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Abstract

This Thesis presents a computational phase-field model to describe the electrode-

position process that forms dendrites within metal-anode batteries. We formulate,

discretize, and solve the set of partial differential equations describing the coupled

electrochemical interactions during a battery charge cycle using an open-source

finite element library. The open-source library allows us to use parallel solvers

and time-marching adaptivity.

The validity of the planar interface electrodeposition model is demonstrated

through agreement between one-dimensional phase-field simulations and the the-

oretical sharp-interface Faradic reaction kinetics. Sensitivity analysis of changes

in the phase-field interface thickness (0.5 to 10 µm) and under different applied

voltages (−0.4 to −0.75 V ), as well as spatial convergence analysis of mesh-

induced errors, set the groundwork for two- and three-dimensional simulations of

dendritic metal electrodeposition in batteries.

A set of two- and three-dimensional simulations, under different applied volt-

ages (−0.45 to −1.5 V ), are presented to validate the proposed formulation,

showing their agreement with experimentally-observed lithium dendrite growth

rates (0.03 to 0.4 µm/s), and morphologies reported in the literature. We simu-

late three-dimensional spike-like lithium structures that grow under high current

density (fast battery charge); these structure’s growth is dangerous for battery

operation.

We study the three-dimensional distribution of the electric field and the

lithium-ion concentration to understand the mechanism behind tip-growing lithium
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morphologies better. Change of dendritic morphological behaviour is captured by

a variation of the simulated inter-electrode distance (80 to 5000 µm). The anal-

ysis reveals that dendrite formation is connected to the competition between the

lithium cation diffusion and electric migration, generating an uneven distribution

of lithium ions on the electrode surface. This fact gives insight into strategies of

dendrite suppression.

This work constitutes a relevant step towards physical-based, quantitative

models to rationalize hazardous dendritic patterns needed to achieve the com-

mercial realisation of lithium metal batteries.
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Salient Points

- Planar electrode phase-field simulations in lithium-metal batteries

- Model verified by quantitative agreement with theoretical reaction kinetics

- Free energy formulation is favoured over grand canonical formulation

- Phase-field simulations of dendrite formation in lithium metal batteries

- Time-adaptive strategy produces energy stable results

- Analysis of 2D and 3D spike-like, symmetric, and highly-branched dendritic

patterns

- Evaluation of modified lithium crystal surface anisotropy representation

- Analysis of 3D experimental-scale simulations

- Change of dendritic behaviour captured by variation of inter-electrode dis-

tance

- Simulations’ consistency with experimental results reported in the literature
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Chapter 1

Introduction

This project is focused on the development of a computational framework to

describe dendritic electrodeposition process within lithium-metal batteries. 1

1.1 Background

Global energy demand continues to rise due to industrial activity and world’s

population expansion, with an average growth rate of about 1% to 2% per year

since 2010 (pre-Covid19 pandemic levels) (IEA, 2021). The increasing consump-

tion of non-renewable energy reserves, such as coal, gas, and oil (Smil, 2016), and

awareness of climate change (IEA, 2022; Kumar, 2020), have triggered a steep

growth in renewable energy sources (6% average annual growth worldwide over

the past decade) (Hannah Ritchie and Rosado, 2020), along with an urgent need

1Parts of the content of this Thesis are published in:

- Arguello, M. E., Gumulya, M., Derksen, J., Utikar, R., & Calo, V. M. (2022). Phase-
field modeling of planar interface electrodeposition in lithium-metal batteries. Journal
of Energy Storage, 50, 104627.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling
using open-source finite element library. Journal of Energy Storage, 53, 104892.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Three-dimensional experimental-scale phase-field modelling of dendrite forma-
tion in rechargeable lithium-metal batteries. Publication under review.
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Figure 1.1: Plot of the development history of world’s renewable electricity gen-
eration (Hannah Ritchie and Rosado, 2020). ”Other renewable” refers to renew-
able sources including geothermal, biomass, waste, wave and tidal. Traditional
biomass is not included.

for the development of improved energy storage systems (Pires et al., 2014) (see

Figure 1.1). Globally, around one-quarter of our electricity comes from renew-

ables, which includes hydropower, wind, solar, biomass, ocean energy, biofuel,

geothermal (IEA, 2021).

Conventional lithium-ion batteries (LIB), based on intercalated graphite elec-

trode, have dominated the rechargeable battery market since the late 1990s. How-

ever, these batteries are approaching their performance limit of about 300 Wh/kg

(Xu et al., 2014; Fu et al., 2017). Novel chemistry and designs, such as metal

anode batteries, are under active research to achieve a gravimetric energy density

of 500 Wh/kg and manufacturing costs lower than $100/kWh (Li and Lu, 2017).

Despite enormous efforts, the highest gravimetric energy density achieved today

remains below 400 Wh/kg, with an average growth rate of about 5% per year

since 1970 (see Figure 1.2) (Winter et al., 2018).

Presently, metallic lithium (Li) is the most prominent anode material for pur-

suing high energy-density batteries, due to it superior theoretical gravimetric

energy density (3862 mAh/g) and low reduction potential (-3.04 V vs. stan-

2



Figure 1.2: Diagram of the development history of batteries’ gravimetric energy
density (Winter et al., 2018). Reproduced with Journal’s permission.

dard hydrogen electrode). Nonetheless, as the gravimetric energy density limi-

tation (300 Wh/kg) of conventional lithium-ion batteries based on intercalated

graphite anode cannot meet the current market demand, researchers are refocus-

ing on lithium metal batteries (LMBs) (Zhang et al., 2020). Depending on the

type of cathode materials, LMBs can be classified into three categories, namely:

lithium-air batteries, lithium-sulfur batteries, and lithium-lithium intercalation

compound batteries, all of them under active research (Wang et al., 2021). In

LMBs, the anodic reaction consist of the dissolution (discharge) and deposition

(charge) of the lithium metal on the electrode surface. Therefore, during bat-

tery charging process the Li-ions move across the electrolyte and are reduced

on the anode surface by gaining electrons according to the following reaction:

Li+ + e− → Li. (see Section 3.1 for a detailed explanation on the reaction prin-

ciples of the lithium electrodeposition process during battery charge).

Novel LMBs can achieve ultra-high energy densities (Figure 1.2) by avoiding

the use of a graphite lattice to host Li+ (intercalation process), as illustrated by

the comparative schematic of Figure 1.3. The graphite material (host) drastically

reduces the energy density of conventional Li-ion batteries, by adding extra weight

to the battery-pack that does not participate in the electrochemical reaction.

3



Accounting for full battery-pack weight, the gravimetric energy density of LMBs

is at least 440 Wh/kg (Winter et al., 2018; Lin et al., 2017).

(a) Li-ion Battery.
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(b) Li-metal Battery.

Figure 1.3: Comparative schematic of charging mechanism and anode’s structures
between conventional Li-ion (a), and Li-metal (b) batteries. Grey, orange, and
yellow spheres represent A− anions, M+ cations, and M atom, respectively.

Although lithium metal has been proposed as an attractive anode alternative

in rechargeable batteries since early 1970s, its commercialization has been hin-

dered due to several shortcomings. The greatest challenge to achieve the goal

of commercial realisation of lithium-metal batteries is related to its stability and

safety (Lin et al., 2017). Each of these issues are closely linked to the lithium

anode problems, namely: dendrite formation due to the uneven deposition of

lithium, dead lithium formed after dendrites breakage, anode corrosion due to

highly negative redox potential leading to the formation of unstable solid elec-

trolyte interphase (SEI), and volume expansion of the metal anode due to the

loose structure of lithium dendrites, producing a disruption of battery interface

and leading to the decay of the battery’s performance. It is widely accepted that

the aforementioned mechanisms can interact causing a synergistic effect (Wang

et al., 2021).

The formation of inert SEI on the surface of lithium deposits during the

recharge cycle, caused by the high reactivity of Li with the electrolyte and subse-

4



quent continual consumption, resulting in low Coulombic efficiency (ratio of the

total charge extracted from the battery to the total charge put into the battery

over a full cycle). Due to the uneven deposition/dissolution of lithium metal,

the SEI layer on the lithium surface is much less stable than in Li-ion batter-

ies (Garche et al., 2013). The SEI layer breaks due to internal stresses during the

operation of LMBs, and fresh lithium is exposed reacting with the electrolyte to

form a new, uneven SEI (Dollé et al., 2002). Excess of Li, up to 300%, was used

in the past for this issue (Xu et al., 2014).

Besides enhancing SEI formation, the unstable deposition of Li during the

charge cycle, which often grows in a random and disordered way, leads to the

formation of “dendrites” (Liu et al., 2018). This problem is compounded by

the increase in the Li reactive area, which enlarges the SEI surface area (Bieker

et al., 2015). Further, as Figure 1.4 illustrates, lithium dendrites can break due

to internal stresses, disconnect from the anode, and SEI with poor electronic

conductivity covers broken lithium. Thus, the broken lithium loses electrical

connection with the anode generating “dead lithium” that do not participate in

electrochemical reaction, resulting in further reduction in Coulombic efficiency

(Adams et al., 2018; Wang et al., 2021). Coulombic efficiencies lower than 99.2%

have been reported for lithium deposition/dissolution in non-aqueous electrolytes

due to dendrite formation and dead lithium (Chen et al., 2019).

In the worst-case scenario, large dendrites can pierce the separator and contact

the cathode leading to internal short-circuit and potential thermal runaway of the

battery (Lu et al., 2015; Jiao et al., 2018). Rosso et al. (2006) reported a fuse

effect of the first lithium dendrite reaching the opposite electrode, which melts due

to high current density; before the major front of dendrites eventually connects

the cathode and short-circuits the battery (producing an erratic potential).

In the case of solid-state batteries, lithium dendrites can also break under

the compression of the electrolyte producing dead lithium compound, or cause

dendritic cracking in solid electrolytes driven by lithium insertion (Klinsmann

5



Figure 1.4: Schematic of lithium anode’s failure process (Wang et al., 2021).
Reproduced with Journal’s permission.

et al., 2019). Furthermore, lithium dendrites are responsible for increasing the

internal resistance of the battery due to interference mismatch and poor contact

between the lithium anode and the solid electrolyte (Xu et al., 2018).

The critical shortcoming of dendrite formation during electrodeposition pro-

cesses has triggered efforts on controlling the dendritic patterns and stabilizing

the lithium anode to attain higher energy density rechargeable technologies, such

as Li-air, Li-S, and Li-Li intercalation compound batteries (Bai et al., 2018; Bruce

et al., 2012).

Different strategies for dendrite suppression have been proposed. Some of

these strategies focus on the electrode (anode), including modifications in the

electrode structure and porosity (Fan et al., 2018; Li et al., 2019; Zhang et al.,

2018), electrode surface morphology (roughness and wavenumber) (Tikekar et al.,

2014), and use of more stable interfacial coatings (Liu et al., 2017; Zhu et al.,

2017). Other alternatives centre on the electrolyte, proposing different solvent

and electrolyte composition (Sundström and Bark, 1995; Li et al., 2017; Zheng

et al., 2017; Qian et al., 2015; Suo et al., 2013; Kim et al., 2018; Cheng et al.,

2016), ionic mass transport and electrolyte management (Yang et al., 2005; Wang

et al., 2019; Tan and Ryan, 2016; Crowther and West, 2008; Wlasenko et al., 2010;

6



Li et al., 2018; Iverson and Garimella, 2008; Parekh et al., 2020). Finally, some

approaches address the battery operating conditions, such as implementation of

pulsed charge-discharge cycle (Yang et al., 2014; Mayers et al., 2012; Aryanfar

et al., 2014), controls of internal temperature and pressure (Gireaud et al., 2006;

Akolkar, 2014; Yan et al., 2018).

Although the above strategies have shown a degree of effectiveness under

certain operating conditions, the growth of Li dendrites is still observed at high

current density (fast battery charge) (Steiger et al., 2015; Tang and Dillon, 2016;

Zhu et al., 2019).

1.2 Research problem

Despite recent studies reporting successful operation of Lithium Metal Batteries

(LMBs), they have reported short life cycle due to uneven and unstable deposition

of lithium leading to the formation of dendrites, dead lithium, unstable SEI and

volume expansion of lithium anode (Li et al., 2014; Liu et al., 2018).

Dendrite formation is the consequence of the uneven deposition of lithium,

which can be associated to both thermodynamic and kinetic factors (Wang et al.,

2021), such as the inhomogeneous distribution of Li-ion concentration and electric

potential on the electrode surface. Furthermore, the morphology of the electrode-

posited lithium is known to be influenced by different factors such as the mag-

nitude and frequency of the applied current density, electrolyte concentration,

temperature, pressure, ion transport and mechanical properties in the electrolyte

(Frenck et al., 2019; Jana and Garćıa, 2017).

The investigation of lithium dendrite formation in rechargeable metal batter-

ies becomes very challenging when based on experimental methods alone (Cheng

et al., 2017). During the past decades, various computational models (thermody-

namic and dynamic) have been develop to seek to understand better the funda-

mental mechanism of dendrite formation in metal anode batteries and guide the

experiments (Liu et al., 2019; Jana and Garćıa, 2017; Tan et al., 2017).

