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Abstract

As fireball networks grow, the number of events observed becomes unfea-
sible to manage by manual efforts. Reducing and analysing big data requires
automated data pipelines. Triangulation of a fireball trajectory can swiftly
provide information on positions and, with timing information, velocities.
However, extending this pipeline to determine the terminal mass estimate of
a meteoroid is a complex next step. Established methods typically require
assumptions to be made of the physical meteoroid characteristics (such as
shape and bulk density). To determine which meteoroids may have survived
entry there are empirical criteria that use a fireball’s final height and velocity
– low and slow final parameters are likely the best candidates. We review
the more elegant approach of the dimensionless coefficient method. Two pa-
rameters, α (ballistic coefficient) and β (mass-loss), can be calculated for
any event with some degree of deceleration, given only velocity and height
information. α and β can be used to analytically describe a trajectory with
the advantage that they are not mere fitting coefficients; they also represent
the physical meteoroid properties. This approach can be applied to any fire-
ball network as an initial identification of key events and determine on which
to concentrate resources for more in depth analyses. We used a set of 278
events observed by the Desert Fireball Network to show how visualisation
in an α – β diagram can quickly identify which fireballs are likely meteorite
candidates.
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1. Introduction

Meteorites are examples of planetesimal building blocks and hold invalu-
able information on early solar system processes. Less than 0.1% have known
pre-impact origins. When extraterrestrial material encounters the Earth’s at-
mosphere, a bright phenomenon can be observed as the meteoroid ablates
and ionises the atmosphere. If observed from different locations with high
precision, these phenomena can be triangulated and their trajectories deter-
mined. Dedicated observation networks, such as the Desert Fireball Network
in Australia, record the timing along the luminous trajectory to acquire ve-
locity information (Howie et al., 2017).

The goal of such networks is to determine heliocentric orbits for these
bodies as well as establishing if any mass survived atmospheric ablation to
impact the Earth’s surface. Recovering a fresh meteorite minimises terrestrial
contamination, and the ability to associate an orbit with this material is of
exceptional value. Despite the knowledge obtainable from meteorite samples
on Solar System formation and evolution, very few have orbits to provide
location context information (< 0.1%). Fireball networks are bridging the
gap between asteroidal observations and meteoritic analyses by providing
this context.

Whipple (1938) details the first multi-station photographic meteor pro-
gram from the mid 1930s, designed to determine trajectories and velocities
of meteors. Larger fireball networks have been observing the skies since the
1960s (Ceplecha and Mccrosky, 1997) and have accumulated large datasets,
though those deemed “unspectacular” were classed as low priority for data
reduction (Halliday et al., 1996). There were not enough resources to mea-
sure and reduce all observed meteors, and it was an identified bias in flux
surveys. Interesting events were assessed to determine if they were candi-
dates for meteorite searches (Halliday et al., 1996). Common practice for
identifying which meteoroids may have survived entry is by assessing a fire-
ball’s final height and velocity – low and slow final parameters are likely
the best candidates. Brown et al. (2013) discuss how this was empirically
determined by early studies of meteorite producing fireballs of the MORP
(Halliday et al., 1989) and the PN (McCrosky et al., 1971). The set of em-
pirically determined conditions for a fireball to produce a meteorite is an end
height below 35 km and a terminal velocity below 10 kms−1 (Halliday et al.,
1989; Brown et al., 2013; Wetherill and ReVelle, 1981). This has been used
to direct resource focus to the most likely meteorite dropping events.
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1.1. Established methods of identifying meteorite-dropping events

Despite advances, reducing fireball data to determine terminal mass esti-
mates is still a non-trivial task. Established methods, such as Sansom et al.
(2016, 2017); Egal et al. (2017); Ceplecha and Revelle (2005), are based on
a set of single body aerodynamic equations that require assumptions to be
made about the physical properties of the meteoroid, or in some way statisti-
cally estimate their values. These unobservable values, such as shape, density
and even ablation efficiencies, introduce many degrees of freedom to mod-
elling scenarios. More complex Monte Carlo and particle filter techniques can
intelligently assess the parameter space to give statistical likelihood of pa-
rameter sets (i.e. Sansom et al., 2017). However, these methods still require
a multivariate solution and require supercomputing resources to run.

