qstart is an element ofWfreedom and the a random goal qgoal is an open subet ofWfree.

In the path planning algorithm the set of the planned configurations is defined by

(q0, q1, ..., qn) in which n is the limited path node running from q0. The straight

continuous path between two nodes qi, qi+1 ⊆ R3 is represented by Distance(qi, qi+1).

If we denote qiqi+1 as the connection node between the two configurations (qi and

qi+1), the results of qiqi+1 ∈ Wfree define the successful extension and qiqi+1 /∈ Wfree

define the failure extension.

The algorithm shows whether a path is feasible or fails to meet the goal. If a path

exists, the tree T = (V, E) on W represents a set of vertices V sampled from Wfree

and the edges E connect these vertices, such that V is a finite subset ofW , and E is a

subset of V ×V . A direct graph on T is a sequence (v0, v1, ..., vn) of vertices such that

vi, vi+1 ∈ E for all 1 ≤ i ≤ n− 1. Given a vertex v ∈ V , the sets {u ∈ V |(u, v) ∈ E}

and {u ∈ V |(v, u) ∈ E} are said to be its incoming neighbors and outgoing neighbors,

respectively. A (directed) tree is a directed graph, in which each vertex but one has

a unique incoming neighbor; the vertex with no incoming neighbor is called the root

vertex. Vertices of a tree are often also called nodes.
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The core of the polyhedron rolling path planning problem is to find the optimal

path to achieving the target configuration. The discretization of the path planning

algorithm is represented by the sampling configuration from the Wfree. First, the

path from qstart to qgoal is found with precise position and orientation. However, due

to symmetrical properties and tiling polyhedrons, path planning does not always find

the solution. An algorithm is developed to find a closed path in which the final node

qn gets closest to the goal qgoal with qn ∈ Ggoal (qgoal ∈ Ggoal the goal region). The

rolling of a polyhedron by edge-contact will be considered as a nonholonimic path

planning, then we need a threshold ∥ qgoal− qn ∥ ≤ ε for a small ε > 0. Considering a

minimum length path for rolling polyhedra to achieve the goal, we define the minimum

expected cost (denoted by Ci = fi + hi) to plan a path from qstart to qn close to qgoal.

The optimal path has the lowest average cost compared to other possible paths on

the tree graph. The Euclidian length of the path from qi to qi+1 is computed. The

length may vary after the rolling motion due to different polyhedra shapes.

Figure 4.6 Basic rapidly exploring random tree algorithm without obstacle in one iter-
ation. Left: randomly generating a configuration qrand. Center: the near-
est configuration in the existing T tree qnear is selected for expansion. A
new node qnew is created by running the shortest distance to new node
StraightLine(qi, qi+1). Right: The tree is updated with the new configu-
ration.
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RRT Path Planning

The essential RRT algorithm is formed by sampling random points in state space

and extending the RRT toward them in high-dimensional spaces. The key idea is to

bias exploring the search tree away from the root, qstart to a goal region Ggoal ⊂ W

or a goal state qgoal ⊂ Ggoal. The following steps then are repeated until a feasible

path is generated, or the search planning approaches a limit condition such as a

maximum number of iterations or memory or time limits. A configuration qrand ∈ W

is randomly sampled in the configuration space. The nearest neighbor qnear in the

exploring tree is selected by using shortest distance StraightLine(qi, qi+1) checking

condition. Then an edge of the connection between qnear to qnew is developed. The

qnew configuration is inserted onto the tree T as a child of the qnear if qnew ∈ Wfree

(Fig. 4.6).

Algorithm 3 Basic Rapidly-exploring random tree (RRT) Expansion
Input: Initial configuration: V ← qstart, E ← ∅, iterations N , incremental distance

δq

Output: RRT graph T = (V, E)
1: while i < N do ▷ The iteration is limitted by N
2: qrand ← RandomState()
3: qnear ← NearV ertex(qrand, T = (V, E))
4: qnew ← NewState(qnear, qrand, δq) ▷ Update the new state
5: if qnew can connect to qnear then
6: V ← InsertV ertex(qnew)
7: E ← InsertEdge(qnear, qnew)
8: T ← (V, E) ▷ Store the vertices and edges into the tree
9: end if

10: end while
11: return T
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The RRT algorithm is the primary of single-query planner which is one the category

of sampling-based motion planning algorithms in the literature. The basic RRT

algorithm is outlined in Algorithm 3. The algorithm starts with the tree T which

includes the initial configuration as an intial vertex qstart and no edges; then, they

incrementally grow the tree onWfree by sampling a state qrand ∈ Wfree at random and

extending the tree towards qrand. The single iteration of the incremental sampling-

based algorithm leads to a rapid exploration (Steps 1-10 of Algorithm 3).

Algorithm 4 RRT Path Planning with Obstacle Avoidance
Input: qstart, qgoal,Oobs, N
Output: RRT graph T = (V, E)

1: Initialisation :T ← (qstart, qgoal,Oobs)
2: for i = 1...N do
3: qrand ← RandomState()
4: qnear ← NearV ertex(qrand, T )
5: qnew ← NewState(qnear, qrand, δq) ▷ Update a new state
6: if ObstaclesFree(qnear, qnew) and MinExpandCost() then ▷ Check the

obstacle free and lowest cost for node expansion
7: V ← V ∪ {qnew}
8: E ← E ∪ {(qnearest, qnew)}
9: T ← (V, E) ▷ Store the nodes into the tree

10: end if
11: end for
12: return T

The principle procedures of the extended RRT path planning algorithm including the

obstacle avoidance step is shown in Algorithm 4. For a given initial state qstart and

a distance metric on the state space δ, the initial vertex of T is qstart ∈ Wfree. In

each iteration i < N (N is the limited searching iteration), a random state - qrand -

is selected from W . The NearV ertex(qrand, T ) from the step 4 will find and store

the closest vertex to qrand in terms of δ. Step 5 stores the new state qnew which

is added as a vertex to T . Then an edge from qnear to qnew is also added through
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the function InsertEdge(qnear, qnew). This step also integrates collision detections in

the presence of convex obstacles (Step 6). A null configuration is returned and the

extension fails when the new portion of the path leads to a collision independently

of the associated costs. This extension process ensures the bias toward unexplored

free regions of space. The goal of this step is also to filter irrelevant configurations

regarding the search for low-cost paths before inserting qnew and qnearest into the tree

T .

The path planning algorithms based on RRT for rolling contact have the ability to

explore the whole state spaceWspace. The step is achieved by computing the boundary

of Oobs and random sampling qrand from Wfree. A graph in Fig. 4.7 represents one

iteration of the tree expansion with a fixed obstacle. The connection between qnearest

to qnew is found after checking collision between the obstacle and the qnear. The

updated edge will be stored in E by using the InsertEdge function.

Figure 4.7 Tree expansion from RRT with obstacle avoidance in one iteration. Left:
randomly generating a configuration qrand. Center: the nearest configuration
qnearest in the existing T tree is selected for expansion after the qnear is found
in Oobs. A new node qnew is created by running the shortest distance to new
node StraightLine(qnearest, qnew). Right: The tree is updated with the new
configuration.
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4.3.3 RRT Path Planning for Convex Polyhedra

The path planning algorithm for the rolling polyhedra task is developed from the

RRT algorithm, which is considered a nonholonomic motion planning system (Al-

gorithm 5). The initial environment includes initialized polyhedron model MP oly

(Step 1) such as the polygon type, its centre, vertices, dimension of each edge and

the obstacles. The algorithm interleaves path planning with tree expansion and path

rewiring to achieve the random goal configuration with obstacle avoidance.

Figure 4.8 Improved RRT path planning to achieve a goal state qgoal at a closest qn

state.

The main part of the path planning algorithm is to achieve the closest tartget ori-

entation through the edge-rolling contact of the truncated icosahedron. The tree

expansion is done by selecting a nth state (qn ∈ Ggoal) which is closest to the qgoal due

to the geometrical properties of different polyhedra (Fig. 4.8). The last configuration

can not always reach the exact position and orientation of the goal configuration.

