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Abstract

The research herein concerns itself with the real-time prediction and forecasting of Aus-

tralian Football League (AFL) match outcomes, and consequently aims to remedy the lack

of real-time analysis within the sport. To this e�ect data has been acquired as follows:

data on past performances (static data), in-game statistics (dynamic data); after which

statistical modelling methods were used in order to develop of a robust yet multifaceted

analysis methodology.

This research has been conducted in two major phases; �rstly, the assessment and

application of static data for the prediction of match outcomes and their relevant ap-

plications with respect to match, �xture, and team performance analysis by means of

regression and machine learning algorithms. Secondly, the utilisation of both the static

data from the previous phase and in-game play-by-play metrics in order to develop a

real-time prediction methodology.

Phase 1 considers four candidate models as such to account for the breadth of method-

ologies found in the available literature. These models in order of increasing complexity are

as follows: multinomial logistic regression (MLogR), logistic model tree (LMT), random

forest (RF), and support vector machine (SVM). Whereas phase 2 utilises a continuous

time inhomogeneous Markov model to account for the sporadic nature of the real-time

data observed as well as the computational optimisations a�orded by said model.

The results for both static and dynamic data models are signi�cant, the static MLogR

model yielded comparative results to those found in the literature with an accuracy of

69.60% while the dynamic Markov model achieved impressive results with an average

epoch prediction accuracy in excess of 80% and an average match outcome prediction

accuracy in excess of 90%.

The outcome of this research are promising and will aid coaches in making informed

strategic decisions during matches as well as assist them in retrospective analysis of previ-

ous matches. In addition, it is a goal of this research that the methodological framework

developed here be easily transferred across other sports.
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CHAPTER 1

Introduction

The Australian Football League henceforth referred to as the AFL (the sport itself is also

colloquially called AFL) is one of the most popular sports and leagues in Australia having

estimated club memberships of 1.1 million for the 2021 season, yielding an approximate

growth of 12% over the 2019 season. A testament to this growth also saw all 18 clubs

�elding a team in the 2021 Australian Football League Women's (AFLW) premiership

season, as well as a total increase in revenue of 9%.

1.1 Sports Analysis and Outcome Prediction

In the ever-present quest to outperform one's competitors, athletes are evermore pushing

the limits of human physiology � but at what point does raw physiological supremacy

cease being the stopgap by which victory is predicted? Beginning with the turn of the

twenty-�rst century, both training methodologies and team related strategies have evolved

in such a way that optimality is desired not only in team composition and training but also

in injury management and �nancial return. The precursor to this paradigm shift would

appear to be the work of Billy Beane (Baumer and Zimbalist 2014), who throughout his

tenure at The Oakland Athletics popularised the burgeoning �eld of sports analytics and

in turn changed the inner workings of competitive sports forever.

Traditionally, a team's performance was measured as the number of matches won and

where appropriate augmented by the margin by which each match was won. However,

commentators and analysts have often posited questions such as; does the home team have

an inherent advantage? How does travel and time o� a�ect a team's next match? What is

the optimal match schedule for a given season? As well as many others, with the majority

of answers having either anecdotal or non-empirical slants. And whilst researchers have

tried to answer many of these questions, they are most often looked at separately with

no regard for confounding factors. For example, the concept of home team advantage is

often observed such that the relative strength of the away team is ignored.

Henceforth, in order to facilitate an all encompassing research methodology towards

1



1.2 Research Objectives 2

the goal of real-time AFL match outcome prediction � a multifaceted approach was

adopted, with analysis integrating current literature as well as novel methodologies.

1.2 Research Objectives

The main objectives of this research can be summarised as follows:

� To screen for and extract relevant match features which are appropriate for the

prediction of AFL match outcome probabilities with respect to the home team

drawing, losing, or winning the match. For this purpose, features will be gathered

from data published prior to each match as well as collected whilst matches are in

progress.

� To investigate alternate metrics for team performance and �xture di�culty.

� To investigate various statistical and machine learning techniques for producing near

real-time match outcome predictions. With `near' referring to the time lag between

recording an on-�eld transaction and supplying it to the model for prediction.

� To develop accurate prediction models which incorporate both classical and novel

approaches to data screening, feature extraction, and model usage.

1.3 Signi�cance of this Research

� This research seeks to remedy the lack of real-time analysis in the realm of Australian

Rules Football and similar fast-paced sports. It has become apparent through review

of current literature and consultation with industry professionals that this is due to

the cost prohibitive and proprietary nature of real-time data collection as well as its

applications and implications.

� As sporting clubs are becoming far more proactive in their own data management

and in-house analysis, the need for far more sophisticated approaches in terms of

performance analysis and outcome prediction is on the rise. This research provides a

multifaceted framework for said real-time prediction and by extension performance

and �xture analysis.

� Throughout the process of screening for and extracting key features, novel metrics

for team performance and �xture di�culty were developed. It is posited that these

metrics yield far more balanced representations than their currently used coun-

terparts as they take into account both forecast match outcomes and perceived

opponent di�culty based on past performances.
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� The results obtained from this research validate the e�ectiveness of the proposed

framework and methodologies contained within. In addition to this, the frame-

work and methodologies have been designed in such a way that it should be easily

transferable to other sports.

1.4 Structure of this Thesis

This thesis is organised as follows:

Chapter 2 provides a concise review of the available literature in the �elds of Australian

Rules Football analytics, ex-ante and real-time AFL match outcome prediction; as well as

summarises the statistical and machine learning methods to be utilised within. Chapter 3

provides detailed insight into the acquisition and processing of data, and the methodology

utilised in feature selection and extraction. Chapters 4 and 5 present the bodies of research

dealing with ex-ante and real-time predicion respectively, with each chapter covering the

following:

� Mathematical formulation of the forecasting model.

� Detailed mathematical formulation of each of the statistical / machine learning

techniques.

� A breakdown of the results obtained from each of the sub-models including an in-

depth discussion of the �ndings.

� Applications and ancillary use cases.

Finally, chapter 6 provides a summary of research, major contributions, conclusions, and

recommendations for future works.



CHAPTER 2

Literature Review

2.1 Overview

In the ever evolving �eld of sports analytics, real time analysis has become a key area of

interest. However, due to the proprietary nature of real-time data most public research

is con�ned to ex-ante result prediction and optimal betting strategies with the goal of

beating bookmakers odds. Due to this distinction current research can be classi�ed into

two categories: ex-ante prediction using static features, and real-time prediction using

dynamic features. Static features consist of match information prior to the start of a

match, while dynamic features are based on in-match information.

Features which are used for both approaches do not di�er signi�cantly across classi�-

cation and regression methods but tend to follow a logical grouping depending on which

sport is being observed. From features which are commonly utilised, such as teams or

players involved to sport speci�c features such as rebounds or turnovers, it is clear that

feature selection dictates the success of these models (Lopez and Matthews 2014). Fea-

tures should be selected carefully paying attention to not only the statistical merit of each

feature but also to their relevance to the sport as a whole.

Ex-ante prediction (Constantinou, Fenton, and Neil 2012; Delen, Cogdell, and Kasap

2012; Lopez and Matthews 2014; Maszczyk et al. 2014) is implemented in a variety of

sports regardless of tempo (the speed at which the sport is played) and is a large part of

the currently available literature. Machine learning techniques such as Arti�cial Neural

Networks (ANN) and Support Vector Machines (SVM) were used to great success for

result prediction in both American Football and Athletics (Delen, Cogdell, and Kasap

2012; Maszczyk et al. 2014).

On the other end of the spectrum di�erent methods of regression and generalised

linear models were used to accurately predict match outcome, points scored, and margin

of victory (MOV) (Stefani and Clarke 1992; Goddard 2005; Rue and Salvesen 2000;

Crowder et al. 2002; Lopez and Matthews 2014). Goddard (2005) was able to predict the

goals scored and conceded by the home team. The results were comparable to predicting

4
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match outcomes win, loss, draw by using generalised linear models Stefani and Clarke

(1992) using linear regression were able to quantify the home advantage for each team

and predict the MOV for a given pairing of teams within the AFL.

Due to the cost and di�culty of simultaneous data collection real-time prediction (Min

et al. 2008; Akhtar and Scarf 2012), is carried out on slower moving sports (when compared

to Australian Rules Football) and those where up to date data is easily available, such

as cricket (Bailey and Clarke 2006; Akhtar and Scarf 2012) and soccer (Min et al. 2008).

These applications tend to use less computationally taxing methods such as multinomial

linear and logistic regression, and rely heavily on pre-established methodologies such as the

Duckworth-Lewis resource matrix (Duckworth and Lewis 2004; Stern 2016) and existing

match strategies.

This chapter is divided into four main sections, each of which elaborate upon the key

ideas and theoretical underpinnings on which this research is based. Firstly, section 2.2

investigates Australian Rules Football as a sport and explores the statistical and analytic

methods employed in AFL match outcome prediction. Secondly, section 2.3 gives insight

into current real-time prediction research both within and without the sporting realm.

Thirdly, section 2.4 provides an overview of the methods employed in this study; including

advantages, disadvantages, and current applications found in contemporary literature.

Finally, section 2.5 gives a brief overview of future avenues of data acquisition.

The objectives of this chapter are:

(i) Explore Australian Rules Football as a sport.

(ii) Present the evolution of AFL match prediction methods.

(iii) Explore the current state of both ex-ante and real-time prediction.

(iv) Introduce the statistical models used in this study.

(v) Explore future sources of player and match data.

2.2 AFL

The AFL began its life in 1896 when the six strongest clubs in Victoria broke away from

the then-current Victorian Football Association over administrative di�erences. These

clubs would then go on to establish the Victorian Football League (VFL) which over the

years would expand to include interstate teams and form the AFL as known today.

Australian Rules Football is an invasion style ball game similar to both rugby and

American Football in which two teams vie for leadership by scoring points either by

kicking the ball through the centre posts (scoring a goal worth 6 points) or through the
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outer posts (scoring a behind worth 1 point). A typical AFL (men's) season consists of

two phases; a 23 round premiership season wherein each team plays 22 matches over the

course of 23 weeks, and a 4 week �nals series wherein the top 8 teams of the premiership

season play for a place in the grand �nal.

During each premiership season teams are ranked based on the number of premiership

points won, with a win yielding 4 points, a draw 2 points, and a loss 0 points; however,

in the case of a tie teams are then ranked as a percentage of total match points scored to

total match points conceded.

The �nals series is played according to the AFL �nal eight system which is a modi�ed

version of the McIntyre �nal eight system. This set-up requires that the top 4 teams need

only win 2 games while the bottom 4 teams need to win a total of 3 games thus ensuring

an easier path to the grand �nal for the higher ranked teams.

Australian Rules Football is played on an oval �eld or varying size (Figure 2.1) by

two teams of 22 players (18 on-�eld and 4 reserves) over the course of 4 quarters. Each

quarter theoretically runs for 20 minutes, however, due to the addition of stoppage time

and allowing for on-�eld interruptions a quarter could run for as long as 37 minutes.

During play the ball is moved down the �eld by either kicking, passing, or handballing

the ball to another player which results in a fast pace game where strategy and possession

are of utmost importance.

Figure 2.1: Field Dimensions and Positions (Australian Football League 2015).
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2.2.1 Prediction of AFL Match Outcomes

Research into the AFL has existed almost as long as the game has, however, as the game

has matured so has the depth and breadth of its �eld of research. Initial studies concerned

themselves with the concept of home advantage and its e�ect on match outcome given

the intrinsic advantage awarded to the home team (Ryall 2011; Taylor and Demick 1994;

Clarke 2005). In the earliest days of the AFL, when interstate travel was at a minimum,

the main cause of home advantage was thought to be just as the name implied; whether

a team is playing at their home stadium, or in front of a majority crowd. However, as the

league expanded so did the contributing factors (Johnston et al. 2018). From amongst

this myriad of factors it is possible to identify the following three criteria: psychological,

tactical, and physiological.

Psychological factors are the `typical' in�uences that the average fan would identify

and are those which directly a�ect players on a psychosomatic level and can range any-

where from cognitive ability to a bad performance in a previous match (Woods et al. 2016).

This is additionally confounded by the journalistic practices of the media (Pedersen 2014;

She�er and Schultz 2013; Weedon et al. 2018) where views are attracted through sensa-

tionalist headlines and appeals to emotion. Common amongst these are; Is a team playing

at their home stadium (Courneya and Carron 1992)? Do they have a majority or hostile

crowd (Russell 1983)? These all play a key role in a player's on-�eld performance and

awareness.

Tactical factors primarily deal with a team's/player's ability to convert di�cult posi-

tions through tactics and superior on-�eld `skill' (Rennie et al. 2020) but can also refer

to a team's/player's familiarity with a stadium and their ability to alter plays and strate-

gies to accommodate changes in �eld size and condition. Tactics refer to on-�eld feats

performed at either team or player level and are engrained through specialised training

drills and skirmishes; these are generally under the purview of a team's coaching sta�

(Johnston et al. 2018) and are most times customised on a per match basis. Skill however

pertains to a player's ability to handle both themselves and the ball during the ebb and

�ow of a match and is generally measured in terms of the various on-�eld transactions

(handball, intercept, mark, etc.) performed by said player (Rennie et al. 2020).

Physiological factors deal with a player's inherent physical ability as well as the strain

placed upon them during the course of a season. Physiological indicators of a player's

success are generally accepted as a player's body composition (height, weight, muscula-

ture) but tend to be more complex interaction between those and their �tness. A player's

height and wingspan enable easier access to the ball and makes them a di�cult target to

capture the ball from, whereas �tness (aerobic and anaerobic) may allow players of lesser

stature compensate by jumping higher or running faster than their competition (Woods
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et al. 2016). Adding more complexity to this is a player's propensity for injury and how

quickly they recover as well as additional strain introduced through travel and training

regimen (Johnston et al. 2018).

When playing at home or any familiar stadium, a team's ground familiarity is an

enormous advantage as the players are assured of no disruption to their regular training

routine which would otherwise result in fatigue and inability to readily rely on familiar

drills and strategies (Woods and Robertson 2021). When playing interstate, travel be-

comes increasingly more of a concern as the season progresses and can be detrimental to

both the mental and physical state of players therefore resulting in poor on-�eld perfor-

mance, this is due to the suboptimal recovery and training times a�orded to the travelling

team (Robertson and Joyce 2018). The home crowd factor is of extreme importance as

it is always better and easier for the players to perform at their optimal whilst the crowd

is clearly on their side, there is also less chance of the umpire making unfavourable calls

due to a hostile crowd (Taylor and Demick 1994).

It must be noted that there is a discrepancy in the amount of home games played

which results in some teams playing in front of large home crowds, while others play to

smaller crowds. It is therefore obvious that results can be related to both travel and crowd

size to the amount of home team victories.

Research into home advantage is plentiful and can be seen as the cornerstone of AFL

research. Stefani and Clarke (1992) wrote their �rst paper seeking to validate the concept

of home advantage in the AFL and found signi�cant results; not only indicating home

advantage, but also that non-Victorian teams are subject to a greater advantage on av-

erage than their Victorian counterparts. It would reason that the larger proportion of

Victorian teams, their disproportionate travel requirements, and shared home stadia are

to account for this (Stefani and Clarke 1992). Like many of their contemporaries (Stefani

1980, 1987; Pace and Carron 1992; Harville 1980) Stefani and Clarke's �ndings rely on

linear regression analysis to assess the home advantage for each team in the AFL and pro-

duce similar overall �ndings to the home advantage experienced in other sports. Further

research by Clarke (2005) culminating in his highly regarded publication `Home advantage

in the Australian football league' concur with the earlier �ndings of Stefani and Clarke

(1992) and further elaborate on the following ideas: Australian Rules Football like many

other similar sports is subject to unbalanced �xtures, this leads to stronger teams having

relatively easier seasons, and in combination with the aforementioned home advantage

phenomena results in an approximate home team win rate of 60%, with the home team

scoring approximately 10.4 points more per game than their opponent. However, there is

a caveat; if teams are of vastly di�erent ability then home advantage will not necessarily

play a major role in the outcome of the match.

Following on from the study of home advantage, the next and most prevalent �eld of
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study is that of match outcome prediction. The vast majority of research into AFL match

prediction is con�ned to ex-ante prediction and the optimisation of betting strategies with

the goal of beating bookmakers odds. Due to this distinction, current research can be

classi�ed into two categories: ex-ante prediction using static features (gathered before

a match), and real-time prediction using dynamic features (gathered during a match).

However, due to the proprietary nature of real-time data, most publicly available research

is dedicated to the former.

Theoretically, features which are used for both approaches do not di�er signi�cantly,

but tend to follow a logical progression depending on the complexity of the model used

and output desired. From feature which are commonly used; such as team rankings and

venue location, to more speci�c features such as �eld position and angles of attack, it is

clear that feature selection signi�cantly dictates a model's success (Lopez and Matthews

2014). Features should therefore be selected carefully, not only paying attention to the

statistical merit of each feature but also to their relevance to the sport as a whole.

Linear models, such as those used by Stefani and Clarke (1992), Bailey (2005), Ryall

(2011), and Robertson, Back, and Bartlett (2015) make use of far more rudimentary fea-

tures; such as ranking, match outcome (MOV and outcome), and home advantage. Stefani

and Clarke (1992) who can be though of as the progenitors of modern AFL research make

use of their previous research into home advantage as well as a novel system of AFL team

rankings and a least-squares approach to facilitate their predictions. These predictions

which spanned the entirety of the 1980�1989 AFL premiership seasons achieved an av-

erage accuracy of 68.1% which are comparable to those made in similar sports of the

time.

Bailey (2005) and Ryall (2011) whose research share the common goal of `�nancial

success' each take signi�cantly di�erent approaches. Bailey (2005) opts for a multiple

linear regression whilst Ryall (2011) utilises an adjusted ELO style system (Elo and Sloan

2008) similar to that used in the ranking of chess players. Another signi�cant di�erence

between the two are the features used for each model; Ryall (2011) makes use of simplis-

tic features such as: home advantage, travel fatigue, initial rankings, and match results

over the 2002�2009 AFL premiership seasons. Whilst Bailey (2005) makes use of MOV,

and di�erences in both turn overs and inside 50s at a team level over the 1987�1999

AFL premiership seasons, hence, they can be seen as one of the �rst AFL researchers to

experiment with measures of team momentum. Regardless of this divergence in method-

ology Bailey (2005) and Ryall (2011) attained comparable results with 64% and 62.1%

prediction accuracies and 10.1% and 10.4% average return on wager respectively.

Finally, Robertson, Back, and Bartlett (2015) utilised a gamut of match performance

indicators recorded over the course of the 2013�2014 AFL premiership seasons in com-

bination with binomial logistic regression. Ultimately settling on a set of statistically
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signi�cant `key' performance indicators which included but were not limited to: kicks,

marks, and inside 50s (see Appendix B.2 for a full list of transactions and de�nitions).

The outcomes of this research were two-fold; �rstly, identifying signi�cant performance

metrics in the form of `key' performance indicators, and secondly, by proving that the

aforementioned features are able to be used to great e�ect in the prediction of match

outcomes by achieving a prediction accuracy of 87.1% for the 2014 AFL premiership

season.

Hence, the results of Robertson, Back, and Bartlett (2015) give further credence to

a comment by Stefani and Clarke (1992) �It appears that the accuracy of a prediction

depends primarily upon the information content of the data used to construct the [model]

and much less on the algorithm used ...�

Following on from the linear methods above Leushuis (2018) observes that Australian

Rules Football is a far more complicated than traditional modelling methods can com-

pensate for and as such suggests a hybrid model composed of two random processes. The

�rst, which models team performance is a Gaussian autoregressive process of order one,

while the second process which models team ranking is a Markov chain model. Both

processes are then combined using a Kalman �lter with further smoothing being done

by a Kalman smoother. Regardless of this leap in model complexity, the data used is

comparable to the most basic models discussed above; MOV (modelled as a function of

team strengths), and home advantage. It should be noted that unlike Stefani and Clarke

(1992) who suggest individual home advantages per team, Leushuis (2018) uses a com-

mon value for all teams. This study spanned the 2012�2016 AFL premiership seasons

and attained a prediction accuracy of 73.62%, and whilst the data used may be seen as

rudimentary �the results are promising as it validates the use state space models in AFL

match outcome prediction.

The �nal and most promising body of prediction research is that of arti�cial intelli-

gence and machine learning, and with the ever-increasing potential of modern computer

processors there is no telling where the proverbial ceiling lies. McCabe and Trevathan

(2008) created a generalised model for outcome predictions in four sports (Australian

Rules Football, Rugby League, Super Rugby, and English Premier League) and in doing

so make use of an arti�cial neural network �more speci�cally a multilayer perceptron

with three layers. While arti�cial neural networks are highly adaptable to almost any

problem, they are unfortunately referred to as black box. This is due to the fact that

their underlying structure yields no insight into how the model actually works. For this

model features were extracted similarly to those studies previously discussed (MOV, team

ranking, venue) as well as novel metrics of team form and performance. These metrics

included but were not limited to: average score over the last n matches, win percentage

over the past n matches, and win percentage for both home and away matches over the
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last n matches. The total number of features totalled 19 and resulted in an average pre-

diction accuracy of 65.1% for their AFL predictions. A signi�cant result of this research

is that similar accuracies were obtained across all four of the sports studied, indicating

that an interoperability exists amongst the features explored.

Furthermore, Young et al. (2019) making full use of the extended capabilities of ma-

chine learning algorithms investigated 103 performance indicators as potential features

from data spanning the 2001�2016 AFL premiership seasons. In addition to this they

investigated the concept of seasonal clusters within the AFL such that the features exhib-

ited similar characteristics. From this they identi�ed 2009 as a signi�cant boundary point

which just so happens to coincide with the addition of two new teams into the league.

The feature selection process utilised an amalgamation of four metrics: information gain,

information gain ratio, Gini index, and correlation. From these metrics 91 signi�cant fea-

tures were identi�ed, these features included all those identi�ed by Robertson, Back, and

Bartlett (2015) in addition to a variety of features not previously found in the literature.

Two separate random forest models were constructed with MOV and match outcome re-

spectively and achieved a prediction accuracy of 88.5% for match outcome and a root

mean squared error of 21.4± 0.2 for MOV.

Throughout the literature explored above it is clear that while accuracies have im-

proved over time there is a point of diminishing returns where ex-ante prediction is con-

cerned. Standard statistical models produce accuracies of up to 70% (Bailey and Clarke

2006; Ryall 2011) while more complex machine learning methods yield accuracies into

the upper 80% range (Leushuis 2018; Young et al. 2019). Whilst each sport will have

sport speci�c features such as the number of kicks or intercepts, features which are sim-

ilar across various sports are those such as team, ranking, home/away assignment, and

win/loss averages over a period. These features are utilised throughout the literature and

provide a thorough springboard to expand on current knowledge with the goal of a near

real-time predictive model.

More recently researchers have been concerned with team performance and �xture

analysis. As stated previously the AFL is inherently subject to bias in its scheduling,

with the rami�cations of this often o�oaded onto coaching sta� (Guerrero-Calderon et

al. 2021; Lin, Pecotich, and Yap 2011; Rocaboy and Pavlik 2020; Ter Weel 2011; Lenten

2011). In light of this researchers have begun looking into how a team's performance varies

relative to their given �xture. Robertson, Back, and Bartlett (2015) identi�es various key

performance indicators and explores their relative e�ect on match outcome.

In simplistic terms a key performance indicator is a metric which is correlated di-

rectly with a team's success, and whilst most studies have been done outside the scope

of Australian Rules Football, speci�c studies are few and far between. Traditionally per-

formance analysis has been conducted using modelling approaches such as multinomial
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logistic regression (Stewart, Mitchell, and Stavros 2007; Robertson, Back, and Bartlett

2015), unsupervised machine learning (Robertson, Back, and Bartlett 2015), and principle

component analysis (Castellano, Casamichana, and Lago 2012). Results from the above

studies are generally concordant and identify metrics that have become synonymous with

on-�eld `momentum' (Taylor and Demick 1994), that is to say on-�eld actions which al-

low a team to move the ball further into their opponents territory whilst maintaining ball

possession or minimising their opponent's reacquisition of ground (Hughes and Bartlett

2002). Appendix B.2 lists a complete summary of the performance indicators tracked

within Australian Rules Football, with kicks, marks, and handballs being some of the

most signi�cant (Robertson, Back, and Bartlett 2015).

Traditionally a team is said to have performed well if they win a match, with varying

degrees of success attributed to their MOV or an individuals exemplary on-�eld per-

formance; but what of factors that are outside a team's direct purview �a key player

injured, a particularly di�cult match such that one team outclasses the other. These

are some of the many factors which often go unchecked by fans, punters, and investors;

and as such has driven researchers to investigate what underpins a fair season or �xture

(Lenten 2011). Sportspeople are typically subject to long seasons and are under constant

pressure to maintain peak performance, this coupled with frequent travel, injury, and

interruptions to training puts a great deal of mental and physical stress on both players

and coaching sta�. Therefore, coaches and training sta� are under constant pressure to

micromanage training and rehabilitation plans as to minimise on-�eld performance loss.

A key stratagem often employed is that of tactical periodisation where a team's on-�eld

composition and training regiments are dynamically varied in preparation for, or in re-

sponse to matches or events that are considered high priority. A common application of

this is colloquially known as `tanking' and is the act of intentionally under-performing in

order to prepare for a later more signi�cant event. This is often done by either �elding

a weaker team and resting key players or by intentionally losing a match, with the latter

typically being met with crowd disappointment (Tuck and Whitten 2013).

Regardless of these tactics it is far more important to ensure that a balanced �xture

is enjoyed by all, however, this is easier said than done. Various �nancial and intra-club

factors make it infeasible to achieve. Ideally, a conference structure similar to that of

the NFL could be adopted to minimise travel and balance out �xtures but that would

place signi�cant strain on clubs and players as it would require a longer season and

signi�cant �nancial investment (Josman, Gupta, and Robertson 2016a). In the AFL's

current incarnation business is conducted in cartel-like fashion with the AFL and its

members exercising absolute control over the administration and distribution of the game

and its talents (Stewart, Nicholson, and Dickson 2005). As per the current broadcast

contract, rights were sold after an o�er in excess of $500 million Australian dollars was



2.3 Real-Time Prediction 13

made; this includes all pre and in season games as well as the grand �nal. If schedules

were altered it is fair to say that the costs would signi�cantly increase.

2.3 Real-Time Prediction

Real-time prediction is an ever-increasing realm of research within the sporting world

�whether seeking to beat the betting market (Bailey and Clarke 2006), or to gain the

upper hand on an opponent through a rapid yet e�cient system of strategic changes

(Gréhaigne and Godbout 2014), there is always impetus to improve be it from coaches,

investors, or fans. The approaches and techniques however, vary quite signi�cantly de-

pending on the sport, number of input variables, and frequency at which predictions or

outputs are required. Traditionally, researchers have circumnavigated this requirement

by segmenting events so that predictions may be made at predetermined intervals during

a match, therefore allowing discrete prediction methods to be used at the cost of the

granularity a�orded by real-time methodologies. For example, Akhtar and Scarf (2012)

implement an evolving multinomial logistic regression model to predict the outcome prob-

abilities during a �ve-day cricket test match. However, due to the limitations of regression

models, outputs are required to be generated on a pseudo-real basis and as such are pro-

duced at the end of each innings over the course of play. Whilst this approach does allow

for the analysis of batting and bowling trends as the match progresses it takes until the

end of play on day two to reach comparable results to studies of a similar nature (McHale

and Scarf 2011; Stefani and Clarke 1992; Bailey and Clarke 2006). Regardless of this time-

lag, models of this nature can enable coaches and captains to tailor their team's batting

and bowling strategies with respect to current match prospects. In a similar vein Bailey

and Clarke (2006) produce updated MOV targets at the end of each over. This is achieved

through the use of standard linear regression in conjunction with the Duckworth-Lewis

method (Duckworth and Lewis 2004) and requires very little in terms of input data as

the Duckworth-Lewis resource conversion scheme has remained virtually unchanged since

its inception in 1999 and subsequent re�nement in 2014 as the Duckworth-Lewis-Stern

method (Stern 2016).

Moreover, Clarke (1988) further increases the rate at which predictions are generated,

thereby producing a prediction at the end of each ball bowled during a one-day cricket

match. To implement this methodology a dynamic programming approach was adapted

with the objective being to calculate an optimal run rate by which a maximum �nal run

count may be achieved. Applications of this approach are numerous; from allowing cap-

tains to dynamically structure batting orders, to performance tracking and measurement

of individual players and teams, and even outcome prediction on a ball by ball basis.

Moving further towards a true real-time prediction model Oh, Keshri, and Iyengar
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(2015) developed a graph based simulation model for the National Basketball Association.

This was achieved through the use of both play-by-play and player location data, and

whilst not an outcome prediction approach in the truest sense it allows for the simulation

and `prediction' of a match when provided with a given starting squad for each team.

Similarly, both �trumbelj and Vra£ar (2012) and Manner (2016) make use of play-by-

play data, homogeneous Markov models, and Monte Carlo simulation to project the most

probable path that the ball takes over an average number of possessions and henceforth

declare a victor over a number of simulations. An advantage of this approach is that the

Monte Carlo simulation provides unbiased estimates of the points scored by each team,

however, it was also found to overestimate the performance of weaker teams.

2.4 Prediction Methods

Whilst the statistical theory underpinning the following models is discussed in Chapters

4 and 5, the rationale behind each model is to follow.

2.4.1 Multinomial Logistic Regression

Multinomial Logistic Regression (MLogR) is a frequently used classi�cation algorithm

(see Section 4.1.1) that adapts logistic regression to multi-class problems. It is both easy

to implement and interpret, and allows for identi�cation of feature importance whilst also

allowing for easy derivation of bimodal event probabilities. Requirements of the MLogR

model are such that the dependent variable is discrete and that there is independence and

no multicollinearity amongst the independent variables, with a major drawback being

that the data needs to be linearly separable which is rarely found in real-world scenarios.

2.4.2 Logistic Model Tree

Logistic Model Tree (LMT) is a commonly used classi�cation algorithm (see Section

4.1.2), which performs comparatively to other classi�ers whilst remaining easy to interpret

(Landwehr, Hall, and Frank 2005). LMT combines two popular classi�cation techniques:

tree induction, and logistic linear regression, which when used in combination synergise

to counteract the other classi�ers shortcomings (Hornik, Buchta, and Zeileis 2009). To

elaborate linear regression is inherently subject to low variance and high bias while tree

induction is subject to high variance and low bias, with the LMT yielding both low

variance and bias. At each iteration a decision tree is grown after which linear regression

is performed resulting in piecewise logistic linear regression model from which the next

iteration is started.
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Similar to the MLogR model the LMT requires linearity as well as independence due

to its logistic component, whilst not requiring any additional constraints due to the non-

parametric nature of the tree induction. This implementation returns a white box model

that allows for easy interpretation and still performs relatively well even if the aforemen-

tioned assumptions are invalidated. Conversely, the LMT can produce overly complicated

trees that do not accurately capture the splits in the data leading to instability. Another

consideration is that the LMT will generally become biased if there are structurally dom-

inant features and classes that signi�cantly outweigh others (Landwehr, Hall, and Frank

2005).

2.4.3 Random Forest

Random Forest (RF) is an ensemble method used in both classi�cation and prediction

and as such makes use of multiple classi�cation and regression trees that are further

integrated using some form of voting or weighting in order to provide a more accurate

prediction (see Section 4.1.3). It is widely used due to its inability to over�t, low prediction

misclassi�cation rates, and e�ciency with large datasets (Breiman 2001; Biau 2012; Zhou,

Fenton, and Neil 2014). Algorithmically it can be seen as an extension of the basic bagging

methodology which incorporates random feature sampling, with a single iteration of the

RF procedure generating a single tree r (X,Θ,F).

As a purely non-parametric method there are no underlying distribution assumptions

with the RF being able to handle both discrete and continuous data as both dependent

and independent variables, it is also able to map complex non-linear relationships. The

�nal forest is an aggregation of trees built throughout the training process and as such

there is little to no instability unlike the LMT above. Unfortunately, a major drawback

of the RF is a black box model and does not allow one to investigate the inner workings

of the model which disallows the interpretation of all but the output.

2.4.4 Support Vector Machine

Support Vector Machine (SVM) is a classi�cation algorithm (see Section 4.1.4) which is

often used due to its high accuracy with both large and small datasets, the algorithm

attempts to �nd the best separating hyperplane between two groups within a set of

descriptors (Bennett and Bredensteiner 2000). For classi�cation of data with more than

two groups the original problem is split into multiple binary problems which are then

classi�ed and compared, with the problem having the most votes per instance being

assigned as the classi�er (Meyer and Wien 2014).

In application the SVM is a highly tuneable algorithm with multiple parameters and

the ability to switch between both parametric and non-parametric implementations. Of
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the various parameters, those of most importance are regularisation, gamma, and kernel;

regularisation a�ects how sensitive the classi�cation is to incorrect classi�cations, gamma

a�ects the distance at which vectors are considered as members to the hyperplane, and

the kernel is a set of functions by which calculations are performed. SVM is very e�ective

when dealing with high dimensional data that has clearly de�ned classes, however, as it

does not directly calculate probabilities it requires additional computational overhead and

may not be as e�cient as other classi�ers (Pisner and Schnyer 2020).

2.4.5 Continuous Time Inhomogeneous Markov Models

A Markov model is a probabilistic graphical model used to represent the changes in a

system consisting of random processes (see Section 5.1.1). Probabilistic such that it

models the changes in a system consisting of random processes, and graphical in such a

way that it is possible to represent the observable set of outcomes on a digraph with nodes

made up of a countable set of states belonging to an overarching state space (Howard

2012). The Markov model by nature is able to model a wide variety of discrete and

continuous systems including those that are infeasible to classical models and is used in

many �elds of research �from �nancial to survival analysis with a major boon being that

one is able to graphically display the progress or path taken by the process being studied

(Boyd and Lau 1998). As per its name, the model assumes the Markov property, that

is to say that future states {Xt+1} depend only on the current state of the model {Xt}.
However, it should be noted that this adaptability comes at the cost of computational

e�ciency and the Markov assumption may not be compatible with certain systems.

2.5 Data Sources

This study relies on traditional methods of data collection and as such makes use of �nal

match data and live match transcriptions. Final match data generally consists of �nal

tallies for each of the statistics of interest and can be gathered either team-wise or player-

wise, with these statistics being made available shortly after the conclusion of a match

and are published in various forms and on multiple platforms. On the other hand live

match transcriptions are not easy to come by, this is primarily due to the cost prohibitive

nature of obtaining said data, to that e�ect Champion Data (2017) as the o�cial statistics

provider of the AFL provides all live statistics to the AFL and each club within it. These

statistics consist of all facets of play on a play-by-play basis, including but not limited to

players involved, type of transaction, location on �eld, and time of transaction.

It is, however, important to understand the overall landscape and current innovations

in sports data acquisition and how it pertains to the future of sports analytics. Both
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�nal match data and live match data are purely observational and as such lack many

contextual identi�ers such as location and locomotive metrics. Champion Data (2017) in

an e�ort to remedy this records the absolute quadrant in which a transaction takes place,

however, in doing so ignores important spatio-temporal data with regard to the remaining

players on the �eld.

A remedy to this is found in the deployment of Global Positioning System (GPS)

devices to athletes. These GPS devices have been shown to be e�ective in the monitoring

and classi�cation of human locomotion in both sporting and casual settings and could

open up novel avenues of player tracking and performance metric extraction (Aughey

2011).

2.6 Summary

Following on from the above literature review (summarised in Table 2.1) it is clear that

whilst there is an abundance of worked focused on ex-ante outcome prediction, there is

still yet work to be done in the realm of real-time outcome prediction.

Ex-ante prediction is implemented in a variety of sports regardless of tempo (the speed

at which the sport is played) and is a large part of the currently available literature.

Machine learning techniques such as RF and SVM were used to great success for result

prediction in both American Football and Athletics.

On the other end of the spectrum di�erent methods of regression and generalised

linear models were used to accurately predict match outcome, points scored, MOV, and

quantify the e�ect of home advantage, with results being comparable across both sports

and methods.

Due to the cost and di�culty of simultaneous data collection real-time prediction

is carried out on slower moving sports (when compared to Australian Rules Football)

and those where up to date data is easily available such as cricket and soccer. These

applications tend to use less computationally taxing methods such as multinomial linear

and logistic regression and rely heavily on pre-established methodologies such as the

Duckworth-Lewis resource matrix and existing match strategies.

As comprehensive as the current literature may seem there are some issues which need

to be addressed. Firstly, and most importantly, in a statistical and practical sense none of

the literature reviewed (bar Clarke (2005)) explicitly de�nes what the home team is. This

is further confounded by the fact that due to factors such as home advantage a match

between teams H and A is fundamentally di�erent to a match between teams A and H.
Secondly, methods which use objective data are often biased and whilst sometimes more

accurate, would require signi�cant extra resources to reliably implement in a real-time

scenario.
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Table 2.1: Literature Review Summary.

Study Sport / Activity
Features

Prediction Frequency Method
Static Dynamic

Akhtar and Scarf
(2012)

Cricket Home team, away team Lead of reference (home)
team, rating di�erence,
home factor, ground ef-
fect, home team wicket re-
sources, away team wicket
resources

Once at the start
of each state of
play (start of day,
at lunch, at tea)

Multinomial
logistic regression

Bailey (2005) Cricket Team, score average, class,
experience, score average
last 10 games, neutral
venue, average MOV

Runs scored, wickets
taken, remaining overs

At the end of each
over

Multiple lin-
ear regression,
and modi�ed
Duckworth-Lewis
method

Castellano,
Casamichana,
and Lago (2012)

Soccer Goals scored, total shots,
shots on target, shots
o� target, ball posses-
sion, number of o�-sides
committed, fouls received,
corners, total shots re-
ceived, shots on target re-
ceived, shots o� target re-
ceived, o�-sides received,
fouls committed, corners
against, yellow cards and
red cards

At the end of each
season

Discriminant
analysis

Clarke (1988) Cricket Overs remaining, wickets
remaining, runs scored

At the end of each
ball

Dynamic pro-
gramming

Clarke (2005) Australian
Rules
Football

Team ratings, margin of
victory, year, round, home
team, away team, ground

At the end of each
season

Linear regression

Constantinou
(2012)

Soccer Past performance, current
points, subjective points,
form, motivation, spirit,
fatigue, bookkeeper's odds

Once prior to the
beginning of each
match

Bayesian network

Crowder et
al. (2002)

Soccer Attack and defence ratings
for each team

At the start of
each match

AR(1) process

Delen, Cogdell,
and Kasap (2012)

American
Football
(college)

34 features categorised
as o�ence/defence, out-
come, team con�guration,
against the odds, ID
features

Once after model
creation

Arti�cial Neural
Networks (ANN),
Support Vector
Machine (SVM),
Classi�cation and
Regression Tree
(CART)

Goddard (2005) Soccer 25 features categorised as
home team attack and
away team defence goals
covariates, home team de-
fence away team attack
goals covariates, home and
away team results covari-
ates, other covariates

Once prior to the
beginning of each
match

Bivariate Pois-
son regression,
ordered logistic
regression

Harville (1980) American
Football

Home advantage, team
performance level, margin
of victory

Prior to each
match

Mixed linear
models, AR(1)
process

Leushuis (2018) Australian
Rules
Football

Margin of victory, home
team strength, away team
strength, home score, away
score

At the end of each
season

Gaussian state
space model,
Kalman �lter

Lopez and
Matthews (2014)

Basketball Team rating, o�ence, de-
fence, adjusted o�ence,
adjusted defence, tempo,
adjusted tempo, neutral
venue, point spread

Once prior to the
beginning of the
season

Logistic and lin-
ear regression

Manner (2016) Basketball Match outcome, betting
odds

Team strengths and rank-
ings

Before the start
of each game

GAR(1) with
Kalman �lter,
state space model
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Study Sport / Activity
Features

Prediction Frequency Method
Static Dynamic

Maszczyk et
al. (2014)

Athletics
(javelin)

Cross step with assuming
the throwing stance, spe-
ci�c power of the arms
and trunk, speci�c power
of the abdominal muscles,
grip power

Once after model
creation

Arti�cial Neural
Network (ANN),
linear regression

McCabe and Tre-
vathan (2008)

Australian
Rules
Foot-
ball,
Rugby,
Soccer

Points for, points against,
overall performance, home
team performance, away
team performance, pre-
vious game performance,
performance in past n
games, team ranking,
points for in previous n
games, points against in
previous n games, loca-
tion, player availability

Prior to each
match

Arti�cial Neural
Network (ANN),
Multi-layer per-
ceptron (MLP)

McHale and Mor-
ton (2011)

Tennis Date, player names, rank-
ings, match results, tour-
nament, location, playing
surface, tournament im-
portance

Once at the be-
ginning of each
tournament week
(with data being
updated using the
prior week's re-
sults)

Bradley-Terry
type model

Min et al. (2008) Soccer Team, location, reputa-
tion, skills, teamwork,
squad depth, stamina,
main formation, sub for-
mation, hard working,
aggression, pass length

Formation, overlapping,
fatigue, position, pressing,
morale, o�enders, �nish-
ing, defenders, activity
level, endurance, o�ensive
grade, defensive grade,
possessive grade, fatigue
modi�er

10 times per game
(at intervals of 9
minutes)

Bayesian network
and rule-based
reasoner

Oh, Keshri, and
Iyengar (2015)

Basketball O�ensive team lineup, de-
fensive team lineup, his-
toric player tracking and
play-by-play data, average
possession time

Propensity to take a shot,
ability to deter shot at-
tempt, tendency to pass,
shooting ability, defensive
ability, ability to draw a
shooting foul, foul prone-
ness, defensive rebound
ability, o�ensive rebound
ability

After every ball
touch

Graphical state
model

Pace and Carron
(1992)

Hockey Number of time zones
crossed, direction of
travel, distance traveled,
preparation/adjustment
time, time of season, game
number on the road trip,
home stand

At the end of each
season

Multiple linear
regression

Robertson, Back,
and Bartlett
(2015)

Australian
Rules
Football

Match result, performance
indicators (number of
kicks, marks, handballs,
etc.)

Once after model
creation

Logistic regres-
sion, decision
tree

Rue and Salvesen
(2000)

Soccer Match result, attacking
skill, defending skill, goals
scored, psychological team
e�ect

Markov chain
Monte Carlo,
Bayesian dy-
namic generalised
linear model,
Brownian motion

Stefani and
Clarke (1992)

Australian
Rules
Football

Rank, team, result, score,
home advantage

Once prior to the
beginning of each
season of play

Least squares
and 0.75 power
method
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Study Sport / Activity
Features

Prediction Frequency Method
Static Dynamic

�trumbelj and
Vra£ar (2012)

Basketball Home team, away team,
Markov transition matrix
for �ve states, e�ective
�eld goal percentage, free
throw factor, turnover ra-
tio, opponent's e�ective
�eld goal percentage, of-
fensive rebound ratio, op-
ponent's turnover ratio,
defensive rebound ratio,
opponent's free throw fac-
tor

Once prior to the
beginning of each
game

Homogenous
Markov model
and multino-
mial logistic row
models

Young et
al. (2019)

Australian
Rules
Football

Match aggregate perfor-
mance indicators (kicks,
handballs, possession ra-
tio, etc.), match outcome,
margin of victory

Random for-
est, segmented
regression



CHAPTER 3

Data Acquisition and Processing

The singular most important component to a statistical model, apart from the underlying

statistical framework is the data used therein. With the growing interest of both sporting

fans and weekend tipsters, online repositories began gaining traction as a primary source

of information as early as 1995; however, these repositories are often run and moder-

ated by sporting fans and community members with adjacent interests and may contain

anomalous or erroneous data (as often noted by disclaimers to that e�ect). In contrast to

the aforementioned, real-time match and player data may be gathered, though inherent

human and capital costs make this impractical for all but corporate entities and the spe-

cial interest groups that they serve. In short, access to real-time data is primarily limited

to AFL clubs through their provider Champion Data (Champion Data 2019), with costs

being mostly o�set through improvements gained in terms of scenario speci�c training

regiments, and empirically optimised pre and post-match strategic planing.

3.1 Data Sources

As stated above, a major factor in any mathematical model is the quality of data used for

both model creation and testing. With the issue of big data and its widespread adoption

within the sporting world, it is important that heavy scrutiny be placed upon establishing

the quality of data prior to its use. The two types of data utilised for this research can be

summarised as follows; static data (known prior to the match) which is widely accessible

and can be found on a myriad of online repositories, and dynamic data (gathered during

the match) which is restricted to AFL teams and the companies that gather said data.

Due to the proprietary nature of the aforementioned dynamic data, the �nal model has

been restricted to matches played by the Western Bulldogs during the 2015 and 2017 AFL

seasons.

At its core, the data collected is structured as follows; for a given match m between

home team i and away team j a set of feature data Ft = {S,Dt} is computed where

S = {Si, Sj} and Dt =
{
D(i,t), D(j,t)

}
are the sets of static and dynamic data at time t

21
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for teams i and j respectively.

3.1.1 Static Data

Static data refers to all data which for a given match is able to be collected prior to the

commencement of said match. Data of this type may include but are not limited to: match

location, stadium, o�cial team membership, team rosters, previous match results, and

player performance records. From this data it is possible to calculate relevant team-based

performance statistics and produce ex-ante outcome predictions using various statistical

methods.

The static data utilised in this study were acquired from various sources and fall into

one of the following four categories: match data, team rankings, membership numbers,

and home grounds. Match data were obtained from AFL Tables (AFL Tables 2017) and

contained all information pertinent to each match of the 2001�2017 AFL premiership

seasons (see Appendix A.1). This dataset contains but is not limited to home team, away

team, venue, season, round, and in cases where the match had already concluded, end of

match statistics and result (Tables 3.1 and 3.2).

Table 3.1: Summary of relevant raw categorical AFLTables data.
Statisitc Description

Season The season in which a match is played.
Round The round in which a match is played.
Date The date on which a match is played.
Local.Start.Time The time at which a match begins.
Venue The venue where a match is played.
Home.team The home team.
Away.team The away team.

Team rankings were calculated from the aforementioned match data for each season

and round similarly to the o�cial AFL league tables, whereby a team is awarded 4 points

for a win, 2 points for a draw, and 0 points for a loss, with ties being determined by

a team's goal ratio (the ratio of goals for to goals against) (Australian Football League

2015).

Membership numbers and home grounds were obtained from the team summaries

published in the 2001 to 2017 AFL annual reports (Australian Football League 2019) and

represent the total number of people who were club members during each of the 2001�2017

seasons (Table 3.3). The rationale behind the inclusion of membership numbers is that

they act as a reasonable approximation for crowd composition and as such play into two

major ideas considered by this study; �rstly, it is posited that crowd atmosphere directly

a�ects a team's morale and as such impacts on �eld performance (Jones and Harwood
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Table 3.2: Summary of relevant raw numeric AFLTables data.
Statisitc Description Mean Standard Deviation

Attendance Total stadium attendance. 23427 17740
X1Q1G Total number of goals scored by the home team at the end of the �rst quarter. 3.105 1.882
X1Q1B Total number of behinds scored by the home team at the end of the �rst quarter. 3.224 1.98
X1Q2G Total number of goals scored by the home team at the end of the second quarter. 6.295 2.87
X1Q2B Total number of behinds scored by the home team at the end of the second quarter. 6.464 2.78
X1Q3G Total number of goals scored by the home team at the end of the third quarter. 9.517 3.931
X1Q3B Total number of behinds scored by the home team at the end of the third quarter. 9.708 3.627
X1Q4G Total number of goals scored by the home team at the end of the fourth quarter. 12.805 4.998
X1Q4B Total number of behinds scored by the home team at the end of the fourth quarter. 12.937 4.38
Home.Score Total Total number of points scored by the home team. 89.767 31.561
X2Q1G Total number of goals scored by the away team at the end of the �rst quarter. 2.791 1.813
X2Q1B Total number of behinds scored by the away team at the end of the �rst quarter. 2.966 1.885
X2Q2G Total number of goals scored by the away team at the end of the second quarter. 5.669 2.751
X2Q2B Total number of behinds scored by the away team at the end of the second quarter. 5.957 2.688
X2Q3G Total number of goals scored by the away team at the end of the third quarter. 8.592 3.787
X2Q3B Total number of behinds scored by the away team at the end of the third quarter. 8.926 3.524
X2Q4G Total number of goals scored by the away team at the end of the fourth quarter. 11.519 4.747
X2Q4B Total number of behinds scored by the away team at the end of the fourth quarter. 11.879 4.223
Away.Score Total Total number of points scored by the away team. 80.990 29.967

2008; Roane et al. 2004); and secondly, it allows one to decide home and away allocations

in the event that neither team is playing at home or both teams are playing at a shared

home ground.

