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Abstract 

We applied a computational model to examine the extent to which participants used an 

automated decision aid as an advisor, as compared to a more autonomous trigger of 

responding, at varying levels of decision aid reliability. In an air traffic control conflict 

detection task we found higher accuracy when the decision aid was correct, and more 

errors when the decision aid was incorrect, as compared to a manual condition (no 

decision aid). Responses that were correct despite incorrect automated advice were slower 

than matched manual responses. Decision aids set at lower reliability (75%) had smaller 

effects on choices and response times, and were subjectively trusted less, than decision 

aids set at higher reliability (95%). We fitted an evidence accumulation model to choices 

and response times to measure how information processing was affected by decision aid 

inputs. Participants primarily treated low-reliability decision aids as an advisor rather than 

directly accumulating evidence based on its advice. Participants directly accumulated 

evidence based upon the advice of high-reliability decision aids, consistent with granting 

decision aids more autonomous influence over decisions. Individual differences in the 

level of direct accumulation correlated with subjective trust, suggesting a cognitive 

mechanism by which trust impacts human decisions.  

 

Keywords: human-automation teaming; automation reliability; trust in automation; 

cognitive control; evidence accumulation model 
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Public Significance Statement 

In the modern workplace, humans can receive imperfect decision advice from automated 

systems. A computational cognitive model fit to behavioral data from a simulated air traffic 

control conflict detection task indicated that participants used a low-reliability decision aid as 

an advisor, but allowed a high-reliability aid more autonomous influence over their decisions.  
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In safety-critical industries such as defence, aviation, and healthcare, people 

increasingly work with automated decision aids. For example, decision aids can advise 

operators how to manage the deployment of multiple uninhabited vehicles for activities such 

as military operations, delivering cargo and rescuing civilians (Calhoun et al., 2018; Loft et 

al., 2021), and in air traffic control (ATC1), decision aids can advise controllers of potential 

future conflicts (i.e., loss of minimum separation standards) between aircraft (Musialek et al., 

2010; Noskievič & Kraus, 2017). Providing operators with decision aids can improve 

performance and reduce workload (see meta-analysis by Onnasch et al., 2014). However, 

decision aids can be imperfect for a variety of reasons, including hardware issues, software 

bugs, and automation “brittleness” (Billings, 1997) wherein the decision aid performs 

incorrectly in an unforeseen or untested context. Thus, operators often need to scrutinize 

advice from decision aids to decide whether to accept or reject it. This introduces risks of 

automation misuse (reliance on incorrect automated advice) and disuse (rejection of correct 

automated advice) (Lee & See, 2004). For future systems designers to anticipate and prevent 

such errors, research into the cognitive processes underlying how humans incorporate advice 

from decision aids into their decisions is essential. 

Automation reliability (accuracy) is a crucial factor in determining human reliance on 

automation and subsequent human-automation teaming2 (HAT) performance outcomes, both 

when human operators passively supervise automation that is performing tasks for them (e.g., 

 

1 Abbreviations used in this article: HAT (human-automation teaming), ATC (air traffic control), RT (response 

time). 

2 In this article, we adopt a broad definition of human-automation teaming, referring to any situation where a 

human performs a task with the assistance of automation. However, it should be note that some literature adopts 

a narrower definition with more specific requirements, such as bidirectional communication between the human 

and the automation (e.g., Lyons et al., 2021).  
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Ferraro et al., 2018), and when operators perform tasks themselves whilst provided with 

decision aids that advise actions (e.g., Hussein et al., 2020a; Rovira et al., 2007; Shah & 

Bliss, 2017; Wiegmann et al., 2001). On the one hand, low-reliability automation is often 

undesirable because it can cause human operators to drop below manual (no automation) 

levels of accuracy (Wickens & Dixon, 2007). On the other, humans tend to over-trust (Lee & 

See, 2004) and misuse high-reliability automation (Barg-Walkow & Rogers, 2016; 

Parasuraman & Riley, 1997). Consequently, if high-reliability automation does fail to 

function as expected, humans are relatively less likely to detect it (Bailey & Scerbo, 2007), 

which can contribute to serious accidents (e.g., NTSB, 2014).  

When a human decision maker works alongside an automated decision aid, some 

system designers assume the human will independently verify decision aid advice. However, 

the degree to which people verify decision aid advice will almost certainly be affected by the 

reliability of automation (i.e., the extent to which it advises correct decisions; Lee & See, 

2004; Parasuraman & Manzey, 2010) and resulting human trust in the automation (Lee & 

See, 2004; Merritt & Ilgen, 2008; Muir, 1994; Muir & Moray, 1996). Lee and See (2004) 

proposed a simple definition of trust as: “the attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and vulnerability” (p. 54), which 

is the most widely used definition in the HAT literature. When a decision aid is not reliable it 

is important that it not be the sole source of evidence that triggers a decision, as this would 

encourage automation misuse. Instead, it is desirable that choices can only be triggered when 

the human has assessed the available evidence, even though the decision aid might still 

provide input into which choice is made. This enables humans to better detect cases where 

the decision aid is incorrect, while still making proper use of it in other cases, minimizing 

misuse and disuse. In contrast, when decision aids are highly reliable people may allow them 

to trigger choices in a relatively autonomous manner, freeing up attention for non-automated 



Modelling how automation reliability affects decision making  7 

concurrent tasks in the wider context of the work system (Bagheri & Jamieson, 2004; Moray, 

2003; Moray & Inagaki, 2000). Although this could be viewed in many operational contexts 

as an adaptive strategy (Kaber, 2018), it also increases the risk of automation misuse. 

Recently, a quantitative cognitive model has been proposed which has the potential to 

identify whether humans use decision aids as automated advisors or whether humans allow 

them to more autonomously trigger their decisions (Strickland et al., 2021). To date, the 

model has only been applied to circumstances where levels of human manual performance 

and automation reliability were approximately equal, and in that case indicated that decision 

aid input influenced decision making in a way that would not autonomously trigger decisions. 

In the current study, we expand on this to manipulate decision aid reliability by including a 

relatively high-reliability condition (better than average participant manual performance) and 

a low-reliability condition (poorer than average participant manual performance). Our aim 

was to examine whether decision aid reliability affected the balance of human strategies 

employed, and particularly the extent to which humans allowed high-reliability decision aids 

to autonomously contribute to their decision making.   

An Evidence Accumulation Model of Automation Use 

Cognitive models are important tools for understanding HAT because they quantify 

complex relationships between observed behaviour and latent cognitive processes. Notably, 

signal detection theory has been applied to assess how automated advice influences decision 

making accuracy (e.g., Bartlett & McCarley, 2017; 2021). This approach provides a 

benchmark for optimality and can be used to distinguish between predictions of a broad range 

of potential human strategies for incorporating automated advice into decisions.  

Although signal detection theory is useful for understanding HAT, it does not 

incorporate RT and hence cannot identify cognitive processes related to RT, such as speed-

accuracy tradeoffs (e.g., Balakrishnan et al., 2002). Evidence accumulation models are a class 
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of cognitive models that predict human choices and response times (RTs) by assuming that 

decision making involves accumulating evidence until reaching a threshold. They have the 

potential to provide novel insights about HAT because they account for accuracy and RT 

distributions in a unified way, and hence can identify cognitive processes underlying 

performance. They have been shown to accurately describe choices and distributions of RTs 

in a range of simple tasks (Ratcliff et al., 2016). Recently, they were shown to be applicable 

to complex tasks such as ATC conflict detection (Boag, Strickland, Heathcote, et al., 2019) 

and maritime surveillance (Palada et al., 2016). They can also describe how humans adapt to 

time pressure and secondary demands in such complex tasks, and how they allocate attention 

according to task priorities (Boag, Strickland, Loft, et al., 2019).  

Strickland et al. (2021) applied an evidence accumulation model to investigate how 

humans use automated decision aids in an ATC conflict detection task, which requires 

deciding whether pairs of aircraft will violate minimum separation standards in the future. 

Figure 1 depicts their model. At the start of a conflict detection trial, some initial amount of 

evidence is drawn from a distribution of start points. Evidence then accumulates towards each 

possible decision at a speed determined by the accumulation rate. For a two-choice task, there 

are two types of accumulation rate: match and mismatch. The match accumulation rate refers 

to the accumulation rate matching the correct decision (e.g., ‘conflict’ accumulation when 

aircraft are in conflict), and mismatch the rate for incorrect decisions (e.g., ‘nonconflict’ 

accumulation when aircraft are in conflict). Accumulation continues until an accumulator 

reaches threshold. The first accumulator to reach threshold determines which choice the 

model predicts will be made.  

