
 

 

 

School of Civil and Mechanical Engineering 

 

 

 

A Novel Direct Drive Linear Ocean Energy Converter Based on 

Nonlinear Oscillator System 

 

 

Raju Ahamed 

0000-0001-6205-3229  

 

 

This thesis is presented for the degree of 

Doctor of Philosophy 

of 

Curtin University 

 

 

 

 

 

 

 

November 2022 

 



 

ii 

 

Abstract 

 

The traditional wave energy converters (WEC) use hydraulic or turbine type power take-off (PTO) 

mechanisms which consist of many moving parts, creating complex mechanical components and 

increasing the installation and maintenance costs. Linear permanent magnet (PM) generator based 

direct drive WECs could be a solution to overcome this problem, but the efficiency of the single 

conventional linear PM generator is not high enough, and it cannot work satisfactorily in the low-

frequency range. The bandwidth problem of the existing linear PM generator-based PTO system can 

be overcome by widening the frequency bandwidth of the WEC. Light damping nonlinear oscillators 

are expected to have larger operational frequency bandwidth than a conventional single-degree-of-

freedom (SDOF) linear oscillator. The magnetic levitation (magnetic spring) system can be used in 

the translator design to make the oscillator nonlinear, which is more effective in the broadband 

frequency range, especially in the low-frequency ocean environment. However, the characteristics 

and dynamics of the linear PM generator based on the SDOF nonlinear oscillator system have not 

been studied yet. In addition, no study thus far has modelled two-degree-of-freedom (2DOF) and 

three-degree-of-freedom (3DOF) nonlinear oscillator system-based energy harvesters to harness 

ocean energy. This thesis presents novel analytical, numerical and experimental modelling of SDOF, 

2DOF and 3DOF magnetic spring-based energy harvester systems. The design of the SDOF, 2DOF 

and 3DOF magnetic spring-based nonlinear oscillator systems have been analysed separately with or 

without winding coils.  

At first, the characteristics and dynamics of the SDOF nonlinear oscillator system were studied. The 

proposed SDOF nonlinear oscillator system consists of a nonmagnetic shaft, a floating magnet and 

two fixed magnets where all magnets were placed in such a way that all magnets can repel the others. 

The magnetic properties of the proposed SDOF system were studied numerically and analytically to 

provide insight into its role in the nonlinear oscillatory behaviour of the system. The effect of the 

gravitational force, which changes the equilibrium position and the magnetic spring's nonlinear 

behaviour, were studied. The analytical analysis of the magnetic restoring force was validated using 

numerical and experimental analysis. Different orders of polynomial curve fittings such as cubic and 

quintic were used to model the magnetic restoring force between the moving magnet and the two 

fixed end magnets. The linear and nonlinear coefficients of the magnetic spring-based system for 

different positions of the floating magnet were investigated.  Moreover, the effects of the gravitational 
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force and magnetic restoring forces were investigated analytically, numerically and experimentally 

for different heights of the oscillator. For various lengths of the oscillator, the coefficients, damping 

ratio, and frequency responses of the nonlinear oscillator system were determined. The measured 

linear and nonlinear stiffnesses of the SDOF nonlinear oscillator system were used to investigate the 

system's eigenvalues and frequency responses with and without winding coils (electromechanical 

coupling). The parametric studies were performed to investigate the maximum energy generation 

abilities of the proposed SDOF energy harvester. The test rig of the energy harvester based on the 

SDOF nonlinear oscillator system was developed and experimented with within the lab. Experimental 

results showed validation of the analytical model with the experimental model.  

Secondly, the coefficients and dynamics of the 2DOF nonlinear oscillator system were analysed. The 

proposed 2DOF nonlinear oscillator system consists of a nonmagnetic shaft, two floating magnets 

and two fixed magnets. The magnetic restoring forces of both floating magnets were measured 

analytically and validated with the numerical study. The measured linear and nonlinear coefficients 

of the system were used to investigate the dynamics of the system with and without electromechanical 

coupling. Moreover, the energy harvester's experimental findings based on the 2DOF nonlinear 

oscillator system were compared with the analytical results to validate the analytical model. 

Following this, the 3DOF magnetic spring-based nonlinear oscillator system, which consists of three 

floating magnets, was studied analytically and experimentally. The magnetic restoring forces and 

coefficients of the system were determined using the analytical method and compared with the 

numerical findings. The magnetic properties and dynamics of the 3DOF system were investigated 

with and without adding winding coils to find the effects of the electromechanical coupling. The 

3DOF nonlinear oscillator energy generator test rig was developed and experimented with to validate 

the analytical model.  

Finally, the findings of the SDOF energy harvester were compared with the 2DOF and 3DOF energy 

harvesters. Comparison results showed that the 3DOF energy harvester could harness maximum 

energy in low-frequency ranges. In addition, the comparison results of the proposed magnetic spring-

based PTO system with the existing magnetic spring-based PTOs system showed that the proposed 

techniques are more capable of working in broadband frequency ranges which result in harnessing 

maximum ocean energy. In brief, the outcomes of this research work provide the mathematical 

foundation for the modelling and upcoming advancement of multi-degree-of-freedom magnetic 

spring (nonlinear oscillator) based energy generators.
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Chapter 1  
Introduction 

This chapter discusses the overview of the wave energy converters (WEC), problem statements, 

research objectives, research methodology, research scope, and the organisation of the thesis. The 

first part of this chapter discusses WEC classification, different power take off (PTO) systems and 

the working principle of the linear generator based direct electric drive PTO system. Moreover, 

different topologies of WEC with linear generator-based PTO systems are also discussed. The 

following part includes the problem statements, research objectives and the research methodology. 

The final part explains the organisation of the thesis. 

1.1 Introduction 

Energy plays a vital role in developing the economy and in social life. The demand rate for global 

energy increases with the increase in population and economic growth and the increasing 

development of wireless sensors and IT technologies. It is expected that this demand rate will be 

increased still further by almost one-third from 2013 to 2040 (International Energy Agency, 2015). 

Fossil fuels are currently still the primary source of energy, with about 80% of the required global 

energy sources coming from fossil fuels, one of the primary reasons for the greenhouse effect and 

environmental pollution (Ozkop & Altas, 2017). On the other hand, there are still around 1.1 billion 

(15% of the world population) people all over the world who are living without electricity 

(Sustainable Energy for All (SE4ALL), 2015). Increased fossil fuel prices, the problems with 

environmental pollution and the increasing uses of energy in the current IT and wireless sensor 

technology innovations push researchers to find new energy sources. Therefore, energy generation 

from the natural environment and waste sources such as vibration and industrial heat is an attractive 

research topic to solve energy crises and environmental problems. Among all renewable energy 

sources, solar photovoltaic and wind energy are well-known and increasingly being used to address 

energy needs, but these two sources depend on weather conditions. Another significant unused 

promising renewable energy source is the ocean in the forms of oceanic currents, tidal movements, 

waves, and salinity covering 70 % of the world's surface area. This energy source can be used to fulfil 

the world energy demand. Among all these forms, ocean wave energy has shown more significant 

opportunities and benefits for energy generation, as it is more constant reliable and has, on average, 

https://doi.org/10.1016/j.oceaneng.2020.107248
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a higher energy density (2-3 kW/m2) than wind (0.4-0.6 kW/m2) and solar power (0.1-0.2kW/m2) 

(López et al., 2013).  

Table 1.1: Wave Energy Resource (Theoretical Potential ) in various areas of the world (IRENA, 

2014) 

Regions Wave Energy Potential (TWh/y) 
Mediterranean Sea and Atlantic Archipelagos 

(Azores, Cape Verde, Canaries) 
1300 

Central America 1500 
Western and Northern Europe 2800 

Africa 3500 
North America and Greenland 4000 

South America 4600 
Australia, New Zealand and Pacific Islands 5600 

Asia 6200 
TOTAL 29,500 

However, unfortunately, this energy is wasted daily because of the difficulty in capturing this energy. 

How much total ocean wave energy can be used? It is not easy to estimate, but researchers have 

calculated that the world's possible ocean wave energy sources are about 2 TW (Dean & Dalrymple, 

1991; Thorpe, 1999). Other wave energy researchers have estimated that the ocean holds about 8,000-

80,000 TWh/year or 1-10 TW worldwide, though about 3 TW wave energy could be harnessed as 

usable energy and among the wave energy sources, 574 GW could be generated in Australia and New 

Zealand, 768 GW in South and North America and 286 GW in Europe (Ayub et al., 2011; K. Dragoon, 

2015; Muetze & Vining, 2006). The theoretical potential of the wave energy resource in various areas 

of the world is shown in  Table 1.1. Since 2010, at least 25 countries worldwide have engaged in 

wave energy development, which continues to increase (Ahamed et al., 2020). The global wave 

energy resources and their variability have been discussed by many researchers (Antonio, 2010; 

López et al., 2013). Iraide Lopez et al. listed the benefits and challenges of wave energy power and 

have drawn some conclusions which are very helpful for developing the wave energy technology and 

selecting suitable sites. The Global wave power statistics are illustrated in  Figure 1.1. Yoshio 

Masuda, a Japanese marine captain, began studying ocean energy informally in the 1940s. He 

developed a floating navigation buoy based on wave energy, called the floating oscillating-water 

column (OWC), primarily sold in Japan and the USA (Falcão & Henriques, 2016; Masuda, 1986). It 
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began academically in the 1970s when the price of fossil oil rose and the Middle East restricted oil 

supplies (Polinder & Scuotto, 2005). 

 

Figure 1.1: Yearly mean wave power density (shown by colour variation) and yearly mean best 

direction (indicated by → (arrows)) (Gunn & Stock-Williams, 2012) 

In the 1980s, research on wave energy slowed because oil prices dropped again, and funds were 

lacking to continue this type of research. Researchers from Europe, especially those in the UK and 

Norway, conducted most early research. Researchers at this time focused primarily on hydrodynamics 

and developed point absorbing wave energy converters (WECs) and oscillating water column 

concepts with a basic understanding of ocean wave energy (Elwood et al., 2010; McArthur & 

Brekken, 2010). Energy demand, the price of conventional energy, and global warming prompted 

wave energy research to restart several decades later. Thus, the academic research into ocean wave 

energy has taken place in two phases, between the 1970s and today. 

1.2 Classification of Wave Energy Converter (WEC) 

It is known from all the recent reviews that there are several hundred WEC projects worldwide at 

various stages of development. New concepts and technologies constantly lead to an increase in this 

number. Day et al. summarised that more than one hundred projects and more than one thousand 

patents had been developed since 2015 in Europe, the USA, Japan, China, and Asia (Day et al., 2015). 
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Various researchers worldwide have conducted numerical and experimental studies to evaluate the 

WEC's performance. To harness energy from the ocean waves, WEC has been used various concepts, 

techniques, designs, and working principles. Thus, the classification of WEC depends on different 

factors. Several methods of classifying wave energy systems exist, including based on location, 

structure, working principle, size and orientation, and power take-off system (Antonio, 2010; Czech 

& Bauer, 2012; Falnes, 2007; Hong et al., 2014; Wang et al., 2018). The details of the advanced 

classification of the Wave energy converter (WEC) are shown Figure 1.2. 

 

Figure 1.2: Classification of WEC  

These devices can be classified as Onshore, Offshore, and Nearshore based on installation location: 

(1) Onshore devices, which are usually designed to be installed at or to the shoreline; (2) Offshore 

devices that are installed in deep water; (3) Nearshore devices which are deployed in shallow water 

regions. According to the size and direction of elongation, the WECs can be classified into three 

types: Attenuators, Point Absorbers and Terminators. The WECs can also be categorised into several 

types based on their working principle: Oscillating body; Oscillating Water Column; Overtopping; 

Submerged Pressure Differential; Oscillating Wave Surge; Rotating Mass; Bulge Wave; and others. 

Oscillating body, Oscillating water column and Overtopping are the most common working 

principles, and the majority of devices use one of these three (Day et al., 2015). Moreover, the WEC 

can be classified into four types based on their structure: (1) Fixed structure; (2) Floating structure; 

(3) Submerged; and (4) Semi-submersible floating structure. So far, numerous PTO systems have 
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been used; therefore, the WEC can be classified using these different types. The brief descriptions of 

each of these categories can be seen in Refs. (Ahamed et al., 2020). Falcão et al. presented the most 

well-known WEC classification diagram (Antonio, 2010). The WEC classification has been updated 

to reflect some new PTO technologies. The WEC classification has been updated to include some 

new PTO technologies.  

1.3 Wave Energy Converters based on Power Take-off (PTO) Systems 

Power take-off (PTO) systems are at the heart of wave energy research. Many research works have 

been done to develop the PTO system for wave energy technologies to generate maximum energy at 

a low cost. So far, many working methods have been used to develop the PTO systems, which can be 

seen in Figure 1.3.  

 

Figure 1.3: The working principles of the PTO system 

Among all the working methods in PTO systems, the hydraulic motor, turbine transfer, direct 

mechanical and electrical drive system based working methods are very well known and the most 
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used methods. However, some new techniques such as the triboelectric nanogenerator, hybrid 

systems, and others have been developed only in the last couple of years. This section will review 

and discuss the PTO working techniques with their design methods and research work.  

1.3.1 Hydraulic motor system 

PTO systems based on hydraulic motors are well-known methods of converting low-speed 

oscillations into energy (Ahamed et al., 2020). Among the available wave energy conversion 

technologies, the hydraulic motor-based PTO system is the most suitable for converting wave energy 

into usable electricity. In particular, the wave-activated-bodies wave energy conversion system is the 

most appropriate device. Thus, both translation wave and rotation wave conversion systems can be 

utilised in hydraulic motors (Jusoh et al., 2019). Figure 1.4 shows a schematic diagram of a typical 

hydraulic motor type PTO system.  

 

Figure 1.4: Typical hydraulic motor based PTO system (López et al., 2013). 

It contains a hydraulic cylinder, a hydraulic motor, an accumulator, and a generator. A hydraulic ram 

converts the rotational or translational motion generated by ocean waves into hydraulic energy, which 

drives a hydraulic motor. The hydraulic ram works by increasing the pressure of a working medium 

(often hydraulic oil). The hydraulic motor then drives the generator to produce energy (Zhang et al., 

2012).  

Hydraulic motor-based PTO systems have significant advantages due to their large power density and 

low-frequency operation (Gaspar et al., 2016). Hydraulic motors can generate significant amounts of 
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power using low-frequency waves. It can be used to extract energy from wave energy converter 

movement, which is continuously changing. The hydro system is well suited and adequate for 

harvesting energy from waves because, generally, waves create large forces with slow speeds (Zhang 

et al., 2012). Incompressible fluid is usually used in hydraulic motor systems, making them more 

efficient. Although the system has been rated as effective as 69% to 80%, it would actually have a 

lower efficiency (Hansen et al., 2013). The hydraulic motor system can also be used to control the 

WEC device to maximise energy absorption and take into account the ocean wave condition (António, 

2007). The hydraulic motor assembly can be assembled using locally-made components from 

hydraulic components suppliers (Lasa et al., 2012). Due to compression and decompression of the 

fluid inside the hydraulic actuator chamber, fluid flows inside the hydraulic system, potentially 

creating hydraulic oil leakage and causing harm to the marine environment (Zou & Abdelkhalik, 

2018). Hydraulic motor-based PTO systems have many mechanical parts, so their structure is 

complicated and they require regular maintenance in ocean environments, which is expensive, risky, 

and time-consuming (Ahamed et al., 2020). Additionally, the end-stop issue is another challenge of 

the hydraulic motor-based PTO system. Due to unexpected extreme conditions, the hydraulic actuator 

can exceed its maximum displacement limit and damage the system (Jusoh et al., 2019).  

1.3.2 Pneumatic air turbine transfer system 

One of the most famous PTO systems for WEC is the pneumatic air turbine transfer system. In most 

systems, compressed air drives the air turbine, which drives the generator directly. Usually, the air 

turbine is used for breakwater integrated OWC and oscillating water column wave energy converters. 

Figure 1.5 illustrates the schematic of the air turbine transfer based PTO system.  

 

Figure 1.5: Schematic of the air turbine based PTO system (Têtu, 2017) 
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Seawater pressure creates air pressure in the wave energy converter system, which runs directly 

through the turbine, coupling with the generator, to generate energy. Wave energy converters with or 

without fixed or variable guide blades use wells or impulse turbines, which are common types of air 

turbine designs. 

Using air as the working fluid of WEC increases the wave's slow velocities into high airflow rates. In 

contrast to hydraulic motor-based PTO systems, pneumatic air turbines have no environmental impact 

because they harness energy from the high airflow, and the technology has been mature for many 

decades. Air turbines are advantageous because they can be located away from the potentially 

corrosive saltwater and destructive high waves. In addition, they can be easily accessible for 

maintenance, as they are not located directly in contact with them (Soares et al., 2012). The 

bidirectional flow makes conventional turbines unsuitable. A non-return valve system coupled with 

a traditional turbine may be one solution to this problem. Still, the non-return valve airflow 

rectification system is complicated and challenging to maintain. This system, however, can't be 

implemented in a large-scale wave energy unit because the valve is too big (Maria-Arenas et al., 

2019; Pecher & Kofoed, 2017). Pneumatic air turbine transfer systems designed with Wells turbines 

are the most popular because they rotate in the same direction, regardless of airflow direction. Its 

primary disadvantage is that it does not start itself: first, an external source must be used to drive the 

rotor (Pecher & Kofoed, 2017). This Wells turbine system is less efficient than the traditional system 

(around 60-65%) (Ahamed et al., 2020). Additionally, it has higher axial thrust and higher noise than 

conventional systems (Kim et al., 2001; Takao & Setoguchi, 2012). Further, the extra function 

reduces turbine stability and increases operation and maintenance costs by increasing the number of 

moving parts.   

1.3.3 Hydro turbine transfer system 

The hydro turbine transfer system utilises compressed water to power the turbine, which directly 

drives the generator to generate energy, as shown in Figure 1.6. Hydro turbines are used in 

overtopping wave energy converters. The Wave Dragon consists of two arms that collect water in a 

reservoir that is higher than the ocean's surface level and a submerged ramp that drives its turbines 

(Parmeggiani et al., 2011; Polinder & Scuotto, 2005). The stored water is moved back to the sea by 

channels located in the middle of the reservoir, which run the turbines to generate energy. 



 

9 

 

 
Figure 1.6: Schematic of the hydro turbine-based PTO system (Tutorials, 2019) 

Hydraulic turbines are an established technology, such as the Kaplan turbine, which has been in use 

for decades. It can operate with 90 % efficiency and require little maintenance (Pecher & Kofoed, 

2017). The bottleneck for wave energy conversion is getting enough head and flow from ocean waves 

to allow Kaplan's turbine generator units to be economically viable. Using a hydro turbine has the 

advantage of causing no environmental pollution due to fluid leaks (Ahamed et al., 2020). It has the 

disadvantage of being a dynamic fluid (ocean water) with unpredictable components that can damage 

the seals and the valves. Cavitation may also be an issue if the turbine isn't located deep enough to 

maintain positive pressure. 

1.3.4 Direct mechanical drive systems  

The direct mechanical drive system converts ocean waves directly into electricity using an electric 

generator. Mechanical transmission systems and gearboxes are typically used to drive electrical 

generators directly connected to the gearbox. Figure 1.7 illustrates the schematic for a direct 

mechanical drive-based PTO system. Several WEC prototypes utilising the direct mechanical drive 

have been developed and deployed. The Penguin is a WEC developed by Wello Ltd, which harnesses 

the power of waves through an electric generator (Amir et al., 2016). 

Direct mechanical drive refers to the transmission of wave energy into electrical energy using linear-

to-rotary converters without any pneumatic or hydraulic systems. Wave energy converters can be 

driven by various transmission systems, including rack-and-pinion, belt drive systems, ratchet 
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wheels, and screws. Due to reduced friction, the direct mechanical drive wave energy conversion 

system can convert more wave energy than the hydraulic system. 

 

Figure 1.7: Schematic of the direct mechanical drive based PTO system (upgrade of Ref. (Têtu, 

2017)) 

PTO systems that utilise this technology offer high performance since only three conversions are 

required. Rack and pinion mechanisms are highly efficient, as high as 97% was claimed (Penalba & 

Ringwood, 2016). Despite this, the direct mechanical drive system undergoes higher load cycles, and 

it is still uncertain whether this type of system is reliable. In terms of challenges, the rack and pinion 

mechanisms are mainly limited by their relatively short lifespans and higher maintenance costs. 

Additionally, the gearbox size for WEC devices depends on the shape and size of the system. The 

gearbox used in the smart power buoy had an outer dimension of 300mm x 400mm (diameter) and 

cost USD 1500. On the other hand, the gearing system at the PTO of Bolt Lifesaver costs about 

£40,000 (Ahamed et al., 2020).   

1.3.5 Direct linear electrical drive systems 

To overcome some of WEC's mechanical complexity, direct electrical drive systems and 

electromagnetic-based linear generators have been used in PTOs (Mueller & Baker, 2002; Henk 

Polinder et al., 2005). The linear generator concept works using a translator and a stator, with the 

translator is attached to a buoy and the stator fixed to the seafloor. The stator is equipped with coil 

windings, and the translator is equipped with permanent magnets. Due to the hydrodynamic action of 

the ocean waves on the buoy, the translator moves up and down while it generates the magnetic field 
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inside the coil windings and thus generates the electric power. The schematic of the direct electrical 

drive-based PTO system is shown in Figure 1.8.  

 

Figure 1.8: Schematic of the direct electrical drive based PTO system (Ahamed et al., 2020) 

The term "Direct electrical drive" refers to converting the wave energy directly into electrical energy 

without using pneumatics or complicated linear-to-rotary conversion systems. Directly coupled to the 

moving part of the linear generator, this device extracts mechanical energy from the primary converter 

(Baker & Mueller, 2001; Mueller, 2002). The advantage of this system is that it does not require an 

intermediate mechanical interface (for example, a gearbox), which avoids the losses associated with 

turbines and hydraulic motors, thus reducing maintenance costs (Hong et al., 2014; Leijon et al., 

2008; Muetze & Vining, 2006).  

Direct electric drive systems (linear permanent magnet generators) have the main advantage of 

relatively high efficiency and the possibility of continuous force control (Danielsson, 2006). 

Additionally, the generated electricity must be converted to a form suitable for the electric grid by 

using power electronics (Hong et al., 2014). Due to the low frequencies of ocean waves, linear 

generators have the main disadvantage of having a much lower linear velocity than rotary generators, 

which is determined by the absorber velocity. Another disadvantage is the low power-to-weight ratio 

of the machines (huge machines are needed) as well as the need for a large structure due to the 

attraction between the stator and the translator (Penalba & Ringwood, 2016). Furthermore, the power 

transmission system is also very complex due to the irregular wave motion that produces an unequal 

voltage (Leijon et al., 2008). 
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1.3.6 Triboelectric nanogenerators 

Triboelectric nanogenerators (TENG) were invented in January 2012 by combining 

triboelectrification with electrostatic induction, which offers high power density, high efficiency, low 

weight and low manufacturing costs (Fan et al., 2012). TENG could lead to new wave energy 

conversion methods and ocean-linked blue energy harvesting systems on a large scale (Wang, 2015). 

To increase efficiency and cut costs, researchers have been studying triboelectric nanogenerators 

(TENGs) for PTO systems (Chen et al., 2015; Khan & Kim, 2016). Modern TENGs are constructed 

using conventional materials such as aluminium polytetrafluoroethylene (PTFE) since they are 

lightweight, relatively inexpensive, easy to fabricate, and easily scaled up (Wang, 2013, 2015). A pair 

of materials creates electrostatic induction due to their two surfaces as electrostatic induction occurs 

when the contact electrification of their electrodes helps guide the charge between their electrodes 

and the polymer, and a metal pair is usually used as the friction layer (Fan et al., 2012; Hinchet et al., 

2015; X.-S. Zhang et al., 2013). Figure 1.9(b) illustrates the working mechanism of TENG, while 

Figure 1.9(c) illustrates its performance in the low-frequency range. When two materials, A and B, 

interact, electrostatic surface charges are produced; the rolling of the ball changes the capacitance of 

the system, allowing electrons to flow between the two electrodes to balance the electrical potential 

drop (see Figure 1.9(b): (i), (ii) and (iii)). 

 

Figure 1.9: Working Principle (a) electromagnetic generator, (b) TENG coupling triboelectrification 

effect and electrostatic induction (c) Output comparison between EMG and TENG  
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Triboelectric nanogenerator-based PTO systems generally use polymer-metal pairs as friction layers, 

allowing charge transfer by electrostatic induction between electrodes and contact electrification 

between two materials (X.-S. Zhang et al., 2013). Thus, they are low cost, lightweight, easy to 

fabricate, well suited for scaling up, and provide a wide variety of materials to choose from (X. Wang 

et al., 2015). Additionally, these systems have the ability to convert up to 55% of the mechanical 

energy into electrical energy and can adapt to various kinds of mechanical energy in the form of 

different operational modes such as contact-separation mode, single-electrode mode, sliding mode, 

and freestanding mode (Wang, 2015, 2017). Triboelectric nanogenerators-based PTO systems have 

the advantage of being able to harvest energy in any frequency range (broad frequency range) (Wen 

et al., 2016). On the other hand, there are many significant challenges associated with using TENGs, 

such as power transfer to shore and device lifetime in an oceanic environment, as well as the cost and 

management of large networks of devices (Z. L. Wang et al., 2017). 

1.3.7 Hybrid systems 

Generally, hybrid-type PTO systems capture energy from ocean waves by combining two or more 

different techniques or PTO systems. Several WECs have also been proposed based on triboelectric 

nanogenerators and electromagnetic generators or piezoelectric materials.  

 

Figure 1.10: Design of the new system structure (Feng et al., 2018) 
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A new wave energy harvester was developed using a triboelectric nanogenerator (TENG) and an 

electromagnetic generator (EMG). The TENG contains three honeycombs like electrodes covered by 

hexagonal PTFE (seven hexagonal films in three groups) and magnets. Figure 1.10 shows that the 

EMG consists of seven copper coils attached beneath the electrodes on the back of the acrylic board 

(Feng et al., 2018).   

                       

(a) (b) 

Figure 1.11: Hybrid system concepts (a) courtesy of Pelagic Power AS (b) Courtesy of Wave Star 

AS (Pérez-Collazo et al., 2015) 

As shown in Figure 1.11, offshore wind turbines and wave energy converters that work together are 

known as a hybrid concept. The wind turbine generates energy from the wind on the ocean surface, 

whereas the wave converter generates energy from the ocean waves (Kim et al., 2015; Pérez-Collazo 

et al., 2015; Rusu & Onea, 2018b). Some researchers have also proposed photovoltaic-wave energy 

and wind-photovoltaic-wave energy concepts to increase the system's efficiency (El-Sayed & Sharaf, 

2011; Samrat et al., 2014; Xilin et al., 2004). The hybrid system is a new research topic in wave and 

wind energy research, and only a few articles have been published (Fusco et al., 2010; Veigas, 

Carballo, et al., 2014; Veigas & Iglesias, 2013, 2015; Veigas, Ramos, et al., 2014). 

One of the main advantages of the hybrid system is that it combines two working methods to harvest 

energy into one structure, which reduces the installation and mooring costs. For instance, combining 

a floating or mooring wind turbine with wave energy converters to harvest energy from the offshore 

area reduces the initial investment requirements compared with the two independent systems. A 

hybrid system may be developed with the new or existing wind turbine infrastructure (Manasseh et 

al., 2017). Therefore, overall costs of installation, operation, and maintenance can be reduced. 
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Furthermore, the wave energy converters (WECs) should be integrated into the platform's overall 

motion response, providing a stabilising effect to the whole device (Ding et al., 2015). Due to its 

smoother integration into the grid network, the hybrid system delivers greater efficiency while being 

less influenced by the variability of a single resource (Rusu & Onea, 2018b). Additionally, offshore 

wind farms could reduce the cost of wave energy by sharing infrastructure, logistics, and grid 

connections. Due to mechanical and hydrodynamic couplings, the performances of the other 

operating system may change. When the wave energy converter is coupled with the floating wind 

turbine, the behaviour of the floating wind turbine is changed by mechanical and hydrodynamic 

interactions between the floating bodies (Ding et al., 2015). Therefore, the efficiency of the floating 

wind turbine could be reduced. Moreover, the two working systems will increase the loads on the 

structure. Coupling a wave energy converter with a  floating wind turbine will also increase the loads 

of the substructure (Perez-Collazo et al., 2018). 

1.3.8 Other systems 

Various other techniques have also been used to harvest energy from waves, including piezoelectric 

materials (Hwang et al., 2017; Wu et al., 2015). An ocean wave harvesting device based on 

piezoelectric materials has been developed using a laminated structure made from elastic materials 

and piezoelectric paint (Mutsuda et al., 2019). In the presence of external forces such as wind, waves, 

and others, the laminated structure can easily deform. Another new WEC called S3 was developed 

and tested using Electro Active Polymers (EAP) in the PTO system (Babarit et al., 2013b; Jean et al., 

2012). The new WEC can directly convert ocean waves into energy with distributed energy 

generation. Roll-to-roll and EAP processes are used in the PTO system.  

Compared to electromagnetic energy harvesting, the piezoelectric energy harvesting system has a 

three times higher energy density and occupies a smaller space than turbine transduction systems 

(Nabavi et al., 2018; Priya, 2007). Due to its size and weight, ocean wave energy devices based on 

piezoelectric materials can generate power for a wide range of water motions at low frequencies 

(Hwang et al., 2017; Su et al., 2014). Since piezoelectric materials do not have moving parts, the 

materials can be easily integrated into the device and do not require frequent maintenance (Jbaily & 

Yeung, 2015). Piezoelectric energy harvesting systems are complex, expensive, and only work with 

shallow ocean waves (Viet et al., 2016). Due to the energy transduction principle, the energy 

efficiency is also very low compared to electromagnetic and triboelectric nanogenerators. Using these 
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methods, less than 10% of the available ocean energy can be converted into electricity (Wang, 2017). 

Compared to other conventional WECs, the EAP generator-based WEC is inexpensive to fabricate 

and install because the PTO system is also part of the structure, and it can be run until failure (Babarit 

et al., 2013a). Since the PTO system is distributed over the entire surface, this type of device avoids 

stress concentration and is flexible (Babarit et al., 2013a). This device can generate electricity directly 

from ocean waves (Wattez & van Kessel, 2016).  

Basically, it acts as an antenna for amplifying the dynamic pressure of the ocean waves. There are a 

lot of degrees of freedom and consequently a lot of modes of resonance, which helps it generate 

energy in any condition period of wave activity. (Andritsch et al., 2012; Jean et al., 2012). The key 

challenges for this device still need to be addressed, and research and development are ongoing 

(Wattez & van Kessel, 2016). Because of the flexibility of the EAP generator based WEC, one of the 

key challenges is that it should be operated above 50 V/µm to achieve maximum energy yield 

(Andritsch et al., 2012). Due to segmented electrodes, the device has a shorter lifetime than 

conventional WECs (Jean et al., 2012). The fatigue life can also be reduced by operating under 

combined mechanical and electrical loads. Moreover, this device can be destroyed in survival 

conditions (Babarit et al., 2013a). 

1.4 Problem Statement and its Significance 

A great deal of the energy demand in the present energy crisis can be met by ocean waves - one of 

the world's largest untapped and predictable renewable energy sources. In different countries across 

the world, many devices have been proposed for harnessing wave energy through different power 

take-off (PTO) systems. The traditional wave energy converters (WEC) use hydraulic or turbine type 

power take-off (PTO) mechanisms which consist of many moving parts, creating complex mechanical 

components and increasing the installation and maintenance costs. Linear permanent magnet (PM) 

generator based direct drive WECs could be a solution to overcome this problem. Still, the efficiency 

of the conventional linear PM generator is not high enough, and it cannot work satisfactorily in the 

low-frequency range. The bandwidth problem of the existing linear PM generator-based PTO system 

can be overcome by widening the frequency bandwidth of the WEC. The frequency bandwidth of a 

light damping nonlinear oscillator is anticipated to be larger than that of a conventional single-degree-

of-freedom (SDOF) linear oscillator. The magnetic levitation (magnetic spring) system can be used 

in the translator design to make the oscillator nonlinear, which is more effective in the broadband 
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frequency range, especially in the low-frequency ocean environment. However, the characteristics 

and dynamics of the linear PM generator based on the SDOF nonlinear oscillator system have not 

been studied yet. The generator system has not been analysed yet by applying external harmonic 

forces. In addition, no study thus far has modelled two-degree-of-freedom (2DOF) and three-degree-

of-freedom (3DOF) nonlinear oscillator system-based energy harvesters to harness ocean energy.  

With the aim of harnessing ocean energy, this research presents novel analytical, numerical and 

experimental modelling of SDOF, 2DOF and 3DOF magnetic spring-based energy harvester systems. 

The design of the SDOF, 2DOF and 3DOF magnetic spring-based nonlinear oscillator systems have 

been analysed separately with or without winding coils.  

1.5 Research Objectives 

The primary objective of this research proposal is to design a direct drive linear generator based on a 

nonlinear oscillator system for harvesting maximum energy from ocean waves in the broadband 

frequency range. It is predicted that understanding the key parameters will help generate maximum 

power. Moreover, the nonlinear behaviour of the magnetic spring, which will be used to build the 

multi-degree of freedom system, will help the generator generate maximum energy in the low-

frequency range. Therefore, the overall aim of this research can be addressed by increasing the 

magnetic fields, magnet velocity and degrees of freedom to improve efficiency. 

The main objectives of the thesis can be written as follows: 

1. Research into a magnetic spring-based linear electromagnetic generator for harvesting 

maximum energy from ocean waves in the broadband frequency range. 

2. Performance evaluation and optimisation of the linear electromagnetic generator with the 

magnetic spring-based nonlinear oscillator system 

3. Investigating the electromagnetic field effects and the wave energy conversion performance 

of the generator using numerical simulation and experimental methods. 

4. Optimising the energy conversion behaviour of multiple degrees of freedom nonlinear 

oscillator system. 
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1.6 Research Methodology  

The literature review identified that the permanent magnet (PM) based linear generator was a viable 

option for research compared to other methods. Further literature research was conducted to identify 

possible research challenges regarding PM linear generator-based PTO systems for WEC. The study 

indicated that the two-degree-of-freedom (2DOF) and the three-degree-of-freedom (3DOF) systems 

had not been viable options for modularising the linear generator's design. Furthermore, the magnetic 

spring-based nonlinear oscillator system has not been seriously considered an option for broadband 

energy harvesting. Hence, the research topic chosen for this project was "A Novel Direct Drive Linear 

Ocean Energy Converter Based on Nonlinear Oscillator System". The term linear ocean energy 

converter in the research topic means the linear motion (i.e. motion in a straight line) of the 

magnets/translator. The nonlinear oscillator system means the oscillator can oscillate with different 

frequencies. The study of energy harvester with magnetic spring-based oscillator system was 

conducted step-by-step from the simple single-degree-of-freedom system aspect to the more complex 

multi-degree-of-freedom system. 

The research methodologies adopted to accomplish the stated goals are as follows: 

1. Study of various power take-off systems: Extensive literature review is carried out on well-

known power take-off systems (PTO) and the latest research into the linear generator type of 

wave energy converters (WEC)' power take-off systems. The various topologies and 

mathematical analyses of the existing linear generator-based PTO system are also studied and 

identified as the shortcoming of the current model.  

2. Study of magnet properties and electromagnetic system: Magnet properties are investigated 

for the feasibility study of the magnetic spring-based nonlinear oscillator model. Analytical, 

numerical and experimental methods are used to study the magnetic properties of the magnet 

and magnetic spring-based oscillator system. The experimentally measured magnetic 

restoring force for the nonlinear oscillator system is validated with the analytical and 

numerical simulations. Taylor series is used to determine the coefficient of the oscillator 

system from the analytical magnetic restoring force. Electromagnetic theories are studied to 

understand the linear generator and its working principle. MATLAB and ANSYS Maxwell 



 

19 

 

are selected for the analytical and numerical analysis, respectively. Autodesk Inventor is used 

for designing the test-rig setup.  

3. Coefficients of the magnetic-spring based nonlinear oscillator system: The linear and 

nonlinear stiffnesses of the nonlinear oscillator system for various degrees of freedom are 

measured from magnetic restoring forces using polynomial curve fitting by considering 

gravitational force effects. For SDOF magnetic spring-based energy generator/PTO system, 

the coefficients are determined from the experimental measurements of the magnetic restoring 

force. For 2DOF and 3DOF PTO systems, the coefficients are determined from the analytical 

measurements of the magnetic restoring force.  

4. Dynamics of the nonlinear oscillator system with and without electromechanical coupling: 

The log-decrement method is used to investigate the system's natural frequency from the 

oscillation graph of the system. State space model is used to analyse the dynamics of the 

nonlinear oscillator system with and without electromechanical coupling for different degrees 

of freedom systems. The frequency response of the analytical model is compared with the 

experimental model. Moreover, the Runge-Kutta method (ODE23t solver) is used to obtain 

the theoretical time responses (vibration and current). 

5. Parametric study of the magnetic spring-based energy harvester: The parametric study uses 

numerical (ANSYS MAXWELL) and analytical (MATLAB) methods to evaluate system 

performance and achieve the best solution within different parameters sets.  

6. Performance analysis of the magnetic spring-based linear generator system: A test rig is 

designed and fabricated using non-magnetic materials to study the proposed method. By 

increasing the number of floating magnets, the degree of freedom of the oscillator system is 

increased. The energy generation abilities of the generator are investigated analytically and 

experimentally under external harmonic forces. The servo motor is used to create a harmonic 

force (sine or cosine wave). IR distance sensors are used to measure the displacement of the 

floating magnet. A data acquisition system captures the data from the IR distance sensors and 

winding coils.  

7. Validation of the analytical model: The test rig of the energy harvester based on the SDOF, 

2DOF and 3DOF nonlinear oscillator systems are developed and experimented with within 
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the lab. The experimental results are compared with the analytical findings to validate the 

analytical models of the different degrees-of-freedom energy generators. Moreover, the 

findings of the SDOF energy harvester are compared with the 2DOF and 3DOF energy 

harvesters. In addition, the proposed magnetic spring-based PTO systems are compared with 

the existing magnetic spring-based PTOs system.  

8. Report writing. 

1.7 Research Scope 

This research aims to design and develop a linear permanent magnet generator based on various 

degrees of freedom nonlinear oscillator systems to harness energy from ocean waves. Further main 

contributions can be outlined as follows; 

1. Determine and validate the magnetic restoring force using numerical, analytical and 

experimental methods 

2. Investigate the gravitational force effects on the magnetic restoring forces (effects on 

equilibrium position) 

3. Dynamics analysis of the SDOF, 2DOF and 3DOF nonlinear oscillator systems with and 

without electromechanical coupling 

4. Model analyses by applying external harmonic force on the floating magnet 

5. Validation of SDOF, 2DOF and 3DOF generator's analyses with experimental analysis. 

1.8 Organisation of the Thesis 

This dissertation is organised into 12 chapters. The brief descriptions of each chapter are given below: 

1. An overview of the WEC with different PTO systems, direct electric drive generators and 

motivation for the research with an emphasis on the magnetic spring-based nonlinear 

oscillator system are presented in Chapter One. The problem statement, objectives, research 

methodology, research scope and the outline of this dissertation are also discussed. 

2. Chapter Two reviews the direct-drive generator type of wave energy converters' power take-

off systems (PTOs). The direct drive PTO system based WEC literature focusing on the linear 

permanent magnet (PM) generator is presented. Furthermore, it gives the mathematical 
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analysis and development of the linear permanent magnet (PM) generator proposed and 

deployed to harness ocean energy. 

3. Chapter Three studies the magnetic properties of the ring magnet and magnetic spring-based 

oscillator system and the electromagnetic theory. The magnetic restoring force of the magnetic 

spring-based oscillator system is analysed analytically without considering gravitational force 

effects.  

4. Chapter Four describes the gravitational force effects on magnetic restoring force and 

dynamics of the single-degree-of-freedom (SDOF) magnetic spring-based oscillator system 

without considering the electromechanical coupling. It presents the experimental, analytical 

and numerical simulation of the magnetic restoring force for the proposed oscillator system. 

The coefficients analysis of the system from the magnetic restoring force is studied. Moreover, 

it investigates the gravitational force effects and the dynamics of the SDOF oscillator system 

by changing the length of the oscillator. 

5. Chapter Five explains the magnetic properties, magnetic restoring forces, coefficients, 

mathematical modelling and the dynamics of the two-degree-of-freedom (2DOF) magnetic 

spring-based oscillator system. Moreover, it studies the dynamics of the 2DOF oscillator 

system by changing the length of the oscillator. 

6. Chapter Six discusses the magnetic properties, magnetic restoring forces, coefficients, 

mathematical modelling and the dynamics of the three-degree-of-freedom (3DOF) magnetic 

spring-based oscillator system. Moreover, it presents the dynamics of the 3DOF oscillator 

system by changing the length of the oscillator. 

7. Chapter Seven presents the experimental setup and analysis of the nonlinear oscillator system 

with and without electromechanical coupling. It clarifies the method of assembling all the test 

rig components. It also describes the calibration of the IR distance sensors and the subsequent 

instrumentation and the measurement signal paths from the sensors and winding coils to the 

Data Acquisition system.  

8. Chapter Eight describes the numerical simulation analysis, mathematical modelling, 

dynamic analysis, and performance test of the SDOF nonlinear oscillator-based energy 
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generator. It also presents the parametric study of the energy generator and the system with 

the RLC circuit. Moreover, it discusses the energy generation ability of the generator for 

different lengths of the oscillator, experimental analysis and validation of the energy generator 

system.  

9. Chapters Nine and Ten explain the numerical simulation analyses, mathematical modelling, 

dynamic analysis, validation, and performance tests of the 2DOF and 3DOF nonlinear 

oscillator-based energy generators.  

10. Chapter Eleven summarises and discusses the crucial findings of the thesis. Moreover, 

conclusions are drawn in this Chapter and outline important recommendations for future 

work. 
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Chapter 2  
Literature Review 

The aim of Chapter 2 is to specifically focus on and review the recent research developments of the 

WEC with the linear PM generator. In order to identify the most promising kinds of linear generators 

that can be used in WEC direct drive systems, this Chapter provides a timely and comprehensive 

critical comment on the distinctive linear permanent magnet (PM) based generator systems that have 

been studied and evaluated in recent years. It starts with a brief introduction and background of wave 

energy converters using linear generators. Following this, the working principle of the WECs with 

linear PM generators is briefly outlined. Subsequently, the analytical model of the linear PM 

generator based WEC is studied. The review provides an analysis of the major design parameters and 

improvement issues, performance analysis, and a discussion of the numerical and experimental 

analysis tools used by the researchers. Finally, conclusions about the significant beneficial 

characteristics and design choice of the WEC linear generator structure are provided and related to 

the application conditions. 

2.1 Introduction 

Increased energy demand, environmental pollution, and fossil fuel costs push researchers to find new 

energy sources. Therefore, energy generation from ocean waves has been seen as an attractive 

research topic to solve the energy demand and environmental problems. Ocean waves are among the 

world's largest untapped and predictable renewable energy resources that can be harnessed to meet 

future energy needs in an energy crisis situation. Numerous devices have been proposed and 

prototyped in different countries worldwide to harness wave energy using various power take-off 

(PTO) systems. All the latest reviews show several hundred WEC projects in different development 

stages worldwide (Ahamed et al., 2020). These numbers are continually rising as new technologies 

and concepts emerge. Although there are many devices and methods that have been proposed to 

harness wave energy, the designs are still in the early stages, as not a single commercial, mature 

technological model has been developed. Thus, it can still be seen as an immature and expensive 

technology. However, for the present time, the largest portion of wave energy projects that have been 

installed is based on the oscillating bodies’ technology, especially the Point absorber (PA) type 

(López et al., 2013; Rusu & Onea, 2018a; Wang et al., 2018; Xu et al., 2019). The point absorber is 

an offshore type device that generally utilises heave motion for energy generation and was very 

https://doi.org/10.3390/su14169936
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popular because of its advantages over other wave energy technologies (Clément et al., 2002; Hong 

et al., 2014), including that its size is smaller compared to other WEC technologies, it contains 

decidedly less mechanical complexity, and it can generate energy from any direction of waves at one 

point of the ocean (Budar & Falnes, 1975; Hong et al., 2014; Xie & Zuo, 2013). Two general electrical 

generators are used in Point absorber (PA) types WEC system, one being the rotary generator and the 

other being the linear generator. Generally, hydraulic motors or turbines or gearboxes are used in the 

traditional rotary generator based WEC to produce a high-speed rotating motion from slow-moving 

wave motions (Ahn et al., 2012; Frigaard et al., 2004; Gao et al., 2016; Henderson, 2006). This design 

consists of many moving parts, which creates a comparatively very complex mechanical system and 

can result in pollution of the ocean environment due to oil leakage of any moving part (Leijon et al., 

2008; Zhang et al., 2018). To overcome this mechanical complexity, electromagnetic based linear 

generators can be used in WECs (Mueller & Baker, 2002; Henk Polinder et al., 2005). The advantages 

of this buoy type of linear generator set-up are that it has a simple mechanical design because it does 

not contain any gearbox or other mechanical or hydraulic conversion system, it has less environmental 

impacts, and it reduces the maintenance cost of the WEC due to reducing the need for maintenance 

(Leijon et al., 2008; Muetze & Vining, 2006). So far, many linear generator-based WECs have been 

proposed, tested, and deployed in the ocean. Among the well-known linear PM generator proposed 

WEC, the Archimedes Wave Swing (AWS) was the first device deployed in the ocean for 

performance testing (H Polinder et al., 2005). The second linear PM generator based WEC was 

developed and tested by Uppsala University (UU), and the third one was developed and tested by 

Oregon State University (OSU) in collaboration with industry partners (Hong et al., 2013; Von 

Jouanne & Brekken, 2011).  

2.2 Wave Energy Converter with Linear Generator-based PTO System 

The main components of the direct-drive linear generator based WECs are the linear PM generator 

type PTO system and the wave buoy. Usually, the linear PM generator consists of a translator which 

holds the permanent magnets (PMs) and the stator equipped with coil windings, or vice versa. 

According to the linear PM generator based WEC, the stator is fixed, and the translator is connected 

to a floating or submerged buoy or vice versa (Curto et al., 2020). With the hydrodynamic motion of 

the ocean waves, the translator goes up and down along with the buoy and produces the fluctuating 

magnetic field within the coil windings, generating electrical energy. Figure 2.1 displays the basic 

functional units of wave energy conversion. 
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Figure 2.1: Basic functional units of a linear generator based WEC  

Wave energy conversion systems are divided into primary, secondary, and tertiary stages  (Rusu & 

Venugopal, 2019). During the first stage of wave energy conversion, the buoy is used to capture 

kinetic energy from the wave. By using a linear generator, the buoy motion energy is converted into 

electricity in the secondary conversion stage. At the tertiary conversion stage, the characteristics of 

the generated power are adapted to grid requirements using power electronic interfaces. 

2.2.1 Different topologies of WEC with linear generator-based PTO system 

This section is concerned with presenting an overall perspective of typical linear wave generator 

configurations, discussing their merits and shortcomings. The topologies of WEC with linear PM 

PTO can be classified based on the applications and the system principles. Some systems are based 

on a floating buoy on the sea surface, as displayed in Figure 2.2(a) (Elwood et al., 2010; Leijon et al., 

2006), or a fully submerged heaving system as displayed in Figure 2.2(b) (Polinder et al., 2004; Henk 

Polinder et al., 2005) and others (Boscaino et al., 2017; Cappelli et al., 2013).  

It is less susceptible to storm damage when the wave energy converter is entirely submerged in water. 

Most failures are related to cooling issues, hydraulics, and pneumatics and it requires more 

maintenance. In order to avoid these construction, operation and maintenance difficulties, it is not 

recommended to submerge the device in water (Rhinefrank et al., 2006). 
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(a) 

 

(b) 

Figure 2.2: (a) Floating buoy on the sea surface (b) Fully submerged heaving system 

2.2.2 Floating buoy on the sea surface 

The most straightforward design using a floating buoy on the sea surface involves directly connecting 

the buoy to the generator moving part with a tether. In contrast, the linear generator is fixed onto the 

seabed, as shown in Figure 2.3(a) (Castellucci et al., 2016). Another possibility is placing the linear 

generator above the ocean surface, which is mounted with or without a fixed structure, and the 

translator of the generator is attached with the floating buoy (López et al., 2013; Zhang et al., 2018). 
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Figure 2.3(b) and Figure 2.3(c) present the WEC design schematic where the linear generator is 

placed above the sea surface.  

                 
(a) (b) 

                                  
(c) (d) 

Figure 2.3: Floating buoy on the sea surface (a) Linear generator fixed in the seabed (Hai et al., 

2015), (b) Linear generator above the sea surface (López et al., 2013), (c) Floating linear generator 

underneath the ocean surface (Bastien et al., 2009) and (d) Linear generator above the sea surface 

(Zhang et al., 2018) 

The other common design concept is to leave the linear generator floating underneath the ocean 

surface and the translator directly connected with the floating buoy on the sea surface by tether 
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(Bastien et al., 2009), as presented in Figure 2.3(d). Figure 2.4 presents a new concept where the 

whole linear generator system floats on the sea surface. Based on these concepts, different types of 

direct drive linear generator WEC have been developed. The most appropriate technique might be to 

have the overall system partially above the sea surface because the submerged systems create 

difficulties such as moorings, seawater corrosion, and access for maintenance.   

 

Figure 2.4: Floating linear generator on the sea surface (Panicker, 2012) 

2.2.2.1 Single body heaving buoy system 

The single body heaving system is the most common in the direct-drive linear wave energy converters 

research because of its simplicity. Figure 2.3 presents some single body heaving system type WEC 

with linear generators. The well-known direct drive linear generator based WEC developed at 

Uppsala University, and Oregon University was based on the single body heaving system (Brekken 

et al., 2009b; Castellucci et al., 2016). The WEC system, developed by the University of Uppsala, 

consisted of a buoy and a linear generator whose linear generator was fixed to the seabed and whose 

translator moved with the buoy. The rectangular-shaped translator had several permanent magnets, 

and the wound coils were connected with the stator (Waters, Stålberg, et al., 2007). Springs have been 

used to connect the translator with the linear generator foundation to retract the translator in the wave 

troughs (Leijon et al., 2008). A fixed component at the bottom of the sea spring counteracts the buoy's 

motion by driving the linear generator's moving part. End stops have been used at the top and bottom 

of the device to restrict the translator's stroke length during extreme oceanic conditions (Leijon et al., 

2008). Oregon State University developed a linear generator consisting of a spar and a float in which 
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the spar was moored and the float moved with the waves. A cylindrical bobbin wound with a three-

phase armature formed the spar, while a cylinder containing 960 magnets formed the float. When the 

float moved up and down with wave motion, the voltage was directly produced inside the armature 

since the inner surface of the float faces the outer surface of the spar (Prudell et al., 2009b; Prudell, 

2007). It was roughly 3.3 meters high, 1.2 meters wide, and rated for 10 kW of power (Brekken et 

al., 2009a). 

2.2.2.2 Two-body heaving buoy system 

It is challenging to construct a device with a natural frequency that matches the low frequency of the 

incoming waves to achieve resonance with a single body heaving system. The distance between the 

floater and the seabed can be significant, and due to this significant distance, the single body heaving 

system has reduced efficiency. To solve these problems, some researchers proposed two-body 

heaving systems (Amiri et al., 2016; Engström et al., 2009; Liu, Yu, Hu, Liu, Zhou, et al., 2013). The 

two-body heaving system consists of either a floating section that deals directly with the wave and a 

fully submerged section or two floating sections (Gao et al., 2016). Submerged buoys or passive 

buoys provide inertia for damping, while floating buoys in combination with submerged buoys assist 

in following the wave frequencies closely (Rahman et al., 2020). The linear generator can be mounted 

between the two bodies to avoid the large linear generator connection distance between the seabed 

and the free surface. There are two common types of two body heaving systems, as shown in Figure 

2.5. Both bodies move due to the wave motion and create relative motion between them, causing both 

translator and stator of the linear generator system to move, which helps increase efficiency. Elie Al 

Shami et al. reviewed the studies of single and two body heaving systems with their dynamics, 

hydrodynamics, advantages and disadvantages (Al Shami et al., 2019). The power capture ratio of 

the two-body heaving system's converter has been reported to be approximately 80% when the 

irregular waves. If a 14-ton translator was used, the coupling between the linear generator, submerged 

body (passive buoy), and floating buoy on the sea surface became rigid. In addition, if the submerged 

body (passive buoy) was placed at a depth of 40m, then the reported achieved power capture ratio 

was around 80%. The power capture ratio decreased to about 50% when the depth decreased by 30m. 

The resonance behaviour of the two-body heaving system has significantly affected the linear 

generators' efficiency.  
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(a)  (b) 

Figure 2.5: Two-body heaving system (a) Linear generator fixed in the seabed (Piscopo et al., 2018) 

(b) Linear generator fixed between two bodies (Berenjkoob et al., 2019) 

 

Figure 2.6: Fully floating two body heaving system (Gao et al., 2016) 

Moreover, another novel topology has been developed, as shown in Figure 2.6, which may be 

categorised as a fully floating two body heaving direct drive linear generator WEC (Gao et al., 2016). 

The proposed system consists of a spar fixed on the seafloor and a floating system with two parts. 

The permanent magnets are mounted in the inner body, and the windings coils are mounted in the 
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outer body.  Both outer and inner bodies freely move up and down along the spar, and during the 

movement, the outer body acts as a floating buoy to harness the wave energy. In contrast, the inner 

body experiences a forced oscillation.  

2.2.3 Fully submerged heaving system  

Archimedes Wave Swing (AWS) is a fully submerged direct-drive device and was the first WEC 

device to use a linear permanent magnet generator for PTO. (H Polinder et al., 2005). The linear 

generator of the device is attached to a compressed air chamber fixed on the seabed. The translator 

of the linear generator is connected with the floater that is fully submerged (underwater). The working 

principle of the AWS is based on the oscillating movement of the sea waves, which increases and 

decreases pressure levels successively under the sea surface because of the wave motion. The wave 

motion causes the floater to move vertically up and down relative to the fixed lower part, thereby 

increasing the wave pressure levels, which then causes the air inside the chamber to be compressed.  

When the air pressure inside the chamber is greater than the wave, the volume inside expands (Henk 

Polinder et al., 2005). Electrical energy was generated from the wave motion because of this 

reciprocating linear motion. However, the completely submerged system has the same advantages 

and disadvantages as the AWS. These fully submerged systems are not visibly gaining public 

acceptance, though they are less vulnerable in severe ocean conditions. On the other hand, ocean 

environmental conditions require higher maintenance costs. A fully submerged system also has the 

disadvantage of corroding metals and disturbing marine life. 

2.2.4 Other topologies of WECs with linear generator-based PTO systems 

Other than having the floating buoy on the sea surface and fully submerged heaving systems, there 

are different topologies of WECs with linear PM generators, such as the fully floating gyroscopic 

system and buoyant system, that have been proposed and tested experimentally (Boscaino et al., 2017; 

Cappelli et al., 2013). The fully floating gyroscopic system based WEC consists of gyroscope systems 

and linear permanent magnet generators located inside a fully sealed buoy (Boscaino et al., 2017). 

By using gyroscope inertial reactions, the device is slack-moored to the ocean floor (inertial sea wave 

energy converter (ISWEC)). During operation, the gyroscopic system, which drives linear generators, 

reciprocates motion between the hull and the cylinder. On the other hand, the buoyant electrical 
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generator based WEC is a point absorber type device that consists of a linear generator, boat shape 

buoy and a power electronic section, as shown in Figure 2.7(a) (Trapanese et al., 2018).  

 
(a) 

 
(b) 

Figure 2.7: (a) Buoyant WEC (Trapanese et al., 2018) and (b) surface riding WEC (Jin et al., 2020) 

The linear generator is placed inside the buoyant system. The proposed device provides a highly 

reliable wave energy conversion system that can also produce hydrogen to store energy. Another new 

topology of WEC with a linear PM generator has been proposed, known as a surface riding wave 

energy converter, where the magnet assembly slides inside the armature (Jin et al., 2020). The 

proposed surface riding WEC is presented in Figure 2.7(b). 
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2.3 PTO System based on Linear Permanent Magnet (PM) Generator  

Thus far, different types of linear generators have been used for WEC, and these generators include 

linear permanent magnet synchronous generators (Antipov et al., 2017; Elwood et al., 2010; Niu, 

2013; Polinder et al., 2004; Seo et al., 2020; Shibaike et al., 2007), flux-switching permanent magnet 

linear generators (Huang et al., 2013; Huang et al., 2011), switched reluctance linear generators (Di 

Dio et al., 2014), Vernier hybrid machines (Baker et al., 2018), and so on. PM based linear generators 

are suitable for energy harvesting across the broadband frequency ranges due to the availability of 

low-cost power electronic converters and the permanent magnet (PM) material's improvements in 

terms of remnant flux density, coercive force, magnetic flux leakage, and copper losses of field 

windings (Faiz & Nematsaberi, 2017b; Mueller et al., 2008).  

 

Figure 2.8: Linear PM generator topologies 

Moreover, the exerted force and power density can be increased by using permanent magnet 

excitation. Syncernous permanent magnet generators are highly efficient at low speeds and are 

relatively cheap, so, up until now, linear generators for wave energy conversion have been developed 

using synchronous permanent magnet generators (Danielsson et al., 2005; Huang et al., 2013; 
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Polinder et al., 2004; Henk Polinder et al., 2005; Yu et al., 2012). The PM-based linear generator's 

geometry plays a significant role in design development, and its variation substantially affects overall 

performance and efficiency. In the literature, various PM linear generator topologies have been 

proposed for wave energy conversion systems, shown in Figure 2.8. The main components of the 

linear PM generator are permanent magnets and coils. The linear PM generator topologies can be 

classified according to various design methods based on the structure, translator size and location, 

stator shape, core type, location of the permanent magnet (PM), Flux path and the way of installing 

the PM. The structure of the linear PM generator may be tubular or planar/flat types (Baker et al., 

2004; Hodgins et al., 2011; Oprea et al., 2010; Rao et al., 2017; Wahyudie, Jama, et al., 2017). It is 

easier to fabricate the planar type linear generator for WEC, and it can be constructed with different 

sides such as two-sided, four-sided planar, octagonal or multisided planar (I. A. Ivanova et al., 2005; 

Oprea et al., 2010; Wahyudie, Susilo, et al., 2017). Using the double-sided planar layout and tubular 

layout, a hybrid generator concept has been proposed, which creates higher force density due to more 

effective use of space (Joseph & Cronje, 2007). Different translator sizes and positions have been 

used in linear PM generators for direct drive WEC. 

In order to maintain a system's generation operation for the larger fraction of the stroke, either the 

translator or the stator must be longer. In permanent magnet generators, the translator is usually longer 

than the stator to ensure the windings of the stator are active throughout the full stroke and reduce the 

amount of losses due to copper and conduction (Prudell et al., 2010). Moreover, the translator can be 

mounted internally or externally on the generator design for the direct drive WEC (Liu, Yu, Hu, Liu, 

Zhou, et al., 2013; Prudell et al., 2010). There are three possible ways to attach the permanent 

magnets: axially aligned-buried, radially aligned-buried and radially aligned-surface (Joseph & 

Cronje, 2007). To get maximum magnetic flux density, Halbach and quasi-Halbach arrays have been 

used in linear PM generators for WEC (Farrok, Islam, Sheikh, Guo, & Zhu, 2017; Liu, Yu, Hu, Liu, 

Zhou, et al., 2013). The linear generators can be classified as transverse flux and as longitudinal flux, 

according to the location of windings relative to translator motion (Curto et al., 2020).  Using both 

transverse and longitudinal flux, a new hybrid transverse/longitudinal flux linear PM generator has 

been developed for WEC (Vining et al., 2009). Translators were sandwiched between stators that 

carried flux longitudinally, while they carried flux transversally. Both slotless and slotted stators have 

been used in the research to develop and find the best generator design (Liu et al., 2010; Tan et al., 

2018). Based on using a core, the linear PM generator can be classified as an iron-core or air-core 
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generator. Both iron-core and air-core generators have been used in the direct electric drive PTO 

system based WEC (Brooking & Mueller, 2005; Hodgins et al., 2011; Mueller et al., 2006; Ran et al., 

2011). All linear generator topologies with their advantages and drawbacks have been discussed 

briefly (Faiz & Nematsaberi, 2017a, 2017b; Khatri & Wang, 2019). There have also been some new 

design concepts proposed to capture the maximum amount of energy from ocean waves beyond these 

topologies (Beeby et al., 2013; Owens & Mann, 2012; Wang, 2016). 

2.4 Mathematical Modelling 

2.4.1 Dynamics of the WEC with linear permanent magnet (PM) based PTO system 

The hydrodynamic modelling of the system analyses the forces acting on the submerged rigid bodies 

and the motion relative to them. Different theories, such as linear wave theory and Stokes theory, can 

be used to describe and solve the modelling related to wave-body interaction. The applicability of 

various wave theories can be found in (Le Méhauté, 2013). Figure 2.9 shows the schematic diagram 

of a typical WEC system consisting of a linear generator attached to a floating buoy by a tether.  

 

Figure 2.9: Schematic diagram of a heaving direct drive WEC with linear PM generator (Cheng et 

al., 2014) 

For this situation, the linear wave theory has been verified experimentally to be good enough to 

explain the wave body interaction (Engström et al., 2011; Zurkinden et al., 2014). Thus, linear wave 

theory is accepted to find the hydrodynamic parameters and buoy force (wave forces) which help 

develop the dynamic model of the WEC with a linear PM generator. In addition, it is assumed that 

the linear generator based wave energy converter can be modelled using an equivalent spring-mass-
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damper system, in which an opposing force is produced by the generator proportional to acceleration, 

velocity, and position (Brekken et al., 2009b; L. Wang et al., 2015). Even though the floating body 

has six degrees of freedom, only the heave motion has been taken into account for simplicity (Cheng 

et al., 2014; Gao et al., 2016). Based on Newton’s second law, the system (heaving buoy) force 

equation can be expressed by equation 2.1 (Eriksson et al., 2005; Gao et al., 2016; Hong, 2016; Huang 

et al., 2016; I. Ivanova et al., 2005; Leijon et al., 2006).  

𝑚𝑚�̈�𝑦 = 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑒𝑒 + 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔 (2.1) 

where 𝑚𝑚 is equal to the sum of the translator and buoy mass, and only the translator mass if there is 

slack in the line/rope, 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the buoy force, 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔 is the generator force and 𝐹𝐹𝑒𝑒 is the electromagnetic 

force. Moreover, �̈�𝑦 is the buoy acceleration as well as translator acceleration under excitation from 

waves. The wave motion and acting spring drive the vertical motion of the translator. Electromagnetic 

forces (𝐹𝐹𝑒𝑒) are generated between the stator and translator of a generator when the translator moves. 

The buoy force (𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is the lifting force that results from the Archimedes principle, which is 

proportional to the amount of water displaced by the buoy. Moreover, the buoy force (𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is known 

as hydrodynamic force that is acting on the buoy, which can be expressed by equation 2.2. In equation 

2.2  𝐹𝐹𝑤𝑤𝑒𝑒 is the wave excitation force, 𝐹𝐹𝑟𝑟 is the wave radiation force and  𝐹𝐹ℎ is the hydrostatic force. 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐹𝐹𝑤𝑤𝑒𝑒 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹ℎ (2.2) 

Moreover, y can be described as 𝑦𝑦(𝑖𝑖𝜔𝜔) = 𝑦𝑦 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝜔𝜔𝑖𝑖) in harmonic form; then �̇�𝑦(𝑖𝑖𝜔𝜔) = 𝑖𝑖𝜔𝜔𝑦𝑦(𝑖𝑖𝜔𝜔), 

�̈�𝑦(𝑖𝑖𝜔𝜔) = −𝜔𝜔2𝑦𝑦(𝑖𝑖𝜔𝜔). The system force can be stated as follows after adding the buoy force (𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

in the frequency domain and time domain by equation 2.3 and 2.4, respectively (Brekken, 2011; 

Cheng et al., 2014; Li et al., 2017; Rhinefrank et al., 2006). 

−𝜔𝜔2𝑦𝑦(𝑖𝑖𝜔𝜔)𝑚𝑚 = 𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖𝜔𝜔) + 𝐹𝐹𝑟𝑟(𝑖𝑖𝜔𝜔) + 𝐹𝐹ℎ(𝑖𝑖𝜔𝜔) + 𝐹𝐹𝑒𝑒(𝑖𝑖𝜔𝜔) + 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔(𝑖𝑖𝜔𝜔) (2.3) 

𝑚𝑚�̈�𝑦(𝑖𝑖) = 𝐹𝐹𝑒𝑒(𝑖𝑖) + 𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖) + 𝐹𝐹𝑟𝑟(𝑖𝑖) + 𝐹𝐹ℎ(𝑖𝑖) + 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔(𝑖𝑖) (2.4) 

In equation 2.3, −𝜔𝜔2𝑦𝑦(𝜔𝜔) is the frequency domain second derivative of the buoy heave vertical 

position. During the second wave phase, the device's spring accelerates the translator. The spring 

force increases the velocity of the translator. The end stop force does not operate at normal operation 

conditions and acts only when the translator stroke exceeds its limits due to too high wave heights. 
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As expected, the movement of the translator of the linear generator is in accordance with the buoy, 

and the general generator force (𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔) can be expressed in equation 2.5 (Cheng et al., 2014).  

𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔 = −𝛽𝛽𝑚𝑚�̇�𝑦 − 𝛾𝛾𝑦𝑦 (2.5) 

Here, 𝛽𝛽𝑚𝑚 is the damping coefficient of the generator and 𝛾𝛾 is the spring constant of the generator 

system. From equation 2.5, it can be simplified that the inner magnet and coil work as a damper 

system. Many researchers in the WEC research field conducted their studies regarding the linear 

generator as a constant damper (Eriksson et al., 2005; Stålberg et al., 2008). Moreover, it can be said 

that the force provided by the linear generator (𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔) opposes the movement of the buoy which means 

that the damping force of the generator is proportional to the translator speed with the damping 

coefficient. The wave radiation force (𝐹𝐹𝑟𝑟) and hydrostatic force (𝐹𝐹ℎ) can be expressed in frequency 

and time domains as,  

𝐹𝐹𝑟𝑟(𝑖𝑖𝜔𝜔) = −[𝑅𝑅𝑏𝑏(𝜔𝜔) + 𝑖𝑖𝜔𝜔𝑚𝑚𝑡𝑡(𝜔𝜔)]�̇�𝑦(𝑖𝑖𝜔𝜔) (2.6) 

𝐹𝐹𝑟𝑟(𝑖𝑖) = −𝑅𝑅𝑏𝑏�̇�𝑦(𝑖𝑖) −𝑚𝑚𝑡𝑡�̈�𝑦(𝑖𝑖) (2.7) 

𝐹𝐹ℎ(𝑖𝑖𝜔𝜔) = −𝜌𝜌𝑔𝑔𝜌𝜌𝑏𝑏2𝑦𝑦(𝑖𝑖𝜔𝜔) (2.8) 

𝐹𝐹ℎ(𝑖𝑖) = −𝜌𝜌𝑔𝑔𝜌𝜌𝑏𝑏2𝑦𝑦(𝑖𝑖) (2.9) 

where 𝜌𝜌 is the density of the seawater, 𝑏𝑏 is the radius of the buoy, and 𝑔𝑔 is the gravity acceleration. 

𝑅𝑅𝑏𝑏 is the radiation damping and 𝑚𝑚𝑡𝑡 is the added mass. The electromagnetic force 𝐹𝐹𝑒𝑒 can be obtained 

from the FE-calculation of the field in the generator. According to Faraday’s law, the electromagnetic 

force is created when the magnet oscillates through a coil. This moving magnet changes the magnetic 

flux and changes the current in the induction coil. The materials used in the stator, translator, and 

vibration frequency impact the generator's efficiency. It has a close relationship with the existence of 

eddy current losses and hysteresis of the generator. The generator's eddy current losses and hysteresis 

are normally ignored for general simplification because considering all uncontrollable variables 

becomes very complicated. For that reason, the generated current in the coil due to the magnet 

movement through the coil can be expressed by equation 2.10 by using Kirchoff's voltage law (Mann 

& Owens, 2010). 

𝐿𝐿𝐼𝐼̇+ 𝐼𝐼𝑅𝑅 + 𝑎𝑎(𝑦𝑦)�̇�𝑦 = 0 (2.10) 
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𝐿𝐿
𝑅𝑅
�̇�𝑉 + 𝑉𝑉 + 𝑎𝑎(𝑦𝑦)�̇�𝑦 = 0 (2.11) 

where 𝐿𝐿 is the inductance of the coil itself, 𝑅𝑅 is the load resistance of the circuit, 𝐼𝐼 is the current inside 

the coil, 𝑎𝑎(𝑦𝑦) = 𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙  is the coupling coefficient between the mechanical and electrical system, and 

𝑉𝑉 = 𝐼𝐼𝑅𝑅 is the voltage inside the coil. 𝑦𝑦 and �̇�𝑦 are the position and velocity of the magnets which 

attach with the translator. The item 𝐿𝐿𝐼𝐼 ̇ in equation 10 represents the counter electromotive force 

generated by the coil’s current change and 𝑎𝑎(𝑦𝑦)�̇�𝑦 denotes the electromotive force produced by 

coupling the coil and the moving magnet. The item of the coupling coefficient consists of the time-

varying part of the inductance. The Laplace transform (ℓ) of the equation 2.12 under the initial 

conditions �̇�𝑦 = 0 and 𝑉𝑉 = 0 can be given as 

𝑉𝑉(𝑠𝑠) = −
ℓ[𝑅𝑅𝑎𝑎(𝑦𝑦)�̇�𝑦]
𝐿𝐿𝑠𝑠 + 𝑅𝑅

 (2.12) 

In the research area of the wave energy converter, it is assumed that the electrical system behaves like 

a damper, which is a general simplification of the linear generator. It is also assumed that the 

resistance 𝑅𝑅 is relatively large, so then the voltage is expressed as 

𝑉𝑉 = −𝑎𝑎(𝑦𝑦)�̇�𝑦 (2.13) 

Due to the movement of the magnet through the coil, the electromagnetic force works on the magnets, 

which can be expressed as 

𝐹𝐹𝑒𝑒 =
𝑎𝑎(𝑦𝑦)𝑉𝑉
𝑅𝑅

 (2.14) 

By replacing V (equation 2.13) in equation 2.14, the electromagnetic force can be written by equation 

2.15, which can be used directly to calculate the electromagnetic force between a coil and the 

oscillating magnet (Williams & Yates, 1996).  

𝐹𝐹𝑒𝑒 = −
𝑎𝑎(𝑦𝑦)2�̇�𝑦
𝑅𝑅

 
(2.15) 

If the electromagnetic damping of the linear generator is defined by equation 2.16, then the 

electromagnetic force can be calculated by equation 2.17.  
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𝛽𝛽𝑒𝑒 =
𝑎𝑎(𝑦𝑦)2

𝑅𝑅
 

(2.16) 

𝐹𝐹𝑒𝑒 = 𝑎𝑎(𝑦𝑦)𝐼𝐼 = −𝛽𝛽𝑒𝑒𝑦𝑦 (2.17) 

where, 𝛽𝛽𝑒𝑒 is the generator electrical damping coefficient. After putting 𝐹𝐹𝑟𝑟, 𝐹𝐹ℎ, 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔 and 𝐹𝐹𝑤𝑤𝑒𝑒 into 

equation 2.3, the system force can be stated in the frequency domain as,  

�−𝜔𝜔2�𝑚𝑚 + 𝑚𝑚𝑡𝑡(𝜔𝜔)� + 𝑖𝑖𝜔𝜔 �𝛽𝛽𝑒𝑒 + 𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑏𝑏(𝜔𝜔)�+ 𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾� 𝑦𝑦(𝑖𝑖𝜔𝜔) = 𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖𝜔𝜔) (2.18) 

�−𝜔𝜔2�𝑚𝑚 + 𝑚𝑚𝑡𝑡(𝜔𝜔)� + 𝑖𝑖𝜔𝜔 �𝛽𝛽 + 𝑅𝑅𝑏𝑏(𝜔𝜔)�+ 𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾� 𝑦𝑦(𝑖𝑖𝜔𝜔) = 𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖𝜔𝜔) (2.19) 

In equation 2.19, the 𝛽𝛽 (𝛽𝛽 = 𝛽𝛽𝑚𝑚 + 𝛽𝛽𝑒𝑒) is the sum of the mechanical and electrical damping of the 

generator. Moreover, equation 2.19 can be written as the transfer function 

𝐻𝐻(𝑖𝑖𝜔𝜔) =
𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖𝜔𝜔)

�−𝜔𝜔2�𝑚𝑚 + 𝑚𝑚𝑡𝑡(𝜔𝜔)� + 𝑖𝑖𝜔𝜔 �𝛽𝛽 + 𝑅𝑅𝑏𝑏(𝜔𝜔)�+ 𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾�
 (2.20) 

The system’s natural frequency can be calculated by equation 2.21 (Engström et al., 2011; Li et al., 

2017). The total damping ratio is denoted by 𝜉𝜉 and it can be expressed by equation 2.22. 

𝜔𝜔𝑔𝑔 = �
𝜌𝜌𝑔𝑔𝜌𝜌𝑏𝑏2 + 𝛾𝛾
𝑚𝑚 + 𝑚𝑚𝑡𝑡

 
(2.21) 

𝜉𝜉 =
𝛽𝛽 + 𝑅𝑅𝑏𝑏

2(𝑚𝑚 + 𝑚𝑚𝑡𝑡)𝜔𝜔𝑔𝑔
 (2.22) 

The mechanical damping constant can be measured by equation 2.23 where 𝜉𝜉𝑚𝑚 is the mechanical 

damping ratio. 

𝛽𝛽𝑚𝑚 = 2𝜉𝜉𝑚𝑚�(𝜌𝜌𝑔𝑔𝜌𝜌𝑏𝑏2 + 𝛾𝛾)(𝑚𝑚 + 𝑚𝑚𝑡𝑡) (2.23) 

The dynamical response of the buoy and translator can be written as 

𝑦𝑦(𝑖𝑖) = [
𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖𝜔𝜔)

�−𝜔𝜔2�𝑚𝑚 + 𝑚𝑚𝑡𝑡(𝜔𝜔)� + 𝑖𝑖𝜔𝜔 �𝛽𝛽 + 𝑅𝑅𝑏𝑏(𝜔𝜔)�+ 𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾�
]𝑐𝑐𝑐𝑐𝑠𝑠 (𝜔𝜔𝑖𝑖 + 𝜎𝜎) (2.24) 
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Moreover, after adding 𝐹𝐹𝑟𝑟, 𝐹𝐹ℎ, 𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔 and 𝐹𝐹𝑒𝑒 into equation 2.4, the system force can be stated in the time 

domain by equation 2.25. 

(𝑚𝑚 + 𝑚𝑚𝑡𝑡)�̈�𝑦(𝑖𝑖) + (𝛽𝛽 + 𝑅𝑅𝑧𝑧)�̇�𝑦(𝑖𝑖) + (𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)𝑦𝑦(𝑖𝑖) = 𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖) (2.25) 

Taking the inverse Fourier transformation of equation 2.25, the equation of motion in the time domain 

can be expressed by equation 2.26.  

�𝑚𝑚 + 𝑚𝑚𝑡𝑡(∞)��̈�𝑦 + �𝑘𝑘(𝑖𝑖 − 𝜏𝜏)�̇�𝑦
𝑡𝑡

0

𝑑𝑑𝜏𝜏 + 𝛽𝛽�̇�𝑦 + 𝜌𝜌𝑔𝑔𝜌𝜌𝑏𝑏2𝑦𝑦 + 𝛾𝛾𝑦𝑦 = 𝐹𝐹𝑤𝑤𝑒𝑒 (2.26) 

The symbol 𝑘𝑘(𝑖𝑖) is the radiation function which is related to radiation damping 𝑅𝑅𝑏𝑏 (𝑦𝑦(𝜔𝜔) =

∫ 𝑘𝑘(𝑖𝑖) cos(𝜔𝜔𝑖𝑖)𝑑𝑑𝑖𝑖∞
0 ). The state space representation of the WEC motion using the dependent 

radiation force can be shown to be given by equations (2.27) – (2.29), (So, 2017) using matrix 

representation. The WEC equation of motion given in (2.25) can be expressed in time-domain state 

space form as (Brekken, 2011), 

𝑑𝑑
𝑑𝑑𝑖𝑖 �

�̇�𝑦
𝑦𝑦� =

⎣
⎢
⎢
⎢
⎡−(𝛽𝛽𝑒𝑒 + 𝑅𝑅𝑏𝑏)
𝑚𝑚 + 𝑚𝑚𝑡𝑡

−𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2

𝑚𝑚 + 𝑚𝑚𝑡𝑡
1 0���������������

𝑨𝑨 ⎦
⎥
⎥
⎥
⎤
��̇�𝑦𝑦𝑦� +

⎣
⎢
⎢
⎢
⎡ 1
𝑚𝑚 + 𝑚𝑚𝑡𝑡

0�����
𝑩𝑩𝒖𝒖 ⎦

⎥
⎥
⎥
⎤
�𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔� +

⎣
⎢
⎢
⎢
⎡ 1
𝑚𝑚 + 𝑚𝑚𝑡𝑡

0�����
𝑩𝑩𝒗𝒗 ⎦

⎥
⎥
⎥
⎤

[𝐹𝐹𝑤𝑤𝑒𝑒] (2.27) 

�̇�𝑦(𝑖𝑖) = 𝑨𝑨𝑦𝑦(𝑖𝑖) + 𝑩𝑩𝐹𝐹𝑔𝑔𝑒𝑒𝑔𝑔(𝑖𝑖) + 𝑩𝑩𝐹𝐹𝑒𝑒(𝑖𝑖) (2.28) 

𝑒𝑒(𝑖𝑖) = 𝐶𝐶𝑦𝑦(𝑖𝑖) + 𝐷𝐷𝐷𝐷(𝑖𝑖) (2.29) 

where �̇�𝑦 is known as the state vector and y is called the output vector. A and B in equation 2.28 are 

known as the state or system matrix and input matrix, respectively. Moreover, C and D in equation 

2.29 are called the output matrix and zero matrix, respectively. However, the excitation force (𝐹𝐹𝑤𝑤𝑒𝑒) 

is often simplified as a harmonic term or series. The excitation force on the heaving buoy can be 

described by equation 2.30 (Zheng et al., 2015) or equation 2.31 (Rhinefrank et al., 2006). 

𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖) = 𝐴𝐴𝑓𝑓𝐹𝐹1𝑠𝑠𝑖𝑖𝑛𝑛 (𝜔𝜔𝑖𝑖 + 𝜑𝜑) (2.30) 

𝐹𝐹𝑤𝑤𝑒𝑒(𝑖𝑖) = 𝐹𝐹0𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑖𝑖 + 𝜑𝜑) (2.31) 
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Where, 𝐴𝐴𝑓𝑓 is the amplitude of the wave, 𝐹𝐹1 is the wave force coefficient, 𝜔𝜔 is the frequency of the 

regular wave, and 𝜑𝜑 is the phase of the regular wave.  

2.4.2 Electromagnetic model 

Consider a linear translator with permanent magnets (PMs) attached with alternating polarity and that 

the translator is moving vertically sinusoidally. The relative motion between the translator and stator 

creates an induced voltage inside the winding coils. The governing equations for the electromagnetic 

mechanism of the linear permanent magnet generator based WEC can be expressed by equations 2.32 

and 2.33, where equation 2.32 is the dynamics equation of the WEC and equation 2.33 is the dynamic 

equation of the current of the coils. 

(𝑚𝑚 + 𝑚𝑚𝑡𝑡)�̈�𝑦 + �𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑏𝑏��̇�𝑦 + (𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)𝑦𝑦 + 𝐹𝐹𝑒𝑒 = 𝐹𝐹𝑤𝑤𝑒𝑒  (2.32) 

𝑅𝑅𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝑎𝑎
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.33) 

After adding 𝐹𝐹𝑒𝑒 = 𝑎𝑎𝐼𝐼 and 𝑎𝑎 = 𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙, the equations 2.32 and 2.33 can be expressed as  

(𝑚𝑚 + 𝑚𝑚𝑡𝑡)�̈�𝑦 + �𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑏𝑏��̇�𝑦 + (𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)𝑦𝑦 + 𝑎𝑎𝐼𝐼 = 𝐹𝐹𝑤𝑤𝑒𝑒  (2.34) 

(𝑚𝑚 + 𝑚𝑚𝑡𝑡)�̈�𝑦 + �𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑏𝑏��̇�𝑦 + (𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)𝑦𝑦 + 𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙𝐼𝐼 = 𝐹𝐹𝑤𝑤𝑒𝑒 (2.35) 

𝑅𝑅𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.36) 

The equations 2.35 and 2.36 can be solved by using the integration method, which can be written as 

�̈�𝑦 =
𝐹𝐹𝑤𝑤𝑒𝑒

(𝑚𝑚 + 𝑚𝑚𝑡𝑡) −
�𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑏𝑏�
(𝑚𝑚 + 𝑚𝑚𝑡𝑡) �̇�𝑦 −

(𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)
(𝑚𝑚 + 𝑚𝑚𝑡𝑡) 𝑦𝑦 −

𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙
(𝑚𝑚 + 𝑚𝑚𝑡𝑡) 𝐼𝐼 

(2.37) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

=
1
𝐿𝐿
�𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙

𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

− 𝑅𝑅𝐼𝐼� (2.38) 

By considering the state variables 𝑧𝑧1, 𝑧𝑧2 and 𝑧𝑧3  the system equations 2.37 and 2.38 can be written in 

state space form by the following 

𝑧𝑧1 = 𝑦𝑦 (2.39a) 
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𝑧𝑧2 = �̇�𝑦 =
𝑑𝑑𝑧𝑧1
𝑑𝑑𝑖𝑖

 (2.39b) 

𝑑𝑑𝑧𝑧2
𝑑𝑑𝑖𝑖

= �̈�𝑦 (2.39c) 

𝑧𝑧3 = 𝐼𝐼 (2.39d) 
𝑑𝑑𝑧𝑧3
𝑑𝑑𝑖𝑖

= 𝐼𝐼 ̇ (2.39e) 

𝐷𝐷 = 𝐹𝐹𝑒𝑒 = 𝐹𝐹0𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑖𝑖 + 𝜑𝜑) (2.39f) 

The resulting state space matrix form of the differential equations 2.37 and 2.38 can be expressed as 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑧𝑧1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑧𝑧2
𝑑𝑑𝑖𝑖
𝑑𝑑𝑧𝑧3
𝑑𝑑𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0 1 0

−
(𝑔𝑔𝜌𝜌𝜌𝜌𝑏𝑏2 + 𝛾𝛾)

(𝑚𝑚 + 𝑚𝑚𝑡𝑡) −
(𝛽𝛽𝑚𝑚 + 𝑅𝑅𝑧𝑧)
(𝑚𝑚 + 𝑚𝑚𝑡𝑡) −

𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙
(𝑚𝑚 + 𝑚𝑚𝑡𝑡)

0
𝑁𝑁𝐵𝐵𝑥𝑥𝑙𝑙
𝐿𝐿

−𝑅𝑅
𝐿𝐿 ⎦

⎥
⎥
⎥
⎤

�������������������������������
𝐴𝐴

�
𝑧𝑧1
𝑧𝑧2
𝑧𝑧3
�+ �

0
1

(𝑚𝑚 +𝑚𝑚𝑡𝑡)
0

�

���������
𝐵𝐵

[𝐷𝐷] 

  
(2.40a) 

[𝑒𝑒] = �
1 0 0
0 1 0
0 0 1

�
�������

𝐶𝐶

�
𝑧𝑧1
𝑧𝑧2
𝑧𝑧3
� + [0][𝐷𝐷] 

(2.40b) 

Calculating the translator's position and velocity and the generator's output voltage can be done by 

using Equations 2.40(a) and 2.40(b). The MATLAB ODE file or Simulink can be used to solve these 

equations. In addition, to calculate the induced voltage inside the stator coils of the WEC linear 

generator, the equation 2.41 (Faraday’s law of induction) has been used by many researchers (Gao et 

al., 2016; Hong et al., 2016; Masoumi & Wang, 2016; Thorburn & Leijon, 2007). 

𝑒𝑒(𝑖𝑖) = −𝑁𝑁
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

 (2.41) 

Here Φ is the flux and N is the number of turns. Assuming that the magnetic flux has a sinusoidal 

form, it can be expressed by equation 2.42 (Hong et al., 2016). 

𝑑𝑑 = 𝑑𝑑0. 𝑠𝑠𝑖𝑖𝑛𝑛(𝜎𝜎𝑦𝑦 + 𝛿𝛿) (2.42) 

where, Φ0 is the magnitude of the magnetic flux and 𝛿𝛿 is the phase angle. 𝜎𝜎 is the wave number that 

can be measured by the wavelength 𝜆𝜆 and can be expressed as 𝜎𝜎 = 2𝜌𝜌 𝜆𝜆⁄ . If the magnetic flux is time 

dependent on the y-axis, then 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

= 𝜎𝜎𝑑𝑑0. 𝑐𝑐𝑐𝑐𝑠𝑠(𝜎𝜎𝑦𝑦 + 𝛿𝛿).
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.43) 

Adding equation 2.43 into equation 2.41 gives equation 2.44.  

𝑒𝑒(𝑖𝑖) = −𝑁𝑁
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

= −𝑁𝑁𝜎𝜎𝑑𝑑0. 𝑐𝑐𝑐𝑐𝑠𝑠(𝜎𝜎𝑦𝑦 + 𝛿𝛿).
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.44) 

N is the number of effective turns per pole and phase, expressed by equation 2.45.  

𝑁𝑁 =
𝑘𝑘𝑤𝑤𝑞𝑞𝑛𝑛𝑟𝑟

2𝑐𝑐
 (2.45) 

where, 𝑘𝑘𝑤𝑤 is the winding factor, 𝑞𝑞 is the number of slots per pole and phase, 𝑛𝑛𝑟𝑟 is the number of 

conductors per slot, and 𝑐𝑐 is the number of parallel current paths per phase.  

 

Figure 2.10: Equivalent circuit for linear generator (Zheng et al., 2015) 

Through the equivalent electric circuit, as shown in Figure 2.10, the voltage V(t) at the terminals for 

a single phase can be expressed as well by equation 2.46 (Gao et al., 2016; Rhinefrank et al., 2006; 

Vermaak & Kamper, 2012) where R is the circuit resistance, L is the circuit inductance.  

𝑉𝑉(𝑖𝑖) = 𝑒𝑒(𝑖𝑖) − 𝑅𝑅𝐼𝐼(𝑖𝑖) − 𝐿𝐿
𝑑𝑑𝐼𝐼(𝑖𝑖)
𝑑𝑑𝑖𝑖

 (2.46) 

For the three-phase linear generator, the induced voltage measuring equation 2.44 can be written as 

follows (Hong, 2016) 

𝑒𝑒𝑡𝑡 = −𝑁𝑁𝜎𝜎𝑑𝑑0. 𝑐𝑐𝑐𝑐𝑠𝑠(𝜎𝜎𝑦𝑦).
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.47a) 
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𝑒𝑒𝑏𝑏 = −𝑁𝑁𝜎𝜎𝑑𝑑0. 𝑐𝑐𝑐𝑐𝑠𝑠 �𝜎𝜎𝑦𝑦 +
2𝜌𝜌
3
� .
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.47b) 

𝑒𝑒𝑐𝑐 = −𝑁𝑁𝜎𝜎𝑑𝑑0. 𝑐𝑐𝑐𝑐𝑠𝑠 �𝜎𝜎𝑦𝑦 −
2𝜌𝜌
3
� .
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (2.47c) 

The three-phase resistive load can be added to the device's output ports to validate the linear generator 

model. As shown in Figure 2.11, the resistive load can be considered a delta link, and it can be 

connected to the sea cable on the output side of the generator.  

 

Figure 2.11: Circuit diagram of a generator connected with three-phase resistive load (Waters et al., 

2011) 

Table 2.1: The structural parameters of the linear generator and the buoy 

Structure Parameters and S.I. Units 
Linear generator Pole width (m), Pole pitch, Number of poles, Air gap magnetic flux 

density (T), Air gap (m), Number of turns, Number of slots, Width 
of a stator tooth (m), Teeth thickness (m), Width of the stator stack 
(m), Translator iron thickness (m), Length of the generator (m), 
Resistance of the coil (Ω), Circuit resistance (Ω), Load resistance 
(Ω), Number of phases, Mass of the magnets (kg), Load angle (rad) 

Buoy Wave period (s), Wave height (m), Mass of the buoy (kg), Diameter 
of the buoy (m), Height of the buoy (m), Density of the seawater 
(kg/m3) 
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From the above discussion, there are many parameters that need to be considered to model the WEC, 

including the linear PM generator parameters and the buoy parameters.  From theory, it can be stated 

that the generator's excitation force and damping force are the control variables of the linear PM 

generator based WEC. The typical structural parameters of the single buoy linear PM generator based 

WEC have been presented in Table 2.1. 

2.5 Challenges of linear generator type PTO systems 

Through linear motions between the fixed stator and moving translator, the linear PM generator 

harvests energy directly. Due to the translator motion, the resulting change of the magnetic field 

creates an induced voltage in the winding coils based on Faraday’s law. In this type of WEC system, 

the waves act as driving forces, and the generator acts as dampers (Czech & Bauer, 2012). Therefore, 

damping is one of the most important factors of this type of device because the absorbed energy 

strongly depends on the damper. Moreover, another important factor is reaction force which needs to 

be big to get the same output power when the generator in the direct drive system moves slowly. Due 

to the attraction forces between the stator and translator, these systems have several disadvantages, 

including low power to weight ratios (large machines are required) and heavy structure requirements 

(Penalba & Ringwood, 2016). The incoming ocean waves continuously vary and their speeds are also 

different; therefore, the generator generates varying power. Because of that, extreme values are 

needed to consider. As a result, overload is considered another important factor of the device (Czech 

& Bauer, 2012). The stroke length of the generator is also an important factor of the device because 

it should be set according to the wave heights. Due to different wave inputs, the output induced 

voltage varies, and for that reason, to connect the device with a commercial grid, the voltage level 

needs to be set, the current needs to be rectified and the frequency changed. So, the grid connection 

is also an important factor of this type of device, and the power transmission system is very 

complicated.  

Moreover, solving the complex electromechanical coupling issues as reviewed in the literature is also 

one of the important factors for the linear PM generator type PTO system design. Compared with 

other types of PTO systems such as hydro, pneumatic, hydraulic and direct mechanical drive, it can 

generate directly electrical energy from mechanical energy and has reasonable efficiency (95%) 

(Pecher & Peter Kofoed, 2017; Qiao et al., 2020). The device's structure is also simpler than other 

PTO systems, and it requires fewer maintenance costs but overall manufacturing costs are expensive. 
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It is known that the translator of the linear generator consists of magnets mounted on an iron or 

electrical steel plate between iron or aluminium spacers, and the stator is made of non-oriented 

laminated electrical steel or iron with a thin insulating coating to reduce eddy current losses. The 

magnet’s fluctuating price increases the overall cost. The linear generator type PTO system based 

WEC is indeed the relatively low distribution of the technology, resulting in the need for a tailored 

generator that comes out with high investment cost and additional development risks (Bard & Kracht, 

2013). Generally, it is difficult to estimate the total cost of the generator because it depends on many 

different variables (Eriksson, 2019). The translator height changes because of the stator height and 

wave height, and the translator cost varies. The magnet weight can be changed due to the number of 

poles and the number of conductors per slot. Using heavy magnets increases the mass of the whole 

system, which decreases the efficiency because of the low velocity of wave oscillations (Aderinto & 

Li, 2018). Solid steel can be used for the generator's translator body with low electrical frequency. 

Conductor (copper) costs per kg are higher than those for steel stator used in the original design, and 

translator costs are less than the cost of stator steel. Copper wire or standard cables are typically used 

in the stator winding, which is low priced material in the international market. 

Moreover, the materials used in the concrete foundation are sea-water resistant materials that are 

twice as high as those of ordinary materials used in the civil building sector. According to the average 

total cost of a specialized assembly, manufacturing costs are also high.  Based on a broad analysis of 

current international market prices, the calculated unit prices of the most significant item costs are 

shown in Table 2.2 (Piscopo et al., 2018). 

Table 2.2: Materials costs (Piscopo et al., 2018) 

Item Material Current Unit Cost Unit Cost Range 
Permanent magnets (PMs) Neodymium-iron-Boron 96 USD/kg 72-120 USD/kg 

Stator Electrical steel 2.5 USD/kg 2-3 USD/kg 
Translator Electrical steel 2.5 USD/kg 2-3 USD/kg 

Rim Aluminium alloy 6 USD/kg 4.5-7.5 USD/kg 
Winding coil Copper coil 1 USD/m 0.5-1.5 USD/m 

It can be seen from Table 2.2 that the permanent magnets are the most expensive materials among all 

materials which are being used to design the linear PM generator, and the total cost of a device is 

determined by the cost of the PM. Moreover, the decommissioning costs should be considered 



 

47 

 

because it is assumed that both the linear generator and the floating buoys are not reusable but rather 

recycled and sold for scrap. The annual operating costs are also a factor that will be added to the total 

costs.  A couple of simplified approaches have been proposed to calculate the relative cost of the 

generator design (Eriksson, 2019; Polinder et al., 2003). Considering these all-important factors, 

challenges and materials costs, they are relatively expensive, which raises a question to the 

researchers whether this type of PTO system is economically viable or not? Few researchers 

addressed that linear PM generator based PTO system is not economically viable, and there are many 

research works going on worldwide to make these devices economically viable (Khatri & Wang, 

2019; Liu et al., 2020). Linear PM generator type PTO system based WEC has been widely studied 

in different countries and universities worldwide that deployed many WEC devices in the ocean sea 

environment to optimize the entire system and reduce the unit costs of production. 

In order to build an economical, robust system that can harness the energy from ocean waves, many 

challenges need to be overcome. To work effectively, the system needs to be tuned to the resource 

because of the variation in wave amplitude, phase and direction (Czech & Bauer, 2012). The main 

challenge is to achieve high energy conversion efficiency over a whole range of excitation parameters 

(Zhang et al., 2012). Compared with land-based structures, ocean-based devices present unique 

challenges during design, construction and installation (Aderinto & Li, 2018). In the case of the 

generator design, the design involves the generator actively coupling with the waves to extract power 

through a reciprocating motion at a low speed (Szabo et al., 2007). Another challenge is to couple the 

irregular and slow-motion (frequency 0.1 Hz) to drive the linear electromagnetic generator with an 

appropriate output quality for the utility network (Clément et al., 2002). There are many ways to solve 

this problem: incorporate a WEC operating principle-based energy storage system within the device 

or use a typical external energy storage (Ibrahim et al., 2008; Thorburn et al., 2004). To smooth the 

power, the device can connect to an array (Thorburn et al., 2004). However, due to the low speed, a 

large generator is required. How significant is an economical compromise between the size of the 

generator and the price and whether it's worth capturing the energy in larger, less common waves 

(Eriksson, 2019)? At a continuously different speed, a linear generator operates when the generator 

varies direction twice per wave period. Furthermore, with the wave variability, the speed will change 

for each wave. When comparing generator designs, a fixed speed is widely used, but variable speed 

operation needs to be considered. 
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The linear electromagnetic generator design must be of low cost and harness maximum energy for 

low velocities and, if possible, with an irregular motion to be commercially viable (Polinder, Mueller, 

Scuotto, & de Sousa Prado, 2007). The linear electromagnetic generator directly driven by sea waves 

would oscillate at a peak velocity of 0.5 to 2 m/s (Mueller, 2002). Moreover, linear generators are 

considered hard-to-mount underwater, and therefore they have to be maintenance free. They should 

also have as high force density and a low mass volume as possible (Szabo et al., 2007). For example, 

a direct drive WEC can generate a peak of 100 kW at a peak velocity of 1 m/s, where the required 

peak reaction force is 100 kN. In order to provide a shear stress of 20 kN/m2, the active surface area 

of the device should be at least 5 m2 (Mueller, 2002). Using permanent magnets (Nd-Fe-B) and some 

innovative generator topologies can boost the power density and shear stress in the air gap of the 

WEC. This requires the design of such a device that has the potential for producing the required 

thrusts in the WEC. Though each wave differs in frequency, an average of approximately 0.1 Hz can 

be considered a nominal baseline around which the output voltage of the WEC fluctuates according 

to the velocity or frequency of the incoming waves of the sea. Obviously, power electronic converters 

are required to interface the WEC to the grid. The linear electromagnetic converter should be a 

variable speed or permanent frequency system. It is expected that other than using multi-MW WECs, 

several smaller devices (ratings might be 10-100 kW) can be used to make up a wave farm (Clifton 

et al., 2010; Elwood et al., 2009; Hodgins et al., 2011). For this application, the generator required 

special types of design. The costs are likely to be high for larger devices, but by operating with smaller 

units one may still be able to have the mass manufacturing benefit, holding costs down. 

2.6 Development of the Linear PM Generator-based PTO System for WEC 

The linear PM generator based WEC has attracted interest worldwide since the linear PM generator 

was first proposed for wave energy conversion. There are many different research techniques and 

prototype designs that have been reported using the linear PM generator based WEC concept, which 

can be seen in (Khatri & Wang, 2019). However, up to date, although there are many devices and 

methods that have been proposed to harness wave energy, it can still be said that the design is in its 

early stages, as not a single commercial, mature technological model has been developed. H. Polinder 

et al. reviewed linear PMs generator based WECs such as the AWS and the WEC developed at 

Uppsala University (UU) and their research issues (Polinder, Mueller, Scuotto, & Goden de Sousa 

Prado, 2007). Several research issues have been addressed with their potential solutions and sensible 

directions, such as improving the WEC linear motion speed for future testing and exploring other 
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generator forms with higher force densities and better efficiencies. The linear PM generator based 

WEC has some inherent disadvantages, such as high attractive force, because of the large number of 

magnetic materials, large dimensions, static and dynamic effects, high cogging force, high cost, and 

reduced performance due to its low speed (Faiz & Nematsaberi, 2017b). Erik Lejerskpg et al. 

experimentally tested a prototype developed by UU at the Lysekil wave research site. They found 

that the power generation of the WEC depends on parameters such as the translator, stator, buoy size, 

translator’s speed, the weight of the translator, and damping of the generator, etc. (Lejerskog et al., 

2015). Several technologies, methods and concepts have been proposed and modelled to solve these 

drawbacks. All these design parameters are important for developing and increasing the efficiency of 

the direct-drive linear WEC. From the literature, the previous work mainly focused on numerical 

modelling, design optimization, prototype design and test, and the control strategy (Wang et al., 

2020). The aim of this section is to discuss the recent development of the linear PM generator for 

WEC.  

2.6.1 Reduction of detent force (Cogging force and end effect force) 

When the stator and the translator move relative to each other, they generate cogging forces (Yang et 

al., 2006; Youn et al., 2008; Zhu et al., 1997). The cogging force creates an exciting force ripple that 

produces vibrations and acoustic noise that can damage the magnets and the stator teeth (Kimoulakis 

et al., 2009). Cogging forces limit the translator's movement by keeping the path between the 

translator and stator teeth to a minimum. The generated cogging force can destabilize the system, 

shorten the device's lifetime, and increase the maintenance costs, so it is vital to decrease the cogging 

force for the linear PM generator (Faiz et al., 2009). The cogging force can be expressed by equation 

2.48 based on the principle of the virtual work where 𝑊𝑊 is the magnetic field energy, and 𝑦𝑦 is the 

translator position (Liu, Yu, Hu, Liu, & Zhou, 2013).  

𝐹𝐹𝑐𝑐𝑏𝑏𝑔𝑔 = −𝜕𝜕𝑊𝑊 𝜕𝜕𝑦𝑦⁄  (2.48) 

𝑊𝑊 = �� �� (𝐻𝐻�𝑖𝑖.𝑑𝑑𝐵𝐵�𝑖𝑖)
𝐵𝐵

0
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𝑆𝑆𝑒𝑒

𝑇𝑇

𝑖𝑖=1

𝑑𝑑𝑆𝑆𝑖𝑖 
(2.49) 

Here 𝑇𝑇 is the total number of local triangular elements on the translator surface, 𝐵𝐵�𝑖𝑖 and 𝐻𝐻�𝑖𝑖 are the 

magnetic flux density and magnetic field intensity at element 𝑖𝑖, respectively. On the other hand, the 

linear generator is open in both longitudinal ends, and this is one of the main fundamental differences 
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between the linear and rotating generators (Ekergård, 2013; Li et al., 2012). During the movement of 

the translator, the outmost magnets move in or out of the stator. Therefore, the magnets change their 

coupled partners and affect the translator’s flux component, which does not exist in the rotor of the 

rotary generator. The end effect force is created because of the disconnection at the end of the two 

sides, and this end effect creates a non-linear magnetic circuit. Furthermore, the results of the 

longitudinal ends strongly influence the electrical frequency, saturation, and geometric parameters. 

Hence, it is not easy to make a common statement because those parameters differ from design to 

design and vary due to the mechanical frequency and electrical loading. As the longitudinal ends and 

its impact are unknown, the possible disadvantages leave the designer with an information gap to 

design the specific linear PM generator. Based on numerical calculations, longitudinal end effects 

have been investigated in the linear PM generator for WEC to assess the impacts of the disadvantages 

of the longitudinal ends (Ekergård & Leijon, 2020). The cogging force and end effect force are 

together known as the detent force. Increasing detent force could have an impact on the mechanical 

design (increases fatigue risk), generator efficiency, or energy generation. Therefore, it is essential to 

accurately predict the magnetic field distribution and decrease the cogging force because it affects 

both the linear and nonlinear reluctance models and the electromagnetic performance of the generator. 

In order to reduce the cogging force, a variety of techniques have been used so far. The notable ones 

are adjusting the PM length, magnetization orientation, skewed PM, pole-shifting, slotless generator, 

bulged stator and others (Faiz et al., 2009; Liu, Yu, Hu, Liu, & Zhou, 2013; Prudell et al., 2010; 

Trapanese et al., 2015).   

On the other hand, several numerical and analytical methods have recently been proposed to solve 

the magnetic field problem of the linear generator. The finite element method (FEM), finite element 

analysis (FEA) and magnetic equivalent circuit (MEC) have been used to analyse the magnetic field 

and determine the related electromechanical parameters. The FEM method offers high accuracy and 

includes the impact of nonlinear factors, but this analysis method is comparatively slow and time-

consuming. On the other hand, MEC analysis can find the nonlinearity, end effect, and armature 

reaction. However, this method analyses only the magnetic field at a number of separate points of the 

structure, and its accuracy is not good enough. Moreover, the analytical model based on the 

subdomain method can be used to get more accurate predictions of the magnetic field distribution. 

The analytical model based on the subdomain method has already been used in various PM-based 

devices (Guo et al., 2018). To predict the accurate air gap field distribution of the linear PM generator, 
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the improved conformal mapping (ICM) method and slotless analytical model could be used as well, 

which have been used in various PM-based generators.   

2.6.2 Permanent magnet (PM) modifications  

The permanent magnet's size and shape significantly impact the linear generator's performance 

efficiency; often, larger magnets mean better results. O. Danielsson et al. studied the effects of the 

magnet size and shape. According to the study, increasing the permanent magnet's size improves its 

performance and decreases its detent force (Danielsson et al., 2005). Rectangular shaped PMs were 

used for this study, and it was found that it increases the magnetic flux intensity and decreases the 

load angle but increases the normal force. Moreover, a study has been done by reducing the PM 

length, and the optimised results showed that it could reduce the cogging force (Kimoulakis et al., 

2009).  

 

Figure 2.12: Using the Halbach array in the translator (Zhang et al., 2017) 

However, reducing the PM length decreases the magnetic flux density and increases the load angle. 

There are different ways of installation that have been proposed to study the linear generator. 

Typically, PMs are attached to the outside diameter of the translator, but a study has been carried out 

by attaching PMs to the inside diameter of the translator (Prudell et al., 2009a). A linear PM generator 

has been proposed by applying PMs skewed in the translator to reduce the detent force (Viola et al., 

2015). Although this was an effective method to reduce the detent force, it needs more complex PM 

shapes and increased manufacturing costs. Moreover, pole-shifting can reduce the harmonics of the 

detent force (Bianchi et al., 2005), though it can create an unbalanced voltage due to the PM 

asymmetric. Moreover, to increase the magnetic flux density in a particular direction, Halbach Arrays 

X Y 
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have been used in PM arrangements (Liu, Yu, Hu, Liu, & Zhou, 2013; Zhang et al., 2017). Figure 

2.12 shows a Halbach PM array-based WEC. The Halbach PM array-based linear generator was 

compared with other typical designs, and it has been found that Halbach PM arrays can reduce the 

overall detent force (J. Zhang et al., 2013). Chunyuan Liu et al. found that the detent force can be 

reduced by 82.56% using the Halbach array in the PM arrangement (Liu, Yu, Hu, Liu, & Zhou, 2013). 

The comparative result with the linear generator is shown in Figure 2.13. 

 

(a) (b) 

Figure 2.13: (a) Detent force with or without Halbach PM (b) THD of EMF in the linear 

electromagnetic generator with and without Halbach PM arrays (J. Zhang et al., 2013) 

To design the Halbach array-based linear generator, Yimin Tan et al. used the Fourier decomposition 

to describe the Halbach array's magnetisation components. They then extracted the magnetic field 

distribution based on the magnetic scalar potential method using specially treated boundary 

conditions (Tan et al., 2018). In the Halbach PM arrays, the magnetic flux can typically be cancelled 

on one side of the array while the magnetic flux is enhanced on the other side. The magnet’s 

magnetizing angle in Halbach PM arrays can be calculated using equation 2.50 (J. Zhang et al., 2013).  

𝜃𝜃𝑀𝑀 = �−𝜃𝜃′𝑚𝑚(𝑖𝑖+1)� − �−𝜃𝜃′𝑚𝑚(𝑖𝑖)� = 180° 𝑀𝑀⁄  (2.50) 

Here 𝜃𝜃𝑀𝑀 denotes the angle difference of two adjacent permanent magnets; M is the pole number of 

the permanent magnet, 𝜃𝜃′𝑚𝑚(𝑖𝑖) and 𝜃𝜃′𝑚𝑚(𝑖𝑖+1) represent the 𝑖𝑖th and (𝑖𝑖 + 1)th magnetizing angles, 

respectively. The general formula for the magnetization vector of the Halbach magnet array is stated 

as (J. Zhang et al., 2013). 

𝑀𝑀� = � �𝑀𝑀�𝑥𝑥𝑔𝑔𝑒𝑒−𝑗𝑗𝐾𝐾𝑛𝑛𝑍𝑍𝑖𝑖𝑥𝑥 + 𝑀𝑀�𝑧𝑧𝑔𝑔𝑒𝑒−𝑗𝑗𝐾𝐾𝑛𝑛𝑍𝑍𝑖𝑖𝑧𝑧�
∞

𝑔𝑔=−∞

 (2.51) 
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Here 𝑀𝑀�𝑥𝑥𝑔𝑔 is the magnetization vector Fourier coefficients of the radial component and 𝑀𝑀�𝑧𝑧𝑔𝑔 is the 

magnetization vector Fourier coefficients of the axial component. 𝐾𝐾𝑔𝑔 is the angular frequency of the 

n-order harmonic component. It is comparatively challenging and costly to manufacture magnets 

having the ideal Halbach magnetization arrangement. Quasi-Halbach magnetisation concepts have 

been proposed to solve the problem and reduce the manufacturing cost (Liu, Yu, Hu, Liu, & Zhou, 

2013; Xia et al., 2018). The quasi-Halbach and Halbach magnetisation can boost the sinusoidal 

distribution of the magnetic field and increase magnetic flux density, and the finite-element analysis 

solution is required to check them.  

2.6.3 Changing the air gap 

According to the critical design point of view, the distance, i.e. the air gap, between the translator and 

stator should be stable. Air gaps have a different magnetic field magnitude depending on their width. 

A small air-gap results in high power density and large detent force (Liu, Yu, Hu, Liu, & Zhou, 2013). 

Figure 2.14 presents the relationship of peak voltage and detent force with the air gap.  

 

(a) 

 

(b) 

Figure 2.14: The relation between (a) peak voltage and air gap  (b) Detent force and air gap (Liu, 

Yu, Hu, Liu, & Zhou, 2013) 
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In general, air gap magnetic flux density affects radial magnetization, and by changing the design, 

the air gap magnetic flux density can be increased. The optimal values for the radially magnetized 

magnet’s ratio to the pitch of the pole and translator’s outer radius to the stator’s outer radius can be 

defined to achieve maximum efficiency and performance. Most of the linear generators have been 

studied with the fixed air gap, and it was found that a small gap can create demagnetization problems 

(Huang et al., 2011; Vermaak & Kamper, 2012). By changing the air gap, Omar Farrok et al. studied 

a permanent magnet linear generator (PMLG) and found it had an important role in increasing the 

generator efficiency (Farrok, Islam, Sheikh, Guo, Zhu, et al., 2017). However, reducing the attractive 

force or frictional force between them is also important for preventing damage to the generator 

(Nilsson et al., 2006). This attractive force or frictional force can also create the demagnetization 

problem with the generator. The length of the air gap 𝑑𝑑𝑟𝑟𝑡𝑡𝑟𝑟 can be calculated by the following equations 

where 𝑧𝑧𝑡𝑡𝑟𝑟 is the translator vertical position.  

𝑑𝑑𝑟𝑟𝑡𝑡𝑟𝑟(𝑖𝑖) = 𝑑𝑑𝑚𝑚𝑖𝑖𝑔𝑔 + 𝑑𝑑𝑣𝑣𝑡𝑡𝑟𝑟 �1 −
𝑐𝑐𝑐𝑐𝑠𝑠𝜌𝜌{𝑧𝑧𝑡𝑡𝑟𝑟(𝑖𝑖)}

𝐻𝐻𝑡𝑡𝑟𝑟
� 

(2.52) 

𝑧𝑧𝑡𝑡𝑟𝑟(𝑖𝑖) =
𝐻𝐻𝑡𝑡𝑟𝑟
2
𝑠𝑠𝑖𝑖𝑛𝑛 �

2𝜌𝜌
𝑇𝑇
𝑖𝑖 ± 𝛼𝛼𝑖𝑖� (2.53) 

Here, 𝑑𝑑𝑚𝑚𝑖𝑖𝑔𝑔 and 𝑑𝑑𝑣𝑣𝑡𝑡𝑟𝑟 are the minimum and variable air gap. R. Waters proposed a method for 

measuring the air gap width of linear generators using a search coil sensor  (Waters, Danielsson, et 

al., 2007). From Figure 2.13, it can be seen that detent force and induced voltage decrease as air gap 

distance increases.  

2.6.4 Modification of the stator design 

Because of the low frequency and speed of the ocean wave, the detent force can be created in the 

linear PM wave energy generator. To raise the efficiency of the wave energy generator, it is important 

to decrease this detent force (Yu et al., 2012). With the aim of reducing this detent force, there have 

been many techniques or methods that have been used, such as stator with slots, without slots, U 

shaped stator and the M shaped stator (Dosiek & Pillay, 2007; Faiz & Nematsaberi, 2017b; Liu et al., 

2010; Zhu et al., 2006). To reduce the detent force, a slotless generator has been proposed. The 

analysis of the proposed generator showed that the detent force could be reduced, while the power 

density is merely one-fifth to one-tenth lower than that of the slotted generator. Therefore, the slotless 

generator needs a larger volume than the slotted generator to generate the same wave energy. To 
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decrease the detent force, Chunyuan Liu et al. used bulged stators and auxiliary slots (Liu, Yu, Hu, 

Liu, & Zhou, 2013). Steel materials have been used in the stator, and modular windings have been 

used in the stator. Moreover, Haitao Yu et al. proposed a novel linear wave energy converter where 

an assistant tooth has been implemented with the 12 slotted stators to minimize the end and cogging 

effects (Yu et al., 2012). The structure and the effect of the assistant tooth are shown in Figure 2.15.  

 

(a) 

 

(b) 

Figure 2.15: (a) Structure of the proposed model (b) Cogging force with and without assistant tooth 

(Yu et al., 2012) 

It was found from the simulation results (Figure 2.15(b)) that by using the assistant tooth, more than 

70% of the cogging force can be decreased compared with those without the assistant tooth. However, 

the core losses for the proposed linear generator were increased by 0.5% with the assistant tooth. To 

optimise the flux distribution, N.P.Gargov et al. used the shoe concept for the teeth arrangement of 

the semi-closed slot and found that it reduced power ripples and air gap reluctance (Gargov et al., 

2014). Additionally, in linear machines, the cogging forces can also be reduced.   
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2.6.5 Magnetic cores 

Since the heave motion of the waves is prolonged (1 – 2 m / s peak), the linear generators in direct 

drive WECs need to respond with very large forces to produce a substantial amount of energy (Ran 

et al., 2011). Hence the linear generators are becoming very large and costly. Many direct drive WECs 

based on iron-cored linear generators have been developed and tested because of their performance. 

Lorand Szabo et al. showed that the iron core-based stator could develop 3 times higher voltage (RMS 

voltages) than the ironless stator (air core) because due to the low reluctance, the Iron core has a 

higher magnetic flux (Szabo & Oprea, 2007). Figure 2.16 compares induced voltages for air-cored 

and iron-cored structures. 

 

Figure 2.16: Comparison of air-cored and iron-cored induced voltages (Szabo & Oprea, 2007) 

In addition to being large, linear generators also present significant challenges in the design and 

construction of bearings and machines due to the attractive forces between the PM translator and iron-

core stators. In many cases, the structural material used to support these attractive forces represents a 

significant portion of the WEC cost. Cogging forces cause problems, mainly due to the pairwise flux 

coupling and the longitudinal ends of iron-cored generators (Danielsson & Leijon, 2007; Prudell et 

al., 2010). Moreover, iron-cored generators create copper losses and core losses, which decrease the 

generator's efficiency by minimizing the remanence magnetism of the PMs. To reduce the detent 

force and modular structure and increase the output efficiency, a permanent magnet linear generator 

based WEC was proposed by using hollow windings and a coreless iron structure (Mueller, 2002). 

The analysis results of the proposed design reduced the detent force and copper and core losses. Air-

cored-based linear generators are attracting increased attention for direct drive WECs due to the iron-
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cored device's problems previously discussed (Clifton et al., 2010; Hodgins et al., 2010; Mueller et 

al., 2008; Ran et al., 2011). An air-cored longitudinal tubular generator has been developed, 

consisting of axially magnetised PMs of opposing polarity separated by steel segments (Baker et al., 

2004). The winding coils, called air-gap windings, are wound around the translator. Wave energy 

applications would be suitable since the air gap is infinite and the shear stress is around 10 kN /m2 

(McDonald et al., 2008). Another tubular type linear generator for WEC based on an air-cored design 

was developed using more permanent magnets than a comparable iron cored linear generator (Clifton 

et al., 2010). In order to make air-cored generators more suitable, the cogging forces between the 

stator and translator need to be reduced. Linear double-sided permanent magnets achieve higher air-

gap flux densities than single-sided air-cored converters(Vermaak & Kamper, 2011). 

 

Figure 2.17: Air Cored winding (a) Double-sided planer device (b) Magnet pairs separated into 

modules (Hodgins et al., 2011). 

The translator, however, is now subject to attractive forces between its two opposing sides, requiring 

increased structural mass. Neil Hodgins et al. proposed an air cored linear generator topology which 

was known as the core generator (C-Gen) for wave energy research (Hodgins et al., 2011). The C-

Gen is a double-sided air-cored arrangement, as shown in Figure 2.17, consisting of air-cored 

windings and iron-cored permanent magnets. The proposed design topology analysis results showed 

no magnetic attraction forces between the stator and the PM translator, reducing structural mass and 

simplifying the assembly process. To reduce the magnetic forces between the stator and the translator, 

air cored permanent magnet linear generator (PMLGs) designs have been proposed. Since the 



 

58 

 

translator lacks stainless steel, the force of attraction between the stator and the translator has been 

reduced. Lorentz forces, however, still exist. The Lorentz forces are radial in the direction of motion 

in the recently proposed air-cored generator design. A new air cored tubular linear PM generator has 

been developed and simulated where it ‘sandwiches’ the windings between two sets of permanent 

magnets (PMs) inside the tubular structure (Gargov & Zobaa, 2012). The generator’s key benefit is 

that the Lorentz forces acting on the bearing are minimised by approaching the force parallel to the 

direction of the motion axis and by removing the cogging forces. Furthermore, Rieghard Vermaak et 

al. have developed a novel air-cored linear electromagnetic generator system for WEC that almost 

eliminates the end effects of iron-cored devices and the forces of attraction between iron-cored stators 

and magnet translators (Vermaak & Kamper, 2011). The attraction forces between the translator’s 

opposing sides of double-sided air-cored machines have been balanced. The analytical analysis of the 

model has shown the effectiveness of the proposed design.  

On the other hand, to reduce the core loss and detent force problem, the high-grade steel core can be 

applied as well, which significantly increases the power-generating ability (Farrok, Kiran, et al., 

2019). Moreover, using high-grade steel in the core can solve the rising temperature problem. A linear 

PM generator has been developed using steel materials in the stator to investigate the benefits and the 

drawbacks of using steel materials (Curto et al., 2020). The investigated results have shown that the 

cogging force can be removed entirely with increasing electrical energy production.   

2.6.6 Application of high-grade PMs and solving demagnetization problem 

Maximum linear PM generators for WEC have been developed using conventional NdFeB N30, N35, 

which have low remanence magnetism, coercive force and magnetic energy product (Rahman et al., 

2020). Due to their high magnetic flux density, NdFeB PMs can retain their remanence magnetism 

even in elevated amounts of reverse magnetic fields. A comparative study has been carried out using 

NdFeB and ferrite magnets in the translator to find the magnetic property differences (Danielsson et 

al., 2003; Demenko et al., 2011). The study results showed that they have similar magnetic properties, 

but the significant parameter could be the economic difference because the price of a rare earth 

magnet (NdFeB) is expensive. Moreover, it is difficult to handle the rare earth magnet (NdFeB) but 

using ferrite magnets increases the weight of the translator. With the increasing grade number of the 

NdFeB, the magnetic flux density increases and therefore, the linear PM generator has been proposed 

for WEC by using high graded NdFeB PMs (Bashir & Farrok, 2019). The simulation results showed 
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that the output induced voltages could be increased by using high graded NdFeB PMs. Because of 

the high price of the NdFeB and the environmental aspects, the alternative has been proposed to 

replace the NdFeB magnets (Molla et al., 2020). High graded permanent magnets can be used to solve 

the demagnetization problem and keep the temperature low but it is very costly. To prevent the 

demagnetization problem temperature control could be one of the effective methods. A cooling 

system based linear generator has been proposed for WEC to reduce the rising temperature which 

consists of a control unit, chiller, dehumidifier-based air handling unit and water pipes for circulating 

the chilled water (Molla and Farrok, 2019b). Temperature rises during the operation of the linear 

generator, and this rising heat can create demagnetization of the magnets. Although the proposed 

structure is very complex, the simulation results showed that the proposed linear generator could 

minimize the temperature and increase efficiency.   

2.6.7 Design concepts for low-frequency wave range 

Many research works have been done for increasing the efficiency of the buoy type linear PM 

generator based WEC by changing many parameters. Still, very few studies have been done on 

changing the degree of freedom of the permanent magnet arrangement in the translator instead of the 

traditional method. All conventional arrangements used in the WEC were based on a single degree 

of freedom which cannot perform appropriately in the low-frequency range. Efficiency can be 

increased by arranging the translator based on a multi-degree of freedom system. Moreover, all 

existing linear WEC have used single translators to harvest energy, but the system cannot generate 

energy when the translator reaches either of the ends. To generate energy in that stage of motion, a 

novel linear generator has been proposed, as shown in Figure 2.18, which consists of two different 

bodies of translators (Farrok, Islam, et al., 2019). One is a driver translator, and the other is a driven 

translator among the two translators. The driver translator is directly connected to the buoy, but the 

driven translator is connected to it by means of a mechanical spring. The output results are shown in 

Figure 2.19.  

Figure 2.19(a) and Figure 2.19(b) present the vertical positions and velocities of the driven translator 

(Translator-D) and the driver translator (Translator-U) for minimum and maximum values of the 

natural frequencies of the driver and driven translator, respectively. Figure 2.19(c) shows that the 

driven generator can generate an acceptable voltage at zero vertical oceanic wave velocity. Figure 

2.19 demonstrates that power is being generated solely by the driver generator, whereas the driven 
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generator has zero vertical velocity. However, even when there is no velocity in the driver generator, 

the driven generator still generates power. 

 

Figure 2.18: Proposed two body translator based WEC (Farrok, Islam, et al., 2019) 

         

(a) (b) 

 
(c) 

Figure 2.19: Two-body translator system (a) Vertical displacement, (b) Velocity, (c) Output voltage 

(Farrok, Islam, et al., 2019) 
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2.6.8 Using magnetic gearing to increase the speed of the Translator 

The translator speed is also an essential parameter to increase the efficiency of the WEC. Due to the 

low frequency of the ocean waves, the existing linear generator cannot generate enough energy. 

Furthermore, the use of a linear magnetic gear has also been proposed by researchers, whose 

analytical and experimental results proved that the concept could increase the speed of the translator 

(Faiz & Nematsaberi, 2017b; Feng et al., 2016; Li et al., 2011; Li et al., 2017). The linear magnetic 

gear consists of two movers and a field modulation core, as shown in Figure 2.20. The mover can 

consist of magnetizing windings and permanent magnets (like aluminium-nickel-cobalt (AlNiCo)) 

(Li et al., 2011; Li et al., 2017). One mover (mover 2 or low-speed mover) can be connected with the 

buoy, which moves due to the wave, and another mover (mover 1) is connected with the translator 

(high-speed mover). A linear magnetic gear based WEC is also illustrated in Figure 2.21. The motion 

of mover 2 increased the opposite motion of mover 1, increasing the translator's speed. This means 

that the gear ratio variation only changes the motion speed of mover 1. 

 

Figure 2.20: Linear magnetic gear concept (Li et al., 2011) 

This new translator speed and spring displacement are the original ones multiplied by the gear 

ratio (𝐺𝐺𝑟𝑟). The corresponding relationships can be expressed by equation 2.54 (Chau et al., 2008; 

Chau et al., 2007).  

𝐺𝐺𝑟𝑟 =
𝑣𝑣1
𝑣𝑣2

=
𝑁𝑁2
𝑁𝑁1

 (2.54) 

where, 𝑣𝑣1 and 𝑣𝑣2 represent the speed of the mover 1 and 2, respectively. 𝑁𝑁1 is the number of active 

PM pole-pairs in the mover 1 and 𝑁𝑁2 is the number of active PM pole-pairs in the mover 2. The Force 

transmission capability for the different gear ratios is displayed in Figure 2.22.   
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Figure 2.21: Linear magnetic gear based wave energy converter (Li et al., 2017) 

          

(a) (b) 

 

(c) 

Figure 2.22: Force transmission capability(a) gear ratio 13:4 (a) gear ratio 12:5, (b) gear ratio 11:6 

(Li et al., 2017) 
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Since the gear ratio variation only changes the linear generator’s movement speed, the linear 

generator’s new translator velocity and spring’s new displacement are the original ones multiplied 

by 𝐺𝐺𝑟𝑟. Also, the motion directions of the two movers of the proposed linear magnetic gear are opposite 

each other. As a result, the spring force 𝐹𝐹𝑟𝑟 and the generator force 𝐹𝐹𝑔𝑔 are changed as 

𝐹𝐹𝑟𝑟′ = −𝛾𝛾(−𝐺𝐺𝑟𝑟𝑧𝑧(𝑖𝑖) = 𝛾𝛾𝐺𝐺𝑟𝑟𝑧𝑧(𝑖𝑖) (2.55) 

𝐹𝐹𝑔𝑔′ = −𝛽𝛽(−𝐺𝐺𝑟𝑟�̇�𝑧(𝑖𝑖) = 𝛽𝛽𝐺𝐺𝑟𝑟�̇�𝑧(𝑖𝑖) (2.56) 

where 𝛾𝛾 and 𝛽𝛽 are the spring constant and damping coefficient of the generator. The natural frequency 

of the linear magnetic gear based WEC can be measured by equation 2.57 (Li et al., 2017). 

𝜔𝜔 = �
𝜌𝜌𝑔𝑔𝜌𝜌𝑎𝑎2 − 𝛾𝛾𝐺𝐺𝑟𝑟
𝑚𝑚 + 𝑚𝑚𝑡𝑡

 
(2.57) 

In Figure 2.22(a), the pole-pair numbers of mover 1 and mover 2 are 4 and 13, respectively. The pole-

pair numbers of mover 1 and mover 2 are 5 and 12 for Figure 2.22(b) and 6 and 11 for Figure 2.22(c), 

respectively. It can be seen from Figure 2.22 that the mover 1 and mover 2 pull-out forces under the 

ratios are 371.5 N and 114.2N for 13:4, 343.8 N and 142.7 N for 12:5 and 314.2 N and 170.6 N for 

11:6, respectively which means the force of the mover 1 can be increased or decreased by changing 

the gear ratio. From Figure 2.22, it also can be said that with the increase of the pole-pair numbers of 

mover 1, the pull-out forces of mover 1 increase and with the decrease of the pole-pair numbers of 

mover 2, the pull-out forces of mover 2 decrease. That means the pull-out forces of the mover are 

directly proportional to the pole-pair numbers. Therefore, it can be stated that with the increase of the 

pull-out forces of mover 1, the velocity of mover 1 decreases or vice versa. By using this relation, 

equation 2.54 can be expressed as 

𝐺𝐺𝑟𝑟 =
𝑣𝑣1
𝑣𝑣2

=
𝐹𝐹2
𝐹𝐹1

 (2.58) 

Where, 𝐹𝐹1 and 𝐹𝐹2 are the pull-out forces of the mover 1 and 2, respectively. Moreover, such findings 

show that the pole-pair numbers of permanent magnets on the two movers are adjusted correctly, and 

it is possible to achieve the adjustable gear ratios. By selecting the proper gear ratio, it is possible to 

control the force and the velocity of the mover 1, which is connected with the linear generator.  
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2.6.9 Other design concepts to increase the efficiency of the generator 

There are many factors related to the stator design that play an essential role in increasing the 

efficiency of the linear generator. Among them, proper lamination selection is an essential factor in 

increasing the efficiency of the linear generator (Gargov et al., 2014).  The high magnetic flux density 

of the PMs can saturate the stator lamination materials in the teeth and back iron. N.P. Gargov et al. 

investigated the impact of the number of slots per pole, phase and the number of windings in the 

stator (Gargov et al., 2014). De Sousa Prado et al. showed that increasing the number of slots can 

lead to large pole pitches. As a result, demagnetization can be created, and due to the additional space 

harmonics, the decreasing number of slots will cause eddy current losses (de Sousa Prado et al., 2006). 

Therefore, the slot number selection is also an essential factor. To design the stator of the AWS, one 

slot per pole per phase was selected (de Sousa Prado et al., 2006). To find the optimized design of the 

stator, slot geometry, such as slot design and teeth design, is essential. It has been found that the stator 

tooth shape also affects power generation (Farrok, Islam, et al., 2019). 

Omar Farrok et al. divided the stator into a primary and supporting stator for increasing the output 

voltage of the WEC (Farrok, Islam, Guo, et al., 2018; Farrok, Islam, Sheikh, et al., 2018). Lei Huang 

et al. used two stators known as inner and outer primary and a mover, which can move with the buoy 

between the inner and outer primary (Huang et al., 2013). Jing Zhang added an asymmetric slot iron 

york structure and pie windings to increase the efficiency of the previous WEC design. Experimental 

results proved that the asymmetric slot structure increased the efficiency (Zhang et al., 2018). A new 

concept known as the snapper generator has been proposed where the stator consists of permanent 

magnets, winding coils and a physical spring (Crozier et al., 2013). The physical spring connects the 

stator with the fixed seabed. When the stator moves because of magnetic attraction, then the physical 

spring extends and applies a reverse force to the stator. Since both translator and stator consist of 

magnets and face each other, due to the applied force on the translator, the magnetic attraction pulls 

the stator along with the translator. Finally, the spring forces are enough to resolve the magnetic 

attraction, where the stator accelerates quickly in the translator's opposite direction. This high speed 

increases the power output efficiency and can decrease the magnets' size and associated costs. The 

flux linkage measuring equation 2.59(a) can be used for the electromechanical model of the proposed 

generator. 
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𝑑𝑑 =
𝑁𝑁𝑙𝑙𝑟𝑟
𝑆𝑆

(�𝐴𝐴+𝑑𝑑𝑆𝑆
𝑆𝑆

− �𝐴𝐴−𝑑𝑑𝑆𝑆
𝑆𝑆

) (2.59a) 

where S is the cross-section area of the coil, and A is the vector potential in the positive and negative 

parts of the coil. 𝑙𝑙𝑟𝑟 is the stack length. The relative position (𝑧𝑧𝑅𝑅) and velocities (�̇�𝑧𝑅𝑅) of the stator and 

translator are required to measure the flux linkage and induced voltage during the operation of the 

generator.  

𝑒𝑒(𝑖𝑖) = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

= −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧𝑅𝑅

𝑑𝑑𝑧𝑧𝑅𝑅
𝑑𝑑𝑖𝑖

= −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧𝑅𝑅

�̇�𝑧𝑅𝑅 (2.59b) 

2.6.10 Innovative oscillator design concept 

Up to date, most of the proposed linear PM generators type direct electric drive PTO systems for 

wave energy conversion have been developed based on linear oscillator systems (single degree of 

freedom oscillator system) and traditional design concepts (all permanent magnets are mounted in 

the translator, having opposite poles facing each other with an iron core used between them, and with 

coil windings attached in the stator). Typically, the translator moves inside the stator and this 

movement creates magnetic flux changes inside the winding coils, generating electrical energy. The 

linear energy harvesting technology has been compared with nonlinear systems based on actual data. 

It was found that the linear energy harvester has the highest power output in most cases. Still, the 

nonlinear system has a broader harvesting frequency bandwidth, and the bistable system can harness 

more energy from random vibration (Beeby et al., 2013).  Moreover, Owens et al. also found that the 

nonlinear oscillating system is better than the linear oscillation for broadening the frequency response 

bandwidth (Owens & Mann, 2012). To create maximum magnetic flux density inside the coil, some 

permanent magnets could be added outside the stator coil, as shown in Figure 2.23(a). This system is 

known as the bistable system (Xiao et al., 2017). It has been found that the proposed bistable system 

can increase the magnetic flux density inside the winding coils (Gao et al., 2018). The linear generator 

converter's resonant power and efficiency with light damping and multi-degree of freedom oscillators 

are expected to be larger than those with a conventional single degree of freedom oscillator (Gatti, 

2013; Wang, 2016). Figure 2.23(b) displays the two-degree of freedom system where the set of 

magnets are connected by physical springs (Xiao et al., 2017). The device will be more efficient in 

the low-frequency range if the bistable system is coupled with the increased degree of freedom 

oscillator system, as displayed in Figure 2.23(C).  
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(a) (b) (c) 

Figure 2.23: Physical models of the PM linear generator (a) bistable impulse linear generator, (b) 

two-degree of freedom system, and (c) coupled bistable two-degree of freedom system (Xiao et al., 

2017) 

 

Figure 2.24: Schematic diagram of a single-degree of freedom nonlinear oscillator 

The bandwidth problem of the existing PM linear generator can be overcome by widening the 

frequency bandwidth of the WEC. Light damping nonlinear oscillators are expected to have larger 

operational frequency bandwidth than a conventional single degree of freedom linear oscillator. The 

magnetic levitation system can be used in the translator design to make the oscillator nonlinear, which 

is more effective in the broadband frequency range, especially in the low-frequency ocean 

environment (Masoumi & Wang, 2016). In the magnetic levitation system, the magnetic spring works 

like a physical spring and is created when two magnets are facing each other at the same poles (N-N 

or S-S), as presented in Figure 2.24. In addition, the use of the light damping multi-degree of freedom 
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nonlinear oscillators is expected to develop larger operational frequency bandwidth than that of a 

single degree of freedom nonlinear oscillator. 

 

Figure 2.25: Structure of the repulsive magnetic levitation-based WEC (Masoumi & Wang, 2016) 

Magnetic springs can be used in the magnet arrangement for harvesting energy over a broadband 

frequency range (Chiu et al., 2012; Gatti, 2013; W. Wang et al., 2017). Moreover, to increase the 

generator efficiency in the broadband frequency range, Masoud Masoumi and Ya Wang proposed a 

vibration-based generator for WEC known as the repulsive magnetic scavenger (Masoumi & Wang, 

2016). The levitating magnets are lined around a threaded rod together so that the same poles face 

one another. The generator consists of two fixed magnets, as shown in Figure 2.25, placed at each 

end. It delivers a collocated harvesting and braking mechanism in the face of high amplitude 

vibrations. Usually, the concept has been used to generate energy from vibration in the low-frequency 

range (Foisal et al., 2012; Salauddin et al., 2016; W. Wang et al., 2017; Zhang et al., 2014).  

2.7 Motivation for Choosing Magnetic Spring-based Nonlinear Oscillator System to Harness 

Ocean Wave Energy 

The energy from ocean waves is a largely untapped renewable energy source globally, but harnessing 

this energy reliably and cost-effectively presents significant challenges. Ongoing improvements and 

progress of wave energy technologies continue to develop very fast. Different techniques have been 

used to harness this energy, and among them, the linear PM generator based direct drive WEC is very 

well known because of its mechanically simple structure. The working principles of the linear PM 

generator based WEC have been discussed in this paper with the support of mathematical modelling. 

Different WEC topologies with a linear generator-based PTO system have been outlined to provide 
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a brief understanding of their design and working principles. It is challenging to choose the best WEC 

linear generator design concept because of the continuously increasing development of the WEC. 

Depending on the application conditions, the linear generator structure for WEC is either designed 

for high-power applications or low-power applications. The outcome of the comparative studies can 

be concluded as follows: 

• Linear generators are suitable for use in wave energy conversion if the devices are buoyant 

moored with linear motion and operate with speeds of 1 m/s or more. 

• Compared with other linear generator types, the linear PM synchronous generator is the most 

suitable for wave energy conversion because it has higher reliability and efficiency due to the 

larger driving force. 

o The planar/flat type linear PM synchronous generators are preferred for high-power 

applications. 

o The tubular type linear PM synchronous generators are suitable for low-power 

applications because they offer high power or force density. 

o Tubular type linear PM generator with a long translator inside the generator gives 

better performance with less cogging force.  

o Three-phase generators are more efficient than single-phase generators due to their 

higher energy generation. 

o Iron cored generators are more suitable than air-cored generators because their power 

generation ability is higher.  

o The largest power is produced when the PMs are attached to the translator. 

o QuasiHalbach arrangements are preferred for improving the power generation 

efficiency with minimum losses. 

• The generator size is mainly determined by the force it has to create. In wave energy 

conversion, the speeds are typically relatively low. The force should be high if the aim is to 

generate a large amount of power at a low speed. Therefore, the cost of the generator increases. 

The switched reluctance generators, variable reluctance generators, transverse flux PM 

machines, and Vernier hybrid machines are suitable designs with high force density. The 

performances of these types of generators are not influenced by this limited force density, and 

they are suitable for low power applications. However, they have some disadvantages, such 

as complex construction structure, low power factor, complex iron losses and eddy current 
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losses. Although they have some disadvantages, they can be viewed as an alternative to the 

typical linear PM generator in the future. 

• Clever designs such as double-sided and cylindrical arrangements could decrease the cost. 

• Superconducting linear generators are suitable for the WEC based on the linear generator in 

low power applications. It has a high current carrying ability, producing much higher flux 

density with low-speed motion and lighter weight. However, it has a high manufacturing and 

material cost difficulty.  

This chapter has reviewed the developments of the WEC with linear PM generators such as translator 

design, translator speed, stator design and others. To increase the performance efficiency and reduce 

the cost of the WEC with linear PM generators, many design concepts have been proposed. Overall, 

various WEC designs, working principles, design optimization and advancements have been 

appraised in this chapter.  

Moreover, from the literature, it has been shown that all developed linear generator based WECs still 

have some drawbacks, and very few have been deployed in the ocean. The bandwidth problem of the 

existing linear PM generator-based PTO system can be overcome by widening the frequency 

bandwidth of the WEC. Light damping nonlinear oscillators are expected to have larger operational 

frequency bandwidth than a conventional single-degree-of-freedom (SDOF) linear oscillator. The 

magnetic levitation (magnetic spring) system has been used in the translator design to make the 

oscillator nonlinear, which is more effective in the broadband frequency range, especially in the low-

frequency ocean environment. However, the characteristics and dynamics of the linear PM generator 

based on the SDOF nonlinear oscillator system have not been studied yet. The SDOF magnetic 

spring-based system had only one degree of freedom and was limited to only one resonant natural 

frequency. Preferably, the energy generator should pick up and resonate at every frequency present 

in the source vibration. One can use double and triple resonant frequencies and achieve maximum 

power by employing a two-degree-of-freedom (2DOF) and three-degree-of-freedom (3DOF) 

oscillator systems. Moreover, the 2DOF and 3DOF nonlinear oscillators are estimated to advance 

higher operational frequency bandwidth than the SDOF nonlinear oscillator. But, no study thus far 

has modelled 2DOF and 3DOF nonlinear oscillator system-based energy harvesters to harness ocean 

energy.



The contents of this chapter have been published in the IEEE Transactions on Magnetics, 2022. DOI: 10.1109/TMAG.2022.3180812 

70 

 

Chapter 3  
Magnet Characterisation and Electromagnetic Theory 

Permanent magnets can be used to generate electrical forces from mechanical forces or convert 

mechanical forces into electrical forces. The magnet and coil arrangement known as the 

electromagnetic system usually generates electricity from a mechanical force. The maximum power 

generation in electromagnetic systems depends on either the properties of the permanent magnet or 

the magnet and coil combination. Therefore, the study of permanent magnets and electromagnetic 

systems are very important. This chapter will discuss the properties of the permanent magnets and 

the relevant theory of the electromagnetic system.  

3.1 Magnet and Magnetic field 

Magnets produce an invisible magnetic field, and it is this field of electromagnetic energy that 

transfers the forces of a magnet. The significant and effective properties of magnets, such as attracting 

other magnetic materials (such as iron) or magnets and repelling other magnets, are dependent on 

their magnetic fields. Magnets have a north pole and a south pole, similar to the north and south 

magnetic poles of the earth. The like or same poles repel from one another but unlike poles attract 

each other. The internal structure of the permanent magnets manufactured from rare earth materials 

create the magnetic field. The atoms contain both electrons and the nucleus of the atom, which 

consists of protons and neutrons, and both the electrons and nucleus themselves act like miniature 

magnets, like small spinning components of electric charge. Moreover, they have magnetic field 

characteristics in the particles themselves. The orbits of the electrons generate the magnetic field as 

they move about the nucleus. A strong permanent magnet should have a strong magnetic field. Figure 

3.1 represents the typical nature of the magnetic field around a magnet, showing how the magnetic 

field always goes from the north pole to the south pole, regardless of the design and shape of the 

magnet. Permanent magnets have a variety of uses in daily life as field sources. There are various 

types of machines such as motors, generators, acoustic transducers, magnetic field and imaging 

systems and magneto-mechanical devices and magnetic-levitation or maglev trains that usually use 

permanent magnets as a magnetic field source (Chan & Lai, 2007; Zhu & Howe, 2001). The 

permanent magnets have also been used in magnetostrictive and magnetoresistive sensors to detect 

position and displacement. Compared to other magnets, the rare earth magnets are much stronger. 

The term “grade” is used to express the magnet specifications and is a measurement of how strong
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the magnetic material used in the magnet is or how concentrated the magnet is. Two magnets with 

the same size and shape can have different grades, for example, one may have grade N45 and the 

other N52. In this comparison, the grade N52 magnet will be the stronger since it is more 

concentrated. The symbol 𝑁𝑁 stands for Neo which is short for neodymium, a rare earth material. 

Among all rare earth magnets, neodymium magnets are the strongest and most affordable permanent 

magnets. Moreover, the neodymium magnet is magnetically more stable than other magnets due to 

its highest magnetic field strength and higher coercivity. 

      

(a) (b) 

Figure 3.1: Magnetic field around a typical magnet; (a) Bar magnet, (b) Ring magnet (axially 

magnetized)  

3.2 Magnetization and Demagnetization 

Magnetisation refers to the local value of the magnet’s magnetic moment per unit volume, typically 

represented by M, with the units of A/m. Magnetisation is a vector field, instead of just a vector 

(similar to the magnetic moment), and thus for that reason, the magnet’s different areas can be 

magnetised with various directions and strengths (for instance, because of domains). The 

magnetisation can be measured as,  

𝑀𝑀 =
𝑑𝑑𝑚𝑚
𝑑𝑑𝑉𝑉

    (3.1) 

where the elementary magnetic moment is denoted by 𝑑𝑑𝑚𝑚 and the volume element is represented by 

𝑑𝑑𝑉𝑉. There are different types of magnetisation of permanent magnets that exists such as axial, radial, 
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parallel, Quasi-Halbach and Halbach array. Under some circumstances, a permanent magnet may lose 

some or all its magnetic field which is known as demagnetisation of the magnet. Excessive exposure 

to high temperatures is often the cause of demagnetisation. The happens at the Curie temperature, 

which is one of the known parameters of all magnetic materials, at which the domains of the magnet 

randomise due to thermal agitations applying an extra force strong enough to overcome the magnetic 

domain’s resistance to move.  

3.3 Magnetic Field Strength and Magnetic Flux density 

Mathematically the magnetic field can be signified by vector quantities having direction and 

magnitude. A magnetic field is often represented by two different vectors: the magnetic field strength 

and magnetic flux density.  The magnetic field intensity and magnetic flux density are used to 

characterise the strength of the permanent magnets. The magnetic field strength, which is also known 

as  magnetic field intensity and is typically represented by H, is the vector quantity which defines the 

capability at a given point of a magnetic body to induce a magnetic field and has the units of 𝐴𝐴 𝑚𝑚⁄  or 

Oersted (Oe). The magnetic flux density, which is also known as magnetic induction and is 

symbolised by B, is the amount of magnetic flux (Φ) per unit surface area and has the units of Weber 

per square metre (𝑊𝑊𝑏𝑏 𝑚𝑚2⁄ ) or Tesla (T). The magnetic flux density can be mathematically 

represented as, 

𝐵𝐵 =
𝑑𝑑
𝐴𝐴

    (3.2) 

where the magnetic flux is Φ and is denoted by Webers (𝑊𝑊𝑏𝑏), the surface area is 𝐴𝐴 in square meters 

(𝑚𝑚2). Every permanent magnet generates a magnetic field (𝐵𝐵) in its core and its peripheral 

surroundings. Every point within and outside of the magnet can be attributed with a directional 𝐵𝐵 

field strength. There is a relationship between magnetic flux density (𝐵𝐵) and magnetic field strength 

(𝐻𝐻) and the relationship in a vacuum can be expressed as, 

𝐵𝐵 = 𝜇𝜇0 ∙ 𝐻𝐻  (3.3) 

where the vacuum’s magnetic permeability is 𝜇𝜇0 (4𝜌𝜌 × 10^(−7)). If material is present in the field 

then the relationship between them can be expressed as, 

𝐵𝐵 = 𝜇𝜇0 ∙ 𝜇𝜇𝑟𝑟 ∙ 𝐻𝐻    (3.4) 
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where the relative permeability of the material is denoted by 𝜇𝜇𝑟𝑟. Moreover, within the magnetic body, 

the magnetic flux density (𝐵𝐵) is the sum of the total magnetic field strength (𝐻𝐻) and the magnetic 

body polarisation (𝐽𝐽) and it can be expressed as, 

𝐵𝐵 = 𝜇𝜇0𝐻𝐻 + 𝐽𝐽 (3.5) 

𝐽𝐽 = 𝑀𝑀 ∙ 𝜇𝜇0 (3.6) 

𝐵𝐵 = 𝜇𝜇0(𝐻𝐻 + 𝑀𝑀) (3.7) 

In many cases, the permanent magnet’s properties can be defined by magnetic coercive force (𝐻𝐻𝑐𝑐), 

with units of 𝑂𝑂𝑒𝑒 (Oersted), and residual magnetic flux density or remanence (𝐵𝐵𝑟𝑟), with units of Tesla 

(T).  Magnetic coercive force is the strength of the magnetic field that is required to either reverse the 

direction of the magnetic pole, or to force the magnetic flux within the material to zero.  

 

Figure 3.2: B-H curves (First4Magnets, 2020) 

This value does not certainly mean, however, that the material’s magnetisation goes down to zero. In 

that situation normally, a high-grade magnet does not lose magnetisation. Because of the external 

magnetic field, the materials become saturated and when the external magnetic field is removed from 

it, then the remaining magnetic flux density is known as remanence. In general, permanent magnets 

are strong magnets because they have high coercivity (Hc) and high remanence (Br). The coercivity 

and remanence are indicated in the B-H curve as presented in Figure 3.2. Generally, the B-H curve is 

used to find how the magnetic flux density changes in the presence of an externally applied magnetic 

field. Figure 3.3 presents the demagnetisation curve that is sometimes known as the intrinsic 𝐵𝐵-𝐻𝐻 

curve since the same plot can be done by plotting 𝐵𝐵 vs. 𝐻𝐻.  
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Figure 3.3: Demagnetisation curve (intrinsic and normal B-H curves) for a typical permanent 

magnet material (Sjökvist, 2014) 

The field strength required to decrease the magnetisation to zero is called intrinsic coercivity and is 

denoted by 𝐻𝐻𝑖𝑖𝑐𝑐. Moreover, Figure 3.3 displays how the magnetic polarisation (𝐽𝐽𝑚𝑚 = 𝜇𝜇0𝑀𝑀) and the 

magnetic flux density is associated with an external field. The magnetic properties of the permanent 

magnet change with temperature. Usually, for all materials, the remanence’s temperature coefficient 

is negative, which means the remanence declines along with the rising temperature. The coercivity’s 

temperature coefficient can be positive, which depends on the types of material. For example, the 

Ferrites and Alnico have a positive coefficient, which means the coercivity rises as the temperature 

increases, however, it is negative for other types of magnetic materials. To study the magnet 

demagnetisation behaviour based on temperature dependence, the demagnetisation curve can be 

defined by temperatures, which can be found in the datasheets of the supplier company. A typical 

demagnetisation curve is temperature dependent, as shown in Figure 3.4. For a good illustration of 

how any type of magnet can be described using a function, it is useful to work with an intrinsic flux 

density 𝐵𝐵𝑖𝑖 versus 𝐻𝐻 curve, as a replacement for a flux density 𝐵𝐵 vs 𝐻𝐻 curve. The relationship between 

𝐵𝐵𝑖𝑖 and 𝐵𝐵 can be expressed as, 

𝐵𝐵 = 𝐵𝐵𝑖𝑖 + 𝜇𝜇0𝐻𝐻    (3.8) 
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Figure 3.4: Typical demagnetisation curve (K&J Magnetics, 2020) 

 

Figure 3.5: Linear Vs Nonlinear permanent magnet 

Moreover, both the linear and nonlinear type’s of permanent magnets can be defined by the B-H 

curve. A general B-H curve for linear and nonlinear permanent magnets is shown in Figure 3.5 where 

the magnetic coercivity, 𝐻𝐻𝑐𝑐, is well-defined as the 𝐵𝐵-𝐻𝐻 curve’s 𝐻𝐻-axis intercept, and the magnetic 

remanence, 𝐵𝐵𝑟𝑟, as its 𝐵𝐵-axis intercept.  

3.4 Analysis of Magnetic Properties 

The magnetic flux density has the axial, radial, normal, and tangential components.  Since there are 

no simple formulas for estimating the magnetic flux density (𝐵𝐵) of the different magnetic components 
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as well as different shapes, to model the flux density 𝐵𝐵, various computer algorithms were developed. 

However, for less complex symmetrical geometries, simple formulas can be used to estimate the 𝐵𝐵 

field on a symmetry axis in the direction of the north-south pole. The magnetic properties have been 

presented in Table 3.1. 

Table 3.1: Properties of the design magnet 

Property Value 

Permanent magnet (PM) outer diameter 72 mm 
Permanent magnet inner diameter 32.5 mm 

Thickness of each magnet 13 mm 

Weight of each magnet 110 gm 

Weight of the middle magnet with plastic bush 367.45 gm 

Magnetisation 1.03 × 106 𝐴𝐴 𝑚𝑚⁄ , axially 
magnetised thru the 13 mm 

Maximum pull force 60 kg 

Permanent magnet composition NdFeB grade 42 

Remanence Magnetic flux density (𝐵𝐵𝑟𝑟) 1.3 to1.35 (T) 

Coercivity (𝑏𝑏𝐻𝐻𝑐𝑐) >= 836 (𝑘𝑘𝐴𝐴 𝑚𝑚⁄ ) 

Intrinsic Coercivity (𝑖𝑖𝐻𝐻𝑐𝑐) >= 955 (𝑘𝑘𝐴𝐴 𝑚𝑚⁄ ) 

Maximum Energy Product (𝐵𝐵𝐻𝐻)𝑚𝑚𝑡𝑡𝑥𝑥 334 (𝑘𝑘𝐽𝐽 𝑚𝑚3⁄ ) 

Relative Recoil permeability (𝜇𝜇𝑟𝑟) 1.05 

Maximum operating temperature (ºC) 80-240 

Density (𝑔𝑔 𝑐𝑐𝑚𝑚3⁄ ) 7.4 

        

(a) 

R 

D 

Z 
N S 

M 



 

77 

 

 
 (b) 

Figure 3.6: Magnet shape (a) Cylinder and (b) Ring 

The magnetic flux density (B) in the axial direction on the symmetry axis of an axially magnetised 

cylindrical magnet, as shown in Figure 3.6(a) can be determined as (Selvaggi et al., 2010),  

𝐵𝐵𝑧𝑧 =
𝐵𝐵𝑟𝑟
2
��

𝐷𝐷 + 𝑍𝑍
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��     (3.9) 
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(3.10) 

If the magnet is an axially magnetised ring type as displayed in Figure 3.6(b) then the magnetic flux 

density (B) in the axial direction on the symmetry axis can be measured by equation 3.10 (Camacho 

& Sosa, 2013). Here, the remanence field, denoted by 𝐵𝐵𝑟𝑟, is independent of the geometry of the 

magnet; Z is the distance from the spherical edge on the symmetry axis; and 𝐷𝐷 is the thickness of the 

magnet.  𝑅𝑅 is the radius of the cylindrical magnet but 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑖𝑖 are the outside and inside radius of 

the ring magnet, respectively. Figure 3.7 presents the calculated magnetic flux density in the axial 

direction.  
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Figure 3.7: Magnetic flux density in the axial direction (analytical measurement based on equation 

3.12). 

 

Figure 3.8: Ring Magnet 

It is seen from Figure 3.7 that the highest magnetic flux density has been found in the centre of the 

ring magnet. A line outside the surface (in the radial direction; parallel to the axis of symmetry) of 

the ring magnet, as shown in Figure 3.8, is utilised to calculate the magnetic flux density in the radial 

direction. Figure 3.9 displays the calculated (by using Gauss meter) magnetic flux density in the radial 

direction. It is known that measuring the magnetic flux density is a very challenging task. There are 

very complex and sometimes very expensive computer programmes that can be used for analysing 

the magnetic flux density (𝐵𝐵) along each symmetry axis or fields of different magnetic types. 

Moreover, the computer programmes not only calculate and estimate the B fields but also much more. 

ANSYS MAXWELL, COMSOL, EMS, FEMM software’s are normally used to analyse or compute 

the magnetic flux density around the magnet using the finite element method. ANSYS MAXWELL 

is an interactive high-performance software package that solves electric, magnetic, or electromagnetic 

problems. 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-50 -30 -10 10 30 50

M
ag

ne
tic

 fl
ux

 d
en

si
ty

 (T
)

Distance (mm)

0 10 20 20 30 10 40 50 30 40 50 

Magnet 

N S 



 

79 

 

 

Figure 3.9: Magnetic flux density in Radial direction (experimental measurement) 

Finite element analysis (FEA) is used as the theoretical principle of ANSYS MAXWELL, and it has 

been recognised as being a very strong numerical modelling tool for general electromagnetic and 

magnetic analysis. It works by solving Maxwell’s equations in a finite region of space with proper 

boundary conditions and user-specified initial conditions to attain a solution with a certain 

uniqueness. The relevant Maxwell’s equations are shown as, 

�
𝛻𝛻 × 𝐻𝐻��⃗ = 𝐽𝐽
𝛻𝛻 ∙ 𝐵𝐵�⃗ = 0

𝐵𝐵�⃗ = 𝜇𝜇0�𝐻𝐻��⃗ + 𝑀𝑀��⃗ � = 𝜇𝜇0 ∙ 𝜇𝜇𝑟𝑟 ∙ 𝐻𝐻��⃗ + 𝜇𝜇0 ∙ 𝑀𝑀��⃗ 𝑝𝑝
     

(3.11) 

Here 𝐵𝐵�⃗ (𝑒𝑒, 𝑦𝑦, 𝑧𝑧), 𝐻𝐻��⃗ (𝑒𝑒, 𝑦𝑦, 𝑧𝑧), 𝚥𝚥(𝑒𝑒,𝑦𝑦, 𝑧𝑧) and 𝑀𝑀��⃗ 𝑝𝑝(𝑒𝑒,𝑦𝑦, 𝑧𝑧) are the magnetic flux density, magnetic field 

strength, conduction current density and permanent magnetisation of the permanent magnet, 

respectively. Moreover, 𝜇𝜇0 and 𝜇𝜇𝑟𝑟 are the permeability of the vacuum, and relative permeability, 

respectively. A N42 ring magnet has been designed (using the Grade N42 ring magnet’s properties) 

in ANSYS MAXWELL 3D to analyse the magnetic flux density around the magnet. The 

corresponding magnetic properties of the magnet are shown in Table 3.1. The simulation has been 

done for both magnetostatic modes for different magnet arrangements to understand the properties of 

the permanent magnet during stationary and moving situations. The designed magnet is shown in 

Figure 3.10, where the axial magnetisation direction is indicated. Figure 3.11 displays the BH curve 

of the designed magnet. The maximum energy product, or BHmax, of any magnet is the power density 

of the magnet and it is equal to the largest rectangle’s area that can be inscribed under the normal 

curve, as displayed in Figure 3.11. To design nonlinear permanent magnet in ANSYS Maxwell 

BHmax is an important parameter. Moreover, the value of the BHmax depend on B and H.  
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Figure 3.10: Designed Ring Magnet in ANSYS Maxwell 

 

Figure 3.11: BH curve with indicating BHmax 
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(b) (c) 

Figure 3.12: (a) Magnetisation direction (Axaily magnetised) (b) Magnetic flux density on the 

surface of the magnet (c) Magnetic field strength of the surface of the magnet 

Figure 3.12(a) presents the magnetisation direction of the designed magnet. The designed magnet is 

axially magnetised which can be seen from Figure 3.12(a). Moreover, Figure 3.12(b) and Figure 

3.12(c) display the magnitude of the magnetic flux density and magnetic field strength of the surface 

of the magnet.  Figure 3.13 and Figure 3.14 present the magnitude (Mag_B) and vector (B_vector) of 

the magnetic flux density in the XZ plane, respectively.  