Table 3.3: AFL club membership numbers for the years 2001 - 2017.
Team 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Adelaide 42014 46620 47097 45642 43256 50138 50976 48720 46472 45545 44719 45105 46405 53026 52920 54307 56865

Brisbane Lions 18330 22288 24365 30221 28913 26459 21976 22737 24873 26779 20792 20762 24130 23247 25408 23286 21362

Carlton 27725 26385 33525 32095 33534 28756 35431 39360 42408 40480 43791 45800 50564 45911 47305 50130 50326

Collingwood 31455 32549 40455 41128 38612 38038 38587 42498 45972 57408 71271 72688 78427 72170 75037 74643 75879

Essendon 36227 35219 31970 33469 32734 32511 32759 41947 40412 40589 42559 47780 56173 55700 60818 57494 67768

Fremantle 23898 23775 25368 32780 34178 35666 43343 43366 39206 39854 42762 42918 43880 48000 51433 51889 51254

Geelong 25420 23756 24017 25021 30821 32290 30169 36850 37160 40326 39343 40000 42884 40666 44312 50571 54854

Gold Coast 0 0 0 0 0 0 0 0 0 0 11141 11204 12502 12806 13643 12854 11665

Greater Western Sydney 0 0 0 0 0 0 0 0 0 0 0 10241 12681 11696 13480 15312 20944

Hawthorn 30140 33319 31500 31255 29261 28003 31064 41436 52496 53978 56224 60841 63353 65494 72924 75351 75663

Melbourne 22940 20152 20555 20647 24805 24698 28077 32600 31506 33358 36937 35459 33177 33419 35953 39146 42233

North Melbourne 21409 20831 21403 23420 24154 24624 22366 29516 28340 26953 28761 33423 34607 34716 41012 45014 40343

Port Adelaide 33296 36229 35425 36340 36834 35648 34073 34185 30605 29092 32581 35543 39838 46549 54057 53743 52129

Richmond 26501 27251 25101 27133 28029 29406 30044 30820 36981 35960 40184 53027 60321 63486 70809 72278 72669

St Kilda 22248 17696 23626 30534 32043 32327 30394 30063 31906 39021 39276 35440 32707 29332 32746 38009 42052

Sydney 28022 27755 21270 25010 24955 30382 28764 26721 26269 28671 27106 29873 36358 38000 48836 56523 58838

West Coast 38649 34880 36234 40792 42406 44138 45949 44863 43927 44160 43216 57377 58501 51547 60221 65188 65064

Western Bulldogs 19085 20838 21260 19295 21974 26042 28725 28306 28215 32077 29710 30007 30209 26622 35222 39459 47653

Additionally, a comprehensive table of home grounds were collated. This table contains

both current and past; major and minor AFL stadia. The need for this is thrice-fold,

�rstly, to monitor and account for stadium name changes, secondly, to ensure home and

away status is correctly assigned for each match, and thirdly, to allow for cross-referencing

and data merging between the raw data sets. The AFL since its inception has always

been Victoria-centric (Blainey 2010; Pennings 2012) and as such a majority of both teams

and stadia are either located in or based out of Victoria, with 51% of stadia and 56% of

teams calling Victoria home (Figure 3.1).
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Figure 3.1: AFL Stadia and Team Distributions.

This bias is often the subject of debate (Clarke 2005; Ryall and Bedford 2011; Watson

2013) as it a�ects many facets of the game, both on and o� the �eld. The most common

argument (Du�eld and Fowler 2017; Fowler, Du�eld, and Vaile 2014; Pace and Carron

1992; Ryall 2011) is that Victorian teams are subject to far more travel, placing greater

physical strain on the players who in turn have increased fatigue and less pre-match

training time when compared to their non-Victorian counterparts (Stefani and Clarke

1992), potentially having a negative impact on their match performance. However, these

assumptions are spurious in nature and continuously fuelled by fan and media speculation.

These claims have been refuted in previous years with researchers �nding that interstate

travel has minimal e�ect on both sleep quality and performance in Australian Football at

the elite level (Richmond et al. 2007).

3.1.2 Dynamic Data

Dynamic data refers to all data which for a given match is collected whilst the match is

in progress. Data of this type, within the scope of the Australian Rules Football may

include but are not limited to: number of kicks, number of tackles, number of fouls, and

number of goals. From this data it is possible to quantify overall team performance and
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momentum, and as per this research develop near real-time predictive models for match

outcome.

The use of dynamic data, no matter how advantageous poses many practical challenges

that need to be addressed. Prime amongst these are data acquisition; as a vast majority

of data is manually captured an e�cient and well-trained sta� are required, thus making

the capture and processing of data costly. Secondly, as data is manually captured and

validated there is the question of data of data accuracy and validity. Not many studies

have broached this topic by quantifying the accuracy of data captures, however, Robert-

son, Gupta, and McIntosh (2016) performed a reliability assessment of Champion Data's

data accuracy during a round of the 2014 AFL premiership season �nding high agreement

(ICC ∈ [0.947, 1]) between the data gathered by Champion Data and that which was

manually gathered through video footage by the author.

The dynamic data utilised in this study were acquired from Champion Data (Cham-

pion Data 2017) and contained a comprehensive account of all on-�eld events such as

kicks or goals (henceforth known as transactions) complete with timestamps, player, and

team data. Each transaction constitutes an epoch for data collection purposes and addi-

tionally conditions the model as to when new forecasts may be produced. For example, if

only transactions of a single type are observed throughout a match, and said transactions

occur at two distinct points in time, all else being equal, it is not possible to produce an

intermittent forecast as the interstitial time frames are for all intents and purposes unob-

served and therefore `unknown'. The data contained an exhaustive list of transactions as

outlined in Appendix B.2 and as such certain considerations were levied with regard to

the subset of data used for this study.

The data contained 172 unique transactions (a total of 339 when coded in reference to

the team responsible for said transaction) over a period of 45 matches. On average a single

match lasted µ = 121.406 (σ = 5.222) minutes and consisted of µ = 1865.4 (σ = 80.192)

transactions. Furthermore, the score pro�les for both home and away teams are as follows;

for an average match the home team scores µ = 94.578 (σ = 26.571) points; whereas the

away team scores µ = 81.133 (σ = 21.130) points (Figure 3.2).

3.2 Data Processing

3.2.1 Static Data

Static data collected from AFL Tables (2017) were truncated to include information per-

taining to all 3289 matches played during the 2001 � 2017 seasons. This data was

pre-processed such that the home and away team allocations provide an unbiased deriva-

tion of the home and away team assignments for each match (Stefani and Clarke 1992).
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Figure 3.2: Raw Data Visualisation.

Guided by the research of Jones and Harwood (2008) and Ryall (2011) this methodology

removes both inter and intra-club biases introduced through economic and political agen-

das, and instead relies on stadium conditions (location and crowd composition) which

have been shown to directly a�ect player performance.

As such, for any pairing of teams (i, j) ∈ (H,A) in a given match m, the home and

away teams are de�ned as follows; if either team i or j are playing at their home ground

then assign the home team accordingly, however, if both teams i and j share the same

home ground or are both playing an away game then assign the home team to that

team which has the highest o�cial membership number. The rationale behind this is

that whilst crowd attendance numbers are available there is no real way to determine

crowd composition, to that e�ect membership numbers are used as a proxy for crowd

proportions and as a metric to decide the home team when a match is played at a neutral

venue. This revised team assignment yields a home team win probability of 0.607 which

whilst slightly higher than average holds with the paradigm of home advantage outlined by

Stefani and Clarke (1992) and Clarke (2005). Additional statistics relating to team form

and performance (Margin, Head2Head, PastHome, and PastAway) were then calculated

(Equations 3.1�3.4) such that for a given match m between home and away teams i and

j, the result R(i,j,m) = 1 if team H wins and R(i,j,m) = 0 if team H loses.

� Margin: The score margin by which the home team either won or lost the match.

Home.score− Away.score (3.1)
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� Head2Head: The percentage of games for which the home team has won against

the away team (over the past k games), prior to match m.∑m−1
g=m−k (Ri,j,g)

k
(3.2)

� PastHome: The percentage of games for which the home team has won against

any opponent (over the past l games), prior to match m, where Ri,g = 1 if team i

won its last gth match and Ri,g = 0 if team i lost its last gth match.∑m−1
g=m−l (Ri,g)

l
(3.3)

� PastAway: The percentage of games for which the away team has won against any

opponent (over the past l games), prior to match m, where Rj,g = 1 if team j won

its last gth match and Rj,g = 0 if team j lost its last gth match.∑m−1
g=m−l (Rj,g)

l
(3.4)

3.2.2 Dynamic Data

Dynamic data (see Appendix B.1 for a complete summary) collected from Champion Data

(2017) were supplied in two formats: the 2015 data contained within multiple Extensible

Markup Language (XML) �les, and the 2017 data contained within a single comma-

separated value (CSV) �le. This data was extracted from both XML and CSV formats

using processing routines (see Appendices C.1 and C.2) written in R (R Core Team 2018).

Due to the di�erence in format across the two �le types additional steps were needed to

standardise the data and correct for any parsing inconsistencies, most notably the 2017

data included a far more granular set of transactions which had to be recoded in order

to conform with the broader transaction de�nitions contained within the 2015 data. In

addition, all duplicate epochs (an epoch such that the possessive team, player, transaction,

and time are the same) were removed, with the �nal set of extracted data having a layout

as per �gure 3.3 an explanation of which can be found in Appendix B.3.

Due to the unpredictable structure of AFL match durations, the time code data (quar-

ter and quarter time in seconds) were restructured as a single vector representing the

overall time in minutes for each match. Additionally, in instances such that multiple yet

di�erent transactions occur in the same epoch (for example, the start of a match and a

centre bounce), an o�set was added to each relevant time code by ∆ = 0.0001δ, where

δ is incremented by 1 for each o�ending epoch. This alteration to the data is necessary
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Figure 3.3: Structure of extracted dynamic data.

as the utilised Markov model (Chapter 5) is both state based and temporally dependent,

that is to say, for a transaction to be observed at time t the preceding transaction at time

t− 1 must be known, with a single epoch unable to contain more than one transaction.

3.3 Feature Selection

As an aside and to further facilitate the discussion on the various features extracted from

the data described in sections 3.3.1 and 3.3.2 a brief overview of the expected output of

each class of model is warranted. The aim of each static model is the prediction of match

outcomes probabilities with respect to the home team, whilst the aim of the dynamic

model is to forecast match outcomes with respect to the home team after observing a

portion of a match and allowing for various metrics of team performance and momentum

in addition to prior team and venue knowledge.

3.3.1 Static Features

In order to model and predict match outcome probabilities across a variety of teams,

stadia, and match conditions, a robust set of static features need to be selected. These

features therefore need to both span and accurately capture key pre-match criteria. The

features described below therefore show a subset of those available which, after a thorough
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examination of the literature and talks with industry personnel were deemed to most

signi�cantly in�uence match outcome (Robertson 2018, Interview with Western Bulldogs

sta�. April 24; Wilson 2020, Interview with Champion Data sta�. February 14).

The season (represented as a year) and round in which a match is played (represented

as an integer value associated with the relative week in which a match is played) are both

integral in understanding a given matches place in time. Primarily, season and round,

when used in conjunction replace the need for date coded data and as such facilitate the

grouping of matches with respect to their relative seasonal stage as opposed to the date

on which a match is played. The reason for this is twofold: �rstly, due to logistical and

�nancial reasons it is highly infeasible for all teams to play their respective matches on the

same day, and secondly, there is an increasing correlation between a team's rank at the

end of a given round and that of said team's rank at the end of that rounds corresponding

season (Robertson and Joyce 2015).

The �nals indicator (represented as a binary indicator with 0 indicating the home and

away season and 1 indicating the �nals series) when used in conjunction with season and

round provides insight into potential strategies that may be employed by either team for

a given match during a particular round. This becomes more apparent when utilised in

tandem with the custom measures of team performance outlined in equations 3.2�3.4

as well as team rankings, and can potentially identify episodes of `tanking' or intentional

poor performance of a team when they are guaranteed a place in the �nals series (Tuck

and Whitten 2013).

The venue at which a match is played is primarily used to determine home and away

team assignments (with home grounds and membership numbers as published by the AFL

(Australian Football League 2019)) and augments the idea of home advantage by identi-

fying venue bias with relation to crowd composition, travel distance, and team preference

(Ryall 2011; Clarke 2005; Carbone, Corke, and Moisiadis 2016; Lenten 2011). Addition-

ally, the ranks of both home and away teams (stylised as HomeRank and AwayRank

respectively) are used in lieu of team names and provide an adequate facsimile of both a

team's end of round ranking and relative strength (provided no signi�cant alteration to a

team's composition due to injury or strategy).

Finally, the home team's win percentage over the past k matches (stylised as Head2Head),

the home team's win percentage over the past l matches (stylised as PastHome), and the

away team's win percentage over the past l matches (stylised as PastAway) were inspired

by those used in NFL and baseball, and are used as signi�cant indicators of team form

and performance (Delen, Cogdell, and Kasap 2012; Leung and Joseph 2014). These may

also be used in evaluating a team's psychology and potential strategies prior to a match

(Ryall 2011; Jones, Mellalieu, and James 2004; Jones and Harwood 2008; Taylor and

Demick 1994).
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3.3.2 Dynamic Features

As with the static features discussed previously, it is of even greater importance to capture

only dynamic features which provide the most detailed overview of a team's performance

and momentum during a match. The raw data provided by Champion Data (2017)

contains well over 150 transactions per team, with each transaction falling into one of the

following categories; possession, o�ence, defence, accuracy, scoring, or play reset.

To gather so much data so quickly Champion Data have developed a support sys-

tem which operates simultaneously at both the stadium and Champion Data's own `The

Bunker'. From within the stadium there are four main roles; match caller, matchups

caller, support/IT, and interchange operator, and within `The Bunker' there are �ve

main roles; back caller, graphical operator, keyboarder, pressure capturer, and pressure

caller. The match caller observes the match via binoculars and reports every transaction

as it occurs to the keyboarder back at `The Bunker', all while being assisted by their own

support/IT person who listens to the umpire's call and assists the media. The matchups

caller observes and records the position of persons relevant to each transaction, and the

interchange operator watches for and records player interchanges.

The keyboarder inputs all the basic transaction statistics whilst the back caller double

checks the calls made against the ground caller to identify any possible miscalls. The

graphical operator records and maps the exact on-�eld position of players and transac-

tions. Finally, the pressure capturer and pressure caller provide annotated insights into

the other facets of each transaction, for example, pressure on disposal, what foot was used

to kick a ball, etc. (Champion Data 2017).

Due to the large number of available features and in order to not oversaturate the

model, various individual transactions have been combined to form descriptive transac-

tion groupings (Table 3.4). These groups will often combine transactions from multiple

categories provided that a synergy exists between them. For example, the time (in sec-

onds) at which a transaction occurs combines all play reset information (period start,

period end, and centre bounce) whilst also integrating the quarter in which a transaction

takes place.

The most thorough method for feature selection would be to train and evaluate models

for every possible feature combination and compare various metrics of model �t and

performance. Due to the exhaustive set of potential dynamic features (see Appendix

B.1), a stepwise additive approach was adopted for model building whereby features were

added in line with their prevalence in the literature as well as after consultation with

industry representatives.

The preselected list of transactions described in table 3.4 were selected in line with

current studies and constitute a practically acceptable subset of the most signi�cant trans-
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Table 3.4: List of Dynamic Transactions
CODE DESCRIPTION Notes Classi�cation

BEHI & RUSHN & RUSHO & RUSHP Behind and Rushed Behind 1 Point - Merge to Behind Scoring

BUCL & TICL & CBCL
Ball Up, Throw In, and
Centre Bounce Clearance Merge to Clearance Possession

BUHO & BUHSK & BUHSD & BUSM & BUHAD &
TMBUH & TMBSD & TMBUS & TMBUA & CBHO &
CBHSK & CBHSD & CBSM & CBHAD & TIHO &
TIHSK & TIHSD & TISM & TIHAD & TMTIH &
TMTSD & TMTIS & TMTIA

Ball Up, Centre Bounce,
and Throw In Hitout Merge to Hitout Possession

CEBO Centre Bounce Play Reset
FRAGN & FRAGO & FRAGP & FRABB Free Against Merge to Frag Defensive
FRFO & FRFBB & FRFNO & FRFOB Free For O�ensive
GOAL Goal 6 Points Scoring
HBEF Handball E�ective O�ensive
HBIN Handball Ine�ective O�ensive
HBRE Handball Received O�ensive
IN50 Inside 50 Possession
KILO & KILA & KISH & KISE & KBLO & KBSH &
KKBW & KKGKE & KKLO & KKLA & KKSH Kick In and Kick E�ective Merge to Kicks O�ensive

KKIN Kick Ine�ective
MACOO & MACOP & MAUNO & MAUNP Mark Contested and Uncontested Merge to Marks O�ensive
PEREN End Of Period End of Quarter Play Reset
PERST Start Of Period Start of Quarter Play Reset
RE50 Rebound 50m O�ensive
SPOI & SPOIO & SPOIP & SPOIG Spoil Defensive
TACKN & TACKO & TACKP Tackle Defensive

Each variable described in the table above (excluding CEBO, PEREN, and PERST)
are recorded individually for each team equating to 16× 2 + 3 = 35 transaction events
which have been preselected for their signi�cance as descriptors with relevance to a
winning team.

actions with relation to win probability (Robertson, Back, and Bartlett 2015; Hughes and

Bartlett 2002; Young et al. 2019). This relationship can be clearly seen in �gure 3.4

which is taken from match 8 of the 2017 AFL premiership season in which the West

Coast Eagles played the Western Bulldogs at home. The most rudimentary performance

metric, the score margin (Equation 3.1) acts as a generalised facsimile for all facets of

play, incorporating both team's o�ensive and defensive performance.

A team's ability to score a goal or behind provide a far deeper understanding of an at-

tacking team's momentum in relation to the defending team's defence. To score a behind,

a team needs to display greater possession of the ball (particularly within their opponent's

inside 50) as well as superior o�ence and e�cient use of the ball (O'Shaughnessy 2006).

Possession is the term used to describe seizure and control of the ball by a team and

is generally held to be a good identi�er of strategic or strength imbalances between the

teams. Hence, the team who possesses the ball longer will have a dominating �eld presence

and be far more likely to be in a winning position (Casal et al. 2019).

Of the numerous possession metrics available, this study utilises 3 clearance, 23 hitout,

and inside 50 metrics which are further consolidated and recoded as their parent metric

type. A clearance is the clearing of the ball out of a stoppage situation such that a partic-

ular team retains possession at the continuance of play; a hitout is the act of knocking the
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ball out of the ruck contest following a stoppage with clear control, regardless of which

side wins the following contest at ground level; and an inside 50 is the act of running or

passing the ball inside the 50m arc.

Figure 3.4: Snapshot of Iterative Transaction Di�erences.

The next set of metrics explored are those which may be classi�ed as o�ensive, the

model makes use of 4 free for, handball e�ective, handball ine�ective, handball received,

12 kick, 4 mark, and rebound 50 metrics. Transactions classi�ed as free for represent

instances where a possession of the ball given to a player as a result of an infringement

by an opposition player. Handball e�ective is when a handball to a teammate that hits

the intended target, whereas handball ine�ective is a handball which is not advantageous

to the team, but does not directly turn the ball over to the opposition, and a handball

received is as uncontested possession that is the result of a teammate's handball.

Similar to the handball metrics the 12 kick metrics used are variations along the lines

of e�ective, ine�ective, and received. A mark is a clean catch of the ball after it has

been kicked by another player (either by a teammate or by the opposition), before it has

touched the ground, or been touched by any other player, and after it has travelled a

minimum of 15 metres. A rebound 50 is the act of moving the ball from a team's own

defensive zone into the mid�eld.

Finally, the defensive metrics used by the model are 4 free against, 4 spoil, and 3

tackle metrics. A free against is when an infringement occurs resulting in the opposition

receiving a free kick from the umpires. A spoil is a punch or slap of the ball which hinders

an opposition player from taking a mark. A tackle is the grabbing of an opposition player
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in possession of the ball, in order to impede their progress or to force them to dispose of

the ball quickly.

Finally, the transactions grouped together as `kick' are a signi�cant component of

momentum and constitute an array of possession, o�ence, and accuracy metrics. For

example, a kick long advantage (stylised as KILA but grouped as KICK) is a kick of more

than 40 meters which ends in possession by a team-mate and contributes to a team's

possession and accuracy.

3.4 Summary

This chapter introduced the data used in this research. Data was gathered primarily from

AFL Tables (2017) and Champion Data (2017) and contained well over 100 variables

and 339 match time transactions. Each match time transaction or on-�eld event occurs

within an epoch constituting a period of observed on-�eld play. These data were initially

reduced to 59 variables including 35 match time transactions, after which through the

elimination of confounding variables and clustering for similar transaction types resulted

in 14 variables including 4 match type transactions (A.BEHI, H.BEHI, A.KICK, and

B.KICK).

The data from AFL Tables (2017) were collected in CSV format whilst the data from

Champion Data (2017) were collected in both XML (2015 season) and CSV (2017 season)

formats. Signi�cant processing and cleaning were required in order to collate the data

into a singular dataset from which all analysis was conducted.

It is also of great importance to note that the data obtained from Champion Data

(2017) were captured during actual league matches and as such any results can be seen

as practically viable as opposed to simulatory. However, there is a drawback as unlike

simulated data which can be homogeneously created and replicated, the observed data is

inhomogeneous and as such whatever models are employed must be able to handle data

of irregular time series.

Tables 3.5 and 3.6 contain summaries of all static and dynamic variables contained

within the �nal dataset.
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Table 3.5: List of Static Variables

Variable Type Description

Result Discrete Result indicator

Season Discrete Season in which match is played

Round Discrete Round in which match is played

Finals Discrete
Indicator as to whether the match
is part of the home and away or
�nals series team

Venue Discrete Match venue

HomeRank Discrete Current ladder rank for the home team

AwayRank Discrete Current ladder rank for the away team

Head2Head Continuous
Home team's win percentage over
past m games against away team

PastHome Continuous Win percentage over past n games

PastAway Continuous Win percentage over past n games

Table 3.6: List of Dynamic Variables at Each Epoch
Variable Merged Transactions Type Description

A.BEHI
BEHI, RUSHN, RUSHO, & RUSHP

Continuous Number of behinds scored by the away team
H.BEHI Continuous Number of behinds scored by the home team
A.KICK KIKIN, KKEF, KILO, KILA, KISH, KISE,

KBLO, KBSH, KKBW, KKGKE, KKLO,
KKLA, & KKSH

Continuous Number of kicks executed by the away team
H.KICK Continuous Number of kicks executed by the home team



CHAPTER 4

Static Prediction Models

The main objective of this thesis is to devise a framework for near real-time AFL match

outcome prediction which is predicated on the use of both static and dynamic match

data. However, as current literature on the subject is rather lacking, it is advantageous

to develop a deep understanding of ex-ante methodologies and in turn contribute novel

applications which shall form a cornerstone of this thesis' true objective. As such, this

chapter presents the following (Figure 4.1); a modelling approach for the prediction of

ex-ante match outcomes; a brief summary and formulation of the models used within; the

results of training and optimising said models, and their applications.

Figure 4.1: Chapter 4 overview.

35
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4.1 Static Models

Mathematically a predictive model for the outcome of a match between team H (home)

and team A (away) can be de�ned as C (F ) = f
(
S, SH, SA

)
where

{
S, SH, SA

}
=

(S1, S2, . . . , Sa, S
H
1 , S

H
2 , . . . , S

H
b , S

A
1 , S

A
2 , . . . , S

A
b ) are the values of the a match speci�c

static features and 2b team speci�c static features, and C is a representation of the

predicted outcome probability for a match with respect to the home team prior to the

game's start.

C (F ) = Pr (Draw,Loss,Win) (4.1)

with f (·) being an unknown function to be estimated using the statistical methods out-

lined in subsections 4.1.1�4.1.4, and the static components
{
S, SH, SA

}
of feature set F

as described in Chapter 3 subsection 3.3.1

4.1.1 Multinomial Logistic Regression

Multinomial Logistic Regression (MLogR) is a generalised linear model commonly used in

both multi-class classi�cation and probability prediction problems and has many bene�ts

such as robustness when dealing with large feature sets (be they categorical, ordinal,

or numerical), and the ability to incorporate dynamic (non-stationary) features (Penny

and Roberts 1999). It is an extension of the logistic regression model which provides

classi�cation and probability prediction results for bimodal data (Hosmer Jr, Lemeshow,

and Sturdivant 2013), and takes the general form for each level j of Y

Cj (F ) = Pr (Y = j | F ) =
e
∑n
i=0 βi,jFi

1 + e
∑J−1
`=1

∑n
i=0 βi,`Fi

(4.2)

for j = 1, 2, . . . , J − 1 and

CJ (F ) = Pr (Y = J | F ) =
1

1 + e
∑J−1
`=1

∑n
i=0 βi,`Fi

(4.3)

for the last level J , which under a logit transformation becomes

ln

[
Cj (F )

CJ (F )

]
= β0,j + β1,jF1 + . . .+ βn,jFn (4.4)

whereafter predictions are derived through the setting of a threshold value which aims to

maximise the classi�cation rate (Equation 4.5). This value serves as a cut-o� point for

assigning classi�cations to the probabilistic output of the model and is calculated as the

point of intersection between the model's sensitivity (Pr (ŷi = 1 | yi = 1)) and speci�city

(Pr (ŷi = 0 | yi = 0)).
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cv = max
(

Pr (ŷi = 1 | yi = 1)
⋂

Pr (ŷi = 0 | yi = 0)
)

(4.5)

Assuming the above holds for the MLogR, the process of �tting the model is as follows

(Hosmer Jr, Lemeshow, and Sturdivant 2013; Neath and Johnson 2010); with observations

assumed to be independent, the likelihood function is de�ned as

l (β) =
n∏
i=1

J−1∏
j=1

(
Cj (F )

CJ (F )

)Yi,j
CJ (F )ni (4.6)

with its logit transform becoming

ln (l (β)) =
n∑
i=1

J−1∑
j=1

(
Yi,j

K∑
k=0

βk,jFi,k

)
− ni ln

(
1 +

J−1∑
j=1

e
∑K
k=0 βk,jFi,k

)
(4.7)

from this equation it is possible to derive (J − 1)(K + 1) individual likelihood equations,

one for each parameter βk,j. These are then solved by taking the second order partial

derivatives of the log-likelihood function

∂2l (β)

∂βk,j∂βk′,j′
= −

n∑
i=1

niFi,kCj (F ) (1− Cj (F ))Fi,k′ , j′ = j (4.8)

and
∂2l (β)

∂βk,j∂βk′,j′
=

n∑
i=1

niFi,kCj (F )Cj′ (F )Fi,k′ , j′ 6= j (4.9)

4.1.2 Logistic Model Tree

An LMT is simply a decision tree formed using the LogitBoost algorithm (Friedman,

Hastie, Tibshirani, et al. 2000) with logistic regression (Hosmer Jr, Lemeshow, and Stur-

divant 2013) at each node. The C4.5 splitting criterion is used to improve the purity of

each node, with nodes containing fewer than 15 cases becoming terminal nodes. Algo-

rithmically the LogitBoost performs a forward stage-wise �tting; such that during each

iteration, a variable zij is computed as to capture the error of the model for its respective

training data (Algorithm 1).

Mathematically a LMT is a tree containing a set of non-terminal nodes N and a set

of terminal nodes T such that S ∈ {N,T} and spanned by all data features. The tree is

therefore split such that

S =
⋃
t∈T

St, St

⋂
St′ = ∅ for t 6= t′
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Algorithm 1 LogitBoost algorithm (J classes) (Friedman, Hastie, Tibshirani, et al. 2000).
Input: Weights wij = 1

n
, i = {1, . . . , n}, j = {1, . . . , J}, Hj (x) = 0 and pj (x) = 1

J
∀j,

1: for m = {1, . . . ,M};
a: for j = {1, . . . , J};
b: Compute working responses and weights for the jth class

zij =
y∗ij − pj (xi)

pj (xi) (1− pj (xi))

wij = pj (xi) (1− pj (xi))

c: Fit hmj (x) by a weighted least-squares regression of zij to xi with weights wij
2: Set hmj (x)← J−1

J

(
hmj (x)− 1

J

∑J
k=1 hmk (x)

)
, Hj (x)← Hj (x) + hmj (x);

3: Update pj (x) = eHj(x)∑J
k=1 e

Hk(x)
;

4: return the classi�er argmaxj Hj (x)
Output: A LogitBoost decision tree

As per algorithm 1, each leaf t ∈ T has a logistic regression function hj rather than a

class label. the logistic regression function hj incorporates a subset F ′ ∈ F of all features

in the data, and each class probability calculated as

Pr (G = j | X = x) =
eHj(x)∑J
k=1 e

Hk(x)
(4.10)

where

Hj (x) = αj0 +
m∑
k=1

αjF ′k
F ′k (4.11)

however, if αjF ′k = 0 for F ′k ∈ F

hj (x) =
∑
t∈T

ht (x) I (x ∈ St) (4.12)

where

I (x ∈ St) =

{
1 if (x ∈ St)

0 else
(4.13)

4.1.3 Random Forest

Mathematically the process of building a RF involves the construction of a predictor

C (F ) = {rn (X,Θ,Fn) ,m > 1} containing a set of randomised classi�cation and regres-

sion trees such that X is the feature set, Θ = {Θ1,Θ2, . . . ,Θm} is a randomised response

vector consisting of i.i.d. outputs of a response variable Θ, and Fn is the training set (Biau
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2012). This ensemble hence yields an expectation of

rn(X,Fn) = EΘ [rn (X,Θ,Fn)] (4.14)

Algorithm 2 Random tree algorithm (Zhou 2012).
Input: Feature set F = {F, y} = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, Feature subset size K.
1: N ← create a tree node based on F;
2: if all instances in the same class then return N
3: F ← the set of features that can be split further;
4: if F is empty then return N
5: F̂ select K features from F randomly;
6: N.f the feature which has the best split point in F̂ ;
7: N.p the best split point on N.f ;
8: Ft subset of F with values on N.f smaller than N.p;
9: Fu subset of F with values on N.f no smaller than N.p;
10: Nt ← call the process with parameters (Ft, K);
11: Nu call the process with parameters (Fu, K);
12: return N
Output: A random decision tree

where EΘ is the expectation generated through majority voting, conditionally on X

and the training set Fn.

Figure 4.2: Sample random forest structure (Zhou 2012).
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Each randomised tree (Figure 4.2) yields the average over all sampled response vectors

Yi for which the corresponding feature set Xi fall within the same random partition

An (X,Θ) containing X,

rn (X,Θ) =

∑n
i=1 Yi1[Xi∈An(X,Θ)]∑n
i=1 1[Xi∈An(X,Θ)]

1En(X,Θ), (4.15)

where E (X,Θ) is de�ned as

En (X,Θ) =

[
n∑
i=1

1[Xi∈An(X,Θ)] 6= 0

]
. (4.16)

with the �nal expectation taking the form of

rn(X) = EΘ [rn (X,Θ)] =
1

n

n∑
i=1

[∑n
i=1 Yi1[Xi∈An(X,Θ)]∑n
i=1 1[Xi∈An(X,Θ)]

1En(X,Θ)

]
. (4.17)

4.1.4 Support Vector Machine

Support Vector Machine (SVM) is a non-probabilistic classi�cation model which is often

used due to its high accuracy with both large and small datasets. This method attempts

to �nd the best separating vector (or hyperplane) between two groups (or classes) within

a set of descriptors (Bennett and Bredensteiner 2000) However, for problems with more

than two classes, such as the one presented in this research, the original problem is split

into multiple pairwise binary problems (Prakash et al. 2012) which are then classi�ed and

compared, with the problem having the most votes per instance being assigned as the

predicted classi�er (Meyer and Wien 2014).

For a given set of M training points (xi, yi), i = {1, 2, . . . ,M}, with xi and yi being
the input vector and class of interest respectively. Where yi takes the value of 1 for a

positive case and −1 for a negative case. In order to calculate the desired hyperplane u

is required such that

u = ~w.x− b (4.18)

where ~w is a normal vector to the separating hyperplane, x is the input vector, and the

separating hyperplane is where u = 0. From equation 4.18 the parallel hyperplanes can

be derived when u = ±1, with the margin m de�ned as

m =
1

‖w‖2 (4.19)

In order to maximise the margin in equation 4.19 various optimisation techniques may be

used to derive the support vectors, thereafter the normal vector ~w and threshold b can be
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calculated as

~w =
N∑
i=1

yiαi~xi, b = ~w.~xi − yk ∀αk > 0 (4.20)

where α is known as the Lagrange Multiplier, and the output of the SVM is computed as

the sum of Lagrangian Multipliers

u =
N∑
j=1

yjαjK (~xj, ~x)− b (4.21)

Within this research, the datasets which are utilised are non-linear, with a "kernel

trick" being applied in order to map the input space into the feature space, thus creating

a hyperplane in the feature space. The kernel is therefore a function which allows such

a mapping, due to the structure of the feature data implemented in this model a Radial

Basis Function (RBF) is used as the kernel and is given by equation 4.22.

K (x, xi) = e−( 1
σ2
|x−xi|2) (4.22)

4.1.5 Model Settings in R

All analyses were conducted on a computer with a 64-bit Windows operating system,

Intel® Core� i7-7700K processor, and 32GB RAM. Results were obtained using routines

and algorithms (see Appendix D) written in the statistical computing package R (R

Core Team 2018) which makes use of the packages listed in table 4.1. All models were

Table 4.1: Static model packages.
Method Package Author

MLogR nnet Venables and Ripley (2002)
LMT RWeka Hornik, Buchta, and Zeileis (2009)
RF randomForest Liaw and Wiener (2002)
SVM e1071 Meyer and Wien (2014)

formulated with the response variable set to match outcome (Draw, Loss, Win) and

explanatory variables set to those outlined in chapter 3 section 3.3.1, a verbose output of

said model function can be seen in equation 4.23.

Result ∼ V enue+ Finals+Head2Head+ PastHome+ PastAway

+HomeRank + AwayRank + SeasonF +RoundF
(4.23)

The MLogR model; being the simplest computationally; was run in a standard con�gu-

ration. However, for each model iteration a customised threshold value (known here as
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a cut-o� value or cv) was calculated in order to most e�ciently parse the probabilistic

output of the model to an outcome result.

The LMT model; grows trees according to the LogitBoost algorithm (Algorithm 1),

with the optimal number of logistic regression iterations at each node determined using

5-fold cross validation. With splits containing additional nodes added if and only if the

new node contains; greater than 15 cases, at least two subsets of two cases each, and

attains an information gain score above a certain threshold.

The RF model; is a classi�cation and regression tree method without pruning, and as

such was con�gured to grow a forest of 500 trees. With feature sampling at each node set

to 3 random features with replacement. Additionally Variable importance was calculated

in terms of both Gini index and node purity (Figure 4.3). From this it is possible to see

that home rank, away rank, venue, and round are most important in terms of both Gini

index and node purity with only slight variations in their relative position.

Figure 4.3: Random forest variable importance.

The SVM model; having the most con�gurable set-up was initialised with a radial

kernel (Equation 4.22), and iteratively tuned for cost and gamma hyperparameters in the

ranges of [1, 10] and [10−6, 1] respectively. In terms of the practical implications tuning the

values of cost and gamma; cost dictates how much the model is penalised for similar data

points within groups, and gamma parametrises the radial kernel's Gaussian distribution

in terms of standard deviation.
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4.1.5.1 Model Tuning

In order to get optimal results from the substantial static dataset, each model was run

234 times; 13 times for each data span combination, 6 times for each potential value of

match span {k | k ∈ Z, 5 ≤ k ≤ 10}, and 3 times for each possible value of match span

{l | l ∈ Z, 3 ≤ k ≤ 5}; where k represents the number of past games considered when

looking at a pair of team's head-to-head match history and l represents the number

of past games when looking at a team's overall match history. The data span was of

particular interest in this research as with the ever growing supply of static data, it is

important to know at what point each model reaches diminishing returns in terms of

accuracy as a result of too much or too few training data. As such starting at the 2001

and ending at the 2014 AFL premiership seasons, the included training data started at a

full thirteen-year span (2001¯2014) and was pruned by a year at each iteration down to

a two-year span (2013− 2014), and then tested on the 2015 AFL premiership season. A

graphical depiction of the accuracies obtained for each of these data spans and values of

k and l, as well as a summary of the maximum accuracies attained under each data span

can be seen in �gure 4.4 and table 4.2 respectively.

From this data we can glean the following; as the scope of data used to train a model

decreases, so decreases said model's consistency. That is to say, a decrease in data span

yields lower average accuracies and an increase in overall variability across each value of

k, l, and data span.

Table 4.2: Optimal Results per Data Span.
Accuracy Method KValue LValue Data Span

0.696 MLogR 6 5 2001:2014
0.672 MLogR 5 5 2002:2014
0.691 MLogR 10 3 2003:2014
0.681 MLogR 5 3 2004:2014
0.691 MLogR 5 3 2005:2014
0.672 LMT 6 3 2006:2014
0.676 MLogR 10 5 2007:2014
0.672 LMT 7 5 2008:2014
0.686 MLogR 6 5 2009:2014
0.686 SVM 7 5 2010:2014
0.691 SVM 6 4 2011:2014
0.686 SVM 7 5 2012:2014
0.691 SVM 6 5 2013:2014

In order to determine optimal values for data span, k, and l, a sensitivity analysis

was performed. Using these parameters, results were then iteratively calculated with

models trained and tested as previously discussed. Results were then assessed using
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Figure 4.4: Model Accuracies per Values of k and l for Each Data Span.
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analysis of variance (Table 4.3) which indicated the following; there is no signi�cant

interaction between parameters k and l (F (10, 867) = 0.771, p = 0.658) and as such main

e�ects for each parameter can be discussed, conversely there is a signi�cant interaction

between the method used for modelling and the amount of data supplied to the model

(F (36, 867) = 59.512, p < 0.000) preventing the analysis of main e�ects for method and

data span at this stage.

The main e�ects of k and l are not signi�cant with (F (5, 867) = 0.495, p = 0.780) and

(F (2, 867) = 2.588, p = 0.076) respectively, and as such hold little sway over the predictive

power of each model.

Table 4.3: ANOVA for model input variations.
Df Sum Sq Mean Sq F value Pr(>F)

Method 3 1.083 0.361 5053.509 0.000
k 5 0.000 0 0.495 0.780
l 2 0.000 0.000 2.588 0.076
Data 12 0.012 0.001 14.022 0.000
k:l 10 0.001 0.000 0.771 0.658
Method:Data 36 0.153 0.004 59.512 0.000
Residuals 867 0.062 0.000

4.1.5.2 Model Evaluations

The aforementioned models have been evaluated using RMSE (root-mean-square error)

and computation time in seconds. The RMSE is de�ned by equation 4.24 while computa-

tion time is simply the time taken in seconds to train and obtain a prediction using each

method, and is additionally used as a measure of model practicality and as a potential

tiebreaker in case of similar accuracies between methods.

RMSE =

√∑n
i=1 (yi − ŷi)2

n
(4.24)

In terms of model performance, model accuracy is inversely proportional to RMSE.

And as such a model with a lower RMSE is preferable to one with a higher RMSE.

Hence, when choosing a model and its corresponding parameters, one that minimises

RMSE is ideal. The minimum RMSE across all models is 0.5513 which corresponds to

the parameters listed in table 4.4. Isolating each model iteration for the parameters listed

in table 4.4 gives us a set of four optimal models, one for each of the tested methods with

di�ering accuracies and computation times (Table 4.5).

From the optimal parameter con�guration of k = 6, l = 5, and data spanning 14

years from 2001 to 2014, the method which yields optimal results is the MLogR with
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Table 4.4: Optimal model parameters based on minimum RMSE.
k l Data Span

6 5 2001:2014

Table 4.5: Optimal model parameters, results, and evaluation statistics.
Method k l Data Span Accuracy RMSE Computation Time

MLogR 6 5 2001:2014 0.696 0.551 0.425
RF 6 5 2001:2014 0.569 0.657 2.793
LMT 6 5 2001:2014 0.662 0.582 1.986
SVM 6 5 2001:2014 0.647 0.594 252.406

an accuracy of 0.696, a computation time of 0.425 seconds, and a signi�cantly good �t

at a 5% level of signi�cance as determined by the Hosmer-Lemshow test (Hosmer Jr,

Lemeshow, and Sturdivant 2013) (χ2
12 = 4.705, p = 0.967). This con�guration is 6.571,

4.672, and 593.896 times faster than the RF, LMT, and SVM respectively. The signi�cant

discrepancy between the computation times of MLogR, RF, LMT, and those of SVM can

be attributed to the need to tune the SVM for the cost and gamma hyperparameters prior

to the �tting of the �nal model.

4.2 Applications of Static Models

As with all sports there is a certain level of unhappiness when it comes to the way in which

a league is administered, this mainly stems from how a season is scheduled; with factors

such as travel, venue, and relative opposition strength being among the most common

concerns. The current AFL ladder scoring system (which can also serve as a proxy for a

team's overall performance) has remained unchanged since the inception of the Victorian

Football League (VFL) in 1897 and produces point totals which are heavily favoured

towards teams which win more matches regardless of match di�culty (Figure 4.5). In

other words, currently, a team will be awarded four points for a win, two points for a

draw, and deducted zero points for a loss regardless of opposition - where surely it makes

more sense for a team to have points awarded and deducted proportionally to the di�culty

of the match being played (Aldous 2017; Csató 2020).

Making use of the optimal model con�guration in subsection 4.1.5.2, this section of

the research sought to develop a methodology to objectively quantify both team perfor-

mance and �xture di�culty. There are currently no formally documented methods within

the AFL to quantify such things, and as such, �rstly, inspired by elements of the ELO

rating system (Hvattum and Arntzen 2010) and probabilistic Bradley-Terry type models

(McHale and Morton 2011) a method was developed to quantify team performance, and
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Figure 4.5: Density Plots for Current and Proposed Point Models.

secondly, inspired by rank di�erentials and Bernoulli simulation (Law, Kelton, and Kelton

1991) a method was developed to not only simulate the outcome of a given season, but

to also quantify the mathematically perceived di�culty of said season.

4.2.1 Team Performance Analysis

A team's ladder score and by proxy their performance (and anecdotally that of their

coach) PT,y is currently de�ned as

PT,y =
22∑
m=1

PT,m,Y (4.25)

where PT,m,Y is the point value awarded to team T after match m during season Y . As
previously discussed, the canonical value of PT,m,Y is 4 for a win, 2 for a draw, and 0 for a

loss. Presented here are two models which rely on outcome probabilities obtained by �rst

building an MLogR prediction model C (F ) as outlined in section 4.1 and using optimal

method and parameter con�gurations discussed in subsection 4.1.5.2.

The �rst model, named the Static Performance Model (SPM) assigns points ac-

cording to the di�culty (assessed as probability of winning) of a given match. If a

team wins they are awarded min
(

25, 1
C(F )

)
points, while if they lose they are awarded

max
(
−25,− 1

1−C(F )

)
points.

The second model, named the Variable Performance Model (VPM) makes use of the

same probabilistic model C (F ) as well as parameters specifying both point and probability
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thresholds. In addition, it is also possible to modify the above SPM to allow for more

granulated control of the weighting between wins and losses. Where p and q are the upper

and lower probability thresholds and p1 and p2 are the upper and lower point thresholds.

After which the predicted outcome probabilities C (F ) generated by the optimal model

speci�ed in section 4.1.5.2 and combined with varying parameters p, q, p1, and, p2 provide

a methodology where a team is assigned points according to the match di�culty (Table

4.6).

Table 4.6: Match di�culty template.
Match Di�culty Probability Ranges

Easy C (F ) < q
Average q ≤ C (F ) ≤ p
Di�cult C (F ) > p

The aforementioned VPM model is now formulated as follows; if a team wins, the

points they are awarded are de�ned as

PT,m,y =


p1 if C (F ) < q

p2 if C (F ) > p
1

C(F )
+ p1 otherwise

(4.26)

likewise, if a team loses, the points they are awarded are de�ned as

PT,m,y =


−p1 if C (F ) > p

−p2 if C (F ) < q

− 1
1−C(F )

− p1 otherwise

(4.27)

A sensitivity analysis was conducted on the VPM for parameters p ∈ {0.9, 0.8, 0.7, 0.6, 0.5},
q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, p1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, and p2 ∈ {0, 1, 2, 3, 4, 5}; after
which the results were then analysed using ANOVA. The results of the ANOVA (Table

4.7) indicate that, unsurprisingly a change in team signi�cantly changes the team perfor-

mance rating (F (2080.86, 17) , p < 2e− 16), however the maximum and minimum point

parameters p1 and p2 are not signi�cant and there are no three and four-way interactions

between the parameters with each combination yielding a p-value of 1. The parameters of

importance are therefore the maximum and minimum probability thresholds p and q, and

any two-way interaction that contains one or the other. From this, optimal parameters

of p = 0.7, q = 0.3, p1 = 12, and p2 = 5 were chosen for use in the VPM model.



4.2 Applications of Static Models 49

Table 4.7: VPM ANOVA.
Df Sum Sq Mean Sq F value Pr(>F)

Team 17 11950251 702956 2080.86 <0.00
q 4 1085164 271291 803.06 <2e-16
p1 7 0 0 0 1
p 4 1085164 271291 803.06 <2e-16
p2 5 0 0 0 1
q : p1 28 167384 5978 17.7 <2e-16
q : p 16 0 0 0 1
p1 : p 28 167384 5978 17.7 <2e-16
q : p2 20 92991 4650 13.76 <2e-16
p1 : p2 35 0 0 0 1
p : p2 20 92991 4650 13.76 <2e-16
q : p1 : p 112 0 0 0 1
q : p1 : p2 140 0 0 0 1
q : p : p2 80 0 0 0 1
p1 : p : p2 140 0 0 0 1
q : p1 : p : p2 560 0 0 0 1
Residuals 20383 6885785 338

4.2.2 Fixture Di�culty Analysis

The di�culty DT,R of a season for a given team T, starting the season at rank R can

be de�ned using one of two models formulated within this research. The previous season

ranking model (PSR) which is a simple linear style model, and the season ranking simu-

lation model (SRS) which is predicated on the principles of the MLogR model described

in subsection 4.1.1.

The di�culty DT,R derived from the PSR model is de�ned as the sum of the di�erences

in the ranking in ranking between the reference team (the team whose di�culty is being

calculated) and their opponents during their 11 home and 11 away games (hg and ag

respectively) during a given season.

DT,R =
11∑

hg=1

(RT,hg −RA,ag) +
11∑

ag=1

(RT,ag −RH,ag) (4.28)

Scores are then approximated as standard random variables as per equation 4.29 by

setting both mean and standard deviation as the arithmetic mean and range of AT,R

and BT,R respectively, where AT,R and BT,R are the minimum and maximum possible

di�culty ratings for a given team and starting rank (with �xtures as outlined by the AFL

Commission) respectively, with values less than 0 indicating an easier than average season
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and vice versa.

D∗T,R =
DT,R − µT,R

σT,R
, where µT,R =

AT,R − BT,R

2
, and σT,R = BT,R − AT,R (4.29)

The AFL Commission (Australian Football League 2015) have outlined the following

guidelines for the setting of �xtures (accurate as of the 2015 AFL season); each team is

to play 22 games over a period of 25 weeks with each team playing each other team at

least once. Teams ranked 1 to 6 at the beginning of the season will then play either 2

or 3 additional games against other teams ranked 1 to 6, either 1 or 2 additional games

against teams ranked 7 to 12, or either 0 or 1 additional games against teams ranked 13

to 18. Teams ranked 7 to 12 at the beginning of the season will then play either 1 or

2 additional games against teams ranked 1 to 6, either 2 or 3 additional games against

other teams ranked 7 to 12, or either 1 or 2 additional games against teams ranked 13

to 18. Teams ranked 13 to 18 at the beginning of the season will then play either 0 or

1 additional games against teams ranked 1 to 6, either 1 or 2 additional games against

teams ranked 7 to 12, or either 2 or 3 additional games against other teams ranked 13 to

18.

From the above guidelines it is possible to generate a list (Table 4.8) of maximum

(BT,R) and minimum (AT,R) di�culty rating values for each team given their starting

rank and number of scheduled games Gmin
T,j and Gmax

T,j against team j, where Gmin
T,j and

Gmax
T,j are the easiest and hardest sets of scheduled games respectively.

AT,R = 22RT −
18∑
j=1
j 6=T

RjG
min
T,j (4.30)

BT,R = 22RT −
18∑
j=1
j 6=T

RjG
max
T,j (4.31)

The SRS model is a hybrid simulation model combining aspects of result prediction,

Bernoulli simulation, linear regression, and heuristic clustering. Using this model the

di�culty DT,R is derived as the di�erence between a team's rankings RT,Y at the end of

the current and previous seasons.

