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Featured Application: Deep learning (DL) auto-contouring instead of atlas-based auto-contouring
and manual contouring should be used for anatomy segmentation in head and neck radiation
therapy for reducing contouring time, and commercial DL auto-contouring tools should be fur-
ther trained by local hospital datasets for enhancing their geometric accuracy.

Abstract: Various commercial auto-contouring solutions have emerged over past few years to address
labor-intensiveness, and inter- and intra-operator variabilities issues of traditional manual anatomy
contouring for head and neck (H&N) radiation therapy (RT). The purpose of this study is to compare
the clinical performances between RaySearch Laboratories deep learning (DL) and atlas-based auto-
contouring tools for organs at risk (OARs) segmentation in the H&N RT with the manual contouring
as reference. Forty-five H&N computed tomography datasets were used for the DL and atlas-based
auto-contouring tools to contour 16 OARs and time required for the segmentation was measured.
Dice similarity coefficient (DSC), Hausdorff distance (HD) and HD 95th-percentile (HD95) were used
to evaluate geometric accuracy of OARs contoured by the DL and atlas-based auto-contouring tools.
Paired sample t-test was employed to compare the mean DSC, HD, HD95, and contouring time values
of the two groups. The DL auto-contouring approach achieved more consistent performance in OARs
segmentation than its atlas-based approach, resulting in statistically significant time reduction of the
whole segmentation process by 40% (p < 0.001). The DL auto-contouring had statistically significantly
higher mean DSC and lower HD and HD95 values (p < 0.001–0.009) for 10 out of 16 OARs. This
study proves that the RaySearch Laboratories DL auto-contouring tool has significantly better clinical
performances than its atlas-based approach.

Keywords: artificial intelligence; automation; computed tomography; image segmentation; intensity-
modulated radiation therapy; machine learning; nasopharyngeal cancer; organs at risk; radiotherapy;
volumetric arc therapy

1. Introduction

Nowadays, intensity-modulated radiation therapy (IMRT) is an important cancer treat-
ment option as a result of its capability of reduction of toxic effects associated with radiation
therapy (RT). One of the essential requirements for IMRT is anatomy contouring [1–3].
Traditionally, this requires radiation therapists and/or oncologists to manually identify and
contour tumors (clinical target volumes (CTVs)) and normal tissues (organs at risk (OARs)).
Labor-intensiveness, and inter- and intra-operator variabilities are two major issues of the
manual contouring [1–5]. Various commercial auto-contouring solutions have emerged
over past few years to address these issues. Atlas-based and deep learning (DL) approaches

Appl. Sci. 2022, 12, 11681. https://doi.org/10.3390/app122211681 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211681
https://doi.org/10.3390/app122211681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5849-5857
https://orcid.org/0000-0001-6150-0920
https://orcid.org/0000-0003-1944-4640
https://doi.org/10.3390/app122211681
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211681?type=check_update&version=1


Appl. Sci. 2022, 12, 11681 2 of 14

are used to develop these auto-contouring solutions [3–11]. The atlas-based method in-
volves automatically registering reference patient contours (gold standard/ground truth)
to new patients through deforming reference patient contours for matching new patient
anatomical structures. This approach can be subdivided into three categories, namely
single atlas (with use of one reference dataset), multi-atlas (using multiple datasets) and
hybrid (based on outcome of statistical analysis of multiple gold standards) [3,4,12]. Over
the past five years, use of DL in medical imaging has become popular [13–15]. Commer-
cial companies such as Manteia Medical Technologies Co. (Xiamen, China) [5], Mirada
Medical Limited (Oxford, UK) [7] and Carina Medical LLC (Lexington, KY, USA) [10]
have applied the widely used deep convolutional neural network (DCNN) architecture
to develop their auto-contouring models (software). The DL auto-contouring model de-
velopment involves providing training datasets with ground truth contours to the model
for learning features of tumors and normal tissues (including those not known by human)
automatically. With sufficient training, the model becomes capable to automatically search
for these features and locate them to achieve auto-contouring for new patients. Hence,
it is believed that the DL auto-contouring approach performs better than the atlas-based
method because of its capability of identifying unknown but relevant features for more
accurate contouring [1–3,5,7,10–12,16–21].