7



The fundamental failure mechanism of lithium anode remains unclear and

controversial (Wang et al., 2021). Due to the high reactivity of lithium, and lack

of effective in-situ detection methods, it is difficult to study and characterize the

lithium metal in native state, free from the influence of the SEI. Therefore, there

is an urgent need for further investigation methods to characterize the behaviour

of lithium anode and to guide experiments (Wang et al., 2021).

1.3 Objectives and significance

The following specific objectives will be pursued:

� Develop a computational model to describe reactive processes taking place

within metal anode batteries, such as electrodeposition.

� Model verification with simulation results available in the literature and

publicly available experimental data.

� Simulation of dendritic patterns to investigate the mechanisms dominating

dendrite growth in rechargeable lithium-metal batteries and provide insight

into strategies for dendrite’s suppression.

Controlling the morphology of the electrodeposited material is a serious chal-

lenge, which drastically affects the capacity, stability and safety of metal anode

batteries under cycling. However, full theoretical comprehension of the lithium

dendrite formation has not been developed owing to the complexity of the elec-

trodeposition morphology. Therefore, developing a computational model to un-

derstand dendrite growth caused by electrodeposition has major technological

significance for modern battery systems.

This work constitutes a step toward the physics-based, quantitative models

to rationalize hazardous three-dimensional dendritic patterns needed to achieve

the commercial realisation of Li-metal batteries. Herein, we use several computa-

tional efficiency improvements to deliver the 3D simulations at a reasonable cost,
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such as time step adaptivity strategy, mesh rationalization, parallel computation,

and balanced phase-field interface thickness to mesh resolution ratio. Moreover,

the model results will ultimately lead to recommendations to improve lithium-

metal battery long-term cyclability and energy efficiency (ratio of the total charge

extracted from the battery to the total charge put into the battery over a full

cycle).

Finally, beyond the metal electrodeposition in metal anode batteries, the com-

putational framework developed in this project could be used to model other

non-equilibrium systems in which the electrochemical reaction and charge mass

transfer play important roles if involved time-dependent interfaces, such as elec-

trochemical corrosion.

1.4 Thesis outline

The Thesis includes seven chapters presenting the relevant research work, devel-

oped method, modelling technique and simulation results to study the dendritic

electrodeposition of lithium, in an effort to stabilize the lithium metal anode and

optimize the battery performance.

Chapter 1: Introduction

This chapter introduces the background and research problem, followed by a

description of the aims and significance of the research project.

Chapter 2: Literature Review

A comprehensive literature review is performed with focus on current research

progress on lithium dendrite characterization, both experimental and computa-

tional. This review discusses existing computational models to describe reactive

processes taking place within metal anode batteries. Different types of thermo-

dynamic and dynamic models are presented, which are widely used to explore the

mechanisms of lithium electrodeposition and dendrite suppression. Among these

modelling strategies, phase-field method is discussed in detail, together with an

analysis of its advantages, limitations, and reasons why this approach is selected
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in this work.

Chapter 3: Methodology

This chapter covers a detailed description of the phase-field model used in this

numerical study, along with underlying assumptions and parameters employed. I

present the governing equations describing the electrodeposition process, bound-

ary conditions as well as the numerical methods to solve them. I derive the

weak variational statement and its numerical implementation. I describe the

time-adaptive strategy and the parameters that deliver convergence and detail

its implementation.

Chapter 4: Phase-field Simulations of Planar Interface Electrodeposition in

Rechargeable Lithium-metal Batteries

In this chapter I simulate the coupled electrochemical interactions during a

battery charge cycle using finite elements on open-source packages, allowing for

parallel computation and time step adaptivity. A one-dimensional (planar inter-

face) study compares the conventional free energy and grand canonical formula-

tions. I investigate the effect of the applied overpotential (and the prediction’s

agreement with Faradic kinetics), as well as I analyze the prediction sensitivity to

the phase-field interface thickness and mesh resolution. These simulation results

set the groundwork for 2D and 3D simulations of dendritic metal electrodeposi-

tion in batteries.

Chapter 5: Phase-field Simulations of Dendrite Formation in Rechargeable

Lithium-metal Batteries

This chapter discuss numerical simulations of lithium-anode battery dendrites

growth. Firstly, a two-dimensional model is verified in terms of dendrite propa-

gation rates and spatial distribution analysis of the system’s variables in compar-

ison with phase-field simulation results reported in the literature. Furthermore,

I simulate three-dimensional spike-like lithium structures that grow under high

current density (Ding, 2016; Tatsuma et al., 2001; Jana et al., 2019) (fast bat-

tery charge); these structure’s growth is dangerous for battery operation. Single
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and multiple nuclei numerical experiments are performed to study the 3D dis-

tribution of the electric field and the lithium-ion concentration to understand

better the mechanism behind spike-growing lithium morphologies under short

inter-electrode distance. Finally, a 3D sensitivity analysis of simulations under

different mesh resolution and phase-field interface thickness is carried out.

Chapter 6: Three-dimensional experimental-scale phase-field modelling of den-

drite formation in rechargeable lithium-metal batteries

This chapter addresses some of the shortcomings identified towards the goal

of experimental scale simulations. Here, a modified surface anisotropy represen-

tation is introduced to the model. Firstly, numerical test are performed to gain

insight into the benefits of this modification. Secondly, experimental-scale 3D sim-

ulations of lithium dendrite formation are carried using the modified anisotropy

representation. Modification of lithium electrodeposition behaviour by increasing

the inter-electrode distance are captured and discussed. Lithium dendrite prop-

agation rates and morphologies obtained under different charging voltages are

analysed.

Chapter 7: Conclusions and research perspectives

Conclusions are drawn based on the outcomes of the research project. Fur-

thermore, I discuss the research perspectives, with potential developments and

problems to be addressed in future work.

11





Chapter 2

Literature review

2.1 Experimental investigation of lithium den-

drite formation

During the last decades, the research of electrochemical energy storage has de-

veloped rapidly, especially in rechargeable batteries (Wang et al., 2020). Investi-

gation of dendrite formation in LMBs has been carried out by a combination of

theory, experiment, and computation (Franco et al., 2019). 1

Extensive experimental investigation of microestructure evolution of lithium

electrodeposit can be found in the literature (Steiger et al., 2015; Tang and Dillon,

2016; Ding, 2016; Zachman et al., 2018; Zhu et al., 2019; Zhang et al., 2020).

The accurate high-resolution characterization of electrode-electrolyte interfaces is

1Parts of the content of this chapter are published in:

- Arguello, M. E., Gumulya, M., Derksen, J., Utikar, R., & Calo, V. M. (2022). Phase-
field modeling of planar interface electrodeposition in lithium-metal batteries. Journal
of Energy Storage, 50, 104627.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling
using open-source finite element library. Journal of Energy Storage, 53, 104892.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Three-dimensional experimental-scale phase-field modelling of dendrite forma-
tion in rechargeable lithium-metal batteries. Publication under review.
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challenging owing the volatility of commonly used liquid electrolytes and the high

chemical reactivity of lithium (Zachman et al., 2018). In-situ detection methods,

such as optical microscopy (Steiger et al., 2015; Ding, 2016; Zhu et al., 2019),

operando electrochemical atomic force microscopy (EC-AFM) (Tang and Dillon,

2016; Zhang et al., 2020) and cryo-scanning transmission electron microscopy

(Cryo-STEM) (Zachman et al., 2018), have been recently used to map solid-

liquid interfaces and dendrites in lithium-metal batteries. Figure 2.1a shows

an illustration of symmetric lithium-metal coin cells used for the realisation of

lithium dendrite experiments.

However, an important gap exists between practical lithium metal batteries

and laboratory-grade batteries or coin-cells (Wang et al., 2021). For example,

electrolyte consumption significantly reduces the cycling stability of Li metal an-

ode batteries due to an increased resistance of ionic transmission; experimental

coin cells instead have proportionally excess electrolyte (Li et al., 2020). Addi-

tionally, practical batteries have larger and more irregular reactive area, leading

to faster failure of the lithium anode due to dendrite formation. It has been

reported that, under identical test conditions, a practical pouch lithium metal

battery can only achieve 10% to 33% of the lifespan of a coin cell (Yan et al.,

2019). To achieve closer results to practical applications, some experimental stud-

ies have begun to use lean-electrolyte and practical pouch battery system in the

test of lithium metal batteries (Wang et al., 2021).

In an effort to gain insight into the 3D morphology of lithium dendrite, Zach-

man et al. (2018) preformed the reconstruction of the 3D dendrite microstructure

from the cross sectional Cryo-STEM images as shown in Figure 2.1. Although,

no spatial correlation was observed between the observed dendrites types, Cryo-

STEM imaging revealed SEI layer on the type I dendrite (Figure 2.1b), approx-

imately 300-500 nm thick, which was not present on the type II dendrtie (Fig-

ure 2.1c).

Dendrite formation involves both, the nucleation process as well as the transi-

14



(a)

5𝜇𝑚

(b) Type I

5𝜇𝑚

(c) Type II

Figure 2.1: a illustrates a standard coin-cell arrangement used for the charac-
terization of dendrite morphologies (Zachman et al., 2018). b and c correspond
to three-dimensional reconstruction of two distinct experimental lithium dendrite
morphologies, as performed by Zachman et al. (2018). The inset show the cross
sectional Cryo-STEM imaging of the corresponding dendritic microstructures.
Reproduced with Journal’s permission

tion to dendrite growth (Gao et al., 2020). Thus, the nucleation process define the

dendrite’s location and number, which affects the battery capacity and lifespan.

On the other hand, the dendrite growth process affects the breakage and forma-

tion of new SEI film, formation of dead Li compound, and battery short-circuit,

leading to poor Coulombic efficiency and potential thermal runaway (Bieker et al.,

2015; Adams et al., 2018; Chen et al., 2019).

Nishikawa et al. performed a series of experimental investigations of dendritic
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electrodeposition of lithium as a function of the total charge (Nishikawa et al.,

2010, 2011, 2012; Nishida et al., 2013). They reported dendrite growth rates be-

tween 0.01 and 0.55 [µms−1], for different current densities (0.1− 10 [mAcm−2]),

electrolyte concentrations (0.5−1.5M), and operating temperatures (−5−40◦C);

where larger current densities and higher temperatures produced faster propaga-

tion rates (Nishida et al., 2013). Furthermore, initiation periods for dendrite

precursors to start to grow (become visible under optical microscope) were mea-

sured between 4 to 140 s (Nishida et al., 2013); where shorter times were obtained

under larger applied current density.

The formation of dendrites in lithium anodes has been noted to vary con-

siderably from one system to the other. Bai et al. (2016) noted the formation

of mossy/whiskers-like morphologies at current densities lower than the intrinsic

diffusion-limited current density (reaction limited regime, where lithium grows

from the base). On the other hand, at higher current densities (greater than the

diffusion-limited current density, i.e. transport or diffusion limited regime, where

lithium grows from the tip), fractal dendritic morphology or finger-like structures

are obtained. Transition from base-controlled mossy structure to tip-controlled

dendrite growth was also observed experimentally when under limiting current

condition. Further, various 2D numerical simulations have found the formation

of spike-like or tree-like structures where dendrite growth was found to occur on

multiple branches and in multiple directions. These types of formation, however,

have not been observed widely experimentally due to instabilities at the branch

structures and mass transfer rate limitations at these regions (Liu et al., 2019).

Jana and Garćıa (2017) expanded this observation and proposed 5 differ-

ent regimes of lithium growth: thermodynamic suppression regime, incubation

regime, tip-controlled growth regime, base-controlled growth regime, and mixed

growth regime, based on various experimental observations over the years. While

dendrite growth under tip-controlled regime (higher current densities) is highly

influenced by local electrochemical gradients; on the other hand, irreversible me-
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(d) 3
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]
Figure 2.2: Photographs of experimental lithium electrodeposit microstructures
demonstrates the effect of current density on dendrite morphology according
to Jana et al. (2019). a corresponds to hemispherical lithium nuclei electrode-
posited on top of a copper layer at 0.1 [mA/cm2] for 1 hour, as performed by Pei
et al. (2017). b corresponds to columnar growth of lithium on a copper substrate
under a hollow carbon layer after 50 charge-discharge cycles at 1 [mA/cm2], as
shown by Zheng et al. (2014). c corresponds to mossy lithium electrodeposition
on a copper substrate at 2.6 [mA/cm2] for 0.5 hour in a liquid electrolyte column,
as shown in experiments by Bai et al. (2016). d corresponds to branched/spike-
like lithium dendrites electrodeposited on a lithium substrate from a gel-based
electrolyte at 3 [mA/cm2] for 1 hour, as performed by Tatsuma et al. (2001).
Reproduced with Journal’s permission.

chanical deformation, such as, plastic deformation, can dominate dendrite growth

under base-controlled regime (lower and battery-relevant current densities). Fig-

ure 2.2 presents a catalog of experimental lithium electrodeposit microstructures

as classified by Jana et al. (2019), according to the effect of current density on
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dendrite morphology.

