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Abstract

Anomaly detection is a process for distinguishing the observations that differ in some
respect from the observations that the model is trained on. Anomaly detection is one of the
fundamental requirements of a good classification or identification system since sometimes
the test data contains observations that were not known at the training time. In other words,
the anomaly class is often is not presented during the training phase or not well defined.
In light of the above, one-class classifiers and generative methods can efficiently model
such problems. However, due to the unavailability of data from the abnormal class, training
an end-to-end model is a challenging task itself. Therefore, detecting the anomaly classes
in unsupervised and semi-supervised settings is a crucial step in such tasks. In this thesis,
we propose several methods to model the anomaly detection problem in unsupervised and
semi-supervised fashion. The proposed frameworks applied to different related applications
of novelty and outlier detection tasks. The results show the superior of our proposed methods

in compare to the baselines and existing state-of-the-art methods.
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Chapter 1

Introduction

The understanding of surroundings and the capability of dynamically and constantly learn the
future (unseen) events are ideas that have been in the minds of people during decades [ 149,
189]. The possibility of detecting the novel situations/distributions of entities/data in a given
environment is an essential component for improving the situational understandings of the
the system or preventing undesired situations. A dynamic constant learning system should be
able to iteratively observe what the consequences of their actions were in the outside world
and adapt/learn themselves dynamically according to a given purpose to be accomplished.
The knowledge of the system for being aware of its capabilities and limitation potentially
provides the system with the possibility of adapting its decisions in a more appropriated way.
This could be done by redefining its own models, learning new models, and selecting different
actions for accomplishing a determined task. In this sense, for modeling such dynamic systems
as proposed, it is necessary to learn diverse models that relate the different situations of the
system. In order to learn diverse models in an unsupervised fashion, the system first needs to
detect the deviated situations itself. This process usually referred as Anomaly detection.
Anomaly detection is the process of identifying the new or unexplained set of data to
decide whether they are within a previous learned distribution (i.e., inlier in Fig. 1.1) or
outside of it (i.e., outliers in Fig. 1.1). The "Anomaly” term is commonly used to refer to the

unusual, unseen new observations that do not observed before or is simply different from
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Figure 1.1: Visualization of inlier and outlier samples with respect to the learned distribution by a
classifier: As can be seen, 1 enhanced the inlier sample since it placed inside the classifier decision
boundary, where x2 and z3 indicates the out-of-distribution samples (outliers).

the other previous observations. Such problems are especially of great interest in computer
science studies, as they are very related to outlier detection, novelty detection tasks, and
change detection problems. The purpose of this thesis is to introduce learning models based
on the essential knowledge of detecting outliers with respect to learned distributions. Such
capability can possibly empower the machine learning strategies to increase the awareness of
systems.

For that end, in this thesis, we propose approaches for detecting the abnormality of a given
data in unsupervised and semi-supervised fashion. We propose to use Autoencoder (AE) and
Generative Adversarial Nets (GANs) frameworks, which are trained using normal data in
order to learn an internal representation of samples’ normality. Since our models are trained

with only normal data, they are not able to generate abnormal data. At the testing time, the



real data are compared with the representations reconstructed by our models and abnormal
areas are identified by computing local differences between them.

Furthermore, we show the capability of learning more complex situations with the pro-
posed approachs. The proposed self-reinforced representation learning method potentially can
be also proved the means of a long-life learning cycle. We propose to create a complementary
model that find out the auxiliary information in a given scene in a semantic way, such that
a context and a situation, and combine the generated auxiliary information with underlying
representations extracted by ordinarily network to extract features. By applying this way of
thinking, it has been proposed a methodology to reinforced representation for expressing
complex scene situations by using complementary information about given scene/situations.
During the time, the system would be able to learn more suitable situation through its adaptive
scene understanding capability. The proposed approach not only improves predictions of
future events but it can be potentially used for transferring the learned knowledge to other
systems. In this context, the situational information related to the environment and contexts

perceived by an individual can be moved and interpreted by another body

1.1 Main Contributions

To form a comprehensive analysis, we study different aspects of anomaly detection cach
evaluated in the aforementioned tasks. For an applicational investigation, we organize this
thesis in two parts: (i) abnormality detection for visual events, and (7i) detecting unusual

patterns from images.

e In part (i), we focus on employing the generative models for detecting abnormality of



visual events. Our studies contain applications for the intelligence surveillance system
and intelligence vehicle. After an extensive systematic review of existing state-of-the-
art approaches, we study the outcomes provided by employing our proposed models
for the task of abnormality detection. We first investigate on conventional methods
and analyzed the advantages and disadvantages of these approaches. We, next, study
utilizing and learning the deep generative models for abnormal event detection. For this
purpose, we have introduced various advanced generative models that can improve the
discriminativenss of learnt distribution of given data. Additionally, we proposed a self-
reinforced representation learning framework to learn condition-adaptive representation

by combining auxiliary information and learnt representation of given normal data.

e In part (ii), we explore the significance of utilizing transfer approach between two
heterogeneous domains based on unsupervised learning for deriving strict unusual
pattern detection method in order to detect the rare pattern in a still image. For this
purpose, we first focus on deriving transformation model between two domains, then
complement it by applying the stochastic generative approach in order to build a richer
representation. We specifically introduce an image-to-frequency transformation model
based on GAN to build unsupervised defect detection method for materials. This
approach can be learned useful representation without prepared annotation for unusual
visual patterns. This sense can be applied into various industrial applications which
need to detect unusual visual patterns but there is no prepared annotation for a given

data.

The contributions are well described in Chapters 3, 4 and 5, but the main contributions of

i



this thesis is shortened below with a brief description.

e Adversarial Prediction Model for Abnormal Event Detection: We show that the
prediction manner which is one of the learning approaches to train deep learning
model can be used to effectively derive the generative model and also helpful to detect
local anomalies. Specifically, we propose to derive stochastic model by applying the
adversarial learning approach for events’ past and future. One of the advantages of
this approach is that it can derive more strict distribution for normality of given event
data. The proposed method is validated on challenging abnormality detection datasets
and the results show the superiority of our approach compared with the state-of-the-art

methods.

¢ Self-reinforced Representation Learning Framework for Driver Drowsiness De-
tection: We present a self-reinforced representation learning framework which can
provide robust performance to the various real situation without additional components.
Particularly, we propose to kernel-level fusion approach that combines semantic in-
formation and learnt representations extracted by deep neural networks. One of the
advantages of this method is that it can be used not only in the fine-tuning and training
phases but also in the testing phase. The proposed method is validated on challenging
driver drowsiness dataset and the results show the superiority of our approach compared

with the state-of-the-art methods.

e Adversarial Image-to-Frequency Transformation for Defect Detection: We intro-

duced a defect detection approach based on cross-domain transformation using Gen-



erative Adversarial Networks (GANs) structured. Each domain is applied to a trans-
formation network to generate the corresponding domain data and used to compute
the local distance for detecting the defect (unusual visual patterns) with respect to
the corresponding domain in a reconstruction manner. The paradigm of variational
autoencoder (VAE) is used to align the distribution of latent representation into the
normal distribution. Since this approach does not need prepared annotation for unusual
visual patterns, so a model capable to detect abnormal patierns without supervised

learning.

1.2 Thesis Overview

Each chapter of this thesis is designed to be self-contained and their contents are structured
in such a way that the document as a whole follows the same line and vision. The rest of this
thesis is organized as follows.

In Chapter 2, we briefly introduce the preliminaries of generative models. In this chapter,
we introduce the background of autoencoder (AE), variational autoencoder (VAE), and
generative adversarial network (GAN). We provide theoretic backgrounds and mathematics
to apply those approaches for anomaly detection.

In Chapter 3, we first review adversarial prediction models and introduce recurrent
adversarial learning for events’ past and future. Then, we investigate the possibility of the
proposed model as an approach for detecting abnormality of visual events for intelligence
surveillance systems. We specifically conduct ablation studies to experimentally demonstrate

the efficiencies of both the proposed model and learning approach for identifying anomaly of



events.

In Chapter 4, we describe a self-reinforced representation learning framework which can
generate an auxiliary feature and combine it with the representation extracted by CNNs to
provide more discriminative power for specific situations. Then, we extend the proposed
framework to an application to detect driver drowsiness as a part of advanced driver assistance
systems. These methods are based on deep neural networks to discover and learn novel
situations.

In Chapter 5, we propose the adversarial cross-domain transformation approach, which is
an unsupervised method to detect unusual visual patterns. We apply this method to detect road
pavement defect detection. Since this method does not need a prepared sample for unusual
patterns, it can be applied to various industrial fields which can provide the large-scale but
poorly categorized dataset.

the complexity of distribution and detecting abnormalities with respect to the learned
distributions. As a result, these methods are able to model highly diverse and complicated
distributions. Such learned models can grant a robust ability for detecting unusual situations
in various data distribution to arbitrary abnormal detection methods. This theory is experi-
mentally demonstrated by the experimental results of various applications on several data sets

in Chapter 3, 4 and 5.



Chapter 2

Preliminaries: Generative Models

Generative models have been in the forefront of deep unsupervised learning for the last decade.
The reason for that is because they offer a very efficient way to analyze and understand
unlabeled data. The idea behind generative models is to capture the inner probabilistic
distribution that generates a class of data to generate similar data. Generative models have
been used in numerous fields and problems such as visual recognition tasks [S], speech
recognition and generation [6], and natural language processing [7].

Depending on nature and depth, a model can admit different types of training. In general,
some of the training strategies are fast but non-efficient and others are more efficient but hard
to carry out or take too long. There are also techniques used to avoid this tradeoff such as
two-phased training. The most notable example is deep belief network which often undergoes
a separate training for its components (two layers at a time in general) in a phase referred to
as pre-training [9], before the final training of the whole network at once in the fine-tuning

phase.

2.1 Autoencoder

An autoencoder is a neural network trained for the purpose of recreating its input as the
output. It is a feedforward nonrecurrent network of which the aim is to continually reduce

the dimensionality to a smaller hidden layer often called the code representative of the input.
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In a similar but mirroring process, the network then recreates the same input structure from
the code layer. The first part is called the encoder and the second decoder. The goal of an
autoencoder is not to perfectly copy the input to the output. Therefore, we must prevent it
from learning a trivial identity function which comes easily if the autoencoder is not properly
“restrained”. The aim is for our model to pick up the underlying patterns and characteristics
of the data distribution to be able to generate new never seen before examples of the same
distribution as the examples provided during the training phase. Formally, an autoencoder can
be written in a deterministic way (although, it is not usually the case) as a composition of two

functions:

X = fq(h),whereh = f.(x) 2.1)

Where [, is the encoder, f; is the decoder, x is the input variable and h is the code.
Since an autoencoder is a particular case of neural networks, it can be trained using the
standard techniques for training feedforward neural networks, such as mini batch gradient

descent and back-propagation.

2.2 Variational Autoencoder

The strategy in this section can be used to derive a lower bound estimator (a stochastic
objective function) for a variety of directed graphical models with continuous latent variables.
We will restrict ourselves here to the common case where we have an 1.1.d. dataset with latent
variables per datapoint, and where we like to perform maximum likelihood (ML) or maximum

a posteriori (MAP) inference on the (global) parameters, and variational inference on the
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Figure 2.1: The type of directed graphical model under consideration. Solid lines denote the generative
model pg(z)pg(x|z). dashed lines denote the variational approximation gy (z|x) to the intractable pos-
terior pg(z|x). The variational parameters ¢ are learned jointly with the generative model parameters
0.

latent variables. It is, for example, straightforward to extend this scenario to the case where
we also perform variational inference on the global parameters; that algorithm is put in the
appendix, but experiments with that case are left to future work. Note that our method can
be applied to online, non-stationary settings, e.g. streaming data, but here we assume a fixed
dataset for simplicity.

Let us consider some dataset X — {x¥}~, consisting of N i.i.d. samples of some
continuous or discrete variable x. We assume that the data are generated by some random
process, involving an unobserved continuous random variable z. The process consists of two
steps: (1) a value z'¥ is generated from some prior distribution pg: (z); (2) a value x¥ is
generated from some conditional distribution pg+ (x|z). We assume that the prior pg+ (z) and
likelihood pg- (x|z) come from parametric families of distributions pg(z) and pg(x|z), and
that their PDFs are differentiable almost everywhere w.r.t. both @ and z. Unfortunately, a lot
of this process is hidden from our view: the true parameters 8" as well as the values of the
latent variables z* are unknown to us.

Very importantly, we do not make the common simplifying assumptions about the marginal

or posterior probabilities. Conversely, we are here interested in a general algorithm that even
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works efficiently in the case of:

1. Intractability: the case where the integral of the marginal likelihood pe (%) = [ pe(z)pe(x|z) dz
is intractable (so we cannot evaluate or differentiate the marginal likelihood), where the
true posterior density pe(z|x) = pe(x|z)pa(z)/pa(x) is intractable (so the EM algo-
rithm cannot be used), and where the required integrals for any reasonable mean-field
VB algorithm are also intractable. These intractabilities are quite common and appear
in cases of moderately complicated likelihood functions pe(x|z), e.g. a neural network

with a nonlinear hidden layer.

2. A large dataset. we have so much data that batch optimization is too costly; we would
like to make parameter updates using small minibatches or even single datapoints.
Sampling-based solutions, e.g. Monte Carlo EM, would in general be too slow, since it

involves a typically expensive sampling loop per datapoint.

We are interested in, and propose a solution to, three related problems in the above

scenario:

1. Efficient approximate ML or MAP estimation for the parameters 6. The parameters
can be of interest themselves, e.g. if we are analyzing some natural process. They also
allow us to mimic the hidden random process and generate artificial data that resembles

the real data.

2. Efficient approximate posterior inference of the latent variable z given an observed
value x for a choice of parameters . This is useful for coding or data representation

tasks.
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3. Efficient approximate marginal inference of the variable x. This allows us to perform
all kinds of inference tasks where a prior over x is required. Common applications in

computer vision include image denoising, inpainting and super-resolution.

For the purpose of solving the above problems, let us introduce a recognition model
q¢(z|x): an approximation to the intractable true posterior pg(z|x). Note that in contrast with
the approximate posterior in mean-field variational inference, it is not necessarily factorial
and its parameters ¢ are not computed from some closed-form expectation. Instead, we’ll
introduce a method for learning the recognition model parameters ¢ jointly with the generative
model parameters 6.

IFrom a coding theory perspective, the unobserved variables z have an interpretation as
a latent representation or code. In this paper we will therefore also refer to the recognition
model ¢4 (z|x) as a probabilistic encoder, since given a datapoint x it produces a distribution
(e.g. a Gaussian) over the possible values of the code z from which the datapoint x could have
been generated. In a similar vein we will refer to pg(x|z) as a probabilistic decoder, since
given a code z it produces a distribution over the possible corresponding values of x.

The marginal likelihood is composed of a sum over the marginal likelihoods of individual

datapoints log pp(x'V, - -- . xM) = SN log pe(x?), which can each be rewritten as:

log pe(x) = Dicr(qs(2lx")|Ipe(zlx"™)) + L(8, ¢; x") 2.2)

The first RHS term 1s the KL divergence of the approximate from the true posterior. Since this

KL-divergence is non-negative, the second RHS term £(8, ¢; x(?) is called the (variational)
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lower bound on the marginal likelihood of datapoint 7, and can be written as:

log,';pg{x{")) > L(0, ¢; xm) = Eq,(zlx) |—log g¢(z|x) + log pe(x, 2)| (2.3)

which can also be written as:

L6, ;x) = — D 1.(qp(2zx)||pa(2)) + By, (oo [log po(x?|2)] 24

We want to differentiate and optimize the lower bound £(8, ¢; x)) w.r.t. both the variational
parameters ¢ and generative parameters @. However, the gradient of the lower bound w.r.t. ¢
is a bit problematic. The usual (naive) Monte Carlo gradient estimator for this type of prob-
lem is: VyEq ) [/(2)] = Egy) [f @) Va0 108 06(@)] = £ 58, £(@)V,, 00, log gs(z0)
where z¥) ~ g4(z[x(*)). This gradient estimator exhibits exhibits very high variance and is

impractical for our purposes.

2.3 Generative Adversarial Network

Generative adversarial networks (GANs) [8] have shown impressive achievements in many
computer vision tasks. GANs employ a two-player game theory using a minimax strategy,
where two different networks are trained concurrently in an unsupervised manner. That is, a
generator G tries to produce realistic samples, while a discriminator D is trained to classify

the real sample from the fake sample generated by the generator. The minimax objective
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function can be defined as follows:

113111 max V(D,G) =Eomp,.s (»)[logD()]
L (2:5)

FEpjare(2) [l0g(1 — D(G(2)))]

where z is the random noise and x denotes the real sample, g and fp denote the parameters
of G and D respectively.

Finding an optimal distribution of D with G fixed is equivalent to minimizing the Jenson-
Shannon (JS) divergence of original GAN. A lot of recent video prediction and generation
work with GANs have focused on unsupervised settings [9] or semi-supervised settings with
stochastic conditional methods [10]. Simply optimizing the GAN objective function utilizes
a learned loss function through the D, which can produce adequate predictions. However,
these works without a regularization technique [9, 10] are prone to show inconsistent training
process such as vanishing gradient on the generator G and even the model collapse issue. These
issues are concerned as the potential risks in making a reliable video prediction or generation
models. To address these issues, Arjovsky et al.,[11] suggested using the Wasserstein distance,
which has a much smoother value space than JS divergence, in computing the difference
between the real sample and produced samples.

While promising results have been achieved by using better theoretical characteristics, it
remains a challenge in terms of the optimization process, i.e. vanishing or exploding gradients,
primarily due to the use of weight clipping to enforce a 1-Lipschitz constraint on the D.
Thus, an improved version of WGAN [12] with a gradient penalty is proposed to enforce the

Lipschitz constraint, accelerating the convergence. Based on the above approach for better
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gradient behaviour, the GAN network can be solved by the following minimax problem:

minmax V(D, G) = — E.[G(x)]| + E,[D(G(2))]
el (s} (26)

FAE:(|V:D(@) ]2 — 1)),

where the first two terms denote original critic loss that calculates a Wasserstein distance
estimation, and the last term denotes gradient penalty as regularizer of the network; the point
2 is uniformly sampled between the data distribution and generated sample distribution; A is
defined as a constant weight parameter. Specifically, this formulation removes the log function
in the minimax losses compared to the original GAN. In this paper, we employ WGAN for
event prediction under the consecutive frames. To the best of our knowledge, this is the first

time to apply WGAN to the event prediction model to handle the abnormal event detection.



Chapter 3
Abnormal Event Detection for Intelligence Surveil-

lance System

Detection of abnormal events (a.k.a. unusual events, anomalous behaviours,and rare events)
is one of the challenging issues in computer vision research, and it is applicable to various
surveillance applications such as accident detection on the road, intrusion detection, and
criminal behaviour detection. Previously, there is no clear definition of abnormal event
universally accepted. Cong et al. [13] define two types of abnormal events in videos: 1) Local
abnormal event (LAE) and 2) Global abnormal event (GAE). LAE is defined as the behaviour
of an individual that is different from behaviours of spatially adjacent neighbours. GAE is
identified as group behaviours in global scenes representing unusual patterns. In evaluation
tasks of studies for the abnormal event detection, GAEs and LAEs are evaluated as results
of the frame-level abnormal event detection and the pixel-level abnormal event detection

respectively.

3.1 Abnormal Event Detection

In general, abnormal events can be identified as irregular events from normal ones. The
scheme to identify anomalous events is basically to classify abnormal events using a given

training dataset which consists of normal event samples. Conventional approaches treat the
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abnormal event detection as one-class classification, outlier detection, or anomalous pattern
detection, and they consider an event as an abnormal event if it has a lower likelihood of
belonging to a model fitted over training samples containing normal events only. These
philosophies for the abnormal event detection gave direction to developing a good event
detection method: One is the representation of behaviours (Event representation) and the other
is the construction of a model for normal events (Normal model construction).

In the studies for event representation, researchers have focused on finding hand-crafted
features that describe rich and discriminative information that can help to distinguish be-
tween the normal and abnormal events. In early studies [14, 15, 16] for event representa-
tion, researchers used tracking methods [17] to extract the trace information about moving
objects, and they classified irregular tracking patterns as the abnormal. Some researchers
[18, 19, 20, 21, 22] tried to model the movements of crowds to overcome shortcoming men-
tioned above, such as social force model (SFM) [20], statistics or patterns of optical flow
in local regions [18, 21], the tracklets which are short-term tracking results of interesting
points [22], histogram of gradient (HoG) and the histogram of optical flow (Hol?) [23], and
space-time gradient based scene representation methods [24, 25, 26].

The research on the construction of normal event models gives regularized computation
methods for abnormality of events that are robust to image transformation group such as
rotation, translation, and blurring. To model a normal event, most conventional approaches
intend to identify an input data with lower likelihood as an abnormal by fitting a probabilistic
model using a training dataset. There are various approaches, such as Markov random field

(MRF) [21], Bayesian networks [25, 27, 27], Hidden Markov Model (HMM) [25], Latent
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Dirichlet Allocation (LDA) [20],and Multi-scale Motion Interrelated Patterns (SMMIP or
MIP) [28]. A few years ago, the sparse representation began to be used to model previous
normal behaviours with a dictionary learning approach [13, 26].

Recently, deep learning architectures have been successfully used to solve various com-
puter vision problems, such as image recognition [29], object detection [30], gesture recogni-
tion [31], and action recognition [32]. In particular, 3D convolutional neural network shows
remarkable performance in analyzing the video stream for behaviour understanding [33, 34].
In abnormal event detection, Based on the deep learning, various methods such as three-
channel auto-encoder [35], spatio-temporal auto-encoder [36], and recurrent network using
the long short-term memory (LSTM) [37], have been proposed to detect an anomalous of
events. Although various methods [38, 39, 40] to extract superior hand-crafted features have
been proposed, these methods cannot provide sufficient representation of the countless motion
pattern observed in nature. The key to success is that using deep learning architectures, rich
and discriminative features can be learned via cascaded non-linear transformations automati-
cally. Thus, it is reasonable to expect that classifying rare events in a video can also benefit

from deep learning models.