DT,R = RT,Y −RT,Y−1 (4.32)

A team's current ranking RT,Y is obtained by �rst building a classi�cation model as per

subsection 4.1.1, and from the obtained win probabilities the season's results are obtained

through a Bernoulli simulation conducted 10000 times. X ∼ Bern (1, C (F )) such that a
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Table 4.8: Fixture di�culty distribution values per starting rank.
Start of Season
Rank

Easiest Rating
AT,R

Hardest Rating
BT,R

Mean Rating
µT,R

SD (Range)
σT,R

1 -200 -172 -186 28
2 -177 -148 -162.5 29
3 -154 -124 -139 30
4 -131 -100 -115.5 31
5 -107 -77 -92 30
6 -83 -54 -68.5 29
7 -74 -43 -58.5 31
8 -51 -19 -35 32
9 -28 5 -11.5 33
10 -5 28 11.5 33
11 19 51 35 32
12 43 74 58.5 31
13 54 83 68.5 29
14 77 107 92 30
15 100 131 115.5 31
16 124 154 139 30
17 148 177 162.5 29
18 172 200 186 28

team is awarded 4 points for a win, with the total number of points being averaged over

all trials within the simulation. Di�erences are then calculated as outlined above with

negative di�erences indicating an easier season and vice versa. Teams are then clustered

using heuristic clustering in order to group teams with similar season di�culties.

4.2.3 Results and Discussion

A cursory look at the win probabilities generated by the MLogR model (Figure 4.6) would

indicate that teams such as Carlton and Melbourne have the hardest season and teams

such as Adelaide and Fremantle have the easiest season. However, as is the nature of a

competitive game such as the Australian Rules Football, the team with the easiest season

does not necessarily perform the best.

Tables 4.9 and 4.10 present the results from the SPM and the VPM respectively, whilst

graphical representations may be found in �gure 4.7. Via the SPM; Richmond and West-

ern Bulldogs occupy the top two positions while Brisbane Lions and St Kilda the bottom

two, with the VPM yielding similar results with Richmond and Sydney occupying the

top two positions. The Spearman's rank correlation test revealed no signi�cant di�erence

between the rankings generated with either the SPM or VPM and a moderately positive

correlation (ρ = 0.395, n = 18, p = 0.105).
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Figure 4.6: Per match win probabilities for the 2015 AFL season.

As there is no signi�cant di�erence in the rankings predicted by the SPM and VPM,

further analysis was conducted using the VPM. Hence, �gure 4.8(a) depicts a team's

actual rank at the end of the 2015 season as opposed to the rank predicted through the

VPM, with 7, 6, and 5 teams performing better, worse, and at parity respectively.

Whilst this would indicate that only 5 out of 18 teams were accurately predicted, it is

important to be note that any errors herein have been compounded over 10000 simulations

and yet the maximum observed error bound is a relatively low 4 ranks with and 11 out of

18 results occurring within an error bound of [−1, 1]. In addition �gure 4.8(b) makes use

of expectation theory to calculate the expected number of points awarded to each team

at the end of the season in addition to the points awarded by the simulation. From this it

can be seen that teams above the line y = x are predicted to preform better than expected

as per the initial MLogR model and VPM simulation, with 10 and 8 teams predicted to

perform better and worse than expected respectively.

Tables 4.11 and 4.12 present the �xture di�culty results (PSR and SRS respectively)

for each team during the 2015 AFL premiership season, contrary to out cursory analysis

the PSR model predicts St Kilda and Geelong to have the easiest and hardest seasons

respectively. However, it can be seen that these di�culty ratings are outliers and can be

attributed to the simplistic nature of the model. Another observation that can be made
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Table 4.9: SPM results for the 2015 AFL
season.

Team Points

Richmond 13.324
Western Bulldogs 11.772
West Coast 10.699
Sydney 9.296
Fremantle 9.281
Hawthorn 5.864
Port Adelaide 5.412
North Melbourne 4.949
Geelong 1.981
Adelaide 1.219
Greater Western Sydney 0.009
Melbourne -0.495
Carlton -0.557
Collingwood -8.830
Gold Coast -9.578
Essendon -14.583
Brisbane Lions -19.511
St Kilda -20.254

Table 4.10: VPM results for the 2015
AFL season.

Team Points

Richmond 54.321
Sydney 51.759
West Coast 48.493
Fremantle 48.099
Hawthorn 40.450
Western Bulldogs 39.539
North Melbourne 30.884
Geelong 13.304
Port Adelaide 12.981
Adelaide 11.652
Greater Western Sydney 3.459
Melbourne -22.203
Collingwood -28.355
St Kilda -52.477
Essendon -55.995
Carlton -57.351
Gold Coast -60.119
Brisbane Lions -78.443

(a) SPM team performance. (b) VPM team performance.

Figure 4.7: Team performance results for the 2015 AFL season.

is that the remaining 16 teams have a di�culty rating between −0.3 and 0.3 and as such

can be said to have a relatively fair season �xture.

Using the results generated by the SRS model it can be seen that most of the results

lie within the range of −2 to 2 and can therefore it can once again be concluded that the

season is of average di�culty for all teams other than Richmond - who in this case are

only subjected to a �xture di�culty marginally higher than the other teams.
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(a) VPM team rank (predicted vs. actual). (b) VPM team points (predicted vs. expected).

Figure 4.8: Team performance analysis for the 2015 AFL season.

(a) PSR �xture di�culty. (b) SRS �xture di�culty.

Figure 4.9: Fixture di�culty results for the 2015 AFL season (di�culties within horizontal
boundaries represent �xtures of average di�culty).

The aim of this section of research was to determine whether it was possible to math-

ematically quantify both team performance and �xture di�culty. With respect to the

MLogR model's accuracy, it achieves similar results to those in the literature. Baker

and McHale (2013) achieved accuracies of 63.6 and 66.9% respectively using a contin-



4.2 Applications of Static Models 55

Table 4.11: PSR results for the 2015 AFL season.
Team Di�culty Rating

St Kilda -0.75
Fremantle -0.274
Gold Coast -0.242
West Coast -0.227
Melbourne -0.189
Western Bulldogs -0.167
Adelaide -0.106
Greater Western Sydney -0.1
North Melbourne -0.052
Collingwood -0.031
Sydney 0
Brisbane Lions 0.113
Essendon 0.113
Port Adelaide 0.167
Richmond 0.219
Carlton 0.259
Hawthorn 0.293
Geelong 0.967

Table 4.12: SRS results for the 2015 AFL season.
Team Points Simulated Rank Previous Rank Di�culty

Geelong 58.888 1 3 -2
Hawthorn 57.116 2 2 0
Sydney 56.636 3 1 2
Fremantle 54.96 4 4 0
Port Adelaide 52.748 5 5 0
Essendon 51.68 6 7 -1
North Melbourne 49.336 7 6 1
West Coast 47.868 8 9 -1
Adelaide 47.416 9 10 -1
Collingwood 44.996 10 11 -1
Richmond 41.56 11 8 3
Gold Coast 39.38 12 12 0
Carlton 36.704 13 13 0
Western Bulldogs 35.16 14 14 0
Brisbane Lions 32.932 15 15 0
St Kilda 27.78 16 18 -2
Greater Western Sydney 23.1 17 16 1
Melbourne 21.74 18 17 1

uous time Markov process to predict the outcomes of National Football League (NFL)

games, Akhtar and Scarf (2012) achieved a 59.6% accuracy for predicting ex-ante out-
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comes of cricket matches when using a MLogR model, and Carbone, Corke, and Moisiadis

(2016) achieved accuracies of 63 and 55.7% respectively using an ELO based method for

predicting National Rugby League (NRL) match outcomes.

Whilst the predictive accuracy of the aforementioned models compare similarly to

those in the literature � all of these models assume independence between matches. How-

ever, it can be safe to say that match results are subject to some form of dependence.

Nevertheless, violation of the independence assumption does not signi�cantly impact the

�nal results due to the scale of our data (Heo and Leon 2005).

The SPM was designed using a truncated risk matrix such that the points assigned to a

team who wins a very easy match (Pr (Win) > 0.7) are signi�cantly smaller in magnitude

than points assigned to a team who wins a very hard match (Pr (Win) < 0.3) with the

inverse true for a team who loses a match. The rationale behind this design is that it

is believed to be able to more accurately capture the real world implications of winning

and losing matches of varying di�culty. The signi�cantly larger negative results from the

VPM are due to the heavier weightings assigned for winning and losing hard and easy

games respectively. The coe�cients and parameters of the risk matrix can also be altered

in accordance with the MLogR model and coaching decisions. Hence, this methodology

can be utilised for other competitive team sports.

The season di�culty models were initially designed with model simplicity in mind

(PSR) and then graduated to a more complex simulation model (SRS), the rationale

behind the PSR model is that it provides a model based on the most simplistic (and in

this case most telling) metric of opponent di�culty (previous season ranking), while the

SRS model attempts to simulate the outcome of a given season and then draw inferences

with respect to relative �xture di�culty.

4.3 Summary

This chapter introduced the static data prediction models used to create ex-ante outcome

forecasts for the 2015 AFL premiership season. Four candidate models were considered

and underwent a signi�cant degree of validation and signi�cance testing. A total of

936 model variations were generated via the variation of method, data span, and match

span parameters. The results obtained throughout the candidate models were similar

to those found in the literature and demonstrates that the previously held paradigm of

ex-ante prediction is relevantly stable regardless of the introduction of novel performance

indicators. Following this two applications were investigated, namely team performance

and �xture di�culty analysis. Two sub-models were considered for each of the applications

with their �ndings being statistically similar within their respective groupings. Most

notably the 2015 �xture was found to have 162 `fair' matches such that neither team was
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signi�cantly favoured with the remaining 234 matches having some bias either way. In

addition to this there was also a clear delineation within team performance consistent

with current league standings.



CHAPTER 5

Dynamic Prediction Model

This chapter presents a near real-time model for the prediction of match outcome prob-

abilities whilst a match is in progress. The aforementioned model is said to be both

dynamic and near real-time as it allows for model parameters to evolve in time with

events that transpire within a given match. The model makes use of both static and

dynamic features as de�ned in Chapter 3 and relies on various computational optimisa-

tions a�orded by the model's Markovian nature. The results obtained were computed

over an entire AFL season with the model displaying robustness in regard to both initial

probabilities and responsiveness to on-�eld events as a match is in progress. In addition,

the overall accuracy of the model far surpasses that of those methods currently used in

the literature.

5.1 Real-Time Prediction Models

As per Chapter 4 we can similarly de�ne a predictive model for the outcome of a match be-

tween teamH (home) and teamA (away) at time t ∈ [0, T ] as Ct (Ft) = f
(
S, SH, SA, DH (t) ,

DA (t)
)
where

{
DH (t) , DA (t)

}
= (DH1 (t) , DH2 (t) , . . . , DHc (t) , DA1 (t) , DA2 (t) , . . . , DAc (t))

are values of the the 2c team speci�c dynamic match features, and Ct is a representa-

tion of the predicted outcome probability for a match given that dynamic feature data is

observed up to and including time t.

Ct (Ft) = Pr ({Draw,Loss,Win} |t = T ) (5.1)

with f (·) being an unknown function to be estimated using the statistical methods out-

lined in subsection 5.1.1, and the dynamic components
{
DH (t) , DA (t)

}
of feature set Ft

as described in Chapter 3 subsection 3.3.2

58
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5.1.1 Continuous Time Inhomogeneous Markov Models

Although not prevalent within current sporting literature, Markov models are able to cap-

ture complex time and covariate interactions in both homogeneous and inhomogeneous

observation cases and in absorbing or non-absorbing state space structures. A Continuous

Time Inhomogeneous Markov Model is a stochastic model which describes the changes

in a system consisting of random processes. In this application the model forecasts over

a discrete state space as a sequence of Markov chains where the interval between succes-

sive state transitions is irregular (Ibe 2013). A Markov chain is a sequence of discrete

observations satisfying the Markov property

Pr
(
Xtj+1

|F1, . . . , Ftj
)

= Pr
(
Xtj+1

|Ftj
)

(5.2)

such that Xt = {D,L,W} is the state space, Ftj =
{
S,Dtj

}
is the set of static and

dynamic features observed during an AFL match and

Pr
(
Xtj+1

|Ftj
)

=

pDD pDL pDW

pLD pLL pLW

pWD pWL pWW

 = P (tj, tj+1) = exp
(
Q
(
Ftj
)
tj
)

(5.3)

is the probability of observing an outcome X at time tj+1 given observed feature data F

up to and including time tj where

Q
(
Ftj
)

=

qDD qDL qDW

qLD qLL qLW

qWD qWL qWW

 (5.4)

is the transition intensity matrix after observing feature data F up to and including time

tj (Logofet and Lesnaya 2000), which is solved using the Kolmogorov forward equation

making use of partial di�erential equations and eigenvalue decomposition to solve for each
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qS(tj)S(tj+1) (Marshall and Jones 1995).

∂P (t)

∂t
= P (t)

⇒ 1

P (t)

∂P (t)

∂t
=Q

⇒ ∂ ln (P (t))

∂t
=Q

⇒
∫

ln (P (t)) =

∫
Q∂t

⇒ P (t) = exp (Qt)

⇒ P (t) =ADA−1

(5.5)

The decomposition in Equation 5.5 is such that D is a diagonal matrix with element

{(i, j) : i = j} corresponding to the exponential of the ith distinct eigenvalue of Q and A

is a matrix with eigenvectors corresponding to the aforementioned eigenvalues. Hence, to

forecast Pr (t1, t2); that is the probability transition matrix from t1 to t2, the decompo-

sition ADt2−t1A−1 is derived and solved. In addition to this the values for the transition

matrix Q are found by maximising the likelihood function L (Q|θ) for each of the unknown
parameter values θ =

{
q(Stj)(Stj+1)

, β(Stj)(Stj+1)
|
{
Stj ,Stj+1

}
∈ Xt

}
, where β(Stj)(Stj+1)

are

the coe�cients for the transition between states from time tj to tj+1. The likelihood

described above can be expressed by Equations 5.6�5.7 where successive states S (tj) and

S (tj+1) occur at times tj and tj+1 for an index i which contains the set of all observable

matches M = {1, 2, . . . ,m}

L(Q|θ) =
M∏
i=1

Li,j (5.6)

Li,j = pS(tj)S(tj+1) (tj+1 − tj|θ) (5.7)

Equivalently, once the values for Q have been found it is possible to calculate P (t) by

using the matrix exponential exp (Qt) such that

exp (Qt) =
∞∑
k=0

1

k!
(Qt)k (5.8)

with (Qt)k = Qt × Qt × · · · × Qt. However, while this formulation is simple enough it

does not allow for the inclusion of time varying covariates, this is achieved by altering the

above formulation as follows;

q(Stj)(Stj+1)
(tj) = q0e

βT

(Stj)(Stj+1)
z(tj)

(5.9)
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Li,j = e
q
S(tj)S(tj)

(tj+1−tj |θ)
qS(tj)S(tj+1) (5.10)

where z (tj) = Covtj − CovMean is the di�erence between the observed covariate values

at time tj and the mean model values, and q0 is the log-baseline estimate of Q (tj). This

enables the approximation of

Q (tj) = e

∑
q0+q0

S(tj)
z(tj)

(5.11)

from which it is possible to calculate P (t1, t2) as

P (t1, t2) = P (t1, t2)× P (t2, tj−1)× P (tj−1, tj) (5.12)

where the epochs {t1, . . . , tj} are the inhomogeneous time points at which on-�eld trans-

actions are recorded, and

P (t1, t2) = exp (t2 − t1)Q (t1)

P (t2, tj−1) =

tj−1∏
t2

exp (ti − ti−1)Q (ti)

P (tj−1, tj) = exp (tj − tj−1)Q (tj−1)

(5.13)

5.1.2 Results and Discussion

As per the static models in section 4.1 all analyses were once again conducted on a

computer with a 64-bit Windows operating system, Intel® Core� i7-7700K processor,

and 32GB RAM. Results were obtained using an algorithm and routine (see Appendix

E.1) written in the statistical computing package R (R Core Team 2018) which makes

use of the packages listed in table 5.1. Each model took approximately 3 hours and 11

minutes to build which is practically acceptable for a study with such complex data and

models, however, evaluation of a new case only takes approximately 11 seconds for a full

match (approximately 120 minutes and 1900 epochs) which is practically acceptable as in

practice only a single epoch will be evaluated at a time.

Table 5.1: Dynamic model packages.
Package Author

msm Jackson (2011)
doParallel Microsoft Corporation and Weston (2018)
ggplot2 Wickham (2009)
zoo Zeileis and Grothendieck (2005)
expm Goulet et al. (2017)
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Figure 5.1: Evolution of the Markov model. Figure 5.2: State space model.

The Markov model described in section 5.1.1 was implemented as a three state non-

absorbing system, such that it is possible to model the transitions to and from each state

at a given epoch, where an epoch is an observable instance during a match such that a

transition between states occurs. An example of this can be seen in �gures 5.1 and 5.2

such that when a match is observed at an epoch the model transitions between states,

following the general process outlined in �gure 5.3. It is important to note that as the

model is both time inhomogeneous and continuous, the time between each observed epoch

is uncertain and non integer resulting in an evolution approximated by equations 5.12

and 5.13. The initial transition matrix is an important parameter for any stochastic state

model, therefore to generate an practically acceptable generalisation, the transition matrix

is determined through the use of averaged match evolutions over the 2015 premiership

season, and formulated as follows. Given a speci�c state transition from state S (tj) to

state S (tj+1) the transition probability is calculated as the proportion of the number of

transitions from S (tj) to S (tj+1) with respect to the total number of transitions starting

at state S (tj).

π0 =

to S (tj+1)

Draw Loss Win

from S (tj) Draw
∑

(Draw,Draw)∑
Draw

∑
(Draw,Loss)∑

Draw

∑
(Draw,Win)∑

Draw

Loss
∑

(Loss,Draw)∑
Loss

∑
(Loss,Loss)∑

Loss

∑
(Loss,Win)∑

Loss

Win
∑

(Win,Draw)∑
Win

∑
(Win,Loss)∑

Win

∑
(Win,Win)∑

Win

(5.14)

The next initialisation parameter of importance is the vector of initial probabilities

for each state. In order to assess both the stability and convergence of the Markov model,

two types of initial probabilities were considered. Deterministic initial probabilities such

that each match used the same probability vector

ud (1) = Pr (Draw,Loss,Win)
d

= {0.1, 0.3, 0.6} (5.15)
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and static initial probabilities as determined by the optimal MLogR outlined in sub-

section 4.1.5.2

C (F ) = us (1) =

{
eβ1xk∑3
c=1 e

βcxk
,

eβ2xk∑3
c=1 e

βcxk
,

eβ3xk∑3
c=1 e

βcxk

}
= Pr (Draw,Loss,Win)

s

(5.16)

Utilising equations 5.3, 5.6, 5.9, and 5.10 a Markov chain model is constructed with

match outcome probabilities as a function of both static and dynamic features described

in chapter 3. This model yields an average Q matrix for the system built using games

played by the Western Bulldogs during the 2015 AFL premiership season

Q
(
Ftj
)

=

−0.273 0.091 0.182

0.018 −0.054 0.036

0.000 0.006 −0.006

 (5.17)

and hazard ratios e
β
S(tj)S(tj+1) for the model covariates, where the hazard ratios are

computed by exponentiating the estimated covariate e�ects on the log-transition intensi-

ties.

eβDL = {0.979, 1.038, 0.559, 0.440, 0.082, 1.046, 0.986, 0.812, 1.255, 1.171, 0.850} (5.18)

eβDW = {1.008, 0.985, 2.351, 0.431, 0.463, 1.032, 1.027, 2.084, 0.507, 0.642, 1.530} (5.19)

eβLD = {1.054, 1.028, 0.997, 0.389, 0.020, 1.019, 1.029, 0.871, 0.932, 0.948, 1.067} (5.20)

eβLW = {1.155, 0.978, 1.422, 0.201, 2.225, 0.973, 1.043, 0.840, 1.033, 0.988, 1.028} (5.21)

eβWD = {1.020, 0.951, 2.032, 4.048, 1.926, 1.021, 1.002, 0.628, 1.361, 1.067, 0.870} (5.22)

eβWL = {1.408, 1.086, 0.879, 5.802, 1.047, 1.041, 0.981, 1.008, 0.754, 1.064, 0.960} (5.23)

At each step of the forecasting algorithm, in such a way that each observation takes

place at an epoch t ∈ [0, T ] where t is the currently observed epoch in the match and

T is the �nal observed epoch in the match. The algorithm then produces a forecast of

the match outcome probabilities at time T . With these results being generated using

equation 5.24

g
(
Ftj
)

= u∗ (1)π0,tjπ
∗
tj ,T

= Pr (Draw,Loss,Win)T (5.24)
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Figure 5.3: Markov model overview.
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5.1.2.1 Model Evaluation

As the Markov model described above is non-absorbing, time inhomogeneous, and contin-

uous; evaluation of the model's goodness of �t becomes signi�cantly more di�cult. Hence,

each model was evaluated for both epoch prediction accuracy and �nal result outcome.

Epoch prediction accuracy is measured as the percentage of epochs correctly forecast

relative to the �nal outcome at time T , while �nal result outcome is measured as the

percentage of forecasts at time T which match the �nal result outcome. For example, in

the case of a match which ends in a win for the home team; the epoch prediction accuracy

is measured as the percentage of epochs forecast as a win for the home team, while the

�nal result outcome is a correct classi�cation if the forecast outcome at time T matches

that of the actual �nal outcome (in this case a win for the home team).

The Markov model was trained on match data for games played by the Western Bull-

dogs during the 2015 AFL premiership season and subsequently tested using match data

for games played by the Western Bulldogs from the 2017 AFL premiership season us-

ing both deterministic (Equation 5.15) and static initial probabilities (Table 5.2). These

results are listed in tables 5.3 and 5.4.

Table 5.2: Per match static initial probabilities.
Match Draw Loss Win

1 0.016 0.503 0.481

2 0.004 0.304 0.692

3 0.000 0.676 0.324

4 0.001 0.072 0.926

5 0.002 0.200 0.798

6 0.000 0.572 0.428

7 0.000 0.585 0.415

8 0.001 0.304 0.695

9 0.000 0.177 0.823

10 0.006 0.452 0.541

11 0.100 0.711 0.189

12 0.000 0.437 0.563

13 0.000 0.162 0.838

14 0.000 0.491 0.509

15 0.003 0.221 0.776

16 0.000 0.838 0.162

17 0.000 0.222 0.778

18 0.006 0.418 0.577

19 0.000 0.765 0.235

20 0.005 0.603 0.392

21 0.000 0.278 0.722

22 0.000 0.351 0.649
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Table 5.3: Deterministic initial probability Markov model results.
Initial Draw

Probability

Initial Loss

Probability

Initial Win

Probability

Final Draw

Probability

Final Loss

Probability

Final Win

Probability

Epoch

Accuracy

Actual

Result

Forecast

Result

Home

Rank

Away

Rank

0.100 0.300 0.600 0.003 0.147 0.850 0.482 Loss Win 12 7

0.100 0.300 0.600 0.000 0.000 1.000 0.911 Win Win 8 14

0.100 0.300 0.600 0.000 0.129 0.871 0.480 Win Win 18 8

0.100 0.300 0.600 0.000 0.018 0.982 0.973 Win Win 9 17

0.100 0.300 0.600 0.000 0.001 0.999 0.936 Win Win 6 15

0.100 0.300 0.600 0.000 0.173 0.827 0.983 Win Win 4 5

0.100 0.300 0.600 0.001 0.554 0.445 0.009 Win Loss 7 4

0.100 0.300 0.600 0.000 0.039 0.961 0.826 Win Win 4 5

0.100 0.300 0.600 0.002 0.191 0.807 0.763 Win Win 6 9

0.100 0.300 0.600 0.000 0.227 0.773 0.520 Win Win 6 7

0.100 0.300 0.600 0.000 0.001 0.999 0.991 Win Win 16 6

0.100 0.300 0.600 0.000 1.000 0.000 1.000 Loss Loss 8 6

0.100 0.300 0.600 0.000 0.009 0.991 0.000 Win Win 9 16

0.100 0.300 0.600 0.000 0.733 0.267 1.000 Loss Loss 9 7

0.100 0.300 0.600 0.000 0.000 1.000 0.982 Win Win 2 10

0.100 0.300 0.600 0.036 0.849 0.114 1.000 Loss Loss 16 11

0.100 0.300 0.600 0.000 0.001 0.999 0.997 Win Win 11 15

0.100 0.300 0.600 0.000 0.926 0.074 1.000 Loss Loss 8 10

0.100 0.300 0.600 0.002 0.985 0.013 1.000 Loss Loss 18 9

0.100 0.300 0.600 0.000 0.998 0.002 1.000 Loss Loss 7 2

0.100 0.300 0.600 0.000 0.017 0.983 0.927 Win Win 6 9

0.100 0.300 0.600 0.000 0.996 0.004 1.000 Loss Loss 11 12

Accuracy

(SD)

0.808

(0.312)

0.909

(0.294)

Table 5.4: Static initial probability Markov model results.
Initial Draw

Probability

Initial Loss

Probability

Initial Win

Probability

Final Draw

Probability

Final Loss

Probability

Final Win

Probability

Epoch

Accuracy

Actual

Result

Forecast

Result

Home

Rank

Away

Rank

0.016 0.503 0.481 0.003 0.147 0.850 0.482 Loss Win 12 7

0.004 0.304 0.692 0.000 0.000 1.000 0.911 Win Win 8 14

0.000 0.676 0.324 0.000 0.129 0.871 0.480 Win Win 18 8

0.001 0.072 0.926 0.000 0.018 0.982 0.973 Win Win 9 17

0.002 0.200 0.798 0.000 0.001 0.999 0.936 Win Win 6 15

0.000 0.572 0.428 0.000 0.221 0.779 0.983 Win Win 4 5

0.000 0.585 0.415 0.001 0.558 0.440 0.009 Win Loss 7 4

0.001 0.304 0.695 0.000 0.038 0.962 0.826 Win Win 4 5

0.000 0.177 0.823 0.001 0.181 0.818 0.763 Win Win 6 9

0.006 0.452 0.541 0.000 0.227 0.773 0.520 Win Win 6 7

0.100 0.711 0.189 0.000 0.001 0.999 0.991 Win Win 16 6

0.000 0.437 0.563 0.000 1.000 0.000 1.000 Loss Loss 8 6

0.000 0.162 0.838 0.000 0.009 0.991 0.000 Win Win 9 16

0.000 0.491 0.509 0.000 0.733 0.267 1.000 Loss Loss 9 7

0.003 0.221 0.776 0.000 0.000 1.000 0.982 Win Win 2 10

0.000 0.838 0.162 0.036 0.849 0.114 1.000 Loss Loss 16 11

0.000 0.222 0.778 0.000 0.001 0.999 0.997 Win Win 11 15

0.006 0.418 0.577 0.000 0.926 0.074 1.000 Loss Loss 8 10

0.000 0.765 0.235 0.002 0.985 0.013 1.000 Loss Loss 18 9

0.005 0.603 0.392 0.000 0.998 0.002 1.000 Loss Loss 7 2

0.000 0.278 0.722 0.000 0.017 0.983 0.927 Win Win 6 9

0.000 0.351 0.649 0.000 0.996 0.004 1.000 Loss Loss 11 12

Accuracy

(SD)

0.808

(0.312)

0.909

(0.294)

In spite of the reduced breadth of available data (restricted to Western Bulldogs
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matches for the 2015 and 2017 seasons) both deterministic and static initial probabil-

ity models performed exceedingly well and each attained an average epoch accuracy of

80.81% and a �nal result accuracy of 90.90%. This duplication of results is an important

observation as it con�rms that the model is both stable and convergent for di�ering initial

probabilities. From this it is also possible to conclude that the overall model procedure

can be streamlined by removing the generation of static initial probabilities as they have

no perceivable impact on the model.

5.2 Application of Real-Time Models

Further to the above results it is possible to see the model's increasing accuracy as a

match progresses, with the model attaining an average accuracy of 74.57% at the end of

the �rst quarter which then increases to an average of 90.09% at the end of the fourth

quarter (Figure 5.4), these results are both far greater than that of those produced by

other studies in the literature and even those produced in chapter 4 of this study whose

accuracy peaked at 69.6%. It should be noted that the model experiences a drop in

average accuracy from quarters 2 to 3. A possible cause being that the model yields

higher accuracies when exposed to data exhibiting greater variability with respect to

the response variable. That is to say, when observing a quarter that is more `active'

(producing more inter-state transitions than intra-state transitions) the model performs

better. In this application and throughout the data available to this study the variance

of the match result at time t �uctuates in accordance with the changes in the cumulative

accuracy at the end of each quarter (Table 5.5).

Figure 5.4: Average model accuracy per quarter.

Whilst these results are signi�cant, a key importance of the model is that it is respon-

sive to on-�eld transactions so that it may be used responsively as a training, coaching,

and tactical toolbox. Currently, match data is fed directly to the coaching team as a

match progresses with various key parameters monitored and codi�ed according to pre-
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Table 5.5: Per quarter variance with respect to match outcome.
Quarter Variance

1 3.552
2 3.732
3 1.647
4 2.522

determined thresholds (Figure 5.5). With this information coaches can then tailor their

team's strategy; bolstering defence or exploiting newly discovered weaknesses in the op-

posing side. After the fact analysis is also possible whereby new drills and tactics can be

developed to optimally prepare for a given opponent or to train players in the handling

of certain scenarios.

Figure 5.5: Rocket Dashboard.

With the application of the methodology and framework identi�ed herein, the above

can be further extended by enabling coaches to see how any single action or sequence of

actions will a�ect their team's outcome probabilities. This allows for the quanti�cation

of coaching decisions whereby the quality of each decision can be measured in terms of

the change in the observed outcome probabilities. Further applications could be seen in a

training context where multiple scenarios or sequences of transactions could be permuted;

each with a set di�culty or victory odds and then replicated in a controlled training

environment enabling the players to learn how to respond to or limit the in�uence of

superior opposition play.

In �gure 3.4 it has already been shown that the margin is directly correlated with the

on-�eld transactions of interest and as such shall be used their stead in the discussions to

follow. An example of the output generated by the model can be seen in �gures 5.6 and

5.7 below and are a representation of a match between Fremantle and Western Bulldogs
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which took place in round 3 of the 2017 AFL premiership season. In the upper section of

Figure 5.6 the outcome probabilities generated by the Markov model are plotted against

their respective epoch times (with breaks in the plot representing unobserved epochs),

below that is a visual depiction of the predicted outcome (once again generated by the

Markov model) against the actual match outcome, whereas the upper section of �gure 5.7

plots the outcome probabilities generated by the Markov model as match time progresses

with a running margin below. The margin is plotted with respect to the home team as

the match progresses and acts as a facsimile to in-match events and also serves as an

approximation of team form and possession.

Figure 5.6: Outcome prediction over time.

Figure 5.7: Prediction probabilities and margin over time.

Figure 5.6 presents an attractive visual representation of a match in play and would

most likely increase fan engagement by providing fans with a graphical representation
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of their team's current form/performance relative to their opponent, whereas �gure 5.7

presents a more streamlines probabilistic output with respect to the home team's margin

of victory and could be used to compare bookmakers odds across a wide variety of sources

or even allow bettors to make better informed decisions when placing bets.

This could become a powerful tool to any sporting team as it enables one to alter

match strategies on the �y and even possibly play the meta-game in such a way that

could potentially increase both the psychological pressure on an opposing team and the

excitement for fans as new and innovative strategies and training practices are formulated

and become available.

5.3 Summary

This chapter presented the three-state continuous time inhomogeneous Markov model

used to create near real-time outcome predictions for the 2017 AFL premiership season.

This model made use of both dynamic and static data and was conditioned on both static

and deterministic initial probabilities for which the models produced convergent results.

Model forecasts responded signi�cantly to the transactional inputs of the model and the

predictive accuracy of the model far surpassed that of current ex-ante methods found in

the literature and even of those produced in chapter 4. This is promising as it would

indicate that coaches and training sta� would be able to use this to dynamically alter

their strategies and make far more informed decisions in response to real-time match

conditions.



CHAPTER 6

Conclusions, Contributions, and Future

Works

6.1 Summary of the Work

Sports analysis has always been a real talking point amongst both statisticians and sports

personnel. However the complexity of creating an e�cient and accurate model coupled

with the di�culties in acquiring in-game statistics has resulted in most research being

focused on before the fact result prediction. This research presents a framework for

the near real-time prediction of match outcomes at various strategic points within an

AFL match. This was achieved through the acquisition of in-game statistics, data on

past performances, and using statistical modelling methods with the �nal goal being

the development of a robust and e�cient prediction of match results. The outcome

of this research will aid coaches and training sta� by allowing them to quantify how

speci�c sequences of on-�eld transactions, player actions, and coaching calls directly a�ect

the outcome probabilities for a given match. Additionally, coaches may decide to rest

key players if their win probability is high or try risky strategies when faced with a

low win probability. This will further accentuate retrospective analysis by enabling the

development of strategies and drills that accentuate features that are most in�uential in

the model.

The methodological frameworks developed herein can be easily transferred across other

sports. The static methods (Chapter 4) can be applied in a variety of sporting scenarios,

both fast moving and slow paced; with similar work being undertaken in soccer, rugby,

baseball, and tennis to name a few (Castellano, Casamichana, and Lago 2012; Carbone,

Corke, and Moisiadis 2016; Horvat and Job 2020; Clarke and Dyte 2000). The dynamic

methods (Chapter 5) whilst applicable primarily to Australian Football due to the speci�c

nature of the statistics utilised, could be generalised to similar fast moving invasion style

games such as rugby and soccer as similarities may be drawn between o�ensive and

defensive metrics with only minor restructuring needed to adapt game speci�c metrics.

71
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A survey of the literature revealed that whilst real-time analysis is a key area of interest

in �elds such as medicine and �nance, the proprietary nature of real-time sporting data

restricts most public research to ex-ante result prediction and optimal betting strategies

with the goal of beating bookmakers odds. Meanwhile, the features used for predictions

across various sports do not di�er signi�cantly across methods but tend to follow a logical

grouping depending on which sport is being observed. From this it is clear that feature

selection dictates the success of these models. Ex-ante prediction is implemented in a

variety of sports regardless of the speed at which the sport is played and is a large part of

the currently available literature. Both machine learning and generalised linear techniques

have been used to great success for result prediction in a variety of sporting applications.

Due to the cost and di�culty of simultaneous data collection, real-time prediction is

carried out on slower moving sports and those where up to date data is easily available.

These applications tend to use less computationally taxing methods such as multinomial

linear and logistic regression and rely heavily on pre-established methodologies such as

the Duckworth-Lewis resource matrix and existing match strategies.

A major factor in any mathematical model is the quality of data used for both model

creation and testing. With the issue of big data and its widespread adoption within the

sporting world, it is important that heavy scrutiny be placed upon data prior to its use.

The two types of data utilised for this research can be summarised as follows; static data

(known prior to the match) which is widely accessible and can be found on a myriad of

online repositories, and dynamic data (gathered during the match) which is restricted to

AFL teams and the companies that gather said data.

Data was gathered from various online repositories (static data) as well as Champion

Data (dynamic data) after which the data was cleaned, processed, and relevant features

extracted. In terms of data accuracy, both static and dynamic data originate from Cham-

pion Data either directly or indirectly where historically Champion Data have boasted a

99% accuracy through the use of their multi-phase data entry strategy (Champion Data

2017). Whilst there is no publicly available audit to attest to the accuracy of this claim,

the fact still remains that Champion Data has been and still remains retained by both the

AFL and their participant clubs for considerable �nancial compensation. The data were

then subjected to further quality control measures during processing to ensure that no

erroneous or duplicate data existed within the �nal dataset. Following this various static

feature models were explored with the goal of feature selection and comparative ex-ante

prediction. The results obtained were in line with the literature in terms of both features

used and model accuracies, with the most accurate model achieving an overall accuracy

of 69.60%. Applications of the static model were then explored, with the goal being the

development of new methods to quantify team performance and �xture di�culty.

The next phase of analysis was concerned with the dynamic prediction model in which
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a continuous time inhomogeneous Markov model was selected and as such allows for the

irregular frequency at which on-�eld transactions are observed. The model performed

notably well with an average epoch accuracies in excess of 80% and match outcome

results in excess of 90%. The results of this study demonstrate that accurate near real-

time prediction is achievable under real world conditions using non-simulated on-�eld

transactional data.

In conclusion the Markov model implemented within this study has shown to be prac-

tically acceptable, obtaining far greater accuracies than that of static only ex-ante models.

Further research and exploration is however still needed, and as more data is made avail-

able it is theorised that far more robust and accurate models may be created. In addition

to this more automation in terms of variable selection would also be preferable.

6.2 Contributions

The main focus of this study was to provide a robust and e�cient framework for the

prediction of near real-time AFL match outcome probabilities. Through this research, a

number of contributions speci�c to Australian Rules Football analytics were made. These

contributions are as follows:

� To the best of our knowledge, the framework and methodologies presented within

this thesis are the �rst publicly available of their kind within the realm of Australian

Rules Football prediction.

� The research herein addressed the need for real-time analysis within the AFL. More

speci�cally this research focused on outcome prediction based on data extracted as

a match progresses and is additionally supplemented by data available prior to the

start of a match.

� A variation to the structure of AFL rankings was proposed such that each team is no

longer awarded a �xed number of points after a match but instead awarded points

according to the relative di�culty of the �xture. This could be further augmented

to provide an alternative measure of team `form' and may even lead to an increase

in fan engagement.

� It was demonstrated that a novel yet computationally complex methodology was

able to accurately model match outcomes as a function of in-match transactions

and as such con�rms that currently available technologies can signi�cantly augment

the decision-making process of coaches and team sta�.

� The frameworks used in this study have the potential to be applied in a wide variety

of sports.
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6.3 Future Work

Whilst this research provides a novel framework for accurately forecasting the outcome

of an AFL match as it is in progress, future extensions to the current work could include

the following:

� Update the current database of static and dynamic data so that further and more

in-depth studies can be conducted.

� In addition to the above update it would be worthwhile to run comparative studies

on data pertaining to pre, during, and post the COVID-19 pandemic to see if changes

to scheduling, crowd capacity, and on-�eld rules had any signi�cant e�ect on the

sport.

� With the widespread adoption of new monitoring technologies, the scope of available

data is ever-increasing. As such it would be advantageous to incorporate as many

new sources of data as possible; most notably amongst these are GPS and LPS

receivers which can relay locomotive and positional data.

� Further development of the framework to bundle data importation, feature extrac-

tion, forecasting, and analysis as a standalone application therefore simplifying the

process and making it suitable for the end-user.
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Static Data

A.1 Match Data

MatchData
26 Variables 593473 Observations

Season
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 121 1 1968 38 1908 1918 1942 1974 1998 2009 2012

lowest : 1897 1898 1899 1900 1901, highest: 2013 2014 2015 2016 2017

Round
n missing distinct

593473 0 29

lowest : 1 10 11 12 13, highest: EF GF PF QF SF

Date
n missing distinct

593473 0 4649

lowest : 1897-05-08 1897-05-15 1897-05-22 1897-05-24 1897-05-29
highest: 2017-09-15 2017-09-16 2017-09-22 2017-09-23 2017-09-30

Local.start.time
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 80 0.963 1489 138.8 1408 1410 1410 1420 1445 1910 1940

lowest : 1030 1045 1100 1140 1210, highest: 2010 2015 2038 2040 2100

Venue
n missing distinct

593473 0 46

lowest : Adelaide Oval Albury Arden St Bellerive Oval Blacktown
highest: Western Oval Windy Hill Yallourn Yarraville Oval York Park

Attendance
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 9051 0.999 23716 18562 0 3800 12250 20475 31517 44627 57849

lowest : 0 1071 1327 2000 2127, highest: 116828 116956 118192 119165 121696

Home.team
n missing distinct

593473 0 22

lowest : Adelaide Brisbane Bears Brisbane Lions Carlton Collingwood
highest: St Kilda Sydney University West Coast Western Bulldogs
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X1Q1G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 15 0.974 3.121 2.091 0 1 2 3 4 6 7

lowest : 0 1 2 3 4, highest: 10 11 12 13 15

Value 0 1 2 3 4 5 6 7 8 9 10 11
Frequency 36477 85730 119437 123013 97417 66275 34933 18878 7914 2184 767 324
Proportion 0.061 0.144 0.201 0.207 0.164 0.112 0.059 0.032 0.013 0.004 0.001 0.001

Value 12 13 15
Frequency 40 40 44
Proportion 0.000 0.000 0.000

X1Q1B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 16 0.975 3.232 2.178 0 1 2 3 4 6 7

lowest : 0 1 2 3 4, highest: 11 12 13 14 15

Value 0 1 2 3 4 5 6 7 8 9 10 11
Frequency 34088 82048 117069 122606 95675 66675 38978 18921 10292 4351 1442 858
Proportion 0.057 0.138 0.197 0.207 0.161 0.112 0.066 0.032 0.017 0.007 0.002 0.001

Value 12 13 14 15
Frequency 196 116 118 40
Proportion 0.000 0.000 0.000 0.000

X1Q2G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 22 0.989 6.334 3.216 2 3 4 6 8 10 11

lowest : 0 1 2 3 4, highest: 17 18 19 20 21

X1Q2B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 23 0.988 6.476 3.093 2 3 5 6 8 10 11

lowest : 0 1 2 3 4, highest: 18 19 20 21 24

X1Q3G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 29 0.994 9.58 4.417 4 5 7 9 12 15 16

lowest : 0 1 2 3 4, highest: 24 25 26 27 28

X1Q3B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 28 0.993 9.731 4.049 4 5 7 10 12 15 16

lowest : 0 1 2 3 4, highest: 23 24 25 26 32

X1Q4G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 38 0.996 12.89 5.614 5 7 9 13 16 19 22

lowest : 0 1 2 3 4, highest: 33 34 35 36 37

X1Q4B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 34 0.995 12.97 4.894 6 8 10 13 16 19 21

lowest : 0 1 2 3 4, highest: 29 30 31 32 41

Home.score
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 208 1 90.3 35.51 41 51 68 88 110 132 145

lowest : 3 7 8 9 10, highest: 228 229 233 236 238

Away.team
n missing distinct

593473 0 22

lowest : Adelaide Brisbane Bears Brisbane Lions Carlton Collingwood
highest: St Kilda Sydney University West Coast Western Bulldogs
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X2Q1G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 14 0.971 2.813 2.01 0 1 1 3 4 5 6

lowest : 0 1 2 3 4, highest: 9 10 11 12 13

Value 0 1 2 3 4 5 6 7 8 9 10 11
Frequency 48102 104530 131722 119437 86173 54628 28383 12580 5374 1728 648 84
Proportion 0.081 0.176 0.222 0.201 0.145 0.092 0.048 0.021 0.009 0.003 0.001 0.000

Value 12 13
Frequency 44 40
Proportion 0.000 0.000

X2Q1B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 14 0.972 2.971 2.068 0 1 2 3 4 5 6

lowest : 0 1 2 3 4, highest: 9 10 11 12 13

Value 0 1 2 3 4 5 6 7 8 9 10 11
Frequency 40259 97362 127664 119494 94168 56885 30921 15902 5965 2867 1366 312
Proportion 0.068 0.164 0.215 0.201 0.159 0.096 0.052 0.027 0.010 0.005 0.002 0.001

Value 12 13
Frequency 228 80
Proportion 0.000 0.000

X2Q2G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 21 0.987 5.71 3.064 2 2 4 5 7 9 10

lowest : 0 1 2 3 4, highest: 16 17 18 19 20

X2Q2B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 19 0.987 5.972 2.996 2 3 4 6 8 9 11

lowest : 0 1 2 3 4, highest: 14 15 16 17 18

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Frequency 3045 13777 34221 56717 76286 90735 84832 74160 58735 41836 25147 16684 8168 4988
Proportion 0.005 0.023 0.058 0.096 0.129 0.153 0.143 0.125 0.099 0.070 0.042 0.028 0.014 0.008

Value 14 15 16 17 18
Frequency 2300 1167 400 119 156
Proportion 0.004 0.002 0.001 0.000 0.000

X2Q3G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 28 0.993 8.651 4.233 3 4 6 8 11 14 15

lowest : 0 1 2 3 4, highest: 23 24 25 26 29

X2Q3B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 28 0.992 8.948 3.929 4 5 6 9 11 14 15

lowest : 0 1 2 3 4, highest: 23 24 25 26 27

X2Q4G
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 37 0.996 11.6 5.297 4 6 8 11 15 18 20

lowest : 0 1 2 3 4, highest: 32 34 35 36 37

X2Q4B
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 35 0.995 11.91 4.718 5 7 9 12 15 17 19

lowest : 0 1 2 3 4, highest: 30 31 32 34 35

Away.score
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

593473 0 202 1 81.52 33.51 36 45 61 79 100 120 134

lowest : 1 2 3 5 6, highest: 211 216 222 231 239
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A.2 Team Rankings

RankData
4 Variables 6729 Observations

Season
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

6729 0 18 0.997 2009 6.032 2000 2001 2004 2009 2013 2016 2017

lowest : 2000 2001 2002 2003 2004, highest: 2013 2014 2015 2016 2017

Value 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Frequency 352 352 352 352 352 352 352 352 352 352 352 373 414 414
Proportion 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.055 0.062 0.062

Value 2014 2015 2016 2017
Frequency 414 414 414 414
Proportion 0.062 0.062 0.062 0.062

Round
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

6729 0 23 0.998 11.69 7.449 2 3 6 12 17 21 22

lowest : 1 2 3 4 5, highest: 19 20 21 22 23

Team
n missing distinct

6729 0 34

lowest : AD Adelaide BL Brisbane Lions CA
highest: Sydney WB WC West Coast Western Bulldogs

Rank
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

6729 0 20 0.997 8.894 5.613 1 2 5 9 13 16 16

lowest : 1 2 3 4 5, highest: 16 17 18 19 20

Value 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 402 402 402 403 401 403 402 403 401 403 401 402 402 402
Proportion 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Value 15 16 17 18 19 20
Frequency 401 402 158 137 1 1
Proportion 0.060 0.060 0.023 0.020 0.000 0.000
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A.3 Membership Numbers

Membership
24 Variables 20 Observations

Team
n missing distinct
20 0 20

lowest : Adelaide Brisbane Bears Brisbane Lions Carlton Collingwood
highest: Richmond St Kilda Sydney West Coast Western Bulldogs

X1995
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.996 13398 11257 0 0 6893 12470 18138 24132 27563

lowest : 0 6088 6893 8806 8870, highest: 18456 22543 23833 26821 41654

Value 0 6088 6893 8806 8870 9544 12212 12728 14027 14647 15922 18032 18456 22543
Frequency 3 1 2 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.15 0.05 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 23833 26821 41654
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X1996
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.996 14910 11381 0 0 10082 13670 20419 24660 28411

lowest : 0 7628 9525 10267 10650, highest: 20752 23278 24324 27681 42283

Value 0 7628 9525 10267 10650 12484 12964 14375 14438 17346 19622 20308 20752 23278
Frequency 3 1 1 2 1 1 1 1 1 1 1 1 1 1
Proportion 0.15 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 24324 27681 42283
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X1997
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 19117 13560 0 0 15276 19659 25489 33538 36088

lowest : 0 15054 15350 16610 16769, highest: 27005 28063 33286 35809 41395

Value 0 15054 15350 16610 16769 18858 19368 19949 22109 22761 24975 24984 27005 28063
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 33286 35809 41395
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X1998
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 16 0.992 21141 14354 0 0 17430 22695 27237 37577 38489

lowest : 0 16108 17870 19971 20064, highest: 27649 31089 37496 38305 41985

Value 0 16108 17870 19971 20064 20196 22186 23204 25402 27092 27099 27649 31089 37496
Frequency 4 1 1 1 1 1 1 1 1 1 2 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.05 0.05 0.05

