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Integrated environment-smart agricultural practices: A strategy towards climate-
resilient agriculture

Abstract: This article proposes an integrated farming approach, namely environment-smart agriculture
(ESA) that determines the climate-resilience potential of a farm. A composite index is formulated
including various environment-smart agricultural practices (IEP) that focus on the five most affected
target areas of farm environment and climate. The IEP is then validated by analysing the on-farm
environmental impact and farmers’ behaviours in the underlying theory of planned behaviour (TPB)
framework. The TPB components, attitude and subjective norm, are defined by the index of benefits
from the ESA, and the index of experienced climate change conditions respectively, while perceived
control corresponds to the index of constraints in adopting ESA and farm-specific agro-economic and
socio-economic attributes. The empirical testing employed a structural equations model (SEM) to
estimate the proposed IEP on a sample of 103 farms in two north-western districts of Bangladesh.
Results demonstrate that the adoption of integrated ESA practices mitigates post-harvest environmental
problems and helps cope with existing climate change conditions. Therefore, farm-level investment in
ESA practices, i.e., the use of corrective, preventive, and local standard measures in an integrated way
will contribute to the climate-resilience potential of a farm.

JEL classification: Q01, Q15, Q16

Keywords: Agriculture, Environment-smart, Climate-resilient
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Integrated environment-smart agricultural practices: A strategy towards climate-
resilient agriculture

1. Introduction

Climate-resilient agriculture is a sustainable approach to food security that simultaneously
employs adaptation and mitigation measures (IPCC, 2014). However, increasing agricultural
productivity in a changing climate as well as without jeopardizing social and environmental
resources remains a major challenge. Sustainable methods including climate-smart agricultural
(CSA) technologies aim to yield improvement by reorienting and transforming the existing
system for changing climate conditions. (Hammond et al., 2017; Khatri-Chhetri et al., 2017;
Lopez-Ridaura et al., 2018; Sain et al., 2017). These adaptation measures are climate-resilient
if they could achieve resource management (Sain et al., 2017), reduce GHGs (Greenhouse
gases) emissions and improve carbon sequestration (Campbell et al., 2014). This implies that
any CSA practice without mitigation abilities can leave multiple adverse impacts on resources,
namely soil erosion, fertility reduction, soil, water, and air pollution, fish reduction,
biodiversity loss, loss of drinking water, and reduction of social capital. CSA often allows for
the intensive use of chemical inputs, modified or high-yielding crop varieties, and machinery
(Godfray et al., 2010; Tilman et al., 2011). Residues of chemical inputs are frequently
transmitted through the soil to crops and then to humans and animals, and contribute to GHGs
emissions (Savci, 2012) and hence increase warming. According to IPCC estimates, there is a
possibility of a 25% yield loss by 2050 due to a temperature increase (IPCC, 2014). Changes
in the climate can further be influenced by climate-smart agriculture if the adverse impacts of
cropping are not controlled. Therefore, it is a paradox whether a climate-resilient strategy could
approve an approach that simultaneously improves yield and reduces agro-ecological risks of
pollution, erosion, and reduction of resources. More importantly, a resilient ecosystem requires
an evaluation of both services and disservices generated in that system (Toledo-Gallegos et al.,
2022). Hence, we argue here that an integrated farming practice is required and that

environment-smart agriculture (ESA) is a viable, adaptable and climate-resilient strategy.

By definition, ESA is a holistic approach comprising a set of corrective and preventive
farming practice measures. A climate-resilient farm can absorb after-harvest stress on the farm
environment and the atmosphere (or climate). The ESA approach aims to limit GHGs
emissions from farm chemicals by controlling their adverse impacts on-farm soil and water and

by improving farmer awareness of, and willingness to manage, environment-depleting farming
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activities. Sustainable growth in yield is an inherent aim of any agri-business and is conditional
upon farmers’ environmental awareness and perception of climate change impacts. An
integrated impact management approach should deal with soil, water, and GHG emission-
related impacts, crop and human health impacts, and farm nuisance. Such an approach
necessitates the aggregation of corrective, preventive, physical, biological, traditional, and
environment-friendly chemical practices of farming. By employing ESA, a farm can become
gradually resilient and achieve food sovereignty (Altieri and Nicholls, 2017, Sabiha and
Rahman, 2018). Because of its composite nature, ESA can be considered an alternative
pathway toward both climate-smart and climate-resilient agriculture. Notwithstanding, ESA
has not been salient in mainstream policy frameworks and among academics. Farmers may be
aware of climate change adaptation measures including CSA and even the impact of cropping
in a climate change scenario; however, it is not explained how the variability in climate
parameters, impacts of climate change, and farmers’ adoption of environment-smart
agricultural measures are connected. This study assesses such inter-linkages empirically. We
argue that farmers decide their ESA practices and adaptations optimally perceiving the impact
of these measures on both cultivation practices and the local environment. In this study,
farmers’ perceptions are analysed by employing the conceptual framework of the theory of
planned behaviour (TPB) introduced by Ajzen and Madden (1986). It is hypothesized that a
farm with a higher level of ESA adoption will exhibit fewer on-farm environmental impacts
and hence become more climate-resilient. The novelty of this study relies upon the
conceptualization of the ESA index by conducting a pathway analysis and by employing TPB
as a theoretical framework for understanding that pathway. The proposed ESA index can be
used as an alternative tool to measure the extent of and potential for a farm operating under
both environment-smart and climate-resilient modes. The illustration of the proposed ESA
approach uses data from a comprehensive survey covering two agro-ecological zones in
Bangladesh. In Bangladesh, the intensification practice to cultivate high-yielding crops has
been facilitated by both policy provisions and commercialisation in input trading since 1980
(Salim and Hossain, 2006). This transition was also popularized because of its cropping
suitability in less-controlled environmental conditions (Alauddin et al., 2021). Similarly, to
reduce cropping vulnerability to climate change and extreme events, CSA and other adaptations
are largely institutionalized in the country. However, there is not sufficient evidence that CSA