3.2 Preview Works

There exists a large number of approaches for for abnormality detection in video sequences.
In the following some of leading approaches are described. The major challenge in abnormality
detection 1s that there is not a clear definition of abnormality, since they are basically context

dependent and can be defined as outliers of normal distributions. Based on this widely accepted
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definition of abnormality, existing approaches for detecting abnormal events in crowds can
be generally classified into two main categories: i) object-based approaches, and ii) holistic

techniques.

3.2.1 Object-based approaches

Object-based methods treat a crowd as a set of different objects. The extracted objects
are then tracked through the video sequence and the target behavioral patterns are inferred
from their motion/interaction models [41] (e.g. based on trajectories [42]). This class of
methods relies on the detection and tracking of people and objects [43]. Despite promising
improvements to address several crowd problems [44, 45, 46, 47], they are limited to low
density situations and perform well when high quality videos are provided, which is not
the case in real-world situations. In other words, they are not capable of handling high
density crowd scenarios due to severe occlusion and clutter which make individuals/objects
detecting and tracking intractable [48, 49]. Some works made noticeable efforts to circumvent
robustness issues. For instance, Zhao and Nevatia [50] used 3D human models to detect
persons in the observed scene as well as a probabilistic framework for tracking extracted
features from the persons. In contrast, some other methods track feature points in the scene
using the well-known KLT algorithm [45, 51]. Then, trajectories are clustered using space
proximity. Such a clustering step helps to obtain a one-to-one association between individuals
and trajectory clusters, which is quite a strong assumption seldom verified in a crowded

scenario.
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3.2.2 Holistic approaches

The holistic approaches, in contract with Object-based approaches, do not aim to sepa-
rately detect and track each individual/object in a scene. Instead, they treat a crowd as a single
entity and try to employ low/medium level visual features extracted from video frames to
analyze the crowd scene as a whole [52, 53, 54]. The differences among holistic approaches
are regarding the way that they represent the scene as well as the way that they detect anomaly.
Some of them use statistic (machine learning) techniques in order to learn the “normal”
behavior of a crowd in a given environment and define abnormality as those situations having
a low probability value under the so constructed probabilistic framework [55, 56]. Differently,
abnormality can be defined using model based techniques (i.e., methods not involving statistic
estimations), for instance dealing with abnormality detection as a saliency detection problem
or using ad-hoc rules for finding specific patterns in the optical-flow data. Below the holistic
approaches are classified with respect to the way the scene is represented and not the way in
which the anomaly is detected.

Optical-flow histogram analysis. The simplest way to represent the global movement in a
crowded scene is probably using simple statistics extracted from the optical flow data [57].
Zhong et. al. [58] propose an unsupervised method which use the “hard to describe” but “easy
to verify” property of unusual events without any explicit modeling of the normality. They
proposed to use only simple motion models without supervised feature selections, however
the method may fail in the crowded scenario and more complex activity patterns. Krausz
and Bauckhage in [52, 59] used the histogram of the optical flow as the basic representation.

Simple heuristic rules are then proposed in order to detect specific crowd dangerous behaviors,
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such as congestion or turbulence situations. For instance, a congestion situation is detected by
looking for symmetric pairs of histograms extracted from consecutive frames, which indicate
slow lateral oscillations of the people’s upper body.

Spatio-temporal grids. Different approaches deal with the complexity of a dynamic scene
analysis by partitioning a given video in spatio-temporal volumes [60, 53]. Each frame is
partitioned in a spatial grid of n x m cells, and the frame sequence is partitioned in &k con-
secutive frames, which altogether brings to an X m x k spatio-temporal volume. In [25, 61]
Kratz and Nishino extract spatio-temporal gradients from each pixel of a given frame. Then,
the gradients of a spatio-temporal cell are modeled using Spatio-Temporal Motion Pattern
Models, which are basically 3D Gaussian clusters of gradients. A simple leader follower
on-line clustering algorithm is used to group gradients observed at training time in separate
cluster centers (prototypes). At testing time, a single Gaussian cluster is extracted from each
cell of the input video and the Kullback-Leibler distance is used in order to select the training
prototype with the closest gradient distribution. Finally, a mixed spatio-temporal Hidden
Markov Model is used in order to model transition probabilities among prototypes.
Mahadevan et al. [62] model the observed movement in each spatio-temporal cell using
dynamic textures, which can be seen as an extension of PCA-based representations. Whereas
PCA spaces only model the appearance of a given patch texture, dynamic textures also repre-
sent the statistically valid transitions among textures in a patch. In each cell, all the possible
dynamic textures are represented with a Mixture of Dynamic Textures model, which gives
the probability of a test patch to be anomalous. In this way, the authors show that not only

temporal anomalies but also pure appearance anomalies can be detected. In the same work the
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authors present also an interesting definition of spatial saliency based on Mutual Information
between features and foreground/background classes. In the proposal of Mahadevan et al.,
only local (cell-level) abnormalities are detected.

Physics inspired models. Some research groups exploit mathematical models derived from
fluid dynamics or other physics laws in order to model a crowd as an ensemble of moving
particles. The Social Force model to describe the behavior of a crowd as the result of inter-
action of individuals uses the Second Newton’s law to describe the causes of the movement
of a set of particles [63]. In [20] the Social Force model is used to detect anomalies and
estimate local anomalies by detecting regions in the current frame in which the local optical
flow is largely different from the average optical flow computed in the neighboring regions.
Randomly selected spatio-temporal volumes of Force Flow are used to model the normal
behavior of the crowd and classify frames as normal and abnormal cases using a bag of
words approach. The same research group uses Coherent Structures and a fluid dynamics
framework to segment optical flow data in dynamically coherent clusters [64]. Anomalies
are detected looking at sharp differences between the segmentation outcomes of consecutive
frames. Finally, the Shah’s group in [65] proposes a method to classify the critical points of
a continuous dynamical system. They represent the scene as a grid of particles initializing
a dynamical system which is defined by the optical flow information. Such simplification
provides a linear approximation of the input complex dynamical system, aiming to identify
typical crowd behaviors. In [66] a novel method is presented for detecting and localizing
anomalies in complicated crowd sequences using a Lagrangian particle dynamics approach,

together with chaotic modeling. All these works do not detect and track individuals. Instead,
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they apply particle advection technique that places particles onto a grid and moves them
according to the underlying optical flow field. However, particle advection is not applicable
when the camera viewpoints are inappropriate and the resulted occlusions in situations of
high pedestrian density.

Segmentation approach. In scenarios with high density crowds, i.e. political rallies, [65] re-
ligious festivals and marathons which involve, the large gatherings of people poses significant
challenges from the scene monitoring point of view, where current automated surveillance
systems fail to deal with such cases. The reason for such failure is the difficulty of detection
and tracking of target objects in high density scenes. In such cases, segmenting high density
scenes into dynamically and physically meaningful flow segments can be a tractable solution.
Such emerging motion patterns are called as “flow segment”. Using instantaneous motions of
a video, i.e. The motion flow field is another viable solution presented in [67]. The motion
flow field is a union of independent flow vectors computed in different frames and a set of flow
vectors representing the instantaneous motions in a video. They first use existing optical flow
method to compute flow vectors in each frame and then combine them into a global motion
field. This flow field may contain thousands of flow vectors, and, therefore, it is computational
expensive to obtain the shortest paths based on such a large number of data. Detecting motion
patterns in this flow field can therefore be formulated as a clustering problem of the motion
flow fields. A hierarchical agglomerative clustering algorithm is applied to group flow vectors
into desired motion patterns.

Tracklet-based approach. Tracklets are typically short temporal sequences of points, com-

monly extracted using the KLT method [51]. The points to track can be salient points,
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randomly selected points or densely distributed points on a grid [54]. Tracklet-based methods
can be seen as a trade-off between object and holistic based approaches. In fact, on the one
hand they model the observed scene using trajectory analysis but on the other hand they
do not rely on person detection and tracking, being focused on tracking of simple points
which is a much simpler task. Zhou et al. [68] dealt with a tracklet as a document in a Bag of
Word approach. All the points of a given tracklet are associated with words of a codebook,
according to their location and velocity directions. Then, tracklets are automatically clustered
in “topics”’, where each topic describes a semantic region in the scene. Temporal and spatial
dependencies between tracklets are modeled using two different MRFs, one for the spatial
and one for the temporal dependence respectively. In [69] the same authors go a step forward
and use tracklet clusters in order to classify a test tracklet according to the closest cluster. In
the same work, past and future paths of the individual represented by the analyzed tracklet

can be simulated.

3.2.3 Deep learning-based approaches

There is a wealth of literature on abnormality detection that is based on hand-crafted
features (e.g., Optical-Flow, Tracklets, etc.) to model the normal activity patterns, whereas
deep learning-based approaches yet is not studied well. Despite the recent improvements
in deep learning on different areas including image classification [70, 71, 72], object and
scene detection/recognition |73, 74], image segmentation [75, 76], human action recognition
[77, 78] vision and language integration [79, 80, 81], and human-machine collaboration

[82, 83, 84], but still the deep learning approaches are not exploited well for abnormality
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detection task [85, 86, 87, 88, 89]. This is mainly due to the nature of of abnormality detection
task and the lack of annotated data. Deep networks are data hungry and training a network with
minimal data is a challenging task itself [90, 91, 92]. Hence, the deep learning-based works for
abnormality detection task, mainly use existing Convolutional Neural Network (CNN) models
trained for other tasks (e.g., object recognition) which are adapted to the abnormality detection
task. For instance, Ravanbakhsh et al. [87] proposed a Binary Quantization Layer, plugged
as a final layer on top of a pre-trained CNN, in order to represent patch-based temporal
motion patterns. However, the network proposed in [87] is not trained end-to-end and is based
on a complex post-processing stage and on a pre-computed codebook of the convolutional
feature values. Similarly, in [88, 89], a fully convolutional neural network is proposed which
is a combination of a pre-trained CNN (i.e., AlexNet [70]) and a new convolutional layer
where kernels have been trained from scratch. Sabokrou et al. [93] introduce a patch-based
anomaly detection framework based on an Autoencoder (AE) reconstruction error and sparsity
constraints. However this work is limited to a single modality setup. Stacked Denoising
Autoencoders (SDAs) are used by Xu et al. [35] to learn motion and appearance feature
representations. The networks used in this work are relatively shallow, since training deep
SDAs on small abnormality datasets can be prone to over-fitting issues and the networks’
input is limited to a small image patch.

Moreover, after the SDAs-based features have been learned, multiple one-class SVMs
need to be trained on top of these features in order to create the final classifiers, and the
learned features may be sub-optimal because they are not jointly optimized with respect to the

final abnormality discrimination task. Feng et al. [94] use 3D gradients and a PCANet [95] in
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order to extract patch-based appearance features whose normal distribution is then modeled
using a deep Gaussian Mixture Model network (deep GMM [96]). Also in this case the feature
extraction process and the normal event modeling are obtained using two separate stages
(corresponding to two different networks) and the lack of an end-to-end training which jointly
optimizes both these stages can likely produce sub-optimal representations. Furthermore, the
number of Gaussian components in each layer of the deep GMM is a critical hyperparameter
which needs to be set using supervised validation data.

The only deep learning based approach proposing a framework which can be fully-trained
in an end-to-end fashion we are aware of is the Convolutional AE network proposed in [97],
where a deep representation is learned by minimizing the AE-based frame reconstruction. At
testing time, an anomaly is detected computing the difference between the AE-based frame

reconstruction and the real test frame.

3.3 Abnormal Event Detection Dataset

In recent years, the number of studies on abnormal behaviour detection has grown rapidly
in both academic and commercial fields. This comes with a grown demand for public datasets
to use for video surveillance system evaluation, yet there are not many available public
datasets for abnormal event detection.

In our experiments we used several publicly available datasets for evaluation, including
UCSD [62], UMN [20], and UCF-Crime [101] datasets. Examples of video frame scenes is
shown in Fig, 3.1. A list of datasets is presented in Tab, 3.1, Example frames of normal and

abnormal events of each dataset are represented in Fig 3.1.
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Dataset  Sequences Description
UCSD  two subsets: PEDI: 70 videos (34 normal events define as pedestrians in
[62] training, 36 testing), 158 x 238 pix- the walkways, and non-pedestrians cor-
els. PED2: 30) videos (16 training, 14 respond to abnormal events.
testing), 240 x 360 pixels.
UMN  including 11 videos from three differ- each sequence starts with a normal
[20] ent indoor and outdoor scenes. Reso- scene and ends with crowd dispersion
lution of 240 x 320 pixels. as an abnormal event.
Subway two videos called Entrance gate and  videos are captured from various public
[18] Exit gate with 512x384 pixel reso- cameras installed in a subway station.
lution. Entrance gate has 1 hour 36
min run time that consists of 144,249
frames. Exit gate has 43 min of run
time which is composed of 64,900
frames.
Avenue 16 training videos containing 15,328 The dataset includes several challeng-
[98] frames and 21 test videos with 15,324  ing issues such as camera shaking, out-
frames. The resolution of each video liers in training videos, and absence of
is 360 x 640. motions on the part of training videos.
UCF 1900 videos with various resolutions.  videos are captured from various
Crime surveillance cameras, and consists of
[99] long untrimmed surveillance videos.

Table 3.1: Event anomaly detection datasets [100].

UCSD dataset. consists of two datasets captured from different scenes: PED1 and PED2.

e PEDI contains 34/16 training/test sequences with frame resolution 238 x 158 pixels.
Video sequences indicate groups of individuals walking toward and away from the
camera, with a certain degree of perspective distortion. The dataset consists of 3,400

abnormal frame samples and 5,500 normal frames.

e PED2 includes 16/12 training/test video samples, with about 1,600 abnormal frames

and 350 normal samples. This subset indicates a scene where most pedestrians move
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Figure 3.1: From the left, each column shows sample frames for normal and abnormal events of UMN,
UCSD, Avenue, Subway, and UCF-Crime datasets. Yellow boxes denote the locations of abnormal
events of each abnormal frame.

horizontally. The frames resolution is 360 x 240.

This dataset is challenging due to different camera view points, low resolution, different
types of moving objects across the scene, presence of one or more anomalies in the frames.
The video footage of each scene is divided into two subsets: test and training (only normal

conditions).

UMN dataset. contains 11 different scenarios in three different indoor and outdoor situations.
UMN includes 7700 frames in total with frame resolution of 320 x 240 pixels. All sequences

start with a normal scene and end with abnormality section.

Avenue dataset [98] consists of 16 training videos containing 15,328 frames and 21 test
videos with 15,324 frames. The resolution of each video is 360 x 640. The dataset includes
several challenging issues such as camera shaking, outliers in training videos, and absence

of motions on the part of training videos. This dataset provides pixel-level annotation for AED.
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Subway dataset [ 18] includes two videos called Entrance gate and Exit gate with 512x 384
pixel resolution. Entrance gate has 1 hour 36 min run time that consists of 144,249 frames.
Exit gate has 43 min of run time which is composed of 64,900 frames. The abnormal events on
this dataset are defined by motion of pedestrian in the wrong direction, e.g. jumping motion of
pedestrian for avoiding payment of subway fee. Subway dataset only provides an event-level

ground-truth so that detection results are transformed into the event-level results [ 18].

UCF-Crime dataset [99] consists of long untrimmed surveillance videos which cover 13
real-world anomalies, including Abuse, Arrest, Arson, Assault, Road Accident, Burglary, Ex-
plosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism. These anomalies

are selected because they have a significant impact on public safety.

3.3.1 Evaluation metrics

We considered two different types of experiments for an abnormal events detection: 1)
Global abnormal events (GAEs): frame-level abnormal event detection, and 2) Local abnormal
events (LAEs): pixel-level abnormal event detection. To evaluate the detection performance
for GAEs, initially, we compute true positive rate (TPR) which is the ratio between the number
of true positive frames (truly labelled frame as an abnormal) and the number of positive frame
(identified frame as an abnormal), and false positive rate (FPR) calculated as the ratio between

the number of false positive frames (truly labelled frame as a normal) and the number of
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negative frames (identified frame as a normal). TRP and FPR are defined as follows:

TPR = l FPR = i
P 4+ FN IN + FP
where TP and FN indicate true positive and false negative. FP and TN denote false positive
and true negative. All components are computed by matching the detection results and the
given ground-truth.

For the evaluation of pixel-level detection performance, we define the correctness of
pixel-level abnormal event detection as the overlapped scale between the localized area
deemed unusual and the ground-truth. When it is larger than 40%, the input is classified as
the abnormal [20].

Among the several metrics to evaluate a video surveillance system, two of them are
commonly used, and both criteria are computed from the Receiver Operating Characteristic
(ROC) Curve:

- Area Under Roc curve (AUC): The AUC mainly is used for performance comparison in
different tasks [100].

- Equal Error Rate (EER): The EER is the point on a ROC curve where the false positive rate
(i.e., normal detects as abnormal) is equal to the false negative rate (i.e., abnormal is classified
as normal).

The performances of a system can be considered as good if the value of the AUC be as
high, while the value of the EER is as small as possible. In our works, we followed these

standard evaluation metrics and present our results in terms of ROC curves, AUC and ERR.

-30-



3.4 Joint Learning of Motion and Appearance

Abnormal events in videos are observed with a various visual patterns related to a change
of an appearance and a motion included in the videos. In this section, we describe the proposed
framework including the joint learning method to discover the informative representation
from the pure appearance and motion information simultaneously and the end-to-end learning

framework for an abnormal event detection.

3.4.1 Joint learning of motion and appearance

3D-DCNN [102] is usually designed with a single input structure in most computer
vision tasks, such as image recognition [103] and action recognition [ 102]. One input and a
corresponding output of the 3D-DCNN in these studies are a sample and a predicted label
respectively. However, a network architecture with a single input channel is not suitable for
detecting the various types of abnormal events, since anomalous patterns of events in videos
are accompanied by various changes in motion and appearance, and sometimes these changes
could not be distinguished dichotomically. To deal with this problem, we introduce a learning
method for a joint spatio-temporal representation for appearance and motion using the 3D-
DCNN which is based on a dual input structure. This structure is designed for extraction of a
joint feature from two independent inputs.

First, we give the notations in our work. An input data v = {v,, v, } consists of an
appearance 3D volume v, € R**"**t and a motion 3D volume v,,, = RY*"***t where w
and h denote the width and height of each 3D volume, ¢ and ¢ are the number of channels and

temporal length of 3D volume. In this work, we assume that the dimension of the appearance
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and motion 3D volumes are equal except the number of channels ¢. In recent research on the
abnormal event detection, various methods were offered for extracting discriminative features
which include ther interaction force of the social force model [20], 3D histogram of gradient
(3DHo0G) [26], and social-aware attribute [ 104], which are more complex hand-crafted fea-
tures. While the proposed method is agnostic to the particular feature extraction method, we
use simply normalised image and pure dense optical flow as inputs of appearance and motion
to enable a controlled comparison with previous works. The framework is composed of two
models: a representation model f,. and a model for an abnormal event detection fg., and
each model is defined by the parameter @ = {W, b}, where W is a weight and b is a bias. For
any input sample, o denotes the output of the model and o denotes ground-truth of the input
sample. The representation model f,. needs to learn the joint spatio-temporal representation
from each input data v = {v,, v, }. We apply a joint learning scheme instead of learning
two separate representations. Given an input data v that represents the joint feature. we can
discover the appearance and motion information simultaneously to distinguish abnormal

events from normals. The representation model to extract a joint representation is given by

Q= fro(t;6e), @€ RUaxhaxcaxta (3.1)

where 0, is the set of parameter containing the set of weights W, and the set of biases b,
which are dependent on the depth of the network structure. To combine the two different

vectors and subsequently learn the joint representation, we apply the early fusion method
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[105] to learn the deep joint representation. The early fusion is given by

we he te

ot = g[S 3 S (kW g oz, k) 4, (3.2)
p g k

where ¢ is an activation function in the joint representation learning model, and we employed
the rectified linear units [106] in this work. o™¥* is the initial joint representation of the unit at
position (x, y, t) in the early fusion layer. v, and v,, are the input 3D volume corresponding to
the output o™ geometrically. W,, W,,, and b, are the weights of appearance, motion inputs
and the bias for the early fusion layer. The weights denote the kernel (3D local receptive field)
of a 3D convolutional neural network.

The early fusion is essential for learning a robust joint representation because the early
fusion allows the network to precisely learn partial appearance and motion [105]. In the
context of representation learning, we expect latent features to represent basic patterns that
can be optimized with the sparse property. Hence we further append the initial fusion to the
learning of joint representation. The architecture of the representation model contains a total
of eight convolutional layers: one joint 3D convolutional layer, seven general 3D convolutional

layers. The architectural detail of the representation model is illustrated in figure 3.2,

3.4.2 Abnormality detection with joint learning

The event representation model described in the previous subsection generates a set
of combined features, which provides a joint description containing information on the
appearance and motion of an input data v € {v,, v, }. The feature a in Eq. (3) obtained

from the representation model is directly applied to the detection model fy. to compute
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Figure 3.2: The illustration of the architecture detail of the joint representation model based on 3D-
DCNN. The red and blue boxes are 3D volumes of appearance and motion. An initial convolution
layer is the 3D joint convolution layer, and the layers behind the initial layer are general convolution
layers. Numbers that are located above each layer denote the structural information of each layer, and
numbers below the layers represent the dimensional structure of the local receptive field and the scale
of padding.

the likelihood of input samples. The distribution of the joint representations containing the
abstracted information of input appearance and motion volumes is more likely non-linear
since there is huge variation in the patterns of normal and abnormal events. Thus, we employ
the additional fully connected network for accurately classifying the joint representations
distributed non-linearly, although it raises the computational complexity by increasing the
number of parameters. Our abnormal event detection model is a three-layer neural network
with two fully connected networks with 256 units and one softmax layer with two units. This
fully connected deep neural network which will be on top of the joint representation learning

model is formulated as:

6= fila;0q), 6€ R¥! (3.3)

where o denotes the output of detection model, and #;. is the set of model parameters
consisting of the weights W = {W,, Wz W2} and the biases b = {b},,b3,,b3.}. The

der 'V de>

output consists of two units for describing the normality and abnormality of the result of the

7 o



soft-max function. The two fully connected networks are represented as follow:

B = o(aW, + by,), 34

By = o(B1W2, + b3,), (3.5)

where W, and W7, are the weight parameters of the first and second fully connected layers
respectively, and b}, and b2, denote the biases parameters of the layers. 3; and 3, are the
output of the first and second layers of the fully connected network. In the final layer, we

attempt to compute a likelihood based on the soft-max function, represented as:

6 = softmax(BW5, + b3,) (3.6)

where ¢ is the output of the soft-max layer, and W, and b3, are the weight and bias parameters
for the layer. Each value of the soft-max layer of the event detection model reflects the normal
and abnormal degrees of input samples. Using the output of the soft-max layer in Eq. (6),
we can detect an anomalous event in each input 3D volume separately. A high value of the
normal unit signifies that an input sample is likely to the normal events, and therefore the high
value of an abnormal unit signified that it is be abnormal. The dimensionality of each hidden
layer is 256, and the outputs of each hidden layer are calculated by the rectified linear unit
[106] identically to the joint representation learning. Only final layer takes their output using
the softmax function for estimation of the probability of abnormal events of each input.