Value 38305 41985
Frequency 1 1
Proportion 0.05 0.05

X1999
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 22086 14684 0 0 19018 23488 31411 36307 37414

lowest : 0 16931 19713 20491 20793, highest: 32120 32358 36212 37166 42120

Value 0 16931 19713 20491 20793 21032 22080 24896 25719 29047 29858 31175 32120 32358
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 36212 37166 42120
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2000
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 21925 14694 0 0 18006 25260 29243 35319 39069

lowest : 0 17855 18056 18227 20295, highest: 30177 34278 34925 38868 42896

Value 0 17855 18056 18227 20295 22156 24925 25595 26869 26879 27571 28932 30177 34278
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 34925 38868 42896
Frequency 1 1 1
Proportion 0.05 0.05 0.05
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X2001
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 22368 14533 0 0 18896 24659 30469 36469 38817

lowest : 0 18330 19085 21409 22248, highest: 31455 33296 36227 38649 42014

Value 0 18330 19085 21409 22248 22940 23898 25420 26501 27725 28022 30140 31455 33296
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 36227 38649 42014
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2002
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 22477 15051 0 0 19538 23766 32742 35320 36749

lowest : 0 17696 20152 20831 20838, highest: 33319 34880 35219 36229 46620

Value 0 17696 20152 20831 20838 22288 23756 23775 26385 27251 27755 32549 33319 34880
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 35219 36229 46620
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2003
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 23159 15378 0 0 21084 24191 32359 36656 40787

lowest : 0 20555 21260 21270 21403, highest: 33525 35425 36234 40455 47097

Value 0 20555 21260 21270 21403 23626 24017 24365 25101 25368 31500 31970 33525 35425
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 36234 40455 47097
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2004
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 24739 15933 0 0 20309 28677 32952 40826 41354

lowest : 0 19295 20647 23420 25010, highest: 33469 36340 40792 41128 45642

Value 0 19295 20647 23420 25010 25021 27133 30221 30534 31255 32095 32780 33469 36340
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 40792 41128 45642
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2005
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 25325 15364 0 0 23609 29087 33695 38991 42449

lowest : 0 21974 24154 24805 24955, highest: 34178 36834 38612 42406 43256

Value 0 21974 24154 24805 24955 28029 28913 29261 30821 32043 32734 33534 34178 36834
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 38612 42406 43256
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2006
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 25956 15841 0 0 24680 29081 33295 38648 44438

lowest : 0 24624 24698 26042 26459, highest: 35648 35666 38038 44138 50138

Value 0 24624 24698 26042 26459 28003 28756 29406 30382 32290 32327 32511 35648 35666
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 38038 44138 50138
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2007
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 26635 16865 0 0 22269 30107 34413 43604 46200

lowest : 0 21976 22366 28077 28725, highest: 35431 38587 43343 45949 50976

Value 0 21976 22366 28077 28725 28764 30044 30169 30394 31064 32759 34073 35431 38587
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 43343 45949 50976
Frequency 1 1 1
Proportion 0.05 0.05 0.05
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X2008
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 28699 17701 0 0 25725 31710 41564 43516 45056

lowest : 0 22737 26721 28306 29516, highest: 41947 42498 43366 44863 48720

Value 0 22737 26721 28306 29516 30063 30820 32600 34185 36850 39360 41436 41947 42498
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 43366 44863 48720
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2009
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 29337 18467 0 0 25920 31706 40911 46022 46773

lowest : 0 24873 26269 28215 28340, highest: 42408 43927 45972 46472 52496

Value 0 24873 26269 28215 28340 30605 31506 31906 36981 37160 39206 40412 42408 43927
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 45972 46472 52496
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2010
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 17 0.992 30713 19464 0 0 26910 34659 40507 46388 54150

lowest : 0 26779 26953 28671 29092, highest: 40589 44160 45545 53978 57408

Value 0 26779 26953 28671 29092 32077 33358 35960 39021 39854 40326 40480 40589 44160
Frequency 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 45545 53978 57408
Frequency 1 1 1
Proportion 0.05 0.05 0.05

X2011
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 18 0.997 32519 20865 0 0 25528 38107 42876 45870 56976

lowest : 0 11141 20792 27106 28761, highest: 43216 43791 44719 56224 71271

Value 0 11141 20792 27106 28761 29710 32581 36937 39276 39343 40184 42559 42762 43216
Frequency 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 43791 44719 56224 71271
Frequency 1 1 1 1
Proportion 0.05 0.05 0.05 0.05

X2012
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 35374 22492 0 9217 27595 35501 46295 57723 61433

lowest : 0 10241 11204 20762 29873, highest: 47780 53027 57377 60841 72688

Value 0 10241 11204 20762 29873 30007 33423 35440 35459 35543 40000 42918 45105 45800
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 47780 53027 57377 60841 72688
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05

X2013
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 37836 24176 0 11252 28689 38098 51966 60624 64107

lowest : 0 12502 12681 24130 30209, highest: 56173 58501 60321 63353 78427

Value 0 12502 12681 24130 30209 32707 33177 34607 36358 39838 42884 43880 46405 50564
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 56173 58501 60321 63353 78427
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05

X2014
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 37619 24229 0 10526 25778 39333 51917 63687 65828

lowest : 0 11696 12806 23247 26622, highest: 53026 55700 63486 65494 72170

Value 0 11696 12806 23247 26622 29332 33419 34716 38000 40666 45911 46549 48000 51547
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 53026 55700 63486 65494 72170
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05
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X2015
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 41807 26006 0 12132 30912 45809 55598 71021 73030

lowest : 0 13480 13643 25408 32746, highest: 60221 60818 70809 72924 75037

Value 0 13480 13643 25408 32746 35222 35953 41012 44312 47305 48836 51433 52920 54057
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 60221 60818 70809 72924 75037
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05

X2016
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 43760 26220 0 11569 34328 50351 56766 72515 74678

lowest : 0 12854 15312 23286 38009, highest: 57494 65188 72278 74643 75351

Value 0 12854 15312 23286 38009 39146 39459 45014 50130 50571 51889 53743 54307 56523
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 57494 65188 72278 74643 75351
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05

X2017
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95
20 0 19 0.999 45378 26737 0 10499 35598 50790 60395 72968 75674

lowest : 0 11665 20944 21362 40343, highest: 65064 67768 72669 75663 75879

Value 0 11665 20944 21362 40343 42052 42233 47653 50326 51254 52129 54854 56865 58838
Frequency 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Value 65064 67768 72669 75663 75879
Frequency 1 1 1 1 1
Proportion 0.05 0.05 0.05 0.05 0.05
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A.4 Home Grounds

HomeGrounds
9 Variables 21 Observations

Team
n missing distinct
21 0 21

lowest : Adelaide Brisbane Bears Brisbane Lions Carlton Collingwood
highest: St Kilda Sydney University West Coast Western Bulldogs

Home1
n missing distinct
21 0 10

lowest : Adelaide Oval Brunswick St Carrara Docklands East Melbourne
highest: Gabba Kardinia Park M.C.G. Stadium Australia Subiaco

Adelaide Oval (2, 0.095), Brunswick St (1, 0.048), Carrara (2, 0.095), Docklands (5, 0.238),
East Melbourne (1, 0.048), Gabba (1, 0.048), Kardinia Park (1, 0.048), M.C.G. (4, 0.190),
Stadium Australia (2, 0.095), Subiaco (2, 0.095)

Home2
n missing distinct
18 3 16

lowest : Bellerive Oval Cazaly's Stadium Corio Oval East Melbourne Football Park
highest: Sydney Showground Victoria Park W.A.C.A. Westpac Stadium York Park

Bellerive Oval (1, 0.056), Cazaly's Stadium (1, 0.056), Corio Oval (1, 0.056), East Melbourne
(1, 0.056), Football Park (2, 0.111), Gabba (1, 0.056), Junction Oval (1, 0.056), Marrara Oval
(1, 0.056), Princes Park (1, 0.056), Punt Rd (1, 0.056), S.C.G. (1, 0.056), Sydney Showground
(1, 0.056), Victoria Park (1, 0.056), W.A.C.A. (2, 0.111), Westpac Stadium (1, 0.056), York
Park (1, 0.056)

Home3
n missing distinct
12 9 10

lowest : Arden St Brisbane Exhibition Domain Stadium Euroa Glenferrie Oval
highest: Junction Oval Manuka Oval Princes Park Traeger Park Windy Hill

Arden St (1, 0.083), Brisbane Exhibition (1, 0.083), Domain Stadium (2, 0.167), Euroa (1,
0.083), Glenferrie Oval (1, 0.083), Junction Oval (1, 0.083), Manuka Oval (1, 0.083), Princes
Park (2, 0.167), Traeger Park (1, 0.083), Windy Hill (1, 0.083)

Home4
n missing distinct
10 11 9

lowest : Blacktown Brisbane Exhibition Coburg Oval Etihad Stadium Moorabbin Oval
highest: Moorabbin Oval Princes Park Punt Rd UNSW Canberra Oval Victoria Park

Blacktown (1, 0.1), Brisbane Exhibition (1, 0.1), Coburg Oval (1, 0.1), Etihad Stadium (2,
0.2), Moorabbin Oval (1, 0.1), Princes Park (1, 0.1), Punt Rd (1, 0.1), UNSW Canberra Oval (1,
0.1), Victoria Park (1, 0.1)

Home5
n missing distinct
7 14 6

lowest : Albury Etihad Stadium Mars Stadium Simonds Stadium Waverley Park
highest: Etihad Stadium Mars Stadium Simonds Stadium Waverley Park Western Oval

Value Albury Etihad Stadium Mars Stadium Simonds Stadium Waverley Park
Frequency 1 1 1 1 2
Proportion 0.143 0.143 0.143 0.143 0.286

Value Western Oval
Frequency 1
Proportion 0.143

Home6
n missing distinct
4 17 4

Value Bruce Stadium Etihad Stadium Euroa Toorak Park
Frequency 1 1 1 1
Proportion 0.25 0.25 0.25 0.25

Home7
n missing distinct value
1 20 1 Yallourn

Value Yallourn
Frequency 1
Proportion 1
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Home8
n missing distinct value
1 20 1 Etihad Stadium

Value Etihad Stadium
Frequency 1
Proportion 1
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Champion Data Statistics

B.1 Summary of Raw Champion Data

a�.club.trx
67 Variables 739224 Observations

FIXED_ID

n missing distinct Info Mean Gmd .05 .10 .25
739224 0 225 1 100741592 1463 100740202 100740303 100740607
.50 .75 .90 .95
100741301 100741902 100742207 100742308

lowest : 100740101 100740102 100740103 100740104 100740105
highest: 100750201 100750202 100750301 100750302 100750401

MATCH_DATE
n missing distinct

739224 0 89

lowest : 2017-03-23 2017-03-24 2017-03-25 2017-03-26 2017-03-30
highest: 2017-09-15 2017-09-16 2017-09-22 2017-09-23 2017-09-30

MATCH_TIME
n missing distinct

739224 0 24

lowest : 13:10 13:15 13:40 13:45 14:10, highest: 19:10 19:20 19:25 19:50 20:00

SEASON_ID
n missing distinct Info Mean Gmd

739224 0 1 0 2017 0

Value 2017
Frequency 739224
Proportion 1

GROUP_ROUND_NO
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739224 0 27 0.998 12.52 8.218 2 3 6 13 19 22 23

lowest : 1 2 3 4 5, highest: 23 24 25 26 27

VENUE_NAME
n missing distinct

739224 0 18

lowest : Adelaide Oval Blundstone Arena Cazaly's Stadium Domain Stadium
highest: Spotless Stadium TIO Stadium TIO Traeger Park University of Tasmania Stadium UNSW Canberra Oval

HOME_SQUAD
n missing distinct

739224 0 18

lowest : Adelaide Crows Brisbane Lions Carlton Collingwood Essendon
highest: Richmond St Kilda Sydney Swans West Coast Eagles Western Bulldogs
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HOME_SCORE
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 84 1 92.69 28.09 56 61 77 89 110 127 138

lowest : 38 40 44 48 50, highest: 143 145 147 153 160

AWAY_SQUAD
n missing distinct

739224 0 19

lowest : Adelaide Crows Brisbane Lions BYE Carlton Collingwood
highest: Richmond St Kilda Sydney Swans West Coast Eagles Western Bulldogs

AWAY_SCORE
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 86 1 85.69 27.12 47 56 70 84 100 117 130

lowest : 20 39 42 43 45, highest: 146 150 153 155 163

MATCH_TRX_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
739206 18 11795 1 1525364 1258789 11800 24410 65310 1067405
.75 .90 .95
2066400 3036400 3048800

Value 0 50000 1000000 1050000 1100000 2000000 2050000 3000000 3050000 4000000
Frequency 75637 111844 75903 107016 28 75853 109309 76040 107100 255
Proportion 0.102 0.151 0.103 0.145 0.000 0.103 0.148 0.103 0.145 0.000

Value 5000000
Frequency 221
Proportion 0.000

SEQUENCE
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 10 0.351 1.338 0.6245 1 1 1 1 1 2 3

Value 1 2 3 4 5 6 7 8 10 11
Frequency 639795 60020 6446 6051 6050 6049 6044 6041 1421 1289
Proportion 0.866 0.081 0.009 0.008 0.008 0.008 0.008 0.008 0.002 0.002

PERIOD
n missing distinct Info Mean Gmd

739206 18 6 0.938 2.495 1.254

Value 1 2 3 4 5 6
Frequency 187481 182947 185162 183140 255 221
Proportion 0.254 0.247 0.250 0.248 0.000 0.000

PERIOD_SECS
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 2232 1 901.4 629.1 58 151 430 896 1366 1649 1755

lowest : 0 1 2 3 4, highest: 2324 2328 2332 2337 2339

STATISTIC_CODE
n missing distinct

739224 0 173

lowest : BALKD BAULK BEHI BHAS , highest: TIHO TIHSD TIHSK TISM TIVS

PERSON_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
677629 61595 661 1 374038 182112 240072 250222 270917 291533
.75 .90 .95
296078 992462 996483

Value 200000 210000 220000 230000 240000 250000 260000 270000 280000 290000
Frequency 1153 4813 12579 11491 28757 36215 48292 49383 77748 207815
Proportion 0.002 0.007 0.019 0.017 0.042 0.053 0.071 0.073 0.115 0.307

Value 300000 990000 1000000 1010000
Frequency 109066 50704 39253 360
Proportion 0.161 0.075 0.058 0.001

FULLNAME
n missing distinct

739224 0 662

lowest : Aaron Black Aaron Francis Aaron Hall Aaron Mullett
highest: Zach Guthrie Zach Merrett Zach Tuohy Zaine Cordy Zak Jones
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SQUAD_NAME
n missing distinct

739224 0 19

lowest : Adelaide Crows Brisbane Lions Carlton Collingwood
highest: Richmond St Kilda Sydney Swans West Coast Eagles Western Bulldogs

OPP_SQUAD
n missing distinct

739224 0 19

lowest : Adelaide Crows Brisbane Lions Carlton Collingwood
highest: Richmond St Kilda Sydney Swans West Coast Eagles Western Bulldogs

AR_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
18759 720465 164 0.999 328503 112852 250088 250298 270811 280763
.75 .90 .95
293957 298174 992752

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 365 276 48 143 1367 2169 1868 4392 4755 2035
Proportion 0.019 0.015 0.003 0.008 0.073 0.116 0.100 0.234 0.253 0.108

Value 990000 1000000
Frequency 550 791
Proportion 0.029 0.042

AR
n missing distinct

739224 0 165

lowest : Aaron Francis Aaron Sandilands Adam Treloar Alex Rance
highest: Will Langford Wylie Buzza Zac Smith Zac Williams Zaine Cordy

H1_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6052 733172 225 1 354534 157530 230231 240712 270896 290683
.75 .90 .95
294429 990704 993979

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 37 183 112 280 380 434 679 598 1902 789
Proportion 0.006 0.030 0.019 0.046 0.063 0.072 0.112 0.099 0.314 0.130

Value 990000 1000000
Frequency 389 269
Proportion 0.064 0.044

H1
n missing distinct

739224 0 226

lowest : Aaron Hall Adam Treloar Alex Neal-Bullen Andrew Gaff
highest: Will Langford Will Setterfield Zac Williams Zach Merrett Zak Jones

H2_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6050 733174 229 1 354835 156793 240052 250105 270908 290671
.75 .90 .95
294472 990704 993979

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 40 122 131 290 358 452 644 699 1877 780
Proportion 0.007 0.020 0.022 0.048 0.059 0.075 0.106 0.116 0.310 0.129

Value 990000 1000000
Frequency 413 244
Proportion 0.068 0.040

H2
n missing distinct

739224 0 230

lowest : Aaron Hall Aaron Young Adam Treloar Alex Neal-Bullen
highest: Will Langford Will Setterfield Zac Williams Zach Merrett Zak Jones
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H3_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6044 733180 237 1 367292 176055 230231 240417 270896 290832
.75 .90 .95
295445 992462 996701

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 57 155 100 320 308 478 577 590 1888 809
Proportion 0.009 0.026 0.017 0.053 0.051 0.079 0.095 0.098 0.312 0.134

Value 990000 1000000
Frequency 389 373
Proportion 0.064 0.062

H3
n missing distinct

739224 0 238

lowest : Aaron Hall Aaron Young Adam Treloar Alex Neal-Bullen
highest: Will Langford Will Setterfield Zac Williams Zach Merrett Zak Jones

A1_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6051 733173 240 1 365569 171655 240027 240712 270912 290847
.75 .90 .95
295467 992016 994539

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 43 146 113 306 247 443 639 587 1935 850
Proportion 0.007 0.024 0.019 0.051 0.041 0.073 0.106 0.097 0.320 0.140

Value 990000 1000000 1010000
Frequency 445 292 5
Proportion 0.074 0.048 0.001

A1
n missing distinct

739224 0 241

lowest : Aaron Hall Aaron Young Adam Treloar Alex Neal-Bullen
highest: Will Brodie Will Langford Zac Williams Zach Merrett Zak Jones

A2_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6049 733175 236 1 354162 152570 240124 250298 270912 290778
.75 .90 .95
295136 990704 993979

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 31 90 84 281 339 473 616 708 1897 890
Proportion 0.005 0.015 0.014 0.046 0.056 0.078 0.102 0.117 0.314 0.147

Value 990000 1000000 1010000
Frequency 376 259 5
Proportion 0.062 0.043 0.001

A2
n missing distinct

739224 0 237

lowest : Aaron Hall Adam Treloar Alex Neal-Bullen Alex Sexton
highest: Will Langford Will Setterfield Zac Williams Zach Merrett Zak Jones

A3_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6041 733183 243 1 365062 172414 240124 250105 261911 290778
.75 .90 .95
295313 992016 996483

Value 210000 220000 230000 240000 250000 260000 270000 280000 290000 300000
Frequency 40 88 134 323 372 565 475 682 1800 819
Proportion 0.007 0.015 0.022 0.053 0.062 0.094 0.079 0.113 0.298 0.136

Value 990000 1000000 1010000
Frequency 424 314 5
Proportion 0.070 0.052 0.001

A3
n missing distinct

739224 0 244

lowest : Aaron Hall Aaron Young Adam Treloar Alex Neal-Bullen
highest: Will Langford Will Setterfield Zac Williams Zach Merrett Zak Jones
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ZONE_LOGICAL_AFL
n missing distinct

739224 0 7

Value AM CB D50 DM F50 U
Frequency 26 194032 31745 131139 182237 109303 90742
Proportion 0.000 0.262 0.043 0.177 0.247 0.148 0.123

ZONE_PHYSICAL_AFL
n missing distinct

739224 0 6

Value L50 LM M R50 RM
Frequency 18 125665 192727 99253 129832 191729
Proportion 0.000 0.170 0.261 0.134 0.176 0.259

TRUEX
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

348617 390607 1700 1 0.6205 48.32 -65.1 -56.3 -35.3 0.2 36.6 58.0 66.5

lowest : -86.6 -86.4 -86.0 -85.6 -85.4, highest: 85.8 85.9 86.1 86.3 86.6

TRUEY
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

348617 390607 1413 1 -0.5899 37.99 -51.7 -44.8 -28.2 -1.0 26.2 45.4 53.0

lowest : -70.6 -70.5 -70.4 -70.3 -70.2, highest: 70.2 70.3 70.4 70.5 70.6

VENUE_LENGTH
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 11 0.88 162.9 5.777 155 156 160 160 167 175 175

Value 155 156 160 161 162 164 165 167 168 170 175
Frequency 42126 38089 360141 35906 11355 32070 3355 91248 3714 39477 81725
Proportion 0.057 0.052 0.487 0.049 0.015 0.043 0.005 0.123 0.005 0.053 0.111

VENUE_WIDTH
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

739206 18 13 0.97 131.3 8.563 122 122 123 129 140 141 141

Value 115 122 123 124 128 129 132 134 135 136 138 140
Frequency 25032 78033 91248 11248 32070 171136 3714 35906 7047 42126 49444 14445
Proportion 0.034 0.106 0.123 0.015 0.043 0.232 0.005 0.049 0.010 0.057 0.067 0.020

Value 141
Frequency 177757
Proportion 0.240

STDX
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

348617 390607 1601 1 0.6105 47.6 -64.1 -55.3 -35.0 0.2 36.2 57.1 65.5

lowest : -79.9 -79.8 -79.7 -79.6 -79.5, highest: 79.7 79.8 79.9 80.0 80.1

STDY
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

348617 390607 1383 1 -0.5945 39.12 -53.8 -46.3 -28.5 -1.0 26.5 47.0 55.1

lowest : -69.1 -69.0 -68.9 -68.8 -68.7, highest: 68.7 68.8 68.9 69.0 69.1

XY_FLIP
n missing distinct Info Mean Gmd

739224 0 2 0.75 0.002746 1

Value -1 1
Frequency 368597 370627
Proportion 0.499 0.501

INITIAL_TRX_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
737472 1752 3478 1 1524905 1258524 11400 23900 64900 1067100
.75 .90 .95
2065700 3035900 3048200

Value 0 50000 1000000 1050000 1100000 2000000 2050000 3000000 3050000 4000000
Frequency 76732 110234 77399 105144 11 77264 107585 77459 105172 254
Proportion 0.104 0.149 0.105 0.143 0.000 0.105 0.146 0.105 0.143 0.000

Value 5000000
Frequency 218
Proportion 0.000
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FINAL_TRX_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
737472 1752 5254 1 1526061 1258525 12600 25300 65900 1068000
.75 .90 .95
2066900 3036910 3049500

Value 0 50000 1000000 1050000 1100000 2000000 2050000 3000000 3050000 4000000
Frequency 73179 113787 73960 108558 36 73603 111246 74050 108581 254
Proportion 0.099 0.154 0.100 0.147 0.000 0.100 0.151 0.100 0.147 0.000

Value 5000000
Frequency 218
Proportion 0.000

CHAIN_SQUAD
n missing distinct

739224 0 19

lowest : Adelaide Crows Brisbane Lions Carlton Collingwood
highest: Richmond St Kilda Sydney Swans West Coast Eagles Western Bulldogs

INITIAL_STATE
n missing distinct

739224 0 6

Value BU CB KI PG TI
Frequency 1752 88394 150738 50371 318061 129908
Proportion 0.002 0.120 0.204 0.068 0.430 0.176

FINAL_STATE
n missing distinct

739224 0 9

Value BEHI BU GOAL OOB ORUSH PC RUSH TO
Frequency 8063 68387 68211 96063 91829 501 47315 13560 345295
Proportion 0.011 0.093 0.092 0.130 0.124 0.001 0.064 0.018 0.467

ZONE_LOGICAL_INITIAL
n missing distinct

739224 0 6

Value AM CB D50 DM F50
Frequency 3430 154400 148744 217265 172440 42945
Proportion 0.005 0.209 0.201 0.294 0.233 0.058

FINAL_ZONE_LOGICAL
n missing distinct

739224 0 6

Value AM CB D50 DM F50
Frequency 3430 168549 6265 26058 129315 405607
Proportion 0.005 0.228 0.008 0.035 0.175 0.549

LAUNCH_PERSON_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
717863 21361 648 1 367294 173436 240052 250267 270896 290832
.75 .90 .95
295461 992016 996442

Value 200000 210000 220000 230000 240000 250000 260000 270000 280000 290000
Frequency 981 4894 13986 14986 26974 40148 55902 57896 89646 215735
Proportion 0.001 0.007 0.019 0.021 0.038 0.056 0.078 0.081 0.125 0.301

Value 300000 990000 1000000 1010000
Frequency 107253 50215 39035 212
Proportion 0.149 0.070 0.054 0.000

LAUNCH_PLAYER
n missing distinct

739224 0 649

lowest : Aaron Black Aaron Francis Aaron Hall Aaron Mullett
highest: Zach Guthrie Zach Merrett Zach Tuohy Zaine Cordy Zak Jones

GUILTY_PERSON_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
342629 396595 650 1 387873 200309 240072 250134 270951 291784
.75 .90 .95
296322 993798 996580

Value 200000 210000 220000 230000 240000 250000 260000 270000 280000 290000
Frequency 894 2089 6211 5444 15646 17233 21061 22814 33178 107511
Proportion 0.003 0.006 0.018 0.016 0.046 0.050 0.061 0.067 0.097 0.314

Value 300000 990000 1000000 1010000
Frequency 58501 30176 21596 275
Proportion 0.171 0.088 0.063 0.001
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GUILTY_PLAYER
n missing distinct

739224 0 651

lowest : Aaron Black Aaron Francis Aaron Hall Aaron Mullett
highest: Zach Guthrie Zach Merrett Zach Tuohy Zaine Cordy Zak Jones

PARAM1
n missing distinct

739224 0 26

lowest : CENTRE CENTRE_BOUNCE_INFRINGEMENT CHOPPING_THE_ARMS CORRIDOR
highest: PUSH_IN_BACK RIGHT RUN_TOO_FAR THROWING_THE_BALL TRIP_SLIDE

PARAM2
n missing distinct

739224 0 16

(691267, 0.935), BOMB (3722, 0.005), DELIBERATE_SNAP (403, 0.001), GENERAL (7286, 0.010),
GO_TO (12593, 0.017), GO_TO_NO_CHANCE (1363, 0.002), MARK_PLAY_ON (417, 0.001), MARKING (3901,
0.005), OFF_GROUND (224, 0.000), ON_RUN_IN_GENERAL_PLAY (2381, 0.003), OTHER (3786, 0.005),
RUCK (825, 0.001), SCORE (94, 0.000), SET_SHOT (5036, 0.007), SNAP (2591, 0.004), TACKLING
(3335, 0.005)

PARAM3
n missing distinct

739224 0 8

Value BOUNDARY_LEFT BOUNDARY_RIGHT DIRECTLY_IN_FRONT
Frequency 728172 321 322 1683
Proportion 0.985 0.000 0.000 0.002

Value ZONE_1 ZONE_2 ZONE_3 ZONE_4
Frequency 1625 2968 2822 1311
Proportion 0.002 0.004 0.004 0.002

PARAM4
n missing distinct

739224 0 6

Value M0_15 M15_30 M30_40 M40_50 M50_PLUS
Frequency 728172 1189 2506 2677 3094 1586
Proportion 0.985 0.002 0.003 0.004 0.004 0.002

KICK_FOOT
n missing distinct

739224 0 3

Value Left Right
Frequency 648558 25051 65615
Proportion 0.877 0.034 0.089

KICK_INTENT
n missing distinct

739224 0 9

Value Backwards Lead Covered Distance Goal
Frequency 648558 401 62418 3024 10919
Proportion 0.877 0.001 0.084 0.004 0.015

Value Goal Smothered Lead Open Pack
Frequency 86 5523 2412 5883
Proportion 0.000 0.007 0.003 0.008

KICK_DISTANCE
n missing distinct

739224 0 4

Value Chip Long Short
Frequency 648555 11538 36670 42461
Proportion 0.877 0.016 0.050 0.057

KICK_DIRECTION
n missing distinct

739224 0 4

Value Backward Forward Lateral
Frequency 648556 5528 78219 6921
Proportion 0.877 0.007 0.106 0.009

PRESSURE_LEVEL
n missing distinct

739224 0 7

Value Chasing Closing Corralling None Physical Set
Frequency 555504 4236 29326 46502 18241 40793 44622
Proportion 0.751 0.006 0.040 0.063 0.025 0.055 0.060
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PRESSURE_PLAYER_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
120734 618490 656 1 402769 218947 240124 250298 271078 291806
.75 .90 .95
296420 993905 997033

Value 200000 210000 220000 230000 240000 250000 260000 270000 280000 290000
Frequency 144 785 1835 1694 5180 5777 8055 7429 12521 35732
Proportion 0.001 0.007 0.015 0.014 0.043 0.048 0.067 0.062 0.104 0.296

Value 300000 990000 1000000 1010000
Frequency 20782 11489 9184 127
Proportion 0.172 0.095 0.076 0.001

PRESSURE_PLAYER
n missing distinct

739224 0 657

lowest : Aaron Black Aaron Francis Aaron Hall Aaron Mullett
highest: Zach Guthrie Zach Merrett Zach Tuohy Zaine Cordy Zak Jones

PRESSURE_PLAYER2_ID

n missing distinct Info Mean Gmd .05 .10 .25 .50
6508 732716 628 1 400481 214480 240226 250298 280109 291806
.75 .90 .95
296420 993903 997100

Value 200000 210000 220000 230000 240000 250000 260000 270000 280000 290000
Frequency 6 29 94 86 284 305 388 370 670 2057
Proportion 0.001 0.004 0.014 0.013 0.044 0.047 0.060 0.057 0.103 0.316

Value 300000 990000 1000000 1010000
Frequency 1125 573 508 13
Proportion 0.173 0.088 0.078 0.002

PRESSURE_PLAYER2
n missing distinct

739224 0 629

lowest : Aaron Black Aaron Francis Aaron Hall Aaron Mullett
highest: Zach Guthrie Zach Merrett Zach Tuohy Zaine Cordy Zak Jones

PRESSURE_POINTS
n missing distinct Info Mean Gmd

183720 555504 6 0.953 1.812 1.199

Value 0.75 1.00 1.20 1.50 2.25 3.75
Frequency 44622 18241 46502 4236 29326 40793
Proportion 0.243 0.099 0.253 0.023 0.160 0.222
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B.2 Description of Supplied Transaction Data

Table B.1: Descriptions of Champion Data transactional data. (Stats glossary:

Every stat explained 2017)

Statistic Description

BAULK
Using deception as the ball carrier to beat an opponent,

by sidestepping or feigning disposal.

BEHIND
A minor score, as judged by the goal umpire. Behinds are

worth one point to a team's total score.

BEHIND ASSIST

Creating a behind by getting the ball to a teammate either

via a disposal, knock-on, ground kick or hit-out, or by winning a free kick

before the advantage is paid to the goal scorer.

BLOCK
E�ectively shepherding an opponent out of a contest to

the bene�t of a teammate.

BROKEN TACKLE
Evading a tackle attempt by an opponent and legally

disposing of the ball in space.

CLANGER HANDBALL Handballs that give possession directly to the opposition.

CLANGER KICK Kicks that give possession directly to the opposition.

CLEARANCE

Credited to the player who has the �rst e�ective

disposal in a chain that clears the stoppage area, or an ine�ective kick or

clanger kick that clears the stoppage area.

CONTESTED KNOCK ON
Using the hand to knock the ball to a teammate's advantage

rather than attempting to take possession from a contested situation.

CONTESTED MARK
When a player takes a mark under physical pressure of an

opponent or in a pack.

CONTESTED MARK FROM OPP

CONTESTED MARK FROM TEAM

CONTESTED POSSESSION

A possession which has been won when the ball is in

dispute. Includes looseball-gets, hardball-gets, contested marks, gathers

from a hit-out and frees for.

CRUMB

A type of groundball-get that is won by a player at ground

level after a marking contest. The player must not be involved in the

original contest. Crumbing Possessions can be either hardball or

looseball-gets.

DISPOSAL Legally getting rid of the ball, via a handball or kick.

EFFECTIVE DISPOSAL

EFFECTIVE HANDBALL A handball to a teammate that hits the intended target.

EFFECTIVE KICK

A kick of more than 40 metres to a 50/50 contest or better

for the team or a kick of less than 40 metres that results in the intended

target retaining possession.

FIRST POSSESSION

The initial possession that follows a stoppage, including

a looseball-get, hardball-get, intended ball-get (gather), free kick or

ground kick.

FREE AGAINST
When an infringement occurs resulting in the opposition

receiving a free kick from the umpires.

FREE FOR
When a player is interfered with and is awarded a free

kick by the umpires.

GATHER

Possessions that were a result of a teammate deliberately

directing the ball in the player's direction, via a hit-out, disposal or

knock-on, excluding marks and handball receives. Gathers from a hit-out are

contested possessions the rest are uncontested.

GATHER FROM HIT-OUT
A possession gained from a teammate's hit-out to advantage.

Counted as a contested possession.

GOAL
A major score, as judged by the goal umpire. Worth six

points to a team's total score.
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GOAL ASSIST

Creating a goal by getting the ball to a teammate either

via a disposal, knock-on, ground kick or hitout, or by winning a free kick

before the advantage is paid to the goal scorer.

GROUND BALL GET
Contested possessions won at ground level, excluding free

kicks. Groundball gets can either be hardball gets or looseball gets.

GROUND KICK

A deliberate kick without taking possession that gains

either signi�cant distance from the point of contact or an uncontested

possession for a teammate.

HANDBALL Disposing of the ball by hand.

HARDBALL GET

A disputed ball at ground level under direct physical

pressure or out of a ruck contest, resulting in an opportunity to e�ect a

legal disposal.

HIT-OUT

Knocking the ball out of a ruck contest following a

stoppage with clear control, regardless of which side wins the following

contest at ground level.

HIT-OUT SHARK
Winning clear possession of the ball from the opposition

ruck's hit-out.

HIT-OUT SHARKED
A hit-out that directly results in an opponent's

possession.

HIT-OUT TO ADVANTAGE A hit-out that reaches an intended teammate.

HOLD Holding the ball in when the umpire calls for a ball up.

INEFFECTIVE GROUND KICK
Ground kicks that are not advantageous to the team, but do

not directly turn the ball over to the opposition.

INEFFECTIVE HANDBALL
Handballs that are not advantageous to the team, but do

not directly turn the ball over to the opposition.

INEFFECTIVE KICK
Kicks that are not advantageous to the team, but do not

directly turn the ball over to the opposition.

INSIDE 50
Moving the ball from the mid�eld into the forward zone.

Excludes multiple entries within the same chain of possession.

INSIDE 50 TARGET

Recorded when a player inside the forward 50 is clearly

the sole target of a teammate's kick into the forward 50. The inside 50

target player will be recorded regardless of the outcome of the kick.

KICK

KICK BACKWARDS

KICK-IN

When a player kicks the ball back into play after an

opposition behind. Kick-ins are regarded as a function of the team and do not

count as kicks, although they are similarly graded for quality.

KICK INSIDE 50
When a player records an inside 50 for his team by kicking

the ball from the mid�eld zone into the forward line.

KICK LONG ADVANTAGE

A long kick that results in an uncontested possession by a

teammate. If an error is made by the player 'receiving' the kick, a 'kick

long to advantage' is still recorded for the player kicking the ball.

KNOCK ON

When a player uses his hand to knock the ball to a

teammate's advantage rather than attempting to take possession within his

team's chain of play.

LONG KICK
A kick of more than 40 metres to a 50/50 contest or better

for the team.

LOOSEBALL GET
A disputed ball at ground level not under direct physical

pressure that results in an opportunity to record a legal disposal.

MARK

When a player cleanly catches (is deemed to have

controlled the ball for su�cient time) a kicked ball that has travelled

more than 15 metres without anyone else touching it or the ball hitting the

ground.

MARK FROM OPP KICK

MARK FUMBLED Mark Fumbled

MARK ON LEAD An uncontested mark taken after outsprinting an opponent.

MARK PLAY ON Playing on immediately without retreating behind the mark.

105



MISSED TACKLES
Attempted tackles that are missed, allowing the ball

carrier to break into space.

ONE ON ONE CONTEST

DEFENDER

Being isolated in a one-on-one contest as the defender.

ONE ON ONE CONTEST TARGET
Being isolated in a one-on-one contest as the target of

the kick.

OUT ON THE FULL

REBOUND 50 Moving the ball from the defensive zone into the mid�eld.

RECEIVE HANDBALL
An uncontested possession that is the result of a

teammate's handball.

RUCK HARDBALL GET Taking possession of the ball directly out of the ruck.

RUNNING BOUNCE
Touching the ball to the ground, either directly or via a

bounce, to allow a player to avoid being penalised for running too far.

SCORE ASSIST

Creating a score by getting the ball to a teammate either

via a disposal, knock-on, ground kick or hitout, or by winning a free kick

before the advantage is paid to the goal scorer.

SHORT KICK

A kick of less than 40 metres that results in the intended

target retaining possession. Does not include kicks that are spoiled by the

opposition.

SHOT AT GOAL

SMOTHER

Suppressing an opposition disposal by either changing the

trajectory of the ball immediately after the disposal or by blocking the

disposal altogether.

SPOIL
Knocking the ball away from a marking contest preventing

an opponent from taking a mark.

SPOIL GAINING POSSESSION Spoils directed straight to a teammate.

SPOIL INEFFECTIVE Spoils directed straight to an opposition player.

TACKLE
Using physical contact to prevent an opponent in

possession of the ball from getting an e�ective disposal.

UNCONTESTED GATHER
Winning possession of the ball uncontested at ground

level.

UNCONTESTED MARK
Marks taken under no physical pressure from an opponent.

Includes marks taken on a lead and from opposition kicks.

UNCONTESTED MARK FROM

OPP
UNCONTESTED MARK FROM

TEAM

UNCONTESTED POSSESSION

Possessions gained whilst under no physical pressure,

either from a teammate's disposal or an opposition's clanger kick. Includes

handball receives, uncontested marks (including lead marks) and intended ball

gets from a disposal.
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B.3 Champion Data XML Dictionary

Table B.2: Descriptions of Champion Data raw XML data.
Term De�nition

Transaction

Period The quarter in which the transaction takes place.
Period Seconds The number of seconds elapsed since the beginning of the quarter

Physical Zone
The zone on the �eld in which the transaction took place relative
to stadium position (as if watching the match on television).

Logical Zone
The zone on the �eld in which the transaction took place relative
to the team in possession of the ball.

Time Stamp The time at which the transaction occurred.
Stat Code The abbreviated transaction code.
Team The team for which the transaction occurred.

Match

Match ID A unique match identi�er.
Date The data on which the match took place.
Round The round in which the match took place.
Venue The venue at which the match took place.
Match Number A sequenced integer representation of the match.

Team

Team ID A unique team identi�er.
Name Team name
Nickname Team nickname
Is Home Is the team considered the home team for this match.

Player

Player ID A unique player identi�er.
Jumper The number printed on the players guernsey.
Display Name The player's name as it is to be displayed.
First Name The player's �rst name.
Surname The player's surname.

Stat Types

Code The abbreviated transaction code.
Description A description of the abbreviated code.
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R Code for Champion Data Extraction

C.1 XML Data

1 ##CHAMPIONDATA PREPARATION

2 ##CREATED BY: CASEY JOSMAN

3 ##LAST EDITED: 19/09/2016

4

5 ##LIBRARIES

6 l i b r a r y (XML)

7 l i b r a r y ( car )

8 l i b r a r y ( lme4 )

9

10 ##PREAMBLE

11 Stat icData<= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/ H i s t o r i c

S e n s i t i v i t y /Draws/6=5. csv " , header=TRUE) #read in s t a t i c data

12 Stat icData $Home . team<=recode ( Stat icData $Home . team , ' "Adela ide " = "Adela ide Crows " ;"

Brisbane Lions " = "Brisbane Lions " ;" Carlton " = "Carlton " ;" Coll ingwood" = "Coll ingwood

" ;" Essendon" = "Essendon " ;" Fremantle " = "Fremantle " ; " Geelong" = "Geelong Cats " ; " Gold

Coast" = "Gold Coast Suns " ;" Greater Western Sydney" = "GWS Giants " ; " Hawthorn" = "

Hawthorn " ;" Melbourne" = "Melbourne " ;" North Melbourne" = "North Melbourne " ;" Port

Adela ide " = "Port Adela ide " ;"Richmond" = "Richmond " ;" St Kilda " = "St Kilda " ;" Sydney"

= "Sydney Swans " ;"West Coast" = "West Coast Eagles " ; "Western Bul ldogs " = "Western

Bul ldogs " ' ) #make sure team names are c on s i s t e n t

13 Stat icData $Away . team<=recode ( Stat icData $Away . team , ' "Adela ide " = "Adela ide Crows " ;"

Brisbane Lions " = "Brisbane Lions " ;" Carlton " = "Carlton " ;" Coll ingwood" = "Coll ingwood

" ;" Essendon" = "Essendon " ;" Fremantle " = "Fremantle " ; " Geelong" = "Geelong Cats " ; " Gold

Coast" = "Gold Coast Suns " ;" Greater Western Sydney" = "GWS Giants " ; " Hawthorn" = "

Hawthorn " ;" Melbourne" = "Melbourne " ;" North Melbourne" = "North Melbourne " ;" Port

Adela ide " = "Port Adela ide " ;"Richmond" = "Richmond " ;" St Kilda " = "St Kilda " ;" Sydney"

= "Sydney Swans " ;"West Coast" = "West Coast Eagles " ; "Western Bul ldogs " = "Western

Bul ldogs " ' ) #make sure team names are c on s i s t e n t

14 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data\\ChampionData\\Bul ldogs Data

Feed 2015" )

15 f i l enames <= l i s t . f i l e s ( pattern=" . xml" ) #f e t c h e s f i l e l i s t from above d i r e c t o r y

16 VenueData<=NULL

17 HomeNames<=NULL

18 AwayNames<=NULL

19 FullData<=NULL

20

21 ##DATA MINING AND PREPARATION

22 f o r ( f in f i l enames ) { # f o r each f i l e e x t r a c t s data and trans forms in to workable

dataframe
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23 game <= xmlRoot ( xmlTreeParse ( f , getDTD=F, addAttributeNamespaces=T) )

24 Match <= data . frame ( t ( u n l i s t ( xmlApply (game , xmlValue ) [ 3 : 7 ] ) ) )

25

26 HomeData <= xmlApply (game [ [ 8 ] ] , xmlChildren )

27 Home <= data . frame ( t ( u n l i s t ( l app ly ( l app ly (HomeData [ names (HomeData) !='PLAYER' ] , u n l i s t ) ,

f unc t i on (x ) as . cha rac t e r ( x [ names (x )==' text . va lue ' ] ) ) ) ) )

28 HPlayers <= data . frame ( do . c a l l ( rbind , l app ly (HomeData [ names (HomeData)=='PLAYER' ] , u n l i s t ) )

[ , c ( 3 , 6 , 9 , 12 , 15 ) ] , s t r i ng sAsFac to r s=FALSE)

29 names ( HPlayers ) <= sapply ( names ( HPlayers ) , f unc t i on (x ) sub ( ' . c h i l d r en . t ex t . va lue ' , ' ' , x ) )

30

31

32 AwayData <= xmlApply (game [ [ 9 ] ] , xmlChildren )

33 Away <= data . frame ( t ( u n l i s t ( l app ly ( l app ly (AwayData [ names (AwayData) !='PLAYER' ] , u n l i s t ) ,

f unc t i on (x ) as . cha rac t e r ( x [ names (x )==' text . va lue ' ] ) ) ) ) )

34 APlayers <= data . frame ( do . c a l l ( rbind , l app ly (AwayData [ names (AwayData)=='PLAYER' ] , u n l i s t ) )

[ , c ( 3 , 6 , 9 , 12 , 15 ) ] , s t r i ng sAsFac to r s=FALSE)

35 names ( APlayers ) <= sapply ( names ( APlayers ) , f unc t i on (x ) sub ( ' . c h i l d r en . t ex t . va lue ' , ' ' , x ) )

36

37 StatData <= xmlApply (game [ [ 1 0 ] ] , xmlChildren )

38 Stat s <= data . frame ( do . c a l l ( rbind , l app ly ( StatData , u n l i s t ) ) [ , c ( 3 , 6 ) ] )

39 names ( Sta t s ) <= sapply ( names ( Stat s ) , f unc t i on (x ) sub ( ' . c h i l d r en . t ex t . va lue ' , ' ' , x ) )

40

41 TransData <= xmlApply (game [ [ 1 1 ] ] , xmlChildren )

42 TRX <= data . frame ( do . c a l l ( rbind , l app ly (TransData , u n l i s t ) ) [ , c ( 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 ) ] )

43 names (TRX) <= sapply ( names (TRX) , func t i on (x ) sub ( ' . c h i l d r en . t ex t . va lue ' , ' ' , x ) )

44

45 TRX$FULLNAME <= TRX$TRX_PLAYER

46 l e v e l s (TRX$FULLNAME) <= sapply ( l e v e l s (TRX$FULLNAME) , func t i on (x ) t a i l ( c (x , HPlayers $

DISPLAYNAME[ HPlayers $PLAYER_ID==as . cha rac t e r ( x ) ] ) , 1 ) )

47 l e v e l s (TRX$FULLNAME) <= sapply ( l e v e l s (TRX$FULLNAME) , func t i on (x ) t a i l ( c ( ' ' , APlayers $

DISPLAYNAME[ APlayers $PLAYER_ID==as . cha rac t e r ( x ) ] ) , 1 ) )

48

49 #Retr i eve venue l i s t , home , and away teams

50 VenueData<=c (VenueData , as . cha rac t e r (Match$VENUE) )

51 HomeNames<=c (HomeNames , as . cha rac t e r (Home$NAME) )

52 AwayNames<=c (AwayNames , as . cha rac t e r (Away$NAME) )

53

54 #Se l e c t appropr ia t e TRX

55 Ind<=which (TRX$STAT_CODE=="BEHI" | TRX$STAT_CODE=="RUSH" | TRX$STAT_CODE=="BUCL" | TRX$

STAT_CODE=="TICL" | TRX$STAT_CODE=="CBCL" | TRX$STAT_CODE=="BUHO" | TRX$STAT_CODE=="

CBHO" | TRX$STAT_CODE=="TIHO" | TRX$STAT_CODE=="CEBO" | TRX$STAT_CODE=="FRAG" | TRX$

STAT_CODE=="FRFO" | TRX$STAT_CODE=="GOAL" | TRX$STAT_CODE=="HBEF" | TRX$STAT_CODE=="

HBIN" | TRX$STAT_CODE=="HBRE" | TRX$STAT_CODE=="IN50" | TRX$STAT_CODE=="KIKIN" | TRX$

STAT_CODE=="KKEF" | TRX$STAT_CODE=="KKIN" | TRX$STAT_CODE=="MACO" | TRX$STAT_CODE=="

MAUN" | TRX$STAT_CODE=="PEREN" | TRX$STAT_CODE=="PERST" | TRX$STAT_CODE=="RE50" | TRX

$STAT_CODE=="SPOIL" | TRX$STAT_CODE=="TACK" )

56

57 TRX<=TRX[ Ind , ]

58 #Merge ramaining t r an s a c t i on s (RUSH => BEHI , BUCL;TICL ;CBCL => CLEAR, BUHO;CBHO;TIHO =>

HITO, KIKIN ;KKEF => KICK, MACO;MAUN => MARK)

59 TRX$STAT_CODE<=recode (TRX$STAT_CODE, ' "RUSH"="BEHI" ;"BUCL"="CLEAR";"TICL"="CLEAR";"CBCL

"="CLEAR";"BUHO"="HITO";"CBHO"="HITO";"TIHO"="HITO";"KIKIN"="KICK";"KKEF"="KICK";"

MACO"="MARK";"MAUN"="MARK" ' )

60 #Append miss ing p laye r in fo rmat ion to TRX ( t r an sa c t i on data )

61 TRX$TRX_PLAYER<=as . cha rac t e r (TRX$TRX_PLAYER) #se t TRX_PLAYER to charac t e r

62 TRX$FULLNAME<=as . cha rac t e r (TRX$FULLNAME) #se t FULLNAME to charac t e r

63

64 PlayState<=which (TRX$TRX_TEAM==0) #generate l i s t o f play r e s e t s t a t e s
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65 TRX$TRX_PLAYER[ PlayState ]<="0"

66 TRX$FULLNAME[ PlayState ]<="Reset "

67

68 HomePlays<=which (TRX$TRX_TEAM==as . cha rac t e r (Home$TEAM_ID) ) #pick up p lays accord ing to

home team code

69 f o r ( i in 1 : l ength (TRX$FULLNAME[ HomePlays ] ) ) {

70 TRX$FULLNAME[ HomePlays ] [ i ]<=HPlayers $DISPLAYNAME[ match (TRX$TRX_PLAYER[ HomePlays ] [ i ] ,

HPlayers $PLAYER_ID) ]

71 }

72

73 AwayPlays<=which (TRX$TRX_TEAM==as . cha rac t e r (Away$TEAM_ID) ) #pick up plays accord ing to

away team code

74 f o r ( i in 1 : l ength (TRX$FULLNAME[ AwayPlays ] ) ) {

75 TRX$FULLNAME[ AwayPlays ] [ i ]<=APlayers $DISPLAYNAME[ match (TRX$TRX_PLAYER[ AwayPlays ] [ i ] ,

APlayers $PLAYER_ID) ]

