- Kinetics of oil generation from brackish-lacustrine source rocks in the southern Bohai
 Sea, East China
- 3
- 4 Haoran Liang^{a,b}, Fanghao Xu^{a,*}, Kliti Grice^b, Guosheng Xu^a, Alex Holman^b, Peter Hopper^b,
- 5 Deliang Fu^c, Qing Yu^a, Jiaju Liang^a, Deying Wang^d
- 6
- ^a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu
- 8 University of Technology, Chengdu 610059, China
- 9 ^b Western Australia Organic and Isotope Geochemistry Centre, The Institute for
- 10 Geoscience Research, School of Earth and Planetary Sciences, Curtin University, GPO
- 11 Box U1987, Perth, WA 6845, Australia
- ¹² ^c Key Laboratory of Coal Exploration and Comprehensive Utilization, Ministry of Land
- 13 and Resources, Xi'an 710000, China
- ^d Bohai Oilfield Research Institute, Tianjin Branch, CNOOC, Tianjin 300459, China
- 15
- 16 * Corresponding author: Fanghao Xu (Email: xufanghao17@cdut.edu.cn)
- 17
- 18

19 ABSTRACT

Oil generation (C₁₄₊ hydrocarbons) of three Type II kerogen samples isolated from 20 brackish-lacustrine mudstones from Palaeogene strata (Ed₃, Es₁, Es₃) in the southern Bohai 21 Sea was simulated by closed-system gold tube experiments. In addition, a series of 22 complementary analyses (Rock-Eval pyrolysis, total organic carbon, vitrinite reflectance, 23 trace element, X-ray diffraction and flash pyrolysis-gas chromatography-mass spectrometry) 24 were also performed to identify the bulk geochemistry, palaeo-environment and chemical 25 26 composition of the kerogen. The aim of this study was to achieve a better understanding of the kinetics of oil generation from lacustrine source rocks in the southern Bohai Sea. The 27 results show that the three samples are Type II source rocks deposited in similar 28 palaeo-environments (hot and arid climates, anoxic conditions, and brackish water in shallow 29 to semi-deep lakes) with consequent similarity in the chemical compositions of their kerogens. 30 The organic matter inputs are predominantly composed of lacustrine microalgae, with a 31 relatively small contribution from land plants. The activation energies of oil generation from 32 these samples show a range of 44–52 kcal/mol, with a frequency factor varying from 33 1.116×10^{14} to 1.274×10^{14} s⁻¹. Due to the similar palaeo-environments and chemical 34 composition, samples in this study exhibit strong consistencies in kinetic parameters. 35 Transformation ratio (TR) evolution curves of oil generation from the three samples, 36 calculated under a linear heating rate (3 K/Ma), exhibit a slight difference, which varies 37 within 4 °C at a given TR. Due to the great similarities of the three kinetic models, an 38 39 average kinetic model for the Type II brackish-lacustrine source rocks in the southern Bohai Sea was established. This model integrates the characteristics of the three kinetic 40 models and is still dominated by activation energy of 52 kcal/mol. The geological 41

42 temperature of the oil generation phase for the average model in the southern Bohai Sea is
43 from 92–137 °C.

44

Keywords: Kinetics of oil generation; Type II kerogen; Palaeo-environment; Kerogen
composition; Brackish-lacustrine source rock; Southern Bohai Sea

47

48 **1. Introduction**

49 Kerogen, a geopolymer of high molecular weight, is defined as the organic matter in sedimentary rocks that is not soluble in aqueous alkaline solvents nor common organic 50 solvents (Tissot and Welte, 1984). Selective preservation and chemical condensation are the 51 main pathways for the formation of kerogens (Larter and Horsfield, 1993). As burial depth 52 increases, macromolecular matter in kerogen undergoes thermal breakdown, which results in 53 petroleum (oil and gas) generation (Behar et al., 1997a). 54 Kerogen kinetics are not only used to obtain a better understanding of the thermal 55 evolution of source rocks, but are also essential for basin modelling (Chen and Jiang, 2015). 56 Four kinetic models have been reported to describe the progress of petroleum generation: (1) 57 overall reaction model (a model with just one simple reaction) (Allred, 1966), (2) 58 Friedman-type model (kinetic parameters in this model change along with the reaction 59 process) (Friedman, 1964), (3) consecutive reaction model (final products are assumed to 60 form through several continuous reactions) (Behar et al., 1997b, 2003, 2010), and (4) parallel 61 62 reaction model (petroleum generation can be described by a series of parallel reactions) (Tissot et al., 1987; Ungerer et al., 1990; Burnham et al., 1995). It has been widely accepted 63 that chemical reactions during petroleum generation can be described by first-order Arrhenius 64

65	reactions (Burnham et al., 1987; Sweeney and Burnham, 1990). The parallel reaction model
66	with a single frequency factor and a discrete distribution of activation energies has been
67	extensively used in many cases (Braun and Burnham, 1987; Burnham et al., 1989; Tegelaar
68	and Noble, 1994; Dieckmann, 1998; Schenk and Dieckmann, 2004; Li and He, 2014; Abbassi
69	et al., 2016). Due to the complexity of petroleum generation, only approximate kinetic results
70	can be obtained when simulating the transformation of kerogen (Wood, 2018). Nevertheless,
71	the Arrhenius equation still currently provides the best approximation to the key first-order
72	reactions (Wood, 2018).
73	Pyrolysis experiments on immature kerogens in controlled conditions (relatively high
74	temperatures and short durations) provide reliable data for the accurate calibration of kinetic
75	parameters (Dieckmann, 2005). In turn, these kinetic parameters derived from laboratory
76	experiments can be extrapolated to geological conditions to determine the progress of
77	petroleum generation (Lewan et al., 1985, 2006; Schaefer et al., 1990; Dieckmann, 1998;
78	Dieckmann et al., 2004; Peters et al., 2018). Closed system pyrolysis has been widely
79	employed in the artificial petroleum generation from source rocks (Lewan et al., 1985, 2006;
80	Landais et al., 1989; Dieckmann et al., 1998, 2000, 2004; Behar et al., 2010). Gold-tube
81	pyrolysis is one of the most commonly used methods in confined system (Behar et al., 1997b;
82	Fusetti et al., 2010b, 2010a; Lu et al., 2010; Mao et al., 2012; J. Wang et al., 2017; Huang et
83	al., 2018). Monthioux et al. (1985, 1986) first conducted pyrolysis experiments on coal
84	samples by using gold-tube confined system pyrolysis and proved that these pyrolysates were
85	quite similar to natural crude oils. Moreover, the generated pyrolysates (e.g., oil, gas, water,
86	etc.) and kerogens were in close contact with each other in compressed gold capsules. This
87	reaction medium in gold-tube pyrolysis was more comparable to source rocks in natural

88	systems where the retained hydrocarbons were under great pressure from the overlying rocks
89	and mainly absorbed by kerogens in source rocks (Xiang et al., 2016; Huang et al., 2019).
90	Palaeogene lacustrine mudstone (shale) is the main source rock in faulted basins of
91	East China (Zhu et al., 2005; Li, 2015). More than 2.5 billion tons of oil sourced from
92	lacustrine mudstone have been found in the Bohai Sea (offshore area of the Bohai Bay Basin),
93	East China (Hao et al., 2009). Previous cases in the Bohai Sea (BS) focused on the gross
94	kinetics or kinetics of gas generation (Gao et al., 2004; Liu et al., 2009; Wang et al., 2014; J.
95	Wang et al., 2017, 2018; Niu et al., 2018), but none of them have focussed on oil generation.
96	Therefore, the kinetic study of oil generation appears to be particularly important in the Bohai
97	Sea. The kinetics of oil generation (C_{6+}) from lacustrine source rocks determined by gold-tube
98	pyrolysis have been reported in other regions (Guo et al., 2008; Xiang et al., 2016; Huang et
99	al., 2019). While the C_{6+} fraction can be further divided into C_{6-14} and C_{14+} fractions which are
100	described by different kinetic models (Dieckmann et al., 2000; Liu et al., 2016). Previous
101	studies conducted by gold-tube pyrolysis have made some attempts on the kinetics of oil (C_{14+})
102	generation from lacustrine Type II source rocks (Guo et al., 2009; Wei et al., 2012; Yan et al.,
103	2019). However, there exists various problems in these cases. Firstly, the Type II kerogens in
104	the some cases (Guo et al., 2009; Wei et al., 2012; Yan et al., 2019) were actually in mature
105	stage which means a proportion of hydrocarbon potential has been consumed and would lead
106	to the relatively high Ea distribution (Peters et al., 2006). On the other hand, some key
107	information (calculation of kinetics; settings of parameter; frequency factor) of kinetics in
108	some cases was not provided (Wang et al., 2003), thus the results cannot be validated and
109	serve as an reference for kinetic study. In the present study, the above problems (immature
110	lacustrine sample, detailed procedure) have been considered, and a better kinetic work of oil

(C₁₄₊) generation determined by gold-tube pyrolysis has been presented. 111

112	This paper, based on comprehensive experiments (Rock-Eval, total organic carbon,
113	vitrinite reflectance, trace element, X-ray diffraction, flash pyrolysis-GC-MS and gold tube
114	pyrolysis), aims to determine the liquid oil potential of lacustrine source rocks and the
115	kinetics of oil (C_{14+}) generation in the southern BS. Inorganic approaches, including trace
116	element analysis and X-ray diffraction (XRD), were also employed to identify the
117	depositional conditions of the samples. Flash Py-GC-MS was used to reveal the chemical
118	structure of kerogen. The determination of the palaeo-environment and chemical composition
119	of kerogen is beneficial to obtain a better understanding of the kinetic processes. In the
120	present study, we established a typical (average) kinetic model of the Type II
121	brackish-lacustrine kerogen in the southern BS. The results not only provide reliable data and
122	new information for kinetic studies in the southern BS, but also serve as a reference for
123	kinetic studies of brackish-lacustrine source rocks in East China or other regions that share a
124	similar depositional environment.
125	
126	2. Geological settings
127	The Bohai Bay Basin, one of the most petroliferous lacustrine basins in East China, is
128	a Mesozoic-Cenozoic intraplate rift basin (Chen et al., 2017). The Bohai Sea (BS) is defined
129	as the current offshore area of the Bohai Bay Basin (Wang et al., 2014). As shown in Fig. 1,
130	the study area is located in the southern BS and consists of two sags (Laizhouwan Sag,
131	Huanghekou Sag) separated by four uplifts (Bonan low uplift, Laibei low uplift, Kendong
132	uplift and Weibei uplift).

