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Abstract

Three-dimensional (3D) point cloud representation learning and re-

construction using Deep Learning (DL) architecture has become an active

research trend due to the rapid development of affordable and accessible 3D

acquisition technologies such as laser scanners, RGB-D cameras, and stereo

vision cameras. In many representations, point cloud has received the most

interest and favoured in many research works due to its simplistic and flexible

data structure in three dimension space. Recent research works deploy DL

to process raw point clouds by taking the advantages of its learning capacity

to overcome challenges in point clouds such as incomplete, noisy, and un-

structured in gridless space. Consequently, deployment of DL in point cloud

representation learning and reconstruction have led to many real-world ap-

plications such as autonomous robotic navigation, object classification and

3D modeling.

Learning representation of a point cloud using DL poses challenges

due to sparsity and its un-ordered structure. Presently, conventional point

cloud models with single latent feature representation are not sufficient to

fully capture the complex geometry of a point cloud. Hence, Point cloud Neu-

ral Density Estimator (PNDE) is proposed as a parametric mixture model

to produce multiple local representations of a point cloud, where each rep-

resentation is a density parameter (Gaussian components), i.e. means and

variances. In quantitative evaluations, classification performance of PNDE

can achieve 93.67% in ModelNet10, 88.74% in ModelNet40 and 94.6% in

ShapNetCore13 using M = 64 density parameters. On the other hand,

qualitative evaluations show PNDE inherits the properties of permutation

invariant and rotational equivariant toward input point clouds.

Partial point cloud is a common challenge encountered in 3D ac-

quisition on real-world object due to viewpoint occlusion and limited sensors



resolution. A novel Gaussian point cloud autoencoder (GPAE) is proposed to

complete a partial point cloud by sampling point cloud from inferred Gaus-

sian components. A probabilistic sampling training strategy and weights

superposition concept are designed to drastically reduce the network parame-

ters while improving the learning efficiency. As a result, GPAE demonstrates

better point cloud reconstruction in terms of Chamfer distance (CD) metric,

with lowest average CD of 0.56 × 10−3 as compared to most existing mod-

els despite having up to 50 folds smaller network parameters. The GPAE

can retain its efficiency toward sparse input partial point cloud by facing an

average of 8% reconstruction degradation at 50% missing points, and 97%

reconstruction accuracy is achieved within 5% deviation relative to ground

truth.

In a challenging environment, perturbation in the input point cloud

such as rotation can cause severe performance degradation in most present

point cloud classification approaches. A novel part-to-whole capsule network

is proposed to learn point cloud objects through parts feature reasoning us-

ing vector-based neural network, i.e. capsule network and point cloud recon-

struction as learning support. In quantitative evaluation, the proposed net-

work can achieve classification accuracy of 93.56% in ModelNet10, 88.70% in

ModelNet40 and 94.71% in ShapeNetCore13. In evaluation where the input

point clouds are imposed with rotation perturbation, the proposed network

can achieve test accuracy of 86.67% in ModelNet10, 79.34% in ModelNet40

and 87.83% in ShapeNet13. In qualitative evaluations, the network is shown

to fully reconstruct output that is equivariant to input point cloud with

imposed rotation perturbation. Furthermore, the reconstructed point cloud

is quantitatively evaluated using ICP algorithm and it can achieve average

±2 deg discrepancies in rotation.

The acquisition of 3D human is highly demanded for applications

such as motion capture. Conventional setups are using multiple-viewpoint

for 3D human acquisition, while single-viewpoint provides flexible setup with

a trade-off of partial input point clouds. Two 3D human reconstruction

network models are proposed to generate 3D human model from input partial

point cloud: 1) generative non-synthetic model, and 2) regressive synthetic

model. The former model reconstructs complete point cloud of 3D human,



while the latter reconstructs mesh 3D human. In performance evaluations,

generative model can achieve an average of 32.17mm joint distance deviation

against ground truth joints and 0.62 × 10−3 average Chamfer distance on

reconstruction fidelity. On the other hand, the regressive model can achieve

an average of 24.83mm joint distance deviation against ground truth joints

and 0.84× 10−3 average Chamfer distance on reconstruction fidelity.

Keywords— 3D Point Cloud, Parametric Mixture Model, Partial Point Cloud, 3D

Reconstruction, Vector-based Neural Network, 3D Human Modeling
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Chapter 1

Introduction

1.1 Project Overview

Three-dimensional (3D) point clouds representation learning using Deep Learning

(DL) has drawn huge interest in recent years due to the rapid development in 3D acqui-

sition technologies making 3D sensors more accessible and affordable, such as Microsoft

Kinect [1] and Intel Realsense [2]. Applied DL on 2D and 3D data modality have led to

many successes in challenging real world applications such as object recognition [3, 4]

and segmentation [5–7], autonomous navigation and localization [8–10], semantic scene

understanding [11–13], and 3D human modeling [14–17]. DL architectures on 2D data

have achieved remarkable results, however 2D data comes with limitations in perceiving

depth which is critical in depth estimation and localization. Therefore, depth sensing

devices emerge to provide rich geometric and depth information in the form of 3D data.

The depth sensing devices can be broadly categorized into three types [18, 19], i.e. Time-

of-Flight (ToF), structured-light, and stereo-vision sensors. ToF-based sensors, for eg.

Light Detection and Ranging (LiDAR) measures the time of emitted light from illumina-

tor that reflects back from an object to calculate a depth map. Structured-light sensors

project an infrared light pattern onto an object to estimate the disparity of perspec-

tive pattern distortion for depth map calculation. Stereo vision uses multiple passive

sensors to capture the reflection of natural light to compute the disparity between two

viewpoints in perceiving the depth information. These range sensors commonly store

the data in the format of raw point clouds [19, 20], RGB image coupled with depth map

(RGB-D) [21] or an intermediate derived 3D data representations [22] such as voxels and

meshes.
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Figure 1.1: Generalized 3D modeling pipeline. [23]

A generalized pipeline of conventional 3D modeling consists of 3D data acquisi-

tion, 3D reconstruction and surface reconstruction as illustrated in Figure 1.1. Recent

research and implementation have shifted the focus in potential of using multiple stereo

vision acquisitions (MSVs) due to the richness information of input data in 360-view.

MSVs contain diverse 3D data output format, i.e. color images associated with depth

map (RGB-D) and point clouds. The RGB-D format typically contains four channels

of images, i.e. three channel RGB images and one channel depth map, while point

clouds format are typically presented in three dimensions (X, Y, Z) in Euclidean space.

In general, advanced 3D reconstruction techniques can be divided into three types, i.e.

statistical models, discriminative learning models and generative learning models. Sta-

tistical models [24–27] use mathematical tools to express the geometric information in

a 3D handcrafted feature descriptor. This descriptor is designed solely to describe spe-

cific geometry using underlying statistic characteristic of input data. A corresponding

matching is performed between multiple set of features to search for the maximum like-

lihood region and compute the best resultant matching affine transformation. However,

the handcrafted feature descriptors are often restricted by its capacity of expressing and

generalizing novel data that are not tailored to its input pattern. Therefore, a more gen-

eralized technique should be developed to adapt to the data pattern using deep learning

approach.

Recent success in learning-based approach using scalar-based neural network

[4, 10, 28–32] has enabled the formulation of versatile data-driven descriptor to estab-

lish correspondence in multi-dimensional data. Learning-based 3D descriptor [4, 28–30]

focuses on establishing global descriptors in various representation of 3D data. They

are specialized in global level features learning and hence are ideal to be implemented

in object classification and segmentation task. On the other hand, 3D local descriptor

[10, 31, 32] is designed to inherit advantages of data-driven in learning-based approach

and properties of learning local level feature to establish correspondence in non-rigid de-

formed data. However, conventional 3D reconstruction techniques are constantly facing

issues in deformations of the input resulting an addition degree of difficulty in the data
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processing. In light of generative learning models [33–36], learning-based 3D descrip-

tor approaches are implemented to directly process raw input 3D data and reconstruct

output in generative manner using autoencoder architecture [33]. Derived from unsuper-

vised clustering based on the probabilistic distribution, i. e. Gaussian distribution, the

autoencoder architecture is modeled to explore and discover the underlying latent dis-

tribution of input data. Nonetheless, existing generative learning models [34–38] adopt

scalar-based neural network to perform features learning to produce data representation.

Due to scalars inability to efficiently represent spatial and pose features without

addition parameters, they are often required to estimate the canonical pose of input data

prior to processing [4, 39]. Inspired by the capsules network architecture [40, 41], vector

representation can be adopted in 3D local descriptor to efficiently encode spatial and

pose features. The vector-based neural network introduces the concept of equivariance

by retaining the pose information to the encapsulated local descriptor that encodes input

features. This property can greatly improve a generative reconstruction, particularly in

novel viewpoint of the input and circumvents the use of estimated canonical pose [42].

Thus, the motivation of this research work is to design novel generative learning model

that can learn raw 3D point cloud representation, point cloud reconstruction and for real-

world 3D modeling application. In the following sections, the problem statements, aim

and objectives are laid out in detail to highlight the challenges and resolution proposed

in this research work.

1.2 Problem Statement

The modeling of 3D object plays a crucial role in enabling spatial and depth visu-

alization in important tasks such as autonomous robotic navigation, object recognition,

Virtual Reality (VR) and human bio-mechanics understanding. Due to the advance-

ment of depth sensing technology, 3D data has become a preferred data modality over

2D data in presenting an object because of the capability to retain depth information.

However, 3D data representation learning and reconstruction techniques have encoun-

tered multiple challenges due to variations in the data representation, characteristics and

properties. Consequently, the variations can greatly affect the procedure in analyzing

and processing the 3D data to efficiently reconstruct a 3D model. In brief, the problems

could be structured into three aspects as follows:
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1. Number of acquisition equipment is increased as a counter measure to provide

coverage for occluded viewpoint of an object instance [43, 44]. With increased

number of equipment in multiple-view acquisition, computation cost is exten-

sively increased due to larger stream of incoming data and required computa-

tion power. Multiple-view acquisition can be branched into marker-based and

markerless-based approach. Pioneering marker-based 3D modeling system such

as VICON [45] and Qualisys [46] require active or passive markers to be attached

on moving object. A precise equipment setup and large operating environment

are also required to do 3D data acquisition. On the other hand, markerless-based

approach applies computer vision techniques to acquire object’s depth informa-

tion using commodity range-sensing sensors such as stereo vision. Moreover,

unequal distance placement of equipment can cause non-rigid deformation in the

acquired 3D data in each viewpoint. Non-rigid deformations are associated with

spatial and geometric deformation, i.e. scaling and stretching. In addition, non-

stationary object, particularly in large motion can further increase the complexity

of non-rigid deformation. Due to recent research advancement in deep learning

architectures, obtaining complete 3D data information from single viewpoint has

drawn attentions in many 3D modeling applications [47],

2. Widely implemented 3D reconstruction techniques can be generalized into two

categories: 1) Statistical model, and 2) Discriminative learning model. In statisti-

cal model, the technique mainly depends on statistical analysis on the input data

using mathematics derivation to establish correspondences between viewpoints.

However, statistical model is poor in novel data generalization due to lack of

learning capability. For instance, statistical models lack capability in handling

higher complexity geometric structure. The latter, discriminative model incorpo-

rated Deep Learning (DL) architecture in performing data analysis and learning

to establish correspondences of input data. In comparison, discriminative model

outperformed statistical model in establishing correspondences with higher capa-

bility in novel data generalization. However, the discriminative learning model

is performing at a less ideal correspondence accuracy within 60-67% in estab-

lishing correspondences for 3D reconstruction. Moreover, discriminative model

remains as a conventional 3D reconstruction technique where challenges such as

rigid and non-rigid deformation imposed on input data can greatly affect its per-

formance. On the other hand, recent research trend in generative learning models
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have shown its capability to generate realistic output and great generalization to

high degree of shapes varieties. Hence, efforts are focused on generative learning

models in 3D reconstruction due to its performance, feasibility and applicability,

3. Discriminative learning model is a stepping stone in DL-based 3D reconstruction

by leveraging the learning capability of DL to process and learn 3D data. Due

to many challenges faced in conventional 3D reconstruction techniques, recent

research efforts have been invested into generative techniques for 3D reconstruc-

tion. Thanks to the advancement in technology of depth sensing, 3D datasets are

widely available that are covering many category of objects, scene and environ-

ments. Benefiting from the abundance of 3D data, DL techniques can leverage

the large variations in 3D datasets to achieve better generalization in generative

reconstruction. However, most current generative learning models in point cloud

reconstruction are using scalar-based neural networks [34, 35] in generating scalar

features as latent representation. As the result, scalar features cannot substan-

tially represent spatial and geometric properties of 3D data due to lack of pose

information and lesser immunity to outliers and noises [48, 49]. In addition, cur-

rent generative learning models [35, 36, 38] are depending on large dimension in

latent representation which can greatly impact on the network complexity and

parameter .

1.3 Aim and Objective

The aim of this research is to develop a new 3D point cloud representation learning

and reconstruction technique to improve the current 3D modeling using raw input point

cloud acquired from single viewpoint depth sensor. The objectives of this research can

be divided into three sub-objectives as follows:

1. To design a novel 3D point cloud representation learning and reconstruction tech-

nique driven by learning of local descriptor, i.e. Gaussian components and genera-

tive sampling using DL architecture derived from point cloud density distribution,

2. To design a part-to-whole DL architecture by adopting a novel vector-based neural

network pipeline to encapsulate local descriptors into global latent features (global

descriptor) for 3D point cloud reconstruction,

3. To verify the proposed 3D point cloud representation learning technique and

generative learning model in real-world application of 3D modeling using input
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data acquired from single viewpoint depth sensor.

1.4 Significance and Contributions

Representation of an object in 3D is crucial for aggregating its shape and ge-

ometrical information in multiple viewpoints. In this research, several novel network

architectures are proposed for 3D data representation learning and reconstruction for

the applications in 3D modeling. The research works explore the combination use of

density estimation in point cloud, generative sampling for point cloud reconstruction,

part-to-whole learning DL architecture and application in 3D modeling using real-world

data. The significance and contributions of this research can be summarised as follows,

Figure 1.2: Point cloud representation learning using parametric mixture model.

1. The density distribution of point cloud is crucial in representing its underlying

structure in a reduced and concise manner. Learning representation of point

clouds using neural networks poses challenges due to the sparsity and its un-

ordered structure. Moreover, conventional point cloud models with single latent

feature representation [34, 35, 37] are not sufficient to fully capture the complex

geometry of a point cloud. A key contribution to this research work is a proposed

parametric mixture model based on a neural density estimation to produce mul-

tiple local representations of a point cloud, where each representation is a density

parameter as shown in Figure 1.2. In particular, Gaussian mixture model is the

key element in estimating the local feature distribution on a point cloud using

Gaussian components, i.e. mean and variance. Conventionally, iterative compu-

tations are required to estimate density parameters in a Gaussian mixture model.

By using neural network to produce latent inference, the iterative term can be

eliminated and resolved by network training iterations. The proposed network
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named Point cloud Neural Density Estimator comprises two-stage network mod-

ules, (a) Global Density Encoder encodes the latent global density of input point

cloud, (b) Local Density Autoencoder first infers latent local densities from la-

tent global density through latent inferencing, subsequently a projection network

is used to project ambient density parameters. The network is trained in the

unsupervised manner by directly maximizing the average log-likelihood function

derived from Gaussian mixture model. The significance and contribution of this

research work is journaled in Chapter 3.

Figure 1.3: Partial point cloud reconstruction from Gaussian components using generative
sampling.

2. Partial point cloud is a common challenge encountered in 3D data acquisition

on real-world object due to viewpoint occlusion and limited sensors resolution.

Complex configuration in multiple viewpoints acquisition may not be practical

in achieving real-time operation. Therefore, partial point cloud reconstruction

techniques using single viewpoint are recently drawn into focus by leveraging

the learning capability of deep learning neural networks. A key contribution is

realized in a novel Gaussian point cloud autoencoder to reconstruct a complete

point cloud from partial point cloud inspired by generative sampling process using

estimated Gaussian components of a ground truth point cloud as illustrated in

Figure 1.3. As opposed to existing work that utilize shared single latent feature

for reconstruction and residual network for point cloud completion, this work

uses ambient Gaussian components as local feature representation for complete

point cloud reconstruction. Moreover, a probabilistic sampling training strategy

and weights superposition concept are proposed, drastically reducing the network

parameters and improving the learning efficiency. As a result, the proposed model

demonstrated better point cloud reconstruction as compared to most existing

models despite having a smaller number of network parameters. In addition, the
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network has an advantage of providing observable insight of local features i.e.,

mean and variance, that can be reviewed in ambient space. The significance and

contribution of this research work is journaled in Chapter 4.

Figure 1.4: Part-to-whole learning through Dynamic Routing on segmented local point
cloud parts.

3. Point cloud object classification task has become trending due to crucial appli-

cations using depth sensors in fields such as autonomous robotic navigation and

semantic environment learning. With recent advancement in DL architectures,

more research efforts have been invested in achieving efficient and feasible depth

information processing. However, most DL architectures are relying on scalar-

based neural network to encode features of input point cloud. Due to lack of

ability to encode pose information in scalar-based neural network, the network

performance can be tremendously impacted when input point cloud is imposed

with a novel transformation, i.e. rotation. A key contribution in this research

work is realized in a novel part-to-whole capsule network to learn point cloud

objects through parts feature reasoning as illustrated in Figure 1.4. To efficiently

obtain part features (local descriptor) from input point cloud, local parts are

segmented using proposed Part Sampler Network (PSN) and encoded into part

capsules. Through dynamic routing algorithm, the network learns to determine

the existence of an object class capsule (global descriptor) via parts voting. Ben-

efited from capsule architecture, the features are encoded in vector form, where

the magnitude of vector represents the activation of feature and the direction

represents the pose information. Therefore, the proposed network inherited the

equivariant property in point cloud representation learning and reconstruction.

Lastly, a reconstruction loss is incorporated in addition to existing objective func-
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tion to further enhance the learnt object class feature by adopting the proposed

Gaussian point cloud reconstruction network. The significance and contribution

of this research work is journaled in Chapter 5.

Figure 1.5: 3D human reconstruction models using input partial point cloud of scanned
human.

4. Partial viewpoint occlusion is a common issue encountered in acquiring 3D human

model using single viewpoint acquisition. The use of generative learning model

is recently drawn into point clouds reconstruction to infer complete point cloud

due to its generative learning property. A key contribution is realized in two

proposed 3D human reconstruction techniques using input partial point cloud

acquired from single viewpoint depth sensor as illustrated in Figure 1.5. The

proposed 3D human reconstruction techniques can be categorised into two recon-

struction models: (1) Generative skeletal joint-based Autoencoder for 3D human

point cloud reconstruction (Non-synthetic model), (2) Skeletal joints-based re-

gressive synthetic 3D human reconstruction (Synthetic model). In non-synthetic

model, the proposed autoencoder architecture is comprised of a joints encoder

and a patch decoder. The joints encoder first learns the latent representation

of input partial point cloud using Gaussian maximum likelihood and infers a set

of Gaussian components consisting of the localized skeletal keypoints and vari-

ances of ground truth human. Subsequently, the inferred Gaussian components

are viewed as local human part keypoints for local patch sampling using a patch
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decoder. In synthetic model, the proposed network infers skeletal joints and vari-

ance for synthetic 3D human reconstruction. Similar to non-synthetic model,

localized skeletal joints and variances of ground truth human are estimated using

a joints encoder. Subsequently, the skeletal joints are fed to a regressive human

model to reconstruct a synthetic human model to obtain a complete point cloud.

Lastly, a two-mode training strategy is proposed to enhance the learning of the

proposed method by employing synthetic training in prior and non-synthetic fine-

tuning. The significance and contribution of this research work is journaled in

Chapter 6.

1.5 Thesis Overview

This thesis provides a detailed study and development on 3D point cloud learning

and reconstruction, and evaluation using various benchmark syntethic and non-synthetic

datasets. It is outlined into six chapters as follows:

Chapter 2: Literature Review on 3D Point Cloud Representation Learning

and Reconstruction

This chapter covers the latest review of 3D point cloud reconstruction techniques

in 3D modeling, i.e. statistical model, discriminative learning model and generative

learning model. A detailed comparison on the three types of 3D point cloud reconstruc-

tion techniques are reviewed in term of input data structure, correspondence accuracy,

precision and recall using four benchmark datasets, i.e. ModelNet10, ModelNet40, ICL-

NUIM, and Semantic3D. The advantages and disadvantages of 3D point cloud recon-

struction techniques are highlighted for implementation guideline and future improve-

ments.

Chapter 3: Point Cloud Neural Density Estimation

Learning and analyzing point cloud using DL neural network is challenging due

to the sparsity and un-ordered nature of the data modality. This chapter proposes a

parametric mixture model based on a neural density estimation to produce multiple

local representations of a point cloud, where each representation is a density parameter.

In particular, the proposed network is inspired by Gaussian mixture model in extracting
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local feature distribution of the sparse and un-ordered point cloud using Gaussian com-

ponents. Due to the property of local maximizer of Gaussian distribution, the proposed

network inherited the property of equivariant, which is a desired to retain input trans-

formation through out the network propagation. The performance of proposed network

is evaluated on the benchmark datasets: Modelnet10, Modelnet40, and ShapeNetCore13.

Chapter 4: Partial Point Cloud Completion using Patch-based Autoencoder

Partial point cloud is a common challenge encountered in acquiring 3D data

on single viewpoint depth sensor acquisition. This chapter covers the development of

partial point cloud completion technique inspired by generative sampling process using

point cloud representation derived from Gaussian components. A patch-based decoder

is proposed to reconstruct output point cloud by taking input of Gaussian components.

Probabilistic sampling training strategy and weights superposition concept is proposed

to increase the learning capability and reduce the network parameters. The perfor-

mance of proposed network is evaluated on ShapNetCore synthetic dataset and KITTI

non-synthetic dataset.

Chapter 5: Part-to-Whole Learning Capsule Network on Point Cloud Clas-

sification and Reconstruction

Learning equivariant representation of point cloud is challenging due to limitation

in scalar-based neural networks. This chapter demonstrates a vector-based neural net-

work for equivariant point cloud representation learning and reconstruction by adopting

capsule network. The proposed network incorporated point cloud density estimator for

part segmentation and generative sampling decoder for reconstruction. In addition to

conventional capsule network objective function, the proposed network is trained end-

to-end using joint objective function. Performance of proposed network is evaluated

and compared to existing scalar-based network on benchmark datasets i.e. ModelNet10,

ModelNet40, and ShapNetCore13. The proposed network is also evaluated on classifi-

cation and reconstruction of perturbed input point cloud.

Chapter 6: Skeletal Joints-based 3D Human Reconstruction from Partial

Point Cloud

3D human acquisition is a challenging task, particularly due to single viewpoint

setup and dynamic movement of the human during scanning. This chapter covers the im-
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plementation of generative learning model proposed in previous chapters to reconstruct

3D human model by taking input of partial point cloud. Two 3D human reconstruction

models are proposed in this chapter, where the models cover both non-synthetic and

synthetic output of 3D human model. Both 3D human reconstruction models first esti-

mate the skeletal joints of human. To generate non-synthetic output of 3D human, the

estimated skeletal joints and its variances are fed to a generative decoder to reconstruct

a complete point cloud of human. On the other hand, synthetic output of 3D human is

generated by input the skeletal joints into a regressive 3D human generator to regress a

3D human model. Uniform complete point cloud of human can be obtained by surface

sampling the 3D human model. Further, a two-mode training strategy is proposed to

enhance the network learning by training the network using synthetic data in prior and

fine tune the network using non-synthetic data. The performance of the proposed 3D

reconstruction models are evaluated on a non-synthetic dataset.