Strickland et al. (2021) proposed an evidence accumulation framework for 

understanding how task (stimuli) information and decision aid advice are integrated to make 

decisions (Figure 1). Evidence accumulation rates are driven by two sources of input – task 
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inputs and automation (decision aid) inputs. Task inputs are derived from characteristics of 

the presented stimuli. In the case of conflict detection for aircraft at the same cruising altitude 

and approaching a common intersection, this input would reflect the relative position and 

speed of aircraft. With this information, participants could mentally project the future lateral 

positions of each aircraft over time (relative arrival time judgment; Law et al., 1993; Loft et 

al., 2007) to assess future conflict status. This could be accomplished with a range of 

cognitive/perceptual strategies (Xu & Rantanen, 2003), which in Strickland et al.’s model 

would contribute to evidence accumulation. The other source of inputs is the decision aid – 

for example, if the decision aid advises “conflict” then attending to the decision aid largely 

provides inputs corresponding to the conflict accumulator.  

Specifying an evidence accumulation model requires assumptions about the temporal 

organization of decision making. For example, an accumulation model must specify whether 

the decision aid is processed in parallel with the task stimulus, or in series (e.g., process 

stimuli and then consider automated advice). In many psychological experiments, serial and 

parallel architectures can mimic each other’s predictions, implying data could be fitted by 

some models from either architecture (Townsend, 1990). However, for a specific model, the 

descriptive adequacy of its combination of assumptions can be tested by examining fit to 

observed choices and RTs. In Strickland et al. (2021)’s model, the processing of task inputs 

and automation inputs occurs in parallel. Their model fitted observed patterns of automation 

use accurately and has the advantage of being highly tractable. Further, its parameters 

provide a plausible psychological account of how automated advice can be incorporated into 

decisions by affecting evidence accumulation, discussed below.  
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Figure 1. Strickland et al. (2021)’s evidence accumulation model of conflict detection performed with a decision 

aid. Evidence towards each decision begins at some start point which varies from trial to trial, and then 

accumulates over time towards threshold. The first accumulator to reach its threshold determines the predicted 

decision. Accumulation rates are determined by inputs from the task stimuli (e.g., aircraft characteristics), and 

the automation decision aid. Inputs can excite (increase) accumulation towards corresponding accumulators and 

inhibit (decrease) accumulation towards opposing accumulators. 

 

Strickland et al. proposed two mechanisms by which processing task and/or automation 

inputs could affect accumulation rates (see also Boag, Strickland, Heathcote, et al., 2019; 

Strickland et al., 2018). The first mechanism, excitation, refers to increased accumulation 

rates towards the decision matching the inputs (e.g., conflict inputs increase accumulation 
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towards the conflict decision). If inputs from a decision aid produce excitation (e.g., a 

decision aid recommending conflict stimulates evidence accumulation towards the “conflict” 

decision), the human could potentially make a decision without processing task inputs (e.g., 

they could respond “conflict” without assessing the aircraft), thus allowing the decision aid 

autonomy in triggering decisions. The second mechanism, inhibition, refers to when inputs 

matching a decision reduce accumulation rates towards the opposing decision (e.g., non-

conflict inputs inhibit accumulation towards the conflict decision). Inhibition provides a 

mechanism for decision aids to influence the decision process without autonomously 

triggering decisions. Total evidence accumulation rates are determined by combined 

(summed) excitation and the inhibition derived from each independent input source (task and 

automation). Decisions require evidence to be accumulated (excitation) and thus cannot be 

triggered by inhibition alone. Therefore, if a decision aid provokes only inhibition (and no 

excitation) then the operator must still process task inputs to trigger decisions.  

The Strickland et al. (2021) model was tested in a simulated ATC conflict detection 

task in which participants were provided a 90% reliable decision aid recommending a 

classification (conflict or non-conflict). The decision aid improved conflict detection 

accuracy on trials where it was correct and decreased accuracy on trials where it was 

incorrect. Further, the decision aid slowed mean correct RT on trials where it was incorrect, 

consistent with previous HAT studies (Bailey & Scerbo, 2007; Bowden et al., 2021). 

Strickland et al. (2021) found that the effects of the decision aid were primarily on 

evidence accumulation rates, and not thresholds. Evidence accumulation rates were slowed 

towards decisions that disagreed with the automated advice relative to manual (no 

automation) trials, consistent with inhibition. There was little evidence that accumulation 

rates were faster for decisions agreeing with automated advice than on matched manual trials, 

suggesting that inputs from the decision aid did not excite (independently trigger) evidence 
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accumulation. The finding that participants used inhibition, rather than excitation, to integrate 

decision aids into their decisions fits with a cognitive strategy of allowing decision aids to 

influence decisions without autonomously triggering them, because no decision can be made 

without accumulating evidence based on task inputs. 

Although Strickland et al. (2021) found evidence for a single cognitive process 

supporting automation use (inhibition), they only examined an approximately equal-ability 

human/automation team (90% reliable automation on a task where participants manual 

performance was approximately 90% accurate). However, in many cases decision aid 

reliability differs from human accuracy. Many HAT studies indicate that the extent of 

automation reliance increases with increased automation reliability (Bailey & Scerbo, 2007; 

Hussein et al., 2020a; Rovira et al., 2007; Shah & Bliss, 2017; Wiegmann et al., 2001). Some 

authors have suggested this is mediated by an increased human trust in automation (Dixon & 

Wickens, 2006; Dzindolet et al., 2001; Meyer & Lee, 2013), and this has been supported 

empirically (Hussein et al., 2020b). In particular, automation use is affected by the perceived 

reliability of the automation relative to the humans perceived/actual manual ability (Bailey & 

Scerbo, 2007; Hutchinson et al., 2022; Liang et al., 2022; Wiegmann et al., 2001). Thus, 

operators may apply different strategies when using decision aids with differing levels of 

reliability relative to their own. Deferring information processing to highly reliable decision 

aids could be adaptive if it frees up cognitive resources for other tasks or speeds up decisions 

with little risk of error (Kaber, 2018; Moray 2003, Moray & Inagaki, 2000). Avril et al. 

(2021) found evidence for such a transition, with participants spending less time visually 

sampling their primary task when decision aids were most reliable. However, the extreme 

version of this strategy, wherein humans rely entirely upon automation rather than processing 

information on their own, is a form of “automation complacency” (Parasuraman & Manzey, 

2010), and would lead to misuse if decision aids fail. In contrast, responding to automation 
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inputs with only inhibition avoids such complete automation complacency, because decisions 

are not made until the human has processed primary task inputs.  

Given that deferring autonomous information processing to decision aids is a strategy 

that people could apply to speed performance or free cognitive capacity, but also one that 

could lead to significant misuse, it is important to develop models that can identify this 

strategy and formally describe it. Such a strategy is likely present in situations where people 

highly trust automation. Trust is a key component underlying automation use (Dixon & 

Wickens, 2006; Hoff & Bashir, 2015; Meyer & Lee, 2013). However, much of the focus in 

the literature is on the subjective (attitudinal) aspects of trust, with less focus on establishing 

the cognitive mechanisms by which trust affects decisions. High levels of trust would be 

expected to encourage operators to accept automation without independently checking the 

automation’s work, consistent with the proposal in our computational model regarding how 

humans transfer autonomy to the decision aid (i.e., via excitation).  

Although the Strickland et al. (2021) model has the potential to identify the cognitive 

mechanisms by which increased trust in automation allows a decision aid to autonomously 

trigger decisions (i.e., excitation), to date the model has only implicated inhibition. This 

suggests that the decision aid in Strickland et al. played the role of advisor, without potential 

to autonomously trigger decisions. Thus, to date the Strickland et al. model has not been 

applied to situations where humans allow automated advice a degree of autonomy 

(independence) in triggering their decisions. As reviewed, it is possible that humans grant 

higher reliability decision aids more autonomy over their decisions (excitation in the 

Strickland et al. model), and this could explain increases reliance on automation associated 

with higher reliability. However, the effects of reliability could also be explained merely by 

humans treating higher-reliability aids as a more influential advisor without risking 

completely autonomous automation decisions (increased inhibition but no increased 
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excitation). To extend the Strickland et al. model, and to understand the cognitive 

mechanisms underlying the effects of automation reliability on decisions, the current study 

applies the Strickland et al. model to scenarios in which decision aids varied in reliability. 

The Current Study 

We used a similar ATC conflict detection paradigm to Strickland et al. (2021) and 

employed large trial numbers (4,680 per participant) to facilitate reliable modelling (Smith & 

Little, 2018). Our task was calibrated to achieve approximately 85% participant accuracy, so 

that we could include a condition with lower reliability than participants, and another with 

higher reliability. Our experiment included a manual (no decision aid) baseline condition, a 

“low-reliability” condition where participants were provided a 75% reliable decision aid, and 

a “high-reliability” condition where participants were provided a 95% reliable decision aid.  