One concise way of assessing the trajectory without assuming any pa-
rameters is the dimensionless coefficient method first described by Gritse-
vich (2007). The method is based on dimensionless equations describing the
trajectory introduced by Stulov et al. (1995). Gritsevich and Stulov (2006)
describe the simplified (asymptotic) solution of the method, and the latest,
more advanced realisation of the algorithm (including the incorporation of
an arbitrary atmospheric model) is well outlined in Lyytinen and Gritsevich
(2016). The ballistic coefficient α, and mass loss parameter β can be cal-
culated for any event with some degree of deceleration, given only velocity
and height information. For meteors showing no deceleration these parame-
ters may be linked to the terminal height of luminous flight (Moreno-Ibáñez
et al., 2015). These two parameters can be used to analytically describe a
trajectory, given an entry velocity (V0). This is similar to the mathematical
curve fitting performed by Jacchia and Whipple (1956), subsequently im-
proved by Egal et al. (2017), with the added advantage that there is a link to
the physical meteoroid parameters through using α and β rather than mere
fitting coefficients. This link allows more robust conclusions to be made on
the incoming body by assessing the groupings of specific α–β values. This is
also a fast and easy method to implement and run on a large dataset, such
has been done by Gritsevich (2009) for both the Prairie Network (PN) and
Meteor Observation and Recovery Project (MORP) data. It has also been
applied to well-documented meteorite falls including Pr̆́ıbram, Lost City, In-
nisfree, Neuschwanstein (Gritsevich, 2008b), Bunburra Rockhole (Sansom
et al., 2015), Annama (Lyytinen and Gritsevich, 2016), Park Forest (Meier
et al., 2017), and Kos̆ice (Gritsevich et al., 2017).

1.2. Applying the α–β criterion to DFN events

Here we calculate the α and β parameters for 278 fireballs observed by
the Desert Fireball Network (Section 2). This is a subset of some 1300+
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fireball trajectories triangulated by the DFN, where noticeable deceleration
has occurred (Vf/V0 < 80%). We then plot these data in a similar fashion
to PN and MORP data in Gritsevich et al. (2012)1 The location of events
on this plot instantly allows us to identify key events, such as those likely
to drop meteorites. This is an under-utilised tool by fireball networks with
large datasets to determine such events to concentrate resources for data re-
duction. Often identifying good meteorite dropping candidates is done by
assessing how low and slow a fireball was observed in our atmosphere using
the empirical criteria (end height < 35 km and a final velocity < 10 kms−1

Halliday et al., 1989; Brown et al., 2013; Wetherill and ReVelle, 1981). How-
ever, such a classification scheme is highly dependent on the equipment used
to record a fireball, and the range at which it was observed. This is also not
a rigorous assessment of the event where slope, mass and shape dependen-
cies all come into play The α–β approach may seem over simplified, but led
to the fast recovery of both the Annama meteorite (Gritsevich et al., 2014;
Trigo-Rodriguez et al., 2015; Dmitriev et al., 2015; Kohout et al., 2017) and
Ozerki2 meteorite.

With the statistically large dataset of the DFN, along with PN and
MORP data, we aim to establish an α–β criterion for classifying the possi-
ble outcomes of meteoroid atmospheric entry (Section 3). We are ultimately
looking to establish crude criteria for whether further analyses and meteorite
searches are worth prioritising.

2. The α–β Diagram – Desert Fireball Network Data

Values of α and β are calculated using a least squares minimisation of
the analytical function (see section 3 of Lyytinen and Gritsevich, 2016, after
Gritsevich and Stulov, 2007)

y = lnα + β − ln
∆

2
(1)

where y is the height of the meteoroid normalised to the atmospheric scale
height (h0 = 7160 m), ∆ is a function of the exponential integral (Ēi) as
follows:

∆ = Ēi(β)− Ēi(βv2),
and v the meteoroid velocity normalised by V0. An example of the fit of
this function to observational data is shown in Figure 1. The code used

1Note that fireballs from the PN and MORP surveys were not subject to any deceler-
ation threasholding.