Chapter 7: Conclusion and Future Work

Novel 3D data representation learning and reconstruction techniques are proposed

to improve the efficiency of point cloud representation learning as well as in reconstruc-

tion. A summary of every chapter is drawn in this chapter to highlight the contributions

and significance of research findings. The advantages and limitation of the proposed 3D

data representation learning and reconstruction techniques are discussed in the chapter

for future development.
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Chapter 2

Literature Review on 3D Point

Cloud Representation Learning and

Reconstruction

2.1 Introduction

Three-dimensional (3D) point cloud representation learning and reconstruction

using Deep Learning (DL) architecture has become an active trend in the research field of

computer vision. The main advantage of using DL architectures to analyse information

is their capability to learn supervised or unsupervised with provided information source.

A DL architecture, i.e. neural network, can provide a framework where a representation

of a set of complex information can be generated by training the network. By having

more advantages in representing object in 3D space compared to conventional 2D data,

recent researches are shifting into analyzing 3D representation information of object

using DL. With variety of 3D representations, such as voxels, RGB-D, projections, and

point cloud, they pose many complex challenges not encountered in conventional 2D

data. Among the representations, point cloud gained the most interest by researchers

due to its simplistic representation in three dimension space and contain rich geometric

detail. However, point cloud is coupled to several challenges such as sparsity and points

permutation [4], noises and outliers [50], and partial data [35, 36]. Despite the challenges,

point cloud processing using DL architectures has recently become an active research

area in learning rich representation from point cloud mainly due to advancement and
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accessibility to affordable depth sensors. Moreover, completion of point cloud is also

a great interest in recent research trend to concisely express an object in 3D modeling

and as part of a vital step in 3D reconstruction. Pioneering works commonly employ

one of several, such as latent features [4, 51, 52], density model [53, 54], and variational

density model [55] to encode a point cloud to perform specific tasks, such as object

classification and reconstruction. Unsupervised learning in the point cloud processing

models [51, 53, 55–57] are also commonly employed to learn the distribution of the point

cloud corresponding to the variation in the data.

A basic process of 3D modeling comprises of depth map acquisition, 3D recon-

struction and surface reconstruction [23]. 3D reconstruction techniques are the core

computing process in 3D modeling to generate a complete 3D object model. The pro-

cess typically generates representations of point cloud in prior and subsequently post

process the point cloud to complete a 3D object model. The process models can be

broadly divided into three categories, i.e. statistical models, discriminative learning

models and generative learning models. Statistical models [26, 27, 58] use mathematical

derivations to express the geometric information in a 3D handcrafted feature descriptor.

This descriptor is designed to describe specific geometry using underlying statistic char-

acteristic of input 3D data. A corresponding matching is performed between multiple set

of features to search for the maximum likelihood region and compute the best resultant

matching affine transformation. However, the handcrafted feature descriptors are often

restricted by its capacity of expressing and generalizing novel data that are not tailored

to its input pattern. Therefore, a more generalized technique should be developed to

adapt to the variety of data pattern using DL approach.

Established DL approaches such as Convolutional Neural Networks (CNN) have

shown promising results over 2D computer vision tasks, such as object segmentation

[59, 60], object tracking [61, 62] and object classification [63–65]. Due to the limita-

tion of CNNs [66] in modeling the sparsity and viewpoint variation of 3D data, DL

models have started gaining popularity in the 3D domain attempting to better exploit

the rich information in raw 3D data for 3D descriptors, while resolving its challenging

properties [4, 28, 30, 67]. Several popular DL based 3D descriptors [4, 29, 30] apply

supervised learning to learn shape information from predefined dataset and they are

commonly known as discriminative learning models. Early development of global 3D

feature learning in discriminative learning models are mainly focused on object classifi-

cation [28, 66, 68], while others are focused on segmentation [4, 30]. These DL models
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are also known as global descriptor, and their focal objective is mainly derived from

extracting semantic feature of 3D model at global level. Naturally, global descriptors

fall short in establishing local correspondences that are essential in task of correspon-

dence matching during 3D reconstruction. Due to the inability of global descriptor to

efficiently learn local 3D features, DL based local 3D descriptor models are formulated

to overcome the difficulties of global descriptor learning [7, 31].

Generative learning models [33] use unsupervised method based on the proba-

bilistic distribution, i.e. Gaussian distribution, as the principled way to model machine

learning and machine perception problems. In addition of Bayesian statistics to Gaussian

distribution, it provided a rich and flexible language for specifying the prior knowledge

of novel inputs and subsequently refining it with data and evidence [69, 70]. Conversely,

discriminative learning models adjust a possibly non-distributional model to data op-

timizing for a specific task, such as classification or prediction. This typically leads to

superior performance yet compromises the flexibility of generative modeling. The de-

tail of 3D reconstruction techniques are reviewed in-depth to cover the commons and

differences between generative learning models and non-generative approaches such as

statistical models and discriminative learning models. Throughout the literature reviews

of 3D point cloud representation learning and reconstruction techniques, the advantages

and drawbacks of each model are discussed and followed by a summary of the future

trends and development in the end of this chapter.

2.2 Fundamentals of 3D Data Representations

Depth perception by 3D data acquisitions using depth sensors can produce variety

of representations with unique structure and properties. The 3D data representations

can be largely categorized into two groups [22]: (i) Euclidean-structured Representa-

tion, (ii) Non-Euclidean-structured Representation. Euclidean-structured representa-

tion is typically presented in fixed grid structure such as RGB-D and volumetric data,

where the data are organized by global parametization with known common coordinate

system. On the other hand, non-Euclidean structured representation typically lacks of

grid structure and is commonly presented in sparse 3D space and each data point is

un-ordered (permutation). In the following, the two representations are elaborated in

brief on their advantages and disadvantages, and interest of the representation in recent

research trend.
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2.2.1 Euclidean Structured Representation

Due to advancement and easy accessibility to depth sensors such as Microsoft’s

Kinect [1], depth information acquisition is popularized by coupling RGB image with

depth map (RGB-D) [21] to obtain a 2.5D data representation, where the 0.5D represents

depth map. Intuitively, RGB-D is an effective representation of a 3D object, where the

RGB data retain the visual information of the scanned object, and the depth map

represents the depth information in each pixel. One the other hand, a 3D object can

be decomposed into multiple 3D volumetric representation (voxel) with blocks in 3D

grid [29]. A voxel representation essentially describes the distribution of a 3D object

in 3D space by occupying the voxel grid, thereby obtaining a voxel 3D occupancy grid.

Moreover, the occupancy grid can effectively encode the viewpoint information of the

scanned 3D object [22].

However, each grid in 3D volumetric representation contains sparse information

while a large number of voxels inside are not useful in describing the surface feature

of 3D shapes. Therefore, 3D volumetric representation is expensive and inefficient as

the computation and memory are growing at cubic level, especially with increasing

resolution. Similarly, 3D convolution also consumes a lot of computing power when

extracting features and sampling, which also results in low and limited resolution for

most 3D voxel reconstruction tasks. In addition, converting point cloud into 3D volumes

introduces a quantization effect that discards some details of the data [71, 72] and is not

suitable for representing fine-grained information.

2.2.2 Non-Euclidean Structured Representation

Two main types of non-Euclidean structured representation are 3D mesh and

point cloud. Essentially, 3D mesh is a collection of vertices and faces that construct

a 3D shape. The vertices are a set of points associated in a list of ordered index that

that is similar to a grid structure in 3D space. The ordered vertices also describe

the connectivity of each point that ultimately constructs the surface of a 3D shape.

Due to the nature of connectivity of vertices in 3D mesh, it has close relationship to a

graph representation, where the connectivity can be viewed as the edge of each vertex.

However, 3D mesh is mostly only available as a post-processed 3D representation such

as synthetic 3D object model.

In raw 3D representation, point cloud can represent 3D shapes in a more efficient

manner. As point cloud is sampled from surfaces of objects, it can capture the details
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of surfaces of objects. A set of 3D point cloud represents a geometric shape, where

the surface is typically composed of coordinates in 3D space and is defined in format

of (x, y, z) [4]. Thus, a 3D representation of an object or scene is viewed as a 3 × N

matrix, where N is the number of points. 3D point cloud as an input modality poses a

unique set of challenges (e.g. permutation, rotation and data artifacts) when devising

a network architecture [4]. Noises, outliers and partial data distribution are commonly

associated in data artifacts and the occurrence of data artifacts is unavoidable in the real

world applications[50]. In addition, point cloud can be processed to obtain intermediate

representation such as voxels or meshes to offer benefits in certain task specific procedures

[23].

2.3 Point Cloud Representation and Reconstruction

Let a set of 3D point cloud defined as P = {pi ∈ R3}Ni=1, where P represents a 3D

object. 3D reconstruction can be formulated as follows: (i) A 3D object P can be recon-

structed or generated by a technique F. (ii) A ground truth 3D object G = {gi ∈ R3}Ni=1

exists to quantify performance metrics of F and it can be decomposed into non-generative

and generative models. Generally, F follows a generic pipeline, i.e. pre-processing, cor-

respondence matching and post-processing [23]. Pre-processing and post-processing are

essential in non-generative approaches to overcome aforementioned challenges before

processing the data. On the other hand, correspondence matching is the integral part

of non-generative models, which is responsible in establishing correspondence keypoints

by finding similarities in 3D data point as shown in Fig. 2.1. Typically, it requires

more than one viewpoint to construct a 3D model in non-generative models. Therefore,

performance of correspondence matching is more weighted in non-generative models to

enable high quality 3D reconstruction [10].

In non-generative models such as statistical models and discriminative learning

models, the correspondence matching can be defined as R(·) function below:

R(c1, c2) = |ddis(f, f ′)| ≤ τ, (2.1)

where c1 and c2 are two local patches containing multiple points of interest. Hence, the

correspondences are computed using dissimilarity metric ddis between f and f ′ feature

points generated by a feature descriptor function X : c1 → f and c2 → f ′ respectively.

τ is a threshold of correspondence probability value. Lower value of dissimilarity metric
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Figure 2.1: The basic architecture of non-generative 3D reconstruction models using mul-
tiple viewpoint partial point cloud with the indicating flow path: (a) statistical models use
mathematical equation to derive 3D feature descriptor in a forward manner, (b) Discrimi-
native learning models apply ground truth data as a supervised model to obtain trainable
feature descriptor in an iterative backpropagation manner.

than τ indicates that c1 and c2 are likely to be the correspondence on the same seg-

ment of a 3D object and this is also reciprocal to maximum likelihood matching when

similarity metric is used. In statistical models, X is a primitive approach that relies

on handcrafted function derived from mathematical expression as shown in Fig. 2.1(a).

On the other hand, in discriminative learning models, X is a supervised data-driven DL

neural network governed by the dissimilarity metric as an objective function to generate

the corresponding features as shown in Fig. 2.1(b).

However, generative models do not rely on X for correspondence matching. In-

tuitively, generative models adopt unsupervised data-driven DL networks to learn input

feature distribution involving an encoder network E and generate an output that has

close approximation to input data involving a decoder network D[73, 74], such that

Figure 2.2: The flow of generative learning models governed by a reconstruction loss to
generate a full 3D model from partial point cloud in single viewpoint.
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z ∼ E(P ) (2.2)

P ′ ∼ D(z) (2.3)

where E(·) is a network that infers latent distribution z of input data P . D(·) is a

network that samples output data P ′ from the latent z. A reconstruction loss is used to

govern the unsupervised training mechanism of the generative learning models in order

to obtain a generic 3D modeling as shown in Fig. 2.2.

2.3.1 Statistical Models

Statistical models use handcrafted mathematical derivation to establish image

feature descriptor from the underlying statistical properties, such as image edges or

corners [75]. Several early statistical models [76–78] develop 2D feature descriptors for

image classification and pattern recognition. At the present, 2D feature descriptors

are ill-performing in 3D domain due to data sparsity and rotational variant [4] which

do not exist in 2D data. Therefore, 3D feature descriptors are devised to model the

spatial and geometric structure of 3D data. However, 3D feature descriptors [58, 79, 80]

are operated at global level, hence they are not ideal for higher complexity geometric

structure representation at local level. Subsequently, local level 3D descriptors [25–

27, 81–83] are formulated to overcome the disadvantages of global 3D feature descriptors,

while improving the performance of correspondence matching.

In Point Feature Histogram (PFH) [81], a histogram-based 3D descriptor is pro-

posed to model the geometry structure of 3D data at local region level. In an incre-

mental development of PFH, Fast Point Feature Histogram (FPFH) [25] is optimized

from PFH to effectively reduce the computational footprint, while retaining the dis-

criminative properties. Subsequently in SHOT [26], a 3D local descriptor featuring a

hybrid structure of signature and histogram is proposed, which incorporates geometric

signature coupled with histogram features. As the result, SHOT is able to achieve a

more descriptive feature descriptor then FPFH. Moreover, a shape diameter function

(SDF) is introduced by Shapira et al. [82] to represent contextual signature of local

shape volumetric information. Meanwhile, a probabilistic descriptor is proposed [84] to

jointly interpreting surface correspondences, segments, and shape deformation to work

in correlation to achieving an efficient descriptor.
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On the other hand, Local Reference Frame (LRF) descriptor and Rotational Pro-

jection Statistics (RoPS) descriptor is proposed by Guo et al.[83] to describe a viewpoint-

invariant local geometric and represents distribution of the rotationally projected adja-

cent feature points. Both LRF and RoPS descriptors are to overcome viewpoint and

rotation invariant issue respectively when analyzing arbitrary region of 3D data. In a

more recent work, Perspective Invariant Feature Transform (PIFT) [27] is proposed to

incorporate color and depth information prior to feature extraction. Using color and

depth information, the PIFT is able to filter uncorrelated correspondence keypoints

that are unstable in correspondence matching. As a summary, statistical models are

computational efficient due to their discrete implementation. However, they are highly

dependent on specific task to derive 3D feature descriptors from the input data. Besides,

statistical models lack of learning process which will enable the model to adapt to novel

data. Therefore, statistical models are unable to generalize in new data modalities or

scale accordingly.

2.3.2 Discriminative Learning Models

The development in DL approaches has been progressing tremendously with re-

markable performances in various applications due to the advancement on optimization

techniques and DL architectures [85]. One of the DL approaches in discriminative learn-

ing models is in their supervised data-driven mechanism to learn features descriptor

from ground truth data. They can achieve better generalization towards novel data

and are more efficient as compared to statistical models. By using the advantages of

parallel computation, these models are then specifically tailored to analyse and process

3D data. Early works in discriminative learning models [4, 28–30, 66, 67, 86] showed

that the feasibility of DL approaches can be applied in 3D data, such as 3D point cloud,

meshes and voxel grids. A general implementation of a discriminative learning model

is using specialized neural network i.e. CNNs to learn an overall feature representation

of 3D data and in combination with a fully connected neural network for classification

task. Although most of the early works put focus on performance in classification task,

they mainly learn global level representation, which is less ideal for local correspondence

matching in 3D reconstruction.

Processing 3D data with grid structure such as voxel representation is straight

forward because 3D convolutional neural networks (3D CNNs) can be directly imple-

mented to analyze the data. Early 3D reconstructions [66, 87–90] apply 3D CNNs
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build upon the volumetric representation of 3D point cloud. Giridhar et al. [87] learnt

a joint embedding of 3D voxel shapes and their corresponding 2D images. Choy et

al. [91] trained a recurrent neural network to encode information from more than one

input views. Besides that, Xie et al. [38] introduced 3D grids as intermediate repre-

sentations to regularize un-ordered point cloud and proposed a novel Gridding Residual

Network (GRNet) for point cloud completion. They devised two novel differentiable

layers, named Gridding and Gridding Reverse, to convert between point cloud and 3D

grids without losing structural information. They also presented the differentiable cubic

feature sampling layer to extract features of neighboring points, which preserves context

information. In addition, a new loss function, namely Gridding Loss was designed to

calculate the L1 distance between the 3D grids of the predicted and ground truth point

cloud, which is helpful to recover details. But voxel formats are computationally heavy

and information sparse, which lead to research on the octree data structure [30, 92, 93]

for representing 3D data. Despite the simplicity in representing 3D data using octree

data structure, they contain finer details of 3D objects with less computation compared

to voxel. However, both voxel and octree representations fall short in their capability

in preserving geometry of 3D objects such as surface smoothness and intrinsic shape

properties [22].

In more recent researches, efforts have been invested in direct process raw 3D

point cloud despite the challenges using DL. In Kd-Network[67], the approach repre-

sents a geometric structure of unstructured 3D point cloud by modeling neighbourhood

points as hierarchical graph. Additionally, Khoury et al. [94] constructs spatial semantic

histograms on adjacent points of each unstructured 3D data point. Using constructed

spatial semantic histogram as local 3D feature, it is used as training data for a neural

network to learn discriminative local feature representation. However, they mainly rely

on statically pre-processed 3D point cloud as the input source for their DL architecture.

In contrary, PointNet [4] and PointNet++ [7] are the pioneering works that proposed

shared MLP-based networks on ingest unstructured 3D point cloud analysis and tasks

such as 3D object models classification and segmentation. Due to its property in per-

mutation invariant and ability to directly ingest raw point cloud, Pointnet is regularly

implemented as point cloud encoder for latent representation learning [7, 32, 35]. On

the other hand, a directed graph with vertices and edges can aggregate local features

in a point cloud regardless of the sparsity and points permutation, where vertices are

the points and edges are the distance feature of neighbourhood points. In graph-based
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models [95, 96], a directed graph is constructed from the input point cloud and a neural

network is used to project the directed graph into latent features. In Dynamic Graph

CNN (DGCNN) [52], the proposed work constructs hierarchical directed graph, of lo-

cal neighborhood points in a point cloud and applies convolution-like operations on the

graph to encode richer latent features.

More recently, Siamese network came to the attention of researchers as it is ar-

chitecturally designed to maximize the discrimination learning, which can assist the

network to learn fast and efficiently [60, 97, 98]. A Siamese network architecture is

constructed using two identical networks containing identical weights in both networks.

Each network in a Siamese network producing a comparable output vector that will be

computed for dissimilarities. Simple distance metrics such as L1 distance can be imple-

mented to compute dissimilarities [97]. Forthwith, Siamese network is widely adopted

as the discrimative learning model in [10, 31, 32, 99]. In 3DMatch [10], Siamese 3D

CNN is implemented to infer discriminative local features from local voxel grids. L1

distance is used to compute dissimilarities between patches to find correspondences be-

tween patches. [31] on the other hand learns to generate discriminative features by using

projection of 3D data and a contrastive loss as objective function. Furthermore, Deep-

Point3D [32] uses PointNet as the base architecture to directly ingest 3D point cloud. A

novel Multi Margin Contrastive Loss (MMCL) is proposed in DeepPoint3D network to

leverage non-convergence and fast-convergence data in a joint objective function. As the

result, DeepPoint3D network could learn better generalization in inferring discrimina-

tive local feature. On the other hand, LRF-net [99] utilizes the discriminative advantage

of a Siamese network on LRF as the training data. As discussed in statistical models,

a LRF is a local geometric descriptor, hence directly learning from LRF improves the

performance of LRF-Net in discriminating correspondences in 3D data.

2.3.3 Generative Learning Models

Generative learning models are approaches that generate output samples by infer-

ring latent representation of input data [33]. As oppose to statistical and discriminative

learning models, generative models typically employ discriminative learning as part of

its latent representation learning mechanism to learn latent distribution or representa-

tion of input data. They are commonly weakly-supervised or unsupervised data-driven

approaches and reconstruct close approximation of input samples from learnt latent

distribution [74]. Well-established generative learning model on point cloud such as
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Auto-Encoder (AE) is an unsupervised architecture comprises an encoder network and

a decoder network, where an encoder [73]. An encoder network is optimized to infer the

latent representation while the decoder network is optimized to generate output from

the latent representation. Early implementation of AE in point cloud representation

learning and reconstruction [37] showed remarkable learning generalization and capabil-

ity in reconstructing output sample that has close approximation to input data. Due

to the benefit in generating close approximation of input, generative learning models in

point cloud reconstruction are commonly given distorted input such as partial input to

generate complete ones. This task is commonly known as point cloud completion.

Due to viewpoint occlusion that is common among depth acquisitions, point cloud

completion task have gained momentum in the research field [47]. In a pioneering work

in point cloud completion, FoldingNet is proposed by Yang et al.[36] as a grid deforma-

tion approach using neural network parametization to mimic the action of folding a 2D

grid to match a 3D surface. In FoldingNet, a graph-based encoder is implemented to

improve aggregation of local features of input 3D data, while a weight sharing neural net-

work is implemented in decoder network which is more efficient than decoder approach

introduced in [37]. However, local details generated from FoldingNet is the drawback of

the approach because it "folds" on the shape at global level, hence neglecting local de-

tails. To resolve this drawback, AtlasNet [100] is proposed to assemble multiple "folded"

part to complete a full shape using efficient shared MLPs. In addition in the computa-

tion efficiency advantage, AtlasNet learns at local level, hence it has larger capacity of

generalization to novel shape and capability in discriminating shapes.

On the other hand, Point cloud Completion Network (PCN) [34] implemented a

graph-based encoder coupled with FoldingNet decoder [36] for point cloud reconstruc-

tion. However, the implemented FoldingNet decoder in PCN involves multiple iterative

processing that burdens the process to generate output point cloud. On the other hand,

Liu et al. [35] proposed a coarse-to-fine grain point cloud sampling by introducing

a novel minimum sampling strategy and implemented the patch-based decoder. The

method can achieve low reconstruction loss, however the trade-off is realized at the ex-

pense of higher network complexity. In a similar fashion, Wang et al. [101] proposed

a cascaded refinement network with a coarse-to-fine strategy to synthesize the detailed

object shapes. Their framework is designed to keep the object details in the partial

inputs and to produce realistic generation of the missing parts using joint reconstruction

loss and an end-to-end adversarial loss. While, TopNet [102] proposed a hierarchical
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tree structure to generate structured point cloud by modeling point cloud topology.

This allows better generalization to novel shapes, however the method is intractable to

scalability and has limited shapes learning capacity due to the dependency of operating

nodes in the tree structure. Moreover, PointGMM [54] is devised to hierarchically learns

the topology of 3D shape using neural Gaussian Mixture Model (GMM). The network

learns by coarse-to-fine point cloud generation through multiple levels Gaussians.

Besides coarse-to-fine and hierarchical strategies, Wen et al. [103] infer the com-

plete geometries for missing regions of 3D objects using the skip-attention network (SA-

Net). They used PointNet++ framework as the backbone of point cloud feature encoder.

A skip-attention mechanism is used to effectively exploit the local structure details of

incomplete point cloud during the inference of missing parts. A structure-preserving

decoder with hierarchical folding block is used to generate complete point cloud. The

hierarchical folding preserves the structure of point cloud generated in the upper layer,

by progressively detailing the local regions using the skip-attentioned geometric infor-

mation at the same resolution from the encoder. Furthermore, other researches have

implemented novel viewpoint equivariance capsule networks [42, 48, 104, 105] as encoder

networks to maximize the discriminative properties of latent features. As a result, the

capsule network based generative learning model is more generalized to novel viewpoints

and shapes.

2.4 Comparison on 3D Reconstruction Techniques and Dis-

cussion

Performance evaluation of the 3D reconstruction techniques are discussed on cor-

respondence accuracy, precision, and recall based on four commonly used dataset, i.e.

ModelNet10/40 [28], ICL-NUIM [106] and Semantic3D [107]. The performance met-

rics associated with non-generative models, i.e. statistical and discriminative learning

models are expressed as follows [108]:

(i) Precision is defined as the ratio of correct matches Ccor to the correct inlier

set Cin for classification task. Precision performance implies the capability of a model

in recognizing input shape by discriminating the input globally.

Precision =
|Ccor|
|Cin|

(2.4)
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(ii) Recall is defined as the ratio of correct or similar shape cor to the ground

truth shape CGT . To perform recall efficiently, local 3D feature needs to be concisely

encoded to accurately discriminate queried shapes.

