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– Abstract – 

The gastrointestinal microbiome is a complex community of trillions of microbes from all three 
domains of life. Over one thousand different species reside within a healthy gut and provide a 
metagenome that greatly expands the metabolic activity of the gut well beyond that encoded by 
the human genome. Like any other body organ, the gut microbiome plays a vital role in our 
overall health, including maintenance of the local gut wall and providing essential and otherwise 
unattainable nutrients from our diet including short chain fatty acids (SCFA). The microbiome 
also has far reached involvement in the development of both the immune system and the brain, 
meaning it makes a profound contribution to how the human body responds to the environment. 
The impact of this relationship is however not one directional, and our lifestyle will also affect 
how the microbiome is structured, and how it functions. In fact, the microbiome may be the most 
adaptable “organ” we have, which allows for much greater environmental influence, and 
potential therapeutic application. Understanding how a healthy microbiome might be structured, 
how it is established in early life and how it changes over time, and how it changes during 
disease have become important research questions that we have begun to unravel with the 
development of modern molecular methods. 

The research projects detailed in this thesis are focused on the development of improved 
protocols for faecal sample collection and replicable microbiome data, that are used to reveal the 
microbial ecosystem during both modern disease; and during interventions designed to modulate 
the microbiome and elevate disease. I begin by reviewing the literature on this dynamic 
community and describing its structure from colonization, through adult life, and during 
pregnancy. I also cover the microbiomes involvement in the development of the immune system 
and the bidirectional communication pathway of the gut microbiome axis. Examples of methods 
used to modify the microbiome, and a brief summary of the molecular based methods used to 
explore the microbiome are also discussed. In chapter two, I compare faecal sample collection, 
processing, and storage methods for bias that may misrepresent the microbiome and SCFA 
profiles. Then in chapter three I use these newly developed methods to identify microbial and 
metabolic signatures that differ between young children with differing levels of neurotypical 
development. In chapter four, I investigate the effectiveness of a maternal prebiotic supplement 
on the microbiome composition of mother infant pairs over time, and again highlight the need for 
appropriate sample processing for longitudinal microbiome analysis.  

In chapter 2, I investigate some of the challenges faced when collecting material for microbiome 
investigation by comparing sample collection tubes, comparing spot sampling to total faecal 
sample homogenization, and comparing stool samples that are consecutively collected at 
different times during the day. I also describe how positive and negative controls can be used to 
better filter and interpret microbiome profiles. For this study, 7 women provided 3 stool samples 
each, from which bacterial (16S rRNA gene (V4)) and fungal (ITS2) communities, as well as 
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short chain fatty acid (SCFA) concentrations were investigated. Here I show how spot sampling 
of stool results in variable detection of some microbial members, and inconsistent levels of 
SCFA. I also show an inverse relationship between microbial alpha-diversity and metabolite 
concentrations from stool collected at different consecutive timepoints. The total SCFA 
concentration (t-test, p = 0.04) and acetic acid concentration (t-test, p = 0.03) were significantly 
higher in the second stool sample compared to the first. Commercial stool collection kits are also 
compared with immediate freezing, and significant differences (PERMANOVA p < 0.01) in 
bacterial beta-diversity resulting from collecting stool samples in these commercial tubes. 
Therefore, I advocate for the use of raw stool sample freezing, rather than the use of commercial 
kits, and recommend that stool be collected in bulk prior to processing and subsampling for 
multiple analysis. I also suggest that participants are provided with guidance on the preferred 
time of day when samples should be collected.  

Chapter 3 details the faecal microbiome and SCFA profiles of very young children who were 
showing early behavioural signs of autism spectrum disorder (ASD), examined using the 
methods developed in chapter 2. A total of 30 stool samples were collected from 24 children 
between 21 and 40 months who were involved in a pre-emptive behavioural intervention RCT 
and were assessed for neurological and behavioural development using multiple diagnostic tools. 
The fungal richness and acetic acid concentrations were observed to be higher with increasing 
autism severity, and the abundance of several bacterial taxa also changed due to the severity of 
ASD. The microbiome composition was found to change with increasing fungal richness and 
acetic acid concentrations with increasing autism severity based on neurological and 
developmental score, indicating changes associated with autistic behaviour. I also explored the 
microbiome for any association with the pre-emptive treatment, and found evidence of 
significant community shifts from the genus, to the phyla level (PERMANOVA p ≤ 0.014). 
SCFA concentrations were also found to be closely associated with stool form. Together, these 
findings indicate that subtle changes in bacterial composition may occur in the microbiome of 
young children with an early diagnosis for autism, and may provide justification for conducting 
larger pre-emptive or even retrospective studies that assess early changes to the microbiome and 
stool form of children who go on to develop autism. 

In chapter 4, I assess of the temporal changes to the infant and maternal microbiome in response 
to a maternal prebiotic supplement. The mother infant pairs (74 participants with complete data 
at all timepoints for 65 participants) were enrolled in a double-blind placebo-controlled trial of 
the prebiotic supplement. Microbiome and SCFA profiles resulted from mothers at 6 timepoints 
during (20-, 28-, and 36-weeks) and after pregnancy (2-, 4-, and 6-months), and 4 timepoints (2-, 
4-, 6-, and 12-months) during the first year of their infant’s life. This large dataset was integrated 
using replicate sampling and negative controls by the methods which were developed in chapter 
2 and improved upon in chapter 3. We found a significant shift in the composition of the 
microbiome of mothers (PERMANOVA p < 0.0001, psudo-F 4.23 ), and infants 
(PERMANOVA p < 0.001; psudo-F 1.7) between the intervention and placebo groups. Maternal 
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acetic acid concentrations were also found to increase significantly in the previotic group (p = 
0.008; Pseudo-F = 7.09) and infant SCFA concentrations differed significantly by time (p > 
0.004), but not by intervention. I also document the period of diversification and enrichment of 
the microbiome over the first year of life, that was particularly rapid after the introduction of 
solid foods (ANOVA, p>0.001). Again, I was able to show the value of collecting stool form as 
all maternal diversity measures dropped significantly in the firm stool group compared to the 
loose stool group (rm-ANOVA p<0.03), while acetate, butyrate, and propionate all significantly 
increased (rm-ANOVA p<0.001).  

Overall, the research in this thesis generated microbiome and SCFA profiles for 80 adult women 
and 104 infants and young children from 820 stool samples. Across 9 sequencing runs over 66 
million high quality filtered reads were generated, resulting in 3 studies which contribute to the 
growing demand for more reproducible microbiome investigation. The work undertaken here 
addresses the need for better sampling, decontamination, and reporting protocols, and employs 
this framework in frontier areas of microbiome research. The ability to detect subtle changes in 
the gut prior to a particular health outcome, and to demonstrate the protective effect of an 
intervention is among the most important aspects of microbiome research as it can lead to the 
development of effective treatments for modern non-communicable diseases.  
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– Thesis Overview –  

This thesis contains 5 chapters, and is presented as a hybrid thesis, containing both published 
manuscripts and a thesis data chapter. The first chapter critically summarises the relevant 
literature surrounding molecular investigation of the human gut microbiome. Chapter 2 - 4 each 
present research that were developed as part of this PhD project. The manuscript presented in 
chapter 2 is publicly available after being published in the peer reviewed journal Scientific 
Reports. This published work has already made a significant contribution to the microbiome 
research community, as it received a place among the top 100 microbiology Scientific Reports 
papers in 2021. The manuscript presented in chapter 3 is also now publicly available after being 
published in the peer reviewed journal in Frontiers in Microbiology. The layout of both 
manuscripts has been modified to align with the formatting in this thesis. Chapter 4 contains the 
largest volume of data in this thesis, and has been formatted accordingly as a thesis data chapter. 
Chapter 5 synthesises the main findings and significance of this thesis and highlights several 
questions uncovered that point to future research.  
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– Chapter 1 – 
General Introduction and Literature Review  

1.1 The Gastrointestinal Microbiome is a Complex 
Community 

1.1.1 The microbiome structure and symbiosis in the gut  
Through coevolution, humans have established a mutualistic relationship with a diverse 
assortment of microorganisms, the majority of which inhabit the gastrointestinal tract 
(Pillai, Gouhier and Vollmer, 2014). This complex ecosystem forms one of the densest 
communities known to science, with some estimates predicting some 100 trillion 
microbes from all three domains of life coexist in the human gut (Amon and Sanderson, 
2017). Mutualistic interactions such as production of public goods through extracellular 
metabolism (e.g. Bacteroidales use glycoside hydrolases to breakdown polysaccharides) 
and quorum sensing are exceedingly common between gut microbes, and results in an 
interdependent and highly cooperative community (Koskella, Hall and Metcalf, 2017). 
These numerous and diverse microbial inhabitants provide a metagenome predicted to 
encode 150 times more than the human genome, which greatly expands the metabolic 
capabilities of the meta-organism (Amon and Sanderson, 2017; Yadav et al., 2018). 
Bacterial members from 50 different phyla have been found within the gut (Yadav et al., 
2018). The most abundant members are Bacteroides and Firmicutes (Eckburg et al., 
2005), and some less abundant phyla include Actinobacteria, Fusobacteria, 
Proteobacteria, and Verrucomicrobia. Fungi from the three phyla Ascomycota, 
Basidiomycota, and Zygomycota are found in the human gut (Sam, Chang and Chai, 
2017). While predominant fungi are recovered less consistently than bacteria, the most 
commonly recovered fungal members include Candida, Saccharomyces, and 
Penicillium (Hallen-Adams and Suhr, 2017). This symbiotic community of 
microorganisms is often called the gastrointestinal micro-flora, or simply gut flora, 
while the collection of the total genetic output is referred to as the microbiome. The term 
bacteriome includes only those bacterial members, the most abundant and stable 
residents, while the mycobiome describes only those fungal members. There are also 
other less abundant micro-eukaryotes (Hallen-Adams et al., 2015), as well as relatively 
few Archaea (Nkamga, Henrissat and Drancourt, 2017). Little is known about the non-
living phages and viruses which also influence the structure of microbial communities 
(Columpsi et al., 2016), and microbiome research has primarily focused on bacterial 
communities, and more recently, interactions between bacteria and fungi (Romani et al., 
2015). 
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The entire intestine averages 7.9 m in length, and is specialized into different regions, 
including in the large intestine the caecum, and the ascending, transverse, and 
descending colon. Due to the oxygen, nutrient, and antimicrobial gradients that exist 
along the digestive tract, as well as host immunity distinct environments are contained 
within each of these areas, and different microbial traits are required for microbes to 
successfully colonise (Donaldson, Lee and Mazmanian, 2015). In the small intestine, the 
oxygen and antimicrobial levels are higher, and the pH shifts from about 6 to 7.4 at the 
terminal ileum. Here, a low diversity of bile acid tolerant facultative anaerobes including 
Clostridium predominate. On the other hand, with lower levels of simple sugars, 
oxygen, and antimicrobials in the large intestine, a more diverse assortment of microbial 
members are found here, mostly polysaccharide-degrading strict anaerobes including 
Bacteroidaceae and Ruminococcaceae (Donaldson, Lee and Mazmanian, 2015). Fungi 
including Candida and Malassezia are also commonly identified in stool and are thought 
to be residents of the large intestine as they do not persist outside of the mammal 
microbiome (Hallen-Adams and Suhr, 2017). Bacteria and fungi can interact 
antagonistically through the secretion of the penicillin-based antimicrobials by fungi 
(Arvanitis and Mylonakis, 2015) and the stimulation of colonocytes to produce 
antimicrobial peptides by bacteria (Fan et al., 2015); and commensally when they form 
a hypoxic microenvironment through mixed species biofilms (Fox et al., 2014). The 
further depletion of oxygen and enrichment of immune antibodies also increases as you 
move deeper into the mucosa from the gut lumen, and only highly specialised microbial 
members can colonize these areas (Donaldson, Lee and Mazmanian, 2015). The 
complex activities of the gut (e.g. immunological defence, motility and digestive 
secretions) are coordinated by the enteric nervous system, which unlike other branches 
of the peripheral nervous system, can act largely independently of the brain through an 
integrated neuronal network (Rao and Gershon, 2016). The microbiota therefore 
interface with a highly sophisticated system that is evolved to receive and manage 
signals directed from the gut. 

As part of the interface of the body, the gut mucosa is always exposed to the external 
environment, which means it is both influenced by and vulnerable to the surrounding 
environment and to pathogens (Li et al., 2018). The mucins that are secreted by goblet 
cells make up the mucus layer, which contain glycoproteins and provide attachment 
sites and nutrients for particular microorganisms (Cai et al., 2020). Microorganisms with 
complementary adhesions will have good mucus-binding capacity and therefore, 
prolonged retention in the gut. These include bacteria such as Akkermansia muciniphila 
and Bacteroides thetaiotaomicron (Schroeder, 2019), and while there is less evidence 
surrounding, mucosa associated fungi, C. albicans and Rhodotorula mucilaginosa are 
among those identified in mucosal samples (Zhang et al., 2021). The microbiota present 
at the mucosa can also promote the expression of genes which affect both the strength 
and glycan structure of the mucus layer (Schroeder, 2019). Beneath the mucosa, a thin 
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layer of epithelial cells forms a semipermeable barrier which must allow for both 
selective absorption and exclusion of compounds in the gut. Consequently, there are a 
number of ways that the host and the microbial members interact to maintain 
homeostasis. One way in which host cells recognise bacteria is through physical 
recognition. Host epithelial cells have pattern recognition receptors that are used to 
recognize members of the microbiome through conserved regions of the cell (Li et al., 
2018). The epithelial cells can also be induced by local microbial metabolites to produce 
antimicrobial peptides, which can protect the host from microbial pathogens (Venegas et 
al., 2019). 

The innate immune system also takes part in maintaining microbiome homeostasis, 
aided by the largest collection of immune cells embedded within the epithelial layer of 
the gut lumen (Rao and Gershon, 2016). The immune effector cells receive signalling 
molecules produced by bacteria within the gut mucosa, and once these signals are 
transduced, a response can be elicited that can alter the composition of the microbiome 
(Li et al., 2018). Interactions between mucosal immune cells and fungi have also been 
observed in gnotobiotic mice colonised with particular microbes, showing cytokine-
producing cells increase with increasing fungal diversity (van Tilburg Bernardes et al., 
2020). Microbes that are permitted to inhabit the area in closest proximity to the host 
play a key role in maintaining the health of the gut by promoting both cell proliferation, 
and repair of epithelial cells, and by improving gut barrier integrity (Venegas et al., 
2019). Likewise, the microbial metabolite butyric acid is the primary energy source used 
by colonic epithelial cells. In turn, butyrate oxidation by epithelial cells consumes 
oxygen, which creates a favourable environment for the anaerobes that produce this acid 
(Ramos, Hernández and Blanca, 2009; Verbeke et al., 2015; Venegas et al., 2019). This 
intrinsic, tightly regulated relationship between microbiota and host allows for only 
select microbes to thrive in a healthy gut over the long term. 

1.1.2 Human behaviour, diet, and microbial cross-feeding  
Of all the external factors that shape the gut microbiome, diet imposes the strongest 
force on community composition (Yatsunenko et al., 2012; Carmody et al., 2015; Xu 
and Knight, 2015; Yadav et al., 2018), with a dynamic quantity of microbial metabolites 
also fluctuating in response to environmental pressures including nutrient availability 
(Romani et al., 2015). The community composition of each host is unique, and the 
response to short term dietary changes, including fluctuations in microbial species and 
the overall metabolic output is highly personal (David et al., 2014; Johnson et al., 2019). 
Together, this seems to indicate that community composition is largely determined by 
diet, and when dietary shifts occur, the historical composition of the microbiome 
restricts and directs the community response both to new nutrients and to new microbial 
members, and this is highly personal because dietary history is highly personal. 
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Furthermore, the microbiome of young children is less resistant to change, which may 
be partly because it has had less time to accrue a historical composition. This idea also 
in agreement within the fact that the composition of the microbiome is more similar 
among those sharing the same long-term dietary profile. For example, the western diet 
provides approximately 12 g of undigested protein to the colon each day, where it is 
fermented by microbial residents releasing among other compounds, ammonia, phenols 
and sulphides (Beaumont et al., 2017). If a high-protein diet is consumed, excess protein 
digestion in the gut can shift the metabolic community and increase the concentration of 
potentially harmful fermentation products (Beaumont et al., 2017). Alternatively, 
vegetarian diets with increased carbohydrate consumption have been shown to increase 
the abundance of both fungi (Hallen-Adams and Suhr, 2017) and diversity of bacteria 
(Tomova et al., 2019). 

Over the last 100 years, there have been dramatic changes to the human diet due to 
agriculture practices, and overconsumption has become a defining factor in gut 
microbiome composition. Modern diets range across socio-economic backgrounds, and 
geographical locations, with meat making up a larger proportion of the diet in 
industrialised nations and greater fibre consumption in less developed rural areas (Moles 
and Otaegui, 2020). Plant degrading Prevotella species are commonly found in the gut 
microbiome of individuals living in less developed areas, while Bacteroides, 
Faecalibatcerium and Ruminococcus are more common in the gut microbiome of 
healthy people living in industrialised areas (Cronin et al., 2021). These changes may 
indicate diet has caused a permanent shift in the microbiota of the human gut; in fact, a 
longitudinal study found that feeding mice a low fibre diet over 5 generations caused a 
compounded loss in diversity that could no longer be restored to control levels using diet 
(Sonnenburg et al., 2016). Across all human diets however, most calories come from 
carbohydrates, with processed and preserved carbohydrates lacking fibre predominating 
more western diets (Moles and Otaegui, 2020). 

Polysaccharides are the most abundant carbohydrate found in plant and animal food 
sources, and their structural diversity is exceptionally large. To add to the complexity, a 
number of different glyosidic linkages are used to build these natural polymers 
(Koropatkin, Cameron and Martens, 2012). Starch, lactose and glucose are three of the 
few polysaccharides that the human genome is able to degrade, but the diversity of 
microorganisms in the gut is able to greatly expand the number of polysaccharides, 
including fibres, that can be utilised by the host (Yadav et al., 2018). Fibres are plant-
based carbohydrates that resist digestion in the small intestine, and are the main source 
of carbon used by microbial residents as substrates for fermentation; primarily these are 
resistant oligosaccharides, non-starch polysaccharides, and resistant starch (Brinkworth 
et al., 2009). Different fibre types have different solubility in aqueous solutions (which 
can increase faecal bulking), and different chemical properties which determine what 
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enzymatic toolkit is required to break it down. Thus, the presence or absence of 
microbial genes will ultimately determine which microbes are able to ferment each fibre 
(Cronin et al., 2021). Gut microbiota produce over a thousand different carbohydrate-
active enzymes from four main groups: carbohydrate esterases, glycoside hydrolases, 
glycosyltransferases, and polysaccharide lyases (Cai et al., 2020). Bifidobacteria in 
particular have been shown to prefer short-chain oligosaccharides, and posse an enzyme 
that enables them to break down beta-(2-1)-fructans (Van De Wiele et al., 2007). On the 
other hand generalist microorganisms such as Bacteroides thetaiotaomicron can degrade 
more than twelve different polysaccharides (Koropatkin, Cameron and Martens, 2012). 
However, gel-forming insoluble fibres including gums and pectin are not able to be 
effectively broken down in the gut by the gut microbiome (Cronin et al., 2021). Primary 
degraders including many Actinobacteria contribute substantially to fermentation efforts 
(van der Hee and Wells, 2021), although the extent to which most gut microbes can 
break down all the carbohydrates of the human diet is largely unknown. In fact, only a 
few fibre types have well characterised metabolic properties in a limited number of 
enteric microbes. Therefore, researchers still only have a very limited understanding of 
the benefit provided by the immense diversity of microbes and metabolic genes 
contained within the gut microbiome. 

A further complexity to the dynamics of the gut microbiome is cross feeding between 
microbes, which is a mechanism of further breaking down dietary substrates by 
metabolic exchange (Cronin et al., 2021). This can consist of either metabolic cross-
feeding, whereby a microbe might utilise the end products from another, or a microbe 
might use various breakdown products formed during carbohydrate fermentation (Ríos-
Covián et al., 2016). With thousands of microbial taxa inhabiting the gut, it is beyond 
the limits of our current technology to determining the extent of their interactions. 
Previously isolation and co-culture experiments have been used to identify the 
metabolite profile from cross-feeding microbes (Seth and Taga, 2014), although these 
method are laborious and expensive, they provide sound evidence for simple 
interactions between microbes. Also batch fermentation and bioreactors with model 
community inoculum are used to study more complex interactions (Bengtsson-Palme, 
2020), however because metabolites can accumulate unlike a human gut (where they 
would be continually be absorbed), these models have some limitations. Metabolites 
most commonly exchanged between microbes include acetate, lactate, succinate, and to 
a lesser extent amino acids and vitamins (Saa et al., 2022). Using isotope labelling, it 
was observed that acetate was readily converted to butyrate, and less so butyrate was 
converted to propionate, and almost no conversion happened between acetate and 
propionate (den Besten et al., 2013). Cross feeding between species of Bifidobacterium 
is well understood in breaking down human milk oligosaccharides, and Bacteroides spp 
also are well known to promote cross feeding with their degradation process (Saa et al., 
2022). Cross feeding can also promote an environmental niche for other microbial 
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species to colonise, for example Bacteroides thetaiotaomicron has been shown to 
facilitate the colonisation of Faecalibacterium prausnitzii, and Salmonella enterica 
(Coyte and Rakoff-Nahoum, 2019). Interestingly, Bacteroides ovatus engages in costly 
“public” extracellular inulin degradation, despite being able to directly import and 
degrade inulin (Rakoff-Nahoum, Foster and Comstock, 2016). This trait is thought to 
have evolved to allow for cooperation within the diverse gut ecosystem. More recently, 
direct invitro experiments, using metabolic inference from genome sequences, and even 
ecological modelling are being used to investigate this area (Saa et al., 2022). However, 
these methods can only be used to predict the genetic capacity of microbes and likely 
interactions. 

As discussed earlier, diet is the main factor which can drive microbial composition in 
the gut, although what has become highly relevant more recently is the sensitivity of the 
microbiome to stress (Bastiaanssen et al., 2021). Chronic periods of psychological stress 
are becoming more common, and studies involving humans and rats have illustrated the 
link between an altered gut microbiome composition and stress (Gubert et al., 2020). 
More directly, the gut microbiome has been shown to contribute to the a number of 
stress induced consequences including dysregulation of hypothalamic-pituitary-adrenal 
axis, impaired cognition, inflammation, and damage to gut barrier function (Gubert et 
al., 2020). The deleterious effects on intestinal permeability can lead to further 
inflammation, immune activation, and further intestinal permeability (Gilbert et al., 
2018). Additionally, the stress response can change the rate of intestinal motility and 
mucus production which can exacerbate microbiota disruption (Fung, Olson and Hsiao, 
2017). The changes observed to the composition of the gut microbiome during stress 
have been demonstrated in Wistar rats, showing increases in Ruminococcaceae and 
Lachnospiraceae families. In Rosa26-LSL-Cas9 knockin mice, stress caused more 
volatility (degree of compositional change over time) to the microbiome composition 
compared to control mice. In humans, reduced abundance of Bacteroidetes, and 
increased abundance of Firmicutes has been associated with prolonged stress in soldiers 
during military training (Karl et al., 2017). Although, in a natural setting, stress can 
elicit a variety of different behaviours (e.g. insomnia, non-homeostatic eating, sedentary 
behaviour, and hyperarousal (Bonnet and Arand, 2010; Maniam and Morris, 2012)) that 
can each impact the microbiome differently. It therefore would be particularly difficult 
to define a microbiome characterised by stress. 

1.1.3 Microbial metabolites as signalling molecules 
As mentioned above, one of the most well-studied functions of the gut microbiome is 
the expansion of the hosts metabolic potential, indeed, the human microbiome project 
has compiled a catalogue of 3.3 million unique protein encoding microbial genes from 
human gut microbiota (Qin et al., 2010). While the metabolites produced in the gut are 
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an important energy source for the host, a number of microbial metabolites contribute 
additionally to host physiology and maintaining homeostasis in most major systems of 
the body (Cryan et al., 2020). These include molecules which regulate gut motility 
(Martin et al., 2018), immune response (Fung, Olson and Hsiao, 2017), and neurological 
signalling (Cryan et al., 2020). One important group of metabolites produced 
exclusively by the resident microorganisms through an intricate web of co-metabolism 
are short chain fatty acids (SCFA). These acids consist of a 1-6 carbon molecule chain, 
and a carboxylic acid functional group. In the digestive tract, these acids are most 
concentrated in the colon, and occur at the approximate molar ratio of 60:20:20 for 
acetate, propionate, and butyrate respectively (Verbeke et al., 2015). Approximately 90-
95% of the SCFA produced in the gut are absorbed by the host, and contribute around 
10% to the daily energy availability (Ziętek, Celewicz and Szczuko, 2021). Acetate is 
produced by many enteric bacteria, including most Bacteroidetes (Den Besten et al., 
2013). Butyrate is produced by many members of the Clostridium cluster XIVa, and by 
Lachnospiraceae, as well as some other genera within Firmicutes; and propionate is 
produced by Bacteroidetes and Negativicutes (Yadav et al., 2018).  

Regulation of molecules - including SCFA - from the gut lumen, into the blood stream 
occurs at the gut wall, which is an important site where microbes and microbial 
metabolites interact with the host. By induction of genes encoding tight-junctions 
between the cells, butyrate promotes the functioning, and integrity of the epithelial 
barrier, and this is especially important during times of inflammation and stress 
(Venegas et al., 2019). SCFA also contribute to controlling inflammation both by 
activating G protein-coupled receptors (GPR) in colon epithelial cells, and by inhibition 
of the inflammatory response by monocytes (Venegas et al., 2019). Butyrate in 
particular assists in controlling inflammation by inducing T cell differentiation which 
controls intestinal inflammation (Ríos-Covián et al., 2016). The action of microbial 
metabolites including SCFA are however, not restricted to the gut lumen, and have far 
reaching impacts in many other body systems. As leading signalling molecules, acetate, 
propionate, and butyrate are also involved in hormone production (Ramos, Hernández 
and Blanca, 2009; Verbeke et al., 2015), including Glucagon-like peptide-1 (Yadav et 
al., 2013), and other molecules which are involved in energy homeostasis (He et al., 
2020). In particular, acetate, butyrate, and propionate interact with GPR, which have 
downstream effects on suppressing appetite (Martin et al., 2018). These acids also 
regulate fatty acid metabolism in liver and muscle cells, as well as activate 
thermogenesis in brown adipose tissue, all of which contribute to controlling body mass 
(Den Besten et al., 2013). Propionate alone is primarily transported systemically to the 
liver where it plays a key role in liver mitochondrion function (He et al., 2020). Gut 
microbes also communicate with gut endocrine cells, which can release more than 20 
different signalling molecules into systemic circulation, which can interact with the 
central nervous system (Martin et al., 2018). 
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The relationship between brain function and the gut microbiome is described by the gut-
brain-microbiota axis (Giri and Sharma, 2022). Bidirectional communication between 
the central nervous system and gut microbiota is possible through the enteric nervous 
system, and neuroimmune and neuroendocrine systems using microbial metabolites as 
mediators (Martin et al., 2018). These signaling molecules are primarily received by 
enteroendocrine cells, and neuroendocrine cells, but also are passed into the blood where 
they may pass the blood-brain barrier (BBB) (Martin et al., 2018). Additionally, 
microbiota can produce or mediate the production of neuroactive compounds that might 
affect brain chemistry, or the permeability of the BBB including peptides, amino acids, 
decarboxylated amino acids, SCFA, and phenolic compounds (Giri and Sharma, 2022). 
Concerning these neuroactive compounds, dopamine and norepinephrine are involved 
with memory and cognition, and have been identified within the cells of gut commensals 
Bacillus mycoides and B. subtilis, while the production of norepinephrine has been 
observed in Bacillus spp Escherichia, and Saccharomyces spp, with Bacillus spp also 
producing dopamine (Giri and Sharma, 2022). Serotonin is involved in limiting nerve 
impulses, suppressing hunger, gut motility, and influencing behaviour is produced from 
the essential amino acid tryptophan, the availability of which is regulated by gut 
microbiota. The majority of serotonin (95%) is produced and stored in endocrine cells 
along the gut epithelium, and serotonin is also produced by gut microbes including 
Clostridium sporogenes and Ruminococcus gnavus from luminal tryptophan (Giri and 
Sharma, 2022). Using metagenomic data Akkermansia, Alistipes and Roseburia have 
also been predicted to produce serotonin in the gut (Valles-Colomer et al., 2019). Lastly, 
early life gut commensals Bifidobacterium and Lactobacillus take part in the production 
of gama-aminobutyric acid, which through the vagus nerve, has positive effects on the 
brain and depressive behaviour (Giri and Sharma, 2022).  

Maintaining the diverse composition of commensal gut microbiota is important for long-
term health, as the gut microbiome can otherwise function in a way that is 
disadvantageous to the host. Microorganisms can induce a pro-inflammatory response, 
which reduces the integrity of the gut wall and allows bacteria-derived toxins (phenols, 
and para-cresol) and cell wall components (lipopolysaccharides) to enter the 
bloodstream, which leads to further immune activation (Ding, Taur and Walkup, 2017). 
The microbiome is most susceptible to perturbation when it is not fully developed, 
meaning the colonisation process and early life are the most important time periods for 
determining overall gut microbiome resilience and function.  

1.1.4 The colonization process imposes long-lasting effects on 
community structure 
Colonization of the infant gastrointestinal tract by commensal microorganisms may be 
the most important process for maintaining the long-term stability of the microbiome. 
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This is because the microbiome is especially vulnerable, during early colonization at 
infancy due to low diversity and stability (Matamoros et al., 2013). This process is 
thought to largely begin during and after delivery, but there is also evidence to suggest 
that some vertical transmission of microbes occurs during pregnancy from mother to 
infant. The presence of a low abundance of bacteria in the placenta, amniotic fluid and 
meconium is raising questions around the sterility of the uterine environment (Collado et 
al., 2016). The first meconium, the infant’s first bowel movement, is formed from 
amniotic fluid that was swallowed throughout pregnancy by the foetus. Live bacteria 
have been isolated from meconium samples, indicating that live bacteria were 
swallowed with amniotic fluid (Jiménez et al., 2008). Further work by the same group 
has shown genetically labelled bacteria can be found in the gut of pups when dams are 
orally inoculated by those same bacteria, indicating a hematogenous route from the 
maternal oral cavity or gut to the foetal gut. In another study involving mice, 
Fusobacteria of the mouse oral microbiome were documented binding to endothelial 
cells and then later colonizing the placenta. Additionally, these bacteria modified the 
integrity of the endothelial barrier, which the authors predict facilitated the 
dissemination of other microorganisms (Fardini et al., 2011).  

Although, because the biomass of microbial cells recovered from the uterine 
environment and meconium is vanishingly low, it is difficult to differentiate between 
contamination and potential true colonisers; indeed recent studies of the meconium 
using robust negative controls have suggested there is no microbiota present in the gut 
prior to birth (Dos Santos et al., 2021). Two other studies using sequencing technology, 
have reported on the microbiome of first meconium without the use of any controls 
(Nutricionist et al., 2020; Collado et al., 2016), which is not an appropriate 
methodological choice, and should causes their results to be questioned. On the other 
hand, Rackaityte et al (2020) described the microbiota in the foetal samll intestine 
meconium using 87 procedural and technical controls, which accounted for 36% of the 
total samples sequenced. This group described the molecular signal in their samples as 
“nearing the limits of detection”, and supported their claims with images of bacterial 
cocci identified in the terminal ileum of human foetal intestines obtained from 
terminated pregnancy using scanning electron microscopy. With the integral role the 
microbiome plays in mammalian health it might be expected that microbiota with the 
fitness to translocate and colonise the nutrient poor foetal gut would be closely retained 
through generations, rather than strictly passively acquired from the environment; and 
that potentially their presence in meconium might be below the limits of detection using 
sequencing and culturing methods. However, until sufficient reproducible evidence is 
collated the sterile womb hypothesis should not be rejected. 

During pregnancy the maternal microbiome changes significantly, mainly due to a 
reduction in richness and increase in Actinobacteria (Koren et al., 2012). Also a shift in 



 10 

both immune function and metabolism, which are both influenced by gut microbiota, 
occurs during pregnancy (Yang et al., 2021). These metabolic shifts involving host and 
microbiota that may have historically been beneficial in providing nutrients to the 
developing foetus when resources were scarce, may now be associated with gestational 
diabetes and excess weight gain (Koren et al., 2012; Delhaes et al., 2018). In particular, 
consumption of a high fat diet during pregnancy has been associated with changes to 
gene expression in the foetus of primates (Cox et al., 2010), and impairments in social 
behaviour in male mice (Buffington et al., 2016).The maternal microbiome is not only 
an important potential seeding location for microbial colonizers, but microbial activity 
may also be important as metabolites can be transferred to the foetus, depending on the 
regulatory action of the placenta (Pessa-Morikawa et al., 2022). The interplay between 
physiological response to stress and the microbiome (as discussed previously) may also 
be important to consider during pregnancy, as this can be a particularly stressful period 
that can cause shifts to gut and vaginal microbial communities (Yang et al., 2021). 
Maternal stress has been shown to impact the composition of the infant microbiome in 
the first 110 days after birth (Zijlmans et al., 2015), as well as impact neurodevelopment 
and behaviour including increased anxiety and lack of attention in offspring (Yadav et 
al., 2018).  

During this critical time in development, birth mode has been shown to have a 
significant impact in determining the profile of initial colonisers, indicating the 
fundamental importance of those very first microbial strains (Yang et al., 2021). First 
exposure to vaginal microbes during a natural birth is proposed as being a protective, 
compared to first exposure to skin associated microbes during caesarean birth (Dunn et 
al., 2017). Vaginal birth is associated with enrichment of anaerobic bacteria including 
Lactobacillus which can be acquired when the baby passes through the birth canal 
(Yang et al., 2021). Infants born via caesarean section will never be exposed directly to 
the mother’s vaginal microbiota, and are instead more often colonised by facultative 
anaerobes including Enterobacter, Klebsiella, and Staphylococcus (Yang et al., 2021). 
Vaginal microbiome transfer has been used to attempt to restore the microbiome of 
caesarean born infants (Dominguez-Bello et al., 2016; Wilson et al., 2021), yet there are 
a number of complications that severely limit any potential benefit of this practice 1) 
vaginal microbes likely adhere strongly to the dry gauze used to collect them, and 
therefore limit any transfer to the infant 2) transfer of the microbiota to the infant does 
not happen directly after birth, but a number of minutes later. 3) the swab or swab 
solution must remain at ambient temperatures and is exposed to environmental 
contamination which may severely alter the composition of the microbes transfer to the 
infant. Additionally, antibiotics taken during childbirth can reduce the abundance of 
probiotic species such as Bifidobacterium in breastmilk, as well as the abundance of 
Bifidobacterium and Lactobacillus in the infant gut microbiome (Dunn et al., 2017). 
Caesarean birth can also cause delays, and difficulty in breastfeeding, which may help 
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explain the enrichment of Bacteroides spp. in the gut of infants born vaginally (Galazzo 
et al., 2020). This bacterium is one of the most commonly found bacteria in human 
breast milk (Zimmermann and Curtis, 2020), and potentially, the impacts of caesarean 
delivery on breastmilk composition and breastfeeding success impacts the colonisation 
of Bacteroides in the infant gut. 

After birth, the mother’s skin, and breastmilk also, provide microorganisms that can 
colonize the infant gut (Yang et al., 2021). Breast feeding provides a rich source of 
human milk oligosaccharides (HMO), proteins, vitamins, immune cells, and bioactive 
compounds such as hormones (Carrothers et al., 2015), as well as microbial strains that 
can colonise the infant gut (Carrothers et al., 2015; Meyer et al., 2016). This is 
particularly the case with colostrum, which is breastmilk that is produced in the first 
four days. Bacteria are theorised to translocate to breast milk by the action of Dendritic 
cells, which select them from the gut and carry them to the mammary glands 
(Rodríguez, 2014). The composition of breast milk is also affected by maternal diet 
(Bravi et al., 2016), and the functional capacity of the milk microbiome inferred by 
metagenomic analysis has also been shown to be impacted by diet (Meyer et al., 2016). 
Healthy breast-fed infants show lower richness and diversity, with higher abundance of 
Actinobacteria, and a higher quantity of lactic acid within faeces, compared to formula 
fed infants (Bazanella et al., 2017). Only a select number of bacteria, most notably 
Bifidobacterium infantus, have the potential to break down HMOs and subsequently 
change the gut environment by depleting the oxygen concentration and lowering the gut 
pH during fermentation (Casaburi et al., 2021). Furthermore, the HMOs bind to some 
pathogenic species, which interferes with their ability of to adhere to the infant gut 
(Cacho and Lawrence, 2017). 

During the colonisation process, a succession of microbiota including Bifidobacterium, 
Closteridium and Lactobacillus first inhabit the healthy infant gut (Hill et al., 2017). 
Among fungi, Saccharomycetalean yeasts have been the first members to be detected in 
the infant gut (Hallen-Adams and Suhr, 2017); however, within the first 30 days of life, 
Candida species were found to be the most abundant (Ward et al., 2018). By 2 to 5 
years of age, the microbiome will resemble that of an adult, and while this process is not 
well understood, a succession of particular bacteria is required if the microbiome is to 
attain a beneficial composition (Wampach et al., 2017); and the microbes that arrive 
earlier can put additional constrains on further colonisers through niche modification 
(Koskella, Hall and Metcalf, 2017). This promotes favourable development of the infant 
immune system and brain, and can influence the long-term health of the host as 
discussed in a number of reviews (Matamoros et al., 2013; Lynch, 2016; Ding, Taur and 
Walkup, 2017; Hirata and Kunisawa, 2017; Cryan et al., 2020). This work has led to the 
hypothesis that delayed, or disrupted colonization by ‘traditional’ co-evolved microbes 
will increase the host’s susceptibility to auto-immune disease and neurological 
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disorders; and therefore, the best time to intervene in an attempt to rectify the 
microbiome may be before or directly after birth. 

1.2 The Microbiome is a Window for Understanding Host 
Health 

 1.2.1 Modernization and inflammation in the gut 
It is now widely recognized that the gut microbiome plays a crucial role in maintaining 
not only gut health, but overall wellbeing, from improving susceptibility to pathogens, 
to coping with stress (Sharma, Neu and Young, 2010; Amon and Sanderson, 2017; 
Gupta et al., 2019). As human society has modernized, the level and timing of exposure 
to microbes and microbe carrying agents has been altered among a large fraction of 
people. In industrialised areas, newborns first enter the world more commonly in 
hospitals and increasingly often via caesarean birth, potentially increasing exposure to 
skin and hospital associated microbiota (Chong, Bloomfield and O’Sullivan, 2018). The 
microbial composition of indoor environments has also been modified due to increased 
modernised sterilising cleaning practices (Gupta et al., 2019). Furthermore, exposure to 
antimicrobial compounds has increased due to their inclusion in numerous products 
including toothpaste and toys (Sanidad, Xiao and Zhang, 2018), as well as the increasing 
use of emulsifiers, preservatives and other artificial food additives that alter microbiota 
composition (Cao et al., 2020). Each of these aforementioned changes has happened 
rapidly over a very short period of human history, which is likely to compound their 
effects on human health. 

The evolutionary capacity of the microbiome is immense. Microbes such as E. coli (wild 
type) can replicate in under 20 minutes (Ball, 2012), and horizontal gene transfer from 
the environment or from another cell can facilitate adaptation without replication, and is 
most common among host associated microbes (Koskella, Hall and Metcalf, 2017). This 
means that ecological changes in microbial abundance overlap with changes in gene 
frequency, making de novo mutation – and therefore rapid adaption – highly relevant to 
the gut microbiome. The human microbiome has been augmented by exposure to 
antimicrobial agents with significant gains in antibiotic resistance genes (Yassour et al., 
2016; Kovtun et al., 2020), and losses in predominant commensal members (Yassour et 
al., 2016). Gut microbiota have also responded to diets containing a larger proportion of 
processed and preserved foods by an influx of Bacteroides species and a reduction in 
historically predominant Prevotella species (Clemente et al., 2015).  

Understanding the gut microbiome, and its response to diet and other external factors is 
frequently facilitated through studies involving murine models. Unlike human 
populations, the genetics, and the environment (e.g., sterilised food water and housing) 
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of animal models can be rigorously controlled, which allows manipulations to the 
microbiome to be investigated without confounding variables. There are however 
differences in the structure of the gastrointestinal tract between humans and mice/rats 
including a less acidic forestomach and large cecum, as well as differences in the 
presence and abundance of bacterial genera (Hugenholtz, and de Vos, 2018). Most of 
the murine models used for human gut microbiome research are wild-type, inbred 
strains, as well those altered through transgenesis with foreign DNA, and thus have an 
altered phenotype (Hugenholtz, and de Vos, 2018). Using inbred animal models in 
modern vivarium means research is more easily reproduced, but less likely to be 
translatable to humans, especially regarding genetic heterogeneity (Porsgaard et al., 
2016). Additionally, both the strain, husbandry, and the vender source can impact the 
microbiome of the murine model (Ericsson et al., 2015), which can impact the study 
outcomes if not considered. 