Then a threshold ε is defined to the goal configuration so that the final state which

reachs the InGoalRegion() returns the successful path (Step 15). The state qn

should meet at least two conditions including a correct orientation as the target

orientation qgoal and ||qn − qgoal|| ≤ ε to return the True value in the InGoalRe-
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Algorithm 5 Path Planning Based on RRT for Rolling Polyhedron with Obstacles
Avoidance
Initialisation:

1: MP oly

2: V ← {qstart} and E ← ∅
3: Qsoln and Oobs

4: T ← {V, E,MP oly} ▷ Initialise the polyhedron to the tree T
5: N ← iteration number
6: while i < N do
7: MP oly ← {V, E, Center, Orientation}
8: Ci ← minqsoln∈Qsoln

{Cost(qsoln, qgoal,MP oly)} ▷ Calculate the heuristic cost
9: qrand ← Sampling(qstart, qgoal, Ci)

10: qnearest ← Nearest(qrand, T )
11: qnew ← Steer(qnearest, qrand, δq)
12: MP oly ← PolyRoll(MP oly, αP oly) ▷ Take rolling action for the polyhedron
13: if CollisionFree(qnearest, qnew,Oobs) then
14: TreeExpansion using Algorithm 6
15: if InGoalRegion(qn, qgoal, ε) then
16: Qsoln ← Qsoln ∪ {qn}
17: PathRetrieve(T ,Qsoln) using Algorithm 7
18: end if
19: end if
20: end while
21: return T ,MP oly

gion() function. Once the initial path is reached in this function, the cost Cost(())

function will return the cost of the path, which is defined by Euclidean distance

∆d =
√

(xqj
− xqi

)2 + (yqj
− yqi

)2.

As the solutions are found (Step 15 - Algorithm 5), the improved algorithm adds

the results to a list of feasible solutions (Step 16 - Algorithm 5). These lists can

be reduced by using the minimum at Step 8 - Algorithm 5. Subfunctions from the

algorithm are described below.
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Algorithm 6 Tree expansion
Input: qnearest, qnew,Oobs

Output: qn, T ,MP oly

1: V ← V ∪ {qnew}
2: Qnear ← Near(qnew, T ,MP oly)
3: qmin ← UpdateParent(qnearest, qnear, qnew)
4: Cmin ← Cost(qmin) + C ·Distance(qnearest, qnew) + C ·PolyRoll(MP oly, αP oly)
5: for all qnear ∈ Qnear do
6: Cnew ← Cost(qnew)+C ·Distance(qnear, qnew)+C ·PolyRoll(MP oly, αP oly)

7: if Cnew < Cmin then
8: if CollisionFree(qnear, qnew,Oobs) then ▷ Check the obstacle

avoidance
9: qmin ← qnear

10: Cmin ← Cnew

11: end if
12: end if
13: end for
14: E ← E ∪ {(qnew, qmin)}
15: T ← (E, V )
16: for all qnear ∈ Qnear do
17: Cnear ← Cost(qnear)
18: Cnew ← Cost(qnew)+C ·Distance(qnear, qnew)+C ·PolyRoll(MP oly, αP oly)

▷ Calculate the new heuristic cost
19: if Cnew < Cnear then
20: if CollisionFree(qnear, qnew,Oobs) then
21: qparent ← UpdateParent(qnear)
22: qn ← qnew

23: T ← InsertVertex(qparent, qn, T )
24: T ← Replanning(T , qnear, qmin, qnew) ▷ Call back the plan function

to update the new nodes
25: Nodes_results← T ▷ Save the nodes
26: end if
27: end if
28: end for

• Sampling (Step 9 - Algorithm 5): The function Sampling given two poses,

qstart, qgoal ∈ Wfree and a best heuristic value, Ci ∈ R, the function Sampling

(qstart, qgoal, Ci) returns independent and identically distributed samples from

state space Wfree. The heuristic computes the distance between qnear and qnew
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in the obstacle free space. Based on the dimensions of the plane and obstacles,

the convex sampling emvironment is found so that the random sampling nodes

are inside it.

• Nearest Neighbor (Step 10 - Algorithm 5): Given a graph G = (V ; E), and a

point qn ∈ Wfree, the function Nearest(qrand, T ) will return the closest point

qnearest to qn in terms of a given Distance function. This study uses Euclidean

distance to find distance between any two points in W .

• Near Vertices (Step 2 - Algorithm 6): The function Near(qn, T ,MP oly), given

by a graph G = (V ; E), a point qn ∈ Wfree, returns a set of nearby neighbor

nodes. This function differs from the Nearest function which finds only a

closest vertex. The result from Near function should lie in a sphere volume of

radius rsphere = µ( log n
n

).

• Steering (Step 11 - Algorithm 5): The function Steer drives the system from

qi = qrand to qi+1 = qnearest along the path. The two given points returns a new

point qnew ∈ R3 such that qnew is closer to qx+1 than to qi. Another Distance

function, contains the cost C with Euclidean distance, is used to returns the

cost of the path between these two states while satisfying CollisionFree

condition. Then, differential relationship ||qnew − qi+1|| ≤ ε is maintained.

• CollisionFree (Step 13 - Algorithm 5 and Step 20 - Algorithm 6): The regions

of all obstacles Oobs are considered first in this step. From the tree expansion,

with any two closed points qi, qi+1 ∈ W , running the collision checking of the
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Boolean function CollisionFree(qi, qi+1,OObs) will return True if the line

segment between qi and qi+1 lies in Wfree, and False with intersection results.

• Insert Vertex (Step 23 - Algorithm 6): The function InsertVertex

(qparent, qn, T ) adds the node qn after having updated parent_nodes qparent to

V . This step connects a new node to parent nodes and adds the edge to E.

The cost is found based on the minimum distance between qnear and qnew which

is epxlored with tree expansion process and the cost of rolling polyhedron with

checking the orientation.

• PolyRoll (Step 5,6,18 - Algorithm 6): This function PolyRoll requires input

values of the current configuration of the polyhedron and the rotation angle

αP oly to achieve the next configuration.

• InGoalRegion (Step 15 - Algorithm 5): Given a pose, qn ∈ Wfree, the function

InGoalRegion(qn) returns a True value if and only if the state qn lies in the

goal region Ggoal, and has the same orientation as the target; otherwise it returns

False. The condition to check for this step uses ε in which ||qn − qgoal|| ≤ ε.

• Cost(qi, qj): This function evaluates the cost of transition from state qi to qj.

The function is designed to generate the paths that suitable for edg-rolling con-

tact through each PolyRoll action (taking rolling action for the polyhedron

in αP oly.



75

Shortest Path and Complexity

More formally, a given graph T = (V, E) with a length function l : E → R > 0,

and a vertex v ∈ V , the shortest path tree for T , l, and v can be found in time

O(|V |log(|V |) + |E|). Let T = (V, E) be a graph with V ∈ X and let x ∈ X. The

number of simple operations executed by the Nearest(T , x) procedure O(log|V |)

in fixed dimensions. In Algorithm 5, complexity of the CollisionFree procedure

(Step 13) in terms of the number of obstacles in the environment is analyzed, which

is a widely studied problem in the literature ([131]).

Tree Expansion

The core of path planning based on RRT algorithm for rolling polyhedron represented

in Algorithm 5 is the TreeExpansion (Algorithm 6). The function CollisionFree

is always checked in the loop to confirm free space Wfree for expanding the tree

nodes. The tree stores the new state along with the current polygon configuration

that will update the parent nodes. The tree consists of multiples nodes which can

be represented as T = {q0, ..., qn} where state q0 is same as the start configuration

qstart while the state qn is exact state of the goal configuration qn or the closest target

configuration. Whenever a new state qnew is found, its configuration are compared to

the qnearest before the parent node stores this new node. Then the path is retrieved

from the goal to the start node when the Qsoln is found. The tree expansion process



76

is repeated until finding the qn which meets the conditions of the InGoalRegion

function.

The RRT path planning based algorithm in this study is used for rolling polyhedron

as the nonholonomic system. This means that the next rolling positions are limited

due the polygon contact-based shapes. For example, there are six potential states in

the next rolling for the truncated icosahedron with the current hexagon based and

only five states for the pentagon face contact. Before adding the new node to the tree,

the minimum cost value will be calculated based on the cost of checking minimum

length from the qnear node to the goal, the cost of the new node qnew to the current

node and the cost of the polyhedron orientation. Reducing the convergence time of

the tree expansion process is achieved by choosing a theshold ε small enough to at-

tain the goal configuration with acceptable precision. In this study, the random state

is selected to best speed up convergence. A goal region Ggoal is defined as a sphere

which has a volume greater than or equal to the threshold ε as shown in Fig. 4.8.

Algorithm 7 Reconstruction Path
1: function PathRetrieve(T , qn)
2: T ← ∅
3: T .resize(qn) ▷ Initialise the size of the tree
4: while Nodes_results[qn] ̸= NULL do
5: qn ←Nodes_results[qn]
6: T .push_front(qn) ▷ Insert the nodes in the list container at the front
7: end while
8: return T
9: end function
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After finding the closest configuration qn ∈ Ggoal, the function PathRetrieve from

Algorithm 7 will reconstruct the rolling path from qn to qstart to implement the rolling

truncated icosahedron on the plan. The Nodes_results is a temporary matrix which

saves the planned nodes whenever the path planning method finds the best node.