The southern BS experienced two periods of tectonic movement during the Cenozoic 133

Era, known as the syn-rift and post-rift periods (Fig. 2) (Hsiao et al., 2004). The tectonic 134 evolution in the southern BS was determined by both normal faults and strike-slip faults (Liu 135 et al., 2016; Zhang et al., 2017): Stage I and stage II of the syn-rift period were predominately 136 controlled by subparallel EW-trending normal faults. Stage III of the syn-rift period was under 137 the superimposition effect of the subparallel EW-trending normal faults and the NNE-trending 138 strike-slip faults (Fig. 2). 139 The Palaeogene strata in the study area include the Palaeocene Kongdian (Ek) 140 141 Formation, the Eocene Shahejie Formation (Es) and the Oligocene Dongying Formation (Ed) (Fig. 2). These formations were deposited in alluvial, fluvial, deltaic, salt lake or semi-deep to 142 deep lake facies (Allen et al., 1997; Xin et al., 2013; Wen et al., 2014). The Shahejie 143 144 Formation and Dongying Formation can be divided into four members and three members, respectively (Fig. 2). Several sets of source rocks (Es₄, Es₃, Es₁₋₂, and Ed₃) have been 145 discovered as the main source rocks in the southern BS (L. Wang et al., 2011; Yang et al., 146 2011; Niu, 2012; Wu et al., 2015). The Neogene strata, mainly controlled by fluvial and 147 shallow lake facies (Allen et al., 1997; L. Wang et al., 2011), are composed of the Guantao 148 Formation (Ng) and Minghuazhen Formation (Nm). The Quaternary in the study area is 149 dominated by marine sediments (Zhu et al., 2015). 150

151

152 3. Materials and methods

153 *3.1. Sample description and preparation*

In this study, three source rock samples were collected from Well HHK25-2-A and Well LZW10-3-A (Fig. 1b). The three grey mudstone samples correspond to the three main source rock layers in the southern BS (Table 1). All these samples were cleaned in an

157	ultrasonic bath with distilled water and sonicated several times to remove the drilling mud.
158	Then these samples were dried up and cleaned several times by ultrasonic cleaner again with
159	the mixture of dichloromethane and methanol (9:1, v/v) to exclude possible organic
160	contamination from external (artificial) sources.
161	
162	3.2. Total organic carbon, Rock-Eval pyrolysis and Vitrinite reflectance
163	Total organic carbon, Rock-Eval and vitrinite reflectance were tested to determine the
164	basic geochemical characteristics of the source rock samples. Samples were crushed to 100
165	mesh by using an agate mortar and pestle. The detailed steps of total organic carbon analysis
166	follows Wang and Guo (2019). Samples were digested with a HCl solution (5%) to eliminate
167	the inorganic carbonate fraction. Then samples were cleaned using distilled water and dried in
168	an oven at 50 °C. The total organic carbon (TOC) was measured with a Leco CS-230
169	Carbon/Sulfur Analyzer with an error no more than 0.5%. Both the original rock samples and
170	kerogen samples were measured for TOC.
171	Rock-Eval measurements followed Lafargue et al. (1998) using a Rock-Eval 6
172	instrument. Free hydrocarbon (S_1) , pyrolysis hydrocarbon (S_2) , CO ₂ yield (S_3) and the
173	temperature of maximum pyrolysate (Tmax) were determined.
174	The detailed preparation and measurement of vitrinite reflectance (%Ro) can be
175	found in Liang et al. (2019). Sample were crushed into particles (2-3 mm), mounted in liquid
176	epoxy on glass slides, and then polished. The measurement of %Ro was performed on a Leco
177	CTR6000M Photometry Microscope and at least 25 points were measured for each sample.
178	The final vitrinite reflectance was the arithmetic mean value of these points.
179	

180 *3.3. Trace element and mineralogy analysis*

181	The collected rock samples were ground using an agate mortar and pestle to 200 mesh
182	Approximately 50 mg of each sample was weighed into Teflon beakers and digested in a
183	series of acid digestions using HNO3 and HF until a clear solution was obtained, following
184	Wei et al. (2018). The solution was diluted 1:1000 by mass and analysed on a Finnigan MAT
185	inductively coupled plasma mass spectrometer (ICP-MS). Trace elements (V, Co, Ni, Cu, La,
186	Sr, and B) were measured with a relative standard deviation no more than 5%.
187	Measurements of mineral compositions by X-ray diffraction (XRD) have been
188	described in detail by Wang and Guo (2019b). The samples were ground to $<40 \ \mu m$ with an
189	agate mortar and pestle. The powdered samples were scanned by an Ultima IV X-ray
190	diffractometer with Cu-Ka radiation. The generator settings were 40 kV and 30 mA. X'Pert
191	High Score software was used to identify the mineral type and content. Note that the clay
192	mineral content was measured for samples of $<5 \ \mu m$ fractions.
193	
194	3.4. Inorganic proxies of palaeo-environment proxies
195	Commonly used inorganic proxies were employed to identify the palaeo-environment
196	including the Sr/Cu ratio (Cao et al., 2015; Alexandrine et al., 2019). A high ratio denotes hot
197	and arid climatic conditions, while a low ratio indicates warm and humid conditions (Table 2)
198	In addition, a high V/V+Ni ratio is an effective proxy of reducing (anoxic) conditions, while a

- low ratio reflects oxic to dysoxic conditions (Greenwood et al., 2013; Kayode et al., 2014).
- 200 Moreover, boron has been widely accepted as a quantitative proxy of palaeo-salinity, due to
- 201 the strong correlation between boron and salinity in modern aqueous systems (Adams et al.,
- 202 1963; Couch, 1971). In consideration of the different boron absorption capacities for each

type of clay mineral, palaeo-salinity can be calculated according to the following formulae

204 (Couch, 1971):

205
$$B_k = B_{clay}/(4X_i + 2X_s + X_k)$$
 (1)

206
$$\log B_k = 1.28 \times \log (S_p) + 0.11$$
 (2)

207 Here, B_k refers to the abundance of boron absorbed in kaolinite ($\mu g/g$), B_{clay} is the boron

208 content in the clay fraction, which excludes the impact of inherited (terrestrial) boron ($\mu g/g$),

 X_i , X_s and X_k represent the proportion of illite, smectite and kaolinite in the clay fraction (%),

210 respectively, and S_p is the palaeo-salinity (in parts per thousand, ppt).

211 Cobalt (Co) can be used as a quantitative parameter for the palaeo-water depth (Zhou

et al., 1997, 1999; Zhang et al., 2011). The abundance of Co in sedimentary rock is mainly

- 213 controlled by the sediment source and cosmic dust, in which the sedimentary rate of Co is
- nearly constant (Wu and Zhou, 2000). Formulae were first proposed by Zhou et al. (1997):

215
$$SR_{Sample} = SR_{Lacustrine} \times Co_{Lacustrine} / (Co_{Sample} - \alpha \times Co_{Terrigenous})$$
 (3)

$$A = La_{Sample}/La_{Terrigenous}$$
(4)

(5)

217
$$D = 3.05 \times 10^5 / SR_{Sample}^{1.5}$$

218 Where SR_{Sample} and SR_{Lacustrine} represent the sedimentation rate of sample and normal

219 lacustrine mudstone, respectively (mm/y); SR_{Lacustrine} is always 0.15–0.30 mm/y in lacustrine

220 mudstone (Zhang et al., 2011). Co_{Lacustrine}, Co_{Sample} and Co_{Terrigenous} refer to the cobalt

abundance in normal lacustrine mudstone (20 μ g/g), samples and terrigenous clasts (4.68

- $\mu g/g$), respectively (Zhang et al., 2011), α is the correction coefficient of the terrigenous
- 223 cobalt, indicating the terrigenous contribution. Lasample and LaTerrigenous are the lanthanum
- abundance in samples and terrigenous clasts, respectively, where $La_{Terrigenous}$ is 39 μ g/g (Zhang

et al., 2011), and D is the palaeo-water depth of the sample (m).

3.5. Chemical treatments of isolated kerogen

228	Rock samples were ground to powder (<100 mesh) and treated with HCl and HF to
229	isolate the kerogens from the rocks following the steps proposed by Saxby (1970). All of the
230	kerogen samples were extracted in a Soxhlet apparatus for 72 h to remove the soluble organic
231	matter using a mixture of dichloromethane and methanol (9:1, v/v) for the preparation of flash
232	pyrolysis-GC–MS and gold tube pyrolysis.
233	
234	3.6. Flash pyrolysis-GC–MS
235	Kerogen samples (approximately 4 mg) were loaded into quartz pyrolysis tubes. Flash
236	pyrolysis was performed using a CDS Analytical Pyroprobe 5250 equipped with an
237	autosampler and connected to the GC inlet by a heated transfer line (300 °C). The kerogen
238	samples were pyrolysed at 650 °C for 20 s. An Agilent 6890 gas chromatograph and an
239	Agilent 5973 mass selective detector were used to analyse the pyrolysate. Helium gas was
240	employed as the carrier for GC separation and pyrolysate transfer. The initial temperature of
241	the GC oven was -20 °C (held for 1 min), which was achieved using liquid CO ₂ . The oven
242	was heated to 40 °C at a rate of 8 °C/min, then heated to a final temperature 320 °C at a rate
243	of 4 °C/min, and held at 320 °C for 25 min. The transfer line temperature was 320 °C. The
244	full-scan mass spectrum from 15 to 600 Da was measured with an electron energy of 70 eV. A
245	blank flash pyrolysis run, using an empty quartz tube, was carried out before the analysis of
246	each sample to avoid contamination.

3.7. Closed system-gold tube pyrolysis

249	Gold tube pyrolysis was conducted in a confined and anhydrous system following the
250	procedures described by Wei et al. (2012). Each kerogen sample was divided and loaded into
251	24 gold tubes (40 mm length, 0.2 mm wall thickness and 3 mm i.d.) that were welded on one
252	end. The weight of sample loaded in each tube decreased from 100 mg to 10 mg with
253	increasing target temperature. Argon was flushed into the tubes for 15 min to displace air, then
254	the other end of the tube was sealed by arc welding.
255	The 24 tubes were divided into two groups of twelve. One group was heated at a rate
256	of 2 °C/h, while the other was heated at 20 °C/h. The sealed tubes in each group were placed
257	into separate autoclaves in the same oven, with each autoclave having a different maximum
258	target temperature and containing one tube from each kerogen sample. The heating
259	temperature was programmed to increase from the ambient temperature (25 °C) to 200 °C
260	over 10 h and then increase to a maximum of 440 $^\circ$ C at a rate of 20 $^\circ$ C/h (or to 400 $^\circ$ C at
261	2 °C/h). Autoclaves were removed from the oven once the target temperature for that
262	autoclave had been reached. For the 2 °C/h group the target temperatures ranged from 290 °C
263	to 400 °C in 10 °C intervals, while for the 20 °C/h group the target temperatures ranged from
264	330 °C to 440 °C in 10 °C intervals.
265	The fan set at the bottom of the oven facilitated heat circulation and made the
266	difference in temperatures between the 12 autoclaves no more than 1 °C. Note that the three
267	gold tubes filled with the three samples from Es ₃ , Es ₁₋₂ , and Ed ₃ were placed into each
268	autoclave. This step ensured that the samples from different layers experienced the same
269	degree of thermal simulation. Thus, experimental error between the samples could be
270	minimised.

271	Pressure in the autoclave, controlled by a set of pressure devices, was maintained at 50
272	MPa with an error of < 1 MPa. Each autoclave was connected to a water pipe used to fill and
273	drain water. Pressure in the autoclave was monitored by a pressure programme and adjusted
274	by adding water from the pump or expelling water from the drain valve.
275	The autoclaves were removed from the oven at their target temperatures and quenched
276	in a cold-water bath. Then, the gold tubes in the autoclave were removed and cut in half. The
277	hydrocarbons in the gold tubes were extracted in a Soxhlet apparatus for 72 h with a mixture
278	of DCM and methanol (9:1, v/v). A rotary evaporator was used to concentrate the extracts.
279	Finally, the C ₁₄₊ fraction (oil) was collected in bottles and weighed.
280	Moreover, it should be noted that the C_{14+} fraction measured is the mass of liquid
281	hydrocarbons generated by the kerogen samples. The mass of C_{14^+} fraction needs to be
282	transformed to the oil yields of source rocks by the following equation (6):
283	$\beta = M_{C14+}/(M_{sample} \times TOC_{kerogen}) $ (6)
284	Where β is the oil yield from the OM (mg/g TOC); M _{C14+} represents the mass of C ₁₄₊ fraction
285	generated by kerogen sample (mg); M_{sample} represents the mass of kerogen sample loaded into
286	the tube (mg); $TOC_{kerogen}$ is the total organic carbon content of kerogen (wt%).
287	
288	3.8. Kinetic analysis
288 289	3.8. <i>Kinetic analysis</i> The transformation ratio (TR), i.e. the ratio of kerogen already transformed to
288 289 290	3.8. Kinetic analysis The transformation ratio (TR), i.e. the ratio of kerogen already transformed to hydrocarbon (Tissot and Welte, 1984), is one of the most significant factors for kinetic
288 289 290 291	3.8. Kinetic analysis The transformation ratio (TR), i.e. the ratio of kerogen already transformed to hydrocarbon (Tissot and Welte, 1984), is one of the most significant factors for kinetic calculation. TR can be calculated using equation (7).