76 }

77

78 TRX$TRX_PLAYER<=as . f a c t o r (TRX$TRX_PLAYER) #rev e r t to f a c t o r

79 TRX$FULLNAME<=as . f a c t o r (TRX$FULLNAME) #rev e r t to f a c t o r

80

81 ##Create Team Sp e c i f i c (H/A) STAT_CODE

82 TRX$STAT_HA<=as . cha rac t e r (TRX$STAT_CODE) #transform TRX$STAT_HA to charac t e r l i s t

83 TRX$STAT_HA[ which (TRX$TRX_TEAM==as . cha rac t e r (Home$TEAM_ID) ) ]<=paste ( "H. " , as . cha rac t e r (TRX

$STAT_HA[ which (TRX$TRX_TEAM==as . cha rac t e r (Home$TEAM_ID) ) ] ) , sep="" ) #add H. f o r a l l

home TRX

84 TRX$STAT_HA[ which (TRX$TRX_TEAM==as . cha rac t e r (Away$TEAM_ID) ) ]<=paste ( "A. " , as . cha rac t e r (TRX

$STAT_HA[ which (TRX$TRX_TEAM==as . cha rac t e r (Away$TEAM_ID) ) ] ) , sep="" ) #add A. f o r a l l

away TRX

85 TRX$STAT_HA[ grep ( "CEBO" ,TRX$STAT_HA) ]<="CEBO" #remove team assignment from cente r bounce

86 TRX$STAT_HA<=as . f a c t o r (TRX$STAT_HA) #rev e r t back to f a c t o r

87 ##Create Dummy Var iab l e s f o r Summation

88 DummyTemp<=dummy( rbind ( "A" , as . cha rac t e r (TRX$STAT_HA) ) )

89 DummyTemp<=DummyTemp[= seq ( from=1, to=nrow (DummyTemp) , by=2) , ] #remove extra rows added in

by dummy func t i on ( need a more e l egant way to c r e a t e dummy va r i a b l e s )

90 ##Create Play by Play Data (FULL DATA)

91 TempData<=NULL

92 SumData<=NULL

93 SumData<=as . data . frame ( t (DummyTemp[ 1 , ] ) )

94 DateTemp<=as . Date ( paste ( s t r s p l i t ( s t r s p l i t ( as . cha rac t e r (Match$DATE) , " , " ) [ [ 1 ] ] [ 2 ] , " " )

[ [ 1 ] ] [ 3 ] , s t r s p l i t ( s t r s p l i t ( as . cha rac t e r (Match$DATE) , " , " ) [ [ 1 ] ] [ 2 ] , " " ) [ [ 1 ] ] [ 2 ] ,

s ub s t r i ng ( s t r s p l i t ( as . cha rac t e r (Match$DATE) , " , " ) [ [ 1 ] ] [ 3 ] , f i r s t =2) , c o l l a p s e="" , sep="" )

, "%d%B%Y" )

95 HomeTemp<=as . cha rac t e r (Home$NAME)

96 AwayTemp<=as . cha rac t e r (Away$NAME)

97 i f ( nrow ( Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData $Home . team

==HomeTemp & Stat icData $Away . team==AwayTemp) , ] )==0){

98 StaticTemp<=Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData $Home .

team==AwayTemp & Stat icData $Away . team==HomeTemp) , ]

99 Swap<=1

100 } e l s e {StaticTemp<=Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData

$Home . team==HomeTemp & Stat icData $Away . team==AwayTemp) , ]

101 Swap<=0

102 }

103

104 TempData<=cbind . data . frame ( StaticTemp , SumData ,TRX$PERIOD[ 1 ] ,TRX$PERIODSECONDS[ 1 ] ,TRX$STAT

_HA[ 1 ] , row . names=NULL) #i n i t i a l i z a t i o n o f TempData

105 colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT

_HA" )
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106

107 f o r ( i in 2 : nrow (TRX) ) {

108

109 SumData<=as . data . frame ( t ( colSums (DummyTemp[ 1 : i , ] ) ) )

110 Temp<=cbind . data . frame ( StaticTemp [ 1 , ] , SumData ,TRX$PERIOD[ i ] ,TRX$PERIODSECONDS[ i ] ,TRX$STAT

_HA[ i ] , row . names=NULL)

111 colnames (Temp)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT_HA"

)

112 TempData<=rbind . data . frame (TempData ,Temp)

113

114 }

115

116 ##Reorder Home/Away Teams as per S t a t i c De f i n i t i o n

117 i f (Swap==1){

118 TempData<=TempData [ , c ( 1 : 1 6 , 3 4 : 4 9 , 3 3 , 1 7 : 3 2 , 5 0 : 5 4 ) ]

119 colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT

_HA" )

120 } e l s e { colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_

SEC" , "STAT_HA" ) }

121

122 FullData<=rbind . data . frame ( FullData , TempData)

123

124 }
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C.2 CSV Data

1 ##CHAMPIONDATA PREPARATION

2 ##CREATED BY: CASEY JOSMAN

3 ##LAST EDITED: 08/12/2018

4

5 ##LIBRARIES

6 l i b r a r y ( car )

7 l i b r a r y ( lme4 )

8

9 ##PREAMBLE

10 Stat icData<= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/ H i s t o r i c

S e n s i t i v i t y /Draws/6=5. csv " , header=TRUE)

11 Stat icData $Home . team<=recode ( Stat icData $Home . team , ' "Adela ide " = "Adela ide Crows " ;"

Brisbane Lions " = "Brisbane Lions " ;" Carlton " = "Carlton " ;" Coll ingwood" = "Coll ingwood

" ;" Essendon" = "Essendon " ;" Fremantle " = "Fremantle " ; " Geelong" = "Geelong Cats " ; " Gold

Coast" = "Gold Coast Suns " ;" Greater Western Sydney" = "GWS Giants " ; " Hawthorn" = "

Hawthorn " ;" Melbourne" = "Melbourne " ;" North Melbourne" = "North Melbourne " ;" Port

Adela ide " = "Port Adela ide " ;"Richmond" = "Richmond " ;" St Kilda " = "St Kilda " ;" Sydney"

= "Sydney Swans " ;"West Coast" = "West Coast Eagles " ; "Western Bul ldogs " = "Western

Bul ldogs " ' )

12 Stat icData $Away . team<=recode ( Stat icData $Away . team , ' "Adela ide " = "Adela ide Crows " ;"

Brisbane Lions " = "Brisbane Lions " ;" Carlton " = "Carlton " ;" Coll ingwood" = "Coll ingwood

" ;" Essendon" = "Essendon " ;" Fremantle " = "Fremantle " ; " Geelong" = "Geelong Cats " ; " Gold

Coast" = "Gold Coast Suns " ;" Greater Western Sydney" = "GWS Giants " ; " Hawthorn" = "

Hawthorn " ;" Melbourne" = "Melbourne " ;" North Melbourne" = "North Melbourne " ;" Port

Adela ide " = "Port Adela ide " ;"Richmond" = "Richmond " ;" St Kilda " = "St Kilda " ;" Sydney"

= "Sydney Swans " ;"West Coast" = "West Coast Eagles " ; "Western Bul ldogs " = "Western

Bul ldogs " ' )

13

14 TRX <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/To Be Processed /AFL

Club TRX 2017 . csv " , header=TRUE)

15 TRX$VENUE_NAME<=recode (TRX$VENUE_NAME, ' "MCG"="M.C.G. " ; "SCG"="S .C.G." ' )

16

17 VenueData<=NULL

18 HomeNames<=NULL

19 AwayNames<=NULL

20 FullData<=NULL

21

22 #get only Western Bul ldogs data

23 games<=subset (TRX[ ! dup l i ca t ed (TRX[ , c ( 1 : 1 0 ) ] ) , 1 : 1 0 ] ,HOME_SQUAD=="Western Bul ldogs " & AWAY_

SQUAD!="BYE" | AWAY_SQUAD=="Western Bul ldogs " )

24

25 ##DATA MINING AND PREPARATION

26 f o r ( j in 1 : 22 ) { # f o r each match ex t r a c t s data and trans forms in to workable dataframe

27

28 Match<=games$GROUP_ROUND_NO[ j ]

29 DateChar<=as . cha rac t e r ( games$MATCH_DATE[ j ] )

30 DateChar<=paste ( s t r s p l i t (DateChar , "=" ) [ [ 1 ] ] [ 1 ] , s t r s p l i t (DateChar , "=" ) [ [ 1 ] ] [ 2 ] , as . numeric (

s t r s p l i t (DateChar , "=" ) [ [ 1 ] ] [ 3 ] ) +2000 , sep="" )

31 Venue<=as . cha rac t e r ( games$VENUE[ j ] )

32 Home<=as . cha rac t e r ( games$HOME_SQUAD[ j ] )

33 Away<=as . cha rac t e r ( games$AWAY_SQUAD[ j ] )

34 TRXtmp<=subset (TRX,GROUP_ROUND_NO==Match & HOME_SQUAD==Home & AWAY_SQUAD==Away , s e l e c t=c

( 1 : 1 9 ) )

35
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36 #Retr i eve venue l i s t , home , and away teams

37 VenueData<=c (VenueData , Venue )

38 HomeNames<=c (HomeNames ,Home)

39 AwayNames<=c (AwayNames ,Away)

40

41 #Remove unnecessary t r an s a c t i on s (BLOC, BOUN, BUBO, BUCA, FR50 , FRF5, OOBO, OOFU, THIN) !

CEBO KEPT FOR NOW! TRX$STAT_CODE=="CEBO"

42 #RemInd<=which (TRX$STAT_CODE=="BLOC" | TRX$STAT_CODE=="BOUN" | TRX$STAT_CODE=="BUBO" |

TRX$STAT_CODE=="BUCA" | TRX$STAT_CODE=="FR50" | TRX$STAT_CODE=="FRF5" | TRX$STAT_CODE

=="OOBO" | TRX$STAT_CODE=="OOFU" | TRX$STAT_CODE=="THIN")

43

44 #Se l e c t appropr ia t e TRX

45 Ind<=which (TRXtmp$STATISTIC_CODE=="BEHI" | TRXtmp$STATISTIC_CODE=="RUSHN" | TRXtmp$

STATISTIC_CODE=="RUSHO" | TRXtmp$STATISTIC_CODE=="RUSHP" | TRXtmp$STATISTIC_CODE=="

BUCL" | TRXtmp$STATISTIC_CODE=="TICL" | TRXtmp$STATISTIC_CODE=="CBCL" | TRXtmp$

STATISTIC_CODE=="BUHO" | TRXtmp$STATISTIC_CODE=="BUHSK" | TRXtmp$STATISTIC_CODE=="

BUHSD" |

46 TRXtmp$STATISTIC_CODE=="BUSM" | TRXtmp$STATISTIC_CODE=="BUHAD" | TRXtmp$STATISTIC_CODE=="

TMBUH" | TRXtmp$STATISTIC_CODE=="TMBSD" | TRXtmp$STATISTIC_CODE=="TMBUS" | TRXtmp$

STATISTIC_CODE=="TMBUA" | TRXtmp$STATISTIC_CODE=="CBHO" | TRXtmp$STATISTIC_CODE=="

CBHSK" | TRXtmp$STATISTIC_CODE=="CBHSD" | TRXtmp$STATISTIC_CODE=="CBSM" |

47 TRXtmp$STATISTIC_CODE=="CBHAD" | TRXtmp$STATISTIC_CODE=="TIHO" | TRXtmp$STATISTIC_CODE=="

TIHSK" | TRXtmp$STATISTIC_CODE=="TIHSD" | TRXtmp$STATISTIC_CODE=="TISM" | TRXtmp$

STATISTIC_CODE=="TIHAD" | TRXtmp$STATISTIC_CODE=="TMTIH" | TRXtmp$STATISTIC_CODE=="

TMTSD" | TRXtmp$STATISTIC_CODE=="TMTIS" | TRXtmp$STATISTIC_CODE=="TMTIA" |

48 TRXtmp$STATISTIC_CODE=="CEBO" | TRXtmp$STATISTIC_CODE=="FRAGN" | TRXtmp$STATISTIC_CODE=="

FRAGO" | TRXtmp$STATISTIC_CODE=="FRAGP" | TRXtmp$STATISTIC_CODE=="FRABB" | TRXtmp$

STATISTIC_CODE=="FRFO" | TRXtmp$STATISTIC_CODE=="FRFBB" | TRXtmp$STATISTIC_CODE=="

FRFNO" | TRXtmp$STATISTIC_CODE=="FRFOB" | TRXtmp$STATISTIC_CODE=="GOAL" |

49 TRXtmp$STATISTIC_CODE=="HBEF" | TRXtmp$STATISTIC_CODE=="HBIN" | TRXtmp$STATISTIC_CODE=="

HBRE" | TRXtmp$STATISTIC_CODE=="IN50" | TRXtmp$STATISTIC_CODE=="KILO" | TRXtmp$

STATISTIC_CODE=="KILA" | TRXtmp$STATISTIC_CODE=="KISH" | TRXtmp$STATISTIC_CODE=="KISE

" | TRXtmp$STATISTIC_CODE=="KBLO" | TRXtmp$STATISTIC_CODE=="KBSH" |

50 TRXtmp$STATISTIC_CODE=="KKBW" | TRXtmp$STATISTIC_CODE=="KKGKE" | TRXtmp$STATISTIC_CODE=="

KKLO" | TRXtmp$STATISTIC_CODE=="KKLA" | TRXtmp$STATISTIC_CODE=="KKSH" | TRXtmp$

STATISTIC_CODE=="KKIN" | TRXtmp$STATISTIC_CODE=="MACOO" | TRXtmp$STATISTIC_CODE=="

MACOP" | TRXtmp$STATISTIC_CODE=="MAUNO" | TRXtmp$STATISTIC_CODE=="MAUNP" |

51 TRXtmp$STATISTIC_CODE=="PEREN" | TRXtmp$STATISTIC_CODE=="PERST" | TRXtmp$STATISTIC_CODE==

"RE50" | TRXtmp$STATISTIC_CODE=="SPOI" | TRXtmp$STATISTIC_CODE=="SPOIO" | TRXtmp$

STATISTIC_CODE=="SPOIP" | TRXtmp$STATISTIC_CODE=="SPOIG" | TRXtmp$STATISTIC_CODE=="

TACKN" | TRXtmp$STATISTIC_CODE=="TACKO" | TRXtmp$STATISTIC_CODE=="TACKP" |

52 TRXtmp$STATISTIC_CODE=="CETU"

53 )

54

55 TRXtemp<=TRXtmp[ Ind , ]

56 #Merge appropr ia t e t r an s a c t i on s

57 TRXtemp$STATISTIC_CODE<=recode (TRXtemp$STATISTIC_CODE, ' "BEHI"="BEHI" ;"RUSHN"="BEHI" ;"

RUSHO"="BEHI" ;"RUSHP"="BEHI" ;"BUCL"="CLEAR";"TICL"="CLEAR";"CBCL"="CLEAR" ;

58 "BUHO"="HITO";"BUHSK"="HITO";"BUHSD"="HITO";"BUSM"="HITO";"BUHAD"="HITO";"TMBUH"="HITO";"

TMBSD"="HITO" ;

59 "TMBUS"="HITO";"TMBUA"="HITO";"CBHO"="HITO";"CBHSK"="HITO";"CBHSD"="HITO";"CBSM"="HITO";"

CBHAD"="HITO" ;

60 "TIHO"="HITO";"TIHSK"="HITO";"TIHSD"="HITO";"TISM"="HITO";"TIHAD"="HITO";"TMTIH"="HITO";"

TMTSD"="HITO" ;

61 "TMTIS"="HITO";"TMTIA"="HITO";"FRAGN"="FRAG";"FRAGO"="FRAG";"FRAGP"="FRAG";"FRABB"="FRAG

";"FRFO"="FRFO" ;

62 "FRFBB"="FRFO";"FRFNO"="FRFO";"FRFOB"="FRFO";"KILO"="KICK";"KILA"="KICK";"KISH"="KICK";"

KISE"="KICK" ;
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63 "KBLO"="KICK";"KBSH"="KICK";"KKBW"="KICK";"KKGKE"="KICK";"KKLO"="KICK";"KKLA"="KICK";"

KKSH"="KICK" ;

64 "MACOO"="MARK";"MACOP"="MARK";"MAUNO"="MARK";"MAUNP"="MARK" ;

65 "SPOI"="SPOIL" ;"SPOIO"="SPOIL" ;"SPOIP"="SPOIL" ;"SPOIG"="SPOIL" ;

66 "TACKN"="TACK";"TACKO"="TACK";"TACKP"="TACK";"CETU"="CEBO" '

67 )

68

69 ##Create Team Sp e c i f i c (H/A) STAT_CODE

70 TRXtemp$STAT_HA<=as . cha rac t e r (TRXtemp$STATISTIC_CODE) #transform TRXtemp$STAT_HA to

charac t e r l i s t

71 TRXtemp$STAT_HA[ which (TRXtemp$SQUAD_NAME==Home) ]<=paste ( "H. " , as . cha rac t e r (TRXtemp$STAT_HA

[ which (TRXtemp$SQUAD_NAME==Home) ] ) , sep="" ) #add H. f o r a l l home TRXtemp

72 TRXtemp$STAT_HA[ which (TRXtemp$SQUAD_NAME==Away) ]<=paste ( "A. " , as . cha rac t e r (TRXtemp$STAT_HA

[ which (TRXtemp$SQUAD_NAME==Away) ] ) , sep="" ) #add A. f o r a l l away TRXtemp

73 TRXtemp$STAT_HA[ grep ( "CEBO" ,TRXtemp$STAT_HA) ]<="CEBO" #remove team assignment from cente r

bounce

74 TRXtemp$STAT_HA<=as . f a c t o r (TRXtemp$STAT_HA) #rev e r t back to f a c t o r

75

76 dup<=which ( dup l i ca t ed (TRXtemp[ , c ( "PERIOD_SECS" , "STAT_HA" ) ] ) )

77 TRXtemp<=TRXtemp[=dup , ]

78

79 ##Create Dummy Var iab l e s f o r Summation

80 DummyTemp<=dummy( rbind ( "A" , as . cha rac t e r (TRXtemp$STAT_HA) ) )

81 DummyTemp<=DummyTemp[= seq ( from=1, to=nrow (DummyTemp) , by=2) , ] #remove extra rows added in

by dummy func t i on ( need a more e l egant way to c r e a t e dummy va r i a b l e s )

82 ##Create Play by Play Data (FULL DATA)

83 TempData<=NULL

84 SumData<=NULL

85 SumData<=as . data . frame ( t (DummyTemp[ 1 , ] ) )

86 DateTemp<=as . Date (DateChar , "%d%B%Y" )

87 HomeTemp<=Home

88 AwayTemp<=Away

89 i f ( nrow ( Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData $Home . team

==HomeTemp & Stat icData $Away . team==AwayTemp) , ] )==0){

90 StaticTemp<=Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData $Home .

team==AwayTemp & Stat icData $Away . team==HomeTemp) , ]

91 Swap<=1

92 } e l s e {StaticTemp<=Stat icData [ which ( as . cha rac t e r ( Stat icData $Date )==DateTemp & Stat icData

$Home . team==HomeTemp & Stat icData $Away . team==AwayTemp) , ]

93 Swap<=0

94 }

95

96 TempData<=cbind . data . frame ( StaticTemp , SumData ,TRXtemp$PERIOD[ 1 ] ,TRXtemp$PERIOD_SECS [ 1 ] ,

TRXtemp$STAT_HA[ 1 ] , row . names=NULL) #i n i t i a l i z a t i o n o f TempData

97 colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT

_HA" )

98

99 f o r ( i in 2 : nrow (TRXtemp) ) {

100

101 SumData<=as . data . frame ( t ( colSums (DummyTemp[ 1 : i , ] ) ) )

102 Temp<=cbind . data . frame ( StaticTemp [ 1 , ] , SumData ,TRXtemp$PERIOD[ i ] ,TRXtemp$PERIOD_SECS [ i ] ,

TRXtemp$STAT_HA[ i ] , row . names=NULL)

103 colnames (Temp)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT_HA"

)

104 TempData<=rbind . data . frame (TempData ,Temp)

105

106 }

107
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108 ##Reorder Home/Away Teams as per S t a t i c De f i n i t i o n

109 i f (Swap==1){

110 TempData<=TempData [ , c ( 1 : 1 6 , 3 4 : 4 9 , 3 3 , 1 7 : 3 2 , 5 0 : 5 4 ) ]

111 colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_SEC" , "STAT

_HA" )

112 } e l s e { colnames (TempData)<=c ( colnames ( Stat icData ) , colnames (DummyTemp) , "QUARTER" , "TIME_

SEC" , "STAT_HA" ) }

113

114 FullData<=rbind . data . frame ( FullData , TempData)

115

116 }
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C.3 Time Code Preprocessing

1 CumulTime<=f unc t i on ( data ) { #Ca l cu l a t e s f u l l game time ( adds prev ious quarte r end time )

2 tempTime<=NULL

3 Start Index<=as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" ) ] ) )

)

4 EndIndex<=c ( as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" ) ] ) )

) [=1]=1 ,nrow ( data ) )

5 f o r ( i in 1 : l ength ( Start Index ) ) {

6 tempind<=Start Index [ i ] : EndIndex [ i ]

7 tempData<=data [ tempind , c ( "TIME_SEC" , "QUARTER" ) ]

8 t1<=as . numeric ( subset ( tempData ,QUARTER==1)$TIME_SEC)

9 t2<=as . numeric ( subset ( tempData ,QUARTER==2)$TIME_SEC)+max( t1 )

10 t3<=as . numeric ( subset ( tempData ,QUARTER==3)$TIME_SEC)+max( t2 )

11 t4<=as . numeric ( subset ( tempData ,QUARTER==4)$TIME_SEC)+max( t3 )

12 tempCalc<=c ( t1 , t2 , t3 , t4 )

13 tempTime<=c ( tempTime , tempCalc )

14 }

15 r e turn ( tempTime)

16 }

17

18 OffsetTime<=f unc t i on ( data , d e l t a =0.0001) { #adds a mul t ip l e o f d e l t a to d i f f e r i n g

t r an s a c t i on s occur ing on the same epoch

19 TimeOff<=NULL

20 s i g<=nchar ( gsub ( " ( . * ) ( \ \ . ) | ( [ 0 ] *$ ) " , "" , format ( de l ta , s c i e n t i f i c=FALSE) ) )

21 Start Index<=as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" ) ] ) )

)

22 EndIndex<=c ( as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" ) ] ) )

) [=1]=1 ,nrow ( data ) )

23 f o r ( i in 1 : l ength ( Start Index ) ) {

24 tempTime<=round ( data$CumulT [ Start Index [ i ] : EndIndex [ i ] ] , d i g i t s=s i g )

25 IndE<=which ( dup l i ca t ed ( tempTime) ) #g i v e s l o c a t i o n o f second value in dup l i c a t e ( need to

get va lue be f o r e )

26 f o r ( j in IndE ) {

27 IndS<=which ( tempTime==tempTime [ j ] ) #g i v e s l o c a t i o n o f a l l matching dup l i c a t e s

28 i f ( l ength ( IndS )==0){

29 } e l s e {

30 tempTime [ IndS ]<=tempTime [ which ( tempTime==tempTime [ j ] ) ]+ seq ( 0 , ( l ength ( which ( tempTime==

tempTime [ j ] ) )=1)* de l ta , d e l t a )

31 }

32 }

33 TimeOff<=c (TimeOff , tempTime)

34 }

35 r e turn (TimeOff )

36 }
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R Code for Static Models

D.1 Static Model R Code

1 ##Sta t i c Feature Models

2 ##Created By : Casey Josman

3 ##Last Edited : 17/03/2016

4

5 ##LIBRARIES

6 l i b r a r y ( bnlearn )

7 l i b r a r y ( dea l )

8 l i b r a r y ( Rgraphviz )

9 l i b r a r y ( gee )

10 l i b r a r y (MuMIn)

11 l i b r a r y ( binomTools )

12 l i b r a r y ( randomForest )

13 l i b r a r y (RWeka)

14 l i b r a r y ( e1071 )

15 l i b r a r y ( fmsb )

16 l i b r a r y ( ca r e t )

17

18 ##FUNCTIONS

19 l o g i s t i c . r e g r e s s i o n . or . c i <= f unc t i on ( r e g r e s s . out , l e v e l =0.95) #FUNCTION FROM http : //www.

medic ine . mcg i l l . ca/ epidemio logy / joseph / cour s e s /EPIB=621/ l o g i s t i c . r e g r e s s i o n . or . c i . txt

20 {

21 usua l . output <= summary( r e g r e s s . out )

22 z . quan t i l e <= qnorm(1=(1= l e v e l ) / 2)

23 number . vars <= l ength ( r e g r e s s . out$ c o e f f i c i e n t s )

24 OR <= exp ( r e g r e s s . out$ c o e f f i c i e n t s [=1])

25 temp . s t o r e . r e s u l t <= matrix ( rep (NA, number . vars * 2) , nrow=number . vars )

26 f o r ( i in 1 : number . vars )

27 {

28 temp . s t o r e . r e s u l t [ i , ] <= summary( r e g r e s s . out ) $ c o e f f i c i e n t s [ i ] +

29 c (=1 , 1) * z . quan t i l e * summary( r e g r e s s . out ) $ c o e f f i c i e n t s [ i+number . vars ]

30 }

31 i n t e r c e p t . c i <= temp . s t o r e . r e s u l t [ 1 , ]

32 s l o p e s . c i <= temp . s t o r e . r e s u l t [=1 , ]

33 OR. c i <= exp ( s l o p e s . c i )

34 output <= l i s t ( r e g r e s s i o n . t ab l e = usua l . output , i n t e r c e p t . c i = i n t e r c e p t . c i ,

35 s l o p e s . c i = s l op e s . c i , OR=OR, OR. c i = OR. c i )

36 r e turn ( output )

37 }

38
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39 predtab<=f unc t i on ( pred , ac tua l ) { #pred=PREDICTION OF GEE MODEL, ac tua l=RESULT COLUMN FROM

DATASET, MUST SET SCALE PARAMETER INTERNALLY

40 count<=0

41 newtab<=data . frame ( )

42 l en<=l ength ( pred )

43 f o r ( i in 1 : l en ) {

44 i f ( pred [ i ]>=0.7){

45 newtab [ i ,1 ]=1}

46 e l s e {

47 newtab [ i ,1 ]=0}

48 }

49 f o r ( j in 1 : l en ) {

50 i f ( a c tua l [ j ]==1){

51 count<=count+1

52 }

53 e l s e {

54 }

55 }

56 combtab<=cbind ( newtab , ac tua l )

57 acctab<=t ab l e ( combtab [ , 2 ] , combtab [ , 1 ] ) #TABULATES ACTUAL VS PREDICTED

58 acc=sum( diag ( acctab ) ) / l en

59 l i s t ( ConfusionMatrix=acctab , Accuracy=acc , Pred=newtab )

60 }

61

62 chsq<=f unc t i on (model , data , metr ic ) { #MODEL=GLM OUTPUT, DATA=DATA, METRIC="RESULT BEING

MODELLED"

63 ml r f i t<=model$ f i t t e d

64 r<=( data [ , metr ic ] = ml r f i t ) / ( s q r t ( m l r f i t *(1=ml r f i t ) ) )

65 r2<=sum( r ^2)

66 df1<=nrow ( data )=l ength (model$ c o e f f )

67 pval1<=1=pchi sq ( r2 , df1 )

68 r e turn ( p r i n t ( paste ( "Chi=square goodness o f f i t t e s t with df=" , df1 , " : " , " p=value = " ,

pval1 , sep="" ) ) )

69 }

70

71 s p l i t d f <= f unc t i on ( dataframe , seed=NULL, s i z ep rop ) { #DATAFRAME=DATA TO BE SPLIT , SEED=

SEED, SIZEPROP=SIZE OF TRAINING SET

72 i f ( ! i s . nu l l ( seed ) ) s e t . seed ( seed )

73 index <= 1 : nrow ( dataframe )

74 t r a i n i ndex <= sample ( index , trunc ( l ength ( index ) * ( s i z ep rop ) ) )

75 t r a i n s e t <= dataframe [ t ra in index , ]

76 t e s t s e t <= dataframe [= t ra in index , ]

77 l i s t ( t r a i n s e t=t r a i n s e t , t e s t s e t=t e s t s e t )

78 }

79

80 matchsp l i t<=f unc t i on ( dataframe , season , rnd ) {

81 i f ( rnd==1){

82 t r a i n s e t<=subset ( dataframe , dataframe$Season<season )

83 t e s t s e t<=subset ( dataframe , dataframe$Season==season & dataframe$Round==rnd )

84 } e l s e {

85 t r a i n s e t<=subset ( dataframe , dataframe$Season<season | dataframe$Season==season &

dataframe$Round<rnd )

86 t e s t s e t<=subset ( dataframe , dataframe$Season==season & dataframe$Round==rnd )

87 }

88 l i s t ( t r a i n s e t=t r a i n s e t , t e s t s e t=t e s t s e t )

89 }

90

91 MultiLogLoss <= f unc t i on ( act , pred ) { #FUNCTION FROM https : //www. kagg le . com/wik i /

118



Logar ithmicLoss

92 eps = 1e=15;

93 nr <= nrow ( pred )

94 pred = matrix ( sapply ( pred , f unc t i on (x ) max( eps , x ) ) , nrow = nr )

95 pred = matrix ( sapply ( pred , f unc t i on (x ) min(1=eps , x ) ) , nrow = nr )

96 l l = sum( act * l og ( pred ) + (1=act ) * l og (1=pred ) )

97 l l = l l * =1/ ( nrow ( act ) )

98 r e turn ( l l ) ;

99 }

100

101

102 r f . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, r f . fn=NULL, metr ic ) {

103 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

104 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

105 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

106 r f . temp<=randomForest ( formula=r f . fn , data = t r a i n i n g . temp , nt r ee=nrow ( t r a i n i n g . temp) *

10 , importance=TRUE)

107 ind<=match ( metric , colnames ( datase t ) )

108 p r ed i c t . temp<=p r ed i c t ( r f . temp , t e s t i n g . temp[ ,= ind ] , type=" response " )

109 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

110 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

111 i f ( metr ic=="Result " ) {

112 r e turn ( p r ed i c t . temp)

113 } e l s e {

114 r e turn ( p r ed i c t . temp)

115 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

116 #return ( ab s e r r o r . temp)

117 }

118 }

119

120 lmt . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, lmt . fn=NULL, metr ic ) {

121 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

122 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

123 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

124 ind<=match ( metric , colnames ( datase t ) )

125 lmt . temp<=LMT( formula=lmt . fn , data = t r a i n i n g . temp)

126 p r ed i c t . temp<=p r ed i c t ( lmt . temp , newdata=t e s t i n g . temp)

127 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

128 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

129 i f ( metr ic=="Result " ) {

130 r e turn ( p r ed i c t . temp)

131 } e l s e {

132 r e turn ( p r ed i c t . temp)

133 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

134 #return ( ab s e r r o r . temp)

135 }

136 }

137

138 svm . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, svm . fn=NULL, metr ic ) {

139 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

140 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

141 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

142 ind<=match ( metric , colnames ( datase t ) )

143 tuned . temp <= tune . svm(svm . fn , data = t r a i n i n g . temp , gamma = 10^(=6:=1) , co s t =

10^(=1:1) )

144 G<=tuned . temp$ best . parameters $gamma #best per forming gamma

145 C<=tuned . temp$ best . parameters $ co s t #best per forming co s t

146 svm . temp<=svm(svm . fn , data = t r a i n i n g . temp , ke rne l = " r a d i a l " , gamma = G, co s t = C)
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147 p r ed i c t . temp<=p r ed i c t (svm . temp , newdata=t e s t i n g . temp[ ,=match ( metric , colnames ( t e s t i n g .

temp) ) ] )

148 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

149 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

150 i f ( metr ic=="Result " ) {

151 r e turn ( p r ed i c t . temp)

152 } e l s e {

153 r e turn ( p r ed i c t . temp)

154 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

155 #return ( ab s e r r o r . temp)

156 }

157 }

158

159 r e s u l t . venue . independence<=f unc t i on ( dataset , gee . fn=NULL, season=NULL, rnd=NULL, metr ic ) {

#gee . fn=gee model , gee . id=s e t i n t e r n a l l y , gee . cor=s e t i n t e r n a l l y

160 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

161 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

162 t r a i n i n g . temp<=t r a i n i n g . temp [ order ( t r a i n i n g . temp$Venue ) , ]

163 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

164 f i t . temp<=gee ( data=dataset , gee . fn , maxiter=100 , fami ly=binomial ( l o g i t ) , id=Venue ,

c o r s t r=" independence " )

165 i f ( metr ic=="Result " ) {

166 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

167 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( metric , colnames (

t e s t i n g . temp) ) ] )

168 accuracy . temp<=p r ed i c t . tab$Accuracy

169 r e turn ( p r ed i c t . tab$Pred )

170 } e l s e {

171 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" s c a l e " )

172 abs e r r o r . temp<=mean( abs ( t e s t i n g . temp$Margin=p r ed i c t . temp) )

173 l i s t ( ab s e r r o r . temp , p r ed i c t . temp)

174 }

175 }

176

177 margin . venue . independence<=f unc t i on ( dataset , gee . fn=NULL, season=NULL, rnd=NULL, metr ic ) {

#gee . fn=gee model , gee . id=s e t i n t e r n a l l y , gee . cor=s e t i n t e r n a l l y

178 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

179 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

180 t r a i n i n g . temp<=t r a i n i n g . temp [ order ( t r a i n i n g . temp$Venue ) , ]

181 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

182 f i t . temp<=gee ( data=dataset , gee . fn , maxiter=100 , fami ly=binomial ( l o g i t ) , id=Venue ,

c o r s t r=" independence " )

183 i f ( metr ic=="Result " ) {

184 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

185 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( metric , colnames (

t e s t i n g . temp) ) ] )

186 accuracy . temp<=p r ed i c t . tab$Accuracy

187 r e turn ( p r ed i c t . tab$Pred )

188 } e l s e {

189 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" s c a l e " )

190 abs e r r o r . temp<=mean( abs ( t e s t i n g . temp$Margin=p r ed i c t . temp) )

191 l i s t ( ab s e r r o r . temp , p r ed i c t . temp)

192 }

193 }

194

195 r e s u l t . mlr . eva l<=f unc t i on ( dataset , mlr . fn=NULL, season=NULL, rnd=NULL) {

196 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

197 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t
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198 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

199 f i t . temp<=glm ( data=t r a i n i n g . temp , mlr . fn , f ami ly=binomial ( l o g i t ) )

200 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

201 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( "Result " , colnames (

t e s t i n g . temp) ) ] )

202 accuracy . temp<=p r ed i c t . tab$Accuracy

203 r e turn ( p r ed i c t . tab$Pred )

204 }

205

206 ##READ DATA FILE

207 matchRes<=NULL

208 teamRes<=NULL

209 #setwd ("C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data ")

210 #Stat icData<=read . csv (" S t a t i c SeasonData . csv " , header=TRUE)

211 Stat icData <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/ S e n s i t i v i t y

Ana lys i s /5=5. csv " , header=TRUE)

212 #Stat icData <= subset ( Stat icData , Season==2014 | Season==2015)

213 #Stat icData $Season<=as . f a c t o r ( Stat icData $Season )

214 #Stat icData $Round<=as . f a c t o r ( Stat icData $Round)

215 Stat icData $ F ina l s<=as . f a c t o r ( Stat icData $ F ina l s )

216 ResN<=Stat icData $Result

217 Stat icData $Result<=as . f a c t o r ( Stat icData $Result )

218 Stat icData $HomeRank<=as . f a c t o r ( Stat icData $HomeRank)

219 Stat icData $AwayRank<=as . f a c t o r ( Stat icData $AwayRank)

220 Stat icData<=cbind ( Stat icData , ResN)

221 ##SET GLOBAL VARIABLES

222

223 s e t . seed (314)

224 cvseed<=c (866 ,933 ,828 ,955 ,978 ,805 ,959 ,878 ,831 ,910)

225 nrep<=10

226

227

228 ##MODELS (ALL FEATURES) = TEAM SPECIFIC

229 nonfeat<=match ( c ( "Date" , "Result " , "ResN" , "Margin" , "Home . s co r e " , "Away . s co r e " ) , colnames (

Stat icData ) )

230 Resu l t fn=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

231 Marginfn=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

232

233 ##MODELS (ALL FEATURES) = MATCH SPECIFIC

234 matchnonfeat<=match ( c ( "Date" , "Result " , "ResN" , "Margin" , "Home . s co r e " , "Away . s co r e " , "Home .

team" , "Away . team" ) , colnames ( Stat icData ) )

235 dummyhome<=p r ed i c t (dummyVars(~Home . team , data=Stat icData ) , Stat icData )

236 colnames (dummyhome)<=make . names ( colnames (dummyhome) , unique=TRUE)

237 dummyaway<=p r ed i c t (dummyVars(~Away . team , data=Stat icData ) , Stat icData )

238 colnames (dummyaway)<=make . names ( colnames (dummyaway) , unique=TRUE)

239 matchResultfn<=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,=matchnonfeat ] ) ,

c o l l a p s e="+" ) , paste ( "+" ) , paste ( colnames (dummyhome) , c o l l a p s e="+" ) , paste ( "+" ) , paste (

colnames (dummyaway) , c o l l a p s e="+" ) ) )

240 matchMarginfn<=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,=matchnonfeat ] ) ,

c o l l a p s e="+" ) , paste ( "+" ) , paste ( colnames (dummyhome) , c o l l a p s e="+" ) , paste ( "+" ) , paste (

colnames (dummyaway) , c o l l a p s e="+" ) ) )

241

242 ##MODELS = GEE (TEAM SPECIFIC)

243 geenonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Venue" ) , colnames (

Stat icData ) )

244 geeResu l t fn=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= geenonfeat ] ) , c o l l a p s e=

"+" ) ) )

245 geeMarginfn=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,= geenonfeat ] ) , c o l l a p s e=
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"+" ) ) )

246

247 ##MODELS = GEE (MATCH SPECIFIC)

248 geematnonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Venue" , "Home .

team" , "Away . team" ) , colnames ( Stat icData ) )

249 geematResult fn<=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= geematnonfeat ] ) ,

c o l l a p s e="+" ) , paste ( "+" ) , paste ( colnames (dummyhome) , c o l l a p s e="+" ) , paste ( "+" ) , paste (

colnames (dummyaway) , c o l l a p s e="+" ) ) )

250 geematMarginfn<=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,= geematnonfeat ] ) ,

c o l l a p s e="+" ) , paste ( "+" ) , paste ( colnames (dummyhome) , c o l l a p s e="+" ) , paste ( "+" ) , paste (

colnames (dummyaway) , c o l l a p s e="+" ) ) )

251

252 #TEAM SPECIFIC

253

254 ##MLR

255 mlrmod1<=glm ( Result fn , data=subset ( Stat icData , Season <=2014) , fami ly=binomial ( l o g i t ) )

256 mlr1Res<=predtab ( ac tua l=subset ( Stat icData , Season==2015)$Result , pred=pr ed i c t (mlrmod1 ,

subset ( Stat icData , Season==2015)[ ,=match ( "Result " , colnames ( Stat icData ) ) ] , type="

response " ) )

257 mlracc1<=mlr1Res$Accuracy

258

259 #GEE

260 #geemod3<=gee ( data=subset ( Stat icData , Season <=2014) , formula=geeResu l t fn , maxiter=100 ,

fami ly=binomial ( l o g i t ) , id=Venue , c o r s t r="unstructured ")

261 #gee3Res<=predtab ( ac tua l=subset ( Stat icData , Season==2015)$Result , pred=pr ed i c t ( geemod3 ,

subset ( Stat icData , Season==2015) , type="response ") )

262 #gee3acc<=gee3Res$Accuracy

263

264 #geemod4<=gee ( data=subset ( Stat icData , Season <=2014) , formula=geeMarginfn , maxiter=100 ,

fami ly=binomial ( l o g i t ) , id=Venue , c o r s t r="unstructured ")

265 #gee4Res<=p r ed i c t ( geemod4 , subset ( Stat icData , Season==2015) , type="s c a l e ")

266 #geeacc4<=mean( abs ( subset ( Stat icData , Season==2015)$Margin=gee4Res ) )

267

268 #RF

269 rfmod1<=randomForest ( formula=Result fn , data = subset ( Stat icData , Season <=2014) , importance

=TRUE)

270 r f1Res<=p r ed i c t ( rfmod1 , subset ( Stat icData , Season==2015) [ ,=match ( "Result " , colnames (

Stat icData ) ) ] , type=" response " )

271 rf1temp<=cbind ( rf1Res , subset ( Stat icData , Season==2015)$Result )

272 r f a c c 1<=l ength ( which ( rf1temp [ ,1]== rf1temp [ , 2 ] ) ) / l ength ( rf1temp [ , 1 ] )

273

274 rfmod2<=randomForest ( formula=Marginfn , data = subset ( Stat icData , Season <=2014) , importance

=TRUE)

275 r f2Res<=p r ed i c t ( rfmod2 , subset ( Stat icData , Season==2015) [ ,=match ( "Margin" , colnames (

Stat icData ) ) ] , type=" response " )

276 r f a c c 2<=mean( abs ( as . numeric ( subset ( Stat icData , Season==2015)$Margin )=as . numeric ( u n l i s t (

r f2Res ) ) ) )

277

278 #LMT

279 lmtmod1<=LMT( formula=Result fn , data = subset ( Stat icData , Season <=2014) )

280 lmt1Res<=p r ed i c t ( lmtmod1 , newdata=subset ( Stat icData , Season==2015) )

281 lmt1temp<=cbind ( lmt1Res , subset ( Stat icData , Season==2015)$Result )

282 lmtacc1<=l ength ( which ( lmt1temp [ ,1]== lmt1temp [ , 2 ] ) ) / l ength ( lmt1temp [ , 1 ] )

283

284 #SVM

285 tune1<=tune . svm( Result fn , data = subset ( Stat icData , Season <=2014) , gamma = 10^(=6:=1) ,

co s t = 10^(=1:1) )

286 G<=tune1$ best . parameters $gamma
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287 C<=tune1$ best . parameters $ co s t

288 svmmod1<=svm( Result fn , data = subset ( Stat icData , Season <=2014) , k e rne l=" r a d i a l " , gamma=G,

co s t=C)

289 svm1Res<=p r ed i c t (svmmod1 , newdata=subset ( Stat icData , Season==2015)[ ,=match ( "Result " ,

colnames ( Stat icData ) ) ] )

290 svm1temp<=cbind ( svm1Res , subset ( Stat icData , Season==2015)$Result )

291 svmacc1<=l ength ( which ( svm1temp[ ,1]==svm1temp [ , 2 ] ) ) / l ength ( svm1temp [ , 1 ] )

292

293 tune2<=tune . svm(Marginfn , data = subset ( Stat icData , Season <=2014) , gamma = 10^(=6:=1) ,

co s t = 10^(=1:1) )

294 G<=tune2$ best . parameters $gamma

295 C<=tune2$ best . parameters $ co s t

296 svmmod2<=svm(Marginfn , data = subset ( Stat icData , Season <=2014) , k e rne l=" r a d i a l " , gamma=G,

co s t=C)

297 svm2Res<=p r ed i c t (svmmod2 , newdata=subset ( Stat icData , Season==2015)[ ,=match ( "Margin" ,

colnames ( Stat icData ) ) ] )

298 svmacc2<=mean( abs ( as . numeric ( subset ( Stat icData , Season==2015)$Margin )=as . numeric ( u n l i s t (

svm2Res ) ) ) )

299

300 teamRes<=cbind ( mlracc1 , r f acc1 , r f acc2 , lmtacc1 , svmacc1 , svmacc2 )

301 #MATCH SPECIFIC

302 MatchData<=cbind ( Stat icData ,dummyhome,dummyaway)

303

304

305 ##MLR

306 mlrmod1<=glm (matchResultfn , data=subset (MatchData , Season <=2014) , fami ly=binomial ( l o g i t ) )

307 mlr1Res<=predtab ( ac tua l=subset (MatchData , Season==2015)$Result , pred=pr ed i c t (mlrmod1 , subset

(MatchData , Season==2015)[ ,=match ( "Result " , colnames (MatchData ) ) ] , type=" response " ) )

308 mlracc1<=mlr1Res$Accuracy

309

310 #GEE

311 #geemod3<=gee ( data=subset (MatchData , Season <=2014) , f unc t i on=geematchResultfn , maxiter

=100 , fami ly=binomial ( l o g i t ) , id=Venue , c o r s t r="unstructured ")

312 #gee3Res<=predtab ( ac tua l=subset (MatchData , Season==2015)$Result , pred=pr ed i c t ( geemod3 ,

subset (MatchData , Season==2015) ) , type="response ")

313 #gee3acc<=gee3Res$Accuracy

314

315 #geemod4<=gee ( data=subset (MatchData , Season <=2014) , f unc t i on=geematchMarginfn , maxiter

=100 , fami ly=binomial ( l o g i t ) , id=Venue , c o r s t r="unstructured ")

316 #gee4Res<=p r ed i c t ( geemod4 , subset (MatchData , Season==2015) , type="s c a l e ")

317 #geeacc4<=mean( abs ( subset (MatchData , Season==2015)$Margin=gee4Res ) )

318

319 #RF

320 rfmod1<=randomForest ( formula=matchResultfn , data = subset (MatchData , Season <=2014) ,

importance=TRUE)

321 r f1Res<=p r ed i c t ( rfmod1 , subset (MatchData , Season==2015) [ ,=match ( "Result " , colnames (MatchData

) ) ] , type=" response " )

322 rf1temp<=cbind ( rf1Res , subset (MatchData , Season==2015)$Result )

323 r f a c c 1<=l ength ( which ( rf1temp [ ,1]== rf1temp [ , 2 ] ) ) / l ength ( rf1temp [ , 1 ] )

324

325 rfmod2<=randomForest ( formula=matchMarginfn , data = subset (MatchData , Season <=2014) ,

importance=TRUE)

326 r f2Res<=p r ed i c t ( rfmod2 , subset (MatchData , Season==2015) [ ,=match ( "Margin" , colnames (MatchData

) ) ] , type=" response " )

327 r f a c c 2<=mean( abs ( as . numeric ( subset (MatchData , Season==2015)$Margin )=as . numeric ( u n l i s t (

r f2Res ) ) ) )

328

329 #LMT
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330 lmtmod1<=LMT( formula=matchResultfn , data = subset (MatchData , Season <=2014) )

331 lmt1Res<=p r ed i c t ( lmtmod1 , newdata=subset (MatchData , Season==2015) )

332 lmt1temp<=cbind ( lmt1Res , subset (MatchData , Season==2015)$Result )

333 lmtacc1<=l ength ( which ( lmt1temp [ ,1]== lmt1temp [ , 2 ] ) ) / l ength ( lmt1temp [ , 1 ] )

334

335 #SVM

336 tune1<=tune . svm(matchResultfn , data = subset (MatchData , Season <=2014) , gamma = 10^(=6:=1) ,

co s t = 10^(=1:1) )

337 G<=tune1$ best . parameters $gamma

338 C<=tune1$ best . parameters $ co s t

339 svmmod1<=svm(matchResultfn , data = subset (MatchData , Season <=2014) , k e rne l=" r a d i a l " , gamma

=G, co s t=C)

340 svm1Res<=p r ed i c t (svmmod1 , newdata=subset (MatchData , Season==2015)[ ,=match ( "Result " , colnames

(MatchData ) ) ] )

341 svm1temp<=cbind ( svm1Res , subset (MatchData , Season==2015)$Result )

342 svmacc1<=l ength ( which ( svm1temp[ ,1]==svm1temp [ , 2 ] ) ) / l ength ( svm1temp [ , 1 ] )

343

344 tune2<=tune . svm(matchMarginfn , data = subset (MatchData , Season <=2014) , gamma = 10^(=6:=1) ,

co s t = 10^(=1:1) )

345 G<=tune2$ best . parameters $gamma

346 C<=tune2$ best . parameters $ co s t

347 svmmod2<=svm(matchMarginfn , data = subset (MatchData , Season <=2014) , k e rne l=" r a d i a l " , gamma

=G, co s t=C)

348 svm2Res<=p r ed i c t (svmmod2 , newdata=subset (MatchData , Season==2015)[ ,=match ( "Margin" , colnames

(MatchData ) ) ] )

349 svmacc2<=mean( abs ( as . numeric ( subset (MatchData , Season==2015)$Margin )=as . numeric ( u n l i s t (

svm2Res ) ) ) )

350

351

352 matchRes<=cbind ( mlracc1 , r f acc1 , r f acc2 , lmtacc1 , svmacc1 , svmacc2 )
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D.2 Sensitivity Analysis

1 ##Sta t i c S e n s i t i v i t y Ana lys i s ( F ina l )

2 ##Created By : Casey Josman

3 ##Last Edited : 30/01/2017

4

5 l i b r a r y ( bnlearn )

6 l i b r a r y ( dea l )

7 l i b r a r y ( Rgraphviz )

8 l i b r a r y ( gee )

9 l i b r a r y (MuMIn)

10 l i b r a r y ( binomTools )

11 l i b r a r y ( randomForest )

12 l i b r a r y (RWeka)