Then they will be stored in the tree T as the final path for rolling. The path planning

through edge-rolling of the truncated icosahedron is detailed in the Section 6.4.

4.4 Conclusion

The fisrst part of this chapter analyses the BFS algorithm which works on a similar

principle of a graph traversal. The iteration of the algorithm is a unique process that

requires the algorithm to visit, check, and/or update every single unvisited node in a

tree-like structure. The BFS Algorithm has a wide range of real-world applications

due to well perfomance in the small searching space. The algorithm traverses the

graph in the smallest number of iterations and the shortest possible time to find the

paths. Because of the advantages of the BFS algorithm including finding the shortest

path or the solution with minimal steps if there are more than one solution, the BFS

is the potential algorithm to solve the path planning for the Platonic solids through

edge-rolling on prescribed grids. Based on the literature review, it is the first time

to use BFS algorithm to search the rolling-path for Platonic solids on a prescribed

grids, which is presented in the next chapter.
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In another hand, the RRT-based algorithm is represented in the second part of the

chapter. The algorithm is a kind of probabilistically complete exploration algorithm

based on the tree structure. It has been widely used in the path planning problem

since it guarantees the complete discovery and the exploration of environment maps

through objects. In the present study, the RRT algorithm is extended to propose a

path finding strategy for convex polyhedra to actively explore and find optimal path.

From the RRT-based algorithm, the cost function consists the unknown region and

the passed unknown region. The unknown region is explored for a given goal pose,

while the passed unknown region is the area, where the polyhedron moves towards the

target frontier point. This is a potential discrete path-finding algorithm which can

explore and find paths for rolling-polyhedra through edge-rolling on a plane, which

is presented in Chapter 6.
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Chapter 5: BFS Path Planning for Platonic

Solids through Edge-rolling on

prediscribed grids 1

The five Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and icosahe-

dron—have found many applications in mathematics, science, and art. Path planning

for the Platonic solids had been suggested, but not validated, except for solving the

rolling-cube puzzles for a cubic dice. We developed a path-planning algorithm based

on the breadth-first-search algorithm that generates a shortest path for each Platonic

solid to reach a desired pose, including position and orientation, from an initial one

on prescribed grids by edge-rolling. While it is straightforward to generate triangular

and square grids, various methods exist for regular-pentagon tiling. We chose the

Penrose tiling because it has five-fold symmetry. We discovered that a tetrahedron

could achieve only one orientation for a particular position.
1This chapter is reproduced from the journal paper: Lam NT, Howard I, Cui L (2021) Path

planning for the Platonic solids on prescribed grids by edge-rolling. PLoS ONE 16(6): e0252613.
https://doi.org/10.1371/journal.pone.0252613
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5.1 Introduction

Planning techniques are categorized into different aspects. The basic idea of discrete

path planning in the most cases is that state-space models will be used to demon-

strate the distinct situation in which the task of a planning algorithm solves the

sequence actions transforming from a initial state to other states [1]. For example,

Thomas [73] applied Delaunay triangulations to discretize the environment, and cubic

spline representations are proposed to meet robot kinematic constraints. Considering

the continuous curvature on smooth curves has been integrated within the probabilis-

tic approaches in order to compute the piecewise smooth paths for a car-like vehicle

as a four-dimensional system [74]. Whereas, dealing with nonholonomic constraints,

a sampling-based road map technique was proposed in [106]. Based on decomposing

space into cells [132], a potential field without local minima was assigned with polyg-

onal partitions of planar environments to solve the Laplace’s equation problems in

each cell exist.

Literature on path planning for polyhedra by edge-rolling is scarce. An attempt was

made to plan a path for an octahedron edge-rolling on a plane from an initial pose

(position and orientation) to a desired pose, which, unfortunately, failed due to errors

propagating from the algorithm [38]. In graspless manipulation, two movable parallel

plates working as a robotic end-effector rolled a cubic dice by edges [18], but this work

did not discuss how to generate the desired path. The rolling-cube puzzles, which
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focus on how to roll a cubic dice on a board consisting of labeled and white cells,

were solved by detecting a Hamiltonian path in grid graphs as an NP-hard problem

[69]. In this work, we propose a path-planning algorithm using tree exploration for

each of the five Platonic solids starting from an initial pose to a desired pose by

edge-rolling on different prescribed grids. We believe this is the first work that solves

this problem.

This chapter is organized as follows. Firstly, the related works for the Platonics solids

and the different patterns of grids are briefly reviewed. Secondly, the path planning

algorithm is described. Then, the results for the proposed algorithm is presented.

Finally, the chapter is concluded.

5.2 Platonic Solids

The Platonic solids is detailed in the Chapter 3 at the Section 3.2.2. This section

describes different patterns of grids used to implement a path planning algorithm.

Each of the Platonic solids can be unfolded into non-overlapping edge-joining poly-

gons (Fig 5.1). The cube consists of 6 square polygons; the tetrahedron consists of

4 equilateral triangular polygons; the dodecahedron consists of 8 equilateral trian-

gular polygons; the icosahedron consists of 20 equilateral triangular polygons; the

dodecahedron consists of 20 hexagons and 12 pentagons.
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Figure 5.1 Five models of the Platonic solids and their unfolding geometry. (a) Cube.
(b) Tetrahedron. (c) Octahedron. (d) Icosahedron. (e) Dodecahedron.

5.2.1 Discretized Grids

A plane can be discretized into a square, triangular, or pentagon grid, depending on

the face of a Platonic solid in contact with it (Fig 5.2). At any instant, a cube has 4

edges in contact with the plane, which indicates 4 possible directions of edge-rolling

on the square grid; a tetrahedron, octahedron, or icosahedron has 3 edges in contact

with the plane, which indicates 3 possible directions of edge-rolling on the triangular

grid; a dodecahedron has 5 edges in contact with the plane, which indicates 5 possible

directions of edge-rolling on the pentagon grid.

There are many options for discretizing a plane into a pentagon grid. Regular pen-

tagons tiling a plane will leave symmetric gaps without overlap (Fig 5.3). A variety
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Figure 5.2 Direction of grids. Three different patterns of grid of the plane for the Pla-
tonic solids. (a) A square grid for the cube with 4 edge-rolling directions.
(b) A triangular grid for the tetrahedron, octahedron, and icosahedron with
3 edge-rolling directions. (c) A pentagon grid using Penrose tiling for the
dodecahedron with 5 edge-rolling directions.

of patterns exist, such as those developed by Dürer (Fig 5.3(a) and 5.3(b)) [136],

Caris (Fig 5.3(c), 5.3(d) and 5.3(e)) [31], and Penrose (Fig 5.3(f)) [137]. The Dürer

and Caris tiling uses multiple twins of regular pentagons to tile a plane, in which

rhombi remain between pentagons in various positions. The Penrose tiling attaches

five regular pentagons onto the initial one along its edges to form a new larger pen-

tagon, which generates gaps in the shapes of rhombi, pentacles, and half-pentacles.

These gaps are partially filled by inserting pentagons following substitution rules

(Fig 5.4) [138]. To facilitate path planning, we chose Penrose tiling because it has

five-fold symmetry, which others lack.
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Figure 5.3 Patterns of the regular pentagon tiling. (a)-(b) Two patterns of pentagon
tiling from Durer including a five-fold nucleus that is expanded by multiple
twins of five-fold symmetry (reconstructed from [133]). (c)-(e) Three patterns
of pentagon tiling in art proposed by Caris (reconstructed from [134]). (f)
Penrose tiling with five-fold symmetry generated by attaching multiple groups
of a pentagon to the initial one (reconstructed from [135]).
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Figure 5.4 Substitution rules for Penrose tiling (reconstructed from [14]). (a) A pen-
tagon is partially filled by 6 pentagons. (b) A pentacle is partially filled by
5 pentagons. (c) A half-pentacle is partially filled by 3 pentagons. (d) A
rhombus is partially filled by 1 pentagon.
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Figure 5.5 Configurations of the Platonic solids through edge-rolling. (a) Cube coordi-
nates change from before state to the after state with β1 rolling angle. (b)-(d)
The respective of the rest Platonic solids with β2 − β5. Oe1e2e3 is the coor-
dinate of the polyhedron, which moves along the red curve which represents
one step of rolling motion.
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5.3 Result

This section introduces the results for the path planning of the Platonic solids on

their respective grids. Fig 5.5 shows how edge-rolling changes the poses of the Pla-

tonic solids. Fig 5.11-5.12 shows the respective paths for the Platonic solids from

their initial pose to their desired pose, where an additional Platonic solid shows an

intermediate pose in-between.