In summary, experimental research has contributed significantly to a better

understanding of the failure mechanisms of lithium anode batteries. Additionally,

experimental outcomes on lithium dendrite characterization can guide the devel-

opment and validation of computational models of dendrite formation. Among

these finding we have the description of the parameters affecting dendrite for-

mation (Frenck et al., 2019; Jana and Garćıa, 2017), classification of different

regimes of lithium growth (Bai et al., 2016; Jana et al., 2019), identification of

hazardous dendritic patterns, such as tree-like or spike-like lithium morphologies

formed under fast battery charge (Tatsuma et al., 2001; Ding, 2016), and test-

ing of different strategies of dendrite suppression (Li et al., 2021; Zhang and Qi,

2022). Furthermore, experimental data is valuable for model’s validation purpose,

providing measurements of dendrite’s propagation rates under different electrode-

position conditions (Nishikawa et al., 2010, 2011, 2012; Nishida et al., 2013), and

morphological characterization of dendrites’ shapes through volume-specific area

and side branching analysis (Yufit et al., 2019).

2.2 Computational models of dendrite forma-

tion

The investigation of lithium dendrite formation in rechargeable metal batteries

becomes very challenging when based on experimental methods alone (Cheng

et al., 2017). Despite researchers efforts and current progress achieved in this

field, experimental strategies suffer from its own limitations, namely, lack of ef-

fective in-situ detection methods to deal with the high reactivity of lithium (Wang

et al., 2021), the gap between practical lithium metal batteries and laboratory-

grade batteries or coin-cells (Yan et al., 2019; Li et al., 2020), and the higher

cost and time consuming nature of experimental methods (Franco et al., 2019).

Thus, experiments are combined with theoretical and computational investiga-
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Lithium 
dendrite 

length scale

Figure 2.3: Schematic of length scale dependent physics impacting battery mod-
elling (Abada et al., 2016). Reproduced with Journal’s permission.

tion, to reduce the research cost and accelerate the time-to-market of safe and

high performance battery designs.

Recent improvements in battery models allow the description of processes

such as electrochemical reactions, charge, mass, and heat transport, mechanical

stresses, and electrode changes, at various time and length scales. Therefore,

battery modelling may improve the available cells, their operation regimes and

their constituent materials as well as forecast the performance properties of new

cells (Franco et al., 2019). Typical battery models can be categorized as follows:

electronic, atomistic, mesoscopic and continuum models. Figure 2.3 shows length-

scale dependent physics affecting lithium battery simulation.

Various computational models seek to understand better the mechanisms of

dendrite formation and growth in lithium anodes. Typically, we classify these

models into two main groups: thermodynamic and dynamic (Liu et al., 2019;

Jana and Garćıa, 2017; Tan et al., 2017). Since dendrite formation is a universal

phenomenon in metal electrochemical deposition process (Li, Na, Zn, Cu, etc.),

the first group focuses on the study of the intrinsic thermodynamic properties
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Figure 2.4: An overview of modelling techniques for battery-related applica-
tions (Grew and Chiu, 2012). Reproduced with Journal’s permission.

of the alkali metal anodes that lead to dendrite formation (Liu et al., 2019).

The second group however, considers the influence of different electrochemical or

environmental parameters affecting the deposition behaviour and dendrite growth

in practical batteries, such as current density, electrolyte composition, operating

temperature, as shown by experimental research (Frenck et al., 2019). Figure 2.4

compares the computational cost of these modelling techniques versus the typical

length scales that they can solve.

Within the thermodynamic models, several surface nucleation models based

on density functional theory (DFT) have been widely used to explore the mecha-

nisms of lithium electrodeposition and dendrite suppression. Considering lithium

dendrite growth as an inherent property of the metal, these models invoke sur-

face energies and diffusion barriers as keys parameters in determining the specific

metal structures growing on electrodes (Jäckle and Groß, 2014; Ling et al., 2012;

Ozhabes et al., 2015).

On the other hand, various types of dynamic models have been used to de-

scribe the electrochemical propagation of dendrites; such as, space-charge (migration-
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limited) models, proposing violation of electroneutrality (charge overcompensa-

tion) in the vicinity of dendrite tips that leads to high overpotentials and sub-

sequent formation of ramified electrodeposits (Chazalviel, 1990). Furthermore,

stress and inelastic deformation models have been developed to simulate den-

drite’s surface-tension mitigated growth (Barton et al., 1962; Monroe and New-

man, 2004). Additionally, film growth models, applying classical theory of film

growth within lithium anode battery (Wang et al., 2016; Jiang et al., 2022), and

diffusion-limited aggregation models (DLA), employing random-walk statistics to

develop fractal shapes (Aryanfar et al., 2014), have also proven successful when

applied at the condition of extremely low currents, and without considering sur-

face energy.

Few attempts to simulate three-dimensional lithium dendrite growth can be

found in the literature. For instance, Natsiavas et al. (2016) developed a 3D

model of the growth of electrode–electrolyte interfaces in lithium batteries in

the presence of an elastic prestress and used it for assessing the linearized sta-

bility of planar interface growth. Mu et al. (2020) performed parallel three-

dimensional phase-field simulations of dendritic lithium evolution under different

electrochemical states, including charging, suspending and discharging states (see

Figure 2.5). Later, Jang and Yethiraj (2021) preformed stochastic investigations

of the three-dimensional effect of applied voltage and diffusion constant on the

growth of lithium dendrites. Recently, Liu et al. (2021) presented a phase-field

model to study the three-dimensional effect of exchange current density on elec-

trodeposition behaviour of lithium metal, however, without focusing on dendritic

morphologies.

2.3 Phase-field models of dendrite growth

Within the dynamic models, the phase-field method, based on classical chemical

reaction kinetics, appears within the modelling techniques suitable for the study

of mesoscale (µm) electro-kinetic phenomena, such as dendritc electrodeposition
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Figure 2.5: Three-dimensional simulation of dendritic evolution of lithium under
an applied overpotential of −0.3 [V ], as performed by Mu et al. (2020). Repro-
duced with Journal’s permission.

of lithium, with a reasonable computational cost (see Figure 2.4). Phase-field

(diffuse-interface) models can simulate the morphology evolution of Li electrode-

posit due to reaction-driven phase transformation within metal anode batteries

and rationalize morphology patterns of dendrites observed experimentally , under

both low and high applied current densities (Guyer et al., 2004a,b; Shibuta et al.,

2007; Okajima et al., 2010; Liang et al., 2012; Bazant, 2013; Liang and Chen,

2014; Ely et al., 2014; Zhang et al., 2014; Chen et al., 2015; Cogswell, 2015; Hong

and Viswanathan, 2018; Yurkiv et al., 2018; Mu et al., 2019; Jana et al., 2019;

Zhang et al., 2019; Guan et al., 2015, 2018; Liu and Guan, 2019; Gao and Guo,

2020; Mu et al., 2020; Chen and Pao, 2021; Zhang et al., 2021; Liu et al., 2021;

Qiao et al., 2022). The vast amount of simulation work available is evidence of the

effectiveness of the phase-field method for the investigation of lithium dendrite

formation in rechargeable metal batteries.

The phase-field model tracks boundaries and interfaces implicitly using an

auxiliary function (the phase-field order parameter, commonly identified with the

Greek letter ξ, see Figure 2.6), avoiding the need for large mesh displacements

with moving boundary conditions. The evolution of the phase-field variables

satisfies local equilibrium (de Groot and Mazur, 1984) and free energy minimiza-

tion (Steinbach et al., 1996), leading to nonlinear partial differential equations
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Figure 2.6: Illustration of a planar interface electrodeposition of lithium (solid)
from a binary electrolyte (liquid). Continuous phase-field variable ξ tracks the
evolution solid-liquid interface. Grey, orange, and yellow spheres represent A−

anions, M+ cations, and M atom, respectively

(PDE’s). These models incorporate interfacial energy, interface kinetics, and

curvature-driven phase boundary movement. Another advantage is that it can

simulate length scales comparable to the state-of-art characterization tools, such

as scanning electron microscope (SEM) and transmission electron microscope

(TEM), enabling direct comparison between experimental observations and sim-

ulation predictions (Hong and Viswanathan, 2020).

Different phase-field models of electrochemical systems describe the phase-

field evolution by the Cahn-Hilliard equation (Garćıa et al., 2004; Han et al.,

2004), the classical Allen-Cahn equation (Allen and Cahn, 1972), or a modified

non-linear Allen-Cahn reaction model (Bazant, 2013). Thus, while some of these

models assume linear kinetics (Guyer et al., 2004a,b; Shibuta et al., 2007; Ely

et al., 2014), only applicable in the limit of minor deviations from equilibrium

(current densities below the limiting current), others describe the nonlinear re-

lation between the phase transformation rate and the thermodynamic driving

force, following either Butler–Volmer (Okajima et al., 2010; Liang et al., 2012;
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Bazant, 2013; Liang and Chen, 2014; Chen et al., 2015) or Marcus reaction ki-

netics (Cogswell, 2015).

In general, phase-field models of electrochemical systems combine a set of

three different fields (variables) to simulate the metal electrodeposition process

in rechargeable batteries, namely, the phase-field order parameter (solid-liquid

phases), the concentration of metal-ions and the electrostatic potential (Guyer

et al., 2004a,b; Shibuta et al., 2007; Bazant, 2013; Okajima et al., 2010; Liang

et al., 2012; Ely et al., 2014; Zhang et al., 2014; Chen et al., 2015; Mu et al.,

2020; Chen and Pao, 2021; Liu et al., 2021). Furthermore, while the derivation

of the aforementioned models uses a free energy functional (Gibbs free energy),

other models also adopt the grand canonical formulation (Plapp, 2011), exchang-

ing concentration of metal-ion for chemical potential as the natural variable, to

achieve better numerical stability at low concentration values (Cogswell, 2015;

Hong and Viswanathan, 2018).

Recent works have coupled the phase-field model with an additional field to

gain insight into a particular aspect of dendrite formation, such as heat transfer

model to simulate the thermal effect during the lithium dendrite growth process

(Yan et al., 2018; Qiao et al., 2022), flow field (forced advection) to study the

effect of electrolyte hydrodynamics on the dendrite morphology in flow batteries

(Wang et al., 2019), and electrochemical-mechanical phase-field models to explore

the role of stress in lithium dendrites, such as the hydrostatic stress of lithium

metal and residual stress in the SEI (Yurkiv et al., 2018; Liu and Guan, 2019;

Jana et al., 2019; Zhang et al., 2021).

Typically, the charging conditions for a lithium battery either fix the applied

electric potential or the charging current density. Different sets of boundary

conditions (BC’s) can represent each charging state through different electrode-

position models. In practice, Dirichlet BCs can effectively represent fixed elec-

tric potential charging state (Shibuta et al., 2007; Okajima et al., 2010; Liang

and Chen, 2014; Zhang et al., 2014); in contrast, Neuman BCs at the lithium
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cation concentration (electrolyte side) represent fixed charging current density

state (Chen et al., 2015; Cogswell, 2015; Yurkiv et al., 2018; Mu et al., 2019; Liu

et al., 2021).

Another important feature of this problem is set by the way in which the

initial perturbation (dendrite nuclei) is introduced in the simulation (initial con-

dition); some models included initial seeds (artificial deformation imposed on the

electrode surface) combined with surface anisotropy to propagate the dendrite

shape (Okajima et al., 2010; Liang and Chen, 2014; Jana and Garćıa, 2017); al-

ternatively other models combine surface anisotropy with Langevin noise at the

phase-field interface, generating a random nucleation pattern (Cogswell, 2015;

Yurkiv et al., 2018; Mu et al., 2019; de Groot and Mazur, 1984; Mu et al., 2020).

It has been observed that either the shape of the initial seed as well as the noise

level utilized can have a major effect on the simulated dendritic morphology (Chen

et al., 2015; Yurkiv et al., 2018; Gao and Guo, 2020).

Although there has been a great advance in phase-field modelling of lithium

dendrites in recent years, there are still several issues related to the evolution of

dendritic patterns in lithium metal electrodes that continue unresolved (Chen and

Pao, 2021). A significant effort seeks to develop two-dimensional models to ratio-

nalize three-dimensional dendritic patterns observed experimentally qualitatively.

Furthermore, various strategies to suppress Li dendrites’ growth and weaken the

side reactions exist. Some of these strategies address the battery operating con-

ditions, including pulse charging lithium dendrite suppression (Qiao et al., 2022)

(Figure 2.7a), and control of internal temperature (Yan et al., 2018). Other al-

ternatives focus on the electrode (anode), such as modelling of 3D conductive

structured lithium metal anode (Zhang et al., 2019, 2022) (Figure 2.7b), and low

porosity and stable SEI structure (Mu et al., 2019) (Figure 2.7c). Finally, other

approaches centre on the electrolyte management and separator design, propos-

ing a compositionally graded electrolyte (Hong and Viswanathan, 2018), dendrite

suppression using flow field (forced advection) (Wang et al., 2019), study of sepa-
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(a)

(b)
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Figure 2.7: Examples of two-dimensional phase-field simulation of lithium den-
drite suppression strategies. a corresponds to pulse charging lithium dendrite
suppression, as performed by Qiao et al. (2022). Dendritic morphologies formed
under pulse frequencies, tON= 5 ms, and tOFF/tON= 0.5 (left), & tON= 5 ms,
and tOFF/tON=4 (right), respectively; where an overpotential equal to -0.1 V
is applied during the period of tON and 0 V during the period of tOFF . b cor-
responds to dendritic morphologies after lithium electrodeposition in structured
lithium metal anode with channel width equal to 50µm, as performed by Zhang
et al. (2019). c corresponds to lithium dendrite simulation through geometrically
reconstructed porous SEI, as performed by Mu et al. (2019). Lithium dendrites
are partially suppressed by low porosity and highly stable SEI structure. Repro-
duced with Journal’s permission.
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rator pore size inhibition effect on lithium dendrite (Li et al., 2022), etc. However,

clarifying the numerical features behind phase-field models has attracted less in-

terest.