and other on-farm adaptation measures can mitigate negative environmental impacts.



The remainder of this paper is organized as follows. Section 2 gives an overview of the
literature on sustainability indicators in evaluating climate-resilient agriculture. This is
followed by the analytical framework in Section 3 and Section 4 provides results and their

discussion Section 5 concludes the study with the relevant policy suggestions.

2. Overview of the evaluation of climate-resilient interventions

In climate-resilient and smart agriculture literature, much attention has been given to
identifying sustainability indicators and indices including economic and non-economic
indicators. Referring to IPCC (2014) and FAO (2010) the threefold objectives of an agricultural
system to be climate-resilient are sustainability in production, climate change adaptation, and
climate change mitigation. An economic evaluation of a particular intervention can be
performed based on the cost of implementation, productivity, and farm income after adopting
a technology. This is evident in understanding the economic viability of most CSA
interventions in past studies (Hammond et al., 2017; Khatri-Chhetri et al., 2017; Khatri-Chhetri
et al., 2019; Makate et al., 2019; Mwongera et al., 2017; Sain et al., 2017). Farmers put a high
score for interventions on higher adaptation potential, cost-effectiveness at an individual level,
and even consider benefits for the whole community (Wassmann et al., 2019). However,
economic stress and credit inaccessibility are two important barriers to climate change
adaptation and farming (Apataet al., 2009; Mertz et al., 2009; Sarker et al., 2013; Alauddin et
al., 2020). Lopez-Ridaura et al. (2018) argue that not all CSA technologies are equally cost-
effective or make all households evenly food-secure. The authors observed that conservation
agriculture is preferred by wealthy farmers. Income and farm size can be potential indicators
for assessing farmers’ responses to climate-resilient agriculture. However, Koirala et al. (2022)
observed that small farms are more responsive to adaptation measures than large farms. The
authors argued that economic objectives alone are not suitable estimates of agricultural input
impacts due to farmers’ heterogeneity in their motivations and cropping pattern. In addition to
this, CSA requires more labour (Sain et al., 2017), and uptake of CSA largely depends on off-
farm income (Hammond et al., 2017). Therefore, the credibility of CSA as cost-effective and

considerate of farmers’ adaptive capacity is arguable.

Sustainability measurement has developed concern about the environmental impacts of
smart technologies. Quantitative measurement can approve of an approach or a system (Sands
and Podmore, 2000) and hence evaluation relies largely on constructing an environmental

sustainability index or an environmental index, and environmental performance indicators.
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While assessing environmental sustainability, most studies include a large number of sub-
indices or partial indices; namely the use of agro-chemical inputs including fertilizers,
herbicides, and pesticides, soil properties, water availability for irrigation, and crop health. For
instance, Jackson et al. (2011) argue that the efficient use of water and energy makes a farm
more climate-resilient. Alauddin et al. (2020) estimated that the use of a water-saving irrigation
technology could reduce irrigation frequency and cost of irrigation. Thus, the amount of water
used, management of groundwater sources, and water quality are used to measure
environmental sustainability (Bui et al., 2019) which can additionally ensure economic
efficiency. to A soil quality sub-index includes its nutrients, fertility, and toxicity levels as
indicators (Sulewski and Ktoczko-Gajewska, 2018; Taylor et al., 1993). Taylor et al. (1993)
include integrated pest management and weed control by using spraying and applying non-
chemical techniques as farm sustainability sub-indices. Soil quality impacted by fertilizer
application is the most important determinant of agricultural productivity and sustainability of
the environment (Nambiar et al., 2001). As Lipper et al. (2014) argue an increase in soil quality
implies that soil carbon is reduced. Water and wind erosion, toxic components, salinization,
and declining soil nutrients may determine the state of soil quality. Soil determinants are
production potential indicators and the impacts on soil, water, air, and biodiversity are
environmental perception indicators (Sulewski and Kloczko-Gajewska, 2018). Using a
correlation matrix, these researchers found a positive correlation between these indicators and
farmers’ uptake of efficient agricultural management. Sands and Podmore (2000) argue that
the existing resource position and the efficiency in the cropping system are important factors
in the sustainability of a system. This implies that perceiving the status quo of physical
resources and the impact of employing any method on these resources could help farmers shape
awareness and determine adoption behaviour. Land ownership and experience in farming could
measure the resource accessibility of a farmer. In addition, the cropping method is also included
as a comprehensive measure of sustainability. As a sustainable method of cropping, the use of
organic fertilizers contributes significantly to GHGs emission reductions and to improving
carbon and methane sequestration (Altieri and Nicholls, 2017). Even efficient management in
chemical input application and water for irrigation can help maintain soil quality which
eventually affects fertility as Nambiar et al. (2001) argue. These studies suggest that the
impacts of any smart agricultural practice on air, water, and soil resources indicate the