5.3.1 Simulation Environment

We implemented the algorithm in MATLAB® on a PC with a 3.6 GHz Intel Core

i7 processor. A space frame was fixed at the origin and a body frame was fixed on

each Platonic solid; the plane was then discretized depending on the Platonic solid

(Fig 5.5).

In this work, two cases studies are implemented for path planning fot Platonic solids

through edge-rolling on the prescribed grids. The first case is to search path from

a start pose, avoid obstacles and achive the goal pose. The second case runs with

two steps. The first step is that the polyhedron roll directly from the start position

to the goal position without considering the orientation. Then the second step is

to implement the path planning BFS based algorithm from the last configuration to

achieve the goal configuration. Fig. 5.6 shows an example of the triangular grid for
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Figure 5.6 Simulation environment for rolling tetrahedron from a start pose to a goal
pose while avoiding obstacle.

rolling tetrahedron, octahedron and icosahedron. The square grid is used for cube

path rolling and penrose tiling is used for dodecahedron path rolling. The results of

using the BFS based algorithm to find the rolling path for the Platonic solids are

shown in the next subsections.

5.3.2 Obstacle Avoidance

In Fig. 5.6, a rolling polyhedron is at the starting configuration S and the target is to

find a path to the goal configuration G while avoiding the polygonal obstacle, shown

in black. A solution to this problem is to compute the euclidean shortest path from

S to G that avoids the obstacle, as shown in green in the figure. However, rolling

polyhedra is a nonholonomic system on a grid, which does not always follow the

straight line as same as the rolling sphere with point contact constraint. Depending
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on the polygon shape, a triangular can be used for tetrahedron model to found the

boundary of the obstacle where the polyhedron does not contact to the obstacle

Assuming that the reference point is the center of the polyhedron, the task to find a

collision free path such that reference point moves from S to G in the case of shortest

rolling path without considering the orientation.

The collision-free path cannot be guaranteed if the path planning algorithm does not

account for the shape of the object. To avoid obstacle, the expansion of the obstacle

region by setting it with the object shape is needed. After the setting step, the object

can be represented as a single point with its coordinate system. The collision zone

Oobs is the bounded region with light interior. Finding a collision-free path for the

polyhedron corresponds to finding valid coordinate systems in Cspace that connects

the start configuration and the goal configuration. This approach is applied to the

rest of Platonic solids.

5.3.3 Tetrahedron

A tetrahedron is constructed from 4 incident equilateral triangles, giving 4 vertices

(Table 3.2) and an edge-rolling angle of 2 arctan(
√

2) (Table 3.2) on the triangular

grid. The symmetry of the tetrahedron limits its reachable poses, which can be seen

as follows (Fig 5.7). We assume the surface Sct of the tetrahedron as an initial con-

figuration (bottom of Fig 5.7(a)-(b)) is in contact with the plane where the red arrow

points down to the surface contact.
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Figure 5.7 Symmetric properties of a tetrahedron. (a) A 3D view of edge-rolling 6 times
around the vertex O where the red curve indicates the closed-path of rolling
motion. (b) A top view of (a). The surface Sct of the tetrahedron is in contact
with the plane in different cell after sequential rolling through the edges of
NO, PO, and MO to reach the same pose. (c) The tetrahedron reaches only
one orientation for each cell through edge-rolling.



91

Figure 5.8 Tetrahedron rolling path in two different solutions. With the same scenarios,
the number of rolling steps in (a) is less than the number of rolling steps in
(a).

Because the tetrahedron has 3 incident faces at any vertex, edge-rolling along the

edges NO, PO, and MO in sequence makes the face Sct to be in contact with the

plane again. Then, repeating this sequence of edge-rolling brings the tetrahedron

back to the initial pose (more details in Fig 5.7(a)-(b)). As a result, the tetrahedron

reaches the same pose after 6 times of edge-rolling around one vertex (Fig 5.7(b)-(c))

because the triangular grid which has 6 equilateral triangle shapes at any vertex.

We conclude that only one pose can be reached for each cell starting from an initial
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pose due to the high symmetry brought by the tetrahedron. The shortest path for

the tetrahedron is shown in Fig 5.8.

Figure 5.9 Octahedron rolling path while avoiding obstacles. (a) The octahedron has the
rolling path indicated by the red curve and the light-green surface contacts.
(b) There are two steps in this scenario, the light-green path represents the
direct rolling path from the start pose to the goal position without considering
the orientation. The red path represents the closed path to achieve the goal
orientation at the same goal position.
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5.3.4 Octahedron, Icosahedron, Cube, and Dodecahedron

On the other hand, the other four types of the Platonic solids can reach an arbi-

trary desired pose from an initial one because the increasing number of faces impose

decreasing constraints. In these cases, each position is always reached by differ-

ent orientation corresponding to various paths through due to the their symmetrical

properties.

An octahedron is constructed from 8 incident equilateral triangles, giving 6 vertices

(Table 3.1) and an edge-rolling angle of arccos(1/3) (Table 3.2). The shortest path

for the octahedron is shown in Fig 5.9. An icosahedron is constructed from 20 inci-

dent equilateral triangles, giving 12 vertices (Table 3.1) and an edge-rolling angle of

arccos(
√

5/3) (Table 3.2). The shortest path for the icosahedron is shown in Fig 5.10.
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Figure 5.10 Icosahedron rolling path while avoiding obstacles. (a) The icosahedron has
the rolling path indicated by the red curve and the light-green surface con-
tacts. A middle pose is also displayed for visualisation (b) There are two
steps in this scenario, the light-green path represents the direct rolling path
from the start pose to the goal position without considering the orientation.
The red path represents the closed path to achieve the goal orientation at
the same goal position. It can be seen that two scenarios have the same
start pose and goal pose but having two different paths

A cube is constructed from 6 incident squares, giving 8 vertices (Table 3.1) and an

edge-rolling angle of π/2 (Table 3.2) on the square grid. The shortest path for the cube

is shown in Fig 5.11. Finally, a dodecahedron is constructed from 12 incident regular

pentagons, giving 20 vertices (Table 3.1) and an edge-rolling angle of arccos(
√

5/5)

(Table 3.2). The shortest path for the dodecahedron is shown in Fig 5.12.
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Figure 5.11 Cube rolling path with obstacle avoidance. (a) The cube has the rolling path
indicated by the red curve and the light-green surface contacts. (b) There
are two steps in this scenario, the light-green path represents the direct
rolling path from the start pose to the goal position without considering the
orientation. The red path represents the closed path to achieve the goal
orientation at the same goal position.

Fig. 5.13 shows the results of the number of steps for each type of Platonic solids

takes the rolling action while Fig. 5.14 shows the searching time for the path planning

algorithm to find the path in the two case studies of Platonic solids through edge-

rolling contact. It can be seen clearly that the icosahedron takes more steps to

achive the goal while the tetrahedron requires less steps of rolling due to the its
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Figure 5.12 Dodecahedron rolling path with obstacles avoidance. (a) The dodecahedron
has the rolling path indicated by the red curve and the light-green surface
contacts. (b) There are two steps in this scenario, the light-green path
represents the direct rolling path from the start pose to the goal position
without considering the orientation. The red path represents the closed path
to achieve the goal orientation at the same goal position.

symetrical properties. In the other hand, the dodecahedron and icosahedron cost

longer searching time to compare to the rest of the Platonic solids to find the path

due to their complex geometry.
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Figure 5.13 The comparison of the rolling steps of the Platonic solids between two senar-
ios.

Figure 5.14 The comparison of the searching time of the Platonic solids between two
senarios.
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5.4 Conclusion

The study propose a path-planning algorithm for the Platonic solids from an initial

pose to a desired pose on a plane by edge-rolling. It is straightforward to tile a plane

with equilateral triangles for the tetrahedron, octahedron, and icosahedron and with

squares for the cube, but there are a variety of regular pentagon tiling patterns,

which all leave symmetric gaps in the plane. The study chose Penrose tiling because

the rhombi gaps exhibit five-fold symmetry, which facilitates the proposed algorithm.

While the cube, octahedron, icosahedron, and dodecahedron can reach an arbitrary

desired pose from an initial one, the tetrahedron can only reach one orientation for a

cell due to the high symmetry brought by the tetrahedron and triangular grid. This

study successfully solved the path-planning problem of the Platonic solids by edge-

rolling without obstacles on prescribed grids. The study are currently investigating

the possible extension of the optimal searching algorithms to more general convex

solids and the optimal searching algorithm.
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Chapter 6: Path planning RRT based al-

gorithm for Truncated Icosahe-

dron 1

The study of convex polyhedra has long been attractive to many researchers in math-

ematics, science and art. Most of the previous studies focused on geometrical prop-

erties, spatial, unfolding polyhedron, polyhedral intersection and pattern combina-

tion. An early discussion of regular polyhedra concerned the five Platonic solids -

tetrahedron, cube, octahedron, icosahedron and dodecahedron mentioned by Plato

in Timaeus. Rolling polyhedra has been suggested, but not validated in any path

planning algorithm, except for solving the rolling-cube puzzles for cubic dice. The

aim of this study is to develop discrete path planning algorithms for rolling convex

polyhedra to achieve a random configuration from an initial configuration on a plane.