It is well known that head and neck cancer segmentation is a challenging task because
computed tomography (CT) images which have limited soft tissue contrast are commonly
used in the RT planning process [1,2,22–26]. This results in the greatest inter- and intra-
operator variabilities and takes about 2–3 h for the manual contouring in the head and neck
RT [2,22–25]. Few studies compared performances between commercial atlas-based and DL
auto-contouring software packages with the manual contouring as the reference [5,6,10,27].
The investigated atlas-based and DL auto-contouring software pairs included Maestro
6.6.5 (MIM Software Inc., Cleveland, OH, USA) versus AccuContour (Manteia Medical
Technologies Co., Xiamen, China) [5], Maestro 6.9.6 versus INTContour (Carina Medical
LLC, Lexington, KY, USA) [6], ANAtomically Constrained Deformation Algorithm (ANA-
CONDA) (RaySearch Laboratories AB, Stockholm, Sweden) versus INTContour [10], and
WorkflowBox 1.4 (Mirada Medical Limited, Oxford, UK) versus Mirada Medical Limited
DLCExpert [27]. Those studies showed consistent results that the DL auto-contouring
was more accurate and required less time for segmentation of OARs [5,6,10,27]. Given
these promising results of the DL auto-contouring, it appears worthwhile to further in-
vestigate the potential of other unexplored DL auto-contouring software packages such
as RaySearch Laboratories AB RayStation 12A RSL Head and Neck CT 2.0.0.47 DL auto-
contouring model. The purpose of this study is to compare the clinical performances
between RaySearch Laboratories AB RayStation DL auto-contouring model, RSL Head
and Neck CT 2.0.0.47 and its atlas-based auto-contouring software, ANACONDA for the
OARs segmentation in the head and neck RT with the manual contouring as the reference.
It is hypothesized that the DL auto-contouring model is more accurate and requires less
contouring time when compared with the atlas-based auto-contouring tool.

2. Materials and Methods
2.1. Study Design and Imaging Data

This was a retrospective study with methods based on similar studies of comparison
of performances between the atlas-based and DL auto-contouring for the OARs segmen-
tation in the head and neck RT [5,6,10,27]. Planning CT datasets of 45 head and neck
cancer patients who had RT treatments between 2018 and 2021 at Pamela Youde Nether-
sole Eastern Hospital in Hong Kong Special Administrative Region were retrospectively
collected from Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA,
USA). Patient inclusion criteria were: 1. head and neck cancer histologically proven and
2. radical radiotherapy received. Patients with pre-radiotherapy surgery were excluded.
Table 1 shows the patient characteristics. The study was conducted in accordance with
the Declaration of Helsinki, and approved by the Human Research Ethics Committee of
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Curtin University (approval number: HRE2022-0582 and date of approval: 18 October
2022), Institutional Review Board of The Hong Kong Polytechnic University (approval
number: HSEARS20220815001 and date of approval: 7 October 2022), and Research Ethics
Committee of Hong Kong East Cluster of Hospital Authority of Government of Hong
Kong Special Administrative Region (approval number: HKECREC-2022-054 and date of
approval: 6 October 2022). Patient consent was waived due to the retrospective nature. The
collected CT datasets were acquired with the following parameters, slice thickness of 2 mm,
400 mAs, 120 kV and field of view of 600 mm in accordance with the routine protocol of
Pamela Youde Nethersole Eastern Hospital [27]. Figure 1 shows the overview of study
design.

Table 1. Patient characteristics (n = 45).