Despite these limitations, animal models have been important tools in microbiome 
research, and have been used to better understand how a modern lifestyle may 
permanently alter the microbiome through the loss of key species. By reducing the 
accessibility to fermentable carbohydrates over generations, the microbiota of a rat 
model increasingly departed from the structure present in control rats, and the losses in 
diversity could not be recovered with diet switching after 4 generations (Sonnenburg et 
al., 2016). Although, because germ free rats have suppressed immune function, and 
were inoculated with a single human faecal microbiome (which is not adapted for the 
gastrointestinal anatomy of a rat and would afford all rats the same microbiome-
associated phenotype), it is not surprising that the rats lost microbial diversity over 4 
generations with no opportunity for bacterial exposure. While these results are unlikely 
to reflect human conditions, they do illustrate the response of the microbiome to hyper-
modernization. This is particularly important considering hyper-modernisation has 
coincided with a rise in non-communicable diseases, and the impact on the gut 
microbiome may be a contributing factors to the increased prevalence of these 
conditions (Gray et al., 2017). 

Originally, proposed in the late 1980s, the hygiene hypothesis (Gupta et al., 2019) was 
used to explain the shift away from disease and toward allergies, by a lack of exposure 
to infection in childhood. The theory has been revised over time, and now extends to 
microorganisms that are not pathogenic, and is used to understand inflammatory 
autoimmune diseases as well (Gupta et al., 2019). A loss of exposure to a diversity of 
microbes overtime is thought to be disadvantageous to the regulation of the immune 
system; and the protective effect of exposure to endotoxins in reducing the incidence of 
allergic disease has been demonstrated a number of times in comparing the allergy rates 
among children in farming and rural settings compared to metropolitan areas (Ege, 
2017). What has been observed over the last few decades in western countries, and more 
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recently in developing areas, is an increase in autoimmune and atopic diseases, 
especially in young children (Loh and Tang, 2018). The importance of the gut 
microbiome is continually being realized, and has most recently been regarded as an 
organ (Moles and Otaegui, 2020). This analogy is fitting as the gut microbiome has 
evolved to perform an essential function like all other body organs, and removing or 
destroying it has severe health ramifications. 

1.2.2 The microbial role in immune system development and 
autoimmune disease 
Microbes evolve on a timescale that is profoundly different to that of the host, and to 
interface with a rapidly changing environment the adaptive immune system alone is 
highly responsive to change. Gastrointestinal bacteria stimulate the development of the 
gut-associated lymphoid tissue that reside within the intestinal mucosa, which is the 
largest collection of lymphocytes in the body (Faria, Reis and Mucida, 2017). At birth, 
the innate immune system has however yet to mature, and therefore, the nonspecific first 
line of defence that would normally be provided by this system, has not yet been fully 
developed. Newborns possess monocytes and T cells that produce fewer cytokines than 
adults, and have lower levels of memory T cells (Holt and Jones, 2000). In early life, the 
immune system is also shifted towards a Th2 phenotype which can facilitate the 
colonisation of gut microbiota (Dzidic et al., 2018). Th1-type cytokines induce a 
proinflammatory response that can respond to infection, and can lead to an autoimmune 
response, whereas the Th2-type cytokines have more anti-inflammatory activity. 
Additionally, the physical and chemical barriers of the intestine are incomplete, and 
there is limited secretory immunoglobulin A (IgA) and M (IgM) production (Holt and 
Jones, 2000), although IgA is provided through breastmilk. Over time, the tissue-
resident collection of immune cells matures in early life through exposure to external 
agents including toxins, nutrients, as well as commensal and pathogenic 
microorganisms. Early life is therefore a critical period when the immune system and 
gut develop in tandem, and immune cells must adapt to the ever-changing environment.  

The immune system can respond by participating in the inflammatory process, or by 
expressing tolerance (Faria, Reis and Mucida, 2017), and the responses elicited at the 
mucosal surfaces during this process determine in part the allergic response (Holt and 
Jones, 2000). The gut microbiota produce or mediate metabolites that regulate the host’s 
immune response including shaping Peyer’s patches, and inducing the Th1 and Th2 type 
responses (Dzidic et al., 2018). The regulatory action of these metabolites occurs 
through a number of different mechanisms including immune cell signal transduction, 
acting as transcription factors, and regulating gene expression through GPR (Hirata and 
Kunisawa, 2017). Microbial metabolites with immunomodulatory properties include 
vitamins such as B9 which maintain Treg cell function and reduce inflammation, and 
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amino acids including tryptophan which when metabolised to melatonin reduce 
inflammatory cytokine production (Hirata and Kunisawa, 2017). SCFA are also 
immunomodulators with butyrate promoting healthy epithelial barrier function, and 
propionate enhancing the generation of Dendritic cell precursors with reduced capacity 
to promote Th2 cell function (Hirata and Kunisawa, 2017). Together, top-down and 
bottom-up signalling between the immune system and gut microbiota helps shape the 
long-term functioning of the immune system, determining the response to environmental 
antigens.  

Many of the risk factors associated with autoimmune disease are linked to the 
development of the gut microbiome, including: lack of breast-feeding (Friedman and 
Zeiger, 2005), maternal and infant antibiotic use (Dzidic et al., 2018), and reduced 
exposure to microbe carrying agents like pets or livestock (Lynch, 2016). The gut 
microbiota shows characteristic shifts associated with a range of diseases, as well as 
autoimmune pathological conditions, and changes to the microbiome, especially in early 
life are predicted to be contributing to the rise of autoimmune diseases (Gray et al., 
2017). While the incidence of newborn autoimmune disease is rare, allergic diseases are 
increasing in young children and adolescents, and are currently the most common 
chronic disease in childhood (Asher et al., 2021). There are currently over 80 different 
autoimmune diseases (Roberts and Erdei, 2020), with Crohn’s disease and ulcerative 
colitis being two inflammatory bowel diseases extensively studied and closely 
associated with the composition of the gut microbiome (Venegas et al., 2019). In both 
diseases, the composition of the microbiome is different compared to in healthy 
controls, and both bacteria and fungi are thought to be involved in the inflammatory 
process.  

Like inflammatory bowel disease, the microbiome of children with allergies has also 
been described in terms of its differing structure and function; and unfortunately, the 
morbidity of allergies among children appears to be increasing. For example the 
likelihood of developing food allergies has been shown to increase in relation to 
characteristic changes of particular bacterial species during the first few years of life 
(Tanaka et al., 2017); and pro-inflammatory metabolite profiles along with microbial 
deficits are able to distinguish groups of infants with different relative risk of developing 
atopy and asthma (Fujimura et al., 2016). Allergic diseases including atopic dermatitis 
(Fujimura et al., 2016), food allergy (Prescott et al., 2013), and asthma (Braman, 2006) 
are most prevalent in children in developed countries and in urban settings. For 
example, in Australia, the prevalence of food allergy in infancy is estimated at 11%, and 
the incidence of food anaphylaxis emergency admissions have increased from 2.0 per 
ten thousand in 1998-1999 to 8.2 per ten thousand in 2011-2012 (Tang and Mullins, 
2017). Concerningly, the prevalence rates of food allergy in Australia are the highest in 
the world (Bellinger et al., 2019), and allergic rhinitis and eczema are also increasing in 
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prevalence (Dharmage, Perret and Custovic, 2019). The most common allergic disease 
in children globally however, is asthma (Asher et al., 2021), with boys more affected in 
childhood, and girls more affected in adolescence (Dharmage, Perret and Custovic, 
2019). It is suspected that there is no increase to the incidence of asthma in high-income 
countries (Dharmage, Perret and Custovic, 2019), however there has not been sufficient 
global evidence to support this hypothesis. Since 2003, there has only been a single 
global assessment of asthma prevalence (the Global Asthma Network Phase I) which 
showed childhood and adolescent asthma increased in prevalence in middle-income 
countries, decreased in prevalence in low-income countries, and did not change in high-
income countries (Asher et al., 2021). Although, in this study Australia, Canada, 
Germany, Norway, US, and the UK were among the countries not surveyed, which 
appears to be a sever limitation to the conclusions of this study regarding high income 
countries. 

1.2.3 The gut-brain-microbiome axis as a modulator of brain function 
As discussed in section 1.1.3, bi-directional communication between the microbiota and 
the host is possible using microbial metabolites as mediators, and this link is called the 
gut-brain-microbiota axis. While this link is bi-directional, the brain is more often on the 
receiving end of communications, with 90% of vagal fibres conducting signals towards 
the brain (Rao and Gershon, 2016). Like the immune system, the development of the 
brain is impacted by the gut microbiota in early life, and is associated with autoimmune 
encephalomyelitis, ASD, and neurodegenerative diseases including Parkinson disease, 
multiple sclerosis, and Alzeimer’s disease, (Cryan et al., 2020), as well as the stress 
response, anxiety- and depressive-like behaviours, and food preferences (Martin et al., 
2018). The inclusion of the microbiota into the gut-brain axis has been a relatively 
recent paradigm shift in the way neurological disorders are investigated, and animal 
studies have provided most of the detailed evidence for specific processes in which the 
microbiota are involved in this complex system. As previously mentioned in section 
1.2.1, the evidence generated using animal models are often not translatable to humans. 
While these models have been of great importance in uncovering plausible mechanisms 
for the involvement of the microbiome in neurological functioning - including neural 
development, myelination, neurogenesis, and microglia activation through immune 
pathways (Cryan et al., 2020) – they have not been able to demonstrate causality. 

The neurological disorders associated with the gut-brain-microbiota axis share several 
similarities. Among neurodegenerative diseases, Parkinson disease (PD) and Alzheimer 
disease (AD) involve self-aggregating proteins (alpha-synuclein and amyloid precursor 
protein respectively) which are used by both the CNS and the ENS, and can cause a 
similar disease pathology in enteric nerve cells (Rao and Gershon, 2016). PD, AD and 
ALS are also associated with elevated levels of aluminium in the brain, which is both 
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neurotoxic and inflammatory (Kawahara, 2005), can increase oxidative stress, and can 
increase the risk of accumulating self-aggregating proteins which form plaques in the 
brain (Sanajou et al., 2022). Potential involvement of the gut microbiota in these 
processes include: the assembly of amyloid fibres (which share biochemical and 
structural properties with disease-linked amyloids) externally on microbial cell surfaces 
(Pistollato et al., 2016), stimulation of ENS neurogenesis by microbially regulated 
serotonin (De Vadder et al., 2018), and shifts in microbial metabolism of serotonin and 
cholesterol after aluminium exposure (Feng et al., 2022). In addition, high levels of 
aluminium have been found in the brains of 5 autistic individuals, indicating a potential 
link between high aluminium accumulation in the brain and the disease (Mold et al., 
2018; Exley et al., 2020). 

Another characteristic that is shared among a number of neurological disorders 
including multiple sclerosis (Cryan et al., 2020), ASD (Fiorentino et al., 2016), and 
dementia (Parker, Fonseca and Carding, 2020) is compromised BBB integrity. This 
barrier is responsible for gatekeeping the passage of molecules in the blood to the brain, 
and the proteins responsible for maintaining tight junctions between the cells of the 
BBB have decreased expression in specific-bacteria free mice (Braniste et al., 2014). 
Also, in mice it has been demonstrated that SCFA improve the number and function of 
microglia cells which are responsible for the regulation of the BBB, and for controlling 
neuroinflammation. A final similarity among neurological disorders is impaired gut 
barrier function, which can allow for improper uptake of luminal contents including 
bacterial metabolites and toxins. Increased gut permeability may progress through 
activation of either enteric neural or glial cells (Rao and Gershon, 2016). 

In concert with a leaky gut, exposure to microbially produced toxins and metabolites 
have been linked to the pathology of neurological disorders (Rao and Gershon, 2016), 
and some bacteria produce neurotoxic compounds. A particular strain of Bacteroides 
fragilis (enterotoxigenic B. fragilis) can produce pro-inflammatory lipopolysaccharide 
(LPS) as well as a metalloprotease called fragilysin which is one of the most potent 
inflammatory enterotoxins known. Both the LPS and fragilysin can leak through a 
healthy gut barrier and pass the BBB causing inflammation (Lukiw, 2020). Also, 
Clostridium perfringens produce a number of cytotoxins which may be associated with 
ASD (Góra et al., 2018). Alternatively, gut microbes can also produce metabolites that 
can have beneficial impacts on neurological disorders. Anaerococcus, Clostridium, and 
Escherichia produce trimethylamines that can cross the BBB. These amines have both 
positive and negative impacts on health, but may be beneficial in neurodegenerative 
disease as they correct misfolded proteins and maintain the proteins original 
conformation (Parker, Fonseca and Carding, 2020). The microbiota also catabolise 
amino acids and therefore regulate the balance between inhibitory and excitatory 
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neurotransmitters, and produce vitamins in particular B vitamins which are vital for 
maintaining health (Parker, Fonseca and Carding, 2020). 

The shifts that are observed by the microbiota in association with neurological disorders 
are typically subtle, involving the enrichment or depletion of certain key species rather 
than largescale shifts in diversity, like that seen with the intermittent active periods of 
irritable bowel disease. However, because these shifts are fine, and the methods used to 
detect species enrichment varies among studies, there are many taxa that have been 
described in the literature that are potentially coincidental findings. Although, a recent 
meta-analyses including 11 studies implicated enrichment of Bifidobacterium, 
Proteobacteria, and Phascolarctobacterium while Clostridiaceae, Firmicutes, 
Lachnospiraceae and Rikenellaceae were reduced in the gut microbiome of those with 
Alzheimer’s disease (Hung et al., 2022). Another meta-analysis of 10 studies showed 
Corprococcus, Faecalibacterium, and Prevotellaceae were decreased in those with 
major depressive disorder (Sanada et al., 2020); and lastly, two recent meta-analyses 
have implicated enrichment of Faecalibacterium, and Ruminococcus and the depletion 
of Bacteroides, and Bifidobacterium (Xu et al., 2019), as well as depletion of 
Streptococcus and Bifidobacterium (Andreo-Martínez et al., 2021) in the gut microbiota 
of autistic children. Together these meta-analyses indicate that the balance of certain 
taxa especially Bifidobacterium and members of Closteridia may be of particular 
importance for maintaining both gut and brain health into later life stages. However, to 
improve the common knowledge regarding potential microbial biomarkers for childhood 
disease, both individual studies and meta-analyses must consider the age of participants. 
For example the most recent meta-analysis collating the microbiota associated with 
autism included 18 studies with children ranging from 2 to 13.4 years of age (Andreo-
Martínez et al., 2021). The composition of the microbiome changes significantly from 
infancy to adolescences as discussed in section 1.1.4, and it follows that the 
manifestations of gut dysregulation during disease in infancy might look quite different 
to that in adolescents. In particular, Faecalibacterium is one of the most common later 
colonisers of the healthy human gut, and therefore, enrichment of this genus at less than 
2 years may be interpreted differently than enrichment in adolescents, when more adult 
dietary preferences begin to emerge. 

1.3 Modifying the Microbiome  

1.3.1 Probiotics and antibiotics use in adults and infants 
The community of microorganisms in the gut of healthy adults is not static, but in the 
long-term seems to demonstrate prolonged stability that is punctuated by periods of 
disturbance (Voigt et al., 2015; Fu et al., 2019). Although, in recent times it is possible 
to drastically alter the composition of the established adult microbiome. This can be 
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achieved by directly delivering beneficial microorganisms to the gut using probiotics, or 
by eliminating bacterial microbiota through the use of antibiotics. In general, probiotics 
have positive effects on the gut by providing commensal microbes that often provide 
anti-inflammatory metabolites to the gut. Conversely, antibiotics can increase 
gastrointestinal disease and disrupt the microbial community structure, often by 
eliminating key community members.  

Infections cause acute inflammation and immune system activation and pharmaceutical 
treatment for a number of infections include antibiotics and antifungals however, these 
treatments can also cause dysbiosis (abnormal microbiota structure) in the gut. In fact, 
antibiotic use poses a significant risk for developing irritable bowel disease (IBD) 
(McIlroy et al., 2018), and increased susceptibility to microbial infection (Francino, 
2016). However, antibiotics are also used as a non-standard treatment for conditions that 
are associated with dysbiosis including IBD, despite the risk of side effects (McIlroy et 
al., 2018).The most commonly noted changes to the microbiome after antibiotic 
exposure are significant losses in both richness and diversity, as well as changes to the 
taxonomic community membership (McDonnell et al., 2021). In a large longitudinal 
study assessing long and short term diet patterns among healthy adults, antibiotic use up 
to three months prior contributed most strongly to microbiome composition, and 
significantly reduced alpha-diversity, which is a measure of species richness and 
evenness (Klimenko et al., 2018). 

While these acute effects of antibiotics are relatively understood and accepted, it is less 
clear if antibiotics impair the microbiome long-term. The extent of microbiome 
disruption depends largely on the pharmacodynamic properties of the antibiotic, and the 
dosage/duration of use (Jernberg et al., 2010), which may make it difficult to compare 
across studies. A recent meta-analysis of commonly prescribed antibiotics found 
microbiome composition returned to normal within 6-months according to alpha-
diversity measures (Elvers et al., 2020). However, earlier studies show that when 
looking specifically at certain key taxa such as Bacteroides affects can persist for years 
(Jernberg et al., 2010; Francino, 2016). Another well know example of longer-term 
dysbiosis after treatment with an antibiotic is the development of intractable candidiasis 
caused by proliferation of fungi (Paterson, Oh and Underhill, 2017). Antibiotic use can 
also reduce the number of anaerobic bacteria which help maintain the oxygen depleted 
environment. This can cause an increase in potentially pathogenic aerobic bacteria such 
as Salmonella typhimurium (Venegas et al., 2019), or Clostridium difficile (Francino, 
2016). A final consideration for antibiotic use is the continual increase in antibiotic 
resistant genes that are accumulating in enteric microbes. A population-level analysis of 
the gut microbiome identified resistance against 50 of 68 antibiotics screened for, and 
each sample had on average resistance to 21 antibiotic types (Francino, 2016).  



 20 

Exposure to antibiotics during foetal and early life stages are more harmful to the long-
term function of the microbiome as it is still involved in colonisation. The use of 
antibiotics during these early life stages are linked to increase the risk of allergic and 
inflammatory conditions including asthma and IBD (Chong, Bloomfield and O’Sullivan, 
2018), as well as metabolic conditions including increased body mass (Saari et al., 
2015) and diabetes (Elvers et al., 2020). During pregnancy, between 20 – 40% of 
women in developed nations receive antibiotic treatment (Stokholm et al., 2013), and 
during labour prophylactic antibiotics are also encouraged prior to caesarean delivery 
and/or to prevent infection complications such as streptococcus (Dunn et al., 2017). 
Antibiotics are known to cross the placenta and enter the foetal bloodstream. This may 
happen rapidly, and result in an equilibrium concentration between mother and infant, or 
an incomplete transfer may occur where the concentration of the antibiotic is lower in 
the infant compared to the mother (Pacifici, 2006). Surprisingly, infants have also been 
found to host microbiota with antibiotic resistant genes, many of which are shared 
between mother and infant (Francino, 2016). Therefore, due to the rising concerns of 
multi-antibiotic resistant bacteria, probiotics are receiving more attention as a potential 
treatment and preventative therapy to aid in pathogen infection.  

Probiotics may be able to support the proper functioning of the microbiome, assist in 
restoring the microbiome after perturbation, or potentially reduce the risk of disease 
(Vitetta et al., 2014). This is due to the fact that various different strains of probiotics 
have demonstrated the ability to mediate immune functions, contribute to beneficial 
metabolite production, and also interact synergistically with other commensal 
microorganisms (Sanders et al., 2019). The most frequently used probiotic species to 
supplement the human gut microbiome are Lactobacillus and Bifidobacterium 
(Cunningham et al., 2021). In rats, these bacteria have been used extensively to 
demonstrate anti-anxiety properties, and have been shown to have positive effects on 
anxiety in humans by reducing blood cortisol levels (Cryan and O’Mahony, 2011). 
Together, species of Lactobacillus, Bifidobacterium, and Streptococcus have also been 
used to reduce immune mediated inflammation in patients with multiple sclerosis 
(Cryan et al., 2020), as well as improve both gastrointestinal and core behavioural 
autism symptoms (Santocchi et al., 2020). Lactobacillus alone has also been shown to 
improve cognitive fatigue, demonstrating the ability of these microbes to promote 
healthy brain function (Cryan et al., 2020). Probiotics have also been used extensively 
as a potential therapy for allergic disease, and in a recent meta-analysis probiotics 
(primarily Lactobacillus, and Bifidobacterium) significantly reduced nasal and eye 
symptoms and improved quality of life according to questionnaire (Chen et al., 2022). 
Lastly, Akkermansia muciniphila is a recently identified potential probiotic species that 
only degrades mucin to source carbon, which means it must attach to the mucosal layer 
which is positioned closed to the gut wall (Zhai et al., 2019). A. muciniphila produces 
both acetate and propionate, and a membrane protein which benefits gut barrier 
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function, and has been used beneficially in an animal model to alleviate metabolic 
disease including diabetes and obesity (Zhai et al., 2019). Although, the microbiota 
response to probiotics is highly variable because each individual hosts a unique 
microbiome. Accordingly, some individuals may not respond well to conventionally 
used probiotic strains, or may respond in a way that is not captured within the confines 
of the microbiome study design. Hence, more microbiome research which includes an 
in-depth analysis of long-term diet and gut health is needed to better determine which 
probiotics are suited to different microbiome types. 

1.3.2 Prebiotic supplementation in adults and infants 
The gut microbiome can also be manipulated using prebiotics, which are defined 
currently as “substrate[s] that [are] selectively utilized by host microorganisms 
conferring a health benefit” (Gibson et al., 2017). Because prebiotics promote larger 
scale changes in multiple microbial groups, prebiotics can induce a community-wide 
shift in metabolic activity (Sanders et al., 2019). The majority of prebiotics are inulin-
type prebiotics including the most commonly used fructo-oligosaccharide (FOS) and 
galacto-oligosaccharide (GOS), and potential prebiotics also include resistant starch, 
polyphenols, polyunsaturated fats and vitamins (Cunningham et al., 2021). However, as 
the prebiotic industry is growing rapidly, it is becoming more common to see 
commercial prebiotic blends and prebiotics added to human and animal foods. In some 
cases, there is little scientific evidence of benefit (Jin Song et al., 2019; Cunningham et 
al., 2021); but because potential prebiotics are generally assumed to be safe, many 
trademarked products have been developed with little regulation and poor quality 
research data (Jin Song et al., 2019). For example, the negative effects of stress in 
healthy adults are claimed to be alleviated by modifying the microbiome using Amare 
Fundamentals (a particular blend of probiotic/prebiotic/phytobiotic) supplementation 
(Talbott et al., 2019). The evidence for this claim comes from increased proportions of 
“good” bacteria using a PCR based detection method called “BiomeTracker” with 
unspecified gene targets. The Amare Fundamentals products are marketed with 
ambiguous claims for which the evidence is not robust enough to support.  

However, prebiotics including FOS and GOS have a long history of documented 
beneficial effects, including promoting proliferation of the beneficial bacteria 
Bifidobacterium and Lactobacillus which have been documented in a number of reviews 
(Macfarlane, Steed and Macfarlane, 2008; Nauta and Garssen, 2013; Ashaolu, Ashaolu 
and Adeyeye, 2021). These oligosaccharides are also well known to increase acetate and 
butyrate concentrations (Ose et al., 2018), reduce gut pH and reduce inflammation 
(Ashaolu, Ashaolu and Adeyeye, 2021). In particular, GOS have been shown to reduce 
inflammatory markers of metabolic syndrome including C-reactive protein and 
calprotectin in overweight adults (Vulevic et al., 2013), improve anti-social behaviour in 
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autistic children (Grimaldi et al., 2018), and improve the absorption of Ca, P, and Mg in 
Osteopenic rats (Seijo et al., 2019). Although, prebiotics will have a disparate impact on 
the microbial community due to the diversity of metabolic functions presented by the 
microbiota community (as discussed in section 1.1.2). As a result, the metabolic profile 
induced by prebiotics can vary widely from person to person (Sanders et al., 2019). 
However, strong evidence for the benefits of prebiotics in infants comes from 
interventions of prebiotic infant formula.  

In infants, formula supplementation with FOS and GOS is also associated with similar 
positive changes in the gut including an increase in Bifidobacterium (Moro et al., 2006; 
Scholtens et al., 2008; Grüber et al., 2010; Sierra et al., 2015), reduced faecal pH 
(Bakker-Zierikzee et al., 2005; Sierra et al., 2015), increased lactate (Bakker-Zierikzee 
et al., 2005), and increased secretory immunoglobulin A (Scholtens et al., 2008). 
Formula supplemented with GOS/FOS have also been found to reduce the incidence of 
atopic dermatitis in infants (Moro et al., 2006; Grüber et al., 2010). However, a similar 
clinical trial using only GOS supplemented formula compared to non-supplemented 
formula found no significant reduction in allergy manifestation in infants (Sierra et al., 
2015). The benefits of using prebiotics to support infant health may be enhanced if they 
are also given to the mother prior to birth, because maternal gut health impacts foetal 
development. Evidence for modulation of the immune system in offspring with maternal 
supplementation of FOS/GOS/inulin has been shown in mouse models. Changes to the 
microbiota composition, a reduction in dermatitis like skin lesions, and an increased Th2 
response has been observed in pups from dams fed a FOS supplemented diet during 
pregnancy and lactation (Fujiwara et al., 2010). More recently, maternal GOS/inulin 
dietary supplementation in pregnant mice increased the concentration of acetate and 
other metabolite factors in the amniotic fluid, and also increased the frequency of B 
CD9+ and CD25+ Breg cells that secrete IL-10 in both foetal and 7-week old pups 
(Brosseau et al., 2021). These studies support the idea that prebiotics support lifelong 
health, and may provide some protection against the development of allergies and 
neurological disorders. 

1.4 Investigating the Microbiome Using Genetic and 
Metabolic Profiles 

1.4.1 Sample collection and preparation for microbiome research  
Investigating the relationship between the microbiome and the host, including its 
association with disease requires the community to be sampled, and faecal material is 
commonly used as a proxy for the gut microbiome. Faecal material is comprised 
primarily of water, which accounts for 63-86% of the wet mass. The dry faecal matter 
consists primarily of microbial biomass (25-54%), as well as undigested food residue, 
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macromolecules and small molecules, and shed colonic cells (Rose et al., 2015). Some 
of these food compounds such as polyphenols and polysaccharides are known to cause 
inhibition during PCR, and should be removed during DNA extraction (Wagner 
Mackenzie, Waite and Taylor, 2015). Once faecal material is voided, it will be exposed 
to a lower room temperature, higher oxygen concentrations, and airborne microbes, each 
of which can impact the true microbial assembly. Collecting stool samples into DNA 
preservation tubes can inhibit microbial growth, and allow participants to return their 
samples without the need to maintain a cold chain, however these storage techniques 
have been shown to significantly alter the microbial composition compared to freezer 
storage (Penington et al., 2018; Byrd et al., 2019; Carruthers et al., 2019; Jones et al., 
2021). Storing faecal material for a short period at -20°C or -80°C for longer periods, 
has been determined as the gold standard for gut microbiome research, including both 
microbial and metabolite profiling (Cunningha et al., 2020; Hosseinkhani et al., 2021). 
This allows samples to be collected over larger timescales, but may require participants 
to temporarily store their stool specimens in the household freezer prior to transporting 
it (potentially causing a freeze-thaw cycle) to the laboratory (Liang et al., 2020). A final 
consideration prior to DNA extraction from stool is sample homogenisation, which can 
affectively reduce the impact of subsampling when a sufficient volume of stool is 
collected (Gorzelak et al., 2015). 

Eliminating the bias that is introduced during DNA extraction and metabarcoding 
library preparation are mostly unavoidable (Allali et al., 2017). However, using the 
same extraction protocol, and batch of extraction reagents can mitigate the effects of the 
“microbial kitome” (Wu et al., 2018). Also, performing sample processing under a 
laboratory hood will reduce environmental contamination (Wang et al., 2018). To 
capture contamination that cannot be avoided, such as that from reagents, equipment, 
and sample to sample cross contamination, the use of negative controls has been 
strongly encouraged for a number of years in the literature (Murray, Coghlan and 
Bunce, 2015; Kim et al., 2017; Hornung, Zwittink and Kuijper, 2019). Although, a 
review of studies using high-throughput sequencing methods by Hornung et al. (2019) 
found only 30% report the use of any negative control. Some studies describe the 
collection of these samples, but then do not mention sequencing them, (Persoon et al., 
2017; Carruthers et al., 2019) or if they are sequenced, are not used to reduce 
contamination (Kim et al., 2020). For example, the first pass meconium contains a low 
microbial biomass, and to ensure the resulting taxa do not originate from contamination, 
it is imperative that investigations of this sample type include negative controls. Despite 
this, a recently published article Nutricionist et al. (2020) collected the meconium of 87 
preterm infants from a diaper without any control samples. Of the 63 samples 
sequenced, non were removed bioinformatically. In comparison 16% of the samples 
sequenced by, Klopp et al (2022) were controls, which when implemented, resulted in 
165/330 meconium samples being discarded.  
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PCR is required for metabarcoding to amplify a short target region of DNA (generally 
<300 pb). The reagents used for PCR can also introduce a low level of contamination, 
but the larger impact here is the sporous formation of chimeric sequences (Schnell, 
Bohmann and Gilbert, 2015), and the preference for shorter target regions resulting in a 
size selection bias. Reducing the total number of PCR cycles will mitigate their 
formation (Bakker, 2018), and amplification for less than 30 cycles has been shown to 
produce more accurate mock community proportions (Gohl et al., 2016), and appears to 
be the accepted standard in human microbiome analysis (Prodan et al., 2020; Brosseau 
et al., 2021; Penington et al., 2018; Fu et al., 2019), although some groups (Martin., et 
al 2016; Stinson et al 2019) report 40 cycles which is likely to result in high numbers of 
chimeric sequences or poorer data quality. An attempt to remove chimeras can be made 
bioinformatically, and the most popular method currently is using 
removeBimeraDenovo in the DADA2 package (Callahan et al., 2016). Many studies 
advocate for the use of positive controls, including mock communities during PCR 
amplification, however, their use in the literature is still lacking (Hornung, Zwittink and 
Kuijper, 2019). Mock communities can indicate differences in primer binding 
preference between species (Bakker, 2018), more easily illustrate contamination, and 
evaluate reproducibility across sequencing runs (Claassen-Weitz et al., 2020). The 
equimolar blending of DNA from each sample and mock community, as well as the total 
number of samples will each affect the coverage per sample (Pollock et al., 2018). 
These parameters can fluctuate across sequencing runs, but can be captured and easily 
visualised within a mock community positive control.  

1.4.2 Sequencing microbial genes and genomes  
Next generation sequencing (NGS) technology has become one of the most important 
methods for investigating the human microbiome, and has expedited an explosion of 
research in this area (Waldor et al., 2015). This has been in part due to a hundred-fold 
decrease in the cost of sequencing, as well as facilitating the description of microbial 
inhabitants across all domains of life, including some 90% which cannot be cultured 
under laboratory conditions (Ranjan et al., 2016). The reduced cost of NGS has also 
allowed studies to expand by including larger cohorts of participants, spanning a number 
of years, or by being conducted over a finer scale. The scaling up of microbiome 
research has also benefitted from advances in high sample throughput, including the 
application of barcode indexing (Sinclair et al., 2015). Primers that incorporate these 
unique, short nucleotide sequence barcodes allow hundreds of samples, each containing 
thousands of amplicons, to be pooled together and sequenced simultaneously. The 
barcodes can be added during the primary PCR amplification step, i.e. DNA is amplified 
by primers containing barcodes, or DNA can be amplified and diluted, and then a 
second round of PCR can be used to add the barcodes (Sinclair et al., 2015).Illumina is 
the predominate NGS short read sequencer in the industry, and the MiSeq instrument is 
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the most extensively used to understand microbial communities including those of the 
gut microbiome (Pollock et al., 2018; Zhang et al., 2021). The sequencing by synthesis 
approach used by the Illumina instruments provides reads with minimal base-call errors 
(Allali et al., 2017); and to improve the accuracy even further, amplicons can be read 
and sequenced in both the forward and reverse direction allowing the paired-end 
sequences to partially overlap. A recent comparison of the Illumina sequencing 
platforms showed paired-end sequencing experiments keep error rates between 0.087% 
– 0.61% across the 7 platforms tested (Stoler and Nekrutenko, 2021). The NGS 
technology is however not without limitations, which are primarily due to read length 
(Bukin et al., 2019). Third generation sequencing (TGS) technology does not suffer this 
same dilemma, and instruments by Pacific Biosciences (PacBio) can sequence reads of 
over 2500 bp on average (Zhang et al., 2020), but can also yield reads of 10K in length 
(Au et al., 2012). Although most studies today are still using NGS technology, as the 
higher cost, and few analysis pipelines keeps TGS technology out of reach for most 
(Abellan-Schneyder et al., 2021). 

Molecular investigations of the gut microbiome using high throughput NGS, rely on the 
identity of sequenced reads from pooled genetic material being accurately determined. 
The primers used for metabarcoding will impact what microbes can be identified and to 
what resolution (Bukin et al., 2019). To target bacterial communities, including those of 
the gut microbiome using NGS technology, the 16S rRNA gene is the gold standard 
(Zhang et al., 2020). Both the earth microbiome project (earthmicrobiome.org), and the 
human microbiome project (hmpdacc.org/hmp), have developed standard operating 
procedures based on this region. Although, one consideration when targeting the 16S 
gene, is that different bacterial clads will contain different copy numbers of this gene in 
their genome, meaning bacteria with high copy numbers will be over represented in 
community profiling based on read abundance (Louca, Doebeli and Parfrey, 2018). 
While this genetic feature means the prevalence of a particular amplicon sequence 
variant (ASV) may be very different from the prevalence of the host bacterium, because 
the copy number variation is assumed to be consistent among the same ASV, it will not 
affect comparisons of the same ASV between microbiome samples. The 16S rRNA gene 
sequence is evolutionarily conserved, which allows for primer binding, and contains 
hypervariable regions (V1 through to V9) which are used to identify microorganism 
phylogenetically (Yang, Wang and Qian, 2016). Amplicon length is limited by NGS 
technology, and because the 16S gene sequence is ~1600bp in length, partial sequences 
spanning one or two of the nine hyper-variable regions are more generally used (Yang, 
Wang and Qian, 2016). However, longer reads contain more information compared to 
shorter reads, and as a result, taxonomic assignments, particularly at the genus and 
species level are more accurate on longer reads (D’Amore et al., 2016). The rate of 
evolution is also not consistent between these regions, so the taxonomic diversity can be 
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significantly impacted by the chosen region. The V3 – V6 regions have been shown to 
be most reliable, while the V2 and V8 are least reliable (Yang, Wang and Qian, 2016). 

Compared to the well-established metabarcoding protocols developed for the bacterial 
species, the choice of primers for fungi are not as well established (Tiew et al., 2020). 
The internal transcribed spacer (ITS) region of fungal rRNA operon spans 500-700bp, is 
commonly targeted for species identification of fungi, and has been proposed as a 
universal barcode (Tiew et al., 2020). This marker gene has two target regions, and of 
them, the ITS2 region is preferred over the ITS1 for its less variable length (Ali et al., 
2019), and because there are more universal primer binding sites surrounding this region 
(Nilsson et al., 2019). However, of the primers used for fungal metabarcoding in 2019, 
all of them will miss >10% of fungal groups (Nilsson et al., 2019). This is because 
during PCR amplification, no primer can avid preferential binding (where the primer 
prefers binding to the target region in some species over others), so some microbial 
species including both bacteria and fungi will inevitably suffer over or under estimation 
(Pollock et al., 2018). Lastly, a similar dilemma of inaccurate species level identification 
arises from using one of the short ITS regions as with one of the nine 16S hypervariable 
regions (Tiew et al., 2020). Taxonomic resolution, and species assignments can also 
vary based on the reference database used (Ramakodi, 2022). 

Some databases that have been developed for fungi include UNITE, INSDC, and 
Warcup ITS and for bacteria some major databases (that also often contain 18S or 16S 
sequenced from Eukarya) include SILVA, Ribosomal Database Project (RDP), and the 
Genome Taxonomy (GT) database. Each of these databases will differ in the total 
sequence content, and when classifying fungal species, the sparsity of reference 
sequences contained in databases can be particularly problematic (Tiew et al., 2020). 
Both alpha and beta diversity may also be impacted by the reference database if negative 
controls are used to decontaminate sample data (Ramakodi, 2022). While there are 
currently no strict guidelines on how to select an appropriate database, popularity in the 
literature might be a deciding aspect, although the SILVA database has been shown to 
provide more ASVs with taxonomic information compared to RDP, GT database, and 
Consensus Taxonomy (Ramakodi, 2022). The GT databases however is unique in that 
its taxonomy is inferred from concatenated protein phylogeny, rather than a 
phylogenetic marker gene and it only includes full reference genomes and is thus free of 
chimeric sequences (Parks et al., 2018) 

Sequences annotated with taxonomic information can then also be used for predictive 
functional profiling, as understanding the functional diversity of the microbial 
community is a key goal of microbiome research. Two approaches to functional 
prediction are 1) inferring the unknown gene content from a phylogenetic tree of the 16S 
rRNA gene sequences using an extended ancestral state reconstruction algorithm as with 
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PICRUSt (Langille et al., 2013), or 2) inferring the unknown gene content using a 
minimum 16S rRNA sequence similarity to identify the nearest neighbour as in 
Tax4Fun (Aßhauer et al., 2015). Evolutionary modelling used by PICRUSt requires 
OTUs to be annotated using the Greengenes database, while Tax4Fun relies on 
annotations applied by the SILVA database which are transformed to a profile of KEGG 
organisms. Both methods rely on the relative abundance of taxa in each sample, 
corrected for multiple gene copy number, and use KEGG Orthologs (KOs) to identify 
gene families (Langille et al., 2013; Aßhauer et al., 2015). While each of these methods 
can provide an insight to the functional capabilities of the gut microbiome, the 
predictions cannot replace the detailed functional potential of the community that can be 
revealed through metagenomics (Abbasian et al., 2015). Whole, genome sequencing is a 
more precise, yet more costly alternative to metabarcoding where the methods include 
fragmenting the total metagenome and then sequencing random pieces (Ranjan et al., 
2016). Metagenomics and metabarcoding both provide taxonomic information for the 
entire microbiome, however the full genome information gained from metagenomics, 
can improve taxonomic resolution, compared to annotations based solely on the 16S 
gene region (Ranjan et al., 2016).  

1.4.3 Combining metabolite and microbial analysis to improve our 
understanding of the microbiome 
Comparisons of microbial composition and the potential metabolic capabilities 
identified with metagenomics alone will however miss important functional data that 
may be equally beneficial for interpreting gut microbiome community structure. Gut 
microbes carry numerous genes within their genome that can degrade a number of 
dietary components, however based on the available substrates and the microbial 
environment, different degradation pathways will be used by the same microbe. 
Different fermentation pathways will accordingly result in different metabolites being 
produced in the gut lumen (Verbeke et al., 2015). A complement to sequencing is to also 
examine the metabolic activity of the microbiome, by either quantifying particular 
important metabolites, such as SCFA (McOrist et al., 2008), or by profiling nearly all of 
the low molecular weight metabolites (metabolomics) (Karu et al., 2018).  

Methods for profiling faecal metabolites are less refined than those for other biofluids 
such as blood or urine, but rapid growth in this area has led to more standardised 
methods in recent times (Hosseinkhani et al., 2021). Another consideration for faecal 
material is that the resulting profile is a snapshot of a dynamic environment, and will 
only reflect what is present in the excreted material. For example, 90 - 95% of the SCFA 
that are produced in the gut are absorbed by the host (Ziętek, Celewicz and Szczuko, 
2021).The most commonly used technique for faecal metabolic profiling is gas 
chromatography mass spectrometry (GC-MS). This separation technique can resolve a 
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wide range of metabolite classes, and is highly sensitive, particularly for volatile 
compounds and organic acids (Karu et al., 2018). In metabolomic studies, data 
processing and metabolite identification can proceed in two different ways. The targeted 
approach will process a predefined subset of the metabolome using an annotated 
reference database, and untargeted metabolomics attempts to analyse virtually all of the 
analytes in a sample (Gorrochategui et al., 2016). Quantifying SCFA concentrations 
usually consists of the three most prominent acids acetate, butyrate, and propionate, but 
should also include the more scares iso-butyrate, and iso-valerate (Gray et al., 2022). 
These methods provide a snapshot of either the primary microbially produced bioactive 
compounds (SCFA), or a comprehensive measure of the metabolic interactions between 
the host and the gut microbiota in the case of metabolomics. Combining metabolite data 
with microbial sequence data will result in a powerful approach that has the ability to 
not only characterise the perturbed microbiome, but also to reveal its metabolic 
response. Furthermore, in temporal analyses of the microbiome, combining these 
complementary methods will allow you to monitor functional changes that occur during 
disease progression, or in response to therapy such as prebiotics over time.  

1.5 Gaps in the Literature  

It is widely acknowledged that the health of the gut microbiome is necessary for the 
health of the individual, and with the ever more rapid changes coming as part of the 
post-modern lifestyle, finding ways to support and maintain microbiome health are 
increasingly more important. This is because modern lifestyles do not promote 
environmental and dietary exposures required for a healthy gut. However, as research 
linking the human microbiome and human health continues to increase, efforts to 
mitigate methodological biases lag behind, and additionally, the lack of detail in the 
methods section of most published work makes study reproducibility challenging 
(Mirzayi et al., 2021). One difficulty is that study design – in terms of number of 
participants, and in the geographical area from which they are recruited – varies greatly 
among microbiome research, making it impossible to implement a single standard 
protocol for sample collection. However, the impact of collecting subsamples of faecal 
material, suboptimal sample homogenisation, and storage methods on microbiome and 
metabolite profiles has not be conclusively determined. Additionally, the amount of 
intraindividual variation between consecutive bowel movements has never been 
addressed, which could impact short-term, but more importantly, long-term microbiome 
studies. A second consideration is the considerable lack of positive and negative 
controls used in gut microbiome research (Hornung, Zwittink and Kuijper, 2019). Mock 
communities could be used to identify primer bias, or undetectable bacterial groups, as 
well as proportional changes to dominant reads across sequencing runs. Negative 
controls can also be use to assess and mitigate sample decontamination, however neither 
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of these controls are routinely used. Therefore, it is important that research highlighting 
their utility is put forward to push for the use of these controls, and so that they may be 
seen as necessary standard practice.  