Recall =
|Ccor|
|CGT |

(2.5)

(iii) Correspondence Accuracy (CA) evaluation is defined as the matching of

pairwise local correspondences c1 and c2 over total matching N .

CA =

∑
N R(c1, c2)

N
× 100% (2.6)

On the other hand, two widely used dissimilarity metrics for generative models

as the reconstruction loss between two sets of point cloud are Chamfer distance (CD)

and Earth Mover distance (EMD) [37, 109]. The CD is defined as:

dCD(P1, P2) =
∑
x∈P1

min
y∈P2

||x− y||22 +
∑
y∈P2

min
x∈P1

||x− y||22, (2.7)

where the similarities are simply the distance of two nearest point, thus it is less com-

putational intensive and permutation invariant. However, CD does not consider into

surface criterion, such as surface uniformity or surface connectivity [37, 100]. On the

other hand, EMD enforces a matching local criterion through a bijection before similarity

computation [35]. The EMD dEMD(·) is defined as:

dEMD(P1, P2) = min
ϕ:P1→P2

∑
x∈P1

||x− ϕ(x)||2, (2.8)

where ϕ(·) is a bijective function that maps matching P1 and P2. Due to EMD’s O(n2)

complexity, CD is often chosen for its computation efficiency. Nonetheless, there are

several O(n) approximations of EMD such as in [35, 110].

Performance of various 3D representation learning techniques are tabulated in Ta-

ble 2.1 revealing the precision and recall respectively using benchmark datasets. From

the comparisons, generative learning models outperform the discriminative learning

models and statistical models by a large margin of precision and recall. The achievement

from generative learning models is realized from the advantage of unsupervised learning

of the network training. As generative learning models can learn from training data

intrinsically, they are more generalized towards novel data. Moreover, significant recall
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Table 2.1: Precision and recall performance evaluation using benchmark datasets in local
3D descriptors.

3D Reconstruction Techniques ModelNet10/40 ICL-NUIM Semantic3D
Precision Recall Precision Recall Precision Recall

S
ta

ti
st

ic
al

m
o
d
el

s

SDF [82] 28.3/- 25.6/- - - 33.2 -
RoPS [83] 51.6/- 41.3/- - - 61.1 -
SHOT [26] 48.5/- 38.6/- - - 57.0 -
FPFH [25] 40.8/- 34.3/- 52.0 21.7 42.3 -

D
is

cr
im

in
at

iv
e

le
ar

n
in

g
m

o
d
el

s

Srivastava et al. [111] 55.4/- - - - - -
LMVCNN [31] 66.1/- 44.2/- - - 66.1 -

Khoury et al. [94] 65.5/- 48.6/- - - 65.6 -
3DMatch [10] - - 65.1 25.2 - -

DeepPoint3D [32] 69.5/- 48.8/- - - 68.1 -

G
en

er
at

iv
e

le
ar

n
in

g
m

o
d
el

s

Achlioptas et al. [37] 95.4/84.5 - - - - -
FoldingNet [36] 94.4/88.4 - - - - -

3DPointCapsule [104] -/89.3 - - - - -
Geometric Capsule [42] 96.0/- 94.3/- - - - -

Point2Spatial Capsule [105] 95.9/93.7 93.43/89.43 - - - -

Table 2.2: Correspondence accuracy of local 3D descriptors.

3D Reconstruction Techniques Data Input Intermediate Data Structure CA (%)

S
ta

ti
st

ic
al

m
o
d
el

s

SDF [82] Meshes - 34.8
RoPS [83] RGB-D LRF and RoPS 44.5
SHOT [26] RGB-D Signatures and Histogram 43.1
FPFH [25] Point cloud Point Feature Histogram 36.1
PIFT [27] RGB-D Color coded depth projection -

D
is

cr
im

in
at

iv
e

le
ar

n
in

g
m

o
d
el

s

Srivastava et al. [111] Point cloud Supervoxels -
LMVCNN [31] Point cloud Projection 63.4

Khoury et al. [94] Point cloud Histogram 60.3
3DMatch [10] RGB-D Voxel Grid 64.7

DeepPoint3D [32] Point cloud - 67.2

performance improvement is observed in capsule based generative learning model. This

is because the architecture of capsule network inherits the property of viewpoint equiv-

ariance, which has tremendously enhanced the ability of the network to discriminate

the shapes with various transformations, such as rotation and translation. Besides, the

capsule network architecture also has improved precision over other non-capsule based

generative models as the capsule network architecture obtains an advantage in learning

part-whole relationship that enable capsule network to deduce whole shape based on

observation of parts features.

Table 2.2 shows the summary of data input, data structure and correspondence

accuracy between statistical models and discriminative learning models. DeepPoint3D

can achieve the highest correspondence accuracy, followed by 3DMatch, LMVCNN, and
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CGF. This is due to discriminative learning models which are data-driven and thus are

more generalized than statistical model, while also having larger discriminative capabil-

ity. In a more in-depth experimentation, Srivastava et al. [32] demonstrated a drastic

performance degradation in LMVCNN and CGF under low resolution constraint. Such

phenomenon could be explained due to the lost information which occurs when 3D data

such as RGB-D or 3D point cloud in low resolution is transformed into intermediate

representation. However in generative learning models, the networks are capable of di-

rectly ingesting raw 3D point cloud, therefore intermediate representation of input data

can be avoided in the process. In addition, generative learning models can regenerate its

output samples in a higher fidelity, as oppose to statistical and discriminative learning

models that are required to search for keypoint correspondences for 3D reconstruction

using input data.

Most discriminative learning models prefer to ingest volumetric or voxels grids be-

cause it is easier to implement using CNN-based neural networks. However, intermediate

input 3D data representation has the issue of rasterization that causes information loss

and performance degradation [32, 67]. Therefore, researchers opted to directly process

and analyze raw 3D data, i.e. 3D point cloud to further improve the efficacy of com-

putation and minimize information loss. Due to learning capability of DL approaches,

discirmative learning models are popularized in learning point cloud to efficiently obtain

a rich and condensed representation. However, discriminative learning models can only

perform optimally in environment where there is no severe incomplete data, artifacts and

viewpoint variances. Thus, generative learning model is devised to extend the learning

capability of discriminative learning model to achieve better generalization by learning

to generate close approximation output of input data.

2.5 3D Human Modeling and Reconstruction

In conjunction to the advancement in the 3D representation learning and recon-

struction techniques, crucial application such as 3D human modeling can be greatly

benefited such as gait estimation and tracking for postural assessment [112, 113]. Sev-

eral existing approaches such as [15, 114–116] have shown success implementation on

reconstructing 3D human pose from 2D data. However, they mainly rely on estimating

depth to retrieve estimation 3D human pose. One the other hand, several proposed DL

networks [34, 35, 102] emerged to reconstruct complete point cloud from partial point
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cloud that is resulted from single viewpoint acquisition using depth sensor. In conjunc-

tion to the advancement in directly reconstruct 3D information from partial data, recent

researches [16, 17] are shifting into 3D human pose estimation and human shape using

information acquired from depth sensors. In general, 3D human shape reconstruction

can be divided into two categories [117], i.e. model-free and model-based 3D recon-

struction. The model-free methods do not employ human body models to reconstruct

3D human representation while the model-based methods incorporate parametric body

models in the part learning.

2.5.1 Model-free 3D Human Shape Reconstruction

As model-free 3D reconstructions do not take input of human body models with

depth information to search for human representation, they predict 3D human pose from

2D images with intermediately estimated 2D pose representation. The common use of

deep CNN [15, 114, 115] is deployed for 3D human pose estimation. Li and Chan [114]

proposed the use of deep CNN for 3D human pose estimation. Their framework was

jointly trained with pose regression and body part detectors to achieve pose projection

in 3D space. Tekin et al. [116] combined the traditional CNNs with autoencoder for

structured learning to represents the 3D pose from 2D image. A high-dimensional latent

pose representation learned by autoencoder was reprojected to original pose space with

a decoding layer to account for joint dependencies.

Besides that, implicitly learning of the pose structure from 2D data has recently

drawn into attention to infer 3D human pose with two separate sequential training steps.

They first perform 2D joint prediction and then reconstruct the 3D pose via optimization

or search. Pavlakos et al. [15] applied ConvNet for 2D joint location and subsequently

perform optimization step to recover 3D pose. They used volumetric representation for

3D human pose and employed a coarse-to-fine prediction scheme to do refinement in

3D pose estimation. To improve the 3D ground truth accuracy, they used the ordinal

depths of human joints as the supporting signal to perform weakly supervision in the

3D human pose learning [118]. Sun et al. [119] proposed the use of bones instead of

joints as pose representation. Subsequently, it exploited the joint connection structure

to define a compositional loss function that encodes long range interactions between the

bones.

Zhao et al. [120] pre-trained a 2D pose estimation network to predict 2D joint

locations. Subsequently, a semantic graph convolutional network is trained to predict
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3D pose from 2D joints features. Cheng et al. [14] proposed an occlusion-aware DL

framework to estimate a 2D confidence heatmaps of keypoints. With the optical flow

consistency constraint, unreliable estimations of occluded keypoints were filtered and

subsequently fed into 3D temporal convolutional networks to produce a complete 3D

pose. Xu et al. [121] performed deep kinematics analysis using 2D noisy pose inputs

to obtain 3D pose estimation concurrently by considering the static and dynamic body

structures. The limitation of model-free 3D reconstruction is restricted by its accuracy

of depth estimation from sensors because the captured data contains numerous artifacts

such as occlusion, outliers and non-uniform surface.

2.5.2 Model-based 3D Human Shape Reconstruction

While Model-free approaches are relying on estimation of depth from 2D images,

hence the predicted 3D pose can be unreliable due to estimation process. Moreover,

Model-free approaches do not provide expressive visual output of 3D human such as

parametric body shapes. The Model-based 3D reconstruction [122–126] on the other

hand incorporates parametric body shapes such as body pose and body volume to

perform 3D human reconstruction. Widely used volumetric models for synthetic hu-

man body construction are Fine Alignment Using Scan Texture (FAUST) model [122],

Skinned Multi-Person Linear (SMPL) model [123]. Litany et al. [127] proposed the

use of variational autoencoder incorporated with graph convolutional operations for the

completion of human shape reconstruction. It learns a latent space for complete realistic

shape with vertex-wise correspondence using FAUST synthetic dataset. In recent works,

SMPL model is commonly used to perform 3D parameter estimation to construct a full

human body. Several extended SMPL-based models such as SMPLify [124] and Vposer

[125] are devised to reconstruct 3D human model through skeletal joints regression. The

latter, Sparse Trained Articulated Human Body Regressor (STAR) [126] is introduced

with improvement over SMPL by training with additional 14,000 human subjects and

a learning set of sparse local pose corrective blend shapes. In addition, the number of

parameters in STAR is reduced to 20% of that in SMPL model.

Kinematic model in 3D space has gained increasing attention in 3D human pose

estimation recently because it is a realistic and accurate articulated body representation.

By using single depth sensor, Zhou et al. [17] infers 3D joint positions from partial point

cloud with a 3D pose regression network without 3D human reconstruction. In recent
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trend, kinematic and synthetic 3D human models are used to enhance 3D human re-

construction. For example, Jiang et al. [16] proposed to incorporate skeleton joints into

a DL network for 3D human shape reconstruction. The basic structure of this model

uses PointNet++ to extract point features and then map point features to skeleton joint

features and finally SMPL parameters for the 3D human reconstruction. In general,

SMPL offers a simple integration and compact representation for 3D human reconstruc-

tion. Overall, Model-based can reconstruct an expressive output of 3D human, however

most existing methods that reconstruct a 3D human are inferring on complete point

cloud rather than partial point cloud. Hence, several aspects in 3D human shape recon-

struction are covered using recent research trend in generative learning models such as

skeletal joints inference and shape reconstruction from input partial point cloud.

2.6 Chapter Summary

The process of 3D modeling is heavily dependent on the 3D reconstruction tech-

niques, which can be widely divided into three categories, i.e. statistical models, dis-

criminative learning models and generative learning models. Statistical models analyse

the input data and extract feature descriptor for maximum likelihood matching. These

models are computational efficient, however perform poorly when dealing with novel

data and generalization. On the other hand, discriminative learning models use su-

pervised learning approach to establish local descriptor that is driven by labeled data

training. These models allow higher learning capability in establishing descriptors com-

pared to statistical learning models and can perform better in task-oriented objective

and novel data generalization. In the advent of generative models, raw 3D point cloud

are ingested directly into the network which can improve the efficacy of point cloud

reconstruction process. Without the data pre-processing and post-processing, genera-

tive models could generalize the data learning by learning the latent representation of

input data and subsequently generate close approximation output of input data. As

generative models generate output samples from learnt latent representation, they are

robust to noises such as outliers. In performance evaluation of generative models, they

outperformed other models in both precision and recall with significant margin. They

are also able to learn exceptionally well in differentiating novel shapes with arbitrary

viewpoint transformations using part-whole relationship via unsupervised learning. As

of current research trend, generative learning models would be the main architecture in

30



point cloud reconstruction techniques due to its advantages. Research effort on view-

point invariant reasoning from local geometrical features could be emphasized to fully

exploit the sparseness and unstructured nature of 3D data. In addition, learning from

local geometrical feature could also introduce a new edge of fidelity of output samples.

Led by the advancement in generative learning models, applications such as point cloud

classification, reconstruction and 3D human shape reconstruction are able to achieve new

milestone in their performances. For instance, skeletal joints inference can be closely re-

lated to point cloud representations learning, while 3D human shape reconstruction can

be closely related to point cloud reconstruction, and they can greatly benefits from the

advantages from generative learning models. In the following chapters, novel 3D point

cloud representation learning and reconstruction models are proposed and application

on 3D human modeling is showcased using the proposed model.
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Chapter 3

Point Cloud Neural Density

Estimation

3.1 Introduction

Point cloud is a collection of data points in sparse and grid-less space, typically

(3D) coordinate space to represent an object. It is more expressive and contains higher

geometric detail than voxel grids [10, 29, 30]. Also, point cloud is a stepping stone

in achieving more precise representation of an object model such as meshes [128, 129].

Using a generative model to learn point cloud representation is beneficial to a wide range

of 3D tasks such as reconstruction [34, 100, 104] and classification [4, 20, 52]. Besides

that, statistical models [130, 131] can be modelled after the point cloud distribution in

obtaining a condensed representation of a generic 3D shape. However, processing point

clouds possess challenging issues due to its properties such as the sparsity and irregularity

of data modality in 3D space. The irregular sampling of point clouds requires a better

centered object representation that can provide surfaces with arbitrary complexity and

topology [132].

The capability to process irregular and un-ordered point clouds using neural net-

works is first introduced in PointNet [4] due to its point-wise convolutions and the

permutation invariant symmetric functions. However, point-wise operations do not cor-

relate with neighbourhood points. Subsequently, PointNet++ [7] is proposed as a hier-

archical neural network to combine sampling layer, group layer and PointNet layer to

capture multi-scale patterns. Many research works [52, 133, 134] have extended Point-
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Net primarily to increase the size of local receptive field to explore the relationship of

neighbourhood points. Unfortunately, the convention convolution operators are solely

invariant to permutations and translations. The introduction of spherical kernel CNN

and capsule networks [48, 135, 136] learn a rotation equivariant representation of a 3D

shape with complex learning mechanisms. Recent efforts [56, 57] have moved towards

unsupervised learning in the point clouds processing models with latent variables corre-

sponding to the variation in the data. The unsupervised models such as Autoencoder

[34, 37, 100] and Generative Adversarial Network (GAN) [137, 138] are used to generate

the data distribution implicitly to represent an object in terms of sampling pattern and

pose invariance.

Inspired from the mechanism of generative models, a point cloud density esti-

mator is proposed in this chapter to generate a set of multivariate Gaussian mixture

components to represent density point cloud. Conventionally, iterative estimation of

mixture coefficient is required to model a mixture model. In this work, latent inference

using neural network is adopted to resolve the iterative term. By obtaining the density

parameters of a point cloud, local patch of an object can be semantically segmented,

i.e. clustering, to represent a local part of the object. The proposed network has two

stages of network modules: (i) Global Density Encoder and (ii) Local Density Autoen-

coder. Essentially, the formulation of the proposed network is to achieve latent inference

by first, generating a latent global density, and subsequently inferring and projecting

the latent local density from the latent global density into ambient density parameters.

The latent inference is devised such a way the latent variable is optimized to satisfy

the maximization of the objective function. Through latent inference, a mixture model

can be estimated directly by maximizing the log-likelihood. As the density parameters

estimation is a condensed representation of data structure of a point cloud, it can be

applied for tasks, such as point cloud classification and reconstruction.

3.2 Theory of Density Estimation

Density estimation [130, 131] is used to address one of the most fundamental

problems occurred in machine learning, which is the problem of self-discovering structure

from data in an unsupervised manner. In definition, a density function q(x) is defined as

an estimate description of the joint statistical distribution of data samples x. Therefore,

it is commonly associated in models of data sampling [55, 138], where tasks such as

33



novel data generation and data prediction can be achieved by drawing samples from

the density function. In contrast, density estimation is the reverse of sampling process,

where the density function is retrieved by observing data samples from which the samples

are assumed to be generated from a true density function p(x). In this work, the concept

of Bayesian inference and density estimation are applied to learn the density parameters

that represents the distribution structure of a point cloud using a parametric mixture

model.

3.2.1 Bayesian Inference

In Bayesian framework, the Bayes’ rule encodes the belief in a parameter ϕ that

express a data structure and changes the degree of belief in ϕ based on newly observed

data. Typically, ϕ is set as a unknown random variable with a density function p(ϕ),

which is the prior belief about an expression of a set of unobserved data x. From Bayes’

rule, the degree of belief in ϕ changes when x is observed as new evidences and the

changes are commonly made based on a statistical model p(x|ϕ) that reflects the belief

about x given ϕ. Therefore, the statistical relationship between x and ϕ is established

as follows,

p(ϕ|x) ∝ p(x|ϕ) p(ϕ), (3.1)

where p(ϕ|x) is the posterior of updated belief in ϕ when given x and p(x|ϕ) is the

conditional likelihood of x given ϕ. In the context of this chapter, the Bayesian inference

is related to the training of point clouds density estimation using a neural parametric

mixture model. The goal is to use a neural network to estimate the best setting of ϕ

given x, which can be viewed as a Maximum A Posteriori (MAP) estimation:

ϕ̂MAP = argmax
ϕ

p(x|ϕ) p(ϕ), (3.2)

where ϕ̂ gives the maximum likelihood of observed data. Thus, by obtaining ϕ̂ an

estimated density function can be estimated as a close approximation of the true density

q(x|ϕ̂) ≃ p(x). In application of density estimation, uniform prior can be typically

chosen for a model’s setting to achieve estimated posterior. Hence, the MAP of density

parameters can be simplified as a Maximum Likelihood Estimation (MLE) as follows,
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ϕ̂MAP = argmax
ϕ

p(x|ϕ) p(ϕ)

= argmax
ϕ

ln(p(x|ϕ)) + ln(p(ϕ))

= argmax
ϕ

ln(p(x|ϕ)) + const

= ϕ̂MLE .

(3.3)

3.2.2 Parametric Mixture Model

The process of a simple parametric density estimation typically focuses in finding

the best setting of a density parameter to obtain maximum likelihood from the observed

data. In this implementation, multivariate Gaussian distribution is used for parameti-

zation of the estimated density function q(x|ϕ) and the marginal likelihood is defined as

follows,

q(x|ϕ) =
∏
i

N(xi|ϕ), (3.4)

where
N(xi|ϕ) =

1

|det(2πΣ)|1/2
exp

{
−1

2(xi − µ)TΣ−1(xi − µ)
}
, (3.5)

ϕ = {µ,Σ} denotes a Gaussian component. µ ∈ RD denotes the mean and Σ ∈ RD×D

denotes the covariance matrix with dimension of D. In order to expand density repre-

sentation capability from a simple parametric model, a Gaussian Mixture Model (GMM)

comprises M Gaussians is devised to capture more localized details, i.e. clustering, on

an observed data and is defined as follows,

q(x|π, ϕ) =
∏
i

M∑
m=1

πmN(xi|ϕm), (3.6)

where ϕ = {ϕ1, . . . , ϕM} are the GM components,
∑M

m=1 πm = 1 denotes the mixing

coefficient and πm ≥ 0 for all m. To find the best estimates of GM components, the op-

timization can be achieved by directly maximizing the average log-likelihood. However,

solving the maximum likelihood of a GMM is non-trivial due to the summation in log

defined as follows,

ln(q(x|ϕ)) =
∑
i

ln
M∑

m=1

πmN(x|ϕm), (3.7)
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Commonly, an iterative procedure such as Expectation-Maximization (EM) algo-

rithm is employed to fit the GMM by re-estimating the posterior probability of cluster

assignments. Alternatively, a latent variable α can be introduced in a mixture model to

simplify Eq. (3.7) as follows,

q(x, α|π, ϕ) =
∏
i

M∏
m=1

π
αi,m
m N(xi|ϕm)αi,m , (3.8)

where αi,m is a one-hot encoding of M density assignment. The maximum log-likelihood

is then derived as follows,

ln(q(x, α|π, ϕ)) =
∑
i

M∑
m=1

αi,m{ln(πm) + ln(N(xi|ϕm))}. (3.9)

3.3 Point Cloud Neural Density Estimator

Assuming that a generative sampling process produces a 3D point clouds dataset

x = {xi ∈ R3×N , i = 1, 2, ..., S}, where S is the total number of point cloud samples

and N is the number of points in 3D space with X-Y-Z coordinate. Assuming a joint

density exists in a point cloud containing a set of M density parameters, such that

xi ∼ N(ϕ), where ϕ = {ϕ1, . . . , ϕM}, and each Gaussian component is denoted as ϕm =

{µm,Σm}Mm=1. Hence, the dataset of 3D point clouds can be statistically represented

with a mixture model. Suppose a point cloud can be deconstructed into M local parts

x̂i,m ∈ R3× N
M , i.e. local patch clustering, where a point cloud xi = {x̂i,1, . . . , x̂i,M} is a

collection of the M local parts. Therefore, a local patch is defined to be independently

Figure 3.1: The proposed Point cloud Neural Density Estimator composes of Global
Density Encoder f(G, θ1) and Local Density Autoencoder f(θ2, θ3) to generate density pa-
rameters of point clouds mixture model. Linear and Softplus activation functions g1 and g2
is applied to the last layer of the model. The density parameters are visualized by plotting
the mean and average variance of a point cloud of chair.
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sampled from an independent Gaussian component or local density distribution x̂i,m ∼
N(ϕm).

Neural density estimation is a parametric method to estimate a density function

using a deep neural network. A neural network f(θ) as a universal function approximator

contains a set of trainable parameters θ that can be tuned accordingly to an objective

function, i.e. maximum log-likelihood. Using intuition from the parametric mixture

model in Eq. (3.4), a neural network can be flexibly devised to estimate best setting

of ϕ̂MLE = f(θ). In an existing work, PointGMM [54] learns to generate multiple

levels of Gaussians, where top-level Gaussian covers larger region of shape and low-level

Gaussian covers local surface details. Intuitively, the proposed network in this chapter

aims to estimates fully Gaussians by single pass. Inspired from the setup of neural

density estimation architecture in [139, 140], an encoding function is used to estimate the

cumulative distribution function (CDF) to obtain a global distribution. Subsequently,

the probability distribution function (PDF) is retrieved by a reverse sampling process

from the CDF. Therefore in this work, Point cloud Neural Density Estimator (PNDE)

is proposed as shown Figure 3.1 to address the iterative parameters, i.e. the mixture

coefficient π and the cluster assignment α by latent inference to allow training of a

PNDE by maximizing the log-likelihood. The PNDE comprises two network modules:

(a) Global Density Encoder, and (b) Local Density Autoencoder.