Characteristics Value

Gender (n = 45)
Male 35 (78%)

Female 10 (22%)

Age (n = 45)
18–65 years 29 (64%)
>65 years 16 (36%)

Tumor site
Nasopharynx 45 (100%)

Tumour classification
T1 13 (29%)
T2 3 (6%)
T3 17 (38%)
T4 12 (27%)

Node classification
N0 13 (29%)
N1 13 (29%)
N2 9 (20%)
N3 10 (22%)

Systemic treatment
Yes 37 (82%)
No 8 (18%)

Treatment technique
Volumetric arc therapy 45 (100%)

Neck irradiation
Bilateral 45 (100%)

Figures in parentheses are proportions.
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Figure 1. Study design overview. ANACONDA-ANAtomically Constrained Deformation Algorithm;
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2.2. Manual Contouring

Manual contouring for the collected 45 CT datasets was conducted by a radiation
therapist with more than 10 years of experience in head and neck RT planning on the Eclipse
treatment planning system as per international consensus delineation guidelines [28].
Contoured OARs included brainstem, larynx, optic chiasm, oral cavity, pituitary, spinal
cord, two cochleae, two eyes, two lenses, two optic nerves and two parotid glands [27].
The manual contours were subsequently reviewed and modified by a radiation oncologist
specialized in the head and neck RT for eventual clinical use, and hence considered as the
ground-truth contours [10].

2.3. Atlas-Based and DL Auto-Contouring

The 45 CT datasets were exported to the RaySearch Laboratories AB RayStation 12A
treatment planning system (with Intel Xeon W-10885M central processing unit (Santa
Clara, CA, USA), 64 GB random access memory and NVIDIA Quadro RTX 5000 16 GB
graphics card (Santa Clara, CA, USA)) in the Pamela Youde Nethersole Eastern Hospital.
Its ANACONDA and RSL Head and Neck CT 2.0.0.47 were used for the atlas-based and DL
auto-contouring, respectively. ANACONDA used the hybrid approach for auto-contouring.
In the beginning of a new image set being contoured, multiple best-matching atlases from
a pool of 40 nasopharyngeal cancer datasets within the hospital database were determined
by rigid image registration. Contours from these best-matching atlases were subsequently
mapped to the new image set using deformable registration and these contours eventually
merged together as the segmentation outcome via a fusion algorithm [10]. The DL auto-
contouring involved a pre-trained three-dimensional (3D) U-net CNN model to classify
each voxel of the datasets into either specific tissue (i.e., an OAR) or non-specific one for
generating labelled (segmented) datasets as the outcome. Only its pre-trained DL auto-
contouring model without any finetuning was used for the DL auto-contouring. Details of
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its 3D U-net CNN architecture, and model training, validation and testing were available
elsewhere [29].

2.4. Geometric Accuracy and Contouring Time Evaluation

Three parameters, Dice similarity coefficient (DSC) for quantification of degree of
overlapping between two contours (Contour_A and Contour_B), Hausdorff distance
(HD) defined as pairwise 3D point distance from one contour to another contour, and
HD 95th-percentile (HD95) were employed to evaluate the geometric accuracy of the
16 OARs contoured by the atlas-based and DL auto-contouring tools with the manual
contours as the reference. Equations (1)–(3) were used for DSC, HD and HD95 calculations,
respectively [5,6,10,27].

DSC =
2(ContourA ∩ContourB)

ContourA + ContourB
(1)

dHD = max
(

min
a∈A

d(a), min
b∈B

d(b)
)

(2)

→
dHD95(A, B) = k95

(
min
b∈B

d(a, b)
)

, dHD95(A, B) (3)

where a and b represent the points on contours A and B.
A free, open source image computing platform, 3D Slicer 5.0.3 (The Slicer Community,

Boston, MA, USA) with SlicerRT extension was used to determine the DSC, HD and
HD95 values [9,30,31]. The DSC values, <0.50, 0.50–0.59, 0.60–0.69, 0.70–0.79 and 0.80–1.00
indicated poor, intermediate-poor, intermediate, good-intermediate and good degree of
overlapping between two contours. For HD95, <4.0 mm, 4.0–5.9 mm, 6.0–7.9 mm and
≥8.0 mm represented good, intermediate, poor and very poor geometric accuracy [27].