The microbiome is involved in many aspects of human health, but throughout this 
review I have highlighted in particular, evidence for the involvement of the gut 
microbiome in the evolution of both neural and immune system functioning. While it is 
unfortunate that non-communicable modern diseases and disorders are increasing in 
prevalence, molecular investigations of the gut microbiome are revealing how these 
diseases share in the potential for microbial-focused therapeutic interventions. 

Treatments for autistic children including antibiotics (Sandler et al., 2000), probiotics 
(Santocchi et al., 2020) and faecal microbiome transplant (Kang et al., 2019) have 
demonstrated that shifting the microbiome may lessen the severity of disease. The 
association between gut, microbiome, and brain health is clear, but it is not known at 
what stage in the aetiology of ASD the microbiome shifts may become observable. The 
microbiome goes through a rapid period of change in the first year of life, and during 
this important time, both the immune system and the brain are developing alongside the 
gut, with continual bidirectional communication taking place between the gut and 
distant organs. If assisting the microbiome community structure after disease 
manifestation reduces the severity of disease, then supporting the microbiome at the 
earliest stages of disease, may reduce the potential long-term outcomes of the disease. 
Therefore, it is crucial that we begin to understand when the earliest microbiome-shifts 
associated with a disease occur.  

Identifying disease early allows for the use of early treatment, however there is also 
considerable research aimed at prevention of disease. Infants have benefited from 
formula supplemented with prebiotics, with improved gut (Bakker-Zierikzee et al., 
2005; Moro et al., 2006; Scholtens et al., 2008; Grüber et al., 2010; Sierra et al., 2015), 
and immune function (Scholtens et al., 2008), and a reduction in the risk for developing 
atopic dermatitis (Moro et al., 2006; Grüber et al., 2010). Although, despite the 
consumer shift towards prebiotic infant formula, increasing numbers of children go on 
to develop allergies. It is still unclear what impact maternal diet has on the infant gut 
microbiome, although, the direct link between diet and microbiome composition, and 
maternal and infant health is well established. Due to the impact the gut microbiome has 
on overall health, it is not surprising that emerging evidence suggests that maternal gut 
health and therefore diet might impact the developing foetus and infant health (Gray et 
al., 2017). The evidence for this potential link comes so far from animal models 
(Fujiwara et al., 2010; Brosseau et al., 2021). One of the primary advantages of 
supporting the microbiome with prebiotics is that they are backed by years of 
documented safety, and supporting the microbiome at conception would likely be the 
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most opportune time to promote healthy microbiome function. It may therefore be 
possible to safely assist in preventing the development of disease using prebiotic 
supplements, but so far this has not been investigated in humans. 

1.6 Research Aims 

The overarching aim of this project was to develop and utilise a rigorous and transparent 
method of investigating the faecal microbiome, employing it to investigate fine scale 
changes that occur early in the development of gut-associated disease.  

1.6.1 Fecal sample collection methods and time of day impact 
microbiome composition and short chain fatty acid concentrations 
It was hypothesised that sample collection methods including collecting small 
unhomogenised subsamples of stool, collecting stool at different times of day, or 
collecting stool into a DNA stabilisation tube would shift the proportions of the major 
bacterial phyla, and inflate intraindividual differences in microbiome composition and 
SCFA concentrations. Therefore, to compare the ability of common faecal sampling 
techniques to provide robust and stable microbiome and metabolite profiles (chapter 2) 
four objectives were formulated. 

• Use variability in microbial abundance and SCFA concentrations to assess the 
effectiveness of different sampling techniques and time of day for collection. 

• Identify any taxonomic groups that would be impacted by room temperature 
DNA preservation techniques. 

• Use mock communities, negative controls and replicate sampling to capture and 
compare other levels of bias in the metabarcoding methodology. 

• To provide both raw data and detailed methodology to the public to facilitate 
reproducibility of this study. 

1.6.2 Changes to the gut microbiome in young children showing early 
behavioral signs of autism 
It was hypothesised that the microbiome of young children who were showing early 
behavioural signs of ASD would host microbes that would differ significantly from 
neurotypically developing children. Furthermore, it was hypothesised that the 
differences in microbiome composition would be associated with differences in SCFA 
concentrations. Therefore, to characterise both the microbiome and short chain fatty acid 
concentrations of faecal samples from young children who were showing early 
behavioural signs of ASD (chapter 3), the following 3 objectives were formulated. 
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• Describe the microbiome characteristics of children with differing severity of 
early autism base on alpha-diversity and SCFA concentration.  

• Determine bacterial and fungal taxa with significantly different abundance 
between children based on autism severity. 

• Perform an exploratory analysis of the microbiome associated with pre-emptive 
behavioural treatment 

1.6.3 Assessment of the temporal changes to the maternal and infant 
microbiome in response to a maternal prebiotic supplement during 
pregnancy and lactation 
It was hypothesised that the maternal microbiome would be supported by prebiotic 
supplementation during pregnancy, causing significant differences in the composition of 
the microbiome and SCFA concentrations between those mothers on a prebiotic 
supplement and those receiving a placebo. As well, it was hypothesised that the healthy 
composition of the maternal microbiome would benefit the early colonisation and 
development of the infant microbiome. This would occur by foetal and infant exposure 
to beneficial bacteria (both during pregnancy and breastfeeding) and the metabolites 
they produce. These benefits were expected to result in a significant difference in the 
microbiome of infants whose mothers received the maternal prebiotic supplement and 
those who did not. To determine the effectiveness of a maternal prebiotic supplement on 
the maternal and infant microbiome and SCFA concentrations (chapter 4) the following 
5 objectives were formulated.  

• Identify confounding variables that may impact the microbiome structure during 
the study period 

• Describe the microbiome and SCFA profiles of mothers and infants over the 
study period. 

• Characterise differences in the microbial community and SCFA profiles between 
placebo and prebiotic group members – including both mothers and infants. 

• Use prior knowledge of bacterial metabolism to describe microbial activity 
(SCFA concentrations) in the context of the microbiome structure and prebiotic 
supplement. 

• Describe shifts of Bifidobacterium between the prebiotic and placebo groups 
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– Chapter 2 –  
Fecal sample collection methods and time of day impact 

microbiome and SCFA concentrations 

2.1 Preamble 
The way in which stool samples are collected for microbiome analysis varies widely in 
the literature, most notably a wide range is seen in: the mass of stool collected; the time 
and number of bowel movements collected; how stool is preserved, either in buffer at 
room temperature or frozen; as well as the timeframe in which it is frozen. In the third 
and fourth chapters of this thesis, stool samples were collected in two different ways by 
researchers associated with larger studies. In chapter 3, a large portion of stool (~8-20 g) 
was collected from one bowel movement using a large, scooped jar (AICES study). In 
chapter 4, small portions of stool (0.3 – 8 g) were collected in triplicate from a single 
bowel movement, with the intention of using one replicate per analysis (SYMBA study). 
In this chapter, I provide evidence for 3 different ways sampling bias can affect 
microbiome and SCFA profiles that are relevant to the way stool was collected in 
chapters 3 and 4. The results of this investigation were used to justify requesting all 
three sub samples collected for the SYMBA study, so they could be combined and 
analysed in a way that would better capture the faecal environment of each individual.  

Furthermore, in this chapter the level of detail used to convey the procedure for stool 
collection and microbiome library preparation, as well as results describing data quality 
exceed the low standard that is currently seen in microbiome research. The current 
published literature often does not adequately describe the sample collection process, 
omits, or disregards the use of control samples to mitigate reagent contamination, and 
neglects a description of the quality of reads after bioinformatic processing. Each of 
these considerations would allow for better study replication, which is highlighted as 
lacking in molecular microbiome investigations, and improve the quality of the data thus 
improving interpretations of the data. In this study I set a high standard for data quality 
and use positive and negative controls to monitor and justify this claim. In chapter 3, 
and 4, I used the methods developed in chapter 2 to examine the microbiome and SCFA 
concentrations of larger more complex cohorts of children and adults. In particular, the 
use of control samples was invaluable in chapter 4, where I both mitigate and describing 
the potential impact of combining the large multi-sequence run datasets. Overall, 
chapter 2 provides the justification for how microbiome and SCFA data was collected, 
processed and interpreted in this thesis. Lastly, in keeping with the proposed reporting 
guidelines which have been tailored for microbiome research a “Strengthening The 
Organization and Reporting of Microbiome Studies’ (STORMS)” checklist has been 
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completed for each data chapter of the thesis. The published manuscript described in this 
chapter successfully hit 46 of 55 relevant criteria (Appendix 2). 

2.2 Contributions and data accessibility  

A statement regarding author contributions, acknowledgments and a link to the raw data 
used in this chapter are included within the manuscript. 

2.3 Manuscript 

The following section of chapter 2 contains the manuscript published in Scientific 
Reports, July 7th, 2021. https://www.nature.com/articles/s41598-021-93031-z 
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Associations between the human gut microbiome and health outcomes continues to be 
of great interest, although fecal sample collection methods which impact microbiome 
studies are sometimes neglected. Here, we expand on previous work in sample 
optimization, to promote high quality microbiome data. To compare fecal sample 
collection methods, amplicons from the bacterial 16S rRNA gene (V4) and fungal 
(ITS2) region, as well as short chain fatty acid (SCFA) concentrations were determined 
in fecal material over three timepoints. We demonstrated that spot sampling of stool 
results in variable detection of some microbial members, and inconsistent levels of 
SCFA; therefore, sample homogenization prior to subsequent analysis or subsampling is 
recommended. We also identify a trend in microbial and metabolite composition that 
shifts over two consecutive stool collections less than 25 h apart. Lastly, we show 
significant differences in bacterial composition that result from collecting stool samples 
in OMNIgene·Gut tube (DNA Genotec) or Stool Nucleic Acid Collection and 
Preservation Tube (NORGEN) compared to immediate freezing. To assist with planning 
fecal sample collection and storage procedures for microbiome investigations with 
multiple analyses, we recommend participants to collect the first full bowel movement 
of the day and freeze the sample immediately after collection. 

2.4 Introduction 
Our understanding of the relationship between the human gut microbiome and host 
continues to expand from explorations which describe inhabitants, to studies which 
demonstrate the involvement of the microbiome in human health and disease and 
disorders. Some examples include neurological disorders such as depression (Valles-
Colomer et al., 2019), Alzheimer’s disease (Vogt et al., 2017) and Autism Spectrum 
Disorder (Strati et al., 2017), as well as inflammatory diseases such as food allergies 
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(Fieten et al., 2018), and inflammatory bowel diseases (Venegas et al., 2019). 
Advancements in microbiome studies have been accelerated by increased sequencing 
capabilities (D’Amore et al., 2016), along with sensitive analytical techniques tailored 
for the quantification of metabolites in fecal material (Gratton et al., 2016; Karu et al., 
2018). Short chain fatty acids (SCFA) are metabolites produced exclusively by resident 
bacteria, and are associated with dysbiosis, hypertension (De la Cuesta-Zuluaga et al., 
2018) and other inflammatory disorders. Investigating the gut microbiome by combining 
microbial sequencing data and metabolomic approaches has been an important step in 
unraveling associations between resident bacteria, SCFA, and health outcomes (Arrieta 
et al., 2018; De Filippis et al., 2016; Lagkouvardos et al., 2015).  

However, stool, which is used as proxy for the distal colon microbiome, is a complex 
matrix of endo- and exogenous material containing a heterogeneous distribution of 
microorganisms (Donaldson, Lee and Mazmanian, 2015), which is susceptible to 
changes during and after collection. Microbiome profiles may be misrepresented due to 
subsampling of non-homogenized stool as seen in Gorzelak (2015) where large 
variations in bacterial abundance detected via qPCR in non-homogenized stool samples 
were significantly reduced after stool homogenization. In addition, the effects of sub-
sampling stool may be further amplified when performing metabolomic analyses, as 
highly sensitive techniques are used (Couch et al., 2013; Gratton et al., 2016).  

Stool collection by participants may be an undesirable yet necessary aspect of partaking 
in a microbiome study. Providing participants with a clean and simple collection method 
should increase compliance, but also maintain sample integrity. Some commercial stool 
collection tubes allow for easy collection and short term (~14 days) ambient temperature 
storage; however, some of these have been associated with changes in proportions of 
bacterial phyla  (Penington et al., 2018). A final consideration is the level of inter-
individual differences that occur in the fecal microbiome over a week (Flores et al., 
2014), and even from day to day (Caporaso, Lauber, Costello, et al., 2011), meaning 
that collection periods may need to span a number of days, or be collected at a particular 
time in the day to accurately capture the inherent variability. As far as the authors are 
aware spatial and short-term temporal variability of bacterial and fungal communities 
has never been evaluated together with SCFA composition. To address this gap, this 
study will assess the effects of four fecal sample collection methods, as well as 
consecutively collected whole stool samples (less than 25 hours apart), on the variability 
of the fecal microbiome. The comparisons will be drawn from bacterial and fungal 
community composition as well as SCFA profiling.  
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2.5 Results 

2.5.1 Overview of microbiome taxonomy and SCFA concentrations 
Stool samples yielded bacterial communities (bacteriome) from all individuals, while 
fungal communities (mycobiome) were successfully sequenced in 50 of 84 samples, but 
with uneven library size (~100x). Overall, the fecal bacteriome had a higher number of 
ASVs than the mycobiome (Supplementary Table 2.1). Across all individuals and 
collection methods, the most abundant bacterial families were Bacteroidaceae and 
Lachnospiraceae, which made up 38% and 10% of the bacteriome, while the most 
abundant fungal families were Saccharomycetaceae 90%, and Phaffomycetaceae 7%. To 
account for technical bias in library preparation, a single sample from one individual 
was also processed in duplicate for each gene region. Bacterial alpha diversity estimates 
for this replicate sample were more similar than the fungal replicate, while fungal 
replicates also had low richness, indicating that both the rarity of this community, and 
the library preparation may impact the interpretation of relative abundance of fungal 
communities (Supplementary Table 2.1).  

 

Figure 2.1. Clustering of microbiome communities per individual from all directly 
frozen stool samples collected per individual. Plots show the mycobiome (A) of each 
individual is less distinct than bacteriome (B). Data was CLR transformed and 
ordination based on Euclidian distances. 

Bacterial and Fungal mock communities were also sequenced as positive controls, 
which allowed reads of the mock community samples to be compared to the known 
composition of the mock community (Supplementary Figure 2.1). Still, both mock 
communities contain a number of species that are not expected to be captured in the 
human fecal microbiome, and therefore, may not be amplified by the selected primers. 
Of the 20 bacterial species known to be in the mock community, 18 were correctly 
detected to family level and 15 to genus level, leaving two species of the mock 
community unidentified. At the level of order, the proportion of each ASV in the 
positive control was compared to the known percentage contribution of the mock 
community. Actinomycetales, Campylobacterales and Rhodobacterales were 
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underrepresented at 3.5, 3.2, and 4.6 times less that what was expected; while Bacillales 
and Clostridiales were over represented at 3.4 and 4.4 times more than expected. Of the 
19 fungal species in the mock community 13 were sequenced and correctly resolved to 
family and genus (however, R. irregularis only had 11 reads), leaving six species of the 
mock community unidentified. However, four of these species (Chytriomyces hyalinus, 
Rhizomucor miehei, Rhizoctonia solani, and Ustilago maydis) are not expected to be 
part of the human microbiome, and were not detected with the ITS2 primers developed 
for use in the human fecal microbiome. 

 

Figure 2.2. Clustering mycobiome (A), and bacteriome (B) from whole stool, aliquot, 
and combined aliquot sampling methods. A SIMPROF test with alpha = 0.05 was used 
to determine significantly similar sub groupings within individuals, with red dashed 
lines grouping samples which are significantly similar, and solid black likes grouping 
samples which are not significantly similar. Group average cluster analysis (9999 
repeats) on Bray– Curtis similarity. 

The mycobiome signature of each subject was not as distinct as the bacteriome (Figure 
2.1). While fungal communities tended to cluster by subject, an analysis by PCO, shows 
the mycobiome of individuals 1 and 6 overlaps, which seems to be driven by both 
individuals having a composition of ≥99% Saccharomyces. An analysis of Beta 
diversity (Euclidian, and Bray-Curtis) between individuals over the collection period – 
with all sample types and sample points – showed significant differences in both 
bacterial and fungal communities (PERMANOVA p < 0.02). 

SCFA concentrations were determined from whole stool as well as surface collected 
aliquots and overall, the average molar ratio of acetate, propionate, and butyrate was 
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78:12:10 respectively. The mean concentrations of individual or total SCFA in µmol per 
gram of faeces was not significantly different between collection methods; and in all 
subjects, acetic acid was most variable, ranging from an average of 103 to 697 µmol g-1.  

2.5.2 Comparison of surface aliquots and whole stool sampling 
methods  
To assess the impact of sampling method on a-priori grouping by individual, a 
hierarchical cluster analysis was performed on bacterial and fungal communities (Figure 
2.2). Bacterial communities from the same subject grouped together, with a SIMPROF 
test identifying significantly different sub clusters for 5 of 6 individuals. Fungal 
communities also clustered according to individual, but these groups were less similar 
than their respective bacterial groups. Furthermore, the aliquots from participant 6 
clustered more closely to participant 1 than to its own respective whole stool sample. 
The mycobiome and bacteriome from the combined aliquot clustered according to 
individual however, did not seem to align consistently with the other aliquots. 

 

Figure 2.3. Variability of bacterial community and SCFA composition due to stool 
homogenization methods. Datasets where combined using rCCA in the R package 
MixOmics, correlation coefficients were plotted in the shared X–Y space. Bacterial ASV 
counts were CLR transformed, and SCFA concentration were log10 transformed. 
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To assess the heterogeneity of SCFAs and bacterial diversity within a single stool, the 
coefficient of variation (CV) for these measures was compared across three aliquots 
from a single stool and three separate stools (collected over 3 days) per individual 
(Supplementary Table 2.2). Acetic acid and valeric acid, were found to be as variable 
along a single stool as they were across three bowel movements, whereas propionic was 
more variable across bowel movements. Overall, the SCFA concentrations were more 
variable across 3 bowel movements than along a single stool except in individuals one 
and six. Shannon diversity was less variable along a single stool (five of six individuals), 
Chao1 species richness was more variable along a single stool (four of six individuals), 
and Phylogenetic diversity was equally variable along a single stool (three of three 
individuals). This trend was further assessed by integrating SCFA data with bacteriome 
data through rCCA (distance between features were relatively short, indicating the 
strong agreement between datasets), and the plotted canonical variates show the 
variability between the surface collected samples was still evident in subjects one, and 
six (Figure 2.3). 

ASV	 Taxa	 log2	fold	change	

Bacteria	

591	 Anaerotruncus	massiliensis	 6.62	

790	 Anaerovoracaceae	 17.92a	

802	 Anaerovoracaceae	 17.92a	

70	 Eubacterium	sp.	 2.89	

4	 Fecalibacterium	prausnitzii	 −	3.41	

27	 Fecalibacterium	prausnitzii	 2.71	

405	 Fecalibacterium	prausnitzii	 17.47a	

717	 Oscillibacter	 ruminantium	 19.52a	

461	 Rhizobiaceae	 18.36a	

Fungi	

19	 Alternaria	alternata	 −	2.9	

219	 Aspergillus	niger	 3.9	

119	 Aureobasidium	pullulans	 17.2a	

8	 Cyberlindnera	jadinii	 3.9	

4	 Eremothecium	sinecaudum	 −	3.5	

41	 Hanseniaspora	uvarum	 −	24.1	

11	 Hanseniaspora	uvarum	 −	8.6	

5	 Kazachstania	barnettii	 −	22.5	

2	 Kazachstania	servazzii	 −	21.4a	

132	 Rhodotorula	mucilaginosa	 9.1	

29	 Saccharomyces	cerevisiae	 −	23.5	

6	 Saccharomyces	cerevisiae	 4.9	

17	 Sporopachydermia	lactativora	 5.0	

40	 Wickerhamomyces	ciferrii	 7.3	

Table 2.1. ASVs identified with log2 fold change in gematric mean abundance greater 
than |2.5| between homogenized whole stool and stool aliquots. a significant enrichment. 
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Within each individual the composition of microorganisms within the aliquots were not 
identical to each other, or to the whole stool from which they were sub sampled. 
DESEq2 was used to compare differentially abundant ASVs between aliquots and whole 
stool. This method identified 12 bacterial, and 16 fungal features with a log2 fold change 
greater than |2.5|. Of these, 5 bacterial and 1 fungal ASVs were significantly enriched in 
the whole stool compared to aliquots, and 1 fungal ASV was enriched in stool aliquots 
compared to whole stool (Table 1).   

2.5.3 Bacterial community composition is affected by collection 
methods 
Differences in bacterial communities due to collection method where visualized using 
PCO (Figure 2.4) showing a clear separation between directly frozen samples (method 
F) and those collected with either the Norgen (collection method N), or OMNIgene 
tubes (collection method O). Significant differences in beta diversity were tested using 
PERMANOVA, and stool collected with method F were significantly different (p < 
0.01) to both those collected with the N or O methods. The N and O method where also 
significantly different to each other (p = 0.04). In whole stool samples, the overall most 
abundant families were Bacteroidaceae (F 38%, N 43%, O 39%), Ruminococcaceae (F 
7%, N 17%, O 33%), and Lachnospiraceae (F 10%, N 15%, O 10%), with the 
abundance of Ruminococcacae significantly increased (ANOVA P < 0.001, FDR = 
0.007) due to collection using the N and O methods compared to the F method. A 
number of taxa were also recovered differentially between the three collection methods 
(Supplementary Table 4), including some high-ranking taxa (Figure 2.5).  
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Figure 2.4. Principal coordinates analysis of β-diversity showing stool samples 
collected in frozen (n = 18), Norgen (n = 18) and OMNIgene·Gut (n = 18) tube types. 
Clustering shows directly frozen samples are easily distinguished from stool collected in 
stabilizing liquid. Data shown in (A) was 4th root transformed, using Bray–Curtis 
similarity distance and (B) CLR transformed and Euclidian distance. 

2.5.4 Short term changes to microbiome composition and SCFA 
concentration 
All 6 participants collected two bowel movements consecutively within a 25-hour 
period, with 5 of the 6 individuals producing two bowel movements within 10 hours. 
The total SCFA concentration (p = 0.04) and acetic acid concentration (p = 0.03) were 
significantly higher in the second stool sample compared to the first using a paired t-test. 
While not significant, bacterial richness (p = 0.45) and diversity estimates (p = 0.95) 
were also lower in the second stool collection for 4 of 6 individuals (Figure 2.6). Fungal 
communities from three individuals which were successfully profiled consecutively did 
not show any trend between richness and diversity measures. 
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Figure 2.5. Bacterial phyla with significantly different abundance due to collection 
method. Groups identified by * are significantly different prior to FDR correction and 
** after FDR correction. 

Stool form according to the Bristol Stool Form Scale (BSFS) was also recorded during 
sample processing, and most individuals (4 of 6) did not have uniform stool types 
collected over the three time points. SCFA concentrations clustered in a PCA according 
to BSFS, and when the SCFA data was integrated with 16S ASV data using rCCA to 
maximise correlation, the resulting correlation coefficients also grouped loosely 
according to stool type (Supplementary Figure 2.2).  
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Figure 2.6. Bacteriome diversity estimates and short chain fatty acid concentration for 
two consecutive stool collections. Time between stool collections was 8, 2, 4, 10, 4, and 
25 h rounded to the nearest whole hour for individuals 1–6 respectively. 

2.6 Discussion 

Analysis of the fecal microbiome is now commonly complemented by an additional 
analysis of microbial metabolites such as SCFA. To ensure these data can be represented 
together without the impact of spatial and temporal variability of the fecal material, 
collection and storage methods for stool samples must be considered. Our results found 
sporadic detection of low abundance bacterial and fungal species in unhomogenized 
stool. Further, SCFA concentrations were also shown to vary considerably across a 
single stool.  
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The level of variability (CV) in microbial diversity and SCFA concentration across a 
single stool, was com- pared per participant to the variability across three separate bowel 
movements. It was expected that temporal shifts in community structure over three 
timepoints would be larger than replicate sampling from a single stool. While Shannon 
diversity was more variable for five of six individuals among whole stool samples, 
Richness based on Chao1 was more variable along a single stool for four of six 
individuals. As well, SCFA concentrations were more variable within a single stool than 
across three separate bowel movements for two individuals. When the bacterial and 
SCFA data was integrated using rCCA, the intraindividual variability between the 
aliquots was also evident. Clustering of subsamples from individuals 2, 4, and 5 were 
very tight, indicating little difference in com- munity structure due to sampling method. 
Although, samples from subjects 1, 3, and 6 were less tightly clustered, implying 
community structure changes along the surface of the stool in these individuals that are 
sensitive to sampling method. This demonstrates that for some individuals, heterogeneity 
of microorganisms and microbial metabolites in stool may be as great as that observed 
over the course of 2 days, which will become apparent if samples are collected by sub-
sampling a small volume of stool. This is consistent with reports of heterogeneity in 
mucosal bacteriome (Hong et al., 2011), fecal microbiome (Wesolowska-Andersen et 
al., 2014; Gorzelak et al., 2015), and metabolite concentrations (Gratton et al., 2016). 
As fecal material moves through the colon, the exterior surface is exposed to the mucus 
layer secreted by epithelial cells. This mucus (which is a niche for commensal microbes) 
accumulates in fecal material, and has been proposed as a mechanism for the patchy 
recovery of microbial species along the surface of stool (Donaldson, Lee and 
Mazmanian, 2015).  

While our results show the surface of the stool may have more variability in richness 
and diversity, the β-diversity of bacterial communities between individuals remained 
significantly different, indicating that relative compositional differences due to 
subsampling are less pronounced than differences between individuals. This is 
consistent with similar work, where β-diversity (weighted UniFrac) was compared 
across nine stool subsampling locations with no significant differences observed (Liang 
et al., 2020). Fungal communities however did not seem to be structured according to 
the individual to the same extent as bacterial communities, but was structured in one of 
two ways: Dominated by Saccharomyces cerevisiae (≥99%), or by hosting a more even 
abundance of genera including S. cerevisiae, and either Kazachstania servazzii and 
Cyberlindnera jadinii, or Hanseniapora uvarum and Torulaspora delbrueckii. In 
another study targeting fungi in the gut using the ITS1 region, three main mycobiome 
types were found: either dominated by Candida albicans, or Saccharomyces cerevisiae, 
or multi species type (Motooka et al., 2017).  
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In the present study, Candida spp were not found at greater than 1% of the total 
community in any individual. However, Candida apicola was also not identified in the 
fungal mock community which could indicate an unknown technical bias against this 
group, although presumably not due to primer bias as low abundance was detected and 
this primer set has been used successfully for other Candida species (Heisel et al., 
2015). 

Metabarcoding based microbiome investigations are inherently biased as the technique 
is limited by its semi- targeted design and the compositionality imposed by the NGS 
technology it uses. This fact is well known in the research community and thus it is 
encouraged to take corrective steps to reduce any distortion of the “true composition” of 
the microbial community by unintentional preferences in the workflow for some taxa 
over others (McLaren, Willis and Callahan, 2019). Bias arises at every stage of the 
microbiome workflow and has recently been recognized as multiplicative through to 
bioinformatics, although the largest contributors to this bias are upstream steps such as 
DNA extraction and PCR amplification (McLaren, Willis and Callahan, 2019)(Brooks et 
al., 2015). The mock communities included in this study indicate that both Bacillus sp., 
and Clostridium sp., who are active members of the human gut microbiome, seemed to 
be preferentially targeted by amplification and sequencing. On the other hand, the 
proportion of Rhodobacter sphaeroides, and Helicobacter pylori were suppressed, and 
Cutibacterium acnes was not detected. However, suppression of C. acnes and R. 
sphaeroides is less concerning given they are not members of gastrointestinal 
community. It is also important to acknowledge that the sequence data presented here 
does not represent the actual number of DNA molecules recovered from the stool 
samples; and is limited by the capacity of the sequencing process. Therefore, the number 
of reads per sample, or read depth may impact the calculation of β-diversity indices by 
inflating the between sample diversity of samples with fewer reads (Gloor et al., 2017). 
Despite the general move in the field towards accepting that microbiome is 
compositional, the question of compositionality being driven by NGS or microbiome 
versus the count origin of microbiome data remains a topic of discussion (Jeganathan 
and Holmes, 2021). Other work on the topic of bias and data correction states that the 
sensitivity of a β-diversity measure to sequencing effort can also be impacted by the 
thresholds used to remove rare species (McMurdie and Holmes, 2014), the data 
normalization approach, and the presence of samples with fewer than approximately 
1000 sequences (Weiss et al., 2017). In this work the widely used Bray–Curtis 
dissimilarity index was used as a distance measure to illustrate community differences 
between subjects and collection methods; this enabled us to directly compare our results 
with prior studies addressing the topic of sample collection. However, this distance 
measure may not always be the most reliable approach for compositional data with the 
characteristics previously described (Gloor et al., 2017). 
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The microbiome is often scrutinized for small community changes in association with 
host-related biological factors such as diet or disease. These changes in microbial 
signatures are often detected in less abundant taxa, or only within particular groups of 
bacteria and can vary among individuals. Most bacterial ASVs with large differential 
abundance were found to be enriched in whole stool compared to surface aliquots, and 
all but one Alphaproteobacteria were classified as Clostridia. The Internal regions of 
stool have previously been shown to harbor significantly higher abundances of 
Firmicutes and Bifiobacteria spp compared to the external surface (Gorzelak et al., 
2015). In this study, the external surface of stool was likely targeted by surface aliquot 
collections, rather than the internal regions of stool, and if the internal regions of stool 
harbor larger abundances of Firmicutes, this might explain some of the differences seen 
between the surface aliquots and the homogenized whole stool. On the other hand, half 
of all fungi with large differential abundance were found to be reduced in whole stool 
compared to the surface aliquots; and of these all but one Dothideomycetes were 
classified as Saccharomycetes, indicating Saccharomycetes may be a mucosal associated 
fungus in the gut.  

The long-term view of the healthy human gut microbiome seems to show a dynamic 
community which retains prolonged stability, but is punctuated by periods of 
disturbance (Voigt et al., 2015; Fu et al., 2019)  On a shorter timescale, diet has been 
shown to cause fluctuations in microbial species (David et al., 2014), as well as SCFA 
concentrations (McOrist et al., 2011). Furthermore, the microbiome shift caused by 
daily food choices is highly personal, meaning the same food will elicit a unique 
response in each individual (Johnson et al., 2019). What microbiome shift may look like 
across consecutive stools has not been previously explored. While only a small 
proportion of women defecate more than once a day, defecation frequency is known to 
be higher in men (Heaton et al., 1992), and positively associated with vigorous physical 
activity, as well as plant based or high fiber diets (Sanjoaquin et al., 2004). Therefore, 
the time of day that samples are collected may need to be indicated in sample collection 
protocols provided to participants. In this study, all women claimed to regularly defecate 
more than once a day, and the second stool of the day (collected on average 8 hours 
after) had significantly higher total SCFA concentrations, which seemed to be driven by 
significantly higher concentrations of acetic acid. The second stool also tended to have 
higher butyric acid concentrations, lower bacterial richness and lower Shannon diversity 
index compared to the first stool, although these differences were not significant. 
Similarly, a recent study assessing the microbiome and SCFA concentrations at a single 
timepoint in 441 adults found that lower bacterial diversity was associated with higher 
SCFA concentrations (De la Cuesta-Zuluaga et al., 2018). It has been proposed that the 
gut microbiome has a certain level of volatility which may increase during times of 
stress (Bastiaanssen et al., 2021), and the level of temporal variance between the two 
constitutive stools may indicate a normal level of volatility in the microbiome of each 
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individual. Another interesting observation was the similar trend in increase in butyrate 
producing Lachnospiraceae, and increased butyrate concentrations in the second bowel 
movement. The association between bacteria and SCFA concentration seen in this study 
also supports the idea that bacterial metabolites are linked to the circadian clock 
(Murakami and Tognini, 2020). Each participant collected the first bowel movement of 
the day in the morning, followed by the very next bowel movement; and as each woman 
claimed to regularly defecate at least twice per day, the natural volatility of the 
microbiome that seems to be linked to the circadian clock demonstrates why time of 
stool sample collection may be particularly important in individuals who defecate more 
than once per day. 

Decreasing bacterial richness has also been found to correlate with decreasing stool 
firmness, or a higher Bristol Stool form value, based on fecal samples from 53 women 
(Vandeputte et al., 2016). As well, the BSFS has also been shown to be a good predictor 
of whole-gut transit time, with high stool form values correlating to longer transit times 
(Heaton et al., 1992; Degen and Phillips, 1996; Lewis and Heaton, 1997). A more recent 
study also found when stool form had a Bristol Stool value of less than three it was 
correlated with greater transit times, indicating that stool form can help predict whole-
gut or colonic transit times (Saad et al., 2010). While this study had a small sample size, 
it was interesting to note that both SCFA and bacterial phylogenetic diversity grouped 
according to stool form, and when these data were integrated through rCCA this trend 
was also observed. The link between transit time, microbial composition and SCFA 
concentration has been examined in an in-vitro system (Environmental Control System 
for Intestinal Microbiota). Here, it was shown that reducing the transit time from 48 to 
96 h caused a significant decrease in Shannon diversity, as well as an increase in total 
SCFA concentration (Tottey et al., 2017), as demonstrated in our study. Quantitative 
shifts in metabolic analysis between retention times also indicated a metabolic shift in 
the microbial communities. If microbial diversity and SCFA concentration are also 
linked to stool form and potentially transit time, assessing stool form at the point of 
sample processing could be a simple way to add valuable information to downstream 
multivariate analysis, and help explain sample clustering. Further, to reduce within-day 
variability that could potentially distort a long-term study, participants could be 
instructed to collect at a similar time, such as the first bowel movement of the day. 

Directly freezing stool samples with no additional solution is considered the gold 
standard method for storing stool, while Norgen and in OMNIgeneGUT tubes offer a 
convenient method of collecting fecal material from remote participants. Regardless of 
collection method, all whole stool samples were dominated by Bacteroidaceae, but the 
second most abundant family Ruminococcaceae were significantly expanded in samples 
collected with both the O and N methods compared the F method, indicating that the 
two preservation methods may impact fecal microbiomes in a similar way. As expected, 
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bacterial β-diversity was mostly driven by inter-individual differences, and this is 
consistent with previous work where OMNIgene·Gut kits were compared to 
immediately frozen stool samples (Wang et al., 2018). However, unlike Wang (2018) 
where no significant differences in bacterial β-diversity between these two methods was 
observed, our data shows significant differences between the three collection methods. 
The most obvious difference was between the directly frozen samples compared to 
either of the two other preservation methods (collected at room temperature), and this 
was observed consistently in all three bowel movements per participant. 

Two previous studies have also compared fecal bacterial communities collected using 
OMNIgeneGUT kits which were frozen prior to processing with samples which were 
immediately frozen. One study found storage methods, contributed to the significant 
differences between samples based on Bray-Curtis dissimilarity measure, and that those 
collected in OMNIgeneGUT kits had a significant increase in Proteobacteria (Choo, 
Leong and Rogers, 2015); while another study found that samples stored in 
OMNIgeneGUT tubes resulted in microbiome profiles with decreased Actinobacteria 
and increased Lenthisphaerae compared to those that were frozen without stabilization 
(Penington et al., 2018). Within our study, the preservation tubes were kept at room 
temperature – in accordance with manufacturer’s instructions – and at the phyla level 
Actinobacteria were also reduced in fecal samples collected with both the O and N 
methods. It is more likely then, that the reduction in Actinobacteria is a result of storing 
in a preservation liquid, rather than the storage temperature.  

Stool sample collection methods must not sacrifice sample “viability” for convenience, 
therefore, where possible we recommend collecting stool in bulk and freezing 
immediately. As well, during sample processing technicians can record the stool form 
according to BSFS, and homogenize the entire sample prior to subsampling for analysis. 
This method eliminates any subsampling bias due to heterogenous distribution of 
microbes in stool, and provides enough material for multiple assays. Additionally, 
because this method is less hands-on for participants, it may increase compliance if 
multiple collections are required. For studies where it is not possible to store a large 
quantity of bulk stool or where frozen transportation of stool is not viable, commercial 
preservation tubes may be an attractive alternative. In this circumstance it is 
recommended to only use a single tube type and insure a standard protocol. 
Furthermore, if OMNIgeneGUT or Norgen collection kits are used, researchers should 
be cautious in interpreting the reduced abundance of Firmicutes and Actinobacteria. 
Lastly, collection protocols should consider that some individuals can regularly have 
more than one bowel movement per day, and those participants should be instructed, 
where practical, to collect stool at a similar time. 
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2.7 Methods 

2.7.1 Study design  
Six healthy female volunteers, aged 25–40 years, who had not taken antibiotics in the 
last 3 months or probiotics in the last month prior to recruitment into this study provided 
fecal samples with written informed consent. The study protocol was approved by the 
Human Research Ethics Committee (HRE2018- 0791) from Curtin University, Western 
Australia, and methods were performed in accordance with the relevant guidelines and 
regulations. Each participant collected three fecal samples at two time points using the 
provided fecal sample collection kit. All stools were collected at the participants home 
and frozen immediately ( −20 °C) in a portable freezer. Collection at the first time point 
(collection 1) required collecting one complete bowel movement, and from this stool 
collecting three small aliquots in the provided collection tubes. At the second time point, 
two consecutive bowel movements were collected individually (collection 2 and 
collection 3), with collection 2 preceding collection 3 (Figure 2.7). Once the collection 
was complete, the freezer was transported to Curtin University and the stool was 
transferred to a −80 °C freezer upon arrival. 

2.7.2 Sample preparation 
All stool samples were thawed at 4 °C, and transferred on ice to a EuroClone Biological 
safety cabinet to limit potential contamination. To assess variability between aliquots 
collected at home, each of the small aliquots were individually homogenized for 30 s 
with a sterile plastic scoop, and stool (0.25 g) was collected into separate tubes for each 
of two downstream analyses (metabarcoding, and SCFA quantification). The remaining 
stool from the initial three aliquots was combined and manually homogenized together 
for 30 s with a sterile plastic scoop, and collected again for two separate analyses. All 
samples were immediately frozen to −80 °C. Prior to preparation, whole stool samples 
were ranked on the Bristol Stool form chart. To assess collection methods, from each 
unhomogenized stool, feces were collected into one OMNIgene·Gut tube (DNA 
Genotec) (collection method O) and one Stool Nucleic Acid Collection and preservation 
Tube (NORGEN) (collection method N), and were stored at room temperature for 12 
days. The remaining stool from each sample was individually homogenized while within 
the plastic collection bag for 1 minute, and then subsequent aliquots of stool (0.25 g) 
were collected for each of the three analyses and immediately frozen to −80°C 
(collection method F).  
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Figure 2.7. Sample collection by participants at home (top panel), and subsequent 
sample processing in laboratory (bottom panel). The first bowel movement of the day was 
obtained for collection 1 and 2, and the very next bowel movement after collection 2 was 
obtained for collection 3. 

2.7.3 Short chain fatty acid quantification 
Homogenized fecal material (0.50 ± 0.05 g) was transported on dry ice to the Science 
Analytical Facility at Edith Cowan University, Western Australia. Here SCFA were 
extracted and quantified as previously described (Zhao, Nyman and Jönsson, 2006). 
Briefly, an aqueous stock solution of standards containing acetic, propionic, iso-butyric, 
butyric, iso-valeric, valeric, and hexanoic acids was diluted to four levels, and used for 
analysis. SCFA were extracted using a solution of hydrochloric acid, methanol, ultrapure 
water, and 2-ethyl butyric acid which was used as an internal standard. The mixture was 
vortexed for 1 min, and then incubated at 4 °C for 1 h, and then vortexed a second time 
for 1 min. Finally, the solution was Centrifuge at 12000 rpm at 4 °C for 20 min, and the 
supernatant retained and stored at 4 °C for no more than 48 h prior to analysis on 
Thermo Scientific GC–MS (ISQ) using a Thermo Scientific TG-Wax column (30 m × 
0.25 mm × 0.25 µm), and a seven- point calibration. A sample volume of 1.0 µL was 
injected with an inlet temperature of 220 °C, using Helium carrier gas (1.0 mL/min). 
The total run time was 18 min. 

2.7.4 Fecal DNA extraction  
Immediately prior to DNA extraction, frozen stool samples were thawed on ice, and 
stool samples stored in preservation tubes were shaken by hand for 10 sec. DNA was 
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extracted by using QIAamp Power Fecal DNA kit (QIAGEN, Hilden, Germany) using 
QIAamp Power Fecal DNA IRT protocol for QIAcube (QIAGEN), as well as 
OMNIgeneGUT microbial DNA purification protocol using QIAGEN QIAamp 
PowerFecal DNA kit, both according to the manufacturer’s instructions with one 
modification at step 3 of the IRT protocol, tubes were vortexed for 20 sec to incorporate 
beads and stool prior to heating. Extraction controls were also processed following the 
same protocol as frozen stool samples.  