We expected to replicate Strickland et al. (2021)’s findings that correct decision aids 

increase accuracy, and that incorrect decision aids decrease accuracy and increase correct 

RTs. Further, we expected these effects would be stronger with higher automation reliability. 

Specifically, we expected that correct decision aids would lead to larger increases in 

accuracy, and incorrect decision aids would lead to larger decreases in accuracy and larger 

increases in RT, in the high-reliability condition than the low-reliability condition. 

Although previous research has identified the behavioral manifest effects of automation 

reliability on accuracy and RT, it has not formally identified the latent cognitive mechanisms 

underlying these effects. Strickland et al. found that decision aids inhibited, but did not 

excite, evidence accumulation with an approximately equal-ability (90% accuracy) human-

automation team and argued that this was an adaptive way to benefit from automation whilst 

mitigating misuse. Given our low-reliability condition’s decision aid was less reliable (75%) 

than that of Strickland et al., and lower relative to expected participant accuracy, an 

excitation strategy would pose an even greater risk to automation misuse and thus we 
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expected that participants would rely primarily on inhibition. In the high-reliability condition, 

we also expected to find inhibition (to the extent that participants took advice from the 

decision aid without giving it full autonomy to trigger decisions), however, it could be 

adaptive for participants to allow the high reliability decision aid more autonomy in 

triggering responses. Should this be the case, we would expect to find excitation, that is, 

higher accumulation rates towards decisions that agree with automation relative to matched 

manual (unaided) decisions. 

Given that Strickland et al. (2021) did not previously find effects of automation on 

thresholds, we expected to replicate that. However, participants can control their thresholds to 

affect the relative speed versus accuracy of their responding (e.g., Boag, Strickland, Loft et 

al., 2019), and tend to optimize how quickly they can complete an experiment whilst 

maintaining an acceptable level of accuracy (Hawkins et al., 2012). Thus, to the extent 

participants become satisfied with their accuracy with high-reliability automation, they might 

lower their thresholds to complete the task faster.   

We measured subjective trust in automation after each task block that provided a 

decision aid. To the extent that excitation measures the objective effect of trust on decisions, 

we would expect the two to co-vary. Thus, in addition to expecting excitation in the high-

reliability condition, we also expect automation trust ratings to be greater. We also 

investigate whether individual differences in our model parameters (e.g., excitation) predict 

individual differences in subjective trust, thereby revealing a cognitive mechanism by which 

increased trust in decision aids influences human decisions.  

Method 

Transparency and openness 

We report the rationale for our sample size, all data exclusions, all manipulations, and 

all measures recorded in the study. Data and the analysis code associated with the manuscript 
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are available on the open science forum (Strickland, 2022: https://osf.io/q3b2r). Task 

simulation materials are available on request. This study’s design and analysis were not 

preregistered.  

Participants 

The University of Western Australia’s Human Research Ethics Office approved the 

study. We aimed to test 24 participants. This is adequate to apply our cognitive model, which 

requires large trial numbers for individual-subjects modelling, rather than large participant 

numbers. Our design achieves a full counterbalance at 24 participants, but due to a 

miscommunication between experimenters 28 participants were tested. Our analysis focuses 

on 24 participants to maintain a balanced design and minimize confounds from practice and 

fatigue. For the counterbalanced analysis, one of the first 24 participants’ data were replaced 

with one of the additional participants (who fortuitously matched for counterbalancing 

purposes), due to low accuracy in manual blocks (<60%) for sessions one and two. Of these 

24 participants, 22 were undergraduate students participating for course credit and two were 

reimbursed $100 for their travel and time spent. Rewards were also paid out to participants 

based on overall percentage accuracy (reward = proportion correct x $40 AUD). The average 

age of participants was 21.3 years (SD = 5.80), excluding one participant who did not report 

their age. Seventeen participants identified as female and seven identified as male.  

Design 

Participants completed three sessions. Session one lasted approximately 2 hours (due 

to including training), and sessions two and three were approximately 1.5 hours each. In each 

session, participants performed three blocks of 520 trials: one high-reliability automation 

block, one low-reliability automation block, and one manual block. Block order was 

counterbalanced such that participants got each condition in a different position on each day 

(e.g., if they got the manual block first in session one, it would not be first in session two or 

https://osf.io/q3b2r
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three). This resulted in twelve possible block orders, which were balanced across condition. 

To submit responses, participants were either required to press ‘f’ for conflicts and ‘j’ for 

non-conflicts or vice versa. Response key assignment was counterbalanced across 

participants, leading to the full counterbalance requiring 24 participants.   

Materials 

ATC Conflict Detection Task.  The ATC task, depicted in Figure 2, was developed 

by Fothergill et al. (2009) and was used by Strickland et al. (2021). Participants viewed a 180 

nautical miles (nmi) by 112.5nmi sector of airspace, with a 10nmi by 20nmi scale fixed on 

the left of the display. On each trial, two aircraft appeared within the light grey circle and 

flew straight paths towards the point of intersection. Although aircraft were moving towards 

the point of intersection, they did so very slowly, and so the available information about 

conflict status effectively did not change throughout the trial. Each aircraft was accompanied 

by a data block including callsign (e.g., WVH619), type (e.g., B737), flight level (e.g., 370 

indicates 37,000 feet), and speed in knots (nmi per hour) divided by 10. Aircraft were also 

accompanied by a probe vector indicating heading and predicted position in one minute. 

Participants decided whether aircraft pairs would violate minimum separation, corresponding 

to a distance of 5nmi (laterally) and 1,000ft (vertically), at any time during their flight. 
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Figure 2. Display of the ATC conflict detection simulation. Next to each aircraft callsign (e.g., WVH619), 

aircraft type (e.g., B737), current and cleared altitude (e.g., 370>370), and airspeed (e.g., 41 standing for 410 

knots) are displayed. A trial countdown timer is displayed on the top left. The automated decision aid advice is 

placed under the data block of each aircraft (e.g. in this screenshot, it is recommending responding ‘conflict’). In 

manual conditions, this space was filled with a string with no special meaning, ‘########’. 

 

Conflict detection stimuli. The altitude of all aircraft was fixed at 37,000 feet, and 

thus participants only needed to evaluate lateral separation to determine conflicts status. We 

randomly sampled the angle of approach of one of the aircraft, but fixed the relative angle of 

approach between aircraft at 90 degrees. Evaluating the conflict status of aircraft pairs 

requires extrapolating the future lateral separation of the aircraft using current locations and 

speeds. Conflict status was defined by distance of minimum lateral separation (dmin), with a 

dmin of 5 being the boundary between conflict and non-conflict. The spatial variables relevant 

to lateral separation of the aircraft pairs were similar to Strickland et al. (2021). In Strickland 

et al., 90% manual accuracy was achieved with dmin for conflicts drawn from the uniform 

distribution U [0, 1.5] nmi and non-conflicts drawn from the uniform distribution U [8.5, 10] 
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nmi. We aimed for a slightly lower manual accuracy (i.e., 85%) than Strickland et al., 

because it was the mid-point between high (95%) and low (75%) automation reliability. 

Thus, we shifted each of dmin distribution 0.5 nmi closer to the 5 nmi minimum lateral 

separation standard (0.5-2 and 8-9.5). Across trials, aircraft speeds varied randomly between 

400 and 700 knots, and time to minimum separation between 120s and 210s, and both speeds 

and time to minimum separation were held constant within each trial.   

Automated decision aid. As displayed in Figure 2, the decision aid was presented 

under the data block of each aircraft in both high- and low-reliability automation conditions 

(in manual conditions, there was a string ‘########’ that participants were informed had no 

special meaning). The decision aid advised participants whether to classify aircraft as in 

conflict (“CONFLICT”) or not in conflict (“NON-CONF”). On most trials, the automation 

advised the correct classification (‘automation-correct trials’), but on some trials, the 

automation advised the incorrect classification (‘automation-incorrect trials’). In the high-

reliability condition, the automation was 95% reliable, and so there were 494 automation-

correct trials and 26 automation-incorrect trials. In the low-reliability condition, the 

automation was 75% reliability, and there were 390 automation-correct and 130 automation-

incorrect trials. Automation was unbiased such that in each automation block, half the 

automation-incorrect trials were conflicts, and half were non-conflicts. 