2https://www.lpi.usra.edu/meteor/metbull.php?code=67709
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to generate such figures, and determine α and β values for decelerating
meteoroids is provided at https://github.com/desertfireballnetwork/

alpha_beta_modules.
α is related to the initial mass of the meteoroid (M0, Equation 2) and the

entry angle (γ), while β is related to the instantaneous mass (Mf , Equation
3) and the shape change coefficient (µ) (Lyytinen and Gritsevich, 2016):

M0 =
1

2

cdρ0h0S0

α sin γ
=

(
1

2

cdA0ρ0h0

αρ
2/3
m sin γ

)3

(2)

M = M0 exp

− β

1− µ

1−

(
V

V0

)2
 . (3)

If quantitative values of these masses are required then assumptions must be
made for the drag coefficient (cd), initial cross sectional area (S0) or initial
shape coefficient (A0) and meteoroid bulk density (ρm); the atmospheric sur-
face density (ρ0) is typically set to 1.21 kg/m3. Applying such assumptions
is similar to other methods, albeit the parameters that are needed to assume
in this case have a limited range of values (meteoroid densities are well doc-
umented, as are shape, shape change and drag coefficients). β here entirely
replaces the need to assume an ablation parameter and subsequently a lumi-
nous efficiency – the two most highly uncertain parameters usually required.
The advantage of this method, however, lies not in extracting individual pa-
rameters, but in assessing the relationship between α and β values directly.
With such a large data set, we wish to determine if any deductions can be
made from groupings in these parameter spaces. By rearranging Equation 2
for α, we can see that a body of different entry masses, slopes and volumes
are able to produce the same α values. The inclusiveness of these two pa-
rameters makes them more appropriate than the typical suite of parameters
for predicting the outcomes of meteoroid atmospheric entry.

We extracted all fireballs within the current DFN dataset where there is
noticeable deceleration (Vf/V0 < 80%), and have calculated α and β value
for the resulting 278 events (see supplementary material for reduced data).
We plot the results in a similar fashion to Gritsevich et al. (2012), taking
the natural logarithm of the α and β values (Figure 2). Although not a
direct input parameter of either of Equation 2-3, the final observed height
of the fireball (where the observation limit of the hardware can no longer
observe ablation) shows a clear horizontal trend with little relationship to β.
Points with lower lnα values will also have higher initial masses, as given by
Equation 2.
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3. Determining the meteorite fall region

As previously stated, if we were to assume values for, say, density and
shape in Equation 2, it is possible to then calculate the entry mass of a
meteoroid using α. Further assuming the shape change coefficient of the
body can give a final mass using the β value and Equation 3 (with luminosity
values, µ can be determined following Bouquet et al., 2014). Here we plot a
series of bounding curves for a given set of assumptions on the α–β diagram.
This is an ideal visual tool for quickly assessing which fireballs from a large
network might be meteorite droppers.

As discussed in Gritsevich et al. (2012) the interpretation of the events
is biased to the trajectory slope, individual for each event. Here we look
at removing the effect of trajectory slope from the α–β diagram. If we plot
instead ln(α sinγ) as the x-axis, this effect is removed (Figure 3). The clear
horizontal trend in end heights, discussed in the previous section, now falls
apart; there is no longer a distinct relationship. This is where the modified
α–β diagram in Figure 3 is a more inclusive classification tool for fireballs.
We no longer need to rely on final velocity and final end height requirements
to classify a meteorite dropping event.

How are we then able to identify such a meteorite dropping region in
these plots? If we would like to assess the relationship between α, β and
mass, we can extract α from Equation 2 to give a parameter M∗

0 which is no
longer dependent on α or the slope of the trajectory (Equation 4):

M0 =
1

α3 sin3 γ
M∗

0 , where M∗
0 =

(
1

2

cdρ0h0A0

ρ
2/3
m

)3

. (4)

To assess the final mass of a fireball, we look at Equation 3 in the case where
the velocity becomes insignificant compared to the entry velocity (where
(V/V0)

2 −→ 0):

Mf =
1

α3 sin3 γ
M∗

0 exp

{
−

β

1− µ

}
(5)

To define a region on the modified α–β diagram where a certain minimum
final mass is obtainable, we can rearrange Equation 5 for β:

β = (µ− 1)

(
ln

(
Mf

M∗
0

)
+ 3 ln (α sin γ)

)
. (6)