resilience of these resources.



Emissions and impacts are usually local in agriculture, agro-processing industry, and
residue and waste management systems. Changes in weather patterns or extreme climate events
locally affect agricultural yield, crop health, and farm environment. However, the early policy
discussions focused on climate change as a global issue and provided generalized solutions for
agricultural sustainability. Some CSA technologies may be suitable for local climate change
conditions, e.g., drought-tolerant crops and rainwater harvesting in areas with intense summer
and inadequate rainfall respectively (Hammond et al., 2017; Khatri-Chhetri et al., 2017). These
measures are locally suitable concerning crop choices and yield increase only. Furthermore,
most climate-smart technologies are capital and water-intensive (Alauddin and Quiggin, 2008)
and accrue limited or no concern about mitigation, e.g., technology that produces low emission
of GHGs and fewer impacts on resource quality (Hammond et al., 2017; Sain et al., 2017).
Except for efficient irrigation technologies, inputs and farm operations being climate-resilient
did not receive much attention. As Oerke (2006) demonstrated, even integrated pest
management techniques could not reduce crop vulnerability to pests and weeds. The reason
may be that farmers do not perceive the impacts of using these technologies on climate change
(Wassmann et al., 2019). Farmers are even less likely to adopt CSA involving mitigation efforts
(Khatri-Chhetri et al., 2017). Farmers must understand the cause-and-effect relationships while
adopting any smart agricultural practice. To be precise, it is required to analyse farmers’
perceptions about how farms are exposed to on-farm environmental impacts and climate
change impacts after adopting smart practices. In addition, farmers’ responses may be variable
to an integrated impact management strategy and motivations for adopting such a strategy.
Therefore, the specific objectives of this study are: (i) to develop a composite index of
environment-smart agricultural practices (IEP), (ii) to validate the IEP theoretically by
analysing farmers’ perceptions and behaviour, and (iii) to illustrate the proposed IEP as a tool

to measure the resilience-potential of farms.

3. Methodology

3.1 Theoretical framework

This study employs the theory of planned behaviour (TPB) originally developed by Ajzen and
Madden (1986), to evaluate the pathway of ESA practices. TPB framework helps to understand
and assess individual social and psychological behaviour in multiple disciplines (Despotovié¢
et al., 2019; Rezaei et al., 2019). TPB analyses patterns of subjective behaviours towards an
action. Originally derived from the theory of reasoned action (TRA), in the TPB framework,

any action or behavioural intention is depicted as the optimum choice made by an individual



(Ajzen and Madden, 1986; Madden et al., 1992). In both the TRA and TPB frameworks, the
intention is postulated as the driving force in formulating behaviour. The decision-making
process in TPB follows a strategic flow that is explained by three independent latent variables;
namely attitude, subjective norms, and perceived behavioural control (Ajzen and Madden,
1986). This framework has been used in explaining farmers’ different agronomic practices, i.¢.,
agricultural input, namely fertilizer and manure use (Daxini et al., 2019), pollution control and
management (Wang et al., 2019), pest management (Despotovi¢ et al., 2019; Rezaei et al.,
2019), soil conservation methods (Wauters et al., 2010), environmental consciousness and
impact (Hoogendoorn et al., 2019), minimum tillage and row planting (Zeweld et al., 2017),
and agri-environmental diversification (Sutherland et al., 2016). In addition to explaining
farmers’ attitudes about smart agriculture, these studies have tested TPB links between
components. TPB framework has been largely used in the perception-based agri-environmental
analysis because it allows the identification of the link between awareness and adoption. This
framework includes the social and psychological or cognitive factors influencing the adoption
of a sustainable action (Zeweld et al., 2017; Lin and Wang, 2021). These intrinsic factors may
even influence the economic profitability of a sustainable approach and improve its diffusion
(Bopp et al., 2019). Therefore, it is possible to address the motivational factors, including
economic and cognitive factors, which can shape farmers’ environmental orientations and
optimize on-farm resource and input utilization. However, it is also possible that intention does
not always drive behaviour. For instance, in Lin and Wang (2021), intention does not increase
the low-carbon travel of urban residents. This suggests that the attributes and construction of

TPB components may influence an individual’s perception and choices consequently.