For each session, stimuli in high- and low-reliability blocks were matched to manual 

blocks in terms of aircraft speeds and distances from intersection, to control conflict detection 

difficulty. However, new callsigns and angle of approach were generated for each block 

(whilst maintaining a relative angle of 90 degrees between aircraft) to avoid instance-based 

learning (Bowden & Loft, 2016), and the order of stimulus presentation was randomized each 

block. The stimuli that were selected to be automation-incorrect trials were chosen randomly 

for the low-reliability block, and a random subset of those stimuli were assigned to 
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automation-incorrect trials in the high-reliability blocks. In subsequent data analysis, the 

performance on manual stimuli matching to the low-reliability automation-incorrect stimuli is 

used as a baseline to compare to performance on automation trials.  

Automation Trust Questionnaire. After completing each high- and low-reliability 

automation block, participants rated their trust in the decision aid (adapted from Merritt, 

2011; supplementary materials). Participants rated six trust questions, such as “I believe the 

Automated Decision Aid is a competent performer”,  on a five-point scale from ‘strongly 

disagree’ to ‘strongly agree’. 

Procedure 

Trial Procedure. Before each trial, participants were presented a screen that read 

“press space to continue”. Participants were then presented with a pair of aircraft heading 

towards a common intersection, and had 7s to respond. This was 1s faster than Strickland et 

al. (2021) because they found non-responses were extremely rare, and to potentially help to 

reduce accuracy towards the target manual level of 85%. If participants responded accurately, 

they proceeded immediately to the next trial. Otherwise, they received feedback (e.g., 

“Incorrect! This pair was in conflict”) and then pressed an ‘ok’ button to proceed.  

Experimental Procedure. After providing informed consent, participants viewed 

training instructions and a demonstration of aircraft pairs with different dmin. They then 

completed 40 training trials and proceeded to their first experimental block (manual, high-

reliability automation, or low-reliability automation).  

Before each automation condition, participants were instructed regarding their 

decision aid, and shown examples of how it provides advice. Participants were not told the 

exact percentage reliability of decision aids. However, in the high-reliability condition 

participants were instructed that “Although the automation is highly reliable, it is not perfect, 

and automation advice errors are unlikely but still possible”. In the low-reliability condition, 
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participants were instructed that “Although the automation is reasonably reliable, it is not 

perfect, and automation advice errors may be relatively common”. In manual conditions, 

participants were informed that there would be a string (‘########’) presented under each 

aircraft data block with no special meaning. 

Participants were informed that they would receive a financial reward for task 

performance, ranging from $0 to $40 AUD. In both automation conditions, participants were 

instructed that “In the event that the automation makes an incorrect recommendation, it is 

essential that you perform the correct action. Rejecting the automated recommendation when 

it is actually correct will reduce your performance score and subsequent bonus”. They were 

also told that “Accepting the automated recommendation when it is wrong will result in a 

substantially greater reduction in your performance score and subsequent bonus”, to emulate 

the common real-world situation in which automation misuse can have significant 

consequences. In manual conditions, they were instructed that “Incorrect responses will 

reduce your performance score and subsequent bonus”.  

Participants were presented with feedback on their accuracy at the end of each block 

and prompted to have a self-paced break. In the high- and low-reliability automation blocks, 

their feedback informed them of the percentage of trials on which they incorrectly accepted 

incorrect automated advice and the percentage of trials on which they incorrectly rejected 

correct automated advice. The procedures for sessions two and three were the same as session 

one, except they included only “refresher” instructions rather than training trials.   

Results 

All data analysis was conducted using the R programming language (R Core Team, 

2021). Our analyses focus on the fully counterbalanced set of 24 participants. Follow up 

analyses including the extra 3 participants with interpretable data produced similar results, 

except for some minor differences in cognitive modelling (discussed in the supplementary 
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materials) which arose due to an influential participant who used the decision aid in the low-

reliability condition in a manner more characteristic of the high-reliability condition. We 

excluded trials where participants did not respond (0.19% of trials) or responded in less than 

0.2s (0.07% of trials) from analysis.  

We first applied linear mixed-effects models to identify the effects of our manipulation 

on accuracy and RT, using the lme4 package (Bates et al., 2015). These mixed models 

included a random intercept for participants, and no random slopes. To analyze accuracy, we 

fit a generalized linear mixed model with a probit link function for each trial. To analyze RT, 

we fit a linear mixed effect models to mean correct RT for every participant. We also 

analyzed mean trust in automation with a linear mixed effects model. We tested for 

significance using Type II Wald Chi-Square tests, which are reported in supplementary 

materials. We followed up on significant effects using the emmeans package (Lenth et al., 

2019), reported in supplementary materials. Thus, for mixed-model analyses all relevant p-

values are tabulated in supplementary materials. In the individual differences section below, 

p-values and correlation coefficients are reported in text. 

The factors in our mixed effects models included stimulus type (conflict/non-conflict), 

experimental session (one/two/three), blocked automation condition (manual/low-reliability 

automation/ high-reliability automation), and automation accuracy (automation-

correct/automation-incorrect). For the high- and low-reliability conditions, automation-

correct trials refer to trials where automation advised the correct decision and automation-

incorrect to trials where the automation advised the incorrect decision. For the manual 

condition, this factor indexes trials that were matched to automation-incorrect trials and 

automation-correct trials from the low-reliability condition in terms of stimulus properties 

(e.g., distance of minimum separation, speed). As stimulus properties were randomly 

assigned across automation correct/incorrect trials, this factor is expected to have no strong 
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effect in the manual condition (and indeed it did not). Because we were interested in 

identifying strong effects, we set our significance criterion at p < .005 (Benjamin et al., 2018) 

for the manifest analyses reported below. The within-subjects SEs reported in text and figures 

follow the Morey (2008) bias-corrected method. 

Accuracy 

Participant accuracies are displayed in Figure 3. Accuracy was higher on conflict trials 

(M = 0.82, SE = 0.05) than on non-conflict trials (M = 0.80, SE = 0.05). Accuracy increased 

from session one (M = 0.78, SE = 0.05) to session two (M = 0.82, SE = 0.04), and was higher 

still on session three (M = 0.84, SE = 0.04). There were main effects of condition and of 

automation accuracy on participant accuracy, and these effects interacted. On trials where the 

automation was correct, accuracy was higher in the low-reliability condition (M = 0.89, SE = 

0.02) than on matched manual trials (M = 0.86, SE = 0.01), and higher still in the high-

reliability condition (M = 0.95, SE = 0.02). On trials where the automation was incorrect, 

accuracy was lower in the low-reliability (M = 0.79, SE = 0.03) condition than on matched 

manual trials (M = 0.86, SE = 0.01), and lower still in the high-reliability condition (M = 

0.52, SE = 0.05). Because the high-reliability condition had a high proportion of automation-

correct trials, overall participant accuracy (i.e., marginal accuracy over automation-correct 

and automation-incorrect trials weighted by proportion) (M = 0.93, SE = 0.01) was higher 

than that of the low-reliability condition (M = 0.87, SE = 0.01), which was in turn slightly 

higher than that of the manual condition (M = 0.86, SE = 0.01). 
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Figure 3. Conflict detection accuracy. Each panel corresponds to one stimulus type, on one experimental 

session. We depict within-subjects error bars that were calculated using the Morey (2008) bias-corrected 

method. 

 

Response Times 

Mean correct RTs are displayed in Figure 4. Correct RTs were longer on conflict trials 

(M = 2.06s, SE = 0.17s) than on non-conflict trials (M = 1.87s, SE = 0.16s). Correct RT 

decreased from session one (M = 2.41s, SE = 0.05s) to session two (M = 1.83s, SE = 0.04s), 

and decreased further on session three (M = 1.64s, SE = 0.04s). There were main effects of 

condition and automation accuracy on correct RTs, and these effects interacted. On trials 

where automation was correct, RTs were significantly faster in the high-reliability condition 

(M = 1.71s, SE = 0.11s) than in either of the other conditions. However, there were not 

significant differences in correct RTs between the low-reliability condition (M = 1.87s, SE = 

0.09s) and matched manual trials (M = 1.88s, SE = 0.1s). For trials where the automation was 

incorrect, correct RTs were slower in the low-reliability condition (M = 2.06s, SE = 0.12s) 

than in the manual condition (M = 1.88s, SE = 0.1s), and slowest of all in the high-reliability 

condition (M = 2.41s, SE = 0.17s). 
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Figure 4. Correct conflict detection response times (RT) in seconds. Each panel corresponds to responses to one 

type of stimulus on one experimental session. We depict within-subjects error bars that were calculated using 

the Morey (2008) bias-corrected method. 

 

Trust in Automation 

We report the internal consistency and test-retest reliability of the trust in automation 

scale in the supplementary materials. Automation trust scores were created by averaging 

participants’ answers to the six trust questions they completed after each automation block. 