The method applies to the truncated icosahedron - an Archimedean solid shaped by

regular hexagonal and pentagonal faces. The path planning method based on the

rapidly-exploring random tree (RRT) algorithm is improved to find a closed path for

rolling truncated icosahedron from an initial configuration to a random goal configu-

ration on a plane with multiple obstacle avoidance. The outcome of this study is to

suggest improvement path planning algorithms, by demonstrating significant results
1This chapter will be submitted as a journal paper: N.T. Lam, I. Howard, L. Cui (2022) ”Discrete

Path Planning Based RRT Algorithm for Truncated Icosahedron through Edge-Rolling on a Plane”.
Journal of IEEE Intelligent Systems (to be submitted).
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in finding the shortest paths for the truncated icosahedron through edge rolling to

achieve a target, and that the result can be applied to any convex polyhedron. The

applications of this study can be used in dexterous robotic in-hand manipulation,

robotic rolling or game applications.

6.1 Introduction

In previous works it has been noted that sampling-based algorithms have been used

to solve path planning problems to find feasible paths that connect the starting point

to the goal point with obstacle avoidance. Many works focused on addressing the

problem of manipulation planning for robotic tasks by investigating minimally com-

plex hardware systems [139, 140]. In the robotics literature, the different contexts

of geometric, mechanical, and control of dexterous manipulation which are not triv-

ial to change arbitrarily the position and orientation of the manipulated object by

rolling contact were presented [22]. The approach in [141] reduced the problem of

planning for general surfaces but the convergence rate is slow without considering the

possible presence of obstacles. Accurately resolving the contacts between polyhedra

and surface such as cube manipulation by fingertips is difficult and computationally

expensive compared to sphere objects [142]. The graspless manipulation of the poly-

hedral parts was discussed in [68, 17, 18]. These works focused on the theoretical

analysis of the set of reaching polyhedron configurations. However, there was a lack

of complete planning and analysing of different geometry in discrete mathematics for
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the rolling motion of polyhedral parts on regular surfaces. The path planning for

manipulation of polyhedral parts in [67] is considered a nonholonomic system among

obstacles and the early general approach to this problem was presented by [143]. This

study introduced a general property of the topology of exact planning in constrained

spaces. Although there exists a study by Lam et al. [144] regarding path planning for

the Platonic solids on prescribed grids by edge-rolling, to the best of our knowledge,

no study has been conducted on the rolling path generation of the truncated icosa-

hedron on a plane while avoiding obstacles collision. This study aims to establish

a path planning method-based RRT algorithm to find an optimal path for rolling a

truncated icosahedron which is an Archimedean solid to achieve a goal configuration

on a plane. The properties of truncated icosahedron which is associated with soccer

balls and consists of hexagons and pentagons represent the general convex polyhedra.

The path planning method is developed from a basic RRT algorithm [101] to tackle

the nonholonomy of rolling convex polygon by the discrete path-finding on a plane.

The main contributions of this work are as follows:

• The geometrical properties of truncated icosahedron which is created from the

truncation of an icosahedron - one of the five geometric solids of Platonic, are

analysed with rolling contact.

• Given the information of the plane and obstacles, the closest paths are found

from a start configuration to a goal configuration. The method is developed

based on the RRT path planning technique, which is used for truncated icosa-



102

hedron through edge-rolling without obstacle collision on a plane.

• The method can be developed for rolling general convex polyhedra on de-

formable surfaces and applied to in-hand manipulation robotics.

The rest of this chapter is organized as follows: Section 6.2 briefly presents a re-

view of the related literature on the path planning algorithms for rolling polyhedra.

Section 6.3 analyses the details of geometrical properties of the truncated icosahe-

dron in terms of edge-rolling contact. Section 6.4 demonstrates simulation results of

path planning algorithm based on the RRT method for truncated icosahedron though

edge-rolling contact and Section 6.5 concludes this study and drives some directions

for future work.

6.2 Path Planning for Polyhedra

Literature reviews on path planning algorithms have been done significantly in Chap-

ter 3. However, most of the previous path planning techniques applied in the au-

tonomous system are related to the dynamics and trajectory scope. Chapter 4 re-

views the relevant literature regarding RRT-based algorithm for path planning. The

method takes into account solving problems with obstacles and nonholonomic con-

straints. This algorithm has been widely applied in sampling-based path planning for

robotics [130]. However, there is no previous application of this algorithm to solve

the problem of path-finding for the polyhedra.
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In terms of polyhedra manipulation, in the early 18th century, the conception of

differential geometry has been discussed in classical rational mechanics. The system

was named the non-holonomic system which is opposed to the nonholonomic system.

The survey [145] introduced brief historical references and several examples of the

systems. An example of the idea for working on the nonholonomic system of the

rolling surfaces constraint so that the design of a dexterous hand was introduced

in [146]. This work was developed from the previous study of Lin and Canny [67]

in the results of arbitrarily changing the position and orientation of an object with

respect to a regular surface. The experiment of this study was to demonstrate the

rolling of a sphere on a plane from an initial position and then bringing it back to

this position with a different orientation.

Chaplygin [147, 148] provides a sphere rolling on a plane without spinning and slid-

ing. The studies illustrated integrals and equations of motion of rolling balls in

different systems. Li et al. [140] and Cole et al. [149] discussed the dexterous manip-

ulation through rolling without slipping two objects. The nonholonomic constraint

such as the relationship between the velocity of two manifolds and their configura-

tion is derived to minimize the coordinates parameterization. These main technical

contributions are the derivation of a complete model of the rolling contact. However,

the approach has been focused on the dynamics system.

Marigo and Bicchi [38] discussed the planning algorithms for chained-form systems

in free space. This method provides the controllability aspect by giving a complete
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reachable manifold for the two bodies and proposes a constructive controllability

technique for rolling motion planning for dexterous robot hands. Marigo et al. [68]

proposed an attempt of path finding for an octahedron edge-rolling on a plane from

a start point to a goal point, which, unfortunately, failed due to errors propagating

from the algorithm.

Erdmann et al. [18] introduced the problem of rolling a cubic dice with edge-contact

of the two movable parallel plates working as a robotic end-effector in the terms of

graspless manipulation. However, the method to generate the desired path has not

been discussed in the study. In the mathematics aspect, the rolling-cube puzzles were

solved by finding the Hamilton path for grid graphs, which is called an NP-complete

problem [69]. Nevertheless, this work focused on the simple problem of how to roll

cubic dice on a board consisting of labelled and white cells, which is hardly extended

to other complex polyhedra.

In this work, we propose a path planning algorithm using tree exploration for the

truncated icosahedron starting from an initial configuration to the desired configura-

tion by edge-rolling on a plane while avoiding obstacles.
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6.3 Truncated Icosahedron

This section contains a detailed analysis of a truncated icosahedron. The rolling

contact of the polygon and its unfolding problems then are provided, based on the

mathematic literature review.

6.3.1 Geometry Properties

Platonic Solids are regular convex polyhedra, established by intersecting of equiva-

lent faces. A truncated icosahedron is one of the 13 Archimedean solids, which is

a convex polyhedron. One difference in structural properties between the truncated

icosahedron and Platonic solids is that the truncated icosahedron is made by nonin-

tersecting two or more different types of regular convex polygons [33]. A truncated

icosahedron can be obtained from Platonic Solids in a variety of ways by truncat-

ing an icosahedron as an example which is shown in Fig. 6.1. All 12 vertices of the

icosahedron are truncated in order to generate new truncated icosahedron edges with

one-third of the length of the icosahedron’s edge. This truncated step creates the

32-faced Archimedean solid comprising 12 pentagon faces and 20 regular hexagon

faces (consisting of a total of 60 vertices and 90 edges), and the radius of the sphere

is also one-third of the polyhedron side.

A truncated icosahedron is the model represented in the construction of soccer balls.
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Figure 6.1 Generating a truncated icosahedron from a cube. (a) Picking the edges in the
middle of the cube with the intersection of the three perpendicular planes at
the centre of the cube. (b) Connecting the vertices from each edge so that
creating equilateral triangular surfaces, the icosahedron is then constructed.
(c) Truncating each vertex of the icosahedron generates a truncated icosahe-
dron, as shown in (d).