               

Figure 3.13: Mag_B in XZ plane  
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Figure 3.14: B_Vector in XZ plane 
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                                           (b) (c) 

Figure 3.15: (a) B_Vector in XZ plane with 𝑑𝑑1 and d (b) Magnetic flux density in the axial direction 

along in the centre line (ANSYS Maxwell Simulation result) and (c) Magnetic flux density in the 

radial direction in 𝑑𝑑1 distance (ANSYS Maxwell Simulation result) 

Figure 3.15(a) shows the magnetic field line, which is the closed curve in space traced out by 

following the direction in which the magnetic field vector points. Moreover, the intensity of the arrow 

in Figure 3.15(a) represents the magnetic field strength. The Z axis is a line considered axially through 

the centre of the magnet and the magnetic flux density, shown in Figure 3.15(b) is measured along 

this axis. Figure 3.15(c) shows the magnetic flux density measured at different points along a line, 

perpendicular to the X axis at 37mm from the Z axis. The way of measuring the magnetic flux density 

using ANSYS MAXWELL is: Field Overlays→ Calculator→ Select B_Vector from Named 

Expressions→ Copy to stack→ Scalar in Vector→ Scalar X/Y/Z for 3D model or Scalar R/Phi/Z for 

2D model→ Add→ Name→ OK→ Results→ Create Field Reports→ Any Plot (Rectangular Plot) 

→ Polyline 1 from Geometry→𝐵𝐵𝑥𝑥/𝐵𝐵𝑧𝑧/𝐵𝐵𝑧𝑧/𝐵𝐵𝑝𝑝ℎ𝑖𝑖 from Calculator Expressions→ New Report. 

The magnetic flux density in axial direction has been measured analytically and is presented in Figure 

3.16, which also compared it with the measured magnetic flux density by ANSYS MAXWELL. 

Moreover, Figure 3.17 shows the comparison of the results from simulation to those done 

experimentally for the radial magnetic flux density. From Figure 3.17, it can be said that the 

experimentally measured peak magnetic flux density in the radial direction is almost the same as the 

numerically measured peak magnetic flux density in the radial direction. The radial magnetic flux 

density shows maximum values near the centre of the ring magnet. Figure 3.18 shows the radial 

magnetic flux density for different air gap distances. 
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Figure 3.16: Comparison of magnetic flux density (Theoretical and simulation result) 

 

Figure 3.17: Comparison of Radial magnetic flux density (measured by ANSYS MAXWELL and 

experimentally) 

 

Figure 3.18: Radial magnetic flux density for different  𝑑𝑑1 
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It can be said from Figure 3.18 that the magnetic flux density decreases with the increase of the air 

gap distance (𝑑𝑑1). The height magnetic flux density around 1 T has been seen on the outside surface 

in the radial direction of the magnet (outer radius 36 mm) and this value decreases to about 0.22 T 

with the increase of 𝑑𝑑1. The magnetic field B is usually high at the poles and low in the middle 

portions of the ring magnets. The magnetic flux density also decreases going away from the centre of 

the magnet. However, the change of magnetic flux density with respect to the location of the magnet 

can be measured as (Zhu & Evans, 2018), 

𝛥𝛥𝑑𝑑
𝛥𝛥𝐷𝐷

=
𝛥𝛥𝐵𝐵 ∙ 𝐴𝐴
𝛥𝛥𝐷𝐷

    (3.12) 

where ∆𝐵𝐵 is the change of the magnetic flux density for the change of magnet position (Δ𝐷𝐷). The 

permeability and relative permeability of the magnet can be measured by Field Overlays Calculator 

in ANSYS Maxwell by using equations 3.3 and 3.4. With the aim to better describe and understand 

the magnetic field distribution, the magnetic flux density of two unalike configurations (opposite 

poles facing (NS-NS) and same pole facing (NS-SN)) are studied. 

        

(a) (b) 

Figure 3.19: Magnetic flux density in the surface of the magnet (a) opposite poles facing (NS-NS) 

(b) same pole facing (NS-SN) 
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Both ring magnets are the same size and shape, and their properties can be seen in Table 3.1. At first, 

the distance between the two magnets (same poles facing (SN-NS)) was set to a position (104 mm) 

where both magnets are at equilibrium under gravitational effects. The magnetic flux density at the 

surface of the magnet and the magnetisation direction of the magnets for both two configurations are 

shown in Figure 3.19 and Figure 3.20, respectively.  

 

(a) (b) 

Figure 3.20: Magnetisation (a) opposite poles facing (SN-SN) (b) same pole facing (SN-NS) 

 

Figure 3.21: Magnetic flux density (Mag_B) when facing opposite poles (SN-SN) 
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Figure 3.22: Magnetic flux density (Mag_B) when facing same poles (SN-NS)  

The magnitudes of the magnetic flux density (Mag_B) for both configurations are presented in Figure 

3.21 and Figure 3.22, respectively. A line (𝑑𝑑) is considered parallel to the Z axis at a distance 𝑑𝑑1 (37 

mm) from the outside surface of the magnets’ arrangement, as shown in Figure 3.23. In Figure 3.23, 

the length of 𝑑𝑑 is the same for both configurations. Going from 𝑑𝑑 = 0 to 𝑑𝑑 = 200 mm the movement 

of the vertical arrows on one side is equivalent to the other side in Figure 3.23. The radial magnetic 

flux densities can be measured simultaneously. The measured axial magnetic flux density is shown 

in Figure 3.24 and the measured magnetic flux density in radial direction is shown in Figure 3.25 to 

illustrate how the magnetic flux density behaviour changes according to magnets pole’s positions. If 

both magnets are facing with the same poles (NS-SN), then the magnetic flux density behaviour will 

not be the same as when both magnets are facing the opposite poles (NS-NS) which can be seen from 

Figure 3.24 and Figure 3.25, respectively. As presented in Figure 3.25(c), the same poles facing 

arrangement produces an axial flux density that ranges from the maximum value to the minimum 

value along an arctan shaped curve, while the opposite poles facing arrangement produces an axial 

flux density that resembles a parabolic shape between the two ring magnets. 
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(a) 

         

(b) 

Figure 3.23: Magnetic flux density (B_Vector) (a) opposite poles facing (SN-SN) (b) same poles 

facing (SN-NS) 
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(a) (b) 

Figure 3.24: Axial flux density (measured by ANSYS Maxwell) (a) facing opposite poles (b) facing 

same poles  

 

(a) (b) 

 

(c) 

Figure 3.25: Radial flux density (measured ANSYS Maxwell) (a) facing opposite poles, (b) facing 

same poles, and (c) comparison between (a) and (b) 

If the magnets are brought closer to each other, the average magnetic flux density becomes much 

stronger when the same poles face each other compared to when opposite poles face each other, as 

seen in Figure 3.26 and Figure 3.27.  
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(a) 

 

(b) 

Figure 3.26: Axial flux density (a) Opposite poles facing each other (Top magnet in different 

positions) (b) Same poles facing each other (Top magnet in different positions) 

The values of magnetic flux density in Figure 3.26 were taken along the axial direction at various 

positions in the centre line and the values of magnetic flux density in Figure 3.27 were taken along 

the radial direction at various positions in the line 𝑑𝑑 which is 𝑑𝑑1 far from the magnet outer surface. 

From Figure 3.26 and Figure 3.27 it can be noted that the change of magnetic flux densities is not the 

same when the same poles face each other compared to when the opposite poles are facing each other. 

Moreover, it should also be noticed that the magnetic field between the two impinging magnets 

creates an attractive force, as shown in Figure 3.26(a) and Figure 3.27(a), and creates the repelling 

force, as displayed in Figure 3.26(b) and Figure 3.27(b).  
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(a) 

 

(b) 

Figure 3.27: Radial flux density (a) Opposite poles facing each other (Top magnet in different 

position) (b) Same poles facing each other (Top magnet in different position) 

The next configuration consists of three magnets, where the middle magnet is floating and found to 

settle in equilibrium between the two fixed magnets at a distance of 104 mm from the bottom magnet 

and a distance of 104 mm from the top magnet. The magnetic poles are oriented (SN-NS-SN) to repel 

each other. The magnetic flux density on the magnet surface and the magnetisation direction are 

displayed in Figure 3.28. The magnitude of the magnetic flux density is shown in Figure 3.29. In 

addition, the distributed magnetic field passing through the air gap is simulated as shown in Figure 

3.30. The magnetic flux density is calculated for the system in the radial direction through the line 𝑑𝑑 

which is 37mm (𝑑𝑑1) from the magnet stack. This location (𝑑𝑑1) is very important in linear permanent 

magnet-based generator design because it could be the coil location. The measurement of the 

magnetic flux density in the air gap is important for calculating the system power output. There is a 

symmetry in the magnitude and direction of the magnetic flux as the distance, d, increases from 𝑑𝑑 =
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0 to either 𝑑𝑑 = 250𝑚𝑚𝑚𝑚 𝑐𝑐𝑟𝑟 − 250𝑚𝑚𝑚𝑚, as shown in Figure 3.30. The measured magnetic flux density 

in the axial direction and radial direction are displayed in Figure 3.31.   

               

                                        (a) (b) 

Figure 3.28: (a) Magnetic flux density on the magnet surface and (b) Magnetisation direction 

            

Figure 3.29: Magnetic flux density (Mag_B) when 3 magnets are facing same poles (SN-NS-SN)  
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Figure 3.30: Magnetic flux density (B_Vector) in XZ plane 

 

(a) 

 

(b) 

Figure 3.31: Magnetic flux density (a) axial direction, (b) radial direction 
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(a) 

 

(b) 

Figure 3.32: Magnetic flux density B_Vector (a) axial direction and (b) radial direction 

Moreover, if an external force is applied or the middle magnet is moved up and down vertically then 

the change of average magnetic flux density is much higher than if they were kept stationary, as seen 

in Figure 3.32(a) and Figure 3.32(b). The repelling force between the impinging magnets can be 

considered as equivalent to the restoring force of the effective magnetic spring and it can create a 

bounce on the floating magnet. The vibration of the magnet creates the change of magnetic flux 

density which can be important for maximising the harvested power.  

3.5 Magnet Force  

If a magnet moves closer to another magnet, then either they will attract or repel each other, and it 

depends on their pole’s orientation. Attraction occurs due to opposite poles being oriented together 

(NS-NS or SN-SN) and repulsion occurs when the same poles are aligned (SN-NS or NS-SN). 
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Because of the magnetic field between the two impinging magnets, the repelling force can be 

equivalent to the restoring force of the resulting magnetic spring. In the general case, calculating these 

attractive and repulsive forces between two magnets is a very complex task. The forces will be 

dependent on the shape, orientation, magnetisation direction and separation of the magnets. These 

attractive and repulsive forces can be calculated both numerically and theoretically and can be 

measured experimentally. The force (F) between two magnetic poles can be calculated as 

(Mukhopadhyay et al., 2003), 

𝐹𝐹 =
𝜇𝜇𝑄𝑄𝑡𝑡𝑄𝑄𝑏𝑏
4𝜌𝜌𝑟𝑟2

    (3.13) 

where the distance between two magnetic poles is 𝑟𝑟. The magnetic field intensity is 𝑄𝑄 = 𝑀𝑀𝑟𝑟𝐴𝐴 where 

𝑀𝑀𝑟𝑟 is the magnetisation of the magnet (Furlani, 2001), and 𝑄𝑄𝑡𝑡 and 𝑄𝑄𝑏𝑏 are the magnetic field intensity 

of the top and bottom magnet, respectively. The unit of Q is ampere-meter. If two magnets are placed 

end to end at a great distance 𝑒𝑒 ≫ 𝑅𝑅 then the force between two identical cylindrical bar magnets can 

be calculated as (Apo & Priya, 2014),  

𝐹𝐹 ≃  �
𝐵𝐵02𝐴𝐴2(𝐿𝐿2 + 𝑅𝑅2)

𝜌𝜌𝜇𝜇0𝐿𝐿2
� �

1
𝑒𝑒2

+
1

(𝑒𝑒 + 2𝐿𝐿)2 −
2

(𝑒𝑒 + 𝐿𝐿)2�     
(3.14) 

Here, 𝐵𝐵0 and 𝐴𝐴 are the magnetic flux density between two magnets, respectively. 𝐿𝐿 and 𝑅𝑅 are the 

length and radius of each magnet, respectively. The separation between the two magnets is expressed 

by x. If 𝑒𝑒 ≫ 𝑅𝑅 the force between two cylindrical magnets can be calculated as (Vokoun et al., 2009), 

𝐹𝐹(𝑒𝑒) ≃  
𝜌𝜌𝜇𝜇0𝑀𝑀2𝑅𝑅4

4
�

1
𝑒𝑒2

+
1

(𝑒𝑒 + 2𝐿𝐿)2 −
2

(𝑒𝑒 + 𝐿𝐿)2�      
(3.15) 

When 𝐿𝐿 ≪ 𝑒𝑒 then the magnetic force can be calculated as, 

𝐹𝐹(𝑒𝑒) =  
3𝜌𝜌𝜇𝜇0𝑀𝑀2𝑅𝑅4𝐿𝐿2

2
1
𝑒𝑒4

=
3𝜇𝜇0𝑀𝑀2𝑉𝑉2

2𝜌𝜌
1
𝑒𝑒4

=
3𝜇𝜇0𝑚𝑚1𝑚𝑚2

2𝜌𝜌
1
𝑒𝑒4

      
(3.16) 

When  𝐿𝐿 ≪ 𝑒𝑒, the force between two ring magnets can be calculated as,  

𝐹𝐹(𝑒𝑒) =  
3𝜌𝜌𝜇𝜇0𝑀𝑀2�𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡4 − 𝑅𝑅𝑖𝑖𝑔𝑔4�𝐿𝐿2

2
1
𝑒𝑒4

=
3𝜇𝜇0𝑀𝑀2𝑉𝑉2

2𝜌𝜌
1
𝑒𝑒4

=
3𝜇𝜇0𝑚𝑚1𝑚𝑚2

2𝜌𝜌
1
𝑒𝑒4

    
(3.17) 
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where M �𝑀𝑀 = 2𝐵𝐵0 𝜇𝜇0� � is the magnetisation of the magnets and V �𝑉𝑉 = 𝑚𝑚
𝑀𝑀� � is the volume of the 

magnet. The effective magnetic dipole is represented by m. 𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡 and 𝑅𝑅𝑖𝑖𝑔𝑔 are the outside and inside 

diameters of the ring magnets. These formulations are useful for simple configurations but do not 

work outside the ideal conditions. Therefore, numerical and experimental methods provide a more 

effective means to determine the magnetic forces between magnets.  

 

(a) 

 

(b) 

Figure 3.33: Magnetic force (a) Attractive force (b) Repulsive force 

The magnetic forces can be estimated by ANSYS Maxwell and compared with experimental analysis 

such as those cases measured by K&J Magnetics (https://www.kjmagnetics.com/), as shown in Figure 

3.33. The magnetic attractive force is shown to be higher than the magnetic repulsive force. To 

compute the virtual force in ANSYS Maxwell the system uses the principle of virtual work. The 

equation of the force for the displacement, 𝑠𝑠, can be expressed as,  
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𝐹𝐹 =
𝑑𝑑𝑊𝑊(𝑠𝑠, 𝑖𝑖)

𝑑𝑑𝑠𝑠
�
𝑖𝑖=𝐶𝐶𝑏𝑏𝑔𝑔𝑟𝑟𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑠𝑠
���� 𝐵𝐵.𝑑𝑑𝐻𝐻

𝐻𝐻

0
�

𝑉𝑉

𝑑𝑑𝑉𝑉�     
(3.18) 

where W (s,i) is the magnetic co-energy of the system which is dependent on B and H of the magnets 

and the current (i) is held constant. 

3.6 Magnetic Restoring Forces 

Figure 3.34 presents a schematic diagram of a magnetic system where the central floating magnet is 

moving due to the externally applied force where the top and bottom magnets are fixed. All three 

magnets are of the ring design and their size and shape (diameter and height) are the same. In this 

magnetic system, the magnetic poles of each magnet are oriented to repel the middle magnet so that 

the middle magnet is suspended with the nonlinear restoring force.  

 

Figure 3.34: Magnetic system where the middle magnet is floating 

The nonlinear behaviour of the system allows the linear response to be modified by simply varying 

the position between the top and bottom magnets. The magnetic force between the top fixed magnet 

and middle floating magnet can be written as (Liu et al., 2014),  
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𝐹𝐹𝑡𝑡 =
𝜇𝜇0𝑄𝑄𝑡𝑡𝑄𝑄𝑚𝑚

4𝜌𝜌𝑟𝑟𝑡𝑡2
     (3.19) 

where 𝑟𝑟𝑡𝑡 is the distance between the top and middle magnet poles. 𝑄𝑄𝑡𝑡, 𝑄𝑄𝑏𝑏 and 𝑄𝑄𝑚𝑚 are the magnetic 

field intensity (𝑄𝑄 = 𝑀𝑀𝐴𝐴) of the top, bottom, and middle magnet, respectively. The magnetisation of 

the magnet is denoted by 𝑀𝑀 and the surface area of the magnetic poles is represented by A. Similarly, 

the equation 3.19 can be rewritten for the floating middle magnet and bottom fixed magnet as, 

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄𝑏𝑏𝑄𝑄𝑚𝑚

4𝜌𝜌𝑟𝑟𝑏𝑏2
     (3.20) 

where 𝑟𝑟𝑏𝑏 is the distance between the bottom and middle magnet poles. For the case of in-plane 

movement, the expression for 𝑟𝑟𝑡𝑡 and 𝑟𝑟𝑏𝑏 can be written as, 

𝑟𝑟𝑏𝑏 = 𝑟𝑟𝑡𝑡 =
𝐿𝐿𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡 − (𝐻𝐻𝑡𝑡 + 𝐻𝐻𝑚𝑚 + 𝐻𝐻𝑏𝑏)

2
 (3.21a) 

𝑟𝑟𝑡𝑡 = 𝐻𝐻𝑟𝑟 − (𝑟𝑟𝑏𝑏 + 𝐻𝐻𝑚𝑚)    (3.21b) 

where 𝐿𝐿𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡 is the total length of the system, 𝐻𝐻𝑡𝑡, 𝐻𝐻𝑚𝑚 and 𝐻𝐻𝑏𝑏 are the height of the top, middle and 

bottom magnets, respectively. The distance between top and bottom magnet is represent by Hs. As 

the moving middle magnet is represented by the distance y as presented in Figure 3.34, the resultant 

magnetic force or magnetic spring restoring force (𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟) applied to the middle moving magnet can be 

calculated as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄𝑚𝑚

4𝜌𝜌
�

𝑄𝑄𝑡𝑡
(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))2 −

𝑄𝑄𝑏𝑏
(𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖))2�         (3.22) 

Magnetic spring’s restoring forces can be calibrated from the calculation of the restoring force and 

the separation distance of the middle magnet (𝑟𝑟𝑡𝑡, 𝑟𝑟𝑏𝑏) from the top and bottom magnet. Equation 3.22 

can be expressed by the Taylor series at equilibrium points as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
�

2
(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))3

𝑦𝑦 +
4

(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))5
𝑦𝑦3 +

2
(𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖))3 𝑦𝑦

+
4

(𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖))5
𝑦𝑦3� 

(3.23) 
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Considering the separation distance of the middle magnet from the bottom magnet and top magnet 

are the same (𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑏𝑏 = 𝑟𝑟) then the equation 3.23 can be written as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
�

2
(𝑟𝑟 − 𝑦𝑦(𝑖𝑖))3

𝑦𝑦 +
4

(𝑟𝑟 − 𝑦𝑦(𝑖𝑖))5
𝑦𝑦3 +

2
(𝑟𝑟 + 𝑦𝑦(𝑖𝑖))3 𝑦𝑦

+
4

(𝑟𝑟 + 𝑦𝑦(𝑖𝑖))5
𝑦𝑦3�     

(3.24) 

Considering 𝑦𝑦(𝑖𝑖) = 0 at the equilibrium position then equation 3.24 can be stated as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
��

2
𝑟𝑟3
𝑦𝑦 +

4
𝑟𝑟5
𝑦𝑦3� +

2
𝑟𝑟3
𝑦𝑦 +

4
𝑟𝑟5
𝑦𝑦3� 

(3.25a) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌𝑟𝑟3
𝑦𝑦 +

2𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏
𝜌𝜌𝑟𝑟5

𝑦𝑦3    (3.25b) 

For simplification, the constants can be stated as, 

𝑘𝑘1 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌𝑟𝑟3
 (3.26a) 

𝑘𝑘3 =
2𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌𝑟𝑟5
 (3.26b) 

 If the separation distances of the middle magnet (𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑏𝑏) from the top and bottom magnet are the 

same then equation 3.25b can be expressed by a Taylor series as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑘𝑘1𝑦𝑦 + 𝑘𝑘3𝑦𝑦3     (3.27) 

where 𝑘𝑘1 is the linear constant and  𝑘𝑘3 is the non-linear constant.  Moreover, the equation 3.27 can 

be expressed by 5th order Taylor series as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑘𝑘1𝑦𝑦 + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘5𝑦𝑦5   (3.28) 

where 𝑘𝑘1 is the linear constant 𝑘𝑘3 and 𝑘𝑘5 are the non-linear constant, respectively. The theoretical 

and simulated (ANSYS MAXWELL) magnetic force for different positions of the floating magnet 

has been presented in Figure 3.35 and Figure 3.36, respectively.  
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Figure 3.35: Theoretical force displacement curve 

 

Figure 3.36: Simulation force displacement curve 

 

Figure 3.37: Comparison of magnetic restoring force (measured by ANSYS MAXWELL and 

theoretically) 
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From Figure 3.35 and Figure 3.36, when the middle/floating magnet moves from the equilibrium 

position towards either the top or bottom magnets, the magnetic force increases. Since different 

positions of the floating magnet create different magnitudes of the magnetic forces, it can be 

concluded that changes in the floating magnet position will change the stiffness and resonance of the 

system. The simulated magnetic force analysis of the system has been validated with the theoretical 

analysis as shown in Figure 3.37. 

3.7 Electromagnetic Theory 

As stated by Faraday’s law, the change of the magnetic environment of the coils creates an induced 

voltage or emf (electromotive force) in the coil. By exciting the magnets or coils the change of 

magnetic field can be created. The magnet and coil arrangement are as shown in Figure 3.38. 

 

Figure 3.38: Magnet and coil 

The induced voltage inside the coil can be written as,  

𝑉𝑉 = −
𝑁𝑁𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

  (3.29) 

Here, the symbols 𝑉𝑉 and Φ represent the induced voltage (V) and the magnetic flux, respectively. 

The coil turn number is denoted by 𝑁𝑁 and the time is represented by 𝑖𝑖. If the wire length is 𝑙𝑙 to 

complete the circuit through the magnetic flux density, then the force of the conductor can be stated 

as, 

𝐹𝐹 = 𝐵𝐵𝐼𝐼𝑙𝑙       (3.30) 

Work done because of the force if the magnet moves a distance ∆𝑆𝑆 can then be written as, 
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𝑊𝑊 = 𝐹𝐹∆𝑆𝑆    (3.31) 

The charge transferred along the coil in this time can be expressed as,  

𝑊𝑊 = 𝐵𝐵𝐼𝐼𝑙𝑙∆𝑆𝑆 (3.32) 

𝑄𝑄 = 𝐼𝐼∆𝑖𝑖       (3.33) 

Therefore, the induced voltage or emf in the coil caused by the moving magnet can be written as, 

𝑉𝑉 =
𝑊𝑊
𝑄𝑄

=
𝐵𝐵𝐼𝐼𝑙𝑙∆𝑆𝑆
𝐼𝐼∆𝑖𝑖

=
𝐵𝐵𝑙𝑙∆𝑆𝑆
∆𝑖𝑖

 (3.34) 

𝑉𝑉 = 𝐵𝐵𝑙𝑙𝑣𝑣   (3.35) 

where 𝑣𝑣 is the velocity of the magnet. Equation 3.35 shows that the maximum power can be generated 

from an electromagnetic system by increasing the magnetic flux density, velocity of the magnet and 

total length of the coil. Proper coil selection is also an important factor for the electromagnetic system 

design because the diameter of the tube and the number of coil turns are used to calculate the total 

length of the coil. The coil terminals can be connected to load resistance, 𝑅𝑅𝐿𝐿𝑏𝑏𝑡𝑡𝐿𝐿, to allow the current 

to flow in the coil and in this way, the power can be extracted from the linear generator. The 

interaction between the magnetic field generated by the induced current and field increase results in 

a force that opposes the motion. The electrical energy was generated from mechanical energy by 

acting against the electromagnetic force, 𝐹𝐹𝑒𝑒𝑚𝑚. The electromagnetic force, 𝐹𝐹𝑒𝑒𝑚𝑚, is related by the current 

and velocity as well as the electromagnetic damping, 𝛽𝛽𝑒𝑒, and the velocity. The relationship between 

electromagnetic force and electromagnetic damping can be stated as,  

𝐹𝐹𝑒𝑒𝑚𝑚 = 𝛽𝛽𝑒𝑒
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

      (3.36) 

Electromagnetic damping is the mechanical energy that transfers into electrical energy, and it is acting 

against the electromagnetic force. To obtain the maximum electrical power, the maximization of the 

electrical damping is an essential objective during a linear PM generator design. To maximise the 

electromagnetic damping, the study of design parameters is very important. The instantaneous power 

is related to the electromagnetic force and velocity which can be expressed as, 
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𝑃𝑃𝑒𝑒 = 𝐹𝐹𝑒𝑒𝑚𝑚(𝑖𝑖)
𝑑𝑑𝑦𝑦(𝑖𝑖)
𝑑𝑑𝑖𝑖

      (3.37) 

This instantaneous power is decreased in the coil and load impedance. Equating the power decrease 

in the coil and load to that found from the electromagnetic force can be expressed as,  

𝐹𝐹𝑒𝑒𝑚𝑚
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

=
𝑉𝑉2

𝑅𝑅𝐿𝐿𝑏𝑏𝑡𝑡𝐿𝐿 + 𝑅𝑅𝑖𝑖 + 𝑗𝑗𝜔𝜔𝐿𝐿
     

(3.38) 

Here the load and coil resistances are represented by 𝑅𝑅𝐿𝐿𝑏𝑏𝑡𝑡𝐿𝐿 and 𝑅𝑅𝑖𝑖, respectively, and the coil 

inductance is denoted by 𝐿𝐿. Moreover, equation 3.38 can be expressed in terms of electromagnetic 

damping, flux linkage gradient and velocity as, 

𝛽𝛽𝑒𝑒 =
1

𝑅𝑅𝐿𝐿𝑏𝑏𝑡𝑡𝐿𝐿 + 𝑅𝑅𝑖𝑖 + 𝑗𝑗𝜔𝜔𝐿𝐿
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

�
2

     
(3.39) 

According to this equation, the maximum electromagnetic damping can be achieved by maximising 

the flux linkage gradient and minimising the coil impedance. The actual magnet, arrangement of the 

magnets, number of turns for the coil and area are very important to determine the flux linkage 

gradient. The coil impedance is dependent on the coil resistance. Moreover, the coil resistance’s 

magnitude is dependant on the number of turns and technology of the coil such as wire winding. 

Moreover, the inductance, L, of the coil can be calculated as, 

𝐿𝐿 = 𝜌𝜌𝜇𝜇0𝜇𝜇𝑟𝑟 �
𝑁𝑁2𝐷𝐷02

4ℎ
�     

(3.40) 

Here the permeability of the coil is 𝜇𝜇𝑟𝑟. The unit of the inductance is Henry’s (H). Therefore, the 

characteristics of the coil design are very important in the electromagnetic theory as discussed in the 

following section. Consider a mass-spring system as shown in Figure 3.39 where an external force is 

applied to the magnet. The mass of the magnet (oscillator) is M which is suspended by spring k and 

the relative displacement of the magnet is y and the relative velocity and acceleration of the magnet 

are �̇�𝑦 and �̈�𝑦, respectively. The magnetic flux density of the magnet in the radial direction is Bx and 

the total length of the coil is l. 𝛼𝛼(𝛼𝛼 = 𝑁𝑁𝐵𝐵𝑙𝑙) is the electromagnetic coupling coefficient and I is the 

current. The dynamic equation of the motion of the system will be written as,  
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𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+ 𝑘𝑘𝑦𝑦 + 𝛼𝛼𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(3.41) 

𝑅𝑅𝑖𝑖𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝛼𝛼
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

         (3.42) 

 

Figure 3.39: Simple energy harvester model based on linear oscillator system 

Consider a nonlinear system where the middle magnet can move, and the top and bottom magnets are 

fixed as displayed in Figure 3.40. When the external force is applied to the middle magnet, the 

movement up and down of the middle magnet creates an elastic restoring force of the magnetic spring. 

The mass of the magnet is 𝑀𝑀,𝑘𝑘1 is the linear spring constant and 𝑘𝑘3 is the nonlinear spring constant 

of the system. The relative displacement of the middle magnet is 𝑦𝑦. The relative velocity and 

acceleration of the middle magnet are �̇�𝑦 and �̈�𝑦, respectively. The dynamic equation of the motion of 

the system can be stated as,  

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+ 𝑘𝑘1𝑦𝑦 + 𝑘𝑘3𝑦𝑦3 + 𝛼𝛼𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(3.43) 

𝑅𝑅𝑖𝑖𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝛼𝛼
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

   (3.44) 

In equations 3.42 and 3.44 the symbols L and 𝑅𝑅𝑖𝑖  represent the inductance (H) and internal resistance 

(Ω) of the coil, respectively. In equation 3.41 and 3.43, 𝛽𝛽 is the total damping coefficient of the system 

which is the sum (𝛽𝛽 = 𝛽𝛽𝑚𝑚 + 𝛽𝛽𝑒𝑒) of the mechanical (𝛽𝛽𝑚𝑚) and electrical (𝛽𝛽𝑒𝑒) coefficient.  

M 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝛽𝛽 𝑘𝑘 

Coupled 
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Figure 3.40: Simple energy harvester model based on nonlinear oscillator system 

The electrical damping coefficient can be written as, 

𝛽𝛽𝑒𝑒 =
𝛼𝛼2

𝑅𝑅𝑖𝑖𝑔𝑔
        

(3.45) 

If an external circuit with the then the resistance of the circuit 𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝐿𝐿 is added with the internal 

resistance, the equation can be written as,  

𝛽𝛽𝑒𝑒 =
𝛼𝛼2

𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝐿𝐿 + 𝑅𝑅𝑖𝑖𝑔𝑔
     

(3.46) 

The generated electric power and loss from the system can be expressed as, 

𝑃𝑃 = 𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝐿𝐿𝐼𝐼2   (3.47) 

𝑃𝑃𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼2    (3.48) 

Fixed magnet (Top) 

Moving magnet 
(Middle) 

Fixed magnet 
(Underneath) 

𝐹𝐹𝑟𝑟 𝐹𝐹𝛽𝛽 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

Coupled 

𝐹𝐹𝑒𝑒 
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The power factor of the electric circuit can be written as,  

𝑃𝑃𝑓𝑓 =
1 + 𝑅𝑅𝑟𝑟

�𝐿𝐿𝑟𝑟2 + (1 + 𝑅𝑅𝑟𝑟)2
      (3.49) 

where 𝑅𝑅𝑟𝑟 = 𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝐿𝐿 𝑅𝑅𝑖𝑖⁄  is the resistance ratio and 𝐿𝐿𝑟𝑟 = 𝜔𝜔𝐿𝐿 𝑅𝑅𝑖𝑖⁄  is the impedance ratio.      

3.8 Conclusion 

In this chapter, the characteristics of the permanent magnet along with the governing analytical 

equations have been discussed and analysed by ANSYS Maxwell. The changes of radial magnetic 

flux density (Bx) outside the magnet have been analysed analytically and theoretically. The magnetic 

force and magnetic spring have been analysed as well. Moreover, the relevant electromagnetic theory 

has been discussed along with the governing equations. The most important conclusions, specifically 

related to this study, were that the theoretical and numerical studies of the magnet characterisation 

and its application in an electromagnetic system can be used to model the resulting energy harvesting 

system. 



The contents of this chapter have been published in the IEEE Transactions on Magnetics, 2022. DOI: 10.1109/TMAG.2022.3180812 
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Chapter 4  
Dynamic Behaviours of Magnetic Spring-based Nonlinear Oscillator Systems 

The correct modelling of the magnetic flux density is a crucial part of predicting the magnetic 

restoring force as well as nonlinear responses of the magnetic spring. Analytical modelling of 

magnetic flux is superior to numerical modelling in terms of accuracy and processing cost, according 

to certain studies (Dos Santos et al., 2016). Analytical methods, on the other hand, can only deal with 

very simple geometries. In addition, the gravitational force affects the equilibrium position of the 

magnetic spring-based system due to its vertical arrangement. The magnetic restoring force as a 

function of the floating magnet's position has been estimated by determining the polynomial 

coefficients of a power series by curve fitting. Correct measurement of the magnetic restoring force 

is very important to identify the linear and nonlinear coefficients of the system. The numerical model, 

analytical model and experimental model have been used to measure the magnetic restoring force. 

Therefore, this chapter aims to investigate the magnetic properties and coefficients of the magnetic 

spring-based system with validation, including how the gravitational effect changes the equilibrium 

position and analysis of the dynamics of the magnetic spring. 

4.1 Design Configuration of the Nonlinear Oscillator System 

The basic architecture of the nonlinear oscillator comprises of three permanent ring magnets (axially 

magnetised through the height (13mm)) and a circular aluminium shaft. A plastic bush is used inside 

each magnet ring, between the magnet and the shaft, to keep the magnet straight and prevent flipping. 

The fixed magnets are attached to the end of the shaft, and their polarity is set in such a way that the 

repulsive force is created between the levitating magnet and the fixed magnets. The magnetic poles 

are oriented (SN-NS-SN) to repel each other. The height and width of the test rig (single degree of 

freedom system (SDFS)) are 300 mm and the height and diameter of the shaft are 550 mm and 12 

mm, respectively. For the test rig design as presented in Figure 4.1, initially when the middle magnet 

is added to the setup prior to the addition of the top magnet, the distance between middle and bottom 

magnets is 104 mm. When the top magnet is added, the distance between the middle and bottom 

magnet is reduced to 79 mm due to the gravitational force, while the top magnet and the floating 

middle magnet are separated by 104 mm.
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Figure 4.1: Test rig without winding coil 

The floating magnet is connected to the servo motor pulley by a fishing line to create a sine wave. 

The displacement of the middle floating magnet is measured by the displacement sensor. At first, the 

magnetic properties and dynamics of the oscillator are investigated without a winding coil.  

4.2 Investigation of the Magnetic Properties 

Since the gravitational force affects the middle magnet by shifting it down from the centre of the top 

and bottom magnet, the distances between the 3 magnets in the test rig design change to 79 mm 

between the middle and bottom magnets and 104 mm between the middle and top magnets.  The 

magnetic flux density on the magnet surface and the magnetisation direction are displayed in Figure 

4.2. Figure 4.3 depicts the magnitude of the magnetic flux density. The distributed magnetic field 

passing through the air gap is simulated, as presented in Figure 4.4. The magnetic flux density is 

calculated for the system in the radial direction through the line d, which is 37mm from the magnet 

stack and chosen because it could be the coil location. To select the proper position of the winding 

coil the measurement of the magnetic flux density in the air gap must be considered. Due to symmetry, 

moving from 𝑑𝑑 = 0 to either 𝑑𝑑 = 175𝑚𝑚𝑚𝑚 𝑐𝑐𝑟𝑟 − 175𝑚𝑚𝑚𝑚 results in the equivalent movement of the 

vertical arrows, as seen in Figure 4.4. The measured magnetic flux density in the axial and radial 

directions are displayed in Figure 4.5.   

Shaft 
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magnet 
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magnet 
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magnet 
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  (a)               (b) 

Figure 4.2: (a) Magnetic flux density on the magnet surface and (b) Magnetisation direction 

 

Figure 4.3: Magnetic flux density (Mag_B) when 3 magnets are facing same poles (SN-NS-SN)  
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Figure 4.4: Magnetic flux density (B_Vector) in XZ plane 

 

(a) 

 

(b) 

Figure 4.5: Magnetic flux density (a) axial direction, (b) radial direction 
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(a) 

 

(b) 

Figure 4.6: Magnetic flux density B_Vector (a) axial direction and (b) radial direction 

If an external force is applied or the middle magnet is moved up and down vertically then the change 

of the average magnetic flux density is much higher than if they were kept stationary, as seen in 

Figure 4.6(a) and Figure 4.6(b). The repelling force between the impinging magnets is equivalent to 
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the effective magnetic spring's restoring force, and can cause the floating magnet to bounce. The 

vibration of the magnet creates the change of magnetic flux density which can be important for 

maximising the harvested power.  

4.3 Magnetic Restoring Force Analysis of the Magnetic Spring-based Oscillator System 

The magnetic force increases when the middle/floating magnet moves from the equilibrium position 

towards the top or bottom magnets. Different positions of the floating magnet create different 

magnitudes of the magnetic force and therefore it can be concluded that changes in the floating 

magnet position will change the stiffness and resonance of the system. The simulated magnetic force 

analysis of the system has been validated with the theoretical analysis. While analysing the linear and 

nonlinear stiffness of the system, it has been seen that their values change with the changing of the 

excitation/displacement of the floating magnet. When the shaft of the nonlinear oscillator is oriented 

vertically, gravity must be included in the force balance calculation, but it can be omitted in a 

horizontal system (Dallago et al., 2010). From the literature, it has been seen that many researchers 

did not consider the gravitational effect although their proposed systems were vertical (Mann & Sims, 

2009). All these researchers assumed that the floating magnet's distances from the top and bottom 

magnets are the same. In reality, it is difficult and almost impossible to keep the floating magnet at 

the same distance from the two fixed end magnets (same size and shape as the floating magnet) with 

the vertical system. For the proposed nonlinear oscillator system, all magnets are placed with the 

vertical shaft which can be seen in Figure 4.1. The gravitational force shifted the equilibrium position 

from the expected equilibrium point and the distance between the middle and bottom magnets is 79 

mm and the middle and top magnets is 104 mm, changing the behaviour of the magnetic restoring 

force curve. For the test rig setup equation 3.22 can be expressed by the Taylor series as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

2𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))3

+
1

�𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖)�
3�𝑦𝑦

+
3𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))4

−
1

�𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖)�
4� 𝑦𝑦

2

+
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡 − 𝑦𝑦(𝑖𝑖))5

+
1

(𝑟𝑟𝑏𝑏 + 𝑦𝑦(𝑖𝑖))5
� 𝑦𝑦3 

(4.1) 

If consider 𝑦𝑦(𝑖𝑖) = 0 at the equilibrium position, the equation can be written as,  
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𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

2𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)3

+
1

(𝑟𝑟𝑏𝑏)3� 𝑦𝑦 +
3𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)4

−
1

(𝑟𝑟𝑏𝑏)4� 𝑦𝑦
2

+
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)5

+
1

(𝑟𝑟𝑏𝑏)5
� 𝑦𝑦3 

    (4.2) 

𝑘𝑘1 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

2𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)3

+
1

(𝑟𝑟𝑏𝑏)3�   (4.3a) 

𝑘𝑘2 =
3𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

4𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)4

−
1

(𝑟𝑟𝑏𝑏)4�   (4.3b) 

𝑘𝑘3 =
𝜇𝜇0𝑄𝑄𝑚𝑚𝑄𝑄𝑡𝑡=𝑏𝑏

𝜌𝜌
�

1
(𝑟𝑟𝑡𝑡)5

+
1

(𝑟𝑟𝑏𝑏)5
�   (4.3c) 

For the test rig setup, equation 4.2 can be expressed by the Taylor series as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3  (4.4) 

where 𝑘𝑘1 is the linear spring constant, and 𝑘𝑘2 and 𝑘𝑘3 are the nonlinear coefficients of the system. The 

magnetic restoring forces are calculated theoretically, numerically using ANSYS MAXWELL, and 

experimentally as presented in Figures 4.7,  4.8 and  4.9, respectively.  

 

Figure 4.7: Magnetic restoring force (Theoretical analysis) 
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Figure 4.8: Magnetic restoring force (Numerical simulation) 

 

Figure 4.9: Magnetic restoring force (Experimental measurement) 

Figure 4.10 shows the validation of the experimental, theoretical and numerical model. To calculate 

the magnetic restoring force experimentally, a fishing line was added with the middle magnet holder 

(plastic bush) to tie a hanger. Known masses were added with the hanger and the displacement of the 

middle magnet from the equilibrium point was measured. This step was repeated many times until a 

50mm displacement of the middle magnet was achieved and the known masses on the hanger were 

incrementally increased with each repetition of these steps. From Figure 4.10 it can be seen that the 

magnetic restoring force is higher between the bottom and middle magnets than the restoring force 

between the top to middle magnets due to the gravitation effect. The experimentally measured 

magnetic restoring forces are almost similar to the numerical and theoretical measured values. 
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Figure 4.10: Comparison of magnetic restoring force 

The literature shows that not a single researcher has validated the theoretical and numerical model 

with the experimental model. Instead, researchers used either the numerical model (Saha et al., 2008) 

(Dallago et al., 2010), analytical model (Foisal et al., 2012; Liu et al., 2014) or experimental model 

(Kecik et al., 2017; Mann & Sims, 2009; Masoumi & Wang, 2016; W. Wang et al., 2017). Based on 

the literature study, this novel validation graph (Figure 4.10) will bring more understanding of the 

magnetic spring-based oscillator system.  

4.4 Coefficient Analysis of the Magnetic Restoring Force 

Although some research articles have been published in the literature to understand the dynamics of 

the magnetic levitation based nonlinear oscillator system, the dynamics of the system are still not 

clear. Some researchers considered the system to be linear for small excitations of the floating magnet 

and used the linear equation. Other researchers considered the system to be nonlinear and used both 

the cubic (3rd order) and quintic (5th order) polynomial curve fit to measure the magnetic restoring 

force between the floating magnet and the two fixed end magnets. The aim of this section is to 

determine the coefficient of the magnetic restoring force of the proposed nonlinear oscillator. 

Magnetic spring restoring forces can be calibrated for the test rig setup from the calculation of the 
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restoring force when the separation distance of the middle magnet (𝑟𝑟𝑡𝑡, 𝑟𝑟𝑏𝑏) from the top and bottom 

magnet are not the same. Equation 4.4 can be expressed by higher terms in the Taylor series as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘4𝑦𝑦4 + 𝑘𝑘5𝑦𝑦5     (4.5) 

where 𝑘𝑘1 is the linear spring constant and 𝑘𝑘2,𝑘𝑘3,𝑘𝑘4 and 𝑘𝑘5 are the nonlinear coefficients of the 

system. If 𝑟𝑟𝑡𝑡 and 𝑟𝑟𝑏𝑏 are the same, then all nonlinear coefficients with even powers in equation 4.2 and 

4.3 will be zero. The linear and nonlinear stiffness can be calculated from the magnetic restoring force 

curves are shown in Figure 4.7, Figure 4.8 and Figure 4.9. The theoretical, numerical and 

experimental measurements for the proposed test rig’s restoring forces are used to measure and 

compare the linear and nonlinear stiffness of the oscillator system. The values of 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3,𝑘𝑘4 and 

𝑘𝑘5 can be measured from the least-squares curve fitting of the graph. According to the literature in 

most publications, a cubic polynomial was utilised to describe the magnetic restoring force (Saravia 

et al., 2017). In certain cases when the displacements of the floating magnet are small (near the 

equilibrium point) the cubic (3rd order) polynomial may not be a good choice since it could lead to 

instabilities. This problem can be improved if the 3rd order polynomial fit is completed without data 

collection when the magnet is near to the equilibrium position. However, this prediction for large 

displacements of the floating magnet is then significantly worsened. Moreover, the polynomial of 

fifth or higher order can be chosen to represent the magnetic restoring force. The polynomial of cubic 

and fifth-order are selected to represent the magnetic restoring force as presented in Figure 4.11 

(magnetic restoring force vs displacement of the middle magnet). 
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(b) 

 

(c) 

Figure 4.11: Magnetic restoring force for 50mm excitation (3rd order and 5th order polynomial 

model) (a) Theoretical analysis, (b) Numerical simulation and (c) Experimental measurement 

Figure 4.11 shows that the 5th order (quintic) polynomial fits the data better than the 3rd order (cubic) 

polynomial. The magnetic restoring force graph for different excitation ranges have been presented 

in Appendix A. It is worth noting that the proposed system's coefficients are greatly dependent on the 

distance between permanent magnets (Kecik et al., 2017). As a result, a change in this distance results 

in a significant change in this characteristic. B.P. Mann and N.D. Sims concluded two important 

statements: (1) changes of the position of the floating magnet, will change the linear stiffness and (2) 

the nonlinear term is independent of the position of the floating magnet (Mann & Sims, 2009). By 
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changing the position of the floating magnet, the statements concluded by Mann and Sims are 

investigated as presented in the following Table 4.1.  

Table 4.1: Coefficients of the magnetic spring-based oscillator system 

Excitation 
(mm) 

Polynomial model Coefficients 
𝑘𝑘1 

(N/m) 
𝑘𝑘2 

(N/m2) 
𝑘𝑘3 

(N/m3) 
𝑘𝑘4 

(N/m4) 
𝑘𝑘5 

(N/m5) 
-5 to 5 3rd 

order 
Theoretical 309.79 2745.5 87022 --- --- 

Numerical 306.09 5784 -87522   

Experimental 307.35 819.63 1 × 106 --- --- 
5th order Theoretical 309.8 2719.6 86479 1 × 106 2 × 107 

Numerical 317.16 8557.1 −2 × 106 −1 × 108 7 × 1010 

Experimental 309.69 -
2590.6 

874377 1 × 108 1 × 1010 

-10 to 10 3rd 
order 

Theoretical 309.75 2805.8 88656 --- --- 
Numerical 305.1 2816.2 133906 --- --- 
Experimental 304.28 6447.5 814030 --- --- 

5th order Theoretical 309.8 2725.9 86451 922478 2 × 107 
Numerical 295.11 2330.8 603144 5 × 106 −4 × 109 
Experimental 308.93 2512 592100 4 × 107 2 × 109 

-15 to 15 3rd 
order 

Theoretical 309.55 2907.6 91483 --- --- 

Numerical 306.22 2907.2 104197 --- --- 

Experimental 308.68 2676.3 91634 --- --- 
5th order Theoretical 309.8 2722.2 86325 954584 2 × 107 

Numerical 307.1 2998.2 87525 -414164 6 × 107 

Experimental 311.02 510.13 64803 9 × 106 3 × 107 
-20 to 20 3rd 

order 
Theoretical 308.98 3059.2 95681 --- --- 

Numerical 306.53 2964.2 103000 --- --- 

Experimental 305.95 3484.6 118276 --- --- 
5th order Theoretical 309.82 2709.7 85962 1 × 106 2 × 107 

Numerical 305.5 2868.1 114074 256725 −2 × 107 

Experimental 311.29 186.47 74024 9 × 106 9 × 107 
-25 to 25 3rd 

order 
Theoretical 307.68 3271.8 101542 --- --- 
Numerical 308.05 3118.6 96128 --- --- 
Experimental 307.13 3629 119073 --- --- 

5th order Theoretical 309.89 2680.1 85118 1 × 106 2 × 107 
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Numerical 305.93 2655.6 110903 816684 −2 × 107 

Experimental 311.99 2601.6 69187 2 × 106 7 × 107 
-30 to 30 3rd 

order 
Theoretical 305.06 3562.8 109513 --- --- 
Numerical 307.33 3302.2 97937   
Experimental 292.08 4254.8 150648 --- --- 

5th order Theoretical 310.12 2618.9 83374 1 × 106 3 × 107 
Numerical 307.92 2718.9 95062 711304 3 × 106 
Experimental 312.11 2264.3 66356 2 × 106 7 × 107 

-35 to 35 3rd 
order 

Theoretical 300.12 3959.4 120294 --- --- 
Numerical 303.11 3599.8 106771 --- --- 
Experimental 302.95 4204.3 128199 --- --- 

5th order Theoretical 310.73 2500.4 79999 1 × 106 3 × 107 
Numerical 310.56 2587.4 80116 890525 2 × 107 
Experimental 311.04 2965.8 106608 1 × 106 1 × 107 

-40 to 40 3rd 
order 

Theoretical 291.16 4504.8 134997 --- --- 
Numerical 298.04 3909.8 114646 --- --- 
Experimental 293.98 4671.7 142945 --- --- 

5th order Theoretical 312.23 2278.8 73676 2 × 106 3 × 107 

Numerical 310.87 2489.4 78857 988332 2 × 107 

Experimental 310.04 3102.3 106234 1 × 106 2 × 107 
-45 to 45 3rd 

order 
Theoretical 275.14 5271.7 155475 --- --- 
Numerical 287.52 4455 127539 --- --- 
Experimental 283.72 5205.1 152028 --- --- 

5th order Theoretical 315.83 1867.7 61921 2 × 106 4 × 107 

Numerical 313.27 2211.8 71328 1 × 106 2 × 107 

Experimental 314.25 2916.7 94869 1 × 106 2 × 107 
-50 to 50 3rd 

order 
Theoretical 246.32 6387.9 184996 --- --- 
Numerical 272.4 5042.9 142285 --- --- 
Experimental 269.31 5680.4 163159 --- --- 

5th order Theoretical 324.29 1094.9 39734 2 × 106 5 × 107 
Numerical 316.98 1857.4 62045 1 × 106 3 × 107 
Experimental 309.43 2925.5 107874 1 × 106 2 × 107 

From Table 4.1 it can be seen that a 3rd order polynomial model is suitable for small excitation ranges. 

For small excitation ranges such as 5 mm, 10 mm and 15 mm the linear stiffnesses for both 3rd and 

5th order polynomial models are almost similar. The 5th order polynomial model is more suitable for 

high excitation ranges as seen in Table 4.1. Moreover, the linear stiffness changes with changing the 



 

120 

 

excitation ranges. Moreover, the measured coefficients of the proposed nonlinear oscillator for 3rd 

and 5th order polynomials curve fitting are presented in Table 4.1. Table 4.1 shows that the 

coefficients of the nonlinear oscillator change as the spacing of the floating magnet changes. The 

better polynomial fit is obtained by choosing the polynomial with the least Root Mean Squared Error 

(RMSE) values, as presented in Table 4.2. The linear stiffnesses and natural frequencies of the 

theoretical, numerical and experimental measurements have been presented in Figure 4.12 and Figure 

4.13, respectively for 3rd order polynomial model curve fitting and 5th order polynomial model curve 

fitting.  

 

(a) 

 

(b) 

Figure 4.12: 3rd order polynomial curve fitting (a) linear stiffness and (b) natural frequency 
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(a) 

 

(b) 

Figure 4.13: 5th order polynomial curve fitting (a) linear stiffness and (b) natural frequency 

The theoretical linear stiffnesses and natural frequencies for different excitation ranges of the floating 

magnet are almost identical compared with numerical and experimental measurements which can be 

seen in Figure 4.12 and Figure 4.13, respectively. Moreover, for small excitation ranges as shown in 

Figure 4.12 and Figure 4.13, the measured natural frequencies for 3rd order polynomial curve fitting 

are almost similar with 5th order polynomial curve fitting for all theoretical, numerical and 

experimental measurements. The average measured natural frequencies for 3rd order and 5th order 

polynomial curve fittings are around 30.5 rad/s and 31.5 rad/s, respectively. The R-square values in 

Table 4.2 show that higher-order polynomial models have better results than the lower order 

polynomial modes, namely 5th order has a better fit than the 3rd order. Table 4.2 shows that the higher-

order polynomial model can provide a better match for high excitation and small excitation ranges 

based on the Root Mean Squared Error (RMSE) values. 
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Table 4.2: Goodness of fit  

Excitation 
(mm) 

Polynomial model R-square Adjusted R-
square 

SSE RMSE 

-5 to 5 3rd 
order 

Theoretical 1 1 2.001e-06 0.0001436 
Numerical 0.9997 0.9995 0.001818 0.02462 
Experimental 0.9999 0.9998 0.001131 0.01504 

5th 
order 

Theoretical 1 1 1.654e-06 0.0001319 
Numerical 0.9998 0.9988 0.001394 0.03734 
Experimental 0.9999 0.9998 0.0006922 0.01519 

-10 to 10 3rd 
order 

Theoretical 1 1 0.0001061 0.000734 
Numerical 0.9994 0.9992 0.02947 0.05429 
Experimental 0.9997 0.9994 0.01491 0.06106 

5th 
order 

Theoretical 1 1 1.674e-06 9.266e-05 
Numerical 0.9995 0.9992 0.02446 0.05529 
Experimental 0.9999 0.9997 0.003573 0.04227 

-15 to 15 3rd 
order 

Theoretical 1 1 0.004302 0.003806 
Numerical 0.9998 0.9998 0.03132 0.04908 
Experimental 0.9989 0.9986 0.1468 0.1106 

5th 
order 

Theoretical 1 1 2.41e-06 9.038e-05 
Numerical 0.9998 0.9997 0.03118 0.05324 
Experimental 0.9991 0.9986 0.1204 0.1097 

-20 to 20 3rd 
order 

Theoretical 1 1 0.06549 0.01284 
Numerical 0.9999 0.9999 0.03433 0.04494 
Experimental 0.9984 0.998 0.2826 0.1681 

5th 
order 

Theoretical 1 1 4.348e-05 0.0003318 
Numerical 0.9999 0.9999 0.03381 0.04747 
Experimental 0.9995 0.9992 0.09092 0.1066 

-25 to 25 3rd 
order 

Theoretical 1 1 0.5862 0.03434 
Numerical 0.9999 0.9999 0.05966 0.0533 
Experimental 0.9992 0.9991 0.3384 0.1613 

5th 
order 

Theoretical 1 1 0.0009536 0.001388 
Numerical 0.9999 0.9999 0.03797 0.0447 
Experimental 0.9994 0.9992 0.2521 0.1514 

-30 to 30 3rd 
order 

Theoretical 0.9995 0.9995 3.822 0.08001 
Numerical 0.9999 0.9999 0.1294 0.06923 
Experimental 0.9986 0.9983 1.131 0.2746 

5th 
order 

Theoretical 1 1 0.01333 0.004733 
Numerical 1 1 0.05391 0.04644 
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Experimental 0.9995 0.9993 0.4149 0.1787 
-35 to 35 3rd 

order 
Theoretical 0.9988 0.9986 20.43 0.1712 
Numerical 0.9998 0.9997 0.6345 0.1387 
Experimental 0.9986 0.9983 1.422 0.3079 

5th 
order 

Theoretical 1 1 0.1376 0.01407 
Numerical 1 1 0.07357 0.04871 
Experimental 0.9991 0.9987 0.9593 0.2717 

-40 to 40 3rd 
order 

Theoretical 0.9988 0.9988 96.61 0.3482 
Numerical 0.9995 0.9994 2.197 0.2437 
Experimental 0.9989 0.9987 3.176 0.3985 

5th 
order 

Theoretical 1 1 1.169 0.03835 
Numerical 1 1 0.08481 0.04923 
Experimental 0.9994 0.9993 1.614 0.2994 

-45 to 45 3rd 
order 

Theoretical 0.9971 0.9971 426.9 0.6898 
Numerical 0.9987 0.9986 10.29 0.4893 
Experimental 0.9985 0.9983 8.292 0.6004 

5th 
order 

Theoretical 0.9999 0.9999 8.834 0.09935 
Numerical 1 1 0.2596 0.07958 
Experimental 0.9997 0.9996 1.814 0.2939 

-50 to 50 3rd 
order 

Theoretical 0.9931 0.9931 1848 1.361 
Numerical 0.9971 0.9969 35.14 0.8646 
Experimental 0.9981 0.9979 18.52 0.844 

5th 
order 

Theoretical 0.9998 0.9998 63.22 0.2521 
Numerical 0.9999 0.9999 0.9464 0.145 
Experimental 0.9997 0.9997 2.479 0.3214 

Comparing the measured RMSE values for all curve fitting analyses for different ranges of position 

of the floating magnet, the 5th order polynomial model gave the lowest RMSE values. However, for 

the smaller excitation ranges such as 5 mm and 10 mm, the 3rd order polynomial model produced the 

lowest RMSE values. Therefore, it can be said that in general for small excitation ranges, the lower 

order polynomial model is more suitable but for the long excitation range the higher-order polynomial 

model would be more suitable.  

4.5 Design Analysis for Various Positions of the Top Fixed Magnet 

To select the best model of the oscillator which can harvest maximum energy in low-frequency 

ranges, the design of the magnetic spring based nonlinear oscillator system has been analysed by 

changing the position of the top fixed magnet. The model has been discussed in the earlier section 
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where the centre magnet is located between the two fixed magnets and the distance between middle 

and bottom magnets is 79 mm and middle and top magnets is 104 mm (equilibrium position under 

gravitational effects for these particular magnets as presented in Table 3.1). In the previously 

discussed model, the bottom magnet is attached and locked at first in the bottom end of the vertical 

shaft and later the second magnet is put (same poles facing each other) above the bottom magnet 

along the vertical shaft. The 2nd magnet settled at 104 mm away from the bottom magnet. After that, 

the 3rd magnet (top magnet) is placed above the 2nd magnet (middle magnet) with the same poles 

facing each other in the vertical shaft as shown in Figure 4.1. The top magnet is settled 104 mm away 

from the middle magnet but the distance between middle and bottom magnets is reduced to 79 mm 

due to the gravitational effects. The top magnet is locked in position along the shaft, and is considered 

as the equilibrium position of the magnet arrangement.  

 

Figure 4.14: Magnetic spring based nonlinear oscillator system 

The total length of the system for this equilibrium position is 222 mm. Figure 4.14 presents the 

equilibrium position of the top fixed magnet. Figure 4.14 shows the magnetic spring based nonlinear 

oscillator system. In Figure 4.14, the distance between the middle magnet and bottom magnet is 
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denoted by 𝑟𝑟𝑏𝑏 and the distance between the middle magnet and top magnet is symbolised by 𝑟𝑟𝑡𝑡. The 

total length of the oscillator is 𝐿𝐿𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡. The equilibrium position of the top magnet is considered as the 

0 position. When the top magnet moves toward the middle magnet from the equilibrium position, the 

travelling distance is considered as negative (-) distance. If the top magnet moved by 5 mm toward 

the middle magnet, the travelling distance is considered -5 mm, as shown in Figure 4.14.  

Table 4.3: Different position of the top fixed magnet 

Changing 
position of 
the top fixed 
magnet, mm 

 𝑟𝑟𝑏𝑏 
(mm) 

 𝑟𝑟𝑡𝑡 
(mm) 

 𝐿𝐿𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡 
(mm) 

Floating magnet moved 
toward bottom magnet 
due to the gravitational 
effects  
(mm) 

Damping 
ratio 

Natural 
frequency 
(rad/s) 

Experimental Analytical 
-10 76 97 212 10.5 10.5 0.0463 34.42 
-5 77.5 100.5 217 11.5 11.5 0.04 33.10 
0 79 104 222 13 12.5 0.031 32.35 
10 82 111 232 14.5 15 0.0251 29.73 
20 85.5 117.5 242 16 16 0.022 27.76 
30 87.5 125.5 252 19 19 0.0183 26.09 
40 89.5 133.5 262 22 22 0.0161 24.07 
50 91 142 272 25.5 25.5 0.0153 23.67 

On the other hand, when the top magnet moved away from the equilibrium position, the travelling 

distance is considered as positive (+) distance. The distance is 10 mm when the top magnet moved 

10 mm away from the equilibrium position. Table 4.3 presents different resultant distances between 

middle and bottom magnets and middle and top magnets due to the different positions of the top fixed 

magnet. The position of the floating magnet changed as expected due to gravitational force effects 

when the top magnet moved or varies the total length of the oscillator as seen in Figure 4.15. Figure 

4.15 presents the analytical study of the gravitational force effects for different positions of the top 

fixed magnet. During the equilibrium position of the oscillator, the floating magnet moved by 13 mm 

toward the bottom magnet from the expected position (equilibrium position for floating magnet) due 

to gravitational force effects. This length, due to the gravitational force effects, decreased when the 

top magnet shifted toward the middle magnet, but it increased when the top magnet moved away from 

its equilibrium position, as seen in Table 4.3.  
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Figure 4.15: Gravitational force effects on equilibrium position 

Moreover, with changing the position of the top fixed magnet the distance between the middle and 

bottom magnet changes as well. From Table 4.3, the distance between middle and bottom magnets 

and the distance between middle and top magnets changed with the changing position of the top fixed 

magnet. The distance between the middle and bottom magnets changes very slightly compared to the 

changing distance between the top and middle magnets. Moreover, the damping ratio and natural 

frequency of the oscillator changed with changing the fixed position of the top magnet. The damping 

ratio and natural frequency have been measured experimentally for different positions of the top fixed 

magnet. Figure 4.16 presents the change of damping ratio and natural frequency of the oscillator for 

different top fixed magnet positions.  
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Figure 4.16: Change of damping ratio and natural frequency for different positions of the top 

magnet. 

It is clear from Figure 4.16 that when the top fixed magnet moved toward the middle magnet from 

the equilibrium position, the damping ratio and natural frequency increased. On the other hand, the 

damping ratio and the natural frequency decreased when the top fixed magnet moved away from the 

equilibrium position. For example, when the top magnet was moved by 5 mm toward the middle 

magnet from its equilibrium position, the oscillator’s total length was reduced to 217 mm. The new 

distance between the middle magnet and bottom magnet is 77.5 mm and the distance between the 

middle magnet and top magnet is 100.5 mm. It is expected that the damping ratio and natural 

frequency will be increased if the total length of the oscillator is reduced. The measured damping 

ratio and natural frequency are 0.040 and 33.10 rad/s, respectively, which are higher than the 

equilibrium position’s damping ratio and natural frequency (0.031 and 32.35 rad/s, respectively). If 

the top fixed magnet is shifted more towards the middle magnet by 10 mm, then the middle magnet 

also moved towards the bottom magnet. The total length of the oscillator is then reduced to 212 mm 

and the damping ratio and frequency increased to 0.0463 and 34.42 rad/s, respectively, as shown in 

Figure 4.16.  

On the other hand, if the top magnet moved 10 mm away from its equilibrium position, the oscillator 

total length increased to 232 mm. The new distance between the middle magnet and bottom magnet 

is 82 mm and the distance between the middle magnet and top magnet is 111 mm. The damping ratio 

and natural frequency are reduced by increasing the total length of the oscillator. The measured 

natural frequency and damping ratio are 29.73 rad/s and 0.0251 respectively, which are lower than 

the equilibrium position’s natural frequency and damping ratio (32.35 rad/s and 0.031, respectively). 
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The damping ratios and natural frequencies continuously decreased with the increase in the total 

length of the oscillator, which can be seen from Table 4.3.  

4.5.1 Magnetic restoring forces for different positions of the top magnet 

When the top magnet moved by 5 mm toward the middle magnet from its equilibrium position, the 

oscillator’s total length reduced to 217 mm. This resulted in the distance between the middle magnet 

and bottom magnet to be 77.5 mm and the distance between the middle magnet and top magnet to be 

100.5 mm. The magnetic restoring force for this new oscillator setup is measured experimentally, 

numerically and theoretically, respectively, as shown in Figure 4.17, Figure 4.18 and Figure 4.19, 

respectively.  

 

Figure 4.17: Magnetic restoring force when top magnet moved by 5 mm and fixed toward middle 

magnet from equilibrium position (Experimental measurement) 

 

Figure 4.18: Magnetic restoring force when top magnet moved by 5 mm and fixed toward middle 

magnet from equilibrium position (Numerical simulation) 
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Figure 4.19: Magnetic restoring force when top magnet moved by 5 mm and fixed toward middle 

magnet from equilibrium position (Theoretical analysis) 

 

Figure 4.20: Comparison of magnetic restoring (-5 mm) 

 

Figure 4.21: Comparison of magnetic restoring (10 mm) 
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Figure 4.22: Magnetic restoring force for different positions of the top fixed magnet (experimental 

measurement) 

Figure 4.20 shows the comparison of magnetic restoring forces which are calculated theoretically, 

numerically (ANSYS MAXWELL) and experimentally. Figure 4.20 shows the validation of the 

theoretical and numerical model with the experimental model. The experimentally measured 

magnetic restoring forces are similar to the numerical and theoretical measured values. From Figure 

4.20, it can be seen that the magnetic restoring force is greater than the equilibrium positions’ 

magnetic restoring force due to the top magnet move toward the middle magnet (reduced the 

oscillator’s total length) from the equilibrium position. The magnetic restoring force increases with 

reducing the total length of the oscillator which can be seen in Figure 4.22.  If the top magnet is then 

fixed at a distance of 10 mm away from its equilibrium position, the oscillator’s total length is 

increased to 232 mm. The new distance between the middle magnet and bottom magnet is 82 mm 

and the distance between the middle magnet and top magnet is 111 mm. The experimentally measured 

magnetic restoring has been validated with the theoretical and numerical model, as shown in Figure 

4.21. It can be said from Figure 4.22 that the magnetic restoring force increases when the top fixed 

magnet moves toward the middle magnet from the equilibrium position and decreases when the top 

magnet moves away from the equilibrium position (top magnet’s equilibrium position). The further 

away the top magnet goes from the equilibrium position, the less the magnetic restoring force 
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becomes. Hence, increasing the total length of the oscillator decreases the magnetic restoring force, 

as shown in Figure 4.22. 

4.5.2 Coefficients of the magnetic restoring force for various positions of the top magnet  

Both the cubic (3rd order) and quintic (5th order) polynomials curve fits have been used to measure 

the magnetic restoring force between the floating magnet and the two fixed end magnets for various 

positions of the top fixed magnet. The magnetic restoring force curve is shown in Figure 4.23 and 

from this curve, the linear and nonlinear stiffness have been calculated.  

 

Figure 4.23: Magnetic restoring force with polynomial models (-5 mm) 

The analytical measurement for the restoring force has been used to measure the linear and nonlinear 

stiffness of the system by changing the fixed position of the top magnet. The values of 𝑘𝑘1, 

𝑘𝑘2,𝑘𝑘3,𝑘𝑘4,𝑎𝑎𝑛𝑛𝑑𝑑 𝑘𝑘5 have been measured from the least-squares curve fitting of the above graph. Figure 

4.23 displays that the 5th order (quintic) polynomial fits the data better than the 3rd order (cubic) 

polynomial. For the 3rd order polynomial curve fit the linear stiffness is 250.89 N/m but for the 5th 

order polynomial curve, the linear stiffness is 343.66 N/m. For each change in the position of the top 

magnet, the floating magnet was moved 50 mm toward bottom magnet and 50 mm toward top magnet, 

and the linear and nonlinear coefficients for these excitation ranges are investigated. Moreover, Table 

4.4 presents the coefficients of the magnetic spring-based oscillator system for the different positions 

of the top fixed magnet. It can be seen from Table 4.4 that when the top fixed magnet shifted towards 

the middle magnet, the total length of the oscillator was reduced, and the coefficients of the magnetic 

restoring forces changed. The coefficients of the magnetic restoring forces also changed as well when 

the top fixed magnet moved away from the equilibrium position. 

x = 209888y3 + 6878.7y2 + 250.89y - 1.342
x = 6×10^7y5 + 3×10^6y4 + 37074y3 + 859.72y2 + 343.66y + 0.1657
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Table 4.4: Coefficients of the magnetic spring-based oscillator system for different position of the 

top fixed magnet (Theoretical analysis) 

Excitation (mm) Polynomial 
model 

Coefficients 
𝑘𝑘1 

(N/m) 
𝑘𝑘2 

(N/m2) 
𝑘𝑘3 

(N/m3) 
𝑘𝑘4 

(N/m4) 
𝑘𝑘5 

(N/m5) 
-10 mm 3rd order 259.87 7580.7 244955 --- --- 

5th order 373.58 560.68 33122 3 × 106 8 × 107 
-5 mm 3rd order 250.89 6878.7 209888 --- --- 

5th order 343.66 859.72 37074 3 × 106 6 × 107 
Equilibrium 
position (0 mm) 

3rd order 246.32 6387.9 184996 --- --- 
5th order 324.29 1094.9 39734 2 × 106 5 × 107 

10 mm 3rd order 221.7 5167 1.377 × 105 --- --- 
5th order 274.7 1298 3.903 × 104 1.802 × 106 3.546 × 107 

20 mm 3rd order 202.53 4313.3 106770 --- --- 
5th order 240.2 1375.9 36592 1 × 106 3 × 107 

30 mm 3rd order 183.56 3832.6 86119 --- --- 
5th order 212.08 1436 32993 1 × 106 2 × 107 

40 mm 3rd order 169 3504.6 72985 --- --- 
5th order 192.03 1455.6 30051 954285 2 × 107 

50 mm 3rd order 157.32 3308 64428 --- --- 
5th order 177.02 1474.3 27720 854025 1 × 107 

 

 

Figure 4.24: Linear stiffness and frequency for different positions of the top fixed magnet 

The linear stiffness of the oscillator system increased when the top fixed magnet moved towards the 

middle magnet, and it decreased when the top fixed magnet moved away from the equilibrium 
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position, which can be seen from Table 4.4. The natural frequencies of the oscillator for different 

positions of the top fixed magnet have been determined theoretically and experimentally. Figure 4.24 

shows the graphical presentation of the linear stiffnesses and natural frequencies for different 

positions of the top magnet. 

Table 4.5: Natural frequencies for different positions of the top fixed magnet 

Position of the top fixed 
magnet from the equilibrium 

position 

Natural frequency (rad/s) 
Theoretical analysis Experimental measurement 

(log decrement) 3rd order 
Polynomial model 

5th order  
Polynomial model 

-10 mm 28.72 34.43 34.42 
-5 mm 28.22 33.03 33.10 

Equilibrium position (0 mm) 27.96 31.21 32.35 
10 mm 26.53 29.53 29.73 
20 mm 25.35 27.61 27.76 
30 mm 24.14 26 26.09 
40 mm 23.16 24.7 24.07 
50 mm 22.34 23.7 23.67 

The measured frequencies for the 3rd and 5th order polynomial curve fittings have been compared with 

the experimental measurement, as presented in Figure 4.24 and Table 4.5. The theoretical calculated 

natural frequencies for 5th order curve fitting are almost identical with experimental measurement 

(log decrement). The measured natural frequencies for different positions of the top fixed magnet 

have been shown in Table 4.5. The natural frequency increased when the total length of the oscillator 

reduced, and it decreased when the total length of the oscillator increased, as can be seen in Table 

4.5. 

4.6 Model Analysis of the Magnetic Spring-based Nonlinear Oscillator System 

Figure 4.25 presents the free body diagram of the proposed nonlinear oscillator system. The mass of 

the floating magnet is M. 𝐹𝐹𝛽𝛽 is the damping force of the system written as  𝐹𝐹𝛽𝛽 = 𝛽𝛽�̇�𝑦. The relative 

displacement of the magnet is y, and the relative velocity and acceleration of the magnet are �̇�𝑦 and �̈�𝑦, 

respectively. The equation of the motion of the system can be written as,  
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𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝐹𝐹𝛽𝛽 + 𝐹𝐹𝑟𝑟 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(4.6) 

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+ 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖)    
(4.7) 

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+ 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘4𝑦𝑦4 + 𝑘𝑘5𝑦𝑦5 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖)    
(4.8) 

where 𝑘𝑘1 is the linear spring constant and 𝑘𝑘2,𝑘𝑘3,𝑘𝑘4 and 𝑘𝑘5 are the nonlinear coefficients of the 

system. 

 

Figure 4.25: Free body diagram of magnetic spring based nonlinear oscillator system 

A state space model is a linear representation in discrete or continuous time of a dynamic system. The 

continuous time form of a model in state space form can be written by 

�̇�𝑍 = 𝐴𝐴𝑍𝑍 + 𝐵𝐵𝐷𝐷 (4.9) 

𝑋𝑋 = 𝐶𝐶𝑍𝑍 + 𝐷𝐷𝐷𝐷 (4.10) 

Where A is the system matrix, B is the input matrix and C is the output matrix. The remaining matrix 

is D, which is typically zero because the direct input does not typically affect the output.  

Fixed magnet (Top) 

Moving magnet 
(Middle) 

Fixed magnet 
(Underneath) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 𝐹𝐹𝛽𝛽 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

M 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

 𝛽𝛽�̇�𝑦  𝑘𝑘𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 
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𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+ 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(4.11) 

�̈�𝑦 =
1
𝑀𝑀

(𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) − 𝛽𝛽�̇�𝑦 − 𝑘𝑘1𝑦𝑦 − 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘3𝑦𝑦3) (4.12) 

�̈�𝑦 =
1
𝑀𝑀

(𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) − 𝛽𝛽�̇�𝑦 − 𝑘𝑘1𝑦𝑦 − 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘3𝑦𝑦3 − 𝑘𝑘4𝑦𝑦4 − 𝑘𝑘5𝑦𝑦5) (4.13) 

By considering the state variables 𝑍𝑍1 and 𝑍𝑍2  the system Equation 4.13 can be written in state space 

form by following: 

𝑍𝑍1 = 𝑦𝑦 (4.14) 

𝑍𝑍2 = �̇�𝑦 = �̇�𝑍1 (4.15) 

𝑑𝑑𝑍𝑍2
𝑑𝑑𝑖𝑖

= �̈�𝑦 (4.16) 

𝐷𝐷 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (4.17) 

The resulting state space matrix form of the differential equation gives: 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 − 𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13� (4.18) 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 − 𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13 − 𝑘𝑘4𝑍𝑍14 − 𝑘𝑘5𝑍𝑍15� (4.19) 

The resulting state space matrix for 3rd order polynomial model form of the differential equation 

gives: 

�

𝑑𝑑𝑍𝑍1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑍𝑍2
𝑑𝑑𝑖𝑖

� = �
0 1

−𝑘𝑘1 − 𝑘𝑘2𝑍𝑍1 − 𝑘𝑘3𝑍𝑍12

𝑀𝑀
−𝛽𝛽
𝑀𝑀
�

�������������������
𝐴𝐴

�𝑍𝑍1𝑍𝑍2
� + �

0
1
𝑀𝑀
�

�
𝐵𝐵

[𝑈𝑈1] 
(4.20) 

[𝑋𝑋] = �1 0
0 1����
𝐶𝐶

�𝑍𝑍1𝑍𝑍2
� + [0]�

𝐷𝐷
[𝐷𝐷] (4.21) 
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The resulting state space matrix for 5th order polynomial model form of the differential equation 

gives: 

�

𝑑𝑑𝑍𝑍1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑍𝑍2
𝑑𝑑𝑖𝑖

� = �

𝑑𝑑𝑍𝑍1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑍𝑍2
𝑑𝑑𝑖𝑖

� = �
0 1

−𝑘𝑘1 − 𝑘𝑘2𝑍𝑍1 − 𝑘𝑘3𝑍𝑍12 − 𝑘𝑘4𝑍𝑍13 − 𝑘𝑘5𝑍𝑍14

𝑀𝑀
−𝛽𝛽
𝑀𝑀
�

�������������������������������
𝐴𝐴

�𝑍𝑍1𝑍𝑍2
� + �

0
1
𝑀𝑀
�

�
𝐵𝐵

[𝑈𝑈1] 
(4.22) 

[𝑋𝑋] = �1 0
0 1����
𝐶𝐶

�𝑍𝑍1𝑍𝑍2
� + [0]�

𝐷𝐷
[𝐷𝐷] (4.23) 

Moreover, the resulting state space matrix for 7th order polynomial model form of the differential 

equation gives: 

�
𝐿𝐿𝑍𝑍1
𝐿𝐿𝑡𝑡
𝐿𝐿𝑍𝑍2
𝐿𝐿𝑡𝑡

� = �
𝐿𝐿𝑍𝑍1
𝐿𝐿𝑡𝑡
𝐿𝐿𝑍𝑍2
𝐿𝐿𝑡𝑡

� = �
0 1

−𝑘𝑘1−𝑘𝑘2𝑍𝑍1−𝑘𝑘3𝑍𝑍12−𝑘𝑘4𝑍𝑍13−𝑘𝑘5𝑍𝑍14−𝑘𝑘6𝑍𝑍15−𝑘𝑘7𝑍𝑍16

𝑀𝑀
−𝛽𝛽
𝑀𝑀
�

�������������������������������
𝐴𝐴

�𝑍𝑍1𝑍𝑍2
� + �

0
1
𝑀𝑀
�

�
𝐵𝐵

[𝑈𝑈1]  
(4.24) 

[𝑋𝑋] = �1 0
0 1����
𝐶𝐶

�𝑍𝑍1𝑍𝑍2
� + [0]�

𝐷𝐷
[𝐷𝐷] (4.25) 

Where �̇�𝑍 is known as the state vector and X is called the output vector. A and B in equations 4.20, 

4.22 and 4.24 are known as the state or system matrix and input matrix, respectively. Moreover, C 

and D in equations 4.21, 4.23 and 4.25 are called the output matrix and zero matrix, respectively. 