For the contouring time evaluation, the time required by the atlas-based and DL
auto-contouring tools for the auto-contouring processes was recorded. Additionally, the
same radiation therapist involved in the previous manual contouring process reviewed and
edited the 16 OARs contoured by the two auto-contouring tools as per the clinical protocol
of the hospital. The review and editing time was recorded as well [27]. No dataset with
patient personal information was taken from the hospital.

2.5. Statistical Analysis

SPSS Statistics 28 (International Business Machines Corporation, Armonk, NY, USA)
was used for statistical analysis. Paired sample t-test was employed to compare the mean
DSC, HD, HD95, auto-contouring time, review and editing time and total segmentation
process time values of the DL and atlas-based auto-contouring groups. A p-value less than
0.05 represented statistical significance [5,6,10].

3. Results
3.1. Geometric Accuracy

The geometric accuracy of the DL auto-contouring approach was higher than that of
the atlas-based method overall. Figure 2 shows that the DL auto-contouring performed
more consistently with smaller DSC, HD and HD95 variations for nearly all OARs when
compared with the atlas-based auto-contouring. Additionally, its geometric accuracy (in
terms of higher DSC and lower HD and HD95 values) was better for 10 out of 16 OARs.
These 10 OARs were brain stem, left and right eyes, left and right lens, left and right optic
nerves, left and right parotid glands, and pituitary. Except for the DSC values of left eye,
the DL auto-contouring had statistically significantly higher mean DSC and lower HD and
HD95 values for these 10 OARs as well (Table 2).
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Table 2. Comparison of geometric accuracy of contours between atlas-based and DL auto-contouring.

Organ at Risk Geometric Accuracy
Parameter

Atlas-Based
Auto-Contouring (Mean (CI))

Deep Learning
Auto-Contouring (Mean (CI)) p-Value

Brainstem
DSC 0.81 (0.80, 0.82) 0.85 (0.84, 0.86) <0.001

HD (mm) 7.96 (7.37, 8.55) 6.66 (6.30, 7.05) <0.001
HD95 (mm) 4.84 (4.42, 5.22) 3.85 (3.59, 4.11) <0.001

Left Cochlea
DSC 0.73 (0.71, 0.75) 0.35 (0.32, 0.39) <0.001

HD (mm) 2.40 (2.02, 3.00) 5.73 (5.34, 6.28) <0.001
HD95 (mm) 1.82 (1.52, 2.34) 3.92 (3.59, 4.44) <0.001

Right Cochlea
DSC 0.72 (0.69, 0.75) 0.31 (0.28, 0.34) <0.001

HD (mm) 2.36 (2.10, 2.67) 5.72 (5.45, 6.00) <0.001
HD95 (mm) 1.69 (1.48, 1.97) 4.04 (3.81, 4.32) <0.001

Left Eye
DSC 0.84 (0.80, 0.87) 0.87 (0.82, 0.90) 0.339

HD (mm) 5.15 (4.43, 6.03) 3.49 (3.03, 4.17) <0.001
HD95 (mm) 3.58 (3.03, 4.27) 2.40 (2.06, 2.95) <0.001

Right Eye
DSC 0.83 (0.80, 0.86) 0.88 (0.85, 0.90) <0.001

HD (mm) 5.14 (4.46, 6.09) 3.39 (2.89, 4.06) <0.001
HD95 (mm) 3.54 (3.04, 4.18) 2.32 (1.98, 2.81) <0.001

Larynx
DSC 0.34 (0.32, 0.35) 0.43 (0.41, 0.45) <0.001

HD (mm) 23.37 (22.29, 24.49) 27.17 (25.61, 28.65) <0.001
HD95 (mm) 14.55 (13.88, 15.24) 15.55 (14.75, 16.35) 0.021