One participant had two missing responses, and one participant had one missing response, so 

for those participants their average excluded those questions. We analysed the effects of 

automation condition and session on trust in automation. Trust was higher in the high- (M = 

3.58, SE = 0.13) than the low-reliability condition (M = 2.32, SE = 0.13). The effect of 

session, and its interaction with condition, did not reach significance. 

Individual Differences 

Our highly reliable measurement of each participant (due to high trial numbers) meant 

that some clear individual-difference trends emerged even in our counterbalanced sample of 

24 participants (see Rouder et al., 2019 for the importance of high trial numbers for studying 

individual differences). We examined the relationships between the effects of automation 

including the benefits to accuracy from correct automated advice, the costs to accuracy of 
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incorrect advice, the benefit to RT of correct advice and the cost to RT of incorrect advice. 

Accuracy benefits were calculated by subtracting accuracy on manual trials from accuracy on 

automation-correct trials, and costs by subtracting accuracy on automation-incorrect trials 

from accuracy on manual trials. Similarly, RT benefits were derived by subtracting RT on 

automation-correct trials from RT on matched manual trials, and RT costs by subtracting RT 

on matched manual trials from RT on automation-incorrect trials.  

The accuracy benefits of correct automation were positively correlated with the 

accuracy costs of incorrect automation for both the high-, r (22) = .88, p < .001, and the low-

reliability condition, r (22) = .59, p = .002. Correlation between RT benefits and RT costs did 

not reach significance for the high-reliability condition, r (22) = -.38, p = .065, but did for the 

low-reliability condition, r (22) = -.69, p < .001, in which there was a negative correlation 

between RT benefits of correct automation and RT costs of incorrect automation.  

We also explored correlations between the effects of automation and trust in 

automation. In the high-reliability condition, trust in automation was correlated both with the 

accuracy benefits of correct automation, r (22) = .65, p < .001, and the accuracy costs of 

incorrect automation, r (22) = .60, p = .002. In contrast, in the low-reliability condition trust 

was correlated with neither the accuracy benefits of correct automation, r (22) = .28, p = .179, 

nor the accuracy cost of incorrect automation, r (22) = .11, p = .595. The benefits of correct 

automation to RT were not significantly (p < .005) correlated with trust in either the high-, r 

(22) = .41, p = .049, or low-reliability conditions, r (22) = -.02, p = .935, although the high-

reliability condition reached the conventional p threshold of <.05. The costs of incorrect 

automation to RT were not significantly correlated with trust in the high-, r (22) = -.30, p = 

.158, or low-reliability condition, r (22) = -.06, p = .788. 

We also examined individual differences using difference scores calculated on an 

alternative scale for both accuracy and RT. Specifically, we converted accuracy to the probit 
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scale, and converted mean RTs to mean [log (RT)] before taking differences (results 

tabulated in the supplementary materials). Trends in the correlations were similar, but some 

patterns of significance differed. Specifically, the positive correlations in the high-reliability 

condition between accuracy costs of automation and trust, and between accuracy benefits of 

automation and trust, no longer reached our strict criterion of p <.005 (in both cases, p ~.01). 

In addition, the positive correlation in the low-reliability condition between automation 

accuracy costs and automation accuracy benefits no longer reached significance (p ~.05).  

Model Results 

Model specification. We applied a two-accumulator linear ballistic accumulator 

(Brown & Heathcote, 2008) as depicted in Figure 1, with one accumulator corresponding to 

responding ‘conflict’ and one to responding ‘non-conflict’. On each trial, evidence in each 

accumulator begins at a start point drawn from a uniform distribution U [0, A]. Thus, start 

point noise is estimated by the parameter A. Evidence then accumulates linearly at an 

accumulation rate drawn from the truncated normal distribution N (v, sv) with a lower bound 

of 0. The first accumulator to reach its threshold, b, determines the decision made, and total 

response time is equal to accumulation time plus non-decision time, a constant which is 

estimated. We report thresholds in terms of B, which is equal to b - A.  

We fixed the variability in accumulation rates (sv) for mismatching accumulators at 1 

as a scaling parameter. For each participant we estimated only one sv for matching 

accumulators, one A parameter and one non-decision time, to encourage sound parameter 

estimation. Thresholds and mean accumulation rates were varied across experimental factors 

to address theoretical questions of interest. Accumulation rates varied by stimulus type 

(conflict/non-conflict), condition (manual/low reliability/ high reliability), match to stimulus 

type (match/mismatch), and automation accuracy (automation-correct/automation-incorrect). 

Thresholds varied by latent accumulator (conflict/non-conflict), by condition (manual/low 
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reliability/ high reliability), and by experimental session (one/two/three), with the latter to 

account for practice effects. To avoid circularity, thresholds were not allowed to vary by 

stimulus type – if the threshold could be set based on stimulus type, this would imply the 

participant already knew the correct answer, and so would not need to accumulate evidence. 

Similarly, thresholds did not vary based upon whether automation was correct, as they are 

assumed to be set before participants accumulate evidence.  

Model Fit 

We obtained Bayesian estimates of model parameters using the Dynamic Models of 

Choice R Suite (Heathcote et al., 2019). These estimates are posterior samples, proportional 

to probability distributions of the model parameters given the data and prior information 

about the parameter values. The details of estimation are in the supplementary materials. The 

priors we used were the same as Strickland et al. (2021), except that the prior on the A 

parameter was tightened as this was necessary to achieve convergence for two participants 

(results were similar excluding these participants and using the Strickland et al. prior).  

Figure 5 displays fit of the posterior predictions of the model to the data. Generally, 

the model fitted the data well. There was some minor miss-fit to median correct RT in the 

high-reliability condition on automation-incorrect trials, with the model somewhat 

underestimating the slowing induced by the incorrect advice. However, the model did fit the 

direction of this effect, and that this represents a small number of responses (there are 

relatively few trials where highly reliable automation was incorrect). Given the relatively 

limited data for this cell, this miss-fit to rare RTs may result from influence from the prior.  
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Figure 5. Posterior model predictions of accuracy and response time (RT). The model predictions 

correspond to the white circles, the posterior means correspond to the black shaded dots. The error bars display 

the 95% posterior credible intervals of the predictions. For both model and data, we created a grouped data 

frame concatenating each participants’ data, and the plot contains accuracy and quantiles of response time 

calculated using the grouped data. Three quantiles of RT are depicted, with the 0.1 quantile of RT grouped on 

the bottom, the median RT at the middle, and the 0.9 quantile of RT at the top.  
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Parameter Inference 

We created a set of group-averaged posterior samples, which we use for the purpose 

of inference, by averaging parameter values across participants for every posterior sample. 

The model parameters resulting from these group-averaged posteriors samples are reported in 

the Supplementary Materials. In text, we focus on comparisons of accumulation rates and 

thresholds that allow us to answer the key theoretical questions. We test effects with a 

Bayesian one-tailed posterior p value, indexing the proportion of posterior samples for which 

that effect was smaller than 0 (i.e., small p-values suggest there is a difference). To estimate 

effect size, we report the posterior mean of each effect divided by the posterior standard 

deviation, referred to as Z. 

Excitation and Inhibition 

Figure 6 depicts estimates of evidence accumulation rates. Measuring excitation and 

inhibition effects requires comparing accumulation rates on (high- or low-reliability) 

automation-block trials with corresponding accumulation rates in manual blocks. Excitation 

increases the accumulation rate towards the accumulator agreeing with the decision aid. Thus, 

for trials where the decision aid advises classifying aircraft as in conflict, excitation is 

measured by the increase in accumulation rates towards deciding aircraft are in conflict, as 

compared with corresponding accumulation rates on matched manual trials. Similarly, for 

trials where the decision aid advises classifying aircraft as not in conflict, excitation is 

measured by the increase in accumulation rates towards deciding aircraft are not in conflict, 

as compared with corresponding accumulation rates on matched manual trials. Inhibition 

reduces accumulation towards the accumulator that disagrees with the decision aid. Thus, for 

trials where the decision aid advises that aircraft are in conflict, inhibition is measured by the 

decrease in accumulation rates towards deciding aircraft are not in conflict, as compared with 

corresponding accumulation rates on matched manual trials. Similarly, for trials where the 
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decision aid advises classifying aircraft as not in conflict, inhibition is measured by the 

decrease in accumulation rates towards deciding aircraft are in conflict, as compared with 

corresponding accumulation rates on matched manual trials. 

Table 1 contains statistical tests of excitation and inhibition effects. We found strong 

evidence of inhibition in both conditions, with accumulation rates lower to decisions 

disagreeing with automation than on matched manual trials, replicating Strickland et 

al. (2021). Further, inhibition was stronger in the high compared to low-reliability condition. 