3.3.1 Global Density Encoder

Similar to AE [37] and VAE [141], latent features are commonly first encoded

which can provide several advantages such as reduced dimension during inference and

the unrolling and disentanglement of latent variations in the input data [130]. Another

important criteria in point cloud latent feature encoding is the property of permutation

invariant to adapt the nature of un-ordered points in point cloud. Generally, a point

cloud latent feature encoder can be categorised into two types, i.e. point-wise [4] and

graph-based [52]. Due to the higher capability in graph-based encoder to encode point

cloud latent features by incorporating the notion of neighbourhood points, it is adopted

as the Global Density Encoder (GDE) f(G, θ1) : R3×N 7→ Rd, where d is the dimension

size of the latent global density to encode the latent global density z1 ∈ Rd of a point

cloud xi defined as follows,

z1 = f(G, θ1;xi). (3.10)
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The GDE comprises a graph feature extraction module G : R3×N 7→ R6×N×k

and an embedding network fθ1 : R6×N×k 7→ Rd′ . The feature extraction strategy is

inspired from [52] by constructing directed k-nearest neighbour (k-NN) graphs G =

(V,E). The vertices V = {v0, v1, ..., vN} of an input point cloud are connected by edges

E = {eij1 , eij2 , ..., eijk}, where the edges are computed based on k-smallest oriented

pair-wise distance, such that:

eijk = ||vjk − vi||2, (3.11)

or equivalent to vectorized pair-wise squared Euclidean distance from Eq. (3.11), that

is optimized for parallelism in GPU computation [142]:

E = {eij ∈
(
||V ||2 − 2V TV + ||V T ||2

)
}k. (3.12)

3.3.2 Local Density Autoencoder

Subsequent from obtaining the latent global density, Local Density Autoencoder

(LDA) is devised to output local patch density with an encoder module f(θ2) and a

decoder module f(θ3). The overall LDA network mapping is then defined as f(θ2, θ3) :

Rd 7→ R6×M and it infer latent density to obtain the local patch cluster. The implemen-

tation of latent inference in LDA is to address the issue of iterative cluster assignment

and unknown mixture coefficient. Intuitively, the cluster assignment parameter α is de-

fined as a one-hot encoding that defines the assignment of likelihood with respect to the

most probable density. To achieve this, a fixed number of independent density sampling

function as an encoder module can be introduced to explicitly define the assignment of

a cluster [140]. Thus, by taking advantage of independent density estimation of each

density parameter, the cluster assignment procedure can be systematically assigned to

designated encoder module.

Therefore, the encoder f(θ2) : Rd 7→ Rd′×M comprises a set of independent

weights θ2 = {θ2,1, . . . , θ2,M} is implemented and it is equivalent to an independent

density sampling function. Secondly, the mixing coefficient is viewed as a prior knowledge

in soft-clustering a set of data points into respective cluster. With latent inference, the

mixing coefficient is implicitly encoded in the latent local density, such that z2,m ∼
N(z1|θ

πm,αi,m

2,m ). Hence, the latent inference can be viewed as drawing the encoded local

densities z2 = {z2,1, . . . , z2,M}, z2 ∈ Rd′×M from the latent global density defined as
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Table 3.1: Comparison of parameters and operations of independent MLP and superim-
posed MLP.

MLP Parameters configuration Operation

Independent (d× d′ ×M) z2 = {θ2,m ⊙ z1}Mm=1

Superposed (d× d′) + (d×M) + (d′ ×M) z2 = ((z1 ⊙ θ2,s)θ2,w)⊙ θ2,r

follows,

z2,m = f(θ
πm,αi,m

2,m ; z1), (3.13)

where the network parameter θπm,αi,m

2,m is explicitly assigned to m-th cluster and implicitly

containing the mixture coefficient. Due to the implementation of independent weights

in the encoder module, the number of network parameter scales exponentially when M

is set to a large number. Moreover, an iterative function is typically required to iterate

over the list of parameters. To resolve these concern, a parameters compression strategy

[143] is adopted to reduce the number of parameter. In addition, matrix vectorization

and decomposition is incorporated along the compression strategy to allow decomposi-

tion of θ2 ∈ Rd×d′×M into {θ2,w ∈ Rd×d′ , θ2,r ∈ Rd′×M , θ2,s ∈ Rd′×M} as shown in Table

3.1. Essentially, network configuration without matrix vectorization and weight super-

position can cost tremendous forward propagation time due the iterative inference from

independent MLPs. Whereas, with implementation of matrix vectorization and weight

superposition, the inference can be computed in several matrix computation. Finally, a

shared weight network as a decoder network f(θ3) : Rd′ :7→ R6×M is devised to project

the latent local densities into ambient density parameters ϕ as follows,

ϕ = {f(θ3; z2,1), f(θ3; z2,2), ...f(θ3; z2,M )} (3.14)

3.3.3 Objective Function

By aggregating GDE and LDA, a PNDE with the mapping f(G, θ1, θ2, θ3) :

R3×N 7→ R6×M is formulated to fit a mixture model in Eq. (3.15) to estimate the
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density parameters of a point cloud.

ln(q(x, α|π, ϕ)) = ln(q(x|f(θ)))

=

S∑
i

M∑
m=1

ln(N(xi|f(θ)),
(3.15)

To allow the network model undergoing the training in a self-supervised manner, a

network’s objective function is required to guide the parameter learning process. The

objective function of PNDE is defined as,

LPNDE(x, ϕ) =
1

S

1

N

1

M

S∑
i=1

N∑
j=1

M∑
m=1(

−3

2
ln(2π)− 1

2
ln(|Σm|) −

1

2
(xi,j − µm)TΣ−1(xi,j − µm)

)
.

(3.16)

where S is the number of sample size in a dataset, N is the number of points in a point

cloud, and M is the number of density parameter. As the objective function of PNDE is

boiled down to maximization of the average log-likelihood, it is equivalent in minimizing

the KL-Divergence [131] between p(x) and q(x, α|π, ϕ)):

DKL(p(x)||q(x, α|π, ϕ)) = −Ep(x)(ln q(x|f(θ)))) + const (3.17)

Using the strong law of large numbers of samples as S 7→ ∞, L(θ) can converge almost

to Ep(x)(ln q(x|f(θ)))).

3.4 Experiment Setup

Performance of the proposed model is evaluated using three benchmark 3D datasets,

i.e. ModelNet10/40 [144] and ShapeNet [145] dataset. The ModelNet40 contains 40 cat-

egories of labelled CAD models respectively from common objects with 9843 training

and 2468 test data. The ModelNet10 is a subset of ModelNet40 which contains 10 cat-

egories with 3991 training and 908 testing data. Each object is normalized into unit

sphere [−1, 1]3. On the other hand, ShapeNetCore13 is customized as a subset of 13

categories out of 55 categories from ShapeNetCore with 31,772 training and 7,956 testing

data. Data augmentation during training includes only points permutation in the input

point clouds.
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Table 3.2: Configuration of GDE, LDA, and classification network.

Layers Configuration Output Dim.

Input - N × 3

GDE

EdgeConv (k = 10) [3, 64, 128, 128] N × 128

Conv1D [128, 256] +BN+ReLU N × 256

Conv1D [256, d] +BN+ReLU N × d

Pooling Maxpool1D (d) 1× d

LDA

Superposed MLP (d× d′) + (d×M) + (d′ ×M) +BN+ReLU M × d′

Conv1D [d′, d′′] +BN+ReLU M × d′′

Conv1D [d′′, 6] +BN M × 6

GM Components
ReLU (M × 3)

M × 6
Softplus (M × 3)

- Flatten 1× 6M

Classification
network

FC layer 6M × 512 +BN+ReLU 1× 512

Dropout (0.3) -

FC layer 512× 256 +BN+ReLU 1× 256

Dropout (0.3) -

FC layer 256× C +Softmax 1× C

Three experiments are set up to evaluate the proposed PNDE. Experiment #1

evaluates qualitative results of the density parameters estimated from the PNDE, effects

of hyperparameters d, d′,M and overall classification accuracy on ModelNet40. Experi-

ment #2 evaluates classification accuracy of the PNDE on ModelNet10 and ShapeNet-

Core13 using classification network in [4]. The architectural details of network setup

is shown in Table 3.2. In each experiment, PNDE is pre-trained using the preset hy-

perparameters N = 2048, d = 3, d′ = 1024, d′′ = d′/2 = 512, and number of Gaussian

components M = {8, 16, 32, 64}. The number of Gaussian components are chosen as

multiple of 8 to fully utilize the GPU computation. Training of PNDE involves 100

epoch with batch size 64 and learning rate of 10−3 with scheduling decay rate of 0.5

per 20 epoch. ADAM optimizer is used as optimization method to maximize the log-

likelihood. In experiments #1 and #2, the classification network is trained for 100 epoch

with scheduling decay rate of 0.5 per 20 epoch using number categories as the batch size.

3.5 Experiment #1: Point Clouds Neural Density Estima-

tor

In this experiment, a classification task is setup to evaluate the performance on

ModelNet40. In Table 3.3, the overall accuracy for classification using M = {8, 16, 32, 64}
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achieved 88.32%, 87.56%, 88.57%, 88.74% and 89.26% respectively on ModelNet40. With

representation using 64 GM components, the proposed PNDE achieved the best classifi-

cation rate (88.74%) and is comparable to other methods with parameter count of 0.90M

+ 0.34M (0.90M is the total number of learning parameters in the proposed PNDE, and

0.34M parameters are referred to classification network).

In Table 3.4, the experiments are conducted using hyperparameters N = 2048,

M = 64 and with varied hyperparameters d = {128, 256, 512, 1024} to test the robust-

ness of PNDE. The results show the overall classification accuracy with respect to model

size of the proposed network by varying GDE bottleneck size d. Overall classification

accuracy of 87.44% - 88.74% is achieved with respect to d = {128, 256, 512, 1024}, and

87.44% with the minimum network parameter of 0.06M + 0.34M.

Fig. 3.2 shows the qualitative results of the estimated density parameters of var-

ious objects using M = 32. In Fig. 3.3, an averaged variance is projected as the contour

on XY, YZ, and XZ plane for variance visualization. The visualization of variances

indicates the learning of point clouds distribution in each density. Furthermore, the

visualization also shows the multivariate variance effectively distributed the projected

Table 3.3: Overall accuracy (OA) of PNDE on classification task. #param is the network
parameter excluding the parameter in MLP classifier with d = 1024.

M Bottle-
neck #param OA (%)

8 48 0.82M 87.32

16 96 0.83M 87.56

32 192 0.85M 88.57

64 384 0.90M 88.74

Table 3.4: Comparison of overall accuracy (OA) of point clouds classification method with
M = 64 and varied GDE bottleneck d.

Configuration *#param OA (%)

d = 128 0.06M 87.44

d = 256 0.12M 87.88

d = 512 0.30M 88.49

d = 1024 0.90M 88.74
* Additional 0.34M parameter is added for MLP classifier
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(a)

(b)

Figure 3.2: Qualitative results of PNDE with M = 32 density parameters: (a) M clusters
of color-coded local patch point cloud and, (b) Mean of each local patch point cloud.

(a) (b) (c)

Figure 3.3: Qualitative results of point cloud distribution using contour map visualization:
(a) Color-coded clustering in ground truth point cloud, (b) Estimated mean from ground
truth point clouds, and (c) Average variance (Σ2

xy,Σ
2
yz,Σ

2
xz) projected on XY, YZ and XZ

plane of M = 32.

shape of input point clouds with respect to the mean. To show point clouds representa-

tion different number of density parameters, Fig. 3.4 visualizes mean representation of

point clouds using with M = {8, 16, 32, 64}.
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(a) (b) (c)

(d) (e)

Figure 3.4: Qualitative results of PNDE with M density parameters: (a) Ground truth
point clouds, (b) M = 8 (c) M = 16, (d) M = 32, (e) M = 64.

3.6 Experiment #2: Point Cloud Classification

To further evaluate the proposed network, the classification task is extended to

other dataset i.e. ModelNet10 and ShapenetCore13. Table 3.5 shows comparisons be-

tween some of the popular existing works as compared to the proposed PNDE. The

baseline in the classification task is PointNet [4] and DGCNN [52] due to their pioneer-

ing state-of-the-art performance in the field. The evaluation metrics of PointNet and

DGCNN are reproduced using the available source code with a configuration stated in

their implementation.

PointNet is a point-wise learning network that focuses on global feature, and

PointNet++ is the extension of PointNet that focuses on local feature. Both ECC and

DGCNN share similarity in using edges of neighbourhood vertices as edge features, which

is also the feature learning strategy implemented in the proposed network. Meanwhile,

spherical CNN used a specialized local feature kernel (spherical kernel) and graph con-

volution. As spherical CNN and DGCNN have a higher network complexity compared

to the proposed model, they naturally contain more capacity in discriminating local

features, thus perform better in classification.

Overall, the classification rate implies that the estimated density parameters are

44



Table 3.5: Comparisons of overall accuracy (OA) of point clouds classification on
Model10/40 and ShapenetCore13 dataset.

Method #point Bottleneck #param
OA (%)

ModelNet10 ModelNet40 ShapeNetCore13

PointNet [4] 2048 1024 3.5M 92.75 89.4 94.7
ECC [133] 1000 64 0.2M 90.0 83.2 -

DGCNN (k = 10) [52] 2048 1024 1.8M 94.5 91.5 95.1
Spherical CNN (k = 64) [136] 2048 832 0.7M - 91.4 -

Ours (k = 10,M = 64) 2048 384 1.24M 93.67 88.74 94.60

effective in representing input point clouds using significantly fewer number of features.

Is is also a flexible network where M can be tuned as hyperparameter to produce more

density parameters. On the other hand, Spatial Transformer Networks (STNs) are im-

plemented in baseline methods to encounter input data augmentation (e.g. rotation) by

approximating an orthonormal transformation matrix to compensate input point clouds

into canonical representation. However, STN can act as an external transformation that

disrupt rotational equivariance in a network.

3.7 Experiment #3: Rotation Equivariance Evaluation

Definition 1 (Rotational Equivariant Network) For a network to be rotational

equivariant, all function map in a network must be an equivariant map and the resultant

rotation in the input should cause equivalently transformation in the output [146, 147],

such that:

Λ(g1 ◦ X) = g2 ◦ Λ(X), (3.18)

where {g1, g2} ∈ G and G is affine transformation group. Λ is an equivariant transfor-

mation function map and X is data group.

Definition 2 (Rotational Equivariant Local Maximizer) A density estimator is

equivariant under linear affine transformation, e.g. rotation. Given a random variable

X is sampled from µ and Σ:

X ∼ N(µ,Σ). (3.19)

Let X̂ = AX + b be an affine transformation acted on X, then X̂ can be sampled from

density parameters of µ̂ and Σ̂:

X̂ ∼ N(µ̂, Σ̂). (3.20)
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Figure 3.5: Qualitative results of the PNDE demonstrating rotational equivariance by
inferring the mean of density parameters, µ and µ̂ of an input point cloud x1 and a rotated
point cloud x̂1 under transformation T1 ≃ T2.

where µ̂ = Aµ + b and Σ̂ = AΣAT . Let N(µ,Σ|X) be the local maximizer for X, then

N(µ̂, Σ̂|X̂) is the local maximizer for X̂ [148].

Transformation equivariant is essential in the analysis of point cloud, because it

preserves the original state and orientation from the input. This is crucial as the point

cloud needs to retain its identity regardless of an affine transformation. Therefore, by

using Definition 1 and Definition 2, let {T1, T2} ∈ T act on xi, the PNDE f(θ) :

T × xi 7→ [µ̂, Σ̂] is rotational equivariant defined as follows,

µ̂ = T1 ◦ µ = T2 ◦ f(xi) = f(T1 ◦ x̂i). (3.21)

To show the PNDE is rotational equivariant, the network is fully trained self-

supervised on non-rotated and subsequently tested on rotated point cloud. A qualitative

result is shown in Fig. 3.5, demonstrating the rotational equivariance in of density

parameters by inferring a rotated point cloud, where the rotation imposed in the input

point cloud is reflected in the output density parameters.
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3.8 Chapter Summary

In this chapter, a novel Point cloud Neural Density Estimator (PNDE) derived

from Gaussian mixture model is proposed to estimate the density of point cloud. The

network adopts the concept of neural density estimation using maximum log-likelihood

of multivariate Gaussian mixture model as an objective function for end-to-end network

training. The output of PNDE is a set of density parameters and it can be directly used

for classification and reconstruction tasks. The classification using estimated density

parameters achieved comparable results to the state-of-the-art methods using M = 64

with overall accuracy of 93.67% in ModelNet10, 88.74% in ModelNet40 and 94.6% in

ShapNetCore13. A network parameter compression strategy is implemented to compen-

sate the use of independent networks in the Local Density Autoencoder (LDA). The size

of PNDE can be further reduced up to 8× smaller by adjusting the latent global density

dimension size while retaining approximately 1.5% degradation in classification accu-

racy. Qualitative visualizations show that PNDE inherits the properties of permutation

invariant and rotational equivariant toward input point clouds. Intuitively, the use of

PNDE can be extended to perform point cloud reconstruction by adopting a decoder to

form an autoencoder network. The concept is realized by viewing the estimated density

as a rich and condensed representation of point cloud and subsequently sample output

point cloud from the density. In the following chapter, the point cloud reconstruction

network is proposed in light of PNDE for effective reconstruction output point cloud by

generative sampling using a decoder.
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Chapter 4

Partial Point Cloud Completion

using Patch-based Autoencoder

4.1 Introduction

Partial point clouds is a common challenge in 3D acquisition of real-world objects

mainly caused by viewpoint occlusion and limited sensors resolution [34, 35]. These lim-

itations of 3D model acquisition have resulted in acquiring partial point cloud of the

object from single viewpoint. The setting of multiple viewpoint acquisition sensors are

commonly used to acquire a full 3D model of an object. Multiple viewpoint setup re-

quires multiple cameras coordination and it requires the special controlling mechanism

in performing data acquisition synchronization. A designated space has to be set up and

it restricts the flexibility of an object scanning. Subsequently, a complex 3D reconstruc-

tion technique [25–27] is performed to merge all viewpoints into one complete model.

As a consequence, it is not an ideal solution in applications that requires portability and

real-time processing.

In recent research trend, point cloud reconstruction is commonly implemented

using an autoencoder (AE) architecture which consists of a two-stage strategy [37]. The

first stage is a point learning network (or it is known as an encoder) such as PointNet

[4] and EdgeConv [52] to learn compressed latent representation of input point cloud.

Learning compressed representation enables a deep learning network to learn a collection

of shapes manifolds that is concise for task oriented deep learning networks. The proce-

dure of learning compressed representation through directly processing raw point cloud
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is first realized in PointNet. In conjunction, PointNet solved the challenging nature of

un-ordered and point cloud permutation by using point-wise convolution operation and

symmetrical max-pooling function. As PointNet utilized point-wise convolutions, the

learning lacks of correlation between neighbourhood points. Conversely, a graph-based

approach [52] is introduced to extend the local receptive field to explore the relation-

ship of neighbourhood points. It resulted in a better learning performance with richer

compressed representation of point cloud from the local patches of point cloud.

Once the compressed latent representation is generated, a two-dimensional (2D)

deformation learning network (or it is also known as decoder) such as FoldingNet [36]

and AtlasNet [100] are widely implemented in the second stage. These decoders give an

effective reproduction of output point cloud from the learnt compressed latent represen-

tation. Most of the existing methods [29, 149] make use of the properties of conventional

convolutional network to generate a discrete data such as a typical linear interpolation

method. However, these methods suffer from lower fidelity in reproducing a dense point

cloud. To solve the problem, FoldingNet [36] proposed a novel 2D grid deformation

learning method to generate point cloud through multi-stage folding procedures. In an

incremental work, AtlasNet [100] introduced a patch-based point cloud decoding method

by assembling multiple patches 2D deformed grid into a complete point cloud. As the

result, AtlasNet is able to produce higher-fidelity output point cloud compared to Fold-

ingNet.

Inspired from the AE architecture, a novel point cloud reconstruction technique

is proposed in this paper using observable compressed representation (Gaussian compo-

nents) for partial point cloud completion. A proposed two-stage architecture is demon-

strated in Fig. 4.1, i.e. (i) Gaussian-based encoder and (ii) Patch-based decoder. The

proposed Gaussian-based encoder learns to estimate the Gaussian components of partial

point cloud. Each Gaussian component can be viewed as the governing basis func-

tion of each local patch. Subsequently, the patch-based decoder generates the output

point cloud based on each estimated Gaussian components. Hence, a point cloud recon-

struction network Gaussian point cloud autoencoder (GPAE) is proposed. The GPAE

contains less learning parameters and less architectural complexity as compared to exist-

ing works such as AtlasNet [100], PCN [34] and MSN [35]. Moreover, by using Gaussian

components as compressed representation, the GPAE showed a simplistic and tractable

fashion in partial point cloud completion.
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Figure 4.1: The proposed network,GPAE with two-stage network architecture: (i)
Gaussian-based encoder, (ii) Patch-based decoder.

4.2 Gaussian Point Cloud Autoencoder

The GPAE has a two-stage architecture used for partial point cloud completion,

where the two stages are: (i) Gaussian-based encoder and (ii) Patch-based decoder.

The proposed Gaussian-based encoder is adopted from PNDE in Chapter 3 to learn to

estimate the Gaussian components of complete point cloud by observing partial point

cloud. Subsequently, the Patch-based decoder generates a collection of local patches

using Gaussian components estimated from Gaussian-based encoder.

4.2.1 Stage 1: Gaussian-based Encoder (GE)

The GE denoted by fGE : R3×Npar 7→ R6×M is a variant of a neural density

estimator [54] tailored to estimate mixture of densities, i.e. Gaussian components. In

this implementation, it infers M number of Gaussian components Qm = [µm,Σm] of

complete point cloud by taking partial point cloud Spar = {ppar,i ∈ R3}Npar

i=1 as input

and a complete point cloud Sgt as ground truth.

{Qm}Mm=1 = fGE(Spar). (4.1)

Let Sgt = {pgt,i ∈ R3}Ngt

i=1 with Ngt number of point cloud in ground truth, where

Ngt > Npar. By assuming Sgt exhibits M units of Gaussian components {Qm}Mm=1,

it can be defined such that Sgt ∼ N({Qm}Mm=1), where Sgt can be statistically sampled

from the Gaussian components. To accomplish the Gaussian component inference, fGE is

comprised of a graph-based encoder adopted from [52] and an ensemble of M independent

MLPs. In essence, the graph-based encoder encodes compressed representation from
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input partial point cloud with relationship of neighbouring points. Next, ensemble of

independent MLPs infers individual Gaussian components from the encoded compressed

representation of a complete point cloud. Intuitively, fGE learns in prior to estimate

{Qm}Mm=1 by observing Spar and guided by Sgt. A maximum log-likelihood function in

Eq. (4.2) is used as a loss function to guide fGE ,

LGE(Sgt,Qm) = − ln

Ngt∑
i=1

M∏
m=1

N(pgt,i|µm,Σm)

 , (4.2)

where,

N(pgt,i|µm,Σm) =
1

(2π)
3
2 |Σm|

1
2

e−
1
2
(pgt,i−µm)TΣ−1

m (pgt,i−µm). (4.3)

In addition, by implementing a neural density estimator, procedures of infer-

ring {QM}Km=1 is turned into optimization problem by using gradient descent in back-

propagating manner. Hence, it effectively mitigates the iterative terms in searching

{Qm}Mm=1 when relying on conventional methods such as k-means [150] and EM algo-

rithm [151].