Given the inherent three-dimensional nature of lithium dendrite morpholo-

gies (Jana et al., 2019; Ding, 2016; Tatsuma et al., 2001), it is critical the de-

velopment of phase-field models that enable the study and understanding of the

three-dimensional effects triggering the formation these patterns. This includes

the exploration of differences between 2D and 3D simulations, such as free space

effect on Li-ion diffusion to anode surface, surface anisotropy, electric field dis-

tribution, nuclei distribution and interaction between neighbouring dendrites; as

well as assessing novel strategies to control lithium dendrite formation (e.g., 3D

porous current collectors hosts with lithiophilic sites) (Yang et al., 2015; Zhang

et al., 2019; Xu et al., 2021).

There is an urgent need for the development of fast numerical algorithms

required to handle the phase field equations and perform efficient simulations.

Currently, the vast majority of the phase-field works available in the literature

use in-house codes or commercial software, such as widely used COMSOL Multi-

physics (Multiphysics, 2022), offering user-friendly platforms, built-in CAD tools

and combining different types of physics (Chen and Pao, 2021; Wang et al., 2015;

Yan et al., 2018; Wang et al., 2019; Mu et al., 2019). However, there is a risk

that commercial software can hinder the widespread use of the of phase-field

simulations while also creating issues with data reproducibility and lack of flexi-

bility (Hong and Viswanathan, 2020).

Open-source software arises as an attractive and powerful alternative to com-

mercial software. Open-source is a decentralized way of developing software pack-

ages that embrace collaborations among a large number of developers, which is

essential to the development of a diverse, inclusive modelling community (Powell

and Arroyave, 2008). Among open-source software packages that have integrated

phase-field capabilities we can mention FEniCS Project (Alnæs et al., 2015),
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MOOSE (Lindsay et al., 2022), PRISMS-PF (DeWitt et al., 2020), SymPhas (Sil-

ber and Karttunen, 2022), FiPy (Wheeler et al., 2005), OpenPhase (Tegeler et al.,

2017) and Sfepy (Cimrman et al., 2019). These software use either C++ or

Python as their core programming language, and most of them make use of their

own open-source finite differences, finite volumes, or finite elements tools. Reach-

ing tens of thousands of commits, FEniCS and MOOSE are the most active open

source phase-field open-source software to date (Hong and Viswanathan, 2020).

In conclusion, this review allows a overview understanding of existing com-

putational models to describe reactive processes taking place within metal anode

batteries, such as lithium dendrite formation. Among these modelling techniques,

phase-field method was discussed in detail and regarded as the most suitable

and cost-effective approach to simulate lithium dendrite growth in this work.

The scarcity of three-dimensional phase field results observed in this review (Mu

et al., 2020; Liu et al., 2021), is evidence of the large computational cost involved

in solving the highly non-linear set of equations (PDE’s) describing coupled elec-

trochemical interactions during a battery charge cycle. This analysis guides our

research focus, toward the development of a 3D phase field framework to describe

hazardous three dimensional dendritic patterns needed to achieve the commercial

realisation of Li-metal batteries.
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Chapter 3

Methodology

3.1 Governing partial differential equations

This chapter 1 presents the modelling of battery cells, composed of a solid metal

anode made up of lithium, and a binary liquid electrolyte. The variables of in-

terest are ζ, representing the concentration of lithium, and ϕ representing the

electric potential. When an electro potential difference ∆ϕ, different than the

equilibrium value ∆ϕeq, is imposed to the system (i.e. charging the battery), the

binary electrolyte dissociates in M+ cation and A− anion species, being trans-

ported to the negative (anode) and positive (cathode) electrodes, respectively;

developing an ionic concentration gradient (Xu et al., 2014). The overpotential

η is described as,

η = ∆ϕ−∆ϕeq , (3.1)

1Parts of the content of this chapter are published in:

- Arguello, M. E., Gumulya, M., Derksen, J., Utikar, R., & Calo, V. M. (2022). Phase-
field modeling of planar interface electrodeposition in lithium-metal batteries. Journal
of Energy Storage, 50, 104627.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling
using open-source finite element library. Journal of Energy Storage, 53, 104892.
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Figure 3.1: Schematic of lithium electrodeposition process. Grey, orange, and
yellow spheres represent A− anions, M+ cations, and M atom, respectively.

where ∆ϕeq is the electrode-electrolyte interfacial voltage at equilibrium, when the

electrode electrochemical potential equals to that of the electrolyte, µ̄electrode =

µ̄electrolyte as determined via the Nernst equation (Bazant, 2013),

∆ϕeq = EΘ +
RT

nF
ln

aMn+ane
aM

, (3.2)

where EΘ is the standard half-cell potential, aMn+ is the activity of M+ ion in the

electrolyte, ane the activity of the electrons, and aM the activity of the lithium

atom. Furthermore, R, T, n, and F represent the gas constant, temperature,

valence, and Faraday’s constant, respectively. Thus, the total overpotential (3.1),

can be explained as the sum of the activation ηa = ∆ϕ−EΘ, and the concentration

ηc = −RT
nF

ln
aMn+ane

aM
.

As a result of the applied overpotential, Faradic reactions occurs, current

passes through the electrode-electrolyte interface, a Li+ cation gains an electron

and deposits on the anode surface (Li+ + e− → Li), as Figure 3.1 sketches.

The physical processes involved in the electrochemical deposition of lithium

are charge and mass transport, where Butler-Volmer kinetics is the standard

phenomenological model assumed to govern the charge and mass transport at

the electrode-electrolyte interface (Vetter, 1967; Bard and Faulkner, 2001), also
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known as the current-overpotential equation:

i = i0

(
e−

αnFη
RT − e

(1−α)nFη
RT

)
, (3.3)

where i is the current density and i0 is the exchange current density (assumed

constant in this case). The latter parameter is an indicator of the electron-

transfer activity on the electrode surface at the equilibrium potential and has been

identified as an intrinsic kinetic parameter (Liu et al., 2021). The first and second

terms in brackets represent the oxidation and reduction reactions, respectively,

where α is the charge transfer coefficient that characterizes the symmetry of the

forward and reverse reactions (Kuznetsov and Ulstrup, 1999).

The lithium electrodeposition rate depends on the applied overpotential via

a Faradic reaction (Nishikawa et al., 2011),

v =
∂λ

∂t
=

i

FnCs
m

=
i0

FnCs
m

(
e−

αnFη
RT − e

(1−α)nFη
RT

)
, (3.4)

where λ represents the electrodeposited film thickness over a time t. Cs
m represents

the site density of lithium metal. The superscripts “s” and “l” are used to

represent the solid-electrode and the liquid-electrolyte phases, respectively. At

the mesoscale, the electrode phase is assumed as a pure solid (neglecting any

solid phase nanoporosity). Furthermore, this model neglects the presence of a

solid-electrolyte interface (SEI), thus neither species nor charge can be stored at

the electrode-electrolyte interface.

3.1.1 Phase-field Butler-Volmer equation

Assuming a dilute electrolyte solution, the activity of lithium ions equals its

concentration aMn+ = ζ̃+, whereby electrons are assumed to always be supplied

on the surface of the electrode, with an activity equal to unity ae = 1 (Chen

et al., 2015), then the electrode-electrolyte interfacial voltage at equilibrium (3.2)
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becomes

∆ϕeq = EΘ +
RT

nF
ln

ζ̃+
aM

. (3.5)

The activity of M-atom aM can be defined variationally by ai = e
1

RT

δFmix
δζi , in

terms of the free energy of mixing Fmix, where ζi represents the chemical species

concentrations (e.g., lithium metal atom ζ, lithium cation ζ+, and anion ζ−,

respectively).

First, the Gibbs free energy of the system is computed as the summation of the

Helmholtz free energy density fch, surface energy density fgrad, and electrostatic

energy density felec (Guyer et al., 2004b; Garćıa et al., 2004; Han et al., 2004)

Ψ =

∫
V

[fch (ζi) + fgrad (∇ζi) + felec (ζi, ϕ)] dV , (3.6)

The gradient energy density associated with the surface energy of the system is

characterised as fgrad = 1
2
∇ζi ·κ (ζi)∇ζi, and felec = ρeϕ is the electrostatic energy

density, where ρe =
∑

i niFζi is the charge density. The Helmholtz free energy

density is (Bazant, 2013; Chen et al., 2015),

fch = Wζ̃2
(
1− ζ̃

)2
+ C0RT

(
ζ̃+ ln ζ̃+ + ζ̃− ln ζ̃−

)
+
∑
i

ζiµ
Θ
i , (3.7)

with ζ being normalised against the site density of Lithium metal (Cs
m, inverse

of molar volume), ζ̃ = ζ/Cs
m, and ion concentrations, ζ̃+ = ζ+/C0 and ζ̃− =

ζ−/C0, being normalised against the initial bulk concentration of Lithium in the

electrolyte C0 = c0C
l
m , where c0 is the initial bulk Lithium molar ratio in the

electrolyte, and Cl
m is the site density of the electrolyte phase.

The Helmholtz free energy density in (3.7), shows the contributions of the

two equilibrium states (solid electrode and liquid electrolyte), the contribution of

the lithium ions, and the summation of chemical potentials for each species at a

reference state (µΘ
i ). For the equilibrium states, an arbitrary double-well function

g
(
ζ̃
)
= Wζ̃2

(
1− ζ̃

)2
is used, withW/16 representing the barrier height between
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the two states.

The continuous phase-field variable ξ represents the dimensionless concen-

tration of lithium atom ζ̃, where ξ = 1 and 0 represent the pure electrode and

electrolyte phases, respectively; ξ is a non-conserved order parameter in our model

(Liang and Chen, 2014). Since the free energy has two local equilibria ζ̃A and ζ̃B,

then ξ = ζ̃−ζ̃A
ζ̃A−ζ̃B

is the phase field with minima at ξ = 1 and ξ = 0, satisfying the

Allen-Cahn reaction (ACR) model: ∂ξ
∂t

= R
(

δΨ
δζi

)
, a nonlinear generalization of

the Allen-Cahn equation for chemical kinetics.

We express, in terms of ξ, the free energy of mixing Fmix relative to the

standard state as (Bazant, 2013):

Fmix = fch+fgrad−
∑
i

ζiµ
Θ
i = Wξ2 (1− ξ)2+C0RT

(
ζ̃+ ln ζ̃+ + ζ̃− ln ζ̃−

)
+
1

2
κ (ξ) (∇ξ)2 .

(3.8)

The surface energy anisotropy plays an important role in the morphology of

the electrodeposit (Cogswell, 2015), which we implement using a standard ap-

proach (Kobayashi, 1993; Zhang et al., 2014) with κ (ξ) = κ0 [1 + δaniso cos (ωθ)],

where κ0 relates to the Lithium surface tension γ; δaniso and ω, are the strength

and mode of anisotropy, respectively (Tran et al., 2019; Zheng et al., 2020). θ is

the angle between the surface normal and the crystallographic orientation of the

lithium dendrite; aligned with the “x” direction of the cell stack for simplicity, as

Figure 3.2 shows. We use four-fold anisotropy (ω = 4) in agreement with lithium

body centred cubic crystal structure Cogswell (2015). We make use of trigono-

metric identities to arrive to cos (4θ) = 8n4
1 − 8n2

1 + 1, where n1 = ∇xξ/||∇ξ||.

Therefore, the 2D gradient coefficient is,

κ (ξ) = κ0

[
1 + δaniso

(
8n4

1 − 8n2
1 + 1

)]
. (3.9)

Figure 3.2 sketches (3.9), showing its preferred growth directions of a lithium

electrodeposit (θ = 0◦, 90◦, 270◦) due to four-fold surface energy anisotropy,

tending to grow fractal or branched dendrites. In 3D, we use version of (3.9)
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Figure 3.2: 2D schematic of Lithium electrodeposit, with four-fold surface energy
anisotropy κ (ξ) as a function of θ, defined as the angle between the surface normal
and the crystallographic orientation “x”.

(four-fold anisotropy) derived by George and Warren (2002) to simulate crystal

growth (Takaki et al., 2013)

κ (ξ) = κ0 (1− 3δaniso)

[
1 +

4δaniso
1− 3δaniso

(
n4
1 + n4

2 + n4
3

)]
, (3.10)

where n2 =
∇yξ

||∇ξ|| and n3 =
∇zξ
||∇ξ|| , with “y” and “z” defined orthogonal to “x”.