Importantly, and in contrast to Strickland et al.’s results, in the high-reliability condition, we 

also found strong evidence of excitation on all trial types: accumulation rates were higher to 

decisions agreeing with automation than on matched manual trials. 

In the low-reliability condition, we did not find substantial evidence of excitation on 

automation-correct trials. In fact, we found an effect in the opposite direction of excitation for 

low-reliability automation: non-conflict accumulation rates were lower on automation-correct 

trials than on matched manual trials. We did find significant excitation effects on automation-

incorrect trials. However, these effects were weaker than in the high-reliability condition, and 

automation-incorrect trials are relatively less well estimated than automation-correct trials 

because there are less of them. Thus, evidence for excitation in the low-reliability condition is 

less consistent than the high-reliability condition, and the detected effects are weaker. 
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Figure 6. Estimates of group-averaged accumulation rates. Excitation is indicated by increased ‘match’ 

accumulation rates, as compared with manual conditions, when decision aids were correct (leftmost points on 

the figure, substantial for the high-reliability condition) and increased ‘mismatch’ accumulation when decision 

aids were incorrect (rightmost points on the figure, substantial for both automation conditions). Inhibition is 

indicated by decreased ‘match’ accumulation rates when decision aids were incorrect (middle-left points on the 

figure, substantial for both automation conditions) and decreased ‘mismatch’ accumulation rates with 

automation when decision aids were correct (middle-right points on the figure, substantial for both automation 

conditions). Shapes indicate the posterior means and error bars indicate the mean plus or minus the posterior 

standard deviation. In cases where the shapes are overlapping, the condition means are very close together (e.g., 

match, automation-correct, conflict, low reliability vs manual). 
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Table 1 

 Statistical tests of automation-induced excitation and inhibition effects. We depict Z(p), where Z is the 

posterior mean of the effect divided by the standard deviation, and p is the one-tailed posterior probability 

against their being an effect. L = Low Reliability Condition, H = High Reliability condition. 

Trial Type  Excitation (L) Inhibition (L) Excitation (H) Inhibition (H)  

Conflict Trials      

Automation Correct 0.92 (.178) 9.1 (<.001) 13.05 (<.001) 13 (<.001)  

Automation Incorrect 4.62 (<.001) 11.02 (<.001) 17.71 (<.001) 18.45 (<.001)  

Non-conflict Trials      

Automation Correct -4.63 (<.001) 10.61 (<.001) 7.24 (<.001) 20.06 (<.001)  

Automation Incorrect 7.02 (<.001) 11.19 (<.001) 17.89 (<.001) 16.67 (<.001)  

 

 

Threshold effects 

Figure 7 depicts estimates of thresholds, and Table 2 contains statistical tests of 

decreases in thresholds in two automation conditions compared with manual conditions. 

There were some small drops in threshold levels in the low-reliability condition compared 

with the manual condition, suggesting participants may have become less cautious when 

provided automation. There were relatively stronger decreases in thresholds observed in the 

high-reliability condition when compared with the manual condition. 
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Figure 7. Estimates of group-averaged thresholds. Shapes indicate the posterior means and error bars 

indicate the mean plus or minus the posterior standard deviation. 

 

Table 2 

Statistical tests of differences in thresholds across automated and manual conditions. We report Z(p), 

where Z is the posterior mean of the parameter difference divided by the standard deviation of the parameter 

difference, and p is the one-tailed posterior probability against their being an effect. L = Low Reliability 

Condition, H = High Reliability condition. 

Accumulator (Condition)  Session One Session Two Session Three 

Conflict Accumulator (L) 3.47 (<.001) 3.39 (<.001) 4.83 (<.001) 

Non-conflict Accumulator (L) 4.53 (<.001) 4.17 (<.001) 6.57 (<.001) 

Conflict Accumulator (H) 9.01 (<.001) 6.6 (<.001) 11.05 (<.001) 

Non-conflict Accumulator (H) 7.36 (<.001) 5.24 (<.001) 9.28 (<.001) 

    

 

Posterior Exploration 

To summarize, we found substantial evidence that both high- and low- reliability 

decision aids are incorporated into decisions with an inhibition mechanism, strong evidence 
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that participants relied on an additional excitation mechanism when using high-reliability 

automation, and weaker evidence of excitation for low-reliability automation. We also found 

some evidence that thresholds were reduced when using highly reliable automation. 

However, in evidence accumulation models the relation between model predictions and 

model parameters is complex and nonlinear. Thus, we used simulations to shed light upon 

how the mechanisms estimated in our model contributed to its predictions of the costs and 

benefits of automation on accuracy and RTs, by removing mechanisms from the model by 

changing parameter values. To the extent removing mechanisms causes miss-fit to observed 

effects that the model previously fitted, those mechanisms were responsible for the estimated 

model’s fit of the effects. To remove excitation from the model, accumulation rates to 

accumulators agreeing with the decision aid advice were set to the values estimated from 

matched manual trials. To remove inhibition, accumulation rates to decisions disagreeing 

with the decision aid were set equal to their value in matched manual trials. To remove 

threshold effects, thresholds were set to the levels observed in manual conditions. 

Figures 8 and 9 depict the results of the posterior exploration. We found major miss-

fits to automation’s effects on accuracy when inhibition was removed for both high and low 

reliability conditions, and also major miss-fits to accuracy effects for the high-reliability 

condition when excitation was removed. This suggests that inhibition was important for 

explaining automation’s effects on accuracy in both conditions, and excitation important in 

the high-reliability condition. We also found that removing inhibition from the model caused 

major miss-fits to the effects of automation on RT for both high and low reliability 

conditions, particularly costs of incorrect automation to RT, demonstrating the importance of 

the inhibition mechanism in driving this RT cost. In contrast to these findings, setting 

thresholds to manual levels had little effect on predictions regarding automation’s effect, 

suggesting they were substantially less important to model predictions. 
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Figure 8. Exploration of the importance of model mechanisms in explaining automation’s effects on 

accuracy. Accuracy benefit refers to improvement of accuracy on automation-correct trials, and accuracy cost to 

decrements in accuracy on automation-incorrect trials. Model mechanisms were removed by setting parameter 

values equal to matched manual conditions and resulting miss-fit indicates the degree to which that mechanism 

was responsible for the full model’s ability to predict effects. Model predictions correspond to the white circles, 

the posterior means correspond to the black shaded dots. The error bars display the 95% posterior credible 

intervals of the predictions. 
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Figure 9. Exploration of the importance of model mechanisms in explaining automation’s effects on 

RT. RT benefit refers to the speeding of correct RT on trials where automation was correct, and RT cost refers 

to the slowing of RT on trials where the automation was incorrect. Model mechanisms were removed by setting 

parameter values equal to matched manual conditions and resulting miss-fit indicates the degree to which that 

mechanism was responsible for the full model’s ability to predict effects. Model predictions correspond to the 

white circles, the posterior means correspond to the black shaded dots. The error bars display the 95% posterior 

credible intervals of the predictions. 

 

Individual differences (Model Mechanisms) 

We examined how individual differences in model parameters related to the costs and 

benefits of automation to accuracy. To do so, we constructed distributions of “plausible 
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value” correlations (Ly et al., 2017), in which a correlation between model parameters and 

the data of interest is calculated for every posterior sample, creating a distribution of 

correlations. We then adjusted this plausible value distribution to correct for population-level 

inference (i.e., inferences about new participants, Ly et al., 2018). This approach of 

correcting for sample size is quite conservative, and so we are confident in individual-

difference trends identified by this method. In Table 3 we report posterior means of plausible 

value correlations and accompanying 95% credible intervals. Although our framework 

provides evidence for correlations that can be assessed in a graded, rather than binary, 

manner, for brevity in text we focus on “plausible” correlations, referring to those with 95% 

credible intervals that do not overlap 0. We calculated correlations using a single estimate of 

excitation and inhibition for each participant by averaging over conflict and non-conflict 

trials, and over automation-correct and automation-incorrect trials. We also examined 

correlations of parameters with automation costs and benefits calculated on transformed 

scales: the probit scale for accuracy, and mean[log(RT)] for RTs. These correlations, which 

are similar to those reported in text, are included in the supplementary materials.  