In our analysis, the composite index of environment-smart agricultural practices (IEP)
is the behvaiour of an individual farmer and the intensity of on-farm environmental problems
(EII) is defined as the intention. Theoretically, intention induces action or a certain behaviour.
However, to analyse any post-ESA adoption behaviour, the nature of this link has been
modified. It is postulated that a farmer is motivated to adopt ESA if the farmer perceives that
employing ESA would limit on-farm environmental problems (indicating a reciprocal
association). Following Ajzen and Madden (1986), attitude, i.e., the ‘index of benefits from
ESA’ which is the outcome of ESA, is defined as the advantages of the ESA for production
and farm resources. Subjective norm captures social restraints (Ajzen and Madden, 1986;
Daxini et al., 2019) which is an indifferent factor at the community level. Climate change and

its impacts are spatially distinguishable; hence they are included as subjective norms and named



the ‘index of climate change condition’. Finally, higher perceived control implies better
command over resources and corresponding behavioural intention (Ajzen and Madden, 1986).
Thus, perceived behavioural control can capture individual adaptive capacity. Adaptive
capacity is bottom-up or community-level knowledge that demonstrates actual adaptation
(Smit and Wandel, 2006). Actual adaptation is constrained by resource availability and access
at the household level, therefore socio-economic and institutional factors and agricultural input
accessibility are included as perceived control. The main motivation for using this framework
and the novelty of this study is that a holistic index of on-farm negative environmental impacts
(EII) is used to indicate intention, which tends to drive multiple environment-smart agricultural
practices (IEP), the behaviour component. This framework also includes household
characteristics, climate change conditions, and on-farm environmental impacts. In this paper,
TPB is used mainly for model identification and for validating the proposed IEP as an
alternative tool to measure the resilience potential of a farm. Therefore, TPB components are
not predicted. In addition to this, TPB components are not included as latent variables so that
farmers’ behaviour towards ESA can be explained by the observed exogenous variables

separately (Figure 1). Table 1 shows the components, variables, and expected signs of

relationships.
Attitude
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Figure 1: Components of TPB and their interrelationships in understanding ESA behaviour



Table 1: Variable selection in the TPB framework and the expected sign of relationships

Variables Expected sign
a. Intention 2 Behaviour

Environmental impact index = Index of ESA practice Negative

b. Attitude = Intention

Index of benefits from ESA - Environmental impact index Negative

c. Subjective norm - Intention

Index of climate change condition - Environmental impact index Positive

d. Perceived behavioural control - Intention

i. Index of household pollution> Environmental impact index Negative
ii. Index of constraints in using ESA = Environmental impact index Positive
iii. Education of farmer = Environmental impact index Negative
iv. Experience in farming - Environmental impact index Negative
v. Extension services > Environmental impact index Negative
vi. Subsistence pressure 2 Environmental impact index Positive
vii. Agricultural income = Environmental impact index Negative
viii. Land ownership = Environmental impact index Negative
ix. Chemical fertilizer use = Environmental impact index Positive
x. Organic fertilizer use = Environmental impact index Negative

3.2 Index construction and indicators of TPB components

Environment-smart agriculture (ESA) aims to limit the environmental impacts of agriculture
and to aid in managing climate change impact on agricultural production. We propose an
alternative approach that can be used to measure the farm-specific composite index of ESA
practices (IEP) (Figure 2). The approach is named an integrated impact management approach
that integrates important methods of managing on-farm environmental impacts. These are
physical, chemical (safe to the farm environment), biological, local/cultural standards, and
preventive and corrective methods. These methods satisfactorily target those impact areas that
are mostly affected by chemical-intensive agriculture. For each method, we have identified the
respective impact management techniques. Then we compute the weighted sum of the numbers
of techniques under each selected method as the index of ESA practices (IEP). A higher weight
is assigned to a given method that comprises a higher number of techniques. In this case, we
give 0.5 incremental weights between 0 and 2. The resulting score of the IEP, therefore, implies
that farms with a high IEP contribute more by managing agriculture-induced environmental
impacts. The index name, their selected components, and the respective methods of

constructing the index and its formula are presented in Table 2. We formulated the



Environmental impact index (EII) and other indices following Sabiha et al. (2016). Table 2

also includes the calculation details of these indices.