4.6.1.1 Investigation of 3rd order polynomial model 

In the beginning, the dynamics of the 3rd order polynomial model have been analysed. The linear and 

nonlinear coefficients of the magnetic spring-based oscillator system for different excitation have 

been presented in Table 4.6. The log decrement method has been used to measure the damping ratio, 

damping constant and natural frequency of the oscillator (total length 222 mm). The measured 

damping ratio, damping constant and natural frequency are 0.031, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  and 32.35 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄ , 

respectively. The theoretical simulation of the system has been run by MATLAB code using the 

values of M (mass including plastic bush), 𝛽𝛽, 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 are 0.37 Kg, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄ , 269.31 𝑁𝑁 𝑚𝑚⁄ , 

5680.4 𝑁𝑁 𝑚𝑚2⁄  and 163159 𝑁𝑁 𝑚𝑚3⁄  respectively. The simulation results of the system are displayed in 

Table 4.7. When the magnet is in the expected equilibrium position (0mm), the resulting eigenvalues 

are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000+26.9604i, 0, 0 and -1.0000 +26.9604i, and the corresponding frequency is 

26.9790 rad/s or 4.296 Hz. It has been seen from the analysis using the 3rd order polynomial model 
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that the real parts of the eigenvalues remained constant for all different positions of the floating 

magnet when it moved toward the top and bottom magnets. 

Table 4.6: Linear and nonlinear coefficients of the magnetic spring-based oscillator system (3rd 

order polynomial model) 

Excitation (mm) Coefficients 
𝑘𝑘1 

(N/m) 
𝑘𝑘2 

(N/m2) 
𝑘𝑘3 

(N/m3) 
-5 to 5 307.35 819.63 1 × 106 

-10 to 10 304.28 6447.5 814030 
-15 to 15 308.21 2588.2 94713 
-20 to 20 306.58 3494.3 116588 
-25 to 25 302.01 3732 128941 
-30 to 30 292.33 4255.2 150269 
-35 to 35 302.95 4204.3 128199 
-40 to 40 293.98 4671.7 142945 
-45 to 45 283.72 5205.1 152028 
-50 to 50 269.31 5680.4 163159 

However, the imaginary parts of the eigenvalues, and thus the frequencies, changed with the changing 

position of the floating magnet. There is a considerable decrease in the imaginary part of the 

eigenvalues, and thus frequencies, until 17 mm is reached before increasing when the floating magnet 

moved toward the top magnet from the equilibrium position. The minimum resulting eigenvalues and 

frequency were -1.0000 +24.3580i, 0, 0 and -1.0000 -24.3580i and 24.3786 rad/s, respectively, which 

were found at 17 mm up towards the top magnet. After 17 mm towards the top magnets, the imaginary 

parts of the eigenvalues and natural frequencies rose steadily. On the other hand, the imaginary parts 

of the eigenvalues and frequencies increased steadily with the increasing distance of the floating 

magnet from the equilibrium position towards the bottom magnet. The minimum values for the 

imaginary part of the eigenvalues and natural frequency should be found in the equilibrium position. 

However, it did not take place due to the effect of the gravitational force on equilibrium position. 

Because of the gravitational effects, the equilibrium position moved 17 mm away toward the bottom 

magnet where it should be. When the position of the floating magnet is 50 mm towards the top magnet 

(-50 mm), the resulting eigenvalues are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 =-1.0000 +32.5833i, 0, 0 and -1.0000+32.5833i. 

Moreover, when the position of the floating magnet is 50 mm towards the bottom magnet (+50 mm), 
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the resulting eigenvalues found are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000+50.9599i, 0, 0 and -1.0000-50.9599i as 

displayed in Table 4.7.  

Table 4.7: Eigenvalue when floating magnet moved 50 mm toward top magnet and 50 mm toward 

bottom magnet from the equilibrium position (3rd order polynomial model) 

Position of the floating 
magnet 

Eigenvalue Natural frequency 
(rad/s) 

-50 mm -1.0000 +32.5833i 32.5986 
-45 mm -1.0000 +30.4790i 30.4954 
-40 mm -1.0000 +28.6063i 28.6238 
-35 mm -1.0000 +27.0133i 27.0318 
-30 mm -1.0000 +25.7520i 25.7714 
-25 mm -1.0000 +24.8729i 24.8930 
-20 mm -1.0000 +24.4173i 24.4378 
-15 mm -1.0000 +24.4089i 24.4294 
-10 mm -1.0000 +24.8483i 24.8684 
-05 mm -1.0000 +25.7124i 25.7318 
0 mm -1.0000 +26.9604i 26.9790 
05 mm -1.0000 +28.5421i 28.5596 
10 mm -1.0000 +30.4054i 30.4218 
15 mm -1.0000 +32.5018i 32.5172 
20 mm -1.0000 +34.7894i 34.8038 
25 mm -1.0000 +37.2328i 37.2462 
30 mm -1.0000 +39.8034i 39.8160 
35 mm -1.0000 +42.4781i 42.4899 
40 mm -1.0000 +45.2384i 45.2495 
45 mm -1.0000 +48.0696i 48.0800 
50 mm -1.0000 +50.9599i 50.9697 

The eigenvalues can be calculated by using the following equations. 

𝜆𝜆𝑖𝑖 = −
𝛽𝛽

2𝑀𝑀
,−

1
2𝑀𝑀

�4𝑀𝑀𝑘𝑘 − 𝛽𝛽2𝑖𝑖 (4.26) 

𝜆𝜆𝑖𝑖 = −
𝛽𝛽

2𝑀𝑀
,

1
2𝑀𝑀

�4𝑀𝑀𝑘𝑘 − 𝛽𝛽2𝑖𝑖 (4.27) 

The calculated eigenvalues were -1.000+26.9604i and -1.000 -26.9604i when the position of the 

floating magnet is 0 mm (expected equilibrium position). These equations work when the system is 
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linear, as when in the proposed system, the displacement of the floating magnet is very small (near 

equilibrium position). For the other displacement (high displacement) this system works as a 

nonlinear system and these equations will not work. Moreover, with the changing of the position of 

the floating magnet, the frequency of the oscillator changes, as shown in Table 4.7. The corresponding 

natural frequencies could be measured by using the following formula: 

𝜔𝜔𝑖𝑖 = �𝑅𝑅𝑒𝑒(𝜆𝜆𝑖𝑖)2 + 𝐼𝐼𝑚𝑚(𝜆𝜆𝑖𝑖)2 (4.28) 

The calculated natural frequencies for -50 mm, 0 mm and +50 mm positions of the floating magnet 

are 32.5986 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠, 26.9790 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠 and  50.9697 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠, respectively which are close to the 

measured frequency given by the MATLAB Bode plot comments, as shown in Figure 4.26.  

 

Figure 4.26: Frequency response of the system when floating magnet moved 50 mm toward top 

magnet and 50 mm toward bottom magnet from the equilibrium position (3rd order polynomial 

model) 

The legend y in Figure 4.26 is the position of the floating magnet from the equilibrium position. In 

the legend y=0 means the floating magnet is in equilibrium position. In legend y=-0.05 means the 

position of the floating magnet is 50 mm away from the equilibrium position toward top magnet. The 

position of the floating magnet 50 mm away from the equilibrium position toward bottom magnet is 
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presented in legend as y=0.05. The analytically calculated average natural frequency for this test rig 

setup (total length of the oscillator is 222 mm) is 32.66 rad/s which is almost similar to the 

experimentally measured (log-decrement) natural frequency of 32.35 rad/s. Moreover, both 

eigenvalues’ real numbers are negative and therefore the model is stable. The damping ratio can be 

found using the formula 

𝜁𝜁𝑖𝑖 = 𝑅𝑅𝑒𝑒(𝜆𝜆𝑖𝑖)/�𝑅𝑅𝑒𝑒(𝜆𝜆𝑖𝑖)2 + 𝐼𝐼𝑚𝑚(𝜆𝜆𝑖𝑖)2 (4.29) 

The calculated average damping ratio is 0.032 when the total length of the oscillator is 222 mm which 

is almost similar to the experimentally measured damping ratio of 0.031. The linear and nonlinear 

coefficients of the magnetic spring system change with the changing of the excitation position of the 

floating magnet. When the floating magnet moved 5 mm towards the top magnet and 5 mm towards 

the bottom magnet from the equilibrium position, the 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 values changed to 307.35 N/m, 

819.63 N/m^2 and 1 × 106 N/m^3, respectively. The eigenvalues and frequency response are 

presented in Figure 4.27 and Figure 4.28, respectively.  

 

Figure 4.27: Eigenvalue when floating magnet moved 5 mm toward top magnet and 5 mm toward 

bottom magnet from the equilibrium position (3rd order polynomial model) 
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Figure 4.28: Frequency response of the system when floating magnet moved 5 mm toward top 

magnet and 5 mm toward bottom magnet from the equilibrium position (3rd order polynomial 

model) 

The imaginary parts of the eigenvalues and natural frequencies decrease steadily until 5 mm when 

the floating magnet moved towards the top magnet, and it rose steadily until the end (5 mm) when 

the floating magnet moved toward the bottom magnet. Figure 4.29 presents the resulting eigenvalues 

and frequencies for different ranges of excitation of the floating magnet. The measured eigenvalues 

are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000 +28.8041i, 0, 0, -1.0000-28.8041i when the floating magnet is in the expected 

equilibrium position (0mm) and the natural frequency is 28.8214 rad/s or 4.5893 Hz. The resulting 

eigenvalues and frequency are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 =-1.0000 +29.7686i, 0, 0 and -1.0000+29.7686i and 29.7854 

rad/s, respectively, when the position of the floating magnet is 5 mm towards the top magnet. 

Furthermore, the measured eigenvalues and frequencies are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000 +30.1383i, 0, 0, -

1.0000 -30.1383i and 30.1549 rad/s when the position of the floating magnet is 5 mm towards bottom 

magnet.  
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Figure 4.29: Eigenvalues and frequency response for different positions of the floating magnet (3rd 

order polynomial model) 

The legends in Figure 4.29 present the excitation ranges of the floating magnet. The variable -0.005 

to 0.005 in the legend is indicated that the floating magnet moved 5mm toward the top magnet and 

5mm toward the bottom magnet from the equilibrium position. From Figure 4.29 it can be seen that 

the real parts of the eigenvalues stayed constant for all excitation ranges of the floating magnet, but 

the imaginary parts of the eigenvalues changed with the changing of the excitation ranges of the 

floating magnet.  

 

Figure 4.30: Displacement and velocity of the floating magnet under harmonic force 
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Moreover, the resulting frequency responses for all excitation ranges are closer to each other. If an 

external force is applied to the floating magnet, then the displacement and velocity of the magnet are 

shown in Figure 4.30. The amplitude of the applied external harmonic force (Fb) is 10N and the 

frequency (f) is 0.1 Hz. Moreover, the values of M, 𝛽𝛽, 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 are 0.37 Kg, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄ , 269.31 

𝑁𝑁 𝑚𝑚⁄ , 5680.4 𝑁𝑁 𝑚𝑚2⁄  and 163159 𝑁𝑁 𝑚𝑚3⁄  respectively. The ode23t solver has been used in MATLAB 

to find the displacement and velocity of the floating magnet. The excitation of the floating magnet 

was assumed to have the initial displacement y = 0 and its corresponding velocity �̇�𝑦 = 0. The 

frequency of the harmonic force was 0.1 Hz. As expected, the displacement and the velocity were 

sinusoidal and were 90° out of phase with one another. The amplitude of displacement was around 

20 mm toward the bottom magnet and about 30 mm toward the top magnet. This confirms the 

amplitude of the displacement signal, as shown in Figure 4.30. Moreover, the velocity vs 

displacement graph of the floating magnet under this harmonic force has been presented in Figure 

4.31 as well. 

         

(a)  (b) 

Figure 4.31: (a) Displacement and velocity of the floating magnet under harmonic force (b) 

Displacement vs velocity 

From Figure 4.31 it can be seen that at the beginning of the middle magnet’s movement under the 

harmonic force, it creates some noises and became smooth after that.   

4.6.1.2 Investigation of 5th order polynomial model 

To analyse the proposed model, the 5th order polynomial model also has been used. The change of 

linear and nonlinear magnetic spring coefficients with the changes of the excitation position of the 
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floating magnet have presented in Table 4.8. When the floating magnet moved 50 mm away from 

equilibrium position towards the top and bottom magnets, then the measured linear and nonlinear 

magnetic spring coefficients 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑘𝑘4 and 𝑘𝑘5, are 309.43 (N/m), 2925.5(N/m2), 107874 (N/m3), 

1 × 10^6 (N/m4) and 2 × 10^7 (N/m5), respectively. From Table 4.8 it can be seen that all 

coefficients change with the changing of the position of the floating magnet. To determine the 

eigenvalues and frequency responses, the theoretical simulation of the system was run by MATLAB 

code using the values of M, 𝛽𝛽, 𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3,𝑘𝑘4 and 𝑘𝑘5 are 0.37 Kg (including plastic bush), 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄ , 

309.43 (N/m), 2925.5 (N/m2), 107874 (N/m3), 1 × 10^6 (N/m4) and 2 × 10^7 (N/m5), respectively. 

The simulation results of the system are displayed in Table 4.9. When the floating magnet moved 50 

mm away from the equilibrium position towards the top magnet (-50 mm), the resulting eigenvalues 

are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000 +34.1883i, 0, 0 and -1.0000-34.1883i. 

Table 4.8: Magnetic spring coefficients for different excitation ranges (5th order polynomial model) 

Excitation 
(mm) 

Coefficients 

𝑘𝑘1 
(N/m) 

𝑘𝑘2 
(N/m2) 

𝑘𝑘3 
(N/m3) 

𝑘𝑘4 
(N/m4) 

𝑘𝑘5 
(N/m5) 

-5 to 5 309.69 -2590.6 874377 1 × 108 1 × 1010 
-10 to 10 308.93 2512 592100 4 × 107 2 × 109 
-15 to 15 307.58 563.72 124094 9 × 106 -2 × 108 
-20 to 20 311.63 351.21 72167 8 × 106 9 × 107 
-25 to 25 309.88 2675.1 80123 2 × 106 6 × 107 
-30 to 30 312.56 2286 64796 2 × 106 7 × 107 
-35 to 35 311.04 2965.8 106608 1 × 106 1 × 107 
-40 to 40 310.04 3102.3 106234 1 × 106 2 × 107 
-45 to 45 314.25 2916.7 94869 1 × 106 2 × 107 
-50 to 50 309.43 2925.5 107874 1 × 106 2 × 107 

When the middle magnet started moving from the equilibrium position towards the top magnet due 

to the gravitational effects, the eigenvalues (imaginary parts) and frequencies initially decreased with 

the changing of the position until 16 mm and then started increasing until the last position of the 

magnet. The measured minimum eigenvalues and frequencies at 16 mm away from the equilibrium 

position towards the top magnet are -1.0000 +27.8550i, 0, 0, -1.0000 -27.8550i and 27.8729 rad/s. 

When the position of the floating magnet was 50 mm away from the equilibrium position (0 mm) 

towards the bottom magnet (+50 mm), the resulting eigenvalues are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 = -1.0000+51.3341i, 0, 
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0 and -1.0000-51.3341i, as presented in Table 4.9. The eigenvalues (imaginary parts) and frequencies 

steadily increased until the end of the excitation ranges when the middle magnet moved toward the 

bottom magnet. The resulting eigenvalues found are 𝜆𝜆𝑖𝑖=1 𝑡𝑡𝑏𝑏 4 =  -1.0000 +28.9015i, 0, 0 and   -1.0000 

-28.9015i when the magnet is in its equilibrium position (0mm). The calculated (theoretical) 

eigenvalues and frequency are -1.00 +28.9015i, 0, 0 and -1.00 -28.9015i and 28.9188 rad/s when the 

position of the floating magnet is 0 mm (equilibrium position). Moreover, with the changing of the 

position of the floating magnet, the frequency of the oscillator changes, as shown in Table 4.9. 

Table 4.9: Eigenvalue when floating magnet moved 50 mm toward top magnet and 50 mm toward 

bottom magnet from the equilibrium position (5th order polynomial model) 

Position of the floating 
magnet 

Eigenvalues Natural Frequency 
(rad/s) 

-50 mm -1.0000 +34.1883i 34.20 
-45 mm -1.0000 +32.3304i 32.34 
-40 mm -1.0000 +30.8369i 30.85 
-35 mm -1.0000 +29.6808i 29.69 
-30 mm -1.0000 +28.8323i 28.84 
-25 mm -1.0000 +28.2619i 28.27 
-20 mm -1.0000 +27.9430i 27.96 
-15 mm -1.0000 +27.8552i 27.87 
-10 mm -1.0000 +27.9861i 28.00 
-05 mm -1.0000 +28.3328i 28.35 
0 mm -1.0000 +28.9015i 28.91 

05 mm -1.0000 +29.7068i 29.72 
10 mm -1.0000 +30.7695i 30.78 
15 mm -1.0000 +32.1147i 32.13 
20 mm -1.0000 +33.7687i 33.78 
25 mm -1.0000 +35.7565i 35.77 
30 mm -1.0000 +38.1006i 38.11 
35 mm -1.0000 +40.8188i 40.83 
40 mm -1.0000 +43.9249i 43.93 
45 mm -1.0000 +47.4282i 47.43 
50 mm -1.0000 +51.3341i 51.34 

The calculated natural frequencies for -50 mm, 0 mm and +50 mm position of the floating magnet 

are  34.2029 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠,  28.9188 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠 and 51.3438  𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠, respectively which are close to the 
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measured frequency obtained by the MATLAB Bode comments, as shown in Figure 4.32. The 

eigenvalues and frequency responses are analysed for different excitation ranges which can be seen 

in Figure 4.33.  

 

Figure 4.32: Frequency response of the system when floating magnet moved 50 mm toward top 

magnet and 50 mm toward bottom magnet from the equilibrium position (5th order polynomial 

model) 

 

Figure 4.33: Eigenvalues and frequency response for different excitation ranges (5th order 

polynomial model). 
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The analytical average natural frequency and damping ratio for this test rig setup (total length of the 

oscillator 222 mm) are 33.77 rad/s and 0.0306, respectively.  Moreover, both eigenvalues’ real 

numbers are negative and therefore the model is stable. The legends in Figure 4.33 present the 

excitation ranges of the floating magnet. The variable -0.05 to 0.05 in the legend is indicated that the 

floating magnet moved 50mm toward the top magnet and 50mm toward the bottom magnet from the 

equilibrium position.  It can be seen from Figure 4.33 that the frequency responses fluctuated for all 

excitation ranges (small excitation ranges) nearby equilibrium position but the frequencies are similar 

when the moving magnet goes away far from the equilibrium position toward the top and bottom 

magnets. Figure 4.34 presents the displacement and velocity of the floating magnet after the applied 

harmonic force, where the amplitude of the force and frequency are 10N and 0.1 Hz, respectively.  

Moreover, the used values of M, 𝛽𝛽, 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3,𝑘𝑘4 and 𝑘𝑘5 were 0.37 Kg, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄ , 309.43 (N/m), 

2925.5 (N/m2), 107874 (N/m3), 1 × 10^6 (N/m4) and 2 × 10^7 (N/m5), respectively. To find the 

displacement and velocity of the moving magnet the ode23t solver has been used in MATLAB. The 

excitation of the moving magnet is assumed to have the initial displacement (y = 0) and its 

corresponding velocity (�̇�𝑦 = 0). Compared to the 3rd order polynomial model, the 5th order 

polynomial model gives better results. Furthermore, the velocity vs displacement graph of the floating 

magnet under the same harmonic force has been displayed in Figure 4.35(b) as well. 

 

Figure 4.34: Displacement and velocity of the floating magnet under harmonic force (5th order 

polynomial model) 
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 (a) (b) 

Figure 4.35: (a) Displacement and velocity of the floating magnet under harmonic force (b) 

Displacement vs velocity 

At the beginning of the middle magnet's movement under the same harmonic force, it creates some 

noise as well, like the 3rd order polynomial model which can be seen in Figure 4.35.   

4.7 Model Analysis of the Nonlinear Oscillator System for Different Positions of the Top 

Fixed Magnet 

The eigenvalues and frequencies have been analysed for different positions of the top fixed magnet. 

The values of damping constant, linear and nonlinear constant have been taken from Table 4.5 to 

determine the eigenvalues and natural frequencies. All linear and nonlinear values have been used 

here for -50 mm to 50 mm excitation ranges. The eigenvalues and frequency responses have been 

measured by using the theoretical 3rd order polynomial curve fitting’s data. As seen from Table 4.5, 

the increases in the damping ratio mean the damping constant increases when the total length of the 

oscillator decreases and the damping constant declines when the total length of the oscillator rises. 

Therefore, it can be said that the system becomes more unstable when the total length of the oscillator 

increases. To check these findings the eigenvalues of the system have been measured as shown in 

Figure 4.36. The real parts of the eigenvalues are always -1 for different positions of the floating 

magnet when the total length of the oscillator is 222 mm (considered equilibrium position means 0 

mm position of the top mixed magnet). The real parts of the eigenvalues increase on the negative side 

when the top fixed magnet moves toward the middle magnet (decreases the total length of the 

oscillator) from 0 mm position (222 mm, equilibrium position for this particular magnet setup), as 

seen in the Figure 4.36.  
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Figure 4.36: Eigenvalues for different positions of the top fixed magnet  

 

Figure 4.37: Frequency response for different positions of the top fixed magnet 

On the other hand, when the top fixed magnet moves away from the 0 mm position, then the real parts 

of the eigenvalues decrease on the negative side and come close to zero in the scale. The system 

becomes more stable when the top fixed magnet moves toward the middle magnet (decreases the total 

length of the oscillator) and it becomes more unstable when the top fixed magnet moves away 

continuously from the equilibrium position. Figure 4.37 displays the frequency responses of the 
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system for the different total lengths of the oscillator (different positions of the top fixed magnet). 

Moreover, Figure 4.37 shows that the natural frequency increases when the top fixed magnet moves 

toward the middle magnet and decreases when it moves away from the middle magnet. The model 

has been analysed by using the same harmonic force with changing the position of the top fixed 

magnet. The amplitude of the harmonic force is 10 N and the frequency is 0.1 Hz. The values of the 

linear, nonlinear constants and damping ratios have been taken from Table 4.4 and Table 4.5. The 

excitation of the moving magnet is assumed to have the initial displacement (y = 0) and its 

corresponding velocity (�̇�𝑦 = 0).  

 

Figure 4.38: Displacement of the floating magnet under the different positions of the top fixed 

magnet 

 

Figure 4.39: Velocity of the floating magnet under the different positions of the top fixed magnet 
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Figure 4.40: Velocity and displacement of the floating magnet under the different positions of the 

top fixed magnet 

Moreover, the displacement vs time and velocity vs time graphs of the floating magnet under the 

different positions of the top fixed magnet have been presented in Figure 4.38 and Figure 4.39, 

respectively. The displacement and velocity of the floating magnet increase under the same harmonic 

force when the total length of the oscillator increases and decreases with decreasing the total length 

of the oscillator, as seen in Figure 4.38 and Figure 4.39. Figure 4.40 presents the velocity vs 

displacement graph. It can be seen from Figure 4.40 that the displacement, as well as the velocity of 

the floating magnet, increases with the increasing of the total length of the oscillator under the same 

externally applied harmonic force. Therefore, it can be said that the displacement and velocity of the 

floating magnet can be changed with the changing of the position of the floating magnet. 

4.8 Linearization of the Magnetic Spring-based Nonlinear System 

For a better understanding of magnetic spring based nonlinear system, the nonlinear system can be 

linearised. It has been considered that in the equilibrium position, the velocity and the applied 

harmonic force are zero. The nonlinear oscillator’s state space model has been linearized by using the 

following method. 

𝑈𝑈1𝑒𝑒 = 0 (4.30) 

𝑍𝑍2𝑒𝑒 = 0 (4.31) 
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0 =
1
𝑀𝑀
�𝐷𝐷𝑒𝑒 − 𝛽𝛽𝑍𝑍2𝑒𝑒 − 𝑘𝑘𝑍𝑍1𝑒𝑒 − 𝑘𝑘2𝑍𝑍1𝑒𝑒2 − 𝑘𝑘3𝑍𝑍1𝑒𝑒3� (4.32) 

0 =
1
𝑀𝑀
�−𝑘𝑘𝑍𝑍1𝑒𝑒 − 𝑘𝑘2𝑍𝑍1𝑒𝑒2 − 𝑘𝑘3𝑍𝑍1𝑒𝑒3� (4.33) 

0 =
1
𝑀𝑀
�−𝑘𝑘 − 𝑘𝑘2𝑍𝑍1𝑒𝑒 − 𝑘𝑘3𝑍𝑍1𝑒𝑒2�𝑍𝑍1𝑒𝑒 (4.34) 

                                         0 = −𝑘𝑘 − 𝑘𝑘2𝑍𝑍1𝑒𝑒 − 𝑘𝑘3𝑍𝑍1𝑒𝑒2   ,  𝑍𝑍1𝑒𝑒 = 0 (4.35) 

𝑘𝑘3𝑍𝑍1𝑒𝑒2 + 𝑘𝑘2𝑍𝑍1𝑒𝑒 + 𝑘𝑘 = 0 (4.36) 

𝑍𝑍1𝑒𝑒 =
−𝑘𝑘2 ± �𝑘𝑘2

2 − 4𝑘𝑘3𝑘𝑘

2𝑘𝑘3
 

(4.37) 

The value of the 𝑍𝑍1𝑒𝑒 at equilibrium position are  𝑍𝑍1𝑒𝑒 = 0 and  𝑍𝑍1𝑒𝑒 =
−𝑘𝑘2±�𝑘𝑘22−4𝑘𝑘3𝑘𝑘

2𝑘𝑘3
.  The linearized 

model can be stated as, 

𝑍𝑍1 = 𝑍𝑍1𝑒𝑒 + 𝛿𝛿𝑍𝑍1 (4.38) 

𝑍𝑍2 = 𝑍𝑍2𝑒𝑒 + 𝛿𝛿𝑍𝑍2 (4.39) 

𝑈𝑈1 = 𝑈𝑈1𝑒𝑒 + 𝛿𝛿𝑈𝑈1 (4.40) 

𝛿𝛿�̇�𝑍1 =  𝛿𝛿𝑍𝑍2 (4.41) 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 − 𝑘𝑘𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13� (4.42) 

𝛿𝛿�̇�𝑍2 = 𝑓𝑓(𝑍𝑍1𝑒𝑒,𝑍𝑍2𝑒𝑒 ,𝑈𝑈1𝑒𝑒) +
1
𝑀𝑀
�−𝑘𝑘 − 2𝑘𝑘2𝑍𝑍1𝑒𝑒 − 3𝑘𝑘3𝑍𝑍1𝑒𝑒2�𝛿𝛿𝑍𝑍1 +

1
𝑀𝑀

(−𝛽𝛽)𝛿𝛿𝑍𝑍2 (4.43) 

𝑓𝑓(𝑍𝑍1𝑒𝑒 ,𝑍𝑍2𝑒𝑒 ,𝑈𝑈1𝑒𝑒) = 0 (4.44) 

When 𝑍𝑍1𝑒𝑒 = 0 then the state space model can be expressed as  

�𝛿𝛿�̇�𝑍1
𝛿𝛿�̇�𝑍2

� = �
0 1
−𝑘𝑘
𝑀𝑀

−𝛽𝛽
𝑀𝑀
� �𝛿𝛿𝑍𝑍1𝛿𝛿𝑍𝑍2

� + �01�
[𝛿𝛿𝑈𝑈1] 

    
(4.45) 

𝑋𝑋 = �1 0
0 1� �

𝛿𝛿𝑍𝑍1
𝛿𝛿𝑍𝑍2

� + [0][𝛿𝛿𝑈𝑈1] (4.46) 

The theoretical simulation (3rd order polynomial model) of the system was run by MATLAB code 

using the values of M, 𝛽𝛽, and  𝑘𝑘 are 0.37 Kg, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  and 269.31 𝑁𝑁 𝑚𝑚⁄ , respectively. The 

eigenvalues of the system are shown in Figure 4.41.  
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Figure 4.41: Eigenvalues of the linearized system (3rd order polynomial model) 

 

Figure 4.42: Frequency response of the linearized system (3rd order polynomial model) 

The measured eigenvalues were -1.0000 +26.9604i,0,0 and -1.0000 -26.9604i. The measured 

frequency response was 26.9789 rad/s, which is similar to the nonlinear model’s measured frequency 

(26.9790 rad/s) when the floating magnet was in equilibrium position. Moreover, the measured 

damping ratio is 0.037 which is closer to the experimentally calculated damping ratio (0.031). The 

calculated (theoretical) eigenvalues were -1.0000 +26.9604i and -1.0000-26.9604i which are similar 

to measured eigenvalues when the position of the floating magnet was 0 mm (equilibrium position). 
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Figure 4.42 presents the frequency response of the linearized system. On the other hand, if 𝑍𝑍1𝑒𝑒 =

−𝑘𝑘2+�𝑘𝑘22−4𝑘𝑘3𝑘𝑘

2𝑘𝑘3
  then the state space model can be stated as,  

�𝛿𝛿�̇�𝑍1
𝛿𝛿�̇�𝑍2

� =

⎣
⎢
⎢
⎢
⎡

0 1

1
𝑀𝑀
⎝

⎛2𝑘𝑘 −
𝑘𝑘2

2

2𝑘𝑘3
− �1 −

3𝑘𝑘2
2
�
�𝑘𝑘2

2 − 4𝑘𝑘3𝑘𝑘

𝑘𝑘3
⎠

⎞ −𝛽𝛽
𝑀𝑀
⎦
⎥
⎥
⎥
⎤

�𝛿𝛿𝑍𝑍1𝛿𝛿𝑍𝑍2
� + �01�

[𝛿𝛿𝑈𝑈1] 

(4.47) 

𝑋𝑋 = �1 0
0 1� �

𝛿𝛿𝑍𝑍1
𝛿𝛿𝑍𝑍2

� + [0][𝛿𝛿𝑈𝑈1] (4.48) 

Moreover, when 𝑍𝑍1𝑒𝑒 =
−𝑘𝑘2−�𝑘𝑘22−4𝑘𝑘2𝑘𝑘

2𝑘𝑘3
  then the state space model can be written as 

�𝛿𝛿�̇�𝑍1
𝛿𝛿�̇�𝑍2

� =

⎣
⎢
⎢
⎢
⎡

0 1

1
𝑀𝑀
⎝

⎛2𝑘𝑘 −
𝑘𝑘2

2

2𝑘𝑘3
+ �1 −

3𝑘𝑘2
2
�
�𝑘𝑘2

2 − 4𝑘𝑘3𝑘𝑘

𝑘𝑘3
⎠

⎞ −𝛽𝛽
𝑀𝑀
⎦
⎥
⎥
⎥
⎤

�𝛿𝛿𝑍𝑍1𝛿𝛿𝑍𝑍2
� + �01�

[𝛿𝛿𝑈𝑈1] 

   
(4.49) 

𝑋𝑋 = �1 0
0 1� �

𝛿𝛿𝑍𝑍1
𝛿𝛿𝑍𝑍2

� + [0][𝛿𝛿𝑈𝑈1] (4.50) 

Figure 4.43 and Figure 4.44 present the eigenvalues and frequency response when 𝑍𝑍1𝑒𝑒 =

−𝑘𝑘2±�𝑘𝑘22−4𝑘𝑘3𝑘𝑘

2𝑘𝑘3
. The imaginary part of the measured eigenvalues and frequency responses are too high.   

 

Figure 4.43: Eigenvalues of the linearized system (3rd order polynomial model) 
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Figure 4.44: Frequency response of the linearized system (3rd order polynomial model) 

Furthermore, the nonlinear and linear models of the oscillator (total length 222 mm) system have 

been compared with each other as shown in Figures 4.45, 4.46 and 4.47, respectively. The amplitude 

of the applied external harmonic force (Fb) is 10 N and the frequency (f) is 0.1 Hz. Moreover, the 

values of M, 𝛽𝛽, 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 are 0.37 Kg, 0.74 𝑁𝑁𝑠𝑠 𝑚𝑚⁄ , 269.31 𝑁𝑁 𝑚𝑚⁄ , 5680.4 𝑁𝑁 𝑚𝑚2⁄  and 163159 

𝑁𝑁 𝑚𝑚3⁄  respectively. 

 

Figure 4.45: Displacement of the floating magnet for linear and nonlinear model analysis 
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Figure 4.46: Velocity of the floating magnet for linear and nonlinear model analysis 

 

Figure 4.47: Velocity vs displacement  

It can be seen from the above figures that the floating magnet creates higher displacement in the 

linearised model than the nonlinear model, but it achieves higher velocity in the nonlinear model than 

the linear model under the same external applied harmonic forces after the transient behaviour dies 

out. Therefore, the nonlinear model is more effective to generate a higher velocity of the floating 

magnet.  

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Ve
lo

cit
y 

(m
/s)

Linear
Nonlinear

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Displacement (m)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Ve
loc

ity
 (m

/s)

Linear
Nonlinear



 

157 

 

4.9 Conclusion 

In this chapter, the characteristics of the magnetic spring based nonlinear system and dynamics of the 

system have been discussed and analysed using analytical, experimental and simulation methods. The 

proposed system's magnetic force and spring rates have been investigated numerically, theoretically, 

and experimentally. The experimentally measured magnetic restoring force has been validated by 

simulation and theoretical values. To analyse the nonlinear behaviour of the magnetic spring-based 

system and determine the coefficients from the modelled magnetic restoring force the cubic, quintic 

and 7th order polynomial curve fitting models have been used. Moreover, how the gravitational force 

effect changes the equilibrium position of the magnetic spring-based system (vertical) have been 

studied. With the change of the position of the floating magnet, the linear and nonlinear coefficients 

of the system have been investigated. Based on this investigation the dynamics of the nonlinear 

system have been analysed. The gravitational effects on the equilibrium position are determined for 

the proposed system. It has been concluded that the separation distance between magnets has a 

significant influence on the vibration and output power. This parameter is capable of changing the 

system’s nonlinear behaviour from hardening to softening. The position of the top fixed magnet has 

a great impact on the oscillator system which have been analysed as well by changing the position of 

the top fixed magnet. Finally, the linearised model of the nonlinear system has been investigated in 

this chapter. These investigations will help researchers to understand the magnetic properties of the 

magnetic spring, magnetic restoring forces and coefficients of the single-degree-of-freedom magnetic 

spring based nonlinear oscillator system. 
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Chapter 5  
Dynamic Behaviours of Two-degree-of-freedom Magnetic Spring-based 

Nonlinear Oscillator System 

In chapter 4, the single degree of freedom (SDOF) magnetic spring-based system and its dynamics 

were investigated. However, the SDOF magnetic spring-based system had only one degree of 

freedom and was limited to only one resonant frequency. Preferably, the energy generator should pick 

up and resonate at every frequency present in the vibration source. One can use two resonant 

frequencies and achieve maximum power by employing a two-degree-of-freedom (2DOF) oscillator 

system. The simplest form of a two-degree-of-freedom system has two magnet masses. This chapter 

deals with the 2DOF magnetic spring-based oscillator system and its behaviour concerning various 

design criteria. The study of the simple 2DOF system is a prerequisite to designing complex 2DOF 

magnetic spring-based wave energy convertor systems that will be discussed in Chapter 7 and Chapter 

8. Therefore, this chapter aims to investigate the magnetic restoring forces and coefficients of the 

2DOF magnetic spring-based system and analyse the dynamics of the system. 

5.1 Design Configuration of the Two-degree-of-freedom Nonlinear Oscillator System 

The two-degree-of-freedom nonlinear oscillator system consists of four permanent ring magnets 

(axially magnetised through the height of 13mm) and a circular aluminium shaft. To create a two-

degree-of-freedom model, another magnet could be added to the top of the previous model discussed 

in chapter 3, or the top magnet (3rd magnet of the previous model) could be kept as a floating magnet 

aligned with the shaft. For the first concept, the 4th magnet is put on top of the 3rd magnet and fixed 

with the shaft and the 3rd magnet is kept as a floating magnet along with the 2nd magnet; hence, the 

1st and 4th magnets are fixed with the shaft. The fixed magnets are attached to the end of the shaft, 

and their polarity is set in such a way that the repulsive force is created between the levitating magnet 

and the fixed magnets. The magnetic poles are oriented (NS-SN-NS-SN) to repel each other. The 

height and width of the test rig are 550 mm and 300 mm, respectively. Moreover, the height and 

diameter of the shaft are 550 mm and 12 mm, respectively. As presented in Figure 5.1, the test rig 

design initially shows that when the 2nd magnet is added from the bottom end to the setup before the 

3rd magnet, the distance between the middle and bottom magnets is 104 mm. When the 3rd magnet is 

added, the distance between the 2nd and bottom magnet decreases to 79 mm due to the gravitational 

force, while the 3rd magnet and the floating 2nd magnet are separated by 104 mm. When the 4th 
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magnet is added, the distance between the 2nd magnet and bottom magnet is reduced to 68 mm, and 

the distance between the 3rd magnet and the floating 2nd magnet is decreased as well to 79 mm due 

to the gravitational force. In contrast, the 3rd floating magnet and the top fixed magnet are separated 

by 104 mm. The notable thing is that when the 4th magnet is added above the 3rd magnet, only the 

distance between the bottom magnet and the 2nd magnet is reduced to 68 mm, but other magnets 

remain the exact distances as in the SDOF system (total length 222 mm). 

 

Figure 5.1: Test rig without winding coil 

5.2 Magnetic Properties Analysis of the 2DOF System 

Four (same size and shape) ring-type permanent magnets have been used to design the two-degree-

of-freedom magnetic spring-based nonlinear oscillator system. The properties of the magnet have 

been presented in Table 3.1. Since the gravitational force affects the floating magnets by shifting 

them down from the centre position between the top (4th magnet) and bottom (1st magnet) magnet, 

the distances between the four magnets in the test rig design change to 68 mm between the 2nd magnet 

(1st floating magnet) and bottom magnets, 79 mm between 2nd magnet (1st floating magnet) and 3rd 

magnet (2nd floating magnet), and 104 mm between the 3rd magnet (2nd floating magnet) and top fixed 

magnets (4th magnet).  The magnetic poles are oriented (NS-SN-NS-SN) to repel each other. The 

magnetic flux density on the magnets’ surface and the magnetisation direction are displayed in Figure 

5.2.  

1st magnet  
(Fixed magnet) 

2nd magnet  
(1st floating magnet) 

3rd magnet  
(2nd floating magnet) 

4th magnet  
(Fixed magnet) 

Shaft 
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                               (a)    (b) 

Figure 5.2: (a) Magnetic flux density and (b) Magnetization direction 

 

(a) (b) 

Figure 5.3: (a) Mag_B in XZ plane and (b) B_Vector in XZ plane 
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  (a) 

 

(b) 

 

(c) 

Figure 5.4: (a) Magnetic flux density (B_Vector) in XZ plane (b) Radial magnetic flux density and 

(c) Axial magnetic flux density 
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All magnets are axially magnetised (towards the North Pole), as shown in Figure 5.2(b). Figure 5.3 

depicts the magnitude of the magnetic flux density. The magnetic field line is the closed loop curve 

in space traced out by following the direction in which the magnetic field vector points, as seen in 

Figure 5.3(b). The Z axis is considered to be the line through the centre of all the magnets. A line is 

considered perpendicular to the X-axis, which was 37mm from the centre line in the radial direction 

and parallel to the Z-axis, as shown in Figure 5.4, to measure the magnetic flux density in the axial 

and radial direction. The magnetic flux density is calculated for the system in the radial direction 

through the line 𝑑𝑑, which is 37mm (𝑑𝑑1) from the magnet stack. Due to the symmetry of the magnetic 

stack, going from 𝑑𝑑 = 0 (sudden position below the 1st magnet) to 𝑑𝑑 = 500 𝑚𝑚𝑚𝑚 (sudden position in 

the upper part of the 4th magnet) shows the movement of the vertical arrows on one side is equivalent 

to the other side in Figure 5.3.  

To help explain magnetic flux density behaviour change according to magnet pole’s positions, the 

measured magnetic flux density in the axial and radial directions are displayed in Figure 5.4.  The 

values of magnetic flux density in Figure 5.4(c) were taken along the axial direction at various 

positions in the centre line, and the values of magnetic flux density in Figure 5.4(b) were taken along 

the radial direction at different places in the line 𝑑𝑑 which is 𝑑𝑑1 distance away from the magnet’s outer 

surface. The correct measurements of the magnetic flux density in both radial and axial directions are 

essential because they are responsible for the magnetic attractive or repulsive force and induced 

voltage inside the winding coils, if they were added to the system. The magnetic flux density of the 

vertical system is presented in a horizontal view. The magnetic flux density between the 1st and 2nd 

magnets is higher than the magnetic flux density between 2nd and 3rd magnets and between 3rd and 4th 

magnets as the distance between 1st and 2nd magnets are smaller than the other magnets’ separation 

distances. The radial magnetic flux densities in the north pole are positive (+), and when the pole 

changes to the south poles, the radial magnetic flux densities become negative (-), which can be seen 

in Figure 5.4(b). 

5.3 Magnetic Restoring Force of 2DOF 

The magnetic poles of each magnet are oriented to repel the adjacent magnet, causing the floating 

magnets to be suspended with the nonlinear restoring force. The system's nonlinear behaviour allows 

the linear response to be modified by simply varying the position of the floating magnet between the 

top (4th magnet) and bottom (1st magnet) magnets. Figure 5.5 presents the schematic of the 2DOF 
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system. The magnetic force between the 1st magnet (fixed magnet) and 2nd magnet (floating magnet) 

can be written as,  

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄1𝑟𝑟𝑡𝑡𝑄𝑄2𝑔𝑔𝐿𝐿

4𝜌𝜌𝑟𝑟𝑏𝑏2
     (5.1) 

where 𝑟𝑟𝑏𝑏 is the distance between the 1st and 2nd magnet poles. 𝑄𝑄1𝑟𝑟𝑡𝑡 and 𝑄𝑄2𝑔𝑔𝐿𝐿 are the magnetic field 

intensity of the 1st and 2nd magnet, respectively. The permeability of the air is 𝜇𝜇0. Similarly, equation 

5.1 can be rewritten for the 2nd magnet (1st floating magnet from the bottom magnet) and 3rd magnet 

(2nd floating magnet) as, 

𝐹𝐹𝑚𝑚 =
𝜇𝜇0𝑄𝑄2𝑔𝑔𝐿𝐿𝑄𝑄3𝑟𝑟𝐿𝐿

4𝜌𝜌𝑟𝑟𝑚𝑚2      (5.2) 

where 𝑟𝑟𝑚𝑚 is the distance between the 2nd magnet and 3rd magnet poles. The equation 5.1 can be 

rewritten as well for the 3rd magnet (2nd floating magnet) and 4th magnet (top fixed magnet) as, 

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄3𝑟𝑟𝐿𝐿𝑄𝑄4𝑡𝑡ℎ

4𝜌𝜌𝑟𝑟𝑡𝑡2
     (5.3) 

where 𝑟𝑟𝑡𝑡 is the distance between the 3rd magnet and 4th magnet poles. For the case of in-plane 

movement, the expression for 𝑟𝑟𝑚𝑚 and 𝑟𝑟𝑏𝑏 can be written as 

𝑟𝑟𝑚𝑚 = 𝐻𝐻𝑟𝑟1 − (𝑟𝑟𝑏𝑏 + 𝐻𝐻2)    (5.4) 

Moreover, for the case of in-plane movement, the expression for 𝑟𝑟𝑚𝑚 and 𝑟𝑟𝑡𝑡 can be written as 

𝑟𝑟𝑡𝑡 = 𝐻𝐻𝑟𝑟2 − (𝑟𝑟𝑚𝑚 + 𝐻𝐻3)    (5.5) 

where 𝐻𝐻𝑟𝑟1 is the distance between the upper surface of the bottom magnet and the lower surface of 

the 3rd magnet. On the other hand, 𝐻𝐻𝑟𝑟2 is the between the upper surface of the 2nd magnet and the 

lower surface of the 4th magnet. 𝐻𝐻1,𝐻𝐻2, 𝐻𝐻3and 𝐻𝐻4 are the heights of the 1st, 2nd, 3rd and 4th magnets, 

respectively. To determine the magnetic restoring force for the first moving magnet, the 2nd moving 

magnet is considered a fixed magnet. To measure the magnetic restoring force for the 2nd moving 

magnet, the 1st moving magnet is considered a fixed magnet. The distance y2 represents the 1st moving 

magnet (2nd magnet), and the 2nd moving magnet (3rd magnet) is represented by the distance y3, the 
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resultant magnetic forces or magnetic spring restoring forces (𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1 and 𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2) applied to the moving 

magnets can be calculated as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1 = 𝐹𝐹𝑚𝑚 − 𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄2𝑔𝑔𝐿𝐿

4𝜌𝜌
�

𝑄𝑄3𝑟𝑟𝐿𝐿
(𝑟𝑟𝑚𝑚 − 𝑦𝑦2(𝑖𝑖))2 −

𝑄𝑄1𝑟𝑟𝑡𝑡
(𝑟𝑟𝑏𝑏 + 𝑦𝑦2(𝑖𝑖))2�         (5.6) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2 = 𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑚𝑚 =
𝜇𝜇0𝑄𝑄3𝑟𝑟𝐿𝐿

4𝜌𝜌
�

𝑄𝑄4𝑡𝑡ℎ
(𝑟𝑟𝑡𝑡 − 𝑦𝑦3(𝑖𝑖))2 −

𝑄𝑄2𝑔𝑔𝐿𝐿
(𝑟𝑟𝑚𝑚 + 𝑦𝑦3(𝑖𝑖))2�         (5.7) 

 

Figure 5.5: Magnetic system where the two magnets are floating 

Magnetic spring’s restoring forces can be calibrated from the calculation of the restoring force. A 

Taylor series can express the equations 5.6 and 5.7 as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1 = 𝑘𝑘1𝑦𝑦2 + 𝛼𝛼1𝑦𝑦22 + 𝜆𝜆1𝑦𝑦23     (5.8) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2 = 𝑘𝑘3𝑦𝑦3 + 𝛼𝛼3𝑦𝑦32 + 𝜆𝜆3𝑦𝑦33     (5.9) 

where 𝑘𝑘1 and 𝑘𝑘3  are the linear constants. The nonlinear constants are denoted by 𝛼𝛼1, 𝜆𝜆1, 𝛼𝛼3 and 𝜆𝜆3. 

The analytical and numerical magnetic restoring forces for different positions of the 1st and 2nd 

floating magnets have been presented in Figure 5.6.  
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(a) 

 

(b) 

Figure 5.6: Magnetic restoring force (a) 1st floating magnet and (b) 2nd floating magnet 

The distance between the 2nd magnet (1st floating magnet) and 1st magnet (fixed magnet) is smaller 

than the distance between the 2nd (1st floating magnet) and 3rd magnet (2nd floating magnet). 

Therefore, the magnetic restoring force is higher between the 1st and 2nd magnets (2nd floating magnet) 

than the restoring force between 2nd and 3rd magnets, as presented in Figure 5.6(a). Similarly, the 

distance between the 3rd magnet (2nd floating magnets) and 2nd magnet (1st floating magnet) is smaller 

than the distance between the 3rd magnet and 4th magnet (fixed magnet). As a result, the magnetic 

restoring force between the 3rd and 2nd magnets is higher than the magnetic restoring force between 

the 3rd and 4th magnet, as seen in Figure 5.6(b). 
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5.4 Coefficients Analysis of the 2DOF System 

The proposed 2DOF system consists of two floating and two fixed ring magnets (All axially 

magnetised). Magnetic spring restoring forces has been calibrated for the 2DOF system from the 

calculation of the restoring forces. To determine the magnetic restoring force for the 1st moving 

magnet, the 2nd moving magnet is considered a fixed magnet. In the same way for the 2nd moving 

magnet, the 1st moving magnet is assumed as a fixed magnet. The linear and nonlinear coefficients 

of the magnetic restoring forces have been measured in the graphs in Figure 5.7(a) and Figure 5.8(a) 

(Magnetic Restoring Force vs Position of the Floating Magnet) by using the curve fitting tools.  

 

(a) 

 

(b) 

Figure 5.7: (a) Magnetic restoring force of the 1st floating magnet (b) Residual errors of the fitting 

curves versus the analytical force 

y = 291867x3 + 4918.6x2 + 524.37x + 2.7508
y = 96,134,911.08x5 + 2,518,682.72x4 + 195,413.43x3 + 2,969.13x2 + 543.03x + 2.93
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(a) 

 

(b) 

Figure 5.8: (a) Magnetic restoring force of the 1st floating magnet (b) Residual errors of the fitting 

curves versus the analytical force 

Subsequently, from these curves, the linear and nonlinear stiffness have been determined. For the 

2DOF oscillator system, the analytical measurements for the restoring forces are used to measure the 

linear and nonlinear stiffness of the system. The values of 𝑘𝑘1, 𝑘𝑘3, 𝛼𝛼1, 𝜆𝜆1, 𝛼𝛼3 and 𝜆𝜆3 for Equations 5.8 

and 5.9 can be measured from the least-squares curve fitting of the graphs. Both 3rd and 5th order 

polynomials have been used to determine the linear and nonlinear stiffness from both floating 

magnet’s restoring forces. Figure 5.7(a) and Figure 5.8(a) show the analytical measurement of the 

magnetic restoring forces versus deflections of the floating magnets within the maximum deflection 

of 30 mm. Meanwhile, the fitting curves’ 3rd order polynomial and 5th order polynomial are plotted 

for both floating magnets, with linear and nonlinear coefficients listed in Table 5.1. Moreover, the 

y = 107199x3 + 3487.5x2 + 298.62x + 3.444
y = 25,501,796.29x5 + 1,193,719.04x4 + 81,612.48x3 + 2,563.60x2 + 303.57x + 3.53
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residual errors of the analytical measurement for both floating magnets minus the fitting data are 

displayed in Figure 5.7(b) and Figure 5.8(b), respectively, which indicates the 5th order fit is the best. 

Table 5.1: Fitting polynomials (30 mm excitation ranges) 

Coefficients Fitting polynomials 
1st moving magnet 2nd moving magnet 

3rd order 5th order 3rd order 5th order 
𝑘𝑘1 (N/m) 524.37 543.03 --- --- 
𝑘𝑘3 (N/m) --- --- 298.62 303.57 

 𝛼𝛼1 (N/m2) 4918.6 2969.13 --- --- 
 𝛼𝛼3 (N/m2) --- --- 3487.5 2563.60 
𝜆𝜆1 (N/m3) 291867 195413.43 --- --- 
𝜆𝜆3 (N/m3) --- --- 107199 81612.48 
𝜎𝜎1 (N/m4) 0 2518682.72 --- --- 
𝜎𝜎3 (N/m4) --- --- 0 1193719.04 
𝜑𝜑1(N/m5) 0 96134911.08 --- --- 
𝜑𝜑3(N/m5) -- --- 0 25501796.29 

Table 5.2: Coefficients of the 2DOF system for different excitation ranges (3rd order polynomial) 

Excitation 
ranges 
(mm) 

Magnetic 
restoring 
forces 

𝑘𝑘1 
(N/m) 

𝑘𝑘3 
(N/m) 

 𝛼𝛼1 
(N/m2) 

 𝛼𝛼3 
(N/m2) 

𝜆𝜆1 
(N/m3) 

𝜆𝜆3 
(N/m3) 

-15 mm to 
15 mm 

1st MM 540.61 --- 3613.8 --- 227286 --- 
2nd MM --- 303.01 --- 2846.2 --- 89550 

-20 mm to 
20 mm 

1st MM 538.66 --- 3898.4 --- 241719 --- 
2nd MM --- 302.45 --- 2994.5 --- 93660 

-25 mm to 
25 mm 

1st MM 534.06 --- 4314.9 --- 262472 --- 
2nd MM --- 301.18 --- 3202.7 --- 99396 

-30 mm to 
30 mm 

1st MM 524.37 --- 4918.6  --- 291867 --- 
2nd MM --- 298.62   

 
--- 3487.5  

 
--- 107199 

Note: MM=Moving magnet 

The coefficients of the system for both floating magnets for different excitation ranges have been 

measured as well. The resulting 3rd order polynomial is plotted for both floating magnets for different 

excitation ranges, with linear and nonlinear coefficients listed in Table 5.2. The values of linear 
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stiffness 𝑘𝑘1 and 𝑘𝑘3 for -30 mm to 30 mm excitation range are 524.37 N/m and 298.62 N/m, 

respectively. The linear stiffness of the floating magnets for different excitation ranges have been 

presented in Figure 5.9. The values of nonlinear stiffness  𝛼𝛼1 and  𝛼𝛼3 are 4918.6 N/m2 and 3487.5 

N/m2, respectively. On the other hand, the other nonlinear stiffness (𝜆𝜆1 𝑎𝑎𝑛𝑛𝑑𝑑 𝜆𝜆3)’s values are 291867 

N/m3 and 107199 N/m3, respectively. The natural frequencies have been determined, as well as 

shown in Figure 5.9. Moreover, it can be seen from Table 5.2 that, for small excitation ranges, the 

linear stiffness for both floating magnets are slightly higher than the large excitation ranges. On the 

other hand, the nonlinear stiffness is higher in the large excitation ranges compared to the small 

excitation ranges.    

 

Figure 5.9: Natural frequencies of both floating magnets in the different excitation ranges 

From Figure 5.9, it can be said that for all excitation ranges, the 1st frequency are almost identical 

when the 2nd floating magnet is fixed. Similarly, the 2nd frequency floating magnet are nearly the 

same in the different excitation ranges of the magnet when it is assumed the 1st floating magnet is 

fixed. 

5.5 Modelling of the Two-degree-of-freedom Magnetic Spring-based Nonlinear Oscillator 

The schematic of the proposed 2DOF nonlinear oscillator system is presented in Figure 5.10. The 

masses of the 2nd (1st floating magnet) and 3rd (2nd floating magnet) magnets are M2 and M3, 

respectively. The damping forces of the 1st floating magnet is 𝐹𝐹𝛽𝛽1 = 𝛽𝛽1�̇�𝑦2 and 2nd floating magnet is 

𝐹𝐹𝛽𝛽3 = 𝛽𝛽3�̇�𝑦3. The relative displacement of the 1st floating magnet is 𝑦𝑦2 and the relative velocity and 

acceleration of the 1st floating magnet are �̇�𝑦2 and �̈�𝑦2, respectively. Moreover, the relative 
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displacement, velocity and acceleration of the 2nd floating magnet are 𝑦𝑦3, �̇�𝑦3 and �̈�𝑦3, respectively.  

The linear stiffness of the 1st floating magnet is 𝑘𝑘1 and the 2nd floating magnet is 𝑘𝑘3. The nonlinear 

stiffness of the 1st floating magnet is 𝛼𝛼1 and 𝜆𝜆1 and for 2nd floating magnet, are 𝛼𝛼3 and 𝜆𝜆3. Figure 5.11 

displays the free body diagram of the proposed 2DOF nonlinear oscillator system. 

 

Figure 5.10: Two-degree-of-freedom magnetic spring-based oscillator system 

In Figure 5.11, the linear stiffness 𝑘𝑘21 = 𝑘𝑘1, 𝑘𝑘23 = 𝑘𝑘32 =  𝑘𝑘2 and 𝑘𝑘34 = 𝑘𝑘3. The damping constants 

𝛽𝛽21 = 𝛽𝛽1,  𝛽𝛽23 = 𝛽𝛽32 = 𝛽𝛽2 and 𝛽𝛽34 = 𝛽𝛽3. The nonlinear coefficient, 𝛼𝛼21, is equal to 𝛼𝛼1. Moreover, 

𝛼𝛼23 and 𝛼𝛼32 are equal to 𝛼𝛼2, and 𝛼𝛼34 is equal to 𝛼𝛼3. In addition, the other nonlinear stiffness 𝜆𝜆21 = 𝜆𝜆1 

and 𝜆𝜆23 = 𝜆𝜆32 = 𝜆𝜆2 and 𝜆𝜆34 = 𝜆𝜆3. Figure 5.11 can be represented by Figure 5.12 after replacing the 

linear and nonlinear coefficients’ values. The dynamic equation of the motion of the system can be 

written as,  
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𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ − 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) + 𝑘𝑘1𝑦𝑦2 − 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) + 𝛼𝛼1𝑦𝑦22 − 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 + 𝜆𝜆1𝑦𝑦23
− 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.10) 

𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽3𝑦𝑦3̇ + 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) + 𝛼𝛼3𝑦𝑦32 + 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 + 𝜆𝜆3𝑦𝑦33
+ 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.11) 

 

Figure 5.11: Free-body diagram of the Two-degree-of-freedom system 

Equation 5.10 can be expressed as, 

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ + 𝛽𝛽2𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + 𝑘𝑘1𝑦𝑦2 + 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘2𝑦𝑦3 + 𝛼𝛼1𝑦𝑦22
− 𝛼𝛼2(𝑦𝑦32 − 2𝑦𝑦2𝑦𝑦3 + 𝑦𝑦22) + 𝜆𝜆1𝑦𝑦23 − 𝜆𝜆2(𝑦𝑦33 − 𝑦𝑦23 + 3𝑦𝑦22𝑦𝑦3 − 3𝑦𝑦2𝑦𝑦32)
= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.12) 

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ + 𝛽𝛽2𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + 𝑘𝑘1𝑦𝑦2 + 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘2𝑦𝑦3 + 𝛼𝛼1𝑦𝑦22 − 𝛼𝛼2𝑦𝑦32 + 2𝛼𝛼2𝑦𝑦2𝑦𝑦3
− 𝛼𝛼2𝑦𝑦22 + 𝜆𝜆1𝑦𝑦23 − 𝜆𝜆2𝑦𝑦33 + 𝜆𝜆2𝑦𝑦23 − 3𝜆𝜆2𝑦𝑦22𝑦𝑦3 + 3𝜆𝜆2𝑦𝑦2𝑦𝑦32
= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.13) 

𝑀𝑀2𝑦𝑦2̈ + �𝛽𝛽1 + 𝛽𝛽2)𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑦𝑦2 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆1𝑦𝑦22 + 𝜆𝜆2𝑦𝑦22 + 2𝛼𝛼2𝑦𝑦3
+ 3𝜆𝜆2𝑦𝑦32�𝑦𝑦2 − (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑦𝑦3 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.14) 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘21𝑦𝑦2 
 

𝛼𝛼21𝑦𝑦22 
 
 

𝑦𝑦2 
 

𝑦𝑦3 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘23(𝑦𝑦3 − 𝑦𝑦2) 
 𝛼𝛼23(𝑦𝑦3 − 𝑦𝑦2)2 

 

𝜆𝜆23(𝑦𝑦3 − 𝑦𝑦2)3 
  

𝛽𝛽23(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

 𝜆𝜆21𝑦𝑦23 
  

 𝛽𝛽21𝑦𝑦2̇ 
  

M2 

 𝜆𝜆34𝑦𝑦33 
  

𝑘𝑘34𝑦𝑦3 
  

𝛼𝛼34𝑦𝑦32 
  
  

𝑘𝑘32(𝑦𝑦3 − 𝑦𝑦2) 
  

 𝛽𝛽34𝑦𝑦3̇ 
  

𝛼𝛼32(𝑦𝑦3 − 𝑦𝑦2)2 
  

𝜆𝜆32(𝑦𝑦3 − 𝑦𝑦2)3 
  

M3 

𝛽𝛽32(𝑦𝑦3̇ − 𝑦𝑦2̇) 
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To make things easier of Equation 5.14, the following parameters are considered 

𝑃𝑃 = 𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑦𝑦2 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆1𝑦𝑦22 + 𝜆𝜆2𝑦𝑦22 + 2𝛼𝛼2𝑦𝑦3 + 3𝜆𝜆2𝑦𝑦32 (5.15) 

𝑄𝑄 = 𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32 (5.16) 

𝐹𝐹1 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (5.17) 

 

Figure 5.12: Free-body diagram of the Two-degree-of-freedom system 

After adding P, Q and 𝐹𝐹1, equation 5.14 can be stated as, 

𝑀𝑀2𝑦𝑦2̈ + (𝛽𝛽1 + 𝛽𝛽2)𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + 𝑃𝑃𝑦𝑦2 − 𝑄𝑄𝑦𝑦3 = 𝐹𝐹1 (5.18) 

Equation 5.11 can be expressed by equation 5.19, 

𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽3𝑦𝑦3̇ + 𝛽𝛽2�̇�𝑦3 − 𝛽𝛽2�̇�𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘2𝑦𝑦3 − 𝑘𝑘2𝑦𝑦2 + 𝛼𝛼3𝑦𝑦32 + 𝛼𝛼2𝑦𝑦32 − 2𝛼𝛼2𝑦𝑦3𝑦𝑦2
+ 𝛼𝛼2𝑦𝑦22 + 𝜆𝜆3𝑦𝑦33 + 𝜆𝜆2(𝑦𝑦33 − 𝑦𝑦23 − 3𝑦𝑦32𝑦𝑦2 + 3𝑦𝑦3𝑦𝑦22) = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.19) 

𝑀𝑀3𝑦𝑦3̈ + (𝛽𝛽3 + 𝛽𝛽2)�̇�𝑦3 − 𝛽𝛽2�̇�𝑦2 − (𝑘𝑘2 + 2𝛼𝛼2𝑦𝑦3 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆2𝑦𝑦22 + 3𝜆𝜆2𝑦𝑦32)𝑦𝑦2 + (𝑘𝑘3 + 𝑘𝑘2
+ 𝛼𝛼3𝑦𝑦3 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆3𝑦𝑦32 + 𝜆𝜆2𝑦𝑦32 + 3𝜆𝜆2𝑦𝑦22)𝑦𝑦3 = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(5.20) 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘1𝑦𝑦2 
𝛼𝛼1𝑦𝑦22 

 
 

𝑦𝑦2 
 

𝑦𝑦3 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) 
 

𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 
 

𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 
  

𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

 𝜆𝜆1𝑦𝑦23 
   𝛽𝛽1𝑦𝑦2̇ 

  

M2 

 𝜆𝜆3𝑦𝑦33 
  

𝑘𝑘3𝑦𝑦3 
  

𝛼𝛼3𝑦𝑦32 
  
  

𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) 
  

 𝛽𝛽3𝑦𝑦3̇ 
  

𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 
  

𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 
  

M3 

𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) 
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To simplify Equation 5.20, the following parameters are considered 

𝑇𝑇 = 𝑘𝑘2 + 2𝛼𝛼2𝑦𝑦3 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆2𝑦𝑦22 + 3𝜆𝜆2𝑦𝑦32 (5.21) 

𝑆𝑆 = 𝑘𝑘3 + 𝑘𝑘2 + 𝛼𝛼3𝑦𝑦3 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆3𝑦𝑦32 + 𝜆𝜆2𝑦𝑦32 + 3𝜆𝜆2𝑦𝑦22 (5.22) 

𝐹𝐹2 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (5.23) 

After adding T, S and 𝐹𝐹2, Equation 5.23 can be detailed as  

𝑀𝑀3𝑦𝑦3̈ + (𝛽𝛽3 + 𝛽𝛽2)�̇�𝑦3 − 𝛽𝛽2�̇�𝑦2 − 𝑇𝑇𝑦𝑦2 + 𝑆𝑆𝑦𝑦3 = 𝐹𝐹2 (5.24) 

The system can be presented as matrix form as well 

�𝑀𝑀2 0
0 𝑀𝑀3

� ��̈�𝑦2�̈�𝑦3
� + �

(𝛽𝛽1 + 𝛽𝛽2) −𝛽𝛽2
−𝛽𝛽2 (𝛽𝛽3 + 𝛽𝛽2)� �

�̇�𝑦2
𝑦𝑦3̇
� + � 𝑃𝑃 −𝑄𝑄

−𝑇𝑇 𝑆𝑆 � �
𝑦𝑦2
𝑦𝑦3� = �𝐹𝐹1𝐹𝐹2

� (5.25) 

State space variables can be used to solve equations 5.14 and 5.20. State space variables can be 

defined as: 

𝑒𝑒1 = 𝑦𝑦2 (5.26) 

𝑒𝑒2 = �̇�𝑦2 =
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖

 (5.27) 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 (5.28) 

𝑒𝑒3 = 𝑦𝑦3 (5.29) 

𝑒𝑒4 =
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖

= �̇�𝑦3 (5.30) 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 (5.31) 

𝐷𝐷 = 𝐹𝐹𝑏𝑏𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (5.32) 

Using the above state variables, Equation 5.14 can be written as 

𝐿𝐿𝑥𝑥2
𝐿𝐿𝑡𝑡

= �̈�𝑦2 = 1
𝑀𝑀2

[𝐷𝐷 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝛽𝛽2𝑒𝑒4 − (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 +

2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑒𝑒3  

(5.33) 
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The following parameters are considered to help simplify Equation 5.33 

𝑃𝑃1 = (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 + 2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32) (5.34) 

𝑄𝑄1 = (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32) (5.35) 

Equation 5.33 can then be rewritten as 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 =
1
𝑀𝑀2

[𝐷𝐷 − 𝑃𝑃1𝑒𝑒1 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝑄𝑄1𝑒𝑒3 + 𝛽𝛽2𝑒𝑒4] (5.36) 

Equation 5.20 can be written as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

[𝐷𝐷 − (𝛽𝛽3 + 𝛽𝛽2)𝑒𝑒4 + 𝛽𝛽2𝑒𝑒2 + (𝑘𝑘2 + 2𝛼𝛼2𝑒𝑒3 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1
− (𝑘𝑘3 + 𝑘𝑘2 + 𝛼𝛼3𝑒𝑒3 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆3𝑒𝑒32 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12)𝑒𝑒3] 

(5.37) 

To shorten Equation 5.37, q the following parameters are considered 

𝑇𝑇1 = (𝑘𝑘2 + 2𝛼𝛼2𝑒𝑒3 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32) (5.38) 

𝑆𝑆1 = (𝑘𝑘3 + 𝑘𝑘2 + 𝛼𝛼3𝑒𝑒3 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆3𝑒𝑒32 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12) (5.39) 

After adding T1 and S1, equation 5.37 can be stated as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

[𝐷𝐷 + 𝑇𝑇1𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2 − 𝑆𝑆1𝑒𝑒3 − (𝛽𝛽3 + 𝛽𝛽2)𝑒𝑒4] (5.40) 

The state space model of the 2DOF system can be written as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 1 0 0
−𝑃𝑃1
𝑀𝑀2

−(𝛽𝛽1 + 𝛽𝛽2)
𝑀𝑀2

𝑄𝑄1
𝑀𝑀2

𝛽𝛽2
𝑀𝑀2

0 0 0 1
𝑇𝑇1
𝑀𝑀3

𝛽𝛽2
𝑀𝑀3

−𝑆𝑆1
𝑀𝑀3

−(𝛽𝛽3 + 𝛽𝛽2)
𝑀𝑀3�������������������������

𝑨𝑨 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4

�+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

1
𝑀𝑀2
0
1
𝑀𝑀3�
𝑩𝑩 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[𝐷𝐷] 

(5.41) 
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[𝑧𝑧] =

⎣
⎢
⎢
⎢
⎢
⎡1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1���������

𝑪𝑪 ⎦
⎥
⎥
⎥
⎥
⎤

�

𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4

�+ �0⏟
𝑫𝑫
� [𝐷𝐷] 

(5.42) 

Where A is the system matrix, B is the input matrix, and C is the output matrix. The remaining matrix 

is D which is typically zero because the input directly does not usually affect the output.  

5.6 Dynamics Analysis of the 2DOF System 

The mass of the 2nd magnet (1st floating magnet) is 0.37 kg (mass including plastic bush), and the 3rd 

magnet (2nd floating magnet) is 0.32728 kg (mass including plastic bush). Table 5.3 displays the 

values of the required parameters.  

Table 5.3: Required parameters 

Parameters Values Units 
𝛽𝛽1 0.98 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽2 0.235 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽3 0.51 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝑘𝑘1 524.37 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘2 112.875 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘3 298.62 𝑁𝑁 𝑚𝑚⁄  
𝛼𝛼1 4918.6 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼2 715.55 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼3 3487.5 𝑁𝑁 𝑚𝑚2⁄  
𝜆𝜆1 291867 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆2 92334 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆3 107199 𝑁𝑁 𝑚𝑚3⁄  

The distance between 1st (fixed magnet) and 2nd magnets (1st floating magnet) is 0.068 m, and between 

2nd (1st floating magnet) and 3rd (2nd floating magnet) magnets is 0.079 m. Moreover, the distance 

between 3rd (2nd floating magnet) and 4th (fixed magnet) magnets is 0.104 m. The total length of the 

oscillator is 0.303 m. The measured damping ratio for the 1st floating magnet was 0.029 and for the 

2nd floating magnets was 0.021. The measured resonance frequencies were 44.89 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄  and 

32.87 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄ , respectively. The simulation results of the system are shown in Table 5.4. 
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Table 5.4: Eigenvalues and resonance frequencies of the system for different positions of both 

floating magnet 

PFM Eigenvalue Resonance frequency (rad/s) 

1st 2nd 
-20 -20 -1.7959 +51.1241i -0.9841 +33.1288i 51.1557 33.1434 
-15 -15 -1.8030 +47.2198i -0.9771 +32.4700i 47.2542 32.4847 
-10 -10 -1.8084 +44.5184i -0.9716 +32.2040i 44.5551 32.2187 
-05 -05 -1.8108 +43.2233i -0.9692 +32.3706i 43.2612 32.3851 
0 0 -1.8112 +43.4235i -0.9689 +33.0119i 43.4612 33.0261 

05 05 -1.8108 +45.0812i -0.9693 +34.1246i 45.1176 34.1384 
10 10 -1.8084 +48.0638i -0.9716 +35.6407i 48.0978 35.6539 
15 15 -1.8037 +52.1713i -0.9764 +37.4735i 52.2025 37.4862 
20 20 -1.7978 +57.1763i -0.9822 +39.5583i 57.2046 39.5704 

Note: PFM= Position of the floating magnets, FM= Floating magnet 

From Table 5.4, it can be seen that different positions of both floating magnets showed different 

eigenvalues and different resonance frequencies. As discussed in the earlier chapter, the real parts of 

the eigenvalues always remained constant for all the different positions of the floating magnet, when 

it moved toward the top and bottom magnets in the single degree of freedom system. The imaginary 

parts of the single degree of freedom system’s eigenvalues changed with the changing position of the 

two floating magnets. It has been seen from the analysis (3rd order polynomial model) at Table 5.4 

that in the 2DOF system, the real parts and imaginary parts of the eigenvalues changed with the 

changing position of the two floating magnets. Due to the relative motion between two floating 

magnets, the eigenvalues of the system changed when both floating magnets changed their position. 

To understand the system for this analysis, it has been considered that when a floating magnet moves 

by 1 mm, another floating magnet is relatively moved by 1mm. But practically, the 2nd floating moved 

more than the 1st floating due to less damping ratio and resonance frequency. The 1st floating magnet 

showed a higher resonance frequency than the 2nd when both magnets moved from their equilibrium 

positions. If the 2nd floating magnet moved toward the top magnet, the 1st floating magnet moved 

toward the 2nd floating magnet. On the other hand, when the 2nd floating magnet moved toward the 

1st floating magnet, the 1st floating magnet moved toward the bottom fixed magnet. When the 2nd 

floating moved from the equilibrium position toward the top magnet or the 1st floating magnet, the 

resonance frequencies increased. 
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Figure 5.13: (a) Eigenvalues and (b) natural frequency of the system 

Similarly, the frequency increased when the 1st floating magnet moved toward the bottom magnet or 

the 2nd floating magnet. The graphical presentation of the eigenvalues and natural frequency of the 

system have been presented in Figure 5.13. In Figure the legend x1 indicate the position of both 

floating magnets. In the legend x1=0 means both floating magnets are in equilibrium positions.  

When both floating magnets move toward the top fixed magnet by 5 mm then the legend is shown as 

x1=-0.005 and similarly x1=0.005 indicate that both floating magnets moved by 5 mm toward bottom 

magnet from the equilibrium position. The circles in Figure 5.13 represents the 1st resonance 

frequency of the system and the cross represents the 2nd resonance frequency for different positions 

of the floating magnets.  Figure 5.14 and Figure 5.15 present the system's natural frequencies when 

both floating magnets are in equilibrium positions and different positions. 
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Figure 5.14: Natural frequency when both floating magnets are in equilibrium positions 

Figure 5.14 presents two resonances of the system. When both floating magnets were in the 

equilibrium position, the measured resonance frequencies were 33 rad/s and 44.3 rad/sec, 

respectively, which are similar to the experimentally measured frequencies (32.87 rad/s and 44.89 

rad/s). The resonance changed with changing the position of the floating magnets, which can be seen 

in Figure 5.15. If an external force is applied on the 2nd floating magnet, then the displacements and 

velocities of both floating magnets (1st and 2nd floating magnets) are shown in Figure 5.16 and Figure 

5.17. The applied external harmonic force (Fb) amplitude is 10 N, and the frequency (f) is 0.1 Hz. 

The values of linear stiffness, nonlinear stiffness and damping constants are presented in Table 5.3. 

Ode23t solver has been used in MATLAB to find the displacements and velocities of both floating 

magnets. The excitation of both floating magnets was assumed to have initial displacements, and their 

corresponding velocities were zero. The frequency of the harmonic force was 0.1 Hz. As expected, 

the displacements and the velocities were sinusoidal and 90° out of phase. The amplitude of 

displacement of the 2nd floating magnet was around 20 mm toward the 1st floating magnet (2nd 

magnet) and about 25 mm toward the top magnet.  
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Figure 5.15: Natural frequency for different positions of both floating magnets  

 

Figure 5.16: Displacement and velocity of the 1st floating magnet under harmonic force  
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Figure 5.17: Displacement and velocity of the 2nd floating magnet under harmonic force 

On the other hand, the displacement amplitude of the 1st floating magnet was around 4 mm toward 

the bottom magnet (1st magnet) and about 5 mm toward the 2nd floating magnet (3rd magnet). These 

confirm the amplitude of the displacement signals, as shown in Figure 5.16 and Figure 5.17. 

Moreover, the velocities vs displacements graph of both floating magnets under the same harmonic 

force have been presented in Figure 5.18. 
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(b) 

Figure 5.18: (a) Displacement vs velocity and (b) Comparison of displacement and velocity of the 

1st floating magnet with 2nd floating magnet 

 

Figure 5.19: Comparison of displacement and velocity of the 1st floating magnet with 2nd floating 

magnet 
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If the external force was applied to the 2nd floating magnet, it started moving, causing the 1st floating 

magnet to move as well. Comparing the displacement and velocity of the 2nd floating magnet with 

the 1st floating magnet; the 2nd floating magnet has a larger displacement and velocity than the 1st 

floating magnet, which can be seen in Figure 5.18. Similarly, if the same external force is applied to 

the 1st floating magnet, it starts to move causing the 2nd floating magnet to move as well. Comparing 

the displacement and velocity of the 1st floating magnet with the 2nd floating magnet, the 2nd floating 

magnet has a smaller displacement and velocity than the 1st floating magnet, as shown in Figure 5.19.  

 

Figure 5.20: Comparison of displacement and velocity of the 1st floating magnet with 2nd floating 

magnet 

Moreover, if the same external forces were applied on both floating magnets, both magnets would 

move. The displacement and velocity of the 1st floating magnet are smaller than the 2nd floating 

magnet, as shown in Figure 5.20. In that scenario, both floating magnets achieved relatively higher 

displacements and velocities compared to previously discussed scenarios. However, the 2nd floating 

magnet consistently achieved higher displacement and velocity than the 1st in all scenarios due to the 

smaller damping ratio.  
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5.7 Different Lengths of the Oscillator 

To find the best model of the 2DOF nonlinear oscillator system, the design of the oscillator system 

has been analysed by changing the position of the top fixed magnet (4th magnet). When it is in 

equilibrium, the distance between the 2nd magnet and 1st magnet (bottom fixed magnet) is 68 mm, the 

distance between the 3rd magnet and the 2nd magnet is 79 mm, the distance between 3rd magnet and 

4th magnet (top fixed magnet) is 104 mm. The total length of the 2DOF system for this equilibrium 

position is 303 mm. Figure 5.21 presents the equilibrium position of the top fixed magnet as well as 

the sign convention given to the movement of the 4th magnet. 

 

Figure 5.21: 2DOF Magnetic spring-based nonlinear oscillator system 

The gravitational force affects the equilibrium positions, damping ratios and natural frequencies of 

both floating magnets, which have been measured experimentally for different positions of the top 

fixed magnet (4th magnet), as presented in Table 5.5 and Table 5.6. By changing the position of the 

top fixed magnet, the distances between 1st and 2nd, 2nd and 3rd and 3rd and 4th magnets can be changed. 

Different separation distances between magnets provide different damping ratios. When the total 

length of the oscillator increased, the distance between 1st and 2nd, 2nd and 3rd and 3rd and 4th increased. 

On the other hand, the spaces between 1st and 2nd, 2nd and 3rd and 3rd and 4th reduced when the total 
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length of the oscillator reduced from 303 mm. Moreover, the gravitational force effects on both 

floating magnets changed with changing the position of the top magnet, as shown in Table 5.5.  