For event detection from the input appearance and motion 3D volumes, first using the



joint representation model, we extract the joint spatio-temporal features and then determine

whether the input 3D volumes contain abnormal event pattern or not. In our scheme, the value

eti
ko1 %

of the output layer of the proposed framework is calculated by the soft-max function
which can represent the likelihood for normal and abnormal events simultaneously. However,
simply comparing the two values of the output layer can generate a lot of false positives, since
a tiny difference in the two values can also be classified as abnormal or normal. To control the
sensitivity of the model for detecting the abnormal events, we apply a specific threshold such
that, if the value of the abnormal unit is greater than the threshold, the input sample will be
classified as an abnormal one.

The proposed framework presents the location of an anomalous event using the index of a
volume since it provides the volume-level event detection. An input is divided into fixed size
volumes and each volume has an index corresponding to their relative position in the frame.
By using this index, the proposed framework can represent the location of an anomalous event

within a frame.

3.4.3 Training and inference

Before training the entire framework, we pre-train the representation model using an un-
supervised learning approach based on stacked convolutional autoencoder proposed by Masci
et al. [107]. We refer to the network structure in [ 107] to built the convolutional autoencoder,
which contains dual inputs. It allows us to avoid a poorly and locally optimized solutions of
the representation model. We employ the learning method of the stacked convolutional au-

toencoder for pre-training of the proposed dual-input 3D Deep convolutional neural network.
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The dual-input convolutional autoencoder is intuitively similar to the stacked convolutional
autoencoder. For two different input vectors x and v, the latent representation of the early

fusion feature map and the latent representation of followed feature map are given by

R = oz + W2 +y * lr'lfr,g + b2), 3.7)

hk . o_(hk—l % [/Vk 1 bk).: (38)

where W, and W, are the weight matrices of the early fusion layer, and b is the bias of the
early fusion layer in the encoding part. W* and b* are the weight matrix and the bias of the
k" feature map. By using the convolutional network structure, the two inputs are encoded
to an abstracted dimensional vector, and the encoded results are reconstructed by a reverse
mapping based on the learnt weight matrix in the encoding part. However, the reconstruction
function is separated in the final decoding layer since the proposed 3D-DCNN consists of two
input vectors, represented as

&= o(h*W"°+19), (3.9)
= o(hx WP +05), (3.10)

where & and y are the reconstructed results of the two input vectors, and W)° and W, are
the transposed weight matrices of the two input vectors in the early fusion layer. h is the
reconstructed latent representation of the adjacent convolutional layer, and bY is the bias of the

decoding part. Consequently, the optimization problem for pre-training of the representation
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model is expressed as follows:

argmin, b, St B((:, %), (&, §:)) G3.11)

In our proposed model, the two input vectors are denoted as the 3D volumes of appearance v,
and motion v,,, and the output vectors are defined as the reconstruction vectors associated
with the input vectors, and N is the number of training samples. We use the back-propagation
algorithm [108] and /2-loss function for the pre-training. We employed batch training with 32
size for 100 epochs. The initial learning rate is set to 0.1 and is decayed by multiplying the
0.1 at every 10 epoch, the final learning rate is fixed at 0.0001.

We train the entire framework after pre-training of the event representation model. An
optimization scheme for the entire framework operates under the detection objective. Our
abnormal event detection model is trained by minimizing the detection loss using the ground

truth for normal and abnormal events, described as follows:

min X F(o, 6), (3.12)

TesVde

where o and 0 are an annotation value and the output of network in Eq. (6) associated with
the input sample v € {v,, vy, }, and £ denotes the cost function for the overall architecture
containing the representation model and the detection model. We employ the cross-entropy
loss function and use the stochastic optimization method proposed by [109] in this task.
To train the entire framework containing joint representation learning and event detection,

we have adopted the batch training approach with 64 sizes for 100 epochs. Similar to the
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pre-training procedure, the initial learning rate is set to 0.1 and is declined at every 20 epoch
step by multiplying 0.1. The learning rate decay is stopped when the learning rate reaches at
0.0001, and the rate is retained until the training finishes. In constructing the training dataset,
to reduce an over-fitting of the network, one of the easiest and most common ways is the data
augmentation which is to artificially enlarge the dataset using image transformation with label
preserving [5]. We employ two simple approaches of the data augmentation, both of which
produce artificial data from the original samples by applying simple image transformation.

The first strategy of data augmentation is generating the image translation with a proba-
bilistic filter (e.g., Gaussian filter). We apply the Gaussian filter with multiple variances. The
generated images are transformed images with different resolutions. This method increases
the number of training samples by changing variance of the probabilistic filters. We extract
3D cubes from the raw input data and motion vector sequences, and smooth pixel values in
3D cubes using the filters.

The second strategy is applying horizontal reflections. By applying this strategy, we
extract the fitted 3D cubes after finishing the first strategy. This method also increases the
size of the training set. And, newly generated samples are highly independent on the original
samples. Without these schemes, the proposed framework has difficulty handling the over-
fitting problem, which would have forced us to designed much simpler network. Figure 3

shows the concept of the data augmentation used in this work.
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3.44 Experiment

The proposed framework was evaluated on publicly accessible datasets which are UMN
dataset [20], UCSD pedestrian dataset [62], and Subway dataset [ 18]. Three measurements
are used to evaluate the performance of abnormal event detection: ROC, AUC, and EER. A
high AUC value and low EER value indicates a better method to detect an abnormal event.
The UMN and subway dataset are used to evaluate the performance of the proposed method
for the frame-level abnormal event detection, and the UCSD dataset for both the LAEs and
GAEs detections.Particularly, The results of the abnormal event detection are re-annotated to
the event-level performance since the subway dataset only provides an event-level detection
annotation. We have referred the evaluation scheme in Adam et al. [18].

For an efficient experiment, all frames are resized with 240 x 240 resolution. To construct
the training dataset, we extract the motion and appearance 3D volumes various sizes and
enlarge the dataset using aforementioned data augmentation approach. We extract 3 different-
sized 3D volumes: 18 x 18, 20 x 20, and 25 x 25, and resize all them to 20 x 20. In
evaluating phase, we extract the motion and appearance 3D volumes in uniform sizes with
the overlapping rate 0.5. The 3D volumes of appearance and motion are 20 x 20 x 1 x
5 and 20 x 20 x 2 x 5. The 3D volume size is determined empirically. We referred to
the various studies [20, 26, 104] for determining the volume size. The channels of each 3D
volume are 1 and 2 since we used a grey scale image and dense optical flows, and we setted
up 5 of temporal length empirically. We trained the proposed model using Adam stochastic
optimization method [109] with the momentum of 0.9, and the weight decay of 0.0002. We set

0.5 probability for dropout for the three layers of the fully connected network. The proposed
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Methods AUC
Optical flow 84%
Interaction energy potential [19]  98.5%
Social force model [20] 96%
Sparse reconstruction cost [26] 97.8%
Social-aware attribute [104] 98.6%
MIP-TS [28] 08.26%
: . Proposed method (Scene 1) 99.4%
02 oo ' Proposed method (Scene 2) 99.8%
o ~+-raecimesiany| | Proposed method (Scene 3) 97.8%
S N R S W Proposed method (Average) 99 %

0 01 02 (k] 04 05 06 or o8 0% 1

Figure 3.3: The ROCs for frame-level anomaly Table 3.2: The AUC values in the UMN dataset.
detection in the UMN dataset.

framework is implemented with the Tensorflow library of Google, and the experiments are
carried out on a PC with a graphics card (NVIDIA GTX Titan X) and a multi-core 3.41 GHz

GPU with 32 GB memory.

3.4.5 UMN dataset

We compare the proposed method to the method using general optical flow and the listed
methods: Social Force Model (SFM) [20], Sparse reconstruction method [26], Social-aware
attribute force model (SAAFM) [104], Interactive energy potential model [19], and the multi-
scale motion interrelated pattern model [28]. We obtained an average AUC of 99% for UMN
dataset. Table 3.2 shows the quantitative results of the proposed framework and other methods.
ROC curves of the proposed framework and the other methods are illustrated in Figure 3.3. In
the experiment using the UMN dataset, the proposed framework achieved detection results

that are reasonably comparable with the other methods.
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3.4.6 UCSD dataset

We test the performance of the proposed framework on the UCSD pedestrian dataset
provided by [62].The ROC curves of the both the frame-level and pixel-level abnormal event
detections for the Pedl dataset are shown in Figure 3.4a and 3.4b. The ROC curves of the
frame-level abnormal event detection for the Ped2 dataset is shown in Figure 3.5. We com-
pare the event detection performance with that of several other methods: Social force model
(SEM)[20], Mixture of Probabilistic Principal Component Analysis (MPPCA) [21] and its
modified version with SFM, Mixture of Dynamic Texture (MDT) [62], Appearance and Mo-
tion DeepNet (AMDN) [35], social attribute-aware force model (SAAFM) [104], the method
of Lu et al. [98], Motion Interpreted Patterns (MIP) [28], the method of Sabokrou et al. [110],
the method proposed by Hasan et al. [37], Spaio-temporal auto-encoder (ST-Autoencoder)
[36], and sparse representations [26]. Also, to demonstrate the structural efficiency of the
proposed joint learning method, we compare the proposed method with the 3D convolutional
neural network (Appearance 3D-ConvNet) based on the single input stream for appearance
information inspired by Tran et al. [33] and Two stream 3D convolutional neural network
(Two-stream 3D-ConvNet) [34]. In our experiment, Both networks are trained with the same
parameter setting and training datasets to the proposed method.

Table 3.3 shows a quantitative comparison including EERs and AUCs for the proposed
methods and the listed methods. Figure 3.6 shows the detection results of a local abnor-
mal event using the proposed method in UCSD dataset. The experimental results show that
the proposed framework can provide accurate and efficient abnormal event detection, and

demonstrates that learning of joint spatio-temporal representation via the proposed framework
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Figure 3.4: The ROCs for frame-level abnormal event detection (a) and pixel-level abnormal event
detection (b) in UCSD Pedl dataset.

outperforms the listed state-of-the-art methods. We can observe that the AUC values of our
framework on the ped1 and ped2 dataset are 94.4% and 94.8% respectively, which are higher
than that of other comparison methods. Moreover, considering pixel-level evaluation for the
anomaly localization, our method achieves the AUC value of 76.2%, which is significantly
higher than the other methods. The gap between the proposed method and the best result
among the list methods is 9%. The quantitative results in Table 3.3 demonstrate the advan-
tages of the proposed joint learning method in the studies on the abnormal event detection.
Specifically, the AUCs of the proposed method is larger than the appearance 3D-ConvNet
[33] and the two-stream 3D-ConvNet [34]. This experimental results of the proposed method
and two other methods could be interpreted as that even jointly learnt representation with
simple hand-crafted feature can provide more discriminative power than the representation

trained by the raw frames only.
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Figure 3.6: Detection results of a local abnormal event for UCSD datasets. The images in the first row
are detection results in the Pedl1 dataset, and the images in the second row show the detection results in

the Ped2 dataset.

3.4.7 Subway dataset

In evaluation task using the subway
dataset, we referred to the evaluation scheme
in Lu et al. [98] for an efficient experiment.
However, since abnormal event categories:
"No payment” and Irregular interaction’, are
not contained in *Exit gate’ video. Therefore,
we defined a new event category called Ab-
normal behaviours’ by grouping all events
that labelled as *Wrong direction’, ’ No pay-

ment’, and *[rregular interaction’.

—8— Adam etal,,
=—+— MDT
—— SFM
—4— MPPCA
| —&— SFM+MPPCA
—%— Sabokoul etal,
~8— Proposed method
N ]

L . 1 L | I :
04 0.2 0.3 04 05 0.6 0.7 08 0.9 1

Figure 3.5: The ROCs for frame-level abnormal
event detection in UCSD Ped2 dataset.

We constructed the training samples using the video sequences in the first 20 minutes and

some part of video containing an abnormal event. Abnormal events in the training dataset are

randomly picked from the given ground-truth, and we randomly selected 30% of abnormal
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Ped1 (Frame) Ped1 (Pixel) Ped2 (Frame)

BcEods AUC EER AUC EER AUC  EER
MDT [62] 81.4%  25% 44.1% 58% 82.9%  25%
MIP-TS [28] - - 649% 41.3% - -
MPPCA [21] 59% 40% 20.5% 81% 69.3%  30%
MPPCA+SFM [21] 66.9% 32% 21.5% 72% 61.5%  35%
SEM [20] 67.5% 31% 19.27% 79% 55.6% 42%
SAAFM [104] 77.6%  29% - - - -
Sparse representation [26] 89.5% 19% 50.2% 53% - -
Lu et al., [98] 91.8% 15% 63.8%  59.1% - -
AMDN [35] 92.1% 16% 672% 40.1% 90.8% 17%
Sabokroul at al., [110] . - - - 82.4% 19%
Hasan et al., [37] 81.0% 27.9% - - 90.0% 21.7%
ST-Autencoder [36] 8909% 12.5% - - 87.4% 12%

*Appearance 3D-ConvNet [33] 83.1% 25.34% 63.7% 55.24% 83.17% 26.4%
*Two-stream 3D-ConvNet [34] 86% 22% 64.4% 45% 83.2% 24%

Proposed method 944% 128% 762% 31% 948% 11.1%

Table 3.3: Quantitative performance comparision of different abnormal event detection methods
using UCSD dataset. - means the results are not provided. ”* denotes the evaluation methods are
implemented ourselves.

events contained in the ground-truth. The training dataset corresponding to each video is
composed of 70000 normal 3D volumes and 4,0000 abnormal 3D volumes.

We compare the event detection performance of the proposed method with that of other
methods: MPPCA [21], the method proposed by Lu et al. [98], sparse coding [23], sparse repre-
sentation [26], and the method based on temporal regularization [37], and the spatio-temporal
autoencoder [36]. Also, as the evaluation using UCSD dataset, we carry out additional experi-
ments with general deep learning approaches [33, 34] for the action recognition and video
analysis to demonstrate the methodological efficiency of the proposed method. Table 3.4

presents the comparison between the proposed methods and the other methods. Figure 3.7

shows the localization results of the detection results using the our method. The experimental
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Figure 3.7: Detection results of abnormal events for the subway dataset. The three images on the left
show the *Loitering’ and the two images on the right presents "Abnormal behaviour’.

results for the subway dataset show that the number of events detected using the proposed
method is larger than other methods. Also, the false alarm of the proposed method is a little
bit lower than the listed methods. Interestingly, the experimental results using the proposed
method, Appearance 3D-ConvNet, and Two-stream 3D-ConvNet, show that although the
3D-ConvNets can extract the features which can provide the spatial and temporal informa-
tion simultaneously, the extracted features cannot provide sufficient discriminative guideline.
Overall, experimental results for the subway dataset show that the proposed joint learning
and detection methods allow us to discover a more discriminative feature than the existing

methods.

3.4.8 Discussion

The experimental results show that the proposed method outperforms the state-of-the-art
methods including the methods based on hand-crafted features and the deep learning based
methods. Also, the experimental results of the proposed method and single and dual channel
3D-ConvNet methods show that although 3D-ConvNet can extract spatial and temporal
representations simultaneously within the network naturally, the learnt features might enhance

their discriminative powers which are obtained by the joint learning with simple hand-crafted
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AB LT MISC Total FA

Methods En Ex En Ex En Ex En Ex En Ex
Ground-truth 43 9 14 3 9 7 66 19 0
Sparse coding [23] 38 9 14 3 8 7 60 19 5 2
MPCCA [21] 36 9 13 3 8 7 57 19 6 3
Sparse reconstruction [26] 27 9 - - - - - - 4 2
Subspace [98] 30 6 9 3 17 5 46 14 7 4
Luetal., [98] o 8 dy Fo B S 1 A 2
Hasan et al., [37] - - . - - - @l 1T 15 5
ST-Autoencoder [36] - - - - - - 61 18 9 10
*Appearance 3D-ConvNet [33] 31 9 14 3 8 6 53 18 11 4
*Two-stream 3D-ConvNet [34] 36 9 14 3 8 7 58 19 5 5§
Proposed method 40 9 14 3 7 7 61 19 4 2

Table 3.4: Quantitative performance comparision of different abnormal event detection methods
using the subway dataset. En and Ex denote ’Entrance video’ and ’Exit video’. AB means abnormal
behaviours; LT means loitering; MISC denotes misc; FA denotes false alarm. - means that the results
are not provided. ”*” denotes the evaluation methods are implemented ourselves.

features. Consequently, the key contribution of the proposed framework is that it can learn
the joint spatio-temporal representation from 3D volumes of appearance and motion, without
feature analysis, background subtraction, detection, or tracking methods. The proposed
framework can detect abnormal events of diverse types that are defined by an appearance, a
motion, or both within a single framework.

The main drawback is that the proposed method needs pre-defined parameters such as
a threshold for detecting an abnormal event and a specific size of 3D volumes that are
important things that related to the detection performance. In particular, determination of
the size of 3D volumes is the critical problem in the studies for the volume-level abnormal
event detection. An overly small volume cannot contain sufficient appearance and motion

information to learn and analyze the normal or abnormal event patterns. On the other hand,
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the too large volume might contain more information than you need so that it could converge
to the poorly optimized solution during training a network. To solve this problem, we have
constructed the training dataset by extracting the volume with various sizes. Additionally, the
current framework can cause a computational inefficiency because of the separation of the
event detection and localization tasks. However, these issues are general requirements for all
volume-level anomaly detection methods. Furthermore, since the proposed framework is an
off-line method, the proposed framework cannot ensure the reliable detection of abnormal
events of a totally different types that are not included in training samples. In future work, we

will devise a new model which can overcome the above mentioned drawbacks.

3.5 Adversarial Event Prediction (AEP)

The dominant approach to identifying abnormal events is deriving a model of normal
events and then compute a likelithood or an error using the derived model. This methodolog
assumes that when the model takes an abnormal event sample as an input, the model produces
either a lower likelihood or a larger error because the model is only trained by the normal

event samples. This approach is represented as follows:

Abnormal, if Fan(x) <7
AED(z) —

Normal, Otherwise,

where x is an input sample, F,» is a model only trained with normal samples " €
{a7, 25, 2%, ..., 2%}, and N is the number of normal event samples, and 7 is a predetermined

threshold.
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In the above approach, the key components are the feature representation and the deriving
a model for normal event samples. Numerous studies have been proposed to improve the
robustness of these components [20, 104, 26, 13, 98]. Various hand-crafted features have
proposed to improve the discriminative power in identifying an anomaly of events [20, 104,
26]. However, inherently, the performances of these approaches based on hand-crafted features
are highly dependent on the parameter settings required for the features, and it is intractable
to find an optimal parameter setting that can cover various environments accounted in the real
world.

Being different from the above approaches based on hand-crafted features, several AED
approaches based on deep learning methods are proposed [35, 111, 112, 113, 114, 115, 116,
117, 118]. These studies take advantage of the remarkable feature extraction capacity with the
cascaded and weighted kernel structures of neural networks. Usually, these approaches are
based on the reconstruction method inspired by autoencoder [119] and force it to minimize a
reconstruction error in the training step [35, 110, 37, 112, 111, 120, 121]. These approaches
assume that the error of abnormal events would be larger than the normal ones. These methods
show remarkable achievements on AED than the conventional methods based on hand-crafted
features.

Unfortunately, even though the deep learning-based approaches show remarkable per-
formances, as uncertainty and complexity of feature distributions of various event patterns
increases, it is inherently intractable to construct a model which can simultaneously take well-
generalized for normal events and strictly-discriminative to abnormal events [112, 35]. More-

over, paradoxically, the superiority of deep learning, which is in learning of well-generalized
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representation from a given dataset through minimizing of a reconstruction error, can be
considered as a disadvantage to detect an anomaly of events, because the well-generalized
mode can contain a potential risk which is producing smaller errors than the expectation for
abnormal event samples [122, 123]. In other words, there is a possibility that a model trained
with the reconstruction method cannot produce larger errors for abnormal events.

Several studies started to apply adversarial learning that does a model training using
a classification in order to deal with this issue [124, 125, 122, 116, 126, 127, 120, 128].
Ravanbakhsh et al. have presented an AED method with adversarial learning between the
raw image and optical flow [124]. Liu et al.,[122] and Tonescu et al.,[116] address abnormal
event detection using the classification. Liu have transferred AED as a future frame prediction
problem and added extra cost functions for adversarial learning to train their model er al.,[125].
Liu et al.,have introduced the classification setting for AED [122]. Nawaratne er al.,have
proposed Incremental Spatio-Temporal Learner (ISTL) in order to apply active learning
strategy by utilizing an incremental learning for identifying abnormal events [127]. However,
Ravanbakhsh et al.,[124] and Liu et al.,[125] need complementary information such as optical
flow in order to improve the discriminative power of their model.

However, this can be problematic for hand-crafted features, which are intractable to find
an optimal setting needed to be changed for various scene condition. Liu ef al.,[122] and
Ionescu et al.,[116] require samples of abnormal events to train their methods. Nawaratne et
al.,[127] also need extra information such as optical flow, and particularly it requires iterative
learning to apply active learning strategy. These methodological properties are probably an

advantage in improving the discriminative power to exploit abnormal event samples randomly
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selected from the testing dataset. However, it is perhaps impractical because of scarcity and
unpredictability of abnormal events.

In this work, we propose Adversarial Event Prediction (AEP), a novel method to detect
abnormal events based on event prediction which can improve AED performance without
auxiliary information such as optical flow or prepared abnormal event samples. AEP initially
derives the event prediction model for normal events based on the adversarial learning for
predicting events’ past and future. The proposed learning approach can provide an effective
way to derive the model for normal events since it is based on the adversarial learning which
can be thought as an effective strategy to avoid complex estimation for many intractable
stochastic computations.