2.7.5 Bacterial and fungal library preparation and sequencing 
The V4 region of bacterial DNA and mock communities (ATCC MSA-1002 and MSA-
1003) were targeted and amplified using 16S primers 515F (Turner et al., 1999) and 
806R (Caporaso, Lauber, Walters, et al., 2011), each with a 6-8 bp unique barcode. The 
PCR reactions contained of 1x PCR buffer (Applied Biosystems), 2mM MgCl2 (Applied 
Biosystems), 0.25nM dNTP (Bioline), 0.4mg/mL BSA (Thermo Fisher Scientific) 0.4 
µM primer (Integrated DNA Technologies), 0.12x SYBER, and 2U AmpliTaq Gold™ 
DNA polymerase (Thermo Fisher Scientific). Reactions contained 2 µL of template 
DNA which was previously screened and optimized for efficiency by qPCR (Murray, 
Coghlan and Bunce, 2015), and had a final volume of 25 µL. Fungal DNA and mock 
communities (Bakker, 2018) were amplified using ITS2 primers FSeq and RSeq (Heisel 
et al., 2015). PCR reactions were the same as for bacterial amplification except 3µL of 
template DNA was added to each reaction. 

The reactions for both bacterial and fungal amplicons were performed on StepOnePlus 
Real-Time PCR system (Applied Biosystems), and under the following conditions for 
bacterial amplicons: denaturing at 94ºC for 3 min, followed by 30 cycles of 94ºC for 40 
sec, annealing at 53ºC for 40 sec, and extension at 72ºC for 60 sec. The cycling program 
for fungi was as follows: denaturing at 94ºC for 3 min, followed by 35 cycles of 94ºC 
for 40 sec, 55 ºC for 40 sec, 72ºC for 80 sec. Both amplicons underwent a final 
extension at 72ºC for 10 minutes. Individual Bacterial and Fungal libraries were 
prepared by blending together in equimolar concentrations. Illumina compatible 
adaptors were ligated to the DNA fragments (Lucigen, Middelton, WI, USA), and the 
resulting amplicons were size selected using Pippin Prep (Sage Science). The QIAquick 
PCR purification column clean up kit (Qiagen, Germantown, MD), was used to purify 
the DNA library before sequencing, which was performed at Curtin University, Western 
Australia, using the Illumina MiSeq platform and V2 500 cycle kit (Illumina, San Diego, 
CA, USA) with 2 × 250 bp paired-end read lengths. 
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2.7.6 Deconvolution 
Unique molecular barcodes were used to demultiplex reads with no mismatches 
allowed. Cutadapt (Martin, 2011) was used to remove primers, and the remaining reads 
were quality filtered, trimmed, and merged using DADA2 (Callahan et al., 2016). Reads 
with ambiguous bases, or with more than two expected errors were discarded. Amplicon 
sequence variants (ASVs) were inferred from the reads using the pseudo-pooled method, 
and merged with a minimum overlap of 60bp allowing for one mismatch (16S V4), 
30bp with no mismatches (ITS2). Amplicons were retained at a minimum length of 150, 
and 251, base pairs for ITS2, and 16S V4, datasets respectively. Chimera errors were 
also removed with DADA2 using the default method. Classification for 16S sequence 
variants was performed using the Genome Taxonomy reference database (release 95) 
formatted for use with DADA2 (https://zenodo.org/record/3951383#.X7Hs49sRVTY), 
while the UNITE general FASTA release for fungi Version 18.11.2018 (Kõljalg et al., 
2005) was used for ITS2 sequence classification, each with a minimum of 50% 
bootstrapping. Contamination was removed from all sequences with one run of the 
function remove.count in microDecon (McKnight et al., 2019). Any ASVs with 
unassigned phylum, or with a prevalence less than 1 in 5% of samples were filtered out, 
as were fungal samples with less than 1000 reads. 

2.7.7 Statistical analysis 
Sequence counts were used to determine richness and α-diversity indices (Chao1, 
Shannon, and Faith’s phylogenetic diversity (PD)) for bacterial microbiomes as applied 
in the “Phyloseq” package (McMurdie and Holmes, 2013) run in R studio with R 
version 3.6.3 (R Core Team, 2020). Correlation between library size and diversity 
estimate were tested for, and α-diversity measures with significant Pearson correlation 
(p < 0.01) to reads per sample were rarefied to lowest sample depth prior to calculation 
for those α-diversity measures (Chao1 and Faith’s PD). β-Diversity was compared 
between collection methods with PERMANOVA in PRIMER-e v7 (Anderson, Gorley 
and Clarke, 2008)and visualized using PCoA using Euclidian distances of center log 
ratio (CLR) transformed data, as well as Bray–Curtis similarity calculated from 4th root 
transformed proportions of counts. SCFA concentration data were log10 transformed, 
and normality assumed using the Shapiro–Wilk test prior to paired t-test. 

To evaluate differentially abundant taxa between homogenization method (aliquots and 
whole stool), the effect size estimate as a log2 fold change was calculated in DESeq2 
statistical package (Love, Huber and Anders, 2014) with a Benjamini-Hochburg 
adjustment for multiple testing, and a design controlling for subject. Statistical 
differences between taxa abundance and community diversity due to homogenization 
methods and collection methods were further tested using ANOVA 
(MicrobiomeAnalyst) and PERMANOVA (PRIMER7) respectively. Projection to latent 
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structures discriminant analysis was used to test for differences in microbiome 
composition due to collection method; and regularize canonical correlation analysis 
(integrated to maximize correlation between latent variables) was used to integrate 
SCFA and bacteriome data, both in MixOmics (Rohart et al., 2017). 
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2.9 Supplementary Material 
Supplementary Table 2.1. Sequences of each bacterial and fungal library. Filtering 
involved all bioinformatic processing including qualify filtering, merging, and trimming, 
as well as decontamination and low prevalence filtering of ASVs. Richness and diversity 
estimates are of a single technical replicate sequenced for each gene region 
Gene region 16S, V4 ITS2 
Sample sequences post filtering  4,303,623 8,416,581 
Average reads per sample 53,387 150,296 
Minimum read count 5,387 1,073 
Maximum read count 243,233 1,431,685 
ASVs post filtering 904 70 
Technical replicates for each gene region       
Observed ASVs 285 279 37 39 
Shannon 3.55 3.63 0.3 2.4 
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Bacterial Mock 
community composition 

16S V4 
region 

Fungal Mock community 
composition 

ITS2 
region  

F G S  F G S 
Acinetobacter baumannii       Alternaria alternata        

Actinomyces 
odontolyticus       Aspergillus flavus        

Bacillus cereus       Candida apicola        
Bacteroides vulgatus       Chytriomyces hyalinus        

Bifidobacterium 
adolescentis       Claviceps purpurea        

Clostridium beijerinckii       
Fusarium graminearum / G. 

zeae       
Cutibacterium acnes       Fusarium oxysporum        

Deinococcus radiodurans       
Fusarium verticillioides / G. 

moniliformis       
Enterococcus faecalis       Mortierella verticillata        

Escherichia coli       Naganishia albida / C. albidus       
Helicobacter pylori       Neosartorya fischeri        

Lactobacillus gasseri       Penicillium expansum        
Neisseria meningitidis       Rhizoctonia solani        

Porphyromonas gingivalis       Rhizomucor miehei        
Pseudomonas aeruginosa       Rhizophagus irregularis        
Rhodobacter sphaeroides       Saccharomyces cerevisiae        

Staphylococcus aureus       Saitoella complicata        
Staphylococcus 

epidermidis       Trichoderma reesei        
Streptococcus agalactiae       Ustilago maydis        

Streptococcus mutans               
Supplementary Figure 2.1. Occurrence of bacterial species of the mock community 
successfully identified (blue), incorrect classification but resolved correctly at a higher 
rank (pink), or not identified (grey). Ranks are family (F), genus (G), and species (S) 
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Supplementary Table 2.2. Percent coefficient of variation of SCFA concentrations and bacterial diversity estimates among three 
aliquots collected from a single stool (aliquots) and from three whole stools collected from separate bowel movements (whole). 
Bolded values indicate the more variable measure per individual. Chao1 and Faith’s phylogenetic distance was calculated on rarefied 
counts.  
 
Individual	 1	 2	 3	 4	 5	 6	

Aliquots	 mean(SD)		 	CV	 mean(SD)		 	CV	 	mean(SD)	 	CV	 mean(SD)		 	CV	 	mean(SD)	 	CV	 	mean(SD)	 	CV	

Chao1	 284(27.6)	 9.7	 200.3(54.2
)	 27	 220.3(17.3

)	 7.8	 174.4(20.2
)	

11.
6	 163.1(40.2)	 24.7	 197.0(25.9)	 13.2	

ACE	
330.4(36.4

)	 11	 261.1(74.9
)	

28.
7	

273.4(28.3
)	 10.3	 181.4(29.7

)	
16.
3	 182.6(38.3)	 21	 237.4(13.5)	 5.7	

Shannon	 4.3(0)	 1.3	 3.2(0.2)	 6.5	 3.7(0)	 0.9	 3.3(0)	 2.1	 3.4(0.1)	 4.9	 3.4(0)	 0.3	

Faith’s	PD	 26.8(1.2)	 4.4	 19.9(1.3)	 6.6	 21.5(2.3)	 10.6	 16.7(1.2)	 7.7	 16.7(3.4)	 20.7	 17.6(0.4)	 2.6	

acetic	acid	
127.5(34.7

)	
27.
1	 113(13)	 11.5	 143.9(26)	 18.1	 202.5(12)	 5.9	 229.6(23.9)	 10.4	

486.6(183.2
)	 37.6	

propionic	
acid	 28.1(4.6)	

16.
4	 19.5(0.8)	 4.2	 24.8(2.8)	 11.5	 33(1.1)	 3.5	 58.2(3.7)	 6.4	 71.3(12)	 16.8	

butyric	acid	 28.4(4.2)	
14.
9	 16.5(2.5)	 15.3	 26.7(3)	 11.2	 37.4(1.4)	 3.8	 33.6(2.3)	 7	 83.8(37.8)	 45.2	

valeric	acid	 4.7(0.8)	 19	 2.9(0.1)	 3.5	 2.2(0.4)	 20	 3.9(0.2)	 5.9	 2.3(0.1)	 7.6	 9.4(3.7)	 39.9	

total	
188.8(41.5

)	 22	 152.1(9.7)	 6.4	 197.8(32)	 16.2	
276.9(13.9

)	 5	 323.8(27.6)	 8.5	
651.2(164.2

)	 25.2	
Whole	 	mean(SD)	 CV		 mean(SD)		 CV		 mean(SD)		 CV		 	mean(SD)	 	CV	 	mean(SD)	 CV		 mean(SD)		 	CV	

Chao1	
264.3(36.4

)	
13.
8	 178(38.2)	 21.5	 185.2(64.8

)	 35	 197.6(19.7
)	 10	 190.1(40.23

)	 21.2	 244.7(3.1)	 1.3	

ACE	 301(49.1)	 16.
3	

232.9(57.2
)	 24.5	 227(93.4)	 41.1	 232.8(12.9

)	 5.5	 203.3(24.3)	 11.9	 280.2(17.3)	 6.1	

Shannon	 4.2(0)	 2	 3.1(0.1)	 3.3	 3.4(0.1)	 5.7	 3.3(0.1)	 4.4	 3.5(0.3)	 10.6	 3.5(0)	 2.4	

Faith’s	PD	 26.3(2.6)	 10	 19.3(3.4)	 17.
8	 19.3(3.1)	 16.3	 17.9(0.9)	 5.2	 17.3(2)	 11.8	 19.8(0.4)	 2.2	
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acetic	acid	
178.5(23.5

)	 13.1	
171.7(40.4

)	
23.
5	

185.2(56.8
)	 30.6	

144.8(42.3
)	

29.
2	 236.7(5.5)	 2.3	

347.8(103.4
)	 29.7	

propionic	
acid	 32.7(0.7)	 2.2	 22.9(1.2)	 5.5	 32.1(8.4)	 26.1	 26.7(9.9)	

37.
2	 52.3(15.3)	 29.3	 52(16.1)	 31	

butyric	acid	 33.6(2.2)	 6.7	 27.3(7.3)	 27	 32.4(7.1)	 21.9	 38.5(11)	
28.
5	 33.1(4.9)	 14.8	 72(30)	 41.7	

valeric	acid	 5.3(0.3)	 7.1	 2.5(0.7)	
27.
7	 2.8(0.5)	 20.1	 3.4(1.2)	 35	 2.7(0.3)	 11.8	 6.6(1.3)	 20.8	

total	
250.3(25.6

)	 10.2	
224.6(45.6

)	
20.
3	

252.7(72.6
)	 28.7	 213.6(63)	

29.
5	 325(18.4)	 5.6	

478.6(118.4
)	 24.7	
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Supplementary Table 2.3. Taxa identified in significantly different abundance in the O 
or N methods compared to the F method. 

    F vs N      F vs O  
    Pvalues FDR     Pvalues FDR 
Phyla     Phyla     
  Firmicutes 0.008 0.092   Actinobacteriota 0.013 0.160 
  Actinobacteriota 0.023 0.140   Bacteroidota 0.039 0.234 
Class     Class     
  Clostridia 0.003 0.059   Negativicutes 0.002 0.032 
  Lentisphaeria 0.031 0.229   Coriobacteriia 0.003 0.032 
          Bacilli 0.030 0.185 
          Bacteroidia 0.039 0.185 
Order     Order     
  Lachnospirales 0.001 0.056   Monoglobales 0.001 0.058 
  Oscillospirales 0.005 0.077   Coriobacteriales 0.003 0.068 
  Not_Assigned 0.006 0.077   Lactobacillales 0.010 0.131 
  Rhizobiales 0.017 0.174   Bacteroidales 0.042 0.381 
  Victivallales 0.031 0.250         
  Monoglobales 0.041 0.254         
Family     Family     
  Ruminococcaceae 0.001 0.041   Ruminococcaceae 0.000 0.003 
  Lachnospiraceae 0.001 0.041   Eggerthellaceae 0.000 0.003 
  Actinomycetaceae 0.002 0.047   UBA1381 0.001 0.035 
  Eggerthellaceae 0.008 0.138   Rikenellaceae 0.004 0.080 
  Oscillospiraceae 0.010 0.151   Actinomycetaceae 0.011 0.161 
  Rhizobiaceae 0.017 0.186   Streptococcaceae 0.015 0.184 
  Not_Assigned 0.018 0.186   Acutalibacteraceae 0.018 0.184 
  Victivallaceae 0.031 0.281   Veillonellaceae 0.025 0.221 
  UBA1381 0.041 0.327   Erysipelatoclostridiaceae 0.037 0.297 
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Supplementary Figure 2.2. Bacterial communities and metabolites group according to 
stool form. SCFA and 16S ASV from three matching whole stool samples were combined 
using rCCA in the R package MixOmics, and plotted as correlation coefficients. 

 

 
Supplementary Figure 2.3. Bacterial communities and metabolites group according to 
stool form. SCFA and 16S ASV from three matching whole stool samples were combined 
using rCCA in the R package MixOmics, and plotted as correlation coefficients. 
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– Chapter 3 – 
Changes to the gut microbiome in young children showing 

early behavioural signs of autism 

3.1 Preamble 
The gut microbiome of autistic children has been described, repeatedly showing 
impairments to the consortium of bacterial and fungal inhabitants, as well as SCFA 
profile. It is unknown weather characteristic shifts to the gut environment might be 
detectable prior to diagnosis; but to investigate these fine scale shifts sample and data 
processing must be of the highest standard. In chapter 2, I provide evidence for the way 
sampling bias can affect microbiome and SCFA profiles, concluding that large sample 
volumes should be frozen and homogenised appropriately. Stool of a sufficiently large 
volume was collected by from one bowel movement using a large, scooped jar, and each 
sample was frozen immediately. The samples were processed for two separate analyses 
using the protocol developed and presented in chapter 2, allowing for an analysis that 
would best capture the faecal environment of these young children. In line with the 
recommendations presented in chapter 2, a detailed description of the stool collection, 
microbiome library preparation, and decontamination steps were included in the 
manuscript. Furthermore, the use of control samples was expanded on to include a more 
detailed description of both the replicate sample and the mock community  

In this study I describe structural and functional changes displayed by the gut 
microbiome that occur prior to the formal diagnosis of a disease. This research indicates 
that shifts in microbial structure are detectable at the earliest stages of a disease. In 
chapter 4, the gut microbiome of infants who are involved in a randomised control trail 
investigating a maternal prebiotic supplement will be described. While our aim is to 
look for changes that occur as a result of the maternal prebiotic supplement, the same 
dataset will be used to investigate changes in the microbiome that occur prior to the 
diagnosis of allergic severity. Chapter 3 therefore provides the preliminary framework 
for the way gut microbiome data can be used to investigate changes that happen prior to 
disease onset. Lastly, in keeping with the proposed reporting guidelines which have 
been tailored for microbiome research a “Strengthening The Organization and Reporting 
of Microbiome Studies’ (STORMS)” checklist has been completed for each data chapter 
of the thesis. The published manuscript described in this chapter successfully hit 47 of 
55 relevant criteria (Appendix 2).  
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3.2 Contributions and data accessibility  
A statement regarding author contributions, and a link to the raw data used in this 
chapter are included within the manuscript. 

3.3 Manuscript 

The following section of chapter 2 contains the manuscript published in Frontiers in 
Microbiology on July 28th 2022. 
https://www.frontiersin.org/articles/10.3389/fmicb.2022.905901/full 
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Changes to the gut microbiome in young children showing early behavioural signs 
of autism 
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The human gut microbiome has increasingly been associated with autism spectrum 
disorder (ASD), which is a neurological developmental disorder, characterized by 
impairments to social interaction. The ability of the gut microbiota to signal across the 
gut- brain-microbiota axis with metabolites, including short-chain fatty acids, impacts 
brain health and has been identified to play a role in the gastrointestinal and 
developmental symptoms affecting autistic children. The fecal microbiome of older 
children with ASD has repeatedly shown particular shifts in the bacterial and fungal 
microbial community, which are significantly different from age-matched neurotypical 
controls, but it is still unclear whether these characteristic shifts are detectable before 
diagnosis. Early microbial colonization patterns can have long-lasting effects on human 
health, and pre-emptive intervention may be an important mediator to more severe 
autism. In this study, we characterized both the microbiome and short-chain fatty acid 
concentrations of fecal samples from young children between 21 and 40 months who 
were showing early behavioral signs of ASD. The fungal richness and acetic acid 
concentrations were observed to be higher with increasing autism severity, and the 
abundance of several bacterial taxa also changed due to the severity of ASD. Bacterial 
diversity and SCFA concentrations were also associated with stool form, and some 
bacterial families were found with differential abundance according to stool firmness. 
An exploratory analysis of the microbiome associated with pre-emptive treatment also 
showed significant differences at multiple taxonomic levels. These differences may 
impact the microbial signaling across the gut-brain-microbiota axis and the neurological 
development of the children. 
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3.4 Introduction 
Autism spectrum disorder (ASD) is a complex, chronic, neurological developmental 
disorder which is characterized by impairments to social interaction, as well as repetitive 
stereotyped behaviors (Fakhoury, 2015). Among children and adolescents, this disorder 
affects approximately 1 in every 58 - 166 children, and is 4 times more prevalent in 
males than females (Iglesias–Vázquez et al., 2020). Autism and autism severity are 
diagnosed by assessing the core behavioral symptoms using a number of different 
diagnostic tools which have been reviewed elsewhere (Falkmer et al., 2013). Children 
with ASD show a high comorbidity of gastrointestinal (GI) disturbance, which may be 
linked with neurological symptom severity (Chaidez, Hansen and Hertz-Picciotto, 
2015), and infants who go on to be diagnosed with ASD are also more likely to have 
experienced GI symptoms including constipation and food intolerance between 6 – 18 
months of age (Bresnahan et al., 2015). Autistic children are also often self-restricting 
when it comes to dietary preferences (Hyman et al., 2020); and diet is known to be an 
important factor in driving the composition of the microbiome in both autistic (Yap et 
al., 2021), and healthy individuals (Xu and Knight, 2015; Heiman and Greenway, 2016; 
Beaumont et al., 2017). 

The gut microbiome is a complex and critical community (Dave et al., 2012), which has 
been well described (in terms of the bacterial residents) for healthy children and adults 
(Gilbert et al., 2018), and significant differences in the composition of the fecal 
microbiome between autistic and neurotypical children have also been shown (Kang et 
al., 2013; de Angelis et al., 2015). It is also now widely recognized that early-life 
colonization patterns can have long lasting effects on human health (Mesa et al., 2020), 
and that microbes play a crucial role in maintaining the normal functioning of their host 
(Gilbert et al., 2018). This is achieved in part by the production of exclusive microbial 
metabolites including short chain fatty acids (SCFA), which like the microbial members 
are found in dynamic quantities in the gut. The gut ecosystem will fluctuate in response 
to diet and nutrient availability, the presence of antimicrobials which affects patterns of 
cross-feeding (Ríos-Covián et al., 2016), as well as physical activity, and hygiene 
practices (Levy et al., 2017). Lifestyle choices can therefore result in shifts or 
impairments to the composition of the microbial community, and deficits in digestion, 
absorption, or metabolic imbalances can also feed into GI disturbance and exacerbate a 
breakdown of the microbial community. Under such conditions which favor the growth 
of opportunistic pathogenic bacteria, certain microbial products in the gut can induce an 
enhanced pro-inflammatory response, which can compromise the integrity of the gut 
epithelial barrier (Martin et al., 2018). 

Some bacteria-derived toxins can enter the bloodstream through leaky gastrointestinal 
barriers and then pass through the blood brain barrier (BBB). These toxins include 
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enterotoxins and lipopolysaccharides (Lukiw, 2020), phenols such as 3-hydroxyphenyl 
acetic acid (Velásquez-Jiménez et al., 2021), whereas SCFA play a part in regulating the 
BBB (Parker, Fonseca and Carding, 2020). These events which begin in the gut can 
have far reaching effects due to bidirectional communication which takes place within 
gut-brain-microbiota axis, and involves signaling in neural, endocrine, and immune 
systems (Martin et al., 2018). The microbiome can be affected by modifications to gut 
motility, permeability, and intestinal secretions which are directed by the brain (Martin 
et al., 2018), and there is evidence for the microbiome to play a role in both the 
development and long term functioning of the brain (Sharon et al., 2016). Due to the 
potential disruption of normal brain development via the gut-brain-microbiota axis (de 
Angelis et al., 2015), it has been proposed that the gut microbiota plays a role in both 
the GI- and developmental symptoms that affect autistic children (de Angelis et al., 
2015; Cryan et al., 2020).  

An exciting prospect of the causal role the microbiome may play in the development and 
severity of autism, is that the microbiome is modifiable (Halmos et al., 2015; Pham et 
al., 2021). A temporary reduction in symptom severity has been observed after 
modulation of the gut microbiome using either antibiotics (Sandler et al., 2000), or fecal 
microbiome transplantation (Kang et al., 2017). Probiotics have also been shown to 
improve stool consistency and behavioral scores of autistic children (Parracho et al., 
2010). If autism can be detected earlier, behavioral and dietary interventions can be 
implemented earlier, and would potentially be more effective. While the fecal 
microbiome of adolescent and older children with ASD has repeatedly shown shifts to 
the bacterial and fungal microbial community, it is still unclear whether these 
characteristic shifts might be detectable earlier. In a recent systematic review on the gut 
microbiota of children with autism, only 4 of 18 investigations included children at 2 
years of age (Iglesias–Vázquez et al., 2020). In this study, we analysed stool samples 
from young children who took part in a larger study which compared two pre-emptive 
intervention treatments (Whitehouse et al., 2021). The aims of the present work were to 
characterize the gut microbiome and SCFA concentrations from young children who 
were showing behaviors in the first year of life, that are associated with later autism 
diagnosis (ASD-risk behaviors). The relationship between the microbiome composition 
and function, and its association with clinical measures for autism and 
neurodevelopment was investigated. We have also explored the microbiome for any 
association to the pre-emptive intervention these young children were receiving which 
may inform larger studies in the future. 
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3.5 Methods 

3.5.1 Study design and sample collection  
Samples were collected from young children who were enrolled in a broader study 
(Whitehouse et al., 2021), which was approved by the Child and Adolescent Health 
Service (HREC Ref: 2016008EP) in Perth, Western Australia. This mentioned study 
recruited infants between 9 – 14 months who were showing early social-communication 
delays as determined by Social Attention and Communication Surveillance–Revised 
(SACS-R) 12-month checklist. In this randomized control trial (RCT), the infants were 
randomized to one of two intervention arms 1) iBASIS-VIPP – a parent-mediated video-
aided  intervention supporting parent-child interaction, or 2) usual community care 
(UCC) – which varied and was comprised of services recommended by local health 
professionals, or included no additional treatment (Whitehouse et al., 2021). As part of 
this larger study, autism symptom severity and general development of the children was 
assessed at the time of stool sample collection using both the Mullens Scale of Early 
Learning (MSEL) (Mullen, 1995) and the Autism Diagnostic Observation Schedule, 
second edition (ADOS-2) (Lord et al., 2012) diagnostic tools (Table 3.1). ADOS-2 total 
scores were converted to calibrated severity scores (CSS), which range from 1-10 points 
(Shumway et al., 2012). The CSS scale were from scores 6 – 10 moderate-to-severe 
concern / autism classification, 4 – 5 mild-to-moderate concern / autism spectrum 
classification, and 1 – 3 little-to-no concern / non-spectrum classification. 

Table 3.1. Enrolment, follow-up timepoints and behavioural testing that took place in 
the AICES RCT. The number of stool samples received from this RTC and used in this 
current faecal microbiome study are also indicated. Six children provided stool samples 
at both timepoints A and B.  

Stool samples were collected as part of the former mentioned study in Perth. Parents 
were instructed to collect a stool sample from a nappy or from a plastic lining which 
covered the toilet, and preferably free of urine, in a sterile screw-top container. The stool 

AICES study 
timepoints Enrollment Follow up 1 Follow up 2 Follow up 3

Age (months) 9-14 15-20 21-26 33-38
ADOS-2 scoring x x x
MSEL scoring x x x x
Current study 
timepoints Timepoint A Timepoint B

number of single stool samples received 3 15
number of replicate stool samples received 6 6
Boys:Girls 8:1 15:6
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samples were placed inside a sealable bag and frozen immediately in the household 
freezer. A provided freezer bag was used to transport the sample to the clinical 
assessment site (CliniKids, SUBIACO / Perth Children’s Hospital, NEDLANDS) where 
they were frozen at −80°C until transfer to Curtin University on dry ice. A total of 30 
stool samples were collected from 24 children at two timepoints during the RCT. Nine 
samples were collected one year after the study baseline when the children were 
between 21-28 months of age, and 21 samples were collected at two years postbaseline, 
when children were between 33 and 40 months of age. Six of the 24 children provided a 
stool sample at both one- and two-years post baseline (Table 3.1). Those stool samples 
were used in this current fecal microbiome study for which approval was granted by 
Human Research Ethics Committee (approval number HRE2020-0127) from Curtin 
University, Western Australia, and all research was conducted in accordance with the 
relevant regulations and guidelines.  

3.5.2 Fecal DNA extraction and short chain fatty acid quantification 
Fecal material was thawed at 4°C and homogenized manually for 1 min prior to sample 
collection for SCFA quantification (1 g ± 0.1), and microbial sequencing (0.25 g ± 
0.05). The Bristol Stool Form Scale (BSFS) was used to categorize each stool form 
during homogenization (Mínguez Pérez and Benages Martínez, 2009). DNA was 
extracted from fecal samples immediately after homogenization using QIAamp 
PowerFecal Pro DNA kit (QIAGEN, Hilden, Germany) using the IRT protocol for 
QIAcube (QIAGEN), according to the manufacturer’s instructions with three 
modifications: (1) prior to adding stool sample, three 3.5mm glass beads (Biospec) were 
added to bead-beating tubes, (2) after step 1, tubes were vortexed for approximately 20 
sec to incorporate beads and stool, (3) followed by heating at 65°C for 10 minutes. 
Extraction controls were also processed following the same protocol as frozen stool 
samples. Fecal samples for SCFA analysis were frozen at −80°C immediately after 
homogenization, and then transferred on dry ice to the Science Analytical Facility at 
Edith Cowan University, Western Australia for SCFA quantification as previously 
described (Jones et al., 2021). 

3.5.3 Bacterial and fungal library preparation and sequencing 
Bacterial DNA and gut microbiome mock community 
(https://www.atcc.org/products/msa-1006) were amplified using 16S primers 515F 
(Turner et al., 1999) and 806R (Caporaso et al., 2011), while fungal DNA was amplified 
using ITS2 primers FSeq and RSeq (Heisel et al., 2015), each with a 6-8 bp unique 
barcode. The PCR reactions, library preparation and sequencing were performed 
according to methods previously described (Jones et al., 2021). 
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3.5.4 Deconvolution and data quality filtering 
Sequences were demultiplex using unique molecular barcodes with no mismatches 
allowed before they were removed along with primer sequences using Cutadapt (Martin, 
2011). Quality filtering using DADA2 (Callahan et al., 2016) was performed as 
previously described (Jones et al., 2021). The Genome Taxonomy reference database 
(Version 202) formatted for use with DADA2 
(https://zenodo.org/record/4735821#.YN18Om4RWis), and the UNITE general FASTA 
release for fungi Version 8.3 (Kõljalg et al., 2005) were used to classify 16S and ITS2 
sequence variants respectively, each with a minimum of 80% bootstrapping. Species 
were then assigned to 16S sequences with 100% identity using the same reference 
database. The bacterial and fungal species assignments for the top 50 ASVs were 
confirmed by BLAST using the same two databases, at 100% identity. ASVs with up to 
three matches were annotated to include all three potential species assignments, whereas 
any ASV with more than three identical matches was annotated with the genus name 
followed by “spp”. Identical matches to species id numbers were not included. Where 
taxa are not fully resolved to a lower rank, the lowest available rank name and sp., gen., 
or fam. have been annotated for each lower taxonomic level. The package microDecon 
(McKnight et al., 2019) was used to remove contamination from all sample sequences 
with one run of the function remove.count. Lastly, any ASVs with unassigned phylum, 
or with low prevalence (1 read in 5% of samples for bacterial ASVs and 1 read in 2.5% 
of fungal sample ASVs) were filtered out, as were fungal samples (1 sample) with less 
than 1000 reads. Performing decontamination in conjunction with filtering has been 
recommended (Cao et al., 2021), and therefore these non-aggressive filtering and 
decontamination thresholds were chosen to balance noise reduction associated with 
sparse reads, while retaining less abundant but potentially important species. 

3.5.5 Statistical analysis 
To characterise the difference between autistic and non-spectrum children using CSS, 
the children were placed into the category defined by their score: CSS from 6-10 ASD, 
CSS from 4-5 non-autism autism spectrum disorder (NAASD), and CSS from 1-3 no 
developmental concern (NDC). Also, because stool form has previously been shown to 
be associated with alpha diversity and SCFA concentrations, the samples were placed 
into three groups determined by the Bristol stool form scale. Stool scoring 1-2 was 
considered firm, 3-4 was considered normal, and 5-6 was considered loose. No stools 
were scored as 7 in this study. Beta diversity was used to assess differences between 
CSS and intervention groups, and stool form using Euclidian distances of center log 
ratio transformed counts and visualized using Principal coordinates analysis (PCoA). 
PERMANOVA was performed in PRIMER-e v7 (Anderson, Gorley and Clarke, 2008) 
with 9999 unrestricted permutations of the raw data and type 3 sum of squares. ANOVA 
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was used to determine differences in SCFA concentration between CSS groups using 
Tukey multiple comparison method to adjust p values. For all SCFA concentrations, Q-
Q plots were used to assume normality, and Levene's Test was used to check for 
homogeneity of variance. The total SCFA concertation was summed from all acids, with 
the concentration of valeric acid set to 0 for 3 individuals where the concentration was 
below detection. 

Differential abundance testing between CSS groups at the ASV level was performed in 
DESeq2 (Love, Huber and Anders, 2014). At the family, genus, and species level, 
differences observed between intervention group and CSS, were determined using 
Mann-Whitney U test and Bristol stool groups using the Kruskal-Wallis test (all 
comparisons included only samples from timepoint B). These higher order comparisons 
were performed only on dominant reads, which were those with a sum greater than 200 
reads across all bacterial samples (372 ASV), and greater than 25 reads across all fungal 
samples (136 ASVs). False discovery rate (FDR) due to  multiple testing was corrected 
for with a Benjamini-Hochburg adjustment (BH) (Benjamini and Hochberg, 1995). The 
core bacteriome consisting of species with 20% prevalence and a relative abundance 
over 0.01% were also determined in MicrobiomeAnalyst (Dhariwal et al., 2017). 
Pearson correlation was calculated for the linear regression between MSEL and alpha 
diversity estimates for bacterial ASV counts, with normality assumed by the Shapiro-
Wilk normality test. A single sample was removed from this correlation analysis as no 
MSEL score was recorded for that sample.  

Predictive functional profiling was inferred from the total bacterial 16S rRNA gene 
sequence data using Tax4Fun (Wemheuer et al., 2020). Here, SILVA reference 
sequences were mapped to KEGG orthologs (KO), and the profile was then filtered to 
include only a core group (> 0.01% across all samples) of metabolic pathways, with 
photosynthisis (ko00195) also removed. Differences in the core metabolic profile 
between CSS groups were visualized in Primer using using PCoA of Bray-Curtis 
similarity, and using PCA in STAMP (Parks et al., 2014). Significant differences 
between individual pathways were also assessed in STAMP using a two-sided Welch’s 
test, and Benjamini-Hochberg FDR for multiple testing. 

3.6 Results 

3.6.1 Description of the total bacterial and fungal datasets 
The bacteriome from all children in this study were dominated by Firmicutes (62%), 
Bacteroidota (25%), and Actinobacteriota (10%), and the mycobiome was dominated by 
Saccharomyces (92%) and Kazachatania (4%). A description of the data quality 
including read depth (Sup Table 3.1), replicate sampling and a positive control in the 
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form of a bacterial mock community (Sup Figure 3.1) are summarized in the 
supplementary results section.  

3.6.2 Microbiome composition assessed by stool form, and 
intervention group 
To explore the data principal coordinates analysis (PCoA) was used to visualize beta 
diversity between stool form, age, and dominant taxa from stool samples at both 
timepoints, while differences between intervention groups were assessed only from 
those samples taken at timepoint B. A significant difference in the beta diversity of 
intervention groups was determined by PERMANOVA at the level of species (p = 
0.014) genus (p = 0.008), family (p = 0.006), and order (p = 0.008) (Sup Figure 3.2). A 
significant difference in dispersion of Phyla around the centroid between the two 
intervention groups was also determined by PERMDISP (p = 0.04). The difference in 
community composition seemed to be driven by a higher abundance of Lachnospirales 
(p = 0.005, FDR = 0.12) in the iBASIS-VIPP intervention group. A further 2 families, 8 
genera, and 13 species were also differentially abundant between the two intervention 
groups (Sup Table 3.2).  

The age in months did not have a clear impact on sample beta diversity (Sup Figure 3.3), 
and independent of timepoint, bacterial communities clustered according to stool form 
(Figure 3.1 A), with firmer stool samples clustering separately from loose stool samples. 
Bacterial families with differential abundance according to stool form were detected 
(Sup figure 3.4). Prior to FDR correction the abundance of Butyricicoccaceae, and 
Pasteurellaceae was significantly higher in loose stool, compared to firm stool (p> 0.05 
FDR>0.60), the abundance of Enterobacteriaceae was significantly higher in loose stool 
compared to normal stool (p = 0.03 FDR = 0.42), and the abundance of Monoglobales A 
UBA1381, were significantly lower in firm stool compared to normal or loose stool (p = 
0.02, FDR = 0.42). A further six genera were identified to have lower abundance in firm 
stool compared to lose or normal stool (p < 0.05, FDR < 0.59), and 3 genera had lower 
abundance in normal stool compared to firm or loose stool (p < 0.03, FDR0.44) (Sup 
Table 3.3). Fungal communities on the other hand did not group according to stool form, 
but clustered according to the dominant ASVs (Figure 3.1 B). 
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Figure 3.1. Beta diversity of bacterial (A) and fungal (B) communities from all 
individuals at both timepoints using PCoA. A) Distribution of the bacterial communities 
are shown due to stool form and timepoint. B) Fungal communities are displayed based 
on dominant taxa and timepoint with abundant ASVs plotted as vectors. Beta diversity 
was estimated from Euclidian distances between CLR transformed counts. 

3.6.3 Comparison of microbiome diversity between diagnosis 
outcomes 
The microbiome composition among CSS groups were compared at timepoint B only, 
and showed that the proportions of bacterial phyla were similar among autistic children 
and children in the NDC group, however, the abundance of Actinobacteria in the 
NAASD group was considerably lower than the other groups (Table 2). Strong 
interpersonal differences were observed between all children, and no significant 
differences were determined between CSS groups (p>0.3). Similar alpha diversity was 
observed between CSS groups for both bacterial and fungal communities, and alpha 
diversity also showed no significant relationship with MSEL (Figure 3.2).  
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Table 3.2. Description of child and microbiome characteristics at timepoint A and B, 
and per diagnosis category. A single sample was removed from the fungal data, but not 
the bacterial data, and therefore the group characteristics for NDC are different for 
bacterial *1 and fungal *2 datasets. Abbreviated phyla names are Actinobacteriota 
(Act), Bacteroidota (Bac), Firmicutes (Firm), Proteobacteria (Pro), and abbreviated 
CSS groups are Autism (ASD), non-autistic autism spectrum disorder (NAASD), and no 
developmental disorder (NSD). 

Differential abundance testing was used to compare the microbiome composition at the 
ASV level among CSS groups at timepoint B only. In total, 19 Bacterial and 4 fungal 
ASVs were detected with significantly different abundance after adjusting for multiple 
testing. These ASVs were identified by the lowest taxonomic rank available (Table 3.3), 
and most bacteria were classified as either Bacteroidia (Bacteroidales) or Clostridia, 
most of which were Lachnospiraceae, while most fungal taxa were classified as 
Saccharomycetales. Six bacterial ASVs were enriched in autistic children, half of which 
belonged to Lachnospiraceae, and ten bacterial ASVs were significantly enriched in the 
NDC group. Two different fungal ASVs were significantly enriched in both the 
mycobiome of NDC and autistic children. Differences in the abundance of genera and 
species between CSS groups were also determined. After correcting for multiple testing 
(FDR), there were no significant differences, however prior to FDR, there were a 
number of taxa identified (Sup Table 4). 

  

Time A (n = 9)
mean 

Age
iBASIS-VIPP : 

UCC
Boys:
Girls

Average 
Stool form

Average 
MSEL Act (%) Bac (%) Firm (%) Pro (%)

ASD 25.5 2:2 3:1 2 74.8 2.9 29.2 66.9 0.5
NDC 24.2 2:3 5:0 3.8 108 2.5 30.3 64.5 0.9

Time B (n = 21)

ASD 36.4 7:4 8:3 3.1 78.7 15.3 17.5 65.6 0.3
NAASD 36.6 4:1 4:1 4.2 97.0 4.0 39.6 53.6 0.2
NDC*¹ 34.6 2:3 3:2 4.0 104.8 10.3 26.9 60.2 1.3
NDC*² 34.8 1:3 3:1 4.5 98.3

CSS

CSS
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Table 3.3. Bacterial and fungal ASV's identified with DESeq2 as having significant 
changes in abundance between CSS groups. Positive fold changes are enriched in NDC, 
and negative fold changes are enriched in ASD or NAASD groups. 

 

3.6.4 Temporal changes in fecal samples from six individuals 
Six children provided samples at both timepoint A and timepoint B. When the 12 
samples were clustered using Euclidian distances (Figure 3.3) the samples grouped 
based on participant, with a larger difference between one individual. This individual, 
and one other additional individual each received a different ADOS-2 score based on 
their behavior at timepoint B than they had previously received at timepoint A. Overall 
the richness, diversity, and phylogenetic diversity were observed to be higher at the 
second timepoint, when the children were on average 36 months of age. The SCFA 
concentrations did not shift in a particular direction between timepoints (Figure 3.3). 

ASD compared to NDC group NAASD compared to NDC group
ASV# and lowest rank ASV# and lowest rank
Bacteroidaceae Erysipelatoclostridiaceae

287 Bacteroides 22.4 194 Erysipelatoclostridium sp 15.6
Burkholderiaceae Debaryomycetaceae

184 Parasutterella 6.7 14 Debaryomyces hansenii 28.0
Lachnospiraceae Lachnospiraceae

77 CHKCI001 5.3 127 Ruminococcus A faecicola 24.0
Bacteroidaceae Lactobacillaceae

172 Bacteroides finegoldii -22.2 202 Lactobacillaceae sp 19.7
Christensenellales fam Oscillospiraceae

285 Christensenellales sp -20.7 268 Oscillospiraceae sp 21.3
Lachnospiraceae Veillonellaceae

220 Blautia sp -24.1 211 Veillonella parvula A 24.1
162 Blautia sp -22.3 Bacteroidaceae

58 Lachnospiraceae sp -7.5 172 Bacteroides finegoldii -24.6
150 Lachnospiraceae sp -23.8 Lachnospiraceae

Saccharomycetaceae 220 Blautia sp -15.8
21 Saccharomyces sp -22.1 162 Blautia sp -17.6
13 Eremothecium sinecaudum -20.3 58 Lachnospiraceae sp -6.9

150 Lachnospiraceae sp -23.1
Saccharomycetaceae

21 Saccharomyces sp -19.6

log2FoldChange log2FoldChange
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Figure 3.2. Differences in alpha diversity and SCFA concentration in young children 
according to autism severity. A) Fungal community alpha diversity estimates according 
to CSS groups. B) Bacterial community alpha diversity estimates according to CSS 
groups. C) Total and individual SCFA concentration (log10) in CSS groups. D) 
Association between MSEL score and bacterial alpha diversity based on Pearson 
correlation. E) Association between MSEL score and SCFA concentration based on 
Pearson correlation. 
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Figure 3.3. Changes is the gut microbiome of 6 children between an average of 24-
months of age (timepoint A), and 36-months of age (timepoint B). A) PCoA of bacterial 
beta diversity based on Euclidian distances of CLR transformed counts and the 
trajectory of the microbiome across time is shown with a uniquely colored arrow for 
each individual. B) Alpha diversity estimates between timepoint A and B. C) SCFA 
concentrations between timepoint A and B. 