In the high-reliability condition, we found a plausible positive correlation between the 

benefits of correct automation to accuracy and excitation, but we did not find a plausible 

correlation between automation accuracy benefits and inhibition. In contrast, in the low-

reliability condition, there was a plausible positive correlation between the benefits of correct 

automation and inhibition, but no plausible correlation between accuracy benefits and 

excitation. In the high-reliability condition there was a plausible positive correlation between 

the costs of incorrect automation to accuracy and excitation but not inhibition. In the low-

reliability condition, there was a plausible positive correlation between the costs to accuracy 

of incorrect automation and inhibition, but also a plausible positive correlation between the 

costs to accuracy of automation and excitation. 
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We found that benefits to RT on automation-correct trials were (plausibly) positively 

correlated with excitation for both reliability conditions, whereas they were more weakly (not 

plausibly) negatively correlated with inhibition in both reliability conditions. In contrast, 

costs to RT on automation-incorrect trials were (plausibly) positively correlated with 

inhibition for both reliability conditions, and weakly (not plausibly) negatively correlated 

with excitation for both conditions. 

We also examined how model parameters correlated with trust in automation. In the 

high-reliability condition, there was a plausible positive correlation between excitation and 

trust and a near-plausible (credible interval barely overlapping 0) negative correlation 

between inhibition and trust. In contrast, in the low-reliability condition there was nothing 

approaching a plausible correlation between trust and either excitation or inhibition. 
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Table 3 

Correlations between model mechanisms, benefits of automation, costs of automation, and trust in 

automation. We constructed distributions of “plausible values” (Ly et al., 2017) of correlations by calculating 

the Pearson correlation across participants between model parameters and dependent variables for every 

posterior sample. This was then corrected for population-level inference (Ly et al., 2018). We report posterior 

mean (95% credible interval) of these correlation distributions. In text we refer to “plausible” correlations as 

those with 95% credible intervals that do not overlap 0.  We obtained a single estimate of excitation and 

inhibition for each participant by averaging over conflict and non-conflict trials, and over automation-correct 

and automation-incorrect trials.  

 Condition/Dependent Variable Excitation Inhibition 

High Reliability          Posterior mean r (CI) Posterior mean r (CI) 

Accuracy Benefit 0.57 (0.24 - 0.79) -0.12 (-0.49 - 0.27) 

Accuracy Cost 0.63 (0.33 - 0.83) -0.10 (-0.48 - 0.29) 

RT Benefit 0.75 (0.51 - 0.89) -0.29 (-0.63 - 0.09) 

RT Cost -0.25 (-0.60 - 0.14) 0.54 (0.19 - 0.77) 

Trust 0.53 (0.19 - 0.77) -0.33 (-0.65 - 0.05) 

Low Reliability          Posterior mean r (CI) Posterior mean r (CI) 

Accuracy Benefit 0.19 (-0.22 - 0.55) 0.59 (0.26 - 0.8) 

Accuracy Cost 0.40 (0.01 - 0.69) 0.62 (0.31 - 0.82) 

RT Benefit 0.50 (0.14 - 0.76) -0.28 (-0.62 - 0.10) 

RT Cost -0.11 (-0.50 - 0.28) 0.62 (0.31 - 0.82) 

Trust 0.01 (-0.39 - 0.41) 0.03 (-0.36 - 0.41) 

 

Discussion 

This study examined the use of automated decision aids in a simulated ATC conflict 

detection task including blocks of trials with low-reliability and high-reliability decision aids. 

We found higher accuracy on trials where decision aids were correct compared with matched 
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trials in a manual (no automation) block, and lower accuracy on trials where decision aids 

were incorrect, demonstrating that participants used the automation to inform their decisions. 

As predicted, automation reliability moderated the effects of the decision aid on accuracy, 

with participants more accurate when high-reliability automation was correct than low-

reliability automation (when both compared to manual performance), and less accurate when 

high-reliability automation was incorrect than low-reliability automation. This replicates the 

benchmark effect of automation reliability demonstrated in the HAT literature (e.g., Bailey & 

Scerbo, 2007; Hussein et al., 2020a; Rovira et al., 2007). Because of the speed-accuracy 

tradeoff, it is important to also interpret these effects in light of changes in RT (Heitz, 2014; 

Pachella & Pew, 1968). We found that correct RTs were also slower when automation was 

incorrect as compared with manual trials, replicating Strickland et al. (2021; see also Bailey 

& Scerbo, 2007; Bowden et al., 2021). As expected, this effect was stronger in the high- 

compared to low-reliability condition. One novel effect found in the high-reliability 

condition, but not the low-reliability condition, was a decrease in correct RT (an 

improvement) when automation was correct as compared with manual trials. Participants also 

reported higher trust in automation after high compared to low-reliability blocks.   

We fit an evidence accumulation model to identify the cognitive mechanisms 

underlying how the decision aid affected performance. We replicated Strickland et al. 

(2021)’s finding that evidence accumulation rates were lower to decisions that automation 

advised against as compared with manual trials. This effect was stronger in the high than the  

low-reliability condition. This indicates that to some extent, participants relied upon an 

inhibition mechanism which allows automation to act as an advisor, affecting decisions, 

without necessarily autonomously triggering them, and that automated advice was weighted 

more heavily in the high-reliability condition (hence the need for greater inhibition of 

decisions that automation advised against). It corresponds to a type of speed-accuracy 
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tradeoff, in which the benefits of automation to accuracy trade against slowing of RT to 

responses disagreeing with automation. It differs from traditional speed-accuracy tradeoffs in 

that it plays out in accumulation rates rather than thresholds, although in some cases even 

traditional speed-accuracy tradeoffs can also involve accumulation rates (Rae et al., 2014). 

In the high-reliability condition, we found substantial evidence that automation 

increased the evidence accumulation rates of decisions agreeing with automation advice 

(excitation). This demonstrates a novel mechanism underlying automation use that was not 

identified in Strickland et al. (2021)’s examination of an equal-reliability human/automation 

team, consistent with participants allowing higher-reliability automation more autonomy in 

triggering their decisions. There was also some evidence of excitation in the low-reliability 

condition, but this evidence was inconsistent and relatively weaker than the high-reliability 

condition. Further, model simulations indicated that excitation was a relatively weak 

contributor to performance outcomes for the low-reliability condition, but a strong 

contributor for the high-reliability condition. 

To summarise, our findings regarding accumulation rates represent a significant 

theoretical advance in explaining benchmark effects in the HAT literature regarding 

increased automation reliance with increased reliability (e.g., Hussein et al., 2020a; 

Wiegmann et al., 2001), and more specifically, increased automation reliance when decision 

aids are more reliable relative to human manual ability (e.g., Avril et al., 2021; Bailey & 

Scerbo, 2007; Hutchinson et al., 2022). Our computational model suggested that two 

processes drove the effects of automation reliability. First, inhibition of decisions opposing 

automated advice was stronger with high-reliability decision aids than with low-reliability 

decision aids, although substantial for both. Second, with high-reliability decision aids, but 

not low-reliability decision aids, we found substantial evidence that participants granted 

automation a degree of autonomy over decisions (via an excitation process). 
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Contrasting with Strickland et al. (2021), who did not find an effect of decision aids on 

thresholds, we found a small decrease in thresholds in the low-reliability condition, and a 

more substantial decrease in the high-reliability condition, relative to the condition with no 

decision aid. Thresholds may have been reduced in the high-reliability condition because 

participants were satisfied with the accuracy that could be achieved and were motivated to 

decrease RT to complete the experiment (Hawkins et al., 2012). However, our model 

simulations indicated that the observed threshold effects had relatively minor implications for 

the observed effects of automation, and thus they should be interpreted with caution.  

It is interesting to consider our results alongside the findings of Bartlett and McCarley 

(2021), who applied signal detection theory to examine the effects of automation reliability. 

They too found that participants tended to use high-reliability decision aids more than low-

reliability decision aids, and that higher-reliability decision aids benefitted accuracy overall. 

Their modelling approach spoke to the optimality of decision aid use under signal detection 

theory. They found that decision aid use was suboptimal for high-reliability aids, and closer 

to optimal for low-reliability aids, with the latter consistent with participants reducing 

reliance on the low-reliability advice. Our model provides new insights into how reliability 

affects decision aid use. Specifically, our model indicated different patterns of inhibition and 

excitation of evidence accumulation, depending on reliability. These findings complement 

Bartlett and McCarley, speaking to how incorporating RT distributions, in addition to 

accuracy, can provide novel insights into psychological processes. However, to account for 

RT distributions our model committed to specific assumptions about how decisions unfold 

over time. An advantage of the Bartlett and McCarley approach is the ability to assess a 

variety of strategies to using automation, such as a “coin flip” (in case of disagreement, 

accepting automated advice with 50% probability), probability matching (if disagreement, 

accepting advice at a rate proportional to its reliability), and contingent criterion shifts (bias 
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to respond in favour of the response agreeing with automation). Although our model provided 

an adequate and coherent account of the behaviour observed in this study, future data may 

require alternative architectures to capture a broader set of cognitive strategies.  