Left Lens
DSC 0.57 (0.52, 0.63) 0.73 (0.71, 0.76) <0.001

HD (mm) 3.26 (2.92, 3.67) 2.08 (1.94, 2.23) <0.001
HD95 (mm) 2.40 (2.15, 2.67) 1.41 (1.33, 1.49) <0.001

Right Lens
DSC 0.56 (0.51, 0.60) 0.74 (0.71, 0.77) <0.001

HD (mm) 3.30 (3.05, 3.58) 2.02 (1.88, 2.14) <0.001
HD95 (mm) 2.55 (2.35, 2.78) 1.35 (1.28, 1.43) <0.001
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Table 2. Cont.

Organ at Risk Geometric Accuracy
Parameter

Atlas-Based
Auto-Contouring (Mean (CI))

Deep Learning
Auto-Contouring (Mean (CI)) p-Value

Optic Chiasm
DSC 0.43 (0.39, 0.46) 0.35 (0.32, 0.38) 0.005

HD (mm) 8.34 (7.68, 9.05) 7.23 (6.59, 7.91) 0.013
HD95 (mm) 4.53 (4.12, 4.99) 4.13 (3.73, 4.60) 0.131

Left Optic Nerve
DSC 0.55 (0.52, 0.58) 0.64 (0.62, 0.66) <0.001

HD (mm) 8.03 (7.04, 8.95) 6.10 (5.51, 6.76) 0.007
HD95 (mm) 4.55 (3.68, 5.58) 3.70 (2.92, 4.87) 0.005

Right Optic Nerve
DSC 0.53 (0.50, 0.56) 0.67 (0.64, 0.69) <0.001

HD (mm) 8.07 (7.16, 8.92) 5.92 (5.28, 6.71) 0.002
HD95 (mm) 4.21 (3.80, 4.65) 3.05 (2.69, 3.55) <0.001

Oral Cavity
DSC 0.64 (0.62, 0.65) 0.75 (0.73, 0.77) <0.001

HD (mm) 20.39 (19.24, 21.52) 24.26 (23.03, 25.40) <0.001
HD95 (mm) 12.32 (11.72, 12.97) 13.78 (13.01, 14.64) <0.001

Left Parotid Gland
DSC 0.75 (0.73, 0.78) 0.84 (0.82, 0.86) <0.001

HD (mm) 15.01 (13.58, 16.47) 12.02 (10.64, 13.63) 0.006
HD95 (mm) 7.08 (6.49, 7.60) 4.62 (3.99, 5.31) <0.001

Right Parotid Gland
DSC 0.76 (0.74, 0.77) 0.84 (0.83, 0.86) <0.001

HD (mm) 15.61 (13.86, 17.30) 12.18 (10.45, 14.05) 0.009
HD95 (mm) 7.00 (6.46, 7.57) 4.74 (4.11, 5.42) <0.001

Pituitary
DSC 0.50 (0.46, 0.54) 0.60 (0.56, 0.64) <0.001

HD (mm) 5.57 (4.99, 6.17) 3.89 (3.40, 4.53) <0.001
HD95 (mm) 4.02 (3.55, 4.51) 2.76 (2.44, 3.19) <0.001

Spinal Cord
DSC 0.83 (0.81, 0.84) 0.53 (0.52, 0.55) <0.001

HD (mm) 27.39 (22.23, 33.35) 196.68 (185.58, 208.11) <0.001
HD95 (mm) 10.48 (8.07, 13.21) 93.85 (88.26, 99.67) <0.001

CI-95% confidence interval; DSC-Dice similarity coefficient; HD-Hausdorff distance; HD95-95th-percentile of
Hausdorff distance.