293 Where TR is the transformation ratio; β indicates the cumulative oil yield at a certain

294	pyrolysis temperature; $\beta_{maximum}$ represents the primary maximum cumulative oil yield.
295	Based on the pyrolysis data from the laboratory, the TR at each pyrolysis temperature
296	can be obtained and used as the input data for calculation of the kinetics. Special kinetic
297	software (Kinetic 2000 developed by Lawrence Livermore National Laboratory (LLNL) and
298	Humble Instruments & Services), was employed to fit the kinetic parameters of oil generation,
299	including frequency factors and activation energies.
300	The first-order reaction in parallel with a single frequency factor and a discrete
301	distribution of activation energies was chosen as the preferred calculation method. As
302	recommended by Burnham (2017), 1 kcal/mol was set as the spacing of discrete activation
303	energies.
304	
305	4. Results
306	4.1. Bulk geochemical characteristics
307	Rock-Eval, total organic carbon and vitrinite reflectance were performed to obtain the
308	basic geochemical data of samples (Table 1). Vitrinite reflectance (%Ro) and Tmax showed
309	relatively low values of 0.37–0.39% and 427–431 $^\circ$ C, respectively. These two parameters
310	indicate the immaturity of these samples. Total organic carbon (TOC) content of the rock
310 311	indicate the immaturity of these samples. Total organic carbon (TOC) content of the rock samples is 2.8–4.3%, and the hydrogen index (HI) was 559–613 mg/g. To avoid the
310 311 312	indicate the immaturity of these samples. Total organic carbon (TOC) content of the rock samples is 2.8–4.3%, and the hydrogen index (HI) was 559–613 mg/g. To avoid the uncertainty of kerogen type by only using HI, the analysed samples were projected onto
310311312313	indicate the immaturity of these samples. Total organic carbon (TOC) content of the rock samples is 2.8–4.3%, and the hydrogen index (HI) was 559–613 mg/g. To avoid the uncertainty of kerogen type by only using HI, the analysed samples were projected onto pseudo-van Krevelen diagrams of HI–OI and HI–Tmax to identify the kerogen type
 310 311 312 313 314 	indicate the immaturity of these samples. Total organic carbon (TOC) content of the rock samples is 2.8–4.3%, and the hydrogen index (HI) was 559–613 mg/g. To avoid the uncertainty of kerogen type by only using HI, the analysed samples were projected onto pseudo-van Krevelen diagrams of HI–OI and HI–Tmax to identify the kerogen type objectively. As shown in Fig. 3, the samples in the present study exhibited the features of

4.2. Palaeo-environmental proxies

318	The trace element data of the rock samples are presented in Table 3. Several effective
319	trace element proxies found by previous researchers, i.e. V/(V+Ni), Sr/Cu, Co, and B were
320	employed to determine the palaeo-environment.
321	The concentrations of trace elements in the samples do not vary substantially. As
322	shown in Table 3, ratios of V/(V+Ni) in the samples show a narrow range of 0.70-0.73. The
323	Sr/Cu ratios of the samples are 17.1–20.8. In addition, the concentrations of Co are 14.4–16.0
324	μ g/g. Based on equations 3–5, the palaeo-water depths of the samples of D3, S1, and S3 are
325	approximately 27, 30 and 38 m, respectively.
326	Clay mineral types and proportions, listed in Table 4, provide the foundation for
327	reconstructing the palaeo-salinity by using boron. The total clay content and clay mineral
328	contents (I', S', and K) of the three samples exhibit similar values (Table 4). The boron
329	concentrations in the samples ranged from 35.3 to 46.8 μ g/g.
330	The inherited boron content can be estimated by the method proposed by Ye et al.
331	(2016): It is assumed that the lowest boron sample at the same K ₂ O content contains primarily
332	the inherited boron and only a very small amount of dissolved boron from lake water. The line
333	of best fit between the K_2O (representing the content of illite) and boron content of the lowest
334	boron samples always shows a strong correlation. The boron content on this line can be
335	assumed to be the inherited boron content when the K2O content is zero. Abundant samples
336	with K ₂ O and boron contents in the Huanghekou Sag of the southern BS have been published
337	(Zhuang et al., 2010). Therefore, these data can be used to determine the inherited boron
338	content in the southern BS, which was estimated to be 18 μ g/g by the method of Ye et al.
339	(2016).

The palaeo-salinity, calculated by equations (6) and (7), is in a narrow range of 5.0–7.4 ppt (Table 4). Sample S1 has the highest palaeo-salinity, while sample S3 has the lowest palaeo-salinity.

343

344 *4.3. Pyrolysates from flash pyrolysis-GC–MS*

The total ion chromatograms (TICs) from flash pyrolysis-GC-MS of the 345 three-kerogen samples at 650 °C are presented in Fig. 4a-c. All the samples display dominant 346 347 homologous and bimodal distributions of *n*-alkane/*n*-alk-1-ene doublets from C₆ extending to C_{29} , with the maxima at C_6 and C_{21} . The aliphatic hydrocarbons of the three samples show 348 identical minima at C₁₄. Monoaromatic compounds, such as benzene and short-chain 349 alkylated benzenes (e.g., toluene, ethylbenzene and m-xylene), make up the majority of 350 aromatics (Fig. 4d–f). Mass chromatography of m/z 217 identified C₂₇–C₂₉ steranes, although 351 the exact species (e.g., C₂₇ aaa20R, C₂₇ aββ20S, C₂₇ aaa20S, etc.) could not be determined 352 due to the low abundance of steranes. C₂₇ steranes and C₂₈ steranes account for the majority of 353 steranes in all these samples (Fig. 4g-i). A series of parameters for the analysis of pyrolysates, 354 following Zhang et al. (2014), were employed to reflect the composition of the pyrolysates 355 (Table 5). Values of parameter 1 and parameter 2 vary with narrow ranges of 0.65–0.68 and 356 0.32–0.35, respectively. Parameter 3, which represents the amount of aromatics (Zhang et al., 357 2014), is between 2.30 and 2.72. Parameter 4 and 5, indicating the relative contents of toluene 358 and benzene in monoaromatics, are 0.42–0.47 and 0.10–0.24, respectively. The variation 359 360 pattern of parameter 4 is the same as for parameter 3. However, for parameter 5, S1 has the highest value, whereas D3 exhibits the lowest value. Parameter 6, a maturity index (van Graas 361 et al., 1981), has the range of 0.34–0.47. 362

4.4. Oil pyrolysates from gold tube pyrolysis

365	The cumulative oil yields (C ₁₄₊ fraction) from the gold tube pyrolysis experiments are
366	presented in Table 6 and Fig. 5. The cumulative oil yields under 2 °C/h are approximately
367	equal to (or slightly lower than) the yields under 20 °C/h. Moreover, the curve of the yields
368	under 2 °C/h and 20 °C/h exhibit similar variations (Fig. 5). Yields of all the samples first
369	increase to the maximum values and then decrease with increasing pyrolysis temperatures.
370	The decrease in oil yields is associated with secondary hydrocarbon cracking in the confined
371	system (Wei et al., 2012).
372	All three samples reached their maximum oil yields at 390 $^\circ$ C under 20 $^\circ$ C/h and
373	350 °C under 2 °C/h. As shown in Table 6, sample S3 has the highest maximum yield (523
374	mg/g TOC under 20 °C/h; 485 mg/g TOC under 2 °C/h) among all the samples, while D3
375	and S1 present very similar maximum yields under the different heating rates (447 and 441
376	mg/g TOC under 2 °C/h; 458 and 456 mg/g TOC under 20 °C/h).
377	
378	4.5. Determination of primary maximum oil yield
379	The impact of secondary oil cracking is an inevitable problem during the highly
380	mature stage of source rocks. Based on the comparison of results from open and closed
381	system pyrolysis, Dieckmann et al. (1998, 2000) contended that the overlap between primary
382	oil generation and secondary oil cracking was quite narrow because the latter commenced
383	very soon after the former has come to an end. A recent study (Sun et al., 2015) determined by
384	gold-tube pyrolysis (using different heating methods) came to a similar conclusion. To reduce

the impact of secondary oil cracking we used Sun et al. (2015) as a guide to identify the

386	primary maximum oil yields in the present study. In this study oil yields of the two lacustrine
387	kerogen samples were measured by gold-tube pyrolysis using two heating methods: a
388	continuous heating method and step by step heating method. The former is the method we
389	employed in present study. For the latter, the sample is heated to different target temperatures
390	discontinuously. C_{14+} generated is extracted from the sample when the first target temperature
391	is reached. Then the extracted sample was re-loaded into the gold tube and heated to its next
392	target temperature. This operation is repeated until the last target temperature. In this way, the
393	oil generated at different stages can be well preserved and measured. In addition, the impact
394	of secondary cracking to oil yields in gold tube pyrolysis can be reduced.
395	The oil generation of kerogens in study of Sun et al. (2015) was from 300 °C to
396	380 °C. The two heating methods exhibited nearly the same oil yields when pyrolysis
397	temperature was 300–360 °C. The secondary cracking gradually occurred at the end of oil
398	generation when temperature was above 360 °C, consistent with the ideas of Dieckmann et al.
399	(1998, 2000). The maximum oil yields of the two lacustrine kerogen samples using the
400	continuous method were 90% of that in "step by step" method. Moreover, the temperature gap
401	of the maximum yield from the two method was 10 °C.
402	The gold tube pyrolysis in present study and in the case of Sun et al. (2015) were
403	performed on the same instrument and the samples are all lacustrine kerogens. If the "step by
404	step" method is treated as the method closest to geological conditions, then the findings of
405	Sun et al. (2015) can be used to calibrate the maximum oil yield in a continuous system. In
406	this way, the primary maximum oil yields (primary maximum yield = maximum yield _{continuous}
407	$_{method}$ /90%) and corresponding temperatures of samples can be estimated for the present work

408 (Fig. 5). The primary maximum oil yields for sample D3, S1 and S3 are 497, 490 and 539

409 mg/g TOC, respectively.

410

411 *4.6. Kinetic results*

Kinetic analyses of oil generation, in terms of the frequency factor (A) and activation
energy (Ea) distribution were calculated based on the closed-system pyrolysis data.
Detailed information on the derived parameters is listed in Table 7. The discrete
distributions of Ea are given by bar graphs (Fig. 6d–f). Type II kerogen samples in this
study are characterized by a relatively broad distribution of Ea (44–52 kcal/mol) rather
than a narrow range of Ea. The lines of best fit and experimental transformation ratio (TR)
data are shown in Fig. 6a–c.

For the generation of the C₁₄₊ fraction, the samples in this study exhibit similar kinetic features (Ea range, A and predominant Ea): Oil generation from samples D3, S1 and S3 requires an Ea range of 46–52 kcal/mol, 46–52 kcal/mol, and 44–52 kcal/mol and A values of 1.121×10^{14} s⁻¹, 1.116×10^{14} s⁻¹, 1.274×10^{14} s⁻¹, respectively (Table 7). Samples D3, S1 and S3 show similar average Ea value of 49.9, 50.0 and 50.2 kcal/mol, respectively (Table 7).