Approach

Method

* Physical

» Chemical
*Biological

* Preventive

* Corrective
»Local standard

Integrated
impact
management

Impact
areas

* Soil-related

» Farm nuisance Index of
* Crop health ESA
» Water-related practice

+* Farmers health

Figure 2: The process of conceptualizing ESA and constructing the ESA index

Table 2 Names, components, methods and formulas of variable indices

Index name, components and methods Formula

3 i 1 . 12
Env.njonmenta.l impact index (EII): . . Ell =S wE.
Fertility reduction, pest attack, crop disease, soil =

erosion, soil hardness, skin problem, soil salinity, soil
water holding capacity, waterlogging, water pollution,
fish catch reduction, and soil toxicity

Opinion-based item analysis approach: a composite
form of impacts mostly experienced by the farmers.
Likert five-point scale.

Index of ESA practice (IEP):

Use of physical, chemical, biological, local, preventive
and corrective techniques of on-farm impact
management

Integrated impact management approach: Weighted sum
of the number of environment-smart farming techniques
used by a given farmer.

Index of benefits from ESA (IEB):

Increase in yield, reduction in irrigation number and
cost, reduction in crop disease and insect/pest attack,
improvement in soil fertility, soil erosion and soil
toxicity condition, reduction in surface/groundwater
pollution, and reduction in farmers’ health impact.
Opinion-based item analysis approach: overall benefits
achieved from using ESA practices, Weighted sum of
Likert five-point scale.

Index of climate change condition (ICCN):

Sudden rainfall, flood/drought, temperature increase,
temperature decrease, pre/post-monsoon storm,
monsoon storm, and fall in groundwater level.
Opinion-based item analysis approach: overall
perception of climate change condition. A weighted sum
of Likert five-point scale for each component

Index of constraints using ESA (ICE):

10

where, w;= weights, (/= 0,0.2,0.4,0.6,0.8,1) higher
the weights, higher the intensity of impact
perceived by the farmers.

E.= Likert point for given on-farm environmental
impacts after harvest

6
IEP=YYwM,
ZxwM

where, w;= weights, (/=0,0.5,1.0,1.5,2) higher
number of ESA farming techniques used for a
given method, higher the weights.

M= number of farming techniques for a given
method

10
IEB, =Y w,B,
s=1

where, w;= weights, (/=0,0.2,0.4,0.6,0.8,1) higher
weights, higher degree of benefits received from
ESA practices.

Bs= Likert point for a perceived benefit of ESA
practices.

7
ICCN, = Y w,C,
d=1

where, w;= weights, (/=0,0.2,0.4,0.6,0.8,1) higher
weights means the higher intensity of the climate
change condition

Cy= Likert point for a given observed climate
change condition.

15
ICE, =>w]T,
n=1



Limited knowledge of on the environmental where, w;= weights, (/=0,0.5,1.0,1.5,2) higher the
consequence of farm chemicals and benefits of the soil number of constraints to use ESA farming

test, shortages in soil test equipment, limited access to techniques, higher the weights.

water-saving irrigation, rise in irrigation cost, an T,= Total number of constraints/difficulties using
insufficient supply of solar energy, organic fertilizer and ESA farming techniques

shortages in quality seed, and insufficient training
facilities on environment-safe farming techniques.
Statistical averaging procedure: Weighted sum of the
number of constraints using environment-smart farming
techniques.

Index of farmers’ household pollution (IHP):

6
House category, sanitation, access to health facility, IHE = aZ:lwha /24

drinking water source, household energy source, and where,

waste disposal wi= polluting activity weights, h =4 (least), 3
Statistical averaging procedure: Weighted summation of  (good), 2 (better), 1(best).

environment polluting household living attribute. a = component attributes

Source: Authors’ preparation

3.3 Study area and sample

This study addressed one climate extreme event and the required mitigation pathways. A farm-
level household survey was conducted in the western climatic sub-region covering three agro-
ecological zones in Bangladesh. Two major administrative areas, i.e., districts fall in this region
namely Rajshahi and Naogaon. These areas are vulnerable to frequent droughts as climate
extreme events and consequently severe groundwater depletion (Alauddin and Sarker, 2014).
Figure 3 provides the map of agro-ecological zones in Bangladesh including the identification
of the study area. Agro-ecological zones (AEZs) are grouped according to cropping and climate
conditions, soil characteristics and other topographical features. There are 30 AEZs in
Bangladesh and western regions itself in the country has varying in soil fertility level and
climatic conditions (GOB, 2020). The most important crops cultivated in these areas are highly
irrigated, including grains, cereals, vegetables, and fruits. The intensity of cropping in Rajshahi
and Naogaon amounts to 203% and 202% respectively, while the area under HYV rice
production is three times larger in Naogaon than in the other region (GOB, 2020). However,
soil fertility level and consequently crop yield vary considerably in the selected AEZs. No
variation in ESA practices is observed in this study. The reason might be that they experience
similar climate change conditions, impact and constraints to using enovironment-resilient
technologies. The sampling frame uses the list of the registered farmers under each jurisdiction
of the Agriculture extension union offices (AEUOs). The required sample size (the number of
farmers who were required to be interviewed in the survey) was calculated following Cochran
(1977) and Bartlett et al. (2001). Thus, following a random sampling procedure, a total of 103

agricultural farms were chosen for field survey using a structured questionnaire.
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Figure 3: Map of agro-ecological zones in Bangladesh
Note: The black circles indicate the study area.
Source: Retrieved from https://www.bamis.gov.bd/en/page/aezs-maps/
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3.4 Data Analysis