To detect abnormal events, AEP predicts future events and compare with given test
samples. Since AEP is only trained with normal event samples, the prediction results would be
inaccurate when AEP takes the samples containing abnormal events. Additionally, we employ
a training in a random-matching manner in order to improve the robustness of AEP. We
conducted experiments using UCSD-Ped dataset [62], CUHK Avenue dataset [98], Subway
dataset [18], and UCF-Crime dataset [99] to demonstrate an efficiency of AEP for AED.
The experimental results demonstrate that our AEP can outperform existing state-of-the-art
methods.

The main contributions of our works are summarized as follows:

¢ A novel method for abnormal event detection (AED), called adversarial event prediction
(AEP), which employs event prediction setting to identify an anomaly of events. AEP

no requires extra features to model timescale and improve the discriminativeness of

- 51 -



learnt features.

e The adversarial learning for events’ past and future to improve the robustness of
the prediction model for abnormal event detection, which can provide discriminative

representation learning without extra information such as optical flow.

e Extensive experimental results on AED, which contain both the performance analysis
depending on the hyperparameter setting and the comprehensive comparison with the
existing state-of-the-art methods including either GANs based methods or the methods
using auxiliary features such as prepared anomaly samples optical flows in training

their models.

3.5.1 Backgrounds on AEP

In this work, we formulate AED as an event prediction problem. Our hypothesis is
that when the model takes an abnormal event sample as an input, the prediction results
would be less accurate than the cases where the model takes normal event inputs if an
event prediction model is trained only with normal event samples. This methodology for
turning AED as the event prediction problem may look similar to the methods with the
reconstruction [110, 112, 36, 35, 37]. The AED methods based on the reconstruction derive
the mapping function F,, : X — X, where X and F,.(X) = X are the input samples and
the reconstruction results, respectively. The mapping function is optimized by minimizing
the reconstruction error F{X, A:’)_. which is defined by Euclidean distances or stochastic
difference measurements such as Kullback-Leibler divergence (KL-divergence). Similar to

our hypothesis, these reconstruction-based methods assume that the methods produce larger
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errors for abnormal event samples than those of the normal ones.

In these approaches based on the reconstruction, F,. is typically a bijective function and
its co-domain X € {X;}i—1.n» where n is the scale of the co-domain, would be equivalent
to X when their methods are trained by minimizing (X, X). Intuitively, this functional
property can be thought as a constraint in learning the mapping function by restricting a
target of each input. It is essential to provide comprehensive dataset which can cover diverse
visual patterns in order to improve the performance of the representation learning [5, 129].
Therefore, this property can negatively affect the capability of the representation learning of
the mapping function.

Our insight is that the prediction can help to overcome this constraint since it can provide
various pairs between inputs and the corresponding outputs by manipulating temporal intervals.
Liu et al.,show that there is a possibility that the prediction setting can be used for improving
the performance of AED [125]. The mapping function for event prediction setting is defined
by, Fep : X¢ — X, where X denotes the current input and X* indicate the corresponding
future. The goal of F.,, is generating the accurate prediction results from given current samples
X¢. It may be similar to the learning objective of the methods based on the reconstruction,
because it also can be interpreted as the error minimization between the given future samples
and the prediction results. However, in contrast to the reconstruction setting which constrains
inputs and outputs, the prediction setting is more flexible in learning the correlation between
the input and output, because it is changeable to decide the output corresponded to each input
by changing the time intervals between them.

Additionally to this, we exploit the adversarial learning to deal with AED transformed into
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the prediction problem. As the AED problem setting is transformed to the prediction setting,
the diversity of data, which can be used for training a model, would be greatly larger than
the reconstruction setting, since the prediction setting can change the scale of the interval for
assigning a corresponding future target for input data. As a result of increasing the diversity
of the training data. it is essential to develop an approach for modelling normal events, which
provide more strict discriminative abilities than reconstruction approaches. To address this
issue, several studies [125, 130, 124, 131] have utilized adversarial learning methods as a
complementary factor to improve the discriminative abilities of their normal event models

based on a reconstruction setting.

3.5.2 Architectural details of Adversarial event prediction

Generally, generative adversarial learning can derive the complicated probabilistic dis-
tribution from a given dataset without complex stochastic approximation such as maximum
likelihood estimation [ 12]. Therefore, several studies have exploited adversarial learning to
improve the AED performance [124, 132, 125]. However, these approaches employ addi-
tional hand-crafted features such as optical flow to improve the discriminativeness of their
AED models. This means that the approaches come with a drawback in finding an optimal
hyperparameter for the hand-crafted features to achieve good AED performances for various
scene conditions. Unlike these approaches, AEP improves the discriminative power to detect
an anomaly of events by revising the cost function in a way that requires no extra features.

AEP is composed of three components: 1) Generator G, 2) Latent feature discriminator

D%, 3) Future discriminator D, and 4) Past discriminator D Figure 3.8 illustrates the
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Figure 3.8: Structural details of the adversarial event prediction (AEP) based on adversarial learning
for events’ past X7 and future X'* for abnormal event detection (AED). The green objects denote
the operational components e.g., the generator G and the discriminators D', D¥, and D The blue
objects define the output of each component, and the red objects indicate the objective functions Lpr,
Lpr Lpr, Lg and L. The solid black lines represent the workflow to generate the prediction results
(X). The solid blue lines denote the workflow to compute the loss functions. The solid red lines show
the process for AED using AEP.

structural details of AEP. The generator G is composed of the encoder f¢ and the decoder f ff .
and it generates the prediction results A" using the current event sample X'. The generator G is
composed of the encoder f9 and the decoder fj” . The encoder f¢ maps input samples into
a latent plane: f9 : X — a. The decoder ff generate the prediction results from the latent
features : f§ : o — X. The latent feature discriminator D* derive the distribution of latent
features a to the normal distribution. The future discriminator D and the past discriminator
DPF distinguish that the generated samples are events’ future or past.

The generator G, the future discriminator DY, and the past discriminator DF are built with
3D convolutional neural networks (3D-CNN) [102] and fully connected neural network (FC-
NN). 3D-CNNs is employed to capture the spatial and temporal representation simultaneously
from given event samples, and the FC-NN is used for abstracting the learnt representation
extracted from 3D-CNNs. The network structure is inspired by various studies in video

understanding [33, 133, 134, 31]. Figure 3.9 shows the details of the kernel dimensionalities



and connectivities for f9 and f¥ in the generator G and the discriminators D and D*.

Generating prediction result using G is represented as follows:

(%) = f7- J7(x%) = x. B

The outputs of the encoder f&(X) = a are used as inputs of the latent feature discriminator
DF, and the generated prediction results X are directly applied to the two discriminators
D! and DY to derive prediction model. D and D produce binary values representing a
given input as events’ certainties for future or past and fake or not, in order to compute a loss
function for training AEP.

The future discriminator D is defined as follows,

DF(XWF) = oP" oP" e R, (3.14)

where oP" is the output of the future discriminator D, and it is defined as a scalar value
on Euclidean space. X*'F denotes the the input of D¥, and it can be regarded as X* and
X. oP" is used for distinguishing whether given samples are predicted results or the given
ground-truth, by estimating the confidence value for distinguishing whether a given frame is
the ground-truth.

DY is structurally equal to D, and it is defined by

P

DP(X#P) = oP" oP" e R, (3.15)
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Figure 3.9: Structural details of the generator G and the two discriminators for events” past D' and
future D (a) denotes the structural details of the generator G and (b) indicates the structural details of
the two discriminators D and D”. The red boxes indicate the inputs and the outputs of the generator
and the discriminators. X and X" denote the current events and the prediction results respectively,
and these are the input and the output of G. X'* and o define the input and the output of D" and DF,
X* could be defined by X, X¥', and X' depending on each discriminator. The blue boxes and the
yellow boxes denote the 3D-convolutional neural network (31-cnn) and the 3D-deconvolutional neural
network (3D-decnn) respectively. The green boxes represent the fully-connected neural network (Fc).
The figures presented in over and under the boxes show the dimensionalities of the network kernels
on each layer. The figures inside of each box represent the dimensionalities of each layers’ input or
output.

where oP" is the output of the future discriminator D, X*)* indicates the input of D’ and
X and X" are considered as the input of D”. These two discriminators are used for the
adversarial learning for events’ future and past to train the representation of AEP which can
provide more discriminative power to predict events.

Additionally, the latent feature discriminator D* is embedded to derive the distribution for
the latent feature p(ar). D* is built with three FC-NNs with 2048, 2048, 1024 dimensionalities

respectively. DF is defined by

DY(f9(X°)) = D a) = o, 0" € R, (3.16)

L . . . . .
P™ is the output of the discriminator D, and it represents a confidence value for

where o
representing whether the input of D is actually generated from input samples X'“ or randomly

generated using the normal distribution A'(0, 1). The adversarial learning applied to AEP is

described in the next section.



3.5.3 Adversarial learning for past and future

The prerequisite for precise AED using AEP is deriving an optimal prediction model
p(XF|XY) with respect to the current event X'“ and the corresponding future event X', As
the workflow of AEP mentioned in Section 3.5.2, the generator G initially maps the current
frames X' into the latent feature o through the encoder f9 : X — a, and generates the
prediction results using the decoder 5’ :a — XF.The generator plays a role of the prediction
model in the testing step. In this workflow, we assume that p(X”'|a, X¢) &~ p(X"|a). Using

above notations, p(XF'|X%) can be reformulated with p(a|X“) and p(X* |, X) as follows:

e XF, XC)a)
xF1xC) — p(X~, 1
(7|20 = [ B,

[

ol ] PC
‘/P(Xﬂf’fc;ﬂ’)%da (3.17)

. pla]X€)
=~ [ p X o) 2——"Lda,
[pE P

where p(X“) and p(a) denote the prior probabilities of X“ and a respectively. p(X©)
can be derived by given event samples defined as events’ current. Consequently, to derive
optimal p(a|X°), p(X¥|a), and p(a) is necessary to attain the optimal p(X¥'|X“), and
we deal with this issue in term of an adversarial learning approach. The original intention
of adversarial learning is to learn generative models while avoiding approximating many
intractable probabilistic computations arising in other strategies e.g., maximum likelihood
estimation [12]. This intention is suitable to model p(X¥'|X“) on AED to cover the various
visual and kinetic patterns of normal events.

As we want to derive a robust mapping from current events to future events, the generated
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Algorithm 1 Learning AEP by the proposed adversarial learning with events’ past and future. 1 and
Are denote the learning rates and the balancing weight of the reconstruction error L., respectively. A
and \ are predetermined balancing weight for the regularization term in the loss functions for the past
and future discriminator.

Input: A current event sample X'“ and corresponded samples for the event’s past and future X' and
XP
Qutput: Updated parameters g, Opr, Opr, and Opr
1: for number of training iteration for each sample X" do

2: e Produce the latent feature ov and the prediction result X'

3 a=fIx°)

4 X =g(XC) = f9. [9(x°)

5: e Compute Lpz for the latent feature discriminator D

6 Lpr = Eyollog(PHN(0,1)))] + Eanp, log(l — D*(a))]

7: e Compute Lpr for the future discriminator D' ‘ )

8 Lpr=Exc.p [P (GA)] ~Exrep, [P X))+ B, [(IV5DF(X)]l2 — 1)?]
9: e Compute Lpp for the past discriminator DY’
10: Lpp =Exon, o[1-DP(G(XO)] =Exrn, ,[1-DP (X)) + 3z, [(IV£DP(F)[3)
11: e Compute L,. and Lg+ for the generator G
122 Lg=Excnp, o [PF(G(X))] +Excnp, o [1 = DP(G(X))] + Eanp, log(l — DX(a))]
13:  Lye —E,\gc:‘;(p‘||?f'y—g(.¥c)“%
14:  Lgr = Lg+ MeLre
15: e Update the parameters g, Opr, Opr, and Op1
16 Opr < Opr + nﬁgfj}:
17:  Opp + Opp + 'r;(i;:;

L,
18:  Opr +0OprL +1 d&::“

19: g 0g +ng
20: end for )
21: return Updated parameters dg, Opr, Opp, and Opi

events should be consistent with the frames assigned as the prediction target. The general
adversarial loss in Eq. 2.5 is unsuitable for applying the time-series data, since it has a problem
in optimizing the model by presenting inconsistent training process even when a model is
trained with still image. AEP employs the WGAN-GP [12], which improves the stability in
learning generative adversarial network (GAN).

The proposed adversarial learning for past events and future events is inspired by metric

learning, e.g. triplet loss [135, 136, 137] and quadruple loss [138, 139]. In metric leaning, it



is a commonly used approach to use both positive and negative samples in learning a model,
in order to improve the discrminative aspect of learnt features. The future event samples X'
play as a role for the positive samples, and the role of the past event samples X' is a negative
sample in the metric learning. By using the proposed adversarial learning for events’ future
and past, AEP can provide more discriminative representation for predicting the event’s future
by constraining the representation learning for past events.

The loss function for the future discriminator on the proposed adversarial learning are

defined by,

E‘Dr' = Exf’mpxc‘ [Df(g(‘]‘{())l

~ By, [D"(XF) (.18)

~pyF

FAE ., [V D7 ()] — 177,

where X is the current events which we want to predict the future, X*" denotes the future
events assigned as a prediction target corresponding to the current frames. The third term in
Eq. 3.18 plays as a role of a regularizer on computing the gradient of the loss function with

the balancing weight ), and it is computed with G(X©), X¥, and t € [0, 1] as follows,

X =1G(X°) + (1 - AT, (3.19)
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The loss of the past discriminator with the past events X' is defined as follows,

Lpp =Excey. [l — DP(GAX)]

~PxC

Exrep, (1 — D" (XF)) (3.20)

FAE ;. [(IV D7 (X)]I3)].

The second term is the regularization term with G(X'), X'*', and balancing weight )\, computed

by Eq. 3.19, and it is defined as follows,

X =t0(X°) + (1 - ) XF, (3.21)

In optimizing AEP with these two loss functions Ly and Lpr for the future discriminator D
and the past discriminator D, The generator G, generates the prediction results X', while the
other, the discriminators, evaluate them for authenticity. For instance, the future discriminator
decides whether each sample that it reviews belongs to the actual future event samples or the
predicted results, and the past discriminator determines whether each sample that it review
belongs to the actual past event samples or the prediction results.

Intuitively, the difference between Lpr and Lpr is an objective of each loss. The objective
of Lpr is maximizing D(X"). On the other hands, the objective of Lpr is an opposite to
Lpr, and it leads to D(X) to zero. This approach is similar to Ying ef al.,[140] applying
an additional term for minimizing the likelihood of noisy information in order to achieve
better performance in training GAN. Consequently, using these two discriminator losses can

improve the robustness of p(X”'|X“) by maximizing a likelihood for correct prediction and
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minimizing a likelihood for the wrong answer.
Additionally, we add additional loss for the latent feature discriminator D* for deriving
precise p(a) as follows,

Lpr =E,. a1 [log(D"(2))]
(3.22)

+ E(_vmpu [l(}g( L — DL (O")}]?

where ar denotes the output of encoder f9¢ on the generator G. D aims to distinguish between
the encoding produced by f9 and the prior normal distribution. In learning AEP, Ly tries to
encode X to a with distribution close to N(0, 1).

The loss function for the generator G is defined by

Lg = Excap, o [P (G(X))]
+Excnp,o[l = DF(G(XO))] (3.23)

| Eanp, [l0g(1 - D*(a))].

In addition to the adversarial learning for events’ past and future, similar to the studies
[140, 141, 125, 112, 124, 132, 142, 120], we adopt the reconstruction error to optimize the
generator G. It is a common way to enforce the output of the generator to be close to the target
through the minimization of the reconstruction error based on the pixel-wise mean square
error (MSE). It is calculated in the form

L;e = Exoxr|XF — G(X°)| (3.24)

2
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Consequently, the loss function for optimizing the generator G is defined by,

Eg‘ — Eg I /\rﬂﬁre, (325)

where A, indicates the hyperparameter to take the weight for the reconstruction loss.
Given the definition of above loss functions, each discriminator and the generator are
trained by maximizing or minimizing the corresponding loss function, and these are repre-

sented as follows,

B dLpr g Wi
Opr = Opr + 1) s’ Opp = Opp + 1 dpr '
. dlpe ’ dLg

B-DL = 9’]_’)1—- i ” dODL ? GG o gg i n@,

where ¢#* denotes the parameters corresponded to the generator G and the discriminators
D", D' and D" on AEP. Algorithm 1 describes how to learn AEP by the proposed adversarial
learning method. In our experiment, we demonstrate that the proposed adversarial losses play

a vital role in deriving more optimal P(X"|X%).

3.5.4 Multi-target random-matching

Additionally, we apply the random-matching manner to train AEP. A constant-matching
method, which fixes a time-interval between an input data and future target data, have
been being utilized in spatio-temporal feature modeling for various visual analysis such as
abnormal event detection [35, 125, 20, 37], action recognition [38, 102], and video generation

[143, 144]. However, we employ a random-matching manner to improve the robustness of the
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model. The random-matching selects future data with the randomly assigned time-interval.

Figure 3.10 illustrates the conceptual comparison between the constant-matching and the

random-matching on a time-series data. In constant matching (Figure 3.10(a)), each X © has

a corresponding X7, and the intervals ¢, between X'“ and A'* are all equivalent as follows

€t = €41 In contrast to the constant-matching, the intervals of random-matching (Figure

3.10(b)) is changeable. Therefore it is possible to assign diverse targets to the input data

in training models. Intuitively, improving the diversity of the training data can affect the

representation learning performance of a given model.

Moreover, we revise the objective func-
tion utilizing the random-matching with re-
spect to the multiple prediction targets. As
shown in Figure 3.10, the random-matching
has a potential that a model can accomodate
various temporal intervals in one training
step. Eq.3.18 is reformulated to process the
multiple targets X1 — { X%}, ,.., where
n is the number of randomly picked targets,

for the input X7, as follows:
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Figure 3.10: Comparison between the concept of
(a) constant matching and (b) random-matching in
learning AEP. The blue and green boxes denote
the input samples X'“ and the corresponding pre-
diction target X' respectively. The black and red
dotted lines indicate the connections between X'©
and X'*. The yellow range defined by 1 represents
the interval for generating the prediction target ran-
domly. ¢; indicates the ¢ interval between X
and X/, In random-matching, various prediction
targets XN — {FiY, 1., where N is the num-
ber of randomly picked targets, can be selected.

= EXEC ~PyC [D P(g(k}('))]

£ DT (X)) (3.26)

D B o [V 2D ()] — 1))
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This matching manner can be easily extended to the loss function for the past discriminator

(Eq. 3.20) and the reconstruction loss (Eq. 3.24) as well. Given randomly picked past event
. e ! : X

samples &, ' {x/"},_,..p, where n is the number of randomly picked targets for

events’ past, Eq. 3.20 applying the random-matching manner is defined by

.
I ¢ :
LHFM = = By, [1 - D (7))
= (3.27)
)\ n i
+ ;Z;E;efmml(llvimp(?f )12)]-

The reconstruction loss processing randomly picked future event samples X f ' are defined

by
l T
L:M'I'RM b ]E Ly ) (JL;F,- - XC 2 ;
b ZI: xo e | X7 = G (3.28)
To demonstrate an efficiency of the random-matching in processing, we train AEP with

different objective functions based on the four matching ways: 1) single-target constant-
matching (STCM), 2) the single-target random-matching (STRM), 3) the multi-target constant-
matching (MTCM) and 4) the multi-target random-matching (MTRM). The experimental
results shown in Section 3.5.2 include the AED performance comparison depending on the

matching manners.

3.5.5 Abnormal event detection and localization

AED based on AEP is straightforward. As shown in Figure 3.8, after AEP training has

been completed, the two discriminators DT and D* are not utilized for the further step for
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detecting and localizing abnormal events. The generator G predicts the future frames X using
a given frames X'“. AEP employs constant matching in the test step. Future frame prediction
using AEP is inherently a stochastic problem, since AEP is only optimized to normal event
frames when AEP take abnormal frame as an input, the prediction results probably would be
poor than normal input. AEP can detect abnormal events by comparing the predicted results
X the corresponding frames X7 in the test step. However, precisely localizing abnormal
events can not be achieved by just computing the likelihood for the prediction results. To deal
with this issue, we employ a sliding window technique for the localization of abnormal events.
AEP can localize abnormal events by comparing the predicted results X the given test frames
X1 based on the sliding window approach.

To compare the two frames X and X7, we formulate a distance metric based on Jeffrey
divergence, which is a modified KL.-divergence to take symmetric property. According to
Rubner et al.,[145], Euclidean distances such as {1-norm and {2-normal are not suitable as a
similarity metric for images since neighboring values are not considered. Jeffrey divergence
is numerically stable, symmetric, and invariant to noise and input scale [146]. The distance

metric based on Jeffrey divergence is defined as follows.

: T
- Ti d €y s
d(X, X" = Z(:n__jl()gq—'j - :rzjlog—'“’),
— Mij 7" my _
Y (3.29)
Tij+ L,
s s 5 g

where 7; ; and TEFJ denote the the pixel value of the coordinate 4, j on the predicted frames X

and the frames as the comparison target X7 respectively.
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As we employ the sliding-window ap-
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Figure 3.11: The visualization results of event ab-
normalities using UCSDPed1 dataset, depending on
the abnormality metrics: [2-distance, x2-statistics,
Kullback-Leibler divergence, and the our metric
(Eq. 3.29). The graph of each plot shows the trend
of abnormality with respect to the time-sequence
and the images shows the visualization results of
event abnormalities.

proach, computing abnormality is conducted

with the small-size 31D window. Therefore, 2
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whether each template contains an abnormal
event or not.