425

426 **5. Discussion**

427 5.1. Determination of palaeo-environment

428 The depositional environment is an important influence on the composition,

429 preservation and quality of OM (Tribovillard et al., 2006; Harris et al., 2013). However, the

- 430 palaeo-environments of source rock samples have not been considered in previous kinetic
- 431 studies, and the palaeo-environment of the Palaeogene in the southern BS has rarely been

432	studied. The concentrations and ratios of trace elements are important proxies to reconstruct
433	the palaeo-depositional conditions of marine and lacustrine systems (Jones and Manning,
434	1994; Tribovillard et al., 2006; Harris et al., 2013), and so several were employed to achieve a
435	better understanding of the depositional conditions in the BS.
436	Palaeo-salinities of the samples are estimated to be 5.0–7.1 ppt, suggesting brackish
437	water (mesohaline) in the palaeo-lake (Table 2). The Sr/Cu ratio has a positive correlation
438	with the degree of drought, so the high ratios of Sr/Cu (17.1–23.3) from different layers in the
439	southern BS were formed under a hot and arid climate (Table 2). The palaeo-water depths of
440	the samples (ca. 27–38 m) indicate environments of shallow to semi-deep lakes (Table 2).
441	Such sedimentary environments are considered to be suitable for producing high-quality
442	source rocks in the Bohai Bay Basin (Niu, 2012; Wu et al., 2015). The depositional
443	environment of sample S3 and S1 is a semi-deep lake. The palaeo-water depths of samples D3
444	is close to the lower limit (30 m) of semi-deep lakes (Table 3). The V/(V+Ni) ratios
445	(0.65–0.73) suggest the presence of anoxic conditions, which is beneficial for the preservation
446	of organic matter (Tribovillard et al., 2006).
447	In summary, it was found that the three Type II samples in this study were deposited
448	in similar sedimentary environments (hot and arid climate, anoxic conditions, and brackish
449	water in shallow to semi-deep lakes). This finding implies that the samples in this study may
450	share similar kerogen compositions and kinetic characteristics.
451	
452	5.2. Kerogen composition from pyrolysis-GC–MS

453 Flash pyrolysis is considered to be one of the most efficient tools for probing the

454 chemical structures of kerogens (Gelin et al., 1995). It has been demonstrated that lacustrine

455	kerogens exhibit bimodal distributions of pyrolysates and abundant C_{20^+} proportions (Derenne
456	et al., 1994; Grice et al., 2003), while marine kerogens can produce a unimodal distribution
457	with a maximum around <i>n</i> - C_{13} and relatively low abundance of C_{20+} (Horsfield, 1989;
458	Flaviano et al., 1994). As shown in Fig. 4a-c, the pyrolysate distributions exhibit typical
459	characteristics of lacustrine kerogens. Parameters of the three samples exhibit similar values
460	with only slight differences (Table 5), indicating their similar chemical structures. Pyrolysates
461	of these samples are all dominated by short to middle chain aliphatics and monoaromatics
462	(Fig. 4a–f).

The pyrolysate distributions were compared with a previous study of Zhang et al. 463 (2014) in which both lacustrine Type I and II kerogens from NE China were analyzed by flash 464 pyrolysis-GC-MS. The two types of kerogens were distinguished by different pyrolysate 465 distributions and compositions. The pyrolysates (aliphatic distribution, long-chain aliphatics, 466 aromatic compounds and abundance, etc.) of samples in the present study are quite different 467 from lacustrine Type I kerogens, but very close to the Type II kerogens of Zhang et al. (2014). 468 This evidence further supports our previous analysis of kerogen type from bulk geochemical 469 experiments (e.g., Rock-Eval Pyrolysis). 470

n-Alkane/*n*-alk-1-ene doublets dominate the pyrolysates of the kerogen samples and
reveal the abundant presence of aliphatic macromolecular constituents (Fig. 4d–f). These are
typical of pyrolysates of algaenan biopolymers, which are found in the cell walls of specific
lacustrine microalgae (Largeau et al., 1986; Sinninghe Damsté et al., 1993; Gelin et al., 1994,
1995, 2003a; Audino et al., 2002; Holman and Grice, 2018).

476 Plant-derived components always produce high proportions of aromatics, especially
477 complex aromatics (PAHs) (Solli and Leplat, 1986; Yoshioka and Takeda, 2004). The PAHs in

the present study, such as methylnaphthalenes, ethylnaphthalenes and dimethylnaphthalenes, 478 were detected but in low abundance (Fig. 4d–f), while the majority of aromatic compounds 479 are monoaromatic, indicating a relatively low contribution from land plants. 480 The distribution of steranes provides valuable information on organic matter inputs 481 (Huang and Meinschein, 1979; Volkman, 1988). C27 sterols (steranes) are mainly from algae, 482 while C₂₉ sterols (steranes) are more typically associated with land plants although microalgal 483 sources are known (Volkman, 1986; He et al., 2018). Compared to C₂₇ and C₂₈ steranes, an 484 485 increased abundance of C₂₉ steranes suggests a greater contribution of land plants to the OM (Grice and Eiserbeck, 2013). However, it is difficult to assign any sterane to a specific group 486 of organisms (Kodner et al., 2008). For example, green algae can be the possible potential 487 source of C₂₉ steranes (Volkman, 1988; Volkman et al., 1994). In addition, the specific sources 488 of C₂₈ steranes remains uncertain. Fungi and microalgae such as diatoms may be the possible 489 source of C₂₈ steranes (Volkman, 1986; Grice and Eiserbeck, 2013; He et al., 2018). As shown 490 in Fig. 4g-i, C₂₇ steranes and C₂₈ steranes account for the majority of steranes in all these 491 samples, suggesting high inputs of lacustrine (planktonic) microalgae, while the relatively low 492 proportion of C₂₉ steranes is consistent with the low amounts of PAHs, indicating the low 493 inputs of land plants. 494

499 Overall, flash pyrolysis provides more evidence for the kerogen type of our samples
500 indicating their similar chemical structure (Type II₁ kerogen). OM inputs of samples are

mainly sourced from the algaenans of lacustrine microalgae. Land plant input makes up asmall proportion of the total OM.

503

504 5.3. Kinetics of Type II kerogen

The parallel reaction model with a single A and a discrete distribution of Ea was used to calculate the kinetic parameters in this study. The curves of the TR derived from the kinetic parameters show good agreements with the experimental data (Fig. 6a–c), indicating that the kinetics fitting results are credible (Tegelaar and Noble, 1994). In consideration of the linear correlation between Ea and A in logarithm form (Wood, 2018), we focus on the discussion and comparison of Ea.

As shown in Table 4, the kinetic parameters of the three samples in the present 511 study share the same predominant Ea (52 kcal/mol), similar average Ea values (49.9-50.2 512 kcal/mol) and Ea ranges (44-52 kcal/mol). Only slight differences can be observed in 513 these samples. Kinetic parameters describe the molecular structure of kerogen under 514 thermal stress (Tegelaar and Noble, 1994). The thermal stability of kerogen is determined 515 by the dissociation energies of different chemical bonds, such as various carbon and 516 heteroatomic bonds (Wei et al., 2012). The consistencies of kinetic parameters between 517 samples can be attributed to the close similarities in kerogen chemical structure and the 518 formation environment of the samples. Moreover, the Ea distributions of the samples are 519 more concentrated in high Ea (52 kcal/mol), while distributions of relatively low Ea parts 520 521 (44–51 kcal/mol) are relatively dispersed. It has been recognized that long-chain aliphatics have lower bond dissociation energy than that of short- to middle-chain aliphatics (Jiang et 522 al., 2008), resulting in the increased proportions of low Ea in samples having abundant 523

long-chain aliphatics. Hence, the predominant Ea (52 kcal/mol) in the present study may 524 be associated with the high proportion of short- to middle-chain aliphatics, while the 525 relatively low Ea may be associated with the long-chain aliphatics which are in relatively 526 low proportion (Table 5). 527 The kinetic behaviour of kerogen is influenced by a variety of factors (Wood, 528 2018), but kerogen type is the one most commonly discussed (Hunt et al., 1991; Tegelaar 529 and Noble, 1994; Reynolds et al., 1995; Lewan et al., 2006; Peters et al., 2018). Although 530 the exact Ea values for different types of kerogen remains controversial (Zhang et al., 531 1983; Pei and Zhou, 1989; Jiang et al., 2008; Liu et al., 2009; Chen and Jiang, 2015), 532 researchers have reached a consensus on the Ea distribution (Tissot and Welte, 1984; 533 Klomp and Wright, 1990; Behar et al., 1997b): Type I kerogen has a quite narrow Ea 534 distribution, while Type III kerogen exhibits a very broad range and Type II kerogen 535 displays an intermediate range. Samples in the present study share similar Ea results and 536 exhibit a range of 44–52 kcal/mol, suggesting the typical intermediate Ea range of Type II 537 kerogen. This further validates the previous evidence on kerogen type. Moreover, the 538 average Ea values of oil (C_{14+}) generation in the present study are relatively low 539 (49.9–50.2) compared with that (51 kcal/mol) of oil (C_{6+}) generation in Type II kerogen 540 (Guo et al., 2008). This can be attributed to the different generation mechanisms that the 541 generation of C₆₋₁₄ fraction significantly lags behind that of C₁₄₊ fraction, which results in 542 the relatively low Ea of the C₁₄₊ fraction (Dieckmann et al., 2000; Liu et al., 2016). 543 544 Apart from kerogen type, organic sulfur may play an important role in the kinetics of petroleum generation (Lewan, 1998): Sulfur-rich samples are characterised by low Ea because 545 the S-S and C-S bonds are more prone to cleavage than C-C bonds. The sulfur compounds in 546

sulfur-abundant lacustrine samples can be detected by flash pyrolysis GC–MS (Sinninghe
Damsté et al., 1989; Gelin et al., 1995; Grice et al., 2003). However, the sulfur-bonded
compound series of aromatics, such as DBT, MDBTs, EDBTs, etc, were not detected in the
present study, indicating that the abundance of organic sulfur compounds in samples the
samples is extremely low or non-existent (Wang et al., 2018). Thus, it can be concluded that
organic sulfur has no impact on the kinetics of these samples.