The common core bacteriome between all children at timepoint A and B was identified 
using prevalence and abundance filtering. A total of 46 species were identified as core 
members at timepoint A and 50 at timepoint B, with 39 of those species present in both 
core communities. Blautia A sp, Lachnospiraceae sp, and Ruminococcaceae sp 
remained highly prevalent between both timepoints, and 50 other species changed only 
marginally or not at all between timepoints. 11 species that were present in the core 
microbiome at timepoint B were missing from the core at timepoint A, most of which 
were from Lachnospiraceae. Phocaeicola sp lost prevalence over time and Blautia A 
faecis, Romboutsia timonensis/ilealis, Ruminococcus C callidus, Clostridia sp, 
Dialisteraceae sp and Faecalibacterium sp all increased in prevalence over time (Figure 
3.4).  
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Figure 3.4. Shifts in the core microbiome of 6 children between timepoints. A) Children 
between 21 and 28-months of age at timepoint A, and B) children between 33 and 40-
months of age at timepoint B. 

3.6.5 SCFA concentrations 
The average, total faecal SCFA concentration across all children was 119.01 µmol/g 
(95% confidence interval 104.29 - 133.73) and the average molar ratio of acetate, 
propionate, and butyrate was 67:19:20. No significant differences in total or individual 
SCFA concentration were found between CSS (Figure 3.2 C), however, children in the 
ASD group tended to have higher acetic acid, and total SCFA concentrations, and 
similarly, total and acetic acid concentration negatively corelated with MSEL score 
(Figure 3.2 E). The SCFA concentrations were also similar between the two treatment 
groups. When relating SCFA concentrations to stool form, the average concentration of 
acetate, propionate, and the total SCFA concentration were all highest in normal stool 
samples, compared to firm or loose stool samples, whereas iso-butyrate and iso-valerate 
were highest in firm stools, followed by normal and then loose stools. Butyric acid was 
the only acid that increased in concentration with stool looseness (Figure 3.5). 
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Figure 3.5. Average total and individual SCFA concentrations across Bristol stool form 
groups. The Y axis is plotted on a log2 scale.  

3.6.6 Functional analysis 
Predictive community functional profiling using Tax4fun returned 321 functional 
pathways within: Cellular Processes, Environmental Information Processing, Genetic 
Information Processing, human diseases, Metabolism, and Organismal Systems. On 
average 38.5% of ASVs, and 52.7% of sequences per sample were mapped to a 
reference KO and used for prediction. After filtering to include only core metabolic 
functions, the profile consisted of 157 pathways within 13 classes. There was no visual 
clustering in the core metabolic profile between CSS groups using PCA (Figure 3.6), 
although a significant difference in the proportion of Tetracycline biosynthesis (after 
FDR correction), and a number of other pathways (prior to FDR correction) were 
identified between CSS groups using Welch’s t-test (Sup table 3.5). Differences in the 
metabolic profile between intervention groups were also observed using PCA (Sup 
figure 3.5), as well as individual metabolic pathways. 
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Figure 3.6. Differences in metabolic pathways between CSS groups. A) Proportion of 
the predicted pathway tetracycline biosynthesis among CSS groups tested using Welch’s 
t-test after FDR correction. B) PCA distribution of predicted core metabolic pathways 
by CSS group. 

3.7 Discussion 
Identifying the behaviours associated with autism at a young age is possible, although 
predicting the trajectory of young children who are diagnosed with autism is typically 
not possible (Hyman et al., 2020). Roughly 80% of children who are diagnosed at less 
than three years of age will retain their diagnosis, however, because it is difficult to 
distinguish between either autism, or Pervasive Developmental Disorder-Not Otherwise 
Specified a conclusive diagnosis is difficult to make in children under 2 years of age 
(Akshoomoff, 2006). Therefore, in this study we used CSS, and MSEL scores as 
indicators of autism symptom severity to explore the gut microbiome and SCFA 
associated with these young children. It is also important to note that the children in the 
no-developmental-concern group may not be considered neurotypical controls, as all 
children in this study were showing early behavioural signs of ASD determined by 
SACS-R at 9 – 14 months of age. 

3.7.1 Overall composition of the fecal microbiome and SCFA 
concentrations among CSS groups 
Assessment of the bacteriome in relation to autism has led to conflicting results, 
especially when comparing Bacteroidetes and Firmicutes (Iglesias–Vázquez et al., 
2020); although ASD seems to be more often associated with a decrease in Firmicutes 
(Andreo-Martínez et al., 2021). In this present study, there was no significant difference 
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in the relative abundance of any phyla between ASD and NDC children, and firmicutes 
were the most abundant and prevalent phyla, averaging 62% of the total proportion of 
reads across all children sampled. The abundance of Actinobacteriota dropped below 
4% of the total community composition in the NAASD group, and a reduction in this 
phyla has also been observed previously in autistic children compared to neurotypical 
controls (Coretti et al., 2018). The NAASD group also had the highest levels of butyrate 
and propionate in the study, and had a significantly elevated proportion of tetracycline 
biosynthesis based on predictive profiling. Tetracyclines are of the most commonly 
used, oral, broad spectrum antibiotics which can promote the proliferation of anaerobic 
bacteria (Kovtun et al., 2020). 

Significant differences in both the community composition (Strati et al., 2017; Coretti et 
al., 2018; Pulikkan et al., 2018; Ma et al., 2019), and SCFA concentration (Adams et 
al., 2011; Wang et al., 2012; Coretti et al., 2018; Bojović et al., 2020) have also been 
observed between autistic and neurotypical controls. Changes in composition are likely 
to affect the functional microbiome and may help reveal the mechanisms by which the 
microbial community may differentiate due to the ASD phenotype. SCFA 
concentrations in stool are good indicators of what was produced by resident bacteria as 
they reflect what was excreted after absorption by the host. Butyrate and propionate 
have been shown to be elevated in stool samples from children with ASD compared to 
controls (Coretti et al., 2018). Considering children with a similar fibre intake, 
propionate has again been found in significantly higher concentrations in the stool of 
autistic children compared to neurotypical controls (Wang et al., 2012). This is 
particularly important because both acids can cross the BBB and can interact with brain 
cells via G-protein-coupled receptors (Abdelli, Samsam and Naser, 2019). Although, in 
this study we found no such difference in either beta diversity or SCFA concentration 
between CSS groups. Instead, butyrate was the only SCFA which increased with stool 
looseness. The similar levels of SCFA across CSS groups but not Bristol stool groups 
may indicate that stool form may be a confounding factor that makes it difficult to 
determine differences between neurological development, especially with a small 
sample size. It may be that at this young age, differences in the community structure 
associated with neurological disorders are less pronounced, but still present at a finer 
scale. 

The average richness and diversity of the bacterial community also increased from the 
first (A) to second (B) time point in the six children that provided stool samples at both 
timepoints; as did the number of bacterial species included in the core microbiome. As 
the diversity of a child’s diet expands in early-life, the microbiome also continues to 
develop and increase in diversity (Matamoros et al., 2013). Although, there was no 
significant difference in alpha diversity between CSS groups, and this is consistent with 
other studies with a larger number of young participants who were assessed for autism 
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using various methods (Strati et al., 2017; Pulikkan et al., 2018; Kong et al., 2019; 
Fouquier et al., 2021). In this study, there was a trend for increased bacterial diversity 
within the NAASD group, as well as a trend towards a negative correlation between 
bacterial diversity and MSEL score. This negative correlation is in agreement with 
another study which found three alpha diversity measures of the faecal microbiome at 1-
year of age negatively correlated with both the Early learning Composite (a combination 
of 4 of the 5 standardized T-scores from the MSEL) and two of the five Mullen scales at 
2-years of age (Carlson et al., 2018).  

While these trends in alpha diversity may indicate new avenues for future investigation, 
we caution that it may be difficult to use traditional diversity indices to describe changes 
in the gut that are linked with less understood, heterogeneous, modern diseases such as 
ASD. Not to mention that the sequencing depth – the basis on which the diversity 
measures are calculated – varies considerably between studies which may make it 
difficult to compare conclusions from different datasets (Willis, 2019). The 
inconsistency in alpha diversity in relation to autism has also been mentioned in a 
review in this area (Krajmalnik-Brown et al., 2015). Here we propose that either an 
increase or decrease away from the diversity needed to maintain a healthy homeostatic 
microbiome may be disadvantageous. For example, an increase in diversity may indicate 
a bloom in pathobionts (Levy et al., 2017), or an increase in usually more transient 
bacteria which may breakdown the normal community structure. Similarly, reduced 
diversity could indicate a loss of functionality important microbial members and a 
community which is disordered (Levy et al., 2017). 

3.7.2 Species and strain differences in the fecal microbiome between 
CSS groups 
To detect bacteria associated with ASD, we compared differential abundance between 
CSS groups. Using the BH adjustment to control for false positives, we did not detect 
any significant features, although, our investigation lacks statistical power using 
nonparametric tests with small sample size, therefore, we discuss significant results 
prior to FDR correction. Overall members of Enterobacteriaceae, and Negativicutes, 
were increased only in the NDC group. Negativicutes are known for their contribution to 
propionate production (Reichardt et al., 2014), and Veillonella (Negativicutes), are 
known to fermenting lactate to produce SCFA (Kang et al., 2013). Veillonella have been 
found to be reduced in the faecal microbiome of autistic children compared to 
neurotypical controls (Strati et al., 2017); whereas Enterobacteriaceae have been found 
to increase (De Angelis et al., 2013). Lachnospiraceae including Muricomes, 
CHKCI001, and Ruminococcus, were also enriched in the NDC group compared to 
either the ASD or NAASD groups. 
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Taxa enriched in both non-neurotypical groups included members of Lachnospiraceae, 
including Blautia and an un unresolved Lachnospiraceae species. Blautia is bile-
metabolizing, associated with tryptophan metabolism, and has been found at reduced 
abundance in a BTBR T+ Itpr3tf/J mouse model of ASD (Golubeva et al., 2017). This 
result is somewhat contradictory as Blautia are commonly associated with a typically 
developing infant microbiome (Hill et al., 2017), a healthy adult microbiome (Tap et al., 
2009), and are well known for their contribution to SCFA production (Louis and Flint, 
2017). Clostridium sp., were also more abundant in the ASD group, which is in line with 
other studies (Gondalia et al., 2012; Coretti et al., 2018; Ma et al., 2019). Clostridium 
are one group of bacteria known to be able to produce toxins which can cross the BBB 
(Góra et al., 2018), and are commonly found in both higher abundance (Iglesias–
Vázquez et al., 2020), and numbers based on CFU/g (Finegold et al., 2017) in faecal 
samples from autistic children compared to controls.  

Bacteroides caccae, has been associated with a decrease in abundance in the faecal 
microbiome of autistic children (Averina et al., 2020) but was enriched in the ASD 
group in this study. Certain strains of B. caccae are mucolytic, which may place them at 
close proximity to the host, where it can both influence and be influenced by the host 
(Tailford et al., 2015). Furthermore, myocytic bacteria may be opportunistic pathogens 
(Ganesh et al., 2013), and because complete degradation of mucins may require co-
metabolism evolving several species (Tailford et al., 2015), shifts in a the abundance of 
some members could impact the functionality of the total myocytic community, which 
in turn would be either beneficial or harmful to the host. While this finding adds to the 
catalogue of autism associated bacterial taxa, it may also indicate the importance of 
identifying different bacterial strain, as well as using complementary metabolite data to 
fully understand community changes between groups. Furthermore, the inconsistency 
seen in the literature regarding taxa associated with autism, may be caused by 
differences in databases used for classification. This can be improved by a multi-omics 
study design, but also by collecting information that can influence microbiome 
composition, such as diet including fibre and protein content, as well as pre- or pro-
biotic supplements, GI problems, and information of bowel movements. 

3.7.3 Stool form may help explain inconsistencies in the bacteriome of 
children with ASD 
Poor stool form, is an indication of GI distress, and issues such as constipation, diarrhea 
and flatulence are reported as more prevalent in children with ASD than neurotypically 
developing children (Chaidez, Hansen and Hertz-Picciotto, 2015). The way GI 
symptoms are documented could result in variation, for example, if study participants 
assess their own stool using the Bristol Stool scale, there may be individual bias, or error 
if recalling stool form after the collection has happened. In this study, stool form was 
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assessed during sample processing, which allowed for a non-bias assessment. We found 
differences in bacterial composition between firmer stool compared to normal or loose 
stool. This finding is in agreement with another study comparing autistic and 
neurotypical controls (including sibling controls), where stool consistency was among 
the factors most strongly associated with the microbiome composition (Yap et al., 
2021). However, Yap and colleagues proposed a top-down impact on stool composition 
beginning with reduced dietary diversity due to self-restricting eating habits, and 
subsequent reduced microbiome diversity resulting in loose stool consistency.  

In our study, both richness and diversity were lower in firmer stool samples compared to 
normal or loose stool (data not shown). Stool becomes firm with a lower water content, 
and has been linked to longer whole gut transit times (Saad et al., 2010), which may 
impose selective pressures on the microbial community, particularly if firm stool is 
experienced frequently. This same trend in reduced microbial diversity in firm stool has 
been observed in adults with functional constipation (Huang et al., 2018). In our study 
SCFA concentrations (except for butyric acid) were also reduced in looser stools, which 
is likely due to both water content, and the potential for microbial members to influence 
and be influenced by gut motility (Zhao and Yu, 2016). Therefore, our results are in line 
with the emerging hypothesis that the microbiome is part of a circular feedback-loop, 
where behaviour and environment have a top-down effect on the microbiome and stool 
form, and the microbiome imposes a bottom-up effect. Collecting GI disturbance 
metadata but also recording stool form (as this may change even within a day) and using 
this information as a potential confounding variable might help explain some of the 
observed inconsistencies in ASD-associated bacteria.  

3.7.4 Limitations  
The number of children in this study was limited and the number of children in 
diagnostic and treatment groups was small and unbalanced, and no information 
regarding diet and gastrointestinal distress was collected. Also, because the children 
were first recruited prior to diagnosis, it was not possible to choose the number of 
children in each category. As a result, the number of children with no developmental 
concern was quite small. Additionally, the diagnosis of the children in the iBASIS-VIPP 
and UCC groups were mixed, and due to the sample size, it wasn’t possible to examine 
differences between diagnosis within the intervention group. Using full siblings residing 
in the same household as the healthy control group has been shown to be the most 
reliable control group as it covers both environmental factors and genetic background; 
however, this would also not be possible with this pre-emptive study design. We would 
also like to point out that there are numerous methods used to diagnose autism severity, 
and therefore within the literature we discuss, a number of diagnostic tools have been 
used. Lastly, due to the small sample size we chose to display results that were 
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significant prior to correction for multiple testing. While this less stringent approach 
may lead to more false positives, it may also indicate those taxa that could be important 
in the shifts taking place in these young children that otherwise would be missed. 

3.7.5 Conclusion and future research 
In this study the relative abundance of the microbiome at the phylum level, and the 
diversity of bacterial and fungal communities were similar when viewed among 
neurological developmental groups. The microbiome composition and SCFA 
concentrations were instead found to be significantly associated with stool form, 
indicating that this factor might be important to consider when interpreting the 
microbiome composition of young children with autism – especially considering the 
high prevalence of gastrointestinal issues in children with ASD. While bacterial or 
fungal diversity could not be used to discriminate between neurological development, 
differential abundance in the community structure at the genus, species and strain level 
was detected between CSS groups. Together, these findings indicate that subtle changes 
in bacterial composition may occur in the microbiome of young children with autism. 
We also found that the amount of interindividual difference in the microbiome from the 
6 children over two timepoints, did not seem to be consistent, or related to autism 
severity. This is likely due to the small number of samples, but it would be beneficial to 
collect a longitudinal series of samples along with diet and bowel movement history to 
establish the influence of these factors on the development of young children showing 
early behavioural signs of ASD.  

Lastly, pre-emptive treatment for children at risk of developing autism is an important 
research area as there is currently no cure for autism, and treatments that begin before 
diagnosis – earlier in life – may be more effective than those started later in life. The 
children in this study were involved in a broader study examining the efficacy of 
behavioural interventions for children showing early signs of ASD (Whitehouse et al., 
2021). Although neither behavioural intervention arm involved dietary changes, and the 
sample size was very small, significant differences in bacterial community structure 
were observed between the intervention groups. While it is unclear how the behavioural 
intervention could impact the structure of the microbiome, the differences observed at 
multiple taxonomic levels between the two treatment groups may indicate an effect on 
the microbiome that warrants future research addressing the possibility of a top-down 
effect of cognitive or behavioural changes which selectively benefit some bacterial 
groups. However, this potential needs to be investigated in a much larger study to 
account for the many factors affecting the gut microbiome in the developing child. 
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3.9 Supplementary Material 

3.9.1 Supplementary figures 

 

Supplementary Figure 3.1. Replicate sampling of a single individual, showing the 
Bacteriome at the level of Order (A), and mycobiome at the level of ASV, with species 
assignments shown (B). The mycobiome replicate samples include ASV 1, which 
dominated both replicates F1.1 and F1.2 with 165,517, and 105,517 reads per sample 
respectively. Richness and Diversity were calculated on filtered non-rarefied counts. A 
Bacterial mock community (C) shows the proportion of both the known composition of 
the mock community positive control at the family level, and the recovered mock 
community sample composition.  
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Supplementary Figure 3.2. PCoA plots showing clustering of bacterial communities 
observed by treatment in the AICES study, at the level of phyla (A) and genus (B). 
Differences were calculated on Euclidian distance of CLR transformed counts. 

 
Supplementary Figure 3.3. Clustering of bacteriome samples according to PCoA using 
Euclidian distances of CLR transformed counts. Samples are identified by age in 
months, and the sampling timepoint. 
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Supplementary Figure 3.4. Four bacterial families with differential abundance (CLR) 
according to stool form. The number of children in each stool form group was 4, 12, and 
5 in the one-two, three-four, and five-six groups respectively. 

 

 
Supplementary Figure 3.5. Differences in predicted pathway class (A), and individual 
pathways (B) associated with treatment type, and clustering via PCA of individual 
pathways based on treatment group (C). All plots were based on the filtered core 
metabolic predicted pathways. 
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3.9.2 Supplementary tables 

Supplementary Table 3.1. Distribution of reads in each microbial dataset after quality 
filtering, and in the dominant microbiome subset. 

 

Supplementary Table 3.2. Taxa observed with differential abundance between 
preemptive treatment groups. Significant differences were determined using the Mann-
Whitney U method using only dominant bacterial taxa. 

 

  

Bacteriome Mycobiome
minimum per sample 55,345 1,095
maximum per sample 114,085 286,688
Average 76,462 113,968
total reads 2,37,351 3,305,080
Total ASVs 1165 231
ASVs post filtering 584 207
ASVs in dominant Microbiome 372 136

enriched in iBASIS-VIPP treatment group enriched in UCC treatment group
Order Pvalue (FDR) Genus Pvalue (FDR)
Lachnospirales 0.00 (0.12) Enterocloster 0.01 (0.56)

Flavonifractor 0.02 (0.56)
Family Oscillibacter 0.03 (0.56)
Lachnospiraceae 0.00 (0.21)
Anaerovoracaceae 0.03 (0.74) Species

Enterocloster sp 0.00 (0.12)
Genus Akkermansia  sp 0.00 (0.19)
Lachnospiraceae sp 0.00 (0.40) Flavonifractor  sp 0.02 (0.53)
Pasteurellaceae sp 0.03 (0.56) Oscillibacter  sp 0.03 (0.53)
Blautia 0.03 (0.56)
Faecalibacillus 0.04 (0.56)
Anaerovoracaceae, UBA1191 0.04 (0.56)

Species
Gemmiger sp 0.00 (0.12)
Lachnospiraceae sp 0.00 (0.19)
Dorea longicatena 0.02 (0.53)
Pasteurellaceae sp 0.03 (0.53)
Blautia obeum 0.03 (0.53)
Lachnospiraceae, TF01 11 sp 0.04 (0.53)
Anaerovoracaceae, UBA1191 sp 0.04 (0.53)
Faecalibacillus  sp 0.04 (0.53)
Anaerobutyricum soehngenii 0.04 (0.53)
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Supplementary Table 3.3. Genera identified as having differential abundance between 
lose (Bristol Stool number 1-2), normal (Bristol Stool number 3-4), and firm (Bristol 
Stool number 5-6) stool. P values and FDR corrected values are shown after Kruskal-
Wallis test.  

 
  

Genera depleted in Firm stool Pvalue (FDR)
Lachnospiraceae, Agathobacter 0.03 (0.44)
Butyricicoccaceae 0.03 (0.44)
Monoglobales A CAG41 0.02 (0.44)
Lachnospiraceae, CHKCI001 0.01 (0.44)
Pasteurellaceae Haemophilus 0.05 (0.59)
Lachnospiraceae, UBA9502 0.02 (0.44)

Genera depleted in normal stool
Enterobacteriaceae, Enterobacter 0.03 (0.44)
Erysipelatoclostridiaceae, Longibaculum 0.03 (0.44)
Anaerovoracaceae, UBA1191 0.02 (0.44)
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Supplementary Table 3.4. Bacterial and Fungal taxa with differential abundance 
between CSS groups. Only dominant bacterial and fungal taxa were included. 

 

  

Taxa enriched in NDC vs ASD p-value (FDR)
Bacteroides uniformis 0.02 (0.80)
CHKCI001 gen 0.02 (0.67)
CHKCI001 sp 0.02 (0.80)
Enterobacter  D 0.00 (0.28)
Enterobacter  D sp 0.00 (0.43)
Negativicutes gen 0.01 (0.45)
Negativicutes sp 0.01 (0.70)
Phocaeicola 0.02 (0.67)
Saccharomycetales gen 0.02 (0.34)
Saccharomycetales sp 0.02 (0.45)

Taxa enriched in ASD vs NDC
Bacteroides caccae 0.03 (0.80)
Clostridium  sp 0.03 (0.80)
Parabacteroides 0.04 (0.88)
Parabacteroides sp 0.04 (0.80)

Taxa enriched in NDC vs NAASD
Bifidobacteriaceae  gen 0.04 (0.96)
Bifidobacteriaceae  sp 0.04 (0.96)
Enterobacter D gen 0.03 (0.96)
Enterobacter  D sp 0.03 (0.96)
Muricomes  gen 0.02 (0.96)
Muricomes  sp 0.02 (0.96)
Veillonella  sp 0.03 (0.96)



	

 123 

Supplementary Table 3.5. Individual pathways which differ significantly prior to FDR 
correction between CSS groups using Welch’s t-test. 

 

3.9.3 Supplementary results  
Bacterial data resulted from all 30 faecal samples, with a minimum of 55,418 reads per 
sample, and 1,165 ASVs from eight phyla. The Fungal data resulted from 29 samples 
and a minimum of 1095 reads per sample with 231 ASVs from two phyla prior to 
prevalence filtering (Sup Table 1). A single sample was also processed in duplicate to 
visualize the bias due to library preparation for both bacteria and fungi (Sup Figure 1). 
At the level of order, bacteriome communities showed high similarity, with the read 
count of Oscillospirales, most variable between the replicate samples (B1.1 = 4%; B1.2 
= 11.5%). The mycobiome was compared at the level of ASV (species IDs shown) 
because of the lower diversity of this community. The total read count was much higher 
in the fungal samples >100,000 reads, and the communities were both dominated by 
ASV1, with a read counts 100x higher than all other ASVs. The mycobiome was also 
more variable with 57,587 more reads in F1.1 compared to F1.2 verses the bacterial 
replicates where B1.1 had 2,251 more reads than B1.2, which is typical of sequencing 
technology which generates stochastic variation in sequence counts. The American Type 
Culture Collection (ACTT) bacterial mock community 
(https://www.atcc.org/products/msa-1006), was also sequenced as a positive control 
(Sup Figure 1), containing 12 species in even concentrations from 9 families including 
multiple species in Bacteroidaceae, and Enterobacteriaceae. With greater than 500 reads, 
17 ASVs were recovered from the sample mock community, from the correct nine 
families. Twelve ASVs were assigned to the correct 12 genera, and 11 ASVs were 
assigned to the correct species at 100% identify; with 7 of these ASVs matching to two 
or more 
  

ASD vs NAASD groups p-value Corrected p-value
Biosynthesis of type II polyketide backbone <0.001 0.062
Carbon fixation pathways in prokaryotes <0.001 0.175
Drug metabolism - other enzymes <0.001 0.191
Tetracycline biosynthesis <0.001 0.035

ASD vs NDC groups
Flavone and flavonol biosynthesis 0.001 1.43
Pentose and glucuronate interconversions 0.03 2.46

NAASD vs NDC groups
Atrazine degradation 0.026 2.019
Polycyclic aromatic hydrocarbon degradation 0.017 2.619
Sulfur metabolism 0.035 1.79
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– Chapter 4 –  
Assessment of the temporal changes to the maternal and 
infant microbiome in response to a maternal prebiotic 

supplement during pregnancy and lactation 

4.1. Prologue 

Chapter 2 explored the variability in faecal microbiome composition due to sample 
collection methods, as well as the benefit of using control samples. In chapter 3, these 
sample collection and data processing recommendations were used to explore the 
microbiome of very young children who were showing high behavioral risk of 
developing autism. Together these two studies demonstrated both a high level of 
attention to data integrity, and descriptive reporting to allow for study replication. 
Furthermore, chapter 3 described fine scale shifts to the gut environment prior to a 
formal diagnosis for autism, which provided a framework for the investigation of the 
microbiome data in chapter 4.  

In the following chapter I assess the effectiveness of a maternal prebiotic supplement on 
both the maternal and infant microbiome composition, and SCFA concentrations. The 
human gut microbiome is most susceptible to change in early life, and therefore, 
supporting its development early (during pregnancy and lactation) would likely be most 
beneficial. The prebiotic supplement was assessed in mothers who were enrolled in a 
double-blinded randomized controlled trial, and the data presented in this chapter is part 
of a larger study (Palmer et al., 2022). Therefore, the data will be made available after 
publication. Lastly, with 74 mother-infant pairs, this chapter contains the largest dataset 
in this thesis, and I would like to extend my deepest gratitude to Georgia Nester and 
Mathew Heydenrych for their significant contribution to sample processing and DNA 
extraction.  

4.2 Abstract 

During pregnancy, the foetal gut microbiome may begin the important process of initial 
colonisation which will have a long-lasting impact on the eventual structure and 
resilience of the gut microbiome. This early life period may be a critical time in life to 
establish both gut health, and long-term immunological health as the immune system 
develops under the influence of the microbiome. The maternal microbiome is not only 
an important potential seeding location for microbial colonizers, but also a source of 
microbial products that may be transferred to the foetus. Short chain fatty acids (SCFA) 
in particular are microbial metabolites that are known to promote gut and metabolic 
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health, and dietary fibre supplied by the diet determines in large part the production and 
absorption of SCFA in the gut. Soluble fibres including fructo-oligosaccharide, and 
galacto-oligosaccharide resist digestion by the host, and are selectively fermented in the 
colon by commensal bacteria. Therefore, the composition of the maternal microbiome, 
and factors such as diet during pregnancy may carry forward and also impact the infant 
microbiome and developing immune system. Furthermore, there is wide agreement that 
the first 100 days of life are the most important for the development of the infant 
microbiome. The diet an infant is first exposed to will play an important role in this 
process and breastmilk – which changes over time and with maternal dietary habits – 
contains both microbes and human milk oligosaccharides that establish and support the 
growth of mutualistic microorganisms. Supporting the development of the gut 
microbiome may therefore also benefit the development of the immune system which 
shows characteristic shifts associated with autoimmune disease. Due to the encouraging 
results demonstrated using prebiotics in adults and infants there has been interest in 
trialling fibre supplementation during pregnancy for the benefit of the infant 
microbiome and immune system. In this study I aimed to determine the effect of a 
maternal prebiotic fibre supplement on both the maternal and infant microbiome 
composition based on illumina sequencing of the bacterial 16S rRNA gene (V4), and 
SCFA concentrations compared to a placebo. The prebiotic fibre was assessed based on 
the microbiome of 74 participants (which includes the mother and infant) who were 
enrolled in a double-blinded randomized controlled trial. I found significant differences 
in both maternal (PERMANOVA p < 0.0001, psudo-F 4.23), and infant 
(PERMANOVA p < 0.001; psudo-F 1.7) microbial beta diversity between the prebiotic 
and placebo groups over the intervention period. The prebiotic fibre was found to 
increase the abundance of commensal Bifidobacteria (p ≤ 0.02) and Parabacteroides 
merdae (DESeq, padj < 0.001) in the maternal microbiome, as well as Aerococcus spp 
(Closteridia) in both maternal and infant microbiomes (ANCOM-BC padj ≤ 0.05). The 
shifts in SCFA concentration over pregnancy were also significantly different between 
the prebiotic and placebo groups, and acetic acid significantly increased (p = 0.008; 
Pseudo-F = 7.09) in the prebiotic group but not the placebo group after the start of the 
intervention. The infant microbiome was also observed to go through a period of 
significant expansion in alpha diversity (ANOVA, p>0.001). which coincided with a 
significant increase in butyric and propionic acid concentrations after the introduction of 
solid foods (ANOVA, p>0.001).  

4.3 Introduction  

Pregnancy is now understood to be an important period for the development of the 
infant gut microbiome, and immune system. As the immune system develops under the 
influence of the microbiome, this early life period may be a critical time in life to 
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establish long term immunological health and gut health (Gray et al., 2017). 
Gastrointestinal bacteria stimulate the development of the gut-associated lymphoid 
tissue, which is the largest collection of lymphocytes in the body (Faria, Reis and 
Mucida, 2017), and during this time the immune system is trained to be tolerant to 
aspects of the environment. During pregnancy, both the maternal gut and vaginal 
microbiomes undergo dramatic, yet predictable compositional changes (Mesa et al., 
2020), and there is now evidence summarized in two recent reviews which suggest that 
maternal gut health during pregnancy influences the health of the infant (Gray et al., 
2017; Mesa et al., 2020). This includes susceptibility to metabolic diseases, infection, 
and allergic disease as well as adverse pregnancy outcomes (Mesa et al., 2020). 

The assumption that an infant is first exposed to the microbial world at birth is being 
challenged with recent findings of microbial genetic material recovered from of the 
placenta, anionic fluid, and meconium. Well described commensal bacteria including 
Lactobacillus, and members of Enterobacteriaceae have been detected in the placenta 
(Mesa et al., 2020), while predominant members including Enterobacter, Escherichia/ 
Shigella and Propionibacterium have been detected in the amniotic fluid (Collado et al., 
2016). Further support comes from isolating live bacteria from the first meconium, 
predominantly Enterococcus fecalis, E. coli, and Staphylococcus epidermidis (Jiménez 
et al., 2008). These microbes are theorized to have been swallowed with amniotic fluid 
by the foetus, as evidenced by further investigations in animal (mice) models. Here, 
genetically labelled bacterial strains were recovered from the meconium of mice pups 
after oral administration of the bacterial strain to the pregnant mother. This observation 
provides evidence that maternal gastrointestinal bacteria may travel a hematogenous 
route to reach the foetal digestive tract (Jiménez et al., 2008). While the evidence does 
suggest we should be open to the possibility of a non-sterile foetal gut, there is still 
debate regarding the origin of genetic material recovered from these sources. 
Contamination of low biomass samples by exogenous bacterial DNA is a major concern, 
and therefore the use of strict protocols to avoid or eliminate contamination is essential 
(Stinson et al., 2019).  

The maternal microbiome is not only an important potential seeding location for 
microbial colonizers, but also a source of microbial products that may be transferred to 
the foetus, depending on the regulatory action of the placenta. Genetic material and 
metabolites that originate in the gut microbiome can be absorbed into the maternal 
blood, and depending on the regulatory action of the placenta may act as important 
environmental exposures which stimulate foetal immune programming (Gray et al., 
2017). SCFA in particular are known to promote tolerance of T lymphocytes by 
regulating the antigens presented to them by dendritic cells (Gray et al., 2017). 
Furthermore, in mice, maternal derived SCFA were found to interact with the 
sympathetic nervous system, intestinal tract, and pancreas of the foetal mice, which 



	

 127 

impacted energy homeostasis, and regulation of insulin levels in offspring (Mu et al., 
2015). Therefore, the composition of the maternal microbiome, and factors directly 
affecting it during pregnancy may carry forward and also impact the infant microbiome 
and developing immune system (Gray et al., 2017).  

Diet has been consistently shown to be a strong influencer of the gut microbiome, with 
animal protein, and fibre being two of the most influential nutrient types on the 
composition of the microbial community (Ríos-Covián et al., 2016; Beaumont et al., 
2017; Martin and Li, 2017; Moles and Otaegui, 2020). High protein diets have been 
shown to shift the activity of the microbial community from carbohydrate fermentation 
to protein fermentation, which changes both the pH and the composition of microbes in 
the gut (Beaumont et al., 2017). Dietary fibre is typically the main source of carbon 
utilized by the microbiota in the human gut (Scott, Duncan and Flint, 2008), and 
therefore, fibre supplied by the diet determines in large part the production and 
absorption of SCFA in the gut. The benefits of fibre-based dietary supplements on the 
microbiome and SCFA concentrations in adults have been discussed in a number of 
reviews (Scott, Duncan and Flint, 2008; Christodoulides et al., 2016; Yan et al., 2021). 
Soluble fibres including inulin-type prebiotics, fructo-oligosaccharide (FOS), and 
galacto-oligosaccharide (GOS) have been studied extensively in more recent times. 
These substrates are also commonly used as prebiotic fibres, and each has been 
reviewed for the ability to maintain a healthy gut ecosystem by benefiting commensal 
bacteria, regulating levels of SCFA, and reducing gut pH (Sawicki et al., 2017). FOS 
and GOS resist digestion in the upper digestive tract, and are selectively fermented in 
the colon by resident bacteria, most notably Bifidobacterium spp (Liu et al., 2017). This 
allows for selection of microbes that can utilise this exclusive energy source, and may 
also benefit other microorganisms through cross-feeding. Diet and fibre content will also 
impact weight and weight gain through regulation of metabolism and reductions in 
blood glucose concentrations (Mayengbam et al., 2019). Therefore, maintaining 
appropriate fibre intake during pregnancy may also assist mothers in gaining appropriate 
weight during pregnancy, which will optimize health outcomes for both mother and 
infant (Moore Simas et al., 2013).  

During pregnancy, the composition of the gut microbiome can also be negatively 
affected by any antibiotics that are taken. Antibiotics reduce both richness and diversity, 
however a healthy established community is usually quite resilient to moderate doses of 
antibiotics (Martínez et al., 2018). During pregnancy shifts to the maternal microbiome 
resulting from antibiotics could theoretically impact the colonization process by limiting 
microorganisms available for seeding the infant gut. Also, antibiotics used during 
pregnancy will cross the placenta and enter the foetal bloodstream where they may 
further impact microbial assembly (Pacifici, 2006). Due to the effect antibiotics have on 
the composition of the microbial community, they may impact negatively on the 
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development of the immune system, and the use of antibiotics during pregnancy has 
been shown to be associated with an increased risk of asthma (Stensballe et al., 2013). 

After birth, mother and infant are in intimate-close contact, and while not all researchers 
agree that the pregnancy period seeds the microbiome, there is wide agreement that the 
first 100 days of life are the most important for the development of the infant 
microbiome (Gritz and Bhandari, 2015; Ferretti et al., 2018; Mesa et al., 2020). Birth 
mode is a strong contributing factor for the development of the infant microbiome, and 
caesarean born infants have been shown to have reduced abundance of Bacteroides in 
their gut for up to 6-months after birth (Galazzo et al., 2020). Caesarean birth is often 
accompanied by prophylactic antibiotics, preferentially given prior to surgery, which 
will allow them to cross the placenta. Caesarean and vaginal birth modes also differ with 
respect to exposure to the first bacterial community, with caesarean born infants 
exposed to skin and air microbial communities, while vaginally born infants are first 
exposed to the vaginal microbiome of the mother (Dominguez-Bello et al., 2016).  

Breastfeeding confers many health benefits to both the mother and infant (Turck et al., 
2013), and for the first 6-months of life is the recognised normative standard for infant 
nutrition (Ballard and Morrow, 2013). Breast milk is composed of potentially thousands 
of bioactive components (Ballard and Morrow, 2013), many of which are 
multifunctional, working not only as enzymes, growth factors, and anti-inflammatory 
agents, but also glycoproteins that act as antimicrobials by binding directly to pathogens 
including Escherichia coli, Salmonella spp. Helicobacter pylori, and Burkholderia 
cepaciaas (Cacho and Lawrence, 2017). Breastmilk also contains both microbes and 
human milk oligosaccharides (HMOs) that act as pre- and pro-biotics respectively to 
establish and support the growth of mutualistic microorganisms (Cacho and Lawrence, 
2017). Additionally, the composition of breastmilk changes over time, and with 
maternal dietary habits (Bravi et al., 2016). Infants fed with formula that was 
supplemented with GOS and FOS prebiotic fibre have been found to have a higher 
concentration of secretory IgA, and a higher percentages of Bifidobacteria compared to 
a control group receiving formula without the fibre supplement (Scholtens et al., 2008). 
In another RCT, trialling GOS/FOS supplemented infant formula an increase in the 
CFUs of Bifidobacteria in infants’ stool was found, as well as significantly reduced 
incidence of atopic dermatitis compared to the control group (Moro et al., 2006).  

The gut microbiota shows characteristic shifts associated with a range of diseases, as 
well as autoimmune pathological conditions, especially in early life, that are predicted to 
be contributing to the rise of non-communicable diseases (Gray et al., 2017). Therefore, 
supporting the development of the gut microbiome in early life may also benefit the 
development of the immune system during this important period of life. Infant 
supplementation with prebiotic formula feeding has been a successful way to shift the 
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gut microbiome, however these effects may not be long lived. Six of the studies 
included in a recent review of infant formulas, discussing prebiotic supplementation, 
found differences in microbiota composition could be detected for up to 6-weeks, and 
differences in intestinal pH were detected up to a maximum of 16-weeks  (Fabiano et 
al., 2021). Using animal models, it has also been demonstrated that maternal 
supplementation may be an unexplored avenue to influence the developing infant gut 
microbiome.  

Due to the encouraging results demonstrated using prebiotics in adults and infants – as 
well as the potential therapeutic use of diet during pregnancy – there has been interest in 
trialling this framework of fibre supplementation during pregnancy for the benefit of the 
infant microbiome and immune system. Therefore, mothers have been enrolled in a 
double-blinded randomized controlled trial investigating the effects of maternal 
prebiotic supplementation during pregnancy and breast feeding (Palmer et al., 2022).  

I have specifically characterized the resident bacteria and the SCFA concentration in 
mother-infant pairs to determine the effect of maternal prebiotic fibre (GOS and FOS) 
supplementation on both the maternal microbiome composition, and its effect on the 
development of the infant microbiome. It is hypothesised that the prebiotic supplement 
will increase both the relative abundance of Bifidobacterium and the concentrations of 
acetic and butyric acid in the maternal gut of those mothers compared to a placebo, and 
these markers will be investigated withing the maternal gut. The positive effect of the 
prebiotic supplement on the material gut is also expected to support the development of 
the infant microbiome through exposure to healthy levels of SCFA during pregnancy. 
The presence of commensal colonisers is also predicted to be enriched in the infant gut 
in association with maternal prebiotic supplement, and a differential abundance 
assessment between prebiotic and placebo infants over time will be used to identify 
these bacteria. Lastly, it is hypothesised that the gut microbiome will change over the 
course of pregnancy, and to illustrate this enterotyping will be used. 

4.4 Methods 

4.4.1 Study design and faecal sample collection 
Stool samples from pregnant mothers and their infants were collected as part of the 
SYMBA study, which aimed to recruit 652 pregnant women. The participants of the 
SYMBA study were randomized into two groups, one group received a daily prebiotic 
supplement consisting of GOS (8.1g) and FOS (0.9g), and the other group received a 
placebo consisting of maltodextrin (8.7g). Not all SYMBA study participants were 
included in the microbiome analysis due to financial and time related constraints. A 
subset of mother-infant pairs was selected based on time series completeness (i.e. 
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participants with samples at all maternal and infant timepoints), and to insure a 
minimum of 30 samples within the prebiotic and placebo groups each, from the 
available samples as of June 2019 (Table 4.1). The total sample size (n=52) required to 
test (with a power of 80% and two-tailed alpha = 0.05) for a significant difference in 
acetate concentrations was determined using G*Power (Faul et al., 2007); and the effect 
size (r = 0.81) was based on publicly available data (Liu et al., 2017). In this current 
study stool samples were received from 74 participants, with complete stool sampling 
all timepoints for 65 mother-infant pairs. At 20-weeks a baseline was established by 
collecting a single stool sample from each mother prior to consumption of the 
supplement or placebo. A single stool sample was then collected from each mother at 5 
timepoints during and after birth, and a single infant stool sample was collected at 4 
timepoints during the first year of life (Table 4.1). At each sampling point, mothers 
collected stool into three identical specimen jars, and froze them in the household 
freezer within 15 minutes of collection. The samples were then taken to the Telethon 
Kids Institute, located in the Perth Children’s Hospital, Nedlands WA in a supplied 
Styrofoam pack within 7 days of collection. All samples were bio-banked at -80°C, at 
the Telethon Kids Institute until sample processing. Amplicon sequencing and statistical 
analyses were completed while blinded from the treatment group allocation.  