The simple experiments to compare the
discriminative powers of abnormality met-
rics are conducted. Based on the predic-

tion results X and the test frames X7, we compute abnormality using our metric

and three additional distance metrics: 1) [2-distance: \/ Zij(:rij - ;r:}';), 2) x2-statistics:

(Z45=mi;)? e e — 29T evense 52wl ;
>y where m;; = —5-, and 3) KL-divergence: } _,; J-@jl()g;?i—. Figure 3.11 repre-

M

sents the visualization of events” anomaly by projecting the abnormality measurement results
on corresponding frames. As shown in Figure 3.11, the proposed metric spots the areas of
abnormal events more discriminatively than the other metrics. The results using [2-distance
and x2-statistics show a similar trend on the localization of AED results to the results using
our metric. The results using KL-divergence produce many incorrect detection outcomes.
The visualization results can be interpreted as follows. According to Tomasi et al.,[145],

the distance metrics using [2-distance and x2-statistics cannot consider the neighboring
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Figure 3.12: Graphical results for performance analysis of AEPs according to the four matching
manners. (a) contains the ROC curves of AEPs trained by ‘single target constant matching’ (STCM),
‘multi-target constant marching’ (MTCM), ‘single target random matching’ (STRM), and ‘muclti-target
random matching” (MTRM). (b) shows the trend of AEPs’ AUCs, according to the matching manners,
with respect to the number of training step. (c¢) and (d) represents the trends of Lp. and Lg+ according
to the number of training step, respectively. The AUC values on (b) are recorded by every 2K training
steps, and Lp+ of (¢) and Lg+ of (d) are recorded by every 10 training steps. These results are produced
based on UCSD-Ped] dataset, and the ROC curves and the AUC values are produced based on the
frame-level evaluation.

properties, and it is a disadvantage in comparing two high-dimensional objects. Particularly,
anomaly of events can appear with a diverse variation of motion and appearance. Therefore,
simply comparing the vectorial distance is probably unsuitable for comparing the difference
between two objects for AED. Consequently, based on the distance computation results for

each template, we can localize areas of abnormal events.

3.5.6 Experiments

The frame-level and pixel-level measurements are exploited to evaluate AED performance.
Additionally, we compute the area under curve (AUC) and the equal error rate (EER) to

provide a quantitative comparison.
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We carry out the experiment for comparison of AED performance depending on the
matching manners and whether the past discriminator D¥ is applied. UCSD-Ped dataset is
used for this experiment. The hyperparameter settings for training the models are all the
same, and only matching manners are different. AUC and EER are computed for quantitative
comparison. Not only quantitative results are shown but also we analyze the trends of the
discriminator losses Lpr, Lpr, and Lpe, and the generator loss Lg+ during training the AEPs.
For efficiency of experiments, we define the total loss which is a summation of the losses of

the three discriminators as follows,

E’pa = J:DF } ﬁ‘p“ ] ‘C‘I}L,

The AUCs and EERs depending on the matching manners are contained in Table 3.5. The
experimental results demonstrate that applying the past discriminator D¥ can improve AED
performance. The AED performances applying D generally achieves better performances
than the others. Additionally, among the results achieved by the AEPs applying D”, the AEP
trained by MTRM achieve the best performances on UCSD-Ped dataset, compared to the
AEPs, which are trained with STCM, produces the lowest performance for all experiments.
AEPyrM produces AUC of 97.92 and EER of 6.07 for the frame-level evaluation, and
achieves AUC of 74.83 and EER of 31.06 for the pixel-level evaluation on UCSD-Ped1
dataset. It achieves AUC of 97.31 and EER of 7.52 for the frame-level evaluation on UCSD-
Ped2 dataset. Each AUC result shows at least 2% of improvement than the second-ranked

results. The poorest results are achieved by AEPgrcy. The evaluation results of AEPgry on
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Pedl (Frame) Pedl (Pixel) Ped2 (Frame)

Methods "syc EER AUC EER AUC EER
“_Trainin g without the dec riminator for events’ past i)P

AEPstem 8797 16.51 64.31 46.51 75.08 16.52

AEPvtem 94.14  11.09 69.08 39.36 91.12 10.72

AEPsrv 94.52 861 7299 34.01 9243 10.09
AEPymM  96.51 926 7175 38.16 95.19 9.15

Training with the discriminator for events’ past D”

AEPstem  92.61 1372 6983 41.72 80.54 16.78
AEPvtem 95.09 794 7395 35.12 9492 10.71
AEPstrm  95.12 731 7251 3461 95.02 9.1

AEPyrm 97.92  6.07 7483 31.06 9785 7.52

Table 3.5: Quantitative performance comparison of the AED performance on AEPs using UCSD-Ped
dataset depending on applying the past discriminator D7 and the matching manner. The bolded figures
indicate the best performances for each evaluation. "STCM’, "MTCM’, ’STRM’, and "MTRM’ denotes
each model is trained with ‘single-target constant matching’, 'multi-target constant matching’, ‘single
target random-matching’, and 'multi-target random-matching’.

UCSD-Ped1 dataset, produce AUC of 92.61 and EER of 13.72 to the frame-level evaluation,
and achieves AUC of 69.83 and EER of 41.72 to the pixel-level evaluation. Also, it achieves
the AUC of 97.85 and the EER of 7.52 to the frame-level evaluation on UCSD-Ped?2 dataset.

In addition to the quantitative results, the ROC curves and the graph of the trend for AUC
with respect to the training step also show that the random-matching manner can improve the
AED performance of AEP. Figure 3.12(a) and Figure 3.12(b) show the ROC curves for the
frame-level evaluation, and the trend of AUC value with respect to the number of training
steps, on UCSD-Ped1 dataset, respectively. As similar as the quantitative results using AUC
and EER, graph analysis using ROC curves also presents a similar result which is that AEP
trained with random-matching manners achieve better performance than the others. As shown
in Figure 3.12(a), the ROC curve of AEPyry has the steepest gradient. The ROC curves of

AEPstrM and AEPyrem have a similar trend. The worst ROC curve is produced by AEPsteum.
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However, there is a trade-off between the AED performance and the convergence speed of
training AEPs employing random-matching manners. As shown in Figure 3.12(b), AEPstcom
shows the fastest speed in increasing of AUC in the early step for the training, and this trend
is preserved until the number of the training step is over than 30K. This circumstance is also
observed in the trends of the discriminator loss and generator loss. Figure 3.12(c) and Figure
3.12(d) contains the trend of the loss Lp- for the discriminators DF and DF, and the loss
Lp: of the generator G, respectively. In Figure 3.12(¢c), the Lp+ of AEPyry shows similar
tendency to the Lp+ of AEPstem when the number of training step is below than 10K. The
generator losses in Figure 3.12(d) also represent that it is necessary to take more time for
achieving a better solution in using random-matching manners.

These results can be thought the random-matching manner provides more diverse samples,
which can cover more comprehensive representation, than the constant-matching manner,
even if it takes longer time in converging a solution than the constant matching manner.
Consequently, the experimental results justify the benefit of the random-matching manner
to improve the robustness of AEP in detecting an anomaly of events. The experimental
results demonstrate the random-matching manner can help to improve the performance on
the representation learning for time-series data even though it needs a little bit longer time to

train models.

3.5.7 Comparison with the state-of-the-arts

We conduct the comparison between AEP and the various AED methods. The methods

selected for the performance comparison are listed as follows: MDT [62], MIP-TS [28],
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Figure 3.13: ROC curves on the frame-level evaluation and the pixel-level evaluation using UCSD-Ped1
and UCSD-Ped2 datasets. (a) and (b) shows the frame-level and pixel-level abnormal event detection
(AED) ROC curves on UCSD-Ped] dataset. (¢) illustrates the frame-level AED ROC curve. The
X -axis denotes the false positive rate (FPR), and the Y -axis is defined as the true positive rate (TPR).

MPPCA [21], SFM [20], SAAFM [104], Sparse representation [26], Lu er al.,[98], AMDN
[35], Sabokrou ef al.,[110], Hasan et al.,[37], ST-Autencoder [36], Two-stream 3D-ConvINet
[34], Dutta and Banerjee [114], FRCN [115], WTA+SVM [147], DeepGMM [94], NNC
[116], Liu et al.,[125], Liu et al.,[122], Ionescu et al.,|148], Tonescu et al.,[117], SRNN
[118], Plug-and-Play CNN [131], GAN ., [124], MLAD [150], Adversarial Discriminator
[132], Nguyen et al.,[126], DeepOC [151], BMAN [120], ISTL [127], Yan et al.,[142],
VBHMMGD [152], and Chu et al.,[153]. We compare AEP with either the conventional
approaches using hand-crafted features [62, 28, 21, 20, 104, 26, 98] and the recently proposed
methods based on deep learning such as CNNs, recurrent neural networks (RNNs), or GANs
[35, 110, 37, 36, 34, 115, 94, 131, 118, 124, 132, 126, 151]. For efficient experiment, the
comparison with above methods is carried out based on AEPy1rMm-.

UCSD-Ped dataset. UCSD-Ped1 dataset is exploited for both the frame-level evaluation
and the pixel-level evaluation, and UCSD-Ped2 dataset is only used for the frame-level

evaluation, Figure 3.13(a) and Figure 3.13(b) contains the ROC curves for the frame-level
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evaluation and the pixel-level evaluation on UCSD-Ped1 dataset respectively. Figure 3.13(c)
shows the ROC curves for the frame-level evaluation on UCSD-Ped?2 dataset. In comparison
with the other methods based on ROC curves, AEP shows better results than others. In
the experiments using UCSD-Ped1 dataset, as shown in Figure 3.13(a), The ROC curve of
AEPytrM has the steepest gradient when FPR is below than 0.1. In Figure 3.13(b), the ROC
curve of AEPyrM also has a rapid gradient which is able to compare with the existing state-
of-the-art methods [124, 131, 147] with an FPR in the range of 0 to 0.05, and it produces the
superior ROC curve when FRP is higher than 0.05 approximately. However, as shown in Figure
3.13(c), AEPyrrm doesn’t always show good performance. In the frame-level evaluation on
UCSD-Ped2 dataset, The ROC curve of AEPyTry produces a lower gradient than WTA+SVM
[147] in the FRP interval between 0 to 0.09, even though the curve of AEPytrvm shows higher
position than the curve of WTA+SVM [147] in the remaining interval.

The quantitative results using AUC and EER demonstrate the superiority of AEP on
AED. Table 3.6 contains the AUCs and EERs on UCSD-Ped dataset and Avenue dataset.
In the experiments on UCSD-Ped1 dataset, AEPyry achieves AUC of 97.92 and EER of
6.07 from the frame-level evaluation and AUC of 74.83 and EER of 31.06from the pixel-
level evaluation. These figures surpass the previous state-of-the-art performances which are
achieved by GAN /4., [124] and MLAD [150]. GAN /4., produces AUC of 97.4 and EER
of 8.0 on the frame-level evaluation, and ML AD achieves AUC of 70.30 and EER of 35.00
on the pixel-level evaluation. In the frame-level evaluation on UCSD-Ped2 dataset, the best
performance is achieved by Ionescu et al,[117]. lonescu et al.,produces AUC of 97.8, and

it is higher than the AUC of 96.91 achieved by AEPyrrMm. The EER of AEPyrM shows the
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best performance among the comparison targets. Consequently, AEP could not guarantee
outstanding performance for all experiments using UCSD-Ped dataset. However, the overall
experimental results show that AEP can take comparable AED performance to the existing
state-of-the-art methods, and sometimes it can outperform than the others.

Avenue dataset. In the experiments using Avenue dataset, AEPyry is compared with
the listed methods as follows: Lu er al.,[98], Hasan ef al.,[37], FRCN [115], NNC [116], Liu
et al.,[125], Liu et al.,[122], Ionescu et al.,[148], lonescu et al.,[117], SRNN [118], Wang et
al.,[149], Nguyen et al.,[126], DeepOC [151], BMAN [120], ISTL [127], Yan et al.,[142],
and Chu er al.,[153]. The performance of each method has been referred from their studies.
In this experiments, AEPyrMm archives AUC of 90.2 and EER of 10.07. These figures are
lower than the state-of-the-art performance, which is AUC of 90.4 , achieved by lonescu et
al.,[117]. However, these figures get 2-top among the experimental results for the experiments
on Avenue dataset. In piexel-level evaluation, AEPyrrym achieves AUC of 94.91, and the best
performance is produced by [148].

Although AEPyrrym could not surpass the current state-of-the-art methods on this dataset,
the performance gap between AEytry and the existing state-of-the-art methods is below
than 1%. The difference of AUC is 0.2 on the frame-level evaluation, and it is 0.49% on
the pixel-level evaluation. Notably, lonescu ef al.,[117] exploit an object detection approach
for cropping particular objects to generate training samples, and their approach is trained
as a supervised learning manner requiring abnormal event samples. These components can
be regarded as advantages which can affect to AED performance. As these methodological

differences, the performance gap between AEP and the current state-of-the-art method may
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be reasonable.

UCF-Crime dataset. The experimental results on UCF-Crime dataset show the proposed
method can provide comparable performance to the state-of-the-art performance. The per-
formance of AEPy1ry 1s compared with the listed results on Sultani et al.,[99] and Zhong
et al.,[113]. Figure 3.14 shows the ROC curves and the table contains AUCs and EERs on
UCF-Crime dataset. AEPyrv achieves 81.84 of AUC and 23.04 of EER. As reported by
Zhong et al.,, AED based on Temporal Segment Network using RGB images (TSN-RGB)
achieves 82.12 of AUC, and it is the state-of-the-art performance on this dataset.

However, TSN-RGB employs BN-Inception [154] pre-trained by Kinetics-400 dataset
[34] as the backbone. The network structure used to TSN-RGB is a great deeper than the
network structure used in our works. In addition to the depth of the network model, the
scale of the dataset used to train TSN-RGB, also much larger than the dataset exploited to
train AEPyrrv. Kinetics-400 dataset is composed of 300,000 video clips classified as 400
human action classes, so that it can provide more diverse event samples which can help to
improve the feature representation performance of networks. Consequently, these differences
about network structure and dataset can provide great advantages for AED using TSN-RGB.
Therefore, it is unfair to simply compare the AUC figures. Even though TSN-RGB achieves
the state-of-the-art performance on this dataset, AEPytrM can be thought that it is partially
better than TSN-RGB. As shown in the ROC graph in Figure 3.14, the ROC curve of AEPytrM
takes a higher position than the others in the FPR range between 0.05 to 0.27. AEPyrMm
achieves 23.04 of EER, and it is better than TSN-RGB’s one. TSN-RGB achieves 23.54 of

EER. This trend can be interpreted that AEPyrrym can provide more sensitive discrimination
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Figure 3.14: ROC curves on the frame-level AED and the corresponding quantitative evaluation on
UCF-Crime dataset. AEP trained with the multi-target random matching is compared with the methods
listed on Sultani et al.,, and the bolded figures show the best performance among the list methods. -’
indicate the result is not provided.

power in lower threshold than other methods.

3.5.8 Analysis

As shown in the performance comparison with the existing state-of-the-art methods, we
compared with various approaches including the conventional approaches based on hand-

crafted features and recently proposed methods using deep learning. Particularly, among
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Figure 3.15: The localization results of abnormal event detection based on AEP on of UCSD pedestrian
dataset, CUHK-Avenue dataset, Subway dataset, and UCF-Crime dataset. From top to bottom, the
results are produced from UCSD-Pedl dataset, UCSD-Ped2 dataset, CUHK Avenue dataset, the
entrance video and the exit video on the subway dataset, and UCF-Crime dataset.

the deep learning-based methods, some studies [ 124, 125] show a similar approach to AED.
GAN /4e,, [124] and Adversarial discriminator [130] employ a generative adversarial network
for AED, and Liu er al.,[125] address AED as a future frame prediction problem. Addition-
ally, various studies exploits an adversarial learning as a kind of complementary function
or transform AED setting to other problem settings such as classification [116, 117, 122]
or prediction [125] problems, to improve the robustness of their AED methods. Not only
comparison with the approaches exploiting GANSs, but also we have compared AEP with
the approaches which deal with AED by transferring to other problem domains such as

classification setting [116, 117, 122].
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Notably, AEP presents superior AED performance than the others employing GANs
[124, 125, 132]. Additionally, AEP’s AED performance surpasses Liu er al.,[125] and Liu
et al.,[122], which deal with AED as the future frame prediction and use optical flow and
prepared abnormal event samples in the training step. These results demonstrate that the
proposed adversarial learning for events’ past and future, can improve the AED performance
without auxiliary information such as optical flow and explicit abnormal event samples in
the training step, by forcing AEP to learn the mapping function to predict event’s future and
preventing that the function learns a wrong correlation for events” past.

In some experiments, AEP does not show the best performance for the following reason.
In training AEPs, AEP does not utilize pre-processing procedures, ¢.2. object detection, which
can remove noise information such as background or frames which contains nothing for
events. Some part of the training samples included in Avenue dataset does not contain any
events and even some frames have some noise such as motion blurring.

These issues can affect to APE’s mapping function because it can lead AEP to poorly opti-
mized solution in the training step. To handle this issue, object-centric approaches [117, 113]
are recently proposed, and Ionescu et al.,[117] shows better results than AEP in the ex-
periments on UCSD-Ped2 dataset and Avenue dataset. However, even though AEP could
not achieve the best performance for some part on datasets used for evaluation, the over-
all experimental results demonstrate that AEP can outperform the existing state-of-the-art

methods.
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3.6 Conclusion and Discussion

We propose AEP for event anomaly detection and localization. AEP derives the mapping
function in order to model the correlation between events’ current and future using the adver-
sarial learning, which can help to improve prediction performance on AEP. The experimental
results demonstrate that AEP trained by the proposed adversarial learning approach can
provide better performance than the ones produced by existing state-of-the-art methods for
AED.

Although AEP achieves the state-of-the-art performance on AED, there are some draw-
backs which should have to consider in the future. First, a large-scale dataset for normal
events is necessary to establish a well-generalized modal to cover the various scenarios even
though AEP is learned by the generative approach based on unsupervised learning. This
issue, however, is an inherent problem for almost all existing methods based on deep neural
networks for visual recognitions. Second, AEP is based on 3D-CNNs so that it requires a
high computational resource to operate it, and the computational cost to localize the results on
AED is exponential since the localization is carried out using the siding-window technique.

These drawbacks would be taken into account for our future work. Primarily, we would
like to study about optimization methods which can improve the representation learning
performance on AED, even if a model cannot utilize a large-scale and well-categorized
datasets. In second, we would like to develop the knowledge distillation method to downsize

the network applied in AED in order to reduce the computational cost.

-79 —



Pedl (Frame) Pedl (Pixel) Ped2 (Frame) Avenue (Frame) Avenue (Pixel)

et AUC EER AUC EER AUC EER AUC EER AUC EER
MDT [62] 81.4 25 44.1 58 829 25 - - - -
MIP-TS [28] - - 649 413 - - - - - -
MPPCA [21] 59 40 20.5 81 69.3 30 - - - -
MPPCA+SFM [21] 66.9 32 21.5 72 61.5 35 - - - -
SEM [20] 67.5 31 1927 79 55.6 42 - - - -
SAAFM [104] 77.6 29 - - - - - - - -
Sparse representation [26] 89.5 19 50.2 53 - - - - - -
Lu et al.,[98] 91.8 15 63.8 59.1 - 809 275 - 929 -
AMDN [35] 92.1 16 67.2  40.1 908 17 - - - -
Sabokrou er al.,[110] - - - - 824 19 - - - -
Hasan er al.,[37] 810 279 - - 900 21.7 769 34.0 - -
ST-Autencoder [36] 899 125 - - 374 12 - - - -
Two-stream 3D-ConvNet [34] 86 22 04.4 45 83.2 24 - - - -
Dutta and Banerjee [114] - 19.8 - - - 22.3 - - - -
FRCN [115] - - - - 0922 139 8908 16.7 - -
WTA+SVM [147] 81.3 279 56 468 96,6 89 - - - -
DeepGMM [94] 925 151 699 o049 - - - - - -
NNC [116] - - - - - - 88.9 - 94.1 -
Liu et al.,[125] 83.1 - - - 954 - 84.9 - - -
Liu er al.,|122] 71.8 - - - 92.21 - 54.4 - - -
Ionescu er al.,| 148] 68.5 - 52.4 - 82.2 - 82.6 - 954
Ionescu er al.,[117] - - 97.8 - 90.4 - - -
sRNN [118] - - - - 92.21 - 81.71 - - -
Plug-and-Play CNN [131] 957 8.0 645 408 884 18.0 - - - -
GAN /g [124] 974 8.0 7030 3502 935 14 - - - -
Wang et al.,[149] 90.05 135 - - 899 115 903 15.5 - -
Zhong et al.,[113] - - - - 92.8 - - - B -
MLAD [150] 8234 235 7030 35.00 935 14 - - - -
Adversarial Discriminator [132]  96.8 7.0 70.8 3400 0955 11 - - - -
Ngauyen et al.,[126] - - - - 96.2 - 86.9 - - -
DeepOC [151] 835 234 63.1 - 969 88  B86.6 18.5 - -
BMAN [120] - - - - 96.6 - 90.0 - - -
ISTL [127] 75.2 298 - - 91.8 89 768 292 - -
Yan er al.,[142] 750 324  67.6 - 91.0 155 79.6 27.5 90.6 -
VBHMMGD [152] - 29.0 - - - 13.8 - - - -
Chu er al.,[153] 90.9 16.2 - - 90.2 173 821 - 93.7 -
AEPyTRM 9792 607 7483 31.06 9731 752 90.2 1007 9491 102

Table 3.6: Quantitative performance comparison of the AED methods using UCSD-Ped dataset and
Avenue dataset. ”-”" means the results are not provided. The bolded figures indicate that the best
performance among them.
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Chapter 4

Drowsiness Detection for Intelligent Vehicle

4.1 Driver Drowsiness Detection

Driver drowsiness detection is one of the essential functions in the advanced driver
assistant systems (ADAS) for preventing fatal accidents from the people on a road. Many
drivers and pedestrians are killed or significantly injured by drowsy driving. The report of
the National Sleep Foundation’s Sleep in America poll presents 60% of Americans have an
experience of drowsiness driving, and 37% have experienced falling asleep while driving in the
recent one year. According to the report of the national highway traffic safety administration
in the USA, the driver fatigue is closely related to the 100,000 of car crashes reported by
polices. By this report, this car crashes made 1,550 deaths, 71,000 injuries, and 12.5 billion in
monetary losses [156]. Also, the car crash by the driver drowsiness is not unique to drivers
in the USA, drowsiness contributes to as many as 7% of crashes in the United Kingdom
and 3.9% of crashes in Norway[157, 158]. The majority of drowsiness-related car accidents,
approximately 80%, might be classified as individual vehicle run off road crashes, where a
driver lost the controlling their vehicle and eventually departed their lane or smashed into the
rear of the car ahead [159]. These figures may be the tip of the iceberg because of not only
it is hard to attribute the cause of crashes to drowsiness but also the criteria for recognizing

drowsiness differ depending on the driver [156]. There is no Breathalyzer equivalent for
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drowsiness. Therefore, in order to prevent these losses of life and property, it is an important
challenge to develop a driver drowsiness detection method.