Above all, the kinetic results exhibit typical features of Type II kerogen and strong 553 554 similarities can be observed in all samples. The slight difference in kinetics may be due to small differences in the kerogen composition. In view of this similarity, an average 555 (typical) kinetic model of Type II brackish-lacustrine source rocks in the study area can be 556 established based on the three samples. The average model is obtained by the 557 weighted-average method (Peters et al., 2006; Wang et al., 2011): Samples with higher 558 Rock-Eval S₂ are considered to exert more influence on the weighted kinetic parameters. 559 Weighted proportional values, determined by the relative S₂ values of the samples, can be 560 given to the kinetic parameters of each sample to combine their Ea and A values. In this 561 way, a weighted kinetic model can be obtained. Fig. 7 compares the kinetic parameters 562 derived from the three samples with those of the average kinetic model corrected by the 563 weighted-average method. This method does not narrow or broaden the activation energy 564 range but integrates the characteristics and reduces the difference of the three kinetic 565 models. The average kinetic model is still dominated by Ea value of 52 kcal/mol (Fig. 7). 566 567 This average kinetic model can be regarded as the typical kinetic model of the Type II brackish-lacustrine source rocks in the southern BS. 568

5.4. Transformation of Type II kerogen from brackish lake

571	The kinetic parameters of the samples from the southern BS present similar
572	characteristics, but the similarities or differences among the samples become more
573	obvious when the kinetic model is extrapolated to a geological heating rate, a common
574	practice in kinetic studies (Burnham et al., 1989; Schaefer et al., 1990; Dieckmann, 1998;
575	Lewan et al., 2006; Peters et al., 2006, 2018). The average geological heating rate in a
576	specified basin can be reasonably obtained from the time-temperature history (Welte et al.,
577	1997). According to studies of the thermal history in the southern BS (Sun et al., 2011;
578	Niu, 2012; Cheng et al., 2013), the average geological heating rate varies in the range
579	2.8–3.2 K/Ma. Therefore, the median value (3 K/Ma) is assumed to be the geological
580	heating rate in this study.
581	As shown in Fig. 8, the TR curves of liquid oil generation span a broad temperature
582	interval of 75–146 °C. TR values between 0.1 and 0.9 have been defined as the oil
583	generation window of source rocks (Pepper and Corvit, 1995). The oil generation window
584	can be divided into three stages according to the TR value (Houseknecht and Hayba, 1998):
585	early generation phase, main generation phase and late generation phase, corresponding to
586	TR of 0.10–0.25, 0.25–0.65 and 0.65–0.9, respectively. The samples in the study area have
587	entered the early generation phase when the geological temperature reached 90 °C. The
588	onset of the main generation phase corresponds to temperatures of 100–103 °C. This phase
589	ends at 125–129 °C. The late generation phase ends at geological temperatures of 138 °C.
590	As shown in Fig. 8, these TR curves show strong consistency among the samples. The
591	variations among TR curves are no more than 4 °C during the oil generation. Even for
592	replicate kinetic analyses (10 replicates) of the same sample (Green River shale), the

corresponding geological temperatures differed by up to 2.3 °C at a given TR (Peters et al., 593 2006). Therefore, variations of 4 °C in this study can be considered a very slight 594 difference among TR curves, which reconfirm the similar kinetic characteristics of these 595 samples. The TR evolution curve of the average kinetic model is located in the neutral 596 area among the TR curves of the three samples (Fig. 8). The corresponding oil generation 597 phase starts at 92 °C and ends at 137 °C, and the geological temperature of the main 598 generation phase is between 102 and 127 °C. This study not only provides basic and 599 600 reliable data for the modelling of source rocks and the evolution of oil generation, but also demonstrates that trace elements and flash pyrolysis-GC-MS are useful and necessary 601 tools in kinetic studies of source rocks. In addition, the work in this paper establish the 602 average kinetic model for Type II kerogens and can serve as a reference to lacustrine Type 603 II kerogens in regions that share similar depositional environments with the southern 604 Bohai Sea. 605

606

607 **6.** Conclusions

Closed-system pyrolysis of three Type II kerogens isolated from the mudstones in 608 Ed₃, Es₁₋₂, and Es₃, southern Bohai Sea was performed to determine the kinetics of oil (C_{14+}) 609 generation. These samples share similar palaeo-environments (hot and arid climates, anoxic 610 conditions and brackish water in shallow to semi-deep lakes) and kerogen chemical 611 composition (mainly sourced from lacustrine algae with relatively low contribution from land 612 plants). The activation energy of the samples ranges from 44 to 52 kcal/mol with a 613 frequency factor from 1.116×10^{14} to 1.274×10^{14} s⁻¹. Strong consistency exists in the kinetic 614 parameters of the three samples. The consistencies become more obvious on the TR curves 615

616	of samples. The corresponding geological temperatures of the samples vary within just
617	4 °C at the given TR. Based on the close similarity in paleo-environment, kerogen
618	chemical compositions and kinetic parameters between the samples, an average kinetic
619	model of brackish-lacustrine source rocks in the southern Bohai Sea was established via
620	the weighted-average method. The average kinetic model reduces the difference and
621	integrates the characteristics of the three kinetic models. This model is still dominated by
622	an activation energy of 52 kcal/mol. The geological temperature span of the oil generation
623	phase for the average model is 92–137 °C.
624	
625	Acknowledgements
626	This study was supported by grants from National Science and Technology Major
627	Projects (Grant No. 2016ZX05024-002-007), Open fund of State Key Laboratory of Oil
628	and Gas Reservoir Geology and Exploitation (Grant No. PLC20180305), National Science
629	and Technology Major Projects (Grant No. 2016ZX05024-002-006), National Science and
630	Technology Major Projects (Grant No. 2016ZX05027-002-006), and Independent Project
631	of Key Laboratory of Coal Exploration and Comprehensive Utilization (Grant No.
632	ZP2018-1). We are grateful to Associate Editor Michael Erdmann and two anonymous
633	reviewers for their helpful comments on this paper.
634	
635	Associate Editor-Michael Erdmann
636	
637	References

Abbassi, S., Edwards, D.S., George, S.C., Volk, H., Mahlstedt, N., Horsfield, B., 2016.

639	Petroleum potential and kinetic models for hydrocarbon generation from the Upper
640	Cretaceous to Paleogene Latrobe Group coals and shales in the Gippsland Basin,
641	Australia. Organic Geochemistry 91, 54–67.
642	Adams, T.D., Haynes, J.R., Waker, C.T., 1963. Boron in Holocene illites of the Dovey Estuary,
643	Wales, and its relationship to palaeosalinity in cyclothems. Sedimentology 4, 189–195.
644	Alexandrine, N., Simon III, N., Gabriel, N., 2019. The late Pleistocene–Holocene
645	paleoclimate reconstruction in the Adamawa plateau (Central Cameroon) inferred
646	from the geochemistry and mineralogy of the Lake Fonjak sediments. Journal of
647	African Earth Sciences 150, 23–36.
648	Allen, M.B., Macdonald, D.I.M., Zhao, X., Vincent, S.J., Brouet-Menzies, C., 1997. Early
649	Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of
650	the Bohai Basin, Northern China. Marine and Petroleum Geology 14, 951–972.
651	Allred, V.D., 1966. Kinetics of oil shale pyrolysis. Chemical Engineering Progress 62, 55-60.
652	Audino, M., Grice, K., Alexander, R., Kagi, R.I., 2002. Macrocyclic alkanes in crude oils
653	from the algaenan of Botryococcus braunii. Organic Geochemistry 33, 979–984.
654	Behar, F., Lewan, M.D., Lorant, F., Vandenbroucke, M., 2003. Comparison of artificial
655	maturation of lignite in hydrous and nonhydrous conditions. Organic Geochemistry 34,
656	575–600.
657	Behar, F., Roy, S., Jarvie, D., 2010. Organic geochemistry artificial maturation of a Type I
658	kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry
659	41, 1235–1247.
660	Behar, F., Tang, Y., Liu, J., 1997a. Comparison of rate constants for some molecular tracers
661	generated during artificial maturation of kerogens: Influence of kerogen type. Organic

662 Geochemistry 26, 281–287.

663	Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., 1997b. Thermal cracking of kerogen in
664	open and closed systems: Determination of kinetic parameters and stoichiometric
665	coefficients for oil and gas generation. Organic Geochemistry 26, 321-339.
666	Braun, R.L., Burnham, A.K., 1987. Analysis of chemical reaction kinetics using a distribution
667	of activation energies and simpler models. Energy & Fuels 1, 153–161.
668	Burnham, A.K., 2017. Global Chemical Kinetics of Fossil Fuels. Springer, Switzerland.
669	Burnham, A.K., Braun, R.L., Gregg, H.R., Samoun, A.M., 1987. Comparison of methods for
670	measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy & Fuels 1,
671	452–458.
672	Burnham, A.K., Crawford, R.W., Samoun, A.M., 1989. Pyrolysis of Argonne premium coals :
673	Activation energy distributions and related chemistry. Energy & Fuels 3, 42-55.
674	Burnham, A.K., Schmidt, B.J., Braun, R.L., 1995. A test of the parallel reaction model using
675	kinetic measurements on hydrous pyrolysis residues. Organic Geochemistry 23,
676	931–939.
677	Cao, H., Gip, W., Shan, X., Ma, L., Sun, P., 2015. Paleolimnological environments and
678	organic accumulation of the Nenjiang formation in the southeastern Songliao basin,
679	China. Oil Shale 32, 5–24.
680	Liu, C., Li, W., Wu, Z., Zhang, X., Chen, X., Li, C., 2016. Development characteristics of the
681	Cenozoic fault system and basin evolution of Bonan area in Bohai Sea. Geological
682	Journal of China Universities 22, 317–326.
683	Chen, Z., Jiang, C., 2015. A data driven model for studying kerogen kinetics with application
684	examples from Canadian sedimentary basins. Marine and Petroleum Geology 67,

685 795-803.

686	Chen, Z., Li, M., Cao, T., Ma, X., Li, Z., Jiang, Q., Li, Z., Jiang, C., 2017. Hydrocarbon
687	generation kinetics of a heterogeneous source rock system: Example from the
688	lacsutrine Eocene-Oligocene Shahejie Formation, Bohai Bay Basin. China. Energy &
689	Fuels 31, 13291–13304.
690	Cheng, Y., Wu, Z., Li, W., Wang, Z., 2013. Thermal history of Paleogene source rocks in the
691	Qingdong Sag, Bohai Bay Basin. Geological Journal of China Universities 19,
692	141–147.
693	Couch, E.L., 1971. Calculation of paleosalinities from boron and clay mineral data. American
694	Association of Petroleum Geologists Bulletin 55, 1829–1837.
695	Derenne, S., Largeau, C., Behar, F., 1994. Low polarity pyrolysis products of Permian to
696	recent Botryococcus-rich sediments: First evidence for the contribution of an
697	isoprenoid algaenan to kerogen formation . Geochimica et Cosmochimica Acta 58,
698	3703–3711.
699	Dieckmann, V., 1998. Kinetics of petroleum generation and cracking by closed-system
700	pyrolysis of Toarcian Shales. Fuel 77, 23–31.
701	Dieckmann, V., 2005. Modelling petroleum formation from heterogeneous source rocks: the
702	influence of frequency factors on activation energy distribution and geological
703	prediction. Marine and Petroleum Geology 22, 375–390.
704	Dieckmann, V., Horsfield, B., Schenk, H.J., 2000. Heating rate dependency of
705	petroleum-forming reactions: Implications for compositional kinetic predictions.
706	Organic Geochemistry 31, 1333–1348.
707	Dieckmann, V., Fowler, M., Horsfield, B., 2004. Predicting the composition of natural gas

Dieckmann, V., Fowler, M., Horsfield, B., 2004. Predicting the composition of natural gas

708	generated by the Duvernay Formation (Western Canada Sedimentary Basin) using a
709	compositional kinetic approach. Organic Geochemistry 35, 845-862.
710	Dieckmann, V., Schenk, H.J., Horsfield, B., Welte, D.H., 1998. Kinetics of petroleum
711	generation and cracking by programmed-temperature closed-system pyrolysis of
712	Toarcian Shales. Fuel 77, 23–31.
713	Flaviano, C., Berre, F.L., Derenne, S., Largeau, C., Connan, J., 1994. First indications of the
714	formation of kerogen amorphous fractions by selective preservation. Role of
715	non-hydrolysable macromolecular constituents of Eubacterial cell walls. Organic
716	Geochemistry 22, 759–771.
717	Friedman, H.L., 1964. Kinetics of thermal degradation of char-forming plastics from
718	thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science: Part
719	C 6, 183–195.
720	Fusetti, L., Behar, F., Bounaceur, R., Marquaire, P.M., Grice, K., Derenne, S., 2010a. New
721	insights into secondary gas generation from the thermal cracking of oil: Methylated
722	monoaromatics. A kinetic approach using 1,2,4-trimethylbenzene. Part I: A
723	mechanistic kinetic model. Organic Geochemistry 41, 146–167.
724	Fusetti, L., Behar, F., Grice, K., Derenne, S., 2010b. New insights into secondary gas
725	generation from the thermal cracking of oil: Part II: An empirical kinetic model.
726	Organic Geochemistry 41, 168–176.
727	Gao, X., Xiao, X., Zhao, B., Lu, H., Tang, Y., 2004. Petroleum generation history of Lower
728	Tertiary source rocks from the Bozhong Depression of the Bohaiwan Basin. Acta
729	Sedimentologica Sinica 22, 359–364.
730	Gelin, F., de Leeuw, J.W., Sinninghe Damsté, J.S., Derenne, S., Largeau, C., Metzger, P., 1994.