From (3.8) we calculate the activity of M-atom variationally following (Chen

et al., 2015):

aM = e
1

RT

δFmix
δξ = e

g′(ξ)−κ(ξ)∇2ξ
RTCs

m . (3.11)

Substituting (3.5) and (3.11) into (3.1), we obtain the total overpotential

expression in terms of ξ:

η = ∆ϕ− EΘ − RT

nF

(
ln ζ̃+ −

g′ (ξ)− κ (ξ)∇2ξ

Cs
mRT

)
, (3.12)

and substituting (3.12) into the Butler-Volmer (3.3), we arrive at:

i = i0

{
e
−αnF

RT

[
ηa−RT

nF

(
ln ζ̃+− g′(ξ)−κ(ξ)∇2ξ

Cs
mRT

)]
− e

(1−α)nF
RT

[
ηa−RT

nF

(
ln ζ̃+− g′(ξ)−κ(ξ)∇2ξ

Cs
mRT

)]}
.

(3.13)

Finally, we obtain the phase-field evolution equation (Allen-Cahn reaction
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Figure 3.3: Geometry of the phase-field diffuse interface.

(ACR) equation) by matching the velocity of the sharp interface limit of the

phase-field equation, with the current-overpotential equation as follows (Liang

et al., 2012; Cogswell, 2015; Elder et al., 2001):

∂ξ

∂t
= Lη

{
e
−αnF

RT

[
ηa−RT

nF

(
ln ζ̃+− g′(ξ)−κ(ξ)∇2ξ

Cs
mRT

)]
− e

(1−α)nF
RT

[
ηa−RT

nF

(
ln ζ̃+− g′(ξ)−κ(ξ)∇2ξ

Cs
mRT

)]}
,

(3.14)

where Lη is the electrochemical reaction kinetic coefficient (Hong and Viswanathan,

2018). Figure 3.3 describes geometrically the phase-field interface position at two

different time steps (tn < tn+1), elucidating the relationship between the phase-

field derivative (3.13) and the lithium electrodeposition rate (3.4) as:

∂ξ

∂t
=

1

δPF

∂λ

∂t
, (3.15)

where δPF is the phase-field diffuse interface thickness.

We relate the Li surface energy (γ) and computed phase-field interfacial thick-

ness (δt) to the model parameters according to: δt =
2κ
3γ

(Cahn and Hilliard, 1959),

where δt ∼= 2
3
δPF , thus δPF

∼= κ
γ
. Now, by comparing Eqs.(3.4), (3.13) and (3.14),

the electrochemical reaction kinetic coefficient becomes:

Lη =
γi0

nFκCs
m

. (3.16)
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When the system is far from equilibrium, the interface energy force is signifi-

cantly smaller than the electrochemical reaction contribution, Liang et al. (2012)

linearized the phase-field equation about the interface energy. Using a Taylor

expansion, Chen et al. (2015) linearized the phase-field Butler-Volmer equation

to obtain:

∂ξ

∂t
= −Lσ

[
∂g (ξ)

∂ξ
− κ (ξ)∇2ξ

]
− Lη

∂h (ξ)

∂ξ

[
e(

(1−α)nFηa
RT ) − ζ̃+ e(

−αnFηa
RT )

]
.

(3.17)

The standard half-cell potential EΘ is set as 0 for Li/Li+ equilibrium, thus

our activation overpotential becomes: ηa = ϕ. Moreover, h (ξ) is an interpolation

function that smooths the diffuse interface in the current implementation. The

interpolation function satisfies h (0) = 0, h (1) = 1, ∂h (0) /∂ξ = ∂h (1) /∂ξ = 0,

ensuring that ∂fch/∂ξ = 0 when ξ = 0 and ξ = 1, for any electric potential value.

A popular choice is a polynomial interpolation function hp (ξ) = ξ3 (6ξ2 − 15ξ + 10),

(Boettinger et al., 2002), which satisfies these properties. Herein, we also use a

sigmoid interpolation function (Chai et al., 2017):

hs(ξ) =
eς(ξ−

1
2)

1 + eς(ξ−
1
2)

. (3.18)

where ς is a parameter that determines the interface thickness of the interpolation

function; we use ς = 20, for interpolation between ξ = 0 and ξ = 1. Figure 3.4

plots these interpolation functions.

Besides satisfying the above-mentioned properties, the sigmoid function (3.17)

is bound to the range between 0 and 1 for all possible values of ξ. This property

is especially useful to deal with numerical overshoots of the phase-field variable

(ξ < 0 and ξ > 1) that are frequent in these simulations. Our experience show

that the sigmoid function delivers better the computational efficiency; thus, we

use it in all of our simulations.

The interface mobility Lσ can be expressed as (Chen et al., 2015):
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Figure 3.4: Comparison between sigmoid vs polynomial interpolation functions.

Lσ = β
{
α e−α[nFϕ

RT
−ln ζ̃+] + (1− α) e(1−α)[nFϕ

RT
−ln ζ̃+]

}
= β

{
α

ζ̃α+

eα
nFϕ
RT

+ (1− α)
e(1−α)nFϕ

RT

ζ̃
(1−α)
+

}
,

(3.19)

where β = i0γ
RTnFκ(ξ)Cs

m
2 . Replacing constant values in (3.19), Figure 3.5 plots

the exponential variation of Lσ within the range of charging voltages relevant for

lithium dendrite electrodeposition (ϕ = 0 to −3 [V ]), and Li-ion concentration

ranging 0 ≤ ζ̃+ ≤ 1.

Figure 3.5 shows that Lσ (assumed constant for each simulation) needs to

be adjusted to the selected voltage that charges the battery. Furthermore, the

Lσ dependency on ζ̃+ is lower, but not insignificant. Therefore, selecting an

adequate value for Lσ is vital to achieve the right balance between the phase-

field interface energy term and the electrochemical reaction contribution. This

adjustment avoids the unphysical broadening of the phase-field interface when

simulating larger electro potential values, see Figure 3.6

3.1.2 Diffusion-migration

A diffusion-migration equation describes the motion of charged chemical species

(lithium-ion) in the fluid electrolyte. The temporal evolution of ζ̃+ = ζ+/C0,
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Figure 3.6: “Step-like” diffuse interface due to the imbalance between interface
energy term (Lσ) and electrochemical reaction contribution. X: direction normal
to phase-field interface.
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satisfies the modified Nernst-Planck diffusion equation, which describes the flux

of Li-ions under the influence of both a concentration gradient (∇ζ+) and an

electric field (∇ϕ) (Chazalviel, 1990)

∂ζ+
∂t

= −∇ · J⃗+ , (3.20)

where the flux of lithium-ion species is:

J⃗+ = −Deff (ξ)

(
∇ζ+ +

nF

RT
ζ+∇ϕ

)
. (3.21)

Herein, the effective diffusivity is interpolated byDeff (ξ) = Dsh (ξ)+Dl [1− h (ξ)],

where Ds and Dl are the electrode and electrolyte diffusivities, respectively.

Moreover, an additional term Cs
m

C0

∂ξ
∂t

needs to be included in the Nernst-Planck

diffusion equation, to account for the amount of Lithium-ion elimination in the

electrolyte solution, due to electrodeposition on the solid phase (metal electrode).

Thus, diffusion equation is finally expressed as:

∂ζ̃+
∂t

= ∇ ·
(
Deff (ξ) ∇ζ̃+ +Deff (ξ)

nF

RT
ζ̃+∇ϕ

)
− Cs

m

C0

∂ξ

∂t
, (3.22)

Alternatively, Plapp (Plapp, 2011) demonstrated that exchanging concentra-

tion ζ for chemical potential µ as one of the dependent variables ensures constant

chemical potential at equilibrium; in addition, simulations are more robust at

low concentration values. This grand canonical formulation was recently ap-

plied to other phase-field models of electrokinetic (Cogswell, 2015; Hong and

Viswanathan, 2018). The grand free energy functional of an electrochemical sys-

tem is (Cogswell, 2015):

Ω =

∫
V

[fch (ξ, µ) + fgrad (∇ξ) + felec (µ, ϕ)] dV , (3.23)

which represents the grand canonical version of (3.6). Thus, by making use of

the Nernst-Einstein relation (∇ζ = ζ∇µ/RT ), the flux equation of all lithium
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species can be written as follows:

J⃗ = −Deff (ξ) ζLi
RT

(∇µ+ nF∇ϕ) , (3.24)

where the concentration of Lithium species ζLi has the contribution from the elec-

trode and electrolyte phases. However, derivation of diffusion equation by Hong

and Viswanathan (2018) does not consider the effect of Li-metal diffusivity in the

flux of Lithium species, by assuming it to be much smaller than the diffusivity

of Li-ion; thus J⃗ ∼= −Dlζ+
RT

(∇µ+ nF∇ϕ), where the concentration of Li-ion is

interpolated in terms of ξ and µ as (Cogswell and Carter, 2011):

ζ+ (µ, ξ) = ζ̃+ (µ, ξ)C0 = Cl
mζ

l (µ) [1− h (ξ)] = Cl
m

e

(
µ−ϵl

RT

)

1 + e

(
µ−ϵl

RT

) [1− h (ξ)] ,

(3.25)

with ζ l (µ) as the local Lithium molar ratio at liquid phase, and ϵl = µ0l − µ0N

as the difference in the chemical potential of lithium and neutral components at

the initial equilibrium state in the liquid phase. The flux assumption creates an

inconsistency in the diffusion equation via the grand canonical approach; where

the chemical potential of all lithium species µ only considers the contribution

of the flux of lithium-ion species J⃗+. The grand canonical formulation used

this assumption when it was initially derived as a solidification model for phase-

field processes (Plapp, 2011), and then adapted to model metal electrodeposition

(Cogswell, 2015; Hong and Viswanathan, 2018), where only the charged species

are affected by the electric field (ϕ).

The diffusion equation in terms of the chemical potential (µ), following Hong

and Viswanathan (2018), becomes:

∂µ

∂t
=

1

χ

[
∇ · D

lζ̃+
RT

C0

Cl
m

(∇µ+ nF∇ϕ)− ∂h

∂t

(
cs
Cs

m

Cl
m

− cl
)]

, (3.26)
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where the susceptibility factor χ is:

χ =
∂cs

∂µ
h
Cs

m

Cl
m

+
∂cl

∂µ
(1− h) . (3.27)

3.1.3 Electrostatic potential

We account for the electrostatic potential distribution ϕ using the charge conti-

nuity equation (Guyer et al., 2004b)

∂ρ

∂t
= −∇ · i⃗ , (3.28)

where i⃗ is the current density vector and ρ = ΣiniFζi is the charge density. Ex-

perimental observations support the assumption that space-charge effects do not

affect the stability of electrodeposits (Elezgaray et al., 1998). Therefore, herein we

ignore the effects of the double-layer structure and assume electroneutrality, (i.e.

ζ̃+ = ζ̃−, µ+ = µ−). Thus, electroneutrality means that ρl = 0 and ρs = −nFζ,

where ζ = Cs
mζ̃, so that ∆ρ represents the electrons required to create neutral ζ

from ζ+ in the electrolyte. Another benefit of the electroneutrality assumption

is the model simplification that only needs to track the lithium cation Li+ move-

ment. Therefore, making use of Ohm’s law in the continuity equation, i⃗ = σE⃗,

where σ is the conductivity and E⃗ = −∇ϕ is the electric field, we obtain the

Poisson equation, including the source term to represent the charge that enters

or leaves the system due to the electrochemical reaction:

∇ ·
[
σeff (ξ) ∇ϕ

]
= nFCs

m

∂ζ̃

∂t
. (3.29)

Since the phase-field variable ξ correspond to the lithium atom concentration

ζ̃, we can express the previous equation as (Chen et al., 2015)

∇ ·
[
σeff (ξ) ∇ϕ

]
= nFCs

m

∂ξ

∂t
. (3.30)
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We interpolate the effective conductivity by σeff (ξ) = σsh (ξ) + σl [1− h (ξ)],

where σs and σl are the electrode and electrolyte phase conductivity respectively.

This last, is the final equation to model our physical problem.