The approaches for driver drowsiness detection could be classified based on their target
domain to analysis. One approach is to directly analyze the driver’s behaviour to identify
changes in driver behaviour. This approach analyzes facial elements such as eye and mouth
using visual sensors [160, 161, 162, 163, 164, 165, 166], or detects particuar patterns in
electrophysiological signals occurring when a driver is falling asleep [167, 168, 169, 170].
Other approaches indirectly infer a driver’s state through analysis of signals extracted from
the steering system [171, 172, 173, 174, 175].

The most commonly applied and theoretically rigorous approach involves the analysis of
electrical bio-signals e.g., electroencephalogram (EEG) or facial elements such as eye based
on percent eye-closure over a fixed time window (PERCLOS) [176]. Dinges et al. had verified
that the approach using PERCLOS had over than 90% accuracy in recognizing degraded
performance during a vigilance task. This figure demonstrated that the PERCLOS was more
reliable across drivers than EEG, blinks, and head position in the study [176]. Khushaba et al.
proposed the driver drowsiness detection method which employs fuzzy mutual-information-
based wavelet packet transform model for extracting drowsiness-related information from a
set of EEG, electrooculogram (EOG), and electrocardiogram (ECG) signals [167]. Papadelis
et al. developed drowsiness monitoring system using onboard electrophysiological recording
systems [170]. Aforementioned methods identify the change of patterns of signals such as
brain activity or heartbeat to measure the strength of fatigue of drivers. These signals reflect

brain electrical activity and can provide more discriminative information than other features
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in analyzing the driver’s conditions. For these reasons, the methods using biomedical signals
captured from drivers had provided relatively higher accurate detection results than other
methods based on visual analysis or measuring the steering signals. Nevertheless, the main
disadvantage of these methods is that the sensing equipment for the physiological signals
such as EEG, ECG, and EOG, must be attached to the driver’s body. The attachment of those
sensors could cause inconvenience to drivers when they are driving. Additionally, the high
price of sensors is one reason that they can not be used in a practical drowsiness detection
system.

In addition to the methods of directly recognizing the drivers’ condition through the
analysis of biomedical signals, the approaches based on visual analysis of facial elements
generally employ computer vision techniques such as object detection and tracking to find
the interesting objects such as eye or mouth, on the image containing the driver’s face
[160, 161, 162, 163, 164, 165, 166]. Garcia et al. proposed a system which consist of three
steps [160]. Their system initially detects and tracks face and eye, and then to stabilize the
performance of analyzing the status of the eye in various illumination conditions, the system
conducts image filtering. This system evaluates the closure status of the eye using PERCLOS
measurement. Mbouna et al. provided the analysis method for a visual feature to understand
the closure state and head pose. The proposed method monitors a driver using a single camera
without any source of light [161]. Wang et al. presented a solution for the situation that driver
is wearing glasses by combining two analysis methods for the status of eye and mouth [162].
The method proposed by Dwivedi et al. extracts features using a convolutional neural network

and detects eye blinking, eye closure, and yawning [177]. Generally, these methods assume

- 83 —



that facial expressions of extremely tired drivers, such as eye blinking, yawning, and eye and
head moving, are different from facial expressions represented when drivers are not tired.
These approaches classify the driver’s condition as whether he/she is asleep or not, using the
hand-crafted features such as the histogram of gradient (HoG) [60] and Haar-like features
[178]. To extract these facial feature information, visual sensors like an RGB camera or an
active infrared sensor should be installed on the vehicle dashboard, sun visor, or overhead
console for taking face images of drivers. However, despite the convenience of installation,
the methods based on video analysis using visual sensors solely, provide unstable detect
results in many situations. For example, general cameras cannot capture clear images at night
without illumination system. The development of the drowsiness detection method using
visual analysis, invariant to the light condition is still an open question.

The limitations of the above-mentioned approaches have led researchers to attend to
the signals from a steering system such as the deflection of the top of the wheel from
the zero point [179]. These signals are similar to electrical bio-signals in that they require
significant pre-processing and transformation before they become viable input measures
[180]. Sayed and Eskandarian proposed a steering-wheel angle based method that filtered
raw information for steering angle for the elimination of road curvature events, and then
discretized into binary signals to represent steering patterns [180]. This method detected the
drowsiness of drivers with nearly 90% accuracy. Similarly, Krajewski et al. presented an
approach to process raw steering-wheel angle data into features represented by the signal
in the time and frequency domains [181]. Ersal et al. presented an approach to recognition

of driving behaviours [171], which is based on support vector machines (SVM) [182]. This
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approach systemically assists determination of whether a driver is asleep or not by interpreting
behaviours of drivers using the linear discriminative model. Takei et al. [174] estimated a
driver’s fatigue by analyzing steering motions with the fast Fourier transform (FFT) and
Chaos characteristics. These methods judge whether a driver is falling into a drowsy state by
analyzing signals such as variation of velocity, acceleration, breaking, and gear change, that
are recorded from the sensors embedded in steering systems. These methods are not focused
on the detection of driver drowsiness directly. They try to recognize the unstable vehicle
movements that are caused by various intrinsic and extrinsic reasons from analyzing steering
signals. Consequently, it can provide a more flexible system to detect unstable movements
than other systems which are only focused on the detection of driver drowsiness. However,
many automobile manufacturers in the world embed a particular steering system in their
vehicles. In addition, these signals cannot be a clear basis to distinguish whether a driver is
sleepy or not since every driver has not only a different personality but also a different driving
habit.

Recently, deep learning architectures have been successfully used to solve various com-
puter vision problems, such as image recognition [29, 183], object detection [30, 184], gesture
recognition [31], image segmentation [185], and action recognition [32, 186]. In particular,
the deep learning methods [32, 186] show good performance in analyzing video streams to
recognize specific actions when compared with conventional methods based on hand-crafted
features [38, 39]. Although various methods [38, 39, 40] to extract superior hand-crafted
features have been proposed, the key to these successes is a rich and discriminative repre-

sentation extracted from multi-layer nonlinear systems in the deep learning approaches [35].
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Figure 4.1: Illustrations of the processes of general represenration learning and adaptive representation
learning on a classification task

We had adopted the convolutional neural network (CNN) and multi-layer fully connected
neural network (a.k.a., deep neural network) to discover significant time-space features, and
showed the possibility of the deep learning method for drowsiness detection in previous
works [187]. In our previous works, we had proposed the driver drowsiness detection method
exploiting extra scene condition prediction to improve discriminative properties of learnt
representation. However, despite outperforming in drowsiness detection, the previous method
had a critical drawback in generating representations. The previous method had a possibility
that the method generates extremely sparse representation which cannot contain sufficient
information to detect drowsiness. This work is improved and extended from our earlier work

[187], and we propose an end-to-end learning framework for a novel representation called
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self-reinforced representation for drowsiness detection.

The self-reinforced representation learning is a representation learning process to take
the feature focused on some particular condition using auxiliary information (a.k.a., meta
information). When the training dataset can be classified to several conditions, whilst the
normal representation learning perform to extract generalized features from overall training
data the self-reinforced representation learning can extract more specific representations
reflecting given conditions. Figure 4.1 represents the comparison of processes about the normal
representation learning and self-reinforced representation learning. An auxiliary information
has been used to improve the performance of the deep learning model in many computer
vision studies [188, 189]. Hong et al. proposed deep learning system using transferrable
knowledge to the scene segmentation in training phase [188]. Zhang et al. proposed a face
alignment method using the result of landmark detection as auxiliary information [189]. These
methods tried to improve the performance of their solutions by learning the features biased to
extra information that could help to explore useful features in their target domains. As with the
methods described above, the concept of the self-reinforced representation could be possibly
interpreted as a representation biased to some conditions. However, in compared to the above
methods which use extra information solely in training phase as prior knowledge, the proposed
framework can generate the information which can help to improve the discrimination of
the learnt representation during not only the training task but also testing task. By using this
paradigm, the proposed framework can immediately generate the representation which adapts
to the interpreted results.

The proposed framework is composed of four models consisting of representation learning,
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scene understanding, feature fusion, and drowsiness detection. The representation learning
model discovers the rich and discriminative representation that can describe the motion
and appearance of an object within the consecutive frames simultaneously. The scene un-
derstanding model identifies the various scene conditions that relate to driving conditions,
e.g., illumination conditions and wearing glasses. The feature fusion model generates a self-
reinforced representation which is biased to a specific scene condition as opposed to the
general spatio-temporal representation. The proposed framework detects drivers drowsiness
in various situations accurately by using this self-reinforced representation. The main con-
tribution of this work is the representation learning framework that could be adapted to the
particular scene conditions via understanding the scenes and generating the condition adaptive

representation.

4.2 Self-reinforced Representation Learning Framework

4.2.1 Architectural details

The proposed framework is based on four models for representation learning, the scene
understanding, the feature fusion, and the drowsiness detection. The representation learning
model f; based on 3D-DCNN is used to extract the spatio-temporal representation from an
input data. The scene understanding model consists of four sub-models fy. fi. fi, fe for
interpreting the condition of glasses, illuminations, and movement of facial elements. The
fusion model [y, generates self-reinforced representation which can acclimatize the scene
conditions. The detection model f4.; determines whether a driver is sleepy or not. Figure 4.2

shows an overall architecture of the proposed framework. The brief explanation for how to
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Figure 4.2: Overall architecture of the proposed framework. The red boxes with bold line denote the
models, and the black boxes drawn by dotted line define extracted features or outputs of each model.

generate self-reinforced representation and detect drowsiness of drivers, using the proposed
framework is as follows. Initially, the representation learning based on the 3D-DCNN extracts
a feature that can describe motion and appearance from a video clip simultaneously. Secondly,
the scene understanding predicts five scene conditions that associated with wearing glasses,
illumination conditions, and facial elements using the spatio-temporal feature extracted from
the representation learning. The scene understanding results are represented by a vector that
is defined by the one-hot encoding method. The one-hot encoding is one of the encoding
approaches which indicates the state of a system using the binary values. The encoding result
is represented by the group of bits among which the legal combinations of values are only
those with a single high (1) bit and all the others low (0) bits. Then, feature fusion learns
a self-reinforced representation by agglomerating the spatio-temporal representation and
the one-hot vectors. Finally, the detection model identifies a state of driver drowsiness by
analyzing the self-reinforced representation. In the following, we will describe the detail of

information of each model and training scheme of the proposed framework.
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4.2.2 Spatio-temporal representation learning

In this section, we describe the representation learning model using 3D-DCNN for extract-
ing the spatio-temporal representation from given mutlitple consecutive frames. The objective
of the representation learning is discovering a rich and discriminative feature from inputted
consecutive frames. Videos taken by the frontal facing camera in the display units of a vehicle
can be variously modified depending on the various conditions of the vehicle interiors or
exteriors, such as illumination conditions and an interior design of a vehicle. When drivers
feel drowsiness, their facial elements make various changes, and these changes would be
interpreted as either a shift in shape or change of motion. Therefore, to detect a drowsiness
of drivers, we have to consider the representation which can describe spatial information
(appearance) and temporal information (motion) simultaneously. It is impossible to estimate a
temporal information using only a single frame since a single frame cannot contain a change
according to a time sequence. When we consider these limitations observed when a input is a
single frame, it is necessary to use multiple consecutive frames as an input to discover the
spatial and temporal information simultaneously. In this work, we employed 3D-DCNN to
discover various spatial and temporal change in given multiple consecutive frames.

Let x € RV*H*T denotes a training video clip where W, H, and T are the width, height,
and the temporal length respectively. For a given input video clip x, the representation learning

based on the 3D-DCNN extract a spatio-temporal representation as

a=filz;0:), ac R BxDd 4.1
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where 0, is the parameter vector of the representation learning, and a is a learnt spatio-
temporal representation. The spatio-temporal representation is defined as the activation
values of the hidden units in the last convolutional layer of 3D-DCNN of the representation
learning model. W,,, H,, and D, denote the width, height, and depth of the spatio-temporal
representation. The 3D-DCNN in the representation learning is composed of six convolutional
layers and two pooling layers. Figure 4.3 shows the architectural detail of the 3D-DCNN in
the representation learning. To discover a spatial and temporal feature simultaneously, we
employed a 3D local receptive field suggested by Tran et al. [33]. The convolutional operation

based on 3D local receptive field can be defined as

W, H, D,

= p[zzZ(z.rt-‘j,m:mk Fb)] (4.2)
i ik

where a is an activation value of the hidden unit, and v, w, and b are the input value, the
weight, and bias respectively. W, H,. and D, denote the width, the height, and the depth of
3D local receptive field, and p is an activation function for the convolution layer. We adopt
the Rectified Linear Units (RelLUs) [5] for the proposed 3D-DCNN. While the ordinary 21D
structure of the kernel (local receptive field) in 2D convolution layers can extract spatial
information only, the 3D structure of the kernel in 3D convolution layer allows to us capturing
the spatial and temporal features simultaneously. The extracted representations which contain
spatial and temporal features convey to the scene understanding model and feature fusion

model to identify the various scene conditions and generate the self-reinforced representation.
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Figure 4.3: [lustration of the 3D-DCNN in representation learning module. The green box and red
box denote an input data and extracted spatio-temporal representation respectively, and the blue boxes
represent convolution layers and pooling layers. Numbers located in the upside of the boxes represent
the depth of each layer, and numbers below the boxes illustrate the dimensionality and structural detail
of the kernel in each convolutional layer.

4.2.3 Scene understanding

The goal of the scene understanding is interpreting of the scenes with drivers, and un-
derstanding the various condition of drivers that can be categorized by the physiological
and environmental conditions such as movement of facial elements, wearing glasses, and a
difference between a day and night. These interpreted information help to train the framework
for adapting the learnt representation to the various scene conditions. We hypothesize that
each video clip is associated with the scene conditions and a driver drowsiness status. These
are represented by either ground-truth (in training phase) or prediction results (in the inference
phase).

In this work, the scene condition contains the three categories of the facial elements
and one category for the status of glasses and illumination: 1) conditions of glasses and
illumination Ly, 2) head £}, 3) mouth £,,, and 4) eye L.. We define states of facial elements

and the conditions for glasses wearing and illumination using a one-hot vector. The detailed
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explanation for the annotation of each scene condition is described in Table 4.2.3. We
adopt a fully connected neural network since there is a possibility that given spatiotemporal
representations have complex distributions which can not be modelled by a linear kernel. The

predictions of conditions using the scene understanding model are written by

L= fala;0y), Ly € R

ﬁh- = fn(a; ), Lnpe€ REnx1
4.3)

'C"m- = f-m_((l; H'm.); ‘C-m. = HL”‘Xl

L. = f(a;0.), L€ R

where £ € {;Cngg, Yo B [lc} are predicted scene conditions associated to input data x, and
L € {Lg, Lp, Ly, L.} are dimensions of each annotation for the condition containing glasses
and illumination, head, mouth, and eye. 6 € {0y, 0. 0,,,0.} are the parameters of the each
model that defined by the fully connected network in the scene understanding model. Each
model is composed of two hidden layers and a corresponding output layer. The aforementioned

models are represented as

0 = fo{ fr2lfr1(@Why + bp1)Wha + bpo| W, + by} (4.4)

where fn1, fn2, and f, are activation functions of the first and second hidden layers and an
output layer respectively. a is reshaped a spatio-temporal representation which is extracted
from the representation learning model based on 3D-DCNN. W), W, and W, are weight

parameters of two hidden layers and the output layer. by, b2, and b, are the bias parameters
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of each layer. The learning procedure of each sub-model in the scene understanding is
similar to the back propagation algorithm [190]. Each sub-model estimates a condition that
corresponding to the given spatio-temporal representations a, then computes the difference
between the predicted conditions and annotations to train the parameters of the network
of the sub-model. The dimensionalities of the outputs for each scene understanding model
correspond to their target domain to predict. For example, the dimensonality of the output o
of the scene understanding model for glasss and illumination conditions is five, because of the
model is designed to identify the conditions defined as five classes. For a given spatio-temporal
representation as input, the scene understanding model is trained to optimize the objective

function defined as follows

0d,a_qi Oh0m 0

h:.su([j:' ‘C'; H) = Tl’]iﬂ j Z[Hyi(ﬁgh Eyi)
i 4.5)

'E'Eh(‘ch.: f'h.) i’ Em(ﬁme ‘Cm) 'i' Eﬁ(ﬁt’?! ‘Cr’)]

where £ € {Ly, Ly, Ly, Lc} denote annotations of input data, and Fy, By, E,,, and E,
denote loss functions defined by the softmax cross-entropy loss between the annotation and
predicted results. 3 is a hyper-parameter for regularization of the summation of values of
error functions. The details of training and inference tasks are given in Section 4.3. The
spatio-temporal representation and the outputs of the scene understanding model are then

combined to produce the self-reinforced representation explained in the following subsections.
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Table 4.1: Annotations for the sub-models in the scene understanding and its status.

Scene condition Category One-hot vector Condition
1 10000 Day bare face
: : o0k 2 01000 Day glasses
\Hssesandallumination 300100 Nigﬁtgglasscs
ST 4 00010 Night bare face
5 00001 Day sunglasses
1 100 Normal status
Head condition 2 010 Looking at both sides
3 001 Nodding
| 100 Normal status
Mouth condition 2 010 Talking and laughing
3 001 Yawning
e n o gt 1 10 Sleepiness eye
Syecondiion 2 01 Normal status

4.2.4 Feature fusion

The objective of the model for feature fusion is to learn a set of self-reinforced represen-
tations from the given spatio-temporal representation c and its associated scene condition
annotations £ € {[fgglfh.ﬁnm.ﬁc}. Given the spatio-temporal representation extracted from
3D-DCNN o € RWexHaxDa and its associated and predicted scene conditions £, the fusion
model discovers a set of self-reinforced representation 3. The self-reinforced feature vector 3
is generated by using the multiplicative interaction approach proposed by Memisevic et al.,
[191]. Hong et al. observed that the high-order dependency between relevant features can be
captured by using element-wise multiplication interaction between the feature maps [192]. To
train the proposed framework that generates the combined representation which needs joint

learning between the multiple resources, we refer to the training procedure proposed by Hong



et al.. [192]. The fusion model is defined as follows

8= fralce, C;070) (4.6)

B =Wer(Wireaat @ W lg @ Wilh
4.7)

QWL @ WeL,) + by
where /3 denotes the unnormalized self-reinforced representation, by, € R is the bias
of the fusion model, and © denotes element-wise multiplication. The weights are given by
Wy, € RM*4 W, € REWallaDa gnd W, Wi,, W,,, and W, are defined as the specific
sizes based on the dimensional scale of each associated annotation. The variables M and d
denote the number of hidden units in the fusion model. This 5-way tensor product can capture
the correlation between the input domains containing the spatio-temporal representation and

the scene conditions.

However, the element-wise multiplication with the spatio-temporal representation and the
outputs of the scene understanding empirically computes values that are close to zero. These
computed values can influence not only the result of the fusion model but also computational
procedure when the multiplication results exceeded the range that can be represented by
computation machine. We adopted a normalization scheme to prevent values close to zero
for avoiding the computational errors and finding high-order dependency between the spatio-
temporal representation and the identified scene conditions. To prevent computational error

and to pay attention to only a scene condition, we normalize 3 to v using the softmax function
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Figure 4.4: Ilustration of the deep spatio-temporal representation and condition-adaptive represen-
tation according to input data. (a) Input frames, (b) Deep spatio-temporal representation, and (c¢)
denotes condition-adaptive representation obtained by the fusion model fr,. Two images in (b) and
(c) represents the visualization of activation results of hidden units in representation learning and
feature fusion modules. The proposed condition-adaptive representation learning framework adaptively
discover the conditional feature in an input volumes depending on the result of the scene understanding
model.

in [185, 193]. The normalization is formulated as follows

> exp(f;)
where [3; represents i-th element of the unnormalized joint feature, and v; is ¢-th element of
the normalized fusion feature. Intuitively, v represents a self-reinforced representation defined
over all spatio-temporal representations and the corresponding scene conditions. Figure
4.4 shows the input images, the spatio-temporal representations, and the self-reinforced
representations. The self-reinforced representations are then used as an inputs to the detection

model, which is explained in next section.
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4.2.5 Drowsiness detection

The fusion model described in the previous subsection generates a set of self-reinforced
representations v, which provide scene adaptive features containing information of facial
elements and illumination of drivers. The drowsiness detection of the proposed framework
using the given self-reinforced representation v in Eq. (10) is carried out via additional neural
networks. As same as the scene understanding model, we put an additional fully connected

deep neural network on top of the fusion model as follow:

Odet — fdx’:’:t(t!; QdetJ- (4.9)

where o04.; denotes the output of the detection model, and 64 is the model parameter. The
output of the fully connected network is consists of two units: non-drowsiness unit and

drowsiness unit, to classify the drowsiness of a driver. To compute the likelihood of the

driver drowsiness, we apply the soft-max function Ztﬂ -
k=1"

- which reflects the drowsiness

and non-drowsiness degrees of input. Using the soft-max function, we can detect the driver
drowsiness in each input. A high value of the non-drowsiness unit signifies that a driver in
the input frames is likely to be awake, and a high value of the drowsiness unit signified that
the driver is falling asleep. An optimization scheme for both fy, and f4.; operates under
the detection objective. Our detection model is trained to minimize the detection loss using

detection annotation associated with fusion feature, and representation as follows:

004t “—

min Z Eget(0det, Odet) (4.10)
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where 04 18 a ground-truth value that corresponds to each input data x, and F4.; denotes the
objective function of the detection model. We used the softmax cross-entropy function as the
objective function for F;.¢. The objective function is worked to all models embedding into

the proposed framework.