Table 5.5: Change of damping ratio for different lengths of the oscillator 

Position 
of the top 
magnet 
(mm) 

Distance 
between 
1st and 2nd 
magnets 
(mm)  

Distance 
between 
2nd and 3rd 
magnets 
(mm) 

Distance 
between 
3rd and 4th 
magnets 
(mm) 

The total 
length of 
the 
oscillator 
(mm) 

Gravitational 
effects 
(mm) 

Damping ratio 

1st 
floating 
magnet 

2nd 
floating 
magnet 

1st 
floating 
magnet 

2nd 
floating 
magnet 

-20 64 73 94 283 4.5 10.5 0.056 0.032 
-10 65.5 75.5 100 293 5 12.25 0.032 0.030 
0 68 79 104 303 5.5 12.5 0.029 0.021 

+ 10 69 81 111 313 6 15 0.027 0.017 
+20 70.5 83.5 117 323 6.5 16.75 0.024 0.015 
+ 30 71 86 124 333 7.5 19 0.023 0.014 
+40 72 88 131 343 8 21.5 0.021 0.012 
+50 73 89 139 353 8 25 0.020 0.011 

For all different lengths of the oscillator, the separation distance between the 3rd and 4th magnet always 

remained higher than the distances between 1st and 2nd
, and 2nd and 3rd magnets. However, the distance 

between 2nd and 3rd magnets remained greater than the distance between 1st and 2nd magnets. Still, it 

stayed smaller than the distance between 3rd and 4th magnets for all changing lengths of the oscillator. 

Therefore, the damping constant and natural frequency of the 1st floating magnet (2nd magnet) is 

always higher than the damping constant and natural frequency of the 2nd floating magnet (3rd 

magnet). Moreover, the damping ratio and the natural frequency of the system can be changed by 

changing the total length of the oscillator. The damping ratios and natural frequencies of both floating 

magnets increased with reducing the total length of the oscillator and decreased with increasing the 

total length of the oscillator, as seen in Table 5.5 and Table 5.6. The natural frequencies of the system 

in the equilibrium position were 44.89 rad/s and 32.87 rad/s, respectively, and they increased to 47.86 

rad/s and 37.31 rad/s, respectively when the 4th magnet moved toward 3rd magnet from the equilibrium 

position by 20 mm (reduced the total length of the oscillator). On the other hand, the frequencies 

decreased to 38.76 rad/s and 24.85 rad/s when the top magnet moved away from the equilibrium 

position (increased the total length of the oscillator), which can be seen in Table 5.6. 
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Table 5.6: Change of natural frequency for different positions of the top magnet (different length of 

the oscillator) 

Position 
of the top 
magnet 
(mm) 

Distance 
between 

1st and 2nd 
magnets 

(mm) 

Distance 
between 

2nd and 3rd 
magnets 

(mm) 

Distance 
between 

3rd and 4th 
magnets 

(mm) 

Natural frequency (rad/s) 

-20 64 73 94 47.86 37.31 

-10 65.5 75.5 100 46.85 34.97 
0 68 79 104 44.89 32.87 

+ 10 69 81 111 43.38 30.80 
+20 70.5 83.5 117 42.05 29.44 
+ 30 71 86 124 40.24 27.20 
+40 72 88 131 39.98 25.91 
+50 73 89 139 38.76 24.85 

The magnetic restoring forces of the 1st and 2nd floating magnets changed with changing the 

oscillator's total length. Moreover, the linear and nonlinear stiffness of both floating magnets changed 

with changing the total length of the oscillator. The magnetic restoring forces for both floating 

magnets are measured analytically, as presented in Figure 5.22. For the first floating magnet (2nd 

magnet), the distance between itself and its top magnet (3rd magnet) is larger than the distance 

between itself and its bottom magnet. Therefore, if the 2nd magnet moved up and down from the 

equilibrium position, the magnetic force between the 2nd and 1st magnet is larger than the magnetic 

force between the 2nd magnet and 3rd magnet. For all different lengths of the oscillator, the distance 

between 2nd and 3rd magnets always remained larger than the distance between 2nd and 1st magnets. 

As a result, for all different lengths of the oscillator, the magnetic forces between 2nd and 1st magnets 

always remained larger than the magnetic forces between 2nd and 3rd magnets, as shown in Figure 

5.22(a). Similarly, in the case of the 2nd floating magnet (3rd magnet), the distance between 3rd and 

2nd magnets are smaller than the distance between 3rd and 4th magnets. If the 2nd magnet moved up 

and down from the equilibrium position, then the magnetic force between the 3rd and 2nd magnets is 

larger than the magnetic force between the 2nd magnet and 3rd magnet. For all different lengths of the 

oscillator, the distance between 3rd and 2nd magnets always remained smaller than the distance 

between 3rd and 4th magnets. 
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(a) 

 

(b) 

Figure 5.22: Magnetic restoring forces of the 1st and 2nd floating magnet for different lengths of the 

oscillator 

Thus, for all different lengths of the oscillator, the magnetic forces between 3rd and 4th magnets always 

stayed smaller than the magnet forces between 3rd and 2nd magnets, which can be seen in Figure 

5.22(b). The linear and nonlinear stiffness of the 1st and 2nd floating magnets for different lengths of 

the oscillator has been presented in Table 5.7 and Table 5.8, respectively.  
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Table 5.7: Linear and nonlinear-stiffness of the 1st floating magnet for different lengths of the 

oscillator 

Position of the top 
magnet (4th magnet) 

(mm) 

𝒌𝒌𝟏𝟏 (N/m) 𝜶𝜶𝟏𝟏 (N/m2) 𝝀𝝀𝟏𝟏 (N/m3) 

-20 635.38 6067.9 427598 
-10 588.28 5701.4 366883 
0 524.37 4918.6 291867 
10 497.07 4793 264036 
20 462.72 4477.2 230480 
30 442.43 4684.1 214303 
40 420.89 4507 195636 
50 405.5 4190.4 181669 

Table 5.8: Linear and nonlinear-stiffness of the 2nd floating magnet for different lengths of the 

oscillator 

Position of the top 
magnet (4th magnet) 

(mm) 

𝒌𝒌𝟑𝟑 (N/m) 𝜶𝜶𝟑𝟑 (N/m2) 𝝀𝝀𝟑𝟑 (N/m3) 

-20 383.76 4813.9 170047 
-10 338.99 4343.2 136951 
0 298.62 3487.5 107199 
10 267.88 3324.2 90145 
20 240.53 2988.3 75034 
30 215.64 2710.5 62653 
40 196.85 2528.8 54258 
50 184.42 2504.2 49824 

The natural frequencies and damping ratios of the 1st and 2nd floating magnets changed with the 

oscillator's total length, as presented in Figure 5.23 and Figure 5.24. The natural frequencies and 

damping ratios increased for both floating magnets with decreasing the length of the oscillator. On 

the other hand, the natural frequencies and damping ratios decreased with increasing the total length 

of the oscillator as all experimental works have been performed manually, and all approximate values 

compared with the analytical measurement. The differences between the experimental and analytical 

measurements and the percentage of errors between them have been determined and displayed in 

Figure 5.23 and Figure 5.24, respectively. 
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(a) 

 

  (b) 

Figure 5.23: (a) 1st natural frequency and (b) damping ratio for different lengths of the oscillator 
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  (a) 

 

  (b) 

Figure 5.24: (a) 2nd natural frequency and (b) damping ratio for different lengths of the oscillator 
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measurements are shown in Figure 5.23(a) and Figure 5.24(a). The experimental measurements of 

natural frequencies for different lengths of the oscillator always stayed slightly higher than the 

analytical measurements for both floating magnets. The percentage error of analytical measurements 

from experimental measurements varies for different positions of the top (4th) magnet. On the other 

hand, during the measurements of damping ratio maximum time, the values analytically measured 

for both floating magnets remained higher than the values experimentally measurement when the top 

magnets moved from the equilibrium position, which can be seen in Figure 5.23(b) and Figure 

5.24(b).  

5.8 Conclusion 

In this chapter, the characteristics of the magnetic spring-based 2DOF system and dynamics of the 

oscillator system have been analysed using analytical, experimental and numerical methods. The 

magnetic restoring forces and magnetic spring stiffness of the proposed 2DOF system have been 

studied numerically and theoretically. Analytical measured values have validated the numerical 

measured magnetic restoring forces of the system. The 3rd and 5th order polynomial curve fitting 

models have been used to determine the nonlinear behaviour of the 2DOF system and determine the 

linear and nonlinear coefficients from the modelled magnetic restoring forces. Moreover, by changing 

the position of both floating magnets, the linear and nonlinear coefficients of the system have been 

investigated. Based on these investigations, the dynamics of the 2DOF nonlinear system have been 

analysed. The position of the top fixed magnet has a significant impact on the 2DOF oscillator system, 

which have been analysed as well by changing the position of the top fixed magnet. The separation 

distances between magnets changed with the length of the oscillator, and it has been found that the 

separation distance between magnets has a significant influence on the vibration of the oscillator.  
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Chapter 6  
Dynamic Behaviours of Three-degree-of-freedom Magnetic Spring-based 

Nonlinear Oscillator System 

In chapter 5, the two-degree-of-freedom (2DOF) magnetic spring-based system and its dynamics 

were investigated. However, the SDOF magnetic spring-based system had only one-degree-of-

freedom, and it was limited to only one resonant natural frequency. On the other hand, the 2DOF 

magnetic spring-based system had two-degree-of-freedom, and it was limited to two natural resonant 

frequencies. Preferably, the energy generator should pick up and resonate at every frequency present 

in the vibration source. By employing three-degree-of-freedom (3DOF) oscillator systems, one can 

use three resonant frequencies and achieve maximum power than SDOF and 2DOF oscillator 

systems. The simplest form of a 3DOF system is three floating magnets masses. This chapter deals 

with 3DOF magnetic spring-based oscillator systems and their behaviour about various design 

criteria. The study of 3DOF is a prerequisite to designing complex 3DOF magnetic spring-based wave 

energy convertor systems that will be discussed in Chapter 9. Therefore, this chapter aims to study 

the magnetic restoring forces and coefficients of the 3DOF magnetic spring-based system and analyse 

the system's dynamics. 

6.1 Design Configuration of the Three-degree-of-freedom Nonlinear Oscillator System 

Five permanent ring magnets, axially magnetised through the height of 13mm, have been used to 

create the three-degree-of-freedom (3DOF) nonlinear oscillator system. Just simply, a ring magnet 

has been added with the previous two-degree-of-freedom model oscillator model discussed in chapter 

5. For the design concept, the 5th magnet is added on the top of the 4th magnet and fixed with the 

shaft, and the 4th magnet keeps as a floating magnet along with 2nd and 3rd magnets. The 1st and 5th 

magnets are fixed with the shaft. The fixed magnets are attached to the end of the shaft, and their 

polarity is set in such a way that the repulsive force is created between the levitating magnet and the 

fixed magnets. The magnetic poles are oriented (NS-SN-NS-SN-NS) such that each magnet repels 

the adjacent magnets. The height and width of the test rig are 550 mm and 300 mm, respectively. 

Moreover, the height and diameter of the shaft are 550 mm and 12 mm, respectively. For the test rig 

design, as presented in Figure 6.1, when the 5th magnet is added to the top of the 4th magnet: the 

distance between the 2nd and bottom magnet is reduced to 61 mm, the distance between the 2nd and 

3rd magnets is reduced to 68 mm, the distance between the 3rd and 4th magnets is reduced to 79 mm, 
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and the 5th and 4th magnets are separated by 104 mm. For all degrees of freedom systems, the distance 

between the top magnet and the magnet underneath always remain 104 mm. When a magnet is added 

to the top of the other magnet in all situations, only the distance between the bottom magnet and 2nd 

magnet is reduced. For the 3DOF system, when the 5th magnet is added to the top of the 2DOF, the 

distance between the bottom magnet and the 2nd magnet is reduced.  

 

Figure 6.1: Test rig without winding coil 

6.2 Magnetic Analysis of 3DOF system 

The five (same size and shape) ring-type permanent magnets have been used to design the three-

degree-of-freedom magnetic spring-based nonlinear oscillator system, as described in Section 6.1. 

The properties of the magnets have been presented in Table 3.1. The magnetic flux density on the 

magnet surface and the magnetisation direction is displayed in Figure 6.2.  
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   (a) (b) 

Figure 6.2: (a) Magnetic flux density and (b) Magnetization direction 

All designed magnets are axially magnetised (toward the North Pole), as shown in Figure 6.2(b). 

Figure 6.2(a) presents the magnetic flux densities on the surface of the magnets. The magnetic flux 

densities in the radial direction are larger than those in the axial direction. Figure 6.3 depicts the 

magnitude of the magnetic flux density. Figure 6.3(a) shows the magnitude of the magnetic flux 

density. It can be seen from Figure 6.3(a) that the maximum magnetic flux densities are found near 

the surface of the magnet. Figure 6.3(b) displays the magnetic flux density vector where the flux lines 

emerge from the north poles, travel around, and enter the south poles. It also shows the Z-axis as a 

line through the centre of all the magnets. A line, d, is considered which is perpendicular to the X-

axis and 37 mm (d1) from the centre line (Z-axis) of the magnetic stack in the radial direction, as 

shown in Figure 6.4, to measure the magnetic flux density in the axial and radial direction.  
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(a) (b) 

Figure 6.3: (a) Mag_B in YZ plane and (b) B_Vector in YZ plane 

 

Figure 6.4: Magnetic flux density (B_Vector) in YZ plane 
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(a) 

 

(b) 

Figure 6.5: (a) Radial magnetic flux density and (b) Axial direction magnetic flux density 

Going from 𝑑𝑑 = 0 (sudden position below the 1st magnet) to 𝑑𝑑 = 600 𝑚𝑚𝑚𝑚 (sudden place in the upper 

part of the 5th magnet), the movement of the vertical arrows on one side is equivalent to the other side 

Figure 6.4. Figure 6.5(a) and Figure 6.5(b), respectively, are the measured magnetic flux density in 

the axial and radial directions.  The values of magnetic flux density in Figure 6.5(a) were taken along 

the axial direction at various positions in the centre line, and the values of magnetic flux density in 

Figure 6.5(b) were taken along the radial direction at different places on the line 𝑑𝑑.  

6.3 Magnetic Restoring Force of 3DOF 

The magnetic poles of each magnet of the three-degree-of-freedom system are oriented to repel the 

adjacent magnet, causing the floating magnets to be suspended with the nonlinear restoring force. 
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The system's nonlinear behaviour allows the linear response to be modified by simply varying the 

position of the floating magnet between the top (5th magnet) and bottom (1st magnet) magnets. The 

magnetic force between the 1st magnet (fixed magnet) and 2nd magnet (floating magnet) can be written 

as,  

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄1𝑟𝑟𝑡𝑡𝑄𝑄2𝑔𝑔𝐿𝐿

4𝜌𝜌𝑟𝑟12
     (6.1) 

where 𝑟𝑟1 is the distance between the 1st and 2nd magnets, 𝑄𝑄1𝑟𝑟𝑡𝑡 and 𝑄𝑄2𝑔𝑔𝐿𝐿 are the magnetic field intensity 

of the 1st and 2nd magnet respectively, and the permeability of the air is 𝜇𝜇0. Similarly, equation 6.1 

can be rewritten for the 2nd magnet (1st floating magnet from the bottom magnet) and 3rd magnet (2nd 

floating magnet) as, 

𝐹𝐹𝑚𝑚 =
𝜇𝜇0𝑄𝑄2𝑔𝑔𝐿𝐿𝑄𝑄3𝑟𝑟𝐿𝐿

4𝜌𝜌𝑟𝑟22
     (6.2) 

where 𝑟𝑟2 is the distance between the 2nd magnet and 3rd magnet poles. The equation 6.1 can be 

rewritten as well for the 3rd magnet (2nd floating magnet) and 4th magnet (3rd floating magnet) as, 

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄3𝑟𝑟𝐿𝐿𝑄𝑄4𝑡𝑡ℎ

4𝜌𝜌𝑟𝑟32
     (6.3) 

where 𝑟𝑟3 is the distance between the 3rd magnet and 4th magnet poles. Moreover, equation 6.1 can be 

rewritten as well for the 4th magnet (3rd floating magnet) and 5th magnet (fixed magnet) as, 

𝐹𝐹𝑏𝑏 =
𝜇𝜇0𝑄𝑄4𝑡𝑡ℎ𝑄𝑄5𝑡𝑡ℎ

4𝜌𝜌𝑟𝑟42
     (6.4) 

where 𝑟𝑟4 is the distance between the 4th magnet and 5th magnet poles. For the case of in-plane 

movement, the expression for 𝑟𝑟𝑚𝑚 and 𝑟𝑟𝑏𝑏 can be written as 

𝑟𝑟2 = 𝐻𝐻𝑟𝑟1 − (𝑟𝑟1 + 𝐻𝐻2)   (6.5) 

Moreover, for the case of in-plane movement, the expression for 𝑟𝑟𝑚𝑚 and 𝑟𝑟𝑡𝑡 can be written as 

𝑟𝑟3 = 𝐻𝐻𝑟𝑟2 − (𝑟𝑟2 + 𝐻𝐻3)    (6.6) 

Moreover, for the case of in-plane movement, the expression for 𝑟𝑟𝑚𝑚 and 𝑟𝑟𝑡𝑡 can be written as 
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𝑟𝑟4 = 𝐻𝐻𝑟𝑟3 − (𝑟𝑟3 + 𝐻𝐻4)    (6.7) 

where 𝐻𝐻𝑟𝑟1 is the distance between the upper surface of the bottom magnet and lower surface of the 

3rd magnet, 𝐻𝐻𝑟𝑟2 is the separation distance between the upper surface of the 2nd magnet and lower 

surface of the 4th magnet, and 𝐻𝐻𝑟𝑟3 is the distance between the upper surface of the 3rd magnet and the 

lower surface of the 5th magnet. 𝐻𝐻1,𝐻𝐻2, 𝐻𝐻3, 𝐻𝐻4 and 𝐻𝐻5 are the heights of the 1st, 2nd, 3rd, 4th and 5th 

magnets, respectively. To determine the magnetic restoring force for the first moving magnet, the 2nd 

and 3rd moving magnets are considered to be fixed. To measure the magnetic restoring force of the 

2nd moving magnet, the 1st and 3rd moving magnets are considered to be fixed. Similarly, the 1st and 

2nd moving magnets are deemed to be fixed magnets to determine the restoring force 3rd moving 

magnet. In addition, y2, y3 and y4 are the moving distances of 1st moving magnet (2nd magnet), 2nd 

moving magnet (3rd magnet) and 3rd moving magnet (4th magnet), respectively. Figure 6.6 presents 

the schematic of the three-degrees-of-freedom oscillator system. The resultant magnetic forces or 

magnetic spring restoring forces (𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1, 𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2, and 𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟3) applied to the moving magnets can be 

calculated as, 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1 = 𝐹𝐹2 − 𝐹𝐹1 =
𝜇𝜇0𝑄𝑄2𝑔𝑔𝐿𝐿

4𝜌𝜌
�

𝑄𝑄3𝑟𝑟𝐿𝐿
�𝑟𝑟2 − 𝑦𝑦2(𝑖𝑖)�

2 −
𝑄𝑄1𝑟𝑟𝑡𝑡

�𝑟𝑟1 + 𝑦𝑦2(𝑖𝑖)�
2� 

(6.8) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2 = 𝐹𝐹3 − 𝐹𝐹2 =
𝜇𝜇0𝑄𝑄3𝑟𝑟𝐿𝐿

4𝜌𝜌
�

𝑄𝑄4𝑡𝑡ℎ
(𝑟𝑟3 − 𝑦𝑦3(𝑖𝑖))2 −

𝑄𝑄2𝑔𝑔𝐿𝐿
(𝑟𝑟2 + 𝑦𝑦3(𝑖𝑖))2�    (6.9) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟3 = 𝐹𝐹4 − 𝐹𝐹3 =
𝜇𝜇0𝑄𝑄4𝑡𝑡ℎ

4𝜌𝜌
�

𝑄𝑄5𝑡𝑡ℎ
(𝑟𝑟4 − 𝑦𝑦4(𝑖𝑖))2 −

𝑄𝑄3𝑟𝑟𝐿𝐿
(𝑟𝑟3 + 𝑦𝑦4(𝑖𝑖))2� (6.10) 

The restoring forces of the magnetic springs can be calibrated from the calculation of the magnetic 

force. Equations 6.8, 6.9 and 6.10 can be expressed by a 3rd order Taylor series as,  

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟1 = 𝑘𝑘1𝑦𝑦2 + 𝛼𝛼1𝑦𝑦22 + 𝜆𝜆1𝑦𝑦23     (6.11) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟2 = 𝑘𝑘3𝑦𝑦3 + 𝛼𝛼3𝑦𝑦32 + 𝜆𝜆3𝑦𝑦33    (6.12) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟3 = 𝑘𝑘5𝑦𝑦4 + 𝛼𝛼5𝑦𝑦42 + 𝜆𝜆5𝑦𝑦43     (6.13) 

where 𝑘𝑘1 ,𝑘𝑘3  and 𝑘𝑘5 are the linear constants. The nonlinear constants are denoted by 𝛼𝛼1, 𝜆𝜆1, 𝛼𝛼3, 𝜆𝜆3, 

𝛼𝛼5 and 𝜆𝜆5. The analytical and numerical magnetic restoring forces for different positions of the 1st, 

2nd, and 3rd floating magnets have been presented in Figure 6.7. 
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Figure 6.6: Magnetic system where 3 magnets are floating 

The distance between the 2nd magnet (1st floating magnet) and 1st magnet (fixed magnet) is smaller 

than the distance between the 2nd (1st floating magnet) and 3rd magnet (2nd floating magnet). 

Therefore, the magnetic force is larger between the 1st and 2nd magnets (1st floating magnet) than the 

magnetic force between 2nd and 3rd magnets, as presented in Figure 6.7(a). Similarly, the distance 

between the 3rd magnet (2nd floating magnet) and 2nd magnet (1st floating magnet) is smaller than the 

distance between the 3rd magnet and 4th magnet (3rd floating magnet). As a result, the magnetic 

restoring force between the 3rd and 2nd magnets is greater than the magnetic restoring force between 

the 3rd and 4th magnet, as seen in Figure 6.7(b). 
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(a) 

 

(b) 

 

(c) 

Figure 6.7: Magnetic restoring force (a) 1st floating magnet and (b) 2nd floating magnet and (c) 3rd 

floating magnet 

Furthermore, the distance between the 4th magnet (3rd floating magnet) and 3rd magnet (2nd floating 

magnet) is smaller than the distance between the 4th magnet and 5th magnet (top fixed magnet). The 
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repulsive magnetic force between the 4th magnet (3rd floating magnet) and 3rd magnet (2nd floating 

magnet) is greater than the repulsive force between the 4th magnet and 5th magnet (top fixed magnet). 

Moreover, the effects of gravitational forces on the equilibrium positions for all floating magnets of 

the 3DOF system can be seen in Figure 6.7.  

6.4 Coefficients Analysis of the 3DOF System 

The 3DOF system consists of 3 floating magnets and two fixed ring magnets, all of which are axially 

magnetised. To determine the magnetic restoring force of the 1st moving magnet, the 2nd and 3rd 

moving magnets are considered fixed magnets. Likewise, for the 2nd moving magnet, the 1st and 3rd 

moving magnets are assumed as a fixed magnet. The 1st and 2nd floating magnets are considered fixed 

magnets during the magnetic restoring force measurement of the 3rd floating magnet. The magnetic 

restoring forces curve for all moving magnets are presented in Figure 6.8, 6.9 and 6.10.  

 

(a) 

 

(b) 

Figure 6.8: (a) Magnetic restoring force for 1st moving/floating magnet (b) Residual error 

y = 741312x3 + 7374.3x2 + 826x + 2.2957
y = 3E+08x5 + 5E+06x4 + 398695x3 + 3203.5x2 + 892.3x + 2.6723
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(a) 

 

(b) 

Figure 6.9: (a) Magnetic restoring force for 2nd moving/floating magnet (b) Residual error 

The linear and nonlinear stiffness have been calculated using curve fitting from the graphical 

presentation of the magnetic restoring force with the displacement of the floating magnet. For the 

3DOF oscillator system, the analytical measurements of the restoring forces are being used to measure 

the linear and nonlinear stiffness of the system. The values of 𝑘𝑘1, 𝑘𝑘3, 𝑘𝑘5,𝛼𝛼1, 𝜆𝜆1, 𝛼𝛼3, 𝜆𝜆3, 𝛼𝛼5 and 𝜆𝜆5 in 

equations 6.11, 6.12 and 6.13 can be measured using the least-squares curve fitting of the graphs as 

well. Both the 3rd order polynomial and the 5th order polynomial have been used to determine the 

coefficients of the system. Moreover, the residual error has been calculated to pick up the suitable 

curve fitting model. From Figures 6.8, 6.9 and 6.10, it can be seen that the 5th order polynomial curve 

fit presented significantly less residual error than the 3rd order polynomial curve fit. Therefore, the 5th 

order polynomial curve fit provides a more accurate measurement than the 3rd order polynomial curve 

fit. 
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(a) 

 

(b) 

Figure 6.10: (a) Magnetic restoring force for 3rd moving/floating magnet (b) Residual error 

Table 6.1 presents the measured coefficients of the system using a 3rd order polynomial curve fit for 

the 30 mm excitation range. On the other hand, Table 6.2 displays the linear and nonlinear stiffness 

of the system for the 30 mm excitation range, measured by using a 5th order polynomial curve fit.  

Table 6.1: Coefficients of the 3DOF system for 3rd order polynomial 

Rfmm PLM 𝑘𝑘1 
N/m 

𝑘𝑘3 
N/m 

𝑘𝑘5 
N/m 

 𝛼𝛼1 
N/𝑚𝑚2 

 𝛼𝛼3 
N/𝑚𝑚2 

 𝛼𝛼5 
N/𝑚𝑚2 

𝜆𝜆1 
N/𝑚𝑚3 

𝜆𝜆3 
N/𝑚𝑚3 

𝜆𝜆5 
N/𝑚𝑚3 

1st 3rd 826 0 0 7374.3 0 0 741312 0 0 
2nd 3rd 0 566.78 0 0 7270.8 0 0 353407 0 
3rd 3rd 0 0 298.62 0 0 3487.5 0 0 107199 

Note: Rfmm= Restoring force of the moving magnet, PLM= Polynomial model 

y = 107199x3 + 3487.5x2 + 298.62x + 3.444

y = 3E+07x5 + 1E+06x4 + 81612x3 + 2563.6x2 + 303.57x + 3.5274
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Table 6.2: Coefficients of the 3DOF system for 5th order polynomial 

Coefficients 1st FM 2nd FM 3rd FM 

𝒌𝒌𝟏𝟏, N/m 892.30 0 0 
𝒌𝒌𝟑𝟑, N/m 0 591.70 0 
𝒌𝒌𝟓𝟓, N/m 0 0 303.57 

 𝜶𝜶𝟏𝟏, N/𝒎𝒎𝟐𝟐 3203.52 0 0 

 𝜶𝜶𝟑𝟑, N/𝒎𝒎𝟐𝟐 0 4194.02 0 

 𝜶𝜶𝟓𝟓, N/𝒎𝒎𝟐𝟐 0 0 2563.60 

𝝀𝝀𝟏𝟏, N/𝒎𝒎𝟑𝟑 398694.72 0 0 

𝝀𝝀𝟑𝟑, N/𝒎𝒎𝟑𝟑 0 224576.40 0 

𝝀𝝀𝟓𝟓, N/𝒎𝒎𝟑𝟑 0 0 81612.48 

𝜺𝜺𝟏𝟏, N/𝒎𝒎𝟒𝟒 5388675 0 0 

𝜺𝜺𝟐𝟐, N/𝒎𝒎𝟒𝟒 0 3975218 0 

𝜺𝜺𝟑𝟑, N/𝒎𝒎𝟒𝟒 0 0 1193719.04 

𝝑𝝑𝟏𝟏, N/𝒎𝒎𝟓𝟓 341484456 0 0 

𝝑𝝑𝟐𝟐, N/𝒎𝒎𝟓𝟓 0 128404424.71 0 

𝝑𝝑𝟑𝟑, N/𝒎𝒎𝟓𝟓 0 0 25501796.29 

          Note: Fm= Floating magnet 

Table 6.3: Coefficients of the 3DOF system for different excitation ranges (3rd order polynomial 

curve fit)  

ER (mm) Rfmm 𝑘𝑘1 
N/m 

𝑘𝑘3 
N/m 

𝑘𝑘5 
N/m 

 𝛼𝛼1 
N/𝑚𝑚2 

 𝛼𝛼3 
N/𝑚𝑚2 

 𝛼𝛼5 
N/𝑚𝑚2 

𝜆𝜆1 
N/𝑚𝑚3 

𝜆𝜆3 
N/𝑚𝑚3 

𝜆𝜆5 
N/𝑚𝑚3 

-15 mm to 
15 mm 

1st  882.1 0 0 4713.4 0 0 521514 0 0 
2nd  0 588.29 0 0 5228.5 0 0 268203 0 

3rd 0 0 303.01 0 0 2846.2 0 0 89550 
-20 mm to 
20 mm 

1st  875.84 0 0 5248.6 0 0 567711 0 0 
2nd  0 585.76 0 0 5668 0 0 286918 0 
3rd  0 0 302.45 0 0 2994.5 0 0 93660 

-25 mm to 
25 mm 

1st   860.44 0 0 6076.6 0 0 637039 0 0 
2nd  0 579.72 0 0 6317.3 0 0 314158 0 
3rd  0 0 301.18 0 0 3202.7 0 0 99396 

Note: ER= Excitation ranges, Rfmm= Restoring force of the moving magnet 
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From Table 6.1 it can be seen that the measured values of linear stiffnesses 𝑘𝑘1, 𝑘𝑘3 and 𝑘𝑘5 are 826 

N/m, 566.78 N/m and 298.62 N/m, respectively for 3rd order polynomial curve fit. The measured 

linear stiffnesses are 892.3 N/m, 591.7 N/m and 303.57 N/m, respectively for 5th order polynomial 

curve fit which can be seen from Table 6.2. The coefficients of the system have been measured by 

changing the excitation ranges of floating magnets. The same excitation ranges have been considered 

for all floating magnets for analysing the system. The excitation range varies from -30 mm to 30 mm, 

-25 mm to 25 mm, -20 mm to 20 mm and -15 mm to 15 mm. Both 3rd and 5th order polynomial curve 

fits have been used to determine the system's coefficients for different excitation ranges of the floating 

magnets. Table 6.3 and Table 6.4 show the measured coefficients for 3rd and 5th order polynomial 

curve fits, respectively, for different excitation ranges. 

Table 6.4: Coefficients of the 3DOF system for different excitation ranges (5th order polynomial 

curve fit) 

Coefficients -15 mm to 15 mm -20 mm to 20 mm -25 mm to 25 mm 

1st FM 2nd FM 3rd FM 1st FM 2nd FM 3rd FM 1st FM 2nd FM 3rd FM 
𝑘𝑘1, N/m 884.74 0 0 885.13 0 0 886.75 0 0 
𝑘𝑘3, N/m 0 589.38 0 0 589.51 0 0 590.03 0 
𝑘𝑘5, N/m 0 0 303.25 0 0 303.27 0 0 303.35 

 𝛼𝛼1, N/𝑚𝑚2 4097 0 0 4005.8 0 0 3769.5 0 0 
 𝛼𝛼3, N/𝑚𝑚2 0 4708.4 0 0 4651 0 0 4509.7 0 
 𝛼𝛼5, N/𝑚𝑚2 0 0 2665 0 0 2652.6 0 0 2623.5 
𝜆𝜆1, N/𝑚𝑚3 467074 0 0 459810 0 0 441424 0 0 
𝜆𝜆3, N/𝑚𝑚3 0 245762 0 0 243370 0 0 237522 0 
𝜆𝜆5, N/𝑚𝑚3 0 0 84501 0 0 84146 0 0 83320 
𝜀𝜀1, N/𝑚𝑚4 3×10^6 0 0 4×10^6 0 0 4×10^6 0 0 
𝜀𝜀2, N/𝑚𝑚4 0 3×10^6 0 0 3×10^6 0 0 3×10^6 0 
𝜀𝜀3, N/𝑚𝑚4 0 0 933189 0 0 992504 0 0 1×10^6 

𝜗𝜗1, N/𝑚𝑚5 2×10^8 0 0 2×10^8 0 0 3×10^8 0 0 

𝜗𝜗2, N/𝑚𝑚5 0 9×10^7 0 0 1×10^8 0 0 1×10^8 0 

𝜗𝜗3, N/𝑚𝑚5 0 0 2×10^7 0 0 2×10^7 0 0 2×10^7 

Note: FM=Floating magnet 

From Table 6.3 and Table 6.4, it can be seen that the linear and nonlinear stiffnesses have been 

changed slightly with changing the excitation ranges of the floating magnets. Figure 6.11 and Figure 

6.12 show the linear stiffnesses for all moving magnets for different excitation ranges for 3rd and 5th 
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order polynomial curve fits. The linear stiffness of the 1st floating magnets are larger than the 2nd and 

3rd floating magnets. 

 

Figure 6.11: Linear stiffness for different floating magnets in the different excitation ranges (3rd 

order polynomial curve fit) 

 

Figure 6.12: Linear stiffness for different floating magnets in the different excitation ranges (5th 

order polynomial curve fit) 

It has been seen from Figure 6.11 and Figure 6.12 that the linear stiffnesses of all floating magnets 

have not changed much in the different excitation ranges; however, the coefficient of each floating 

magnet change with the different separation distances between magnets.  

6.5 Modelling of the 3DOF Nonlinear Oscillator System 

Figures Figure 6.13 and Figure 6.14 display the free-body diagrams of the proposed 3DOF nonlinear 

oscillator system. The masses of the 2nd (1st floating magnet), 3rd (2nd floating magnet) and 4th (3rd 

floating magnet) magnets are 𝑀𝑀2, 𝑀𝑀3 and 𝑀𝑀4, respectively.  
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Figure 6.13: Three-degree-of-freedom magnetic spring-based oscillator system 

The relative displacement of the 1st floating magnet is 𝑦𝑦2 and the relative velocity and acceleration of 

the 1st floating magnet are �̇�𝑦2 and �̈�𝑦2, respectively. The relative displacement, velocity and 

acceleration of the 2nd floating magnet are 𝑦𝑦3, �̇�𝑦3 and �̈�𝑦3, respectively.  Moreover, the relative 

displacement, velocity and acceleration of the 3rd floating magnet are 𝑦𝑦4, �̇�𝑦4 and �̈�𝑦4, respectively. The 

damping forces of the 1st floating magnet is 𝐹𝐹𝛽𝛽1 = 𝛽𝛽1�̇�𝑦2, 2nd floating magnet is 𝐹𝐹𝛽𝛽3 = 𝛽𝛽3�̇�𝑦3 and 3rd 

floating magnet is 𝐹𝐹𝛽𝛽5 = 𝛽𝛽5�̇�𝑦4. The linear stiffness of the 1st, 2nd, and 3rd floating magnets are 𝑘𝑘1, 𝑘𝑘3 

M2 

M1 

M3 

M4 

𝑘𝑘21 
 

𝑘𝑘23 
  

𝑘𝑘34 
  

𝛼𝛼21, 𝜆𝜆21 
 
 

𝛼𝛼23, 𝜆𝜆23 
 

𝛼𝛼34, 𝜆𝜆34 
 

𝑦𝑦2 
 

𝑦𝑦3 
  

M5 

𝑘𝑘45 
  

𝛼𝛼45, 𝜆𝜆45 
  𝑦𝑦4 
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and 𝑘𝑘5, respectively. Using the 3rd order Taylor series, the nonlinear stiffnesses of the 1st floating 

magnet are 𝛼𝛼1 and 𝜆𝜆1 and for the 2nd floating magnet, are 𝛼𝛼3 and 𝜆𝜆3. 

 

Figure 6.14: Free body diagram of M2, M3 and M4 

M2 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘21𝑦𝑦2 
 

𝛼𝛼21𝑦𝑦22 
 

𝑦𝑦2 
 

𝑦𝑦3 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘23(𝑦𝑦3 − 𝑦𝑦2) 
 

𝛼𝛼23(𝑦𝑦3 − 𝑦𝑦2)2 
 

𝜆𝜆23(𝑦𝑦3 − 𝑦𝑦2)3 
  

𝛽𝛽23(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

 𝜆𝜆21𝑦𝑦23 
  

 𝛽𝛽21𝑦𝑦2̇ 
  

𝑘𝑘32(𝑦𝑦3 − 𝑦𝑦2) 
  

𝛼𝛼32(𝑦𝑦3 − 𝑦𝑦2)2 
  

𝜆𝜆32(𝑦𝑦3 − 𝑦𝑦2)3 
  

M3 

𝛽𝛽32(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

M4 

𝑦𝑦4 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘45𝑦𝑦4 
  

 𝛽𝛽45𝑦𝑦4̇ 
  

 𝜆𝜆45𝑦𝑦43 
  

𝛼𝛼45𝑦𝑦42 
  
 

𝑘𝑘34(𝑦𝑦4 − 𝑦𝑦3) 
  

𝛽𝛽34(𝑦𝑦4̇ − 𝑦𝑦3̇) 
  

𝛼𝛼34(𝑦𝑦4 − 𝑦𝑦3)2 
  

𝜆𝜆34(𝑦𝑦4 − 𝑦𝑦3)3 
  

𝑘𝑘43(𝑦𝑦4 − 𝑦𝑦3) 
  

𝛽𝛽43(𝑦𝑦4̇ − 𝑦𝑦3̇) 
  

𝛼𝛼43(𝑦𝑦4 − 𝑦𝑦3)2 
  

𝜆𝜆43(𝑦𝑦4 − 𝑦𝑦3)3 
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Figure 6.15: Free body diagram of M2, M3 and M4 after substitutions 

Furthermore, the nonlinear stiffnesses of the 3rd floating magnet are 𝛼𝛼5 and 𝜆𝜆5. Furthermore, in Figure 

6.14, the linear stiffness are: 𝑘𝑘21 = 𝑘𝑘1,𝑘𝑘23 = 𝑘𝑘32 = 𝑘𝑘2, 𝑘𝑘34 = 𝑘𝑘43 =  𝑘𝑘4 and 𝑘𝑘45 = 𝑘𝑘5. The damping 

constants are: 𝛽𝛽21 = 𝛽𝛽1,𝛽𝛽23 = 𝛽𝛽32 = 𝛽𝛽2,𝛽𝛽34 = 𝛽𝛽43 = 𝛽𝛽4 and 𝛽𝛽45 = 𝛽𝛽5.The nonlinear coefficients 

are:  𝛼𝛼21 = 𝛼𝛼1, 𝛼𝛼23 = 𝛼𝛼32 = 𝛼𝛼2, 𝛼𝛼34 = 𝛼𝛼43 = 𝛼𝛼4 and 𝛼𝛼45 = 𝛼𝛼5. In addition, the nonlinear stiffness 

coefficients are:  𝜆𝜆21 = 𝜆𝜆1,𝜆𝜆23 = 𝜆𝜆32 = 𝜆𝜆2,𝜆𝜆34 = 𝜆𝜆43 = 𝜆𝜆4 and 𝜆𝜆45 = 𝜆𝜆5.  Figure 6.14 can be 

represented by Figure 6.15 after replacing the linear and nonlinear coefficient’s values. The dynamic 

equation of the motion of the system can be written as,  

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ − 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) + 𝑘𝑘1𝑦𝑦2 − 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) + 𝛼𝛼1𝑦𝑦22 − 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 + 𝜆𝜆1𝑦𝑦23
− 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.14) 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘1𝑦𝑦2 
 

𝛼𝛼1𝑦𝑦22 
 

𝑦𝑦2 
 

𝑦𝑦3 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) 
 

𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 
 

𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 
  

𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

 𝜆𝜆1𝑦𝑦23 
   𝛽𝛽1𝑦𝑦2̇ 

  

M2 

𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) 
  

𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 
  

𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 
  

M3 

𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) 
  

M4 

𝑦𝑦4 
  

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 𝑘𝑘5𝑦𝑦4 
  

 𝛽𝛽5𝑦𝑦4̇ 
  

 𝜆𝜆5𝑦𝑦43 
  𝛼𝛼5𝑦𝑦42 

  

𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) 
  

𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) 
  

𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 
  

𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 
  

𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) 
  

𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) 
  

𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 
  

𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 
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𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) − 𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) + 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) − 𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) + 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2
− 𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 + 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 − 𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.15) 

𝑀𝑀4𝑦𝑦4̈ + 𝛽𝛽5𝑦𝑦4̇ + 𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) + 𝑘𝑘5𝑦𝑦4 + 𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) + 𝛼𝛼5𝑦𝑦42 + 𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 + 𝜆𝜆5𝑦𝑦43
+ 𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 = 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.16) 

The equation 6.14 can be rewritten as,  

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ + 𝛽𝛽2𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + 𝑘𝑘1𝑦𝑦2 + 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘2𝑦𝑦3 + 𝛼𝛼1𝑦𝑦22
− 𝛼𝛼2(𝑦𝑦32 − 2𝑦𝑦2𝑦𝑦3 + 𝑦𝑦22) + 𝜆𝜆1𝑦𝑦23 − 𝜆𝜆2(𝑦𝑦33 − 𝑦𝑦23 + 3𝑦𝑦22𝑦𝑦3 − 3𝑦𝑦2𝑦𝑦32)
= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.17) 

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ + 𝛽𝛽2𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + 𝑘𝑘1𝑦𝑦2 + 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘2𝑦𝑦3 + 𝛼𝛼1𝑦𝑦22 − 𝛼𝛼2𝑦𝑦32 + 2𝛼𝛼2𝑦𝑦2𝑦𝑦3
− 𝛼𝛼2𝑦𝑦22 + 𝜆𝜆1𝑦𝑦23 − 𝜆𝜆2𝑦𝑦33 + 𝜆𝜆2𝑦𝑦23 − 3𝜆𝜆2𝑦𝑦22𝑦𝑦3 + 3𝜆𝜆2𝑦𝑦2𝑦𝑦32
= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.18) 

𝑀𝑀2𝑦𝑦2̈ + �𝛽𝛽1 + 𝛽𝛽2)𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑦𝑦2 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆1𝑦𝑦22 + 𝜆𝜆2𝑦𝑦22 + 2𝛼𝛼2𝑦𝑦3
+ 3𝜆𝜆2𝑦𝑦32�𝑦𝑦2 − (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑦𝑦3 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.19) 

The equation 6.15 can be rewritten as,  

𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽2𝑦𝑦3̇ − 𝛽𝛽2𝑦𝑦2̇ − 𝛽𝛽4𝑦𝑦4̇ + 𝛽𝛽4𝑦𝑦3̇ + 𝑘𝑘2𝑦𝑦3 − 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘4𝑦𝑦4 + 𝑘𝑘4𝑦𝑦3 + 𝛼𝛼2(𝑦𝑦32 − 2𝑦𝑦3𝑦𝑦2
+ 𝑦𝑦22) − 𝛼𝛼4(𝑦𝑦42 + 𝑦𝑦32 − 2𝑦𝑦3𝑦𝑦4) + 𝜆𝜆2(𝑦𝑦33 − 𝑦𝑦23 − 3𝑦𝑦32𝑦𝑦2 + 3𝑦𝑦3𝑦𝑦22)
− 𝜆𝜆4(𝑦𝑦43 − 𝑦𝑦33 + 3𝑦𝑦32𝑦𝑦4 − 3𝑦𝑦3𝑦𝑦42) = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.20) 

𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽2�̇�𝑦3 − 𝛽𝛽2𝑦𝑦2̇ + 𝛽𝛽4𝑦𝑦3̇ − 𝛽𝛽4𝑦𝑦4̇ + 𝑘𝑘2𝑦𝑦3 − 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘4𝑦𝑦3 − 𝑘𝑘4𝑦𝑦4 + 𝛼𝛼2𝑦𝑦32 + 𝛼𝛼2𝑦𝑦22
− 2𝛼𝛼2𝑦𝑦3𝑦𝑦2 − 𝛼𝛼4𝑦𝑦42 − 𝛼𝛼4𝑦𝑦32 + 2𝛼𝛼4𝑦𝑦3𝑦𝑦4 + 𝜆𝜆2𝑦𝑦33 − 𝜆𝜆2𝑦𝑦23 − 3𝜆𝜆2𝑦𝑦32𝑦𝑦2
+ 3𝜆𝜆2𝑦𝑦3𝑦𝑦22 − 𝜆𝜆4𝑦𝑦43 + 𝜆𝜆4𝑦𝑦3

3 − 3𝜆𝜆4𝑦𝑦3
2𝑦𝑦4 + 3𝜆𝜆4𝑦𝑦3𝑦𝑦42 = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.21) 

𝑀𝑀3𝑦𝑦3̈ − 𝛽𝛽2𝑦𝑦2̇ + (𝛽𝛽2 + 𝛽𝛽4)𝑦𝑦3̇ − 𝛽𝛽4𝑦𝑦4̇ − (𝑘𝑘2 − 𝛼𝛼2𝑦𝑦2 + 2𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦22 + 3𝜆𝜆2𝑦𝑦32)𝑦𝑦2
+ (𝑘𝑘2 + 𝑘𝑘4 + 𝛼𝛼2𝑦𝑦3 − 𝛼𝛼4𝑦𝑦3 + 2𝛼𝛼4𝑦𝑦4 + 𝜆𝜆2𝑦𝑦32 + 3𝜆𝜆2𝑦𝑦22 + 𝜆𝜆4𝑦𝑦32
+ 3𝜆𝜆4𝑦𝑦42)𝑦𝑦3 − (𝑘𝑘4 + 𝛼𝛼4𝑦𝑦4 + 𝜆𝜆4𝑦𝑦4

2 + 3𝜆𝜆4𝑦𝑦3
2)𝑦𝑦4 = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.22) 

The equation 6.16 can be expressed as, 

𝑀𝑀4𝑦𝑦4̈ + (𝛽𝛽5 + 𝛽𝛽4)�̇�𝑦4 − 𝛽𝛽4�̇�𝑦3 − (𝑘𝑘4 + 2𝛼𝛼4𝑦𝑦4 − 𝛼𝛼4𝑦𝑦3 + 𝜆𝜆4𝑦𝑦32 + 3𝜆𝜆4𝑦𝑦42)𝑦𝑦3 + (𝑘𝑘5 + 𝑘𝑘4
+ 𝛼𝛼5𝑦𝑦4 + 𝛼𝛼4𝑦𝑦4 + 𝜆𝜆5𝑦𝑦42 + 𝜆𝜆4𝑦𝑦42 + 3𝜆𝜆4𝑦𝑦32)𝑦𝑦4 = 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(6.23) 

State space variables can be used to solve equations (6.19, 6.22 and 6.23). State space variables can 

be defined as: 

𝑒𝑒1 = 𝑦𝑦2 (6.24) 

𝑒𝑒2 = �̇�𝑦2 =
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖

 (6.25) 



 

210 

 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 (6.26) 

𝑒𝑒3 = 𝑦𝑦3 (6.27) 

𝑒𝑒4 =
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖

= �̇�𝑦3 (6.28) 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 (6.29) 

𝑒𝑒5 = 𝑦𝑦4 (6.30) 

𝑒𝑒6 =
𝑑𝑑𝑒𝑒5
𝑑𝑑𝑖𝑖

= �̇�𝑦4 (6.31) 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 (6.32) 

𝐷𝐷 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) = 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (6.33) 

Equation 6.19 can be written as 

𝐿𝐿𝑥𝑥2
𝐿𝐿𝑡𝑡

= �̈�𝑦2 = 1
𝑀𝑀2

[𝐷𝐷 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝛽𝛽2𝑒𝑒4 − (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 +
2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑒𝑒3  

(6.34) 

The following variables can be assumed as, 

𝑃𝑃1 = (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 + 2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32) (6.35) 

𝑄𝑄1 = (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32) (6.36) 

The equation 6.47 can be written as, 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 =
1
𝑀𝑀2

[𝐷𝐷 − 𝑃𝑃1𝑒𝑒1 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝑄𝑄1𝑒𝑒3 + 𝛽𝛽2𝑒𝑒4] (6.37) 

The equation 6.26 can be stated as, 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

�𝐷𝐷 + (𝑘𝑘2 − 𝛼𝛼2𝑒𝑒1 + 2𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2 − (𝑘𝑘2 + 𝑘𝑘4
+ 𝛼𝛼2𝑒𝑒3 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52)𝑒𝑒3 − (𝛽𝛽2
+ 𝛽𝛽4)𝑒𝑒4 + (𝑘𝑘4 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒5

2 + 3𝜆𝜆4𝑒𝑒3
2)𝑒𝑒5 + 𝛽𝛽4𝑒𝑒6� 

(6.38) 
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The following variables can be considered as, 

𝑅𝑅1 = (𝑘𝑘2 − 𝛼𝛼2𝑒𝑒1 + 2𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32) (6.39) 

𝐽𝐽1 = (𝑘𝑘2 + 𝑘𝑘4 + 𝛼𝛼2𝑒𝑒3 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52) (6.40) 

𝐸𝐸1 = (𝑘𝑘4 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒5
2 + 3𝜆𝜆4𝑒𝑒3

2) (6.41) 

Equation 6.51 can be rewritten as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

[𝐷𝐷 + 𝑅𝑅1𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2 − 𝐽𝐽1𝑒𝑒3 − (𝛽𝛽2 + 𝛽𝛽4)𝑒𝑒4 + 𝐸𝐸1𝑒𝑒5 + 𝛽𝛽4𝑒𝑒6] (6.42) 

The equation 6.32 can be written as 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 =
1
𝑀𝑀4

[𝐷𝐷 + (𝑘𝑘4 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52)𝑒𝑒3 + 𝛽𝛽4𝑒𝑒4 − (𝑘𝑘5 + 𝑘𝑘4
+ 𝛼𝛼5𝑒𝑒5 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆5𝑒𝑒52 + 𝜆𝜆4𝑒𝑒52 + 3𝜆𝜆4𝑒𝑒32)𝑒𝑒5 − (𝛽𝛽5 + 𝛽𝛽4)𝑒𝑒6] 

(6.43) 

To shorten Equation 6.56, the following parameters are considered 

𝑈𝑈1 = (𝑘𝑘4 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52) (6.44) 

𝑉𝑉1 = (𝑘𝑘5 + 𝑘𝑘4 + 𝛼𝛼5𝑒𝑒5 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆5𝑒𝑒52 + 𝜆𝜆4𝑒𝑒52 + 3𝜆𝜆4𝑒𝑒32) (6.45) 

The equation 6.56 can be stated as 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 =
1
𝑀𝑀4

[𝐷𝐷 + 𝑈𝑈1𝑒𝑒3 + 𝛽𝛽4𝑒𝑒4 − 𝑉𝑉1𝑒𝑒5 − (𝛽𝛽5 + 𝛽𝛽4)𝑒𝑒6] (6.46) 

The state space model of the 3DOF system can be written as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒5
𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 1 0 0 0 0
−𝑃𝑃1
𝑀𝑀2

−(𝛽𝛽1 + 𝛽𝛽2)
𝑀𝑀2

𝑄𝑄1
𝑀𝑀2

𝛽𝛽2
𝑀𝑀2

0 0

0 0 0 1 0 0
𝑅𝑅1
𝑀𝑀3

𝛽𝛽2
𝑀𝑀3

−𝐽𝐽1
𝑀𝑀3

−(𝛽𝛽2 + 𝛽𝛽4)
𝑀𝑀3

𝐸𝐸1
𝑀𝑀3

𝛽𝛽4
𝑀𝑀3

0 0 0 0 0 1

0 0
𝑈𝑈1
𝑀𝑀4

𝛽𝛽4
𝑀𝑀4

−𝑉𝑉1
𝑀𝑀4

−(𝛽𝛽5 + 𝛽𝛽4)
𝑀𝑀4���������������������������������������

𝐴𝐴 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4
𝑒𝑒5
𝑒𝑒6⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

1
𝑀𝑀2
0
1
𝑀𝑀3
0
1
𝑀𝑀4�
𝐵𝐵 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[𝐷𝐷] 

(6.47) 
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𝑍𝑍 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1�������������

𝐶𝐶 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4
𝑒𝑒5
𝑒𝑒6⎦
⎥
⎥
⎥
⎥
⎤

+ �0⏟
𝐷𝐷
� [𝐷𝐷] 

(6.48) 

Where A is the system matrix, B is the input matrix, and C is the output matrix. The remaining matrix 

is D which is typically zero because the input directly does not usually affect the output. 

6.6 Dynamics Analysis of the 3DOF System 

The distance between the 1st and 2nd magnets is 59 mm, 2nd and 3rd magnets is 65 mm, 3rd and 4th 

magnets is 79 mm, and 4th and 5th magnets is 104 mm. The total length of the oscillator is 372 mm. 

The masses of the 2nd (1st floating magnet), 3rd (2nd floating magnet) and 4th (3rd floating magnet) are 

0.370 kg, 0.32728 kg and 0.33274 kg (mass including plastic bush), respectively.  

Table 6.5: Different parameters of the 3DOF system 

Parameters Values Units 
𝛽𝛽1 2.11 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽2 0.8 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽4 0.8 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽5 0.51 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝑘𝑘1 826 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘2 263.69 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘4 263.69 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘5 298.62 𝑁𝑁 𝑚𝑚⁄  
𝛼𝛼1 7374.3 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼2 1943.4 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼4 1943.4 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼5 3487.5 𝑁𝑁 𝑚𝑚2⁄  
𝜆𝜆1 741312 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆2 317056.5 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆4 317056.5 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆5 107199 𝑁𝑁 𝑚𝑚3⁄  
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The experimentally measured damping ratio and damping constant of the 1st floating magnet were 

0.058, 2.11 Ns/m. The measured damping ratios and damping constants of the 2nd and 3rd floating 

magnets were 0.038, 1.08 Ns/m, 0.021 and 0.51 Ns/m, respectively. The measured natural frequencies 

were 56 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄ , 44.47 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄  and 32.87 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄ . Table 6.5 shows the values of the required parameters 

for the dynamic analysis of the 3DOF system.  

Table 6.6: Eigenvalues and resonance frequency of the system 

PFM Eigenvalue Resonance frequency 
(rad/s) 1st  2nd  3rd  

-15 -15 -15 -6.21 +87.89i -2.85 +54.29i -1.27 +35.40i 88.11 54.37 35.43 
-10 -10 -10 -6.25 +76.40i -2.85 +49.67i -1.24 +34.07i 76.65 49.75 34.09 
-05 -05 -05 -6.27 +69.24i -2.84 +47.02i -1.22 +33.50i 69.52 47.10 33.52 
0 0 0 -6.28 +67.68i -2.84 +46.76i -1.21 +33.87i 67.97 46.85 33.89 
05 05 05 -6.27 +71.99i -2.84 +49.03i -1.22 +35.22i 72.26 49.11 35.24 
10 10 10 -6.26 +81.31i -2.84 +53.44i -1.24+37.38i 81.55 53.51 37.40 
15 15 15 -6.23 +94.25i -2.84 +59.45i -1.26 +40.11i 94.41 59.52 40.13 

Note: PFM= Position of the floating magnet 

The simulation results of the 3DOF system are shown in Table 6.6. From Table 6.6, it can be seen 

that the eigenvalues of all floating magnets change with the different positions of floating magnets. 

The measured natural frequency for the system were 67.97 rad/s, 46.85 rad/s and 33.89 rad/s when 

all magnets were in equilibrium position. It can be seen that the experimental results are similar to 

the theoretical analysiss. 

The frequency response of the 3DOF system is presented in Figure 6.16. Moreover, the 3DOF system 

has been analysed using the Root Locus tool, as illustrated in Figure 6.17. Three floating magnets are 

working in the 3DOF system; therefore, this system has three resonance frequencies which can be 

seen in Figure 6.16. The eigenvalues, frequency responses and damping ratio were also analysed 

using Root Locus, as shown in Figure 6.17. The resonance changed with the different positions of 

each floating magnet, which can be seen in Figure 6.18. 
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Figure 6.16: Resonance frequency of the 3DOF system 

 

Figure 6.17: Root Locus analysis of the 3DOF system 
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Figure 6.18: Frequency response of the system for different positions of the floating magnets 

If an external force is applied on any floating magnet, the resulting displacements for all floating 

magnets (1st, 2nd and 3rd floating magnets) are shown in Figure 6.19 and the velocities for all floating 

magnets Figure 6.20. The amplitude of the applied external harmonic force (Fb) is 10N. The values 

of linear stiffness, nonlinear stiffness and damping constants are presented in Table 6.5. Ode23t solver 

has been used in MATLAB to find the displacements and velocities of all floating magnets. All 

floating magnets' excitation was assumed to have non-zero initial displacements, and initial velocities 

were zero. The frequency of the harmonic force was 0.1 Hz. As expected, the displacements and the 

velocities were sinusoidal and 90° out of phase. Force can be applied on the 3rd or 2nd, or 1st floating 

magnet. The amplitude of displacement of each floating magnet depends on which magnet the force 

is applied. Figure 6.19 presents the velocity vs displacement graphs for each floating magnet. If the 

force is applied on the 3rd floating magnet, then the displacement of the 3rd floating magnet is larger 

than the displacement of the 2nd and 1st floating magnets, and the displacement of the 2nd floating 

magnet is larger than the 1st floating magnet. Similarly, if the external force is applied on the 2nd 

floating magnet, then the displacement of the 2nd floating magnet is larger than the 1st and 3rd floating 

magnet, and the displacement of the 1st floating is larger than the 2nd and 3rd floating magnet if the 

external force is applied on the 1st floating magnet. Moreover, the comparisons of velocity vs 
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displacement graphs of all floating magnets under the same harmonic force have been presented in 

Figure 6.20. 
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(c) 

Figure 6.19: (a) Applied force on the 3rd floating magnet, (b) Applied force on the 2nd floating 

magnet and (c) applied force on the 1st floating magnet 
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(c) 

Figure 6.20: Comparison of displacement and velocity of each floating magnet (a) applied force on 

the 3rd floating magnet and (b) applied force on the 2nd floating magnet and (c) applied force on the 

1st floating magnet 
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If the external force is applied to the 3rd floating magnet, it starts moving, causing the 1st and 2nd 

floating magnets to also start moving. Comparing the velocity of the 3rd floating magnet with the 1st 

and 2nd floating magnets; the 3rd floating magnet has a larger velocity than the 1st and 2nd floating 

magnets, which can be seen in Figure 6.20(a). Similarly, if the same external force is applied in the 

2nd floating magnet, it starts moving, causing the 1st and 3rd floating magnet to start moving. The 

velocity of the 2nd floating magnet is larger than the 1st and 3rd floating magnet, as shown in Figure 

6.20(b). Similar things happened if the external harmonic force is applied on the 1st floating magnet. 

Figure 6.21 compares the displacement and velocity of each floating magnet when the external force 

is applied to each one. 

 

Figure 6.21: Comparison of displacement and velocity of each floating magnet when an external 

force is applied on each floating magnet 

Moreover, if the same external forces are applied to all floating magnets, all magnets start moving. 

The displacement and velocity of the 1st floating magnet are smaller than the 2nd and 3rd floating 

magnet, as shown in Figure 6.21. In that scenario, all floating magnets achieve relatively higher 

displacements and velocities compared to other previously discussed procedures. However, due to 
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than the 1st and 2nd floating magnets in all scenarios.  
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6.7 Different Lengths of the 3DOF Oscillator 

The total length of the 3DOF oscillator can be changed with the changing position of the 5th magnet 

(top fixed magnet). Figure 6.22 shows the 3DOF Magnetic spring-based nonlinear oscillator system.  

 

Figure 6.22: 3DOF Magnetic spring-based nonlinear oscillator system 
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Table 6.7: Change of gravitational effect for different lengths of the oscillator 

Position 
of the 
top 
magnet 

Distanc
e 
between 
1st and 
2nd 
magnets  

Distance 
between 
2nd and 3rd 
magnets 

Distance 
between 
3rd and 4th 
magnets 

Distance 
between 
4th and 5th 
magnets 

Total 
length 

Gravitational effects 
(mm) 
1st FM 2nd FM 3rd FM 

-20 mm 56 61 73 97 352 2.5 6 12 
-10 mm 57.5 63.5 76 100 362 3 6 12 
0 mm 59 65 79 104 372 3 7 12.5 
+ 10 mm 60 67 81 109 382 3.5 7 14 
+20 mm 61 68 82.5 115.5 392 4 7.5 16.5 
+ 30 mm 62 70 85 120 402 4 7.5 17.5 
+40 mm 62.5 71.5 87 126 412 4.5 8 20 
+50 mm 63 72 89 133 422 4.5 8.5 22 

 Note: FM=floating magnet 

The effects of the gravitational force on equilibrium positions, damping ratios and natural frequencies 

for all floating magnets have been measured experimentally for different positions of the top fixed 

magnet (5th magnet), as presented in Table 6.7 and Table 6.8. By changing the position of the top 

fixed (5th) magnet, the distances 1st to 2nd, 2nd to 3rd, 3rd to 4th and 4th to 5th magnets can be changed. 

Different separation distances between magnets provide various magnetic restoring forces and 

different damping ratios. When the total length of the oscillator increased, the separation distances 

between all magnets increased. On the other hand, the spaces between all magnets reduced when the 

total length of the oscillator reduced from 372 mm (equilibrium position). Moreover, the equilibrium 

position of each floating magnet is affected by the gravitational force with changing the position of 

the top magnet, as shown in Table 6.8. The separation distance between the 4th and 5th magnet always 

remained larger than the distances between 1st and 2nd, 2nd and 3rd and 3rd and 4th magnets for all 

different lengths of the oscillator. However, the distance between 3rd and 4th magnets remained larger 

than the distances between 1st and 2nd and 2nd and 3rd magnets. Therefore, the damping constant and 

natural frequency of the 1st floating magnet (2nd magnet) is always larger than the damping constant 

and natural frequency of the 2nd (3rd magnet) and 3rd (4th magnet) floating magnet. Moreover, the 

damping ratio and the natural frequency of the system can be changed by changing the total length of 

the oscillator. The damping ratios and natural frequencies increased with reducing the entire length 

of the oscillator and decreased with increasing the total length of the oscillator, as seen in Table 6.8. 
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Table 6.8: Change of damping ratio and natural frequency of the 3DOF system for different 

positions of the top magnet (different length of the oscillator) 

Position of 
the top 
magnet 

Total 
length 
(mm) 

Damping ratio 
 

Natural frequency (rad/s) 

-20 mm 352 0.079 0.041 0.033 59.83 50.22 35.24 

-10 mm 362 0.062 0.039 0.030 56.33 47.16 34.97 
0 mm 372 0.058 0.038 0.021 55.92 44.47 32.87 
+ 10 mm 382 0.052 0.036 0.017 54.30 43.62 30.72 
+20 mm 392 0.04 0.034 0.015 53.70 41.46 29.02 
+ 30 mm 402 0.045 0.032 0.014 52.14 40.92 27.75 
+40 mm 412 0.042 0.030 0.014 50.86 39.57 27.00 
+50 mm 422 0.040 0.029 0.012 49.59 37.73 25.41 

        Note: FM=floating magnet 

The natural frequencies in the equilibrium position were around 56 rad/s, 44.5 rad/s and 33 rad/s, 

respectively. They increased to about 60 rad/s, 50 rad/s and 35.5 rad/s, respectively, when the 5th 

magnet moved toward the 4th magnet from the equilibrium position by 20 mm (reduced the total 

length of the oscillator). On the other hand, the floating magnet’s natural frequencies decreased to 

approximately 49.5 rad/s, 38 rad/s and 25.5 rad/s when the top magnet (5th magnet) moved away from 

the equilibrium position (increased the total length of the oscillator), which can be seen in Table 

6.8.The magnetic restoring forces of the 1st, 2nd and 3rd floating magnets changed with varying the 

oscillator's total length. Moreover, the linear and nonlinear stiffness of both floating magnets changed 

with varying the total length of the oscillator. The magnetic restoring forces for all floating magnets 

are measured analytically, as presented in Figure 6.23. For all oscillator lengths, the separation 

distance between 1st and 2nd magnets always remained smaller than the separation between 2nd and 

3rd magnets, which is smaller than the separation distances between 3rd and 4th magnets and 4th and 

5th magnets. Therefore, the magnetic force between the 1st and 2nd magnets always remained larger 

than those between the 2nd and 3rd magnets, as seen in Figure 6.23. Figure 6.23(b) presents the 

magnetic restoring force of the 2nd floating magnet (3rd magnet). It can be seen that from Figure 

6.23(b) and Figure 6.23(c) that the magnetic force between the 2nd and 3rd magnets was larger than 

the magnetic forces between 3rd and 4th magnets and 4th and 5th magnets. Moreover, from Figure 6.23, 

it can be seen that the magnetic forces between all separated magnets increase with decreasing the 

length of the oscillator and decrease with increasing the length of the oscillator.  
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(a) 

 

(b) 

 

(c) 

Figure 6.23: Magnetic restoring forces for different lengths of the oscillator (a) 1st floating magnet, 

(b) 2nd floating magnet and (c) 3rd floating magnet  
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(a) 

 

 (b) 

 

 (c) 

Figure 6.24: Coefficients of the 3DOF system for different lengths of the oscillator (3rd order 

polynomial) (a) 1st floating magnet, (b) 2nd floating magnet and (c) 3rd floating magnet 
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 (a) 
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(c) 

Figure 6.25: Coefficients of the 3DOF system for different lengths of the oscillator (5th order 

polynomial) (a) 1st floating magnet, (b) 2nd floating magnet and (c) 3rd floating magnet 
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From Figure 6.24 and Figure 6.25, it can be seen that the linear and nonlinear stiffness changes with 

varying lengths of the oscillator. All floating magnets' linear and nonlinear coefficients increased 

when the top magnet (5th magnet) moved toward its underneath magnet from the equilibrium position 

and decreased when the top magnet moved away from the equilibrium position. The coefficients of 

the 1st floating magnet always remained larger than the coefficients of the 2nd and 3rd floating magnets 

for different lengths of the oscillator. The linear stiffnesses of the 1st, 2nd and 3rd floating magnets 

were 826 N/m (892 N/m for 5th polynomial), 567 N/m (592 N/m for 5th order polynomial) and 299 

N/m (304 N/m for 5th order polynomial), respectively, when the top magnet (5th magnet) was in the 

equilibrium position. The linear stiffness of the 1st floating increased to 957 N/m (1064 N/m for 5th 

order polynomial) when the top magnet moved by 20 mm toward the magnet directly underneath 

from the equilibrium position and the linear stiffness decreased to 662 N/m (698 N/m for 5th order 

polynomial) when the top magnet moved away by 50 mm from the equilibrium position. 

For 2nd floating magnet, the linear stiffness increased to 687 N/m (730 N/m for 5th order polynomial) 

when the 5th magnet moved by 20 mm toward the 4th magnet from the equilibrium position. It 

decreased to 416 N/m (427 N/m for the 5th order polynomial) when the 5th magnet moved away 50 

mm from the equilibrium position. Similarly, the linear stiffness of the 3rd floating magnet increased 

to 373 N/m (382 N/m for 5th order polynomial) when the length of the oscillator was reduced by 20 

mm from the equilibrium length of the oscillator. It declined to 190 N/m (192 N/m for 5th order 

polynomial) when the oscillator length increased by 50 mm. The natural frequencies of 1st, 2nd and 

3rd floating magnets have been measured analytically, as shown in Figure 6.26.  The experimental 

findings of natural frequencies have been compared with the analytical measurement, as presented in 

Figure 6.26. The natural frequencies of the 3DOF system changed with changing the oscillator's total 

length, as presented in Figure 6.26. During the equilibrium length of the oscillator, the experimentally 

measured natural frequencies were around 56 rad/s, 44.5 rad/s and 33 rad/s, respectively. The 5th order 

polynomial analytically measured natural frequencies were around 53.5 rad/s (51.5 rad/s for 3rd order 

polynomial), 43.5 rad/s (42.5 rad/s for 3rd order polynomial) and 31 rad/s (30.8 for 3rd order 

polynomial), respectively. 
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     (c) 

Figure 6.26: Natural frequencies for different lengths of the oscillator (a) 1st frequency, (b) 2nd 

frequency and (c) 3rd frequency  
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Compared to the experimental measurements with the analytical measurements, the residual errors 

were 2.7 rad/s (4.72 rad/s for 3rd polynomial), 1.13 rad/s (2.06 rad/s for 3rd polynomial) and 1.87 rad/s 

(2.07 rad/s for 3rd polynomial) for the 1st, 2nd and 3rd frequencies, respectively. The natural frequencies 

increased to 58 rad/s (59.85 rad/s experimental), 48 rad/s (50.22 rad/s experimental) and 35 rad/s 

(35.25 rad/s experimental) when the oscillator length was reduced by 20 mm from the equilibrium 

length. On the other hand, the natural frequencies were reduced to 47 rad/s (49.60 rad/s experimental), 

37 rad/s (37.75 experimental) and 25 rad/s (25.5 rad/s experimental), respectively, when the length 

of the oscillator increased by 50 mm. The residual errors of the 5th order polynomial remained smaller 

than the 3rd order polynomial for all different lengths of the oscillator.  

6.8 Conclusion 

In this chapter, the characteristics and dynamics of the 3DOF nonlinear oscillator system have been 

analysed using analytical, experimental and numerical methods. The magnetic restoring forces and 

magnetic spring stiffness of the proposed 3DOF system have been studied theoretically and 

numerically. Analytically measured values have validated the numerical measured magnetic restoring 

forces of the 3DOF system. To determine the analytical values of the system’s coefficients from the 

modelled magnetic restoring forces, both 3rd and 5th order polynomial curve fitting models have been 

used. Moreover, by changing the position of all floating magnets, the linear and nonlinear coefficients 

of the system have been investigated. Based on these investigations, the dynamics of the 3DOF 

nonlinear system have been analysed. The position of the top fixed magnet has a significant impact 

on the 3DOF oscillator system, which have been analysed as well by changing the position of the top 

fixed magnet. The separation distances between magnets changed with changing the length of the 

oscillator. It has been found that the separation distance between magnets has a significant influence 

on the vibration of the oscillator.   
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Chapter 7  
Test Rig Components of the Magnetic Spring-based Linear Electromagnetic 

Generator Systems 

In Chapters 4, 5 and 6, the analytical models of single-degree-of-freedom, two-degree-of-freedom, 

and three-degree-of-freedom systems were discussed and analysed using numerical and experimental 

findings. To validate the analytical and numerical model, it is essential to study the model 

experimentally. The experimental analysis will give a clear understanding of the dependent 

parameters, which will help to increase the power output of the linear PM generator. For the 

experimental study, it is required to fabricate a test rig set up, and its design depends on what kind of 

analysis needs to be performed. Moreover, the test rig analysis will help develop the linear PM 

generator prototype for the wave energy convertor. This chapter describes the details of the test rig 

setup, including the test rig design, fabrication, sensor calibration, and servo motor. Moreover, the 

present chapter emphasises how the experiments were conducted with the resources available. 

7.1 Experimental Design 

The experimental work consists of two sets of measurements i) displacement and ii) induced voltage. 

The experimental procedure is the same for all different types of oscillators. The full experimental 

setup consists of a test rig and servo motor. Figure 7.1 presents the schematic of the experimental 

setup. The test rig concept has been designed in a virtual sense using Autodesk Inventor 2020. The 

same types of permanent magnets have been used to build all different degrees-of-freedom systems. 

For different test rig setups, the height of the oscillator, masses and sizes of the three primary magnets 

were common. Other than manufacturing, parts of the test rig setup were directly brought from the 

industry (ready to use). The other features such as shaft, v-pulley and plastic bush were manufactured. 

To measure the distance of the moving magnet, the sensors were calibrated and attached to the test 

rig. The key noise parameters and key control parameters of the test rig setup are determined. The 

frictions between the inner part of the plastic bush and outside of the shaft and the electromagnet 

interferences have been considered key noise parameters that could not be controlled. 

On the other hand, the masses of the magnets, damping ratio, resistance and inductance values are 

considered to be control parameters. The data acquisition system was connected with the sensor and 

coil winding data. The external force is applied to the floating magnet using a servo motor. The v-
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pulley was connected with the shaft of the servo motor, and a fishing line was used to connect the 

floating magnet with the v-pulley. The resulting induced electromagnetic voltage from the test rig is 

then connected to the data acquisition device. All the instruments have been pre-calibrated. 

 

Figure 7.1: Schematic of the experimental setup 

7.2 Design of the Test Rig 

The design of the test rig is straightforward, as shown in Figure 7.2. MB building kit system 

(aluminium profile 5 20x20, T-slot nut, button-head screws and angle bracket as displayed in Figure 

7.3) has been used to build the frame of the test rig. T-slot nut, angle bracket and button-head screws 

have been used to connect the aluminium profiles to build the test rig frame. The frame of the test rig 

is very flexible which can adjust easily. Moreover, all test rig components can be easily assembled 

and separated, which helps keep the shaft straight and aligned. Keeping the shaft vertically straight 

and aligned is one of the essential objectives of the test rig because it will help the floating magnet 

move in the up and down motion with minimal friction. Initially, the NdFeB N42 grade ring 

permanent magnets of size 72(OD) X 32.5(ID) X 13(H) (in mm units) was purchased. To avoid the 

magnet’s magnetic attraction, all materials of the test rig are chosen to be non-magnetic materials. 
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Each permanent magnet (NdFeB, N42) has been attached to the plastic bush to hold the magnet with 

the shaft.  

 

Figure 7.2: Test Rig (CAD design of the single-degree-of-freedom system) 

 

(a) (b) (c) 

 

(d) 

Figure 7.3: (a) Aluminium profile, (b) T-slot nut, (c) button-head screws and (d) angle bracket 

The gap between the inside diameter of the bush and shaft is approximately 1mm. The reasons for 

using a plastic bush are; (1) connect the floating magnet with servo motor pulley through fishing line; 
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(2) stop magnet to become inclined; (3) protect the magnet from touching the shaft during movement, 

which helps protect the magnet from damage. All magnets are facing with the same poles, and they 

are just placed on the shaft. Both top and bottom magnets worked as fixed magnets, but all magnets 

between the top and bottom magnets worked as floating magnets. The natural distance between the 

floating magnet and bottom magnet for the single-degree-of-freedom setup was 79 mm. The natural 

distance between the floating magnet and the top magnet was 104 mm. Because of the gravitational 

force, the middle magnet was not staying in the centre position during the single-degree-of-freedom 

system, and this was the equilibrium position (no repulsive force) for the system. If the floating 

magnet was pulled up and released, it returned back to its equilibrium position after several bounces. 

Moreover, the shaft has been fixed with the test rig frame by using aluminium plates. Figure 7.4 

displays the experimental test rig setup for the single-degree-of-freedom system oscillator. 

 

Figure 7.4: Test Rig setup (single degree of freedom system) 

The coil winding is attached to the test rig while keeping a 2 mm air gap between the outside diameter 

of the floating magnet and the inside diameter of the coil winding. The experiments were performed 

by changing the number of the coil windings and the turn number. Two types of copper coils (0.29mm 

and 0.31 mm) have been used in the test rig. Figure 7.5 displays the winding coil. The winding coils 

were designed based on the outside diameter of the ring permanent magnet. The details of the drawing 

of the test rig are given in Appendix B. The design parameters of the test rig have been determined 

by measurement or by curve fitting assumptions, as displayed in Table 7.1. 
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Figure 7.5: Copper winding coil 

Table 7.1: Determined experimental values of design parameters 

Experimental test rig 
values of design 
parameters 

Determined by Determined value 

Mass of each magnet Directly measured 0.315 kg 

Damping coefficients Measured by the log-decrement 
method 

Varies 

Linear stiffness  Measured by curve fitting tools 
from magnetic restoring force 
curve 

Varies 

Non-linear stiffness Measured by curve fitting tools 
from magnetic restoring force 
curve 

Varies 

Total resistances of the 
coils 

Calculated 5.48 Ω (100 turns, 0.31 mm), 
10.85 Ω (200 turns, 0.31 mm),  

Inductances of the coils Calculated  0.011 H (100 turns) and 0.044 H 
(200 turns) 

Average magnetic flux 
density 

Measured 0.47 T 

Single-degree-of-freedom 
design parameters 

Mass of the floating magnet with plastic bush, damping coefficient, 
linear stiffness, non-linear stiffness, resistance and inductance of the 
winding coil 

Two-degree-of-freedom 
design parameters 

Mass of each floating magnet (2 magnets) with plastic bush, damping 
coefficients for each floating magnet (2 magnets), linear stiffnesses, 
non-linear stiffnesses, resistances and inductances of the winding coils 

Three-degree-of-freedom 
design parameters 

Mass of each floating magnet (3 magnets) with plastic bush, damping 
coefficients for each floating magnet (3 magnets), linear stiffnesses, 
non-linear stiffnesses, resistances and inductances of the winding coils 
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The outside diameter (𝐷𝐷0) of the winding coil is 75 mm and the diameter of the coil wires (𝑑𝑑𝑤𝑤) are 

measured as 0.29 mm and 0.31 mm, respectively. The coil wire is made of copper with a resistivity 

(𝜌𝜌) of 1.72 × 10−8 𝛺𝛺𝑚𝑚. The length of coil wire used is calculated as: 

𝑙𝑙𝑐𝑐𝑤𝑤 = 𝜌𝜌𝑁𝑁𝐷𝐷0 = 𝜌𝜌 × 100 × �
75

1000
� = 23.55 𝑚𝑚 (7.1) 

𝑙𝑙𝑐𝑐𝑤𝑤 = 𝜌𝜌𝑁𝑁𝐷𝐷0 = 𝜌𝜌 × 200 × �
75

1000
� = 47.1 𝑚𝑚 (7.2) 

The area of the cross-section of the coil winding (𝐴𝐴𝑐𝑐𝑤𝑤) is calculated as: 

𝐴𝐴𝑐𝑐𝑤𝑤 =
𝜌𝜌𝑑𝑑𝑤𝑤2

4
=
𝜌𝜌 × (0.00031)2

4
= 0.00000007543 𝑚𝑚2 

(7.3) 

The resistance of the coil (𝑅𝑅𝑐𝑐) was calculated as: 

𝑅𝑅𝑐𝑐 =
𝜌𝜌𝑙𝑙𝑐𝑐𝑤𝑤
𝐴𝐴𝑐𝑐𝑤𝑤

=
1.72 × 10−8  × 23.55

0.00000007543
= 5.37𝛺𝛺 

(7.4) 

The resistance of the excess wire (𝑅𝑅𝑒𝑒) that connected the coil to the voltage measuring circuit is 

estimated at 0.11Ω. Hence the total internal resistance of the coil was considered as: 

𝑅𝑅 = 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑒𝑒 = 5.37 + 0.11 = 5.48 𝛺𝛺 (7.5) 

The resistance for 200 turns is 10.85Ω. Since the air-core has been used, the permeability coefficient 

of the coil 𝜇𝜇𝑟𝑟 is 1 (𝜇𝜇𝑟𝑟 = 1) and 𝜇𝜇0 = 4𝜌𝜌 ×  10−7 𝑁𝑁𝑚𝑚−2 is the permeability of the coil with the air-

core. 𝐷𝐷0 is the diameter of the coil and the height (ℎ𝑐𝑐) of the coil is 5 mm. The inductance (L) of the 

coil for 100 turns is calculated as: 

𝐿𝐿 = 𝜌𝜌 × 𝜇𝜇0 × 𝜇𝜇𝑟𝑟 ×
𝑁𝑁2𝐷𝐷02

4 × ℎ𝑐𝑐
=
𝜌𝜌 × 4𝜌𝜌 ×  10−7 × 1 × 1002 × 0.0752

4 × 0.005
= 0.011 𝐻𝐻 

(7.6) 

7.3 Data Acquisition System 

The data acquisition system has been used in the test rig to measure the sensor output and coil output 

induced voltages. The data acquisition system is a robust system that allows the transfer of all signals 

and commands from the test rig connected components with the computer through MATLAB 
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software. The analog signals are coming from the distance measuring sensor and copper coils that 

have been converted to digital I/O signals by the compaqDAQ National Instruments equipment type 

NI cDAQ-9178 with 8-slots in the chassis, as shown in Figure 7.6. During the single degree of 

freedom system setup, sensors one and two were connected with port numbers 0 and 1, respectively, 

whereas the copper winding coil was connected with port 2. The signal from the test rig experiment 

was effectively transferred to the data acquisition system as a digital signal using MATLAB software 

that allows easy data-logging and generates automatic code. After every investigation, the results 

were saved with a date/time stamp followed by analysis and displayed using MATLAB software on 

the computer. For the required measurements, the MATLAB m file needed to be ready for each test. 