The model also appears in different structures in research such as the lens config-

uration of the Fat-Man atomic bomb [150] or the C_(60) pure carbon structure

of Buckminsterfullerene [151]. The truncated icosahedron is highly symmetric and

has lots of roughly evenly spaced faces. The symmetry group is transitive on the

hexagons, the pentagons, the hexagon-hexagon edges, the hexagon-pentagon edges

and the corners. This requires only the calculation of the shock wave geometry for a

pentagon, a hexagon, and two kinds of edges between them, which makes the lenses

substantially smaller, incorporating less sharp angles. As can be seen in Fig. 6.2, the

truncated icosahedron is projected onto its circumscribed sphere to generate a soccer

ball. The simple way to achieve this is to project each polygon of the truncated

icosahedron onto the sphere through a parametric equation (Equation 6.1), the next

step is to project the generated arc onto the 2D plane.
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Figure 6.2 The soccer ball (a) is obtained by the projection of the truncated icosahedron
onto the circumscribed sphere (b) through parametric equations.

Figure 6.3 Different orientations of the truncated icosahedron correspond to their coor-
dinate systems. (a) Pentagon-face contact, (b) Hexagon-face contact.

The technique can be expressed by giving an edge E1E2 with 3D parameters E1 =

(xE1 , yE1 , zE1) and E2 = (xE2 , yE2 , zE2). The parametric equation of the edge is V(t).

V(t) :



X (t) = xE1 + (xE1 − xE2)t

Y(t) = yE1 + (yE1 − yE2)t, 0 ≤ t ≤ 1

Z(t) = zE1 + (zE1 − zE2)t

(6.1)

The norm of V(t) then can be obtained by: ∥V(t)∥ =
√
X 2(t) + Y2(t) + Z2(t). The

projection of the edge E1E2 on the unit sphere satisfies a parametric equation PV(t) =

V/∥V(t)∥.
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In the static condition, the truncated icosahedron has two types of polygon contacts to

a surface: hexagon-based contact and pentagon-based contact, as shown in Fig. 6.3.

Truncated icosahedron consists of a regular pentagon and a hexagon as described

above. One hexagon is surrounded alternating by 3 pentagons and 3 hexagons while

each pentagon is surrounded by 5 hexagons. The study is on rolling through edge

contact, then the property of the edge which joins with other two edges meeting at

each vertex- a common line of an intersection between a pentagon and a hexagon

and an intersection between a pentagon and hexagon - is considered to determine the

edge contact.

A specific geometrical property of a truncated icosahedron is to follow the twelve

pentagons theory. If every polygon face of the polyhedron model is a hexagon or a

pentagon, and each vertex connects to the three intersection edges, the polyhedron

has exactly twelve pentagonal faces. The theorem is proved by Euler’s theory. Let

P denote a polyhedron rolling on a plane Π, and

• F = {F1, ..., Fr} the set of its faces.

• E = {E1, ..., Ek} the set of its edges;

• V = {V1, ..., Vh} the set of its vertices;

Then, nFhexa
and nFpenta are denoted as the number of hexagonal and pentagonal faces

respectively. The total number of polygon faces is F = nFhexa
+ nFpenta . The number

of edges is counted by E = (5/2)nFhexa
+ 3nFpenta . Then the number of vertices is
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determined through the edges as every vertex is the point intersecting three edges

V = (2/3)E . Based on Euler’s theory V − E + F = 2, the relationship between

faces and edges is 3F − E = 6. The final result of the pentagon faces nFpenta = 12

by inserting F . For example, in a golf ball, the family of ball shapes including the

truncated icosahedron is constructed from 232 polygonal faces and it also has 12

pentagonal faces.

6.3.2 Rolling Contact

Nonholonomic Constraint

Given two objects in single-point contact, if the contact is maintained, three roll-

non-slide configurations are considered in this study (Fig. 6.4). The surface contact

can be treated as polygon vertices contacts (six vertices for the hexagon and five

vertices for the pentagon) while two vertices contact represents a line contact. Let

κ = (c1, c2) to denotes the contact configuration between the truncated icosahedron

P and the plane π. A distance function dκ between two objects that are positive when

the truncated icosahedron does not contact the plane, zero when they are contacting

and negative when they are in penetration. Kinematic modelling including friction

or soft contact, slipping and velocity is not considered in this thesis.
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Figure 6.4 Different types of truncated icosahedron rolling contacts to the surface. (a) A
surface contact can be treated as six-point contacts for hexagon faces. (b) A
surface contact can be treated as five-point contacts for pentagon faces. (c)
A line contact can be treated as two-point contact for any polygon face.

There are no constraints on the rolling motion of the polygon when dκ > 0 or it

has six degrees of freedom. With dκ = 0 in this study, the roll-non-slide motion is

called the nonholonomic constraint. The required condition to maintain the contact

is ḋκ = 0. There are two constraints here: the constraint of the surface contact

maintained while the polygon is stable and the constraint of the edge contact when

the polygon is rolling to achieve a new configuration.

Unfolding Polyhedron

In this thesis, path planning for truncated icosahedron rolling considers the surface

contact between the polyhedron model and the surface, while the line contact is for

taking rolling action. Unfolding the polyhedron onto the surface gives basic contact

surfaces that the polyhedron can roll through all surfaces of the model. Two general

techniques named the source unfolding [152] and the star unfolding [153] are used

to an unfold convex polygon model from a surface F to a non-overlapping polygon in
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a plane. Both techniques are studied based on the shortest paths on the polyhedron

surface with respect to a point x ∈ F . The source unfolding method is obtained

by cutting the cut locus while various paths to x can be generated from locus of

points. The star unfolding is made by cutting a shortest path from every vertex

of the convex polyhedron to the point x. However, the simple unfolding method is

to cut along the edge of the polyhedron model to keep the original shape of each

polygon face (hexagons and pentagons for the truncated icosahedron model).

Figure 6.5 Two in several symmetrical projections of an unfolded truncated icosahedron
on a plane. (a) Horizontal unfolding with fixed hexagon polygons and inter-
changeable pentagon polygons. (b) Center spreading-like flowers of unfolding
truncated icosahedron with a pentagon face in the centre.
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Unfolding truncated icosahedron can generate several symmetrical projections onto

a plane that are illustrated in Fig. 6.5. The figure shows two patterns from several

tiling truncated icosahedrons onto a surface. The pentagons (light purple) can be

inter-cutting the boundary of the plattened polygon along its edges and can make a

polygon model from a sheet of paper.

Rolling Directions

Although the truncated icosahedron can roll itself on the unfolding polygon, the

actually rolling contact to reach random goal configurations is different and complex

due to the connection gaps between hexagons and pentagons. As can be seen from

Fig. 6.6, if the polygon contact is a hexagon, there are two possible ways of rolling:

rolling from hexagon-based surface contact to hexagon faces (green arrows) and to

pentagon faces (black arrows) (Fig. 6.6a) while the pentagon-based surface contact

has only one type of rolling, from pentagon face to hexagon face (brown arrows)

shown in Fig. 6.6b.

The 3D visualizations of both cases of the rolling are represented in Fig. 6.7(a-c) for

rolling a truncated icosahedron from a hexa-based face to a hexagon face and the

Fig. 6.7(d-f) for rolling a truncated icosahedron from hexa-based face to pentagon

face. Fig. 6.7 indicates one step of rolling from a hexagon-based face to a hexagon

face. The rotation angle is calculated by θ66 = π − arccos(−
√

5/3) ≃ 41.81 (degree).

The calculation of rolling angle for the case of hexagon-based face to pentagon face
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Figure 6.6 Two types of polygon contacts from a truncated icosahedron: (a) Hexagon
surface-based contact and (b) Pentagon surface-based contact. (c)&(d) Ex-
amples of next surface-based contacts are represented in different rolling di-
rections.

is more complex as θ65 = π − (arctan
√

7+3
√

5
2 + arctan ((tan(π

5 ))
√

125+41
√

5
10 )) which

is approximately of 37.37 (degree) (Fig. 6.7). Fig. 3.10 shows in detail the dihedral

angles between two pairs: hexagon-hexagon faces and hexagon-pentagon faces.
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Figure 6.7 The rolling action of a truncated icosahedron from a current surface-based
contact to another one. The left column represents a rolling truncated icosa-
hedron from a hexa-based face to a hexa-based face while the Right col-
umn shows the rolling truncated icosahedron from a hexa-based face to a
hexa-based face. (a)&(d) Starting configureation. (b)&(e) Middle rolling
configuration. (c) Finish rolling with θ66 = π − arccos(−

√
5/3) (f) Finish

rolling with θ65 = π − ζ65 with the dihedral angle ζ65 = (arctan
√

7+3
√

5
2 +

arctan ((tan( π
5 ))

√
125+41

√
5

10 ))
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6.4 Results

In this section, the path planning RRT-based algorithm in Chapter 4 is applied to

find rolling paths of a truncated icosahedron through edge-rolling to reach a goal

configuration on a plane. We first describe the environment with obstacles configu-

rations. In the following, the implementation of the path planning algorithm on the

environment will be analysed with computational complexity.