To solve Equation 6 for a final mass of Mf = 1 kg, we use a density,
ρm = 3500 kg/m3 and a typical shape-drag coefficient, cdA = 1.5 (Grit-
sevich, 2008a) to get a value of ln(Mf/M

∗
0 ) = −10.21. We can plot this
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boundary line given the two extreme values of the shape change coefficient
– when µ = 0, there is no spin of the meteoroid, and when µ = 2/3, there is
sufficient spin to allow equal ablation over the entire meteoroid surface and
no shape change is expected to occur, giving:

µ = 0 , ln β = ln{10.21− 3 ln (α sin γ)} (7)

µ =
2

3
, ln β = ln{3.4− ln (α sin γ)}. (8)

These boundary curves are plotted on the modified α – β diagram in Figure
3 for such a 1 kg mass. Many similar scenarios can be actualised for various
shapes, densities and minimum terminal mass values3. Such an example plot-
ted in Figure 3 includes using cdA = 1.21 for a perfectly spherical meteoroid
body.

As mentioned previously, there is a general rule of thumb that crudely
uses a fireball end height of < 35 km and terminal velocity < 10 km s−1 to
determine which meteoroids may have survived entry. If we define a macro-
scopic meteorite-dropping event as having a final mass of > 50 g (following
Halliday et al., 1996 and Gritsevich et al., 2011), Equations 7-8 become:

µ = 0 , ln β = ln{13.20− 3 ln (α sin γ)} (9)

µ =
2

3
, ln β = ln{4.4− ln (α sin γ)}, (10)

given a ρm = 3500 kg/m3 and a cdA = 1.5.
In Figure 4 we plot these boundary curves with the fireball data from the

DFN and these previous studies (MORP & PN). Note that PN and MORP
data were not subject to the same deceleration thresholding applied to DFN
data here, and any differences in α – β values for these other studies to
Gritsevich et al. (2012) are due to the slope dependence being addressed
here. As the boundary lines are given for the two extremes of the shape
change coefficient µ, events falling beyond the µ = 0 line are unlikely to
have produced a 50 g meteorite. Fireballs associated with known meteor
shower events all plot in this area, with high ln(β) and ln(α sin(γ)) values.
Fireballs below the µ = 2/3 line are strong meteorite-producing candidates.
The significant area between these two curves illustrates the sensitivity of
the dynamic flight equations to meteoroid rotation. As a subsequent step,
the shape change coefficient can be calculated for individual events from
luminosity values following Bouquet et al. (2014).

3The interactive tool available at https://github.com/desertfireballnetwork/

alpha_beta_modules provides a means to investigate these scenarios
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Events that meet the empirical criteria (Vf < 10 km s−1 and Hf < 35
km) are highlighted in Figure 4. Within the ‘likely fall’ area, nearly all events
meet this criteria. All highlighted events fall within the µ = 0 bounding line.
These bounding lines are highly compatible with the empirical fall criteria
and present a physical basis for the classification of such events. We propose
that these bounding lines be used in future for more rigorously determining a
meteoroid’s potential to survive entry. We will further discuss the advantages
and limitations of using the α – β diagram, and the cases in particular of
‘likely fall’ events that do not meet the empirical criteria.

4. Discussion

Figure 4 clearly demonstrates the suitability of Equations 9-10 to deter-
mine the likelihood of a macroscopic terminal mass. Although the general
rule of thumb is consistent, there are multiple events in both the ‘possible
fall’ region and the ‘likely fall’ region that do not satisfy the simplified em-
pirical criteria. Could these missed events really be falls? Let us first discuss
the possible limitations of this method before addressing these events.

Once an event is located on this modified α−β diagram, if it falls in either
of the grey regions in Figure 4 it is worth further investigation. Following this
α – β approach, there are several advancements on this basic implementation
that can be performed. Despite using the simplified exponential atmosphere
as a generic model, the actual atmospheric conditions for individual cases
can be accounted for, given the time and location of the fireball as described
in Lyytinen and Gritsevich (2016). There is also a strong sensitivity of this
method to the initial velocity, as the normalisation of velocity values uses V0.
Although a first order V0 can be used initially, for possible fall events, it is best
to recalculate velocities using a robust method (such as discussed in Sansom
et al., 2015 and Vida et al., 2018). Differences in V0 calculation methods
by MORP and PN could be a possible explanation for many of the light
grey events falling in the ‘likely fall’ region. Using more realistic atmospheric
conditions (Lyytinen and Gritsevich, 2016), and with recalculated V0 values,
the resulting α and β values become more representative.