Our design focused on large trial numbers to enable individual-subject modelling. 

However, a benefit of this design was that the large trial numbers reduced measurement noise 

to the extent that we could identify individual-difference correlations between patterns of 

automation use, trust in automation, and model parameters. The benefits of correct automated 

advice to accuracy correlated strongly with the costs of incorrect advice. This is consistent 

with the “lumberjack analogy” invoked in the HAT literature (Sebok & Wickens, 2017), in 

which higher degrees of automation provide increasing benefits to performance but leaves 

humans at greater risk of failing to identify automation failures (Onnasch et al. 2014). 

Another interesting finding was that trust was correlated with both automation costs and 

benefits in the high-reliability condition, but not the low-reliability condition. This might owe 

to individual differences in the degree to which participants afforded decision aids more 

autonomy in triggering their decision making in the high-reliability condition. As little 

autonomy was allocated to the low-reliability decision aid, there would be less scope for this 

individual difference process to co-vary with perceived trust in automation.  

We found that excitation, that is the extent to which decision aids autonomously 

triggered evidence accumulation, correlated with the benefits of correct automation to 

accuracy and the costs of incorrect automation to accuracy for the high-reliability condition, 

but only correlated with automation costs to accuracy for the low-reliability condition. In 

contrast, inhibition correlated with the benefits of correct automation and the costs of 

incorrect automation to accuracy for the low-reliability condition and not the high-reliability 

condition. Thus, our model suggests that qualitatively different cognitive mechanisms 

underlie individual differences in automation’s effects on accuracy in the high-reliability 
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condition as compared to the low-reliability condition. However, we found that automation 

benefits to RTs were correlated with excitation for both conditions, but not inhibition, and 

automation costs to RTs were correlated with inhibition for both conditions, but not 

excitation. This suggests that individual differences in RTs were driven by the same 

mechanisms in both conditions. 

We also examined correlations between model mechanisms and trust. We found a 

positive correlation between the excitation parameter and trust in automation in the high-

reliability condition, consistent with assumptions in the HAT literature that trust mediates the 

effect of reliability on automation use (e.g., Lee & See, 2004; Muir & Moray, 1996). This is 

also consistent with the theoretical concept of excitation developed in this paper, in which 

humans turn over control to the information input provided by the decision aid so that it can 

more autonomously trigger their responding, and extends that concept by establishing a 

cognitive mechanism by which trust can affect decisions in HAT settings.  

Practical Implications 

We found evidence that higher automation reliability encouraged participants to give 

automation more autonomy over their decisions. In some operational settings, this could be 

an adaptive way to free up cognitive capacity for concurrent tasks, at the expense of tasks that 

automation can, in the vast majority of cases, reliably handle (Kaber, 2018; Moray 2003). 

Indeed, in HAT contexts the probability that an operator will attend to information (task 

inputs as conceptualized in our model) will likely depend on the relative expected value and 

cost of accessing that information (Senders, 1983; Wickens et al., 2015). Further, to the 

extent that humans integrate decision aids into their decisions via excitation, correct decision 

aids are likely to speed up RTs.  

However, in safety-critical work settings it is desirable that choices only be triggered 

when the human has independently validated the decision aid advice before responding. 
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Unfortunately, the outcomes of the current study indicate that this is less likely (a form of 

automation complacency; Parasuraman & Manzey, 2010) with high-reliability automation 

because it promotes excitation from decision aid inputs, increasing risk of misuse. In such 

safety-critical work settings, training, alerts, or warning messages could be implemented to 

encourage operators to independently verify decision aid advice to minimize misuse.  

In operational settings human reliance on automation is often employed as a proxy 

measure of trust because it is not always possible to interrupt the operator to measure trust 

subjectively, or experts may not be able or willing to accurately report trust. However, a 

limitation of using manifest behavioural measures of trust is that it is difficult to separate the 

effects of trust from changes in strategy resulting from extraneous factors such as workload 

and time pressure. A key advantage of our model is that it can be used to measure the relative 

contribution of these factors to human performance (Boag, Strickland, Heathcote, et al., 

2019; Boag, Strickland, Loft, et al., 2019), and with the contribution of the current paper it is 

now possible to measure them alongside the objective effects of trust on decision-making. 

The proposed model could potentially function as a “human performance model” 

(Byrne & Pew, 2009), helping to predict and understand workplace performance in situations 

where decision makers are increasingly reliant on decision aid advice. It both underscores the 

importance of interpreting patterns of accuracy and RT in combination, which is necessary to 

avoid confounding from speed-accuracy tradeoffs, and provides psychological process 

interpretations of variations in speed and accuracy. For example, our model indicates that 

degree of benefit to accuracy and RT when automated advice is correct strongly corresponds 

to the extent that decision aid autonomously triggers decisions (excitation), whereas costs to 

RT when automated advice is incorrect demonstrates the extent to which automation acts as 

an advisor that inhibits decisions it disagrees with. Such signatures of the different patterns of 

automation use could emerge for any task context (e.g., uninhabited vehicle control, 
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healthcare) in which decision aids are used, although this remains to be empirically tested.  

Limitations and Future Directions 

An obvious limitation is that we examined the performance of undergraduate 

participants, rather than experts. Participants completed approximately 4.5 hours of testing, 

allowing them more potential to develop an efficient approach to their task than in many 

other prior HAT studies, but it is possible there were still gains to be made with further 

practice, and even qualitative differences in cognitive strategies with extensive practice. 

Because experts tend to learn the contexts in which decision aids are likely to be inaccurate 

and adjust their behaviour (Cohen, 2000; Jamieson & Guerlain, 2000), it is likely that with 

experience experts learn to adaptively allocate control to decision aids as a function of the 

appropriateness of task context. Workplace automation, such as aircraft conflict detection 

decision aids, would be more likely to reliably work under particular conditions (as opposed 

to randomly failing as in the current study), leading to more accurate operator understanding 

of automation capabilities and limitations and greater predictability of reliability under 

various conditions (Balfe et al., 2018; Khastgir et al., 2018). In forming trust in and reliance 

on automation, experts undoubtedly consider the environment in which automation operates, 

for example distinguishing between incorrect advice resulting from an unstable environment 

from inherent problems in decision aid functionality (Muir, 1994). Future work should seek 

to characterize how automation is incorporated into the performance of experts.  

Another limitation is our focus on decisions in a single task environment, rather than a 

more realistic ATC environment in which controllers contend with multiple stimuli and 

concurrent goals. This was necessary to develop a detailed evidence accumulation model of 

the effects of reliability. Notwithstanding the relevance of our earlier discussion that 

affording decision aids more autonomy would be adaptive to free up cognitive capacity for 

other concurrent tasks, this was obviously not the motivation for our participants, whom more 
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likely were interested in using excitation to maintain good accuracy while finishing the 

experiment reasonably quickly (Hawkins et al., 2012). It is also likely that in a more realistic 

ATC environment automation would be biased to classify aircraft as conflicts, as missing a 

potential conflict is more dangerous than miss-classifying a non-conflict (Loft et al., 2009). 

Future work could apply our model to manipulations of automation bias, to determine how 

the extent of automation bias affects underlying cognitive mechanisms.  

In our task, information for stimulus inputs and decision aids inputs was 

simultaneously available, whereas in some operational settings stimulus and decision aids 

inputs can become available to the human at different times (e.g., the automation requires 

more information or processing time before it provides advice). Previous research has applied 

systems factorial technology to estimate the effect of decision aids on human processing 

capacity in tasks with varying decision-aid onset times (e.g., Yamani & McCarley, 2018). 

Although useful, such an approach does not make the distinctions provided by our model 

relevant to cognitive control and autonomy (i.e., between excitation, inhibition, and changes 

in thresholds). Future work could extend our model to situations with varying decision-aid 

onset times, potentially using approaches that combine evidence accumulation models with 

systems factorial technology (e.g., Bushmakin et al., 2017; Eidels et al., 2010).  

Future work should also seek to situate our findings in the broader context of trust in 

automation. This study focused on reliability, which is known to affect trust which in turn 

affects automation reliance (e.g., Dzindolet et al., 2003). Our model appears to provide an 

objective measure of how variation in trust in automation, driven largely by changes in 

perceived reliability, affected decision making. However, trust in automation is a more 

complex construct than perceived reliability, affected by a range of human operator (e.g., 

affect, personality), automation performance (e.g., reliability, predictability), automation 

design (e.g., transparency, feedback) and environmental (e.g., workload, decision risk) factors 
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(Hoff & Bashir, 2015; Schaefer et al., 2016). It is possible that different types of trust in 

automation have different effects on the types of cognitive processes identified by our model, 

and future work should investigate this possibility.   
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