4.2.2 Stage 2: Patch-based Decoder (PD)

When image decoding is applied in 2D space, image pixels posses the grid and

localization properties. In contrast, point cloud is un-grid and un-ordered [4]. Hence, an

efficient approach in decoding 3D point cloud can be realized by 2D grid deformation.

In recent work such as FoldingNet [36], a point-wise deconvolution layer is developed

to learn 2D grid deformation for 3D point cloud sampling by inferring encoded latent

feature. However, the drawback of FoldingNet sampling approach can be seen in lower

fidelity sampling on local details. In addition, FoldingNet decoder takes iterations as it

relies on multiple stages of deformation processes. On the other hand, AtlasNet [100]

introduced an approach that samples multiple local patches and assembled them into

full 3D point cloud. The method utilized one a scaled-down decoder per patch, hence

vastly improved the decoding capability compared to FoldingNet decoder.

In GPAE, the PD denoted by fPD : R6×M 7→ R3×Nout is adopted from AtlasNet,

where it consists of K number of decoders,

fPD = [fPD1 , fPD2 , ...fPDM
], (4.4)
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and each decoder fPDm : R6×1 7→ R3×Nout
M takes (Qm, Hm) as input to decode local

patch point cloud Spatchm ∈ R3×Nout
M as follows,

Spatchm = fPDm([Qm, Hm]), (4.5)

where Hm ∈ ]0, 1[2 is a random 2D grid. The notion of decoding a concatenated input

[Qm, Hm] ∈ R(6+2)×Nout
M indicates the 2D grid deformation guided by the Gaussian

components [µm,Σm] where µm acts as the centroid of Spatchm and Σk is the boundary

of sampling region. Therefore, the decoding process can be viewed as a local patch

sampling process Spatchm ∼ N([Qm, Hm]). Subsequently, the output point cloud Sout ∈
R3×N is defined as a collection of local patches Spatchm and can be viewed as Sout =

{Spatch1 , Spatch2 , ...SpatchM
}.

Two common 3D metrics, namely Chamfer distance (CD) and Earth Mover Dis-

tance (EMD) are implemented as loss function to optimize a point cloud decoder [34, 35].

In this work, two variants of GPAEs are trained using CD and EMD as reconstruction

loss LPD. The CD from [109] denoted as dCD is defined as,

dCD =
1

|Sgt|
∑

pgt∈Sgt

min
pout∈Sout

||pgt − pout||22 +
1

|Sout|
∑

pout∈Sout

min
pgt∈Sgt

||pgt − pout||22, (4.6)

where pgt and pout are the point cloud from the ground truth Sgt and reconstructed

output Sout. The measured similarities are the L2 norm distance of two nearest point

that is computation efficient and permutation invariant.

On the other hand, EMD is a bijective similarity metric that matches the local

criterion such as point cloud density, denoted as dEMD and is defined as,

dEMD(Sout, Sgt) = min
ϕ:Sout→Sgt

∑
pout∈Sout

||pout − ϕ(pout)||2, (4.7)

where ϕ is a bijection that maps matching Sout and Sgt. As EMD has O(n2) complexity,

CD is often chosen for its computation efficiency. There are several O(n) approximations

of EMD such as [35, 110]. In the implementation of this work, EMD from [35] is adopted

for comparisons to existing works. Therefore, the loss functions of the proposed GPAE

is defined as follows,

LGPAE = LGE + LPD, (4.8)
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where LPD = dCD for CD training variant of GPAE and LPD = dEMD for EMD training

variant of GPAE.

4.3 Experimental Setup

Two experiments are conducted to perform ablation study of the proposed GPAE.

A description of dataset, training setup and network configuration are given in detail in

the following subsections.

4.3.1 Dataset and training setup

The performance of the GPAE network are evaluated using the ShapeNetCore

dataset [145] containing 55 common object categories with about 51,300 unique 3D

models. Similar pre-processing settings are adopted from [35] that extract 8 synthetic

CAD models categories with 30,974 unique 3D models of table, chair, car, airplane, sofa,

lamp, vessel, and cabinet, in which 24,779 and 6,195 3D models are split as training and

testing samples. In the setting, all ground truth samples are uniformly sampled with

Ngt = 8192 and partial samples are sampled on each 3D model in 50 randomly selected

viewpoints with Npar = 5000. The total number of training and testing partial samples

are 1,238,950 and 309,750.

In network training detail, the GPAEs are limited to only 16 viewpoints randomly

selected from the total pool of training partial samples. Besides that, probabilistic

sampling learning is enforced in the training of GPAEs, where each partial sample is

further downsampled from Npar = 5000 to Npar = 2048 and the relative ground truth

Figure 4.2: The process of producing dense output using GPAEs.
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sample is downsampled from Ngt = 8192 to Ngt = 4096. In the network testing, 50

viewpoints samples are used with similar Npar = 2048 and Ngt = 4096 downsampling on

partial samples and ground truth samples. To obtain dense output point cloud during

inference, the GPAE is two times forwarded on two sets of partial point cloud to generate

output point cloud with Nout = 2× 4, 096 = 8, 192. Therefore, a coarse output of 4, 096

point cloud is resulted from single forward propagation and a dense output of 8, 192

point cloud is resulted from two-times forward propagation as shown in Figure 4.2.

4.3.2 Network configuration

The configuration of GPAE network is standardized for all experiments as shown

in Table 4.1. For the first stage, the graph-based encoder from [52] is adopted with 3−
64−128−128−256−din network configuration in shared MLPs and k nearest neighbour of

k = 10. It takes partial point cloud with dimension of R3×2048 as an input and generates

an output of a compressed representation with dimension of R1×din . Subsequently, an

ensemble network consisting of M independent MLPs with configuration {din−dout}M in

parallel and an aggregating shared MLP {dout−256−6} are implemented for individual

Gaussian component inference. The dimension of aggregated Gaussian components is

viewed as R6×M . Rectified Linear Unit activation functions (ReLU) and 1D batch

Table 4.1: Configuration of GE and PD. In the implementation of GPAE, K = M is used
to match the number of independent decoder and number of Gaussian components.

Layers Configuration Output Dim.

Input - N × 3

GE

EdgeConv (k = 10) [3, 64, 128, 128] N × 128

Conv1D [128, 256] +BN+ReLU N × 256

Conv1D [256, din] +BN+ReLU N × din

Maxpool1D (N) 1× din

Superposed MLP (din × dout) + (din ×M) + (dout ×M) +BN+ReLU M × dout

Conv1D [dout, 256] +BN+ReLU M × 256

Conv1D [256, 6] +BN M × 6

Gaussian
Components

ReLU (M × 3)
M × 6

Softplus (M × 3)

Patches Expand(Nout
K ) M × Nout

K × 6

PD

K× Shared MLP [(6 + 2), 1024] +BN+ReLU K × Nout
K × 1024

K× Shared MLP [1024, 512] +BN+ReLU K × Nout
K × 512

K× Shared MLP [512, 256] +BN+ReLU K × Nout
K × 256

K× Shared MLP [256, 3] +BN+Tanh K × Nout
K × 3

- Concatenation Nout × 3
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normalization (BatchNorm1D) are used throughout the entire network with an exception

on the last layer of the aggregating shared MLP, where linear and softplus activation

functions are applied on each R3×M dimension of the aggregated Gaussian components.

For the second stage, K independent decoder is adopted from [100] with shared

MLPs configured as {(6+ 2)− 1024− 512− 256− 3}K , where (6+ 2) indicates the con-

catenation of each Gaussian component and a random 2D grid [Qm, Hm]. It takes the

aggregated Gaussian components from first stage and output K patches of reconstructed

point cloud with dimension of R3×Nout
K

×K . By concatenating the patches, a full recon-

structed point cloud is obtained with dimension R3×Nout . ReLU and BatchNorm1D are

implemented throughout the decoder with exception of hyperbolic tangent activation

function on the last layer of K decoder.

To efficiently deploy the independent networks in GPAE, i.e. M independent

MLPs and K decoders, a parameters compression strategy [143, 152] is implemented

to apply the concept of superposition for weights decomposition as shown in Table

??, where din and dout are the input and output dimension of MLP. By factoring the

independent network forward process into matrix vector, the network is more optimized

for GPU parallel computation with less parameters. For an instance, let din = 1024,

dout = 512 and M = 8, 87.2% of parameters from independent configuration can be

reduced with negligible performance degradation.

In the experiment evaluation, the number of Gaussian components is set M =

8, 16 and is denoted by GPAE-8 and GPAE-16 respectively. The number of patches in

PD is set K = M for both GPAE-8 and GPAE-16. To further optimize GPAE model,

the network is developed on mixed precision where all trainable parameters are set using

half precision and batch normalization parameters are remained as full precision. All

experiments are executed for 50 epoch with learning rate of 1×10−3 and scheduled decay

rate of 0.5 per 10 epoch. Parameters are initialized using Xavier normal and batch size

256 is used. ADAM optimizer is implemented as optimization method for the network

training. The specifications of test bench for the experimentation are 2× RTX TITAN

with Pytorch 1.8, CUDA 11.1 and Distributed Data Parallel learning enabled.

4.3.3 Evaluation metrics

In performance evaluation, CD in Eq. (4.6) and EMD in Eq. (4.7) are used to

evaluate GPAE and existing works. Comparison to existing methods: AtlasNet [100],

PCN [34], MSN [35] are using 8,192 dense point cloud, while GRNet [38] is using 16,382
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dense point cloud. In addition to CD and EMD, F-Score in [38] is used to measure a

more concise point cloud reconstruction performance defined as follows,

Fscore(s) =
2P (s)R(s)

P (s) +R(s)
, (4.9)

where P(s) and R(s) denote the precision and recall for a distance threshold s respec-

tively.

P (s) =
1

nSout

∑
pout∈Sout

[
min

pgt∈Sgt

||pgt − pout|| < s

]
(4.10)

R(s) =
1

nSgt

∑
pgt∈Sgt

[
min

pout∈Sout

||pout − pgt|| < s

]
, (4.11)

4.4 Experiment #1: Performance Evaluation on GPAEs

Two variants of GPAE, i.e. GPAE-8 and GPAE-16 is used to perform some

ablation analysis to understand its effect in point cloud reconstruction. Several examples

such as airplane, vessel and chair are visualized from GPAE-8 in Table 4.3 for the

demonstration of the process of point cloud reconstruction. In the visualization, the

stages of completion from the input partial point cloud, to the estimated Gaussian

components which contain the means and variances and to the reconstructed point

cloud are shown. The Gaussian components are depicted as a heatmap by computing

the average sum of variances.

Table 4.2 shows the performance of CD and EMD variant of GPAE, evaluated

using CD and top 1% in F-Score (F@1%) evaluation metric on coarse 4, 096 and dense

8, 192 output point cloud. From the CD measurements, a drastic reconstruction im-

provement is observed on dense point cloud over coarse point cloud for all variants of

Table 4.2: Measured average CD with Nout = 8, 192 of GPAE trained using CD and EMD
on K=8 and K=16 patches.

Variant
Models

Output Coarse Dense
CD F@1% CD F@1%

CD
GPAE-8 0.73 0.39 0.58 0.52
GPAE-16 0.70 0.40 0.56 0.53

EMD
GPAE-8 0.87 0.40 0.74 0.53
GPAE-16 0.83 0.42 0.70 0.54
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Table 4.3: Results of reconstructed partial point cloud completion using GPAE with input
partial point cloud Npar = 2, 048 and dense output point cloud Nout = 8, 192. The Gaussian
components {Qm}Mm=1, where M = 16 are visualized as a heatmap plot.

Ground
Truth

Partial PC Gaussian
components

Recon-
structed PC

Airplane

Cabinet

Car

Chair

Lamp

Sofa

Table

Vessel

GPAE. However, EMD variant of GPAE showed higher CD loss compared to CD variant.

Although, EMD attempts to match local criterion such as density for more discrimina-

tive reconstruction, CD tends to compute the mean of distance of closest points, in

which the local criterion is neglected [35]. As suggested in [38, 153], F-Score in Eq.

(4.9) is used to better measure the reconstruction accuracy of the GPAEs. Thus, in

terms of F@1%, EMD variant of GPAE performed better than CD variant by a slight

margin. Nonetheless, the adopted EMD has far higher compute complexity compared to
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Figure 4.3: Loss evaluation of GPAE-8 and GPAE-16 with the number of point cloud
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Figure 4.4: F-score evaluation of GPAE-8 and GPAE-16 on the variation of distance
threshold.

CD. Furthermore, the GPAE-16 showed lower CD reconstruction loss and higher F@1%.

This is due to increased number of Gaussian components which is equivalent to increased

number of basis function that can capture the local structure of point cloud. Overall,

a slight improvement in CD loss and F-score is achieved when the number of Gaussian

components is increased from M = 8 to M = 16.

In Fig. 4.3 and Fig. 4.4, the evaluation is performed on dense 8, 192 output

Sout. Fig. 4.3 reports the effects on CD and EMD variant of GPAE-8 and GPAE-

16 towards sparse Spar with missing points. To obtain sparse Spar, the point cloud is

downsampled from 0-50% and re-upsampled to Npar. From the average CD plot, an

average of 8% reconstruction degradation at 50% missing points in Spar, suggesting the

degree of robustness towards sparse input partial point cloud. While, Fig. 4.4 reports

the F-Score against top 1-5% threshold imposed on the precision and recall between the
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Sout and Sgt. All GPAE models achieved average of F@1% ∼ 0.53, F@2% > 0.85 and

F@5% > 0.97. This indicates a well within 5% deviation in reconstruction accuracy

from the GPAE models against the ground truth.

4.5 Experiment #2: Performance Evaluation with Bench-

mark Methods

In benchmark performance comparisons, the average CD of coarse and dense par-

tial point cloud completion is evaluated in Table 4.4 as compared to AtlasNet [100], PCN

[34] and MSN [35]. All models are trained with identically pre-processed dataset and

output of dense 8,192 output point cloud. Both GPAE-8 and GPAE-16 outperformed

all other works, but only with incremental improvement from GPAE-8 to GPAE-16.

Although GPAE-16 showed incremental improvement over GPAE-8, it indicates that

the density of Gaussian components on GPAE-8 can be potentially further saturated

using denser ground truth point cloud. By adopting concept of network weights su-

perposition, the number of parameter of GPAEs is drastically reduced and is relatively

lower compared other models. In addition, other works apply a single latent compressed

representation as the basis function to govern a set of complete point cloud. Hence, the

K = 16 decoders in AtlasNet and MSN have a shared latent compressed representa-

tion for point cloud generation. Conversely, the proposed GPAE-8 and GPAE-16 use

K = 8, 16 decoders, where each decoder uses an independent Gaussian component as the

governing basis function for each local point cloud sampling. This operation offers an

advantage on each decoder to avoid ambiguity and redundancy when generating point

cloud. As stated in [104, 154], a set of complete point cloud is known to be governed by

Table 4.4: Average CD with Nout = 8, 192, number of trainable parameters and number
of patches K compared to existing methods.

Methods
Average CD (×10−3)

Refine
#param

K
Coarse Dense (×106)

AtlasNet - 1.82 - 9.73 16

PCN - 1.21 6.58 -

MSN 1.29 1.00 10.59 16

GPAE-8 0.73 0.58 - 1.51 8

GPAE-16 0.70 0.56 - 1.55 16
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Table 4.5: Quantitative comparison on per-class CD and average CD between the proposed
method and existing methods. The multiply ratio is 10−3 and Nout = 8, 192.

Methods Airplane Car Chair Lamp Sofa Cabinet Vessel Table Average CD

AtlasNet 0.85 1.42 1.58 1.82 2.67 2.49 2.30 1.46 1.82

PCN 0.66 1.10 1.41 1.46 1.36 1.23 1.36 1.14 1.21

MSN 0.56 1.03 1.02 1.07 1.16 1.19 0.99 0.96 1.00

GPAE-8 0.53 0.51 0.57 0.79 0.58 0.56 0.47 0.60 0.58

GPAE-16 0.61 0.54 0.59 0.52 0.57 0.57 0.53 0.53 0.56

Table 4.6: Quantitative comparison on per-class EMD and average EMD between the
proposed method and existing methods. The multiplier of the result is 10−3 and Nout =
8, 192.

Methods Airplane Car Chair Lamp Sofa Cabinet Vessel Table Average EMD

AtlasNet 3.27 4.20 5.03 10.71 6.97 8.91 8.11 5.07 6.53

PCN 3.44 4.44 6.89 15.45 6.28 8.79 6.56 6.84 7.34

MSN 2.18 3.28 3.63 6.04 3.47 4.16 3.83 3.66 3.78

GPAE-8 4.00 3.32 3.14 4.09 3.90 3.96 4.23 4.00 3.96

GPAE-16 3.73 3.82 3.89 4.02 3.88 4.04 4.15 3.98 3.94

several basis functions, therefore it is insufficient to capture much shape information of

a 3D model using single latent compressed representation. Some models such as PCN

and MSN inserted an extra step of refinement to generate dense point cloud, however,

it leads to higher model complexity and increased number of model parameters.

To have a better understanding in the generalization of objects partial point cloud

completion, the per class average CD and per class average EMD are tabulated in Table

4.5 and Table 4.6. Notably, GPAE-8 showed the difficulty in reconstruction of "lamp"

class as it was also posited in [35], where the "lamp" class is isolated compared to other

classes with more samples. However, GPAE-16 showed its ability in encountering such

a case of isolated class. As GPAE-16 has more Gaussian components that govern a

local point cloud feature, it is able to learn more shapes information by learning the

density of point cloud distribution. On the other hand, MSN outperforms all models

on average EMD. This can be resulted by the refinement process found in MSN where

the input partial point cloud is merged into output point cloud, hence leading to higher

similarity in local criterion that gives a lower EMD. As opposed to CD, it measures

similarity based on nearest points. Nonetheless, both GPAE-8 and GPAE-16 have a

more uniformed EMD across per class average EMD compared to MSN, suggesting a

more generalized shape distribution learning capability. Moreover, GPAE-8 and GPAE-

60



Table 4.7: Evaluation of average CD and F-score@1% on dense Nout = 16, 384 point cloud
using Shapenet dataset.

Methods Refine
Average CD (×10−3) F@1% #param

Coarse Dense Coarse Dense (×106)

GRNet - 1.13 0.45 0.34 0.62 69.43

GRNet 0.93 0.27 0.39 0.71 76.70

GPAE-8 - 0.73 0.52 0.39 0.58 1.51

GPAE-16 - 0.70 0.50 0.41 0.60 1.55

16 can reconstruct better shape in "chair, lamp, cabinet" classes over MSN.

In addition, it is also noteworthy in AtlasNet, the dense output point cloud is

achieved by combining outputs of four passes on four different inputs [35]. In models

such as MSN and PCN, they generate dense point cloud in a coarse to fine fashion.

The models first generate a coarse point cloud then deploy a points residual network

to generate dense point cloud from the coarse point cloud. In the similar manner,

dense outputs of the proposed GPAEs are combination of two passes of two randomly

sampled on the same input and are generated from its Gaussian components. Despite

that, the proposed GPAEs outperformed other methods by a great margin. This is

due to the proposed GPAE using density distributions (Gaussian components) as local

feature representation that represents the local distribution of point cloud respectively.

Naturally, a Gaussian component establishes its probabilistic distribution (centroid, i.e.

mean, and boundary, i.e. variance) by observing priors (Sgt). By leveraging probabilistic

sampling on training and testing samples and enough network training iterations, the

posterior density of GPAEs can be established when all Sgt data points are observed.

As the results from probabilistic sampling learning, the generation of dense point cloud

is at a cost of a smaller network compared to other networks that direct fully generate

dense point cloud.

Another performance comparison between the latest work on GRNet [38] and the

proposed GPAE is shown in Table 4.7. In the comparison, two refinement variants of

GRNet are put into comparison and the dense output point cloud generated by GRNet is

16,384. The GPAEs could generate similar 16,384 dense output point cloud by combining

four times forward passes of reconstructed point cloud. The average CD of coarse output

of GPAE outperformed both refinement variant of GRNet in terms of average CD and

F@1%. However, the GPAEs show a significant gap on dense output compared to
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GRNet with refinement setting turned on. This suggests a refinement process for GPAE

can close the gap on partial point cloud completion performance comparing to GRNet.

Despite the better performance in GRNet, GPAEs have approximately 50 folds smaller

network size as compared to GRNet. Therefore, the use of the proposed GPAE model in

real-time inference on multiple 3D object instances is more practical in producing dense

output from partial point cloud.

4.6 Experiment #3: Performance Evaluation on KITTI

Dataset

To further evaluate the point clouds completion, KITTI dataset [155] containing

real-world point cloud captured from LiDAR scanning is used to perform the benchmark

comparison between the proposed GPAE-16 method with the existing works. Data sam-

ples are pre-annotated and readily labeled. The partial point clouds in KITTI dataset

are highly sparse and do not have complete point clouds as ground truth. The setup

of this evaluation is performed according to [38] by using two performance metrics, i.e.

Consistency [34] and Uniformity [156]. Consistency is defined as the average CD between

two consecutive frames ti and ti−1 of j-th reconstructed car instance Sj
out over number

of frames nf . It is measured as follows [34],

Consistency =
1

nf − 1

nf∑
i=2

dCD(S
j
out,ti−1

, Sj
out,ti

), (4.12)

Uniformity is the measure of distribution uniformity of the reconstructed point

cloud by measuring the local and non-local distribution uniformity defined as follows

[156],

Uniformity(p) =
1

M

M∑
i=1

Uimb(Sout,i) ·Uclut(Sout,i), (4.13)

where Sout,i , i = 1, . . . ,M is a subset of point cloud cropped from Sout using farthest

point sampling and ball query of radius r =
√
p and p is the percentage of points in

Sout,i. The term Uimb is accounted for non-local uniformity is defined as,

Uimb(Sout,i) =
(|Sout,i| − n̂)2

n̂
, (4.14)
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Table 4.8: Evaluation of Consistency and Uniformity with percentage of points p on KITTI
dataset [155].

Methods
Consistency Uniformity (×10−3)

(×10−3) p = 0.4% p = 0.6% p = 0.8% p = 1.0% p = 1.2%

AtlasNet 0.700 1.146 1.005 0.874 0.761 0.686

PCN 1.557 3.662 5.812 7.710 9.331 10.823

MSN 1.951 0.822 0.675 0.523 0.462 0.383

GRNet 0.313 0.632 0.572 0.489 0.410 0.352

GPAE-16 1.446 0.438 1.024 1.869 2.887 3.859

where n̂ = rNp. Subsequently, the term Uclut is accounted for local uniformity defined

as,

Uclut(Sout,i) =

|Sout,i|∑
k=1

(di,k − d̂)2

d̂
, (4.15)

where dout,i,k is the k-th nearest point in Sout,i and d̂ is the expected point-to-neighbour

distance.

Table 4.8 shows the Consistency and Uniformity comparison results on GPAE-16

and existing works. The GPAE-16 achieved better consistency over PCN and MSN,

however it falls short of AtlasNet and a larger gap compared to GRNet. In addition,

GPAE-16 achieved better uniformity with p = 0.4% compared to all exiting works,

however degradation of uniformity is observed with increased p = 0.6%, 0.8%, 1.0%, 1.2%

and is outperformed by existing works, except for PCN.

One of the factors that caused larger gap of consistency between AtlasNet and

GRNet and the declination of uniformity is due to all existing works which are fine-tuned

on ShapeNetCars [38] where the dataset only contains single class object, i.e. cars. In

contrary, PCN and GPAE-16 are trained on ShapeNet which contain multiple classes of

object. Moreover, GPAE-16 is a non-residual reconstruction model compared to most

residual completion model, i.e. PCN, MSN, and GRNet, that has higher capability in

reconstructing higher fidelity and consistent dense point cloud. Figure 4.5 demonstrates

several partial point cloud completion of cars from KITTI dataset. From the demon-

stration, although GPAE-16 is optimized on regular ShapeNet it is able to reconstruct

reasonable outputs from sparse real-world point cloud. However, the GPAE-16 is not

able to concisely reconstruct the output in the instances such as Figure 4.5(c) and 4.5(d),

where input details are excessively absent.
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(a) (b)

(c) (d)

Figure 4.5: Four sample results of partial point cloud (left) completion on cars and
completed point cloud (right) from KITTI dataset at random timestamps.