The position of an event on the α – β diagram within the grey region in-
dicates that there may be a macroscopic mass at the last observation point.
This may not, in some cases, correspond to the terminal bright flight mass,
or to an equivalent meteorite mass on the ground. For example when the
last observed point is not the end of the bright flight trajectory, due to miss-
ing observations, or distance of the trajectory end to the observer. Distant
fireballs may continue to ablate beyond the limiting magnitude of imaging
systems. MORP and PN studies used large format film systems recording
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a single image per night, with fireball segments recorded at a frequency of
4 Hz Halliday et al. (1978) and 20 Hz McCrosky and Boeschenstein (1965)
respectively. PN systems identify typical projected limiting magnitudes of
-3 at the centre of their frames (with -5 toward the edges) McCrosky and
Boeschenstein (1965). These systems may not have been sensitive enough
to reliably image the end of bright flight. Such missing information could
account for why terminal masses may appear overestimated in the α – β
diagram. Fragmentation within the bright flight is to some extent accounted
for by the nature of fitting the deceleration profile with Equation 1. Where
fragmentation occurs at the end of the bright flight however, the terminal
mass expected will no longer be a single main mass. Modelling of fragments
through darkflight may still be valuable if the end mass is significant enough.
An estimate of this terminal mass can be calculated using Equation 3. This
does require assumptions to be made for density, shape and of course µ. For
a more in depth analysis/assessment of specific meteoroid trajectories, more
involved modelling techniques such as Sansom et al. (2019) and Egal et al.
(2017) can now be applied with confident use of resources.

Let us return to the grey DFN events in Figure 4 that are within the ‘likely
fall’ region (we include the two on the µ = 2/3 line). Of the five, the most eye
catching is at [2.88,-0.936] in Figure 4 and from video data shows significant
flaring, including a final late flare. The mass at this point is still significant
( 1 kg) and a search for fragments will be conducted in the future. The
event at [2.30, 0.75] in Figure 4 is a great example of hardware limitations
interfering with expected results. DFN observatories are designed to take
a 25 second long-exposure image every 30 seconds. This 5 second down
time allows images to be saved and systems to be reset. This event likely
continued to ablate beyond the end of the exposure and was unfortunately
not captured in the subsequent image. The remaining three are triangulated
from observatories at significant ranges; the closest camera to DN151105 15
(Figure 4 [3.08,0.27]) was 430 km. These are therefore still possible fall
candidates that were missed by the empirical criteria, simply because the end
of bright flight was not observed. These were modelled using Sansom et al.
(2015) and masses at this last observed point are all > 100 g. This method
is therefore able to identify likely fall events that might previously have been
missed if using the empirical criteria for a typical meteorite-dropping event.

5. Conclusions

Here we demonstrate an α – β diagram as a simple, yet powerful, tool
to visualise which fireball events are likely to have macroscopic terminal
masses. We plot 278 fireballs from the Desert Fireball Network on a modified
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α – β diagram, accounting for the differences in trajectory slopes (Figure
3). Boundary lines can be plotted to define a region of events having a
given minimum terminal mass. The shape change coefficient, µ, is capable of
enhancing mass loss and its influence should be considered. Equations 9-10
define the boundary curves for a terminal 50 g chondritic mass, given the two
extremes of meteoroid rotation (0 < µ < 2/3; Figure 4). Events beyond both
these lines are unlikely to have survived atmospheric entry, while those below
both lines are likely to have dropped a macroscopic meteorite. Depending on
the meteoroid rotation, events in the region between these lines should also
be considered as possible falls. Events from previous studies (MORP and
PN) are also shown for comparison.