After stopping each experiment (the test time duration was completed), the output signal and signal 

with time showed graphically in time-domain response and plots. Subplots 1 and 2 gave the sensor 

output voltage corresponding to the floating magnet position vs time graph. Subplot 3 provided the 

output voltage generated due to the floating magnet movement. The subplot 1 and 2 data later 

converted into the floating magnet's position vs time, velocity vs time and acceleration vs time graph. 

 

Figure 7.6: National Instruments equipment type NI cDAQ-9178 with 8-slot 

7.4 Sensor Calibration 

A reflective sensor (GP2Y0A41SK0F, Sharp) has been used to measure the displacement of the 

floating magnet. GP2Y0A41SK0F is a distance measuring sensor, and the sensor unit consists of a 

PSD (position sensitive detector), IR-LED (infrared emitting diode) and signal processing circuit. 

The schematic of the sensor is displayed in Figure 7.7.  

Port 1 (Connected with 
sensor 1) 

Port 2 (Connected with 
sensor 2) 

Port 3 (Connected with 
coil winding) 

Port 4 (Connected with 
coil winding)  
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Figure 7.7: Schematic of the sensor 

The sensor’s output signal is voltage, and the relationship between this sensor’s output voltage and 

the inverse of the measured distance is nearly linear over the sensor’s usable range. The sensor’s 

output voltage is converted to an estimated distance by constructing a best-fit line that relates the 

inverse of the output voltage (V) to distance (mm). Figure 7.8 presents the used reflective sensor, and 

the features of the sensor are shown in Table 7.2. 

 

Figure 7.8: Reflective sensor (GP2Y0A41SK0F, Sharp) 

Moreover, the sensor setup with the test rig is presented in Figure 7.9. The calibration of the sensor 

has been performed based on reading the voltage increase and drop resulting from moving the floating 

magnet away or towards the fixed sensor. The distance should be between 40 mm – 300 mm to receive 

suitable signal outputs for measurement. At first, two sensors were attached to the test rig. Both 

sensors have been placed above the bottom magnet to keep the distance between the sensors and 

floating magnet more than 4 cm; therefore, both sensors could be affected by the magnetic field that 

has been tested. The distance between the floating magnet and the top surfaces of both sensors is 6 

cm (60 mm).  
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Table 7.2: Features the reflective sensor 

Parameter Ratings 
Type Analogue output type 

Distance measuring range 4cm to 30cm 
Output terminal voltage -0.3V to +3 V 

Supply voltage 5V 
Operating temperature -10ºC to +60ºC 

 

Figure 7.9: Sensors with the test rig 

For the single degree of freedom test rig setup, the floating magnet can be moved by a maximum 

35mm down and by 60mm up because of the repulsive forces. The principal concept of this test rig 

is that the floating magnet will be pulled up by external force created by the servo motor. Therefore, 

it has been considered that the floating magnet will travel by a maximum of 20 mm toward the bottom 

magnet and a maximum of 70 mm toward the top magnet. Both sensors have been tested by 

considering this distance. Two sensors have been calibrated before attaching and after attaching with 

the test rig, and the input power supply was 5V for both sensors. Figure 7.10 presents the power 

supply. 

1 Plastic 
2 Sensor 
3 L shape joint 

 

1 2 3 
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Figure 7.10: Power supply  

The reason behind testing both sensors outside and inside the test rig was to know whether any 

magnetic fields were affecting the sensors unit or not. A multimeter measured the output signal 

voltage during both calibrations. Figure 7.11 presents the output voltage signals from sensors 1 and 

2, which were tested manually outside the test rig by moving a piece of wood. Figure 7.12 displays 

both sensor’s output signals when tested manually in the test rig.   

 

       (a) (b) 

Figure 7.11: Sensor test (a) without test rig and (b) with the test rig 

It can be seen from Figure 7.11 that the output signal voltages for sensors 1 and 2 are almost the same 

for both tests (without and with test rig). Moreover, it can be seen that the graph is very smooth when 

the sensors were tested without the test rig compared with when the sensors were tested with a test 

rig. The comparison of the output signal voltages for sensors 1 and 2 for both tests have been 

presented in Figure 7.12, respectively. It can be said from the comparison results that the output signal 

voltages for sensors 1 and 2 are almost the same when tested outside and inside the test rig.  
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(a)    (b) 

Figure 7.12: Comparison output signal voltage (a) sensor 1 and (b) sensor 2 

The sensor's output signal has been connected with the data acquisition system and compared with 

the manual testing results. For this purpose, both sensors were tested from 30 mm to 130 mm distance. 

The data acquisition system’s output signals, later on, have been used to measure the displacement 

and velocity of the floating magnet. Therefore, this test rig setup needs to validate the data acquisition 

system’s output results. The experimental trials have been performed several times. Their average 

manually measured values for the voltmeter output signals have been compared with the average 

output signal obtained from the data acquisition system. The comparison outputs for sensor 1 has 

shown in Figure 7.13(a), and for sensor 2 has shown in Figure 7.13(b).  

 

(a) (b) 

Figure 7.13: Comparison output signal voltage (a) sensor 1 and (b) sensor 2 

From Figure 7.13, it has been seen that the increase in the distance of the floating magnet from the 

sensor leads to a decreased voltage output of the sensor. The output voltage signals started to reduce 
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after 35 mm when the floating magnet was moving toward the sensors. The manual average 

measurement for both sensors is similar compared with the data acquisition system’s average 

measurement.   

 

(a) 

 

(b) 

Figure 7.14: (a) Distance-Voltage calibration curves of sensor 1 and (b) Residual error of the fitting 

curve  

Moreover, this method has been repeated a few times with the voltage dividers to check the distance 

with the reduced voltage. Running the test rig is the last step to get the results of the distance and 

voltage, which must be within the allowable limits (40 mm to 300 mm), according to the calibration 

curves in Figure 7.14 and Figure 7.15. The reflective sensor calibration steps were attempted to help 

ensure accurate measurements and to avoid any movement that may lead to incorrect results. 
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(a) 

 

(b) 

Figure 7.15: (a) Distance-Voltage calibration curves of sensor 2 and (b) Residual error of the fitting 

curve  

With the increase in the number of floating magnets, the number of sensors increased as well to 

measure the displacement of each floating magnet. All sensors have been calibrated in the same way 

discussed earlier.  

7.5 Low-pass Filter 

The output signals from sensors in the data acquisition system are very noisy (not smooth) which can 

be seen in Figure 7.16. Therefore, it is required to filter the output signals’ voltage to get the smoother 

graph form of the signal. Filters are generally used to decrease noise and develop data quality. Both 

high-pass and low-pass filters can be used but it is important to choose the proper pass filter. For this 

test rig setup, the low-pass filter has been used for smoothing out ripples or filtering out noise in the 

sensor signal output.  
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Figure 7.16: Output signals of the sensor in data acquisition system with zoom view 

Normally, the low-pass filter passes signals with a frequency lower than a selected cut-off frequency, 

which means it allows frequencies below their cut-off range and attenuates signals with a frequency 

higher than the cut-off frequency. Moreover, the low-pass filters offer a smoother form of a signal by 

cutting out the short-term fluctuations, leaving the longer-term trend. The filter’s exact frequency 

response depends on the filter design.  In fact, a low pass filter is a system that only allows the low-

frequency components to pass through it and provides very high attenuation to the high-frequency 

components. All the filters are frequency selective devices and are generally used to remove different 

frequencies from a particular band of large frequencies according to their parameter called the cut-

off frequency. To make the circuit more straightforward to implement, mainly the low-pass filter is 

used. It generally contains R & C, whose value determines their cut-off frequency. Both analog low-

pass filters and digital low-pass filters can be used. For this test rig setup, the digital low-pass filter 

has been used because it has more advantages than the analog filters due to their finite memory and 
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their ability to work with precision on the finite number of samples. They are computationally more 

robust and efficient compared to their analog counterparts.  

 

Figure 7.17: 500 Hz cut out 

MATLAB comments have been used as a digital low-pass filter to cut out the unnecessary and short-

term fluctuations for this experimental setup other than using a hardware circuit. To select the suitable 

cut-off frequency, the analysis has been performed at first for 500Hz, 400Hz, 300Hz, 200Hz, 100Hz, 

50Hz and later on for 40Hz, 30Hz, 25Hz, 20Hz, 15Hz, 10Hz and 5Hz. Figure 7.17 displays the 

original and filtered signal and their spectra result for a cut-off frequency of 500 Hz.  From Figure 

7.17 it has been seen that the output signal is not smooth. Therefore, 500 Hz cut-off is not suitable 
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for this signal output. After that, 400 Hz cut-off has been used to see the signal output, as shown in 

Figure 7.18. From Figure 7.18, it can be said that after using 400 Hz frequency cut-off, the output 

signals are still not smooth yet, and therefore the 400Hz frequency cut-off was not be selected for this 

system. 

 

Figure 7.18: 400 Hz cut out 

The 300Hz frequency has been used later on after the 400Hz frequency cut-off to analyse more to 

choose the cut-off frequency. The analysed result of using a 300Hz cut-off has been displayed in 

Figure C1 in Appendix B. The analysed result showed that the signal outputs are not smooth enough, 

and therefore the 300Hz has not been selected for this system setup. More analysis has been 

performed by using 200Hz and 100Hz as the cut-off frequencies and their analysis results are 

presented in Figure C2 and Figure C3, respectively in Appendix B. By comparing their study, it can 

be said that the 100Hz cut-off is better than the 200Hz cut-off frequency as the graph for the 100Hz 

cut-off frequency is smoother. The analysis has been performed more by using 50Hz, 40Hz and 30Hz 

cut-off. The analysis results have been displayed in Figure C4, Figure C5 and Figure C6, respectively 

in Appendix B.  
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Figure 7.19: 25 Hz cut out 

It can be seen from those analyses the signal outputs for the 30Hz cut are smoother than the signal 

outputs for the 40Hz cut-off, which is smoother than the 50Hz cut-off. At a cut-off frequency of 30Hz, 

the filtered signal graph showed that much of the original signal had been reduced and the graph was 

much smoother. So far, from the different cut-off frequencies, it can be said that as the cut-off 

frequency is decreased, effects get better. The cut-off frequencies have been reduced more to 

perform more analysis. By reducing the cut-off frequency by an additional 5Hz frequency, the 

analysis has been performed, which is presented in Figure 7.19. Figure 7.19 displays the analysis 

results for 25Hz cut out frequency. Comparing Figure 7.19 and Figure 7.18, and it can be said that 

the graph is getting smoother with the decreasing cut-off frequency. To know the effects of the signal, 

the cut-off frequencies have been reduced furthermore. The analysis results for the 20Hz and 15Hz 

cut-off frequency has been shown in Figures C7 and C8, respectively in Appendix B. Moreover, 

Figure C9 and Figure C10 present the analysis result for the 10Hz and 5Hz cut-off frequencies. The 

graph for the 5Hz cut-off frequency is smoother than the graph for the 10Hz cut-off frequency.  
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7.6 Servo Motor 

A servo motor is being used in the test rig set up to supply the torque of the drive shaft, which consists 

of a pulley and to provide excitation in the floating magnet during the motor shaft rotation. The fishing 

line is used to connect the floating magnet with the V-pulley of the motor shaft. The design of the V-

pully has been shown in Appendix B. The servo motor that has been used in the test rig is a BSM90C-

2150 DC motor type connected to an ABB Microflex e150 servo drive. The MicroFlex e150 is a 

useful servo drive delivering high performance and capability in a broad range of demanding motion 

control applications. The rotor inertia and torque range of the servo motor are 0.000881 𝑘𝑘𝑔𝑔. 𝑚𝑚2 and 

1-10 Nm., respectively. Figure 7.20 presents the test rig setup with the servo motor. Figure 7.21 

displays the servo drive.  The servo motor is controlled by using the MINT workbench software tool. 

The servo motor is connected to the PC through MINT software by using an IP address. The drive 

information has been confirmed before starting the motor. The specifications of the servo motor have 

been presented in Table 7.3. 

Table 7.3: Specifications of the servo motor 

 

  

To create an external force, the servo motor has been controlled by the MINT workbench software 

tool. MINT workbench is a unique software tool designed by ABB to deliver rotational velocity by 

controlling specific distance, speed, and acceleration parameters. The software tool can control the 

motor’s speed, acceleration and torque with a chosen profile by adjusting the controller PID gains in 

the MINT workbench software. To create an external force on the floating magnet, the motor is run 

by controlling the torque. Moreover, MINT workbench software can control the current with the 

Parameters Values 
Motor type BSM90C-2150 DC motor 
Drive type ABB Microflex e150 servo drive 

Control system MINT workbench software 
Torque range 1-10 N.m 

Moment of inertia 8.81 kg.cm2 or 0.000881 kg.m2 
V-pulley radius 50 mm 
Shaft diameter 25 mm 

Nominal switching frequency 8.0 𝑘𝑘𝐻𝐻𝑧𝑧 
Maximum output voltage 230V 

Inductance 14.8 mH 
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output power and necessary time to create the preferred torque and stop the rotation when the limit 

current is reached.  

 

Figure 7.20: Test-rig setup with servo motor 

 

Figure 7.21: Servo drive (MicroFlex e150) 

The drive of the servo motor has three control loops; position, speed and current (torque), which are 

fundamental to the operation of the drive. Therefore, it can run the drive in either position, velocity 

or torque control mode (as a default setting), but the selection should be made to suit the application. 
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Moreover, the selection depends on the drive's operating system because if the drive is operating as 

a network drive, then the selection should be based on whether the network master, such as the motion 

controller, is operating in either cyclic synchronous position, cyclic synchronous velocity or cyclic 

synchronous torque mode. On the other hand, if the drive is operating as an analog drive that received 

a +/- 10Vdc demand from a motion controller, then the selection is likely to be either velocity or 

torque. But the selection is expected to be the position if the drive is running a local Mint program. 

The values of the system parameters have been read on the MINT Workbench ‘Parameters’ page or 

the MINT CONTROLRATE keyword. Torque servo configuration has the advantages of high 

dynamic performance, minimal settling time and improved resistance to the oscillation at zero speed. 

Torque servo is an invalid configuration for analog drives configured in velocity mode using the Mint 

VELREF motion command or a real-time Ethernet motion controller that needs to operate in CSV 

mode. The red colour emergency button is required for the test rig setup with a servo motor to stop 

the motor in any emergency cases. Figure 7.22 presents the circuit diagram of the MicroFlex e150.  

 

Figure 7.22: Circuit diagram of MicroFlex e150 

The rectifier of the servo drive, as shown in Figure 7.22, translates the three-phase AC voltage to DC 

voltage. The capacitor bank of the middle circuit stabilises the DC voltage. The inverter converts the 

DC voltage back to AC voltage for the AC motor. Moreover, the brake chopper connects the external 

brake resistor to the intermediate DC circuit when the voltage in the circuit exceeds its maximum 

limit. 

7.7 Conclusions 

The test rig has been designed and developed using ring type permanent magnets, sensors, coils and 

circuit elements. This setup has been mainly intended to facilitate improvements to harvest maximum 
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supply 
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bank 

Inverter 
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energy in low-frequency ranges. Moreover, the test rig instrumentation contains new techniques for 

understanding the magnetic spring-based system and measurements of magnetic restoring forces and 

the possibility of developing advanced methods for understanding the multi-degree-of-freedom 

system-based magnet spring-based system. All required instruments have been discussed individually 

in this chapter. In conclusion, the experimental test rig setup has been designed and advanced to 

conduct multiple trials on all different models to get the time domain voltage responses at the different 

velocities of the floating magnets and external applied forces.  
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Chapter 8  
Theoretical and Experimental Investigation of SDOF Magnetic Spring-based 

Linear Electromagnetic Generator 

Currently, most of the proposed linear PM generator-type direct electric drive PTO systems for wave 

energy conversion have been developed based on linear oscillator systems (single-degree-of-freedom 

(SDOF) oscillator system) and traditional design concepts (e.g. all permanent magnets are mounted 

in the translator, having opposite poles facing each other with an iron core used between them, and 

with coil windings attached in the stator). Usually, the translator moves inside the stator, creating 

magnetic flux changes inside the winding coils, which generate electrical energy. When comparing 

the nonlinear systems with linear energy harvesting technology, the linear energy harvester has the 

highest power output in most cases. In contrast, the nonlinear system has a broader harvesting 

frequency bandwidth, and it can harness more energy from random vibration (Beeby et al., 2013).  

Moreover, the nonlinear oscillating system is better than the linear oscillation for broadening the 

frequency response bandwidth (Owens & Mann, 2012). Light damping nonlinear oscillators are 

expected to have larger operational frequency bandwidth than a conventional single degree of 

freedom linear oscillator. The magnetic spring-based (magnetic levitation) system can be used in the 

translator design to make the oscillator nonlinear, which is more effective in the broadband frequency 

range, especially in the low-frequency ocean environment (Masoumi & Wang, 2016). In the magnetic 

levitation system, the magnetic spring works like a physical spring and is created when two magnets 

face each other with the same poles (N-N or S-S). In Chapter 4, the analytical, numerical and 

experimental model of the single-degree-of-freedom (SDOF) magnetic spring-based oscillator 

system has been discussed with validation. However, the energy generation part was not considered 

during the analysis of the SDOF system. This chapter deals with energy generation techniques based 

on SDOF magnetic spring-based oscillator systems and their behaviour with various design criteria. 

The maximum energy generation depends on different parameters of the system. The parametric 

study analyses the effect on the problem solving of various geometric or physical parameters, or both. 

The parametric study is significant for evaluating system performance and achieving the best solution 

within different parameter sets. The optimisation method helps by automatically exploring the design 

space effectively and achieving the optimal solution. Therefore, the study on parametric optimisation 

is significant to get the best model. Moreover, the same oscillator model has been coupled with the 

electrical RL circuits and RLC system, where R = resistance, L = inductance and C = capacitance, 
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with identical values of floating magnet's mass, damping constant, linear and nonlinear stiffness, coil 

resistance and coil inductance. This chapter will discuss all parameters analytically and 

experimentally for getting maximum energy in the different frequency ranges.  

8.1 Architecture of the Single-degree-of-freedom (SDOF) Energy Harvester 

The linear generator’s basic architecture comprises of three-ring permanent magnets (axially 

magnetised), a circular shaft, and a winding coil. In the energy harvester model design, the interaction 

issue has been considered one of the primary design factors. Every function’s performance (such as 

magnetic restoring forces and induced voltage) should not affect or influence each other, particularly 

when the middle magnet moves. The proposed energy harvester consists of three permanent magnets, 

requiring a unique design to diminish the magnetic field interference. Minimising the harmful 

cogging force generated from the magnet and coil movement is necessary. Different non-magnetic 

materials have been used efficiently to avoid magnetic field interference to solve this issue. The fixed 

magnets are attached to the vertical shaft. The polarity of the magnets is arranged so that the levitating 

magnet experiences a repulsive force from the fixed magnets. A multilayer coil is attached around 

the outer surface of the middle magnet. The test rig of the energy harvester is developed based on a 

levitating magnet and coil winding. The height and diameter of the shaft are 550 mm and 12 mm, 

respectively. Figure 8.1 presents the test rig setup with a winding coil.  

           

Figure 8.1: Test rig setup with winding coil 

Winding coil 

Floating magnet Top fixed magnet 

Bottom magnet Sensors 

Shaft  
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The height of the test rig setup is 550 mm, and the width is 300 mm. The equilibrium height of the 

SDOF oscillator is 222 mm. Therefore, the top magnet is attached and locked to the vertical shaft 222 

mm away from the bottom magnet. The position of the top magnet can be moved to change the height 

of the generator. Both sensors have been placed on top of the bottom magnet. The wires of the winding 

coil have been connected to the data acquisition system to capture the induced voltages.  

8.2 Analytical Analysis of the SDOF Energy Harvester Model based on a Nonlinear Oscillator 

system 

In the equilibrium position, the separation distance between the bottom and the floating magnet is 79 

mm, and between the floating and top magnet is 104 mm. When the external force is applied to the 

middle magnet, or the middle magnet moves up and down, it creates an elastic restoring force (𝐹𝐹𝑟𝑟 =

𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3) of the magnetic spring. Figure 8.2 and Figure 8.3 present the free body diagram 

of the SDOF magnetic spring-based energy harvester system.  

 

Figure 8.2: SDOF magnetic spring-based system energy harvester 

𝐹𝐹𝛽𝛽 is the damping force of the system written as  𝐹𝐹𝛽𝛽 = 𝛽𝛽�̇�𝑦. The relative displacement of the magnet 

is y, and the relative velocity and acceleration of the magnet are �̇�𝑦 and �̈�𝑦, respectively. The magnetic 

flux density of the magnet is B(y), and the total length of the coil is l. The electromagnetic coupling 
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Moving magnet 
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(Underneath) 

𝐹𝐹𝑟𝑟 𝐹𝐹𝛽𝛽 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
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coefficient is 𝑎𝑎(𝑎𝑎 = 𝐵𝐵(𝑏𝑏)𝑙𝑙) and 𝐹𝐹𝑒𝑒 is the electromagnetic force written as  𝐹𝐹𝑒𝑒 = 𝑎𝑎𝐼𝐼. The dynamic 

equation of the motion of the system can be written as,  

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝐹𝐹𝛽𝛽 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝑒𝑒 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(8.1) 

𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝑎𝑎
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (8.2) 

where 𝑅𝑅𝑖𝑖𝑔𝑔 is the coil’s resistance, 𝐿𝐿 is the inductance of the winding coil, and 𝐼𝐼 is the induced current.  

 

Figure 8.3: Free body diagram of the SDOF magnetic spring-based system energy harvester 

The equations 8.1 and 8.2 can be expressed as 

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(8.3) 

𝑀𝑀�̈�𝑦 + 𝛽𝛽�̇�𝑦 +  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.4) 

𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝑎𝑎
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (8.5) 

𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼 + 𝐿𝐿𝐼𝐼̇ = 𝑎𝑎�̇�𝑦 (8.6) 

The above equations can be stated for the state space model as 

�̈�𝑦 =
1
𝑀𝑀

(𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) − 𝛽𝛽�̇�𝑦 −  𝑘𝑘1𝑦𝑦−𝑘𝑘2𝑦𝑦2 − 𝑘𝑘3𝑦𝑦3 − 𝑎𝑎𝐼𝐼) (8.7) 

𝐼𝐼̇ =
1
𝐿𝐿

(𝑎𝑎�̇�𝑦−𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼) (8.8) 

 

M 

𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

 𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3  𝛽𝛽�̇�𝑦  𝛼𝛼𝐼𝐼 
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The state space model of the system can be stated as 

𝑍𝑍1 = 𝑦𝑦 (8.9) 

𝑍𝑍2 = �̇�𝑦 = �̇�𝑍1 (8.10) 

�̇�𝑍2 = �̈�𝑦 (8.11) 

𝑍𝑍3 = 𝐼𝐼 (8.12) 

�̇�𝑍3 = 𝐼𝐼̇ (8.13) 

𝑈𝑈1 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.14) 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 −  𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13 − 𝑎𝑎𝑍𝑍3� (8.15) 

�̇�𝑍3 =
1
𝐿𝐿

(𝑎𝑎𝑍𝑍2−𝑅𝑅𝑖𝑖𝑔𝑔𝑍𝑍3) (8.16) 

The matrix form of the state space model can be expressed as 

�
�̇�𝑍1
�̇�𝑍2
�̇�𝑍3
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 1 0
−𝑘𝑘1 − 𝑘𝑘2𝑍𝑍1 − 𝑘𝑘3𝑍𝑍12

𝑀𝑀
−𝛽𝛽
𝑀𝑀

−𝑎𝑎
𝑀𝑀

0
𝛼𝛼
𝐿𝐿

−𝑅𝑅𝑖𝑖𝑔𝑔
𝐿𝐿�����������������������

𝐴𝐴 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� +

⎣
⎢
⎢
⎢
⎡0

1
𝑀𝑀
0⏟
𝐵𝐵 ⎦
⎥
⎥
⎥
⎤

[𝑈𝑈1] 

(8.17) 

[𝑋𝑋] = �
1 0 0
0 1 0
0 0 1

�
�������

𝐶𝐶

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� + [0]�

𝐷𝐷
[𝐷𝐷] 

(8.18) 

If the coil is connected in parallel to an external load or resistance 𝑅𝑅𝑒𝑒. The parallel-connected winding 

coil has the internal resistance 𝑅𝑅𝑖𝑖𝑔𝑔 and inductance 𝐿𝐿. The dynamic equation of the motion of the 

system can be written as,  

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(8.19) 

𝑉𝑉 + 𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑖𝑖

= 𝑎𝑎
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (8.20) 

Where 𝑅𝑅𝑖𝑖𝑔𝑔 is the coil’s resistance, 𝐿𝐿 is the inductance of the winding coil, and 𝐼𝐼 is the induced current 

(𝐼𝐼 = 𝑉𝑉
𝑅𝑅
). Moreover, 𝑉𝑉 is the induced voltage, and R is the resistance of the winding coil. The equations 

8.1 and 8.2 can be expressed as 
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𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎
𝑉𝑉

(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)
= 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(8.21) 

𝑀𝑀�̈�𝑦 + 𝛽𝛽�̇�𝑦 +  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎
𝑉𝑉

(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)
= 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.22) 

𝑉𝑉 +
𝐿𝐿

(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)
𝑑𝑑𝑉𝑉
𝑑𝑑𝑖𝑖

= 𝑎𝑎
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

 (8.23) 

𝑉𝑉 +
𝐿𝐿

(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)
�̇�𝑉 = 𝛼𝛼�̇�𝑦 (8.24) 

The above equations can be stated for the state space model as 

�̈�𝑦 =
1
𝑀𝑀
�𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) − 𝛽𝛽�̇�𝑦 −  𝑘𝑘1𝑦𝑦−𝑘𝑘2𝑦𝑦2 − 𝑘𝑘3𝑦𝑦3 −

𝑎𝑎𝑉𝑉
(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

� (8.25) 

�̇�𝑉 =
(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

𝐿𝐿
(𝑎𝑎�̇�𝑦 − 𝑉𝑉) (8.26) 

The state space model of the system can be stated as 

𝑍𝑍1 = 𝑦𝑦 (8.27) 

𝑍𝑍2 = �̇�𝑦 = �̇�𝑍1 (8.28) 

�̇�𝑍2 = �̈�𝑦 (8.29) 

𝑍𝑍3 = 𝑉𝑉 (8.30) 

�̇�𝑍3 = �̇�𝑉 (8.31) 

𝑈𝑈1 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.32) 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 −  𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13 −

𝑎𝑎
(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

𝑍𝑍3� (8.33) 

�̇�𝑍3 =
(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

𝐿𝐿
(𝑎𝑎𝑍𝑍2 − 𝑍𝑍3) (8.34) 

The matrix form of the state space model can be expressed as 

�
�̇�𝑍1
�̇�𝑍2
�̇�𝑍3
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 1 0
−𝑘𝑘1 − 𝑘𝑘2𝑍𝑍1 − 𝑘𝑘3𝑍𝑍12

𝑀𝑀
−𝛽𝛽
𝑀𝑀

−𝑎𝑎
𝑀𝑀(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

0
𝑎𝑎(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

𝐿𝐿
−(𝑅𝑅𝑖𝑖𝑔𝑔 + 𝑅𝑅𝑒𝑒)

𝐿𝐿���������������������������������
𝐴𝐴 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� +

⎣
⎢
⎢
⎢
⎡0

1
𝑀𝑀
0⏟
𝐵𝐵 ⎦
⎥
⎥
⎥
⎤

[𝑈𝑈1] 

(8.35) 
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[𝑋𝑋] = �
1 0 0
0 1 0
0 0 1

�
�������

𝐶𝐶

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� + [0]�

𝐷𝐷
[𝐷𝐷] 

(8.36) 

The proposed generator system has been analysed by considering the RLC circuit with the system. 

The SDOF system with RLC electric circuit can be considered by the equations 8.20 and 8.21. In the 

previous section, the SDOF generator model was analysed considering the RL circuit, and in this 

section, the system has been studied using an RLC circuit.    

𝑀𝑀
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

+ 𝛽𝛽
𝑑𝑑𝑦𝑦
𝑑𝑑𝑖𝑖

+  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎𝐼𝐼 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 
(8.37) 

𝐿𝐿𝐼𝐼̈+ 𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼̇ +
1
𝐶𝐶
𝐼𝐼 = 𝑎𝑎

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

 
(8.38) 

where 𝐿𝐿 is inductance and 𝑅𝑅𝑖𝑖𝑔𝑔 is the resistance of the winding coils. C is the capacitance of the circuit. 

The equations 8.37 and 8.38 can be stated as, 

𝑀𝑀�̈�𝑦 + 𝛽𝛽�̇�𝑦 +  𝑘𝑘1𝑦𝑦 + 𝑘𝑘2𝑦𝑦2 + 𝑘𝑘3𝑦𝑦3 + 𝑎𝑎
𝑉𝑉
𝑅𝑅

= 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.39) 

�̈�𝑦 =
1
𝑀𝑀

(𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) − 𝛽𝛽�̇�𝑦 − 𝑘𝑘𝑦𝑦 − 𝑘𝑘2𝑦𝑦2 − 𝑘𝑘3𝑦𝑦3 − 𝑎𝑎𝐼𝐼) (8.40) 

𝐿𝐿𝐼𝐼̈+ 𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼̇ +
1
𝐶𝐶
𝐼𝐼 = 𝑎𝑎

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑖𝑖2

 
(8.41) 

𝐼𝐼̈ =
1
𝐿𝐿
�𝑎𝑎�̈�𝑦−𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼̇ −

1
𝐶𝐶
𝐼𝐼� (8.42) 

The state space model of the system can be stated as, 

𝑍𝑍1 = 𝑦𝑦 (8.43) 

𝑍𝑍2 = �̇�𝑦 = �̇�𝑍1 (8.44) 

�̇�𝑍2 = �̈�𝑦 (8.45) 

𝑍𝑍3 = 𝐼𝐼 (8.46) 

𝑍𝑍4 = �̇�𝑍3 = 𝐼𝐼 ̇ (8.47) 

�̇�𝑍4 = 𝐼𝐼̈ (8.48) 
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𝑈𝑈1 = 𝐹𝐹𝑏𝑏𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (8.49) 

�̇�𝑍1 = 𝑍𝑍2 (8.50) 

�̇�𝑍2 =
1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 −  𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13 −

𝑎𝑎
𝑅𝑅𝑖𝑖𝑔𝑔

𝑍𝑍3� (8.51) 

�̇�𝑍4 =
1
𝐿𝐿
�𝑎𝑎�̈�𝑦−𝑅𝑅𝑖𝑖𝑔𝑔𝐼𝐼̇ −

1
𝐶𝐶
𝐼𝐼� (8.52) 

�̇�𝑍4 =
1
𝐿𝐿
�𝑎𝑎 �

1
𝑀𝑀
�𝑈𝑈1 − 𝛽𝛽𝑍𝑍2 −  𝑘𝑘1𝑍𝑍1 − 𝑘𝑘2𝑍𝑍12 − 𝑘𝑘3𝑍𝑍13 − 𝑎𝑎𝑍𝑍3��−𝑅𝑅𝑖𝑖𝑔𝑔𝑍𝑍4 −

1
𝐶𝐶
𝑍𝑍3� 

(8.53) 

The matrix form of the state space model can be stated as, 

⎣
⎢
⎢
⎢
⎡�̇�𝑍1
�̇�𝑍2
�̇�𝑍3
�̇�𝑍4⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0
− 𝑘𝑘1 − 𝑘𝑘2𝑍𝑍1 − 𝑘𝑘3𝑍𝑍12

𝑀𝑀
−𝛽𝛽
𝑀𝑀

−𝑎𝑎
𝑀𝑀

0
0 0 0 1

−𝑎𝑎𝑘𝑘1 − 𝑎𝑎𝑘𝑘2𝑍𝑍1 − 𝑎𝑎𝑘𝑘3𝑍𝑍12

𝑀𝑀 ∗ 𝐿𝐿
−𝑎𝑎 ∗ 𝛽𝛽
𝑀𝑀 ∗ 𝐿𝐿

−�
𝑎𝑎2

𝑀𝑀 ∗ 𝐿𝐿
+

1
𝐶𝐶 ∗ 𝐿𝐿

� −
𝑅𝑅𝑖𝑖𝑔𝑔
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
𝑍𝑍4

� +

⎣
⎢
⎢
⎢
⎢
⎡

0
1
𝑀𝑀
0
𝛼𝛼

𝑀𝑀 ∗ 𝐿𝐿⎦
⎥
⎥
⎥
⎥
⎤

[𝑈𝑈1] 

(8.54) 

[𝑋𝑋] = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

���������
𝐶𝐶

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� + [0]�

𝐷𝐷

[𝐷𝐷] 
(8.55) 

8.2.1 Dynamics analysis of the SDOF nonlinear oscillator-based energy harvester 

The dynamics of the proposed energy harvester have been analysed using the system’s state space 

model. The used parameters of the system are presented in Table 8.1. Initially, the eigenvalues and 

frequency of the system were analysed. During the experimental excitation of the middle magnet by 

an applied external force, the floating magnet moved a maximum of 20 mm toward the bottom magnet 

and 50 mm toward the top magnet from the equilibrium position. Therefore, the excitation range has 

been considered 20 mm toward the bottom magnet and 50 mm toward the top magnet from the 

equilibrium position. The magnetic restoring force has been determined for this excitation range, and 

the linear and nonlinear coefficients have been measured from this magnetic restoring force. The 

system's eigenvalues for different positions of the floating magnet have been presented in Table 8.2. 

The real parts of the eigenvalues (Mechanical part) remained almost similar for different positions of 

the floating magnet which can be seen in Table 8.2. Still, the imaginary part of the eigenvalues 

changed with changing the position of the floating magnet. On the other hand, the real part of the 
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eigenvalues of the electrical part is almost similar for different positions of the floating magnet. Still, 

the imaginary parts remained zero for all different positions of the floating magnet. 

Table 8.1: Required parameters for the system 

Parameter Values 
k1 241.73 [N/m] 
k2 4392.6 [N/m^2] 
k3 134759 [N/m^3] 
𝛽𝛽 0.74 [Ns/m] 
M 0.36745 [kg] 
L 0.005546 [H] 
R 5.48 [ohm] 
l 23.5 [m] 

Bx 0.35 [T] 

Table 8.2: Eigenvalues of the system 

Position of the 
floating 

magnet (mm) 

Eigenvalues Frequency (rad/s) 
Mechanical part 

(1.0e+02) 
Electrical part 

(1.0e+02) 
Mechanical 

part 
Electrical 

part 

-50 -0.1844 + 0.2594i -9.5324 + 0.0000i 31.82 953.23 
-45 -0.1844 + 0.2354i -9.5323 + 0.0000i 29.90 953.23 
-40 -0.1844 + 0.2132i -9.5323 + 0.0000i 28.18 953.23 
-35 -0.1844 + 0.1933i -9.5323 + 0.0000i 26.72 953.22 
-30 -0.1844 + 0.1767i -9.5322 + 0.0000i 25.54 953.22 
-25 -0.1845 + 0.1642i -9.5322 + 0.0000i 24.7 953.22 
-20 -0.1845 + 0.1568i -9.5322 + 0.0000i 24.21 953.22 
-15 -0.1845 + 0.1554i -9.5322 + 0.0000i 24.11 953.22 
-10 -0.1845 + 0.1599i -9.5322 + 0.0000i 24.41 953.22 
-05 -0.1844 + 0.1701i -9.5322 + 0.0000i 25.1 953.22 
0 -0.1844 + 0.1849i -9.5323 + 0.0000i 26.11 953.22 

05 -0.1844 + 0.2033i -9.5323 + 0.0000i 27.45 953.22 
10 -0.1844 + 0.2245i -9.5323 + 0.0000i 29.05 953.23 
15 -0.1844 + 0.2477i -9.5324 + 0.0000i 30.87 953.23 

The natural frequency of the mechanical part changed with changing the position of the floating 

magnet. The natural frequencies of the mechanical part increased when the floating magnet travelled 
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toward the bottom or top magnets. However, the natural frequency of the electrical part remained 

constant at around 953.22 rad/s for all different positions of the floating magnet.  
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(c) 

Figure 8.4: Resonance frequency (a) Without electrical-mechanical coupling, (b) with electrical-

mechanical coupling and (c) for different positions of the middle floating magnet 

The system’s resonance frequency has been analysed with electrical-mechanical coupling and without 

electrical-mechanical coupling. Figure 8.4(a) and Figure 8.4(b) present the system’s resonance 

frequency without electrical-mechanical coupling and with electrical-mechanical coupling, 

respectively. The coil’s average magnetic flux density, resistance, length and inductance were 0.35T, 

5.48ohm, 23.5m and 0.005546H to analyse the system’s resonance frequency for different floating 

magnet positions in Figure 8.4(c). Because of the electrical-mechanical coupling effects, the 

frequency response of the generator system did not show the peak (or maximum) amplitude, as seen 

in Figure 8.4(c). It has known from the literature that the stiffness, mass and damping constant affect 

the resonance frequency of any system. The peak (or maximum) amplitude changes with changing 

the damping. Due to the larger damping constant, the system creates the lower maximum amplitude, 

as shown in Figure 8.5(a). However, the damping change does not affect the displacement amplitude 

at lower or higher frequencies, but it only impacts the amplitude response in the damping-controlled 

area at the peak. Decreasing the stiffness increases the amplitude of the low-frequency response, and 

adding the stiffness declines the displacement amplitude in this region, as displayed in Figure 8.5(b). 
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From Figure 8.5(b), it can be seen that changing the stiffness only changes the resonance peak’s 

location, but it does not affect the amplitude at widespread frequencies. 
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(c) 

Figure 8.5: Frequency response (a) Different damping constant, (b) Different linear stiffness and (c) 

Different masses of the floating magnet 

Adding the mass decreases the amplitude, and reducing the mass increases the amplitude, as presented 

in Figure 8.5(c). Changes in the mass only change the resonance peak, but it does not affect the 

displacement response. The effects of the electrical-mechanical coupling on the system have been 

analysed by changing the coil’s magnetic flux density, length, resistance, and inductance. By 

changing the coil’s inductance, the system’s resonance frequency has been analysed, and it has been 

found that it does not affect the system’s natural frequency.  

However, the peak (or maximum) amplitude changes when the magnetic flux density changes; larger 

magnetic flux density results in a lower maximum amplitude. Changing the magnetic flux density 

only affects the amplitude response at the peak, as presented in Figure 8.6. Changing the length of 

the winding coil only affects the amplitude response at the peak, as shown in Figure 8.7. Similarly, 

when the length or the number of turns of the winding coil change, the peak (or maximum) amplitude 

changes; a smaller length or turn number of the winding coil results in a higher maximum amplitude. 

Figure 8.8 displays the frequency response for different resistances of the winding coil.  
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Figure 8.6: Frequency response for different magnetic flux density 

 

Figure 8.7: Frequency response for different lengths or turn numbers of the winding coil 
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Figure 8.8: Frequency response for different resistance of the winding coil 

 

Figure 8.9: Displacement, velocity and induced voltage of the system 

From Figure 8.8, it can be seen that when the resistance of the winding coil changes, the peak (or 

maximum) amplitude changes; smaller resistance of the winding coil results in a lower maximum 

amplitude. Therefore, changing the resistance of the winding coil only affects the amplitude response 

at the peak. Moreover, the theoretical generator model dynamics have been analysed using the state 
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space model (ode23t). The generator system’s displacement, velocity, and induced voltage for 

different simulation times have been determined under harmonic force. The harmonic force’s 

amplitude and frequency were 25N and 0.1Hz, respectively. The initial displacement, velocity and 

induced voltage were considered zero and the simulation was run for 20 seconds. Figure 8.9 displays 

the system’s displacement, velocity, and induced voltage. Figure 8.10 presents the power of the 

system.  

 

Figure 8.10: Power output of the system 

For the 25sin(2phi*0.1*t) applied harmonic force, the floating magnet moved around 31 mm towards 

the bottom and about 43 mm towards the top. Between that time, the maximum velocity of the floating 

magnet was 0.026 m/s. The measured maximum induced voltage was around 0.23V for this 

displacement of the floating magnet.  

Moreover, the determined maximum power was 0.01 W, as shown in Figure 8.10. The harmonic force 

frequency was 0.1 Hz, and therefore, the displacement line should touch the 0 points after a complete 

cycle. From Figure 8.9, it can be seen that the displacement curve did not touch the 0 points after an 

entire cycle (when the simulation was run for 10s) due to the electromechanical coupling effect. The 

effect of the electromagnetic damping has been analysed by changing the winding coil’s average 

magnetic flux density, resistance, and inductance. Figure 8.11 and Figure 8.12 present the effect of 

the generator system from different magnetic flux densities.  
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Figure 8.11: Displacement, velocity and induced voltage of the system for different magnetic flux 

densities 

The effects of the magnetic flux density on the oscillation of the floating magnet are shown in Figure 

8.11. It can be seen from Figure 8.11 that with changing the magnetic flux densities, the 

displacements, velocities and induced voltages changed. The induced voltages and power output 

increased with increasing the magnetic flux densities, as seen in Figure 8.11 and Figure 8.12.  

 

Figure 8.12: Power output for the different amplitude of the harmonic force 
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When the magnetic flux density was 0.05T, the displacement curve nearly touched the 0 points after 

a complete cycle in 10s. The frequency of the applied harmonic force was 0.1Hz, and therefore the 

displacement curve should touch 0 points after an entire cycle in 10s. But when the magnetic flux 

density increased from 0.05T to 0.5T, the 0 points of the displacement curves went far from 10s after 

a complete cycle. Hence, the magnetic flux density impacts the oscillation of the floating magnet. 

However, with increasing the average magnetic flux densities, the displacements and velocities of the 

system decreased, but the induced voltage increased. Changes to the resistance of the winding coil 

resulted in changes to the displacements, velocities, induced voltages, and power output, as displayed 

in Figure 8.13 and Figure 8.14. With the increase in the resistance of the winding coil, the induced 

voltages and power output decreased, as presented in Figure 8.13 and Figure 8.14. When the 

resistance of the winding coil was small, the 0 point of the displacement curve was near the 10s after 

a complete cycle. But the curve moved away from the 10s by increasing the winding coils’ resistance 

after a complete cycle. When the resistance of the winding coil increased from 1 ohm to 6 ohms, the 

displacement curves went far away from the 10s. Therefore, it can be said that the resistance of the 

winding affects the oscillation of the floating magnet.  

 

Figure 8.13: Displacement, velocity and induced voltage of the system for different resistance of the 

winding coil 
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Figure 8.14: Power of the system for different resistance of the winding coil 

 

Figure 8.15: Displacement, velocity and induced voltage of the system for different inductances of 

the winding coil 

With increasing the resistance of the winding coil, the displacements, velocities of the floating 

magnet, induced voltage and power decreased. Moreover, the effect of the electrical-mechanical 

coupling has been analysed by changing the winding coil’s inductance. It has been found that it does 

not affect the oscillation of the floating magnet, as shown in Figure 8.15. 
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The dynamics of the generator system have been analysed using external load/resistance (Re) with 

the circuit. The coil is connected in parallel to the external load. The value of the external load was 
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when the middle magnet was in equilibrium position. The frequency of the mechanical part was 26 

rad/s, and the electrical part was 91143 rad/s. The eigenvalues of the system without external load 

were -0.1844 + 0.1849i, 0, 0, 0, -0.1844 -0.1849i, 0, 0, 0, -9.5323 + 0i. The frequency response of the 

system was 26.11 rad/s and 953.22 rad/s. Comparing the system with and without external load, the 

mechanical part of the system showed almost the same natural frequency (about 26 rad/s). However, 

the electrical part of the system with the external load showed higher frequency than the system 

without external load. The external load changed the eigenvalues and frequency of the system. With 

changing the position of the floating magnet, the eigenvalues changed, as shown in Figure 8.16. 

Figure 8.17 presents the frequency response of the generator system. 

 

Figure 8.16: Eigenvalues of the system for different positions of the floating magnet 

 

Figure 8.17: Frequency response of the electromagnetic generator system when the floating magnet 

was in equilibrium position 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Real 10 4

-40

-30

-20

-10

0

10

20

30

40

Im
ag

ina
ry

Eigenvalues

y=-0.050
y=-0.045
y=-0.040
y=-0.035
y=-0.030
y=-0.025
y=-0.020
y=-0.015
y=-0.010
y=-0.005
y=0
y=0.005
y=0.010
y=0.015

-100

-80

-60

-40

-20

0

20

M
ag

nit
ud

e (
dB

)

10 0 10 1 10 2 10 3 10 4 10 5
-90

-45

0

45

90

Ph
as

e (
de

g)

Bode Diagram

Frequency  (rad/s)

System: sys
Frequency (rad/s): 25.6
Magnitude (dB): 1.16



 

270 

 

 

Figure 8.18: Frequency response of the electromagnet generator system for different positions of the 

floating magnet  

It has been seen in Figure 8.4(c) that due to the electrical-mechanical coupling effects, the frequency 

response of the generator system did not show the peak (or maximum) amplitude. Still, the system 

with the external load showed the peak amplitude. With changing the position of the floating magnet, 

the frequency response changed, as shown in Figure 8.18. Different external loads were connected to 

analyse the frequency resonance of the generator system. Figure 8.17 displays the resonance due to 

the floating magnets. The value was 25.6 rad/s in the equilibrium position, similar to the natural 

frequencies (25.6 rad/s without external load) determined using eigenvalues. The system showed a 

resonance when external loads were connected to the winding coils, as shown in Figure 8.17, but the 

system without an external load did not show the peak amplitude, as presented in Figure 8.4. Figure 

8.19 displays the resonance frequency of the generator system for the different external loads. 

From Figure 8.19, it can be seen that the frequency response did not change with changing external 

load. The resonance frequency position changed with changing the position of the floating magnet. 

Compared to the SDOF generator system with or without external load, the SDOF generator system 

with the external load showed better dynamics results. The Simulink model has been used to analyse 

the state space model of the SDOF generator system with the external load. Figure 8.20 displays the 

Simulink model of the SDOF generator system. Figure 8.20 depicts the displacement and velocity of 

the floating magnet. The generated induced voltage of the generator is presented in Figure 8.21. 
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Figure 8.19: Frequency response of the SDOF electromagnetic generator system with various 

external loads in equilibrium position 

 

Figure 8.20: Simulink model of the SDOF energy harvester system  
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(a) 

 

(b) 

 

(c) 

Figure 8.21: (a) Displacement of the floating magnet, (b) velocity of the floating magnet and (c) 

Induced voltage of the generator 
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The amplitude of the applied harmonic force was 25N, and the frequency was 0.1 Hz. The floating 

magnet moved around 22 mm toward the bottom and 35 mm toward the top. Between that time, the 

maximum velocity of the floating magnet was 0.028 m/s. The measured maximum induced voltage 

was around 0.23V for this displacement of the floating magnet, as shown in Figure 8.21(c).  

8.2.1.2 SDOF generator system analysis with RLC circuit  

The dynamics of the SDOF generator system have been analysed using an RLC circuit, for which all 

parameters of the system used for the analysis have been presented in Table 8.1. The capacitance of 

the circuit was considered 1𝑛𝑛𝐹𝐹 during the simulation. Moreover, the inductance and resistance of the 

winding coils were 0.005546H and 5.48ohm. The system’s eigenvalues for the mechanical and 

electrical parts were -494 + 2302.6i and 1+25.6i, respectively, when the floating magnet was in the 

equilibrium position. The natural frequency of the mechanical part was 25.6 rad/s and of the electrical 

part was 2355 rad/s when the floating magnet was in the equilibrium position. 

Table 8.3: Eigenvalues and natural frequencies of the system for different positions of the floating 

magnet 

Position of the 
floating 

magnet (mm) 

Eigenvalues Frequency (rad/s) 
Mechanical part 

(1.0e+03) 
Electrical part 

(1.0e+03) 
Mechanical 

part 
Electrical 

part 

-50 -0.0010 + 0.0312i -0.4940 + 2.3026i 31. 2 2355 
-45 -0.0010 + 0.0293i -0.4940 + 2.3026i 29.4 2355 
-40 -0.0010 + 0.0277i -0.4940 + 2.3026i 27.7 2355 
-35 -0.0010 + 0.0262i -0.4940 + 2.3026i 26.2 2355 
-30 -0.0010 + 0.0251i -0.4940 + 2.3026i 25.1 2355 
-25 -0.0010 + 0.0242i -0.4940 + 2.3026i 24.2 2355 
-20 -0.0010 + 0.0237i -0.4940 + 2.3026i 23.8 2355 
-15 -0.0010 + 0.0237i -0.4940 + 2.3026i 23.7 2355 
-10 -0.0010 + 0.0239i -0.4940 + 2.3026i 24 2355 
-05 -0.0010 + 0.0246i -0.4940 + 2.3026i 24.6 2355 
0 -0.0010 + 0.0256i -0.4940 + 2.3026i 25.6 2355 

05 -0.0010 + 0.0269i -0.4940 + 2.3026i 26.9 2355 
10 -0.0010 + 0.0285i -0.4940 + 2.3026i 28.5 2355 
15 -0.0010 + 0.0303i -0.4940 + 2.3026i 30.3 2355 
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The eigenvalues and natural frequencies of the system for different positions of the floating magnet 

have been presented in Table 8.3. The eigenvalues and natural frequencies of the system changed 

with changing the position of the floating magnet, as presented in Table 8.3. The eigenvalues of the 

electrical part always remained constant for all different positions of the middle magnet. The real 

parts of the eigenvalues remained constant for different positions of the floating magnet, but the 

imaginary parts of the eigenvalues changed with changing the position. Moreover, the natural 

frequency of the electrical part remained constant for all different positions of the floating magnet. 

Still, the natural frequencies of the mechanical part changed with changing the position of the floating 

magnet. The resonance of the system has been analysed using the bode command. The system’s 

resonance frequency was 25.6 rad/s when the floating magnet was in equilibrium, as shown in Figure 

8.22. The resonance frequency changed with changing the position of the floating magnet. Figure 

8.23 displays the system’s resonance frequencies for different positions of the floating magnet. 

 

Figure 8.22: Resonance frequency of the system when the floating magnet is in equilibrium position 
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Figure 8.23: Resonance frequencies of the system for different positions of the floating magnet 

Comparing the RL circuit with the RLC circuit, it has been seen that the RLC circuit provides more 

promising results than the RL circuit. The mechanical part’s measured eigenvalues and natural 

frequencies are similar for both RL and RLC circuits. However, the estimated eigenvalues and natural 

frequencies of the electrical part in the RLC circuit are higher than in the RL circuit. For the different 

positions of the floating magnet, the RLC circuit showed different peak (or maximum) amplitude 

changes, as seen in Figure 8.23. On the other hand, the frequency response of the generator system 

in the RL circuit did not show the peak (or maximum) amplitude, as seen in Figure 8.4(c).  

8.3 Numerical Simulation and Parametric Study of the Energy Harvester Model 

The Finite Element Analysis (FEA) of the SDOF electromagnet generator model is analysed in this 

section. To achieve the optimised design of the SDOF energy harvester, the numerical analysis is 

performed using ANSYS MAXWELL. Different configurations have been designed for this 

optimisation by varying other parameters such as size and grade of magnets, coil number and air gap, 

etc. The ANSYS Maxwell software has been used for the FEA of the SDOF energy harvester model. 

The generator model is analysed as a 2D axisymmetric model, as shown in Figure 8.24. The 

dimensions of the generator are in millimetres. As the permanent magnets of the system produce the 
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magnetic flux density, the magnetic flux density can be changed by varying the grade of the 

permanent magnet.  

 

Figure 8.24: The 2D axisymmetric transient model of the SDOF energy harvester 

All parameters of the ring permanent magnets have been presented in Table 3.1 in Chapter 3. In 

Figure 8.24, the component band indicates that the objects inside the band area can move. The 100 

turns winding coil has been placed 20 mm up from the equilibrium position of the middle floating 

magnet. The winding coil parameters can be found in  Table 8.1. The numerical analysis has been 

done in ANSYS Maxwell by some significant steps: Model Wizard, Definitions and Material 

Selection→ Boundaries→ Excitations→ Parameters→ Mesh→ Analysis→ Result→ Field Overlays. 

The first step is to set the project types, either Maxwell 2D design or Maxwell 3D design, to create 

the physical environment. In ANSYS Maxwell, the required project can be selected from the project 

menu. Then, the next step is selecting solution type from the Maxwell 2D menu. After drawing the 

generator 2D, axisymmetric model material has been selected for individual objects. Material 

selections are essential parts of ANSYS Maxwell Finite Element Analysis. For the generator 2D 

model simulation, the design object is chosen first, and the suitable material is selected from assigned 

Materials from the Modeler Window. The vector potential has been selected for the boundary 

condition of the Maxwell 2D model. The coil area is indicated as a winding coil, and the coil is added 

with it. An RL circuit has been added with it. During the parameter’s selection, the force is selected 

for the floating magnet. Very small mesh sizes have been chosen for better results. The analysis time 

has been set up by calculating the applied velocity or force on the floating magnet.  
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Figure 8.25: Mesh plotting of the generator model 

Initially, the simulation has run using constant velocity, and different parameters were analysed. 

Meshing is a noteworthy part of FEA simulation methods, and it influences any FEA solution’s speed, 

accuracy, convergence, etc. The meshed models, shown in Figure 8.25, present the generator model’s 

mesh plot. 

                       

(a) (b) 

Figure 8.26: (a) Magnetization direction and (b) Flux line 
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(a) (b) (c) 

Figure 8.27: Magnetic flux density (a) Surfaces of magnets and coil, (b) Mag_B, and (c) B_Vector 

The magnetisation direction of all magnets, flux line and magnetic flux density have been measured 

from the Field Overlays. Figure 8.26(a) displays the magnetisation direction of all magnets, and 

Figure 8.26(b) presents the flux line of all magnets. The arrows in Figure 8.26(a) represent the 

magnets’ magnetisation direction along with the North Pole of the magnets. The flux lines emerge 

from the magnets, and the maximum flux line can be seen on the outside diameter surfaces of the 

magnets, as shown in Figure 8.26(b). The flux line can be seen inside the coil area, generating the 

induced voltage inside the winding coil. Figure 8.27 presents the magnetic flux density of the 

generator model. The colour in Figure 8.27(a) and Figure 8.27(b) denote the permanent magnet’s 

magnetic flux density (B). The higher flux density is formed around the magnet area, indicated by the 

colour variations in Figure 8.27(a). For a further detailed understanding of the distribution of 

magnetic flux density, the Mag_B plot results are observed (Figure 8.27(b)). The magnetic flux lines 

emerged from the North Pole and travelled toward the South Pole, as seen in Figure 8.27(c). 

Moreover, it can be said from Figure 8.27 that the permanent magnet affects the coil, plastic bush and 

shaft. Therefore, the shaft has been made of non-magnetic materials, and plastic is non-magnetic. The 

copper coils have been used as winding coils to generate an induced voltage from the changing 

magnetic flux. The induced voltage creates inside the copper coil when the magnetic flux cuts the 

copper coil.  
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           (a) (b) 

Figure 8.28: Magnetic flux densities for various positions of the floating magnet (a) B_Vector and 

(b) Mag_B 

The magnetic flux density has been analysed by changing the position of the middle magnet. The 

floating magnet has been moved with constant velocity from a specific position toward the top 

magnet. The magnetic flux density of the generator changed with changing time along with the 

position of the floating magnet. Figure 8.28 presents the change of magnetic flux densities for 

different positions of the floating magnet. Moreover, the flux line changed with changing the position 

of the floating magnet, as presented in  Figure 8.29. The change of current densities for various 

locations of the floating magnet has been presented in Figure 8.30. 

 

Figure 8.29: Flux lines for various positions of the floating magnet 
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Figure 8.30: Current densities for different locations of the floating magnet 

 

Figure 8.31: Induced voltage and flux Linkage in the winding coil 
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(b) 

Figure 8.32: (a) Electromechanical coupling coefficient (100 number of turns, 0.5 m/s velocity of 

the floating magnet) and (b) Electromagnetic force and damping (100 number of turns and 0.5 m/s 

velocity of the floating magnet) 

Due to the movement of the middle magnet, an electric field is generated inside the winding coil. 

Figure 8.31 displays the generated induced voltage and flux linkage in the winding coil when the 

middle magnet moves by a constant velocity of 0.5 m/s from the equilibrium position. It can be seen 

from Figure 8.31 that the maximum flux linkage was generated inside the winding coil when the 

moving magnet was parallel with the coil (both the middle magnet and winding coil were in the same 

position).  

Moreover, the induced voltage was zero when the flux linkage was maximum. When a vibrating 

energy harvester is based on levitation, two forces act to couple the electrodynamics and mechanics; 

the first is the repulsion between the stack and the end magnets, and the second is the interaction 

between the stack magnetic field and the coil current magnetic field. This coupling coefficient is 

strongly affected by the relative position between the levitating magnet and coils, significantly 

affecting the system's output (Carneiro et al., 2022). Figure 8.32(a) presents the electromechanical 

coupling for a single-coil, whereas Figure 8.32(b) shows the electromagnetic force and damping for 

the system. Having the magnet's two vertices in the interior region of the winding coils produces a 

maximum absolute value. When the magnet is entirely inside the winding coil, the magnetic flux 

changes in each loop cancel out, thereby providing a zero value. 
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8.3.1 Parameter study of the SDOF energy harvester  

To maximise the power of the energy harvester, all parameters which affect the power output must 

be studied. The middle floating magnet moves through the stationary winding coil in the proposed 

energy harvester system. Therefore, it is essential to investigate the kinematic and electromagnetic 

parameters of the floating magnet utilising ANSYS MAXWELL (numerical simulation) and 

experimental measurement. All parameters have been analysed in this section to achieve the 

optimised model of the energy harvester. The moving magnet’s magnetic field creates the electrical 

currents within the winding coils. The induced eddy currents generate the damping force that rises 

from the interaction of the two magnetic fields. The magnetic damping has a viscus shape because 

the damping force is proportional to the velocity of the moving magnet. Therefore, the velocity of the 

floating magnet affects the system’s power generation. The design of the translator and stator affect 

the efficiency of the energy harvester. For the proposed generator test rig setup, only the ring types 

of permanent magnets have been used as a translator, and the winding copper coil has been used as 

an air-core stator.  

Therefore, this chapter has not analysed the translator and stator designs. The previous section showed 

that the magnetic flux density, resistance, and the number of turns of the winding coil affect the 

system’s dynamics. The effect of the magnetic flux density, turn number, and the winding coil’s 

resistance on power generation has been analysed. Moreover, the other parameters, such as coil 

diameter, air gaps, magnet size and shape etc., have been studied. 

8.3.1.1 Magnet size, shape, and magnetic field 

The changing size, shape and grade of the permanent magnet affect the output induced voltage of the 

generator. Increasing the height of the PM means increasing the magnetic flux density area. 

Increasing the magnetic flux density area increases the induced voltage of the generator. The 

simulation has been carried out by changing the magnet, which shows that the magnetic flux density 

can be increased by increasing the magnet height, as shown in Figure 8.33. The simulation was run 

by taking 100 turns of winding coil and 0.5 m/s velocities of the floating magnet. The coil position 

was 10 mm up of the floating magnet’s upper surface, and the simulation was run for 0.15s.  
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Figure 8.33: Induced voltage for different magnet height 

It can be said from Figure 8.33 that the induced voltage rises with the increasing height of the magnet. 

But the rising height of the floating magnet can increase the weight of the floating magnet, reducing 

the velocity of the floating magnet, resulting in reduced induced voltage. The higher-grade magnet 

has higher remanence flux density and maximum energy production (BHmax). The magnetic 

properties of the different grades of PM have been presented in Table 8.4. All PM grades have 

considered the highest remanence, coercivity, and maximum energy product BHmax.  

Table 8.4: Different grade magnets with their magnetic properties 

Grade Remanence (Br) (T) Coercivity (Hc) 
(A/m) 

Max. Energy Product 
BHmax (j/m3) 

N33 1.22 836000 263000 
N35 1.25 859000 279000 
N38 1.3 859000 303000 
N40 1.32 836000 318000 
N42 1.35 836000 334000 
N45 1.38 836000 358000 
N48 1.43 836000 382000 
N50 1.46 836000 398000 
N52 1.43 876000 414000 
N54 1.47 836000 430000 

It can be seen from Table 8.4 that the remanence and maximum energy product BHmax increased with 

increasing the grade of the PM magnet. A simulation has been run for the proposed oscillator system 

with the increasing grade number of all three PMs. The simulation was carried out by taking ten 
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different grades of PM. At first, the magnetic flux density in the radial direction was tested by 

changing the PM’s grade number. It has been considered that all magnets are axially magnetised ring 

magnets, and they have the same size and shape. The magnetic flux density in the radial direction for 

different grade of PM have been presented in Figure 8.34.  

 

Figure 8.34: Magnetic flux density in the radial direction for different grades of PM 

From Figure 8.34, it can be said that higher grade PM creates higher magnetic flux density, which 

means the PM’s magnetic flux density can be increased by increasing the grade number. The N54 

shows the maximum magnetic flux density in the radial direction compared to other grades; as the 

grade number of the PM increases, the magnetic flux density in the radial direction increases. 

Therefore, the induced voltage of the oscillator system will increase.  

 

Figure 8.35: Induced voltage for different PM grade 

Figure 8.35 presents the induced voltage of the system for different grades of PM. The simulation for 

this analysis has been run by considering 100 turns of winding coil and 0.5 m/s velocities of the 
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floating magnet. The coil position was in the same place, 10mm up from the upper surface of the 

floating magnet, and the simulation was run for 0.150s to get the analysis result. It is clear from Figure 

8.35 that the higher grade magnet can increase the output induced voltage of the system. The higher-

grade magnet (N54) from ten grades shows the maximum induced voltage. The higher-grade magnet 

is very expensive; therefore, selecting a higher-grade magnet can increase the system’s total cost.  

8.3.1.2 Coil diameter, coil Turn number and position of the coil 

The selection of proper coil diameter is essential for designing the linear generator. The thinner the 

coil diameter, the more the coil resistance. With the increase of the coil diameter, the coil’s coil 

resistance decreases. The larger coil diameter would be better, but it needs more space for the 

maximum turn number of the coil. On the other hand, more coil turns can be created by using the 

thinner coil in the same space. Smaller coil winding height is better to use the maximum magnetic 

flux density, decreasing with increasing air gap distance. Equation 3.56 (Chapter 3) has been used to 

find the thickness of the winding coils. Moreover, equation 3.60 (Chapter 3) has been used to find the 

total length of the winding coil. The thickness and total resistance of the winding coil have been 

changed for the different coil diameters. The coil parameters for different coil diameters (different 

AWG) have been presented in Table 8.5.  

Table 8.5: Coil parameters for the different coil diameter 

Coil 
diameter 

AWG Resistance 
per meter 

Number of turns (100) The thickness of the coil 
winding when the height 

of 10 mm Total length Total 
resistance 

0.41 26 0.133 23.55 3.13215 1.681 
0.36 27 0.180 23.55 4.239 1.296 
0.31 28 0.225 23.55 5.29875 0.961 
0.29 29 0.270 23.55 6.3585 0.841 
0.25 30 0.352 23.55 8.2896 0.625 
0.227 31 0.427 23.55 10.05 0.51529 
0.20 32 0.550 23.55 12.9525 0.4 

It can be seen from Table 8.5 that with increasing the coil diameter for the same number of coil turn, 

the total resistance of the winding coil decreases but the thickness of the coil winding increases. To 

create 100 turns, the lower coil diameter needs less space than the higher coil diameter. To find the 
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effect of coil diameter, a simulation has been performed by taking 100 turns of coil number. The 

height of the winding coil was 100, and the other parameters are shown in Table 8.5. The analysis 

results have shown in Figure 8.36. 

 

Figure 8.36: Voltage for different coil diameters 

Table 8.6: Winding coil properties for different coil turn numbers 

Number of 
turns 

The total 
length of the 
copper wire 

Total resistance 
(0.225 ohms per 

meter) 

Inductance 
(H) 

The thickness of the coil 
winding when the height of 

10 mm 
100 23.55 5.29875 0.005546 0.961 
200 47.1 10.5975 0.022184 1.922 
300 70.65 15.89625 0.049914 2.883 
400 94.2 21.195 0.088736 3.844 
500 117.75 26.49375 0.138650 4.805 
600 141.3 31.7925 0.199656 5.766 
700 164.85 37.09125 0.271755 6.727 
800 188.4 42.39 0.354945 7.688 
900 211.95 47.68875 0.449228 8.649 
1000 235.5 52.9875 0.554602 9.61 

Figure 8.36 shows that the higher AWG coil number creates higher induced voltage same coil turn 

number. Although the higher AWG coil number consists of higher coil resistance than the lower 

AWG coil number, to make the same number of coil turn numbers, the higher AWG coil needs less 

space compared to the lower AWG number. For example, to create 100 turns using 26 AWG coil, it 

needs 1.681 mm thickness and diameter 10 mm, but in the same space, it is not possible to wind 200 

turns by using AWG 28, and 400 turn number could be made by using AWG 32 coil. It has known 
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that the induced voltage increases with increasing the coil turn number. To analyse the effect of the 

changing coil turn number, an AWG 28 (0.31 mm coil diameter) was chosen, and the inside diameter 

of the winding coil was 75 mm. The other coil winding properties for different coil turn numbers have 

been shown in Table 8.6.   

With increasing the coil turn number, the coil’s total length and total resistance increased along with 

using space. Figure 8.37 presents the voltage output for different coil turns number. The velocity of 

the floating magnet was 0.5 m/s, and the air gap was 3mm. The coil was attached 10 mm up from the 

upper surface of the floating magnet when it was in the equilibrium position. To know the effects of 

coil, turn number, the study started with a 100-turn number and finished with a 1000 turn number, 

and the simulation ran for 150 ms.  

 

Figure 8.37: Induced voltage for different coil turn numbers 

It can be seen from Figure 8.37 that with increasing the coil turn number, the induced voltage rises. 

Maximum induced voltage has been created for 1000 numbers, which is more than five times higher 

than the 100-turn number.  

8.3.1.3 The velocity of the floating magnet 

The induced voltage increases with increasing the velocity of the floating magnet. To validate these 

effects, a study has been performed. It is known that the linear electromagnetic generator directly 

driven by sea waves would oscillate at a peak velocity of 0.5 to 2 m/s (Mueller, 2002). Therefore, the 

study has been started from 0.1 m/s to 2 m/s, and at that time, the coil turn number was 100, the coil 

diameter was 0.31 mm, and the air gap between the floating magnet and coil was 3 mm. The width 

and height of the coil were 5 mm and 10 mm, respectively. The effects of the velocity are shown in 
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Figure 8.38. From Figure 8.38, it has been seen that the output induced voltage rises with increasing 

the velocity of the floating magnet. 

 

Figure 8.38: Induced voltage for the different velocities of the floating magnet 

8.3.1.4 Air gap between translator and stator 

The literature shows that most electromagnet generators were developed considering coils that take 

circa 10 to 50% of the harvester length (Carneiro et al., 2020). As projected, smaller distances between 

the inner coil diameter and the middle or levitating magnet diameter result in higher induced voltages 

in the coil terminals; therefore, the space must be determined to evade problems with the linear 

electromagnetic generator’s mechanical integrity or to decrease the manufacturing process’ difficulty. 

A study has been performed to find the magnet flux density in different air gaps from the floating 

magnet. The diameter of the coil and the number of turns of the coil were 0.30mm and 100, 

respectively. The velocity of the floating magnet was 0.5 m/s. The magnetic flux density in different 

air gaps is shown in Figure 8.39.  

 

Figure 8.39: Magnetic flux density for different air gaps  
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Figure 8.40: Induced voltage for different air gap distance 

From Figure 8.39, the magnetic flux density decreases with the air gap distance. The maximum 

magnetic flux density has been obtained nearer the magnets. Therefore, the maximum induced voltage 

found in the winding coil is attached to the minimum air gap distance. A simulation has been 

performed to find the induced voltage for a different air gap. During the study, the diameter of the 

coil and the number of turns of the coil were 0.31mm and 100, respectively. The velocity of the 

floating magnet was 0.5 m/s, and the wide and height of the coil were 5mm and 10mm, respectively. 

The coil was attached 10mm up outside the diameter of the floating magnet. The induced voltage for 

different air gaps is shown in Figure 8.40. From Figure 8.40, it can be said that the maximum induced 

voltage can be generated for the system if the winding coil is attached in the minimum air gap 

distance. But in reality, it isn’t easy to attach the coil nearer to the floating magnet’s outer diameter 

surface. 

8.3.1.5 Applied external force on the floating magnet 

The power output of the energy harvester can be changed by changing the applied harmonic force. 

To analyse the effect of the applied harmonic force on generator power output, the amplitude of the 

force was varied from 10N to 100N with constant frequency (0.1Hz). The simulation for this analysis 

has been run by considering 100 turns of winding coil. Figure 8.41 displays the displacements and 

velocities of the floating magnet for the different amplitudes of the harmonic force. Figure 8.42 

presents the induced voltages for different amplitudes of the harmonic forces. 
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(a) 

 

(b) 

Figure 8.41: (a) Displacement and (b) Velocity of the floating magnet under different amplitudes of 

the harmonic force (0.1 Hz frequency) 

The displacement and velocity of the floating magnet increased with increasing the amplitude of the 

harmonic force (0.1Hz), as seen in Figure 8.41. Therefore, the induced voltage of the generator 

increased with increasing the amplitude of the harmonic forces, as presented in Figure 8.42. 
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Figure 8.42: Induced voltage of the generator for the different amplitude of the applied harmonic 

force (0.1 Hz) 

8.3.2 Analyses of the SDOF generator model for different lengths of the oscillator 

In chapter 4, the oscillator system was analysed by changing the oscillator length. The linear and 

nonlinear stiffnesses, damping constants and natural frequencies of the oscillator system changed 

with changing the length of the oscillator. The damping constant decreased with increasing the 

oscillator length. The coefficients and natural frequencies decreased with increasing the oscillator 

length. In this chapter, the generator system has been analysed by changing the total length of the 

oscillator. The displacements and velocities of the floating magnet have been determined. The 

induced voltages have been measured for different lengths of the oscillator. The amplitude and 

frequency of the applied harmonic force were considered 25N and 0.1Hz, respectively, during that 

analysis. A winding coil (100 turns) which consists of 5.48-ohm internal resistance and 0.005546H 

inductance, was considered to determine the induced voltage. The length of the oscillator varies from 

212 mm to 272 mm. Figure 8.43 displays the displacement and velocity of the generator system for 

different lengths of the oscillator.  
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(a) 

 

(b) 

Figure 8.43: (a) Displacement and (b) Velocity of the SDOF generator system for different lengths 

of the oscillator 

It can be seen from Figure 8.43 that the displacement and velocity of the floating magnet increased 

with increasing the length of the oscillator. With increasing the length of the generator oscillator, the 

generated induce voltage increased, as presented in Figure 8.44. Therefore, it can be said that by 

increasing the length of the oscillator, the efficiency of the generator can be improved. 
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Figure 8.44: Generated voltage of the SDOF generator system for different lengths of the oscillator 

8.4 Experimental Analysis 

The experimental procedures were identical for all degree-of-freedom systems. Sensors were 

powered on once the experimental setup was finalised with the assembled test rig. The first step of 

the experiment was to establish a safe operating environment. For different lengths of the oscillator, 

the magnetic restoring forces, damping constants and natural frequencies were determined, which 

were discussed in Chapter 4. Before using the servo motor, the experimental works were done 

manually. The floating magnets were pulled up and released to create excitation on the floating 

magnet. Sensors measured the displacement of the floating magnet, and later on, it converted to 

velocity. The induced voltage signal was measured using a data acquisition system. Both velocity and 

torque controls were used to run the servo motor. Autotune was done every time before running the 

servo motor. Once all parameters were set for the desired velocity or torque, the time series response 

of the sensor signal and voltage were recorded in the data acquisition device for a 10 or 20 second 

period. The recorded responses were then saved as a .mat file. Many experiment iterations were done 

to confirm repeatability for all degrees-of-freedom models individually. At first, the test rig was tested 

manually using hands by pulling up and releasing floating magnets by moving the servo motor’s 

pulley and letting it oscillate for a while. It was discussed in Chapter 4 that after pulling up the floating 

magnet if released, the floating magnet starts oscillating, which can be used for harvesting energy. 

Two IR sensors were used to measure the displacement of the floating magnet, as discussed earlier in 
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Chapter 7, where one sensor was considered sensor number 1 and the other one was sensor number 

2. The green and blue lines in Figure 8.45 represent the sensor 1 and 2 values, respectively. The 

floating magnet was pulled up around 55 mm and released, and it oscillated until it stopped in 

equilibrium, which is in 0 positions in Figure 8.45.  

 

(a) 

 

(b) 

Figure 8.45: (a) Displacement and (b) velocity of the floating magnet during the manual test 
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It can be seen that from  Figure 8.45(a), the oscillation stopped after around 2.5 seconds, and the time 

is the same for each oscillation testing time. The measured oscillation per second was about 5 for 

each bouncing test. The measured natural frequency was 30.67 rad/sec (4.88 Hz). Using the Log-Dec 

formula, the damping ratio was measured, and the measured damping ratio was 0.0361. The 

maximum velocity was found to be around 650 mm/s, and it declined with the decrease of the 

displacement, as presented in Figure 8.45(b). Figure 8.46 shows that the generated induced voltage 

of the winding coil dropped with the decreasing velocity. 

 

Figure 8.46: Induced voltage during the bouncing 

By reducing the velocity of the floating magnet, the generated induced voltage is also reduced, as 

shown in Figure 8.46. The measured maximum and minimum induced voltages were 5.1 V and 1 V, 

respectively.  

8.4.1 Validation of the experimental results with analytical results 

The servo motor has been connected with the test rig using a fishing line to create a sine/cosine wave 

(harmonic force) on the floating magnet. The servo motor was controlled by torque control mode to 

apply harmonic force on the floating magnet. The harmonic force applied on the floating magnet 

using a servo motor is the same harmonic force used in the analytical model to validate the 

experimental model with the analytical model. For the experimental analysis, different harmonic 

forces were applied by varying the amplitude and frequency of the harmonic force. At first, a 
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harmonic force was applied to the floating magnet during experimental work. The projected harmonic 

force amplitude was 85N, and the frequency was 1.75Hz. Figure 8.47 displays the displacement and 

velocity of the floating magnet for experimental and analytical analysis.  