6.4.1 Environment Setting

The rolling contact of the truncated icosahedron with obstacle avoidance is considered

on a plane and its initial environment is shown in Fig. 6.8. The word coordinate

system is represented by (O,X ,Y ,Z) while a 3D cartesian frame (Oi, e1, e2, e3) is

affixed to each center of the initial polyhedron and the goal polyhedron. Given two

truncated icosahedrons P = (PA,PB) represented by start pose and goal pose, four

obstacles Oobs = (O1, O2, O3, O4), the first goal is to construct the collision free space

Wfree of the polygon PA with respect to Oobs, then improved path planning through

edge-rolling is executed to achieve the target configuration.
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Figure 6.8 (a) The environment is set up with four obstacles {O1, O2, O3, O4} and detail
dimensions which is represented in the 2D map. The red dash-line is the
direct distance from the start configuration to the goal configuration. The
black dashed lines return the constrained edges in the Oobs (b) The 3D view
of the 2D map with obstacles. The safe zone is calculated for the truncated
icosahedron rolling without obstacles collision presented in the light-blue zone.
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The environment includes four obstacles with their dimensional as shown in Fig. 6.8.

In this study, we only consider static obstacles in a defined plane. The shortest

distance from the start pose to the goal pose is the red dashed line which intersects

with the obstacles. With the defined obstacle positions on a plane, the non-convex

and convex hull can be generated that defines the obstacles potentially reachable.

The physical size of obstacles is extended by the radius of the truncated icosahedron

sphere, (light blue regions surrounding the obstacles in Fig. 6.8). This forms the

collision zone critical for the polyhedron to be able to roll the planned path, without

collision through the entire workspace W , until the goal is achieved. During the

execution of the path planning algorithm, the step of the best collision-free sample

always runs to generate a collision-free contact configuration. The proposed algorithm

provides a guaranteed method to find paths that avoid obstacle boundaries as shown

in Fig. 6.8.

In the previous section, the truncated icosahedron is denoted as P and has surface

contact with the plane Π. Polyhedron P consists of 32 surfaces. Giving the index of

the 32 surfaces of each truncated icosahedron P contacted to the plane π determines

the configuration of the polygon. For example, Fig. 6.9(a) shows the projections

of the position and orientation of the unfolding polyhedron on the plane for the

initial configuration at the coordination of I = (10, 10, h) (h is the distance from

the centre of the truncated icosahedron to the plane). The 32 configurations can be

determined through this unfolding step. The collision zones are determined based

on their fixed geometry coordination systems on the plane. It can be seen from
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Fig. 6.9(b) that the obstacle is black, the collision zone is light red and the green

zone is the safe area without collision. The red polygon contacts demonstrate direct

obstacle collisions while the red-dash polygons-based contacts do not collide with

the obstacles directly but lie inside the collision zone. The polyhedra have this

type of based-contacts will not consider the expanded nodes in the path planning

algorithm. Based on the dimensions of the obstacles and the truncated icosahedron

sphere, the CollisionFree function always checks the distance from the centre of

the polygon sphere to the boundary of the collision zone. If the distance dcollision ≤ 0,

the return value of the algorithm indicates a collision. The other polygon based-

contacts indicated by light grey lie in the safe zone which means dcollision > 0. These

expanded points will be checked in the next rolling configuration.

Figure 6.9 Collision checking of the unfolding polygon from path planning RRT-based
algorithm. (a) Projections of the orientation of the coordinate system of
the unfolding truncated icosahedron on the plane. There are 32 different
configurations which will be checked for the obstacle collision. (b) The zoom-
in of obstacle collision checking. The red zone indicates the collision area,
as discussed in Section 6.4.1 while the green zone is the safe area where the
polygon can roll.
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6.4.2 Planning for Reaching Goal Configuration

The truncated icosahedron P is a subspace of the Euclidian space Rn defined by a set

of the hexagon and pentagon faces. Note that this study only considers a truncated

icosahedron as a convex polyhedron. The path-finding algorithm-based RRT is run

in a rectangle environment with fixed obstacles. All source code of the algorithm was

implemented in Matlab and run on a computer with a 3.4 GHz processor and 16GB

RAM running the Window 10 operating system. In Fig. 6.12, the tree expansion

maintained by the RRT algorithm is shown after 150 iterations of rapidly exploring

in the state space. By checking the obstacle regions, the free space is calculated so

that reducing the computation time of planning. Moreover, the path planning RRT-

based algorithm is improved in its tree node sampling to include paths with smaller

costs, which reduces the cost of reaching the goal configuration considerably.

In the simulation, the initial truncated icosahedron contact point coordinates are

Pcontact
start = [4, 4, 0]T while the starting coordinates of the polyhedron are PP oly

start =

[4, 4, h]T , where h = (3 +
√

5) ∗
√

3/12 with respect to hexagon face-based contact

where the unit length of the edge is 1 (Fig. 6.10).

The goal configuration is located on the top-right of the plane at position Pcontact
goal =

[50, 40, 0]T . The orientation of the goal polygon is random. Fig. 6.11 shows the

different positions and orientations of the start and goal configuration. The rotation

angle θ66 and θ65 of the two types of contact-based are the supplementary angle of
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Figure 6.10 The start configuration of the truncated icosahedron belongs to the rolling
path with surface-based contacts and its orientations.

their dihedral angles ζ (degree), which is the inner angle between two intersecting

faces, as in Table 3.3. The two rolling angles, between the hexagon face and a

plane and between the pentagon face and the plane, are represented as θ66 = π −

arccos(−
√

5/3) and θ65 = π−ζ65 (ζ65 = arctan
√

7+3
√

5
2 +arctan ((tan(π

5 ))
√

125+41
√

5
10 )).

In this chapter, the rotation matrix for rolling truncated icosahedron uses the Ro-

drigues formula [8] represented in Chapter 2 to determine the orientation of the

polyhedron from a current position to the next position.
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Figure 6.11 The results of path planning based RRT algorithm for the truncated icosa-
hedron through edge-rolling without obstacles on a plane. (a) The 3D view
of the final RRT path. (b) The polygon contacts belong to the path from a
start pose to a goal pose.

The configuration of the rolling truncated icosahedron system is described by the

index, position and orientation of the current contact face on the plane and the

remaining faces of the polyhedron. Let q = (F, V, θ) ∈ F × V × R3 × S1 with

F = {F1, ..., Fn} is the set of polyhedron faces and V = {V1, ..., Vn} is the set of

polyhedron vertices. At the beginning of Algorithm 5, all vertices of the truncated
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Figure 6.12 The results of path planning based RRT algorithm for the truncated icosa-
hedron through edge-rolling while avoiding obstacles on a plane. (a) The 3D
view of the final RRT path. (b) The polygon contacts belong to the path
from a start pose to a goal pose.

icosahedron are stored in V (Line 2). This data will be stored in MP oly along with

the centre coordinates and orientation. Each of vertex has 3D coordinate values

Vi = [xi, yi, zi]. The polygon-based contacts have zi = 0 which is the condition

of maintained contact. At any time of rolling, the surface contact will tranfer to
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the line contact which consists of two vertices. The sampling nodes are based on the

centre of each surface contact. In the function Sampling of the algorithm, the nodes

will be transferred to the plane with the znodes = 0 to reduce the calculation of the

transformation matrix. The function Distance calculates the distance between node

i and node j. The parent configurations are first saved with qstart. At early states,

there is no obstacle collision, the cost from the start configuration to surrounding

nodes is calculated by using the Cost function. When a qnear is found after selecting

qrand, the cost from qnear to qi is compared with other qnear cost to find the qnearest

nodes. Then the edge between qparent
near and qnear is eliminated while the new edge

between qnearest and qnew is generated. Line 7 to Line 11 in Algorithm 5 represent

the generated new nodes.

6.4.3 Computational Complexity

The computational complexity of the path planning RRT-based algorithm in the

rolling truncated icosahedron depends on the iterations of each function from Algo-

rithm 5 to Algorithm 7. It is noted that the procedures of the functions Sampling,

Steer, CollisionFree can be performed in a constant number of steps. The

Nearest process is used to find the nearest neighbors which has O(log n) time in

the complexity. The Near function executes similar to the nearest neighbour search

that can be done in logarithmic time. The function returns the expected number of

vertices which can be represented as in log n time in the linear space. Let Si denote
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the number of samples of the path planning algorithm in the i iteration, which can

be initialised as the random variables. The random variable O(log (Si)/Si) is more

than a constant in the limit with infinity approaches i [154]. The path planning

RRT-based algorithm for rolling with CollisionFree() procedure in the i iteration

runs logarithmically O(logn m) with the number of nodes expansion in the graph.