4.7 Chapter Summary

A novel partial point cloud completion model using Gaussian component as com-

pressed representation, GPAE is proposed in this chapter to reconstruct a complete 3D

points from single viewpoint partial point cloud. The GPAE-8 and GPAE-16 outper-

formed all other models that similarly generate 8,192 dense output point cloud with

lowest average CD of 0.56× 10−3. Although the GPAEs do not possess point cloud re-

finement process, they showed comparative performance in EMD comparison. Moreover,

the GPAEs have approximately 10 folds smaller network size compared to models that

generate 8,192 dense output and 50 folds to models that generate 16,384 dense output.

The GPAEs also showed robustness toward sparse input partial point cloud by facing

an average of 8% reconstruction degradation at 50% missing points. While, 97% recon-

struction accuracy is achieved within 5% deviation relative to ground truth. Overall,

the GPAEs showed generalized point cloud shapes learning indicated by the uniform CD

and EMD across 3D objects. Although GPAE-16 is non-residual reconstruction model,

it achieved reasonable results in the evaluation of real-world point cloud. In the follow-

ing chapter, the proposed GPAE is extended to learn point cloud that is imposed on

transformation, i.e. rotation using a novel network architecture in this research field.
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Chapter 5

Part-to-Whole Learning Capsule

Network on Point Cloud

Classification and Reconstruction

5.1 Introduction

Point cloud objects recognition is crucial in the recent advancement of autonomous

robotic applications [157] and semantic environment learning from depth sensors [20,

158]. The use of artificial neural networks (ANN) to learn semantic 3D learning such as

object detection, object classification, and 3D mapping are benefited from data-driven

learning on depth perception from real-world environment. Several popular 3D data

representation are depth-map (RGB-D) and point clouds, where RGB-D is a data for-

mat of a RGB image coupled with a depth-map and point cloud is a sparse data point

sampled from an object surface [159]. Comparatively, representation of 3D object in

point cloud could preserve richer spatial and geometric information than RGB-D due to

its sparsity and non-grid structure. However, the process of dealing with point clouds

efficiently possesses a set of challenges, such as points permutation and sparsity of data

points [4]. In general, three learning models are used to learn and encode 3D point

clouds for classification, i.e. point-based model, graph-based model, and capsule-based

model.

Point-based models [34, 160] are the early works that implemented deep learn-

ing network for efficient point clouds learning. PointNet [4] is one of the pioneering
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work that devised a shared MLP-based network to directly process raw input point

clouds. The network is modeled based on Hausdorff distance and universal approxi-

mation theorem. In addition, with implementation of max pooling in PointNet, the

network is permutation invariance toward input point clouds. In its incremental work,

PointNet++ [7] implemented recursive PointNet to achieve local feature grouping using

farthest point sampling as guidance. In converse to PointNet, where it only encodes

global features, PointNet++ aggregates the local features relative to the encoded global

features. Therefore, PointNet++ is able to learn better than PointNet.

As point-based models are more emphasized on point-wise learning and addition

steps are required to aggregate the local features, graph-based models [95, 96, 161] learn

the set of point clouds by drawing a directed graph of each point, i.e. vertices and edges.

Benefited from directed graph, such model is able to aggregate local information directly

in a sparse data environment. In addition, by aggregating hierarchical of directed graphs,

a coarse graph can be produced to group the local features as a global feature. In one

of the early graph-based models, Valsesia et al. [95] proposed a graph neural network to

synthesize object shapes. An adjacency matrix is calculated by using the directed graph

features of each vertex in each graph convolution layer. Despite its superior results,

the calculation of the adjacency matrix requires quadratic computation complexity and

consumes a lot of memory. In DGCNN [52], a graph is dynamically constructed on

each local point cloud and projected into high dimensional feature space for network

learning. Multiple variants of DGCNN [162–164] are devised to improve its performance

while reducing the model size.

In contrary to existing works that learn by extracting most significant features

and aggregate them from local to global level, capsule network is proposed to enforce

part-to-whole learning of an object. For instance, capsule network in [41] implemented

equally strided convolution layers to extract local part features of an object in 2D im-

ages. Following that, Dynamic Routing (DR) algorithm as a soft clustering algorithm

is devised to cluster the extracted part features into an object capsules, where each

object capsule contains object specific features. The latter, Hinton et al. [70] proposed

Expectation-Maximization (EM) routing algorithm to enhance the soft clustering step.

Despite initial implementations of capsule network are on 2D images, Zhao et al. [104]

proposed a capsule network to learn point cloud objects. The method implemented repli-

cas capsule encoders and DR to obtain latent capsules that represent the point cloud

object.
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Nonetheless, most aforementioned techniques in point clouds feature learning

mainly perform best when input point clouds are ideally conditioned, i.e. canonicalized

point clouds [4]. This is due to the networks that are not generalized towards variation

in the input point clouds [165], such as rotational transformation, which is common

in practical applications. Ultimately, rotation equivariance is a desired property in a

network that allows learning of transformation invariant features, while retaining the

original transformation that is imposed in the input samples [146]. To encounter such

variation, Spatial Transformer Network (STN) is proposed to canonicalise the augmented

input point clouds before a learning process [4, 52]. However, due to limitation of STN

it fell short to a small tolerance of rotation degree. In other approaches [94, 166],

local reference frames based on points normal are estimated in the input samples to

establish global rotation invariance. Besides establishing invariance in the input sample,

invariance in the latent feature is established in the networks [167, 168]. In recent capsule

network [42], rotation perturbation on input point clouds during network training is

employed to enforce the rotation equivariance. Several discrete viewpoints are utilized to

draw agreement on object existence using DR. Further, capsule network in [48] generated

numbers of local reference frames as local features followed by DR to achieve rotation

equivariance in point clouds learning.

Inspired by part-to-whole relationship learning and rotation equivariance in cap-

sule networks [42, 48, 104], a part-based capsule network devised from a Part Sampler

Network (PSN) and capsule network is proposed for point clouds learning. To motivate

and demonstrate the benefit from enforced part-to-whole learning of a capsule network,

the proposed network utilizes locally segmented parts from input point clouds for parts

reasoning to learn point cloud object. The reasoning mechanism is driven by the Dy-

namic Routing that allows voting on existence of point cloud object by parts. This is

mainly achieved by searching for maximum response of a part feature corresponding

to object class capsule using operation such as dot product. In order to consistently

segment parts from input point clouds, PSN is developed based on Point cloud Neural

Density Estimator (PNDE) in Chapter 3 to estimate the density parameters of input

point clouds. Using the estimated density parameters, local parts of input point clouds

are segmented based on the likelihood of points. Moreover, PSN is rotation equivari-

ance due to the PNDE backbone. In addition, the property rotation equivariance can

be inherited by adopting capsule network architecture [48, 146]. Hence, the proposed

network is effectively rotation equivariance. Further, a contrastive learning method is
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implemented to enhance the network training process through a redundancy reduction

technique [169].

5.2 Part-based Capsule Network

The proposed network shown in Figure 5.1 comprises two stages: (i) Parts seg-

mentation on the input point cloud using PSN, and (ii) Part-to-whole relationship learn-

ing using capsule network with Dynamic Routing algorithm. To ensure rotation equiv-

ariance of the proposed network, several required property are defined as follows,

Definition #1 (Rotational Equivariant Network) For a network to be rotational equiv-

ariant, all function map is required to be an equivariant map and the resultant rotation

in the input causes equivalently transformation in the output [146, 147], such that:

Λ(g1 ◦ X) = g2 ◦ Λ(X), (5.1)

where {g1, g2} ∈ G and G is an affine transformation group. Λ is an equivariant function

map and X is data group.

Definition 2 (Rotational Equivariant Local Maximizer) A density estimator is equiv-

ariant under linear affine transformation, i.e. rotation. Given a random variable X is

sampled from µ and Σ:

X ∼ N(µ,Σ). (5.2)

Let X̂ = AX + b be an affine transformation acted on X, then X̂ can be sampled from

Figure 5.1: The proposed point clouds objects classification model using PNDE and
a capsule network, optimized using a joint loss consisted margin loss, L1 and Chamfer
distance, L2.
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density parameters of µ̂ and Σ̂:

X̂ ∼ N(µ̂, Σ̂). (5.3)

where µ̂ = Aµ + b and Σ̂ = AΣAT . As stated in [148], let N(µ,Σ|X) be the local

maximizer for X, then N(µ̂, Σ̂|X̂) is inherently the local maximizer for X̂.

Definition 3 (Equivariant Weighted Mean Operation) Let a weighted mean operation

F : Gn×Rn 7→ G that maps n element of group G weighted by w ∈ Rn to weighted mean

values of element in G. The mean operation is left-equivariant and invariance towards

permutation [146], such that,

F(g ◦ X, w) = g ◦ F(X, w), (5.4)

Due to transitivity property of equivariance [146] defined in Definition 1, the

proposed network is rotation equivariance due to presence of equivariance network maps,

i.e. PSN is equivariance as it is a local maximizer as defined in Definition 2 and capsule

network is equivariance due to its weighted mean operation in Definition 3.

5.2.1 Local Receptive Field Part Segmentation

Local receptive field is a common technique [170] in learning 2D images, where

a 2D image is a set of pixel and each pixel is ordered in grid space. Regions of input

space are employed to perceive local region of input for features encoding and learning.

Intuitively, this allow sparse reception of input data as compared to fully connected

networks, while able to extract significant features. On the contrary, a point cloud

S1 = {x1, . . . , xn} ∈ RN×3, with N number of points, is commonly presented in sparse

and un-ordered grid-less space. Using intuition from local receptive field of 2D images,

similar can be implemented by segmenting local regions of input point cloud. In order

to segment parts from point cloud in a sparse and un-ordered environment, one can

implement clustering technique, i.e. k-clustering to obtain patches of point cloud that

represent local parts. However, such technique is heuristic and requires high number

of iterations to converge on each cluster. In addition, each initialization of k-clustering

is randomized, resulting the acquired local parts to be random in each network feed-

forward.

To overcome this, PSN based on PNDE is devised based on Chapter 3 to consis-

tently segment local parts from an input point cloud. Figure 5.2 shows the PSN denoted

by f1 : RN×3 7→ RM×k×3 and P = f1(S1). A collection of local point cloud parts
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Figure 5.2: The PSN comprises PNDE with its components Global Density Estimator
(GDE) and Local Density Autoencoder (LDA) to estimate its point cloud’s mean and vari-
ance for local parts extraction using Gaussian maximum likelihood as an guiding objective
function.

P = {p1, . . . , pM} ∈ RM×k×3, where k = N
M and M is number of density parameters, is

sampled from input point cloud based on density parameters Q = {q1, ...qM} ∈ RM×6

generated from PNDE. By obtaining the density parameters of input point cloud, k

highest likelihood points belonging to each density parameter are selected from the point

cloud to form local point cloud part pm ∈ Rk×3. The procedure of PSN is described in

Procedure 1.

Procedure 1 Part Sampler Network

Input: Input point cloud S1 = {x1, . . . , xn} ∈ RN×3, Density parameters of input point
cloud Q = {q1, ...qM} ∈ RM×6.

Output: Local parts of input point cloud P = {p1, . . . , pM} ∈ RM×k×3, with k = N
M

number of points per local part point cloud and M number of density parameters.
1: for All density parameters qm do
2: for All points of input point cloud xn do
3: lm,n ← N(xn|qm) ▷ Compute likelihood of each point
4: im,k ← argmax

n=k
(lm,n) ▷ Search k indices of highest likelihood

5: end for
6: pm ← select(S, im,k) ▷ Select points from point cloud using the indices
7: end for
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5.2.2 Part-to-Whole Learning using Capsule Network

Once the local point cloud parts are obtained, they are fed into a capsule network

for part-to-whole relationship learning using a vector representation. In this implemen-

tation, the proposed capsule network comprises two main layers, i.e. parts capsules layer

and class capsules layer. To obtain part capsules U = {u1, . . . , uM} ∈ RM×d, where d is

the dimension size of a part capsule, a list of part encoder modules, {fenc,1, . . . , fenc,M} is

adopted from PointNet [4] to encode individual part features, such that fenc,m : Rk×3 7→
Rd and um = fenc,m(pm). By normalizing the part capsule using a vector orientation-

aware activation function [41] in Eq. (5.5), a part capsule holds the latent features of

local point cloud part in the form of response vector.

squash(x) =
||x||2

1 + ||x||2
x

||x||
(5.5)

Subsequently, the class capsules V = {v1, . . . , vC} ∈ RC×d′ , where d′ is the di-

mension of a class capsule and C is the number of class, are responsible in containing

features of each object class category. Different from standard perceptron operation,

Dynamic Routing algorithm [41] is implemented to operate and propagate the part

capsule to class capsule. The operation can be viewed as a weighted mean and soft

clustering operation in voting each part capsule (lower-level features) into respective

class capsule (higher-level features). As each class capsule represents a class cate-

gory, the selection of class capsule to classify a point cloud is obtained by choosing

the class capsule with most significant magnitude vmax = Vargmax
C

(||V ||) ∈ Rd′ . The

procedure of the proposed part-based capsule network is described in Procedure 2.

To further optimize the part capsules and latent feature of selected class capsule, they

are concatenated to form a list of vectors {r1, . . . , rM} ∈ RM×(d+d′) for point cloud

reconstruction. A patch-based decoder network adopted from Chapter 4 denoted by

fdec = {fdec,1, . . . , fdec,M}, where fdec,m : Rd′+2 7→ Rk×3 is implemented to reconstruct

output point cloud S2 = {y1, . . . , yN} ∈ RN×3.

5.2.3 Objective Functions

The optimization of the proposed network is conducted independently in the first

stage and second stage. For instance, the PSN is optimized in prior to the capsule

network, using Gaussian Maximum Likelihood as the objective function derived in Eq.
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Procedure 2 Rotation Equivariance Part-based Capsule Network

Input: Local parts of input point cloud P = {p1, . . . , pM} ∈ RM×k×3, r routing itera-
tions.

Output: Class capsules V = {v1, . . . , vC} ∈ RC×d′ .
1: for All part capsule m do
2: um ← squash(fenc,m(pm)) ▷ Encode part capsule
3: end for
4: for All class capsule c do
5: for All part capsule m do
6: ûc|m ←Wc,mum ▷ Transform part capsule
7: end for
8: end for
9: bm,c ← 0 ▷ Initialize activation term

10: for i routing iterations do
11: for All part capsule m do
12: for All class capsule c do
13: ac ← softmax(bm) ▷ Normalize activation term
14: sc ←

∑
c acûc|m ▷ Weighted average of new pose vector

15: vc ← squash(sc) ▷ Normalize class capsule vector
16: bm,c ← bm,c + ûc|m · vc ▷ Update activation term
17: end for
18: end for
19: end for

(5.6). This is to ensure the PSN is as generalized as possible and the part-to-whole

learning is not dependent on the PNDE.

LPNDE(S1, Q) = − ln

[
N∑

n=1

M∏
m=1

N(xn|µm,Σm)

]
, (5.6)

where,

N(xn|µm,Σm) =
1

(2π)
3
2 |Σm|

1
2

e−
1
2
(xn−µm)TΣ−1

m (xn−µm). (5.7)

On the other hand, the optimization of capsule network in second stage uses a

joint-loss objective function Lcap, where Lcap = L1+L2 . The first term of the joint-loss

L1 is the margin loss implemented in capsule network [41] as derived in Eq. (5.8),

L1 = Tcmax(0,m+ − ||vc||)2 + λ(1− Tc)max(0, ||vc|| −m−)2 (5.8)

where Tc is the targeted class and Tc = 1 if the object class exist. The margins m+ = 0.9,

m− = 0.1, and the regularizing term is set λ = 0.5. The second term L2 is Chamfer
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Visualization of dataset samples from Modelnet10, ModelNet40, and
ShapeNetCore13: (a) Airplane, (b) Cabinet, (c) Car, (d) Chair, (e) Lamp, (f) Sofa.

distance (CD) [34, 35] that measures the reconstruction quality of reconstructed point

cloud and it is derived in Eq. (5.9).

L2(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22 +
1

|S2|
∑
y∈S2

min
x∈S1

||x− y||22, (5.9)

5.3 Experimental Setup

The proposed network is evaluated using benchmark 3D point cloud datasets, i.e.

ModelNet10, ModelNet40 [144] and ShapeNetCore13 [145] dataset. The ModelNet10

is a subset of ModelNet40 which contains 10 categories of labelled CAD object models

with 3991 training and 908 testing data. On the other hand, ShapeNetCore13 is a subset

of the full ShapeNetCore55 dataset, covering 13 common object categories of labelled

CAD object models with 31,772 training and 7,956 testing data. The visualization

of point cloud samples, i.e. airplane, cabinet, car, chair, lamp, and sofa are shown

in Fig. 5.3. The proposed network is built using configuration shown in Table 5.1.

Fixed hyper-parameters used in this implementation are class capsule dimension d′ =

64, input point cloud size N = 2048, and routing iterations i = 3, class capsule size

C = 10, 40, 13 for ModelNet10, ModelNet40, and ShapeNetCore13 respetively. Varied

hyper-parameters are number of parts M = 16, 32, 64, 128, 256, 512 and primary capsule

dimension d = 256 subjected in ablation studies. The proposed network is developed on
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Table 5.1: Configuration of PSN, Capsule network and patch-based decoder.

Layers Configuration Output Dim.

Input - N × 3

PSN
PNDE M × 6

Likelihood Segmentation M × k × 3

Part encoder
modules

M× Conv1D [3, 64] +BN+ReLU M × k × 64

M× Conv1D [64, 128] +BN+ReLU M × k × 128

M× Conv1D [128, d] +BN+ReLU M × k × d

Maxpool1D (k) M × d

M× FC Layer [d, d] +BN+ReLU M × d

M× FC Layer [d, d] +BN+ReLU M × d

Capsule Network

Primary Capsule M × d

Dynamic Routing -

Class Capsule C × d′

Select class
capsule Vargmax

C
(||V ||) 1× d′

Patches Expand( N
M ) N

M × d′

Patch-based
decoder

M× Shared MLP [(d′ + 2), 1024] +BN+ReLU M × 1024× N
M

M× Shared MLP [1024, 512] +BN+ReLU M × 512× N
M

M× Shared MLP [512, 256] +BN+ReLU M × 256× N
M

M× Shared MLP [256, 3] +BN+Tanh M × 3× N
M

- Concatenation N × 3

Pytorch 1.9.0 using mixed precision network parameter. Batch size of 64 and learning

rate 1 × 10−3 are used for network optimization. The experiments are conducted in

respective sections: (Experiment #1) Ablation studies on the proposed network to reveal

the performance under varied conditions, (Experiment #2) Evaluations of classification

performance compared to existing works on non-rotated point clouds, (Experiment #3)

Qualitative and quantitative evaluations of proposed network’s performance on rotation

perturbed point clouds.
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5.4 Experiment #1: Ablation Studies on Network Config-

uration

In this section, ablation studies are conducted on the proposed network using

several benchmark datasets, i.e. ModelNet10, ModelNet40, and ShapeNetCore13. The

ablation studies are aimed to reveal responses of proposed network toward several ar-

chitectural variations. In addition, the studies can provide insights on optimized hyper-

parameters of the proposed network. In Table 5.2, an ablation study on classification

performance is performed on the proposed network by varying the number of local parts

corresponding to the number part capsules and local point cloud receptive field. From

the results, increasing the number of part capsules has minimal effect on the classi-

fication performance across all benchmark datasets. However, by increasing the size

of local point cloud with factor of 2, an average of 0.4% improvement in classification

performance is observed.

Essentially, this implies the size of local receptive field has more importance

against the number of local parts presence for part whole learning. As the number

of point per local part is defined by Np = N
M × r, where N is the number of point in

a point cloud and r is the local receptive field size, it is inversely proportional to the

number of parts. Thus, with fewer points presence in a local part, it translates to a local

part that has reduced geometric information. The importance can be reaffirmed when

slight improvement in the classification performance is observed as the local point cloud

receptive field is increased by factor of 2.

Table 5.2: Network performance comparison on number of parts, M and receptive field
size, r trained without reconstruction loss and evaluated using benchmark dataset Model-
Net10, ModelNet40, and ShapeNetCore13 in classification rate (%).

#Parts Model-
Net10

Model-
Net40

ShapeNet-
Core13

M = 16, r = 1 92.67 87.47 94.19

M = 32, r = 1 92.67 87.72 94.25

M = 64, r = 1 92.67 88.25 94.00

M = 16, r = 2 93.11 88.00 94.33

M = 32, r = 2 93.11 87.85 94.58

M = 64, r = 2 93.44 88.50 94.26
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(a) (b) (c)

Figure 5.4: The cross-correlation matrix between class capsules on: (a) ModelNet10, (b)
ModelNet40, (c) ShapeNetCore13.

Using configuration M = 16 and r = 2 of the proposed network, consecutive

ablation study is conducted by incorporating reconstruction loss to optimize the class

capsule. In Table 5.3, the results indicate that with additional guidance from reconstruc-

tion loss using Chamfer Distance, the classification performance of the proposed network

is incrementally improved by an average of 0.5%. In Figure 5.4, correlation matrix of

class capsules are visualized in form of confusion matrix to understand the relation of

Table 5.3: Network performance using configuration M = 16, r = 2 comparison with
(w/) and without (w/o) reconstruction loss evaluated on benchmark dataset ModelNet10,
ModelNet40, and ShapeNetCore13 in classification rate (%).

#Parts Model-
Net10

Model-
Net40

ShapeNet-
Core13

w/o CD 93.11 88.00 94.33

w/ CD 93.78 88.70 94.71

Table 5.4: Network parameters comparison using configuration M = 16, r = 2 and varied
part capsule dimension evaluated on benchmark dataset ModelNet10, ModelNet40, and
ShapeNetCore13 in classification rate (%).

Part Capsule
Dim. #param Model-

Net10
Model-
Net40

ShapeNet-
Core13

32 0.33M 93.56 88.62 94.71

64 0.66M 93.67 88.46 94.71

128 1.31M 93.56 88.25 94.84

256 2.62M 93.78 88.70 94.65

512 5.24M 93.78 88.70 94.64
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class capsules and to inspect distribution of shape learning. From the visualization, it

is observed classes with most confusion are ones with similar shape such as cabinet and

night stand; flower pot and vase.

In Table 5.4, the proposed network is further studied on varied part capsule

dimensions. From the results, the number of network parameter increases linearly to

the part capsule dimension size with minimum of 0.33M trainable parameters when

using Dim = 32 and maximum of 5.24M trainable parameters when using Dim = 512.

However, with 16× smaller network with Dim = 32, the degradation on classification

performance is negligible. This shows the saturation in part capsules latent dimension,

where with Dim = 32 the part capsules are sufficient to contain information required

to represent a part as Dim = 512. From the ablation studies, design choices of the

proposed network are made with the most optimized hyperparameter, i.e. M = 16,

r = 2, Dim = 32 and incorporating reconstruction loss for network training.

5.5 Experiment #2: Point Clouds Classification Evaluation

In this section, the proposed network is compared to several pioneering works in

point cloud classification. Table 5.5 shows the classification performance of proposed

network and existing works on ModelNet10, ModelNet40, and ShapeNetCore13 to eval-

uate point clouds object learning capability. Despite using significantly less number

of network parameters, the proposed network achieved on-par classification rate with

92.9% on ModelNet10, 88.9% on ModelNet40 and 94.1% on ShapeNetCore13. Notably,

Table 5.5: Network parameters comparison on the benchmark dataset ModelNet10, Mod-
elNet40, and ShapeNetCore13 in classification rate (%).