4.3 Training and Inference

The training of the proposed framework has two objectives including the scene understand-
ing objective in Eq. (7) and the drowsiness detection objective in Eq. (12), and the harmony of
those two objectives is essential for achieving a superb locally optimized solution. Combining
Eq. (7) and (12), the overall objective function is defined by

min > (1 = MEw(Le, Le) + AEaet (0, 6p)) 4.11)

eci-.gsmef ~9D

i

where A is a parameter for balancing during training two modules for the scene under-
standing and drowsiness detection. The objective function can optimize the four modules of
the proposed framework simultaneously. However, when we begin the training, we do not
train the all models of the proposed framework simultaneously. The overall architecture (see
Fig 2.) shows that the proposed framework is sharing the output of the representation learning
model, and also denotes that the representation learning and scene understanding models can
considerably influence to the other models (feature fusion and drowsiness detection). First,
we train the representation learning and scene understanding models during n steps. After

that, we train all models containing the feature fusion and detection models.
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4.3.1 Data augmentation

The most general approach to reduce

Qriginal training sample Data augmentation
Multiple censecutive frames)  Based en image pyramid

overfitting on a given training dataset is ar- a ”

Reult of data sugmentation

tificially enlarging the dataset using label-
preserving transformations [5]. In this work,
we apply the data augmentation based on hor-

EGMALTAEIOOANOT. SC MAED DyTatd Figure 4.5: Ilustration for the procedure of the data

augmentation. Original training sample and the ro-
tated sample of it generates another training sam-

) . ) : A ples by using the image filtering such as Gaussian
tion of an image with very little computation  fer.

technique. This approach allows transforma-

so that we can make an additional dataset
without huge computational load. We generate horizontally flipped images from the original
images, and these original images and flipped images are transformed by using the image
filtering methods based on the Gaussian filter. Figure 4.5 illustrates the procedure of the
data augmentation. We conduct this by extracting training patches using various values of
variations and training our proposed framework on this extended dataset. In our experiments,
we used three different variations to generate additional training samples by using the image
pyramid paradigm. These two types of data augmentation approaches can sufficiently increase
the number of the training samples. Without this scheme, our proposed framework suffers
from substantial overfitting, and it can converge to a poorly local optimized solution.

To detect the drowsiness of drivers from input video clip, the proposed framework gener-
ates spatio-temporal representations using the representation learning, and then the spatio-

temporal representation is used to understand scene conditions. these two pieces of information
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are combined to produce the self-reinforced representation. Drowsiness is detected by using

this self-reinforced representation.

4.4 Experiments

4.4.1 Benchmark dataset

Previous studies [167, 174, 175] on driver drowsiness detection attempted to recognize
small cases in the private dataset which is constructed in their own experimental environment
for driver drowsiness detection. Abtahi et al. provided a publicly-available dataset for yawning
detection [194]. However, it 1s still insufficient for a comprehensive drowsy driver study. We
used the NTHU Drowsy Driver Dataset (NTHU-DDD Dataset) to demonstrate an efficiency of
the proposed framework for the drivers drowsiness detection. It is too difficult and dangerous
to construct a dataset for detecting of driver drowsiness detection in real situations. The
NTHU-DDD dataset is composed of several videos containing a driver who was sitting on a
car secat and playing a racing game with driving simulator wheel and pedals. The drivers in
the dataset conducted various facial expressions during video recording. The total time of the
entire dataset is about 9 and a half hours.

The NTHU-DDD dataset is composed of three subsets for training, evaluation, and test,
which are composed of non-redundant video files. Each subset consists of the videos which
contain diverse situations for the condition for drivers that is captured using visual sensors
such as a camera and an active infrared (IR) sensor. The entire dataset including training and
evaluation datasets contain 36 of drivers of different ethnicities recorded with and without

glasses/sunglasses under a variety of driving scenarios. The driving scenarios include normal
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Figure 4.6: The example snapshots of NTHU Drowsy Driver Detection Dataset (NTHU-DDD Dataset).
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Figure 4.7: The illustration for the concept of temporal I0U.

driving, yawning, slow blink rate, falling asleep, and burst out laughing, under day and
night illumination conditions. All videos contain frame-level annotation for the drowsiness
condition. The video resolution is 640 x 480 in AVI format. Figure 4.6 shows example
snapshots of the NTHU-DDD dataset.

The training dataset is composed of subsets that are composed of 18 subject folders. Each
subject folder contains videos recorded in various driving condition. Each subset is classified
into four scenarios defined as the condition of the glasses and illumination conditions (i.e.,
glasses, bare face, sunglasses, night glasses, night bare face). Each scenario contains four
videos with different situation and corresponding annotation files. The evaluation dataset
provides four subject folders and each subject contains five videos with different scenarios
and corresponding annotation files. The training dataset is composed of 360 videos (722,223

frames), and the evaluation dataset contains 20 videos (173,259 frames). In this work, we
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Table 4.2: Validation accuracies of the scene understanding model using the evaluation dataset in
NTHU-DDD dataset.

Scenario Glasses and illumination Head Mouth Eye
Day bare face 0.99 0.99 0.98 0.89
Day glasses 0.97 0.93 0.95 0.81
Day sunglasses 0.98 0.97 0.78 0.78
Night bare face 0.99 0.95 097 (.82
Night glasses 0.97 0.96 0.88 0.92
Average 0.98 0.96 0.912 0.844
Total average 0.924

only used training and evaluation datasets because test dataset can not publicly accessible
and the test dataset not contains annotation for performance evaluation. We used all given
training data to train the proposed framework. We make a small video clip that consists of
five consecutive frames, and assign an annotation about the scene conditions and drowsiness
status.

Unfortunately, the given training data provides frame-level annotation, so that we em-
ployed a concept of the intersection over union (IOU) [195], in order to change the frame-level
annotation to clip-level annotation. Figure 4.7 shows the concept of the temporal IOU used
in our experiment. We assume that the annotation value of each clip is defined as a value
occupying more than 50% among the frame-level annotations. Therefore, we defined the
annotation value as the value which is observed more than three frames in each clip in our
experiment. In addition, we downsample all frames using a bilinear interpolation method
in Opency library to the uniform size with width of 224 pixels and height of 224 pixels for

improving an experimental and time efficiencies.
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Table 4.3: Average accuracy comparison of the drowsiness detection approaches in different situations
using the evaluation dataset in NTHU-DDD dataset. The bolded values represent the best accuracies
in each scenario and the averages.

Scenario LeNet[196] AlexNet[5] VGG-FaceNet[197] LRCN[198] FlowImageNet[198] DDD-FFA[199] DDD-IAA[199] Ours
Day bare face 0.531  0.704 0638 0687 0363 0982 0698 0.796
Day glasses 0.592 0.616 0.705 0.617 0.616 0.741 0.759 0.781
Day sunglasses 0.682 0.702 0.570 0.714 0.675 0.618 0.698 0.738
Night bare face 0.602 0.646 0.737 0.573 0.668 0.702 0.749 0.765
Night glasses  0.599 0.627 0.741 0.556 0.551 0.683 0.747 0.734
Average 0.601 0.659 0.678 0.629 0.615 0.708 0.730 0.762

Table 4.4: F-measures and accuracies of the drowsiness detection using for the evaluation dataset in
NTHU-DDD dataset. The listed values below the drowsiness and non-drowsiness attributes represent
the results of F-measures.

Scenario Drowsiness (FF) Non-drowsiness (F) Accuracy
Day bare face 0.809 0.784 0.796
Day glasses 0.789 0.774 0.781
Day sunglasses 0.758 0.718 0.738
Night bare face 0.753 0.777 0.765
Night glasses 0.718 0.750 0.734
Average 0.765 0.760 0.762

4.4.2 Experimental results

We demonstrate an efficiency of our framework using the evaluation set of the NTHU-
DDD dataset. The evaluation dataset is composed of 5 scenarios, and each scenario contains
five videos that captured various virtual driving situations. The videos in the evaluation dataset
are not duplicated to the videos in the training dataset. The dataset also includes multiple
annotations that are concerned with the scene conditions and drowsiness detection. We tested
the performances of the scene understanding and drowsiness detection respectively.

The scene understanding module is evaluated by using validation accuracy, represented as
- where the numerator n is the number of the correctly classified results of each sub-model
in the scene understanding model, and the denominator m denotes the total number of test

samples. Table 4.2 shows the validation accuracies of the scene understanding model that is
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composed of four sub-models: the glasses and illumination conditions f, the head model
Jn. mouth model f,,. and eye model f.. The averages are computed by the formulation of
the arithmetic mean so that the weights according to the number of data that classified to the
same categories in the table did not consider. This measurement has been applied equally to
subsequent experiments. The average of validation accuracies across to all scene conditions
for sub-models is (.924. Experimental results in Table 4.2 show that the scene understanding
module in the proposed framework achieves good classification results in the classification
problems of the glasses and illumination conditions and the status of a head. However, the
classification result for the condition of mouth and eye is relatively lower than the other
categories. The performance gaps between the sub-models in the scene understanding could
be interpreted as a bias of representation learning. The understanding of the scene conditions
based on our spatio-temporal representation could be influenced by the geometrical size and
scale of a target object. Since the portion of each frame for an eye and mouth is relatively
smaller than the portion of a frame for glasses, illumination, and head in the NTHU-DDD
dataset, the learnt representation learning model would have been over-fitted to the conditions
for glasses, illumination and head.

We evaluated the proposed framework quantitatively by using the F-measure. F-measure

is harmonic mean of precision and detection rate, where precision and recall are defined as

follows:
TP
Precision — TP+ FP (4.12)
TP .
Detectionrate(DR) = TP L FN (4.13)
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2 x Precision x DR (-—I- 14)

F — measure =
Precision + DR

where T'P (True positive) is the number of correctly detected as drowsiness state, and F'/NV
(False negative) is the number of incorrect detection results that classified to non-drowsiness
condition. [P (False positive) is the number of non-drowsiness detection result incorrectly
identified to the drowsiness state, and 7' N (True negative) is the number of correctly classified
as non-drowsiness state. The quantitative evaluation denotes an average over all videos
represented as same glass and illumination categories. Table 4.4 shows the accuracy of
the proposed framework for the drowsiness detection. The results show that our proposed
framework achieves an average accuracy of (.762.

Due to the lack of performance comparison using a publicly available dataset for drowsi-
ness detection, we referred the previous method which was evaluated their performance
using the NTHU-DDD dataset or implement a method based on the well-known multi-
class classification algorithm for images. We compared our framework to several methods
[197, 198, 199, 5, 196]. Parkhi et al. proposed a face recognition method (VGG-FaceNet) us-
ing a deep neural network [197]. The VGG-FaceNet consists of 36 convolution layers, and this
network is much deeper than the 3D-DCNN used in the proposed framework. Donahue et al.
provide the method based on long-term recurrent convolutional networks (LRCN) for visual
recognition and description for long-term time series data [198]. We modified these methods
to evaluate the performance of driver drowsiness detection. Park et al. proposed the deep
drowsiness detection (DDD) network for drowsiness detection using feature-fused architecture

[199]. Park et al. used two different fusion strategies to their network: independently-averaged
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architecture (IAA) and feature-fused architecture(FFA). They provide the experimental results
using the NTHU-DDD dataset. These methods were trained and tested with the equal proce-
dure of the proposed framework. Additionally, we compare the results using the NTHU-DDD
dataset, which is listed in Part et al.[199].

Table 4.3 shows that the comparison re-

sults of driver drowsiness detection using
08
ke NTHU-DDD dataset. The experimental re-
0r
Sl sults show that the proposed framework out-
O5f e f
s : performs other methods in most of the sce-
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Figure 4.8: The ROCs for the driver drowsiness
detection. Figures in parentheses indicate the area
under curves (AUCs).

lower than the DDD-TAA. Additionally, the
experimental results illustrate that the pro-
posed framework achieves higher and stable
performance in various scene conditions than the listed methods, even though several methods
used the deeper network structure. Figure 4.8 shows the receiver operating characteristic
(ROC) curves and the area under curves (AUCSs), generated by the evaluation dataset predic-
tions. The results of the ROC plots in Fig. 4.8 present that the proposed method does not take
a benefit in the lower regions of the curve, where the false positive rate (FPR) is less than 0.05
approximately, but provides a definite benefit for much of the rest of the curve, over the other
methods [196, 5, 197, 198].

The overall experimental results demonstrate that the proposed method can provide an
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Figure 4.9: The detection results using NTHU-DDD dataset. The images of the first row show the
detection results for the driver drowsiness, and the images of the second row denote the detection
results of a normal condition of drivers.

accurate and effective method for the driver drowsiness detection than the other drowsiness
detection method based on a visual analysis. Driver’s drowsiness in the real world could
appear with various variations of facial elements in diverse illumination conditions. The
feature fusion helps to discover the discriminative and rich self-reinforced representation for
detecting the drowsiness, and this function plays a significant role to provide high-quality
drowsiness detection in various situations. Figure 4.9 shows the example snapshots of the

correct detection results using NTHU-DDD dataset.

4.4.3 Computational complexity

Although the computational cost of the framework depends on the size of input images
and the structure details such as the number of layers and the size of kernels in a neural
network, theoretically, the computational complexity of representation learning and feature

fusion models based on 3D-CNN is O (20, WiHyDingmik )
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where ¢ and d are the index of a convolutional layer and the number of convolutional
layers of each model. W;, H,, and D; denote the width, height, and depth of input data in each
convolutional layer. n;, m;, and k; denote the width, height, and depth of 3D-convolutional
kernel in ¢-th layer. The computational complexity of the scene understanding and drowsiness
detection models using two-layers neural networks is O(N2C'), where N and C' denote the
dimensionalities of each hidden layer and target domain for objectives. We have estimated the
computational complexity of the proposed framework based on the approaches of He et al.,
[200] and Notchenko et al., [201].

Note these computational complexities apply to both training and testing phases, however
practical execution times in both phases are different since the proposed framework shows
different work-flows in training and test phases. The training task consists of the three steps:
1) calculation of output, 2) computing an error, and 3) updating the parameters. Therefore,
the execution time in the training task is relatively longer than the time in the testing task.
Once the model training end, the execution time in testing phase is much faster because of the
framework only needs to compute the output for drowsiness detection. The execution time in
our experimental setting was 38.1 FPS (28.6 ms) which is almost real-time, and was obtained.
We calculated this value by averaging the execution time of the proposed framework for 300
seconds, except displaying an output on a screen. The proposed framework is implemented
with Google Tensorflow library. Although the training in the framework requires long times,
after the model training is finished, the entire framework is able to perform in real-time with

Python implementation using a Core 17, 3.4GHz PC with 16GB RAM and GTX TITAN GPU.
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4.5 Conclusion and Discussion

We have proposed an self-reinforced representation learning for efficient driver drowsiness
detection method which is invariant to various driving conditions containing a driving time
such as day and night and a driver’s appearance. To this end, we extracted the spatio-temporal
representation and merged it with the vectors that represent the scene understanding results
using the feature fusion method based on the tensor product approach. These problems
are effectively modelled using 3D-DCNN and fully connected neural network based on
recent advances in computer vision fields. The spatio-temporal representation and estimated
scene conditions are merged to enhance the discriminative power for providing precise
driver drowsiness detection in various driving conditions. With the feature fusion properly
harnessed, the merged feature can provide more discrimination than the original spatio-
temporal representation even though the original representation contains the motion and
appearance information about the driving and drivers conditions. Experimental results show
that the proposed framework outperforms other methods, including methods based on deep
learning, in drowsiness detection accuracies.

The limitation of the proposed framework can be summarized as follows. First, al-
though the proposed framework achieves good detection performance, it also needs a high-
performance GPU computing unit that must be installed on a vehicle. It may cause high price
of the vehicle and an increase in vehicle weight. Second, the proposed method needs many
training samples that are labelled with the scene conditions and drowsiness state, for learning
the representation that can cover various situations about drivers. Third, since the proposed

framework is an off-line method, it can not guarantee to detect the drowsiness of drivers of
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entirely different types that are not included in training samples.

In future works, several suggestions should be taken into account. First, we will optimize
the network structure in the proposed framework for use in an embedded board or microcom-
puting systems to reduce the financial cost and improve the computational efficiency without
performance degradation. Second, we will develop an on-line updating method in order
to improve the drowsiness detection reliability of the model through continuous updating.
Third, we will study a data augmentation method based on generative models to improve the

performance of drowsiness detection by enlarging the scale and variety of a given dataset.
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Chapter 5

Road Pavement Defect Detection

In the past few years, the performance of road defect detection has been remarkably improved
thanks to advancements in various studies on computer vision and deep learning. Although
large-scale and well-annotated datasets enhance the performance of detecting road defects to
some extent, it 1s still challengeable to derive a model which can perform reliably for various
road conditions in practice, because it is intractable to construct a dataset considering diverse
road conditions and defect patterns. To end this, we propose an unsupervised approach to
detect road defects, using Adversarial Image-to-Frequency Transform (AIFT). AIFT adopts
the unsupervised manner and adversarial learning in deriving the defect detection model,
so AIFT does not require annotations for road defects. We evaluate the efficiency of AIFT
using GAPs384 dataset, Cracktree200 dataset, CRACKS500 dataset, and CFD dataset. The
experimental results demonstrate that the proposed approach detects various road detects, and

it outperforms existing state-of-the-art approaches.

5.1 Road Pavement Defect Detection

Road defect detection is one of the important studies to prevent vehicle accidents and
manage the road condition effectively. All over the United States, road conditions contribute
to the frequency and severity of motor vehicle accidents. Almost of third of all motor vehicle

crashes are related to poor road conditions, resulting in more than two million injuries
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and 22,000 fatalities [202]. Over time, as road infrastructure ages, the condition of that
infrastructure steadily declines, and the volumes and severity of defects increase [203].
Therefore, there is an increasing demand for the development of road defect detection method
[204], and numerous studies have been proposed in this literature.

Over the past decades, many studies have considered the use of image processing and
machine learning approaches with hand-crafted features [205, 206, 207, 208, 209]. Statisti-
cal analysis [205, 207] is a classical method with long history and most popular. Acosta et
al.,[205] and Deutschl et al.,[208] have proposed vision-based methods based on partial dif-
ferential techniques. Chambon et al.,[207] presented a method based on Markovian modelling
to take into account the local geometrical constraints about road cracks. Bray er al.,[206]
utilized the classification approach using neural networks for identifying road defects. These
approaches usually identify road defects using the contrast of texture information on a road
surface.

However, the contrast between roads and the defects on the roads may be reduced due
to the illumination conditions and the changes in weather [210, 211]. Additionally, the
specification of cameras for capturing the surface of the roads also can affect the detection
accuracies. Hense, it is still challenging to develop a defect detection method which can cover
various road conditions in the real world using a simple image processing or machine learning
methods alone [212].

Recently, various approaches [213, 214] based on deep learning have been proposed to
overcome these drawbacks. Pauly et al.,[213] proposed a method for road defect detection

employing convolutional neural networks (CNNs). Fan ef al.,[214] proposed segmentation
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method based on CNNs and apply an adaptive. These approaches need a well-annotated
dataset for road defects, and also their performance may depend on scale of the given dataset.
Regrettably, it is problematic in practice to construct such a dataset containing various patterns
of road defects.

Development of an unsupervised method has been an important research topic in the
literature. Various unsupervised approaches based on image processing and machine learning
were proposed [215, 216]. However, these approaches still have an inherent weakness which
1s detection performance is highly dependent on camera specifications and image qualities.
Recently, among the approaches based on deep learning, several studies [217, 218] have
presented unsupervised methods using autoencoder [119]. These approaches take normal road
images as their training samples and optimize their models in a way to minimize reconstruction
errors between their input and output. These approaches recognize defects if the reconstruction
errors of inputted samples are larger than a predefined threshold.

However, according to Perera ef al.,[ 123] and Pidhorskyi er al.,[219], even though a model
based on the reconstruction setting obtains a well-optimized solution, there is a possibility that
the model can reconstruct samples which have not appeared in the training step. It could be a
significant disadvantage in detecting road defects using the model. Due to this disadvantage,
the model may produce lower error than the expectation even if it takes defect samples as
their input, and it can make hard to distinguish whether this sample contains defects or not.

To tackle this issue, we present an unsupervised approach, which exploits domain transfor-
mation based on adversarial learning, to detecting road defects. The proposed approach called

Adversarial Image-to-Frequency Transform (AIFT) is trained by normal road images only
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and needs no annotations for defects. In contrast to other approaches [217, 218] optimizing
their models by minimize reconstruction errors, AIFT is concentrated on deriving mapping
function between an image-domain and a frequency-domain using adversarial manner. To
demonstrate the efficiency of the proposed approach for road defect detection, we compare
the proposed approach with various state-of-the-art approaches, including supervised and
unsupervised methods. The experimental results show that the proposed approach outperforms
existing state-of-the-art methods.

The main contributions of our work are summarized as follows:

e An unsupervised method for detecting road defects, which can provide outstanding

performance without a well-annotated dataset for road defects.

e The adversarial learning for deriving the image-to-frequency mapping function. Our
approach derive a nearly optimal transform model than typical approaches such as

reconstruction or classification settings.

e The extensive experiments about road defect detection. The experiments include abla-
tion analysis depending on the loss functions and comprehensive comparison with the

existing state-of-the-art methods.

In the following sections, we describe the details of our approach and provide the experimental

results and analysis it. We conclude this paper by summarizing our works.
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Figure 5.1: Architectural detail of the adversarial image-to-frequency transform. The blue objects
denote the operation units including the generator (' and the discriminators D! and DY, The red circles
indicate the loss functions corresponded to the each operation unit. The red arrow lines show the work
flow for the image-to-frequency cycle G : A7 — X', and the blue arrow lines represent the process
of the frequency-to-image cycle G—1 : X' — X'!. The dotted arrow lines represent the correlations of
each component to the loss functions.

5.2 Adversarial Image-to-Frequency Transform

5.2.1 Image-to-frequency transformation

It is essential to derive a robust model invariant to environments in order to detect a
great number of defect patterns on roads. Our method is inspired by novelty detection and
abnormal event detection studies [123, 219, 220, 111], which derive a model using inlier
samples only and recognize outliers by computing a likelihood or an reconstruction error.
The proposed method, called Adversarial Image-to-Frequency Transform (AIFT), initially
derives a transform model between image-domain and frequency-domain using normal
road pavement images only. The frequency-domain corresponding to the image-domain is
generated by applying Fourier transform to the given image-domain. Detecting road defects
1s conducted by comparing given and generated samples of each domain.

AIFT is composed of three components: Generator (7, Image discriminator D, Frequency

discriminator D', for applying adversarial learning. The original intention of adversarial
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learning is to learn generative models while avoiding approximating many intractable proba-
bilistic computations arising in other strategies e.g., maximum likelihood estimation. This
intention is suitable to derive an optimal model for covering the various visual patterns of
road defects. The workflow of AIFT is illustrated in Fig 5.1.