Table 4.1. Sample collection timepoints and number of samples collected as of June, 
2019 within the SYMBA study, and the number of stool samples received and analysed 
in this current study at each timepoint.  

 

4.2.2 Stool sample processing, DNA extraction and SCFA 
quantification 
Immediately prior to DNA extraction, frozen stool samples were thawed at 4°C, and 
transferred on ice to a EuroClone Biological safety cabinet to limit potential 
contamination. The three tubes that made up one sample were combined in a larger 
sterile pot, and homogenized together for 30 seconds with a sterile plastic scoop. The 
Bristol Stool Form Scale (BSFS) was used to categorize each stool form during 
homogenization (Mínguez Pérez and Benages Martínez, 2009). Stool was then collected 
into separate tubes for each of two downstream analyses: metabarcoding 0.25 g ± 0.05 g 
and SCFA quantification 0.50 g ± 0.05 g. Samples for SCFA analysis were immediately 
frozen at -80°C following homogenisation, and then transferred on dry ice to the 

Collected for SYMBA as of June, 2019 20-weeks 28-weeks 36-weeks 2-months 4-months 6-months 12-months Total
Maternal 246 219 205 128 136 100 1034
Infant 147 143 133 77 500
Maternal samples recieved

Intervention group 1 32 32 32 32 32 32 192
Intervention group 2 39 39 39 39 39 38 233

Infant samples received
Intervention group 1 32 32 32 32 128
Intervention group 2 39 39 39 37 154
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Science Analytical Facility at Edith Cowan University, Western Australia for SCFA 
quantification using GC-MS as previously described (Jones et al., 2021). DNA was 
extracted by using QIAamp PowerFecal Pro DNA kit (QIAGEN, Hilden, Germany) and 
the IRT protocol for QIAcube (QIAGEN), according to the manufacturer’s instructions 
with three modifications: (1) prior to adding stool sample, three 3.5mm glass beads 
(Biospec) were added to bead-beating tubes, (2) after step 1, tubes were vortexed for 
approximately 20 sec to incorporate beads and stool, (3) followed by heating at 65°C for 
10 minutes. Contamination was accounted for using NTCs during the DNA extraction 
and PCR steps which were also processed following the same protocol as frozen stool 
samples. Due to the large number of NTCs created during DNA extraction, the DNA 
extracted from NTCs were combined in to a single “pooled extraction blank” which was 
uniquely tagged twice, and spiked into each sample library. The pooled extraction 
blanks and NTCs were used during data processing to remove contamination. 

4.2.3 Library preparation and sequencing 
Bacterial DNA, NTCs and mock communities (https://www.atcc.org/products/msa-
1006) were amplified using 16S primers 515F (Turner et al., 1999) and 806R (Caporaso 
et al., 2011), each with a 8-10 bp unique barcode. Mock communities were sequenced to 
evaluate variability across sequencing runs. The PCR reactions were performed 
according to methods previously described (Jones et al., 2021). PCR products were then 
pooled by amplification efficiency, and then blending in equimolar concentrations based 
on the concentration of each pool. Illumina compatible adaptors were ligated to the 
DNA fragments (Lucigen, Middelton, WI, USA), which were then were size selected 
using Pippin Prep (Sage Science). The DNA library was purified before sequencing 
using the QIAquick PCR purification column clean up kit (Qiagen, Germantown, MD), 
and sequencing was performed at Curtin University, Western Australia, using the 
Illumina MiSeq platform and V2 500 cycle kit (Illumina, San Diego, CA, USA) with 2 
× 250 bp paired-end read lengths. 

4.2.4 Deconvolution and data merging 
Sequences were demultiplex with no mismatches allowed in the unique molecular 
barcodes, and then all non-biological regions were removed using Cutadapt (Martin 
2011). Initial quality filtering included discarding sequences with ambiguous bases, or 
those with more than two expected errors; sequences were then merged with a minimum 
overlap of 60 bp allowing for one mismatch using DADA2 (Callahan et al., 2016). 
Amplicons less than 251 bp were discarded and amplicon sequence variants (ASVs) 
were inferred using the pseudo-pooled method. Chimeric errors were removed using the 
default method, and sequences variants were classified to the using the Genome 
Taxonomy reference database (Version 202) formatted for use with DADA2 
(https://zenodo.org/record/4735821#.YN18Om4RWis). Assignments to the genus level 
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were made with a minimum of 80% bootstrapping using “assignTaxonomy”, and 
species assignments were then added using “addSpecies”. The species assignments for 
the top 200 ASVs were confirmed by BLAST using the same databases, at 100% 
identity. ASVs with up to three matches were annotated to include all three potential 
species assignments, whereas any ASV with more than three identical matches was 
annotated with the genus name followed by “spp”. Identical matches to species id 
numbers were not included. Where taxa are not fully resolved to a lower rank, the 
lowest available rank name and sp., gen., or fam. have been annotated for each lower 
taxonomic level. To remove potential contamination from all samples, the package 
microDecon (McKnight et al., 2019) was used. NTCs and pooled extraction blanks 
(n=7) were selected to inform the decontamination process using one run of the function 
“remove.count”. Lastly, any ASVs with unassigned phylum, or with a prevalence less 
than 1 read in 2% of samples were filtered out, reducing the number of ASVs from 
6,587 to 1,462. 

4.2.5 Statistical analysis 
To allow all individuals to be included in correlation and grouping analyses proxy 
values were added in two circumstances. (1) where the age introduced to formula was 
greater than 1 year, or (2) the duration of breastfeeding was greater than year, 13 months 
was used to replace NA so the factor could be included in the model. Bristol stool 
number was also determined during sample processing, and stools were grouped by firm 
(1 to 2), normal (3 to 4) and loose (5 to 7) stool types. A 2-tailed McNemar’s test was 
used to compare the counts of Bristol stool form over time in maternal samples where 
data was available at all timepoints. The approximate gestational weight gain was 
calculated for mothers using the weight at randomization (20-weeks) and the weight at 
36-weeks. Enterotypes were assigned to the maternal microbiome using proportions of 
genera as an input, and by fitting to 278 MEtaHIT samples as a reference 
http://enterotypes.org/. A 1-tailed McNemar’s test was used to compare the counts of 
Firmicutes dominated enterotypes at baseline to late pregnancy (36-weeks). 

DistLM with step-wise selection criteria over 9999 repeats, was used to identify factors 
with a significant contribution to the composition of the maternal and infant 
microbiome. Factor information was missing from some individuals, therefore, to 
perform the DistLM, either the factor or the individual with missing information had to 
be removed from the analysis. To select maternal factors for inclusion the follows steps 
were taken (1) Any factor with complete participant information was included, (2) 
factors with missing information were ranked from most to least important (3) factors 
were added step-wise to the analysis until a maximum of 5% of the participants were 
removed, the remaining factors (fibre intake and parity) were not included. Correlations 
over 95% between similar factors were used to identify and remove redundant variables. 
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Infant factor selection followed the same 3 steps, and significant maternal factors were 
also included for consideration at step 1 along with infant factors. For visualization in 
dbRDA, only factors that contributed more than 1.4% in marginal tests were included.  

Differential abundance testing was performed in DESeq2 (Love, Huber, & Anders, 
2014) on filtered counts of ASVs. Differences between intervention and placebo groups 
were determined using both maternal age and antibiotic use as co-factors for maternal 
samples, and for infant samples gender (2m-6m) or breastfeeding (1-year). P values 
were corrected using Benjamini-Hochburg adjustment (BH) (Benjamini & Hochberg, 
1995), and significance was set at p = 0.05. At higher taxonomic levels, ANCOM-BC 
(Lin and Peddada, 2020) was used to test for differences between intervention groups. 
After correcting for multiple testing using the BH adjustment method, an effect size (W 
statistic) cutoff of 0.1 was used to further refine significant results. The microbial 
abundance at individual timepoints was also bias corrected using ANCOM-BC, which 
introduces a sample-specific offset term which accounts for the sampling fraction which 
varies across samples. The bias-corrected abundance was then used to visualize the 
differentially abundant taxa between intervention groups. Lastly, a Wilcoxon signed 
rank test was used to test both the prebiotic and placebo groups for an increase in 
Bifidobacterium and Lactobacillus. The pre-birth comparisons were made from baseline 
(20-weeks) to 28- and 36-week timepoints with a BH adjustment, and post-birth 
comparisons were made from baseline to 2-, 4-, and 6-month timepoints with a BH 
correction. 

A random forest analysis using 10 predictors over 5000 trees was performed on 
microbiome analyst (Dhariwal et al., 2017) at the genus and family level. The model 
was used to both estimate the accuracy of predicting the classification of the group, and 
identify taxa that were most responsible for driving differences between the intervention 
groups. Pattern search available within Microbiome Analyst was also used to identify 
groups of genera with corelated enrichment (spearman rank correlation) to Bristol stool 
types. 

Beta diversity was visualized using Principal coordinates analysis (PCoA), and was 
calculated using Euclidian distances of centre-log-ratio transformed counts of ASVs or 
higher taxonomic ranks. Differences in beta diversity were determined with 
PERMANOVA, performed PRIMER-e v7 (Anderson, Gorley and Clarke, 2008) with 
9999 permutations under a reduced model (microbiome data), and type 3 sum of squares 
(Dhariwal et al., 2017). Interactions between the intervention and time were tested by 
nesting intervention within participant. One-way and two-way-mixed repeated measures 
ANOVAs were performed in R to compare alpha diversity estimates, and fold changes 
in diversity over time. Any participant who was not sampled over the entire study 
period, and extreme outliers (values above or below Q3 ± 3xIQR) were excluded from 
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the repeated measures analysis. Normality was assumed with QQ plots showing good 
correlation, and. Homogeneity of variance and covariances of between-subject factors 
was checked with Levene’s test, and Box’s M-test respectively. Spearman correlation 
was used to determine the relationship between maternal and infant diversity indexes. 
Extreme outliers were removed from this analysis using the same method mentioned 
above. 

Individual SCFA concentrations were analysed as mM/g of feces, as well as relative 
proportions of the sum of all acids quantified (acetic, propionic, butyric, isobutyric, 
valeric, and isovaleric acid). The concentration of any acid below the detection limit was 
set to 0. The variance of each SCFA concentration was stabilized by a log10 
transformation with a constant of 1 was added to the concentration of propionic, butyric, 
isobutyric, valeric, and isovaleric acid. Repeated measures ANOVA was used to 
compare SCFA concentrations over time within each intervention group, and including 
only those participants who had SCFA data at all timepoints. Any participants without 
SCFA data at all timepoints was removed. Extreme outliers were identified for each, and 
normality, homogeneity of variance and homogeneity of covariances was confirmed 
using the methods previously described. Covariates determined using DistLM for SCFA 
data (probiotic use, and history of allergic disease for maternal samples) were included 
in the ANOVA model when testing individual SCFA concentrations over time. Pairwise 
tests were restricted to 4 timepoint comparisons ("20-28", "20-36","36-2","2-6") The p 
value of multiple post-hock comparisons was corrected using the Bonferroni method. 
Lastly, PERMANOVA was used to compare the resemblance of each of the three most 
predominant SCFA (acetic acid, propionic acid, and butyric acid) between the 
intervention and placebo groups over the study period. The same parameters as 
described previously for the PERMANOVA analysis were utilised, except unrestricted 
permutations of the raw data were allowed rather than permutations under a reduced 
model.  

4.5 Results 

4.5.1 Data quality and participant characteristics 
Read depth is an important factor in accurate diversity estimates, and read depth is 
expected to vary considerably across sequencing runs. Across all sequencing runs, the 
minimum read depth was 20,820, and the maximum was 105,769. The sizable read 
depth was due to both the high percentage (minimum 83%) of reads with greater than 
99.9% accuracy in base calls, and the proportion of amplicon clusters that were 
successfully generated during bridge amplification. A larger proportion of reads were 
lost from library LGN62 during read filtering, although during chimera removal, only a 
small proportion of reads were lost compared to the other libraries (Sup Table 4.1).  
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To ensure that high quality sequence data was consistently produced, several control 
samples were used during extraction, PCR, and across sequencing runs. Mock 
communities with a known composition were tagged and added at equimolar 
concentration to each sequencing run.  

Prior to prevalence filtering, but after decontamination there were 19 ASVs that were 
consistently present across all replicates of the mock community. Of these, 17 ASVs had 
more than 100 read counts per sample on average. There were another 20 ASVs present 
in the mock community samples with between 10 and 100 counts per sample on 
average. These were likely reads with spurious errors that clustered as separate ASVs or 
poorly identified at the genus and species level using DADA2 rather than 
contamination. All ASVs with an average of 10 or more counts per sample were from 
one of the families of the mock community standard, and ASVs with less than 10 counts 
per sample were primarily Fermicutes. The relative proportions of families identified in 
each sample was consistent across replicates (Sup Figure 4.1, A), demonstrating good 
reproducibility across sequencing runs. All 12 species that were contained in the mock 
community standard were detected although, both Clostridioides difficile and 
Fusobacterium nucleatum were over-represented and Enterobacter cloacae were under-
represented based on relative abundance (Sup Figure 4.1, B).  

The number of total reads was expected to vary across sequencing runs, and with the 
largest sequencing depth, the samples within LGN68 had, the largest library size 
compared to all other sequencing runs (Sup Figure 4.2, A). To assess how this may 
affect alpha and beta diversity, eight randomly selected individuals were pooled together 
and then blended in equimolar concentrations into each sequencing run. Richness was 
affected by sequencing run, with the replicates in LGN59 having the highest number of 
ASVs (Sup Figure 4.2, B). Both alpha-diversity measured by Shannon index (Sup 
Figure 4.2, D), and beta-diversity between replicates were not affected by sequencing 
run (Sup Figure 4.2, C). The number of ASVs also varied by sequencing run (Sup table 
4.1), and as anticipated, varied between maternal and infant samples. On average, 
maternal samples hosted 285.6 ± 69.6 ASV, and infant samples hosted 78.5 ± 48.7.  
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PCoA was used to observe Beta diversity across sequencing runs among all samples in 
this study. Maternal samples did not show any relationship to sequencing run, with 
sample density per sequencing run is distributed homogeneously across two-
dimensional PC space (Figure 4.1, A). Infant samples also did not show any bias due to 
sequencing run, although the distribution on PC1 is less homogenous due to the 
significant differences between the different age groups, particularly the 1-year-old 
samples (Figure 4.1, B). 

Figure 4.1. Distribution densities of maternal (A) and infant (B) microbiome samples 
according to sequencing batch number. Infant samples are also shown according to 
age, as 1-year old samples were all sequenced on run LGN 64. 

To describe the participant cohort, each of the randomised groups where characterised at 
baseline, and again after randomisation (Table 4.2). Some participants did not provide 
information for every variable. Also, mothers and infants who received antibiotics over 
the course of the study were not excluded from the study. While typically antibiotic use 
is used as an exclusionary criterion, for this type of longitudinal study, it was impractical 
to exclude a large proportion of women and infants after enrolment due to antibiotic use. 
This is because there is a high incidence rate of antibiotic use during later pregnancy, 
and during the first few years of life. Significantly more mothers in the placebo group 
had previously used prebiotics prior to the start of the intervention (Chi-squared, p = 
0.03), and infants in the prebiotic group weight significantly more at 6-months of age (t-
test, p = 0.02) compared to the placebo group.  
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Table 4.2. Baseline and post-randomisation characteristics for mother infant pairs. 
Averages are presented as mean and standard deviation. Percentages are used to show 
the proportion of individuals for which the characteristic is true. P values are for 
ANOVA or Chi-Squared test, and * denotes significant differences.  

 

4.5.2 Impacts of the intervention on the maternal microbiome 
community structure and SCFA concentrations 
The intervention had a significant impact on the maternal microbiome composition 
(PERMANOVA p < 0.0001, psudo-F 4.23), and there was no evidence of an interaction 
between intervention and time (PERMANOVA p = 1). The maternal microbiome over 
the entire intervention period were plotted using PCoA (Figure 4.2, A). The infant 
microbiome was also found to be significantly impacted by the intervention 
(PERMANOVA p < 0.001; psudo-F 1.7) as well as time (PERMANOVA p < 0.001; 
psudo-F 13.2). Due to the underdeveloped and more similar microbiome of 2- and 4-
month old infants, a strong impact of time was also observed on the PCoA of the infant 
microbiome when viewed across all timepoints up to 12-months of age (Figure 4.2, B). 
To better observe the tightly clustered infant microbiome at 2 and 4-months of age, 
these timepoints were also plotted separately (Figure 4.2, D). The prebiotic supplement 

Baseline characteristic Placebo (n = 33) Prebiotic (n = 41) P val
Maternal age in years 32.97 ± 4.05 33.09 ± 3.79 0.89 ANOVA
Ethnicity 1(n = 28) 2(n = 5) 1 (n = 40), 2(n = 1) 0.12 Chai
Previous use of probiotic supplements 21 (63.6%) 23 (56.1%) 0.67 Chai
Previous use of prebiotic supplements 15 (45%) 8 (19%) 0.03 Chai
Pre-pregnancy BMI (kg/m2) 24.8 ± 4.87 24.9 ± 4.79 0.93 ANOVA
Weight at randomization (kg) 71.64 ± 13.57 74.42 ± 13.61 0.38 ANOVA
BMI at randomization (kg/m2) 26.61 ± 4.78 26.28 ± 4.72 0.95 ANOVA
Maternal history of allergic disease 27 (81.2%) 33 (80.5%) 0.88
Infant sex ratio female:male 18:15 20:21 0.8

Post-randomisation characteristic
Maternal weight at 36 weeks gestation in kg 79.98 ± 13.5 83.20 ± 14.10 0.33 ANOVA
Maternal BMI at 36 weeks gestation 29.72 ± 4.75 29.88 ± 4.77 0.89 ANOVA
Maternal consumption of any probiotics during the intervention period 4 (12.12%) 10 (24.4%) 0.3
Maternal antibiotic use prior to 36 weeks gestation 5 (15.2%) 7 (17.1%) 0.92
Maternal antibiotic use during the intervention period 20 (60.6%) 29 (70.7%) 0.5
Infant birth weight in kg 3.36 ±  0.37 3.44 ± 0.46 0.39 ANOVA
Infant gestational age at birth in weeks 38.63 ±  1.16 38.5 ± 1.24 0.66 ANOVA
Preterm birth < 37 weeks 0 3 (7.3%) NA
Infant birth vaginal 15 (45.5%) 17 (41%) 0.73
Infant birth caesarean section 18 (54.5%) 24 (58.5%) 0.52
Ever breastfed 33 (100%) 40 (97.6%) NA
Infant breastfed until 6 months of age 27 (81%) 28 (68%) 0.29
Average breastfeeding duration in months 9.20 ± 3.67 8.03 ± 4.07 0.20 ANOVA
Infant given any infant formula during intervention period 28 (84.8%) 34 (82.9%) 0.92
Age at introduction to infant formula in months in infants given formula 2.14 ± 2.86 2.28 ±3.27 0.87 ANOVA
Infant consumption of any prebiotics (in formula) during the intervention period 15 (45.5%) 18 (43.9%) 0.92
Infant consumption of any probiotics during the intervention period 18 (54.5%) 17 (41.4%) 0.38
Infant antibiotic use during the intervention period * 12 (36.4%) 24 (58.5%) 0.09
Age at introduction to solid foods in months 5.05 ± 0.65 4.91 ± 0.69 0.36 ANOVA
Infant weight at 3 months of age in kg 6.04 ± 0.77 6.38 ± 0.75 0.06 ANOVA
Infant weight at 6 months of age in kg 7.56 ± 0.89 8.07 ± 0.91 0.02 ANOVA
*Dose not include antibiotics given prophylactically during labour 
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was also found to reduce the alpha diversity of the gut microbiome by 8-weeks into the 
intervention compared to the placebo group, and this difference was maintained until 
16-weeks after the start of the intervention (Figure 4.2, C). However, the fold change 
difference in all alpha diversity measures between the two groups after 8-weeks of 
intervention was not significant (ANOVA: Fisher, p = 0.075; Shannon, p = 0.14; PD, p 
= 0.16; Chao1, p = 0.12).  

Figure 4.2. Maternal microbiome composition over the intervention period (A), and 
infant microbiome composition both over the entire study period (B), and only at the 2 
and 4-month timepoints (D). The vectors on the infant plots are ASV 1 and 156 
(Bifidobacterium), and ASV 414 (Blautia), and vectors on the maternal plot are ASV 17 
(Faecalibacillus), 26 (Parabacteroides), 302 (Enterocloster), and 387 (Blautia). The 
change in alpha-diversity from baseline to 8 and 16 weeks within both the prebiotic and 
placebo groups (C).  

Confounding factors that need to be considered when assessing the impact of the 
intervention over the study period were identified using a distance-based linear model 
(DistLM). Maternal microbiomes were assessed only at 5 of the 6 timepoints due to high 
similarity of the microbiome composition at 2- and 4-months. Antibiotic use prior to 36-
weeks’ gestation, as well as age and ethnicity (which is assumed to impact diet), and age 
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were determined to explain a significant portion of the total variability. Infant samples 
were assessed at all timepoints, and birth mode, gender, and breastfeeding habits 
explained a significant proportion of the total variability (Table 4.3). 

Table 4.3. Factors identified using DistLM that explain a significant amount of 
variability in the microbiome composition. Each timepoint was assessed independently 
using the same method, and the proportion of contribution (Prop) for each factor at 
each timepoint is shown.  

 

To assess patterns in SCFA concentration during the intervention period, 
PERMANOVA was used to compare the resemblance of each of the three most 
predominant SCFA among the intervention groups. Maternal acetic acid concentrations 
were found to differ by the intervention (p = 0.008; Pseudo-F = 7.09) and over time (p = 
0.0025; Psudo-F 7.1), with pairwise tests showing differences between the groups at the 
28-week and 4-month timepoints. Maternal butyric (p > 0.001; Psudo-F 6.1) and 
propionic (pp = 0.004; Psudo-F 3.9) acid differed by time but not by intervention group. 
Infant SCFA concentrations also differed significantly by time (p > 0.004), but not by 
intervention, and butyric acid showed the larges affect size over time (Psudo-F 92.65). 

The SCFA concentrations were also split by randomised group, and plotted over the 
study period. Concerning the maternal samples within the placebo group, no significant 
shifts were detected, while in the prebiotic group, butyric acid increased from baseline 
up until 36-weeks’ gestation (p = 0.04). There was also a significant drop in acetic acid 
(p = 0.002) and butyric acid (p = 0.001) concentrations from the pre- to post-pregnancy 

Maternal variables p-val    Prop. Infant variables p-val     Prop.
20-week sequential tests 2-months sequential tests

Antibiotics prior to 36weeks 0.01 2.3 Duration of breastfeeding >0.01 2.6
Age 0.01 2.2 Birth mode >0.01 2.3
Ethnicity 0.03 1.9 Ever breastfed 0.02 2.2

28-week sequential tests 4-month sequential tests
Antibiotics prior to 36weeks >0.01 2.5 Duration of breastfeeding >0.01 2.9
Age 0.03 1.9 Gender >0.01 2.7
Ethnicity 0.04 1.8 Birth mode 0.03 2.0

36-week sequential tests 6-month sequential tests
Antibiotics prior to 36weeks 0.01 2.1 Duration of breastfeeding >0.01 3.3
Age 0.04 1.8 Gender >0.01 2.1

2-month sequential tests 12-month sequential tests
Ethnicity 0.01 2.3 EverBreastfed 0.02 2.5

6-month sequential tests
Ethnicity 0.01 2.2
Age 0.03 2.0
Antibiotics prior to 36weeks 0.02 2.1
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period in the prebiotic group (Figure 4.3, A). The change in maternal SCFA 
concentration from baseline throughout the pregnancy period was also compared.  

In the prebiotic group, 59% of the participants had a positive fold change in acetic acid 
concentrations from baseline to 28 weeks compared to 31% of the participants in the 
placebo group. From baseline to 36-weeks, 69% and 46% of the participants in the 
prebiotic and placebo groups respectively experienced a positive fold change in acetic 
acid concentration. The concentrations of all three acids increased from baseline in the 
prebiotic group, while in the placebo group, acetic acid concentrations decreased from 
the baseline. A significant difference in the baseline shift of acetic acid concentration 
was observed between the randomised groups during pregnancy (Figure 4.3, B).  

 

Figure 4.3. Shifts in individual SCFA concentrations (µmol g-1) in maternal samples 
over the study period. ** indicate significant differences p>0.01, and * indicate 
significant differences p ≥ 0.05 determined using a one-way repeated measures ANOVA 
(A). Fold change in SCFA concentration from baseline to 8 and 16 weeks into the 
intervention (B). 

The change in SCFA concentration over time in infant samples was also assessed within 
each randomised group. (Figure 4.4). Butyric and propionic acid both significantly 
increased from 6-months to 12-months of age in both groups, while in the placebo 
group, the concentration of butyric acid also increased significantly from 4 to 6-months. 
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Acetic acid concentrations did not increase significantly during the study, but remained 
at a relatively high level over the first 6-months of life, averaging 310 µmol g-1. A 
significant drop in acetic acid from 6 to 12-months was seen in the prebiotic group.  

 

Figure 4.4. Individual SCFA concentrations (µmol g-1) in infants over the study period, 
separated by intervention group. Significant differences (padj>0.001) between 
timepoints are identified as ***. Timepoints compared were 2 – 4-months, 4 – 6-months, 
and 6 – 12-months. 

Enterotypes were assigned to maternal samples to observe shifts in these important 
taxonomic groups over time and between randomised groups. Twenty-eight maternal 
samples (mostly from the post birth period) were not compositionally similar to the 
MEtaHIT reference samples and therefore confidence in those assignments is lower, 
however, the gut microbiome of pregnant mothers is expected to look characteristically 
different to that of a non-pregnant female, which might explain some of the low 
similarity. Of the 417 assignments, 190 were Firmicutes enriched (F-type), 143 were 
Bacteroides enriched (B-type), and 84 Prevotella enriched (P-type). At the 20-week 
baseline, 65% and 63% of participants had a Firmicutes dominated Enterotype in the 
placebo and prebiotic groups respectively. At the 36-week timepoint, the proportion of 
Firmicute dominated Enterotypes decreased to 52% in the placebo group, and 45% in 
the prebiotic group. Over the pregnancy period, the shift from a Firmicutes dominated 
Enterotype to either other (P or B) Enterotypes was significant in the prebiotic group (p 
= 0.048) but not the placebo group (p = 0.45). 

Random forest (RF) was used to estimate weather samples could be classified into 
intervention groups based on the composition of genera at the 28-week timepoint and at 
the 6-month timepoint. At 28-weeks the OOB error was 0.479, with Eubacterium, 
Lachnospirales gen, and Schaedlerella enriched in the placebo group and contributing 
most to the difference between the groups. At 6-months, the OOB error was 0.53, and 
the genera that most contributed most to the classification were Blautia and 
Lactobacillales sp, both of which were more abundant in the placebo group. Similarly, 
sparse partial least squares discriminant analysis (sPLSDA) was used to determine the 
level of accuracy in distinguishing intervention groups. After 100 repeats of validation, 



	

 142 

the proportion of samples incorrectly classified to the placebo group 1 was 57%, and 
38% to the prebiotic group. Therefore, the microbiome composition could not be used to 
predict the randomised group using RF. 

4.5.3 Differential abundance of taxa between intervention groups 
Differentially abundant taxa were identified only within abundant (filtered to 969 ASVs) 
members using ANCOM-BC. A total of 12 phyla, 76 families, and 219 genera were 
scrutinized for significant differences between intervention groups at the two timepoints 
during pregnancy, and first two infant timepoints. At 28-weeks four families and five 
genera were identified, and at 36-weeks five families and 10 genera were identified as 
differentially abundant. No taxa with significantly different abundance at the phyla level 
were identified in the maternal microbiome samples (Table 4.4). The largest affect size 
was associated with the enrichment of Selenomodaceae in the maternal placebo group at 
36-weeks. Similarly, Negativicutes at 4-months were enriched in the infant placebo 
group with the largest effect size. These taxa were plotted considering maternal 
antibiotic use and infant birth mode (significant categorical confounders) and a similar 
trend was observed in both maternal and infant samples. The placebo group had 
enriched abundance of Negativicutes, regardless of antibiotic use or birth mode (Figure 
4.5). 

One phylum, two families, and five genera had significantly different abundance when 
comparing the two randomised groups in the infant microbiome at 2-months. At 4-
months there was a further single phylum, three families, and five genera. Genera from 
Closteridia were identified in each group, and genera within Lachnospiraceae were more 
abundant in the placebo group, while genera within Peptostreptococcaceae were more 
abundant in the prebiotic group (Table 4.5). Lastly, to examine the relationship between 
the class Clostridia and butyric acid concentrations, the abundance of the significantly 
enriched members of this class at 28 weeks were correlated with butyric acid 
concentrations in the same sample. Of the six taxa tested, no correlations had R values 
greater than 0.24.  
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Table 4.4. Families and genera identified with differential abundance between the maternal microbiomes in the 2 randomised groups 
at 28- and 36-weeks. Bolded taxa indicate the taxonomic level tested, and all results shown are significant after BH correction (padj 
<0.001). The average bias corrected (corrected for differences in sampling fraction) abundance for maternal genera ranged from 
0.007 – 8.7. 

 

  

Enriched in placebo group
Phylum/Class Family Genus effect size Placebo Prebiotic Phylum/Class Family Genus effect size Placebo Prebiotic
Actinobacteriota Atopobiaceae -0.33 0.13 (0.47) 0.08 (0.58) Bacilli Erysipelatoclostridiaceae Erysipelatoclostridiaceae gen -2.03 0.59 (1.55) -0.01 (0.38)
Bacilli Staphylococcaceae -0.67 0.25 (1.09) 0.08 (0.68) Bacilli Lactobacillaceae Lacticaseibacillus -1.70 0.48 (1.12) 0.07 (0.65)
Clostridia Lachnospiraceae Hungatella -0.26 0.66 (1.27) 0.56 (0.98) Bacilli UBA660 CAG-1000 -0.33 0.32 (1.05) 0.23 (1.01)
Clostridia Lachnospiraceae Sellimonas -0.96 1.45 (2.10) 0.92 (1.62) Clostridia Lachnospiraceae Merdimos -0.23 0.21 (0.94) 0.16 (0.64)
Clostridia Lachnospiraceae Schaedlerella -0.34 2.48 (2.04) 1.47 (1.69) Negativicutes Selenomodaceae -1.70 0.63 (1.71) 0.04 (0.58)
Desulfobacterota Desulfovibrioceae Bilophila -0.22 2.90 (1.65) 2.66 (1.72)
Enriched in prebiotic group
Clostridia Eubacteriaceae 1.35 0.13 (0.53) 0.47 (1.22) Actinobacteriota Atopobiaceae Lancefieldella 0.50 0.13 (0.57) 0.21 (0.57)
Clostridia UBA9506 1.27 0.23 (0.74) 0.59 (1.31) Actinobacteriota Atopobiaceae 0.43 0.13 (0.65) 0.21 (0.64)
Clostridia Peptoniphilaceae Aerococcus 1.60 0.10 (0.39) 0.14 (0.58) Bacteroidota Barnesiellaceae 0.62 0.11 (0.76) 0.26 (1.07)

Bacteroidota Barnesiellaceae Barnesiella 0.68 0.11 (0.71) 0.27 (1.03)
Bacteroidota Muribaculaceae UBA7173 0.51 0.12 (0.49) 0.24 (1.24)
Bacilli UBA660 DUPI01 2.57 0.27 (0.79) 1.07 (1.58)
Clostridia Acutalibacteraceae Pseudoruminococcus 0.40 0.58 (1.79) 0.76 (1.96)
Clostridia UBA9506 0.95 0.19 (0.55) 0.40 (1.07)
Clostridia UBA9506 UBA9506 1.02 0.19 (0.53) 0.41 (1.04)
Proteobacteria Enterobacteriaceae 1.16 0.14 (0.94) 0.52 (1.56)

36-weeks
average bias corrected abundanceaverage bias corrected abundance

28-weeks
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Table 4.5. Phyla, families, and genera identified with differential abundance between the randomised groups at the 2- and 4-month 
timepoints in infants. Bolded taxa indicate the taxonomic level tested, and all results shown are significant after BH correction (padj 
<0.001). The average bias corrected (corrected for differences in sampling fraction) abundance for infant genera ranged from -0.007 
– 8.4.  

 

Enriched in the placebo group
Phylum/Class Family Genus Effect size placebo prebiotic Phylum/Class Family Genus Effect size placebo prebiotic
Clostridia Lachnospiraceae Sellimonas -0.87 0.34 (0.93) 0.08 (0.61) Bacilli Lactobacillales_sp -0.40 0.23 (0.71) 0.13 (0.88)
Clostridia Lachnospiraceae Schaedlerella -0.22 0.33 (1.36) 0.19 (0.65) Clostridia Cellulosilyticaceae -0.76 0.25 (0.99) 0.04 (0.75)
Clostridia Lachnospiraceae Hungatella_A -0.10 0.29 (0.63) 0.19 (1.08) Clostridia Lachnospiraceae Mediterraneibacter -1.57 0.38 (1.52) 0.08 (0.52)
Desulfobacterota -0.21 0.35 (1.23) 0.27 (0.99) Clostridia Cellulosilyticaceae Niameybacter -0.41 0.20 (1.14) 0.22 (0.78)
Desulfobacterota Desulfovibrioceae -0.32 0.35 (0.16) 0.27 (0.85) Negativicutes -3.31 6.10 (1.96) 4.03 (2.05)
Desulfobacterota Desulfovibrioceae Bilophila -0.11 0.35 (1.15) 0.25 (0.85)
Negativicutes Megasphaeraceae -0.64 0.19 (0.70) 0.06 (0.47)
Enriched in the prebiotic group
Clostridia Peptoniphilaceae Aerococcus 1.73 0.16 (0.79) 0.55 (1.16) Desulfobacterota 0.14 0.22 (0.96) 0.27 (1.19)

Desulfobacterota Desulfovibrioceae 0.82 0.22 (0.82) 0.47 (1.28)
Desulfobacterota Desulfovibrioceae Bilophila 1.27 0.17 (0.98) 0.65 (1.51)
Clostridia Peptostreptococcaceae Terrisporobacter 1.14 0.19 (0.97) 0.75 (1.99)
Clostridia Peptostreptococcaceae Peptostreptococcaceae_gen 0.84 0.10 (0.65) 0.50 (1.74)

2-months  4-months
average bias corrected abundanceaverage bias corrected abundance
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Figure 4.5. Bias corrected abundance of Selenomodaceae and Negativicutes, which 
were both significantly different (padj <0.001), and had the largest effect size difference 
between intervention groups in maternal and infant microbiomes respectively. The 
intervention groups have been split by significant confounding factors that were 
identified previously using DistLM.  

Differentially abundant ASVs were also detected between the intervention groups at the 
28-week, 36-week, and 6-month timepoints (Table 4.6). The same ASV identified as 
Blautia was enriched in the placebo group at both 28 and 36-weeks. While also 
controlling for individual, eleven taxa were found to be enriched in the prebiotic group 
compared to the placebo group across all timepoints during the intervention.  
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Table 4.6. Maternal ASVs with differential abundance between placebo (group 1) and 
prebiotic (group 2) groups at 3 timepoints during the intervention, and across the entire 
intervention period. Differences were determined using DESeq, and p values have been 
adjusted (padj) using the Benjamini-Hochburg adjustment.  

The infant microbiome was also scrutinized at each timepoints individually for 
differences between the intervention groups. Overall, 39 ASVs were found with 
significantly differential abundance between the two groups. ASVs within 
Gammaproteobacteria, Negativicutes, and Verrucomicrobiae were only enriched in the 
placebo group, and primarily were enriched at the 2, and 4-month timepoints. The 
prebiotic group saw ASVs within Bacteroidia and Clostridia more frequently enriched. 
Bacteroides caccae (ASV 44) was enriched in the prebiotic group at the 2, 4, and 6-
month timepoints, and Prevotella sp (ASV 47) was enriched in the placebo group at the 
6 and 12-month timepoints (Figure 4.6).  

ASV taxa
log2 Fold 
Change padj

enriched 
group

28 weeks
387 Blautia sp 29.99 <0.001 1

2345 Oscillospirales sp 29.91 <0.001 1
36 weeks

387 Blautia sp 29.99 <0.001 1
573 Lachnospiraceae 10.62 0.09 1

2862 Oscillospirales sp 17.71 <0.001 2
1779 Ruminococcaceae 30 <0.001 1

6 months
1795 Burkholderiaceae sp 29.96 <0.001 1
2980 Butyricicoccaceae sp 29.88 <0.001 1

302 Enterocloster sp 30 <0.001 1
2953 Lawsonibacter sp 30 <0.001 1

Over the entire intervention period
Bacilli

17 Faecalibacillus 14.56 <0.001 2
75 Turicibacter 14.98 <0.001 2

Bacteroidia
26 Parabacteroides merdae 11.01 <0.001 2
87 Alistipes finegoldii 13.73 <0.001 2
126 Alistipes obesi 10.75 0.012 2

Clostridia
31 Romboutsia timonensis 18.54 <0.001 2
146 Lachnospiraceae 18.27 <0.001 2
182 Lachnospiraceae 12.1 <0.001 2
204 Lachnospiraceae 12.24 0.006 2
386 Lachnospiraceae 7.86 0.012 2
815 Oscillospirales 6.56 <0.001 2
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Figure 4.6. Log2 fold change of significantly enriched bacterial ASVs between infants 
in the placebo and intervention groups. The lowest taxonomic ID is followed by the ASV 
number. Each of the age groups are plotted in the same descending order from youngest 
to oldest for each taxon. 

Lactobacillus, and Bifidobacterium are expected to respond with increased abundance to 
prebiotics. Therefore, a Wilcoxon signed rank test was used to compare the abundance 
of these genera at baseline (20-weeks) to the abundance at 28- and 36-weeks in each 
intervention group. Lactobacillus did not change in abundance in either group, except 
for a decrease in the placebo group from 20-weeks to 6-months. However, 
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Bifidobacteriaceae gen and Bifidobacterium both significantly increased from 20- to 28-
weeks (p<0.02) and from 20- to 36-weeks (p<0.01) in the prebiotic group only. To 
determine if the abundance of these two genera would remain elevated after birth, the 
maternal baseline abundance was compared to the 2, 4, and 6-month timepoints. In the 
placebo group, the abundance of Bifidobacterium spp. remained relatively consistent 
over the study period, only increasing non-significantly at the 2-month timepoint. In the 
prebiotic group both Bifidobacteriaceae gen and Bifidobacterium remained significantly 
higher than baseline at the 4 and 6-month timepoints, but at the abundance of 
Bifidobacterium dropped at the 2-month timepoint only, where it was no longer enriched 
compared to baseline (Figure 4.7, A). The increase in abundance of Bifidobacterium 
species after prebiotic supplement may be associated with maternal enterotype. At 
baseline there was a higher proportional abundance of species within Bifidobacteriaceae 
in the F dominated enterotype compared to the B and P dominated enterotypes 
regardless of randomised treatment group. From 20- to 28-weeks, Bifidobacterium 
infantis and Bifidobacterium spp predominantly increased in proportional abundance in 
all enterotype groups. At 36 weeks, the relative proportion of Bifidobacterium infantis 
increased in both the F (11.3%) and B (10.8%) enterotype groups but decreased in the P 
enterotype group (-2.14%). Also, the relative proportion of Bifidobacterium spp 
decreased in both the P and B enterotype groups (-1.36%, and -36% respectively), but 
continued to increase in the F enterotype group (19.2%) from 28 to 36 weeks (Figure 4.7 
B).  

Infants are expected to have higher diversity of Bifidobacterium species in the gut 
during the first year of life compared to adults, and at 2-months of age, infants hosted 
six Bifidobacterium species with an average abundance greater than 0.3%. Of these six 
species, B. infantis was most abundant (average 27%), and B. dentium/moukalabense 
was least abundant (average 0.3%). A comparison of these species between all infants in 
each randomised group at 2-months of age showed no significant difference in 
abundance (p > 0.17). 
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Figure 4.7. The response of members of Bifidobacteriaceae to a maternal prebiotic 
intervention. (A) Differences in the CLR transformed abundance of Bifidobacterium 
over the six timepoints (20, 28, 36-weeks, and 2, 4, and 6-months) of the study period. 
Negative abundance does not indicate a deficit in abundance, but rather an abundance 
less than the mean centre abundance. Colours compare between prebiotic (orange) and 
placebo (green) groups. Bifidobactericeae gen is a genus which were unresolved past 
the family level. (B) Proportional abundance of species within Bifidobacteriaceae 
according to enterotype and compared between prebiotic and placebo groups. 
Timepoints shown are baseline (20-weeks) and post intervention (28-weeks). 
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4.5.4 Temporal overview of maternal and infant microbiome and 
SCFA concentrations 
Changes to relative community abundance were observed over the pregnancy period 
with Bacteroidales expanding by 6% on average, and Oscillospirales reducing an 
average of 2.5%, from 28 to 36 weeks. The abundance of Bacteroidales dropped after 
birth to an average of 26%, and then expanded again by 4% at 6 months (Figure 4.8). 
Changes in abundance were seen when comparing directly between pre- (36w) and post- 
(2m) birth. After birth Clostridiales expanded by 1.5%, and Lachnospirales reduced by 
2.6% on average. The infant microbiome also shifted over the study period and most 
noticeably after the introduction of solid food, which was on average at 5-months of age 
(Figure 4.9). From 4 to 6 months, Bacteroidales and Lachnospirales both expanded by 
4% and 7% respectively while Clostridiales and Enterobacterales both contracted by 
6.5% and 5% respectively. From 6 months to 12 months, Lachnospirales increase by 
18.5% while Actinomycetales decrease by 20%.  