731	The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble
732	algaenan in the green microalga Botryococcus braunii race A as revealed by analytical
733	pyrolysis. Organic Geochemistry 21, 423–435.
734	Gelin, F., Sinninghe Damsté, J.S., Harrison, N.W., Maxwell, R.J., de Leeuw, J.W., 1995.
735	Molecular indicators for palaeoenvironmental change in a Messinian evaporitic
736	sequence (Vena del Gesso, Italy): III. Stratigraphic changes in the molecular structure
737	of kerogen in a single marl bed as revealed by flash pyrolysis. Organic Geochemistry
738	23, 555–566.
739	Greenwood, P.F., Brocks, J.J., Grice, K., Schwark, L., Jaraula, C.M.B., Dick, J.M., Evans,
740	K.A., 2013. Organic geochemistry and mineralogy. I. Characterisation of organic
741	matter associated with metal deposits. Ore Geology Reviews 50, 1-27.
742	Grice, K., Eiserbeck, C., 2013. The Analysis and Application of Biomarkers, Treatise on
743	Geochemistry: Second Edition, vol. 12. Elsevier, pp. 47-78
744	Grice, K., Schouten, S., Blokker, P., Derenne, S., Largeau, C., Nissenbaum, A., Sinninghe
745	Damsté, J.S., 2003. Structural and isotopic analysis of kerogens in sediments rich in
746	free sulfurised Botryococcus braunii biomarkers. Organic Geochemistry 34, 471-482.
747	Guo, X., Xion, M., Zeng, Q., Xiao, X., 2008. Petroleum generation model of a sulfur-rich
748	kerogen from the Linnan Sag, the Bohai Bay Basin. Petroleum Geology & Experiment
749	30, 265–269.
750	Guo, X., Xiong, M., Zhou, Q., Tian, H., Xiao, X., 2009. Petroleum generation and expulsion
751	kinetics: A case study of the Shahejie Formation source rocks from Linnan Sag of
752	Huimin Depression. Acta Sedimentologica Sinica 27, 723–731.
753	Hao, F., Zhou, X., Zhu, Y., Yang, Y., 2009. Mechanisms for oil depletion and enrichment on

754	the Shijiutuo uplift, Bohai Bay Basin, China. American Association of Petroleum
755	Geologists Bulletin 93, 1015–1037.
756	Harris, N.B., Mnich, C.A., Selby, D., Korn, D., 2013. Minor and trace element and Re-Os
757	chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas:
758	Insights into metal abundance and basin processes. Chemical Geology 356, 76–93.
759	He, M., Moldowan, J.M., Peters, K.E., 2018. Biomarkers: Petroleum. In: White, W. (Ed.),
760	Encyclopedia of Geochemistry, Springer Cham.
761	DOI: https://doi.org/10.1007/978-3-319-39193-9_170-1
762	Höld, I.M., Schouten, S., van der Gaast, S.J., Sinninghe Damsté, J.S., 2001. Origin of
763	prist-1-ene and prist-2-ene in kerogen pyrolysates. Chemical Geology 172, 201–212.
764	Holman, A.I., Grice, K., 2018. δ^{13} C of aromatic compounds in sediments, oils and
765	atmospheric emissions: A review. Organic Geochemistry 123, 27-37.
766	Horsfield, B., 1989. Practical criteria for classifying kerogens: Some observations from
767	pyrolysis-gas chromatography. Geochimica et Cosmochimica Acta 53, 891–901.
768	Houseknecht, D.W., Hayba, D.O., 1998. Modeling oil generation in the undeformed part of
769	the artict national wildlife refuge 1002 area. Alaska Open File Report 98-37, United
770	States Geological Survey.
771	Hsiao, L.Y., Graham, S.A., Tilander, N., 2004. Seismic reflection imaging of a major
772	strike-slip fault zone in a rift system: Paleogene structure and evolution of the Tan-Lu
773	fault system, Liaodong Bay, Bohai, offshore China. American Association of
774	Petroleum Geologists Bulletin 88, 71–97.
775	Huang, W., Meinschein, W.G., 1979. Sterols as ecological indicators. Geochimica et
776	Cosmochimica Acta 43, 739–745.

777	Huang, W., Zeng, L., Pan, C., Xiao, Z., Zhang, H., Huang, Z., 2019. Petroleum generation
778	potentials and kinetics of coaly source rocks in the Kuqa Depression of Tarim Basin,
779	Northwest China. Organic Geochemistry 133, 32–52.
780	Huang, Z., Liang, T., Zhan, Z.W., Zou, Y.R., Li, M., Peng, P., 2018. Chemical structure
781	evolution of kerogen during oil generation. Marine and Petroleum Geology 98,
782	422–436.
783	Hunt, J.M., Lewan, M.D., Hennet, RC., 1991. Modelling oil generation with
784	time-temperature index graphs based on the Arrhenius equation. American
785	Association of Petroleum Geologists Bulletin 75, 795-807.
786	Jiang, Q., Wang, Y., Qin, J., Qin, W., Zhang, C., 2008. Kinetics of the hydrocarbon generation
787	process of marine source rocks in South China. Petroleum Exploration and
788	Development Development 37, 174–180.
789	Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the
790	interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111,
791	111–129.
792	Kayode, A., Hasiah, W., Hail, M., Sarki, B.M., Azlan, K., Oluyemi, A., 2014. Trace elements
793	geochemistry of kerogen in Upper Cretaceous sediments, Chad (Bornu) Basin,
794	northeastern Nigeria: Origin and paleo-redox conditions. Journal of African Earth
795	Sciences 100, 675–683.
796	Klomp, U.C., Wright, P.A., 1990. A new method for the measurement of kinetic parameters of
797	hydrocarbon generation from source rocks. Organic Geochemistry 16, 49-60.
798	Kodner, R.B., Pearson, A., Summons, R.E., Knoll, A.H., 2008. Sterols in red and green algae:
799	quantification, phylogeny, and relevance for the interpretation of geologic steranes.

800 Geobiology 6, 411-420.

801	Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon
802	exploration, production, and soil contamination studies. Revue de l'Institut Francais
803	du Petrole 53, 421–437.
804	Landais, P., Michels, R., Poty, B., Monthioux, M., 1989. Pyrolysis of organic matter in
805	cold-seal pressure autoclaves. Experimental approach and applications. Journal of
806	Analytical and Applied Pyrolysis 16, 103–115.
807	Largeau, C., Derenne, S., Casadevall, E., Kadouri, A., Sellier, N., 1986. Pyrolysis of immature
808	Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga
809	Botryococcus braunii. Mechanism of formation and structure of Torbanite. Organic
810	Geochemistry 10, 1023–1032.
811	Larter, S.R., Horsfield, B., 1993. Determination of structural components of kerogens by the
812	use of analytical pyrolysis methods. In: Engel, M.H., Macko, S.A. (Eds.), Organic
813	Geochemistry, Springer, New York, pp. 271–287.
814	Larter, S.R., Solli, H., Douglas, A.G., de Lange, F., de Leeuw, J.W., 1979. Occurrence and
815	significance of prist-1-ene in kerogen pyrolysates. Nature 279, 405–408.
816	Lewan, M.D., 1998. Sulfur-radical control on rates of natural petroleum formation. Nature
817	391, 164–166.
818	Lewan, M.D., Kotarba, M.J., Curtis, J.B., Wiecław, D., Kosakowski, P., 2006. Oil-generation
819	kinetics for organic facies with Type-II and -IIS kerogen in the Menilite Shales of the
820	Polish Carpathians. Geochimica et Cosmochimica Acta 70, 3351–3368.
821	Lewan, M.D., Spiro, B., Illich, H., Raiswell, R., Mackenzie, A.S., Durand, B., Comet, P.A.,
822	Berner, R.A., de Leeuw, J.W., 1985. Evaluation of petroleum generation by hydrous

823	pyrolysis experimentation. Mathematical and Physical Sciences 315, 123–134.
824	Li, Y., 2015. Main controlling factors for the development of high quality lacustrine
825	hydrocarbon source rocks in offshore China. China Offshore Oil and Gas 27, 1–9.
826	Li, Y., He, D., 2014. Evolution of tectonic-depositional environment and prototype basins of
827	the Early Jurassic in Sichuan Basin and adjacent areas. Acta Petrolei Sinica 35,
828	219–232.
829	Liang, H., Xu, F., Xu, G., Yuan, H., Huang, S., Wang, Y., Wang, L., Fu, D., 2019.
830	Geochemical characteristics and origins of the diagenetic fluids of the Permian
831	Changxing Formation calcites in the Southeastern Sichuan Basin: Evidence from
832	petrography, inclusions and Sr, C and O isotopes. Marine and Petroleum Geology 103,
833	564–580.
834	Liu, C., Li, W., Wu, Z., Zhang, X., Chen, X., Li, C., 2016. Development characteristics of the
835	Cenozoic fault system and basin evolution of Bonan area in Bohai Sea. Geological
836	Journal of China Universities 22, 317–326.
837	Liu, L., Jiang, Z., Zhong, N., Zheng, F., 2009. Hydrocarbon-generating dynamic
838	characteristics of Paleogene source rocks in Western Depression, Liaohe Basin. Earth
839	Science–Journal of China University of Geosciences 34, 799–805.
840	Liu, Y., He, K., Li, X., Xu, H., Zhang, J., Hu, S., Wang, G., Fan, Z., 2016. Hydrocarbon
841	generation kinetics and the efficiency of petroleum expulsion of lacustrine source
842	rocks: Taking the Qingshankou Formation in the Songliao Basin as an example.
843	Geoscience 30, 627–634.
844	Lu, H., Chen, T., Liu, J., Peng, P., Lu, Z., Ma, Q., 2010. Yields of H ₂ S and gaseous
845	hydrocarbons in gold tube experiments simulating thermochemical sulfate reduction

846

reactions between MgSO₄ and petroleum fractions. Organic Geochemistry 41,

847 1189–1197.

- Mao, R., Mi, J., Zhang, S., He, K., 2012. Study on the hydrocarbon generation characteristics
 of different coaly source rocks by gold-tube pyrolysis experiments. Natural Gas
 Geoscience 23, 1127–1134.
- Monthioux, M., Landais, P., Monin, J.-C., 1985. Comparison between natural and artificial
 maturation series of humic coals from the Mahakam delta, Indonesia. Organic
- 853 Geochemistry 8, 275–292.
- Monthioux, M., Landais, P., Durand, B., 1986. Comparison between extracts from natural and
 artificial maturation series of Mahakam delta coals. Organic Geochemistry 10,
 299–311.
- Niu, C., 2012. Tectonic evolution and hydrocarbon accumulation of Laizhouwan depression
 in southern Bohai Sea. Oil and Gas Geology 33, 424–431.
- Niu, C., Jin, Q., Li, P., Zhang, R., Cheng, F., Wu, K., 2018. Kinetic study on oil and gas
- generation from Paleogene source rocks in Liaodong Bay area, Northern China.
 Marine Origin Petroleum Geology 23, 91–96.
- Pei, C., Zhou, Z., 1989. A study of the influence of characteristics of kerogen on oil-gas
- generation. Geochimica 4, 322–333.
- Pepper, A.S., Corvit, P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and
 gas generation from kerogen. Marine and Petroleum Geology 12, 291–319.
- 866 Peters, K.E., Burnham, A.K., Walters, C.C., Schenk, O., 2018. Guidelines for kinetic input to
- petroleum system models from open-system pyrolysis. Marine and Petroleum Geology

868 92, 979–986.