The generator (3 plays as a role for the mapping function between image-domain X7 =
{X!}io1.m to frequency-domain XF = {XF}io1n as follows, G @ X1 «— XF. For the
convenience of notation, we distinguish the notations of mappings for image-to-frequency
Gt X' — X7 and frequency-to-image G~ : X — X7, separately. @ generate the
transformed results from each domain as follows,

G =2&",
(5.1)
G~ (XF) =¥,
where X' and X' indicate the transformed results from X7 and X'¥, respectively. X' and
XF are conveyed to the two discriminators D' and D for computing an adversarial loss. For
computational-cost-effective implementation, weight sharing has employed.

The discriminators D’ and D" are defined as follows,

D*(X*) = O*-. #te le (52)

where * denotes the indicator to assign the discriminators D* € {D’, D'} depending on the
types of inputs X* € {X1, X7, X!, X"}, D! takes X' and X' as an input, and D’ takes X7

and X' as an input, respectively. o* indicates the outputs o’ and o’ according to the types
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of the inputs and the discriminators. The value of o* can be regarded by as a likelihood to
discriminate whether a given sample is truth or generated. Each component is compiled by
CNNs and fully-connected neural networks and the structural details of these components are

shown in Fig 5.2.

5.2.2 Adversarial learning for image-to-frequency transformation

As the workflow of AIFT shown in Fig

5.1, the generator G plays a role as a bidi-
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Figure 5.2: Structural details of the network models
]ylng agsumption for dctectjng road defects in the generator G and the discriminators D' and

DT (a) and (b) denote the structural details of the
using AIFT is as follows. Since AIFT is only generator G and the two discriminators D’ and D,
respectively. The green, blue, and red boxes denote
the convolutional layers, the deconvolutional layers,

trained with normal road pavement images, : y
and the fully-connected layers, respectively.

if AIFT takes images containing defect pat-

terns as an input, the error between the given samples and the transformed results would
be larger than normal ones. Given this assumption, the prerequisite for precise road defect
detection on AIFT is deriving a strict transform model between the image-domain and the
frequency-domain from a given dataset for normal image samples for road pavement.

To end this, we present an adversarial transform consistency loss for training AIFT.
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Adversarial transform consistency loss is defined by,

Laren(G, D', DF) = Ex [logD’ (X))

NPA‘.'I
1 H,ypmpﬁ[logDF(é’EF)]

(5.3)
} EXFNIJG+{XI)[10?>(1 - DF(G#_(XI)))]

F Bty o 020 = DG X))

£y

where G tries to generate images X'’ and frequency samples X' via G and G~ that look
similar to given images X/ and frequencies X*', while D! and D*" aim to distinguish between
given samples (X7 and X' and transformed results (X7 and X1).

Adversarial learning can, in theory, learn

Image Frequency

mappings G that produce outputs identi-

Given

cally distributed as image and frequency do-

mains, respectively [221]. However, with

Transformed

large enough capacity, GG can map the same

Figure 5.3: Comparison of the given and generated
samples for the road pavement image and the corre-
sponding frequency.

samples of an input domain to any random
permutation of samples in the different do-
main, where any of the learned mappings can induce an output distribution that matches the
target distribution. Thus, adversarial transform consistency loss alone may not guarantee that
the learned function can map an individual input to the desired output.

To further reduce the space of possible mapping functions, we utilize the reconstruction
loss to optimize the generator G. It is a common way to enforce the output of the generator

to be close to the target through the minimization of the reconstruction error based on the
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pixel-wise mean square error (MSE) [140, 141, 125, 112, 111]. It is calculated in the form

Lee(G) = Exing, [1X7 — GHXD]I3]

5.4)
- Brag o [1X7 = G-(XT) 3]
Consequently, the total loss function is:,
Liwa(G, DL, DF)Y = Loz, D, DF) + Aw(B) (5.5

where A indicates the balancing parameter to take the weight for the reconstruction loss. Since
total loss function is composed of two loss terms, we conduct ablation study to monitor the
effect of each loss term in the training step.

Given the definition of above loss functions, the discriminators and the generator are

trained by maximizing or minimizing corresponding loss terms expressed by,
arg min max L (G, D', D), (5.6)
0¢ o1 oF '

where 0%, ¢/, and 0¥ denote the parameters corresponded to the generator G, the image
discriminators D', and the frequency discriminator D, Fig 5.3 illustrates the examples of
the given samples and the transformed results for image and frequency domains. We have

conducted the ablation studies to observe the effect of each loss term in learning AIFT.
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Figure 5.4: The trends of AIU over the training epochs. (a) show the AIU trend over the training
epochs on GAPs384 dataset, and (b) illustrate the AIU trend with respect to the training epochs on
CFD dataset. The red-coloured curve (AIFT o) denotes the AIU trend of AIFN trained by the total
loss (Eq 5.5). The green-colored curve (AIFTgan a.k.a., AIFT arcr,) indicates the AIU trend of AIFN
trained by the ATCL loss (Eq 5.3) only. The blue-colored curve (AIFTy) shows the AIU trend of AIF
trained by the reconstruction loss (Eq 5.4).

5.2.3 Defect detection

Detecting defects on a road is straightforward. Initially, AIFT produces the frequency
sample X'*" using given an image samples X'’. Secondly, AIFT transforms X" into the image
samples X7 via G~. Road defects are detected by comparing the given image sample X7 with
the transformed result X7,

Similarity metric for comparing the two samples X7 and X7, is defined as follows,

o i i

= ;r .L‘ ;
AT X =) (@ fop = (57)

m
i3 ',

where m; ; is expectation of x; ; and il ;- Above similarity metric is based on Jeffery diver-
gence, which is a modified KL-divergence to take symmetric property. Euclidean distances
such as [1-norm and [2-normal are not suitable as a similarity metric for images since neigh-
boring values are not considered [ 145]. Jeffrey divergence is numerically stable, symmetric,

and invariant to noise and input scale [ 146].
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5.3 Experiment
5.3.1 Experimental setting

To evaluation the performance of the proposed method on road defect detection, we
employ the best F-measure on the dataset for a fixed scale (ODS), the aggregate F-measure
on the dataset for the best scale in each image (OIS), and AIU, which is proposed by Yang
et al.,[3]. AIU is computed on the detection and ground truth without non-max suppression
(NNS) and thinking operation, defined by, \% B M—Jrj:‘;i"_w where N; denotes the total
number of thresholds ¢ € [0.01,0.99] with interval 0.01; for a given ¢, N;g is the number of
pixels of intersected region between the predicted and ground truth crack; Nxt? and N_é denote
the number of pixels of predicted and ground truth crack region, respectively [3]. The Higher
values of these metrics can be thought that a model provides more precise performance.

The proposed method has been evaluated on four publicly available datasets. The details
of the datasets are described as follows.

GAPs384 dataset is German Asphalt Pavement Distress (GAPs) dataset presented by
Eisenbach et al.,[1], and it is constructed to address the issue of comparability in the pavement
distress domain by providing a standardized high-quality dataset of large scale. The dataset
contains 1,969 gray scaled images for road defects, with various classes for defects fsuch as
cracks, potholes, and inlaid patches. The resolution of images is 1,920 x1,080.

Cracktree200 dataset [2] contains 206 road pavement images with 800x 600 resolution,
which can be categorized to various types of pavement defects. The images on this dataset are
captured with some challenging issues such as shadows, occlusions, low contrast, and noise.

CRACKS500 dataset is constructed by Yang et al.,[3]. The dataset is composed of 500
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Figure 5.5: The trends of AIU over the training epochs. (a) show the AIU trend over the training
epochs on GAPs384 dataset, and (b) illustrate the AIU trend with respect to the training epochs on
CFD dataset. The red-coloured curve (AIFT o) denotes the AIU trend of AIFN trained by the total
loss (Eq 5.5). The green-colored curve (AIFTgan a.k.a., AIFT orcr,) indicates the AIU trend of AIFN
trained by the ATCL loss (Eq 5.3) only. The blue-colored curve (AIFTy) shows the AIU trend of AIF
trained by the reconstruction loss (Eq 5.4).

images wity 2.000x 1,500, and each image has a pixel-level annotation. The dataset is seper-
ated by training dataset and test dataset. The training dataset consists of 1,896 images, and
the test dataset is composed of 1,124 images.

CFD dataset [4] contains 118 images with 480320 resolution. Each image has pixel-
level annotation and captured by Iphone 5 with focus of 4mm aperture of f/2.4 and exposure
time of 1/135s.

The hyperparameter setting for the best performance is as follows. The epoch size and
the batch size are 50 and 64, respectively. The balancing weight for the reconstruction loss
I, 1s set by 0.1, and the critic iteration is set by 10 for the best performance. The networks
are optimized by Adam et al.,[109]. The proposed approach has implemented with Pytorch

library !, and the experiments have conducted with GTX Titan XP and 32GB memory.

5.3.2 Ablation study

!Source codes are publicly available on https://github.com/andreYoo/Adversarial IFTN
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We have conducted an ablation study to ob- Table 5.1: Quantitative performance compar-
ison of the detection performance on AIFT

serve the effect of the loss function terms on the using GAPs384 dataset and CFD dataset de-
pending on the loss functions Ly (Eq 5.4),

performance of AIFT. We have trained AIFT us- Larcr (Eq 5.3), and Liow (Eq 5.5). The bolded
figures indicate the best performances on the

ing the three loss functions L. (Eq 5.4), Laper, SXperiments.

(F‘q 53), and Elulal (Eq 55) USing GAPs384 GAPs384 dataset [1] CFD dataset [4]
Model

L AIU ODS OIS AIU ODS OIS
dataset and CFD dataset, and observed AIU at

AlFT 0.052 0.181 0201 0152 0.562 0.572

every two epochs. The hyperparameter settings
AlFTxe 0081 0226 0234 0187 0.642 0659

applied to train each model, are all same, and only AlFT., 0083 0247 0249 0203 0701 0.732

the loss functions are different. Fig 5.5 shows the

AU trends of AIFTs trained by the three loss functions. Table 5.1 contains AIUs, ODSs, and
OISs on GAPs384 dataset and CFD dataset. The experimental results show that AIFT trained
by the total loss (AIFTy) achieves the best performance on this experiments. As shown in
Table 5.1, AIFT o achieves 0.083 of AIU, 0.247 of OIS, and 0.249 of ODS for GAPs384
dataset. These figures show that AIFT; can produce approximately 7% better performance
than others. In the experiments using CFD dataset, AIFT,,,; achieves 0.203 of AIU, 0.701 of
OIS, and 0.732 of ODS, and these figure are all higher than that of the others.

Notably, the overall experimental results demonstrate that the AIFT's trained by adversarial
learning, can outperform the AIFT based on the reconstruction setting (AIFT,.). Not only
AlFTota1, but also AIFT arer, obtains the improved achievement than AIFT.. The AIU Trends
(Fig 5.5) also justify that the AIFT learnt by adversarial manners can outperform the AIFT
trained by the reconstruction setting. The experimental results justify adversarial learning can

improve the robustness of AIFT for detecting road defects. For efficient experiments, only
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Figure 5.6: Visualization of the road defect detection results. The images on the first row represent
the input images. The second row’s images illustrate the ground-truths. The images on the third row
denote the detection results for road defects.

GAPs384 [1] Cracktree200 [2] CRACKS500 [3] CFD [4] :

Methods S/U FPS(s)
AIU ODS OIS AIU ODS OIS AU ODS OIS AIU ODS OIS

HED [222] S 0.069 0209 0175 0.040 0317 0449 0481 0575 0.625 0.154 0.683 0705 0.0825
RCF [223] S 0043 0172 0120 0032 0255 0487 0403 0490 0586 0.105 0.542 0607 0079
FCN [75] S 0015 0088 0091 0008 0334 0333 0379 0513 0577 0021 0585 0609 0.114
CrackForest[4] U - 0126 0126 - 0080 0080 - 0199 0199 - 0104 0104 3971
FPHBN [3] S 0081 0220 0231 0041 0517 0579 0.489 0.604 0.635 0.173 0683 0705 0237
AAF [224] U 0062 0196 0202 0.039 0472 0491 0371 0481 0583 0.142 0594 0613 0721
SVM [225] S 0.051 0132 0162 0017 0382 0391 0362 0418 0426 0082 03R52 0372 0852
ComNet[225] S 0.079 0203 0211 0.037 0472 0499 0431 0.591 0609 0.152 0579 0677 0921
ATFT o 0.083 0247 0249 0.045 0.607 0.642 0478 0549 0561 0203 0.701 0.732 1.1330

Table 5.2: Quantitative performance comparison about road defect detection using GAPs384 [1],
Cracktree200 [2], CRACKS00 [3], and CFD [4]. - means the results are not provided. The bolded
figures indicate that the best performance among them. ’S/U’ denotes whether a model focuses on
'supervised’ or 'unsupervised’ approaches. FPS indicates the execution speed of each method, and it is
computed by averaging the execution speeds about all datasets.

AlIFT o, i1s compared with existing state-of-the-art methods.

5.3.3 Comparison with existing state-of-the-arts

We have carried out the comparison with existing state-of-the-art methods for the crack
detection [222, 4, 3] and the road defect detection [225]. For the efficiency of the experiments,
only AIFT,, is compared with other methods. The performances of the existing state-of-

the-art methods are referred from Yang er al.,[3]. Table 5.2 contains AIUs, OISs, and ODSs
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on Cracktree200, GAPs384, Cracktree200, and CFD datasets. AIFT,,, has achieved state-
of-the-art performance for GAPs384 dataset, Cracktree200 dataset, and CFD dataset. In the
experiments using GAPs384 dataset, AIF T achieves 0.083 of AIU, 0.247 of ODS, and
0.249 of OIS. These figures show that AIFT o, outperforms than the previous state-of-the-art
performance that achieved by FPHBN [3]. FPHBN obtains 0.081 of AIU, 0.220 of ODS,
and 0.231 of OIS. AIFT o shows 3% better performances than FPHBN. The experiments
on Cracktree200 dataset and CFD dataset also show that AIFT,y, surpasses other methods.
AlF T o produces 0.045 of AIU, 0.607 of ODS, and 0.642 of OIS in the experiments using
Cracktree200 dataset. Additionally, AIFT ., achieves 0.203 of AIU, 0.701 of ODS, and 0.732
of OIS on CFD dataset. These figures are 8.8% and 2% better than the previous state-of-the-art
methods approximately.

One of the interesting things is that the performance of AIFTy, surpass the Mujeeb et
al.,[217] and Kang et al.,[218], which employ methodologically similar approaches using
reconstruction manner based on antoencoder. These results can be regarded as the proposed
adversarial learning can provide a more effective way to learn discriminative features than the
general reconstruction manner using an autoencoder. However, AIFT,, could not obtain the
highest performance on CRACKS00 dataset. The state-of-the-art performance on CRACKS00
dataset is achieved by FPHBN [3], and it produces 0.489 of AIU, 0.604 of ODS, and 0.635
of OIS, respectively. AIFT o1 has 0.478 of AIU, 0.549 of ODS, and 0.561 of OIS. The gaps
between FPHBN and AIFT o are 0.011 on AIU, 0.055 on ODS, and (0.074 on OIS. However,
FPHBN exploits a supervised approach, and it needs predetermined pixel-level annotations

for road defects. Also, the network architecture applied to their approach is much deeper than
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ours.

The overall experiments show that AIFT,, can outperform existing state-of-the-art
methods. As shown in Table 5.2, the detection performance of Al T o surpasses other unsu-
pervised methods [4, 224]. Additionally, AIFT y, achieves outstanding detection performance
in detecting defects than others based on supervised learning approaches, even Al Ty, does
not need an annotation for road defects in the training step. This may be thought that AIFT
is enabled to apply various practical situations in which a large-scale and well-annotated
dataset can not be used. Consequently, the experimental results demonstrate that ATFT ., can

outperform existing state-of-the-art methods.

5.4 Conclusion and Discussion

We have proposed an unsupervised approach to detecting road defects, based on adversarial
image-to-frequency transform. The experimental results demonstrate the proposed approach
can detect various patterns of road defects without explicit annotations for road defects in the
training step, and it outperforms existing state-of-the-art methods in most of the cases for
experiments of road defect detection.

However, it is worth mentioning a few limitations of the proposed method. Firstly, as
shown in Table 5.2, the execution speed is slower than other methods. Secondly, even though
AIFT shows outstanding performance in defect detection, a large-scale dataset is essential to
train AIFT. These two issues limitations are may inherent issues for existing methods based
on deep learning for visual recognition studies. Our future works would be concentrated on

handling these issues.
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Chapter 6

Conclusion and Future works

Recently, machine learning, computer vision, and artificial intelligence have achieved consid-
erable advancements alongside with the development of deep learning. The rapidly emerging
fields of Machine Learning (ML) and Artificial Intelligence (Al) have achieved remarkable
advancements in various business and industries and demand for automated understanding
of massive data is higher than ever before. These advancements and needs are disrupting
many traditional business and industries and promise to ultimately reorganize many aspects
of daily life. Particularly, these reorganization is in progress rapidly in the industries such
as the health-care, Internet of Things (IoT), autonomous driving, financial service, and ur-
ban planning, where a tremendous amount of data is being generated every second. These
advancements are due to the extraordinary abilities of the weighted and cascaded non-linear
kernel structure of deep learning, for extracting useful representation and modelling the
complex data distribution. The structural characteristics of deep learning grants powerful
generalization capacity to derived generative or discriminative models using deep learning,
and it helps to overcome the limitations of past machine learning and artificial intelligence

studies constrained by linearity.
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6.1 Conclusion

This thesis has presented a novel generative model and learning strategies to derive more
discriminative stochastic model and improve the discriminative power of anomaly detection
models for identifying the outliers. Explored studies have demonstrated that any complex
distribution can be understood by breaking it down into a set of small distribution and detect
each small distribution as individuals” deviated from the previously learned distributions. Such
approaches are validated through results of chapters 3. 4, and 5, where the novel situations
are modelled in terms of outliers of the learned situations.

In particular, in section 3 we presented a GAN-based approach for abnormality detection.
We proposed a generative deep learning method based on dual adversarial learning for positive
and negative samples. Since our GANs are trained using only normal data, they are not able to
generate abnormal data. At testing time, a local difference between the real and the generated
images is used to detect possible abnormalities. We formulate the dual adversarial learning
which can improve the discriminativeness of stochastic model, inspired by the triple loss
on metric learnig. Differently from common generation-oriented GANSs, during training
we directly use the adversarial leanring not only maximizing the probabilistic relationship
between output and positive sample, but also minimize the probabilistic relationship between
output and negative samples. In order for this approach to be effective, we designed latent
space alignment based on an adversarial learning.

Additionally, as shown in Chapter 4, this thesis also proposes an approach for automatically
reinforcing the learnt representation for unseen situations in the environment where simple

models are not applicable. Such methodology consists of an auxiliary information generator
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and the feature reinforcing model. The model can be learned later on for further purposes
such as classification, prediction or detection of abnormalities. We apply the paradigm of
active learning and self-supervised learning for reinforcing the discriminativeness of learnt
representation. The key contribution of the proposed method is that our method can improve
the discrminativeness of learnt representation not only in the training step but also in the
testing step automatically.

In Chapter 5,We proposed a GAN-based multi-domain transformation model that provide
unsupervised detection method for a material defect. In our experiment, we evaluation our
domain-transformation method between image and frequency. The proposed method can
provide outstanding defect detection performance even a large-scale and well-categorized

dataset.

6.2 Future works

My goal is to produce lifelong learning systems which reliably and efficiently adapt
and expand their knowledge in response to an ever-changing world. I plan to focus on the
following challenges: designing efficient methods to learn from multimodal data streams,
where information comes as different modalities such as images, text, sensory data, etc.;
developing online methods to evaluating the validation of data from real-time massive data
stream; designing reliable and safe learning algorithms with rigorous guarantees for safety-
critical systems; and providing generalization guarantee for the performance of deep neural
networks trained on big datasets. I am in particular excited about applications of my techniques

in domains such as medical and health-care, Internet of Things (IoT), self-driving cars,



financial services, and urban planning, where a tremendous amount of data is generated every
second and demands fast and accurate analysis.

Semi-supervised Learning From Massive Multimodal Streams. In many domains, such
as Internet of Things (IoT), stock exchange, computational social science and health-care,
rapid streams of data are generated from various sources. For example, a typical self-driving
car equipped with radar, cameras, lidar, and ultrasonic sensors, produce more than 4TB of
data per day. Similarly, various sensors and smart devices in IoT applications generate a huge
amount of data at a high velocity. The challenge in making use of such data is to design
algorithms that can efficiently extract and fuse informative features from various sources to
learn and make inference on the fly. My current research has already addressed the challenge
of extracting useful information from unimodal data stream recorded from vision sensors.
Moving forward, I intend to focus on efficient learning from summaries of multimodal large
data streams.

Online Novelty Detection via Generative Stochastic Modelling. Training modern machine
learning models on massive datasets generated by real-time contains a risk that training
negative or damaged samples which can be an obstacle in optimizing the models and also
it incur a substantial financial and environmental cost. One of my recent research focused
on deriving a single stochastic model for dominant data from a given dataset and estimating
a validation (Novelty) of data for identifying outliers, which can be considered as negative
samples or abnormal samples. However, previous studies do not consider the possibility of
transformation of data over time. The properties of the dominant data can be changed over

time. I would like to continue this line of research to develop a new resource-efficient and fast



online approach for novelty detection.

Reliable and Safe Machine Learning via long-life Learning. The functional safety of
many intelligent systems, such as autonomous robots and self-driving cars, remains largely
dependent on the robustness of the underlying machine learning model. These systems are
expected to operate flawlessly, and hence need to be trained on examples of all possible situa-
tional conditions. My current research demonstrated that training models on representative
summaries highly improves the robustness of the learned models against noisy labels, both
in theory and practice. One concrete direction I plan to pursue along these lines is to build
scalable robust frameworks for safety-critical systems with very high accuracy requirements.
In particular, I am interested in developing optimization methods that can provide guarantees
for the quality of inference under noisy data, noisy labels, and adversarial attacks.

I strongly believe that the above research directions can advance the current state of
machine learning research, and will have tremendous real-world influence. I am confident that
my research and collaborations with experts in various fields, including data science, machine
learning, statistics, mathematics, and theoretical computer science have equipped me with the

necessary background to approach the above challenging and impactful research directions.
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