Figure 4.8. Average relative abundance of the microbiome from all 71 mothers over the 
six timepoints of the study period. The legend lists the bacteria in descending order of 
abundance. 
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Figure 4.9. Average relative abundance of the microbiome from all 75 infants over the 
four timepoints of the study period. The legend lists the bacteria in descending order of 
abundance. 

The average rarefied alpha diversity dropped consistently at each timepoint during the 
pregnancy period, with a significant drop in PD and Fisher diversity from 20- to the 36-
weeks (padj<0.036), PD also dropped significantly from 2- to 6-months (padj=0.006). 
Estimates of richness and diversity for infants also increase significantly over the study 
period from 4 to 6 months (padj>0.001), and from 6 months to 1 year (padj>0.001) 
(Figure 4.10). 
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Figure 4.10. Richness and diversity estimate for both maternal (A) and infant (B) 
samples over the study period. Significant differences (p > 0.05) between timepoints are 
indicated by a * over brackets.  

During the pregnancy period, the average acetate, propionate, and butyrate 
concentrations were highest at the 36-week timepoint. Both acetate (padj=0.02) and 
butyrate (padj=0.002) dropped significantly from the 36-week timepoint to the 2-month 
timepoint, and remained significantly lower at the 4-month (padj<0.01) and 6-month 
(acetate, padj=0.02; butyrate, padj=0.01) timepoints. Propionate was also significantly 
lower at 4-months after birth compared to 36-weeks’ gestation (Figure 4.11).  
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Figure 4.11. One-way repeated measures ANOVA showing significant differences in 
SCFA concentration in maternal samples over time. 

From 2- to 4-months of age, butyric and propionic acid remained relatively similar, 
ranging from an average of 2.5±5.0 to 2.7±3.3 µmol g-1 and 7.1±7.2 to 6.8±8.2 µmol g-1 
respectively. From 4- to 6-months of age, and 6 to 12-months of age both butyric acid 
and propionic acid significantly increase to 5.22±4.9 and then 20.47±13.2 µmol g-1, and 
19.1±14.5 and then 32.6±13.5 µmol g-1 respectively. Acetic acid remained relatively 
consistent over the first 6-months of life increasing from 298.1±84.4 µmol g-1 at 2-
months to 320.1±99.2 µmol g-1 at 6-months, but then dropped from 6- to 12-months to 
an average of 269.9±77.1 µmol g-1. 

4.5.5 Other factors associated with microbiome composition 
The maternal microbiome displayed significant differences in microbial beta diversity 
according to stool form over all timepoints (PERMANOVA p = 0.001; Pseudo-F = 
2.17). A pairwise test comparing firm (1-2), normal (3-4), and loose (5-7) stool groups 
showed a significant difference accross all three groups (p > 0.01). The association 
between maternal stool form, diversity, and SCFA concentration was determined by 
comparing the average Fisher, Chao1, phylogenetic diversity, and total SCFA 
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concentrations within Bristol stool form scale (BSFS) groups (Figure 4.13). All diversity 
measures dropped significantly in the firm stool group compared to the loose stool 
group (rm-ANOVA p<0.03), while acetate, butyrate, and propionate all significantly 
increased (rm-ANOVA p<0.001). The average Bristol Stool form at baseline was nearly 
identical between the two groups (placebo 4.0±1.0, prebiotic 3.9±1.3), and remained 
similar during pregnancy and just after birth. At the 4-month timepoint the Bristol stool 
form was significantly lower in the placebo group (3.6±1.0) compared to the prebiotic 
group (4.3±1.1) (ANOVA padj = 0.02). While not significant, the average Bristol stool 
form remained lower in the placebo group at 6 months. Infant samples were grouped 
according timepoint and the proportion of stool samples in each stool form group was 
determined. No infant stool samples were firmer than a 3 on the BSFS, and at 2 months 
75% of all stools were type 6. At 12 months, 79% of stools were of type 4 or 5 (Figure 
4.14).  

 

Figure 4.12. Maternal microbiome diversity and total SCFA concentration according to 
Bristol stool form group. To fit the 4 measures visually on the same Y axis the 
phylogenetic diversity (PD) has been divided by 10, and Chao1 diversity and total (log 
10) SCFA concentration have been multiplied by 10. 



	

 155 

 

Figure 4.13. Changes to Bristol stool form over the first year of life. 

Patterns search was also used to find groups of bacterial genera in maternal stool with 
abundance that corelated with stool firmness at baseline (20-week timepoint). 
Acutalibacteraceae gen, Ruthenibacterium, Akkermansia, and Oscillibacter were all 
significantly corelated with increased stool firmness (p < 0.042), while not significant, 
Haemophilus, Butyricicoccaceae gen, Christensenellales gen, and Faecalibacillus were 
all positively correlated with decreasing stool firmness (Figure 4.15). 

 

Figure 4.14. Bacterial genera from 71 maternal microbiomes at baseline (20-weeks 
pregnancy), that corelate with Bristol stool form. The heatmap shows bacterial 
abundance, according to stool form which ranges from firm (1) to lose (6). 
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A distance-based redundancy analysis was used to illustrate the variability explained by 
the confounding factors (identified using DistLM) at various timepoints for maternal 
and infant samples. Age and ethnicity appeared to have a similar direction of impact on 
maternal samples when visualised in 2D space during pregnancy, but not after birth. 
Through the study period, the consumption of pre- and pro- biotics appeared to have an 
opposing impact on the maternal sample distribution (Figure 4.16). Birth mode and 
gender were found to have a similar direction of influence on the infant microbiome, 
and distinct clusters by gender were observed at 2- and 4-months of age (Figure 4.17). 
The number of caesarean births differed significantly by gender (Chi-Squared statistic 
5.63, p = 0.02), with boys more commonly being born caesarean than girls (25 boys and 
15 females.). At 2-months of age, the abundance of Bacteroidota was significantly 
higher in vaginally born infants compared to caesarean born infants (FDR > 0.001), and 
at the genus level Phocaeicola and Bacteroides were significantly more abundant in the 
vaginally born infants (FDR > 0.04). At 4-months of age, the abundance of Bacteroidota 
was still significantly higher in vaginally born infants (FDR > 0.001) and additionally, 
the abundance of Firmicutes (Bacilli) was significantly higher in caesarean born infants 
(FDR = 0.03). At 4-months, there were no statistically significant differences in the 
abundance of bacterial genera, however at the family level Enterococcaceae were 
significantly higher in caesarean born infants (FDR = 0.048). By 6-months of age the 
grouping by gender and birth mode was no longer observed, and by 12-months prebiotic 
formula and antibiotic use were contributing more strongly, but in opposite directions on 
infant sample distribution (Figure 15). Duration of breastfeeding also explained a 
significant proportion of the infant microbiome variability at 2, 4, and 6-month 
timepoints. Overall, the total variation explained by factors included in the DistLM was 
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much lower than the fitted variation represented in the dbRDA plots, indicating that a 
large proportion of the variation in the microbiome is not explained by these factors.  

Figure 4.15. Maternal samples plotted within a dbRDA at 4 timepoints. Vectors 
overlaying each plot are factors that contributed more than 1.5% to the overall 
variation explained (determined using DistLM), and bolded vectors contributed 
significantly to the variation explained.  
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Figure 4.16. Infant samples plotted using a dbRDA at each of the 4 timepoints. Vectors overlaying each plot are factors that 
contributed more than 1.5% to the overall variation explained (determined using DistLM), and bolded vectors contributed 
significantly to the variation explained. 



	

 152 

To explore the influence of breastmilk on the developing microbiome, at 4-months of 
age the infants were grouped into breastfeeding duration categories (0-2m n=8, and 2-
4m n=63), and the average proportion of genera were plotted in each group. In infants 
breastfed for at least 2 months, Bifidobacterium and Bacteroides made up a larger 
proportion of the microbiome than in infants breastfed less than 2-months (Sup Figure 
4.3). However, only 8 infants were breastfed less than 2-months so the lack of 
Bifidobacterium spp may also be due to under sampling.  

4.6 Discussion 
The breakdown of dietary fibre in the large intestine is one of the most important drivers 
of gut microbiota composition, and prebiotic dietary supplements have been shown to 
have significant positive effects on the microbial community of both infants and adults. 
In this randomised controlled trial, the structure and function of both the maternal and 
infant gut microbiome were assessed for the effects of a maternal prebiotic supplement. 
From 20 weeks of pregnancy, until 6 months after birth, mothers consumed either a 
prebiotic fibre mixture of fructo-oligosaccharides and galacto-oligosaccharides, or a 
placebo (maltodextrin). Despite the strong inter-individual variations observed between 
women over the study period, the prebiotic supplement made a significant impact to 
both the gut microbiome composition and SCFA concentrations. The maternal prebiotic 
supplementation also made a significant impact on the infant microbiome which was 
observed over the first year of life. 

4.6.1 Microbiome response to prebiotic supplementation during 
pregnancy and during lactation 
Supporting the gut microbial community via prebiotic supplementation is an emerging 
strategy that supports the growth of commensal microbes and assists the microbiome 
resist dysbiosis. In this randomised controlled trial, the prebiotic supplement 
significantly impacted the maternal microbial beta diversity over the intervention period. 
The same analysis showed beta diversity was not impacted by an interaction between 
the intervention and time, indicating no long-term cumulative effect of the prebiotic. 
Rather the prebiotic appeared to stimulate a shift in the microbial community that may 
persist as long as the environmental conditions remain. Similarly, in overweight adults a 
sustained shift to the bacterial population (cells/g of faeces) after a prebiotic supplement 
containing GOS was observed after 6- and 12-weeks when compared to a placebo group 
(Vulevic et al., 2013). Although, most of the trials assessing prebiotic interventions in 
adults only last for 1 - 4 weeks (Sawicki et al., 2017), so it may not be possible to 
support this hypothesis with other long-term studies.  
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One of the most predictable responses to a prebiotic supplement with FOS and GOS is 
an increase in the abundance of Bifidobacteria. A recent meta-analysis summarised 20 
randomized controlled trials, 15 of which were examining FOS and GOS prebiotic 
types, and all were able to demonstrate an increase in this genus (Sawicki et al., 2017). 
Bifidobacteria in particular are able to utilize FOS via beta-fructofuranosidase, and are 
suspected to prefer shorter chain oligosaccharides based on growth patterns with various 
oligosaccharides (Ose et al., 2018). Bifidobacteria were found to be enriched in faecal 
samples at both 28 and 36-weeks’ gestation, demonstrating that the prebiotic could 
elevate the abundance of this important genus during the second half of pregnancy. It 
was also found that during the pregnancy period, the prebiotic supplement increased the 
stool concentrations of acetate. Unlike other abundant gut residents such as Bacteroides 
and Clostridia, Bifidobacterium ferment primarily carbohydrates, and produce lactate 
and acetate (Ose et al., 2018).Therefore, the increased acetate in the prebiotic group 
during pregnancy may be due in part to the increase in Bifidobacterium. An increase in 
both Bifidobacterium and acetate have been found in the faeces of pregnant mice 
receiving a GOS/inulin prebiotic supplement compared to mice fed a control diet during 
pregnancy (Brosseau et al., 2021); however, in an earlier study the abundance of 
Bifidobacterium increased in healthy adults after supplementation with either FOS or 
GOS, but acetate concentrations did not increase (Liu et al. 2017).  

After birth in the prebiotic group, the abundance of Bifidobacteria remained 
significantly higher than baseline except at 2-months postpartum, where the abundance 
was reduced to a level that was comparable to the abundance in the placebo group. 
Similarly, acetate concentrations were at their lowest point during the study period at 2-
months in the prebiotic group. In another study, the microbiome of 47 healthy women 
was compared across pregnancy and the postpartum period: three of their timepoints 
(23-28w and 33-38w pregnancy, and 6w postpartum) match closely with 3 of our 
timepoints. They observed an increase in the relative abundance of Actinobacteria and 
Bifidobacterium beginning at 33-38w pregnancy that peaked at 6w postpartum (Qin et 
al., 2021). In line with this study, a similar, but not significant pattern of increased 
Bifidobacterium was observed in the placebo group at 36-weeks; thus, an increase in this 
genus in the immediate post-partum period may be a characteristic fluctuation in the 
microbiome that occurs after pregnancy, or during the breastfeeding period. The early 
postpartum period is often a particularly difficult time in a mother’s life. Lactation (by 
increasing energy demands), sleep disturbance and depravation (by impacting endocrine 
and nervous systems), depression and infection can all impact the composition of the 
microbiome (Mutic et al., 2017), which may have contributed to the observed shifts in 
Bifidobacteria and acetate concentrations in this trial. However, it is also important to 
note that although the abundance of Bifidobacterium dropped in the prebiotic group at 
the 2-months timepoint, the abundance here was similar (mean difference of |0.32| in 
CLR) to that of the placebo group. This observation indicates that the prebiotic, and 
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potentially fibre in general, was most likely not driving the abundance of 
Bifidobacterium at 2-months postpartum.  

Over the entire intervention period, several other bacterial taxa were identified with 
significantly higher abundance in the maternal prebiotic group compared to the placebo 
group. These enriched ASVs included several Bacilli, Bacteroidia, and Clostridia. One 
feature enriched in the prebiotic group, which is known to respond to supplementation 
with FOS was Parabacteroides merdae (ASV 26). This taxa has previously been shown 
to grow equally well with any oligosaccharide supplement, producing both acetate and 
propionate (Ose et al., 2018), indicating this bacterium may have been able to utilise 
efficiently both FOS and GOS in this intervention. At 28 and 36-weeks’ gestation 
specifically, bacterial families and genera including Atopobiaceae and Lancefieldella, 
Barnesiellaceae and Barnesiella, Enterobacteriaceae, and Eubacteriaceae were all 
enriched in the prebiotic group. While previously none of these taxa have been 
described explicitly responding to prebiotic consumption, some strains of 
Enterobacteriaceae have been shown to grow well on FOS or GOS growth mediums 
(Hoeflinger et al., 2015). Also, the abundance of Barnesiella (Bacteroidota) has been 
found to be higher in lean male athletes (Bielik et al., 2020), and lower in obese adults 
(Chiu et al., 2014)  which may indicate this genus is enriched in healthy weight 
individuals. It is expected that gut microbes’ will engage in complex competitive and 
commensal cross-feeding habits (Seth and Taga, 2014). Therefore, the enrichment of 
Bifidobacteria, which produce mainly lactic acid and acetate (Liu et al., 2017), may also 
increase the abundance of other taxa. For example, the highly prevalent 
Enterobacteriaceae are the most taxonomically diverse family of bacteria within the gut 
(Martinson et al., 2019), and thus we might speculate that some strains may benefit from 
cross feeding, as this family displays no growth in absence of oligosaccharides 
(Hoeflinger et al., 2015). 

While the metabolic activity of some microbes can be anticipated, the eventual end-
products that result from the entire microbial community are more difficult to predict. 
Furthermore, the microbiome does not function in isolation from the host, and the health 
of an individual also plays a role in the resulting microbial end-products (Ose et al., 
2018). The additional demands on nutrient acquisition, as well as immune system 
remodelling that happen during the pregnancy period are expected to occur in 
association with the gut microbiome. For example, the diversity of the gut microbiome 
has been shown to drop during pregnancy, and butyrate producing bacteria in particular 
are lost while lactic acid-producing members expand in abundance (Mesa et al., 2020). 
In this study, the three predominant SCFA’s (acetate, propionate, and butyrate) were 
higher in both groups during the antepartum period compared to the postpartum period, 
which may be related to the fundamental metabolic changes necessary to support the 
developing foetus (Ziętek, Celewicz and Szczuko, 2021). However, both acetate and 
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alpha diversity showed directional shifts over the pregnancy period, that were different 
according to the randomised groups. In the prebiotic group, acetate concentrations 
increased towards later pregnancy, while alpha diversity decreased, which was opposite 
to what was observed in the placebo group. Acetate has the lowest pKa of all SCFA, and 
is both the strongest (Zhou, Cao and Zhou, 2013), and most prevalent acid in the gut. It 
therefore contributes substantially to lowering the gut pH, which would pose a selective 
pressure on the microbial community that could result in a decrease in alpha diversity 
(Simpson and Campbell, 2015).  

Butyrate concentrations also increased significantly during pregnancy in the prebiotic 
group, but remained at a relatively similar concentration in the placebo group. Butyrate 
displays anti-inflammatory effects in the gut, and is mainly produced by species within 
Clostridia, from acetyl-CoA which results from the breakdown of carbohydrates or 
lactate (Yadav et al., 2018). Differential abundance testing identified 3 different genera 
from the family Lachnospiraceae that were enriched at 28-weeks in the prebiotic group. 
At this taxonomic level, it may be difficult to speculate about the relationship between 
these taxa and the butyric acid concentrations, especially as none of these taxa corelated 
with butyric acid concentrations. In the gut, ~95% of the butyrate that is produced is 
transported across the epithelium (Pryde et al., 2002), and is utilised as an energy source 
preferentially by colonocytes (Roediger, 1980). Due to the rapid uptake of butyrate, two 
potential explanations for increased concentrations could be 1) decreased transit time 
which can impair the efficiency of butyrate uptake, or 2) butyrate production has 
increased. FOS has been shown to increase the production of butyrate through cross-
feeding of lactate produced by Bifidobacterium (Macfarlane, Steed and Macfarlane, 
2008), consequently, the prebiotic in this trial may also contribute to butyrate 
production, which would support gut health during pregnancy. 

The concentration of propionate did not appear to be affected by the prebiotic 
supplement, and in both groups, was higher during pregnancy compared to after birth. 
Propionate resulting from carbohydrates is produced primarily via the succinate 
pathway, which is mainly found in Bacteroidetes (Louis and Flint, 2017), and which did 
not differ in abundance between the groups. While GOS and inulin supplementation has 
been shown to increase propionate concentrations in pregnant rats (Brosseau et al., 
2021), in our study supplementation with GOS and FOS did not have this affect. 
Propionate is involved in host metabolic and immune processes that are particularly 
relevant during the pregnancy period (Louis and Flint, 2017; Ladyman and Brooks, 
2021; Ziętek, Celewicz and Szczuko, 2021). Therefore, propionate may be closely 
regulated during this time. 

The microbiome composition is also expected to respond to the changes associated with 
the progression of pregnancy. Alpha-diversity (discussed previously) and enterotypes 
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were used to describe broad changes that occurred over the pregnancy period, and that 
differ according to the randomised groups. Enterotypes are identified by the variation in 
abundance between Bacteroides (B), Prevotella (P), and Ruminococcus/Firmicutes (F) 
(Arumugam et al., 2011). Prevotella are considered mostly anti-inflammatory, while 
Bacteroides are considered more inflammatory, and the role of Ruminococcus is less 
clear (Klimenko et al., 2018). Enterotypes are a useful way to stratify samples based on 
community composition and may be particularly relevant in describing response to 
dietary intervention (Costea at al., 2017), however as with any discrete grouping 
method, applied to continuous data, some community structures will be on the cusp of 
one or more groups, and therefore less effectively clustered (Knights et al., 2014). 
During pregnancy, enterotypes have been shown to remain relatively stable up until 37-
weeks, when the proportion of F dominated enterotypes drops, and both P and B 
dominated enterotypes expand (Yang et al., 2020). In our study, the proportion of 
women with F dominated enterotype was similar in both the prebiotic (63%) and 
placebo (65%) groups at baseline. With the progression of pregnancy, the proportion of 
women with F enterotypes fell as expected, however at 36-weeks, only the prebiotic 
group experienced a significant shift to a P or B enterotype. This shift may mean that the 
prebiotic potentially promoted this shift in enterotype that is known to occur during the 
later stages of pregnancy. While it would have been interesting to determine if the shift 
from an F enterotype was more likely to result in a P or B enterotype in the prebiotic 
group, the subdivision of mothers by intervention, timepoint, and then enterotype 
resulted in groups too small to assess further statistically (P-type, 4 placebo, 8 prebiotic; 
and B-type, 11 placebo, 14 prebiotic).  

Lastly, the response to the prebiotic, in terms of an increase in Bifidobacteriaceae, 
appeared to differ according to enterotype. Within the prebiotic group, Bifidobacterium 
spp increased predominantly in the F dominated enterotype group, and Bifidobacterium 
infantis increased in the F and B dominated enterotype groups from baseline to 28 and 
36 weeks. An individualised response to prebiotic fibre (including GOS) according to 
the baseline microbiome composition has been demonstrated previously in adults 
(Holmes et al., 2022). Dietary changes have also been observed to produce inconsistent 
responses (Bedu-Ferrari, 2022), and these observations are thought to occur due to 
differences in bacterial membership, and enzyme capacity. In line with this evidence, 
one potential explanation for the favourable response to the prebiotic supplement in the 
F dominated enterotype group is that the microbial environment of this group is less 
resistant to change. Also, there was a larger abundance of Bifidobacteriaceae at baseline 
within the F dominated enterotype which together may have allowed for the 
proliferation of Bifidobacteria species. It is also important to recall that a significantly 
larger number of mothers shifted to a P of B dominated enterotype in the prebiotic group 
at 36 weeks, which demonstrates the complex interplay between pregnancy, and 
baseline microbiome composition towards the response to the prebiotic supplement.  
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4.6.2 Detectable shifts to the infant microbiome over time due to the 
maternal prebiotic supplement 
Unlike the maternal microbiome, the infant microbiome displays very little inter-
individual differences prior to the introduction of solid foods and the cessation of 
breastfeeding. It is also much more susceptible to perturbation during the early stages of 
development, and impacts to the assembly of the microbiome are predicted to have more 
long-lasting affects compared to impacts that occur after the community is established. 
The maternal prebiotic supplement was given to pregnant mothers to support their 
microbiome during pregnancy, with the anticipation that the benefits would also be 
received by the infant. In this study, over the first year of life the infant microbiome 
increased in richness, and alpha-diversity, and beta diversity was significantly impacted 
by the maternal intervention. Some bacterial features were also found to differ 
significantly between the randomised groups. At the ASV-level, Bacteroides spp (ASVs 
20, 46, and 586) were enriched at 2 or 4-months, and Bacteroides caccae (ASV 44), was 
enriched consistently at 2, 4, and 6-months. B. caccae is more abundant in infants born 
vaginally compared to caesarean (Stewart et al., 2018), and has been shown to have 
similar growth patterns to Bifidobacteria spp when grown with FOS in culture (Ose et 
al., 2018). Both of these strict anaerobic bacteria also colonise the infant gut within the 
first week of life (Yang et al., 2021), and due to their similar metabolic abilities 
Bacteroides may occupy a similar niche to Bifidobacteria, and may be associated with a 
healthy infant microbiome.  

Five ASVs classified as Negativicutes (ASVs 9, 91, 143, 151, 556), three of which were 
of the genera Veillonella, were enriched in the placebo group over the first year of life. 
This result is also supported by the enrichment of the Negativicutes class at 4-months, as 
well as Megasphaeraceae at 2-months in the placebo group. This class has been 
identified as a known propionate producer in the adult human gut (Reichardt et al., 
2014), but is not as commonly reported on in the infant microbiome; and in this study 
there was no difference in propionate concentrations between the randomised groups. In 
previous studies, compared to infants with feeding intolerance, both the Negativicutes 
class and Veillonella were significantly enriched in healthy infants (Hu et al., 2021), and 
compared to vaginally born breastfed infants the Negativicutes class and Veillonella 
were significantly enriched in caesarean born, mixed fed (breastmilk and formula) 
infants (Liu et al., 2019). Therefore, it is unclear what role this feature may play when 
enriched in the early infant microbiome. Although interestingly, Selenomodaceae 
(Negativicutes) were enriched in mothers within the placebo group at 36-weeks, 
indicating that potentially they are not as competitive in an environment that is 
supplemented by prebiotics. In the prebiotic group Aerococcus (Closteridia) was also 
enriched in both pregnant mothers and infants. While potential seeding of the infant 
microbiome from material gut microbiota has been assessed from stool samples using 
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metagenomic methods (Ferretti et al., 2018; Ravi et al., 2018), strain level variation in 
bacterial species requires that taxa are assess at this level. In this study, we did not 
identify any differentially abundant taxa at the strain level that were shared between 
mothers and infants, and because seeding was not a defined outcome of this study, no 
additional analyses of shared taxa were performed.  

A longitudinal analysis of the infant microbiome including alpha diversity and SCFA 
concentrations demonstrated a dynamic community that coincided with a changing 
metabolic environment. Acetate was the predominate SCFA in the infant profile over 
time, and the highest concentrations were observed between 2 and 6-months of age, and 
the lowest concentrations were observed at 12-months. This is in agreement with other 
literature, showing acetate concentrations peaks at 3-months, and then reduce to lower 
concentrations by 12-months during maturation of the infant microbiome (Ziętek, 
Celewicz and Szczuko, 2021). Acetate and lactate are predominantly produced from the 
fermentation of breast milk (Bridgman et al., 2017), and are therefore at elevated levels 
prior to the cessation of breastmilk feeding. On average, mothers in this study breastfed 
for 8.5(± 4.0)-months, which would explain the drop in acetic acid at 12-months. From 6 
– 12-months, the concentration of both butyrate and propionate significantly increased 
in all infants. This increase coincided with a significant increase in richness and 
diversity of the microbiome over the same time period. As solid foods are first 
introduced, the microbial populations are exposed to more dietary diversity, and evolve 
to take advantage of the new energy sources. For example, a number of members of the 
Lachnospiraceae family produce both butyrate and propionate (Louis and Flint, 2017), 
and have been shown to increase in infants after the cessation of breastfeeding (Galazzo 
et al., 2020). In this current study as well, the relative abundance of Lachnospirales 
increased from 4 to 6-months (7%) and from 6 to12-months (18.5%). As solid food 
intake increases breastfeeding is generally reduced, and with that, the transfer of 
bioactive compounds in breastmilk that regulate colonisation also reduce (Galazzo et al., 
2020). Additionally, microbial exposure from the environment (including pets, family 
environment, and foods) that begins at birth will be encountered more frequently as an 
infant ages, and contribute more heavily to the microbiome composition (Tamburini et 
al., 2016). The continual expansion and diversification of the gut community is a 
necessary progression that will ideally lead to a relatively stable adult microbiome. 
Indeed, after accelerated maturation of the microbiome has begun (~6 months of age), 
reduced diversity in the infant microbiome is associated with higher incidence of allergy 
(Galazzo et al., 2020), and increased diversity after ~6 months is more often associated 
with healthy outcomes (Matamoros et al., 2013; Jakobsson et al., 2014; Yassour et al., 
2016). However, it may be that the low diversity structure of initial colonisers) and a 
select group of bacteria, who perform evolutionarily evolved processes that benefit the 
development of the immune system and brain, may need to predominate in the gut for a 
certain period to establish host benefit. While exposure to microbes in the environment 
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is protective and necessary, potentially a rapid premature colonisation of more adult 
associated microbes facilitated by nutrients that support their growth, rather than a 
slower migration of microbes facilitated by partial breastfeeding may disrupt this critical 
process. The growth rates of potentially harmful or beneficial bacterial strains may also 
be an important consideration as there are lower levels of competition in the developing 
gut microbiome.  

4.6.3 Stool form and other factors that are associated with maternal 
and infant microbiome composition over time 
Birth mode has been suggested as one of the strongest determinants of microbiome 
composition in the first few months of life (Galazzo et al., 2020). In this study, 56% of 
the infants were born via caesarean, and the other 44% were born vaginally. Using a 
DistLM, our results indicate that birth mode had an impact on the microbiome that could 
be detected up to 4-months of age. Furthermore, a significantly higher abundance of 
Bacteroides and Phocaeicola were found in vaginally born infants compared to 
caesarean born infants at 2-months of age. Bacteroides in particular have been shown to 
be strongly impacted by birth mode (Galazzo et al., 2020), and have been detected at 
significantly higher abundances in the first week of life in vaginally born infants 
(Bäckhed et al., 2015). The number of caesarean births in this study differed 
significantly by gender, with boys more frequently born via caesarean than girls. A 
higher birthweight is thought to increase the chances of caesarean delivery, however, 
only 3/25 male caesarean births were overweight (< 4.0 kg), and 2/15 female caesarean 
births were overweight, indicating birthweight alone cannot explain this finding. It is 
also important to point out that infants in the prebiotic group weighed significantly more 
than infants in the placebo group at 6-months, however, there was no significant 
difference in the number of caesarean births or overweight births between the prebiotic 
and placebo groups. A population study in Scotland has also found that after correcting 
for birthweight, males were still more likely to be born via caesarean section (Smith, 
2000); and a more recent study found that after correcting for birthweight male babies 
have poorer intrapartum outcomes including higher rates of caesarean delivery and 
foetal distress (Dunn et al., 2015). This is particularly relevant to the larger outcomes of 
this study – which are to assess the allergic outcomes of infants for a benefit attributed 
to the maternal prebiotic supplementation – as boys have an increased incidence of 
asthma (Fuseini and Newcomb, 2017), and food allergy (Kelly and Gangur, 2009) than 
girls. Supporting the development of the gut microbiome may be particularly important 
after caesarean delivery for promoting later health outcomes.  

Breastfeeding has been shown to restore the microbiome of caesarean delivered infants, 
in part by increasing the abundance of Bifidobacterium (Guo et al., 2020). Breastfeeding 
is well understood to provide optimal nutrition to the developing infant, supporting 
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growth, and providing both essential nutrients as well as commensal microorganisms to 
the gut microbiome (Chong, Bloomfield and O’Sullivan, 2018). Breastfed infants 
experience fewer incidence of diarrhoea (Guo et al., 2020), and have lower incidence of 
atopic dermatitis in childhood (Friedman and Zeiger, 2005) compared to formula fed 
infants. At 4-months of age, we also found the proportion of Bifidobacterium to be 
higher in infants who were breastfed for at least 2-months, compared to those who were 
not. However, only 8 infants were breastfed less than 2-months so the lack of 
Bifidobacterium spp may also be due to under sampling. As the composition of 
breastmilk is influenced by diet (Bravi et al., 2016), the prebiotic may also benefit 
infants who are breastfed by mothers in the prebiotic group, however, with the highly 
variable duration of breastfeeding (± 4-months), it was beyond the scope of this study. 

Maternal and infants stools were categorised by stool form, which is a broad description 
of the water content of stool, and is associated with host health and transit time 
(Vandeputte et al., 2016). Loose stools have a higher water content, and are associated 
with faster transit time, and impaired absorption of nutrients across the gut epithelium 
(Vandeputte et al., 2016). Therefore, looser bowel movements may be more likely to 
flush opportunistic bacteria from the gut such as Haemophilus, which became more 
abundant in maternal stool with decreasing firmness at study baseline. On the other 
hand, longer transit times can increase stool firmness, and allow more time for water and 
nutrients to be taken up from the gut lumen. In this study Acutalibacteraceae gen, 
Ruthenibacterium, Akkermansia, and Oscillibacter became significantly more abundant 
with increasing stool firmness at study baseline. Akkermansia in particular has 
previously been shown to increase with stool firmness (Vandeputte et al., 2016), and as 
a mucin degrader (Tailford et al., 2015), that does not appear to benefit from the 
availability of oligosaccharides (Ose et al., 2018), is likely to be more abundant in the 
mucosa. Bacteria that thrive in close proximity to the host epithelium may be therefore 
more likely to expelled with increasing stool firmness. 

Across the entire study period, loose maternal stool also hosted a significantly lower 
bacterial diversity, and contained significantly higher SCFA concentrations. The 
opposite scenario, high diversity and low SCFA concentrations was observed in firm 
stools. Species richness has been shown previously to increase with increasing stool 
firmness (Vandeputte et al., 2016), but to our knowledge, the relationship between stool 
form, alpha diversity and SCFA concentrations has only previously been assessed in 
vitro (Tottey et al., 2017), and in chapter 2 and 3 of this thesis. In chapter 2, stool 
samples from adult women collected at two timepoints showed the same negative 
relationship between total SCFA concentrations and alpha-diversity, as well as 
associations between beta-diversity and stool form. 
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Stool form may also be impacted by the prebiotic supplement, as dietary fibres that 
resist digestion can increase faecal bulking in the large intestine (Simpson and 
Campbell, 2015). A systematic review of cereal fibre interventions also found these 
fibres significantly increase stool weight, frequency, and transit time (de Vries, Miller 
and Verbeke, 2015), which would improve stool form. Although, an improvement to 
stool form is expected to be more pronounced in individuals who consistently have more 
abnormal stool (very firm or very loose), compared to those with more normal stool. At 
baseline, the average stool form was both normal, and nearly identical for mothers in 
each of the intervention groups, and it remained similar between the two groups during 
pregnancy. At 4-months, stool form was significantly firmer in the placebo group 
compared to the prebiotic group, indicating a potential impact on stool form during the 
latter part of the intervention. One explanation may be that the gut was considerably 
disturbed over the pre- to postnatal period (as was evident in the significant drop in 
SCFA concentration, and shifts in the proportion of Clostridiales and Lachnospirales), 
and the prebiotic provided a buffer to this change, meaning mothers in the prebiotic 
group did not experienced a significant increase in stool firmness.  

4.6.4 Limitations 
In this intervention, the observed effect of the prebiotic in supporting the microbiome is 
limited by certain factors. The SCFA concentration and bacterial assemblages are 
expected to be more pronounced in individuals who are lacking in daily fibre 
consumption compared to individuals who may already be consuming adequate dietary 
fibre. Dietary patters are also expected to have a major influence on the structure and 
function of the microbiome. Diets with dramatic dietary differences such as vegetarian 
or vegan compared to omnivorous diets (Tomova et al., 2019), plant based vs animal 
based (David et al., 2014) or carbohydrate restricted compared to high-carbohydrate 
diets (Brinkworth et al., 2009) have a profound effect on gut microbial communities. In 
a large study such as this, it may be difficult to collect and analyse a complete dietary 
breakdown. However, the benefit of conducting whole diet interventions to better 
understand the relationship between host health and disease cannot be underestimated; 
and closer collaboration between dietitians and microbiome researchers may aid in this 
pursuit. Additionally, one potential benefit of the maternal prebiotic on the infant 
microbiome that was not fully investigated with this dataset was differences in seeding 
patterns. If vertical transmission is possible, then both the metabolic and microbial 
environment of the mother will determine the very first step in the establishment of the 
gut microbiome. By assessing the meconium, the maternal impact on the infant 
microbiome, prior to the action of the environmental factors that influence the 
colonisation process, may become clearer. Lastly, because generalist microbes have the 
ability to utilise many different enzymes, they can change the metabolic profile of the 
gut without necessarily changing in absolute abundance. Therefore, assessing changes to 
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the total metabolomic environment may be another way to better capture changes 
induced by the prebiotics.  

4.7 Conclusion  

Over the study period which involved both the pre- and postpartum period, mothers 
displayed strong interpersonal differences and the prebiotic intervention made a 
significant impact to both the gut microbiome composition and SCFA concentrations. 
As anticipated, Bifidobacterium responded in the prebiotic group with increased 
abundance, and acetate concentrations significantly increase as well. For the first time in 
humans this study also shows a significant difference in the composition of the infant 
microbiome associated with a maternal prebiotic supplement. Bacteroides caccae was 
consistently enriched until 6-months of age within the prebiotic group, indicating 
potentially better growth conditions for this important early life commensal. 
Selenomodaceae (Negativicutes) were enriched in the maternal microbiome of mothers 
within the placebo group, and Negativecutes including Veillonella were significantly 
enriched in the microbiome of their infants. In the prebiotic group Aerococcus 
(Closteridia) was enriched in the gut microbiome of both pregnant mothers and infants. 
As an important driver of microbiota composition, the prebiotic appeared to have 
significant positive effects on the microbial community of both infants and adults. The 
results have implications for the impact of maternal diet on infant gut health, as they 
indicate that it is possible to intervene on the development of the infant microbiome in 
utero by modulation of the maternal gut microbiome. The long-term health of these 
infants will enable a better understanding of how this intervention may prevent 
childhood allergic disease, and how the early microbiome structure may play into the 
initial disease mechanism.   
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4.9 Supplementary Material 

4.9.1 Supplementary figures 

Supplamentary Figure 4.1. Bacterial families recovered within the mock community 
sample across sequencing runs (A), and the proportion of reads assigned at the species 
level in the mock community sample compared to the known composition of the mock 
community (B).  

Supplementary Figure 4.2. Library size of all samples and negative controls in each 
sequencing run (A). Richness (B), Shannon alpha-diversity (C), and beta-diversity of 8 
replicate samples that were used as control samples in each sequencing run. 
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Supplementary F Distribution densities of maternal (A) and infant (B) microbiome 
samples according to sequencing batch number. Infant samples are also shown 
according to age, as 1-year old samples were all sequenced on run LGN 64igure 4.3. 
Relative abundance of bacterial genera in the microbiome community of infants 
breastfed for less than 2-months, and between 2- and 4-months.  
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7.9.2 Supplementary tables  

Supplementary Table 4.1. Read quality based on the proportion of reads with 99.9% 
base-call accuracy (Q30), and number of clusters passed filter (PF). The read count per 
sample, and the proportion of reads is shown before and after filtering steps. The 
number of ASVs are a count of the number of ASVs that appear in that sequencing run 
across all samples. 

 

  

Library LGN59 LGN62 LGN63 LGN64 LGN66 LGN68 Average

Q30 89 83 90 90 90 91 89

PF 90 90 90 90 90 91 90

Reads PF 17.5 13.5 16 15 17.8 17.9 16.3

raw reads / sample 

(SD/1000)

99,804 

(18.4)

72,318 

(16.3)

86,619 

(14.5)

89,814 

(17.3)

90,619 

(17.1)

171,488 

(25.8) 101,777

% retained post filter 95.2 88.0 94.0 94.5 94.9 94.3 93.5% retained post chimera 

removal 70.0 85.5 69.7 77.6 68.3 69.7 73.5

range of reads per sample 

post filter

35,038 - 

88,670

20,820 - 

85,142

27,261 - 

100,693

24,875 - 

105,377

27,783 - 

104,355

58,466 - 

150,377

32,373 - 

105,769

Number of ASVs 1,311 507 1,282 846 1,293 1,162 1,067
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– Chapter 5 –  
General discussion and conclusions 

5.1 General Discussion 
The ability to enjoy robust long-term health may be strongly impacted by the early 
development of the microbiome, and this thesis provides several new lines of evidence 
which support this working hypothesis. By looking at the microbiome composition of 
infants and children we discovered for the first time, shifts in gut microbiota associated 
with the earliest signs of autism, as well as evidence for a benefit to infants of mothers 
receiving a maternal prebiotic (GOS and FOS) supplement. Viewing human health 
through the microbiome lens has led to a deeper understanding of how our bodies are 
affected by environmental stressors, but this paradigm has many inherent limitations and 
challenges. Throughout this thesis, the manual, bioinformatic, and analytical biases have 
been carefully considered, mitigated, and discussed, resulting in robust microbiome 
data, which is presented along with detailed methodology that is in line with the current 
shift to improve data reproducibility.  

While the inter-individual variation always exceeds the level of bias introduced by 
sample processing (contamination, extraction efficiency, subsampling), it is difficult to 
know how these factors might affect fine scale comparisons of the microbiome, such as 
differential abundance and beta-diversity, or the concentrations of profiled metabolites. 
To describe microbiome shifts associated with disease progression or therapeutic 
intervention, it was vital to ensure that methodological biases be eliminated as much as 
possible. The bias associated with stool subsampling was shown to be more pronounced 
in some individuals, and the effect of different commercial DNA stabilisation tubes on 
the microbiome composition was pronounced in some taxa. In line with this finding, 
larger volumes of frozen-only, homogenised stool were used for all further 
investigations in this thesis. Although, these factors may be more pronounced when 
comparing the microbiome in the same individuals over time, as an additive affect 
which may blur the intra-individual profile. Adding to this concern, alpha-diversity and 
SCFA concentrations were found to change considerably from the first to second bowel 
movement of the day, which could be partially mitigated by specifying a collection time 
(e.g. the first bowel movement of the day) or collecting all samples for a 24h period. 

Throughout this thesis, alpha-diversity was not a good indicator of community 
association to ASD, although a difference in microbiome composition between children 
who were diagnosed with non-autistic autism spectrum disorder (NAASD) and children 
with ASD was indicated. Comparisons of alpha-diversity between randomised groups 
was also not as useful in monitoring the impact of a prebiotic supplement. It was, 
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however, valuable in describing changes that occurred over time. For example, between 
consecutive bowel movements and most notably, during the first year of life. A 
significant increase in both alpha-diversity and SCFA concentrations were notable, and 
changes were observed especially after 4-months of age, when infants begin 
transitioning from exclusive breast or formula feeding. Alpha-diversity was also 
strongly associated with stool form and SCFA in adult women and young children, 
indicating its usefulness in describing microbiome disruption during gastrointestinal 
distress (e.g constipation). Both alpha- and beta-diversity rely on sequencing depth, and 
the number of rare species (i.e. singletons or doubletons) in the dataset, with large 
numbers of both reads and rare species inflating diversity estimates. Both of these 
parameters can be manipulated by both sequencing strategy (i.e. number or samples per 
library) which directly impacts read depth, and prevalence filtering removes sparse 
species. As such, alpha-diversity in particular may not be appropriate to describe fine 
scale changes that are more susceptible to the noise of filtering parameters.  