869	Peters, K.E., Walters, C.C., Mankiewicz, P.J., 2006. Evaluation of kinetic uncertainty in
870	numerical models of petroleum generation. American Association of Petroleum
871	Geologists Bulletin 90, 387–403.
872	Reynolds, J.G., Burnham, K., Mitchell, T.O., 1995. Programmed temperature micropyrolysis.
873	Organic Geochemistry 23, 109–120.
874	Saxby, J.D., 1970. Isolation of kerogen in sediments by chemical methods. Chemical
875	Engineering Science 6, 173–184.
876	Schaefer, R.G., Schenk, H.J., Hardelauf, H., Harms, R., 1990. Determination of gross kinetic
877	parameters for petroleum formation from Jurassic source rocks of different maturity
878	levels by means of laboratory experiments. Organic Geochemistry 16, 115-120.
879	Schenk, H.J., Dieckmann, V., 2004. Prediction of petroleum formation: the influence of
880	laboratory heating rates on kinetic parameters and geological extrapolations. Marine
881	and Petroleum Geology 21, 79–95.
882	Sinninghe Damsté, J.S., Eglinton, T.I., de Leeuw, J.W., Schenck, P.A., 1989. Organic sulphur
883	in macromolecular sedimentary organic matter: I. Structure and origin of
884	sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash
885	pyrolysis. Geochimica et Cosmochimica Acta 53, 873–889.
886	Sinninghe Damsté, J.S., de las Heras, F.X.C., Bergen, P.F., de Leeuw, J.W., 1993.
887	Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extremely
888	organic sulphur-rich Type I kerogens. Geochimica et Cosmochimica Acta 57,
889	389–415.
890	Sun, H., Zhou, X., Peng, W., Zou, H., Yang, B., He, D., Zeng, X., 2011. Late-stage

hydrocarbon accumulation and enrichment in the Huanghekou Sag, southern Bohai

892

Sea. Petroleum Exploration and Development 38, 307–313.

893	Sun, M., Mi, J., Feng, Z., Li, Q., Zhang, J., Liu, Y., 2015. Comparison of the characteristics of
894	hydrocarbons generated by Type I of organic matter using two different experiment
895	methods in Gold Tube System. Natural Gas Geoscience 26, 1156–1164.
896	Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of vitrinite reflectance
897	based on chemical kinetics. American Association of Petroleum Geologists Bulletin 74,
898	1559–1570.
899	Tegelaar, E.W., Noble, R.A., 1994. Kinetics of hydrocarbon generation as a function of the
900	molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Organic
901	Geochemistry 22, 543–574.
902	Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation
903	Indices, and kinetics of oil and gas generation. American Association of Petroleum
904	Geologists Bulletin 71, 1445–1466.
905	Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin,
906	Heidelberg, New York, Tokyo.
907	Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and
908	paleoproductivity proxies: An update. Chemical Geology 232, 12–32.
909	Ungerer, P., Durand, B., Behar, F., 1990. State of the art of research in kinetic modelling of oil
910	formation and expulsion. Organic Geochemistry 16, 1–25.
911	van Graas, G., de Leeuw, J.W., Schenck, P.A., Haverkamp, J., 1981. Kerogen of Toarcian
912	shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques.
913	Geochimica et Cosmochimica Acta 45, 2465–2474.
914	Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic matter.

915	Organic Geochemistry 9, 83–99.
916	Volkman, J.K., 1988. Biological marker compounds as indicators of the depositional
917	environments of petroleum source rocks. Geological Society Special Publication 40,
918	103–122.
919	Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1994. Sterol biomarkers for
920	microalgae from the green algal class Prasinophyceae. Organic Geochemistry 21,
921	1211–1218.
922	Wang, F., Guo, S., 2019a. Shale gas content evolution in the Ordos Basin. International
923	Journal of Coal Geology 211, 1–13.
924	Wang, F., Guo, S., 2019b. Influential factors and model of shale pore evolution: A case study
925	of a continental shale from the Ordos Basin. Marine and Petroleum Geology 102,
926	271–282.
927	Wang, F., Liu, X., Deng, X., Li, Y., Tian, J., Li, S., You, J., 2017. Geochemical characteristics
928	and environmental implications of trace elements of Zhifang Formation in Ordos
929	Basin. Acta Sedimentologica Sinica 35, 1265–1271.
930	Wang, J., Wang, Q., Wang, F., Liu, X., Pan, W., , 2017. Gold tube pyrolysis study of source
931	rock hydrocarbon generation in Bozhong area, offshore Bohai Bay Basin. Petroleum
932	Geology and Experiment 39, 423–430.
933	Wang, J., Wang, Q., Wang, F., Zhen, H., Chen, R., 2018. Hydrocarbon generation kinetics of
934	source rocks under different pyrolysis conditions in Bozhong area. Geological Science
935	& Technology Information 37, 108–114.
936	Wang, J., Xiao, X., Guo, R., Lu, H., Gao, X., 2003. Study on the hydrocarbon generation
937	kinetics of source rocks from the Dongying depression, Bohai Bay Basin. Petroleum

938

Geology & Experiment 25, 1–18.

- Wang, L., Zhou, X., Niu, C., Yang, B., 2011. The effect of structure evolution on hydrocarbon
 accumulation in Laizhouwan depression, Bohai Bay. Chinese Journal of Geology 46,
 838–846.
- 942 Wang, M., Lu, S., Xue, H., 2011. Kinetic simulation of hydrocarbon generation from
- 943 lacustrine type I kerogen from the Songliao Basin: Model comparison and geological
 944 application. Marine and Petroleum Geology 28, 1714–1726.
- 945 Wang, Q., Pan, S., Bai, J., Chi, M., Cui, D., Wang, Z., Liu, Q., Xu, F., 2018. Experimental and
- 946 dynamics simulation studies of the molecular modeling and reactivity of the Yaojie oil947 shale kerogen. Fuel 230, 319–330.
- 948 Wang, Q., Zou, H., Hao, F., Zhu, Y., Zhou, X., Wang, Y., Tian, J., Liu, J., 2014. Modeling
- 949 hydrocarbon generation from the Paleogene source rocks in Liaodong Bay, Bohai Sea:
- 950 A study on gas potential of oil-prone source rocks. Organic Geochemistry 76,
- 951 204–219.
- Wei, W., Algeo, T.J., Lu, Y., Lu, Y.C., Liu, H., Zhang, S., Peng, L., Zhang, J., Chen, L., 2018.
 Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in

954 northeastern China. International Journal of Coal Geology 200, 1–17.

- Wei, Z., Zou, Y., Cai, Y., Wang, L., Luo, X., 2012. Kinetics of oil group-type generation and
 expulsion: An integrated application to Dongying Depression, Bohai Bay Basin, China.
 Organic Geochemistry 52, 1–12.
- 958 Wei, Z., Wang, Y., Wang, G., Sun, Z., Zhang, T., Xu, L., Ma, X., He, W., 2018.
- 959 Paleoenvironmental conditions of organic-rich Upper Permian Dalong Formation
- shale in the Sichuan Basin, southwestern China. Marine and Petroleum Geology 91,

961 152–162.

- Welte, D., Horsfield, B., Baker, D., 1997. Petroleum and Basin Evolution. Spinger.
- 963 Wen, H., Hou, Z., Lin, X., 2014. Depositional systems of the Neogene Shahejie Formation in
- the Qingdong Depression. Sedimentary Geology and Tethyan Geology 34, 20–30.
- 965 Wood, D.A., 2018. Kerogen conversion and thermal maturity modelling of petroleum
- 966 generation: Integrated analysis applying relevant kerogen kinetics. Marine and967 Petroleum Geology 89, 313–329.
- 968 Wu, K., Jiang, X., Sun, H., 2015. Model of lacustrine source rocks in offshore oil kitchen sags:
- 969 A case study of Paleogene in Huanghekou Sag. Geological Science & Technology
 970 Information 34, 63–70.
- Wu, Z., Zhou, Y., 2000. Using the characteristic elements from meteoritic dust in strata to
 calculate sedimentation Rate. Acta Sedimentologica Sinica 18, 395–399.
- 973 Xiang, B., Li, E., Gao, X., Wang, M., Wang, Y., Xu, H., Huang, P., Yu, S., Liu, J., Zou, Y., Pan,
- 974 C., 2016. Petroleum generation kinetics for Permian lacustrine source rocks in the
 975 Junggar Basin, NW China. Organic Geochemistry 98, 1–17.
- Yin, Y., Ren, J., Li, J., 2013. Control of tectonic-paleogeomorphology on deposition: A case
 from the Shahejie Formation Sha 3 member, Laizhouwan Sag, southern Bohai Sea.
- 978 Petroleum Exploration and Development 40, 325–332.
- 979 Xu, F., Liang, J., Xu, G., Yuan, H., Liu, Y., 2018. Genetic mechanisms and distribution
- 980 characteristics of overpressures in the Paleogene reservoirs of the Bohai Bay Basin,
- 981 East China. Energy Exploration and Exploitation 36, 388–413.
- 982 Yan, K., Zuo, Y., Yang, M., Zhou, Y., Zhang, Y., Wang, C., Song, R., Feng, R., Feng, Y., 2019.
- 983 Kerogen pyrolysis experiment and hydrocarbon generation kinetics in the Dongpu

984	Depression, Bohai Bay Basin, China. Energy & Fuels 33, 8511-8521.
985	Yang, B., Zeng, X., Wang, G., Sun, H., 2011. Predominant factors of reservoir forming in
986	Laizhouwan Sag. Journal of Chongqing University of Science and Technology
987	(Natural Sciences Edition) 13, 6–10.
988	Ye, C., Yang, Y., Fang, X., Zhang, W., 2016. Late Eocene clay boron-derived paleosalinity in
989	the Qaidam Basin and its implications for regional tectonics and climate. Sedimentary
990	Geology 346, 49–59.
991	Zhang, C., Gao, A., Liumzhe, Huang, J., Yang, Y., Zhang, Y., 2011. Study of character on
992	sedimentary water and palaeoclimate for Chang7 oil layer in Ordos Basin. Natural Gas
993	Geoscience 22, 582–587.
994	Zhang, D., Huang, D., Li, J., Zhang, Y., 1983. Kinetic features of thermo-degradation of
995	kerogens in oil shales and their geochemical significances. Oil and Gas Geology 4,
996	383–393.
997	Zhang, X., Wu, Z., Zhou, X., Niu, C., Li, W., Ren, J., Zhang, J., 2017. Cenozoic tectonic
998	characteristics and evolution of the southern Bohai Sea. Geotectonica et Metallogenia
999	41, 50–60.
1000	Zhang, Z., Volkman, J.K., Greenwood, P.F., Hu, W., Qin, J., Borjigin, T., Zhai, C., Liu, W.,
1001	2014. Flash pyrolysis of kerogens from algal rich oil shales from the Eocene Huadian
1002	Formation, NE China. Organic Geochemistry 76, 167–172.
1003	Zhou, H., Wang, Z., Cui, X., Lei, Z., 1999. Stratigraphic sequence of the Middle
1004	Neoproterozoic in the southern of North China platform. Geology Press, Beijing.
1005	Zhou, Q., Lu, Y., Li, S., Wang, H., 1997. The missing time calculation of the hiatus surface –
1006	A case study of the Upper Permian reefs section at the platform margin, Ziyun,

1007

Guizhou. Acta Geologica Sinica 71, 7–17.