13 l i b r a r y ( e1071 )

14 l i b r a r y ( fmsb )

15 l i b r a r y ( ca r e t )

16 l i b r a r y ( s t r i n g r )

17 l i b r a r y ( psych )

18 l i b r a r y ( a g r i c o l a e )

19 l i b r a r y ( xtab l e )

20

21 ##FUNCTIONS

22 l o g i s t i c . r e g r e s s i o n . or . c i <= f unc t i on ( r e g r e s s . out , l e v e l =0.95) #FUNCTION FROM http : //www.

medic ine . mcg i l l . ca/ epidemio logy / joseph / cour s e s /EPIB=621/ l o g i s t i c . r e g r e s s i o n . or . c i . txt

23 {

24 usua l . output <= summary( r e g r e s s . out )

25 z . quan t i l e <= qnorm(1=(1= l e v e l ) / 2)

26 number . vars <= l ength ( r e g r e s s . out$ c o e f f i c i e n t s )

27 OR <= exp ( r e g r e s s . out$ c o e f f i c i e n t s [=1])

28 temp . s t o r e . r e s u l t <= matrix ( rep (NA, number . vars * 2) , nrow=number . vars )

29 f o r ( i in 1 : number . vars )

30 {

31 temp . s t o r e . r e s u l t [ i , ] <= summary( r e g r e s s . out ) $ c o e f f i c i e n t s [ i ] +

32 c (=1 , 1) * z . quan t i l e * summary( r e g r e s s . out ) $ c o e f f i c i e n t s [ i+number . vars ]

33 }

34 i n t e r c e p t . c i <= temp . s t o r e . r e s u l t [ 1 , ]

35 s l o p e s . c i <= temp . s t o r e . r e s u l t [=1 , ]

36 OR. c i <= exp ( s l o p e s . c i )

37 output <= l i s t ( r e g r e s s i o n . t ab l e = usua l . output , i n t e r c e p t . c i = i n t e r c e p t . c i ,

38 s l o p e s . c i = s l op e s . c i , OR=OR, OR. c i = OR. c i )

39 r e turn ( output )

40 }

41

42 pe r f = func t i on ( cut , pred , y )

43 {

44 i f ( i s . f a c t o r ( y ) ) {

45 y<=as . numeric ( as . cha rac t e r ( y ) )

46 } e l s e {y<=y}

47 yhat = ( pred>cut )

48 w = which (y==1)

49 s e n s i t i v i t y = mean( yhat [w] == 1 )

50 s p e c i f i c i t y = mean( yhat [=w] == 0 )

51 c . r a t e = mean( y==yhat )

52 d = cbind ( s e n s i t i v i t y , s p e c i f i c i t y )=c (1 , 1 )

53 d = sq r t ( d [ 1 ]^2 + d [2 ]^2 )
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54 out = t ( as . matrix ( c ( s e n s i t i v i t y , s p e c i f i c i t y , c . rate , d ) ) )

55 colnames ( out ) = c ( " s e n s i t i v i t y " , " s p e c i f i c i t y " , "c . r a t e " , " d i s t ance " )

56 r e turn ( out )

57 }

58

59 predtab<=f unc t i on ( pred , ac tua l ) { #pred=PREDICTION OF GEE MODEL, ac tua l=RESULT COLUMN FROM

DATASET, MUST SET SCALE PARAMETER INTERNALLY

60 count<=0

61 newtab<=data . frame ( )

62 l en<=l ength ( pred )

63 s = seq ( . 0 1 , . 9 9 , l ength=1000)

64 OUT = matrix (0 ,1000 ,4 )

65 f o r ( o in 1 :1000) {

66 OUT[ o , ]= pe r f ( s [ o ] , pred=pred , y=ac tua l )

67 }

68 cp<=mean( s [ which (OUT[ ,4]==min(OUT[ , 4 ] ) ) ] )

69 f o r ( i in 1 : l en ) {

70 i f ( pred [ i ]>=cp ) {

71 newtab [ i ,1 ]=1}

72 e l s e {

73 newtab [ i ,1 ]=0}

74 }

75 f o r ( j in 1 : l en ) {

76 i f ( a c tua l [ j ]==1){

77 count<=count+1

78 }

79 e l s e {

80 }

81 }

82 combtab<=cbind ( newtab , ac tua l )

83 acctab<=t ab l e ( combtab [ , 2 ] , combtab [ , 1 ] ) #TABULATES ACTUAL VS PREDICTED

84 acc=sum( diag ( acctab ) ) / l en

85 l i s t ( ConfusionMatrix=acctab , Accuracy=acc , Pred=newtab , out=OUT)

86 }

87

88 chsq<=f unc t i on (model , data , metr ic ) { #MODEL=GLM OUTPUT, DATA=DATA, METRIC="RESULT BEING

MODELLED"

89 ml r f i t<=model$ f i t t e d

90 r<=( data [ , metr ic ] = ml r f i t ) / ( s q r t ( m l r f i t *(1=ml r f i t ) ) )

91 r2<=sum( r ^2)

92 df1<=nrow ( data )=l ength (model$ c o e f f )

93 pval1<=1=pchi sq ( r2 , df1 )

94 r e turn ( p r i n t ( paste ( "Chi=square goodness o f f i t t e s t with df=" , df1 , " : " , " p=value = " ,

pval1 , sep="" ) ) )

95 }

96

97 s p l i t d f <= f unc t i on ( dataframe , seed=NULL, s i z ep rop ) { #DATAFRAME=DATA TO BE SPLIT , SEED=

SEED, SIZEPROP=SIZE OF TRAINING SET

98 i f ( ! i s . nu l l ( seed ) ) s e t . seed ( seed )

99 index <= 1 : nrow ( dataframe )

100 t r a i n i ndex <= sample ( index , trunc ( l ength ( index ) * ( s i z ep rop ) ) )

101 t r a i n s e t <= dataframe [ t ra in index , ]

102 t e s t s e t <= dataframe [= t ra in index , ]

103 l i s t ( t r a i n s e t=t r a i n s e t , t e s t s e t=t e s t s e t )

104 }

105

106 matchsp l i t<=f unc t i on ( dataframe , season , rnd ) {

107 i f ( rnd==1){
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108 t r a i n s e t<=subset ( dataframe , dataframe$Season<season )

109 t e s t s e t<=subset ( dataframe , dataframe$Season==season & dataframe$Round==rnd )

110 } e l s e {

111 t r a i n s e t<=subset ( dataframe , dataframe$Season<season | dataframe$Season==season &

dataframe$Round<rnd )

112 t e s t s e t<=subset ( dataframe , dataframe$Season==season & dataframe$Round==rnd )

113 }

114 l i s t ( t r a i n s e t=t r a i n s e t , t e s t s e t=t e s t s e t )

115 }

116

117 MultiLogLoss <= f unc t i on ( act , pred ) { #FUNCTION FROM https : //www. kagg le . com/wik i /

Logar ithmicLoss

118 eps = 1e=15;

119 nr <= nrow ( pred )

120 pred = matrix ( sapply ( pred , f unc t i on (x ) max( eps , x ) ) , nrow = nr )

121 pred = matrix ( sapply ( pred , f unc t i on (x ) min(1=eps , x ) ) , nrow = nr )

122 l l = sum( act * l og ( pred ) + (1=act ) * l og (1=pred ) )

123 l l = l l * =1/ ( nrow ( act ) )

124 r e turn ( l l ) ;

125 }

126

127

128 r f . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, r f . fn=NULL, metr ic ) {

129 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

130 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

131 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

132 r f . temp<=randomForest ( formula=r f . fn , data = t r a i n i n g . temp , nt r ee=nrow ( t r a i n i n g . temp) *

10 , importance=TRUE)

133 ind<=match ( metric , colnames ( datase t ) )

134 p r ed i c t . temp<=p r ed i c t ( r f . temp , t e s t i n g . temp[ ,= ind ] , type=" response " )

135 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

136 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

137 i f ( metr ic=="Result " ) {

138 r e turn ( p r ed i c t . temp)

139 } e l s e {

140 r e turn ( p r ed i c t . temp)

141 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

142 #return ( ab s e r r o r . temp)

143 }

144 }

145

146 lmt . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, lmt . fn=NULL, metr ic ) {

147 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

148 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

149 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

150 ind<=match ( metric , colnames ( datase t ) )

151 lmt . temp<=LMT( formula=lmt . fn , data = t r a i n i n g . temp)

152 p r ed i c t . temp<=p r ed i c t ( lmt . temp , newdata=t e s t i n g . temp)

153 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

154 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

155 i f ( metr ic=="Result " ) {

156 r e turn ( p r ed i c t . temp)

157 } e l s e {

158 r e turn ( p r ed i c t . temp)

159 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

160 #return ( ab s e r r o r . temp)

161 }

162 }
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163

164 svm . eva l<=f unc t i on ( dataset , season=NULL, rnd=NULL, svm . fn=NULL, metr ic ) {

165 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

166 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

167 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

168 ind<=match ( metric , colnames ( datase t ) )

169 tuned . temp <= tune . svm(svm . fn , data = t r a i n i n g . temp , gamma = 10^(=6:=1) , co s t =

10^(=1:1) )

170 G<=tuned . temp$ best . parameters $gamma #best per forming gamma

171 C<=tuned . temp$ best . parameters $ co s t #best per forming co s t

172 svm . temp<=svm(svm . fn , data = t r a i n i n g . temp , ke rne l = " r a d i a l " , gamma = G, co s t = C)

173 p r ed i c t . temp<=p r ed i c t (svm . temp , newdata=t e s t i n g . temp[ ,=match ( metric , colnames ( t e s t i n g .

temp) ) ] )

174 con fus i on . temp<=t ab l e ( t e s t i n g . temp [ , ind ] , p r ed i c t . temp)

175 accuracy . temp<=sum( diag ( con fus i on . temp) ) /sum( con fus i on . temp)

176 i f ( metr ic=="Result " ) {

177 r e turn ( p r ed i c t . temp)

178 } e l s e {

179 r e turn ( p r ed i c t . temp)

180 #abse r r o r . temp<=mean( abs ( t e s t i n g . temp [ , ind ]= p r ed i c t . temp) )

181 #return ( ab s e r r o r . temp)

182 }

183 }

184

185 r e s u l t . venue . independence<=f unc t i on ( dataset , gee . fn=NULL, season=NULL, rnd=NULL, metr ic ) {

#gee . fn=gee model , gee . id=s e t i n t e r n a l l y , gee . cor=s e t i n t e r n a l l y

186 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

187 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

188 t r a i n i n g . temp<=t r a i n i n g . temp [ order ( t r a i n i n g . temp$Venue ) , ]

189 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

190 f i t . temp<=gee ( data=dataset , gee . fn , maxiter=100 , fami ly=binomial ( l o g i t ) , id=Venue ,

c o r s t r=" independence " )

191 i f ( metr ic=="Result " ) {

192 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

193 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( metric , colnames (

t e s t i n g . temp) ) ] )

194 accuracy . temp<=p r ed i c t . tab$Accuracy

195 r e turn ( p r ed i c t . tab$Pred )

196 } e l s e {

197 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" s c a l e " )

198 abs e r r o r . temp<=mean( abs ( t e s t i n g . temp$Margin=p r ed i c t . temp) )

199 l i s t ( ab s e r r o r . temp , p r ed i c t . temp)

200 }

201 }

202

203 margin . venue . independence<=f unc t i on ( dataset , gee . fn=NULL, season=NULL, rnd=NULL, metr ic ) {

#gee . fn=gee model , gee . id=s e t i n t e r n a l l y , gee . cor=s e t i n t e r n a l l y

204 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

205 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

206 t r a i n i n g . temp<=t r a i n i n g . temp [ order ( t r a i n i n g . temp$Venue ) , ]

207 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

208 f i t . temp<=gee ( data=dataset , gee . fn , maxiter=100 , fami ly=binomial ( l o g i t ) , id=Venue ,

c o r s t r=" independence " )

209 i f ( metr ic=="Result " ) {

210 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

211 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( metric , colnames (

t e s t i n g . temp) ) ] )

212 accuracy . temp<=p r ed i c t . tab$Accuracy
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213 r e turn ( p r ed i c t . tab$Pred )

214 } e l s e {

215 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" s c a l e " )

216 abs e r r o r . temp<=mean( abs ( t e s t i n g . temp$Margin=p r ed i c t . temp) )

217 l i s t ( ab s e r r o r . temp , p r ed i c t . temp)

218 }

219 }

220

221 r e s u l t . mlr . eva l<=f unc t i on ( dataset , mlr . fn=NULL, season=NULL, rnd=NULL) {

222 s p l i t . temp<=matchsp l i t ( dataframe=dataset , season=season , rnd=rnd )

223 t r a i n i n g . temp<=s p l i t . temp$ t r a i n s e t

224 t e s t i n g . temp<=s p l i t . temp$ t e s t s e t

225 f i t . temp<=glm ( data=t r a i n i n g . temp , mlr . fn , f ami ly=binomial ( l o g i t ) )

226 p r ed i c t . temp<=p r ed i c t ( f i t . temp , t e s t i n g . temp , type=" response " )

227 p r ed i c t . tab<=predtab ( pred=pr ed i c t . temp , ac tua l=t e s t i n g . temp [ , match ( "Result " , colnames (

t e s t i n g . temp) ) ] )

228 accuracy . temp<=p r ed i c t . tab$Accuracy

229 r e turn ( p r ed i c t . tab$Pred )

230 }

231

232 ##READ DATA FILE

233 #setwd ("C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data\\ S e n s i t i v i t y Ana lys i s ") #

years 2010=2015

234 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data\\ H i s t o r i c S e n s i t i v i t y " ) #

years 2001=2015

235 f i l e s<= l i s t . f i l e s ( pattern=" . csv " )

236 f i l e s<= f i l e s [=match ( "HistData . csv " , f i l e s ) ]

237 Res<=NULL

238 MOV<=NULL

239 f<= f i l e s [ 9 ]

240 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data\\ H i s t o r i c S e n s i t i v i t y " )

241

242 Stat icData<=read . csv ( f , header=TRUE)

243 Stat icData<=Stat icData [=which ( Stat icData $Result=="Draw" ) , ]

244 Stat icData $SeasonF<=as . f a c t o r ( Stat icData $Season )

245 Stat icData $RoundF<=as . f a c t o r ( Stat icData $Round)

246 Stat icData $ F ina l s<=as . f a c t o r ( Stat icData $ F ina l s )

247 Stat icData $ResN<=Stat icData $Result

248 Stat icData $Result<=as . f a c t o r ( Stat icData $Result )

249 Stat icData $HomeRank<=as . f a c t o r ( Stat icData $HomeRank)

250 Stat icData $AwayRank<=as . f a c t o r ( Stat icData $AwayRank)

251

252

253 g<=2001

254 TrainData<=subset ( Stat icData , Season>=g & Season <=2014)#& Round<=24)

255 TestData<=subset ( Stat icData , Season==2015)#& Round<=24)

256 Kval<=s t r_ex t r a c t ( f , " (^[0=9]+)" )

257 Lval<=sub s t r i ng ( s t r_ex t r a c t ( f , "(=+[0=9]+)" ) ,2 )

258 Dataval<=paste ( g , " : " , "2014" , sep="" )

259

260 ##SET GLOBAL VARIABLES

261 s e t . seed (314)

262 cvseed<=c (866 ,933 ,828 ,955 ,978 ,805 ,959 ,878 ,831 ,910)

263 nrep<=10

264

265 ##MODELS (ALL FEATURES) = MATCH SPECIFIC

266 #Fina l s i n d i c a t o r was removed due to n e g l i g i b l e importance

267 nonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Home . team" , "Away .
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team" , "Season" , "Round" , "ResN" ) , colnames ( Stat icData ) )

268 Resu l t fn=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

269 Marginfn=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

270

271 ##MODELS = GEE (MATCH SPECIFIC)

272 geenonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Home . team" , "Away .

team" , "Season" , "Round" , "ResN" ) , colnames ( Stat icData ) )

273 geeResu l t fn=as . formula ( paste ( "ResN~" , paste ( colnames ( Stat icData [ ,= geenonfeat ] ) , c o l l a p s e="+

" ) ) )

274 geeMarginfn=as . formula ( paste ( "Margin~" , paste ( colnames ( Stat icData [ ,= geenonfeat ] ) , c o l l a p s e=

"+" ) ) )

275

276 ##MLR

277 mlr s t a r t<=Sys . time ( )

278 mlrmod1<=glm ( Result fn , data=TrainData , fami ly=binomial ( l o g i t ) )

279 mlrmod1$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrmod1$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( TestData$SeasonF )

)

280 #mlrmod1$ x l e v e l s [ [ " Venue " ] ]<=union (mlrmod1$ x l e v e l s [ [ " Venue " ] ] , l e v e l s ( TestData$Venue ) )

281 #mlrmod1$ x l e v e l s [ [ " HomeRank " ] ]<=union (mlrmod1$ x l e v e l s [ [ " HomeRank " ] ] , l e v e l s ( TestData$

HomeRank) )

282 #mlrmod1$ x l e v e l s [ [ " AwayRank " ] ]<=union (mlrmod1$ x l e v e l s [ [ " AwayRank " ] ] , l e v e l s ( TestData$

AwayRank) )

283 mlr1Res<=predtab ( ac tua l=TestData$Result , pred=pr ed i c t (mlrmod1 , TestData [ ,=match ( "Result " ,

colnames ( Stat icData ) ) ] , type=" response " ) )

284 mlracc1<=mlr1Res$Accuracy

285 RMSQmlr<=s q r t (mean ( ( as . numeric ( as . cha rac t e r ( TestData$Result ) )=mlr1Res$Pred ) ^2) )

286 mlrend<=Sys . time ( )

287 CTmlr<=d i f f t im e (mlrend , mlr s tar t , un i t s=" s e c s " )

288 #R2mlr<=

289

290 #RF

291 r f s t a r t<=Sys . time ( )

292 rfmod1<=randomForest ( formula=Result fn , data = TrainData , importance=TRUE)

293 r f1Res<=p r ed i c t ( rfmod1 , TestData [ ,=match ( "Result " , colnames ( Stat icData ) ) ] , type=" response " )

294 rf1temp<=cbind ( rf1Res , TestData$Result )

295 r f a c c 1<=l ength ( which ( rf1temp [ ,1]== rf1temp [ , 2 ] ) ) / l ength ( rf1temp [ , 1 ] )

296 RMSQrf<=s q r t (mean ( ( as . numeric ( as . cha rac t e r ( TestData$Result ) )=as . numeric ( as . cha rac t e r (

r f1Res ) ) ) ^2) )

297 r f end<=Sys . time ( )

298 CTrf<=d i f f t im e ( rfend , r f s t a r t , un i t s=" s e c s " )

299 #R2rf<=

300

301 rfmod2<=randomForest ( formula=Marginfn , data = TrainData , importance=TRUE)

302 r f2Res<=p r ed i c t ( rfmod2 , TestData [ ,=match ( "Margin" , colnames ( Stat icData ) ) ] , type=" response " )

303 r f a c c 2<=mean( abs ( as . numeric ( TestData$Margin )=as . numeric ( u n l i s t ( r f2Res ) ) ) )

304

305 #LMT

306 lmt s t a r t<=Sys . time ( )

307 lmtmod1<=LMT( formula=Result fn , data = TrainData )

308 lmt1Res<=p r ed i c t ( lmtmod1 , newdata=TestData )

309 lmt1temp<=cbind ( lmt1Res , TestData$Result )

310 lmtacc1<=l ength ( which ( lmt1temp [ ,1]== lmt1temp [ , 2 ] ) ) / l ength ( lmt1temp [ , 1 ] )

311 RMSQlmt<=s q r t (mean ( ( as . numeric ( as . cha rac t e r ( TestData$Result ) )=as . numeric ( as . cha rac t e r (

lmt1Res ) ) ) ^2) )

312 lmtend<=Sys . time ( )

313 CTlmt<=d i f f t im e ( lmtend , lmtstar t , un i t s=" s e c s " )

314 #R2lmt<=

315
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316 #SVM

317 svmstart<=Sys . time ( )

318 tune1<=tune . svm( Result fn , data = TrainData , gamma = 10^(=6:=1) , co s t = 10^(=1:1) )

319 G<=tune1$ best . parameters $gamma #0.01 from 10^(=6:=1)

320 C<=tune1$ best . parameters $ co s t #10 from 10^(=1:1)

321 svmmod1<=svm( Result fn , data = TrainData , k e rne l=" r a d i a l " , gamma=G, co s t=C)

322 svm1Res<=p r ed i c t (svmmod1 , newdata=TestData [ ,=match ( "Result " , colnames ( Stat icData ) ) ] )

323 svm1temp<=cbind ( svm1Res , TestData$Result )

324 svmacc1<=l ength ( which ( svm1temp[ ,1]==svm1temp [ , 2 ] ) ) / l ength ( svm1temp [ , 1 ] )

325 RMSQsvm<=s q r t (mean ( ( as . numeric ( as . cha rac t e r ( TestData$Result ) )=as . numeric ( as . cha rac t e r (

svm1Res ) ) ) ^2) )

326 svmend<=Sys . time ( )

327 CTsvm<=d i f f t im e ( svmend , svmstart , un i t s=" s e c s " )

328 #R2svm<=

329

330 tune2<=tune . svm(Marginfn , data = TestData , gamma = 10^(=6:=1) , co s t = 10^(=1:1) )

331 G<=tune2$ best . parameters $gamma

332 C<=tune2$ best . parameters $ co s t

333 svmmod2<=svm(Marginfn , data = TrainData , k e rne l=" r a d i a l " , gamma=G, co s t=C)

334 svm2Res<=p r ed i c t (svmmod2 , newdata=TestData [ ,=match ( "Margin" , colnames ( Stat icData ) ) ] )

335 svmacc2<=mean( abs ( as . numeric ( TestData$Margin )=as . numeric ( u n l i s t ( svm2Res ) ) ) )

336

337

338 ResTemp<=data . frame ( matrix ( nco l=7,nrow=4) )

339 ResTemp [ , 1 ]<=c ( mlracc1 , r f acc1 , lmtacc1 , svmacc1 )

340 ResTemp [ , 2 ]<=c ( "MLR" , "RF" , "LMT" , "SVM" )

341 ResTemp [ , 3 ]<=rep (Kval , 4 )

342 ResTemp [ , 4 ]<=rep ( Lval , 4 )

343 ResTemp [ , 5 ]<=rep ( Dataval , 4 )

344 ResTemp [ , 6 ]<=c (RMSQmlr,RMSQrf ,RMSQlmt,RMSQsvm)

345 ResTemp [ , 7 ]<=c (CTmlr , CTrf , CTlmt ,CTsvm)

346 #ResTemp [ , 7 ]<=c (R2mlr , R2rf , R2lmt ,R2svm)

347 MOVTemp<=data . frame ( matrix ( nco l=5,nrow=2) )

348 MOVTemp[ , 1 ]<=c ( r facc2 , svmacc2 )

349 MOVTemp[ , 2 ]<=c ( "RF" , "SVM" )

350 MOVTemp[ , 3 ]<=rep (Kval , 2 )

351 MOVTemp[ , 4 ]<=rep ( Lval , 2 )

352 MOVTemp[ , 5 ]<=rep ( Dataval , 2 )

353

354 Res<=rbind (Res , ResTemp)

355 MOV<=rbind (MOV,MOVTemp)

356

357

358

359

360 colnames (Res )<=c ( "Result " , "Method" , "KValue" , "LValue" , "Data" , "RMSQ" , "CT" )

361 colnames (MOV)<=c ( "Result " , "Method" , "KValue" , "LValue" , "Data" )

362

363 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\ Resu l t s \\2017\\ S t a t i c S e n s i t i v i t y

(Rerun 2017 = With F ina l s ) \\2001=2014" )

364 wr i t e . csv (Res , row . names=FALSE, f i l e=" S t a t i c Resu l t s ( H i s t o r i c ) . csv " )

365 wr i t e . csv (MOV, row . names=FALSE, f i l e=" S t a t i c MOV ( H i s t o r i c ) . csv " )

366

367 Res$Method<=as . f a c t o r (Res$Method )

368 Res$KValue<=as . f a c t o r (Res$KValue )

369 Res$LValue<=as . f a c t o r (Res$LValue )

370 Res$Data<=as . f a c t o r (Res$Data )

371
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372 MOV$Method<=as . f a c t o r (MOV$Method )

373 MOV$KValue<=as . f a c t o r (MOV$KValue )

374 MOV$LValue<=as . f a c t o r (MOV$LValue )

375 MOV$Data<=as . f a c t o r (MOV$Data )

376

377 ##ANOVA ANALYSIS

378

379 ResAOV<=aov ( formula = Result ~ Method + KValue * LValue + Data + RMSQ + CT, data = Res )

380 MOVAOV<=aov ( formula = Result ~ Method + KValue * LValue + Data , data = MOV)

381

382 TukeyHSD(ResAOV)
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D.3 Team Performance R Code

1 ##Penalty Models

2 ##Created By : Casey Josman

3 ##Last Edited : 08/04/2016

4

5 ##LIBRARIES

6 l i b r a r y ( car )

7 l i b r a r y ( ggp lot2 )

8

9 ##FUNCTIONS

10

11 GameSum<=f unc t i on ( p r ed i c t i on , team , minprob , maxprob ) {

12

13 GameMat<=matrix ( nrow=2, nco l=4)

14 colnames (GameMat)<=c ( paste ( "P(win )<" ,minprob , sep="" ) , paste (minprob , "<P(win )<" ,maxprob ,

sep="" ) , paste ( "P(win )>" ,maxprob , sep="" ) , "Total " )

15 rownames (GameMat)<=c ( "Win" , "Lose" )

16 wintemp<=subset ( p r ed i c t i on ,Home . team==team | Away . team==team)

17 GameMat [ 1 , ]<=c ( nrow (wintemp [ which (wintemp$Home . team==team & wintemp$Result==1 & wintemp

$WinProb<minprob ) , ] )+nrow (wintemp [ which (wintemp$Away . team==team & wintemp$Result==0

& 1=wintemp$WinProb<minprob ) , ] ) , nrow (wintemp [ which (wintemp$Home . team==team &

wintemp$Result==1 & wintemp$WinProb>minprob & wintemp$WinProb<maxprob ) , ] )+nrow (

wintemp [ which (wintemp$Away . team==team & wintemp$Result==0 & 1=wintemp$WinProb>

minprob & 1=wintemp$WinProb<maxprob ) , ] ) , nrow (wintemp [ which (wintemp$Home . team==team

& wintemp$Result==1 & wintemp$WinProb>maxprob ) , ] )+nrow (wintemp [ which (wintemp$Away .

team==team & wintemp$Result==0 & 1=wintemp$WinProb>maxprob ) , ] ) , nrow ( subset (wintemp ,

wintemp$Home . team==team & wintemp$Result==1 | wintemp$Away . team==team & wintemp$

Result==0)) )

18 losetemp<=subset ( p r ed i c t i on ,Away . team==team)

19 GameMat [ 2 , ]<=c ( nrow (wintemp [ which (wintemp$Home . team==team & wintemp$Result==0 & wintemp

$WinProb<minprob ) , ] )+nrow (wintemp [ which (wintemp$Away . team==team & wintemp$Result==1

& 1=wintemp$WinProb<minprob ) , ] ) , nrow (wintemp [ which (wintemp$Home . team==team &

wintemp$Result==0 & wintemp$WinProb>minprob & wintemp$WinProb<maxprob ) , ] )+nrow (

wintemp [ which (wintemp$Away . team==team & wintemp$Result==1 & 1=wintemp$WinProb>

minprob & 1=wintemp$WinProb<maxprob ) , ] ) , nrow (wintemp [ which (wintemp$Home . team==team

& wintemp$Result==0 & wintemp$WinProb>maxprob ) , ] )+nrow (wintemp [ which (wintemp$Away .

team==team & wintemp$Result==1 & 1=wintemp$WinProb>maxprob ) , ] ) , nrow ( subset (wintemp ,

wintemp$Home . team==team & wintemp$Result==0 | wintemp$Away . team==team & wintemp$

Result==1)) )

20

21 r e turn (GameMat)

22

23 }

24

25 ProbPlot<=f unc t i on (RawData , Fixture ,MLRfn , lowbound=0.3 , upbound=0.7) {

26

27 l i b r a r y ( ggp lot2 )

28 l i b r a r y ( reshape2 )

29

30 RawData$SeasonF<=as . f a c t o r (RawData$Season )

31 RawData$RoundF<=as . f a c t o r (RawData$Round)

32 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

33 RawData$Result<=as . f a c t o r (RawData$Result )

34 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)

35 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)
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36 teams<= l e v e l s (RawData$Home . team)

37 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

38 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )

39 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

40 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

41 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

42 } e l s e {}

43 predtemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

44

45 preddata<=cbind ( subset (RawData , Season==seatemp+1 & Round<=24) ,WinProb=predtemp )

46

47 ind<=0

48 p lotdata<=data . frame ( matrix ( nrow=18, nco l=22) )

49 colnames ( p lo tdata )<=paste ( 1 : 2 2 , sep="" )

50 rownames ( p lo tdata )<=teams

51

52 f o r ( t in teams ) {

53

54 ind<=ind+1

55 temp<=subset ( preddata , Home . team==t | Away . team==t )

56 temp [ which ( temp$Away . team==t ) , ] $WinProb<=1=temp [ which ( temp$Away . team==t ) , ] $WinProb

57 p lotdata [ ind , ]<=temp$WinProb

58

59 }

60 p lotdata<=round ( plotdata , d i g i t s =2)

61 p lotdata $Team<=teams

62 p lotme l t<=melt ( plotdata , id . vars="Team" )

63 colnames ( p lo tme l t )<=c ( "Team" , "Match" , "WinProb" )

64 p lotme l t $ Probab i l i t y<=cut ( p lo tme l t $WinProb , breaks = c(= In f , lowbound , upbound , I n f ) , l a b e l s

=as . cha rac t e r ( c ( paste ( "Pr<" , lowbound , sep="" ) , paste ( lowbound , "<Pr<" , upbound , sep="" ) ,

paste ( "Pr>" , upbound , sep="" ) ) ) , r i g h t = FALSE)

65 p lotme l t $Team <= as . f a c t o r ( p lo tme l t $Team)

66 p lotme l t $Team = with ( plotmelt , f a c t o r (Team, l e v e l s = rev ( l e v e l s (Team) ) ) )

67

68 pe r f_c o l s <= c ( " red " , "white " , " green " )

69 pe r f_text_c o l s <= c ( " black " , " black " , " black " )

70

71 gg <= ggp lot ( data=plotmelt , aes ( x=Match , y=Team, f i l l =Probab i l i t y ) )

72 gg <= gg + geom_t i l e ( )

73 gg <= gg + geom_text ( aes ( l a b e l=WinProb , c o l o r=Probab i l i t y ) , show . legend=FALSE)

74 gg <= gg + labs ( t i t l e = "Per Match Win P r o b a b i l i t i e s " )

75 gg <= gg + coord_equal ( )

76 gg <= gg + s c a l e_co lou r_manual ( va lue s = pe r f_text_c o l s )

77 gg <= gg + s c a l e_ f i l l _manual ( va lue s=pe r f_c o l s )

78 gg <= gg + theme_minimal ( base_s i z e = 12 , base_fami ly = "" )

79

80 r e turn ( gg )

81 }

82

83 Stat icPen<=f unc t i on (RawData , Fixture ,MLRfn) {

84

85 RawData$SeasonF<=as . f a c t o r (RawData$Season )

86 RawData$RoundF<=as . f a c t o r (RawData$Round)

87 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

88 RawData$Result<=as . f a c t o r (RawData$Result )

89 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)
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90 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)

91 teams<= l e v e l s (RawData$Home . team)

92 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

93 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )

94 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

95 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

96 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

97 } e l s e {}

98 predtemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

99

100 preddata<=cbind ( subset (RawData , Season==seatemp+1 & Round<=24) ,WinProb=predtemp ) #bound

f i x t u r e and pred i c t ed p r o b a b i l i t i e s

101

102 ind<=0

103 SimTemp<=matrix ( nco l=2,nrow=18)

104 f o r ( t in teams ) {

105 ind<=ind+1 #d iv ide in to four c a t e g o r i e s home win , home l o s s , away win , away l o s s

106 homewin<=sum( apply ( cbind (1 / ( subset ( preddata ,Home . team==t & Result==1)$WinProb) , rep

(25 , nrow ( subset ( preddata ,Home . team==t & Result==1)) ) ) ,1 ,min ) )

107 homeloss<=sum( apply ( cbind(=1/(1= subset ( preddata ,Home . team==t & Result==0)$WinProb) ,

rep (=25 ,nrow ( subset ( preddata ,Home . team==t & Result==0)) ) ) ,1 ,max) )

108 awaywin<=sum( apply ( cbind (1 /(1= subset ( preddata ,Away . team==t & Result==0)$WinProb) , rep

(25 , nrow ( subset ( preddata ,Away . team==t & Result==0)) ) ) ,1 ,min ) )

109 awayloss<=sum( apply ( cbind(=1/ ( subset ( preddata ,Away . team==t & Result==1)$WinProb) , rep

(=25 ,nrow ( subset ( preddata ,Away . team==t & Result==1)) ) ) ,1 ,max) )

110 temppoints<=homewin+homeloss+awaywin+awayloss

111 SimTemp [ ind , ]<=cbind ( t , temppoints )

112

113 }

114 colnames (SimTemp)<=c ( "Team" , "Points " )

115 SimTemp<=as . data . frame (SimTemp)

116 SimTemp$Points<=as . cha rac t e r (SimTemp$Points )

117 SimTemp$Points<=as . numeric (SimTemp$Points )

118 SimTemp<=SimTemp [ order (SimTemp [ , 2 ] , d e c r ea s ing=TRUE) , ]

119 r e turn (SimTemp)

120 }

121

122 VariablePen<=f unc t i on (RawData , Fixture ,MLRfn , minpr , maxpr , minpts , maxpts ) {

123

124 RawData$SeasonF<=as . f a c t o r (RawData$Season )

125 RawData$RoundF<=as . f a c t o r (RawData$Round)

126 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

127 RawData$Result<=as . f a c t o r (RawData$Result )

128 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)

129 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)

130 teams<= l e v e l s (RawData$Home . team)

131 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

132 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )

133 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

134 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

135 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

136 } e l s e {}

137 predtemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

138
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139 preddata<=cbind ( subset (RawData , Season==seatemp+1 & Round<=24) ,WinProb=predtemp ) #bound

f i x t u r e and pred i c t ed p r o b a b i l i t i e s

140

141 ind<=0

142 SimTemp<=matrix ( nco l=2,nrow=18)

143 f o r ( t in teams ) {

144 ind<=ind+1 #d iv ide in to four c a t e g o r i e s home win , home l o s s , away win , away l o s s

145 homewin<=sum( i f e l s e ( subset ( preddata ,Home . team==t & Result==1)$WinProb<minpr , maxpts ,

i f e l s e ( subset ( preddata ,Home . team==t & Result==1)$WinProb>maxpr , minpts , ( 1 / subset (

preddata ,Home . team==t & Result==1)$WinProb)+minpts ) ) )

146 homeloss<=sum( i f e l s e ( subset ( preddata ,Home . team==t & Result==0)$WinProb<minpr ,=minpts ,

i f e l s e ( subset ( preddata ,Home . team==t & Result==0)$WinProb>maxpr,=maxpts ,(=1/(1=

subset ( preddata ,Home . team==t & Result==0)$WinProb) )=minpts ) ) )

147 awaywin<=sum( i f e l s e ((1= subset ( preddata ,Away . team==t & Result==0)$WinProb)<minpr ,

maxpts , i f e l s e ((1= subset ( preddata ,Away . team==t & Result==0)$WinProb)>maxpr , minpts

, ( 1 /(1= subset ( preddata ,Away . team==t & Result==0)$WinProb) )+minpts ) ) )

148 awayloss<=sum( i f e l s e ((1= subset ( preddata ,Away . team==t & Result==1)$WinProb)<minpr ,=

minpts , i f e l s e ((1= subset ( preddata ,Away . team==t & Result==1)$WinProb)>maxpr,=maxpts

,(=1/ ( subset ( preddata ,Away . team==t & Result==1)$WinProb) )=minpts ) ) )

149 temppoints<=homewin+homeloss+awaywin+awayloss

150 SimTemp [ ind , ]<=cbind ( t , temppoints )

151

152 }

153 colnames (SimTemp)<=c ( "Team" , "Points " )

154 SimTemp<=as . data . frame (SimTemp)

155 SimTemp$Points<=as . cha rac t e r (SimTemp$Points )

156 SimTemp$Points<=as . numeric (SimTemp$Points )

157 SimTemp<=SimTemp [ order (SimTemp [ , 2 ] , d e c r ea s ing=TRUE) , ]

158 r e turn (SimTemp)

159 }

160

161 ExpVariablePen<=f unc t i on (RawData , Fixture ,MLRfn , minpr , maxpr , minpts , maxpts ) {

162

163 RawData$SeasonF<=as . f a c t o r (RawData$Season )

164 RawData$RoundF<=as . f a c t o r (RawData$Round)

165 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

166 RawData$Result<=as . f a c t o r (RawData$Result )

167 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)

168 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)

169 teams<= l e v e l s (RawData$Home . team)

170 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

171 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )

172 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

173 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

174 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

175 } e l s e {}

176 predtemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

177

178 preddata<=cbind ( subset (RawData , Season==seatemp+1 & Round<=24) ,WinProb=predtemp ) #bound

f i x t u r e and pred i c t ed p r o b a b i l i t i e s

179

180 ind<=0

181 SimTemp<=matrix ( nco l=2,nrow=18)

182 f o r ( t in teams ) {

183 ind<=ind+1 #d iv ide in to four c a t e g o r i e s home win , home l o s s , away win , away l o s s

184 homewin<=sum( subset ( preddata ,Home . team==t & Result==1)$WinProb* i f e l s e ( subset ( preddata
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,Home . team==t & Result==1)$WinProb<minpr , maxpts , i f e l s e ( subset ( preddata ,Home . team

==t & Result==1)$WinProb>maxpr , minpts , ( 1 / subset ( preddata ,Home . team==t & Result

==1)$WinProb)+minpts ) ) )+sum((1= subset ( preddata ,Home . team==t & Result==1)$WinProb)

* i f e l s e ( subset ( preddata ,Home . team==t & Result==1)$WinProb<minpr ,=minpts , i f e l s e (

subset ( preddata ,Home . team==t & Result==1)$WinProb>maxpr,=maxpts ,(=1/(1= subset (

preddata ,Home . team==t & Result==1)$WinProb) )=minpts ) ) )

185 #sum( prob (win ) * po in t s i f win )+sum( prob ( l o s e ) * po in t s i f l o s e ) ======= prob (win )=p prob

( l o s e )=1=p

186 homeloss<=sum((1= subset ( preddata ,Home . team==t & Result==0)$WinProb) * i f e l s e ( subset (

preddata ,Home . team==t & Result==0)$WinProb<minpr ,=minpts , i f e l s e ( subset ( preddata ,

Home . team==t & Result==0)$WinProb>maxpr,=maxpts ,(=1/(1= subset ( preddata ,Home . team

==t & Result==0)$WinProb) )=minpts ) ) )+sum( subset ( preddata ,Home . team==t & Result

==0)$WinProb* i f e l s e ( subset ( preddata ,Home . team==t & Result==0)$WinProb<minpr ,

maxpts , i f e l s e ( subset ( preddata ,Home . team==t & Result==0)$WinProb>maxpr , minpts , ( 1 /

subset ( preddata ,Home . team==t & Result==0)$WinProb)+minpts ) ) )

187 #sum( prob ( l o s e ) * po in t s i f l o s e )+sum( prob (win ) * po in t s i f win ) ======= prob (win )=p prob

( l o s e )=1=p

188 awaywin<=sum((1= subset ( preddata ,Away . team==t & Result==0)$WinProb) * i f e l s e ((1= subset (

preddata ,Away . team==t & Result==0)$WinProb)<minpr , maxpts , i f e l s e ((1= subset (

preddata ,Away . team==t & Result==0)$WinProb)>maxpr , minpts , ( 1 /(1= subset ( preddata ,

Away . team==t & Result==0)$WinProb) )+minpts ) ) )+sum( ( subset ( preddata ,Away . team==t &

Result==0)$WinProb) * i f e l s e ((1= subset ( preddata ,Away . team==t & Result==0)$WinProb)

<minpr ,=minpts , i f e l s e ((1= subset ( preddata ,Away . team==t & Result==0)$WinProb)>maxpr

,=maxpts ,(=1/ ( subset ( preddata ,Away . team==t & Result==0)$WinProb) )=minpts ) ) )

189 #sum( prob (win ) * po in t s i f win )+sum( prob ( l o s e ) * po in t s i f l o s e ) ======= prob (win )=1=p

prob ( l o s e )=p

190 awayloss<=sum( ( subset ( preddata ,Away . team==t & Result==1)$WinProb) * i f e l s e ((1= subset (

preddata ,Away . team==t & Result==1)$WinProb)<minpr ,=minpts , i f e l s e ((1= subset (

preddata ,Away . team==t & Result==1)$WinProb)>maxpr,=maxpts ,(=1/ ( subset ( preddata ,

Away . team==t & Result==1)$WinProb) )=minpts ) ) )+sum((1= subset ( preddata ,Away . team==t

& Result==1)$WinProb) * i f e l s e ((1= subset ( preddata ,Away . team==t & Result==1)$

WinProb)<minpr , maxpts , i f e l s e ((1= subset ( preddata ,Away . team==t & Result==1)$WinProb

)>maxpr , minpts , ( 1 /(1= subset ( preddata ,Away . team==t & Result==1)$WinProb) )+minpts ) )

)

191 #sum( prob ( l o s e ) * po in t s i f l o s e )+sum( prob (win ) * po in t s i f win ) ======= prob (win )=1=p

prob ( l o s e )=p

192 temppoints<=homewin+homeloss+awaywin+awayloss

193 SimTemp [ ind , ]<=cbind ( t , temppoints )

194

195 }

196 colnames (SimTemp)<=c ( "Team" , "Points " )

197 SimTemp<=as . data . frame (SimTemp)

198 SimTemp$Points<=as . cha rac t e r (SimTemp$Points )

199 SimTemp$Points<=as . numeric (SimTemp$Points )

200 SimTemp<=SimTemp [ order (SimTemp [ , 2 ] , d e c r ea s ing=TRUE) , ]

201 r e turn (SimTemp)

202 }

203

204 ##READ DATA

205 Stat icData <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/ H i s t o r i c

S e n s i t i v i t y /6=5. csv " , header=TRUE)

206 Stat icData<=subset ( Stat icData , Season >=2001)

207 Stat icData $SeasonF<=as . f a c t o r ( Stat icData $Season )

208 Stat icData $RoundF<=as . f a c t o r ( Stat icData $Round)

209 Stat icData $ F ina l s<=as . f a c t o r ( Stat icData $ F ina l s )

210 Stat icData $ResN<=Stat icData $Result

211 Stat icData $Result<=as . f a c t o r ( Stat icData $Result )

212 Stat icData $HomeRank<=as . f a c t o r ( Stat icData $HomeRank)

137



213 Stat icData $AwayRank<=as . f a c t o r ( Stat icData $AwayRank)

214 Ranking <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/Ranking Table . csv " ,

header=TRUE)

215 #Ranking$Team<=recode (Ranking$Team, ' "AD"="Adela ide " ;"BL"="Brisbane Lions " ;"CA"="Carlton

" ;"CW"="Coll ingwood " ;"ES"="Essendon " ;"FR"="Fremantle " ; "GC"="Gold Coast " ;"GE"="Geelong

" ;"GW"="Greater Western Sydney " ;"HW"="Hawthorn " ;"ME"="Melbourne " ;"NM"="North

Melbourne " ;"PA"="Port Adela ide " ;"RI"="Richmond " ;"SK"="St Kilda " ;"SY"="Sydney " ;"WB"="

Western Bul ldogs " ;"WC"="West Coast " ' )

216

217 Fixture2015<=subset ( Stat icData , Season==2015 & Round<=23, s e l e c t=c

(2 , 3 , 4 , 5 , 6 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 ) )

218

219

220 ##MODELS

221 nonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Home . team" , "Away .

team" , "Season" , "Round" , " F ina l s " , "ResN" ) , colnames ( Stat icData ) )

222 Resu l t fn=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

223

224

225 Stat icPen2015<=Stat icPen (RawData=Stat icData , F ixture=Fixture2015 ,MLRfn=Resu l t fn )

226 VariablePen2015<=VariablePen (RawData=Stat icData , F ixture=Fixture2015 ,MLRfn=Result fn , minpr

=0.3 ,maxpr=0.7 , minpts=5,maxpts=12)

227 ExpVariablePen2015<=ExpVariablePen (RawData=Stat icData , F ixture=Fixture2015 ,MLRfn=Result fn ,

minpr=0.3 ,maxpr=0.7 ,minpts=5,maxpts=12)

228

229

230 ##PLOTS

231 #pred i c t ed vs expected p l o t

232 setwd ( d i r = "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\ Resu l t s \\2017\\ Penalty

Models" )

233

234 expplotdata<=cbind ( ExpVariablePen2015 , ActualPoints=VariablePen2015 [ match (

ExpVariablePen2015$Team, VariablePen2015 $Team) , ] $Points )

235 colnames ( expplotdata )<=c ( "Team" , "Expected" , " Pred ic ted " )

236

237

238 p1<=ggp lot ( data=expplotdata , aes ( x=Expected , y=Predicted , group=Team, co l ou r=Team, shape=Team

) ) + geom_point ( s i z e =6) + geom_ab l i n e ( s l ope=1) + s c a l e_shape_manual ( va lue s =1:18) +

labs (x="Expected Points " , y="Pred ic ted Points " , t i t l e="2015 Season Simulat ion ( Var iab le

Penalty ) = Pred ic ted vs Expected" )

239

240 predposdata<=as . data . frame ( cbind (Team=as . cha rac t e r ( VariablePen2015 $Team) , PredictedRank=c

( 1 : 1 8 ) , ActualRank=subset (Ranking , Season==2015&Round==23) [ match ( VariablePen2015 $Team,

subset (Ranking , Season==2015&Round==23)$Team) , ] $Rank) )

241 predposdata $PredictedRank<=as . numeric ( predposdata $PredictedRank )#; predposdata $

PredictedRank<=f a c t o r ( predposdata $PredictedRank )

242 predposdata $ActualRank<=as . numeric ( predposdata $ActualRank )#; predposdata $ActualRank<=

f a c t o r ( predposdata $ActualRank )

243 p2<=ggp lot ( data=predposdata , aes ( x=ActualRank , y=PredictedRank , group=Team, co l our=Team,

shape=Team) ) + geom_point ( s i z e =6) + geom_ab l i n e ( s l ope=1) + s c a l e_shape_manual ( va lue s

=1:18) + labs (x="Actual Rank" , y="Pred ic ted Rank" , t i t l e="2015 Season Simulat ion (

Var iab le Penalty ) = Ranking Pred i c t i on " )

244

245 #point overview p lo t

246 p3<=ggp lot ( data=VariablePen2015 , aes ( y=Points , x=Team, co l ou r=Team, shape=Team) ) + geom_

point ( s i z e =5)+ s c a l e_shape_manual ( va lue s =1:18) + theme ( ax i s . t ex t . x = element_text (

ang le = 90 , h ju s t = 1) ) + labs ( t i t l e="2015 Season Simulat ion ( Var iab le Penalty ) " )

247 p4<=ggp lot ( data=StaticPen2015 , aes ( y=Points , x=Team, co l ou r=Team, shape=Team) ) + geom_point (
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s i z e =5)+ s c a l e_shape_manual ( va lue s =1:18) + theme ( ax i s . t ex t . x = element_text ( ang le =

90 , h ju s t = 1) ) + labs ( t i t l e="2015 Season Simulat ion ( S t a t i c Penalty ) " )

248

249

250

251 ##Sen s i t i v i t y Ana lys i s

252

253 l i b r a r y ( reshape2 )

254 l i b r a r y ( s t r i n g r )

255

256 RankDelta<=NULL

257 names<=NULL

258 f o r ( i in 2009 :2015) {

259 temp<=subset (Ranking , Season==i & Round==max( subset (Ranking , Season==i ) $Round) ) [ order (

subset (Ranking , Season==i & Round== max( subset (Ranking , Season==i ) $Round) ) $Team) , ] $

Rank

260 l ength ( temp)<=18

261 names<=c (names , paste ( as . cha rac t e r ( i ) ) )

262 RankDelta<=cbind (RankDelta , temp)

263 }

264 rownames ( RankDelta )<= l e v e l s ( Ranking$Team)