 

(a) 

 

(b) 

Figure 8.47: (a) Displacement and (b) Velocity of the floating magnet (blue line represents the 

analytical analysis and the red line represents the experimental analysis) 
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From Figure 8.47, it can be said that the measurement of the displacement and velocity of the floating 

magnet is very similar for analytical and experimental analyses. During the analytical analysis, the 

floating magnet moved toward the bottom magnet by about 18 mm and the top by around 23 mm. 

During the experimental analysis, the floating magnet moved toward the top magnet by 18 mm and 

toward the bottom magnet by around 21 mm, as presented in Figure 8.47. The achieved average 

velocity of the floating magnet was around 0.21 m/s during the analytical analysis and 0.26 m/s during 

the experimental analysis, as exhibited in Figure 8.47(b). The generated induced voltage of the 

generator for the experimental and analytical analysis has been presented in Figure 8.48. 

 

Figure 8.48: Induced voltage of the generator (blue line represents the analytical analysis and the 

red line represents the experimental analysis) 

In Figure 8.48, the induced voltage of the generator for analytical analysis has been compared with 

the experimental study. The measured average maximum induced voltage was 1.8V for analytical 

analysis and 1.65V for experimental analysis. Figure 8.47 and Figure 8.48 show that the analytical 

model is well validated with the experimental model. Lastly, the analytical model has been validated 

with the experimental model by increasing the amplitude and frequency of the harmonic force. The 

estimated harmonic force amplitude was 150N, and the frequency was 3.3Hz. The displacement and 

velocity of the floating magnet for experimental and analytical analysis have been presented in Figure 
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8.49. Figure 8.50 displays the generated induced voltage of the generator for experimental and 

analytical analysis. 

 

(a) 

 
(b) 

Figure 8.49: (a) Displacement and (b) Velocity of the floating magnet (blue line represents the 

analytical analysis and the red line represents the experimental analysis) 
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Figure 8.50: Induced voltage of the generator (blue line represents the analytical analysis and the 

red line represents the experimental analysis) 

It can be seen from Figure 8.49 that the measurement of the displacement and velocity of the floating 

magnet are very similar for analytical and experimental analyses. During the analytical analysis, the 

floating magnet moved toward the bottom magnet by about 18 mm and the top magnet by around 22 

mm. During the experimental analysis, the floating magnet moved toward the top magnet by 15 mm 

and toward the bottom magnet by around 21 mm. The maximum average velocity of the floating 

magnet was around 0.4 m/s during the analytical analysis and 0.4 m/s during the experimental 

analysis, as displayed in Figure 8.49(b). The measured maximum average induced voltage was 3.2V 

for analytical analysis and 3.1V for experimental analysis, as presented in Figure 8.50. From the 

above discussion, it can be said that the analytical model is well validated with the experimental 

model. 

8.4.2 Experimental study of the SDOF generator system by changing parameters 

In section 8.3, it has been seen that the generator’s efficiency can be changed by changing the 

generator system’s parameters. The generator system has been analysed experimentally by changing 

some parameters discussed in this section. At first, the generator system was studied by changing the 

velocity (by using velocity control mode) of the floating magnet. Figure 8.51 presents the generator’s 

induced voltage for the different velocities of the floating magnet.  
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(a) 

 
(b) 

Figure 8.51: (a) Different velocities of the floating magnet and (b) Induced voltage for different 

velocities as presented in Figure (a) 

The red colour line in the Figure 8.51(b) is the induced voltage for the red colour velocity line in the 

Figure 8.51(a).  The blue and green colour lines in the Figure 8.51(b) are the induced voltage for the 

blue and green colour velocity lines in the Figure 8.51(a). From Figure 8.51, it can be seen that the 

induced voltage increased with increasing the velocity of the floating magnet. The generator system 
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has been analysed by changing the number of turns of the winding coil. The number of turns varies 

from 100 to 300. Figure 8.52 displays the induced voltage for the different number of turns of the 

winding coil.  

 

Figure 8.52: Induced voltage of the generator for different numbers of turns of the winding coil 

The red and blue lines in Figure 8.52 represent the winding coil’s 100 and 200 turns, respectively, 

whereas the green line represents the 300 turns of the winding coil. It can be seen from Figure 8.52 

that the overall induced voltage increased with increasing the turn number of the winding coil. The 

generated induced voltage of the generator for 200 turns was higher than the 100 turns but smaller 

than the 300 turns of the winding coil. Moreover, the generator system has been analysed by 

increasing the winding coil number. Figure 8.53 shows the induced voltage of the generator for two 

winding coils. Both winding coils (100 turns) were attached in the test rig. They were connected with 

the data acquisition system separately to measure the generated induced voltage. Coil number 1 was 

placed outside the diameter of the floating magnet where the floating magnet easily oscillated through 

it, and the 2nd coil was placed just in the top of the 1st coil, and their separation distance was around 

5 mm. Therefore, the generated induced voltage in coil 1 should be higher than the coil 2. In Figure 

8.53, the generated induced voltages in coils 1 and 2 are represented by red and green lines, 

respectively.  
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Figure 8.53: Induced voltage of the generator for two winding coils 

 

Figure 8.54: Induced voltage of the generator (100 turns winding coil) for different lengths of the 

oscillator  

The generated induced voltage in coil 1 was higher than in coil 2, as seen in Figure 8.53. It can be 

said that maximum energy can be captured by increasing the winding coil number. Furthermore, the 
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energy harvester system has been analysed by changing the length of the oscillator. In chapter 4, it 

has been seen that the damping ratio and damping constant decreased with increasing the length of 

the oscillator. However, the floating magnet’s velocity increased for the same applied harmonic force, 

increasing the oscillator’s length. Therefore, it can be assumed that the induced voltage can be 

maximised by increasing the oscillator’s length. Figure 8.54 presents the induced voltage for different 

lengths of the oscillator. Different colour lines in Figure 8.54 represent the different lengths of the 

oscillator. From Figure 8.54, it can be seen that the induced voltage increased with increasing the 

length of the oscillator. Therefore, from the above discussion, it can be said that the efficiency of the 

SDOF generator depends on some parameters. By changing those parameters, the efficiency of the 

generator can be increased.  

8.5 Conclusion 

This chapter studied an energy generator based on SDOF magnetic spring mechanism with magnetic 

repulsive force. The benefits of the energy harvester design are that it has few moving mechanical 

parts and a stronger magnetic field, leading to a high voltage output. The characteristics and dynamics 

of the proposed energy harvester have been studied using analytical and experimental methods. The 

eigenvalues and the nonlinear vibration response of the generator system have been analysed using 

analytical methods. Moreover, the dynamics of the energy harvester have been studied analytically 

using an external load, RL and RLC circuits. The numerical model of the proposed generator has 

been analysed to evaluate the magnetic flux density and magnetic field strength for different arrays 

and configurations. The parametric study has been performed to provide insights into the effects of 

various parameters such as magnetic flux density, coil turns number, air gap, the velocity of the 

floating magnet, and applied force on the energy harvester output. The test rig design has been 

fabricated for experimental analysis, and the experimental works have been performed by changing 

different parameters. Finally, the experimental model has been validated with the analytical model. 

These studies will help researchers understand the generator’s dynamics, magnetic properties, and 

dependent and controllable parameters. 
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Chapter 9  
Theoretical and Experimental Study of 2DOF Magnetic Spring-based 

Electromagnetic Generator 

The resonant power and efficiency of the two-degree-of-freedom nonlinear oscillators are expected 

to be larger than those with a single-degree-of-freedom (SDOF) nonlinear oscillator system. 

Moreover, using the two-degree-of-freedom nonlinear oscillators is estimated to advance higher 

operational frequency bandwidth than the SDOF nonlinear oscillator. Two floating magnets are 

expected to generate increased magnetic flux density in the system than the single floating magnet-

based system. Therefore, in Chapter 5, the analytical, numerical and experimental model of the two-

degree-of-freedom (2DOF) magnetic spring-based oscillator system has been discussed with 

validation. However, the energy generation part was not considered during the analysis of the 2DOF 

system. This chapter deals with energy generation techniques based on 2DOF magnetic spring-based 

oscillator systems and their behaviour with various design criteria.  

9.1 Architecture of the Two-degree-of-freedom (2DOF) Electromagnetic Generator/ Energy 

Harvester 

The basic architecture of the electromagnetic generator or energy harvester contains four-ring 

permanent magnets (axially magnetised), a circular shaft and winding coils. The 2DOF energy 

harvester is designed so that every function's performance (such as magnetic restoring forces, induced 

voltage) should not affect or influence each magnet's magnetic field, particularly when the floating 

magnets move. It is required to minimise the harmful cogging force generated from magnets and coils 

movement. Different nonmagnetic materials have been used to avoid magnetic field interference. The 

polarity of the magnets is arranged so that the levitating magnet experiences a repulsive force because 

of the fixed magnets. Few multilayer coils are attached around the outer surface of the two floating 

magnets. The height and diameter of the shaft are 550 mm and 12 mm, respectively. Figure 9.1 

presents the test rig setup with winding coils. The magnetic poles are oriented (NS-SN-NS-SN) to 

repel each other. The height and width of the test rig are 550 mm and 300 mm, respectively. The 

equilibrium height of the 2DOF oscillator is 303 mm; therefore, the 4th magnet is attached and locked 

to the vertical shaft 303 mm away from the 1st magnet. Two winding coils have been added to the test 

rig, and both winding coils have been connected to the data acquisition system to capture the induced 

voltages.  
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Figure 9.1: Test rig of the proposed 2DOF 

In Figure 9.1, sensor 1 is placed on the top of the bottom fixed magnet to measure the displacement 

of the 1st floating magnet, and sensor 2 is placed underneath on the top fixed magnet to measure the 

displacement of the 2nd floating magnet. The winding coil 1 is placed outside the 1st floating magnet, 

whereas the winding coil number 2 is placed outside the 2nd floating magnet.  

9.2 Numerical Simulation of the 2DOF Electromagnetic Generator/ Energy Harvester 

System 

This section analyses the Finite Element Analysis (FEA) of the 2DOF magnetic spring-based 

electromagnetic generator model. The electromagnet generator model is analysed as a 2D 

axisymmetric model, as shown in Figure 9.2. The dimensions of the generator are in millimetres. The 

magnetic and physical components of the permanent ring magnets are presented in Chapter 3 in Table 

3.1. Two winding coils (100 turns each) have been placed on the top surfaces of both floating magnets. 

The properties of the winding coil parameters are shown in Table 8.1 in chapter 8.  

Sensor 1 

Sensor 2 

Bottom fixed 
magnet (1st magnet) 

Winding coil 1 

Winding coil 2 1st floating magnet 
(2nd magnet)  

2nd floating magnet 
(3rd magnet) 

Top fixed magnet 
(4th magnet) 

Fishing line 

Shaft 



 

306 

 

          

(a) (b) 

                                           

                (c) (d) (e) 

Figure 9.2: (a) 2DOF electromagnetic generator (b) Magnetisation direction and (c) Flux line, (d) 

Magnetic flux (Mag_B) and (e) B_Vector 

The simulation has run using constant velocity for both floating magnets during the transient solution. 

The magnetisation direction of all magnets, flux line and magnetic flux density have been measured 
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from simulation analysis. Figure 9.2(b) shows the magnetisation direction of all four magnets, and 

Figure 9.2(c) presents the flux line of all four magnets. The arrows represent the magnetisation 

directions of all permanent magnets in Figure 9.2(b). Figure 9.2(a) displays the 2D axisymmetric 

transient model of the 3DOF energy harvester. The maximum flux lines can be seen in the outside 

surfaces of magnets and inside the coil area, as presented in Figure 9.2(c). Figure 9.2(d) and Figure 

9.2(e) illustrate the magnetic flux (Mag_B) and magnetic flux (B_Vector) of the 2DOF 

electromagnetic generator. In Figure 9.2(d), the colour represents the magnitude of the magnetic flux 

density of the generator system. The higher flux density can be seen around the permanent magnet 

area, characterised by colour variations. Figure 9.2(e) shows that the magnetic flux lines emerged 

from the North Pole and travelled toward the South Pole, and they travelled through the inside 

winding coil. The induced voltage creates inside the copper coil when the magnetic flux cuts the 

copper coil. The magnetic flux densities have been analysed by changing the positions of both floating 

magnets. Both floating magnets have been moved with constant velocity. The magnetic flux densities 

of the generator changed with changing time along with the positions of both floating magnets. Figure 

9.3 presents the change of magnetic flux densities for different positions of both floating magnets.  

     

(a) (b) 

Figure 9.3: Magnetic flux densities for different positions of both floating magnets (a) B_Vector 

and (b) Mag_B 

Since the 1st and 2nd floating magnets moved with changing time, the magnetic flux densities of both 

floating magnets changed, as presented in Figure 9.3. On the other hand, the 1st and 4th magnets were 
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fixed; therefore, their magnetic flux densities did not change with time. The flux line changed with 

changing the position of the floating magnets, as shown in Figure 9.4. The induced voltage is 

generated inside the winding coil when the magnetic flux cuts the copper coil. Figure 9.5 displays the 

generated induced voltages and flux linkages in the winding coils when both floating magnets move 

with the constant velocity of 0.5 m/s.  

 

Figure 9.4: Flux lines for different positions of the floating magnet 

 

Figure 9.5: Induced voltage and flux Linkage in the winding coil 1 and 2 

The legends in Figure 9.5 represent the winding coils (solid lines for induced voltage and the doted 

lines for flux linkage). From Figure 9.5, it can be seen that the induced voltages in winding coils 1 

and 2 were zero when the flux linkages in winding coils 1 and 2 were maximum, respectively. The 
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flux linkage in the winding coil 1 remained positive during the excitation of the floating magnets 

because the magnetisation direction of the 1st floating magnet was upward. Since both floating 

magnets moved with the same constant velocity (0.5 m/s), both winding coils generated the same 

induced voltages. The magnetisation direction of the 2nd floating magnet was downward; therefore, 

the flux linkage remained negative during the movement of the floating magnets. The magnetisation 

directions for all magnets can be seen in Figure 9.2(a).  

9.3 Mathematical Model of the 2DOF Energy Harvester 

When the external force is applied to a floating magnet, or any floating magnet moves up and down, 

it creates the elastic restoring force of the magnetic spring. Figure 9.6 and Figure 9.7 present the free 

body diagram of the SDOF magnetic spring-based energy harvester system.  

 

Figure 9.6: Two-degree-of-freedom magnetic spring-based energy harvester system 
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The relative displacement of the 1st floating magnet is 𝑦𝑦2 and the relative velocity and acceleration of 

the 1st floating magnet are �̇�𝑦2 and �̈�𝑦2, respectively. Moreover, the relative displacement, velocity and 

acceleration of the 2nd floating magnet are 𝑦𝑦3, �̇�𝑦3 and �̈�𝑦3, respectively. The magnetic flux density of 

the 2nd magnet (1st floating magnet) is 𝐵𝐵1(𝑏𝑏) and the total length of the 1st winding coil is 𝑙𝑙1. Similarly, 

the magnetic flux density of the 3rd magnet (2nd floating magnet) is 𝐵𝐵2(𝑏𝑏) and the total length of the 

2nd winding coil is 𝑙𝑙2. The electromagnetic coupling coefficients are 𝑎𝑎1(𝑎𝑎1 = 𝐵𝐵1(𝑏𝑏)𝑙𝑙1) and 𝑎𝑎2(𝑎𝑎2 =

𝐵𝐵2(𝑏𝑏)𝑙𝑙2). Moreover, 𝐹𝐹𝑒𝑒1 and 𝐹𝐹𝑒𝑒2 are the electromagnetic forces written as  𝐹𝐹𝑒𝑒1 = 𝑎𝑎1𝐼𝐼1 and 𝐹𝐹𝑒𝑒2 = 𝑎𝑎2𝐼𝐼2, 

respectively.  

 

Figure 9.7: Free-body diagram of the Two-degree-of-freedom system 

The masses of the 2nd (1st floating magnet) and 3rd (2nd floating magnet) magnets are M2 and M3, 

respectively. The damping forces of the 1st floating magnet is 𝐹𝐹𝛽𝛽1 = 𝛽𝛽1�̇�𝑦2 and 2nd floating magnet 

is 𝐹𝐹𝛽𝛽3 = 𝛽𝛽3�̇�𝑦3. In Figure 9.6, the linear stiffnesses are represented by 𝑘𝑘21, 𝑘𝑘23,𝑘𝑘32 and 𝑘𝑘34. The 
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damping constants are symbolled by 𝛽𝛽21, 𝛽𝛽23,𝛽𝛽32 and 𝛽𝛽34. The nonlinear coefficients are presented 

by 𝛼𝛼21, 𝛼𝛼23, 𝛼𝛼32 and 𝛼𝛼34. In addition, the other nonlinear stiffnesses are 𝜆𝜆21,𝜆𝜆23, 𝜆𝜆32 and 𝜆𝜆34. In 

Figure 9.7, the linear stiffness 𝑘𝑘21 = 𝑘𝑘1, 𝑘𝑘23 = 𝑘𝑘32 =  𝑘𝑘2 and 𝑘𝑘34 = 𝑘𝑘3. The damping 

constants 𝛽𝛽21 = 𝛽𝛽1,  𝛽𝛽23 = 𝛽𝛽32 = 𝛽𝛽2 and 𝛽𝛽34 = 𝛽𝛽3. The nonlinear coefficients 𝛼𝛼21 is equal to 𝛼𝛼1. 

Moreover, 𝛼𝛼23 and 𝛼𝛼32 are equal to 𝛼𝛼2 and 𝛼𝛼34 is equal to 𝛼𝛼3. In addition, the other nonlinear stiffness 

𝜆𝜆21 = 𝜆𝜆1 and 𝜆𝜆23 = 𝜆𝜆32 = 𝜆𝜆2 and 𝜆𝜆34 = 𝜆𝜆3. Figure 9.8 replaces Figure 9.7 after rewriting the linear 

and nonlinear coefficients' values.  

 

Figure 9.8: Free-body diagram of the Two-degree-of-freedom system 
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𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽3𝑦𝑦3̇ + 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) + 𝑘𝑘3𝑦𝑦3 + 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) + 𝛼𝛼3𝑦𝑦32 + 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 + 𝜆𝜆3𝑦𝑦33

+ 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 + 𝐵𝐵2𝑙𝑙2
𝑉𝑉2
𝑅𝑅2

= 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(9.2) 

𝑉𝑉1 +
𝐿𝐿1
𝑅𝑅1
�̇�𝑉1 = 𝐵𝐵1𝑙𝑙1�̇�𝑦2 (9.3) 

𝑉𝑉2 +
𝐿𝐿2
𝑅𝑅2
�̇�𝑉2 = 𝐵𝐵2𝑙𝑙2�̇�𝑦3 (9.4) 

Equation 9.1 can be expressed as, 

𝑀𝑀2𝑦𝑦2̈ + �𝛽𝛽1 + 𝛽𝛽2)𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑦𝑦2 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆1𝑦𝑦22 + 𝜆𝜆2𝑦𝑦22 + 2𝛼𝛼2𝑦𝑦3

+ 3𝜆𝜆2𝑦𝑦32�𝑦𝑦2 − (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑦𝑦3 + 𝐵𝐵1𝑙𝑙1
𝑉𝑉1
𝑅𝑅1

= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(9.5) 

Equation 9.2 can be expressed as, 

𝑀𝑀3𝑦𝑦3̈ + (𝛽𝛽3 + 𝛽𝛽2)�̇�𝑦3 − 𝛽𝛽2�̇�𝑦2 − (𝑘𝑘2 + 2𝛼𝛼2𝑦𝑦3 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆2𝑦𝑦22 + 3𝜆𝜆2𝑦𝑦32)𝑦𝑦2 + (𝑘𝑘3 + 𝑘𝑘2
+ 𝛼𝛼3𝑦𝑦3 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆3𝑦𝑦32 + 𝜆𝜆2𝑦𝑦32 + 3𝜆𝜆2𝑦𝑦22)𝑦𝑦3 + 𝐵𝐵2𝑙𝑙2

𝑉𝑉2
𝑅𝑅2

= 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(9.6) 

The equations 9.3 and 9.4 can be stated as, 

𝐿𝐿1
𝑅𝑅1
�̇�𝑉1 = 𝐵𝐵1𝑙𝑙1�̇�𝑦2 − 𝑉𝑉1 (9.7) 

𝐿𝐿2
𝑅𝑅2
�̇�𝑉2 = 𝐵𝐵2𝑙𝑙2�̇�𝑦3 − 𝑉𝑉2 (9.8) 

State space variables can be used to solve equations 9.5, 9.6, 9.7 and 9.8. State space variables can be 

defined as: 

𝑒𝑒1 = 𝑦𝑦2 (9.9) 

𝑒𝑒2 = �̇�𝑦2 =
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖

 (9.10) 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 (9.11) 

𝑒𝑒3 = 𝑦𝑦3 (9.12) 
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𝑒𝑒4 =
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖

= �̇�𝑦3 (9.13) 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 
(9.14) 

𝑒𝑒5 = 𝑉𝑉1 (9.15) 

�̇�𝑉1 =
𝑑𝑑𝑒𝑒5
𝑑𝑑𝑖𝑖

 (9.16) 

𝑒𝑒6 = 𝑉𝑉2 (9.17) 
𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̇�𝑉2 (9.18) 

𝐷𝐷 = 𝐹𝐹1 = 𝐹𝐹2 (9.19) 

Equation 9.5 can be written as 

𝐿𝐿𝑥𝑥2
𝐿𝐿𝑡𝑡

= �̈�𝑦2 = 1
𝑀𝑀2

[𝐷𝐷 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝛽𝛽2𝑒𝑒4 − (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 +

2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32)𝑒𝑒3 −
𝐵𝐵1𝑡𝑡1
𝑅𝑅1

𝑒𝑒5]  

(9.20) 

To simplify Equation 9.20, the following parameters are considered 

𝑃𝑃1 = (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 + 2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32) (9.21) 

𝑄𝑄1 = (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32) (9.22) 

Equation 9.20 can be rewritten as 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 =
1
𝑀𝑀2

�𝐷𝐷 − 𝑃𝑃1𝑒𝑒1 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝑄𝑄1𝑒𝑒3 + 𝛽𝛽2𝑒𝑒4 −
𝐵𝐵1𝑙𝑙1
𝑅𝑅1

𝑒𝑒5� 
(9.23) 

Equation 9.6 can be written as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

[𝐷𝐷 − (𝛽𝛽3 + 𝛽𝛽2)𝑒𝑒4 + 𝛽𝛽2𝑒𝑒2 + (𝑘𝑘2 + 2𝛼𝛼2𝑒𝑒3 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1

− (𝑘𝑘3 + 𝑘𝑘2 + 𝛼𝛼3𝑒𝑒3 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆3𝑒𝑒32 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12)𝑒𝑒3 −
𝐵𝐵2𝑙𝑙2
𝑅𝑅2

𝑒𝑒6] 

(9.24) 
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To shorten Equation 9.24, the following parameters are considered 

𝑇𝑇1 = (𝑘𝑘2 + 2𝛼𝛼2𝑒𝑒3 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32) (9.25) 

𝑆𝑆1 = (𝑘𝑘3 + 𝑘𝑘2 + 𝛼𝛼3𝑒𝑒3 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆3𝑒𝑒32 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12) (9.26) 

After adding T1 and S1 the equation 9.24 can be stated as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

�𝐷𝐷 + 𝑇𝑇1𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2 − 𝑆𝑆1𝑒𝑒3 − (𝛽𝛽3 + 𝛽𝛽2)𝑒𝑒4 −
𝐵𝐵2𝑙𝑙2
𝑅𝑅2

𝑒𝑒6� 
(9.27) 

The equations 9.7 and 9.8 can be stated as, 

𝑑𝑑𝑒𝑒5
𝑑𝑑𝑖𝑖

=
𝑅𝑅1𝐵𝐵1𝑙𝑙1
𝐿𝐿1

𝑒𝑒2 −
𝑅𝑅1
𝐿𝐿1
𝑒𝑒5 (9.28) 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

=
𝑅𝑅2𝐵𝐵2𝑙𝑙2
𝐿𝐿2

𝑒𝑒4 −
𝑅𝑅2
𝐿𝐿2
𝑒𝑒6 (9.29) 

The state space model of the 2DOF system can be written as 
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(9.31) 

where A is the system matrix, B is the input matrix, and C is the output matrix. The remaining matrix 

is D which is typically zero because the input directly does not usually affect the output.  
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(9.33) 

If the coils are connected in parallel to external load or resistance 𝑅𝑅𝑒𝑒1and 𝑅𝑅𝑒𝑒2. The parallel-connected 

winding coils have the internal resistance 𝑅𝑅1 and 𝑅𝑅2  and inductances 𝐿𝐿1 and 𝐿𝐿2. The state space 

model of the system can be written in matrix form by equations 9.32 and 9.33, where A is the system 

matrix, B is the input matrix, and C is the output matrix. The remaining matrix is D which is typically 

zero because the input directly does not usually affect the output. 

9.4 Dynamic Analysis of the 2DOF Energy Harvester 

The dynamics of the 2DOF energy harvester have been analysed using linear and nonlinear stiffness, 

which was measured from magnetic restoring forces. The eigenvalues and frequency responses were 

first determined to understand the system. The diameter of the copper coil was 31 mm, and the number 

of turns of the winding coils was 100. The inside diameter and height of the winding coils were 75 

mm and 10 mm, respectively. The total length of the winding coil was 23.5 m, and the inner resistance 

of the coil was 5.48 ohm. The average magnetic flux density was considered 0.35 T. Because of the 

electromechanical coupling, the generator system consists of electrical and mechanical parts. Two 

winding coils have been added outside the two floating magnets, and therefore the system has two 

resonance frequencies in the electrical part. Because of the two floating magnets, the system has two 

mechanical resonance frequencies. It has been seen in Chapter 5 that the mechanical resonance 

frequencies changed with changing the position of the floating magnets. The electrical resonance 

frequencies did not change with changing the position of the floating magnets, but they changed with 

changing the total length of the winding coil (Number of turns) and magnetic flux density. Moreover, 
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the entire length of the winding coil does not affect the mechanical resonance frequency. All required 

parameters have been presented in Table 9.1.  

Table 9.1: Required parameters 

Parameters Values Units 
M2 370 gm 
M3 327.28 gm 
𝛽𝛽1 0.98 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽2 0.235 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽3 0.51 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝑘𝑘1 524.37 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘2 112.875 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘3 298.62 𝑁𝑁 𝑚𝑚⁄  
𝛼𝛼1 4918.6 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼2 715.55 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼3 3487.5 𝑁𝑁 𝑚𝑚2⁄  
𝜆𝜆1 291867 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆2 92334 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆3 107199 𝑁𝑁 𝑚𝑚3⁄  

B1 and B2 0.35 T 
R1 and R2 5.48 ohm 
l1 and l2 23.5 m 

L1 and L2 0.005546 H 

The natural frequencies of the electrical parts were 953.46 rad/s and 948.77 rad/s when both floating 

magnets were in equilibrium position. The natural frequencies for the mechanical parts were 44.17 

rad/s and 33.75 rad/s. The natural frequencies of the combined system were 43.46 rad/s and 33.02 

rad/s, respectively, of the 2DOF system without electrical-mechanical coupling in the equilibrium 

position, as discussed in Chapter 5. The natural frequencies of the mechanical part were almost similar 

with or without electrical-mechanical coupling. The imaginary parts of the eigenvalues (electrical 

parts) were zeros, but the real parts were -953.47 and -948.78 in the equilibrium position. The 

eigenvalues of the mechanical part were -0.1954 ± 0.3962i (1st floating magnet) and -0.2022 ± 0.2703i 

(2nd floating magnet) in equilibrium position. The generator system's frequency response in 

equilibrium position is shown in Figure 9.9. Due to the electromechanical coupling, the frequency 

response graph did not show the peak amplitude.  
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Figure 9.9: Frequency response of the generator system in equilibrium position 

Table 9.2: Eigenvalues and natural frequencies of the system for different positions of the floating 

magnets 

PF Eigenvalues Frequency (rad/s) 
Electrical part MP Electrical part MP 

-30 -948.82 + 0i -953.51 + 0i -19.89 +59.47i -19.82 +30.35i 948.81 953.51 62.71 36.24 

-25 -948.80 + 0i -953.50 + 0i -19.86 +53.44i -19.87 +28.66i 948.80 953.49 57.01 34.86 

-20 -948.79 + 0i -953.49 + 0i -19.81 +48.14i -19.93 +27.34i 948.79 953.48 52.05 33.83 

-15 -948.78 + 0i -953.48 + 0i -19.73 +43.83i -20.02 +26.46i 948.78 953.47 48.06 33.17 

-10 -948.78 + 0i -953.47 + 0i -19.64 +40.82i -20.11 +26.06i 948.77 953.47 45.30 32.92 

-05 -948.78 + 0i -953.47 + 0i -19.57 +39.38i -20.19 +26.23i 948.77 953.46 43.97 33.09 

0 -948.78 + 0i -953.47 + 0i -19.54 +39.62i -20.22 +27.03i 948.77 953.46 44.17 33.75 

05 -948.78 + 0i -953.47 + 0i -19.57 +41.48i -20.18 +28.46i 948.78 953.47 45.86 34.88 

10 -948.79 + 0i -953.48 + 0i -19.64 +44.79i -20.10 +30.38i 948.78 953.48 48.91 36.42 

15 -948.80 + 0i -953.49 + 0i -19.72 +49.31i -20.01 +32.63i 948.80 953.49 53.10 38.28 

20 -948.82 + 0i -953.51 + 0i -19.78 +54.75i -19.93 +35.13i 948.81 953.50 58.21 40.39 

25 -948.83 + 0i -953.53 + 0i -19.83 +60.88i -19.87 +37.82i 948.83 953.52 64.02 42.72 

30 -948.85 + 0i -953.55 + 0i -19.85 +67.50i -19.82 +40.66i 948.85 953.55 70.35 45.23 

*Note: PF=Position of the floating magnet, MP= Mechanical part 
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However, the peak resonance has shown at 40.1 rad/s. With changing the position of the floating 

magnets, the eigenvalues of the generator system were analysed. The determined eigenvalues of the 

generator system for different positions of floating magnets have been presented in Table 9.2. From 

Table 9.2, it can be seen that the eigenvalues and natural frequencies of the mechanical part changed 

with changing the position of the floating magnet. However, the eigenvalues and natural frequencies 

of the electrical part always remained almost constant for all different positions of the floating 

magnets. The generator showed higher mechanical frequency responses when both floating magnets 

moved toward the bottom magnet. Figure 9.10 displays the frequency responses of the generator 

system for different positions of the floating magnets.  

 

Figure 9.10: Frequency response of the generator system for different positions of the floating 

magnets 

The peak resonance changed with changing the position of the floating magnets, as seen in Figure 

9.10. The frequency resonance of the generator could be changed by changing the magnetic flux 

density coil turns numbers discussed in Chapter 5. The frequency resonance has been analysed by 

connecting external load or resistance parallel to the winding coils. Different external loads have been 

connected to explore the frequency resonance of the generator system. The external load was varied 

from 500 ohms to 50000 ohms to determine the resonance frequency. Figure 9.11 displays two 

resonances, and the values were 33 rad/s and 44.4 rad/s in the equilibrium position, which were almost 
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similar to the natural frequencies 44.17 rad/s and 33.75 rad/s without an external load which were 

determined using eigenvalues. It has been seen in Figure 9.9 and  Figure 9.10 that the resonance 

frequency graph did not show peak amplitude, but in Figure 9.11, the generator system with external 

load showed two peak resonant frequencies. Figure 9.12 presents the resonance frequency of the 

generator system with external load for different positions of the floating magnets.  

 

Figure 9.11: Frequency response of the generator system with external load in equilibrium position 

 

Figure 9.12: Frequency response of the generator system with external load for different positions 

of the floating magnets 



 

320 

 

The peak resonance frequencies' position changed with changing the position of the floating magnets, 

as seen in Figure 9.12. Overall, it can be said that the generator's frequency changed with changing 

the position of the floating magnets. The natural frequencies of the mechanical parts were almost 

similar for both generator systems with or without external load. However, the natural frequencies of 

the electrical parts were way higher in the generator system with the external load than in the system 

without an external load. Compared to the generator system with or without external load, the 

generator system with external load showed better dynamics results.  

The generator system's displacements, velocities, and induced voltages have been analysed with an 

applied external force. If the external force is applied to any of the floating magnets or both floating 

magnets, then both floating magnets start moving relative to each other. When the external force is 

applied to the 2nd floating or 1st floating magnet or both floating magnets, the displacement of the 2nd 

floating magnet remains higher than the 1st floating magnet, as discussed in Chapter 5. Moreover, the 

velocity of the 2nd floating magnet always remained higher than the 1st floating magnet. After adding 

the winding coils, the system was analysed. Because of the movement of the floating magnets, the 

magnetic flux densities of the floating magnet cut the winding coils, which created induced voltage 

inside the winding coils.  

 

Figure 9.13: Displacement and velocity of the 1st floating magnet 

The applied external harmonic force (Fb) amplitude was 25N, and the frequency (f) was 0.1 Hz. The 

values of linear stiffness, nonlinear stiffness and damping constants have been presented in Table 9.1. 
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The state space model equations 9.23, 9.27, 9.28 and 9.29 have been solved using Ode23t solver in 

MATLAB to find the displacements, velocities and induced voltages of the system. Both floating 

magnets' excitation was assumed to have the initial displacements, and their corresponding velocities 

were zero. As expected, the displacements and the velocities were sinusoidal and 90° out of phase. 

At first, the generator system was analysed by applying harmonic force to both floating magnets. 

Figure 9.13 presents the displacement and velocity of the 1st floating magnet, and Figure 9.14 displays 

the displacement and velocity of the 2nd floating magnet. 

 

Figure 9.14: Displacement and velocity of the 2nd floating magnet 

Because of the applied harmonic force, the maximum displacements of the 1st floating magnet toward 

the 2nd floating magnet was around 40 mm, and toward the bottom magnet was about 30 mm. The 

frequency of the applied harmonic force was considered 0.1 Hz; therefore, Figure 9.13 shows two 

complete cycles. The measured maximum velocity of 1st floating magnet was around 0.04 m/s. On 

the other hand, the maximum displacements of the 2nd floating magnet toward the 4th (top fixed 

magnet) were around 50 mm and 40 mm towards the 1st floating magnet, as shown in Figure 9.14.  

The maximum velocity of the 2nd floating magnet was around 0.05 m/s. The displacements and 

velocities of both floating magnets can be changed by changing the amplitude and frequency of the 

applied harmonic force, as discussed in Chapter 5. For the same applied harmonic forces in both 

floating magnets, the 2nd floating magnet achieved more displacement and velocity than the 1st 

floating magnet, as shown in Figure 9.15.  
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Figure 9.15: Comparison of displacement and velocity of (a) 1st floating magnet and (b) 2nd floating 

magnet 

 

Figure 9.16: Measured induced voltages (a) 1st winding coil and (b) 2nd winding coil  

It was considered during the analysis that 1st winding coil was placed outside of the 1st floating magnet 
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not considered. As it is known, due to the movement of the floating magnets, the induced voltage will 

be generated in the winding coil. The generated induced voltages were determined as well as shown 

in Figure 9.16. The displacement and velocity of the 2nd floating magnet were higher than the 1st 

floating magnet. Therefore, the 2nd winding coil showed a higher induced voltage than the 1st winding 

coil. The maximum measured induced voltages in coil 2 was around 0.45 volts and in coil 1 was 0.3 

volts. The generator system has been analysed by applying a harmonic force only on the 2nd floating 

magnet. The displacements and velocities of both floating magnets have been determined for that 

applied harmonic force.  

Moreover, the induced voltages for both coils have been measured as well. As the harmonic force 

was applied on the 2nd floating magnet, therefore, when the 2nd floating magnet started moving, then 

the 1st floating magnet also started moving. For this applied harmonic force (25N amplitude), the 2nd 

floating magnet achieved a higher displacement and velocity compared to the 1st floating magnet. 

Figure 9.17 and Figure 9.18 present the displacement and velocity of the 1st and 2nd floating magnets, 

respectively.  

 

Figure 9.17: Displacement and velocity of the 1st floating magnet 

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-0.015

-0.01

-0.005

0

0.005

0.01

Di
sp

lac
em

en
t (

m
)

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-0.01

-0.005

0

0.005

0.01

Ve
loc

ity
 (m

/s)



 

324 

 

 

Figure 9.18: Displacement and velocity of the 2nd floating magnet 

The 1st floating magnet moved up to 13 mm toward the 2nd floating magnet and around 9 mm toward 

the 1st fixed magnet (bottom magnet). The measured maximum velocity was around 0.009 m/s during 

this movement. On the other hand, the 2nd floating magnet moved up to 47 mm toward the top fixed 

magnet (4th magnet) and around 35 mm toward the 1st floating magnet. The maximum velocity for 

the 2nd floating magnet was around 0.045 m/s during this movement. Figure 9.19 displays the 

comparison of displacement and velocity of 1st floating magnet with 2nd floating magnet. Figure 9.20  

shows the induced voltages of both winding coils. 

 

Figure 9.19: Comparison of displacement and velocity of (a) 1st floating magnet and (b) 2nd floating 

magnet 
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Figure 9.20: Measured induced voltages (a) 1st winding coil and (b) 2nd winding coil  

 

Figure 9.21: Displacement and velocity of the 1st floating magnet 
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analysed by applying the same harmonic force (25N amplitude) only on the 1st floating magnet. As 

the harmonic force has been applied on the 1st floating magnet, therefore, when the 1st floating magnet 

started moving, then the 2nd floating magnet also started moving. For this applied harmonic force 

(25N amplitude), the 2nd floating magnet achieved a higher displacement and velocity compared to 

the 1st floating magnet. Figure 9.21 and Figure 9.22 show the displacement and velocity of the 1st and 

2nd floating magnets, respectively. 

 

Figure 9.22: Displacement and velocity of the 2nd floating magnet 
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Due to the applied force, the 1st floating magnet moved up to 32 mm toward the 2nd floating magnet 

and about 26 mm toward the 1st fixed magnet (bottom magnet). The measured maximum velocity 

during that movement was around 0.027 m/s. On the other hand, the 2nd floating magnet moved 

relatively up to 12 mm toward the top fixed magnet (4th magnet) and 7.5 mm toward the 1st floating 

magnet. The maximum velocity of the 2nd floating magnet during that excitation was around 0.008 

m/s. The 2nd floating magnet achieved the highest displacement and velocity compared to the 1st 

floating magnet for this applied harmonic, as shown in Figure 9.23. Thus, the induced voltage of coil 

1 was higher than that of coil 2. The maximum induced voltage in coil 2 was around 0.068 volts and 

in coil 1 was 0.22 volts.  

 

Figure 9.24: Measured induced voltages (a) 1st winding coil and (b) 2nd winding coil 
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magnets show the maximum displacement and velocity when the external force is applied on both 

floating magnets. 

 

(a) 

 

(b) 

Figure 9.25: Displacements (a) 1st floating magnet and (b) 2nd floating magnet (Note: FA= Force 

applied, FM=Floating magnet) 
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(a) 

 

(b) 

Figure 9.26: Velocities (a) 1st floating magnet and (b) 2nd floating magnet (Note: FA= Force 

applied, FM=Floating magnet) 
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(a) 

 

(b) 

Figure 9.27: Induced voltage (a) 1st winding coil and (b) 2nd winding coil 
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system. The amplitude and frequency of the applied harmonic force were 25N and 0.1 Hz. A winding 

coil (100 number of turns) has been considered for SDOF based generator system, and two winding 

coils (both 100 number of turns) have been considered for a 2DOF generator system. Moreover, the 

same magnetic flux density and copper coil have been considered to compare both generator systems. 

The force was applied on both floating magnets, only on the 2nd floating magnet and only on the 1st 

floating magnet of the 2DOF generator system and compared with the SDOF generator system. Figure 

9.28 presents the comparison results of both generator systems.  
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(c) 

Figure 9.28: Induced voltage (a) Force applied on 2nd floating magnet in 2DOF, (b) Force applied 

on 1st floating magnet in 2DOF and (c) Force applied on both floating magnets in 2DOF 
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voltage in coil 2 is higher than the generated induced voltage in the SDOF generator system. However, 

the generated voltage in coil 1 is almost similar to the generated voltage in the SDOF system. 

Therefore, overall, the 2DOF generator system is more efficient than the SDOF generator system.  

9.5 Experimental Analysis 
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magnets, respectively, as shown in Figure 9.1. The 1st and 2nd winding coils were connected with the 

2nd and 3rd ports of the data acquisition system. When the experimental setup was finalised, the sensors 

were powered.  

 

Figure 9.29: Changing position of the 1st floating magnet for changing the position of the 2nd 

floating magnet 
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9.29 that for every 5 mm movement of the 2nd floating magnet, the 1st floating magnet moved by 2 

mm.  

-20 -15 -10 -5 0 5 10

20
15
10

5
0

-5
-10
-15
-20
-25
-30
-35
-40
-45
-50

Position of the 1st floating magnet (mm)

Po
si

tio
n 

of
 th

e 
2n

d 
flo

at
in

g 
m

ag
ne

t (
m

m
)

To
w

ar
d 

to
p 

fix
ed

 m
ag

ne
t

To
w

ar
d 

1s
t

flo
at

in
g 

m
ag

ne
t



 

334 

 

 

Figure 9.30: (a) Displacement and (b) velocity of the 1st floating magnet (FL: Fishing line, FM: 

Floating magnet) 

The experimental work was performed by connecting the servo motor using the fishing line with the 

2nd floating magnet and the 1st floating magnet (through the second floating magnet's plastic bush of 

the 2nd floating magnet). Same harmonic forces were applied for both setups, and the outcome was 

compared. Figure 9.30 and Figure 9.31 present the displacement and velocity of the 1st and 2nd floating 

magnets, respectively. The 1st floating magnet's displacement and velocity were higher during the 

pulling of the 1st floating magnet, and the 2nd floating magnet's displacement and velocity were higher 

during the pulling of the 2nd floating magnet. In Figure 9.30, the red line represents the displacement 

and velocity of the 1st floating magnet when the servo motor connected with the 1st floating magnet. 

The blue line represented the displacement and velocity of the 1st floating magnet when the servo 

motor connected with the 2nd floating magnet). Similarly, the red line represented the displacement 

and velocity of the 2nd floating magnet when the servo motor was connected with the 1st floating 

magnet, and the blue line represented the displacement and velocity of the 2nd floating magnet when 

the servo motor was connected with the 2nd floating magnet, as shown in Figure 9.31. The 1st floating 

magnet showed the maximum displacement and velocity, then 2nd floating magnet when the upward 

harmonic force was applied on the 1st floating magnet. The 2nd floating magnet showed the maximum 

displacement and velocity, then the 1st floating magnet when the same upward harmonic force was 

applied on the 2nd floating magnet, as presented in Figure 9.31. 
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Figure 9.31: (a) Displacement and (b) velocity of the 2nd floating magnet (FL: Fishing line, FM: 

Floating magnet) 

 

Figure 9.32: Induced voltages (a) 1st winding coil and (b) 2nd winding coil (FL: Fishing line, FM: 

Floating magnet) 
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By comparing Figure 9.30 and Figure 9.31, both floating magnets could achieve maximum 

displacement and velocity if the harmonic force was applied on the 1st floating. Because when the 

force was applied on the 2nd floating magnet, the 2nd floating magnet showed maximum displacement 

and velocity, but the 1st floating magnet's displacement and velocity were minimal compared to the 

2nd floating magnet. Therefore, the 2nd winding coil showed more energy than the 1st. On the other 

hand, when the force was applied on the 1st floating magnet, both 1st and 2nd floating magnets showed 

almost the same displacement and velocity. Figure 9.32 displays the induced voltages of the energy 

harvester for both experimental setups. In Figure 9.32, the red line represented the induced voltage 

when the servo motor was connected with the 1st floating magnet. The blue line represented the 

induced voltage when the servo motor was connected with the 2nd floating magnet. Figure 9.32 

showed that when force was applied to the 2nd floating magnet, the 2nd winding coil generated a higher 

induced voltage (3.9V) than the 1st winding coil (2.8V). But when the force was applied on the 1st 

floating magnet, the 1st and 2nd winding coils produced almost similar induced voltages of 3.5V and 

3.6V, respectively.  

9.5.1 Validation of the experimental results with analytical results 

The 2DOF energy harvester test rig was developed and experimented with to validate the analytical 

model within the lab environment. The amplitude and frequency of the harmonic force were estimated 

from the applied torque of the servo motor. The same harmonic force was used in the analytical model 

to validate the analytical model with the experimental model. Different torques were applied to run 

the servo motor in the torque control mode for the experimental analysis, and the harmonic forces 

were estimated. For the experimental investigation, the projected amplitude and frequency of the 

harmonic force were 15N and 3.88Hz, respectively. The same amplitude and frequency of the 

harmonic force were applied in the analytical model and compared with the experimental results. 

Figure 9.33 displays the displacement and velocity of the 1st floating magnet, and Figure 9.34 shows 

the displacement and velocity of the 2nd floating magnet. In Figures 9.33 and 9.34, the blue and green 

lines represent the analytical and experimental measurements, respectively. During the analytical 

investigation, the 1st floating magnet moved toward the bottom magnet by about 17 mm and toward 

the 2nd floating magnet by around 21 mm, as presented by the blue line in Figure 9.33(a). The 1st 

floating magnet moved toward the 2nd floating magnet by 12 mm and toward the bottom by around 

25 mm during the experimental analysis, as shown by the green line in Figure 9.33(a). 
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Figure 9.33: (a) Displacement and (b) velocity of the 1st floating magnet (FM: Floating magnet) 

 

Figure 9.34: (a) Displacement and (b) velocity of the 2nd floating magnet (FM: Floating magnet) 
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On the other hand, the 2nd floating magnet moved toward the 1st floating magnet by about 34 mm and 

toward the top magnet by around 40 mm during analytical, as presented by the blue line in Figure 

9.34(a). The 2nd floating magnet moved toward the top magnet by 38 mm and toward the 1st floating 

magnet by around 34 mm during the experimental analysis, as shown by the green line in Figure 

9.34(a). The 1st floating magnet moved up and down with an average velocity of 0.09 m/s during 

experimental analysis and 0.085 m/s during the analytical study, as presented in Figure 9.34(b). On 

the other hand, the 2nd floating magnet moved up and down with an average velocity of 0.093 m/s 

during analytical analysis and 0.094 m/s during the experimental study, as presented in Figure 

9.34(b). Figure 9.35 presents the induced voltage of the energy harvester.  

 

Figure 9.35: Induced voltages (a) 1st winding coil and (b) 2nd winding coil (WC: Winding coil) 

Figures 9.33, 9.34 and 9.35 show that the analytical model is well validated with the experimental 

model. The blue and green lines in Figure 9.35 represent the induced voltage of the analytical and 

experimental measurements, respectively. In Figure 9.35, the induced voltage of the generator for 

analytical analysis has been compared with the experimental study. The measured average maximum 

induced voltage in winding coil 1 was 3.5V for analytical analysis and 5V for experimental analysis. 
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On the other hand, the measured average maximum induced voltage in winding coil 2 was 7.2V for 

analytical analysis and 7V for experimental investigation. Lastly, the analytical model has been 

validated with the experimental model by reducing the harmonic force frequency. The estimated 

amplitude and frequency of the harmonic force were 10N and 2.6Hz, respectively. Figures 9.36 and  

9.37 show the displacement and velocity of the 1st and 2nd floating magnets, respectively. In Figures 

9.36 and  9.37, the blue and red lines represent the analytical and experimental measurements, 

respectively.  

 

Figure 9.36: (a) Displacement and (b) velocity of the 1st floating magnet (FM: Floating magnet) 
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the 1st floating magnet by around 20.5 mm during the experimental analysis, as shown by the green 

line in Figure 9.37(a). 

 

Figure 9.37: (a) Displacement and (b) velocity of the 2nd floating magnet (FM: Floating magnet) 

 

Figure 9.38: Induced voltages (a) 1st winding coil and (b) 2nd winding coil (WC: Winding coil) 
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The 1st floating magnet moved up and down with an average velocity of 0.3 m/s during experimental 

analysis and 0.25 m/s during the analytical study, as presented in Figure 9.36(b). On the other hand, 

the 2nd floating magnet moved up and down with an average velocity of 0.45 m/s during analytical 

analysis and 0.5 m/s during the experimental study, as presented in Figure 9.37(b). Figure 9.38 

illustrates the induced voltage of the energy harvester. The blue and red lines in Figure 9.38 represent 

the induced voltage of the analytical and experimental measurements, respectively. The measured 

average maximum induced voltage in winding coil 1 was 2.9V for analytical analysis and 3.4V for 

experimental study. On the other hand, the measured average maximum induced voltage in winding 

coil 2 was 3.61V for analytical analysis and 3.57V for experimental investigation. Figure 9.36, Figure 

9.37 and Figure 9.38 show that the analytical model is well validated with the experimental model. 

9.6 Conclusion 

The aim of this chapter was to study the 2DOF magnetic spring-based energy generator. The 

dynamics of the proposed 2DOF energy harvester were investigated using analytical and 

experimental methods. The magnetic properties of the proposed energy harvester were measured 

numerically. The eigenvalues and frequency responses due to the movement of both floating magnets 

were measured analytically. The effects of the electromechanical coupling on the 2DOF oscillator 

system were analysed. The state space model of the 2DOF energy harvester was solved using 

MATLAB ode23t solver. The 2DOF energy harvester model was compared with the SDOF model, 

which showed the 2DOF energy harvester is more capable of harnessing ocean energy due to two 

resonances. The test rig design of the 2DOF energy harvester was developed in the lab for 

experimental analysis, and the experimental works were performed by changing different parameters. 

Lastly, the outcomes of the experimental works were validated with the analytical model's outcomes.  
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Chapter 10  
Theoretical and Experimental Study of 3DOF Magnetic Spring-based 

Electromagnetic Generator  

The resonant power and efficiency of the three-degree-of-freedom nonlinear oscillators are expected 

to be larger than those with two-degree-of-freedom (2DOF) and single-degree-of-freedom (SDOF) 

nonlinear oscillator systems. Moreover, using the three-degree-of-freedom nonlinear oscillators is 

estimated to advance higher operational frequency bandwidth than the 2DOF and SDOF nonlinear 

oscillators. Three floating magnets are expected to generate maximum magnetic flux density in the 

system than the two and single floating magnet-based system. In Chapter 6, the analytical, numerical 

and experimental model of the three-degree-of-freedom (3DOF) magnetic spring-based oscillator 

system has been discussed with validation. However, the energy generation part was not included 

during the analysis of the 3DOF system in Chapter 6. This chapter deals with energy generation 

techniques based on 3DOF magnetic spring-based oscillator systems and their behaviour with various 

design criteria. This chapter will discuss the dynamics and energy generation ability of the 3DOF 

magnetic spring-based energy harvester analytically and experimentally for different frequency 

ranges.  

10.1 The Architecture of the Three-degree-of-freedom (3DOF) Energy Harvester 

The basic architecture of the energy harvester contains five-ring permanent magnets (axially 

magnetised), a circular shaft and winding coils. The 3DOF energy harvester is designed so that every 

function's magnetic restoring forces and induced voltage should not affect or influence each magnet's 

magnetic field, particularly when the floating magnets are moving. Due to the movement of all 

floating magnets inside the winding coil, the cogging force is usually created. Minimising the 

generated harmful cogging force from magnets and coils movement is essential. Different 

nonmagnetic materials have been used to avoid magnetic field interference. The polarity of the 

magnets is arranged so that the levitating magnet experiences a repulsive force because of the fixed 

magnets. Few multilayer coils are attached around the outer surface of the two floating magnets. The 

magnetic poles are oriented (NS-SN-NS-SN-NS) to repel each other. The height and width of the test 

rig are 550 mm and 300 mm, respectively. 
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Moreover, the height and diameter of the shaft are 550 mm and 12 mm, respectively. For the test rig 

design, as presented in Figure 10.1, the equilibrium height of the 3DOF oscillator is 372 mm. For the 

equilibrium position, the separation distance between the 1st and 2nd magnet is 59 mm, and the 

distance between the 2nd and 3rd magnet is 65 mm. Moreover, the distance between the 3rd and 4th 

magnet is 79 mm, and the separation distance between the 4th and 5th is 104 mm. Three winding coils 

have been added to the test rig, and both winding coils have been connected to the data acquisition 

system to capture the induced voltages. A floating magnet connected the servo motor using a fishing 

line. 

 

Figure 10.1: 3DOF electromagnetic generator 

10.2 Numerical Simulation of the 3DOF Magnetic Spring-based Electromagnetic Generator/ 

Energy Harvester System 

The FEA of the 3DOF magnetic spring-based electromagnetic generator/energy harvester model has 

been discussed in this chapter. The proposed 3DOF generator model has been analysed as a 2D 

axisymmetric model, as shown in Figure 10.2(a). Three winding coils (100 turns each) have been 

placed on the top surfaces of each floating magnet. The permanent magnets and winding coil 

properties can be seen in Table 3.1 and Table 8.1, respectively.  

Winding coil 2 

Winding coil 1 

Winding coil 3 

Sensor 1 
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Sensor 3 

3rd magnet  
(2nd floating magnet) 

2nd magnet  
(1st floating magnet) 

5th magnet  
(Fixed magnet) 

4th magnet  
(3rd floating magnet) 

1st magnet  
(Fixed magnet) 
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(a) (b) 

                              

(c) (d) (e) 

Figure 10.2: (a) Magnetisation direction and (b) Flux line, (c) Magnetic flux (Mag_B) and (c) 

B_Vector 

1st magnet  
(Fixed magnet) 

2nd magnet  
(1st floating magnet) 

3rd magnet  
(2nd floating magnet) 

4th magnet  
(3rd floating magnet) 

5th magnet  
(Fixed magnet) 

Winding coil 1 

Winding coil 2 

Winding coil 3 
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(a) 

 
(b) 

Figure 10.3: Magnetic flux densities for different positions of both floating magnets (a) B_Vector 

and (b) Mag_B 

The numerical analysis of the 3DOF magnetic spring-based oscillator system can be seen in Chapter 

6. In this section, the 3DOF oscillator system has been investigated by adding three winding coils. 
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The simulation was run using constant velocity for all three floating magnets during the transient 

solution. The magnetisation direction of all magnets, flux line, flux linkage, magnetic flux density 

and induced voltages have been investigated. Figure 10.2(b) shows the magnetisation direction of all 

5 magnets, and Figure 10.2(c) presents the flux line of all 5 magnets. The arrows in Figure 10.2(b) 

represent the magnetisation directions of all permanent magnets. The maximum flux lines can be seen 

on the outside surfaces of each magnet and inside the coil area, as presented in Figure 10.2(c). The 

magnetic flux (Mag_B) and magnetic flux (B_Vector) of the 3DOF electromagnetic generator have 

been shown in Figure 10.2(d) and Figure 10.2(e). A constant velocity was used to move all floating 

magnets to analyse the magnetic flux densities. As shown in Figure 10.2(d), the colour represents the 

magnetic flux density of the generator system. The higher flux density is visible around the permanent 

magnet area, characterised by colour variations. According to Figure 10.2(e), the magnetic flux lines 

originated from the North Pole and travelled to the South Pole, and they travelled through the inside 

coil of the magnet. Copper coils generate induced voltage when they are cut by magnetic flux. 

Magnetic flux densities of the generator also changed over time, along with the positions of the 

floating magnets. In Figure 10.3, the magnetic flux densities of the 1st, 2nd, and 3rd floating magnets 

changed as the 1st, 2nd, and 3rd floating magnets moved with the changing time.  

 

Figure 10.4: Flux lines for different positions of the floating magnet 

On the other hand, the 1st and 5th magnets were fixed; therefore, their magnetic flux densities did not 

change with time. For different positions of floating magnets, Figure 10.3 shows the changes in 
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magnetic flux densities. The flux line changed with changing the positions of all floating magnets, as 

shown in Figure 10.4. The induced voltage is generated inside the winding coil when the magnetic 

flux cuts the copper coil. Figure 10.5 displays the generated induced voltages and flux linkages in the 

winding coils when all floating magnets move with the constant velocity of 0.5 m/s.  

 

Figure 10.5: Induced voltage and flux Linkage in the winding coil 

The legend in the Figure 10.5 represent the winding coils (all solid lines for induced voltage and doted 

lines for flux linkage). From Figure 10.5, it can be seen that the induced voltages in winding coils 1, 

2 and 3 were zero when the flux linkages in winding coils 1, 2 and 3 were maximum, respectively. 

The flux linkage in the winding coil 1 and 3 remained positive during the excitation of the floating 

magnets because the magnetisation direction of the 1st and 3rd floating magnets was upward. Since 

all floating magnets moved with the same constant velocity (0.5 m/s), all winding coils generated the 

same induced voltages. The magnetisation direction of the 2nd floating magnet was downward; 

therefore, the flux linkage remained negative during the movement of the floating magnets. The 

magnetisation directions for all magnets can be seen in Figure 10.2(b).  

10.3 Mathematical Model of the 3DOF Energy Harvester 

When the external force is applied to a floating magnet or any floating magnet moves up and down, 

it creates the magnetic spring's elastic restoring force. Figure 10.6 and Figure 10.7  display the free-

body diagrams of the proposed 3DOF nonlinear oscillator system. The masses of the 2nd (1st floating 

magnet), 3rd (2nd floating magnet) and 4th (3rd floating magnet) magnets are 𝑀𝑀2, 𝑀𝑀3 and 𝑀𝑀4, 
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respectively. The relative displacement of the 1st floating magnet is 𝑦𝑦2 and the relative velocity and 

acceleration of the 1st floating magnet are �̇�𝑦2 and �̈�𝑦2, respectively. The relative displacement, velocity 

and acceleration of the 2nd floating magnet are 𝑦𝑦3, �̇�𝑦3 and �̈�𝑦3, respectively. Moreover, the relative 

displacement, velocity and acceleration of the 3rd floating magnet are 𝑦𝑦4, �̇�𝑦4 and �̈�𝑦4, respectively. The 

magnetic flux density of the 2nd magnet (1st floating magnet) is 𝐵𝐵1(𝑏𝑏) and the total length of the 1st 

winding coil is 𝑙𝑙1.  

 

Figure 10.6: Three-degree-of-freedom magnetic spring-based oscillator system 
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Figure 10.7: Free body diagram 

The magnetic flux density of the 3rd magnet (2nd floating magnet) is 𝐵𝐵2(𝑏𝑏) and the total length of the 

2nd winding coil is 𝑙𝑙2. Similarly, the magnetic flux density of the 4th magnet (3rd floating magnet) 

is 𝐵𝐵3(𝑏𝑏) and the total length of the 3rd winding coil is 𝑙𝑙3.  
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Figure 10.8: Free body diagram 

The electromagnetic coupling coefficients are 𝑎𝑎1(𝑎𝑎1 = 𝐵𝐵1(𝑏𝑏)𝑙𝑙1), 𝑎𝑎2(𝑎𝑎2 = 𝐵𝐵2(𝑏𝑏)𝑙𝑙2) and 𝑎𝑎3(𝑎𝑎3 =

𝐵𝐵3(𝑏𝑏)𝑙𝑙3).  Moreover, 𝐹𝐹𝑒𝑒1, 𝐹𝐹𝑒𝑒2 and 𝐹𝐹𝑒𝑒3 are the electromagnetic forces written as 𝐹𝐹𝑒𝑒1 = 𝑎𝑎1𝐼𝐼1, 𝐹𝐹𝑒𝑒2 = 𝑎𝑎2𝐼𝐼2 

and  𝐹𝐹𝑒𝑒3 = 𝑎𝑎3𝐼𝐼3 respectively. The damping forces of the 1st floating magnet is 𝐹𝐹𝛽𝛽1 = 𝛽𝛽1�̇�𝑦2 2nd floating 

magnet is 𝐹𝐹𝛽𝛽3 = 𝛽𝛽3�̇�𝑦3 and 3rd floating magnet is 𝐹𝐹𝛽𝛽5 = 𝛽𝛽5�̇�𝑦4. The linear stiffness of the 1st, 2nd, and 

3rd floating magnets are 𝑘𝑘1, 𝑘𝑘3 and 𝑘𝑘5, respectively. During the 3rd order Taylor series, the nonlinear 

stiffnesses of the 1st floating magnet are 𝛼𝛼1 and 𝜆𝜆1 and for the 2nd floating magnet, are 𝛼𝛼3 and 𝜆𝜆3. 
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Furthermore, the nonlinear stiffnesses of the 3rd floating magnet are 𝛼𝛼5 and 𝜆𝜆5. Furthermore, in Figure 

10.7, the linear stiffness 𝑘𝑘21 = 𝑘𝑘1, 𝑘𝑘23 = 𝑘𝑘32 = 𝑘𝑘2, 𝑘𝑘34 = 𝑘𝑘43 =  𝑘𝑘4 and 𝑘𝑘45 = 𝑘𝑘5. The damping 

constants 𝛽𝛽21 = 𝛽𝛽1, 𝛽𝛽23 = 𝛽𝛽32 = 𝛽𝛽2,𝛽𝛽34 = 𝛽𝛽43 = 𝛽𝛽4 and 𝛽𝛽45 = 𝛽𝛽5.The nonlinear coefficients 𝛼𝛼21 =

𝛼𝛼1, 𝛼𝛼23 = 𝛼𝛼32 = 𝛼𝛼2, 𝛼𝛼34 = 𝛼𝛼43 = 𝛼𝛼4 and 𝛼𝛼45 = 𝛼𝛼5. In addition, the other nonlinear stiffness 𝜆𝜆21 =

𝜆𝜆1,𝜆𝜆23 = 𝜆𝜆32 = 𝜆𝜆2, 𝜆𝜆34 = 𝜆𝜆43 = 𝜆𝜆4 and 𝜆𝜆45 = 𝜆𝜆5. Figure 10.8 replaces Figure 10.7 after replacing 

the linear and nonlinear coefficient values. The dynamic equation of the motion of the system can be 

written as,  

𝑀𝑀2𝑦𝑦2̈ + 𝛽𝛽1𝑦𝑦2̇ − 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) + 𝑘𝑘1𝑦𝑦2 − 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) + 𝛼𝛼1𝑦𝑦22 − 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2 + 𝜆𝜆1𝑦𝑦23

− 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 + 𝐵𝐵1𝑙𝑙1
𝑉𝑉1
𝑅𝑅1

= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.1) 

𝑀𝑀3𝑦𝑦3̈ + 𝛽𝛽2(𝑦𝑦3̇ − 𝑦𝑦2̇) − 𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) + 𝑘𝑘2(𝑦𝑦3 − 𝑦𝑦2) − 𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) + 𝛼𝛼2(𝑦𝑦3 − 𝑦𝑦2)2

− 𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 + 𝜆𝜆2(𝑦𝑦3 − 𝑦𝑦2)3 − 𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 + 𝐵𝐵2𝑙𝑙2
𝑉𝑉2
𝑅𝑅2

= 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.2) 

𝑀𝑀4𝑦𝑦4̈ + 𝛽𝛽5𝑦𝑦4̇ + 𝛽𝛽4(𝑦𝑦4̇ − 𝑦𝑦3̇) + 𝑘𝑘5𝑦𝑦4 + 𝑘𝑘4(𝑦𝑦4 − 𝑦𝑦3) + 𝛼𝛼5𝑦𝑦42 + 𝛼𝛼4(𝑦𝑦4 − 𝑦𝑦3)2 + 𝜆𝜆5𝑦𝑦43

+ 𝜆𝜆4(𝑦𝑦4 − 𝑦𝑦3)3 + 𝐵𝐵3𝑙𝑙3
𝑉𝑉3
𝑅𝑅3

= 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.3) 

𝑉𝑉1 +
𝐿𝐿1
𝑅𝑅1
�̇�𝑉1 = 𝐵𝐵1𝑙𝑙1�̇�𝑦2 (10.4) 

𝑉𝑉2 +
𝐿𝐿2
𝑅𝑅2
�̇�𝑉2 = 𝐵𝐵2𝑙𝑙2�̇�𝑦3 (10.5) 

𝑉𝑉3 +
𝐿𝐿3
𝑅𝑅3
�̇�𝑉3 = 𝐵𝐵3𝑙𝑙3�̇�𝑦4 (10.6) 

Equation 10.1 can rewrite as,  

𝑀𝑀2𝑦𝑦2̈ + �𝛽𝛽1 + 𝛽𝛽2)𝑦𝑦2̇ − 𝛽𝛽2𝑦𝑦3̇ + (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑦𝑦2 − 𝛼𝛼2𝑦𝑦2 + 𝜆𝜆1𝑦𝑦22 + 𝜆𝜆2𝑦𝑦22 + 2𝛼𝛼2𝑦𝑦3

+ 3𝜆𝜆2𝑦𝑦32�𝑦𝑦2 − (𝑘𝑘2 + 3𝜆𝜆2𝑦𝑦22 + 𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦32)𝑦𝑦3 + 𝐵𝐵1𝑙𝑙1
𝑉𝑉1
𝑅𝑅1

= 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.7) 

Equation 10.2 can be rewritten as,  

𝑀𝑀3𝑦𝑦3̈ − 𝛽𝛽2𝑦𝑦2̇ + (𝛽𝛽2 + 𝛽𝛽4)𝑦𝑦3̇ − 𝛽𝛽4𝑦𝑦4̇ − (𝑘𝑘2 − 𝛼𝛼2𝑦𝑦2 + 2𝛼𝛼2𝑦𝑦3 + 𝜆𝜆2𝑦𝑦22 + 3𝜆𝜆2𝑦𝑦32)𝑦𝑦2
+ (𝑘𝑘2 + 𝑘𝑘4 + 𝛼𝛼2𝑦𝑦3 − 𝛼𝛼4𝑦𝑦3 + 2𝛼𝛼4𝑦𝑦4 + 𝜆𝜆2𝑦𝑦32 + 3𝜆𝜆2𝑦𝑦22 + 𝜆𝜆4𝑦𝑦32

+ 3𝜆𝜆4𝑦𝑦42)𝑦𝑦3 − (𝑘𝑘4 + 𝛼𝛼4𝑦𝑦4 + 𝜆𝜆4𝑦𝑦4
2 + 3𝜆𝜆4𝑦𝑦3

2)𝑦𝑦4 + 𝐵𝐵2𝑙𝑙2
𝑉𝑉2
𝑅𝑅2

= 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.8) 
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Equation 10.3 can be expressed as, 

𝑀𝑀4𝑦𝑦4̈ + (𝛽𝛽5 + 𝛽𝛽4)�̇�𝑦4 − 𝛽𝛽4�̇�𝑦3 − (𝑘𝑘4 + 2𝛼𝛼4𝑦𝑦4 − 𝛼𝛼4𝑦𝑦3 + 𝜆𝜆4𝑦𝑦32 + 3𝜆𝜆4𝑦𝑦42)𝑦𝑦3 + (𝑘𝑘5 + 𝑘𝑘4
+ 𝛼𝛼5𝑦𝑦4 + 𝛼𝛼4𝑦𝑦4 + 𝜆𝜆5𝑦𝑦42 + 𝜆𝜆4𝑦𝑦42 + 3𝜆𝜆4𝑦𝑦32)𝑦𝑦4 + 𝐵𝐵3𝑙𝑙3

𝑉𝑉3
𝑅𝑅3

= 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) 

(10.9) 

The equations 10.4, 10.5 and 10.6 can be expressed as, 

𝐿𝐿1
𝑅𝑅1
�̇�𝑉1 = 𝐵𝐵1𝑙𝑙1�̇�𝑦2 − 𝑉𝑉1 (10.10) 

𝐿𝐿2
𝑅𝑅2
�̇�𝑉2 = 𝐵𝐵2𝑙𝑙2�̇�𝑦3 − 𝑉𝑉2 (10.11) 

𝐿𝐿3
𝑅𝑅3
�̇�𝑉3 = 𝐵𝐵3𝑙𝑙3�̇�𝑦4 − 𝑉𝑉3 (10.12) 

State space variables can be used to solve equations (10.7, 10.8, 10.9, 10.10, 10.11 and 10.12). State 

space variables can be defined as: 

𝑒𝑒1 = 𝑦𝑦2 (10.13) 

𝑒𝑒2 = �̇�𝑦2 =
𝑑𝑑𝑒𝑒1
𝑑𝑑𝑖𝑖

 (10.14) 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 (10.15) 

𝑒𝑒3 = 𝑦𝑦3 (10.16) 

𝑒𝑒4 =
𝑑𝑑𝑒𝑒3
𝑑𝑑𝑖𝑖

= �̇�𝑦3 (10.17) 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 (10.18) 

𝑒𝑒5 = 𝑦𝑦4 (10.19) 

𝑒𝑒6 =
𝑑𝑑𝑒𝑒5
𝑑𝑑𝑖𝑖

= �̇�𝑦4 (10.20) 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 (10.21) 

𝑒𝑒7 = 𝑉𝑉1 (10.22) 

�̇�𝑉1 =
𝑑𝑑𝑒𝑒7
𝑑𝑑𝑖𝑖

 (10.23) 

𝑒𝑒8 = 𝑉𝑉2 (10.24) 
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𝑑𝑑𝑒𝑒8
𝑑𝑑𝑖𝑖

= �̇�𝑉2 (10.25) 

𝑒𝑒9 = 𝑉𝑉2 (10.26) 
𝑑𝑑𝑒𝑒9
𝑑𝑑𝑖𝑖

= �̇�𝑉2 (10.27) 

𝐷𝐷 = 𝐹𝐹1𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) = 𝐹𝐹2𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) = 𝐹𝐹3𝑆𝑆𝑖𝑖𝑛𝑛(𝜔𝜔𝑖𝑖) (10.28) 

Equation 10.7 can be written as 

𝐿𝐿𝑥𝑥2
𝐿𝐿𝑡𝑡

= �̈�𝑦2 = 1
𝑀𝑀2

[𝐷𝐷 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝛽𝛽2𝑒𝑒4 − (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 +

𝜆𝜆2𝑒𝑒12 + 2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32)𝑒𝑒3 −
𝐵𝐵1𝑡𝑡1
𝑅𝑅1

𝑒𝑒7]  

(10.29) 

The flowing variables can be assumed as, 

𝑃𝑃1 = (𝑘𝑘1 + 𝑘𝑘2 + 𝛼𝛼1𝑒𝑒1 − 𝛼𝛼2𝑒𝑒1 + 𝜆𝜆1𝑒𝑒12 + 𝜆𝜆2𝑒𝑒12 + 2𝛼𝛼2𝑒𝑒3 + 3𝜆𝜆2𝑒𝑒32) (10.30) 

𝑄𝑄1 = (𝑘𝑘2 + 3𝜆𝜆2𝑒𝑒12 + 𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒32) (10.31) 

The equation 10.29 can be written as, 

𝑑𝑑𝑒𝑒2
𝑑𝑑𝑖𝑖

= �̈�𝑦2 =
1
𝑀𝑀2

�𝐷𝐷 − 𝑃𝑃1𝑒𝑒1 − (𝛽𝛽1 + 𝛽𝛽2)𝑒𝑒2 + 𝑄𝑄1𝑒𝑒3 + 𝛽𝛽2𝑒𝑒4 −
𝐵𝐵1𝑙𝑙1
𝑅𝑅1

𝑒𝑒7� 
(10.32) 

Equation 10.8 can be stated as, 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

�𝐷𝐷 + (𝑘𝑘2 − 𝛼𝛼2𝑒𝑒1 + 2𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32)𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2
− (𝑘𝑘2 + 𝑘𝑘4 + 𝛼𝛼2𝑒𝑒3 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12 + 𝜆𝜆4𝑒𝑒32
+ 3𝜆𝜆4𝑒𝑒52)𝑒𝑒3 − (𝛽𝛽2 + 𝛽𝛽4)𝑒𝑒4 + �𝑘𝑘4 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒5

2 + 3𝜆𝜆4𝑒𝑒3
2�𝑒𝑒5

+ 𝛽𝛽4𝑒𝑒6 −
𝐵𝐵2𝑙𝑙2
𝑅𝑅2

𝑒𝑒8� 

(10.33) 

The flowing variables can be considered as, 

𝑅𝑅1 = (𝑘𝑘2 − 𝛼𝛼2𝑒𝑒1 + 2𝛼𝛼2𝑒𝑒3 + 𝜆𝜆2𝑒𝑒12 + 3𝜆𝜆2𝑒𝑒32) (10.34) 

𝐽𝐽1 = (𝑘𝑘2 + 𝑘𝑘4 + 𝛼𝛼2𝑒𝑒3 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆2𝑒𝑒32 + 3𝜆𝜆2𝑒𝑒12 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52) (10.35) 

𝐸𝐸1 = (𝑘𝑘4 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒5
2 + 3𝜆𝜆4𝑒𝑒3

2) (10.36) 
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Equation 10.33 can be rewritten as 

𝑑𝑑𝑒𝑒4
𝑑𝑑𝑖𝑖

= �̈�𝑦3 =
1
𝑀𝑀3

�𝐷𝐷 + 𝑅𝑅1𝑒𝑒1 + 𝛽𝛽2𝑒𝑒2 − 𝐽𝐽1𝑒𝑒3 − (𝛽𝛽2 + 𝛽𝛽4)𝑒𝑒4 + 𝐸𝐸1𝑒𝑒5 + 𝛽𝛽4𝑒𝑒6 −
𝐵𝐵2𝑙𝑙2
𝑅𝑅2

𝑒𝑒8� 
(10.37) 

Equation 10.9 can be written as 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 =
1
𝑀𝑀4

�𝐷𝐷 + (𝑘𝑘4 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52)𝑒𝑒3 + 𝛽𝛽4𝑒𝑒4 − (𝑘𝑘5 + 𝑘𝑘4
+ 𝛼𝛼5𝑒𝑒5 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆5𝑒𝑒52 + 𝜆𝜆4𝑒𝑒52 + 3𝜆𝜆4𝑒𝑒32)𝑒𝑒5 − (𝛽𝛽5 + 𝛽𝛽4)𝑒𝑒6
−
𝐵𝐵3𝑙𝑙3
𝑅𝑅3

𝑒𝑒9� 

(10.38) 

Equation 10.38 can be shortened using the following parameters: 

𝑈𝑈1 = (𝑘𝑘4 − 𝛼𝛼4𝑒𝑒3 + 2𝛼𝛼4𝑒𝑒5 + 𝜆𝜆4𝑒𝑒32 + 3𝜆𝜆4𝑒𝑒52) (10.39) 

𝑉𝑉1 = (𝑘𝑘5 + 𝑘𝑘4 + 𝛼𝛼5𝑒𝑒5 + 𝛼𝛼4𝑒𝑒5 + 𝜆𝜆5𝑒𝑒52 + 𝜆𝜆4𝑒𝑒52 + 3𝜆𝜆4𝑒𝑒32) (10.40) 

Equation 10.38 can be stated as 

𝑑𝑑𝑒𝑒6
𝑑𝑑𝑖𝑖

= �̈�𝑦4 =
1
𝑀𝑀4

�𝐷𝐷 + 𝑈𝑈1𝑒𝑒3 + 𝛽𝛽4𝑒𝑒4 − 𝑉𝑉1𝑒𝑒5 − (𝛽𝛽5 + 𝛽𝛽4)𝑒𝑒6 −
𝐵𝐵3𝑙𝑙3
𝑅𝑅3

𝑒𝑒9� 
(10.41) 

Equations 10.10, 10.11 and 10.12 can be written as, 

𝑑𝑑𝑒𝑒7
𝑑𝑑𝑖𝑖

=
𝑅𝑅1𝐵𝐵1𝑙𝑙1
𝐿𝐿1

𝑒𝑒2 −
𝑅𝑅1
𝐿𝐿1
𝑒𝑒7 (10.42) 

𝑑𝑑𝑒𝑒8
𝑑𝑑𝑖𝑖

=
𝑅𝑅2𝐵𝐵2𝑙𝑙2
𝐿𝐿2

𝑒𝑒4 −
𝑅𝑅2
𝐿𝐿2
𝑒𝑒8 (10.43) 

𝑑𝑑𝑒𝑒9
𝑑𝑑𝑖𝑖

=
𝑅𝑅3𝐵𝐵3𝑙𝑙3
𝐿𝐿3

𝑒𝑒6 −
𝑅𝑅3
𝐿𝐿3
𝑒𝑒9 (10.44) 
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The state space model of the 3DOF system can be written as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐿𝐿𝑥𝑥1
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥2
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥3
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥4
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥5
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥6
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥7
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥8
𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥9
𝐿𝐿𝑡𝑡 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 1 0 0 0 0 0 0 0
−𝑃𝑃1
𝑀𝑀2

−(𝛽𝛽1+𝛽𝛽2)
𝑀𝑀2

𝑄𝑄1
𝑀𝑀2

𝛽𝛽2
𝑀𝑀2

0 0 − 𝐵𝐵1𝑡𝑡1
𝑀𝑀2𝑅𝑅1

0 0
0 0 0 1 0 0 0 0 0
𝑅𝑅1
𝑀𝑀3

𝛽𝛽2
𝑀𝑀3

−𝐽𝐽1
𝑀𝑀3

−(𝛽𝛽2+𝛽𝛽4)
𝑀𝑀3

𝐸𝐸1
𝑀𝑀3

𝛽𝛽4
𝑀𝑀3

0 − 𝐵𝐵2𝑡𝑡2
𝑀𝑀3𝑅𝑅2

0
0 0 0 0 0 1 0 0 0

0 0 𝑈𝑈1
𝑀𝑀4

𝛽𝛽4
𝑀𝑀4

−𝑉𝑉1
𝑀𝑀4

−(𝛽𝛽5+𝛽𝛽4)
𝑀𝑀4

0 0 −𝐵𝐵3𝑡𝑡3
𝑀𝑀4𝑅𝑅3

0 𝑅𝑅1𝐵𝐵1𝑡𝑡1
𝐿𝐿1

0 0 0 0 −𝑅𝑅1
𝐿𝐿1

0 0

0 0 0 𝑅𝑅2𝐵𝐵2𝑡𝑡2
𝐿𝐿2

0 0 0 −𝑅𝑅2
𝐿𝐿2

0

0 0 0 0 0 𝑅𝑅3𝐵𝐵3𝑡𝑡3
𝐿𝐿3

0 0 −𝑅𝑅3
𝐿𝐿3�����������������������������������������������

𝐴𝐴 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4
𝑒𝑒5
𝑒𝑒6
𝑒𝑒7
𝑒𝑒8
𝑒𝑒9⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0
1
𝑀𝑀2
0
1
𝑀𝑀3
0
1
𝑀𝑀4
0
0
0⏟
𝐵𝐵 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[𝐷𝐷]  

(10.45) 

𝑧𝑧 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1���������������������

𝐶𝐶 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
𝑒𝑒4
𝑒𝑒5
𝑒𝑒6
𝑒𝑒7
𝑒𝑒8
𝑒𝑒9⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ �0⏟
𝐷𝐷
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where A is the system matrix, B is the input matrix, and C is the output matrix. The remaining matrix 

is D which is typically zero because the input directly does not usually affect the output. If the coils 
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are connected in parallel to external load or resistance 𝑅𝑅𝑒𝑒1, 𝑅𝑅𝑒𝑒2 and 𝑅𝑅𝑒𝑒3. The parallel-connected 

winding coils have the internal resistances 𝑅𝑅1, 𝑅𝑅2 and 𝑅𝑅3 and inductances 𝐿𝐿1, 𝐿𝐿2 and 𝐿𝐿3. The state 

space model of the system can be written in matrix form by Equation 10.47. 