3.1.4 Equations summary

We collect the equation system that models the physical process in the following

box.
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Box 1: Dendrite growth model

Lithium-battery dendrite growth process based on phase-field theory. Find

Ξ =
(
ξ, ζ̃+, ϕ

)
fulfilling



∂ξ

∂t
= −Lσ

[
∂g (ξ)

∂ξ
−∇ · (κ (ξ)∇ξ)

]
− Lη

∂h (ξ)

∂ξ

[
e(

(1−α)nFϕ
RT ) − ζ̃+ e(

−αnFϕ
RT )

]
, in V × I

∂ζ̃+
∂t

= ∇ ·
[
Deff (ξ) ∇ζ̃+ +Deff (ξ)

nF

RT
ζ̃+∇ϕ

]
− Cs

m

C0

∂ξ

∂t
, in V × I

nFCs
m

∂ξ

∂t
= ∇ ·

[
σeff (ξ) ∇ϕ

]
, in V × I

ξ = ξD, on ∂VD × I

ζ̃+ = ζ̃+D, on ∂VD × I

ϕ = ϕD, on ∂VD × I

∇ξ · n = 0, on ∂VN × I

∇ζ̃+ · n = 0, on ∂VN × I

∇ϕ · n = 0, on ∂VN × I

ξ (x, t0) = ξ0, in V

ζ̃+ (x, t0) = ζ̃+0, in V

ϕ (x, t0) = ϕ0, in V

where V is the problem domain with boundary ∂V = ∂VN ∪ ∂VD, the sub-

script N and D related to the Neumann and Dirichlet parts, with outward

unit normal n, and I is the time interval.
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3.2 Weak variational formulation and space-time

discretization

3.2.1 Weak formulation

We now state the weak variational formulation (Hughes, 2012; Pardo et al., 2021)

of the system of equations as: Find Ξ =
(
ξ, ζ̃+, ϕ

)
such that ∀V = (v, w, p)

〈
v, ξ̇
〉
V
+
〈
w,

˙̃
ζ+

〉
V
+

〈
w,

Cs
m

C0
ξ̇

〉
V

+
〈
p, ξ̇
〉
V︸ ︷︷ ︸

M(V,Ξ̇)

= a
(
v, ξ, ζ̃+, ϕ

)
+ b

(
w, ξ, ζ̃+, ϕ

)
+ c (p, ξ, ϕ)︸ ︷︷ ︸

A(V,Ξ)

(3.31)

where •̇ = ∂•
∂t

denotes the time derivative of the variable • = ξ, ζ̃+, ⟨u,w⟩V =∫
V
wu dV expresses the inner product, and the functions on the right-hand side

are

a (v,Ξ) =−
∫
V

Lσ

[
∂g (ξ)

∂ξ
v + κ∇ξ · ∇v

]
dV

−
∫
V

Lη
∂h (ξ)

∂ξ

[
e(

(1−α)nFϕ
RT ) − ζ̃+ e(

−αnFϕ
RT )

]
v dV ,

b (w,Ξ) =−
∫
V

[
Deff (ξ) ∇ζ̃+ · ∇w +Deff (ξ)

nF

RT
ζ̃+∇ϕ · ∇w

]
dV ,

c (p,Ξ) =− 1

nFCs
m

∫
V

σeff (ξ)∇ϕ · ∇p dV.

(3.32)

We use standard finite element spaces where each function and its gradient are

square integrable.

3.2.2 Time semi-discretization

We use a second-order backward-difference (BDF2) time marching scheme with

an adaptive time step size. BDF2 is an implicit time marching method that

requires the solution at two previous time instants; the initial step uses a first-

order backward-difference method (BDF1). BDF2 has second-order accuracy and

numerically damps the highest frequencies of the solution, unlike the conservative
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Crank-Nicolson method Hughes (2012). Liao et al. Liao et al. (2020) showed that

BDF2 is an effective time integrator for the phase-field crystal model, especially

when coupled with an adaptive time-step strategy.

We discretizee the time interval into t0 < t1 < ... < tn < ... < tf and define

the time-step size as ∆tn = tn − tn−1, approximate ξ (tn), ξ̇ (tn), ζ̃+ (tn) and

˙̃
ζ+ (tn), respectively, as ξn, ξ̇n, ζ̃+n and

˙̃
ζ+n, and express the time increments as

∆• = •n+1 − •n for • = ξ, ξ̇, ζ̃+,
˙̃
ζ+. We use a second-order approximation of the

time derivative at tn+1 as follows (Celaya et al., 2014),

∂•n+1

∂t
=

(
1 + 2ωn+1

1 + ωn+1

) •n+1 − (1+ωn+1)
2

1+2ωn+1
•n +

ω2
n+1

1+2ωn+1
•n−1

∆tn+1

,

with ωn+1 =
∆tn+1

∆tn
, and • = ξ, ζ̃+ .

(3.33)

Then using this definition and letting Vv = (v, 0, 0), we define the ξ-residual as

0 = Rξ (Vv,Ξn+1) = M
(
Vv, Ξ̇n+1

)
−A (Vv,Ξn+1)

= ⟨v, ξn+1⟩V +

〈
v,

(1 + ωn+1)
2

1 + 2ωn+1
ξn −

ω2
n+1

1 + 2ωn+1
ξn−1

〉
V︸ ︷︷ ︸

ℓξ(v) (known at tn)

− βn+1∆tn+1 a (v, ,Ξn+1)

(3.34)

with βn+1 =
1+ωn+1

1+2ωn+1
. We now approximate a (v,Ξn+1) as a Taylor series expansion

from Ξn to obtain

a (v,Ξn+1) = a (v,Ξn) + a′ξ (v,∆ξ; Ξn) + a′
ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′ϕ (v,∆ϕ; Ξn) +O

(
∆t2n+1

)
(3.35)

where O (∆2) represents neglected higher-order terms in the expansion and

f ′
• (v,∆•; •n) =

d

dϵ
f (v, •n + ϵ∆• )|ϵ=0 (3.36)

represents the directional Gâteaux derivative of the functional f in the direction

•. Combining (3.34) and (3.35), we obtain a linear equation system to solve, that
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is

0 = Rξ (Vv,Ξn) + ⟨v,∆ξ⟩V

+ βn+1∆tn+1

[
a′ξ (v,∆ξ; Ξn) + a′

ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′ϕ (v,∆ϕ; Ξn)

]
(3.37)

Similarly, we define the weighting functions Vw = (0, w, 0) and Vp = (0, 0, p); the

residuals R• with • = ζ̃+, ϕ and linearize the resulting residuals to obtain the

linearized system of equations to update the Newton iteration. We collect the

lirearized equation system that models the physical process in the following box.

Box 2: Linearized equation system

Discrete linearized equations for lithium-battery dendrite growth process

based on phase-field theory. Find Ξn+1 =
(
ξn, ζ̃+n, ϕn

)
+
(
∆ξ,∆ϕ,∆ζ̃+

)
such that

0 = Rξ (Vv,Ξn) + ⟨v,∆ξ⟩V

+ βn+1∆tn+1

[
a′ξ (v,∆ξ; Ξn) + a′

ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′ϕ (v,∆ϕ; Ξn)

]
0 = R

ζ̃+
(Vw,Ξn) +

〈
w,∆ζ̃+ +

Cs
m

C0
∆ξ

〉
V

+ βn+1∆tn+1

[
b′ξ (w,∆ξ; Ξn) + b′

ζ̃+

(
w,∆ζ̃+; Ξn

)
+ b′ϕ (w,∆ϕ; Ξn)

]
0 = Rϕ (Vp,Ξn) + ⟨p,∆ξ⟩V + βn+1∆tn+1

[
c′ξ (p,∆ξ; Ξn) + c′ϕ (p,∆ϕ; Ξn)

]
(3.38)

We only expand c in the directions ∆ξ and ∆ϕ as it is independent of ∆ζ̃+,

see (3.32).

For completeness, we summarize the Gâteaux derivatives in (3.38) in the

following box.
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Box 3: Gâteaux derivatives

a′ξ (v,∆ξ; Ξn) =

∫
V

Lσ

[
∂g2 (ξ)

∂ξ2

∣∣∣∣
ξn

∆ξ v +

(
κ (ξn)∇∆ξ +

∂κ (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ ∇ξn

)
· ∇v

]
dV

+

∫
V

Lη
∂h2 (ξ)

∂ξ2

∣∣∣∣
ξn

[
e

(
(1−α)nFϕn

RT

)
− ζ̃+n e

(
−αnFϕn

RT

)]
∆ξ v dV

a′
ζ̃+

(
v,∆ζ̃+; Ξn

)
=

∫
V

Lη
∂h (ξ)

∂ξ

∣∣∣∣
ξn

e

(
−αnFϕn

RT

)
∆ζ̃+v dV

a′ϕ (v,∆ϕ; Ξn) =

∫
V

Lη
∂h (ξ)

∂ξ

∣∣∣∣
ξn

nF

RT

[
(1− α) e

(
(1−α)nFϕn

RT

)
+ αζ̃+n e

(
−αnFϕn

RT

)]
∆ϕ v dV

b′ξ (w,∆ξ; Ξn) =

∫
V

∂Deff (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ

(
∇ζ̃+n +

nF

RT
ζ̃+n∇ϕn

)
· ∇w dV

b′
ζ̃+

(
w,∆ζ̃+; Ξn

)
=

∫
V

Deff (ξn)

(
∇∆ζ̃+ +

nF

RT
∆ζ̃+∇ϕn

)
· ∇w dV

b′ϕ (w,∆ϕ,Ξn) =

∫
V

Deff (ξn)
nF

RT
ζ̃+n∇∆ϕ · ∇w dV

c′ξ (p,∆ξ; Ξn) =
1

nFCs
m

∫
V

∂σeff (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ ∇ϕn · ∇p dV

c′ϕ (p,∆ϕ; Ξn) =
1

nFCs
m

∫
V

σeff (ξn)∇∆ϕ · ∇p dV

(3.39)

3.2.3 Space discretization

We discretize the domain V ⊂ R3 with Dirichlet boundary condition ∂VD and

Neumann boundary condition ∂VN using finite elements. We express the domain

as the union of non-overlapping elements, Ki; thus, Vh =
⋃M

i=1 Ki. We define

continous piecewise polynomial functions over the discrete domain. In particular,

we use linear functions over simplexes (i.e., triangles in 2D, tetrahedra in 3D).

Since the three variables share the spatial distribution of the boundary conditions,

we use the shape functions NA (x) for each degree of freedom •nA at tn satisfying

the Dirichlet boundary conditions to discretize each degree of freedom • = X,Z, Y

47



corresponding to the variables ξ, ζ̃+, ϕ, respectively; thus, we have

ξhn =
S∑

i=1

NA (x)Xn
A ζ̃h+n =

S∑
i=1

NA (x)Zn
A ϕh

n =
S∑

i=1

NA (x)Y n
A

∆ξh =
S∑

i=1

NA (x)∆XA ∆ζ̃h+ =
S∑

i=1

NA (x)∆ZA ∆ϕh =
S∑

i=1

NA (x)∆YA

(3.40)

where S corresponds to the total number of unknowns in each solution variable.

We define the weighting spaces using test spaces using the same functions but

restricting those with support on ∂VD to be zero, thus

vh ∈ span {NB}WB=1 wh ∈ span {NB}WB=1 ph ∈ span {NB}WB=1
(3.41)

whereW corresponds to the total number of weighting functions for each variable.

Using these spatial discretizations, we obtain the fully discrete algebraic prob-

lem:
∆Rξ

∆Rζ̃+

∆Rϕ

︸ ︷︷ ︸
∆R

=



Mξξ 0 0

Mζ̃+ξ Mζ̃+ζ̃+
0

Mϕξ 0 0

+ βn+1∆t


Kξξ Kξζ̃+

Kξϕ

Kζ̃+ξ Kζ̃+ζ̃+
Kζ̃+ϕ

Kϕξ 0 Kϕϕ




︸ ︷︷ ︸
J

·


∆X

∆Z

∆Y

︸ ︷︷ ︸
∆X

.

(3.42)
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Box 4: Matrix blocks

The mass matrix blocks are

Mξξ
AB = Mζ̃+ζ̃+

AB = Mϕξ
AB =

M∑
k=1

∫
Kk

NANB dKk and Mζ̃+ξ
AB =

M∑
k=1

∫
Kk

Cs
m

C0
NANB dKk

(3.43)

while stiffness matrix blocks are

Kξξ
AB =

M∑
k=1

∫
Kk

Lσ

[
∂g2

∂ξ2

∣∣∣∣
ξhn

NA NB +

(
κ
(
ξhn
)
∇NA +

∂κ

∂ξ

∣∣∣∣
ξhn

NA ∇ξhn

)
· ∇NB

]
dKk

+

M∑
k=1

∫
Kk

Lη
∂h2

∂ξ2

∣∣∣∣
ξhn

[
e

(
(1−α)nFϕh

n
RT

)
− ζ̃h+n e

(
−αnFϕh

n
RT

)]
NA NB dKk

Kξζ̃+
AB =

M∑
k=1

∫
Kk

Lη
∂h

∂ξ

∣∣∣∣
ξhn

e

(
−αnFϕh

n
RT

)
NANB dKk

Kξϕ =

M∑
k=1

∫
Kk

Lη
∂h

∂ξ

∣∣∣∣
ξhn

nF

RT

[
(1− α) e

(
(1−α)nFϕh

n
RT

)
+ αζ̃h+n e

(
−αnFϕh

n
RT

)]
NA NB dKk

Kζ̃+ξ
AB =

M∑
k=1

∫
Kk

∂Deff

∂ξ

∣∣∣∣
ξhn

NA

[
∇ζ̃h+n +

nF

RT
ζ̃h+n∇ϕ

h
n

]
· ∇NB dKk

Kζ̃+ζ̃+
=

M∑
k=1

∫
Kk

Deff
(
ξhn
) [
∇NA +

nF

RT
NA∇ϕh

n

]
· ∇NB dKk

Kζ̃+ϕ
AB =

M∑
k=1

∫
Kk

Deff
(
ξhn
) nF
RT

ζ̃h+n ∇NA · ∇NB dKk

Kϕξ
AB =

1

nFCs
m

M∑
k=1

∫
Kk

∂σeff

∂ξ

∣∣∣∣
ξhn

NA ∇ϕh
n · ∇NB dKk

Kϕϕ
AB =

1

nFCs
m

M∑
k=1

∫
Kk

σeff
(
ξhn
)
∇NA · ∇NB dKk

(3.44)

3.3 Time-adaptive strategy

Time step adaptivity is highly useful in this problem, where the time step require-

ment varies significantly at different simulation stages. For example, initially, the

simulation requires small time steps to achieve convergence during the devel-
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opment of the phase-field interface and thereon, their size grows a few orders

of magnitude (i.e., from ∆t = 10−6 [s] up to ∆t = 10−1 [s]) depending on the

parameters (e.g., mesh size, electrodeposition rate).