265 colnames ( RankDelta )<=names

266

267 f o r ( i in 1 : 6 ) {

268

269 RankDelta<=cbind (RankDelta , RankDelta [ , i +1]=RankDelta [ , i ] )

270 }

271

272 colnames ( RankDelta ) [ 8 : 1 3 ]<=c ( "2009=2010" , "2010=2011" , "2011=2012" , "2012=2013" , "2013=2014" ,

"2014=2015" )

273

274 OvrDelta<=rowMeans ( RankDelta [ , 8 : 1 3 ] , na . rm = TRUE)

275 SdDelta<=apply ( RankDelta [ , 8 : 1 3 ] , 1 , sd , na . rm=TRUE)

276 SumStats<=cbind ( as . data . frame ( OvrDelta ) , as . data . frame ( SdDelta ) , rownames ( as . data . frame (

SdDelta ) ) )

277 colnames ( SumStats )<=c ( "MeanDelta" , "SdDelta" , "Team" )

278 rownames ( SumStats )<=NULL

279

280

281

282 d i f f p l o t<=melt ( RankDelta [ , 8 : 1 3 ] , id . vars="Team" , va lue . name="D i f f " , v a r i a b l e . name="Season"

)

283 colnames ( d i f f p l o t )<=c ( "Team" , "Season" , " D i f f " )

284

285 rankp lot<=melt ( RankDelta [ , 1 : 7 ] , id . vars="Team" , va lue . name="Rank" , v a r i ab l e . name="Season" )

286 colnames ( rankp lot )<=c ( "Team" , "Season" , "Rank" )

287

288 ggp lot ( data=d i f f p l o t , aes ( x=Season , y=Di f f , group=Team, co l our=Team, shape=Team) ) + geom_l i n e

( ) + geom_point ( s i z e =6, alpha=1/3) + s c a l e_shape_manual ( va lue s =1:18) + labs (y="Rank

D i f f e r e n c e " , t i t l e="Change in End o f Season Ranking" )

289 ggp lot ( data=rankplot , aes ( x=Season , y=Rank , group=Team, co l ou r=Team, shape=Team) ) + geom_l i n e

( ) + geom_point ( s i z e =6, alpha=1) + s c a l e_shape_manual ( va lue s =1:18) + labs (y="Ladder

Rank" , t i t l e="End o f Season Ranking" )

290 ggp lot ( data=SumStats , aes ( x=Team, y=MeanDelta , co l ou r=Team) ) + geom_point ( s i z e =4, alpha=1)

+ labs (y="Change in Ladder Rank" , x="Team" , t i t l e="Average Change in Team Ranking" ) +

geom_er ro rba r ( aes ( ymin=MeanDelta=SdDelta , ymax=MeanDelta+SdDelta ) , width=.1) + s c a l e_

x_d i s c r e t e ( l a b e l s = func t i on (x ) s t r_wrap (x , width = 10) )

291 #ggplot ( data=expplotdata , aes ( x=Expected , y=Predicted , group=Team, co l our=Team, shape=Team) )

139



+ geom_point ( s i z e =6) + geom_ab l i n e ( s l ope=1) + s c a l e_shape_manual ( va lue s =1:18) + labs (

x="Expected Points " , y="Pred ic ted Points " , t i t l e ="Var iab le Penalty Simulat ion f o r the

2015 AFL Season ")

292 #ggplot ( data=StaticPen2015 , aes ( y=Points , x=Team, co l ou r=Team, shape=Team) ) + geom_point (

s i z e =5)+ s c a l e_shape_manual ( va lue s =1:18) + theme ( ax i s . t ex t . x = element_text ( ang le =

90 , h ju s t = 1) ) + labs ( t i t l e ="S t a t i c Penalty Performance Model f o r the 2015 AFL

Season ")

293

294

295 VarANOVA<=NULL #o r i g i n a l did not work due to l a r g e amount o f s im i l a r data

296 ## i f change seq to

297 VarHSD<=NULL

298 VarAOV<=NULL

299 f o r (minprob in seq ( 0 . 1 , 0 . 5 , 0 . 1 ) ) { #min prob minprob

300 f o r (maxpt in seq (5 , 12 , 1 ) ) { # max pts maxpt

301 f o r (maxprob in seq (0 . 9 , 0 . 5 , =0 . 1 ) ) { # max prob maxprob

302 f o r (minpt in seq (0 , 5 , 1 ) ) { # min pts minpt

303 temp<=VariablePen (RawData=Stat icData , F ixture=Fixture2015 ,MLRfn=Result fn , minpr=

minprob , maxpr=maxprob , minpt=minpt , maxpt=maxpt )

304 tempbind<=cbind ( temp , rep (minprob , 1 8 ) , rep (maxpt , 1 8 ) , rep (maxprob , 1 8 ) , rep (minpt , 1 8 ) )

305 VarANOVA<=rbind (VarANOVA, tempbind )

306 }

307 }

308 }

309

310 }

311

312 colnames (VarANOVA) [ 3 : 6 ]<=c ( "minprob" , "maxpt" , "maxprob" , "minpt" )

313 VarANOVA$Team<=as . f a c t o r (VarANOVA$Team)

314 VarANOVA$minprob<=as . f a c t o r (VarANOVA$minprob )

315 VarANOVA$maxpt<=as . f a c t o r (VarANOVA$maxpt )

316 VarANOVA$maxprob<=as . f a c t o r (VarANOVA$maxprob )

317 VarANOVA$minpt<=as . f a c t o r (VarANOVA$minpt )

318 VarAOV<=aov ( Points~Team+minprob*maxpt*maxprob*minpt , data=VarANOVA)

319 summary(VarAOV)

320 VarHSD<=TukeyHSD(VarAOV)

321

322 ##Manual I n t e r a c t i o n s

323 l i b r a r y ( a g r i c o l a e )

324

325 man<=VarANOVA

326

327 man$ i 1<=with (man, i n t e r a c t i o n (minprob , maxpt ) )

328 man$ i 2<=with (man, i n t e r a c t i o n (minprob , maxprob ) )

329 man$ i 3<=with (man, i n t e r a c t i o n (maxpt , maxprob ) )

330 man$ i 4<=with (man, i n t e r a c t i o n (minprob , minpt ) )

331 man$ i 5<=with (man, i n t e r a c t i o n (maxpt , minpt ) )

332 man$ i 6<=with (man, i n t e r a c t i o n (maxprob , minpt ) )

333 man$ i 7<=with (man, i n t e r a c t i o n (minprob , maxpt , maxprob ) )

334 man$ i 8<=with (man, i n t e r a c t i o n (minprob , maxpt , minpt ) )

335 man$ i 9<=with (man, i n t e r a c t i o n (minprob , maxprob , minpt ) )

336 man$ i10<=with (man, i n t e r a c t i o n (maxpt , maxprob , minpt ) )

337 man$ i11<=with (man, i n t e r a c t i o n (minprob , maxpt , maxprob , minpt ) )

338

339 manAOV<=aov ( Points~ . , data=man)

340 summary(manAOV)

341

342 HSD. t e s t (manAOV, t r t=" i 2 " , group=TRUE)
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343

344 ##Not Used But A Use fu l Density Plot

345 #i2<=HSD. t e s t (manAOV, t r t="i 2 ")

346 #i2p l o t<=ggp lot ( i 2 $groups , aes ( x=means ) ) + geom_dens i ty ( ) + coord_ca r t e s i a n ( ylim = c

(0 . 0141 , 0 . 045 ) )

347 #i2d<=ggp lot_bu i ld ( i 2 p l o t ) $data [ [ 1 ] ]

348 #i2p l o t + geom_area ( data=subset ( i2d , x< =5.01) , aes ( x=x , y=y) , f i l l ="s t e e l b l u e " , alpha =0.5) +

geom_area ( data=subset ( i2d , x> 5 . 01 ) , aes ( x=x , y=y) , f i l l ="s t e e l b l u e " , alpha =0.5) + labs (

t i t l e ="Var iab le Penalty Model ")

349

350 ##S im i l a r i t i e s Removed

351 newman<=VarANOVA

352 newman$ i 1<=with (newman , i n t e r a c t i o n (minprob , maxpt ) )

353 newman$ i 2<=with (newman , i n t e r a c t i o n (minprob , maxprob ) )

354 newman$ i 3<=with (newman , i n t e r a c t i o n (maxpt , maxprob ) )

355 newman$ i 4<=with (newman , i n t e r a c t i o n (minprob , minpt ) )

356 newman$ i 5<=with (newman , i n t e r a c t i o n (maxpt , minpt ) )

357 newman$ i 6<=with (newman , i n t e r a c t i o n (maxprob , minpt ) )

358 newman$ i 7<=with (newman , i n t e r a c t i o n (minprob , maxpt , maxprob ) )

359 newman$ i 8<=with (newman , i n t e r a c t i o n (minprob , maxpt , minpt ) )

360 newman$ i 9<=with (newman , i n t e r a c t i o n (minprob , maxprob , minpt ) )

361 newman$ i10<=with (newman , i n t e r a c t i o n (maxpt , maxprob , minpt ) )

362 newman$ i11<=with (newman , i n t e r a c t i o n (minprob , maxpt , maxprob , minpt ) )

363

364 t r t e x c l<=as . cha rac t e r ( subset ( i 2 $groups , M=="c" | M=="cd" | M=="de" | M=="e" | M==" e f " | M

==" fg " | M=="g" ) $ t r t )

365 newman<=newman [ ! newman$ i 2 %in% t r t e x c l , ]

366

367 newman$ i 1<=f a c t o r (newman$ i 1 )

368 newman$ i 2<=f a c t o r (newman$ i 2 )

369 newman$ i 3<=f a c t o r (newman$ i 3 )

370 newman$ i 4<=f a c t o r (newman$ i 4 )

371 newman$ i 5<=f a c t o r (newman$ i 5 )

372 newman$ i 6<=f a c t o r (newman$ i 6 )

373 newman$ i 7<=f a c t o r (newman$ i 7 )

374 newman$ i 8<=f a c t o r (newman$ i 8 )

375 newman$ i 9<=f a c t o r (newman$ i 9 )

376 newman$ i10<=f a c t o r (newman$ i10 )

377 newman$ i11<=f a c t o r (newman$ i11 )

378

379 newmanAOV<=aov ( Points~ . , data=newman)

380 summary(newmanAOV)

381

382 ##Di s t r i bu t i on Ana lys i s

383 o ldpo in t s<=subset (Ranking , Season==2015 & Round==23)$Points

384 s t a t i cn ewpo in t s<=Stat icPen2015 $Points

385 var i ab l enewpo int s<=VariablePen2015 $Points

386

387 dens i tydata<=as . data . frame ( cbind ( o ldpo int s , s ta t i cnewpo in t s , va r i ab l enewpo int s ) )

388

389 dp<=ggp lot ( data=dens i tydata ) + geom_dens i ty ( aes ( x=o ldpo int s , co l ou r="Current Point Model" ,

l i n e t yp e="Current Point Model" , geom=" l i n e " ) ) + geom_dens i ty ( aes ( x=sta t i cnewpo int s ,

co l ou r=" S t a t i c Penalty Model" , l i n e t yp e=" S t a t i c Penalty Model" , geom=" l i n e " ) ) + geom_

dens i ty ( aes ( x=var iab lenewpo ints , co l ou r="Var iab le Penalty Model" , l i n e t yp e="Var iab le

Penalty Model" , geom=" l i n e " ) ) + labs (x="Points " , y="Density " , t i t l e="Model Density Plot s

" ) + s c a l e_co lou r_manual ( va lue s=c ( "Current Point Model"=" red " , " S t a t i c Penalty Model"=

"blue " , "Var iab le Penalty Model"="black " ) ,name="Model" ) + s c a l e_l i n e t yp e_manual ( va lue s

=c ( "Current Point Model"=1," S t a t i c Penalty Model"=1,"Var iab le Penalty Model"=1) ,name=
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"Model" )

390

391 l i b r a r y (moments )

392

393 skewness ( o l dpo in t s ) #

394 skewness ( s t a t i cnewpo in t s ) #

395 skewness ( var i ab l enewpo int s ) #
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D.4 Fixture Di�culty R Code

1 ##Fixture D i f f i c u l t y

2 ##Created By : Casey Josman

3 ##Last Edited : 10/01/2016

4

5 ##LIBRARIES

6 l i b r a r y ( car )

7 l i b r a r y ( ggp lot2 )

8 l i b r a r y ( s t r i n g r )

9

10 ##FUNCTIONS

11

12 read . e x c e l <= f unc t i on ( header=TRUE, . . . ) {

13 read . t ab l e ( " c l i pboa rd " , sep="\ t " , header=header , . . . )

14 }

15

16 wr i t e . e x c e l <= f unc t i on (x , row . names=FALSE, c o l . names=TRUE, . . . ) {

17 wr i t e . t ab l e (x , " c l i pboa rd " , sep="\ t " , row . names=row . names , c o l . names=co l . names , . . . )

18 }

19

20 #predtab<=f unc t i on ( pred ) { #pred=PREDICTION OF GEE MODEL, ac tua l=RESULT COLUMN FROM

DATASET, MUST SET SCALE PARAMETER INTERNALLY

21 # count<=0

22 # newtab<=data . frame ( )

23 # len<=l ength ( pred )

24 #

25 # fo r ( i in 1 : l en ) {

26 # i f ( pred [ i ] >=0.45095){

27 # newtab [ i ,1 ]=1}

28 # e l s e {

29 # newtab [ i ,1 ]=0}

30 # }

31 # l i s t ( Pred=newtab )

32 #}

33

34 SimStat<=f unc t i on ( Fixture , RankData ) {

35 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

36 temprank<=subset (RankData , Season==seatemp & Round==23)

37 teams<= l e v e l s ( F ixture $Home . team)

38 StatLadder<=matrix ( nco l=2,nrow=18)

39 ind<=0

40

41 f o r ( t in teams ) {

42

43 ind<=ind+1

44 temphome<=subset ( Fixture ,Home . team==t )

45 homedi f f<=0

46 f o r ( i in 1 : nrow ( temphome) ) {

47

48 homerank<=as . numeric ( subset ( temprank ,Team==temphome [ i , ] $Home . team) $Rank)

49 awayrank<=as . numeric ( subset ( temprank ,Team==temphome [ i , ] $Away . team) $Rank)

50

51 homedi f f<=homedi f f+(homerank=awayrank )

52

53 }
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54

55 tempaway<=subset ( Fixture ,Away . team==t )

56 awaydi f f<=0

57 f o r ( j in 1 : nrow ( tempaway ) ) {

58

59 homerank<=as . numeric ( subset ( temprank ,Team==tempaway [ j , ] $Home . team) $Rank)

60 awayrank<=as . numeric ( subset ( temprank ,Team==tempaway [ j , ] $Away . team) $Rank)

61

62 awaydi f f<=awaydi f f+(awayrank=homerank )

63

64 }

65 D i f f i c u l t y<=homedi f f+awaydi f f

66 StatLadder [ ind , ]<=cbind ( t , D i f f i c u l t y )

67

68 }

69 s tandard i z e<=matrix ( c

( =186 , =162 .5 , =139 , =115 .5 , =92 , =68 .5 , =58 .5 , =35 , =11 .5 ,11 .5 ,35 ,58 .5 ,68 .5 ,92 ,115 .5 ,139 ,162 .5 ,186 ,28 ,29 ,30 ,31 ,30 ,29 ,31 ,32 ,33 ,33 ,32 ,31 ,29 ,30 ,31 ,30 ,29 ,28)

, nco l =2,byrow=FALSE)

70 colnames ( s tandard i z e )<=c ( "Mean" , "SD" )

71 colnames ( StatLadder )<=c ( "Team" , " D i f f i c u l t yRa t i n g " )

72 StatLadder<=as . data . frame ( StatLadder )

73 StatLadder $ D i f f i c u l t yRa t i n g<=as . cha rac t e r ( StatLadder $ D i f f i c u l t yRa t i n g )

74 StatLadder $ D i f f i c u l t yRa t i n g<=as . numeric ( StatLadder $ D i f f i c u l t yRa t i n g )

75 StatLadder<=StatLadder [ match ( temprank$Team, StatLadder $Team) , ]

76 StatLadder [ , 2 ]<=( StatLadder [ ,2 ]= s tandard i z e [ , 1 ] ) / s tandard i z e [ , 2 ]

77 StatLadder<=StatLadder [ order ( StatLadder [ , 2 ] , d e c r ea s ing=FALSE) , ]

78 #rownames ( StatLadder )<=StatLadder $Team

79 #StatLadder<=StatLadder [ ,=1]

80 r e turn ( StatLadder )

81 } #<0 e a s i e r f i x t u r e >0 harder f i x t u r e

82

83 SimLad<=f unc t i on (RawData , Fixture , RankData ,MLRfn , n=20){

84 RawData$SeasonF<=as . f a c t o r (RawData$Season )

85 RawData$RoundF<=as . f a c t o r (RawData$Round)

86 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

87 RawData$Result<=as . f a c t o r (RawData$Result )

88 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)

89 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)

90 teams<= l e v e l s (RawData$Home . team)

91 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

92 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )

93 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

94 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

95 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

96 } e l s e {}

97 predtemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

98 SimLadder<=data . frame ( matrix ( nco l=n , nrow=18) ) #c r ea t e data . frame ( matrix ( nco l=n , nrow

=18) ) name SimLadder

99 s e t . seed (314)

100 g l oba l . seed<=r un i f (n , 0 , 10000) #add precomputed l i s t o f s eeds to make data

r ep roduc ib l e

101

102 f o r ( i in 1 : n ) { #add in loop from 1 : n where n i s = 20

103 ind<=0

104 SimTemp<=matrix ( nco l=2,nrow=18)

105 s e t . seed ( g l oba l . seed [ i ] ) #s e t . seed ( seed . l i s t [ n ] )
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106 restemp<=rbinom ( length ( predtemp ) ,1 , predtemp ) #rep l a c e with rbinom (n , 1 , predtemp )

107 SimRes<=restemp #as above => SimRes==restemp

108 FixSim<=cbind ( Fixture , SimRes )

109 rownames ( SimLadder )<=teams #rownames ( data . frame )<=teams

110

111 f o r ( t in teams ) {

112 ind<=ind+1

113 tempwinsh<=nrow ( subset ( FixSim ,Home . team==t & SimRes==1))

114 tempwinsa<=nrow ( subset ( FixSim ,Away . team==t & SimRes==0))

115 temppoints<=4* ( tempwinsh+tempwinsa )

116 SimTemp [ ind , ]<=cbind ( t , temppoints )

117

118 }

119 SimLadder [ , i ]<=as . numeric (SimTemp [ , 2 ] ) #data . frame [ , n ]<=SimLadder$ temppoints

120 } #end new loop from 1 : n

121

122 MeanLadder<=cbind ( teams , rowMeans ( SimLadder ) ) #data . frame . new<=cbind ( teams , rowMeans (

data . frame ) )

123 #change SimLadder below to data . frame . new

124

125 colnames (MeanLadder )<=c ( "Team" , "Points " )

126 MeanLadder<=as . data . frame (MeanLadder )

127 MeanLadder$Points<=as . cha rac t e r (MeanLadder$Points )

128 MeanLadder$Points<=as . numeric (MeanLadder$Points )

129 MeanLadder<=MeanLadder [ order (MeanLadder [ , 2 ] , d e c r ea s ing=TRUE) , ]

130 MeanLadder<=cbind (MeanLadder , Rank=rank(=MeanLadder [ , 2 ] , t i e s . method = "average " ) )

131 MeanLadder$Rank<=as . cha rac t e r (MeanLadder$Rank)

132 MeanLadder$Rank<=as . numeric (MeanLadder$Rank)

133

134 d i f f t emp<=MeanLadder [ match ( teams , MeanLadder$Team) , ] $Rank #end o f season rank

135 ranktemp<=subset (RankData , Season==seatemp & Round==23)

136 ranktemp1<=subset (RankData , Season==seatemp & Round==23) [ , match ( c ( "Team" , "Rank" ) ,

colnames ( ranktemp ) ) ]

137 ranktemp1<=ranktemp1 [ match (MeanLadder$Team, ranktemp1 [ , 1 ] ) , ]

138 ranktemp<=ranktemp [ match ( teams , ranktemp$Team) , ] $Rank #beginning o f season rank

139 r awd i f f<=cbind ( teams , di f f temp=ranktemp ) #th i s i s where the d i f f e r e n c e i s ca l cu l a t ed , i t

should be changes to output a c o r r e l a t i o n ( both Pearson and Spearman ) between

beg inning and end o f season

140 r awd i f f<=r awd i f f [ match (MeanLadder$Team, r awd i f f [ , 1 ] ) , ]

141 MeanLadder<=cbind (MeanLadder , PrevRank=ranktemp1 [ , 2 ] , D i f f i c u l t y=rawd i f f [ , 2 ] )

142 rownames (MeanLadder )<=MeanLadder$Team

143 MeanLadder<=MeanLadder [ ,=1]

144 r e turn (MeanLadder )

145 } #sma l l e r r e s u l t means e a s i e r season

146

147 SimProb<=f unc t i on (RawData , Fixture ,MLRfn) {

148 RawData$SeasonF<=as . f a c t o r (RawData$Season )

149 RawData$RoundF<=as . f a c t o r (RawData$Round)

150 RawData$ F ina l s<=as . f a c t o r (RawData$ F ina l s )

151 RawData$Result<=as . f a c t o r (RawData$Result )

152 RawData$HomeRank<=as . f a c t o r (RawData$HomeRank)

153 RawData$AwayRank<=as . f a c t o r (RawData$AwayRank)

154 teams<= l e v e l s (RawData$Home . team)

155 seatemp<=as . numeric ( subs t r ( deparse ( s ub s t i t u t e ( Fixture ) ) , s t a r t =8, stop=11) )=1

156 SimLadder<=matrix ( nco l=2,nrow=18)

157 ind<=0

158 mlrtemp<=glm (MLRfn , data=subset (RawData , Season<=seatemp & Round<=24) , fami ly=binomial (

l o g i t ) )
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159 mlrtemp$ x l e v e l s [ [ "SeasonF" ] ]<=union (mlrtemp$ x l e v e l s [ [ "SeasonF" ] ] , l e v e l s ( F ixture $SeasonF

) )

160 i f ( as . cha rac t e r ( s ub s t i t u t e ( Fixture ) )=="Fixture2014 " ) {

161 mlrtemp$ x l e v e l s [ [ "Venue" ] ]<=union (mlrtemp$ x l e v e l s [ [ "Venue" ] ] , "Traeger Park" )

162 } e l s e {}

163 restemp<=p r ed i c t (mlrtemp , Fixture , type=" response " )

164 SimRes<=restemp

165 FixSim<=cbind ( Fixture , SimRes )

166 ProbLadder<=matrix ( nco l=2,nrow=18)

167 f o r ( t in teams ) {

168

169 ind<=ind+1

170 temphome<=subset ( FixSim ,Home . team==t )

171 tempaway<=subset ( FixSim ,Away . team==t )

172

173 #WinProb<=prod ( temphome$SimRes ) *prod(1=tempaway$SimRes ) #we could a l s o take the sum

of the l og ( prob )

174 WinProb<=(mean( temphome$SimRes )+mean(1=tempaway$SimRes ) ) /2

175

176 ProbLadder [ ind , ]<=cbind ( t ,WinProb)

177

178 }

179 colnames ( ProbLadder )<=c ( "Team" , "WinProb" )

180 ProbLadder<=as . data . frame ( ProbLadder )

181 ProbLadder$WinProb<=as . cha rac t e r ( ProbLadder$WinProb)

182 ProbLadder$WinProb<=as . numeric ( ProbLadder$WinProb)

183 ProbLadder<=ProbLadder [ order ( ProbLadder [ , 2 ] , d e c r ea s ing=TRUE) , ]

184 #rownames ( ProbLadder )<=ProbLadder$Team

185 #ProbLadder<=ProbLadder [ ,=1]

186 r e turn ( ProbLadder )

187 }

188

189 ##READ DATA

190 Stat icData <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/ H i s t o r i c

S e n s i t i v i t y /6=5. csv " , header=TRUE)

191 Stat icData<=subset ( Stat icData , Season >=2001)

192 Stat icData $SeasonF<=as . f a c t o r ( Stat icData $Season )

193 Stat icData $RoundF<=as . f a c t o r ( Stat icData $Round)

194 Stat icData $ F ina l s<=as . f a c t o r ( Stat icData $ F ina l s )

195 Stat icData $Result<=as . f a c t o r ( Stat icData $Result )

196 Stat icData $HomeRank<=as . f a c t o r ( Stat icData $HomeRank)

197 Stat icData $AwayRank<=as . f a c t o r ( Stat icData $AwayRank)

198 Season2016<=read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/2016 Raw Data Pre=

Season . csv " , header=TRUE)

199 Season2016$SeasonF<=as . f a c t o r ( Season2016$Season )

200 Season2016$RoundF<=as . f a c t o r ( Season2016$Round)

201 Ranking <= read . csv ( "C: /Users /Casey Josman/Dropbox/PhD. Research/Data/Ranking Table . csv " ,

header=TRUE)

202 #Ranking$Team<=recode (Ranking$Team, ' "AD"="Adela ide " ;"BL"="Brisbane Lions " ;"CA"="Carlton

" ;"CW"="Coll ingwood " ;"ES"="Essendon " ;"FR"="Fremantle " ; "GC"="Gold Coast " ;"GE"="Geelong

" ;"GW"="Greater Western Sydney " ;"HW"="Hawthorn " ;"ME"="Melbourne " ;"NM"="North

Melbourne " ;"PA"="Port Adela ide " ;"RI"="Richmond " ;"SK"="St Kilda " ;"SY"="Sydney " ;"WB"="

Western Bul ldogs " ;"WC"="West Coast " ' )

203

204 FixVars<=match ( c ( "Head2Head" , "PastHome" , "PastAway" , "HomeRank" , "AwayRank" ) , colnames (

Stat icData ) )

205 FixNames<=c ( "Head2Head" , "PastHome" , "PastAway" , "HomeRank" , "AwayRank" , " F ina l s " )

206
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207 Fixture2014<=subset ( Stat icData , Season==2014 & Round<=23, s e l e c t=c (2 , 3 , 4 , 5 , 6 , 17 , 18 ) ) #

update f i x t u r e to i t e r a t e f o r ( season =1) home . team away . team then take t a i l f o r

s t a t i s t i c s

208 Fixture2014 [ , FixNames ]<=NA

209

210 f o r ( i in 1 : nrow ( Fixture2014 ) ) {

211 con<=data . frame ( matrix ( nco l=5,nrow=1) )

212 hometemp<=Fixture2014 [ i , ] $Home . team

213 awaytemp<=Fixture2014 [ i , ] $Away . team

214 tempcon<= t a i l ( subset ( Stat icData , Season <2014 & Home . team==hometemp & Away . team==awaytemp

) ,n=1)

215

216 i f ( nrow ( tempcon )==0){ #i f no r e cent match home vs away i s detec ted takes i nv e r s e o f

l a t e s t away vs home

217 tempcon<= t a i l ( subset ( Stat icData , Season <2014 & Home . team==awaytemp & Away . team==

hometemp) ,n=1)

218 con<=cbind(1=tempcon [ 1 2 ] , tempcon [ 1 4 ] , tempcon [ 1 3 ] , as . cha rac t e r ( tempcon [ 1 6 ] ) , as .

cha rac t e r ( tempcon [ 1 5 ] ) )

219 colnames ( con )<=FixNames [=6] #=6 removes f i n a l s l a b e l

220 } e l s e {

221 con<=tempcon [ FixVars ]

222 }

223

224 Fixture2014 [ i , FixNames ]<=c ( con , 0 ) #0 i nd i c a t e s home and away s e r i e s ( not f i n a l s )

225 }

226 Fixture2014 $HomeRank<=as . f a c t o r ( Fixture2014 $HomeRank)

227 Fixture2014 $AwayRank<=as . f a c t o r ( Fixture2014 $AwayRank)

228 Fixture2014 $ F ina l s<=as . f a c t o r ( Fixture2014 $ F ina l s )

229

230 Fixture2015<=subset ( Stat icData , Season==2015 & Round<=23, s e l e c t=c (2 , 3 , 4 , 5 , 6 , 17 , 18 ) )

231 Fixture2015 [ , FixNames ]<=NA

232

233 f o r ( i in 1 : nrow ( Fixture2015 ) ) {

234 con<=data . frame ( matrix ( nco l=5,nrow=1) )

235 hometemp<=Fixture2015 [ i , ] $Home . team

236 awaytemp<=Fixture2015 [ i , ] $Away . team

237 tempcon<= t a i l ( subset ( Stat icData , Season <2015 & Home . team==hometemp & Away . team==awaytemp

) ,n=1)

238

239 i f ( nrow ( tempcon )==0){

240 tempcon<= t a i l ( subset ( Stat icData , Season <2015 & Home . team==awaytemp & Away . team==

hometemp) ,n=1)

241 con<=cbind(1=tempcon [ 1 2 ] , tempcon [ 1 4 ] , tempcon [ 1 3 ] , as . cha rac t e r ( tempcon [ 1 6 ] ) , as .

cha rac t e r ( tempcon [ 1 5 ] ) )

242 colnames ( con )<=FixNames [=6] #=6 removes f i n a l s l a b e l

243 } e l s e {

244 con<=tempcon [ FixVars ]

245 }

246

247 Fixture2015 [ i , FixNames ]<=c ( con , 0 )

248 }

249 Fixture2015 $HomeRank<=as . f a c t o r ( Fixture2015 $HomeRank)

250 Fixture2015 $AwayRank<=as . f a c t o r ( Fixture2015 $AwayRank)

251 Fixture2015 $ F ina l s<=as . f a c t o r ( Fixture2015 $ F ina l s )

252

253 Fixture2016<=Season2016 [ ,=3]

254 Fixture2016 [ , FixNames ]<=NA

255
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256 f o r ( i in 1 : nrow ( Fixture2016 ) ) {

257 con<=data . frame ( matrix ( nco l=5,nrow=1) )

258 hometemp<=Fixture2016 [ i , ] $Home . team

259 awaytemp<=Fixture2016 [ i , ] $Away . team

260 tempcon<= t a i l ( subset ( Stat icData , Season <2016 & Home . team==hometemp & Away . team==awaytemp

) ,n=1)

261

262 i f ( nrow ( tempcon )==0){

263 tempcon<= t a i l ( subset ( Stat icData , Season <2016 & Home . team==awaytemp & Away . team==

hometemp) ,n=1)

264 con<=cbind(1=tempcon [ 1 2 ] , tempcon [ 1 4 ] , tempcon [ 1 3 ] , as . cha rac t e r ( tempcon [ 1 6 ] ) , as .

cha rac t e r ( tempcon [ 1 5 ] ) )

265 colnames ( con )<=FixNames [=6] #=6 removes f i n a l s l a b e l

266 } e l s e {

267 con<=tempcon [ FixVars ]

268 }

269

270 Fixture2016 [ i , FixNames ]<=c ( con , 0 )

271 }

272 Fixture2016 $HomeRank<=as . f a c t o r ( Fixture2016 $HomeRank)

273 Fixture2016 $AwayRank<=as . f a c t o r ( Fixture2016 $AwayRank)

274 Fixture2016 $ F ina l s<=as . f a c t o r ( Fixture2016 $ F ina l s )

275

276

277 teams<= l e v e l s ( Stat icData $Home . team)

278

279 ##MODELS

280 nonfeat<=match ( c ( "Date" , "Result " , "Margin" , "Home . s co r e " , "Away . s co r e " , "Home . team" , "Away .

team" , " F ina l s " , "Season" , "Round" ) , colnames ( Stat icData ) )

281 Resu l t fn=as . formula ( paste ( "Result~" , paste ( colnames ( Stat icData [ ,= nonfeat ] ) , c o l l a p s e="+" ) ) )

282

283 ##D i f f i c u l t y Using S t a t i c Rank ( Fina l o f Previous Season )

284

285 ( SimStat2014<=SimStat ( Fixture=Fixture2014 , RankData=Ranking ) )

286 #cor ( cbind ( SimStat2014 , Rank=subset (Ranking , Season==2013 & Round==23) [ match ( SimStat2014$

Team, subset (Ranking , Season==2013 & Round==23)$Team) , 7 ] ) [ , 2 : 3 ] )

287 ( SimStat2015<=SimStat ( Fixture=Fixture2015 , RankData=Ranking ) )

288 #cor ( cbind ( SimStat2015 , Rank=subset (Ranking , Season==2014 & Round==23) [ match ( SimStat2015$

Team, subset (Ranking , Season==2014 & Round==23)$Team) , 7 ] ) [ , 2 : 3 ] )

289 ( SimStat2016<=SimStat ( Fixture=Fixture2016 , RankData=Ranking ) )

290 #cor ( cbind ( SimStat2016 , Rank=subset (Ranking , Season==2015 & Round==23) [ match ( SimStat2016$

Team, subset (Ranking , Season==2015 & Round==23)$Team) , 7 ] ) [ , 2 : 3 ] )

291

292 ##D i f f i c u l t y Using Simulated Resu l t s and Ranks

293 ( SimLad2014<=SimLad( Fixture=Fixture2014 , RawData=StaticData , RankData=Ranking ,MLRfn=

Result fn , n=1000) )

294 cor2014spearman<=cor ( x=SimLad2014$PrevRank , y=SimLad2014$Rank , method="spearman" )

295 cor2014pearson<=cor ( x=SimLad2014$PrevRank , y=SimLad2014$Rank , method="pearson " )

296 ( SimLad2015<=SimLad( Fixture=Fixture2015 , RawData=StaticData , RankData=Ranking ,MLRfn=

Result fn , n=1000) )

297 cor2015spearman<=cor ( x=SimLad2015$PrevRank , y=SimLad2015$Rank , method="spearman" )

298 cor2015pearson<=cor ( x=SimLad2015$PrevRank , y=SimLad2015$Rank , method="pearson " )

299 ( SimLad2016<=SimLad( Fixture=Fixture2016 , RawData=StaticData , RankData=Ranking ,MLRfn=

Result fn , n=1000) )

300 cor2016spearman<=cor ( x=SimLad2016$PrevRank , y=SimLad2016$Rank , method="spearman" )

301 cor2016pearson<=cor ( x=SimLad2016$PrevRank , y=SimLad2016$Rank , method="pearson " )

302

303 ##D i f f i c u l t y Using Simulated P r o b a b i l i t i e s
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304

305 ( SimProb2014<=SimProb ( Fixture=Fixture2014 , RawData=Stat icData ,MLRfn=Resu l t fn ) )

306 ( SimProb2015<=SimProb ( Fixture=Fixture2015 , RawData=Stat icData ,MLRfn=Resu l t fn ) )

307 ( SimProb2016<=SimProb ( Fixture=Fixture2016 , RawData=Stat icData ,MLRfn=Resu l t fn ) )

308

309 #Plot s and Clus te r Ana lys i s

310 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\ Resu l t s \\2017\\ Fixture D i f f i c u l t y

" )

311

312 SimStat2015<=cbind ( SimStat2015 , Ranking=subset (Ranking , Season==2014 & Round==23) [ match (

SimStat2015$Team, subset (Ranking , Season==2014 & Round==23)$Team) , ] $Rank)

313 ggp lot ( SimStat2015 , aes ( x=Ranking , y=Di f f i c u l t yRat i ng , group=Team, co l our=Team, shape=Team) ) +

geom_point ( s i z e =6) + s c a l e_shape_manual ( va lue s =1:18) + labs (x=" Sta r t i ng Rank" , y="

D i f f i c u l t y Rating" , t i t l e="Previous Season Ranking Model f o r the 2015 AFL Season" )

314 #Upd2014<=

315 Upd2015<=read . csv ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\ Resu l t s \\2017\\

PlotData ( Fixture D i f f i c u l t y and Performance Models ) . csv " )

316

317 p lo t ( SimLad2014 )

318 #ggplot (Upd2014 , aes ( y=Pred icted . Rank , x=Actual . Rank , group=Team, co l ou r=Team, shape=Team) ) +

geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Actual Rank" , y="

Pred ic ted Rank" , t i t l e ="Season Ranking Simulat ion f o r the 2014 AFL Season ") + geom_

ab l i n e ( s l ope = 1)

319 p1<=ggp lot (Upd2014 , aes ( y=Points , x=Season . D i f f i c u l t y . Stat , group=Team, co l ou r=Team, shape=

Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Season

D i f f i c u l t y " , y="Points " , t i t l e="Season Ranking Simulat ion f o r the 2014 AFL Season" )

320 p2<=ggp lot (Upd2014 , aes ( y=Points , x=Season . D i f f i c u l t y . Sim , group=Team, co l our=Team, shape=

Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Season

D i f f i c u l t y " , y="Points " , t i t l e="Season Ranking Simulat ion f o r the 2014 AFL Season" )

321 p3<=ggp lot (Upd2014 , aes ( y=S t a t i c . Performance , x=Season . D i f f i c u l t y . Stat , group=Team, co l ou r=

Team, shape=Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="

Season D i f f i c u l t y " , y="Team Performance" , t i t l e="Performance Evaluat ion f o r the 2014

AFL Season" )

322 p4<=ggp lot (Upd2014 , aes ( y=Var iab le . Performance , x=Season . D i f f i c u l t y . Stat , group=Team, co l ou r

=Team, shape=Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="

Season D i f f i c u l t y " , y="Team Performance" , t i t l e="Performance Evaluat ion f o r the 2014

AFL Season" )

323

324 p lo t ( SimLad2015 )

325 #ggplot (Upd2015 , aes ( y=Pred icted . Rank , x=Actual . Rank , group=Team, co l ou r=Team, shape=Team) ) +

geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Actual Rank" , y="

Pred ic ted Rank" , t i t l e ="Season Ranking Simulat ion f o r the 2015 AFL Season ") + geom_

ab l i n e ( s l ope = 1)

326 p5<=ggp lot (Upd2015 , aes ( y=Points , x=Sea sonD i f f i c u l t yS ta t , group=Team, co l ou r=Team, shape=Team

) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Season D i f f i c u l t y

" , y="Points " , t i t l e="Season Ranking Simulat ion f o r the 2015 AFL Season" )

327 p6<=ggp lot (Upd2015 , aes ( y=Points , x=SeasonDi f f i cu l tyS im , group=Team, co l ou r=Team, shape=Team)

) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Season D i f f i c u l t y "

, y="Points " , t i t l e="Season Ranking Simulat ion f o r the 2015 AFL Season" )

328 p7<=ggp lot (Upd2015 , aes ( y=Stat icPer formance , x=Sea sonD i f f i c u l t yS ta t , group=Team, co l ou r=Team

, shape=Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="Season

D i f f i c u l t y " , y="Team Performance" , t i t l e="Performance Evaluat ion f o r the 2015 AFL

Season" )

329 p8<=ggp lot (Upd2015 , aes ( y=VariablePerformance , x=Sea sonD i f f i c u l t yS ta t , group=Team, co l ou r=

Team, shape=Team) ) + geom_point ( s i z e =5) + s c a l e_shape_manual ( va lue s =1:18) + labs (x="

Season D i f f i c u l t y " , y="Team Performance" , t i t l e="Performance Evaluat ion f o r the 2015

AFL Season" )

330
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331 dp1<=ggp lot ( SimStat2015 , aes ( x = Team, y = Di f f i cu l t yRat i ng , f i l l =Team, c o l o r=Team) ) +

geom_bar ( s t a t = " i d e n t i t y " ) + theme ( ax i s . t ex t . x = element_text ( ang le = 90 , h ju s t = 1 ,

v ju s t =0.3) , t ex t = element_text ( s i z e =14) ) + labs (y=" D i f f i c u l t y Rating" , t i t l e="Season

D i f f i c u l t y ( S t a t i c ) f o r the 2015 AFL Season" ) + geom_h l i n e ( y i n t e r c ep t = 0 . 3 ) + geom_

h l i n e ( y i n t e r c ep t = =0.3)

332 dp2<=ggp lot ( SimLad2015 , aes ( x = Team, y = as . numeric ( as . cha rac t e r ( D i f f i c u l t y ) ) , f i l l =Team

, c o l o r=Team) ) + geom_bar ( s t a t = " i d e n t i t y " ) + theme ( ax i s . t ex t . x = element_text ( ang le

= 90 , h ju s t = 1 , v ju s t =0.3) , t ex t = element_text ( s i z e =14) ) + labs (y=" D i f f i c u l t y Rating

" , t i t l e="Season D i f f i c u l t y ( S imulat ion ) f o r the 2015 AFL Season" ) + geom_h l i n e (

y i n t e r c ep t = 2) + geom_h l i n e ( y i n t e r c ep t = =2)

333 dp3<=ggp lot ( SimProb2015 , aes ( x = Team, y = WinProb , f i l l =Team, c o l o r=Team) ) + geom_bar (

s t a t = " i d e n t i t y " ) + theme ( ax i s . t ex t . x = element_text ( ang le = 90 , h ju s t = 1 , v ju s t

=0.3) , t ex t = element_text ( s i z e =14) ) + labs (y="Average Win Percentage " , t i t l e="Season

D i f f i c u l t y ( P r o b a b i l i s t i c ) f o r the 2015 AFL Season" )

334

335 t i f f ( "2015 Season Ranking Simulat ion ( pts=s t a t d i f f ) . t i f f " , width = 24 , he ight = 24 , un i t s

= 'cm ' , r e s = 300 , compress ion = ' lzw ' )

336 p5

337 dev . o f f ( )

338

339 t i f f ( "2015 Season Ranking Simulat ion ( pts=s imd i f f ) . t i f f " , width = 24 , he ight = 24 , un i t s

= 'cm ' , r e s = 300 , compress ion = ' lzw ' )

340 p6

341 dev . o f f ( )

342

343 t i f f ( "2015 Performance Evaluat ion ( s t a t i c p e r f=s t a t d i f f ) . t i f f " , width = 24 , he ight = 24 ,

un i t s = 'cm ' , r e s = 300 , compress ion = ' lzw ' )

344 p7

345 dev . o f f ( )

346

347 t i f f ( "2015 Performance Evaluat ion ( varper f=s t a t d i f f ) . t i f f " , width = 24 , he ight = 24 ,

un i t s = 'cm ' , r e s = 300 , compress ion = ' lzw ' )

348 p8

349 dev . o f f ( )

350

351 t i f f ( "2015 S t a t i c D i f f i c u l t y . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s = 300 ,

compress ion = ' lzw ' )

352 dp1

353 dev . o f f ( )

354

355 t i f f ( "2014 Dendrogram . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s = 300 ,

compress ion = ' lzw ' )

356 dp2

357 dev . o f f ( )

358

359 t i f f ( "2015 P r o b a b i l i s t i c D i f f i c u l t y . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s =

300 , compress ion = ' lzw ' )

360 dp3

361 dev . o f f ( )

362

363 p lo t ( SimLad2016 )

364

365 d i s t2014<=d i s t ( SimLad2014 [ , c ( 3 , 2 ) ] ) #d i s t between prev ious rank and end o f season rank

366 hc2014<=hc lu s t ( d i s t2014 )

367 t i f f ( "2014 Dendrogram . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s = 300 ,

compress ion = ' lzw ' )

368 p lo t ( hc2014 , main="Clus te r Dendrogram f o r the 2014 AFL Season" ) #grouped r e l a t i v e

performance in 2014 season
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369 dev . o f f ( )

370

371

372 d i s t2015<=d i s t ( SimLad2015 [ , c ( 3 , 2 ) ] ) #d i s t between prev ious rank and end o f season rank

373 hc2015<=hc lu s t ( d i s t2015 )

374 t i f f ( "2015 Dendrogram . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s = 300 ,

compress ion = ' lzw ' )

375 p lo t ( hc2015 , main="Clus te r Dendrogram f o r the 2015 AFL Season" ) #grouped r e l a t i v e

performance in 2015 season

376 dev . o f f ( )

377

378

379 d i s t2016<=d i s t ( SimLad2016 [ , c ( 3 , 2 ) ] ) #d i s t between prev ious rank and end o f season rank

380 hc2016<=hc lu s t ( d i s t2016 )

381 t i f f ( "2016 Dendrogram . t i f f " , width = 24 , he ight = 24 , un i t s = 'cm ' , r e s = 300 ,

compress ion = ' lzw ' )

382 p lo t ( hc2016 , main="Clus te r Dendrogram f o r the 2016 AFL Season" ) #grouped r e l a t i v e

performance in 2016 season

383 dev . o f f ( )
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R Code for Dynamic Models

E.1 Dynamic Model R Code

1 ##MARKOV MODEL WORKING VER

2 ##CREATED BY: CASEY JOSMAN

3 ##LAST EDITED: 08/12/2018

4

5 ##LIBRARIES

6 l i b r a r y (msm)

7 l i b r a r y ( doPa ra l l e l )

8 l i b r a r y ( ggp lot2 )

9 l i b r a r y ( reshape2 )

10 l i b r a r y ( zoo )

11 l i b r a r y ( car )

12 l i b r a r y (expm)

13

14 ##FUNCTIONS

15

16 read . e x c e l <= f unc t i on ( header=TRUE, . . . ) {

17 read . t ab l e ( " c l i pboa rd " , sep="\ t " , header=header , . . . )

18 }

19

20 wr i t e . e x c e l <= f unc t i on (x , row . names=FALSE, c o l . names=TRUE, . . . ) {

21 wr i t e . t ab l e (x , " c l i pboa rd " , sep="\ t " , row . names=row . names , c o l . names=co l . names , . . . )

22 }

23

24 l ay_out = func t i on ( . . . ) { #source https : // github . com/cran/wq/blob /8223

da687d8daf f2ad612f9a07926f412a08ba82 /R/ layOut .R

25 x <= l i s t ( . . . )

26 n <= max( sapply (x , f unc t i on (x ) max(x [ [ 2 ] ] ) ) )

27 p <= max( sapply (x , f unc t i on (x ) max(x [ [ 3 ] ] ) ) )

28 g r id : : pushViewport ( g r id : : v iewport ( layout = gr id : : g r i d . layout (n , p) ) )

29

30 f o r ( i in seq_len ( l ength (x ) ) ) {

31 pr in t ( x [ [ i ] ] [ [ 1 ] ] , vp = gr id : : v iewport ( layout . pos . row = x [ [ i ] ] [ [ 2 ] ] ,

32 l ayout . pos . c o l = x [ [ i ] ] [ [ 3 ] ] ) )

33 }

34 }

35

36 RealTimeResult<=f unc t i on ( data ) {

37

38 tempHome<=1*data$H.BEHI+6*data$H.GOAL
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39 tempAway<=1*data$A.BEHI+6*data$A.GOAL

40 tempMargin<=tempHome=tempAway

41 tempResult<=rep (0 , l ength ( tempMargin ) )

42 tempResult [ which ( tempMargin==0) ]<=1 #Draw

43 tempResult [ which ( tempMargin<0) ]<=2 #Loss

44 tempResult [ which ( tempMargin>0) ]<=3 #Win

45

46 r e turn ( tempResult )

47

48 }

49

50 CumulTime<=f unc t i on ( data ) { #Ca l cu l a t e s f u l l game time ( adds prev ious quarte r end time )

51

52 tempTime<=NULL

53 Start Index<=as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) )

54 EndIndex<=c ( as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) ) [=1]=1 ,nrow ( data ) )

55

56 f o r ( i in 1 : l ength ( Start Index ) ) {

57 tempind<=Start Index [ i ] : EndIndex [ i ]

58

59 tempData<=data [ tempind , c ( "TIME_SEC" , "QUARTER" ) ]

60 t1<=as . numeric ( subset ( tempData ,QUARTER==1)$TIME_SEC)

61 t2<=as . numeric ( subset ( tempData ,QUARTER==2)$TIME_SEC)+max( t1 )

62 t3<=as . numeric ( subset ( tempData ,QUARTER==3)$TIME_SEC)+max( t2 )

63 t4<=as . numeric ( subset ( tempData ,QUARTER==4)$TIME_SEC)+max( t3 )

64

65 tempCalc<=c ( t1 , t2 , t3 , t4 )

66

67

68 tempTime<=c ( tempTime , tempCalc )

69 }

70

71 r e turn ( tempTime)

72

73 }

74

75 MatchInd<=f unc t i on ( data ) { #Ass igns unique MatchNo i nd i c a t o r

76

77 tempNo<=NULL

78 Start Index<=as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) )

79 EndIndex<=c ( as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) ) [=1]=1 ,nrow ( data ) )

80

81 f o r ( i in 1 : l ength ( Start Index ) ) {

82 tempind<=Start Index [ i ] : EndIndex [ i ]

83 matchtemp<=rep ( i , l ength ( tempind ) )

84

85 tempNo<=c ( tempNo , matchtemp )

86 }

87

88 r e turn (tempNo)

89

90 }

91

92 OffsetTime<=f unc t i on ( data , d e l t a =0.0001) {
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93

94 TimeOff<=NULL

95 s i g<=nchar ( gsub ( " ( . * ) ( \ \ . ) | ( [ 0 ] *$ ) " , "" , format ( de l ta , s c i e n t i f i c=FALSE) ) )