Nonetheless, Table 2 also illustrates that both atlas-based and DL auto-contouring
approaches had very poor/poor accuracy (DSC < 0.50/HD95 ≥ 6 mm) in contouring
larynx, optic chiasm, oral cavity and spinal cord. In addition, the DL auto-contouring only
had mean DSC of 0.31–0.35 for contouring left and right cochleae. Figures 3 and 4 show
two examples of OARs segmentations by the three approaches, namely manual contouring
(gold standard), DL and atlas-based auto-contouring.
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Figure 3. Organs at risk segmentation for a 75-year-old man with T3N2M0 nasopharyngeal cancer by
manual contouring (A), DL (B) and atlas-based auto-contouring (C) with the following Dice similarity
coefficient, Hausdorff distance, and 95th-percentile of Hausdorff distance values for brainstem (0.81,
7.20 mm and 4.39 mm vs. 0.83, 7.13 mm and 4.11 mm), left (L) cochlea (0.45, 5.24 mm and 2.92 mm
vs. 0.81, 1.17 mm and 1.17 mm), right (R) cochlea (0.42, 6.83 mm and 3.53 mm vs. 0.79, 2.32 mm,
1.17 mm), L eye (0.85, 4.00 mm and 3.30 mm vs. 0.89, 3.30 mm, 2.33 mm), R eye (0.87, 3.52 mm and
2.33 mm vs. 0.88, 6.00 mm and 3.54 mm), larynx (0.47, 24.82 mm and 13.87 mm vs. 0.28, 18.89 mm
and 12.51 mm), L lens (0.77, 2.32 mm and 1.41 mm vs. 0.53, 3.30 mm and 2.46 mm), R lens (0.67,
2.32 mm and 1.41 mm vs. 0.56, 3.30 mm and 2.46 mm), optic chiasm (0.47, 7.86 mm and 5.25 mm
vs. 0.44, 9.61 mm and 4.42 mm), L optic nerve (0.66, 7.77 mm and 3.91 mm vs. 0.62, 4.33 mm and
3.31 mm), R optic nerve (0.70, 4.64 mm and 2.70 mm vs. 0.46, 8.45 mm and 3.93 mm), oral cavity
(0.84, 19.31 mm and 10.24 mm vs. 0.68, 16.57 mm and 11.12 mm), L parotid gland (0.83, 11.71 mm
and 4.78 mm vs. 0.57, 19.18 mm and 9.34 mm), R parotid gland (0.81, 10.73 mm and 4.74 mm vs. 0.69,
17.25 mm and 7.38 mm), pituitary (0.51, 3.71 mm and 2.54 mm vs. 0.46, 5.32 mm and 3.49 mm) and
spinal cord (0.52, 220.13 mm and 104.18 mm vs. 0.79, 34.90 mm and 12.26 mm), respectively.
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Figure 4. Sagittal view of spinal cord contouring for a 75-year-old man with T2N2M0 nasopharyngeal
cancer by manual contouring (A), DL (B) (Dice similarity coefficient (DSC): 0.48, Hausdorff distance
(HD): 188.62 mm, and 95th-percentile of Hausdorff distance (HD95): 91.27 mm) and atlas-based
auto-contouring (C) (DSC: 0.86, HD: 6.55 mm, and HD95: 2.34 mm).

3.2. Contouring Time Evaluation

The DL auto-contouring approach required about 40% less time to complete all OARs
segmentation for a dataset on average. This was contributed by 55% and 35% less time
required for initial auto-contouring and subsequent review and editing processes, respec-
tively. Table 3 illustrates the mean time required for the atlas-based and deep learning
auto-contouring processes. The DL approach had statistically significantly shorter time
required for auto-contouring and review and editing, and hence the whole process.
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Table 3. Comparison of time required for atlas-based and deep learning auto-contouring.

Time (s) Atlas-Based Auto-Contouring
(Mean (CI))

Deep Learning Auto-Contouring
(Mean (CI)) p-Value

Contouring 153.43 (150.63, 156.08) 69.53 (68.40, 70.58) <0.001
Review and Editing 544.55 (495.02, 612.48) 352.98 (315.40, 397.92) <0.001

Total 697.97 (647.55, 764.92) 422.51 (385.39, 467.14) <0.001

CI-95% confidence interval.