Following (Vignal et al., 2017; Labanda et al., 2022), we express the local

truncation error for BDF2 using Taylor expansions as follows

τBDF2 (tn+1) =
∆t2n+1 (∆tn +∆tn−1)

6

...
u (tn+1) +O

(
∆t4
)
, (3.45)

where u = ξ, ζ̃+, since ϕ’s time derivative does not appear explicitly in the formu-

lation. We use the solutions un+1, un, un−1 and un−2 from the BDF2 scheme to

estimate the truncation error of (3.45) using the third-order backward difference

formula (BDF3)

...
u (tn+1) ≈

1

∆t2n+1

[
un+1 − un

∆tn+1

−
(
1 +

∆tn+1

∆tn

)
un − un−1

∆tn
+

∆tn+1

∆tn∆tn−1

(un−1 − un−2)

]
.

(3.46)

Thus, we estimate BDF2’s local truncation error by substituting (3.46) into (3.45)

to obtain

τBDF2 (tn+1) ≈
∆tn +∆tn−1

6

[
un+1 − un

∆tn+1

−
(
1 +

∆tn+1

∆tn

)
un − un−1

∆tn

]
+

∆tn +∆tn−1

6

[
∆tn+1

∆tn∆tn−1

(un−1 − un−2)

]
.

(3.47)

Finally, we compute the weighted local truncation error as an error indicator (Hairer

and Wanner, 2010)

Eu (tn+1) =

√√√√ 1

N

N∑
i=1

(
τBDF2
i (tn+1)

ρabs + ρrel max (|un+1|i, |un+1|i + |τBDF2 (tn+1) |i)

)2

,

(3.48)

where ρabs and ρrel are user-defined parameters that define the absolute and

relative tolerances, respectively. In our examples we set these parameters to

ρabs = ρrel = 102. The time error is computed using the maximum time error of
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time-dependent variables

E (tn+1) = max
(
Eξ (tn+1) , Eζ̃+

(tn+1)
)
, (3.49)

and the time-step adaptivity simply follows (Gómez et al., 2008; Lang, 1995)

∆tk+1
n+1 (tn+1) = F

(
E (tn+1) ,∆tkn+1, tol

)
= ρtol

(
tol

E (tn+1)

) 1
2

∆tkn+1, (3.50)

where k is the time-step refinement level and ρtol is a safety factor parameter set to

0.9 in our simulations. We summarize the time-adaptive scheme in Algorithm 1,

where we define two tolerances tolmax and tolmin that limit the range of reduction

or increments of the time-step size.

Allen-Cahn and Cahn-Hilliard equations are designed in such a way that they

are gradient flows for the energy (Allen and Cahn, 1972; Gomez and van der Zee,

2017). This means that the construction of the phase-field model satisfies an a

priori nonlinear stability relationship, expressed as a time-decreasing free-energy

functional; nevertheless, standard discrete approximations do not inherit this

stability property (Gomez and Hughes, 2011; Sarmiento et al., 2018; Wu et al.,

2014; Hawkins-Daarud et al., 2012; Vignal et al., 2017). Thus, the evolution of

the Gibbs free energy of the system Ψ, see (3.6), needs to be analysed along with

our simulation results to verify that the total systems’ discrete free energy does

not increase with time (discrete energy stable results).

3.4 Implementation details

3.4.1 Numerical implementation

This section briefly discusses the implementation aspects and details the step-

by-step calculations. We perform all the numerical experiments using the open-

source FEniCS environment (Alnæs et al., 2015) using the FIAT package (Kirby,
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2004) to integrate numerically and assemble the matrices and vectors. We use

two-node linear elements in 1D, four-node quadrilateral elements in 2D and eight-

node hexahedral elements in 3D; in all cases, we use consistent Gaussian quadra-

ture. We use a passing interface package MPI4py (Dalcin and Fang, 2021; Dalcin

et al., 2011; Dalćın et al., 2008, 2005) for parallelization and solve nonlinear equa-

tions using SNES combined with BiCGStab for each linear system, including a

Nonlinear Additive Schwarz methods (NASM) for parallel solution (Balay et al.,

2021). Table 3.1 summarizes the parameters we use.

Table 3.1: Numerical parameters summarize

Description Symbol Value

Max. iteration number for SNES itmax 8
Relative tolerance for SNES tol 10−8

Max. iteration number for Krylov itKr 1000
Relative tolerance for Krylov tolKr 10−22

Max. tolerance for time-adaptive scheme tolmax 10−5

Min. tolerance for time-adaptive scheme tolmin 10−7

Safety factor for time-adaptive scheme ρtol 0.9
Relative scale factor for time-error computation ρrel 102

Absolute scale factor for time-error computation ρabs 102

We compute the time increment by gathering the unknown vectors at the

master core, estimating the error for the current time step, adapting the time

step size, and broadcasting its value to the other cores. This straightforward im-

plementation is practical given the small number of processors used. We initialize

the simulations using a first-order backward difference formula (BDF1) until •n−2

is different from null. We perform the simulations using a laptop with a 2.4 GHz

processor with 8-core Intel Core i9 and 16 GB 2667 MHz DDR4 RAM, obtain-

ing satisfactory results using a regular computer. Algorithm 1 sketches the time

marching scheme, where rank is the core number, and master is the master core

used as the communicator.
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Algorithm 1: Dendrite growth model based on phase-field theory with
time adaptivity

Data: •n, •n−1 , •n−2, •̇n, ∆tn+1, ∆tn, ∆tn−1

Result: updated variables •n+1, •̇n+1, ∆tn+1

1 Initialize •n = •0, with • = ξ, ζ̃+, ϕ ;
2 while tn+1 ≤ tf do
3 Solve non-linear problem (3.42) ;
4 Gather ∆X in master core and calculate temporal error

τBDF2 (tn +∆tn+1) with (3.47) ;
5 if rank == master then
6 Calculate Eu (tn +∆tn+1) with (3.48) ;
7 Take the maximum error with (3.49) ;
8 if E (tn +∆tn+1) ≤ tolmax then
9 Update current time step tn+1 ← tn +∆tn+1;

10 Update •n+1 and •̇n+1 ;
11 Update •n−2 ← •n−1, •n−1 ← •n, •n ← •n+1 and •̇n ← •̇n+1;
12 if E (tn +∆tn+1) < tolmin then
13 Increase delta step for next time increment

∆tn+1 ← F (E (tn+1) ,∆tn+1, tolmin) using (3.50) ;

14 end
15 Broadcast to rest of ranks all variables ∆tn+1, •n−2, •n−1 and

•n ;

16 else
17 Reduce time-step size∆tn+1 ← F (E (tn+1) ,∆tn+1, tolmax)

using (3.50) ;
18 Broadcast to rest of ranks only ∆tn+1 ;

19 end

20 end

21 end
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3.4.2 Phase-field diffuse interface thickness & mesh size:

A discussion

The interface thickness between the lithium electrode and the electrolyte is about

5 nm (ichi Morigaki, 2002). Simulating this thickness is impractical due to the

computational cost (Guyer et al., 2004a,b); the smaller the interface thickness, the

finer the grid resolution (mesh size) used, causing the simulation time to increase

significantly. Therefore, broadening the interface for computational reasons (thin

interface formulations) is essential in our model (Karma, 2001; Echebarria et al.,

2004). However, the thickness selection must follow reasonable criteria since using

an oversized interface deviates the simulation from reality (Zhao et al., 2018).

An analysis of the published data reveals that the interface thickness used in

phase-field simulations of electrodeposition are varied, from less than 0.1 nm –

1D (Guyer et al., 2004b) up to 50 µm (Yan et al., 2018), although this thickness is

often not reported (Zhang et al., 2014; Chen et al., 2015; Yurkiv et al., 2018; Mu

et al., 2019); this fact shows the lack of agreement in criteria in the definition of

the phase-field interface. In our phase-field model (3.17), the phase-field diffuse

interface thickness (δPF) results from the interaction between two opposite effects

on the interfacial energy term (∂g(ξ)
∂ξ
− κ∇2ξ), as Figure 3.7 shows. On the one

hand, the reduction of the volume of material where ξ is between 0 and 1 (propor-

tional toW ∝ γ), and on the other hand, the diffusion of the interface to minimize

the energy relative to the gradient of ξ (proportional to κ) (Cahn and Hilliard,

1959; Boettinger et al., 2002). Two different expressions for W and κ are common

in phase-field models of electrokinetics available depending on the definition of

phase-field thickness (δt). Boettinger et al. (2002) characterized the character-

istic thickness (δB) from an equilibrium solution: ξ (x) = 1
2

[
1− tanh

(
x
√

W
2κ

)]
(the term multiplying x, 2δB =

√
2κ
W
); alternatively, Cahn and Hilliard (1959)

used the slope at x = 0 to estimate an interface thickness (δCH). Table 3.2 sum-

marizes different expressions for W and κ; that relate these phase-field interface

thicknesses: δCH = 4δB.
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Figure 3.7: Schematic of phase-field diffuse interface (blue dotted line) as a result

of the equilibration of the opposing effects of the energy barrier (∂g(ξ)
∂ξ

) and the

gradient energy (κ∇2ξ).

Table 3.2: Comparison between different expressions for W and κ in literature
(Cahn and Hilliard, 1959; Boettinger et al., 2002).

Variable name Symbol Cahn and Hilliard (1959) Boettinger et al. (2002)

Theoric Interfacial thickness δt 2
√

2κ
W

√
κ

2W

Barrier height W 12 γ
δCH

3 γ
δB

Gradient energy coefficient κ 3γδCH

2
6γδB

Section 4.3.3 further analyses the effect of the phase-field interface thickness

on the electrodeposition rate simulation results, which ultimately control the

temporal evolution of the electrodeposits.
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Chapter 4

Phase-field simulations of planar

interface electrodeposition in

rechargeable lithium-metal

batteries

This chapter 1 presents simulations describing the coupled electrochemical in-

teractions during a battery charge cycle using finite elements on open-source

packages, allowing for parallel computation and time step adaptivity. A one-

dimensional (planar interface) study compares the conventional free energy and

grand canonical formulations. The effect of the applied overpotential (and the

prediction’s agreement with Faradic kinetics) is investigated, as well as analysis

of the prediction sensitivity to the phase-field interface thickness and mesh reso-

lution. These simulation results set the groundwork for 2D and 3D simulations

of dendritic metal electrodeposition in batteries.

1The content of this chapter is published in: Arguello, M. E., Gumulya, M., Derksen, J.,
Utikar, R., & Calo, V. M. (2022). Phase-field modeling of planar interface electrodeposition in
lithium-metal batteries. Journal of Energy Storage, 50, 104627.
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Figure 4.1: Boundary conditions for planar interface battery charge simulation.

4.1 System layout & properties

Generally, the computational domain for a battery simulation comprises the an-

ode and cathode regions and the space between the electrodes filled with elec-

trolyte (Trembacki et al., 2019). However, for most phase-field simulations of

metal electrodeposition, including those performed herein, the cathode region is

reduced into a current collector boundary condition on the electrolyte side of the

domain (Figure 4.1).

We model a battery cell, with a traditional 1D sandwich architecture, and an

initial interelectrode distance of 180 µm, undergoing a recharging process under

fixed applied electric potential status. The initial structure consists of a 20 µm-

thick metal anode (l0 = 20µm ), made up of pure lithium, separated from the

liquid electrolyte by a smooth interface, as Figure 4.1 shows. The initial condition

drives from the equilibrium solution for a one-dimensional transition zone between

solid (ξ = 1) and liquid (ξ = 0), where our variables
(
ξ, ζ̃+, ϕ

)
vary in the

“x” spatial direction normal to the interface according to: 1
2

[
1− tanh

(
x
√

W
2κ

)]
(Boettinger et al., 2002).

On the cell’s right side, the liquid electrolyte is assumed as 1M LiPF6 EC/DMC

1:1 volume ratio solution, including Li+ cation and PF−
6 anion species. We com-
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pute the site density of the electrolyte (C l
m) using the density (1.3 [g/cm3]) and

molar mass (90 [g/mol]) of the electrolyte; similarly, the site density of the elec-

trode Cs
m uses the density (0.534 [g/cm3]) and molar mass (6.941 [g/mol]) of pure

Lithium (Hong and Viswanathan, 2018).

We use a Dirichlet boundary condition ξ = 1 on the left boundary for the

phase-field order parameter (solid electrode phase) and a non-flux Neumann

boundary condition on the right boundary, which allows the electrodeposition

process (ξ changing from 0 to 1) when the reaction front approaches the right

boundary (cathode).

For the Li-ion concentration, we apply Dirichlet boundary conditions, ζ̃+ = 0

and ζ̃+ = 1, to the left and right cell boundaries, respectively. Thus, the Li-

ion flows into the battery (electrolyte side), ensuring that the amount of lithium

deposited at electrode-electrolyte interface equals the amount of Li+ supplied

on the electrolyte side, thus avoiding quick Li-ion depletion and keeping the

electrodeposition process running for the entire simulation time.