Structural equation modelling (SEM) was employed to validate the ESA approach
econometrically under the TPB framework. SEM has been increasingly used in social sciences,
ecological studies, and human behaviour analyses in the presence of linear multivariate causal
relationships (Brito and Pearl, 2012; Fan et al., 2016). A two-step pure and recursive structural
model was used for the estimation of path analysis among variables. Path analysis is one way
of conducting SEM where causal relationships are motivated by a theory (Holland, 1988). Also,
the rationale for using a recursive model is that the causal relationships between variables are
hypothesized as uni-directional (Brito and Pearl, 2012). In the first step, the impacts of
variables depicting attitude, subjective norm, and perceived control are estimated on the
intention variable. In the second step, the reduced model estimates the causal relationship

between the intention variable and the behaviour variable.

4. Results and discussion

4.1 Data description

Table 3 presents the descriptive statistics of computed indices and farm-specific characteristics.
The mean values of indices demonstrate that the scenarios of on-farm environmental impact
(EII) and climate change condition (ICCN) are large relative to other indices. Farmers in the
study area are less likely to perceive benefits from ESA practice as the average value of this
index (IEB) is low. Also, the mean value of the ESA practice (IEP) is moderately low, perhaps
reflecting the lower level of their environmental perception. The average education level of
farmers is at the secondary stage which suggests a poor educational background. However,
they are satisfactorily experienced in farming and around 78 percent of their total income
comes from agriculture. Approximately 49 percent of farmers have access to extension services

which demonstrates poor institutional provision in the study area.

Table 3: Indices/variable data description

Indices/ variables Mean Max Min St. dev.
IEP 7.62 19.5 0.5 4.43
EIl 19.50 60 1 16.37
IEB 9.99 36.6 0.21 9.21
ICE 9.85 29 0.5 7.75
ICCN 13.87 35 2.2 8.86
IHP 0.80 1.95 0.37 0.16
Land ownership (proportion out of total arable land) 0.64 1 0.02 0.38
Education (Schooling years) 7.18 17 0 5.17
Experience (Years) 25.05 50 5 10.47
Extension service (1=yes, 2=no) 1.51 2 1 0.51
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Subsistence pressure (proportion of dependent out of

total family members) 0.69 0.87 0 0.13
Chemical fertilizer application rate (kg/acre) 77.11 387.5 2.37 65.75
Organic fertilizer (kg/acre) 1197.30 2700 99.92 681.82
The proportion of agriculture out of total income 0.78 1 0.2 0.29

Source: Field survey

4.2 Environmental impact and climate change related attributes in variable indices

4.2.1 Climate change (CC) condition and impact on yield

Table 4 shows the number of farms facing different climate change conditions and,
consequently, loss in agricultural production in the study area. Among those CC conditions,
sudden rainfall and flood/drought followed by a fall in groundwater level and temperature
rising events are mostly faced. Monsoon storms, and a decrease in temperature, pre-/post-
monsoon storm events are experienced by more than 50 percent of farmers. Eighty-five farmers
incurred significant loss amounting to BDT 14,570.00 per acre of land, for a given crop season
because of sudden rainfall or flood and drought condition. Pre/post-monsoon storm, increase
or decrease in temperature, and falls in the groundwater level, were identified as subsequent
problems leading to reduced yield. Groundwater scarcity even increases the severity of
production loss for all rice crop varieties in the country (Islam et al., 2017). Loss in agricultural
yield is accompanied by several resultant impacts such as an increase in crop diseases, pest
attacks, extinction of beneficiary pests, and reduction in fish production in field-adjacent water
sources. Figure 4 shows the percentage distribution of farms facing these impacts of climate
change and the constraints to using climate-resilient technologies. Pest attacks and crop disease
are the major problems experienced in the study regions. Around 53 percent of farmers reported
the ‘extinction of beneficiary pests’ problem and a small proportion (12.63%) also reported the
‘reduction in fish catch problem’ from adjacent water bodies. The most-reported constraints to
using conventional climate-resilient technologies include the unavailability of climate change
updates or forecasts, higher cost of installing a water-saving irrigation system, limited
knowledge about the benefits of a regular soil test, an inadequate supply of climate-resilient
seeds, and difficult access to training on climate-resilient technologies. It may be that farmers
are not aware of climate-friendly clean energy sources such as solar power systems. Farmers
rarely demand, purchase or install solar power in their fields. This may keep solar power less

familiar and increase climate-depleting energy usage in agriculture.
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Experienced impacts and perceived constraints