Method #param Model-
Net10

Model-
Net40

ShapeNet-
Core13

PointNet [4] 3.5M 92.7 89.4 94.5

PointNet++ [7] 1.5M - 89.2 -

DGCNN [52] 1.8M 94.5 91.5 95.1

3DPointCapsule [104] 69.2M 92.4 89.3 93.9

Zhao et al. [48] 0.4M - 85.3 -

Ours (32) + CD 0.33M 93.56 88.62 94.71

Ours (512) 5.24M 93.78 88.70 94.64
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the proposed network is approximately 182 folds smaller than 3DPointCapsule while

having similar classification performance.

To draw differences compared to existing works, the proposed network segments

local parts of the input point clouds for parts reasoning through agreement via Dynamic

Routing algorithm [41] to vote on an object. Essentially, the agreement to vote is

achieved by searching most significant response of part capsules corresponding to an

object capsule based on a dot-product operation. In contrary, most existing works rely

on extending the dimension of latent features of the input point clouds to draw the most

significant features. Although DGCNN outperformed all networks with an adequate

network parameters, the added stacks of EdgeConv made the network computation

extensive due to the search for neighbourhood points on each layer.

While the closely related work 3DPointCapsule implemented 1024 replicas of

point cloud encoder to search for significant parts, it similarly implemented Dynamic

Routing algorithm to vote on its lower level capsules corresponding to its higher level

capsule. However, due to high numbers of replicated encoder, the network parameter is

drastically increased. In contrast, the proposed network utilizes 16 segmented parts to

encode into 16 part capsules, comparing to 1024 primary capsules in 3DPointCapsule.

Hence, this justifies the efficacy of object learning through agreement on segmented parts

compared to parts searching by network where it sees fit.

5.6 Experiment #3: Rotation Perturbed Point Clouds Clas-

sification and Reconstruction Evaluation

Rotation perturbation is critical due to its tendency to distort the input point

clouds that can significantly affects performance in point clouds classification. To show

the robustness of the proposed network on rotation perturbation, this section evaluates

Table 5.6: Network parameters comparison on the benchmark dataset ModelNet10, Mod-
elNet40, and ShapeNetCore13 in classification rate (%).

Method ModelNet10 ModelNet40 ShapeNet-
Core13

Srivastava et al. [42] 96.0 – –

Zhao et al. [48] - 74.4 -

Ours (32) + CD 86.67 79.34 87.83
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Qualitative results of point clouds reconstruction and rotation perturbed input
point clouds: Ground truth (a) Bed, (b) Chair, (c) Dresser, (d) Toilet, Reconstructed point
clouds (e) Bed, (f) Chair, (g) Dresser, (h) Toilet.

and discusses performance of point clouds classification on rotation perturbed input

point clouds and comparison on existing works. In a closely related work [42], explicit

pose estimation is implemented as part of viewpoint feature in a point cloud capsule

network to achieve rotation equivariance. The work relies on drawing discrete novel

viewpoints from an input point cloud and DR is utilized to vote on existence of object

based on the novel viewpoints. Subsequently, the estimated pose is imposed on a recon-

structed canonical point cloud to obtain rotation equivariance reconstruction. In more

recent work [48], property of rotation equivariance is implicitly embedded in the network

by utilizing collection of local reference frames and capsule network architecture. As lo-

cal reference frame is a local orientation representation, hence it is invariant to global

rotation. Therefore, rotation equivariant latent features can be generated by using DR

that is a weighted averaging operation of the local reference frame.

In converse to existing works, the proposed method is rotation equivariance by

joint network of rotation equivariance maps [146, 147], i.e. PSN and capsule network.

Firstly, the PSN is a local maximizer function that is a transformation equivariant map,

where no translation is involved in this work. Secondly, a capsule network architecture

is an equivariant map by its weighted averaging operation. Furthermore, equivariance
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can be enforced when the local receptive field is not agnostic to the pose [146]. Here,

the PSN generates a non-agnostic local receptive field by utilizing the point clouds den-

sity parameter that is equivariant to the input point clouds orientation. Hence, the

extracted local part features are locally equivariance and globally invariance to trans-

formation, i.e. rotation. To quantify the evaluation of rotation equivariance, Iterative

Closest Point (ICP) [171] is used to measure the rotation discrepancies between ground

truth point clouds and reconstructed point clouds. In the quantitative experiment, the

reported average rotational deviation is ±2 deg. The qualitative and quantitative results

essentially evaluate the rotation equivariance property of the proposed network. In Fig.

5.5, the qualitative results show point clouds reconstruction from input point clouds

imposed by random rotation of [π2 , π] on the XYZ axes similar to setup in [42].

5.7 Chapter Summary

A capsule network with enforced part-to-whole relationship is proposed in this

chapter to improve the effectiveness of point clouds learning. The network comprises

two stages, i.e. (i) a PSN using Point cloud Neural Density Estimator (PNDE) as its

backbone is proposed to segment local part of input point cloud; (ii) a capsule network

is implemented to learn the reasoning of an object’s existence using the agreement on

parts voting through dynamic routing algorithm. Subsequently, a decoder inspired from

Gaussian Point cloud Autoencoder (GPAE) is attached to the object capsules for genera-

tive point cloud reconstruction to further guide the optimization of object capsules. The

proposed network showed an adequate point clouds object learning capability evaluated

on classification performance compared to exiting works despite having significantly less

network parameter. In addition, the proposed network requires significantly lower latent

dimension in part capsule compared to existing works that use higher latent dimension,

resulting in substantial reduced network parameter. Moreover, the proposed network is

further improved with addition of reconstruction loss as the network joint loss function.

From evaluation, the network achieved testing classification accuracy of 93.56% in Mod-

elNet10, 88.70% in ModelNet40 and 94.71% in ShapeNetCore13. In evaluation where

the input point clouds are imposed with rotation perturbation, the proposed network

achieved test accuracy of 86.67% in ModelNet10, 79.34% in ModelNet40 and 87.83%

in ShapeNet13. In qualitative results, the network is shown to fully reconstruct output
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that is equivariant to input point cloud with imposed rotation perturbation. Further-

more, the reconstructed output of the proposed network is quantitatively evaluated using

ICP algorithm and achieved average ±2 deg discrepancies in rotation. Nonetheless, this

chapter showed the viability of proposed PNDE and decoder functioning as a generative

learning model by incorporating part-to-whole learning architecture such as capsule net-

work. In the following chapter, the proposed PNDE and decoder are further applied on

real world application such as 3D human reconstruction to demonstrate the applicability

of the networks.
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Chapter 6

Skeletal Joints-based 3D Human

Reconstruction from Partial Point

Cloud

6.1 Introduction

The reconstruction of 3D human model from point cloud is of great interest in

computer graphic and computer vision [16, 172] due to its wide applications, such as

personalized human model in mixed reality applications [173], human kinematic mea-

surements in sports coaching [174] and human modeling in video-based motion capture

[17]. However, the acquisition of 3D human model from real-world is challenging mainly

due to viewpoint occlusion [175], hence identifying body parts given a point cloud is

often non-trivial. To overcome this, learning-based methods [176] are used to process

sparse or incomplete point clouds, as they can leverage prior data to fill in the miss-

ing information in the input. Other deep learning models [177] predict body model

parameters in feed-forward pass and use bottom-up two-dimensional (2D) features for

self-supervision.

Reconstructing a high-fidelity human shape [19, 178] using single viewpoint is

challenging because of non-rigid human deformations such as dynamic joints articulation

and sparse partial input data. Emerging deep learning techniques made reconstruction of

human shapes in an end-to-end fashion possible [179, 180]. Litany et al. [127] proposed

the use of variational autoencoder incorporated with graph convolutional operations for
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the completion of partial shapes. It learns a latent space for complete realistic shape on

full shapes with vertex-wise correspondence. Varol et al. [181] proposed a BodyNet to

learn to reconstruct volumetric human shapes with a low resolution volumetric represen-

tation. On the other hand, Jiang et al. [16] proposed to incorporate skeleton awareness

into the deep learning based regression of Skinned Multi-Person Linear model (SMPL)

[123] parameters for 3D human shape reconstruction. The basic structure of this model

uses PointNet++ to extract point features and then map point features to skeleton joint

features and finally SMPL parameters for the reconstruction from point clouds. SMPL

offers a nice compact representation for 3D human shape, and it has been integrated

with deep neural networks for 3D human reconstruction from RGB images. Zhou et al.

[17] performed the 3D human pose estimation from 2D depth images to 3D point clouds

through convolutional neural networks (CNNs). The output of this network is the 3D

coordinate of skeleton joints using pose regression network.

Numerous works in generative deep learning networks [34, 35, 102] are devised

on single viewpoint for point clouds completion by leveraging the learning capability of

deep learning neural networks. PCN [34], implemented a graph-based encoder coupled

with FoldingNet decoder for point cloud completion learning. However, the implemented

FoldingNet decoder in PCN involves multiple iterative processing that burdens the pro-

cess to generate output point clouds. In contrary, MSN [35] proposed a coarse-to-fine

grain point clouds sampling by introducing a novel minimum sampling strategy and im-

plemented a patch-based decoder from [100]. The method out-performed PCN with a

trade-off at the expense of higher network complexity. On the other hand, TopNet [102]

proposed a hierarchical tree structure to generate structured point clouds by modeling

point clouds topology. Although this allows a better generalization to novel shapes, the

method is intractable to scalability and has limited shapes learning capacity due to the

dependency of operating nodes in the tree structure.

Inspired from recent research trend in point cloud reconstruction using autoen-

coder [35, 37] and regressive 3D human model-based reconstruction [16, 124], two 3D

human point cloud reconstruction models are proposed in this chapter and are sectioned

in Section 6.2 and Section 6.3. The aim of the proposed models is to obtain complete

point cloud of human by taking input of sparse partial point cloud acquired from depth

sensor. In Section 6.2, a Generative skeletal joint-based autoencoder for human point

cloud reconstruction model is proposed. The model is a generative autoencoder model

that reconstructs point cloud of human from input partial point cloud acquired from a
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single viewpoint depth sensor, i.e. stereo vision camera. As a generative autoencoder

model, the output product is a non-synthetic complete point cloud reconstructed from

the input partial point cloud. In the following, a synthetic skeletal joints-based regressive

human reconstruction model is proposed in Section 6.3 with an incremental network revi-

sion that employs more efficient encoder and a synthetic human decoder. Hence, output

product of the synthetic model is a synthetic 3D human constructed from meshes with

concise representation of human shape. Subsequently, complete point cloud of human is

sampled directly from the surface of the synthetic human model. Both qualitative and

quantitative experiments are conducted using real-world non-synthetic human dataset

to demonstrate the feasibility of the proposed models.

6.2 Generative Skeletal Joint-based Autoencoder for 3D

Human Point Cloud Reconstruction

Point cloud acquired from depth sensors often possess attributes of un-ordered

and non-uniform data distribution in the 3D space. In addition, single viewpoint acqui-

sition may incur occlusion of human parts resulting in partial point clouds and absence

of crucial information from acquisition subject that can greatly degrade the performance

of human model reconstruction and skeletal joints estimation. Recent autoencoder ar-

chitectures [35, 37] have established significant qualitative improvements and feasibility

of the architecture in the works of point cloud reconstruction. Inspired by the architec-

ture, an autoencoder for 3D human point cloud reconstruction from input sparse partial

Figure 6.1: The proposed network comprises two-stage operations: (1) Joints encoder, (2)
Patch-based decoder. Joint loss of L2 distance, maximum likelihood and Chamfer distance
are implemented to optimize the network.
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point clouds acquired from a single viewpoint depth sensor is proposed as shown in Fig.

6.1.

The proposed autoencoder comprises two stages: (i) Skeletal joints encoder and

(ii) Patch decoder. The skeletal joints encoder learns to encodes latent representation

of input partial point clouds using graph-based features [52]. Using learnt latent repre-

sentation of partial point clouds, a set of localized skeletal joints and its variances are

inferred by independent multi-layer perceptrons (MLPs). Intuitively, the skeletal joints

and its variances can be viewed as local human part keypoints and subsequently uti-

lized for local patch sampling using the patch decoder adopted from AtlasNet [100]. By

concatenating the sampled local patches, a full 3D human point cloud is reconstructed.

6.2.1 Stage 1: Skeletal Joints Encoder

Let a set of full point cloud of a human defined as S = {pi ∈ R3}Ni=1, where N

is the number of points. A set of input partial point cloud Spar = {pi ∈ R3}Npar

i=1 is

defined as the subset of the complete point cloud, such that Spar ⊆ S and Npar < N .

Given there exists K ground truth skeletal joints {µgt,k}Kk=1 from the human, then K

estimated skeletal joint components {µk,Σk}Kk=1 can be inferred from the input partial

point cloud. Due to the skeletal joints components are modeled after mean and variance,

an encoder network such as network architecture laid out in Chapter 3 can be deployed

as a Skeletal Joints Encoder (SJE).

SJE is a network devised to estimate skeletal joints and joint variances from

input partial point cloud of a human. The network comprises a graph-based encoder

adopted from [52], a set of K independent MLPs and a shared MLP, where K is the

number of skeletal joint. A graph-based encoder is chosen to encode the latent features

of input point cloud due to its capability in aggregating semantic point clouds features

relative to its neighbourhood points. Moreover, an encoded latent feature gives a reduced

dimensionality of input data, which allow faster and efficient latent inference using MLPs.

Next, K independent MLPs and a shared MLP are implemented to infer independent

skeletal joints and joint variances. Mean square error (MSE) of skeletal joints in Eq. (6.1)

is used to compute the loss between estimated skeletal joints and ground truth skeletal

joints to guide the parameter optimization of the encoder. Additionally, a Gaussian

maximum likelihood function in Eq. (6.2) is used to further improve the estimation by

maximizing the likelihood of estimated skeletal joints and joint variances respective to

complete point cloud.
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djoints(µ, µgt) =
1

K

K∑
k=1

||µk − µgt,k||22, (6.1)

p(S|µ, σ) =
N∑
i=1

K∏
k=1

N(pi|µk, σk), (6.2)

where,

N(pi|µk, σk) =
1

(2π)
3
2 |σk|

1
2

e−
1
2
(pi−µk)

T σ−1
k (pi−µk). (6.3)

6.2.2 Stage 2: Patch Decoder

To reconstruct a complete human point cloud subsequent to the inference from

SJE, skeletal components are used as input parameter for a patch decoder for generative

reconstruction. This is reasoned by viewing the composition of skeletal components as

the local human part representation, where the mean components represent localized

skeletal joints and the variance components represent distribution of point cloud of

local human parts. Intuitively, a generative sampling technique such as one proposed

in Chapter 4 can be applied to reconstruct complete human point cloud by supplying

skeletal components to a patch decoder, such that,

p̂i ∼ N(µk,Σk), (6.4)

where the reconstructed set of point clouds is defined as Ŝ = {p̂i ∈ R3}Ni=1.

Following network architecture laid out in Chapter 4, a 3D point cloud recon-

struction approach is implemented to sample multiple local patches of point cloud using

patch decoder comprises independent shared MLPs. Subsequently, the local patches are

assembled to obtain a complete 3D point cloud by concatenation. In the point cloud re-

construction approach, each feature component, i.e. Gaussian, is used as a basis function

to guide an independent shared MLP for local 2D grid deformation. Intuitively, each

skeletal components is viewed as similar input component, hence local 2D grid deforma-

tion can be implemented to reconstruct a complete human point cloud. To optimize the

patch decoder, Chamfer distance (CD) [109] denoted as dCD(·) is implemented as the

reconstruction loss and is defined as follows,
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Figure 6.2: The proposed skeletal joints-based regressive human reconstruction network
is trained using two-mode strategy, i.e. synthetic training and fine-tuning on real-world
dataset.

dCD(Ŝ, S) =
1

|Ŝ|

∑
x∈Ŝ

min
y∈S
||x− y||22 +

1

|S|
∑
y∈S

min
x∈Ŝ
||x− y||22, (6.5)

where the similarities are the Euclidean distance of two nearest point and the compu-

tation can be efficiently implemented in parallel processing while retaining permutation

invariant. In order to draw a difference of the loss function compared to Chapter 4, mean

squared error (MSE) between ground truth and estimated skeletal joints djoints(µ, µgt)

is incorporated to further improve the guidance of the estimation. Therefore, the overall

loss function for network end-to-end optimization is defined as follows,

djoints(µ, µgt) =
1

K

K∑
k=1

||µk − µgt,k||22, (6.6)

L = djoints(µ, µgt)− ln(p(S|µ, σ)) + dCD(Ŝ, S). (6.7)

6.3 Skeletal Joints-based Regressive Synthetic 3D Human

Reconstruction

A skeletal joints-based regressive 3D human point cloud reconstruction is pro-

posed to reconstruct 3D human model using two-stage operations as illustrated in 6.2.

It includes a skeletal joints encoder to determine localized skeletal joints and variances

such as one implemented in aforementioned generative model in Section 6.2, and a re-
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gressive synthetic human model generator to obtain synthetic 3D human model. By

sampling on the surface of the synthetic 3D human model, a complete human point

cloud can be obtained. Due to the nature of non-uniform surface and irregular density

data distribution of acquired partial point cloud [50], farthest point sampling (FPS)

algorithm [182] is implemented in the pre-processing step to uniformly distribute input

partial point clouds in a grid-less space. Subsequently, a skeletal joint encoder from

Section 6.2 and parameter compression strategy from Chapter 3 are employed to infer

K skeletal joints and joint variances from the uniformly resampled input partial point

cloud.

The proposed skeletal joints encoder includes a graph-based encoder [52] and a

superposed MLP to infer the skeletal joints components. Compared to stack MLPs

implemented in Section 6.2, MLPs in the proposed network are vectorized into matrix

operation as demonstrated in Chapter 3. Consequently, the vectorization of MLP into

matrices eliminate the iterations operation in stack MLPs resulting in largely reduced

forward propagation time. Following by the matrix vectorization, a parameters super-

position compression strategy [143] is adopted to decompose the vectorized matrices,

i.e. θw ∈ Rd×d′ , θr ∈ RK×d′ , θs ∈ RK×d, effectively reduces the memory footprint of

overall network. By obtaining the estimated skeletal joints and variances, the estimated

joints are fed into Vposer [183], a fully differentiable regressive synthetic human model

generator that directly reconstruct a synthetic human model from human joints through

inverse kinematics. Finally, surface sampling using Barycentric coordinate interpolation

[184] is implemented to obtain reconstructed 3D human point cloud S3 = {pi ∈ R3}Ni=1.

6.3.1 Two-mode Synthetic and Non-Synthetic Training

In order to achieve skeletal joints estimation and 3D human reconstruction from

partial point cloud, a large dataset of partial point clouds that covers vast majority of

possible human pose is required for network training. Moreover, it is resource expensive

to acquire complete point clouds and skeletal joints of the corresponding partial point

clouds. Existing works [16] on network training directly used real-world dataset as their

training and testing data. However, method in [16] is only applicable for complete point

clouds inference. While output of the generative reconstruction is non-synthetic, it may

carry forward noises that are present in training data and less expressive in modeling a

3D human such as body shape.

88



Figure 6.3: The training of the proposed skeletal joint encoder on synthetic partial point
cloud rendered from Vposer 3D human model regressed on ground truth joints.

To overcome the aforementioned challenges, a two-mode training phase is pro-

posed in the model training as illustrated in Fig. 6.3, where the first training phase

learns general human shape and pose from synthetic partial point cloud synthesised

from Vposer [183] regressed from ground truth joints. The synthetic partial point cloud

is partially rendered using rendering technique from [34] on single-viewpoint. The sec-

ond training phase fine-tunes the proposed network by using real-world training data

as input and guided by ground truth joints. A set of scaling and shape parameters are

regressed in the fine-tuning process to capture the human size and shape of real-world

data. This is to further adapt the proposed method toward non-synthetic nature of

real-world data captured from a depth sensor.

The network training uses weakly supervised joint loss L = L1 + L2 with mean

squared error (MSE) shown in Eq. (6.8) and Gaussian maximum likelihood shown in

Eq. (4.2) as follows,

L1(µ, µgt) =
1

K

K∑
k=1

||µk − µgt,k||22, (6.8)

L2(S2|µ, σ) =
N∑
i=1

K∏
k=1

N(pi|µk, σk), (6.9)

where,

N(pi|µk, σk) =
1

(2π)
3
2 |σk|

1
2

e−
1
2
(pi−µk)

T σ−1
k (pi−µk). (6.10)

The MSE of skeletal joints is computed between the estimated skeletal joints with
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the ground truth to optimize encoder’s parameter learning. Gaussian maximum likeli-

hood function is implemented to improve the estimation by maximizing the likelihood

of estimated skeletal joints and its variances respective to complete point clouds.

6.4 Experiment #1: Generative 3D Human Reconstruction

The experimental evaluation of the proposed generative model is based on Berke-

ley Multimodal Human Action Database (MHAD) [185] dataset with similar pre-processing

setting as stated in [16]. MHAD is a non-synthetic 3D human model dataset that con-

tains 11 actions performed by 12 human subjects. All subjects performed 5 repetitions

of each action, yielding 660 action sequences which correspond to averagely 200 frames

per action sequence. The dataset is split into 4 repetitions for training set and 1 repe-

tition for testing set for each subject. In this experiment, Seq # 1 (jumping) and Seq

#2 (jumping jack) are used to perform evaluation to demonstrate the working principle

of the proposed network. There are 9280 training samples and 2368 testing samples

for network optimization. Each sample is normalized into [−1, 1]3 unit sphere using the

centroid of bounding box defined by the minimum and maximum joint positions.

Table 6.1: Configuration of generative 3D human reconstruction network.

Layers Configuration Output Dim.

Input - Npar × 3

Skeletal joints
encoder

EdgeConv (k = 10) [3, 64, 128, 128] Npar × 128

Conv1D [128, 256] +BN+ReLU Npar × 256

Conv1D [256, 1024] +BN+ReLU Npar × d

Maxpool1D (Npar) 1× d

(Stacked MLP) K× FC Layer [d× d′] +BN+ReLU K × 512

Conv1D [512, 256] +BN+ReLU K × 256

Conv1D [256, 6] +BN K × 6

Gaussian
Components

ReLU (K × 3)
K × 6

Softplus (K × 3)

Patches Expand(NK ) K × N
K × 6

Patch decoder

K× Shared MLP [(6 + 2), 1024] +BN+ReLU K × N
K × 1024

K× Shared MLP [1024, 512] +BN+ReLU K × N
K × 512

K× Shared MLP [512, 256] +BN+ReLU K × N
K × 256

K× Shared MLP [256, 3] +BN+Tanh K × N
K × 3

- Concatenation N × 3
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In this experiment, the number of skeletal joints is set K = 35 as defined by

MHAD dataset, the number partial point clouds is set Npar = 2048, number of ground

truth point clouds and reconstructed point clouds is set N = 6890 for fair comparison

against existing work. The architectural details are shown in Table 6.1 with latent

features dimension d = 1024 and d′ = 512. For the evaluation metrics, the average

point-to-vertex distance dp2v in Eq. (6.11) and average vertex-to-point distance dv2p in

Eq. (6.12) is used to evaluate the precision and recall performance of the reconstructed

human point clouds and ground truth point clouds.

dp2v(Ŝ, S) =
1

|Ŝ|

∑
x∈Ŝ

min
y∈S
||x− y||22 (6.11)

dv2p(Ŝ, S) =
1

|S|
∑
y∈S

min
x∈Ŝ
||x− y||22, (6.12)

Experiments are trained 200 epochs with scheduling decay rate of 0.5 per 20 epoch

and starting learning rate is set 1×10−3. Parameters are initialized using Xavier normal

(a)

(b)

(c)

(d)

Figure 6.4: These human model are captured in (a) the partial input point clouds , (b) the
estimated skeletal joints using partial input point clouds, (c) the reconstructed 3D human
point clouds, and (d) the ground truth 3D human point clouds .
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and batch size 64 is used. ADAM optimizer is implemented as optimization method for

both parts of training. The proposed networks are built and executed on Pytorch 1.8.0.