4. Discussion

To the best of our knowledge, this was the first study on comparing the performances
between RaySearch Laboratories AB RayStation DL auto-contouring model, RSL Head and
Neck CT 2.0.0.47 and its atlas-based auto-contouring software, ANACONDA for the OARs
segmentation in the head and neck RT. This study’s results show that the RSL Head and
Neck CT 2.0.0.47 DL auto-contouring approach could achieve more consistent performance
in OARs segmentation than the ANACONDA atlas-based approach (Figure 2). These
findings are in line with similar studies on comparing the INTContour DL auto-contouring
approach with the Maestro 6.9.6 and ANACONDA atlas-based approaches for head and
neck RT [6,10]. This consistent performance resulted in less time required for manual
correction because the required adjustments became more straightforward and could be
completed rapidly. Hence, this contributed to the statistically significant reduction of the
review and editing time and the time required for the whole segmentation process by 35%
and 40%, respectively (Table 3). For Li et al.’s [6] study, the INTContour DL and Maestro
6.9.6 atlas-based approaches required 120 s and 600 s to contour 4 head and neck OARs,
respectively. Although this represented that their DL approach was able to reduce the total
contouring time by 80%, the number of OARs involved in their study was only one-fourth
of the number in this study. Hence, the total contouring time required for the RSL Head
and Neck CT 2.0.0.47 DL auto-contouring approach appears comparable to their study.
These findings are particularly important for addressing the major issues of the manual
contouring, namely inter- and intra-operator variabilities and labor-intensiveness in head
and neck RT [1–5].

To further address the manual contouring issue, high geometric accuracy of contours
is essential. This study’s results show that the RSL Head and Neck CT 2.0.0.47 DL auto-
contouring had statistically significantly higher mean DSC and lower HD and HD95 values
for 10 out of 16 OARs, namely brain stem, left and right eyes, left and right lens, left and
right optic nerves, left and right parotid glands, and pituitary when compared with those
of the ANACONDA atlas-based approach (Table 2). However, the highest mean DSC value
achieved by the RSL Head and Neck CT 2.0.0.47 DL auto-contouring approach was only
0.88 for the right eye and the lowest one was 0.31 for the right cochlea. For Wang et al.’s [5]
study on comparing the performances of Maestro 6.6.5 atlas-based, pre-trained and trained
AccuContour DL auto-contouring tools for head and neck OARs contouring, the highest
mean DSC value achieved by their pre-trained DL tool was above 0.9 but four (left and
right temporomandibular joints and left and right optic nerves) out of 14 OARs contoured
by their pre-trained DL model had mean DSC below 0.6. In contrast, their Maestro 6.6.5
atlas-based auto-contouring tool performed better for these four OARs. In this study, five
(left and right cochleae, larynx, optic chiasm and spinal cord) out of 16 OARs contoured
by the pre-trained RSL Head and Neck CT 2.0.0.47 DL model had mean DSC below 0.6.
Except larynx, the ANACONDA atlas-based approach had higher mean DSC values for
these OARs. The DSC findings of this study appears comparable to the corresponding tools
in Wang et al.’s study [5].