of using climate-resilient technology

Impacts of climate change_

Experienced by farms
Pest attack increase 87.38%
Crop discases increase 82.53%
Beneficiary pest extinction 53.4%
Reduction in fish catch from adjacent sources 12.63%
Major constraints
Faced by farms
68
The increased cost of water-saving irrigation technologies
67%
No/limited information on climate change condition or forecast
64.1%
Less knowledge about using soil test equipment and benefits of regular soil test
55.3%
No/limited knowledge about the appropriate use of standard climate-resilient technology
54.4%
Inadequate training on use of climate-resilient standard and suitable technologies
S 48.5%
Limited knowledge about the use of farm chemicals
— 44.7%
The limited supply of solar power system
42.7%
Insufficient disbursement of agriculture credit/loss in output/negative savings
EE—— 26.2%
Insufficient supply of organic fertilizer
E— 25.3%
Limited access to irrigation facility
em— 13.6%

Insufficient supply of quality seeds

Figure 4: Experienced impacts in cropping and constraints of using climate-resilient technology

Source: Field survey

Table 4 Pattern of climate change (CC) and loss in yield

Climate change conditions Numbers of Loss in yield Numbers of farms

farms facing (price in Taka per that recognised the
acre_ per crop responsible CC
season) condition)

Sudden rainfall 103

Flood/drought 103 14,570 85(3.24)

Temp rising 88

Temp decreasing 68 11,275 >7(2:42)

Pre/post-monsoon storm 63

Monsoon storm 76 11,950 36 (1.96)

Fall in groundwater level 99 8,740 75 (2.56)

Note: Likert opinion-point averages are shown in the parentheses. A five-point scale is considered where

condition intensity grows along with the scale points.
Source: Field survey
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4.2.2 Environmental impacts of agriculture and ESA practices

Chemical-based agriculture often imposes negative impacts on the farm environment (Sabiha
et al., 2016). Table 5 shows the number of post-harvest environmental impacts. These include
a reduction in soil water holding capacity, soil hardness, and a reduction in soil fertility. Based
on the Likert scale, water pollution (4.12) is the most reported problem. To minimize the
damage to the farm environment as well as limit the possible future loss during the next
cropping period, farmers resort to alternative methods of cultivation. They are operationalized
in this study as ESA practices. The categories are biological, physical, environment-safe
chemical, cultural/local, corrective, and preventive methods (Figure 5). Local/cultural and
biological control methods are the most adopted ESA practices that also have on-farm
protective and controlling impacts on the environment. This has an important implication for
both local resource conservation and climate-resilient agriculture. In the category of
local/cultural methods, most farmers use organic fertilizers to deal with soil-related problems
directly and water-related problems indirectly. It is also observed that any type of soil
management including structure, nutrition, and toxicity control is the most preferred option for

ESA practices.

Table 5 Post-harvest environmental impacts

Impact names Number of farms Impact names Number of farms
fertility reduction 90 (2.46) soil salinity 22 (2.41)
soil toxicity 35 (2.98) skin problem 67 (2.43)
soil water holding capacity 94 (2.88) waterlogging 31 (2.74)
soil erosion 41 (1.78) water pollution 55 (4.12)
soil hardness 60 (2.13) fish catch reduction 60 (3.01)

Note: Likert opinion-point averages are shown in the parentheses. A five-point scale is considered where impact
intensity grows along with the scale points.
Source: Field survey
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ESA farming practices )

(Impact management methods

Cultural and Corrective, Physical and
local standard preventive and environment-safe
biological chemical

Impact management purpose/target impacts >

= Pest control: repellent (farm * Soil toxicity management & Insect control (farm
nuisance) (soil-related) nuisance)

* Soil structure and nutrition * Crop discases prevention * Insect control: attractant
management (crop health-related) (farm nuisance)

* Organic farming (direct focus: * Protection/conservation of
soil-related, indirect focus: natural enemies (farm
water-related) nuisance)

(Impact management techniques

= Energy-based light trap, kerosene trap
= Attractant diffuser-trap
= Neem leaf boiled water spray
I B Green manure: leguminous/ sesbania plants, crop residue
= Organic fertilizer
m Application of lime/ash
I = Application of oil cakes from mustard and sesame seeds
" llation of stick d: place for t birds

Organic fertilizer, 100.00

ESA techniques used by farms (in percentage)

Figure 5: Management methods, impacts and techniques of ESA farming technology
Note: Similar line colour of shapes is used for each method and the respective management techniques.
Source: Field survey