1008	Zhu, G., Hu, W., Song, L., Liu, B., 2015. Quaternary activity along the Tan-Lu fault zone in
1009	the Bohai Bay, East China: Evidence from seismic profiles. Journal of Asian Earth
1010	Sciences 114, 5–17.
1011	Zhu, G., Qiang, J., Dai, J., Zhang, S., Zhang, L., Zhang, Y., 2005. Composite hydrocarbon
1012	generation system: An important concept for source rock evaluation and hydrocarbon
1013	prediction in rift lacustrine basin. Chinese Journal of Geology 1, 133–144.
1014	Zhuang, X., Zou, H., Yang, Y., Sun, H., 2010. Development mechanism of lacustrine source
1015	rocks in Yellow River. Science & Technology Review 28, 48–54.
1016	
1017	Figure captions
1018	Fig. 1. (a) Simplified geological map of the Bohai Sea (after Xu et al., 2018); (b) Detailed
1019	geological map of the study area (modified from Zhang et al., 2017); (c) Cross section
1020	showing the structural framework of the study area (after Zhang et al., 2017). The full
1021	names of the abbreviations in this figure are as follows: Q (Quaternary), Nm
1022	(Minghuazhen Formation), Ng (Guantao Formation), Ed (Dongying Formation), Es1 (First
1023	member of Shahejie Formation), Es2 (Second member of Shahejie Formation), Es3 (Third
1024	member of Shahejie Formation), Es_4 (Fourth member of Shahejie Formation), Ek
1025	(Kongdian Formation).
1026	
1027	Fig. 2. General Cenozoic stratigraphy of the study area (modified from Xu et al., 2018 and
1028	Wei et al., 2018). Form.= Formation; Symb.= Symbol.

1030 Fig. 3. (a) HI vs Tmax diagram of the samples; (b) HI vs OI diagram of the samples1031

1032	Fig. 4. (a–c) correspond to the TICs of pyrolysates from sample D3, S1 and S3 at 650 °C;
1033	(d–f) are the combined mass fragmentograms (m/z 78+91+128+142+156) of sample D3, S1
1034	and S3, showing the distribution of aromatics in pyrolysates; circles: <i>n</i> -alkanes; triangles:
1035	<i>n</i> -alkenes; squares: unresolved compounds; $C_n = alkane/ene doublets; B= benzene; T= toluene;$
1036	EtB= ethylbenzene; mXy= m-xylene; pXy= para-xylene; oXy= ortho-xylene; PrB=
1037	propylbenzene; BuB= butylbenzene; MeN= methylnaphthalene; EtN= ethylnaphthalene;
1038	DimeN= dimethylnaphthalene; AlB= long chain alkyl benzenes; (g), (h) and (f) are the mass
1039	fragmentograms (m/z 217) of sample D3, S1 and S3, exhibiting the sterane distribution.
1040	
1041	Fig. 5. Cumulative oil (C_{14+} fraction) yields with increasing temperature in pyrolysis
1042	experiments (a) Cumulative C_{14+} yields at heating rate of 20 °C/h; (b) Cumulative C_{14+}
1043	yields at heating rate of 2 °C/h;
1044	
1045	Fig. 6. Best curve fittings and the kinetic parameter sets for the C_{14+} fraction
1046	(a-c) represent the fitting curves and measured TR of sample D3, S1, S3, respectively;
1047	(d-f) are the kinetic parameters (distribution of activation energies and frequency factor)
1048	of sample D3, S1, S3, respectively.
1049	
1050	Fig. 7. Comparison of activation energies between the average kinetic model and samples

1051 in the southern Bohai Sea

1053 Fig. 8. TR evolution curves of kinetic models in the southern Bohai Sea

Sample	D3	S1	S3
Well Name	ННК25-2-А	ННК25-2-А	LZW10-3-A
Depth (m)	2015-2030	2080-2095	2540-2555
Layer	Ed_3	Es_1	Es_3
TOC (wt%) ^a	3.3	2.8	4.3
HI (mg/g) ^a	613	601	559
OI (mg/g) ^a	33.6	28.3	20.1
$S_2 (mg/g)^a$	20.1	16.9	24.0
$S_3 (mg/g)^a$	1.1	0.79	0.86
T _{max} (°C) ^a	427	427	431
Mean %Ro ^a	0.39%	0.38%	0.37%
TOC (wt%) ^b	24.3	25.6	34.0

Geochemical characteristics of samples

Note: "a" represents the original rock samples; "b" denotes kerogen samples

Table 2

Table 1

Classification standard of paleo-environment

	Reference				
Paleoclimate	Warm	and humid climate Sr/Cu<10	climate 0	Tian and Zhang (2015)	
Paleoredox	Oxic V/V+Ni<	Dysoxic 0.46 <v td="" v+ni<0.6<=""><td>Anoxic 0.54<v td="" v+ni<0.82<=""><td>Euxinic V/V+Ni>0.84</td><td>Hatch and Leventhal (1992)</td></v></td></v>	Anoxic 0.54 <v td="" v+ni<0.82<=""><td>Euxinic V/V+Ni>0.84</td><td>Hatch and Leventhal (1992)</td></v>	Euxinic V/V+Ni>0.84	Hatch and Leventhal (1992)
Paleosalinity	Fresh water Oligohaline Mesoh 0–0.5 ppt 0.5–5 ppt 5–18		tohaline) Euhaline Polyhaline water 18-30 ppt 30–40 ppt	Hyperhaline water >40 ppt	Venice System (1958)
Paleowater depth	Shore 0–5 m	Shallow lake 5–30 m	Semi-deep 30–50 m	Deep lake >50 m	Wang (2011) Yang et al. (2015)

Sample	V	Co	Ni	Cu	Sr	La	В	V/(V+Ni)	Sr/Cu	SR_{L}	SR	D
name	$(\mu g/g)$	v/(v+ini)si/Cu	(mm/y)	(mm/y)	(m)							
D3	99.9	14.4	36.9	39.5	768	45.8	40.2	0.73	19.4	0.225	0.51	27
S 1	89.3	15.0	35.6	35.3	734	45.9	46.8	0.71	20.8	0.225	0.47	30
S3	99.9	16.0	42.3	34.7	594	40.4	35.3	0.70	17.1	0.225	0.40	38

Table 3Trace element content and calculation of paleo-water depth

Note: SR_L range of normal lacustrine mudstone is between 0.15 and 0.3 mm/y (Zhang et al., 2011). As we do not have the accurate SR_L data, the middle value of the SR_L range (i.e. 0.225 mm/y) is assumed to be the SR_L in this study. D refers to the water depth (m).

Sample name	Clay		Clay mineral content (%)							в.	R.	S
	content (%)	Ι	K	С	I/S (S%)	Ι'	S'	μg/g)	$(\mu g/g)$	$(\mu g/g)$	$(\mu g/g)$	ppt
D3	48.7	27.0	7.0	1.0	65.0 (40)	66.0	26.0	40.2	22.2	45.6	14.1	6.5
S 1	54.9	29.0	13.0	0.0	58.0 (40)	63.8	23.2	46.8	28.8	52.5	16.7	7.4
S3	51.8	35.0	6.0	2.0	57.0 (40)	69.2	22.8	35.3	17.3	33.4	10.2	5.0

Table 4Results of XRD and calculation of paleosalinity

Note: I - illite; K - kaolinite; Ch - chlorite; S - smectite; I'- calculated illite; S'- calculated smectite; Bmeasured boron abundance in rock sample; $B_{correct}$ - corrected boron abundance in rock sample in which inherited B is subtracted ($B_{correct} = B_{rock} - B_{inherited}$); B_{clay} - boron abundance in clay fraction ($B_{clay} = B_{correct}$ /Clay mineral content); B_k - the abundance of boron absorbed in kaolinite; S_p - palaeosalinity in parts per thousand.

Number	D	Sample	Sample	Sample
	Parameter	D3	S 1	S3
1	C ₆ -C ₁₉ (aliphatic)/C ₆ -C ₂₉ (aliphatic)	0.68	0.65	0.67
2	C ₂₀ -C ₂₉ (aliphatic)/C ₆ -C ₂₉ (aliphatic)	0.32	0.35	0.33
3	Toluene/ n -C ₈ (alkane + alkene)	2.30	2.45	2.72
4	Toluene/Total monoaromatics	0.42	0.43	0.47
5	Benzene/Total monoaromatics	0.10	0.24	0.16
6	Prist-1-ene/ <i>n</i> -C ₁₇ (alkane + alkene)	0.47	0.38	0.34

Table 5Parameters for analysis of the pyrolysate composition

Note: Parameters are calculated from peak areas in mass fragmentograms for m/z 85 (alkanes), m/z 83 (alkenes), m/z 78 (benzene), m/z 91 (toluene) and m/z 91 (monoaromatics); Aliphatics = *n*-alkanes + *n*-alkenes.

Table 6

Heating rate	Temperature	(C_{14+} (mg/g TOC	()
(°C/h)	(°C)	Sample D3	Sample S1	Sample S3
	330	168	168	166
	340	226	216.71	216
	350	287	270.68	286
	360	345	*	354
	370	386	369	411
20	380	427	419	467
20	390	458	456	523
	400	432	438	487
	410	376	357	410
	420	339	300	321
	430	286	255	258
	440	242	197	185
	290	133	125	130
	300	177	172	185
	310	225	218	232
	320	285	273	290
	330	339	324	353
2	340	407	376	414
Z	350	447	441	485
	360	425	427	466
	370	389	351	427
	380	337	300	362
	390	293	251	291
	400	258	178	223

Liquid hydrocarbon products of immature kerogens at different heating rates and temperatures

Note: Easy%Ro values in this table are calculated according to the method proposed by Sweeney and Burnham (1990). "*" in this table means the data were not obtained because of leakage of the gold tube during pyrolysis.

1	U			
Sample	D3	S1	S3	Average model
Frequency factor (S ⁻¹)	1.121×10 ¹⁴	1.116×10 ¹⁴	1.274×1014	1.180×10 ¹⁴
Activation energy Ea (kcal/mol)	Reaction (%)	Reaction (%)	Reaction (%)	Reaction (%)
44	0.00	0.00	0.01	0.00
45	0.00	0.00	0.00	0.00
46	6.96	3.78	0.4	3.50
47	16.01	18.09	19.59	17.99
48	0.00	0.00	0.00	0.00
49	22.4	29.22	20.27	23.45
50	12.77	0.00	9.03	7.76
51	0.00	0.00	0.00	0.00
52	41.86	48.9	50.69	47.28
Average of Ea (kcal/mol)	49.85	50.00	50.20	50.03

Table 7Kinetic parameters for oil generation of source rock in the southern Bohai Sea

Fig. 1

Era	System	Series	Age (Ma)	Form.	Symb.	Seismic Reflect Surface	Lithology	Sedimentary facies	Tectonic evolution		
Cenozoic	Quate	ernary	2.6-	A Dingyuan			Shallow marine facies				
	Neogene	Pliocene	_ 2.0 _	и п	N_2m_1	T					
		5.	- 5.3	Minghuazh N ⁵ w ⁵		T ₀ '		Pluvial-deltaic facies, shallow lake	Postrift stage		
			- 12.0	Guantao	N_1g	— Т _о —		Pluvial-deltaic facies, shallow lake			
	Paleogene	Oilgocene	- 30.3	Dongying		$T_2 \sim$		Fluvial-deltaic facies, shallow lake, semi-deep lake	StageIII	~~~	
			32 36		$E_2 s_1$	T_{4}		Fluvial-deltaic facies, shallow and salt lake Fluvial-deltaic facies		ge	
		Paleoge	Paleoge Eocene	-38	Shahejie	E_2s_2 E_2s_3	— T ₅ —		Deltaic, semi-deep and deep lake facies	Stage II	Synrift stag
				42		$E_{2}s_{4}$	T 6		Deep lake and salt lake facies	ge I	
		aleocene	-50.5- 65	Kongdian	E ₁₋₂ k	Τ ₇ —		Fluvial and lake facies	Sta		

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