Differential abundance was however particularly useful in describing small-scale 
changes in microbiome composition. Significant differences between important bacterial 
strains was observed between both participants (both mothers and infants) who received 
either a prebiotic supplement or a placebo, as well as between autistic children and 
children with no developmental concerns. Most notably, Saccharomyces sp (ASV 21) 
was enriched in both ASD and non-autistic autism spectrum disorder (NAASD) groups 
compared to those in the NDC group. Interestingly, the large difference in microbiome 
composition associated with autism severity was driven by a loss in Actinobacteria in 
children who were diagnosed with non-autistic autism spectrum disorder (NAASD) 
compared to children with ASD. Furthermore, these differences were also observed in 
the predicted function profile, with NAASD children having elevated tetracycline 
biosynthesis. This finding highlighted the value of using differential abundance and 
predicted functional profiling. Although, this thesis also recognises the limitation of 
functional profiling when it is used without detailed participant characteristics. Without 
any knowledge of prior antibiotic use in these children, it was impossible to further 
speculate to why this difference was observed. Concerning differential abundance 
associated with prebiotic supplementation, for the first time we provide evidence that 
maternal prebiotic supplementation can impact the structure of the infant microbiome in 
the first year of life. Most notably, a strain identified as Bacteroides caccae was 
enriched from 2 to 4 and 6-months of age in the prebiotic group, and three strains 
identified as Veillonella were enriched at either 2, 4, or 6-months of age in the placebo 
group. There was also evidence suggesting members within the Negativicutes class were 
at a disadvantage in both mothers and infants who received the prebiotic supplement.  

Large scale differences in overall community composition were also observed over time 
in the infant and maternal microbiome, as well as between young children showing early 
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behavioural signs of ASD who were receiving differing pre-emptive behavioural 
treatment (i.e. iBASIS-VIPP vs UCC). At the level of phylum, significantly tighter 
clustering of samples from the iBASIS-VIPP treatment group were observed, which 
indicates a more similar composition among children receiving this treatment. Also, at 
the level of genus significant differences in the microbiome beta-diversity was shown 
between iBASIS-VIPP and UCC treatment groups. While it is unclear how parent-infant 
interaction, in regards to the intervention, could impact the structure of the microbiome, 
the differences observed at multiple taxonomic levels between the two treatment groups 
indicate that there may be an unanticipated effect on the microbiome. It is not possible 
to comment on the benefit of one microbiome composition over the other, however, the 
bacterial structure appears to be less constrained in the UCC treatment group as 
compared to iBASIS-VIPP group, where the composition of the microbiome is more 
similar. The gut-brain-microbiota axis is the plausible route by which any differences in 
behaviours afforded by pre-emptive behavioural treatment might impact the microbiome 
structure; and with bi-directional communication between the brain and gut, 
perturbation or intervention at either point may achieve changes observed in both the gut 
and brain. If modifying the gut microbiome can affect brain function, and the way an 
individual interacts with the environment can in turn affect the gut microbiome, then 
potentially interventions which aim to effect neurological development and behaviour 
could have knock on effects which are detectable in the microbiome, especially at a 
young age when the microbiome is most susceptible to change.  

Due to the integrated role the gut microbiota plays in human health and human immune 
system function, the therapeutic potential of supporting the microbiome is a growing 
research area. Prebiotics have very few mild side effects (e.g constipation and bloating), 
and are largely considered by scientists, regulators, and the general public as safe. 
Furthermore, because Bifidobacterium is a known target of GOS and FOS 
supplementation, and acetate is known to be a primary product of the fermentation 
strategy of this genus, an increase in this genus and acetate may be a useful indicator of 
microbiome response. During pregnancy, the prebiotic supplement made a significant 
impact on the composition of the maternal microbiome by increasing the abundance of 
Bifidobacterium and increased metabolic output of acetic acid, especially in the first 8-
weeks of the intervention. Although interestingly, the abundance of Bifidobacterium 
appeared to be strongly influenced by the behavioural or physiological changes of post-
pregnancy in both randomisation groups. In particular, the abundance of this genus 
dropped dramatically from the 36-weeks to 2-months in the prebiotic group, and over 
the same time-period in the placebo group, the abundance increased, resulting in both 
groups having nearly identical abundance of Bifidobacterium at 2-months. This 
observation indicates that there may be novel and important structural changes that 
happen to the maternal microbiome during the early breastfeeding period that warrant 
further investigation. One of the most impressive accomplishments of the SYMBA 
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study (Palmer et al., 2022)(the larger dataset from which the chapter 4 data came) is the 
vast number of biometric and biological samples that were collected from each of the > 
600 women and infants in this study. Therefore, within this study it is likely that 
collaboration and further investigation using already collected data will reveal further 
insight on this question.  

5.2 Limitations 
While the abundance of particular taxa has been a valuable tool in the assessment of 
microbiome change throughout this thesis, understanding the implications of such 
changes are not always as straightforward as previously discussed with Bifidobacterium. 
ASD is complex, has a unique presentation in each individual, and our understanding of 
the development of this disorder in relation to brain development is not well understood, 
and the same is true of the gut microbiome. It is not surprising then that there is 
inconsistency in the literature which aims to characterise the gut microbiome of autistic 
children. Repeated non-parametric Mann-Whitney U tests were used to throughout this 
thesis, and are also commonly used in the microbiome literature (Xia and Sun, 2017), to 
detect taxa with significantly different abundance between groups. Although, repeated 
testing can result in a high number of false positives, especially when the groups being 
compared have a small number of samples, or when proportions of taxa are tested. False 
discovery rate corrections can eliminate the risk of inflated type 1 errors, although these 
corrections can be overly conservative (Knight et al., 2018). When the microbiome 
profiles of children were scrutinised for taxon abundance differences in chapter 3, 
several of the results were no longer significant after FDR correction. The results, both 
corrected and uncorrected were presented under the assumption that it was more 
beneficial to detect potentially associated microbes that could generate further 
hypothesis, rather than take the overly cautious conclusion of no differences. To further 
improve the reliability of these comparisons, we used: CLR transformed counts rather 
than proportions of taxa, improved sample collection methods developed in chapter 2, 
randomisation during sample processing and robust bioinformatic and taxonomic 
classification methods using positive and negative controls as a guide. To further 
remove other sources of grouping bias in this area of research, better characterization of 
diet and antibiotic use should be a priority, as well as consideration for the impact of age 
differences between infants and children. With more robust indicator species entering 
the catalogue of taxa associated with ASD, repeated characterisation across studies 
would accumulate more meaningful data.  

Diet is also expected to have a major driving influence on the composition of the 
microbiome throughout life. Long-term dietary trends have a profound effect on the 
overall composition and function of the gut microbiome, while daily food choices can 
also cause fluctuations in microbiota composition. Understanding both short-term fibre 
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consumption, along with long-term diet type (e.g. vegetarian) would improve the 
interpretation of prebiotic supplement responses. Although, dietary fibre intake is 
expected to be more challenging to quantify, because fibre includes all carbohydrates (of 
at least 3 carbons) that resist digestion in the small intestine. For instance, individuals 
with regular low-fibre consumption likely respond more strongly to a prebiotic 
supplementation than those with high-fibre intake. Therefore, individuals with a 
typically high-fibre intake who struggle to maintain their diet during later stages of 
pregnancy, and individuals who typically maintain a low-fibre diet will demonstrate 
temporal shifts that will inflate the effectiveness of a prebiotic supplementation.  

The safety and potential benefit of prebiotics has allowed for the first ever double-blind 
placebo-controlled RCT of the effectiveness of maternal prebiotic supplementation 
during foetal development, the most rapid and important developmental period of life. 
This study has made a significant contribution to the understanding of the early 
development of the microbiome and the impact of the pregnancy period. However, 
because of the inherent difference in long-term dietary trends between individuals (e.g. 
vegan, vegetarian, omnivore, carnivore), a brief dietary description would have been a 
valuable way of both explaining and correcting for these known differences. A maternal 
dietary category factor could have been used as a covariate when testing for differences 
in alpha diversity or SCFA concentrations between prebiotic and placebo groups. 
Furthermore, a more comprehensive assessment of short-term diet may be required 
during pregnancy when dietary shifts may progress over time. This information would 
be especially beneficial in trials of maternal prebiotic supplements, as it might help to 
explain individuals who first respond to the intervention (for example with an increase 
in Bifidobacterium and acetic acid), and then later appear not to respond. Likewise, 
dietary patterns in children with a high risk of developing autism is an important 
consideration, as autistic children often have very narrow food preferences (Yap et al., 
2021). Therefore, a detailed 3-day diet diary may be particularly valuable to assist in 
interpreting microbiome shifts associated with autism.  

Likewise, antibiotics can negatively impact the microbiome composition, and autistic 
children have a higher incidence of antibiotic use than neurotypical children 
(Krajmalnik-Brown et al., 2015). Also, antibiotics given during pregnancy can impact 
the infant microbiome colonization process (L. Yang et al., 2021). Information 
regarding antibiotic use in the young children at high risk of developing autism and the 
infants affected by prophylactic antibiotic used during pregnancy was not collected as 
part of the larger study protocols in chapter 3 and 4 respectively. Therefore, any 
difference attributed to the particular antibiotic use just mentioned cannot be identified. 
The smaller cohort of 30 children described in chapter 3 were potentially more 
susceptible to other confounding factors additional to antibiotic use. However, due to the 
pre-emptive recruitment method, it was impossible to select even numbers of children in 
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each diagnostic group, and most children fell within in the NAASD diagnosis group. In 
future, it would be advantageous to prospectively gather a larger cohort of children, 
collect both antibiotic and dietary information, and use sibling or age matched controls 
as a comparison group.  

Lastly, while a large effort was made to rigorously conduct the metabarcoding analyses 
of the microbiome, and SCFA profiling from stool, the conclusions that can be drawn 
from this type of data have limitations. The microbiome composition refers to the 
number of sequenced microbial reads (which depends on a number of factors including 
differences in cell lysis, gene copy number, primer bias, the concentration of amplicon 
added to the Miseq, and cluster formation), and cannot represent the actual abundance of 
the microbiota in stool. While mean centring transformations reduce some of the bias 
resulting from describing reads in terms of retaliative abundance (proportions), the 
biases associated with PCR have been completely eliminated with whole-genome 
shotgun sequencing which does not rely on amplified DNA, although metagenome 
assembly is computationally much more difficult (Mas-Lloret et al., 2020).  

Identifying microbial taxa using short gene regions – such as the V4 region of the 16S 
rRNA gene employed throughout this thesis – are also less accurate than taxonomic 
assignments resulting from shotgun sequencing, or long read sequencing such as 
PacBio. Taxonomic assignments using one or two hypervariable regions are often 
ambiguous at the species level, with multiple taxa sharing equal identity to the short 
reads. Throughout this thesis, to limit the use of unresolved species names, ASVs with 
lower taxonomic identities were discussed, and later (in chapter 3 and 4), taxa with 
multiple species ids were given the suffex ‘spp’ to identify them as unassigned due to 
ambiguity. With long read sequencing however, it is possible to sequence all nine 
hypervariable regions of the 16S gene, and make more accurate species assignments 
(Mas-Lloret et al., 2020). Metagenomic data also provides enhanced sequencing depth 
and taxonomic resolution, which would have been a valuable addition to chapter 4. With 
more accurate species identification and resolution Bifidobacterium could have been 
interrogated at the species level, potentially showing a strain dependent response to the 
prebiotic supplement.  

Another benefit of whole genome sequencing is more confident functional profiling 
(van der Walt et al., 2017). Functional predictions can be made using amplicon 
sequencing, as was done in chapter 3 of this thesis, however, these predictions rely on 
both the phylogenetic relationships between microbial taxa which can become blurry, 
and the pre-defined gene content of those near-neighbour species being included in the 
database used. Functional data resulting from whole genome sequencing can include a 
description of metabolic pathways or enzymes utilized by the microbial community. A 
combination of this functional and microbial abundance data can provide a clearer 
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picture of the microbiome response to an intervention, or to disease. For example, in 
Chapter 4, whole genome sequencing data would have allowed for differential 
abundance testing at the species level, as well as a description of the metabolic 
differences between the prebiotic and placebo groups. This would have been a notably 
powerful method for describing the microbiome response to a maternal prebiotic 
supplement; and potentially beneficial in explaining the enriched abundance of 
Negativicutes in the placebo group 

5.3 Future directions  
An assessment of stool form has been an invaluable factor in helping explain the shifts 
in microbiome composition throughout this thesis. Across all non-infant study 
participants (pregnant and non-pregnant women as well as young children), beta-
diversity was strongly associated with stool form, and where numbers would allow, 
beta-diversity grouping were significantly impacted by stool form. Furthermore, both 
PCO plots and correlation coefficient plots (chapter 2) displayed clear clustering of 
microbiome profiles and microbiome-SCFA merged profiles respectively according to 
stool form. Additionally, the importance of butyrate formation, and its rapid uptake and 
utilisation by the host has been discussed through this thesis, and by incorporating stool 
form into the analysis, a pattern has emerged. Butyric acid shows an interesting inverse 
relationship with bacterial alpha-diversity which is associated with stool form. In 
pregnant women, firm stool hosted less bacterial diversity, and higher concentrations of 
both acetate and butyrate. In young children showing early signs of autism, both alpha-
diversity, and acetate were also increased in firm stool, however butyric acid was 
depleted in firm stool. While the microbiome/metabolite patterns are expected to be 
somewhat different in children. This finding may potentially highlight a normal 
association between community diversity and butyric acid production or uptake that is 
impaired in the microbiome of these young children. Identifying stool form during 
sample processing was an easy way to obtain this additional information and gain 
further insight into this question.  

The number of research articles pertaining to the human microbiome contained within 
PubMed has continued to increase each year since the beginning of the 21st Century 
(Prados-Bo and Casino, 2021). This expansion in research has been due in part to the 
reduced cost of sequencing and metabolomic technology (Ranjan et al., 2016), as well 
as better data integration and analysis methods (Na et al., 2021). However, while driving 
forward this exciting research area, mitigating the intrinsic biases in metabarcoding 
experiments has not received the same passionate interest. As we understand more about 
the ancient and vital role of symbiosis between microbes and humans, researchers have 
begun to develop microbiome-targeted products designed to improve and maintain 
quality of life. This research in turn has captured the attention of the commercial and 
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public audience, which has further fuelled both the interest and funding in this research 
area (Prados-Bo and Casino, 2021). However, when experiments are designed to support 
a hypothesis, especially in a field with very little methodological consensus, it may be 
quite easy to show support for an idea and at the same time, insure the experiment is 
difficult to both refute or replicate. This phenomenon is most obviously demonstrated by 
the stark lack of positive and negative controls (Hornung, Zwittink and Kuijper, 2019), 
as well as poor reporting in the methods section in microbiome research (Mirzayi et al., 
2021). In this thesis, mock communities were use in each data chapter to identify a) 
families that were undetectable due to primer choice b) taxa that could not be resolved 
to lower phylogenetic ID, c) identify under represented microbial families, d) and to 
identify proportional changes to dominant reads across sequencing runs. Negative 
controls including both extraction and PCR non-template controls were also used in 
each chapter as input for bioinformatic sample decontamination.  

Also, in this thesis I describe both structural and functional changes displayed by the gut 
microbiome that occur prior to a formal diagnosis of ASD, and profiled changes in the 
infant gut microbiome, which in the near future, will be analysed for any association 
with allergic disease. The microbial inhabitants play a complex role in the development 
of both the immune system and brain, and potentially a microbiome-based perspective 
might facilitate more overlap in our thinking between neurological and immune system 
disorders. Environmental exposure – including exposure to microbial metabolites – 
elicits dysregulated immune function and improper neuroimmune signalling in young 
autistic children. These include pro-inflammatory cytokine production (Masi et al., 
2017), immune dysregulation of the BBB (Garcia-Gutierrez, Narbad and Rodríguez, 
2020), and immune mediated mitochondria disturbance (Frye et al., 2015, 2017). 
Likewise, infection not only elicits a response by the immune system, but also includes 
neuronal symptoms such as itching and gastrointestinal motility, illustrating how the 
immune and nervous system respond to the environment in concert. Cytokines stimulate 
and enhance the excitability of peripheral nerves, and in this excited state, nerves will 
respond to non-noxious stimuli, releasing neuropeptides which are involved in the 
immune response (Kabata and Artis, 2019). Interestingly, communication between these 
two systems may be even more direct, due to the close anatomical proximity between 
neurons and immune mast cells that colocalise in the gut (Kabata and Artis, 2019). 
Therefore, it would be interesting to investigate periods of severe inflammation caused 
by gastrointestinal destress flair ups or allergies for their association with neurological 
issues such as anxiety or depression. Additionally, because autoimmune disease is a risk 
factor associated with ASD, and both diseases are associated with the microbiome, it 
could be revealing to investigate both neurological, immune system, and microbiome 
development together in infants. For example, with the data already collected as part of 
this thesis, an association between neurological development and microbiome 
composition could also be assessed. This could be achieved by correlating continuous 
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score data, such as the Mullens Scale of Early Learning, with microbiome abundance 
data. Together with allergen sensitisation and infant allergic disease outcome data, this 
analysis may reveal subtle microbial trends that are potentially shared between both 
immune and neurological dysregulation.  

While the primary aim of chapter 4 was to assess the effectiveness of a maternal 
prebiotic supplement on the structure of the developing infant microbiome, the primary 
aim of the larger SYMBA study is to assess the effectiveness of the maternal prebiotic 
supplement on infant allergic disease outcomes. Once this primary outcome of the 
SYMBA trial is published, it would be fascinating to look back at the development of 
the microbiome and look for early signs of divergence between allergic and non-allergic 
infant groups. However, like the small changes observed between the young children 
with high behavioural risk of developing ASD, these subtle changes will be difficult to 
detect amongst the dramatic changes occurring over time. It would be most important to 
consider all factors that influence both the microbiome and immune system. This would 
include additional data not analysed to date in the SYMBA study, including pet 
ownership, prophylactic antibiotic use, and vaccination records. The significant impact 
of the infant microbiome on the immune response to vaccination has been widely 
studied and reviewed (de Jong, Olin and Pulendran, 2020); however the effect of 
vaccination on the microbiome composition – despite being called for (Ruck, Odumade 
and Smolen, 2020) – has only been investigated as far as I am aware, in animals 
(Hasegawa et al., 2018; Shi et al., 2022). These studies show significant increases in 
alpha-diversity, shifts in the metabolite profile, and shifts in bacterial membership 
including reduced Bifidobacterium and increased Megasphaera. With the integrated role 
the gut microbiota plays in both the development, and response of the immune system, it 
would be naive to assume there would be no impact on the infant microbiome from 
vaccination, which would confound a novel retrospective assessment of this kind. 

A final point regarding early developmental health recognised in this thesis, is that birth 
mode was found to significantly impact the microbiome composition of infants, and this 
effect attributed to birth mode was confounded by the higher proportion of boys that 
were born by caesarean section. The effect of male gender on pregnancy outcomes 
including increased risk of caesarean birth has been observed previously (Antonakou 
and Papoutsis, 2016), but the disproportionate impact this phenomenon will have on the 
microbiome of boys has not been widely considered. Caesarean delivery is associated 
with a 23% increased odds of developing ASD (Curran et al., 2015), as well as an 
increased risk for developing allergies (Darabi et al., 2019). With the incidence of 
caesarean birth increasing by approximately 4% per year (Y. Yang et al., 2021), and the 
increasing prevalence of both ASD and allergy diagnosis, in future, it would be 
beneficial to collect information on birth mode when investigating the microbiome for 
association to diseases that impact boys and girls at different rates in early childhood. 
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Overall, this thesis has contributed to both our growing understanding of the early 
development of the microbiome and its necessity for long-term health, and to best-
practices in generating microbiome data. From sample collection, to data analysis, each 
step in the workflow was personally carried out using advanced equipment, and 
continually updated protocols. By not outsourcing any of the laboratory or bioinformatic 
steps, every source of introduced bias was understood and controlled, or mitigated. The 
resulting microbiome profiles from each data chapter were incrementally more robust to 
align with the shift to improve data quality and reproducibility in microbiome research. 
Also, throughout each chapter alpha-diversity was found to be useful in describing 
largescale intra-individual changes over time, but poor for describing inter-individual 
differences. As a descriptive statistic, alpha-diversity may still be beneficial for 
describing community colonisation or depletion after antibiotics, however we advocate 
that in future, microbiome data should be analysed with less focus on shifts in alpha-
diversity. We also found identifying stool form has been an invaluable method of 
capturing shifts in microbiome composition throughout this thesis. We have clearly 
established the significant association between stool form and beta-diversity, as well as 
stool form and SCFA concentrations. Going forward, not only could stool form data 
help to better describe GI symptoms, and dietary shifts reflected by the microbiome 
composition, but it may prove to be an adequate predictor of total gut transit time 
(particularly for very loose or firm stool), and assist in determining overall gut health. 
By collecting both stool form and transit time using a convenient blue dye ‘blue poo’ 
method (Asnicar et al., 2021) along with microbiome data it may be possible to further 
investigate the association between gut health and stool form. 
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Storm Checklist for the manuscript “Fecal sample collection methods and time of day 
impact microbiome and SCFA concentrations” presented in chapter 2. 
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NA 

Abstract       

1.0 

Structured or 
Unstructured 
Abstract 

Abstract should include information on background, 
methods, results, and conclusions in structured or 
unstructured format. STORMS Yes 

1.1 Study Design State study design in abstract. STORMS No 

1.2 
Sequencing 
methods State the strategy used for metagenomic classification. STORMS Yes 

1.3 Specimens Describe body site(s) studied. STORMS Yes 

Introduction       
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2.0 
Background and 
Rationale 

Summarize the underlying background, scientific 
evidence, or theory driving the current hypothesis as 
well as the study objectives. STORMS Yes 

2.1 Hypotheses 
State the pre-specified hypothesis. If the study is 
exploratory, state any pre-specified study objectives. STORMS Yes 

Methods       

3.0 Study Design Describe the study design. STORMS Yes 

3.1 Participants 

State what the population of interest is, and the method 
by which participants are sampled from that population. 
Include relevant information on physiological state of 
the subjects or stage in the life history of disease under 
study when participants were sampled. STORMS Yes 

3.2 
    Geographic 
location 

State the geographic region(s) where participants were 
sampled from. MIxS No 

3.3     Relevant Dates 
State the start and end dates for recruitment, follow-up, 
and data collection. STORMS No 

3.4 
    Eligibility 
criteria 

List any criteria for inclusion and exclusion of recruited 
participants.  

Modified 
STROBE Yes 

3.5 
    Antibiotics 
Usage 

List what is known about antibiotics usage before or 
during sample collection. STORMS Yes 

3.6 
    Analytic sample 
size 

Explain how the final analytic sample size was 
calculated, including the number of cases and controls 
if relevant, and reasons for dropout at each stage of the 
study. This should include the number of individuals in 
whom microbiome sequencing was attempted and the 
number in whom microbiome sequencing was 
successful. STORMS Yes 

3.7 
    Longitudinal 
Studies 

For longitudinal studies, state how many follow-ups 
were conducted, describe sample size at follow-up by 
group or condition, and discuss any loss to follow-up. STORMS NA 

3.8     Matching For matched studies, give matching criteria. 
Modified 
STROBE NA 

3.9     Ethics 

State the name of the institutional review board that 
approved the study and protocols, protocol number and 
date of approval, and procedures for obtaining 
informed consent from participants. STORMS Yes 

4.0 
Laboratory 
methods 

State the laboratory/center where laboratory work was 
done.  STORMS Yes 

4.1 
    Specimen 
collection 

State the body site(s) sampled from and how specimens 
were collected. MIxS Yes 

4.2     Shipping 
Describe how samples were stored and shipped to the 
laboratory. STORMS Yes 

4.3     Storage 

Describe how the laboratory stored samples, including 
time between collection and storage and any 
preservation buffers or refrigeration used. STORMS Yes 

4.4     DNA extraction 
Provide DNA extraction method, including kit and 
version if relevant. MIxS Yes 

4.5 

    Human DNA 
sequence depletion 
or microbial DNA 
enrichment 

Describe whether human DNA sequence depletion or 
enrichment of microbial or viral DNA was performed. STORMS NA 

4.6     Primer selection 

Provide primer selection and DNA amplification 
methods as well as variable region sequenced (if 
applicable). MIxS Yes 

4.7 
    Positive 
Controls 

Describe any positive controls (mock communities) if 
used. STORMS Yes 

4.8 
    Negative 
Controls Describe any negative controls if used. STORMS Yes 
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4.9 

    Contaminant 
mitigation and 
identification 

Provide any laboratory or computational methods used 
to control for or identify microbiome contamination 
from the environment, reagents, or laboratory. STORMS Yes 

4.10     Replication 

Describe any biological or technical replicates included 
in the sequencing, including which steps were 
replicated between them.  STORMS Yes 

4.11 
    Sequencing 
strategy 

Major divisions of strategy, such as shotgun or 
amplicon sequencing. MIxS Yes 

4.12 
    Sequencing 
methods 

State whether experimental quantification was used 
(QMP/cell count based, spike-in based) or whether 
relative abundance methods were applied. STORMS Yes 

4.13     Batch effects 

Detail any blocking or randomization used in study 
design to avoid confounding of batches with exposures 
or outcomes. Discuss any likely sources of batch 
effects, if known. STORMS NA 

4.14 

    
Metatranscriptomic
s 

Detail whether any mRNA enrichment was performed 
and whether/how retrotranscription was performed 
prior to sequencing. Provide size range of isolated 
transcripts. Describe whether the sequencing library 
was stranded or not. Provide details on sequencing 
methods and platforms. STORMS NA 

4.15     Metaproteomics 

Detail which protease was used for digestion. Provide 
details on proteomic methods and platforms (e.g. LC-
MS/MS, instrument type, column type, mass range, 
resolution, scan speed, maximum injection time, 
isolation window, normalised collision energy, and 
resolution).  STORMS NA 

4.16     Metabolomics 

Specify the analytic method used (such as nuclear 
magnetic resonance spectroscopy or mass 
spectrometry). For mass spectrometry, detail which 
fractions were obtained (polar and/or non polar) and 
how these were analyzed. Provide details on 
metabolomics methods and platforms (e.g. 
derivatization, instrument type, injection type, column 
type and instrument settings). STORMS NA 

5.0 
Data sources/ 
measurement  

For each non-microbiome variable, including the health 
condition, intervention, or other variable of interest, 
state how it was defined, how it was measured or 
collected, and any transformations applied to the 
variable prior to analysis.  MIxS NA 

6.0 
Research design 
for causal inference 

Discuss any potential for confounding by variables that 
may influence both the outcome and exposure of 
interest. State any variables controlled for and the 
rationale for controlling for them. STORMS NA 

6.1     Selection bias Discuss potential for selection or survival bias. STORMS NA 

7.0 
Bioinformatic and 
Statistical Methods 

Describe any transformations to quantitative variables 
used in analyses (e.g. use of percentages instead of 
counts, normalization, rarefaction, categorization). STORMS Yes 

7.1     Quality Control 
Describe any methods to identify or filter low quality 
reads or samples. MIxS Yes 

7.2 
    Sequence 
analysis 

Describe any taxonomic, functional profiling, or other 
sequence analysis performed. MIxS Yes 

7.3 
    Statistical 
methods Describe all statistical methods. 

Modified 
STROBE Yes 

7.4 
    Longitudinal 
analysis 

If the study is longitudinal, include a section that 
explicitly states what analysis methods were used (if 
any) to account for grouping of measurements by 
individual or patterns over time. STORMS NA 

7.5 
    Subgroup 
analysis 

Describe any methods used to examine subgroups and 
interactions. STROBE Yes 
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7.6     Missing data Explain how missing data were addressed. STROBE Yes 

7.7 
    Sensitivity 
analyses Describe any sensitivity analyses. STROBE NA 

7.8     Findings State criteria used to select findings for reporting. STORMS Yes 

7.9     Software 

Cite all software (including read mapping software) and 
databases (including any used for taxonomic reference 
or annotating amplicons, if applicable) used. Include 
version numbers. 

Modified 
STREGA Yes 

8.0 
Reproducible 
research 

Make a statement about whether and how others can 
reproduce the reported analysis. STORMS Yes 

8.1     Raw data access 
State where raw data may be accessed including 
demultiplexing information. STORMS Yes 

8.2 
    Processed data 
access State where processed data may be accessed. STORMS No 

8.3 
    Participant data 
access 

State where individual participant data such as 
demographics and other covariates may be accessed, 
and how they can be matched to the microbiome data. STORMS Yes 

8.4 
    Source code 
access State where code may be accessed. STORMS No 

8.5     Full results 
Provide full results of all analyses, in computer-
readable format, in supplementary materials. STORMS No 

Results       

9.0 Descriptive data 

Give characteristics of study participants (e.g. dietary, 
demographic, clinical, social) and information on 
exposures and potential confounders. STROBE Yes 

10.0 Microbiome data 
Report descriptive findings for microbiome analyses 
with all applicable outcomes and covariates. STORMS No 

10.1     Taxonomy 

Identify taxonomy using standardized taxon 
classifications that are sufficient to uniquely identify 
taxa. STORMS Yes 

10.2 
    Differential 
abundance 

Report results of differential abundance analysis by the 
variable of interest and (if applicable) by time, clearly 
indicating the direction of change and total number of 
taxa tested. STORMS Yes 

10.3     Other data types 
Report other data analyzed--e.g. metabolic function, 
functional potential, MAG assembly, and RNAseq. STORMS Yes 

10.4 
    Other statistical 
analysis Report any statistical data analysis not covered above. STORMS Yes 

Discussion       

11.0 Key results 
Summarise key results with reference to study 
objectives  STROBE No 

12.0 Interpretation 

Give a cautious overall interpretation of results 
considering objectives, limitations, multiplicity of 
analyses, results from similar studies, and other 
relevant evidence. STROBE No 

13.0 Limitations 
Discuss limitations of the study, taking into account 
sources of potential bias or imprecision. STROBE Yes 

13.1      Bias 
Discuss any potential for bias to influence study 
findings. STORMS Yes 

13.2      Generalizability 
Discuss the generalisability (external validity) of the 
study results  STROBE Yes 

14.0 
Ongoing/future 
work 

Describe potential future research or ongoing research 
based on the study's findings. STORMS Yes 

Other information     

15.0 Funding 

Give the source of funding and the role of the funders 
for the present study and, if applicable, for the original 
study on which the present article is based  STROBE NA 
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15.1 
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s 

Include acknowledgements of those who contributed to 
the research but did not meet critera for authorship. STORMS Yes 

15.2 
    Conflicts of 
Interest Include a conflicts of interest statement. STORMS Yes 

16.0 Supplements 
Indicate where supplements may be accessed and what 
materials they contain. STORMS Yes 

17.0 
Supplementary 
data 

Provide supplementary data files of results with for all 
taxa and all outcome variables analyzed. Indicate the 
taxonomic level of all taxa. STORMS No 
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Storm Checklist for the manuscript “Changes to the gut microbiome in young children 
showing early behavioural signs of autism” presented in chapter 3. 

No Item Recommendation Item  
Y/N
/NA 

Abstract       

1.0 

Structured or 
Unstructured 
Abstract 

Abstract should include information on background, 
methods, results, and conclusions in structured or 
unstructured format. STORMS Yes 

1.1 Study Design State study design in abstract. STORMS No 

1.2 
Sequencing 
methods State the strategy used for metagenomic classification. STORMS No 

1.3 Specimens Describe body site(s) studied. STORMS Yes 

Introduction       

2.0 
Background and 
Rationale 

Summarize the underlying background, scientific 
evidence, or theory driving the current hypothesis as 
well as the study objectives. STORMS Yes 

2.1 Hypotheses 
State the pre-specified hypothesis. If the study is 
exploratory, state any pre-specified study objectives. STORMS Yes 

Methods       

3.0 Study Design Describe the study design. STORMS Yes 

3.1 Participants 

State what the population of interest is, and the method 
by which participants are sampled from that 
population. Include relevant information on 
physiological state of the subjects or stage in the life 
history of disease under study when participants were 
sampled. STORMS Yes 

3.2 
    Geographic 
location 

State the geographic region(s) where participants were 
sampled from. MIxS Yes 

3.3     Relevant Dates 
State the start and end dates for recruitment, follow-up, 
and data collection. STORMS NA 

3.4 
    Eligibility 
criteria 

List any criteria for inclusion and exclusion of 
recruited participants.  

Modified 
STROBE NA 

3.5 
    Antibiotics 
Usage 

List what is known about antibiotics usage before or 
during sample collection. STORMS No 

3.6 
    Analytic sample 
size 

Explain how the final analytic sample size was 
calculated, including the number of cases and controls 
if relevant, and reasons for dropout at each stage of the 
study. This should include the number of individuals in 
whom microbiome sequencing was attempted and the 
number in whom microbiome sequencing was 
successful. STORMS Yes 

3.7 
    Longitudinal 
Studies 

For longitudinal studies, state how many follow-ups 
were conducted, describe sample size at follow-up by 
group or condition, and discuss any loss to follow-up. STORMS Yes 

3.8     Matching For matched studies, give matching criteria. 
Modified 
STROBE NA 

3.9     Ethics 

State the name of the institutional review board that 
approved the study and protocols, protocol number and 
date of approval, and procedures for obtaining 
informed consent from participants. STORMS Yes 
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4.0 
Laboratory 
methods 

State the laboratory/center where laboratory work was 
done.  STORMS Yes 

4.1 
    Specimen 
collection 

State the body site(s) sampled from and how 
specimens were collected. MIxS Yes 

4.2     Shipping 
Describe how samples were stored and shipped to the 
laboratory. STORMS Yes 

4.3     Storage 

Describe how the laboratory stored samples, including 
time between collection and storage and any 
preservation buffers or refrigeration used. STORMS Yes 

4.4     DNA extraction 
Provide DNA extraction method, including kit and 
version if relevant. MIxS Yes 

4.5 

    Human DNA 
sequence depletion 
or microbial DNA 
enrichment 

Describe whether human DNA sequence depletion or 
enrichment of microbial or viral DNA was performed. STORMS Yes 

4.6     Primer selection 

Provide primer selection and DNA amplification 
methods as well as variable region sequenced (if 
applicable). MIxS Yes 

4.7 
    Positive 
Controls 

Describe any positive controls (mock communities) if 
used. STORMS Yes 

4.8 
    Negative 
Controls Describe any negative controls if used. STORMS Yes 

4.9 

    Contaminant 
mitigation and 
identification 

Provide any laboratory or computational methods used 
to control for or identify microbiome contamination 
from the environment, reagents, or laboratory. STORMS Yes 

4.10     Replication 

Describe any biological or technical replicates 
included in the sequencing, including which steps were 
replicated between them.  STORMS Yes 

4.11 
    Sequencing 
strategy 

Major divisions of strategy, such as shotgun or 
amplicon sequencing. MIxS Yes 

4.12 
    Sequencing 
methods 

State whether experimental quantification was used 
(QMP/cell count based, spike-in based) or whether 
relative abundance methods were applied. STORMS Yes 

4.13     Batch effects 

Detail any blocking or randomization used in study 
design to avoid confounding of batches with exposures 
or outcomes. Discuss any likely sources of batch 
effects, if known. STORMS NA 

4.14 

    
Metatranscriptomi
cs 

Detail whether any mRNA enrichment was performed 
and whether/how retrotranscription was performed 
prior to sequencing. Provide size range of isolated 
transcripts. Describe whether the sequencing library 
was stranded or not. Provide details on sequencing 
methods and platforms. STORMS NA 

4.15     Metaproteomics 

Detail which protease was used for digestion. Provide 
details on proteomic methods and platforms (e.g. LC-
MS/MS, instrument type, column type, mass range, 
resolution, scan speed, maximum injection time, 
isolation window, normalised collision energy, and 
resolution).  STORMS NA 

4.16     Metabolomics 

Specify the analytic method used (such as nuclear 
magnetic resonance spectroscopy or mass 
spectrometry). For mass spectrometry, detail which 
fractions were obtained (polar and/or non polar) and 
how these were analyzed. Provide details on 
metabolomics methods and platforms (e.g. 
derivatization, instrument type, injection type, column 
type and instrument settings). STORMS NA 

5.0 
Data sources/ 
measurement  

For each non-microbiome variable, including the 
health condition, intervention, or other variable of 
interest, state how it was defined, how it was measured 

MIxS: 
host Yes 
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or collected, and any transformations applied to the 
variable prior to analysis.  

disease 
status 

6.0 

Research design 
for causal 
inference 

Discuss any potential for confounding by variables that 
may influence both the outcome and exposure of 
interest. State any variables controlled for and the 
rationale for controlling for them. STORMS Yes 

6.1     Selection bias Discuss potential for selection or survival bias. STORMS NA 

7.0 
Bioinformatic and 
Statistical Methods 

Describe any transformations to quantitative variables 
used in analyses (e.g. use of percentages instead of 
counts, normalization, rarefaction, categorization). STORMS Yes 

7.1     Quality Control 
Describe any methods to identify or filter low quality 
reads or samples. 

MIxS: 
sequence 
quality 
check Yes 

7.2 
    Sequence 
analysis 

Describe any taxonomic, functional profiling, or other 
sequence analysis performed. 

MIxS: 
feature 
prediction
; 
similarity 
search 
method Yes 

7.3 
    Statistical 
methods Describe all statistical methods. 

Modified 
STROBE Yes 

7.4 
    Longitudinal 
analysis 

If the study is longitudinal, include a section that 
explicitly states what analysis methods were used (if 
any) to account for grouping of measurements by 
individual or patterns over time. STORMS NA 

7.5 
    Subgroup 
analysis 

Describe any methods used to examine subgroups and 
interactions. STROBE NA 

7.6     Missing data Explain how missing data were addressed. STROBE Yes 

7.7 
    Sensitivity 
analyses Describe any sensitivity analyses. STROBE NA 

7.8     Findings State criteria used to select findings for reporting. STORMS Yes 

7.9     Software 

Cite all software (including read mapping software) 
and databases (including any used for taxonomic 
reference or annotating amplicons, if applicable) used. 
Include version numbers. 

Modified 
STREGA Yes 

8.0 
Reproducible 
research 

Make a statement about whether and how others can 
reproduce the reported analysis. STORMS No 

8.1     Raw data access 
State where raw data may be accessed including 
demultiplexing information. STORMS Yes 

8.2 
    Processed data 
access State where processed data may be accessed. STORMS No 

8.3 
    Participant data 
access 

State where individual participant data such as 
demographics and other covariates may be accessed, 
and how they can be matched to the microbiome data. STORMS Yes 

8.4 
    Source code 
access State where code may be accessed. STORMS No 

8.5     Full results 
Provide full results of all analyses, in computer-
readable format, in supplementary materials. STORMS No 

Results 
        

9.0 Descriptive data 

Give characteristics of study participants (e.g. dietary, 
demographic, clinical, social) and information on 
exposures and potential confounders. STROBE Yes 
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10.0 Microbiome data 
Report descriptive findings for microbiome analyses 
with all applicable outcomes and covariates. STORMS Yes 

10.1     Taxonomy 

Identify taxonomy using standardized taxon 
classifications that are sufficient to uniquely identify 
taxa. STORMS Yes 

10.2 
    Differential 
abundance 

Report results of differential abundance analysis by the 
variable of interest and (if applicable) by time, clearly 
indicating the direction of change and total number of 
taxa tested. STORMS Yes 

10.3     Other data types 
Report other data analyzed--e.g. metabolic function, 
functional potential, MAG assembly, and RNAseq. STORMS Yes 

10.4 
    Other statistical 
analysis Report any statistical data analysis not covered above. STORMS NA 

Discussion       

11.0 Key results 
Summarise key results with reference to study 
objectives  STROBE No 

12.0 Interpretation 

Give a cautious overall interpretation of results 
considering objectives, limitations, multiplicity of 
analyses, results from similar studies, and other 
relevant evidence. STROBE Yes 

13.0 Limitations 
Discuss limitations of the study, taking into account 
sources of potential bias or imprecision. STROBE Yes 

13.1      Bias 
Discuss any potential for bias to influence study 
findings. STORMS Yes 

13.2      Generalizability 
Discuss the generalisability (external validity) of the 
study results  STROBE Yes 

14.0 
Ongoing/future 
work 

Describe potential future research or ongoing research 
based on the study's findings. STORMS Yes 

Other information 
      

15.0 Funding 

Give the source of funding and the role of the funders 
for the present study and, if applicable, for the original 
study on which the present article is based  STROBE NA 

15.1 

    
Acknowledgement
s 

Include acknowledgements of those who contributed to 
the research but did not meet critera for authorship. STORMS Yes 

15.2 
    Conflicts of 
Interest Include a conflicts of interest statement. STORMS Yes 

16.0 Supplements 
Indicate where supplements may be accessed and what 
materials they contain. STORMS Yes 

17.0 
Supplementary 
data 

Provide supplementary data files of results with for all 
taxa and all outcome variables analyzed. Indicate the 
taxonomic level of all taxa. STORMS No 

 