Events that meet the current empirical fall criteria (Vf < 10 km s−1 and
Hf < 35 km) all lie within the proposed fall regions of the α – β diagram
(Figure 4). Not only can this method locate all events identified by the
empirical criteria, but it is able to provide the physical justification for high-
lighting such events. Additionally, the α – β method is able to detect likely
fall events that do not meet these empirical criteria, identifying non-typical
events. The use of the α – β criterion is a way to quickly and easily iden-
tify key events in large datasets. This method is easily automated and has
previously been shown to scale to airburst and cratering events. With more
data, this could become increasingly useful for identifying where hazardous
material may be originating from in the solar system.
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7. Summary of definitions and abbreviations
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A0 − Initial shape factor - a cross sectional area to volume ratio A =

S
(
ρm
m

)2/3
.

cd − Drag coefficient.
ch − Heat-transfer coefficient.
Ēi − Exponential integral, Ēi(x) =

∫ x
∞

ez

z
dz .

g − Vector of local gravitational acceleration (ms−2).
h0 − Scale height of the homogeneous atmosphere (h0 = 7160m).
H∗ − Enthalpy of sublimation (J kg−1).

m − Normalised meteoroid mass, m =
M

M0

(dimensionless).

M − Meteoroid mass (kg).
M0 − Initial entry mass of meteoroid at the beginning of the observed,

luminous trajectory (kg).
M0 − An intermediate variable defined by Equation 4 (dimensionless).
Mf − Terminal mass of the main meteoroid body at the end of the lumi-

nous trajectory (kg).
S − Cross sectional area of the body (m2).
S0 − Initial cross sectional area of the body (m2).

v − Normalised meteoroid velocity, v =
V

V0
(dimensionless).

V − Meteoroid velocity (ms−1).
V0 − Initial entry velocity of the meteoroid at the beginning of the ob-

served, luminous trajectory (ms−1).
Vf − Terminal velocity of the main meteoroid body at the end of the

luminous trajectory (ms−1).

y − Normalised meteoroid height, y =
altitude

h0
(dimensionless).

α − Ballistic Coefficient.
β − Mass loss parameter.
γ − Angle of the meteoroid flight to the horizontal.
µ − Shape change coefficient representing the rotation of a meteoroid

body (0 < µ < 2/3).
ρa − Atmospheric density (kg m−3).
ρm − Meteoroid bulk density (kg m−3).
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Figure 1: Plot of observational data with velocity normalised to entry velocity V0 and
height normalised to the atmospheric scale height (h0 = 7160 m). The fit is good despite
significant scatter in the data.
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Figure 2: Distribution of α and β parameters for Desert Fireball Network fireballs.
Recovered meteorite falls plotted: (1) Bunburra Rockhole (DN200707B); (2) Murrili
(DN151127 01); Dingle Dell (DN 161031 01)
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Figure 3: Distribution of fireballs from the Desert Fireball Network (DFN) with trajectory
slope dependence removed (x-axis is now a function of γ). This changes the relationship
between α and end height seen in Figure 2. The bounding line for a 1 kg meteorite is shown
in black for the case where there is no spin (µ = 0) and in grey where spin allows uniform
ablation over the entire surface (µ = 2/3). Solid lines are for likely values of cdA = 1.5 and
are dashed if cdA = 1.21. Meteorite falls plotted: (1) Innisfree (MORP285, 2.07 kg+);
(2) Lost City (PN40590, 9.83 kg+); (3) Bunburra Rockhole (DN200707B, 174 g+); (4)
Annama (FFN, 120 g); (5) Murrili (DN151127 01, 1.68 kg); (6) Dingle Dell (DN161031 01,
1.15 kg), where masses are given for largest recovered fragment and ‘+’ indicates other
fragments were found. Also note that the α – β values for Annama (4) were calculated
using the method of Lyytinen and Gritsevich (2016) where a realistic atmosphere model
is used rather than the exponential atmosphere as for other falls.
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Figure 4: Distribution of fireballs from both the Desert Fireball Network (DFN) and
previous studies (Meteor Observation and Recovery Project Halliday et al., 1996; Prarie
Network McCrosky et al., 1979). Fireball events that meet the criteria Vf < 10 km s−1

and Hf < 35 km are considered likely meteorite droppers (after Brown et al., 2013) and
are shown in red (DFN) and blue (previous studies). Boundary lines for a 50 g meteorite
are given for the two extremes of the shape change coefficient µ using Equations 9-10.
The area beyond both these lines will be unlikely to drop a > 50 g meteorite, while those
within the dark grey ‘likely fall’ region will be strong meteorite-producing candidates.
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