The specifications of test bench for the experiments are Intel-i7-4790K with 32GB RAM

and Quadro P6000 GPU with 24GB VRAM.

The demonstration of skeletal joints estimation and 3D human point clouds re-

construction is shown in Fig. 6.4 on a sequence of human motion. Fig. 6.4(a) illustrates

the input partial point clouds that is acquired from single viewpoint depth sensing cam-

era. As these partial point clouds are fed into the network, the joints encoder retrieves K

estimated skeletal joints as shown in Fig. 6.4(b). Subsequently, patch decoder decodes

the estimated joints to reconstruct full point clouds as displayed in Fig. 6.4(c). In Fig.

6.4(d), the ground truth point clouds are captured in full form from two depth sensing

cameras placed opposing each other and this ground truth acts as the benchmark model

to evaluate the reconstructed model. The implication of the illustration indicates that

the proposed network is able to reconstruct a full 3D human point clouds by using sin-

gle viewpoint acquisition that is on-par with the results from using multiple viewpoint

acquisition.

Table 6.2 shows the average Chamfer distance and average joint distance (mm)

of reconstructed 3D human point clouds over the 12 subjects. In the case of without

maximum likelihood during joints encoder optimization, the encoder achieved an average

joint distance deviation of 54.77mm and the decoder achieved an average Chamfer dis-

tance of 0.94×10−3. By incorporating a maximum likelihood of estimated joints and its

variance on ground truth point clouds, the proposed network achieved significantly bet-

ter results with an average joint distance deviation of 32.17mm and an average Chamfer

distance of 0.62 × 10−3. This suggests that by using addition joint variances as shown

in the variance map in Fig. 6.2, the proposed model is able to capture more semantic

local part features. As the results, the reconstruction fidelity and estimation of skeletal

joints are greatly enhanced. Moreover, the proposed model also showed robustness and

generalization towards sparse input partial point clouds as shown in Fig. 6.5. The figure

Table 6.2: The average estimated joints deviation against ground truth joints in mm and
average reconstruction loss dCD with and without maximum likelihood (ML).

Methods Joints Deviation (mm) dCD (×10−3)
w/o ML 54.77 0.94
w/ ML 32.17 0.62
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Figure 6.5: Average CD respective to points reduction (%) in the input partial point
clouds on two motion sequences.

shows an approximate of 2% degradation in reconstruction performance with up to 50%

points reduction on the input partial point clouds.

Comparing to the existing point clouds reconstruction architecture, single latent

features that govern a full point clouds basis function is given to decoder to generate

output point clouds. A point cloud completion method proposed by Liu et al. [35]

out-performed other methods [34, 100] due to the coarse-to-fine completion architecture

that used larger number of trainable parameters. However, a set of point clouds is

governed by multiple basis function which defines the manifold of a full point clouds

[104, 154]. Intuitively, the proposed network uses K number of joints and its variances

as the governing basis function for each local patch of full 3D human point clouds. This

gave an advantage to each patch decoder to avoid ambiguity and redundancy when

generating point clouds.

A notable closely related work involved in 3D human point clouds [16] imple-

mented a three stage mechanism in learning input 3D human point clouds. The approach

learns to generate a SMPL parameters for synthetic 3D human reconstruction using 3D

human point clouds as input. The first stage of the approach implements a point-wise

learning network from [7]. The second stage implements a graph feature extraction on the

points features from first stage to aggregate relationship between neighbourhood points

and decode the skeletal joints. Lastly, an attention network module is implemented for

decoded joints ordering. Subsequently, a set of SMPL parameters are regressed using

the learnt graph features for synthetic SMPL 3D human reconstruction. In converse,

the proposed network directly implements a graph-based point learning from [52]. Next,
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Table 6.3: Mean and max distance (mm) measurement on two motion sequences in Berke-
ley MHAD dataset [185]. Note that in each cell, the first and second numbers denote the
distances dp2v/dv2p respectively.

Methods
Seq #1 Seq #2 #param

(×106)mean max mean max

Jiang et al. [16] 21.4/23.5 28.6/34.7 16.9/18.2 21.5/21.2 5.03

Ours 20.37/24.49 49.92/34.03 24.16/21.23 28.41/32.94 1.51

independent MLPs are used for latent inference which directly preserve the locality of

joints output. Subsequently, the estimated joints and its variances generated by the

proposed network is treated as the local part features of a 3D human model. Hence, a

full 3D human point clouds can be directly sampled on the local part features.

Two sequences of motion, i.e. jumping and jumping jack are evaluated between

the proposed model and [16] as tabulated in Table 6.3. Despite the measurement of

mean and max distance value, the proposed method showed an adequate performance

compared to the existing work [16]. However, as the existing work relies on external

model, i.e. SMPL to produce a 3D human mesh prior to producing a 3D human point

clouds, the existing work’s network complexity and parameters are significantly higher.

Furthermore, the existing work is immune towards outliers due to the nature of mesh-to-

point clouds generation. In converse, the proposed model is a standalone network model

that produces a full 3D human point clouds from raw input partial point clouds in an

end-to-end fashion. As the consequence, the outliers as shown in Fig. 6.4d can contribute

in the mean and max value deviation in the evaluation. Therefore, the proposed model

needs to rely on pre-processing and post-processing to avoid the outliers.

6.5 Experiment #2: Regressive Synthetic 3D Human Re-

construction

In this experiment, the evaluation of the proposed synthetic model is based on

Berkeley Multimodal Human Action Database (MHAD) [185] dataset with identical

setup in Experiment #1 in section 6.4. The number of skeletal joints is set K = 22 as

defined by Vposer. The number of points of point clouds are set Npar = 1024, N = 6890.

The architectural details are shown in Table 6.4 and latent feature dimension is set

d = 1024 and d′ = 512. For the evaluation metrics, the average point-to-vertex distance
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Table 6.4: Configuration of regressive 3D human reconstruction network.

Layers Configuration Output Dim.

Input - Npar × 3

Skeletal joints
encoder

EdgeConv (k = 10) [3, 64, 128, 128] Npar × 128

Conv1D [128, 256] +BN+ReLU Npar × 256

Conv1D [256, 1024] +BN+ReLU Npar × 1024

Maxpool1D (Npar) 1× 1024

(Superposed MLP) (1024× 512) + (1024×K) + (512×K) +BN+ReLU K × 512

Conv1D [512, 256] +BN+ReLU K × 256

Conv1D [256, 6] +BN K × 6

Gaussian
Components

ReLU (K × 3)
K × 6

Softplus (K × 3)

Vposer - 3D Human Model

Surface Sampling - N × 3

dp2v in Eq. (6.13) and average vertex-to-point distance dv2p in Eq. (6.14) are used to

evaluate the precision and recall performance of the reconstructed human vertices and

ground truth point cloud. Lastly, the average Chamfer distance dCD = dp2v + dv2p

is used to evaluate the reconstruction quality between ground truth and reconstructed

point clouds.

dp2v(S2, S3) =
1

|S2|
∑
x∈S2

min
y∈S3

||x− y||22 (6.13)

dv2p(S2, S3) =
1

|S3|
∑
y∈S3

min
x∈S2

||x− y||22, (6.14)

The training of the proposed network is set for 100 epochs with scheduling decay

rate of 0.5 per 20 epoch and starting learning rate is set 1 × 10−4. Parameters are ini-

tialized using Xavier normal and batch size 64 is used. ADAM optimizer is implemented

as optimization method for both parts of training. Meanwhile, the fine-tuning is set for

5 epoch with scheduling decay rate of 0.5 per 20 epoch and starting learning rate is set

1× 10−5. All networks are built and executed on Pytorch 1.8.0 with batch size of 128.

The specifications of test bench for the experiments are Intel-i7-4790K with 32GB RAM

and Quadro P6000 GPU with 24GB VRAM.

The qualitative results of the proposed method in complete 3D human point

cloud reconstruction from real-world non-synthetic partial point clouds is demonstrated

in Fig. 6.6. Fig. 6.6(a) illustrates a sequence of partial point clouds acquired from

single-viewpoint depth sensor. Subsequently, by feeding the estimated skeletal joints

illustrated in Fig. 6.6(b) into Vposer, 3D human models are reconstructed illustrated

in Fig. 6.6(c). Through surface sampling on the reconstructed 3D human model, the
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(a) (b)

(c) (d)

Figure 6.6: Qualitative results of the proposed network (a) the input partial point cloud
from real-time, (b) the estimated skeletal joints using input partial point cloud, (c) the 3D
human mesh, and (d) full reconstructed human point cloud.

complete human point cloud is obtained as illustrated in Fig. 6.6(d). Due to the surface

sampling process, the surface quality of complete human point cloud is significantly

superior compared to generative reconstruction. Moreover, noises such as outliers that

can occur during reconstruction from a decoder is avoided.

Table 6.5 shows the evaluation of average joints deviation and average recon-

struction loss comparing the proposed method in generative reconstruction. From the

evaluation, the proposed method with fine tuning outperformed the existing work with

24.83mm in joints deviation compared to 45.29mm. Moreover, a significant reconstruc-

tion quality improvement is shown with lower Chamfer distance of 0.84×10−3 compared

to 1.0 × 10−3. Notably, the improvement in average joints deviation is contributed by

learning on synthetic data in prior which contain more concise information of partial

point clouds. Furthermore, the improvement of reconstruction quality is due to uniform

surface sampling of complete point cloud. As oppose to generative reconstruction , the

technique can capture the artifacts such as non-uniform surface and outliers in training

data and reproduce the artifacts in the output. In the case of the proposed method

without fine tuning, the joint deviation and reconstruction loss are significantly higher.

This is because the network is not adapted to non-synthetic data modality when solely

trained on synthetic data.

Table 6.6 shows the quantitative results of mean and max distance measurements

on Action #1 and Action #2 in Berkeley MHAD dataset [185] comparing to existing

works. The evaluation is based on the point-to-vertex dp2v and vertex-to-point dv2p

metric comparing ground truth and reconstructed point clouds. Essentially, the evalu-

ation measures the quality of human shape reconstruction. The proposed method with
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fine-tuning outperformed the generative reconstruction in overall dp2v and dv2p. This

indicates superior shape reconstruction as compared to decoder-based reconstruction.

Without fine-tuning, the proposed method has significantly larger shape deviation com-

pared to ground truth point clouds as indicated by large max value of dp2v and dv2p. The

large shape deviation is mainly because the model does not estimate the human shape.

On the other hand, other existing work such as [124] first estimates the skeletal joints

using third party model to regress a 3D human model, while [16] uses complete point

clouds to regress a 3D human model. Although the existing methods [16, 124] do not

infer partially occluded data, they are able to reconstruct more precise human shape.

6.6 Chapter Summary

Two deep learning models on point cloud-based human reconstruction are pro-

posed: (i) generative non-synthetic model, and (ii) regressive synthetic model to obtain

complete representation of 3D human by taking input sparse partial point cloud ac-

quired from single viewpoint depth camera. Both models share similar initial stage in

the inference process, where skeletal joints are first inferred from input partial point

cloud. The subsequent process of the models differs in generation of output such that

generative model outputs complete point cloud of human using a patch-decoder, and

the synthetic model outputs synthetic 3D human model using a synthetic human model

Table 6.5: The average estimated joints deviation against ground truth joints in millimeter
(mm) and average reconstruction loss dCD with (w/) and without (w/o) fine tuning (FT).

Methods Joints Deviation (mm) dCD (×10−3)
Generative reconstruction 45.29 1.0

Ours (w/o FT) 71.27 1.29
Ours (w/ FT) 24.83 0.84

Table 6.6: Quantitative results of mean and max distance in millimeter (mm) measure-
ments on two action sequences in Berkeley MHAD dataset [185]. Note that in each cell,
the first and second numbers denote the distances dp2v/dv2p respectively.

Methods Action #1 Action #2
mean max mean max

SMPLify [124] 31.1/41.1 43.4/58.8 31.3/39.7 48.6/58.4
Jiang et al. [16] 21.4/23.5 28.6/34.7 16.9/18.2 21.5/21.2

Generative model 40.99/46.75 72.91/78.54 45.92/46.09 97.21/63.80
Ours (w/o FT) 37.33/43.70 60.84/85.74 33.81/43.76 41.64/65.78
Ours (w/ FT) 34.32/30.53 47.07/44.13 34.78/35.29 48.21/55.46
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regressor. The generative model is a generative skeletal joint-based autoencoder net-

work that reconstructs complete point cloud of human by training using non-synthetic

data, i.e. point clouds acquired from real-world. With addition of Gaussian maximum

likelihood, the network is able to estimate the skeletal joints with higher precision in mil-

limeter. Joint variances are obtained from the maximum likelihood optimization which

is used as local human part feature representation and is directly utilized for 3D human

point clouds reconstruction. The proposed network achieved an average of 32.17mm

joint distance deviation against ground truth joints and 0.62 × 10−3 average Chamfer

distance on reconstruction fidelity.

The synthetic model is a skeletal joint-based regressive model that reconstructs

synthetic 3D human from partial point cloud. The network first estimates the skeletal

joints components of input partial point cloud and a regressive 3D human reconstructs

a 3D human model based on the estimated skeletal joints. A superposed MLP compris-

ing matrix vectorization and parameters superposition in the skeletal joints encoder is

adopted to improve both memory footprint and processing efficiency. In addition, a two-

mode model optimization strategy consisting network training on synthesized data and

fine tuning on real-world data is proposed. This allows generation of simulated partial

point cloud for network training that would be resource expensive if acquired in real-

world. The network is weakly supervised guided by ground truth joints and maximum

likelihood of ground truth point cloud. The network achieved an average of 24.83mm

joint distance deviation against ground truth joints and 0.84 × 10−3 average Chamfer

distance on reconstruction fidelity.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The use of three dimensional (3D) information can be widely found in the appli-

cation of 3D modeling, autonomous robotics navigation, semantic scene understanding.

Particularly, 3D modeling plays an important role to aid the modeling of real-world

object into a digitized 3D model to better understand the properties and characteris-

tics of the object. The acquisition of 3D data can be achieved using three methods,

i.e. time-of-flight, structured-light and stereo vision. In brief, 3D data representation

can be categorized into RGB-D, voxel and point cloud that can better suit for specified

applications. In the current research trend, point cloud is favored over other representa-

tions due to its raw and simple form of representation in XYZ axes, and contains richer

geometric information. Nonetheless, there are still challenges in directly processing raw

point cloud to perform 3D modeling such as un-ordered structure and partial absence

of point cloud.

The latest 3D point cloud reconstruction techniques in the process of 3D mod-

eling are revealed and it can be divided into three categories, i.e. statistical models,

discriminative learning models and generative learning models. Conventional 3D point

cloud reconstruction typically implements statistical and discriminative learning mod-

els in establishing correspondences between multiple viewpoint to estimate the required

transformation. Essentially statistical models analyse the input data and extract feature

descriptor for maximum likelihood matching using mathematical derivation of features.

In contrast to statistical models, discriminative learning models use supervised learning
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approach to establish local correspondence driven by labeled data learning. These mod-

els allow higher capability of task-oriented learning, novel data generalization and more

robust to artifacts. In the advent of generative learning models, 3D data are processed

directly by the network, resulting improved efficacy of 3D reconstruction process without

the need of multiple viewpoint inputs. It is observed generative learning models would

be the active research trend in 3D reconstruction techniques due to its advantages, hence

generative learning model is adopted as the backbone in this research work.

A generative learning model begins in 3D data representation learning to gather

the representative features of input 3D data. A novel point cloud representation learn-

ing technique is designed using proposed Point cloud Neural Density Estimator (PNDE)

derived from Gaussian mixture model. The network is architectural designed to adopts

the concept of neural density estimation using maximum log-likelihood of multivariate

Gaussian mixture model as an objective function for end-to-end network training. The

working principle of PNDE is to estimate the density of point cloud by encoding a global

latent density and subsequently infers the local densities. The output of PNDE is a set

of density parameters (means and variances) and they can be directly used for classi-

fication and generative task such as reconstruction tasks. From experimentation, the

estimated densities are evaluated on point cloud classification task. The results show

promising performance in point cloud representation using density parameters, achieving

comparable results to the state-of-the-art methods with overall accuracy of 93.67% in

ModelNet10, 88.74% in ModelNet40 and 94.6% in ShapNetCore13. The proposed PNDE

is a scalable network by adjusting the number of output densities, hence the resolution

of representation can be flexibly adjusted according to application and computation re-

sources. In addition, a network compression strategy is implemented to reduce up to 8×
smaller the original network parameter size, while retaining approximately 1.5% degra-

dation in classification accuracy. On the other hand, the proposed PNDE is qualitatively

evaluated on the property of equivariant, where the transformation imposed in the input

is conveyed to the estimated densities.

Intuitively, the use of density parameters can be extended to perform point cloud

reconstruction by adopting a generative sampling process using a decoder network. To

achieve this, a novel partial point cloud reconstruction model using Gaussian components

(density parameters) as compressed representation, Gaussian Point cloud Autoencoder

(GPAE) is designed to reconstruct a complete 3D points point from single viewpoint
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partial point cloud. In this network, patch-based decoder is adopted to perform gen-

erative sampling by taking input of the Gaussian components. Subsequently, GPAE is

trained end-to-end using reconstruction loss as the objective function. From experimen-

tation, the proposed GPAEs outperformed several existing works with lowest average

CD of 0.56 × 10−3 despite not having point cloud refinement process and 97% recon-

struction accuracy is achieved within 5% deviation relative to ground truth. In addition,

the network is robust on highly sparse input up to 50% missing points with a sustained

degradation of average 8% in reconstruction quality. Further, thanks to the network

compression strategy proposed in PNDE, GPAEs have significantly smaller network size

with up to 50× smaller compared to others. Overall, the propoesd GPAEs showed

generalized point cloud shapes learning as evaluated using metrics such as Chamfer Dis-

tance (CD) and Earth Mover Distance (EMD) across 3D objects. Using the designed

reconstruction technique, edge implementation can be greatly benefited due to smaller

network size and with relatively good performance in coarse reconstruction. While, in

the case where refined output is demanded, it can be achieved by reiterate the forward

propagation and merging process.

By using GPAE as a generative learning model backbone, a novel part-to-whole

learning network is designed for point cloud learning and reconstruction. In order to en-

force the part-to-whole learning mechanism, a point cloud part segmentation network,

Part Sampler network is designed using PNDE, and a capsule network is adopted to

learn the reasoning of an object’s existence using agreement on parts voting through

dynamic routing algorithm. For generative reconstruction purpose, decoder network

inspired from GPAE is attached to the object capsules for point cloud reconstruction,

while acting as an addition guidance to optimize the object capsules. As the proposed

network learns from segmented parts, it requires significantly lower latent dimension

in part capsule compared to existing works that use higher latent dimension and rely

on large network parameters to regress to a generalized part features. From experi-

mentation, the proposed network is evaluated on classification tasks, achieving testing

classification accuracy of 93.56% in ModelNet10, 88.70% in ModelNet40 and 94.71%

in ShapeNetCore13. Moreover, the proposed network inherited as a equivariant net-

work benefited from presence of equivariance in Part Sampler and capsule network.

Thus, the proposed network achieved test accuracy of 86.67% in ModelNet10, 79.34%

in ModelNet40 and 87.83% in ShapeNet13, where the input point clouds are imposed

with rotation perturbation. In qualitative results, the proposed network is shown to
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fully reconstruct output that is equivariant to input point cloud with imposed rotation

perturbation. Furthermore, the reconstructed output of the proposed network is quan-

titatively evaluated using ICP algorithm and achieved average ±2 deg discrepancies in

rotation. Hence, with the advantages in the part-to-whole learning network, real-time

applications that are dynamically moving are able to perform with higher consistency.

Lastly, a real-world application in 3D human modeling is demonstrated using

proposed skeletal joint-based generative learning model to reconstruct 3D human in

synthetic and non-synthetic representation. Two 3D human reconstruction models are

proposed: 1) generative non-synthetic model, and 2) regressive synthetic model to ob-

tain complete representation of 3D human by taking input sparse partial point cloud

acquired from single viewpoint depth camera. The two 3D human reconstruction models

share similar initial stage by estimating the skeletal components, i.e. skeletal joints and

variances, using a proposed skeletal joints encoder inspired from PNDE. Subsequently,

non-synthetic 3D human in point cloud is generated by generative sampling on the es-

timated skeletal components using decoder inspired from GPAE; while synthetic 3D

human model is generated by regressing the model through inverse kinematic. From ex-

periment, the generative model achieved an average of 32.17mm joint distance deviation

against ground truth joints and 0.62×10−3 average Chamfer distance on reconstruction

fidelity. On the other hand, the regressive model achieved an average of 24.83mm joint

distance deviation against ground truth joints and 0.84×10−3 average Chamfer distance

on reconstruction fidelity. Essentially, the improvement on the regressive model is gained

by a two-mode model optimization strategy consisting network training on synthesized

data and fine tuning on real-world data. Nonetheless, the proposed skeletal joint-based

generative learning models can provide crucial information of 3D human with higher

accuracy in estimated skeletal joints, non-synthetic point cloud with less artifacts and

noises, and synthetic skinned human. Therefore, potential applications that can be ben-

efited from the advancement of the models are sport science where skeletal joints are

important for posture analysis and 3D human modeling in film industry.

7.2 Future Work

In the future progress, several improvements can be incrementally developed to

overcome the limitations of proposed networks in this research. Firstly, PNDE relies

on number of MLPs that is linearly proportional to the number of output densities.
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The current design of PNDE implemented matrix factorization and vector superposition

to reduce the network parameter as well as improve the network propagation, which

allowed the network to operate in real-time inference in low number of output densities

M . However, the network may encounter scalability issue when M is set to a significantly

large number. This is particularly significant in application with large dataset such as

large scene and open world environment. To overcome this, hierarchical recursive PNDEs

can be implemented to hierarchically estimate lower rank densities from a higher rank

density.

Next, learning in partial point cloud posses high degree of difficulty due to the

missing information in the data. Intuitively, by treating each sample of partial point

cloud as variations in viewpoint, learning of partial point cloud can be viewed as learning

invariant representation of distorted input samples. Therefore, from within the distorted

samples, exist trivial and redundant constant solutions that are embedded in each dis-

torted input sample. An improved self-supervised learning using barlow twins can be

implemented in GPAE training to efficiently learn the invariant representation of partial

point cloud through redundancy reduction. Subsequently, the designed part-to-whole

learning network is implemented using vector features embed both pose invariant geo-

metric features and pose features. Hence, the pose features are constantly entangled in

the geometric features, preventing the obtainment of pose features. The pose features is

particularly important in understanding the transformation that is imposed in the input

for task such as viewpoint estimation. In the future development, pose features can be

independently incorporated into the capsule network to obtain both geometric features

and pose features. This can also ensure the disentanglement of pose in the geometric

features and thus allowing independent utilization of the pose and geometric features.

Lastly, several incremental works can be implemented in the future to improve

the 3D human modeling network model. Firstly, a bijective function distance metric

such as Earth Mover Distance can be implemented for guiding the network to produce

higher fidelity output. This is due to current implemented Chamfer distance that does

not take into consideration of surface uniformity and density, therefore the completed

point clouds may create visual artifacts. Further, a pose-based encoder can be developed

to output joints rotation information to directly drive the regressive 3D human model.

This is due to Vposer, which is an inverse kinematic based 3D human regression method,

hence the regressed 3D human model may present a slightly distorted pose and therefore

affects the accuracy of reconstructed human shape.
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