10.4 Dynamics of the 3DOF Energy Harvester 

The eigenvalues and the frequency response of the 3DOF generator system have been analysed using 

the state space model as presented in Equations 10.54 and 10.55. The coefficients of the generator 

system are measured from the magnetic restoring forces. Three winding coils have been used, and 

each winding coils consist 100 number of turns. The diameter of each copper coil was 31 mm. Coil 

1 (1st winding coil) was placed outside of the 1st floating magnet, coil 2 (2nd winding coil) was placed 

outside of the 2nd floating magnet, and coil 3 (3rd winding coil) was placed outside of the 3rd floating 

magnet. Each winding coil's inside diameter and height were 75 mm and 10 mm, respectively. The 

total length of each winding coil was 23.5 m, and the inner resistance of each coil was 5.48 ohm. The 

average magnetic flux density was considered 0.35 T. Because of the electromechanical coupling, the 

3DOF generator system consists of electrical and mechanical parts. Three winding coils have been 

added outside the three floating magnets, and therefore, the system has three resonance frequencies 

in the electrical part. Because of the three floating magnets, the system has three mechanical 

resonance frequencies. The changing position of the floating magnets changed the resonance 

frequencies of the generator system. The electrical part's resonance frequencies depend on the 

winding coil's total length and the magnets' magnetic flux density. With increasing the magnetic flux 

density, the resonance frequencies of the electrical part reduced, but the resonance frequencies of the 

mechanical part were approximately the same. The resonance frequency of the electrical component 

is reduced by increasing the total length of the winding coil. Table 10.1 shows all required parameters 

used to analyse the dynamics of the 3DOF generator system.  

However, the resonance frequency of the mechanical part did not change with changing the length of 

the winding coils. The natural frequencies of the electrical parts were 953.36 rad/s, 948.57 rad/s and 

949.4 rad/s when all three floating magnets were in equilibrium positions. The natural frequencies 

for the mechanical parts were 69.24 rad/s, 47.77 rad/s and 34.58 rad/s. The natural frequencies were 

67.97 rad/s, 46.85 rad/s and 33.89, respectively, of the 3DOF system without electrical-mechanical 

coupling in equilibrium position as discussed in Chapter 6. The natural frequencies of the mechanical 

part were nearly similar with or without electrical-mechanical coupling. 
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Table 10.1: Required parameters 

Parameters Values Units 
M2 370 gm 
M3 327.28 gm 
M4 332.745 gm 
𝛽𝛽1 2.11 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽21 1.08 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽2 0.8 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝛽𝛽3 0.51 𝑁𝑁𝑠𝑠 𝑚𝑚⁄  
𝑘𝑘1 826 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘21 566.78 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘2 263.69 𝑁𝑁 𝑚𝑚⁄  
𝑘𝑘3 298.62 𝑁𝑁 𝑚𝑚⁄  
𝛼𝛼1 7374.3 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼21 7270.8 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼2 1943.4 𝑁𝑁 𝑚𝑚2⁄  
𝛼𝛼3 3487.5 𝑁𝑁 𝑚𝑚2⁄  
𝜆𝜆1 741312 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆21 353407 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆2 317056. 5 𝑁𝑁 𝑚𝑚3⁄  
𝜆𝜆3 107199 𝑁𝑁 𝑚𝑚3⁄  

B1, B2 and B3 0.35 T 
R1, R2 and R3 5.48 ohm 

l1, l2 and l3 23.5 m 
L1, L2 and L3 0.005546 H 

The eigenvalues of the mechanical parts were -25.16 ± 64.51i, -21.32 ± 42.76i and -20.35 ± 27.96i. 

The eigenvalues of the electrical parts were -953.35 + 0.0i, -948.58 + 0.0i and -949.40 + 0.0i. The 

frequency response of the 3DOF generator system in equilibrium position has displayed in Figure 

10.9. The dynamics of the 3DOF generator system were analysed by changing the position of all 

floating magnets. Due to the electromechanical coupling, the frequency response graph did not show 

the peak amplitude.  
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  Figure 10.9: Frequency response of the 3DOF generator system in equilibrium position 

Table 10.2: Eigenvalues and natural frequencies of the system (electrical part) for different 

positions of the floating magnets 

Position 
of the FM 

Electrical part 
Eigenvalues Frequency (rad/s) 

-20 -953.41 + 0.0i -948.79 + 0.0i -949.46 + 0.0i 953.41 948.79 949.45 
-15 -953.38 + 0.0i -948.70 + 0.0i -949.43 + 0.0i 953.37 948.70 949.43 
-10 -9533.6 + 0.0i -948.63 + 0.0i -949.41 + 0.0i 953.35 948.62 949.41 
-05 -953.35 + 0.0i -948.59 + 0.0i -949.40 + 0.0i 953.34 948.58 949.40 
0 -953.35 + 0.0i -948.58 + 0.0i -949.40 + 0.0i 953.34 948.57 949.40 

05 -953.36 + 0.0i -948.60 + 0.0i -949.41 + 0.0i 953.35 948.59 949.41 
10 -953.38 + 0.0i -948.65 + 0.0i -949.43 + 0.0i 953.37 948.65 949.42 
15 -953.41 + 0.0i -948.74 + 0.0i -949.45 + 0.0i 953.40 948.73 949.45 
20 -953.45 + 0.0i -948.85 + 0.0i -949.49 + 0.0i 953.45 948.84 949.48 

However, the peak resonance was indicated at 43.7 rad/s. Table 10.2 displays the measured 

eigenvalues and natural frequencies of the electrical part for different positions of floating magnets. 

Moreover, the estimated eigenvalues and natural frequencies of the mechanical part for different 

positions of floating magnets have been presented in Table 10.3. 
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Table 10.3: Eigenvalues and natural frequencies of the system (Mechanical part) for different 

positions of the floating magnets 

Position 
of the FM 

Mechanical part 

Eigenvalues Frequency (rad/s) 
-20 -25.29+101.43i -21.20+57.93i -20.17+32.32i 104.53 61.68 38.09 
-15 -25.32+86.23i -21.20 +51.19i -20.22+29.95i 89.87 55.40 36.13 
-10 -25.30+73.95i -21.22+46.05i -20.28+28.26i 78.15 50.70 34.78 
-05 -25.21+66.21i -21.28+43.06i -20.33+27.50i 70.84 48.02 34.20 
0 -25.16+64.51i -21.32+42.76i -20.35+27.96i 69.24 47.77 34.58 
05 -25.20 + 69.19i -21.28+45.33i -20.32+29.67i 73.63 50.07 35.96 
10 -25.27 + 79.21i -21.23+50.25i -20.27+32.33i 83.14 54.54 38.15 
15 -25.28 + 92.95i -21.20+56.84i -20.22+35.59i 96.32 60.66 40.92 
20 -25.25+109.02i -21.18+64.60i -20.17+39.24i 111.90 67.98 44.11 

*Note: FM= Floating magnet 

From Table 10.2, it can be seen that there was no significant change in the eigenvalues as well as 

natural frequencies of the electrical par when floating magnets changed their positions. However, the 

eigenvalues and natural frequencies of the mechanical part changed with changing the position of the 

floating magnet, as seen in Table 10.3. The 3DOF generator system displayed higher mechanical 

frequency responses when all floating magnets moved toward the bottom magnet. Figure 10.10 shows 

the frequency responses of the 3DOF generator system for different positions of the floating magnets.  

 

Figure 10.10: Frequency response of the 3DOF generator system for different positions of the 

floating magnets 
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From Figure 10.10, the peak resonance changed with changing the position of the floating magnets. 

Different positions of the floating magnet showed different eigenvalues and frequency responses. 

However, Figure 10.10 did not show the peak amplitude for all different positions of the floating 

magnet. The frequency resonance has been analysed by connecting external load or resistance parallel 

to the winding coils of the 3DOF system. Different external loads have been connected to analyse the 

frequency resonance of the generator system.  

 

Figure 10.11: Frequency response of the 3DOF generator system with external load in equilibrium 

position 

Figure 10.11 displays three resonances due to the three floating magnets, and the values were 69.6 

rad/s, 47.9 rad/s and 33.8 rad/s in the equilibrium position, which was almost similar to the natural 

frequencies: 69.24 rad/s, 47.77 rad/s and 34.58 rad/s without external load (determined using 

eigenvalues). When external loads connected to the winding coils, the system showed three 

resonances, as shown in Figure 10.11, but the system without external load did not show peak 

amplitude, as shown in Figure 10.10. Figure 10.12 shows the resonance frequency of the generator 

system with external load for different positions of the floating magnets. For all different positions of 

the floating magnets, Figure 10.12 showed three resonances. The resonance frequencies changed with 

changing the position of the floating magnets. Compared to the 3DOF generator system with or 

without external load, the 3DOF generator system with external load showed better dynamics results. 
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Figure 10.12: Frequency response of the 3DOF generator system with external load for different 

positions of the floating magnets 

The 3DOF generator system has been analysed by applying external harmonic force. The system has 

been analysed by applying force on a single floating magnet, double floating magnets and all three 

floating magnets. When the force was applied to any floating magnets, all floating magnets relatively 

started moving. If the 3rd floating magnet moved toward the top fixed magnet, the 2nd floating magnet 

relatively moved toward the 3rd floating magnet and the 1st floating magnet relatively toward the 2nd 

floating magnet. Similarly, when the 3rd floating magnet moved toward the 2nd floating magnet, the 

2nd floating magnet moved toward the 1st floating magnet, and the 1st floating magnet moved toward 

the bottom fixed magnet. The displacements, velocities and induced voltages of the 3DOF generator 

system have been analysed by applied external harmonic force in this section. Because of the 

movement of the floating magnets, the magnetic flux densities of the floating magnet cut the winding 

coils, which created induced voltage inside the winding coils.  

At first, the 3DOF generator system was analysed by applying harmonic force on all three floating 

magnets. The applied external harmonic force (Fb) amplitude was 25N, and the frequency (f) was 0.1 

Hz. The values of coefficients of the system and damping constants have been presented in Table 

10.1. The state space model Equations 10.41, 10.47, 10.50, 10.51, 10.52 and 10.53 have been solved 

using the Ode23t solver in MATLAB to find the displacements, velocities and induced voltages of 

the 3DOF generator system. All floating magnets' excitation was assumed to have the initial 



 

362 

 

displacements, and their corresponding velocities were zero. As expected, the displacements and the 

velocities were sinusoidal and 90° out of phase.  

 

Figure 10.13: Displacement and velocity of the 1st floating magnet 

 

Figure 10.14: Displacement and velocity of the 2nd floating magnet 

Figures 10.13, 10.14 and 10.15 present the displacement and velocity of the 1st, 2nd and 3rd floating 

magnets, respectively. Because of the applied harmonic force on all three floating magnets, the 

maximum displacements of the 1st floating magnet toward the 2nd floating magnet was around 29 

mm, and towards the bottom magnet was about 24 mm, as seen in Figure 10.13.  
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Figure 10.15: Displacement and velocity of the 3rd floating magnet 

The measured maximum velocity of 1st floating magnet during that excitation was around 0.026 m/s. 

On the other hand, the maximum displacement of the 2nd floating magnet toward the 3rd floating 

magnet was around 52 mm and about 43 mm toward the 1st floating magnet. The maximum velocity 

of the 2nd floating magnet was around 0.047 m/s, as seen in Figure 10.14. Moreover, the maximum 

displacement of the 3rd floating magnet toward the top foxed magnet (5th magnet) was around 55 mm 

and about 41 mm toward the 2nd floating magnet. The maximum velocity of the 3rd floating magnet 

was approximately 0.053 m/s, as seen in Figure 10.15.  

 

Figure 10.16: Comparison of displacement and velocity of (a) 1st floating magnet and (b) 2nd 

floating magnet (c) 3rd floating magnet 
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Therefore, it can be seen that when the same harmonic forces were applied to all three floating 

magnets, then the 3rd floating magnet achieved a higher velocity than the other floating magnets. For 

the same applied harmonic forces on all three floating magnets, the 3rd floating magnet reached the 

maximum displacement than the 2nd and 1st floating magnet, as shown in Figure 10.16. By changing 

the amplitude and frequency of the applied harmonic force, the displacements and velocities of all 

floating magnets can be changed, as discussed in Chapter 6. It was considered during the analysis that 

1st winding coil was placed outside of the 1st floating magnet and 2nd winding coil was outside of the 

2nd floating magnet, and 3rd winding coil was outside of the 3rd floating magnet. Due to the movement 

of the magnet, the induced voltage is usually generated in the winding coil. Figure 10.17 displays the 

generated induced voltage in coils 1, 2 and 3.  

 

Figure 10.17: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 

The velocity of the 3rd floating magnet was higher than the 2nd and 1st floating magnet; therefore, the 

3rd winding coil showed higher induced voltage than the 2nd and 1st winding coils. The maximum 

measured induced voltages in coil 3 was around 0.44 volts. The maximum measured induced voltage 

in coil 2 was 0.39 volts higher than in coil 1 induced voltage (0.21 volts). The generator system has 
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been analysed by applying harmonic force only on 3rd floating magnet. For this applied harmonic 

force, the displacements and velocities of all three floating magnets have been determined. Moreover, 

the induced voltages for all three coils have also been measured. As the harmonic force was applied 

on the 3rd floating magnet, therefore, when the 3rd floating magnet started moving, the 2nd and 1st 

floating magnet also started moving. For this applied harmonic force (25N amplitude), the 3rd floating 

magnet achieved a higher displacement and velocity than the 2nd and 1st floating magnets. Figures 

10.18, 10.19 and 10.20 present the displacement and velocity of the 1st, 2nd and 3rd floating magnets, 

respectively.  

 

Figure 10.18: Displacement and velocity of the 1st floating magnet 

 

Figure 10.19: Displacement and velocity of the 2nd floating magnet 
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Figure 10.20: Displacement and velocity of the 3rd floating magnet 

The 1st floating magnet moved up to 4.5 mm toward the 2nd floating magnet and around 3 mm toward 

the 1st fixed magnet (bottom magnet). The measured maximum velocity was about 0.0026m/s during 

this displacement. On the other hand, the 2nd floating magnet moved up to 16 mm toward the 3rd 

floating magnet and around 12 mm toward the 1st floating magnet. The maximum velocity for the 2nd 

floating magnet was around 0.01 m/s during this excitation. Moreover, the 3rd floating magnet moved 

up to 42 mm toward the top fixed magnet and about 31 mm toward the 2nd floating magnet. The 

maximum velocity for the 3rd floating magnet was around 0.034 m/s during this movement.  

 

Figure 10.21: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 

magnet and (c) 3rd floating magnet 
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Figure 10.21 compares the displacement and velocity of the 3rd floating magnet with the 2nd and 1st 

floating magnets. The induced voltages of all three winding coils are presented in Figure 10.22. The 

displacement and velocity of the 3rd floating magnets were way higher than the 2nd and 1st floating 

magnets, as seen in Figure 10.21. Therefore, the induced voltage of coil 3 was higher than coil 2 and 

coil 1. The maximum induced voltage in coil 1 was around 0.022 volts and in coil 2 was about 0.09 

volts. The maximum induced voltage in coil 3 was around 0.29 volts higher than the coil 1 and 2. 

 

Figure 10.22: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 

 

Figure 10.23: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 
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Moreover, the 3DOF generator system has been analysed by applying the same harmonic force (25N 

amplitude) only on the 2nd floating magnet. As the harmonic force was applied on the 2nd floating 

magnet, therefore, when the 2nd floating magnet started moving, the 3rd and 1st floating magnets also 

started moving. The relative displacements of all three floating magnets have been determined. For 

this applied harmonic force (25N amplitude), the 2nd floating magnet achieved a higher displacement 

and velocity than the 1st and 3rd floating magnets, as seen in Figure 10.23. The velocity of the 2nd 

floating magnet was 0.02 m/s which was higher than the velocity of the 3rd (0.01 m/s) and 1st (0.005 

m/s) floating magnets. Therefore, the generated induced voltage in coil 2 was higher than in coils 3 

and 1, as presented in Figure 10.24.  

 

Figure 10.24: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 
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and 7.37 mm toward the 2nd floating magnet, as shown in Figure 10.25. The velocity of the 1st floating 

magnet was 0.018 m/s which was higher than the velocity of the 2nd (0.016 m/s) and 3rd (0.0077 m/s) 

floating magnets. Figure 10.26 presents the measured induced voltages in three winding coils.  

 

Figure 10.25: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 

magnet and (c) 3rd floating magnet 

 

Figure 10.26: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 
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The maximum induced voltage was recorded in Coil 1 (0.15 volts), which was higher than the 

generated voltages in the winding coil 2 (0.13 volts) and coil 3 (0.063 volts). It can be seen that when 

the force was applied to 1st floating magnet, then the generated voltages in coil 1 and coil 2 were 

almost similar. The 3DOF system has been analysed by using external forces in any two floating 

magnets from three floating magnets. At first, the external forces (25N amplitude and 0.1 Hz 

frequency) were applied on the 1st and 2nd floating magnets, and the 3DOF generator system was 

analysed. Because of the applied forces, the system's displacements, velocities, and induced voltages 

have been determined. The maximum displacements of the 1st floating magnet were around 27 mm 

toward the 2nd floating magnet and about 22.5 mm toward the bottom fixed magnet, as seen in Figure 

10.27. Moreover, the 2nd floating magnet's maximum displacement was about 45.5 mm toward the 

3rd floating magnet and around 38 mm toward the 1st floating magnet. On the other hand, the 

maximum displacements of the 3rd floating magnet were about 27 mm toward the top fixed magnet 

and around 18 mm toward the 2nd floating magnet.  

 

Figure 10.27: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 

magnet and (c) 3rd floating magnet 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Displacement (m)

-0.02

-0.01

0

0.01

0.02

V
el

oc
ity

 (m
/s

)

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Displacement (m)

-0.04

-0.02

0

0.02

0.04

V
el

oc
ity

 (m
/s

)

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Displacement (m)

-0.02

-0.01

0

0.01

0.02

V
el

oc
ity

 (m
/s

)

(a)

(b)

(c)



 

371 

 

 

Figure 10.28: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 

When external forces were applied on the 1st and 2nd floating magnets, the 2nd floating magnet 

achieved more maximum displacements than the 1st and 3rd floating magnet. The displacement of the 
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external forces, later on, were applied on the 1st and 3rd floating magnets to analyse the system. The 
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Figure 10.29 displays the displacements and velocities of all floating magnets. From Figure 10.29, it 

can be seen that the maximum displacements of the 1st floating magnet were around 24 mm toward 

the 2nd floating magnet and about 20 mm toward the bottom fixed magnet, as seen in Figure 10.29. 

Moreover, the 3rd floating magnet's maximum displacement was about 49.5 mm toward the top fixed 

magnet and around 37 mm toward the 2nd floating magnet. On the other hand, the maximum 

displacements of the 2nd floating magnet were about 32 mm toward the 3rd floating magnet and around 

25 mm toward the 1st floating magnet.  
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Figure 10.29: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 

magnet and (c) 3rd floating magnet 

 

Figure 10.30: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 
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Because of the applied external forces on the 1st and 3rd floating magnets, the 3rd floating magnet 

achieved more maximum displacements than the 1st and 2nd floating magnets. Although the forces 

were applied on the 1st and 3rd floating magnets, the displacement of the 2nd floating magnet was still 

higher than the 1st floating magnet. The velocity of the 2nd floating magnet (0.026 m/s) was higher 

than the velocity of the 1st floating magnet (0.021 m/s). The maximum velocity of the 3rd floating 

magnet was 0.043 m/s which was higher than the velocity of the 1st floating magnet (0.021 m/s) and 

2nd floating magnet (0.026 m/s). The winding coil 3 generated the maximum induced voltage (0.35 

volts) compared to coil 1(around 0.17 volts) and coil 2 (0.22 volts), as seen in Figure 10.30. Finally, 

the external forces were applied on the 2nd and 3rd floating magnets to analyse the 3DOF generator 

system. Figure 10.31 shows the displacements and velocities of three floating magnets. The maximum 

displacements of the 2nd floating magnet were around 38 mm toward the 3rd floating magnet and about 

30 mm toward the 1st floating magnet, as seen in Figure 10.31.  

 

Figure 10.31: Comparison of displacement and velocity of (a) 1st floating magnet, (b) 2nd floating 

magnet and (c) 3rd floating magnet 

-0.015 -0.01 -0.005 0 0.005 0.01

Displacement (m)

-0.01

-0.005

0

0.005

0.01

V
el

oc
ity

 (m
/s)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Displacement (m)

-0.04

-0.02

0

0.02

0.04

V
el

oc
ity

 (m
/s)

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Displacement (m)

-0.05

0

0.05

V
el

oc
ity

 (m
/s)

(a)

(b)

(c)



 

374 

 

 

Figure 10.32: Measured induced voltages (a) 1st winding coil, (b) 2nd winding coil and (c) 3rd 

winding coil 

Moreover, the 3rd floating magnet's maximum displacement was about 52 mm toward the top fixed 

magnet and around 38 mm toward the 2nd floating magnet. On the other hand, the maximum 

displacements of the 1st floating magnet were about 13 mm toward the 2nd floating magnet and around 

10 mm toward the bottom fixed magnet. The velocity of the 3rd floating magnet (0.045 m/s) was 

higher than the velocity of the 2nd floating magnet (0.032 m/s) and 1st floating magnet (0.008 m/s). 

Therefore, the 3rd winding coil generated the maximum induced voltage (0.37 volts) compared to coil 

1(around 0.066 volts) and coil 2 (0.26 volts), as presented in Figure 10.32. Figures 10.33, 10.34 and 

10.35 present the displacements and velocities of the 1st, 2nd and 3rd floating magnets for different 

arrangements of the externally applied forces. Overall, it can be said that by changing the arrangement 

of the applied forces, the efficiency of the 3DOF system can be changed. By changing the layout of 

the applied forces, the system has been analysed and compared with each other.  
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(a) 

 

(b) 

Figure 10.33: (a) Displacement and (b) velocity of the 1st floating magnet under different 

arrangements of the applied force (Note: FA= Force Applied and FM=Floating magnet) 
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Figure 10.33. The minimum displacement and velocity of the 1st floating magnet were found when 

the external force was applied to 3rd floating magnet.  
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(b) 

Figure 10.34: (a) Displacement and (b) velocity of the 2nd floating magnet under different 

arrangements of the applied force (Note: FA= Force Applied and FM=Floating magnet) 
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Therefore, the maximum induced voltage was generated in the 1st winding coil when forces were 

applied to all floating magnets. The minimum induced voltage was measured in the 1st winding coil 

when the force was applied on the 3rd floating magnet, as presented in Figure 10.36(a). On the other 

hand, the maximum displacement and velocity of the 2nd floating magnet were reached when applied 

to all floating magnets.  

 
(a) 

 
(b) 

Figure 10.35: (a) Displacement and (b) velocity of the 3rd floating magnet under different 

arrangements of the applied force (Note: FA= Force Applied and FM=Floating magnet) 
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The minimum displacement and velocity of the 2nd floating magnet were measured when it was 

applied only on the 3rd floating magnet, as displayed in Figure 10.34. Therefore, the maximum 

induced voltage was measured in the 2nd winding coil when forces were applied to three floating 

magnets. The minimum induced voltage was measured in coil 2 when force was applied only on the 

3rd floating magnet, as shown in Figure 10.36(b). Moreover, the maximum and minimum 

displacements and velocities of the 3rd floating magnet were found when the forces were applied to 

three floating magnets and only the 1st floating magnet, respectively. 
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(c) 

Figure 10.36: Generated induced voltage in winding coils (a) Coil 1, (b) Coil 2, and (c) Coil 3 

(Note: FA= Force Applied and FM=Floating magnet) 

The maximum induced voltage was measured in coil 3 when harmonic forces were applied to all three 

floating magnets. The minimum voltage was found when the force was applied to the 1st floating 

magnet, as presented in Figure 10.36(c). From the above analysis, it can be said that the 3DOF 

generator system was generated maximum induced voltage when the external forces were applied to 

all three floating magnets. Moreover, it can be seen that coil 3 generated a maximum induced voltage 

compared to coil 2 and coil 1. Coil 1 and coil 2 generated the lowest powers when force was only 

applied to 3rd floating magnet. On the other hand, coil 3 generated the minimum voltage when the 

force was only applied to 1st floating magnet. By increasing the amplitude and frequency of the 

applied harmonic force, the output power of the 3DOF generator system can be increased. The 3DOF 

generator system has been compared with the single-degree-of-freedom (SDOF) and 2DOF generator 

systems. The amplitude and frequency of the applied harmonic force were 25N and 0.1 Hz. A winding 

coil (100 number of turns) has been considered for the SDOF generator system, 2 winding coils (both 

100 number of turns) have been considered for the 2DOF generator system, and 3 winding coils (all 

100 number of turns) have been considered for 3DOF generator system. Moreover, the same magnetic 

flux density and copper coil have been considered to compare both generator systems. The forces 

were applied to the floating magnet for SOD, both floating magnets for the 2DOF system and all three 

floating magnets for the 3DOF system. Figure 10.37 presents the comparison results of all generator 

systems.  
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Figure 10.37: Comparison of generated induced voltages of SDOF, 2DOF and 3DOF generator 

systems 

When the forces were applied to both floating magnets in the 2DOF system, the generated induced 
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in coil 2 in the 2DOF generator system. Moreover, the generated voltage in coil 2 in the 3DOF system 

was higher than the generated induced voltage in the SDOF generator and coil 1 in the 2DOF system. 

Therefore, overall, the 3DOF generator system is more efficient than the 2DOF and SDOF generator 

systems.  
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generated in the winding coil 1 and 2 due to the movement of the 1st and 2nd floating magnets, 

respectively. Similarly, the induced voltage was generated inside winding coil 3 due to the excitation 

of the 3rd floating magnet. At first, the experimental work was performed by connecting the servo 

motor using the fishing line with the 1st floating magnet (the fishing line went through the plastic 

bush of the 2nd and 3rd floating magnet). Figure 10.38 presents the displacements and velocities of the 

1st, 2nd and 3rd floating magnets. The estimated amplitude of the applied harmonic force was 5N, and 

the frequency of the applied harmonic force was 3.35Hz.  

 

Figure 10.38: (a) Displacements and (b) Velocities of the floating magnets (Red, blue and green 

colour lines represent the displacement and velocity of the 1st, 2nd and 3rd floating magnet, 

respectively) 

From Figure 10.38, it can be seen that although the fishing line was connected with the 1st floating 

magnet, the 3rd floating magnet achieved the maximum displacement and velocity than the 1st and 2nd 

floating magnets. Due to the applied harmonic force, the 1st floating magnet moved toward the 2nd 

floating magnet on average 6 mm but moved toward the bottom by 1 mm. On the other hand, the 2nd 

floating magnet moved toward the 3rd floating magnet by an average of 4 mm and toward the 1st by 

4 mm. However, the 3rd floating magnet moved toward the top and 2nd floating magnet with an 

average of 10 mm excitation ranges. The 3rd floating magnet achieved the maximum velocity; 
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therefore, the winding coil generated the maximum induced voltage. Figure 10.39 displays the 

measured induced voltages of winding coils 1, 2 and 3. 

 

Figure 10.39: Induced voltage (Red, blue and green colour lines represent the induced voltages of 

the winding coils 1, 2 and 3, respectively) 

 

Figure 10.40: (a) Displacements and (b) Velocities of the floating magnets (Red, blue and green 

colour lines represent the displacement and velocity of the 1st, 2nd and 3rd floating magnet, 

respectively) 
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From Figure 10.39, it can be seen that winding coil 3 generated the maximum induced voltage than 

winding coil 1 and winding coil 2. However, winding coil 2 generated the maximum induced voltage 

than winding coil 1. Secondly, the experimental work was performed by connecting the 2nd floating 

magnet with the servo motor's pulley using the fishing line (the fishing line went through the plastic 

bush of the 3rd floating magnet and the 1st floating magnet was free). The estimated amplitude of the 

applied harmonic force was 6.5N, and the frequency of the applied harmonic force was 3.13Hz. 

Figure 10.40 displays the displacements and velocities of the 1st, 2nd and 3rd floating magnets. From 

Figure 10.40, it can be said that the 3rd floating magnet achieved the maximum displacement and 

velocity than the 1st and 2nd floating magnets. Because of the applied harmonic force, the maximum 

displacement of the 3rd floating was about 12.5 mm toward the top and 2nd floating magnets. The 2nd 

floating magnet achieved the maximum displacement of about 7 mm toward the 3rd and 1st floating 

magnets. Moreover, the 1st floating magnet achieved the maximum displacement of 4 mm toward the 

2nd and bottom floating magnets. As the fishing line was connected with the 2nd floating magnet, the 

2nd floating magnet achieved a higher velocity than the 1st floating magnet.  

 

Figure 10.41: Induced voltage (Red, blue and green colour lines represent the induced voltages of 

the winding coils 1, 2 and 3, respectively) 
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Figure 10.42: (a) Displacements and (b) Velocities of the floating magnets (Red, blue and green 

colour lines represent the displacement and velocity of the 1st, 2nd and 3rd floating magnet, 

respectively) 

 

Figure 10.43: Induced voltage (Red, blue and green colour lines represent the induced voltages of 

the winding coils 1, 2 and 3, respectively) 
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Figure 10.41 shows the measured induced voltages of three winding coils. The measured induced 

voltages in winding coils 1 and 2 were similar. The measured induced voltage in winding coil 1 was 

lower than in winding coils 2 and 3. Furthermore, the experimental work was performed by 

connecting the 3rd floating magnet with the servo motor using the fishing line (1st and 2nd floating 

magnets were free). The estimated amplitude of the applied harmonic force was 7N, and the frequency 

of the applied harmonic force was 3.98 Hz. Figure 10.42 displays the displacements and velocities of 

the 1st, 2nd and 3rd floating magnets. Figure 10.43 presents the measured induced voltages. It can be 

seen from Figure 10.42 that the 3rd floating magnet achieved the maximum displacement and velocity 

than the 1st and 2nd floating magnets. The winding coil 3 generated higher induced voltage than the 

winding coil 1 and 2, as shown in Figure 10.43. From the above experimental analysis, it can be said 

that either the fishing line connected with the 1st or 2nd or 3rd floating magnet, the 3rd floating magnet 

achieved the higher displacement and velocity as well as higher induced voltage.  

 

Figure 10.44: 1st floating magnet 
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and Figure 10.45 shows the displacement and velocity of the 2nd floating magnet. Moreover, Figure 

10.46 presents the displacement and velocity of the 3rd floating magnet. In Figure 10.44, Figure 10.45 

and Figure 10.46, the blue and green lines represent the analytical and experimental measurements, 

respectively. 

 

Figure 10.45: 2nd floating magnet 

 

Figure 10.46: 3rd floating magnet 
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Figure 10.47: 1st winding coil 

 

Figure 10.48: 2nd winding coil 
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displayed in Figure 10.46. Figures 10.47, 10.48 and 10.49 present the generated induced voltages in 

winding coils 1, 2 and 3, respectively. 

 

Figure 10.49: 3rd winding coil 

The measured induced voltages in winding coils 1, 2, and 3 for experimental measurement were 

similar to the analytical measurement, as presented in Figures 10.47, 10.48 and 10.49. The winding 

coil 3 generated a higher induced voltage than the winding coils 2 and 1. 

10.6 Conclusion 

This chapter aimed to examine the 3DOF magnetic spring-based energy generator. The magnetic 

properties of the proposed energy harvester have been measured numerically. In this study, the 

eigenvalues and frequency responses caused by the movement of three floating magnets were 

calculated analytically. Different positions of the floating magnets showed various eigenvalues and 

natural frequencies. The influence of electromechanical coupling was studied on the 3DOF oscillator 

system. MATLAB's ode23t solver was used to solve the state space model of the 3DOF energy 

harvester. Experimental and analytical methods were used to investigate the dynamics of the proposed 

3DOF energy harvester. Comparing the 3DOF energy harvester model with the SDOF and 2DOF 

models showed that the 3DOF model has a more remarkable ability to harness ocean energy due to 

three resonances. 
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Chapter 11  
Discussions, Conclusions and Recommendations of Future Work 

This chapter aims to discuss the findings of the proposed nonlinear oscillator-based energy generator 

and the application of the proposed system in the ocean environment to harness ocean wave energy. 

This chapter discusses the essential findings and parameters of all degrees of freedom nonlinear 

oscillator systems with and without electromechanical coupling. Then the key results of the proposed 

system are compared with the existing energy generator's findings in the literature. After that, a brief 

discussion is presented on how the current study can be applied to the ocean environment. Moreover, 

this chapter summarises the key findings of the magnetic spring-based nonlinear oscillator system 

with and without electrical-mechanical coupling for different degrees of freedom and their potential 

applications in the ocean environment. The key features of the design of SDOF, 2DOF and 3DOF 

magnetic spring-based nonlinear oscillator systems with and without electrical and mechanical 

coupling are discussed. Notably, the key findings of the previous chapters are briefly discussed in this 

chapter.  Following this, the methods used in research and computational work and how they can be 

applied in similar systems are discussed. Finally, a summary is presented for future research work 

exploring how the design and performance improvements can be made to magnetic spring energy 

generators with short-term research projects. 

11.1 Discussion 

In this thesis study, a novel nonlinear oscillator system-based energy generator is designed and 

analysed using magnetic restoring forces to levitate an oscillating centre magnet. The mass of each 

magnet (ring type permanent magnet) is 315g, and the height, outer and inner diameters are 13mm, 

72mm and 32.5 mm, respectively. All magnets are axially magnetised thru the 13 mm, and the 

permanent magnet compositions are NdFeB grade N42. The mass and size of the used magnet are 

comparably higher than the mass and size of the used magnet to build the magnetic spring-based 

(magnetic levitation) oscillator in literature, as presented in Table 11.1. To measure the magnetic flux 

density of ring types permanent magnets, the equation used in the literature is applied to measure the 

axial magnet flux density but not for radial magnetic flux density. As the winding coils are placed 

outside the floating magnet's surface, measuring radial magnetic flux density is essential. Thus, the 

axial magnetic flux density was measured using the analytical method, whereas the radial magnetic 

flux density was measured using the experimental method. The findings (analytical) were validated 
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with the numerical simulation to justify the analytical analysis of axial magnetic flux density. The 

measurements (experimental) were validated with the numerical results to justify the experimental 

measurement of radial magnetic flux density.  

Table 11.1: Comparison of the parameters of the magnetic spring-based oscillator system from the 

literature 

Ref. Magnet 
type 

NIM MFM 
(g) 

Size (mm) Magnet 
grade T B M 

(Mann & Sims, 
2009) 

C 1 19.5 ND ND ND ND 

(Liu et al., 
2014) 

C 1 1.23 3×2 3×2 6×6 N35 

(Yang et al., 
2011) 

R 1 29 12×5×1 12×5×1 12×5×10 ND 

(Aldawood et 
al., 2019) 

C 1 18.1 12.7×4.76 12.7×4.76 12.7×19.1 N42 

(Bernal & 
García, 2012) 

C 1 ND ND ND 13×5 ND 

(Foisal et al., 
2012) 

C 1 3.35 2×2 2×2 6×16 N35 

(Soares dos 
Santos et al., 

2016) 

C 1 1.24 3×1 3×1 3×6 ND 

(Saha et al., 
2008) 

C 2 27 10×1 10×1 15×8 ND 

(Dallago et al., 
2010) 

C 2 20.9 10×1 10×1 15×8 ND 

(Munaz et al., 
2013) 

C 3 11.5 10×5 10×10 10×30 ND 

(Masoumi & 
Wang, 2016) 

R 3 1539 50.8×6.4×12.7 
 

50.8×6.4×12.7 50.8×6.4×25.4 N42 

(W. Wang et 
al., 2017) 

C 3/6 9.4 20×4 20×4 20×4 N35 

This study R 1 315 72×32.5×13 72×32.5×13 72×32.5×13 N42 

Note: NIM= number of inertial magnets, MFM=Mass of the floating magnet, T=Top magnet, B= 

Bottom magnet, M=Middle magnet, C=Cylindrical, R= Ring, ND=Not defined  

It was found that the numerical methods showed very similar findings to analytical and experimental 

methods. The magnetic properties of the proposed magnetic spring-based oscillator system were 

studied using numerical methods. In literature, it was seen that the magnetic restoring forces were 

measured either using the only numerical or analytical or experimental methods or any two of them, 
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as shown in Table 11.2. However, the novelty of this present work is that the magnetic restoring force 

of the proposed magnetic spring-based oscillator system was measured using analytical, numerical 

and experimental methods and validated the measurements by comparing each other. 

Table 11.2: Comparison of the parameters of the magnetic spring-based oscillator system from the 

literature 

Ref. 𝑟𝑟𝑡𝑡 𝑟𝑟𝑏𝑏 GFE Magnetic field Magnetic restoring 
force 

(Mann & Sims, 2009) 37.3 37.3 No ND E/A 
(Liu et al., 2014) 18-28 18-28 No A A 

(Yang et al., 2011) 8 8 No FEM SA 
(Aldawood et al., 

2019) 
36.1 36.1 No A SA/FEM 

(Bernal & García, 
2012) 

ND ND No A A/FEM 

(Foisal et al., 2012) 14 14 No A A 
(Soares dos Santos et 

al., 2016) 
25 25 No SA SA 

(Saha et al., 2008) 17 17 Yes FEM FEM/A 
(Dallago et al., 2010) 19 19 Yes FEM FEM/A 
(Munaz et al., 2013) 17.5 17.5 No SA/FEM ND 
(Masoumi & Wang, 

2016) 
50.8 50.8 No FEM E/A 

(W. Wang et al., 2017) 56 56 No FEM E/A 
This study 104 79 Yes FEM/E E/A/FEM 

Note: 𝑟𝑟𝑡𝑡= Distance between top to the middle magnet, 𝑟𝑟𝑏𝑏= Distance between middle to the bottom 

magnet, GFE=Gravitational force effect on the equilibrium position, SA=Semi-analytical, ND=Not 

defined, A= Analytical, FEM= Finite Element Method, E= Experimental 

The magnetic restoring force of the proposed single-degree-of-freedom (SDOF) oscillator system is 

higher than the magnetic force of the other oscillator systems (Mann & Sims, 2009; Owens & Mann, 

2012; Saravia et al., 2017). Moreover, it was found that the gravitation force affects the system's 

equilibrium position and magnetic restoring force. The centre floating magnet moved toward the 

bottom fixed magnet by 12.5 mm from the expected equilibrium position. Maximum researchers in 

the literature did not consider or ignore the gravitational force effects presented in Table 11.2. 

Therefore, the analysis of the gravitational force effects on equilibrium position is the originality of 

this current study. The coefficients of the proposed SDOF oscillator system were determined from 
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the magnetic restoring force curve using the polynomial curve fitting method. The linear and 

nonlinear stiffnesses of the magnetic spring-based system were determined for different excitation 

ranges of the centre floating magnet. It was found that the higher-order polynomial curve fitting 

provided a good fit for high excitation ranges; however, lower-order polynomial curve fitting 

provided a good fit for the low excitation range. The linear and nonlinear stiffnesses were used to 

study the dynamics of the SDOF nonlinear oscillator system. As the maximum researchers did not 

consider the gravitational force effects, one of the nonlinear spring constant (k2) (N/m2) was ignored, 

as shown in Table 11.3.  

Table 11.3: Coefficients and dynamics of the system compared with other existing systems 

Ref. OL 
(mm) 

LSC (k1) 
(N/m) 

NSC  
(k2) (N/m2) 

NSC 
(k3) (N/m3) 

DC EVA RF 
(Hz) 

(Liu et al., 2014) 46 10 ND 7.6×104 A/E No 14.36 
56 4.9 ND 2.1×104 A/E No 10.05 
66 2.7 ND 7.4×104 A/E No 7.46 

(Mann & Sims, 2009) ND 35 ND 1.384×105 A/E No 6.74 
(Yang et al., 2011) 64 628 ND ND ND No 23.43 
(Aldawood et al., 2019) 100.8 2566 ND 2.963×109 ND No 9 

100.8 1002 ND 8.693×107 ND No 11 
(Bernal & García, 2012) ND ND ND ND A No ND 
(Foisal et al., 2012) 44 7.08 ND ND ND No 7.32 
(Soares dos Santos et al., 
2016) 

58 ND ND ND A/SA No ND 

(Saha et al., 2008) 44 61.5 ND ND A/E No 7.6 
(Dallago et al., 2010) 56 7.8370×10-2 4.2003×10-6 4.1142×10-4 A/E No 10.4 
(Munaz et al., 2013) 80 ND ND ND ND No 6 
(Masoumi & Wang, 2016) 254 6450.84 ND 7.92E06 A/E No 10.3 
(W. Wang et al., 2017) 140 67.8963 ND 58014 A/E No 5-7.8  
This Study 212 157.32 3308 64428 A/E Yes 5.47 

222 269.31 5680.4 163159 A/E Yes 5.14 
272 259.87 7580.7 244955 A/E Yes 3.76 

Note: OL= Oscillator length, LSC= Linear spring constant, NSC= Nonlinear spring constant, DC= 

Damping coefficient, EVA=Eigenvalue analysis, RF=Resonance frequency, ND=Not defined, A= 

Analytical, SA=Semi-analytical, E= Experimental 

The eigenvalues and frequency responses were analysed by changing the position of the middle 

floating magnet. It was found from this study that the eigenvalue and resonance frequency of the 
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oscillator system changed with changing the position of the floating magnet. The oscillator system 

has shown an average 5.19Hz (analytical measurement) natural frequency in the system's equilibrium 

position, which changed with changing the position of the floating magnet. The experimental 

measured natural frequency was 5.14Hz, and the percentage of error of the findings was 0.962%. 

Moreover, the damping ratio of the system was determined analytically (0.032) and experimentally 

(0.031) with a percentage of error of 3.22%. The measured natural frequency of the system is lower 

than the other system's natural frequency, as presented in Table 11.3. Moreover, the system was 

analysed by changing the length of the oscillator. It was found that the damping ratio and resonance 

frequency increased with decreasing the length of the oscillator and decreased with increasing the 

length of the oscillator. The damping ratio varied from 0.0153 to 0.0463, and the natural frequency 

varied from 3.76Hz to 5.47Hz. It has been found that the magnetic restoring force of the oscillator 

increased with decreasing the length of the oscillator, and decreased with increasing the length of the 

oscillator. However, the dynamics study of the oscillator system for different positions of the floating 

magnet and different lengths of the oscillator are one of the main novelties of this present work. The 

proposed SDOF oscillator was studied with electromechanical coupling.   

The proposed generator was modelled mathematically and fabricated the test rig to validate the model. 

The system dynamics were compared with and without electromechanical coupling, and it was found 

that the electromechanical coupling affects the system. With changing the position of the floating 

magnet, the eigenvalues and resonance frequency of the electric part remained constant; however, the 

eigenvalues and resonance frequency of the mechanical part changed. From the literature, it was seen 

that not a single researcher analysed the eigenvalue values of the magnetic spring-based energy 

generator for different positions of the floating magnet and different lengths of the generator, as 

shown in Table 11.4. Therefore, eigenvalue analysis is one of the novelties of the generator system.  

Compared to the mechanical resonance frequency, the electrical resonance was two high. With 

increasing the number of turns of the coils, the inductance increased, and with expanding the 

inductance, the resonance of the electrical part decreased. The coupling coefficients and 

electromagnetic damping were determined. The comparison of the proposed generator's 

electromechanical coefficient parameters with other existing parameters in the literature is presented 

in Table 11.4.  From Table 11.4, it can be seen that the maximum research analysis of the induced 

voltages either uses the analytical or numerical method. The present study analysed the generator's 

energy generation ability analytically and experimentally to validate the mathematical model. 
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Table 11.4: Comparison of the electromechanical coupling parameters of the proposed generator 

from literature 

Ref. HWC DWC NT Inductance 
(H) 

Resistance 
(ohm) 

CC EVA Induced 
voltage 

(Liu et al., 2014) 10-30 11 ND ND 10-20 A No A 
(Mann & Sims, 2009) ND ND ND ND 188 A No A 
(Yang et al., 2011) ND 15 2×600 ND ND ND No SA 
(Aldawood et al., 
2019) 

13.7 17.4 450 ND 93 ND No SA 

(Foisal et al., 2012) ND 15 1500 ND ND ND No A 
(Berdy et al., 2014) ND NA 10000 NR 450 SA No A 
(Soares dos Santos et 
al., 2016) 

20 8.2 15000 1 3630 ND No SA 

(Saha et al., 2008) 6 17 1000 ND 800 ND No A 
(Dallago et al., 2010) ND ND 500 ND 60 A No A 
(Munaz et al., 2013) 5 12 1000 ND 115 ND No A 
(Masoumi & Wang, 
2016) 

101.6 62.4 10186 ND 6191 A No A 

(W. Wang et al., 
2017) 

60 25 480 ND 5 ND No A 

This study 10 78 100 0.005546 5.48 A/FEM Yes A/E 

Note: HWC= Height of the winding coil, DWC=Diameter of the winding coil, CC=Coupling 

coefficient, EVA=Eigenvalue analysis, A= Analytical, NT= Number of turns, SA=Semi-analytical, 

ND=Not defined, E= Experimental, FEM= Finite Element Method 

Moreover, all the existing magnetic spring-based generators presented in the literature were tested 

using a vibrometer/shaker or exciter to excite the system. But the present magnetic spring-based 

generator was tested by applying external harmonic forces on the floating magnet. Under certain 

circumstances, engaging the nonlinear response of the system can result in relatively large oscillations 

over a much broader range of frequencies, thus potentially improving the ability to harvest energy. 

Moreover, the proposed SDOF oscillator-based generator system was studied by changing different 

parameters (parametric study). It was found that velocity of the floating magnet, magnetic flux 

density, air gap (between the inner surface of the winding coil and outer surface of the floating 

magnet), number of turns of the winding coil, coil diameter, and external applied harmonic force 

affects the energy generation ability of the generator. Based on SDOF magnetic spring nonlinear 

oscillator system, the two-degree-of-freedom (2DOF) and three-degree-of-freedom (3DOF) 

nonlinear oscillator system were studied with and without electromechanical coupling. The 
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mathematical models of the proposed 2DOF and 3DOF nonlinear oscillator systems were developed 

with and without electromechanical couplings. The proposed 2DOF and 3DOF oscillator system's 

test rig setups were developed in the laboratory to validate the mathematical models.  

The magnetic restoring forces for all floating magnets were determined analytically, and the 

coefficients of both oscillator systems (2DOF and 3DOF) were measured from magnetic restoring 

forces using curve fitting methods. The eigenvalues and the resonance frequencies for both systems 

were studied using the measured linear and nonlinear coefficients. The 2DOF oscillator system 

showed two resonance frequencies (33 rad/s and 44.3 rad/s), and the 3DOF system provided three 

resonance frequencies (33.89 rad/s, 46.85 rad/s and 67.97 rad/s). The experimentally measured 

natural frequencies for the 2DOF oscillator system were 32.87 rad/s and 44.89 rad/s, and for the 

3DOF system provided were 32.87 rad/s, 44.47 rad/s and 56 rad/s, which are very similar to the 

analytical measurements. The mathematical models of the generator system were developed by 

adding electromechanical coupling with the 2DOF and 3DOF oscillator systems. The magnetic 

properties of the generator system were analysed numerically. The eigenvalues and the resonance 

frequency of the generator system were studied using the linear and nonlinear stiffnesses determined 

for 2DOF and 3DOF nonlinear oscillator systems. The energy generation ability of the generator 

system was studied analytically by applying external harmonic force.  

The test rig setup for the 2DOF and 3DOF oscillator system-based generator system was developed 

and tested the energy generation ability by applying external harmonic force. The experimental 

findings were compared with the analytical results to validate the mathematical model of the proposed 

2DOF and 3DOF nonlinear oscillator-based energy generators. The SDOF magnetic spring-based 

generator system had only one degree of freedom and was limited to one resonant frequency. On the 

other hand, the 2DOF magnetic spring-based generator system had two-degree-of-freedom and was 

limited to two resonant frequencies. Likewise, the 3DOF magnetic spring-based generator system 

had three-degree-of-freedom and was limited to three resonant frequencies. The energy generator 

picked up and resonated at every frequency present in the vibration source. Therefore, three resonant 

frequencies achieved maximum power using three-degree-of-freedom (3DOF) oscillator system. The 

findings of the 3DOF oscillator-based generator were compared with the 2DOF and SDOF oscillator-

based generators. It was found that the generator with the 3DOF oscillator can harvest more energy 

than the generators with 2DOF and SDOF oscillators under the same applied harmonic forces. 

Moreover, it was seen that the generator with the 2DOF oscillator produced more induced voltages 
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than the generator with the SDOF oscillator system. The design and modelling of the 2DOF and 

3DOF magnetic spring-based generator systems are the novelty of the present study since no other 

researcher proposed the generator systems based on 2DOF and 3DOF magnetic spring-oscillator 

systems.  

11.2 Application of the Magnetic Spring Oscillator-based Energy Generator in the Ocean 

Energy Field to Harness Ocean Wave Energy 

Linear generator-based wave energy converters (WECs) can eliminate mechanical interfaces such as 

gearboxes, hydraulics, and pneumatics, simplifying the PTO system. The principle operation of the 

linear generator-based wave energy converters is that the linear generator's translator is directly 

coupled to the float, or simple mechanical fitting is used in the wave energy converters. In contrast to 

traditional rotary generators, the translator's motion changes in the same direction as the wave speed 

due to linear generators' ability to operate at variable wave speeds. Due to these factors, the voltage 

and current generated vary in frequency and amplitude. Additionally, the phase sequence alternates, 

which results in a significantly higher peak-to-average power ratio. Linear generators are 

distinguished by low velocity, high force, and short stroke. Because of the intrinsic nature of marine 

waves and the pressing need for high power generation, the linear generator has increased in size 

considerably. The disadvantages of linear generators include high attractive force due to the large 

volume of magnetic materials, static and dynamic effects, large dimensions, high cost, reduced 

efficiency due to low speed and the high initial cost. A relatively large air gap is required to eliminate 

manufacturing tolerances and high attractive forces between stator and translator. By widening the 

frequency bandwidth of the WEC, the bandwidth problem of the existing linear generator based WEC 

system has been overcome. Light damping magnetic spring-based nonlinear oscillators have larger 

operational frequency bandwidth than a conventional single-degree-of-freedom (SDOF) linear 

oscillator. The magnetic levitation (magnetic spring) system has been proposed in the translator 

design to make the oscillator nonlinear, which is more effective in the broadband frequency range, 

especially in the low-frequency ocean environment (Liu, 2017; Masoumi & Wang, 2016).  

The specific magnet arrangement and structure (permanent magnets at both ends) provide a braking 

system and add non-linearity properties to the harvester (produces a nonlinear vibration levitation 

using repelling magnetic forces).  
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(b) 

Figure 11.1: (a) Floating buoy on the sea surface (b) Fully submerged heaving system 

The magnetic spring-based oscillator system delivers high power density broadband in the ocean 

wave energy harvester with variable resonance. The floating body can be connected with the floating 
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magnet or middle magnet, which will work as a translator. Fixed magnets can be connected with both 

ends of the shaft, and the winding coil will work as the stator. Figure 11.1 presents different topologies 

of wave energy converter (WEC) with SDOF magnetic spring nonlinear oscillator based linear 

generator system. The proposed nonlinear oscillator system-based energy harvester can harvest 

unidirectional vibrational energy and ocean wave energy through multiple approaches.  

 
(a) (b) 

Figure 11.2: (a) WEC with 2DOF nonlinear oscillator based linear generator system and (b) WEC 

with 3DOF nonlinear oscillator based linear generator system. 

Moreover, the SDOF magnetic spring-based system had only one degree of freedom and was limited 

to only one resonant natural frequency. Preferably, the energy generator should pick up and resonate 

at every frequency present in the source vibration. Therefore, double and triple resonant frequencies 

provided maximum power when employed in the two-degree-of-freedom (2DOF) and three-degree-

of-freedom (3DOF) oscillator systems. Figure 11.2(a) shows the topology of WEC with the 2DOF 

nonlinear oscillator based linear generator system, and Figure 11.2(b) presents the topology of WEC 

with the 3DOF nonlinear oscillator based linear generator system.  

To harness energy from vibration sources or ocean waves, the proposed linear generator can be used 

as a single device or hybrid device (joining triboelectric nanogenerators (TENGs) and linear generator 

or linear generator and piezoelectric materials or triboelectric nanogenerators (TENGs), piezoelectric 
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and linear generator) (Vidal et al., 2021). Wave energy harvesters based on triboelectric 

nanogenerator (TENG) and electromagnetic generators (EMG) have been proposed to harvest kinetic 

and potential wave energy over a wide range of frequencies and work very efficiently (Feng et al., 

2018; Saadatnia et al., 2018). The proposed SDOF, 2DOF and 3DOF nonlinear oscillator system 

based electromagnetic generator can be used with triboelectric nanogenerators to harness ocean wave 

energy. 

11.3 Conclusions  

In this thesis, the design and modelling of the magnetic spring-based oscillator system for different 

degrees of freedom were investigated analytically, numerically and experimentally with and without 

electromechanical coupling. The SDOF and 2DOF Oscillator System consist of 3 magnets (1 floating 

magnet and two fixed) and four magnets (2 floating magnets and two fixed magnets), respectively, 

whereas the 3DOF system consists of 5 magnets (3 floating magnets and two fixed magnets). The 

study found that the 2DOF and 3DOF magnetic spring-based energy generator provides a broad range 

of resonant frequencies compared to the SDOF magnetic spring-based energy generator. By having 

a wide range of frequencies, the system is suitable for situations in which ambient vibrations may be 

random or uncertain resonant frequencies are present such as in the ocean environment. While the 

SDOF magnetic spring-based energy generator generates maximum power only when the ocean 

waves frequency is nearly equal to the system’s resonant frequency, the multi-degree-of-freedom 

system can generate maximum power for different resonant frequencies. 

In chapter 3, the permanent magnet’s characteristics and the governing analytical equations were 

discussed and analysed using ANSYS Maxwell and experimental methods. The changes in magnetic 

flux densities outside the ring types of permanent magnets in the radial and axial directions were 

analysed using analytical, numerical and experimental methods. The magnetic properties were 

analysed by changing the poles (same and opposite poles) between two and three magnets. The 

magnetic properties, magnetic force and magnetic restoring forces of the magnetic spring-based 

system were studied by placing three magnets in the same poles (NS-SN-NS or SN-NS-SN). The 

magnetic restoring force was analysed both analytically and numerically and compared. Further, the 

governing equations were discussed along with the relevant electromagnetic theory. The most 

important conclusions were specific to this study: the theoretical and numerical studies of magnet 
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characterisation and its application in an electromagnetic system to model the energy harvesting 

system. 

The main goal of chapter 4 was to understand the magnetic properties of the magnetic spring-based 

SDOF oscillator system, magnetic restoring forces, coefficients, dynamics of the system and 

gravitational force effects on the oscillator system. The magnetic spring-based nonlinear system’s 

characteristics and dynamics (Single degree of freedom system (SDOF) oscillator system) were 

discussed and analysed using analytical, experimental, and numerical methods. The magnetic 

restoring force and the coefficients of the proposed nonlinear system were investigated numerically, 

theoretically, and experimentally. Numerical and analytical measurements validated the 

experimentally measured magnetic restoring force. The cubic, quintic, and 7th order polynomial curve 

fitting models were used to determine the linear and nonlinear stiffnesses from the measured magnetic 

restoring force. The eigenvalues and resonance frequency of the proposed nonlinear system were 

measured analytically using the linear and nonlinear stiffnesses. The analytical measured resonance 

frequency for the equilibrium position was compared with the experimental measurement. It was 

found that the eigenvalues and natural frequency of the system were changed by changing the floating 

magnet’s position. Moreover, how the gravitational force effect changes the equilibrium position and 

magnetic restoring forces were studied. By changing the length of the oscillator, the gravitational 

force effects were studied, and it was found that the separation distance between magnets has a 

significant influence on the vibration. The resonance frequency of the oscillator system dropped, and 

the stable system became more unstable with increasing the length of the oscillator. The magnetic 

restoring forces for different lengths of the oscillator were measured using experimental and 

analytical methods. The proposed system’s analytically measured damping ratios and natural 

frequencies for different heights were compared with the experimental measurements.  

In chapters 5 and 6, the characteristics and dynamics of the magnetic spring-based two-degree-of-

freedom (2DOF) and three-degree-of-freedom (3DOF) nonlinear systems were discussed and 

analysed, respectively. The magnetic restoring forces for 2DOF and 3DOF oscillator systems were 

determined analytically and numerically and compared.  Using polynomial curve fitting, both 

oscillator systems’ linear and nonlinear coefficients were measured from magnetic restoring forces. 

The eigenvalues and frequency responses of the 2DOF and 3DOF oscillator systems were analysed 

analytically. The 2DOF oscillator system showed two resonance frequencies, while the 3DOF system 

showed three. By changing the position of the floating magnets, the eigenvalues and frequency 
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responses for both systems were analysed, and it was found that with changing the position of floating 

magnets, the eigenvalues and natural frequencies changed.  

As part of the experiment for the proposed oscillator systems, the design, development, all necessary 

instruments, and test rig setup were discussed in chapter 7. The primary purpose of setting up the test 

rig was to improve the efficiency of harvesting maximum energy at low-frequency ranges. The 

experimental test rig was developed and advanced to conduct multiple trials on different models to 

get the time domain voltage responses at the various velocities and external forces applied. 

In chapter 8, the effects of electromechanical coupling on the oscillator system and energy generation 

ability were discussed. The step-by-step mathematical model of the primary SDOF energy generator 

is described in Chapter 8. The impacts of the electromechanical coupling were analysed analytically 

by varying different parameters of the magnets and winding coils. The dynamics of the SDOF energy 

harvester were analysed analytically using RL, RL with external load and RLC circuit. The magnetic 

spring-based energy generator’s mathematical models were initially developed using state space 

methods. The method was implemented without considering the spatial variation of the magnetic 

field. The state space model of the proposed SDOF energy harvesters was investigated analytically 

using MATLAB ode 23t solver. The eigenvalues and resonance frequency of the system with the 

electromechanical coupling were studied. It was found that by comparing the oscillator system with 

and without electromechanical coupling, the system’s dynamics were affected by the 

electromechanical coupling. The resonance frequency of the electrical part was higher than the 

mechanical part. The resonance frequency of the electrical part remained constant with changing the 

position of the floating magnet, but the resonance frequency of the mechanical part changed with 

changing the position of the floating magnet. The parametric study of the SDOF nonlinear oscillator-

based energy harvester was performed numerically and analytical by changing various parameters. 

This study aimed to determine how the main design parameters of the energy generator, namely 

magnetic flux density, velocity of the floating magnet, damping, spring coefficients, resistance, and 

inductance, influence the voltage output of the energy harvester. The test rig of the SDOF energy 

harvester was developed and experimented with within the Lab environment to validate the analytical 

models. The test rig was developed by applying a harmonic force (ocean wave), and the experimental 

findings were compared to the theoretical models. The results indicated a great deal of agreement 

between the two models, thus validating the SDOF magnetic spring-based energy generator.  
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With the development of mathematical models and experimental validation of SDOF energy 

generators, the concept of multi-degree-of-freedom was subsequently extended to 2DOF and 3DOF 

energy generators. The design and development of the 2DOF and 3DOF magnetic spring-based 

energy generators were discussed in chapters 9 and 10, respectively. The effects of electromechanical 

coupling on the 2DOF and 3DOF oscillator systems and energy generation abilities were 

discussed. The mathematical models of the proposed 2DOF and 3DOF energy harvesters were 

developed, and the system’s dynamics were investigated. The state space models of the proposed 

2DOF and 3DOF energy harvesters were investigated analytically using MATLAB ode 23t solver, 

respectively. The generalised matrix of 2DOF and 3DOF was derived, and the solution methods were 

explained. Matrix equations for the 2DOF and 3DOF energy generators provided the basis for 

developing the mathematical design for the multi-degree-of-freedom magnetic spring-based energy 

generators. The eigenvalues and resonance frequencies of both 2DOF and 3DOF magnetic spring-

based energy generators were studied, and it was found that the resonance frequencies of the electrical 

parts remained constant with changing the position of the floating magnets, but the resonance 

frequencies of the mechanical parts changed with changing the position of the floating magnet. The 

2DOF and 3DOF energy harvester’s test rigs were developed and experimented with within the Lab 

environment to validate the analytical models.  

To gain a better understanding of the system’s behaviour in relation to the individual design 

parameters of mass, damping constant, linear and nonlinear stiffness, magnetic flux density, 

resistance and inductance of the winding coil, the mathematical models were developed step by step 

from the SDOF energy generator to 2DOF and 3DOF energy generator system. In analysing the 

SDOF, 2DOF and 3DOF energy generator systems, hybrid methodologies comprised of analytical, 

numerical and experimental methods were used. The validation of the analytical model with 

experimental and numerical models (hybrid methods) was crucial to analysing the proposed energy 

generator system. In the near future, numerical methods will inevitably be used because the complex 

topologies of spatial magnetic variation will be required to design the energy generator. In this regard, 

the hybrid methodology was developed to generate a more straightforward framework for future 

MDOF energy generator system design and development. Each of the coils in the multi-degree-of-

freedom energy generator produced a voltage that may or may not be in phase with the voltages of 

the other coils. Different resonant frequencies in the multi-degree-of-freedom energy generator 

system design, mainly when the goal is broadband energy harvesting, increase the phase differences 
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of individual coils. When adding coil voltages, several choices can be considered. A possible solution 

would be to convert each of the coil voltages into a DC voltage before adding them together. 

According to the modal behaviour of the system, the coils with maximum deflection and velocity, 

when a particular ocean wave frequency is applied, will produce more voltage and current than other 

coils. Overall, the following points could be concluded from this thesis study: 

1. The proposed model approach creates a strong magnetic field 

2. Analytically predicted axial magnetic flux density of a single ring type permanent magnet was 

validated with numerical results 

3. Numerically measured radial magnetic flux density of a single ring type permanent magnet 

was validated with experimental measurement 

4. Experimentally measured magnetic restoring force was validated with analytical and 

numerical simulations  

5. Gravitational force affects the equilibrium position as well as the magnetic restoring force 

6. Different positions of the floating magnets have distinct eigenvalues and natural frequencies 

7. Different oscillator lengths show various magnetic restoring forces  

8. Different oscillator lengths offer different damping ratios and natural frequencies  

9. By changing the length of the oscillator, the stable system could be made unstable 

10. The electromechanical coupling affects the frequency responses of the mechanical part 

11. Proposed energy generator generated energy under applied harmonic forces 

12. The energy generation ability of the magnetic generator depends on various parameters, which 

include magnetic flux density, the mass of the magnet, velocity of the magnet, resistance of 

the winding coil, the inductance of the coil, number of turns, applied harmonic forces 

13. More degrees of freedom of the system results in more resonance frequencies which allows 

for the production of increased energy generation across a broader range of frequencies 

11.4 Future Work and Recommendations 

Researchers would be able to explore further avenues of linear generators based on magnetic spring 

systems through this research work. The study could be extended, for instance, to explore the 

magnetic restoring force for different sizes and shapes of floating and fixed magnets. To expand 

future research work, the following recommendations are made.  

• Model analysis by changing the shape, size and weight of the floating and fixed magnet 
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• Study of the magnetic restoring force for different masses, sizes and shapes of the magnets 

• Study of the gravitational force effects on different masses, shapes and sizes of the magnets 

• Experimental analysis using RL (with external load) and RLC circuits 

• Design and development of the SDOF magnetic spring-based energy generator 

• Deployment in ocean environments for trials over the short and long term 

• Performance evaluation of the prototype in the ocean environment 

• Model analysis using Halbach Array 

• Study of air-cored and iron-cored generators in terms of their prospects for a practical 

combined electrical-mechanical structural design solution  

• Model analysis using iron core and multiple winding coils 

• Design and development of the prototypes of the multi-degree-of-freedom magnetic spring-

based energy harvesters 

• Innovative systems for the transmission of the generated power to the grid 

• Implementation of control systems in the deployed WEC during sea trials 
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Appendix A 

Table A.1: Polynomial model for different position of the floating magnet 

Excitation (mm) Polynomial model 

3rd order 5th order 
-5 to 5 Theoretical 𝑦𝑦 = 87022𝑒𝑒3 + 2745.5𝑒𝑒2 +

309.79𝑒𝑒 − 0.0013  
𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 86479𝑒𝑒3 +
2719.6𝑒𝑒2 + 309.8𝑒𝑒 − 0.0013  

Numerical 𝑦𝑦 = −87522𝑒𝑒3 + 5784𝑒𝑒2 +
306.09𝑒𝑒 − 0.0055  

𝑦𝑦 = 7 × 1010𝑒𝑒5 − 1 × 108𝑒𝑒4 − 2 × 106𝑒𝑒3 +
8557.1𝑒𝑒2 + 317.16𝑒𝑒 − 0.0306  

Experimental 𝑦𝑦 = 1 × 106𝑒𝑒3 + 819.63𝑒𝑒2 +
307.35𝑒𝑒 − 0.0036  

𝑦𝑦 = 1 × 1010𝑒𝑒5 + 1 × 108𝑒𝑒4 + 874377𝑒𝑒3 −
2590.6𝑒𝑒2 + 309.69𝑒𝑒 + 0.0038  

-10 to 10 Theoretical 𝑦𝑦 = 88656𝑒𝑒3 + 2805.8𝑒𝑒2 +
309.75𝑒𝑒 − 0.0021  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 922478𝑒𝑒4 + 86451𝑒𝑒3 +
2725.9𝑒𝑒2 + 309.8𝑒𝑒 − 0.0013  

Numerical 𝑦𝑦 = 133906𝑒𝑒3 + 2816.2𝑒𝑒2 +
305.1𝑒𝑒 + 0.0243  

𝑦𝑦 = −4 × 109𝑒𝑒5 + 5 × 106𝑒𝑒4 + 603144𝑒𝑒3 +
2330.8𝑒𝑒2 + 295.11𝑒𝑒 + 0.0301  

Experimental 𝑦𝑦 = 814030𝑒𝑒3 + 6447.5𝑒𝑒2 +
304.28𝑒𝑒 − 0.0379  

𝑦𝑦 = 2 × 109𝑒𝑒5 + 4 × 107𝑒𝑒4 + 592100𝑒𝑒3 +
2512𝑒𝑒2 + 308.93𝑒𝑒 − 0.0044  

-15 to 15 Theoretical 𝑦𝑦 = 91483𝑒𝑒3 + 2907.6𝑒𝑒2 +
309.55𝑒𝑒 − 0.0054  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 954584𝑒𝑒4 + 86325𝑒𝑒3 +
2722.2𝑒𝑒2 + 309.8𝑒𝑒 − 0.0012  

Numerical 𝑦𝑦 = 104197𝑒𝑒3 + 2907.2𝑒𝑒2 +
306.22𝑒𝑒 + 0.0182  

𝑦𝑦 = 6 × 107𝑒𝑒5 − 414164𝑒𝑒4 + 87525𝑒𝑒3 +
2998.2𝑒𝑒2 + 307.1𝑒𝑒 + 0.0159  

Experimental 𝑦𝑦 = 91634𝑒𝑒3 + 2676.3𝑒𝑒2 +
308.68𝑒𝑒 − 0.0589  

𝑦𝑦 = 3 × 107𝑒𝑒5 + 9 × 106𝑒𝑒4 + 64803𝑒𝑒3 +
510.13𝑒𝑒2 + 311.02𝑒𝑒 − 0.0227  

-20 to 20 Theoretical 𝑦𝑦 = 95681𝑒𝑒3 + 3059.2𝑒𝑒2 +
308.98𝑒𝑒 − 0.015  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 85962𝑒𝑒3 +
2709.7𝑒𝑒2 + 309.82𝑒𝑒 − 0.0009  

Numerical 𝑦𝑦 = 103000𝑒𝑒3 + 2964.2𝑒𝑒2 +
306.53𝑒𝑒 + 0.0143  

𝑦𝑦 = −2 × 107𝑒𝑒5 + 256725𝑒𝑒4 + 114074𝑒𝑒3 +
2868.1𝑒𝑒2 + 305.5𝑒𝑒 + 0.0185  

Experimental 𝑦𝑦 = 118276 + 3484.6𝑒𝑒2 +
305.95𝑒𝑒 − 0.1067  

𝑦𝑦 = 9 × 107𝑒𝑒5 + 9 × 106𝑒𝑒4 + 74024𝑒𝑒3 +
186.47𝑒𝑒2 + 311.29𝑒𝑒 − 0.0172  

-25 to 25 Theoretical 𝑦𝑦 = 101542𝑒𝑒3 + 3271.8𝑒𝑒2 +
307.68𝑒𝑒 − 0.037  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 85118𝑒𝑒3 +
2680.1𝑒𝑒2 + 309.89𝑒𝑒 + 0.0002  

Numerical 𝑦𝑦 = 96128𝑒𝑒3 + 3118.6𝑒𝑒2 +
308.05𝑒𝑒 − 0.0036  

𝑦𝑦 = −2 × 107𝑒𝑒5 + 816684𝑒𝑒4 + 110903𝑒𝑒3 +
2655.6𝑒𝑒2 + 305.93𝑒𝑒 + 0.0272  

Experimental 𝑦𝑦 = 119073𝑒𝑒3 + 3629𝑒𝑒2 +
307.13𝑒𝑒 − 0.0679  

𝑦𝑦 = 7 × 107𝑒𝑒5 + 2 × 106𝑒𝑒4 + 69187𝑒𝑒3 +
2601.6𝑒𝑒2 + 311.99𝑒𝑒 − 0.0713  

-30 to 30 Theoretical 𝑦𝑦 = 109513𝑒𝑒3 + 3562.8𝑒𝑒2 +
305.06𝑒𝑒 − 0.0817   

𝑦𝑦 = 3 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 83374𝑒𝑒3 +
2618.9𝑒𝑒^2 + 310.12𝑒𝑒 + 0.0036   

Numerical 𝑦𝑦 = 97937𝑒𝑒3 + 3302.2𝑒𝑒2 +
307.33𝑒𝑒 − 0.0328   

𝑦𝑦 = 3 × 106𝑒𝑒5 + 711304𝑒𝑒4 + 95062𝑒𝑒3 +
2718.9𝑒𝑒^2 + 307.92𝑒𝑒 + 0.0229   

Experimental 𝑦𝑦 = 150648𝑒𝑒3 + 4254.8𝑒𝑒2 +
292.08𝑒𝑒 − 0.1865  

𝑦𝑦 = 7 × 107𝑒𝑒5 + 2 × 106𝑒𝑒4 + 66356𝑒𝑒3 +
2264.3𝑒𝑒2 + 312.11𝑒𝑒 − 0.0594  

-35 to 35 Theoretical 𝑦𝑦 = 120294𝑒𝑒3 + 3959.4𝑒𝑒2 +
300.12𝑒𝑒 − 0.1665  

𝑦𝑦 = 3 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 79999𝑒𝑒3 +
2500.4𝑒𝑒2 + 310.73𝑒𝑒 + 0.0127  

Numerical 𝑦𝑦 = 106771𝑒𝑒3 + 3599.8𝑒𝑒2 +
303.11𝑒𝑒 − 0.1001  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 890525𝑒𝑒4 + 80116𝑒𝑒3 +
2587.4𝑒𝑒2 + 310.56𝑒𝑒 + 0.0333  

Experimental 𝑦𝑦 = 128199𝑒𝑒3 + 4204.3𝑒𝑒2 +
302.95𝑒𝑒 − 0.1447  

𝑦𝑦 = 1 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 106608𝑒𝑒3 +
2965.8𝑒𝑒2 + 311.04𝑒𝑒 − 0.0367  
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-40 to 40 Theoretical 𝑦𝑦 = 134997𝑒𝑒3 + 4504.8𝑒𝑒2 +
291.16𝑒𝑒 − 0.3217  

𝑦𝑦 = 3 × 107𝑒𝑒5 + 2 × 106𝑒𝑒4 + 73676𝑒𝑒3 +
2278.8𝑒𝑒2 + 312.23𝑒𝑒 + 0.0353  

Numerical 𝑦𝑦 = 114646𝑒𝑒3 + 3909.8𝑒𝑒2 +
298.04𝑒𝑒 − 0.1941  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 988332𝑒𝑒4 + 78857𝑒𝑒3 +
2489.4𝑒𝑒2 + 310.87𝑒𝑒 + 0.0438  

Experimental 𝑦𝑦 = 142945𝑒𝑒3 + 4671.7𝑒𝑒2 +
293.98𝑒𝑒 − 0.2157  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 106234𝑒𝑒3 +
3102.3𝑒𝑒2 + 310.04𝑒𝑒 − 0.0302  

-45 to 45 Theoretical 𝑦𝑦 = 155475𝑒𝑒3 + 5271.7𝑒𝑒2 +
275.14𝑒𝑒 − 0.6016  

𝑦𝑦 = 4 × 107𝑒𝑒5 + 2 × 106𝑒𝑒4 + 61921𝑒𝑒3 +
1867.7𝑒𝑒2 + 315.83𝑒𝑒 + 0.0892  

Numerical 𝑦𝑦 = 127539𝑒𝑒3 + 4455𝑒𝑒2 +
287.52𝑒𝑒 − 0.4019  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 71328𝑒𝑒3 +
2211.8𝑒𝑒2 + 313.27𝑒𝑒 + 0.0813  

Experimental 𝑦𝑦 = 152028𝑒𝑒3 + 5205.1𝑒𝑒2 +
283.72𝑒𝑒 − 0.3857  

𝑦𝑦 = 2 × 107𝑒𝑒5 + 1 × 106𝑒𝑒4 + 94869𝑒𝑒3 +
2916.7𝑒𝑒2 + 314.25𝑒𝑒 − 0.0353  

 

 
(a) (b) 

Figure A.1: Magnetic restoring force for 40mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

 
(a) (b) 

Figure A.2: Magnetic restoring force for 35mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

x =  1.437e+05y3 + 4326y2 + 234.6y + 0.2461
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(a) (b) 

Figure A.3: Magnetic restoring force for 30mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

 
(a) (b) 

Figure A.4: Magnetic restoring force for 25mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

 
(a) (b) 

Figure A.5: Magnetic restoring force for 10 mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

x = 1.616e+05y3 + 4338y2 + 227.3y + 0.2545
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(a) (b) 

Figure A.6: Magnetic restoring force for 5mm excitation (a) 3rd order and (b) 5th order polynomial 

model 

x = 1.287e+06y3 + 13314y2 + 196.2y + 0.03427

-1

-0.5

0

0.5

1

1.5

2

-0.005 -0.003 -0.001 0.001 0.003 0.005

M
ag

ne
tic

 r
es

to
ri

ng
 fo

rc
e 

(N
)

Position of the floating magnet (m) x = -9.653e+10y5 - 4.1e+08y4 + 4.465e+06y3 + 
23480y2 + 176.1y + 0.0139

-1

-0.5

0

0.5

1

1.5

2

-0.005 -0.003 -0.001 0.001 0.003 0.005

M
ag

ne
tic

 r
es

to
ri

ng
 fo

rc
e 

(N
)

Position of the floating magnet (m)



 

429 

 

Appendix B 

 

Figure B.1: 300 Hz cut out 

 

Figure B.2: 100 Hz cut out 
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Figure B.3: 50 Hz cut out 

 

Figure B.4: 10 Hz cut out 
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Figure B.5: 5 Hz cut out 

 

Figure B.6: Plastic bush 
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Figure B.7: Plate 

 

Figure B.8: V-pulley 
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Figure B.9: L-joint 

 

Figure B.10: Test rig setup (single-degree-of-freedom) 



 

434 

 

 

Figure B.11: Test rig setup with servo motor 

 

Figure B.12: Sensor setup with test rig 
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