96 Start Index<=as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) )

97 EndIndex<=c ( as . numeric ( rownames ( unique ( data [ , c ( "Date" , "Round" , "Home . team" , "Away . team" )

] ) ) ) [=1]=1 ,nrow ( data ) )

98

99 f o r ( i in 1 : l ength ( Start Index ) ) {

100

101 tempTime<=round ( data$CumulT [ Start Index [ i ] : EndIndex [ i ] ] , d i g i t s=s i g )

102

103 IndE<=which ( dup l i ca t ed ( tempTime) ) #g i v e s l o c a t i o n o f second value in dup l i c a t e ( need

to get va lue be f o r e )

104

105 #IndT<=c ( IndS , IndE )

106

107 f o r ( j in IndE ) {

108

109 IndS<=which ( tempTime==tempTime [ j ] ) #g i v e s l o c a t i o n o f a l l matching dup l i c a t e s

110

111 i f ( l ength ( IndS )==0){

112

113 } e l s e {

114

115 tempTime [ IndS ]<=tempTime [ which ( tempTime==tempTime [ j ] ) ]+ seq ( 0 , ( l ength ( which (

tempTime==tempTime [ j ] ) )=1)* de l ta , d e l t a )

116

117 }

118

119

120 }

121

122

123 TimeOff<=c (TimeOff , tempTime)

124 }

125

126 r e turn (TimeOff )

127

128 }

129 ##WE NEED TO EXTRACT THE CONFIDENCE INTERVALS FOR EACH ITERATION TO BE USED LATER

130 PredictMSM<=f unc t i on (model=NULL, c ova r i a t e s=NULL, data=NULL, i n i t i a l p r o b s=NULL, lengthThresh

=50){ #must a l s o produce p l o t ( t ry ggp lo t )

131 ProbRes<=NULL

132 ForeRes<=NULL

133 i f ( i s . nu l l ( c o va r i a t e s )==FALSE) {

134 tempPredData<=data [ , match ( c ( "CumulT" , c ova r i a t e s ) , colnames ( data ) ) ]

135 lenR<=nrow ( tempPredData )

136

137 in i tCov<= l i s t ( )

138 in i tCov [ [ 1 ] ]<=as . l i s t ( rep (0 , l ength ( c ova r i a t e s ) ) ) #c r e a t e s an extra i n i t i a l nu l l

c ova r i a t e as we need t imes+1 cova r i a t e s

139 #cova r i a t eL i s t<=l app ly ( 1 : 3 , f unc t i on (n) l i s t ( t r e a t 1=FullMarkovDataT0$CumulT [ n ] , t r e a t 2=

FullMarkovDataT0$TIME_SEC[ n ] ) ) #two case example

140 c o v a r i a t eL i s t<=l app ly ( 1 : lenR , func t i on (x ) as . l i s t ( tempPredData [ , match ( c ( c ova r i a t e s ) ,

colnames ( tempPredData ) ) ] [ x , ] ) ) #th i s i s the g e n e r a l i s a t i o n that r e p l a c e s the

above

141 c o v a r i a t eL i s t<=c ( initCov , c o v a r i a t eL i s t ) #j o i n s i n i t i a l c o va r i a t e s with f u l l l i s t s e t
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142 c o v a r i a t eL i s t<=l app ly ( c ova r i a t eL i s t , f unc t i on (x ) setNames (x , c o va r i a t e s ) ) #g i v e s each

element o f l i s t an appropr ia t e name

143

144 pb <= txtProgressBar (min = 0 , max = nrow ( data ) , s t y l e = 3)

145 PMatShort<= l i s t ( ) #Stepwise P=Matr ices

146 Pcomp<= l i s t ( )

147 Pfore<= l i s t ( )

148

149 f o r ( i in 1 : nrow ( data ) ) {#needs to be in loop x=model , t1=0 , t2=CumulT [ i ] , t imes=c (0 ,

CumulT [ i =1] ,CumulT [ i ] ) , c ova r i a t e=cov a r i a t eL i s t [ 1 : ( i +1) ]

150

151 #PMatTemp<=pmatrix . p i e c ew i s e .msm(x=model , t1=0, t2=tempPredData$CumulT [ i ] , t imes=

tempPredData$CumulT [ 1 : i ] , c o v a r i a t e s=c ov a r i a t eL i s t [ 1 : ( i +1) ] , c o r e s=4)

152

153 ##in s e r t opt imised s t ag e s here##

154 i f ( i==1){

155 PMatShort [ [ 1 ] ]<=pmatrix . p i e c ew i s e .msm(x=model , t1=0, t2=tempPredData$CumulT [ i ] ,

t imes=tempPredData$CumulT [ i ] , c o v a r i a t e s=cova r i a t eL i s t [ i : ( i +1) ] , c o r e s=4)

156 #PMatFore<=pmatrix . p i e c ew i s e .msm(x=model , t1=i , t2=tempPredData$CumulT [ nrow (

tempPredData ) ] , t imes=tempPredData$CumulT [ 1 : i ] , c o v a r i a t e s=c ova r i a t eL i s t [ 1 : ( i

+1) ] , c o r e s=4)

157 } e l s e {

158 PMatShort [ [ i ] ]<=pmatrix . p i e c ew i s e .msm(x=model , t1=tempPredData$CumulT [ i =1] , t2=

tempPredData$CumulT [ i ] , t imes=tempPredData$CumulT [ ( i =1) : i ] , c o v a r i a t e s=

cova r i a t eL i s t [ ( i =1) : ( i +1) ] , c o r e s=4)

159 #PMatFore<=pmatrix . p i e c ew i s e .msm(x=model , t1=i , t2=tempPredData$CumulT [ nrow (

tempPredData ) ] , t imes=tempPredData$CumulT [ 1 : i ] , c o v a r i a t e s=c ova r i a t eL i s t [ 1 : ( i

+1) ] , c o r e s=4)

160 }

161

162 PMatFore<=NULL

163 i f (model$qmodel$ n s t a t e s==3){

164 PMatFore<=matrix ( diag (3 ) , nrow=3, nco l=3)

165 colnames (PMatFore )<=c ( "Draw" , "Loss " , "Win" )

166 rownames (PMatFore )<=c ( "Draw" , "Loss " , "Win" )

167 } e l s e {

168 PMatFore<=matrix ( diag (2 ) , nrow=2, nco l=2)

169 colnames (PMatFore )<=c ( "Loss " , "Win" )

170 rownames (PMatFore )<=c ( "Loss " , "Win" )

171 }

172

173 # REMOVED FOR OPTIMISED STEP BELOW

174 # fo r ( f c in i : ( nrow ( data )=1) ) { #forward p r ed i c t i o n o f P Matrix from observed po int

i to end po int T

175 #PMatFore<=PMatFore%*%pmatrix . p i e c ew i s e .msm(x=model , t1=tempPredData$CumulT [ f c ] , t2

=tempPredData$CumulT [ ( f c +1) ] , t imes=tempPredData$CumulT [ 1 : i ] , c o v a r i a t e s=

cova r i a t eL i s t [ 1 : ( i +1) ] , c o r e s=4)

176 # }

177

178 PMatFore<=pmatrix . p i e c ew i s e .msm(x=model , t1=tempPredData$CumulT [ i ] , t2=tempPredData$

CumulT [ nrow ( data ) ] , t imes=tempPredData$CumulT [ 1 : i ] , c o v a r i a t e s=cova r i a t eL i s t [ 1 : ( i

+1) ] , c o r e s=4)

179

180 i f ( i==1){

181 Pcomp [ [ 1 ] ]<=PMatShort [ [ 1 ] ]

182 Pfore [ [ 1 ] ]<=PMatShort [ [ 1 ] ]%*%PMatFore

183 } e l s e {

184 Pcomp [ [ i ] ]<=Pcomp [ [ ( i =1) ] ]%*%PMatShort [ [ i ] ] #P( t )=P(0 , t=1)P( t=1, t )
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185 Pfore [ [ i ] ]<=Pcomp [ [ ( i =1) ] ]%*%PMatShort [ [ i ] ]%*%PMatFore

186 }

187

188

189

190 i f ( i==1){

191 ProbTemp<= i n i t i a l p r o b s%*%Pcomp [ [ 1 ] ] #u (1)=u (0)P(0)

192 ProbForeTemp<= i n i t i a l p r o b s%*%Pfore [ [ 1 ] ]

193 } e l s e {

194 ProbTemp<= i n i t i a l p r o b s%*%Pcomp [ [ i ] ] #u( t )=u (0)P(0 , t=1) => u( t+1)=u (0)P(0 , t )

195 ProbForeTemp<= i n i t i a l p r o b s%*%Pfore [ [ i ] ]

196 }

197

198 ProbRes<=rbind (ProbRes , ProbTemp)

199 ForeRes<=rbind ( ForeRes , ProbForeTemp)

200

201 setTxtProgressBar (pb , i )

202 }

203

204

205

206 c l o s e (pb)

207 rownames ( ProbRes )<=1 : nrow (ProbRes )

208 ProbRes<=cbind (ProbRes , Time=tempPredData$CumulT)

209 ForeRes<=cbind ( ForeRes , Time=tempPredData$CumulT)

210

211 } e l s e {

212 tempPredData<=data [ , match ( c ( "CumulT" ) , colnames ( data ) ) ]

213

214 pb <= txtProgressBar (min = 0 , max = length ( data ) , s t y l e = 3)

215 PMatShort<= l i s t ( ) #Stepwise P=Matr ices

216 Pcomp<= l i s t ( )

217 Pfore<= l i s t ( )

218

219 f o r ( i in 1 : l ength ( data ) ) {

220

221 #PMatTemp<=pmatrix .msm(x=model , t=tempPredData [ i ] , t1=0, c ova r i a t e s =0, co r e s=4)

222

223 ##in s e r t opt imised s t ag e s here##

224 i f ( i==1){

225 PMatShort [ [ 1 ] ]<=pmatrix .msm(x=model , t=tempPredData [ i ] , t1=0, c ova r i a t e s =0, co r e s=4)

226 } e l s e {

227 PMatShort [ [ i ] ]<=pmatrix .msm(x=model , t=tempPredData [ i ] , t1=tempPredData [ i =1] ,

c o v a r i a t e s =0, co r e s=4)

228 }

229

230 PMatFore<=NULL

231 i f (model$qmodel$ n s t a t e s==3){

232 PMatFore<=matrix ( diag (3 ) , nrow=3, nco l=3)

233 colnames (PMatFore )<=c ( "Draw" , "Loss " , "Win" )

234 rownames (PMatFore )<=c ( "Draw" , "Loss " , "Win" )

235 } e l s e {

236 PMatFore<=matrix ( diag (2 ) , nrow=2, nco l=2)

237 colnames (PMatFore )<=c ( "Loss " , "Win" )

238 rownames (PMatFore )<=c ( "Loss " , "Win" )

239 }

240

241 # REMOVED FOR OPTIMISED STEP BELOW

156



242 # fo r ( f c in i : ( nrow ( data )=1) ) { #forward p r ed i c t i o n o f P Matrix from observed po int

i to end po int T

243 # PMatFore<=PMatFore%*%pmatrix .msm(x=model , t=tempPredData [ ( f c +1) ] , t1=tempPredData

[ f c ] , c o v a r i a t e s =0, co r e s=4)

244 # }

245

246 PMatFore<=pmatrix .msm(x=model , t=tempPredData [ nrow ( data ) ] , t1=tempPredData [ i ] ,

c o v a r i a t e s =0, co r e s=4)

247

248 i f ( i==1){

249 Pcomp [ [ 1 ] ]<=PMatShort [ [ 1 ] ]

250 Pfore [ [ 1 ] ]<=PMatShort [ [ 1 ] ]%*%PMatFore

251 } e l s e {

252 Pcomp [ [ i ] ]<=Pcomp [ [ ( i =1) ] ]%*%PMatShort [ [ i ] ]

253 Pfore [ [ i ] ]<=Pcomp [ [ ( i =1) ] ]%*%PMatShort [ [ i ] ]%*%PMatFore

254 }

255

256 i f ( i==1){

257 ProbTemp<= i n i t i a l p r o b s%*%Pcomp [ [ 1 ] ] #u (1)=u (0)P(0)

258 ProbForeTemp<= i n i t i a l p r o b s%*%Pfore [ [ 1 ] ]

259 } e l s e {

260 ProbTemp<= i n i t i a l p r o b s%*%Pcomp [ [ i ] ] #u( t )=u (0)P(0 , t=1) => u( t+1)=u (0)P(0 , t )

261 ProbForeTemp<= i n i t i a l p r o b s%*%Pfore [ [ i ] ]

262 }

263

264 ProbRes<=rbind (ProbRes , ProbTemp)

265 ForeRes<=rbind ( ForeRes , ProbForeTemp)

266 setTxtProgressBar (pb , i )

267 }

268

269 c l o s e (pb)

270 rownames ( ProbRes )<=1 : nrow (ProbRes )

271 ProbRes<=cbind (ProbRes , Time=tempPredData )

272 ForeRes<=cbind ( ForeRes , Time=tempPredData )

273

274 }

275

276 templong<=as . data . frame (ProbRes )

277 l ong long <= melt ( templong , id . vars = "Time" )

278

279 foretemplong<=as . data . frame ( ForeRes )

280 f o r e l ong l ong<=melt ( foretemplong , id . vars = "Time" )

281

282 predResT<=data . frame ( matrix ( nrow=nrow (ProbRes ) , nco l=1) )

283 foreResT<=data . frame ( matrix ( nrow=nrow (ProbRes ) , nco l=1) )

284

285 i f ( l ength ( i n i t i a l p r o b s )==3){

286 f o r (p in 1 : nrow (ProbRes ) ) {

287 predResT [ p , ]<=names ( which .max(ProbRes [ p , 1 : 3 ] ) )

288 foreResT [ p , ]<=names ( which .max( ForeRes [ p , 1 : 3 ] ) )

289 }

290 } e l s e {

291 f o r (p in 1 : nrow (ProbRes ) ) {

292 predResT [ p , ]<=names ( which .max(ProbRes [ p , 1 : 2 ] ) )

293 foreResT [ p , ]<=names ( which .max( ForeRes [ p , 1 : 2 ] ) )

294 }

295 }

296
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297 names ( predResT )<="predResT"

298 names ( foreResT )<=" foreResT"

299

300 actRes<=as . data . frame ( recode ( data$ResT , ' "1"="Draw";"2"="Loss ";"3"="Win" ' ) ,

s t r i ng sAsFac to r s=FALSE)

301 names ( actRes )<="actRes "

302

303 endRes<=as . data . frame ( matrix ( actRes [ nrow ( data ) , ] , nco l =1,nrow=nrow ( data ) ) )

304 names ( endRes )<="endRes"

305 endRes$endRes<=as . cha rac t e r ( endRes$endRes )

306

307 endlong<=as . data . frame ( cbind ( Actual=actRes $actRes , Pred ic ted=predResT$predResT , Time=

templong$Time) )

308 endlong $Actual<=as . cha rac t e r ( endlong $Actual )

309 endlong $Pred ic ted<=as . cha rac t e r ( endlong $Pred ic ted )

310 endlong $Time<=as . numeric ( as . cha rac t e r ( endlong $Time) )

311

312 f o r e end long<=as . data . frame ( cbind ( Actual=endRes$endRes , Pred ic ted=foreResT$ foreResT , Time=

foretemplong $Time) )

313 f o r e end long $Actual<=as . cha rac t e r ( f o r e end long $Actual )

314 f o r e end long $Pred ic ted<=as . cha rac t e r ( f o r e end long $Pred ic ted )

315 f o r e end long $Time<=as . numeric ( as . cha rac t e r ( f o r e end long $Time) )

316

317 endlonglong<=melt ( endlong , id . vars="Time" )

318 f o r e end long l ong<=melt ( foreendlong , id . vars="Time" )

319 #templong<=melt ( ProbRes ) #not sure why t h i s was here ( breaks p l o t )

320

321

322 ##NEED TO ADD EXTRA PLOTS FOR END OF MATCH FORECAST

323 i f ( l ength ( i n i t i a l p r o b s )==3){ #pred i c t ed p r obab i l i t y p l o t

324 gg<=ggp lot ( data=templong , aes (Time) ) + geom_l i n e ( aes ( y=Draw , co l ou r="Draw" ) ) + geom_

l i n e ( aes ( y=Loss , co l ou r="Loss " ) ) + geom_l i n e ( aes ( y=Win , co l ou r="Win" ) ) + labs ( t i t l e

=" Probab i l i t y o f Match Outcome Over Time" , y=" Probab i l i t y " , c o l o r="Match Outcome" )

+ s c a l e_co lour_manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) )

325 } e l s e { i f ( l ength ( i n i t i a l p r o b s )==2){

326 gg<=ggp lot ( data=templong , aes (Time) ) + geom_l i n e ( aes ( y=Loss , co l ou r="Loss " ) ) + geom_

l i n e ( aes ( y=Win , co l our="Win" ) ) + labs ( t i t l e=" Probab i l i t y o f Match Outcome Over

Time" , y=" Probab i l i t y " , c o l o r="Match Outcome" ) + s c a l e_co lou r_manual ( va lue s=c ( "

Loss "="Red" , "Win"="Green2" ) )

327 }

328

329 }

330

331 ##actua l ( t ex t ) and pred i c t ed ( bar )

332

333 i f ( l ength ( i n i t i a l p r o b s )==3){ #pred i c t ed p r obab i l i t y p l o t

334 hh<=ggp lot ( ) + geom_bar ( data=longlong , aes ( x=Time , y=value , co l ou r=var i ab l e , f i l l =

va r i ab l e ) , p o s i t i o n = " f i l l " , s t a t = " i d e n t i t y " ) + geom_point ( data = data , aes ( y=

s c a l e ( as . numeric (ResT) , c en t e r =0.5 , s c a l e =3) , x=CumulT) ) + labs ( t i t l e="Match Resu l t s

Over Time" , x="Time" , y="Outcome" , l egend="Match Outcome" ) + s c a l e_co lour_manual (

va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l _manual ( va lue s

=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="Match Pred i c t i on " ,

co l ou r="Match Pred i c t i on " ) + s c a l e_y_cont inuous ( breaks=c (1 / 6 ,3 / 6 ,5 / 6) , l a b e l s=c ( "

Draw" , "Loss " , "Win" ) )

335 } e l s e { i f ( l ength ( i n i t i a l p r o b s )==2){

336 hh<=ggp lot ( ) + geom_bar ( data=longlong , aes ( x=Time , y=value , co l ou r=var i ab l e , f i l l =

va r i ab l e ) , p o s i t i o n = " f i l l " , s t a t = " i d e n t i t y " ) + geom_point ( data = data , aes ( y

=s c a l e ( as . numeric (ResT) , c en t e r =0.5 , s c a l e =3) , x=CumulT) ) + labs ( t i t l e="Match
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Resu l t s Over Time" , x="Time" , y="Outcome" , l egend="Match Outcome" ) + s c a l e_co lou r_

manual ( va lue s=c ( "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l _manual ( va lue s=c ( "

Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="Match Pred i c t i on " , co l ou r="Match

Pred i c t i on " ) + s c a l e_y_cont inuous ( breaks=c (1 / 6 ,3 / 6 ,5 / 6) , l a b e l s=c ( "Draw" , "Loss " ,

"Win" ) )

337 }

338

339 }

340

341 ##outcome heatmap

342 i i<=ggp lot ( ) + geom_t i l e ( data=endlonglong , aes (Time , va r i ab l e , f i l l =value , co l ou r=value ) )

+ labs ( ylab ( "Outcome" ) ) + geom_h l i n e ( y i n t e r c ep t =1.5 , co l ou r="white " ) + s c a l e_co lou r_

manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l _manual (

va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="" , co l ou r="" ) +

theme ( p l o t . margin = uni t ( c ( 0 . 2 , 3 . 9 , 0 . 2 , 0 . 2 ) , "cm" ) , l egend . p o s i t i o n="none" )

343

344 ##margin p l o t

345 j j<=ggp lot ( data=data , aes ( x=CumulT , y=MarginT , co l ou r=MarginT ) ) + geom_l i n e ( ) + s c a l e_

co l o r_grad i ent2 ( midpoint=0, low=" red " , mid="grey65 " , high="green2 " ) + theme ( panel .

background = element_r e c t ( f i l l ="white " , co l ou r="black " ) , panel . g r i d . major = element_

blank ( ) , panel . g r i d . minor = element_blank ( ) , l egend . p o s i t i o n="none" ) + labs (x="Time

" , y="Margin" ) + theme ( p l o t . margin = uni t ( c ( 0 . 2 , 3 . 9 , 0 . 2 , 0 . 2 ) , "cm" ) )

346

347 u<=union ( actRes $actRes , predResT$predResT )

348 tempTable<=t ab l e ( Actual=f a c t o r ( actRes $actRes , u) , Pred ic ted=f a c t o r ( predResT$predResT , u) )

349 CumulTAccuracy<=sum( diag ( tempTable ) ) /sum( tempTable ) #p r ed i c t i on accuracy over every

epoch

350

351 uFore<=union ( endRes$endRes , foreResT$ foreResT )

352 tempTableFore<=t ab l e ( Actual=f a c t o r ( endRes$endRes , uFore ) , Pred ic ted=f a c t o r ( foreResT$

foreResT , uFore ) )

353 CumulTAccuracyFore<=sum( diag ( tempTableFore ) ) /sum( tempTableFore ) #pr ed i c t i o n accuracy

over every epoch

354

355 i f ( l ength ( i n i t i a l p r o b s )==3){ #pred i c t ed p r obab i l i t y p l o t

356 kk<=ggp lot ( ) + geom_bar ( data=fo r e l ong l ong , aes ( x=Time , y=value , co l ou r=var i ab l e , f i l l =

va r i ab l e ) , p o s i t i o n = " f i l l " , s t a t = " i d e n t i t y " ) + labs ( t i t l e="Fina l Match

Outcome Pred i c t i on at Time" , x="Time" , y="Outcome" , l egend="Match Outcome" ) + s c a l e_

co lour_manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l

_manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="Match

Pred i c t i on " , co l ou r="Match Pred i c t i on " )

357 } e l s e { i f ( l ength ( i n i t i a l p r o b s )==2){

358 kk<=ggp lot ( ) + geom_bar ( data=fo r e l ong l ong , aes ( x=Time , y=value , co l ou r=var i ab l e , f i l l =

va r i ab l e ) , p o s i t i o n = " f i l l " , s t a t = " i d e n t i t y " ) + labs ( t i t l e="Fina l Match

Outcome Pred i c t i on at Time" , x="Time" , y="Outcome" , l egend="Match Outcome" ) +

s c a l e_co lour_manual ( va lue s=c ( "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l _manual (

va lue s=c ( "Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="Match Pred i c t i on " , co l ou r="

Match Pred i c t i on " )

359 }

360

361 }

362

363 ##fo r e c a s t outcome heatmap

364 l l<=ggp lot ( ) + geom_t i l e ( data=foreend long long , aes (Time , va r i ab l e , f i l l =value , co l ou r=

value ) ) + labs ( ylab ( "Outcome" ) ) + geom_h l i n e ( y i n t e r c ep t =1.5 , co l ou r="white " ) + s c a l e

_co lour_manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + s c a l e_ f i l l _

manual ( va lue s=c ( "Draw"="Grey65" , "Loss "="Red" , "Win"="Green2" ) ) + labs ( f i l l ="" , co l ou r

="" ) + theme ( p l o t . margin = uni t ( c ( 0 . 2 , 3 . 9 , 0 . 2 , 0 . 2 ) , "cm" ) , l egend . p o s i t i o n="none" )
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365

366

367 # PMatLong<= l i s t ( ) #Reconstructed l i s t o f P=Matr ices

368 # PMatLong [ [ 1 ] ]<=PMatShort [ [ 1 ] ]

369 # fo r ( i in 2 : nrow ( data ) ) {

370 # PMatLong [ [ i ] ]<=PMatLong [ [ ( i =1) ] ]%*%PMatShort [ [ i ] ]

371 # }

372

373 # Steady<=l app ly ( 1 : l ength (PMatLong) , f unc t i on (x ) ( a l l ( abs (PMatLong [ [ x ] ] [ 1 , ] = colMeans (

PMatLong [ [ x ] ] ) )<=de l t a ) ) )

374 # SteadyTime<=data$CumulT [ min ( which ( Steady==TRUE) ) ]

375

376 i f ( l ength ( i n i t i a l p r o b s )==3){

377 FinPred<=names ( which .max(ProbRes [ nrow (ProbRes ) , 1 : 3 ] ) )

378 FinFore<=names ( which .max( ForeRes [ nrow ( ForeRes ) , 1 : 3 ] ) )

379 } e l s e {

380 FinPred<=names ( which .max(ProbRes [ nrow (ProbRes ) , 1 : 2 ] ) )

381 FinFore<=names ( which .max( ForeRes [ nrow ( ForeRes ) , 1 : 2 ] ) )

382 }

383

384

385

386 ##Cluste r Matching

387 ObsRes<=as . data . frame ( recode ( data$Result , ' "1"="Win";"0"="Loss " ' ) , s t r i ng sAsFac to r s=FALSE

)

388 FinRes<=unique (ObsRes ) #get observed end o f match r e s u l t

389 FinVec<=rep ( FinRes , nrow (ObsRes ) )

390

391 ResLogic<=FinVec==predResT$predResT #check f o r FinVec==ResT

392

393 indLogic<=cbind ( r l e ( ResLogic ) $ values , cumsum( r l e ( ResLogic ) $ l ength )=( r l e ( ResLogic ) $

lengths =1) ,cumsum( r l e ( ResLogic ) $ l ength ) )

394 c r i t<=which ( r l e ( ResLogic ) $ va lue s==TRUE & r l e ( ResLogic ) $ lengths>=lengthThresh )

395 # i f ( l ength ( indLogic [ c r i t , ] ) ==3){

396 # indMatch<=matrix (0 , nrow=1, nco l=3)

397 # } e l s e {

398 # }

399 indMatch<=as . data . frame ( matrix ( indLogic [ c r i t , ] , nco l=3) ) #re tu rn s a matrix o f l ength ( l )

which conta in s number o f i n t e r v a l s which are l onge r than lengthThresh as we l l as

s t a r t and end po in t s

400

401 colnames ( indMatch )<=c ( "Vec" , "Beg" , "End" )

402

403

404 l i s t ( Pred i c t i on=ProbRes , PredProbPlot=gg , LineBarPlot=hh , HeatPlot=i i , MarginPlot=j j ,

EndBarPlot=kk , ForecastHeat=l l , CumulAcc=CumulTAccuracy , CumulAccFore=

CumulTAccuracyFore , PMatrices=Pcomp , ClusterMatch=indMatch , ObservedResult=FinRes ,

F ina lP r ed i c t i on=FinPred , F ina lForecas t=FinFore ,HomeRank=unique ( data$HomeRank) ,

AwayRank=unique ( data$AwayRank) , ForeData=ForeRes )#, SteadyStateTime=SteadyTime )

405 }

406

407 ##Underside Margin Plot

408 #ggplot ( data=FullMarkovDataT0 [ 1 : 2 0 0 0 , ] , aes ( x=CumulT , y=MarginT , co l ou r=MarginT ) ) + geom_

l i n e ( ) + s c a l e_co l o r_grad i ent2 ( midpoint=0, low="red " , mid="grey " , high="green ") +

theme ( panel . background = element_r e c t ( f i l l ="white " , co l ou r="black ") , panel . g r i d . major

= element_blank ( ) , panel . g r i d . minor = element_blank ( ) , l egend . p o s i t i o n="none ") + labs

( xlab ("Time") ) + labs ( ylab ("Margin ") )

409
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410 ##REWRITTEN AND OPTIMISED INTO PredictMSM

411 # SteadyState<=f unc t i on ( Pred1=NULL, Pred2=NULL,w=100 , d e l t a =0.0001) {

412 # TempVar<=NULL

413 # b=w/2

414 # Pred1Temp<=Pred1 [ ,=4]

415 # Pred2Temp<=Pred2 [ ,=4]

416 # TimeTemp<=Pred1$Time

417

418 # TempDiff<=Pred1Temp=Pred2Temp

419

420 # TempVar<=r o l l a pp l y ( data=TempDiff , width=w, by=b ,FUN=var , by . column=TRUE)

421 # TempMean<=colMeans (TempVar)

422 # TempSteady<=isTRUE(TempMean<de l t a )

423 # }

424

425 ##CREATE AND FORMAT DATA

426 FullMarkovDataT0<=read . csv ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\Data\\

ChampionData\\FullMarkovDataFinal . csv " , header=TRUE)

427

428 FullMarkovDataT0$Season<=as . f a c t o r ( FullMarkovDataT0$Season )

429 FullMarkovDataT0$Season<=as . i n t e g e r ( as . cha rac t e r ( ( FullMarkovDataT0$Season ) ) )

430 FullMarkovDataT0$Round<=as . f a c t o r ( FullMarkovDataT0$Round)

431 FullMarkovDataT0$Round<=as . i n t e g e r ( as . cha rac t e r ( ( FullMarkovDataT0$Round) ) )

432 FullMarkovDataT0$Venue<=as . f a c t o r ( FullMarkovDataT0$Venue )

433 FullMarkovDataT0$ F ina l s<=as . f a c t o r ( FullMarkovDataT0$ F ina l s )

434 #FullMarkovDataT0$ F ina l s<=as . i n t e g e r ( as . cha rac t e r ( ( FullMarkovDataT0$ F ina l s ) ) )

435 FullMarkovDataT0$Result<=as . f a c t o r ( FullMarkovDataT0$Result )

436 FullMarkovDataT0$HomeRank<=as . f a c t o r ( FullMarkovDataT0$HomeRank)

437 FullMarkovDataT0$HomeRank<=as . i n t e g e r ( as . cha rac t e r ( ( FullMarkovDataT0$HomeRank) ) )

438 FullMarkovDataT0$AwayRank<=as . f a c t o r ( FullMarkovDataT0$AwayRank)

439 FullMarkovDataT0$AwayRank<=as . i n t e g e r ( as . cha rac t e r ( ( FullMarkovDataT0$AwayRank) ) )

440 FullMarkovDataT0$QUARTER<=as . i n t e g e r ( as . cha rac t e r ( FullMarkovDataT0$QUARTER) )

441 FullMarkovDataT0$MatchNo<=MatchInd ( FullMarkovDataT0 ) #Creates MatchNo i nd i c a t o r

442 FullMarkovDataT0$ResT<=RealTimeResult ( FullMarkovDataT0 )

443 FullMarkovDataT0$CumulT<=CumulTime( FullMarkovDataT0 )

444 FullMarkovDataT0$Res1<=as . numeric ( FullMarkovDataT0$Result )

445 FullMarkovDataT0$MarginT<=( FullMarkovDataT0$H.GOAL*6+FullMarkovDataT0$H.BEHI)=(

FullMarkovDataT0$A.GOAL*6+FullMarkovDataT0$A.BEHI)

446

447

448 #Model c la ims " D i f f e r e n t s t a t e s observed at the same time on the same sub j e c t at

ob s e rva t i on s

449 #There fore we o f f s e t o f f end ing rows

450 ##FIXED AS OF OffsetTime ( )

451

452 #FullMarkovDataT0<=FullMarkovDataT0[=c (1330 ,34346) , ]

453

454 #As per manual adv ice ( c on s i d e r i ng time pe r i od s >1000) we a l s o s c a l e CumulT from seconds

in to minutes and f i x us ing OffsetTime ( )

455

456 FullMarkovDataT0$CumulT<=FullMarkovDataT0$CumulT/60

457 FullMarkovDataT0$CumulT<=OffsetTime ( FullMarkovDataT0 )

458

459

460 ##INITIALISE BASIC (WIN/LOSS/DRAW) MODEL y=time , time=quarte r+seconds => y=time+

cova r i a t e s , c o v a r i a t e s=s t a t i c+dynamic

461 #model can e i t h e r take the form o f ResT~QUARTER+TIME_SEC or Rest~CumulT ==> we a l s o need

to check why the func t i on r e tu rn s d i f f e r e n t r e s u l t s at the same time point ( even

161



though the data d i s a g r e e s )

462 StateNamesB<=c ( "Draw" , "Loss " , "Win" )

463 StateTableB<=matrix ( s t a t e t a b l e .msm( s t a t e=ResT , sub j e c t = MatchNo , data = FullMarkovDataT0 ) ,

byrow = FALSE, nrow=3, nco l=3)

464

465 #StateNamesC<=c (" Loss " ,"Win") #1 == Loss 2 == Win

466 #StateTableC<=matrix ( s t a t e t a b l e .msm( s t a t e=Res1 , sub j e c t = MatchNo , data = FullMarkovDataT0 )

, byrow = FALSE, nrow=2, nco l=2)

467

468 #I n i t i a l t r a n s i t i o n p r obab i l i t y matrix

469 Bas i c t rans<=matrix (NA, nrow=3, nco l=3)

470 Bas i c t rans<=matrix ( StateTableB/rowSums( StateTableB ) , nrow=3, nco l=3)

471 colnames ( Bas i c t rans )<=StateNamesB

472 rownames ( Bas i c t rans )<=StateNamesB

473

474

475 #nonfeat<=match ( c ("Date " ," Result " ,"Margin " ,"Home . s co r e " ,"Away . s co r e " ,"Home . team" ,"Away .

team" ,"MatchNo" ,"TIME_SEC" ,"STAT_HA" ,"ResT" ,"CumulT" ,"QUARTER" ," Season " ,"PEREN" ,"

PERST" ,"Res1 ") , colnames ( FullMarkovDataT0 ) ) #remove season temporar i ly

476 covfn=as . formula ( paste ( "~HomeRank + AwayRank + PastHome + PastAway + Head2Head + Round +

Margin + A.BEHI + H.BEHI + A.KICK + H.KICK" ) )

477 #covfn=as . formula ( paste ("~HomeRank + AwayRank + PastHome + PastAway + Head2Head + Round +

Margin + A.BEHI + A.FRAG + A.HBIN + A.HITO + H.BEHI + H.CLEAR + H.FRFO + H.HITO + H.

TACK + A.TACK + A.CLEAR") )

478 #covfn=as . formula ( paste ("~Margin + A.BEHI + A.CLEAR + A.FRAG + A.FRFO + A.GOAL + A.HBEF +

A.HBIN + A.HBRE + A.HITO + A. IN50 + A.KICK + A.KKIN + A.MARK + A.RE50 + A. SPOIL + A.

TACK + H.BEHI + H.CLEAR + H.FRAG + H.FRFO + H.GOAL + H.HBEF + H.HBIN + H.HBRE + H.

HITO + H. IN50 + H.KICK + H.KKIN + H.MARK + H.RE50 + H. SPOIL + H.TACK") )

479

480 #war<=warnings ( )

481 ##unique ( na . omit ( as . numeric ( u n l i s t ( s t r s p l i t ( u n l i s t ( names (war ) ) , "[^0=9]+") ) ) ) )

482 #FullMarkovDataT0$CumulT [ unique ( na . omit ( as . numeric ( u n l i s t ( s t r s p l i t ( u n l i s t ( names (war ) ) ,

"[^0=9]+") ) ) ) ) ]<=FullMarkovDataT0$CumulT [ unique ( na . omit ( as . numeric ( u n l i s t ( s t r s p l i t (

u n l i s t ( names (war ) ) , "[^0=9]+") ) ) ) ) ]+ rep (x=c (0 , 0 . 000001 ) , t imes=length ( unique ( na . omit (

as . numeric ( u n l i s t ( s t r s p l i t ( u n l i s t ( names (war ) ) , "[^0=9]+") ) ) ) ) ) / 2)

483 #BasicMMod2<=msm( formula=ResT~QUARTER+TIME_SEC, sub j e c t=MatchNo , data=FullMarkovDataT0 ,

qmatrix=Bas i c t rans ) #not run due to non=convergence ( mu l t ip l e dup l i c a t e s t a t e s ???)

484

485 #WORKING COVARIATES #HomeRank+AwayRank+H. IN50+A. IN50

486 #TRY ADDING ONLY DYNAMIC TO THE ABOVE LIST #HomeRank+AwayRank+H. IN50+A. IN50+A.KICK+H.KICK

487

488 #Markov model with c ova r i a t e s

489 TempTrainData<=subset ( FullMarkovDataT0 , Season==2015)

490 #TempTestData<=subset ( FullMarkovDataT0 ,MatchNo==23)

491 # TempTestData$ time<=TempTestData$CumulT

492 # TempTestData$ sub j e c t<=TempTestData$MatchNo

493 #WIN/LOSS/DRAW AT TIME T

494 MModT<=msm( formula=ResT~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ic t rans ,

c o v a r i a t e s=covfn , c on t r o l = l i s t ( t r a c e = 2 , REPORT = 1 , f n s c a l e = 2189252 ,maxit =

10000 , r e l t o l = 1e=08) )

495 #Pred<=PredictMSM(model=MModT, c ova r i a t e s=c ("HomeRank" ,"AwayRank" ,"H. IN50 " ,"A. IN50 ") , data=

TempTestData , i n i t i a l p r o b s=c ( 0 . 1 , 0 . 3 , 0 . 6 ) ) #removed as inc luded in mass t e s t

496

497

498 #WE ALSO NEED MEASURES OF FIT TO COMPARE AND CONTRAST TO THEORY THAT IT IS VERY DIFFICULT

TO JUGE FIT FROM

499 #A STATISTIC DUE TO MODEL STRUCTURE AND THE LIKES , WE CAN HOWEVER PRODUCE PREVALENCE

PLOTS AND CHECK
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500 #EPOCH ACCURACY AND FINAL RESULT ACCURACY (THIS SHOULD BE ENOUGH)

501

502 #WE NEED TO CHANGE THE TESTING FROM LEAVE ONE OUT TO TRAIN ON 2015 AND TEST ON EACH MATCH

OF 2017

503 #HOWWE IMPLEMENT THIS IS A PROBLEM BUT SHOULD BE SOLVED BY THE TIME THE WRITEUP IS DONE

504

505

506 #MASS TESTING ( w i l l need to be c l eaned f o r l a r g e r app l i c a t i on )

507 TestNames<=NULL

508 f o r ( i in 24 : 45 ) {

509 a s s i gn (x=paste ( "TestMatch" , i , sep="" ) , subset ( FullMarkovDataT0 ,MatchNo==i ) ) #Create

i nd i v i dua l t e s t s e t s

510 TestNames<=c (TestNames , paste ( "TestMatch" , i , sep="" ) )

511 }

512

513 ## Cleaning pt1 ( works do f a r )

514 # TestL i s t<=l app ly ( unique ( FullMarkovDataT0$MatchNo) , f unc t i on (x ) subset ( FullMarkovDataT0 ,

MatchNo==x) )

515 # names ( Tes tL i s t )<=paste ("TestMatch " , unique ( FullMarkovDataT0$MatchNo) , sep="")

516

517 #l i s t ( Pred i c t i on=ProbRes , PredProbPlot=gg , LineBarPlot=hh , HeatPlot=i i , MarginPlot=j j ,

CumulAcc=CumulTAccuracy )

518

519 #we need to add in ext ra in fo rmat ion to the above l i s t

520 #1. c l u s t e r matching ( r e s u l t at time t vs ac tua l )

521 #2. home and away rank

522 #3. other d e s c r i p t i v e s f o r a n a l y s i s

523

524 Stat i cRes<=NULL

525 f o r ( j in TestNames ) { #S ta t i c i n i t i a l p r o b a b i l i t i e s

526 ObjName<=paste ( "Pred" , j , sep="" )

527 a s s i gn (ObjName , PredictMSM(model=MModT, c ova r i a t e s=c ( "HomeRank" , "AwayRank" , "PastHome" , "

PastAway" , "Head2Head" , "Round" , "Margin" , "A.BEHI" , "H.BEHI" , "A.KICK" , "H.KICK" ) , data=

get ( j ) , i n i t i a l p r o b s=c ( 0 . 1 , 0 . 3 , 0 . 6 ) , lengthThresh=50) )

528 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\2018\\ Fina l Markov Models \\

Det e rm in i s t i c P r o b a b i l i t i e s " )

529 t i f f ( paste (ObjName , "Plot_1 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

530 pr in t ( get ( "PredProbPlot" , eva l ( as . symbol (ObjName) ) ) )

531 graph i c s . o f f ( )

532 t i f f ( paste (ObjName , "Plot_2 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

533 l ay_out ( l i s t ( get ( "PredProbPlot" , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "MarginPlot

" , eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

534 graph i c s . o f f ( )

535 t i f f ( paste (ObjName , "Plot_3 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

536 l ay_out ( l i s t ( get ( "LineBarPlot " , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "HeatPlot " ,

eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

537 graph i c s . o f f ( )

538 t i f f ( paste (ObjName , "Plot_4 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

539 l ay_out ( l i s t ( get ( "EndBarPlot" , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "ForecastHeat

" , eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

540 graph i c s . o f f ( )

541 tempstat<=cbind ( t a i l ( get (ObjName) $PredProbPlot$data , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , matrix ( t a i l ( get (

ObjName) $ForeData , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , nrow=1) , get (ObjName) $CumulAcc , get (ObjName) $

CumulAccFore ,ObjName , l ength ( get (ObjName) $ClusterMatch [ , "Vec" ] ) ,max( get (ObjName) $
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ClusterMatch [ , "End"]= get (ObjName) $ClusterMatch [ , "Beg" ] ) ,max( get (ObjName) $

ClusterMatch [ , "End" ] ) , get (ObjName) $ObservedResult , get (ObjName) $ F ina lPred i c t i on , get (

ObjName) $ Fina lForecast , get (ObjName) $HomeRank , get (ObjName) $AwayRank)

542 colnames ( tempstat )<=c ( "WinProb" , "LossProb" , "DrawProb" , "ForeWinProb" , "ForeLossProb" , "

ForeDrawProb" , "CumulativeAccuracy" , "CumulativeAccuracyFore" , "ObjName" , "

Match ingInterva l s " , "MaxIntSize " , "FinalMatchingEpoch" , "ActualResult " , "

Pred i c tedResu l t " , " Forecas tResu l t " , "HomeRank" , "AwayRank" )

543 Stat i cRes<=rbind ( Stat icRes , tempstat )

544 }

545

546 #wr i t e . e x c e l ( t a i l (DynPredTestMatch23$Plot $data , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , c o l . names = FALSE)

547

548 DynProb<=read . e x c e l ( )

549 #DynProb<=as . matrix (DynProb) [ , c ( 3 , 2 , 1 ) ]

550

551

552 DynamicRes<=NULL

553 dynint<=0

554 f o r ( j in TestNames ) { #Dynamic i n i t i a l p r o b a b i l i t i e s

555 dynint<=dynint+1

556 ObjName<=paste ( "DynPred" , j , sep="" )

557 a s s i gn (ObjName , PredictMSM(model=MModT, c ova r i a t e s=c ( "HomeRank" , "AwayRank" , "PastHome" , "

PastAway" , "Head2Head" , "Round" , "Margin" , "A.BEHI" , "H.BEHI" , "A.KICK" , "H.KICK" ) , data=

get ( j ) , i n i t i a l p r o b s=as . matrix (DynProb [ dynint , ] ) , lengthThresh=50) )

558 setwd ( "C:\\ Users \\Casey Josman\\Dropbox\\PhD. Research \\2018\\ Fina l Markov Models \\

S t a t i c P r o b a b i l i t i e s " )

559 t i f f ( paste (ObjName , "Plot_1 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

560 pr in t ( get ( "PredProbPlot" , eva l ( as . symbol (ObjName) ) ) )

561 graph i c s . o f f ( )

562 t i f f ( paste (ObjName , "Plot_2 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

563 l ay_out ( l i s t ( get ( "PredProbPlot" , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "MarginPlot

" , eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

564 graph i c s . o f f ( )

565 t i f f ( paste (ObjName , "Plot_3 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

566 l ay_out ( l i s t ( get ( "LineBarPlot " , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "HeatPlot " ,

eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

567 graph i c s . o f f ( )

568 t i f f ( paste (ObjName , "Plot_4 . t i f f " , sep="" ) , he ight = 12 , width = 17 , un i t s = 'cm ' ,

compress ion = " lzw" , r e s = 300)

569 l ay_out ( l i s t ( get ( "EndBarPlot" , eva l ( as . symbol (ObjName) ) ) , 1 : 3 , 1 : 3 ) , l i s t ( get ( "ForecastHeat

" , eva l ( as . symbol (ObjName) ) ) , 4 , 1 : 3 ) )

570 graph i c s . o f f ( )

571 tempdyn<=cbind ( t a i l ( get (ObjName) $PredProbPlot$data , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , matrix ( t a i l ( get (

ObjName) $ForeData , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , nrow=1) , get (ObjName) $CumulAcc , get (ObjName) $

CumulAccFore ,ObjName , l ength ( get (ObjName) $ClusterMatch [ , "Vec" ] ) ,max( get (ObjName) $

ClusterMatch [ , "End"]= get (ObjName) $ClusterMatch [ , "Beg" ] ) ,max( get (ObjName) $

ClusterMatch [ , "End" ] ) , get (ObjName) $ObservedResult , get (ObjName) $ F ina lPred i c t i on , get (

ObjName) $ Fina lForecast , get (ObjName) $HomeRank , get (ObjName) $AwayRank)

572 colnames ( tempdyn )<=c ( "WinProb" , "LossProb" , "DrawProb" , "ForeWinProb" , "ForeLossProb" , "

ForeDrawProb" , "CumulativeAccuracy" , "CumulativeAccuracyFore" , "ObjName" , "

Match ingInterva l s " , "MaxIntSize " , "FinalMatchingEpoch" , "ActualResult " , "

Pred i c tedResu l t " , " Forecas tResu l t " , "HomeRank" , "AwayRank" )

573 DynamicRes<=rbind (DynamicRes , tempdyn )

574 }

575
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576 #wr i t e . e x c e l ( t a i l (DynPredTestMatch23$Plot $data , 1 ) [ =4 ] [ c ( 3 , 2 , 1 ) ] , c o l . names = FALSE)

577

578 ## Cleaning pt2 ( )

579 #TestPred<=l app ly ( )

580

581 MModStat<=msm( formula=ResT~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ic t rans ,

c o v a r i a t e s=~HomeRank+AwayRank+PastHome+PastAway+Head2Head+Round , c on t r o l = l i s t ( t r a c e

= 2 , REPORT = 1 , f n s c a l e = 1094626 ,maxit = 10000 , r e l t o l = 1e=08) )

582 #WIN/LOSS AT END OF MATCH

583 MModStat2<=msm( formula=Res1~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ict rans2

, c o v a r i a t e s=~HomeRank+AwayRank+PastHome+PastAway+Head2Head+Round , c on t r o l = l i s t (

t r a c e = 2 , REPORT = 1 , f n s c a l e = 1094626 ,maxit = 10000 , r e l t o l = 1e=08) )

584

585 MModDyn<=msm( formula=ResT~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ic t rans ,

c o v a r i a t e s=~A.BEHI+A.FRAG+A.HBIN+A.HITO+H.BEHI+H.CLEAR+H.FRFO+H.HITO+H.TACK+A.TACK,

con t r o l = l i s t ( t r a c e = 2 , REPORT = 1 , f n s c a l e = 1094626 ,maxit = 10000 , r e l t o l = 1e=08)

)

586 #WIN/LOSS AT END OF MATCH

587 MModDyn2<=msm( formula=Res1~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ict rans2 ,

c o v a r i a t e s=~A.BEHI+A.FRAG+A.HBIN+A.HITO+H.BEHI+H.CLEAR+H.FRFO+H.HITO+H.TACK+A.TACK,

con t r o l = l i s t ( t r a c e = 2 , REPORT = 1 , f n s c a l e = 1094626 ,maxit = 10000 , r e l t o l = 1e=08)

)

588

589 MModComb<=msm( formula=ResT~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ic t rans ,

c o v a r i a t e s=~HomeRank+AwayRank+PastHome+PastAway+Head2Head+Round+A.BEHI+A.FRAG+A.HBIN+

A.HITO+H.BEHI+H.CLEAR+H.FRFO+H.HITO+H.TACK+A.TACK, con t r o l = l i s t ( t r a c e = 2 , REPORT =

1 , f n s c a l e = 1094626 ,maxit = 10000 , r e l t o l = 1e=08) )

590 #WIN/LOSS AT END OF MATCH

591 MModComb2<=msm( formula=Res1~CumulT , sub j e c t=MatchNo , data=TempTrainData , qmatrix=Bas ict rans2

, c o v a r i a t e s=~HomeRank+AwayRank+PastHome+PastAway+Head2Head+Round+A.BEHI+A.FRAG+A.HBIN

+A.HITO+H.BEHI+H.CLEAR+H.FRFO, con t r o l = l i s t ( t r a c e = 2 , REPORT = 1 , f n s c a l e =

1094626 ,maxit = 10000 , r e l t o l = 1e=08) ) #without A.TACK, H.TACK, H.HITO
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