4.3 Path analysis and structural model results

Table 6 and Figure 6 present the direct effects of parameters in path analysis including the
hypotheses testing results. Concerning the TPB framework, an expected sign is observed in
eight relationships including the intention to behaviour relationship. Results show that farms
with a high index value of environmental impacts have a low index value of ESA adoption (-
0.21). It was observed in the study area that there are multiple adverse post-harvest on-farm
environmental impacts (Table 5). The finding also explains the causal relationships between
exogenous variables on the intention variable, i.e., the EII. It is found that there is an inverse
relationship between the index of benefit from ESA practice (-0.44) and after-harvest on-farm
environmental impact (EII). The atfitude component in the TPB framework is significant in
this respect because it validates the proposed ESA approach. It implies that if farmers perceive

the benefits of ESA, they intend to reduce environmental impacts and will employ ESA
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methods. The index of climate change condition (0.33) and chemical fertilizer use (0.03) are
related directly to the EII. This result supports the findings of the existing studies on increasing
pest attack, crop disease, and yield loss that are a consequence of temperature increase and
variable rainfall and impacts of farm chemicals usage (Rosenzweig et al., 2001; Valdivia et al.,
2010). The education level of farmers, farming experience, and the share of agricultural income
contribute to limiting farm-land environmental consequences. This could contribute to ESA
diffusion as well. In previous studies, education has a significant effect on influencing both
intention and behaviour (Daxini et al., 2019; Lin and Wang, 2021). The use of organic fertilizer
(0.07) could not exert substantial influence on EII implying its lower usage. The SEM analysis
also shows a direct relationship between the index of constraints using ESA practices and EII
and partly explains why the adoption of ESA techniques is low in the study area. This exhibits
the largest effect (1.45) on the on-farm environmental impact among all the exogenous
variables. Relevantly, multiple resource constraints and less adaptive capacity of farmers are
observed in the study area. This finding is consistent with Alauddin and Sarker (2014). The
authors observed that finance and information including prior climate information are the major
barriers to farmers’ adaptation. Similarly, they are observed as decreasing factors for any water-

saving technology adoption, in Alauddin et al. (2020).

Table 6: Path analysis results and TPB hypotheses testing

Intention (Impact on EII)

Variables Coefficients The expected sign of a

relationship in TPB
(Yes/No/Reject)

IEB -0.44%%* Yes

ICCN 0.33%** Yes

IHP -0.77 Reject

Education -0.26* Yes

Farming experience -0.17** Yes

Access to extension service 2.81% No

Subsistence pressure 1.74 Reject

Agricultural income -11.89%** Yes

Land ownership 2.88 Reject

Organic fertilizer use 0.07%* No

Chemical fertilizer use 0.03%* Yes

ICE 1.45%** Yes

Intention = Behaviour (Impact on IEP)

EII -0.2]%** Yes

Model Fit

Chi-square ratio 495.36""

R’ 0.85

Note: ***p< 0.01, **p<0.05, *p< 0.10
Source: Field survey
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Figure 6: SEM path analysis of EIl and IEP

5. Conclusion

This study proposes an integrated approach to environment-smart agriculture (ESA) that
determines the climate resilience potential of a farm. A composite index of environment-smart
agricultural practices (IEP) is formulated as a measure of that resilient potential. The IEP
focuses on five mostly-affected target areas of farm environment and climate and comprises
biological, physical, local, preventive and corrective management techniques. The TPB
theoretical framework is used to validate the IEP index. This study evaluates how farmers’
attitudes (i.e., IEB), subjective norms (i.e., ICCN), and perceived behavioural control (e.g., the
ICE, experience, and education) together shape their intentions (of limiting EIl) and actual
behaviour (adopting the ESA). Structural equation modelling and path analysis were employed
to test these linkages on a sample of 103 farms in north-western Bangladesh. The important
observations from the path analysis are: (i) farms having a higher index of on-farm
environmental impacts (EII) hold a lower value of the IEP, implying the potential advantages
of the ESA practices, (ii) farmers who have better knowledge about the advantages of the ESA
are less likely to experience negative impacts from cultivation on their farm environment, and
(111) farms that suffer from a higher level of climate change (ICCN) influence the environmental
impact of agriculture adversely. Thus, farms that face more constraints to the use of ESA

practices are most likely to generate a higher level of environmental impacts.

The path analysis provides a comprehensive assessment of the proposed approach to

ESA practices. Therefore, wider-scale execution of the ESA practices not only helps to manage
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post-harvest environmental impacts but also increases the climate-resilience potential of a
farm. Since ESA practices mostly comprise local scale measures, they are cost-effective and
do not require external funds. This is a significant indication of promoting ESA in the bottom-
up policy framework. We suggest that i) information and knowledge diffusion on ESA should
be undertaken by local agricultural extension wings with a focus on local traditional measures
and spatial heterogeneity, i1) government mitigation and adaptation projects should include
economic incentives on local climate-resilient technology, and iii) training on ESA and sharing
the experiences of farmers who already adopted ESA would increase its adoption and social
capital. Furthermore, the theoretical framework and findings could be utilized in future
inquiries. ESA framework is tested in this study addressing local climate hazards and its
mitigation pathways. However, ESA practices as well as perception towards them, may vary
spatially with climate disaster type, the intensity of impacts, other idiosyncratic shocks and
their coping mechanism. Thus, it would be useful for future research to capture the regional

effect in ESA adoption and address the heterogeneity in local and traditional ESA options.
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