Figure 6.13 The comparison of the time computation and nodes for truncated icosahe-
dron through ege-rolling.

The rolling truncated icosahedron is mainly based on the defined environment with

obstacles and the rolling cost between the two states. The tree expansion depends

on the defined environment configuration for rolling contact and the goal region with

the bias of differential orientation. The cost for the connection between the qrand to

the qnear is minimized by choosing the nearest node on the tree expansion. We define

the cost of edge as Cedge which can be calculated by Cedge = C · Distance(qi, qj).

The sum of all the edge costs is defined by the path cost from the root node qinit



125

to any leaf node qi. The cost of the new node is Cnew = Cedge + Cost(qnew) +

C · PolyRoll(MP oly). The two costs to reach the goal configuration included the

position and the orientation. The first one is to check the qnew whether lying inside

the Ggoal zone which is decided by ε in which ||qnew − qgoal|| ≤ ε. Then the qnew

orientation will be compared to the goal orientation. If the conditions are met, the

node will be saved qn ← qnew. The result of reaching the goal configuration for the

truncated icosahedron is shown in Fig. 6.14.

Figure 6.14 The final configuration achieves the goal pose.
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6.5 Conclusions and Future work

This chapter presented the results of the improvement of the path planning RRT-

based algorithm to the path-finding for the truncated icosahedron through edge-

rolling on a plane. We introduced the truncated icosahedron given by truncation

of an icosahedron from the Platonic solids family which can be tiled into different

flattened geometry shapes, which leave symmetric gaps in the plane. The truncated

icosahedron is a special polyhedron that represented generalized soccer-ball patterns.

The study then showed successful results in finding the optimal path for rolling

the truncated icosahedron from an initial configuration to achieve a random goal

configuration by using the path planning RRT-based algorithm. We defined the goal

region with the bias of differential orientation that can reduce the executing time to

achieve the precise goal configuration.
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Chapter 7: Conclusion and Future Work

7.1 General Conclusion of the Thesis

The thesis is dedicated to the application of BFS and RRT path planning methods to

solve rolling path tasks for Platonic solids and truncated icosahedron which are repre-

sented as convex polyhedra through edge-rolling on a plane. The general conclusions

of the thesis are as follows:

Chapter 1 introduced the background, aims and objectives of the thesis.

Chapter 2 showed the background mathematics used in the path planning algorithms

in the thesis. The rigid body transformations in the 3D space is firstly introduced

then the rotation matrix is detailed.

Chapter 3 firstly provided an overview of the polyhedra class, then specified the Pla-

tonic solids and truncated icosahedron. The literature on path planning algorithms

was presented with their advantages and disadvantages in terms of polyhedra part

rolling tasks.

Chapter 4 presented the two path planning methods based on the BFS and RRT

algorithms. In the first part, it began with an overview of the BFS algorithm and it

then presented the literature for its applications. The most important part is the tree
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exploration technique, which is a variation of the BFS was explained. The conditions

of node expansions and the complexity in both time and space searching is shown

in the next section. In the second part, the discrete path planning based on the

RRT algorithm is explained to solve rolling-path finding for the convex polyhedra.

An overview of the randomly sampling method and its previous applications are

then presented. A potential RRT-based path finding algorithm is analysed to fill the

gaps of rolling-polyhedra in the literature and to apply to the truncated icosahedron

path-rolling problem.

Chapter 5 mainly showed the significant results of path planning for the Platonic

solids through edge-rolling based on the BFS method, which have not been solved in

the literature. Related work on rolling polyhedra and previous gaps were introduced

belongs to the different discretized grids problems in the path planning. The special

rolling case of tetrahedron regarding symmetrical properties is also discussed.

Chapter 6 proposed the path planning method based on RRT technique for the

truncated icosahedron through edge-rolling with obstacle avoidance on a plane. The

chapter shows significant results of the closest path from the start pose to the goal

pose to edge-rolls the truncated icosahedron. This focused on the potential algorithm

to solve path planning task for convex polyhedra.

Chapter 7 concluded the thesis, highlighted all of the contributions of the study and

suggested a direction for future work.
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7.2 Contributions and Main Achievements of the

Thesis

The work proposed a comprehensive literature review of path planning methods to

solve the problems of path finding for the convex polyhedron on a plane. The work

first analysed details of two classes of a convex equilateral polyhedron with polyhedral

symmetry, the Platonic solids (the cube, tetrahedron, octahedron, icosahedron, and

dodecahedron) and the Archimedean models (the truncated icosahedron with its

soccer-ball shape). The potential path planning algorithms are then proposed to

find the rolling path for the convex polyhedra on a plane. One inherent problem

of discrete search methods is the difficulty of reaching precise targets. This thesis

introduced a simple and efficient discrete path planning technique based-BFS and

RRT* to address this problem. Each branch of the search is treated as a pose chain

of rolling contact. This technique produces motions precisely reaching given targets,

and at the same time leads to an earlier successful search termination in several

cases with the defined threshold. The contribution of this work is a significant

improvement in path planning algorithms to solve more complex rolling-polyhedra

tasks.

The work adopted a path planning method based on the BFS algorithm for the

Platonic solids through edge-rolling from an initial pose to a goal pose. Each type

of the Platonic solids needs to roll on its own prescribed grid. The path planning
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method is divided into two approaches to finding the rolling path - the direct path

from an initial pose to the goal pose and the closest path at the goal position to

find the goal configuration. Path planning based on BFS can find multiple solutions

and has a low computation time for searching the rolling path to reach the goal

configuration in both limited and large search spaces. This contribution will lead to

the improved discovery of path planning for rolling convex polyhedra on a plane.

The work further proposed a discrete path planning method -the RRT-based algo-

rithm for the truncated icosahedron-high complex convex polyhedron, through edge-

rolling to achieve a random goal configuration on a plane. It consisted of checking

orientation for each step through unfolding polyhedron and checking safety distance

to obstacles to generate the optimal path. The work shows the existing path for

achieving the goal pose and the closed path in the case of non-achieving goal orien-

tation due to symmetric and polygon tiling properties. The contribution will lead to

the improved discovery of potential paths for rolling regular convex polyhedra on a

convex surfaces.

Additionally, the work analysed the rolling constraints based on the convex polyhedra

that a polyhedron can be brought to reach by rolling on a plane about its edges. The

problem is important to practical applications, such as automatic part manipulation,

as well as being theoretically stimulating. As a result of the analysis, the work pointed

out that proposed path planning methods may show a potential successful path-

finding algorithms for different polyhedra on the different regular surfaces, which were
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analysed previously. Indeed this work not only developed path planning algorithms

but solidly validated them in the simulation.

7.3 Future Work

The thesis focused on developing path planning algorithms based on BFS and RRT

techniques to find the optimal path for the Platonic solids and truncated icosahedron

from an initial pose to a goal pose. It then validated the algorithms in simulation

for each of the polyhedra. Future research should be directed towards the following

aspects:

• Optimising the path planning algorithms for general convex polyhedra which

roll in deformable surfaces. The algorithm will be modified to reduce the com-

putational complexity of for searching the nearest neighbour and achieving a

more precise target configuration.

• Validating the path planning methods on more convex polyhedra on a convex

surface.

• Considering improvements of the algorithms to robotic in-hand manipulation

applications.
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Lam NT, Howard I, Cui L (2021) ”Path planning for the Platonic solids on pre-

scribed grids by edge-rolling”. PLoS ONE 16(6): e0252613. https://doi.org/10.

1371/journal.pone.0252613.

Lam NT, Howard I, Cui L (2022) ”Discrete Path Planning Based RRT Algorithm

for Truncated Icosahedron through Edge-Rolling on a Plane”. Journal of IEEE In-

telligent Systems (to be submitted).

Conference

N. T. Lam, I. Howard and L. Cui, ”A Review of Trajectory Planning for Autonomous

Excavator in Mining and Construction Sites”,10th Australasian Congress on Applied

Mechanics(ACAM), 2021. doi:10.3316/informit.323406814564895.

N. T. Lam, I. Howard and L. Cui, ”A Literature Review on Path Planning of Polyhe-

drons with Rolling Contact”, 2019 4th International Conference on Control, Robotics

and Cybernetics (CRC), 2019, pp. 145-151, doi:10.1109/CRC.2019.00038.
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