According to van Dijk et al.’s [27] study on comparing the WorkflowBox 1.4 atlas-based
auto-contouring tool with the Mirada Medical Limited DLCExpert DL auto-contouring
model for head and neck RT, the DL model was more accurate to contour small OARs.
However, this was not supported by Wang et al.’s [5] findings. For example, their Maestro
6.6.5 atlas-based auto-contouring tool was more accurate to contour the left and right optic
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nerves when compared with their pre-trained DL model. Although this study shows that
the RSL Head and Neck CT 2.0.0.47 DL auto-contouring tool had higher mean DSC values
for contouring the left and right optic nerves than its counterpart, aligning with van Dijk
et al.’s findings, its performance in contouring two other small structures, left and right
cochleae was the worst (mean DSC values: 0.31–0.35). Notable discrepancies between mean
DSC and HD/HD95 values of these two OARs (mean HD95 of left and right cochleae:
3.92 mm (good) and 4.04 mm (intermediate), respectively) were also found. Despite that
the DSC and HD/HD95 are parameters to evaluate the geometric accuracy of contours, the
DSC is the indicator of shape similarity while HD/HD95 are the parameters to illustrate
location similarity. HD95 is generally considered a better descriptor of location similarity
than the HD due to its capability of excluding the outliers [6,27]. Similar discrepancies
between the DSC and HD values were also found in Wang et al.’s [5] study. For example,
their pre-built DL model had the mean DSC values of about 0.8 (good) for oral cavity and
left and right parotid glands but the corresponding mean HD values were more than 17 mm
(poor). In order to address these discrepancies and improve the geometric accuracy of the
DL auto-contouring tool, Wang et al. [5] used 120 datasets from their local hospital database
to finetune the DL model. In this way, the DL model could learn the local contouring
protocols and become more capable to accurately contour the OARs as per the hospital’s
requirements. After further training, their AccuContour DL model was able to achieve DSC
values of all 14 OARs above 0.7. This highlights finetuning of the commercial DL model
is key to improve its geometric accuracy. In this study, discrepancies between the local
hospital contouring protocol and DL auto-contouring tool were also found. For example,
Figure 4 shows the notable difference of the spinal cord caudal limits of manual contouring
protocol and the DL approach. It is expected that further training of the RSL Head and
Neck CT 2.0.0.47 DL model would help to reduce these discrepancies and improve its
accuracy [29].

This study had several major limitations. Only 45 nasopharyngeal cancer datasets were
used for the atlas-based and DL auto-contouring tool evaluation. However, the number
of evaluation datasets of this study was more than a double of the dataset numbers of the
similar studies by Wang et al. [5] (20 datasets) and Li et al. [6] (22 datasets). Additionally,
this study covered 16 OARs which was greater than the numbers of OARs (4–14) of other
similar studies [5,6,10]. Although only one radiation therapist with more than 10 years of
experience in head and neck RT planning was involved in the contouring time evaluation,
the international consensus delineation guidelines were used for review and editing the
contours for minimizing the inter- and intra-operator variabilities [5,28]. Besides, this study
only evaluated one DL auto-contouring model and did not investigate dosimetric impact
of contouring accuracy but these arrangements were consistent with the other similar
studies [5,6,10,27].

5. Conclusions

This study compared the clinical performances between RaySearch Laboratories AB
RayStation DL auto-contouring model, RSL Head and Neck CT 2.0.0.47 and its atlas-based
auto-contouring software, ANACONDA for 16 OARs segmentation in the head and neck RT
with the manual contouring as the reference. Its results show that the DL auto-contouring
model was more accurate and required less contouring time when compared with the
atlas-based auto-contouring tool. The DL auto-contouring approach could achieve more
consistent performance in the OARs segmentation than the atlas-based approach, resulting
in statistically significant reduction of the time required for the whole segmentation process
by 40%. Additionally, the DL auto-contouring had statistically significantly higher mean
DSC and lower HD and HD95 values for 10 out of 16 OARs, namely brain stem, left and
right eyes, left and right lens, left and right optic nerves, left and right parotid glands, and
pituitary. These outcomes are particularly important for addressing the major issues of the
manual contouring, namely inter- and intra-operator variabilities and labor-intensiveness
in head and neck RT. However, for future studies, more radiation oncologists and head and
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neck cancer datasets with greater varieties should be used to evaluate the performances (in
terms of contouring time, geometric accuracy and associated dosimetric impact) of multiple
atlas-based, pre-trained and trained DL auto-contouring tools in contouring a great number
of OARs. Comparison of performances of RaySearch Laboratories DL and atlas-based
auto-contouring tools in contouring both CTVs and OARs for other cancer types such as
breast cancer should be conducted as well.
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