Alternatively, when solving for the chemical potential µ, instead of ζ̃+, we

apply a non-flux Neumann boundary condition on the left boundary (electrode

phase), indicating a constant lithium molar ratio, while we apply a time-varying

Dirichlet boundary condition on the electrolyte side (right boundary), allowing

for a change on the chemical potential value when the reaction front approaches

the right boundary. Table 4.1 summarizes our set of boundary conditions.

Table 4.1: Boundary Conditions (1D Problem).

Variable Electrode (x = 0) Electrolyte (x = lx)

Phase-field ξ = 1 ∇ξ · n = 0

Li-ion Concentration ζ̃+ = 0 ζ̃+ = 1
or

Chemical Potential ∇µ · n = 0 µ = ϵ+RT ln
(

ζ(µ)
1−ζ(µ)

)
Electrostatic Potential ϕ = ϕb [V ] ϕ = 0 [V ]
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Additionally, Table 4.2 presents the parameters used in the current phase-field

model. The normalization constants for length, time, energy and concentration

scales are set as h0 = 1 [µm], t0 = 1 [s], E0 = 2.5 × 106 [J/m3], and C0 =

1× 103 [mol/m3], respectively.

Table 4.2: Planar Electrode Simulation Parameters

Description Symbol Real Value Normalized Source

Exc. current density i0 30
[
A/m2

]
30 Monroe and Newman (2003)

Surface tension γ 0.556
[
J/m2

]
0.22 Vitos et al. (1998); Tran et al. (2016)

Phase-field interface thickness δPF 1× 10−6 [m] 1 selected

Barrier height W W = 12γ
δPF

= 6.67× 106
[
J/m3

]
2.67 computed

Gradient energy coefficient κ0 κ0 = 3γδPF
2

= 8.34× 10−7 [J/m] 0.335 computed

Kinetic coefficient Lη Lη = i0
γ

nFCs
m

= 2.71× 10−3 [1/s] 2.71× 10−3 computed

Difference in chem. pot. electrode ϵs ϵs = µ0s − µ0N −13.8 Hong and Viswanathan (2018)

Difference in chem. pot. electrolyte ϵl ϵl = µ0l − µ0N 2.63 Hong and Viswanathan (2018)

Site density electrode Cs
m 7.64× 104

[
mol/m3

]
76.4 Hong and Viswanathan (2018)

Site density electrolyte Cl
m 1.44× 104

[
mol/m3

]
14.4 Hong and Viswanathan (2018)

Bulk Li-ion concentration C0 103
[
mol/m3

]
1 computed

Conductivity electrode σs 107 [S/m] 107 Chen et al. (2015)

Conductivity electrolyte σl 1.19 [S/m] 1.19 Valoen and Reimers (2005)

Diffusivity electrode Ds 7.5× 10−13
[
m2/s

]
0.75 Chen et al. (2015)

Diffusivity electrolyte Dl 3.197× 10−10
[
m2/s

]
319.7 Valoen and Reimers (2005)

Table 4.2 shows that although the electrode and electrolyte materials can

exhibit Li/Li+ dependent conductivities and diffusivities, their values are set

constant across each phase for simplicity (Hong and Viswanathan, 2018; Cogswell,

2015).

4.2 Spatial variation of variables

We study the spatial variation of the phase-field, Li-ion concentration, and electric

potential at the initial stage and two different times (100[s] and 200[s]) for a
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Figure 4.2: Spatial variation of phase-field (ξ), Li-ion concentration (ζ̃+), and elec-
tric potential (ϕ) in electrode-electrolyte system during charging (ϕb = −0.45 [V ])
at t0 = 0 [s] (solid), t1 = 100 [s] (dotted), and t2 = 200 [s] (dashed).

flat interface (one-dimensional simulation) as Figure 4.2 shows. These results

illustrate our set of initial conditions, as well as the evolution of our system’s

variables Ξ =
(
ξ, ζ̃+, ϕ

)
by solving three coupled (3.17), (3.22), (3.30). This

model corresponds to a phase-field derivation from a free energy functional. The

growth of Li deposit starts when we apply a negative voltage (ϕb = −0.45 [V ]) to

the cell (charging state). We use a phase-field interface thickness of δPF = 1 [µm],

with spatial resolution of h = 0.25 [µm] (mesh size) combined with time step

adaptivity (Labanda et al., 2022; Hairer and Wanner, 2010).

Figure 4.2 shows that the electrode-electrolyte interface moves as lithium de-

posits on the electrode surface as time progresses. The electrodeposition evolution

results in a steeper distribution of Li-ion concentration at the electrode-electrolyte

interface (compare the concentration profile at t1 = 100 [s] and t2 = 200 [s]), due

to the increase of the electric potential gradient (migration forces) as the inter-

electrode distance shortens. Finally, in agreement with the experimental obser-

vations of Nishikawa et al. (2011), the electrodeposition velocity increases over

time (compare the interface position at t1 = 100 [s] and t2 = 200 [s]). The planar

interface simulation presented here took about 5 minutes to be completed using
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Figure 4.3: Spatial variation of phase-field (ξ), chemical potential (µ), and electric
potential (ϕ) in electrode-electrolyte system during charging (ϕb = −0.45 [V ]) at
t0 = 0 [s] (solid), t1 = 100 [s] (dotted), and t2 = 200 [s] (dashed).

a regular computer (laptop with a 2.4 GHz processor with 8-core Intel Core i9

and 16 GB 2667 MHz DDR4 RAM).

We repeat the simulation switching lithium-ion concentration (ζ̃+) for chem-

ical potential (µ) as a dependent variable (grand canonical formulation) (Yan

et al., 2018; Hong and Viswanathan, 2018; Plapp, 2011). Even though the grand

canonical approach was recently applied to other phase-field models of electroki-

netics (Cogswell, 2015; Hong and Viswanathan, 2018), to the best of our knowl-

edge, there was no evidence comparison between the performance of each formu-

lation in this field. Thus, we verify the agreement between simulation results and

identify advantages and disadvantages of each approach. Figure 4.3 shows the

initial conditions for the grand canonical approach, as well as the evolution of our

system’s variables (ξ, µ, ϕ) by solving three coupled equations. Again, we apply a

negative voltage (ϕb = −0.45 [V ]) to the cell (charging state). These results show

a distribution of field variables similar to that of the free energy approach.

Furthermore, Figure 4.4 shows the agreement between the lithium-ion concen-

tration (ζ̃+) at different phase-field interface positions (lt), using the free energy

formulation and the grand canonical approach when using sigmoid smoothing
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Figure 4.4: Lithium-ion concentration (ζ̃+) comparison between free energy (FE)
and grand canonical (GC) approaches using sigmoid smoothing (4.1). Phase
field (ξ) (blue) for reference; Charge: ϕb = −0.45 [V ]; lt0 = 20 [µm] (solid),
lt1 = 66 [µm] (dotted), and lt2 = 157 [µm] (dashed).

(Plapp, 2011):

ζ̃+ =
Cl

m

C0

e

(
µ−ϵl

RT

) [
1 + e

(
µ−ϵl

RT

)]−1

. (4.1)

Figure 10 shows a steeper Li+ concentration distribution as the front ap-

proaches the opposite electrode (lt2 > lt1); since proximity induces a higher elec-

tric potential gradient (∇ϕ) as the model approaches the battery short-circuit

condition. This produces an increase of the Li+ concentration at the electrode-

electrolyte interface (ξ = 0.5), from ζ̃+ = 0.03 at lt1 = 66 [µm], to ζ̃+ = 0.06 at

lt2 = 157 [µm], leading to faster rates of lithium electrodeposition according to

(3.17).

4.3 One-dimensional sensitivity analysis

4.3.1 Theoretical Faradic model

We compare our planar interface phase-field results against the theoretical Faradic

model, used to theoretically interpret the growth rate of a uniform deposited film
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(Nishikawa et al., 2011; Akolkar, 2013). The theoretical operating current density

across the flat electrode surface is it = ϕb/
(

lt
σs +

lx−lt
σl

)
, where ϕb, σ

s, σl, lx and lt,

are the applied voltage, electrode and electrolyte conductivities, battery cell size,

and the electrode surface position at time t, respectively. Therefore, we compute

the theoretical electrodeposited film thickness, λ = lt − l0, integrating Faraday’s

law 3.4 over time as follows:

λ =

∫ t

0
it dt

nFCs
m

. (4.2)

In (4.2), we define a set of electrode positions {lti ∈ R s.t. l0 ≤ lti ≤ lx}, using

a small interval size between these positions (i.e., ∆lt = 0.01 [µm] achieves con-

vergence). We calculate the theoretical current density iti (lti) for each position,

and estimate the Faradic electrodeposition rate, v (tn+1), using the forward Euler

method:

v =
λ (tn+1)− λ (tn)

tn+1 − tn
=

lt (tn+1)− lt (tn)

tn+1 − tn
. (4.3)

Thus, solving for tn+1 from (4.3), we obtain a set of ti vs lti values that allows

for comparison with phase-field model predictions within a range of charging

voltages as presented in the following sections.

4.3.2 Applied overpotential

We compare the electrodeposition rates predicted by the free energy (ζ̃+) and

grand canonical (µ) approaches under different applied voltages. Figure 4.5 dis-

plays the electrodeposit position (ξ = 0.5) over time for different applied voltages

(ϕb = −0.45,−0.60,−0.75 [V ]).

Figure 4.5 shows the grand canonical approach (dotted lines) is more sensitive

to changes in the applied voltage than the conventional free energy formulation

(dashed lines). Taking the position of the electrode after t = 20 [s] as an indication

of the electrodeposition rate, we obtain relative position differences of 9.75%,

10.9%, and 11.5% for the free energy approach under -0.45,-0.60 and -0.75[V ],

respectively. The grand canonical approach results in larger relative position
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Figure 4.5: Interface position vs time for different applied voltages: theoretical
rate (T) (4.2) (solid), simulation results under free energy (dashed), and grand
canonical (dotted) approaches.

differences of 1.22%, 51.8%, and over 400% under identical charging conditions.

Although we obtain good agreement with the Faradic theory (solid line) using the

grand canonical approach to model the lowest applied voltage (ϕb = −0.45 [V ]),

we obtain consistent reaction rates (with comparable position differences under

various charging conditions) for the conventional free energy approach (ζ̃+).

4.3.3 Phase-field interface thickness

We select an appropriate phase-field interface thickness (δPF ) by analyzing its

effect on the simulated electrodeposition rate, which ultimately determines the

evolution time scale (motion) of the electrodeposits. Figure 4.6 displays a com-

parative analysis of the simulated electrodeposit position (ξ = 0.5) over time

for different values of interface thickness (δPF = 1, 5, 10 [µm]) under an applied

voltage of ϕb = −0.45 [V ].

Figure 4.6 shows that the phase-field interface thickness significantly affects

the simulated reaction rates; wider interfaces (larger δPF ) induce extremely fast

electrodeposition rates, up to 200% greater than theoretical results. These dis-

crepancies have a physical justification: electrodeposition occurs at the electrode-
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Figure 4.6: Interface position vs time for different phase-field interface thickness
(δPF = 1, 5, 10 [µm]) for applied voltage ϕb = −0.45 [V ]: theoretical rate (4.2)
(solid), free energy (dashed), and grand canonical (dotted) approaches.

electrolyte interface; thus, expanding the interface for computational reasons

(physical interfaces can be as small as 5 [nm] (ichi Morigaki, 2002)) increases

the reactive area in the simulation, which induces faster than physical electrode-

position rates. However, as Figure 4.6 and the position analysis below illustrate,

convergent electrodeposition rates (interface-thickness-independent growth) are

possible well before reaching the nanometer width interfaces. Figure 4.6 includes

results for the free energy and grand canonical approaches. Let the electrode

position at t = 100 [s] be a correlate of the electrodeposition rate, we compute

position differences of 10.0%, 29.8%, and 47.2% for the free energy approach us-

ing 1, 5 and 10 [µm] interface thicknesses, respectively; alternatively, the grand

canonical approach yields relative position differences of 0.43%, 62.6%, and 168%

for the same interface thickness values. Therefore, the grand canonical results

(dotted lines) are more sensitive to changes in δPF than those of the conventional

free energy formulation (dashed lines).

In short, the grand canonical formulation has greater sensitivity to both the

phase-field interface thickness and the applied electric potential value, which prac-

tically restricts when the negative applied voltages (ϕb < −0.50 [V ]) we may
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simulate in 2D and 3D applications.

4.4 Tafel plot: Sharp-interface Butler-Volmer

Reaction rates sensitive to negative applied voltages (see Figure 4.5) guide our

detailed analysis of the grand canonical approach using different phase-field inter-

face thicknesses. We did not conduct a similar study of the free energy approach

due to its significantly lower sensitivity to the interface thickness and applied

voltage as per Figure 4.5 and Figure 4.6. We study the interface position plotting

it as a function of time for different applied electric potential values in Figure

4.7. An interface thickness of δPF = 0.5 [µm] yields a good agreement with the

theoretical Faradic rates under -0.40, -0.45, and -0.50[V ] applied voltages with a

spatial resolution of h = 0.125 [µm] (mesh size) allows for four elements to span

the phase-field interface.
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Figure 4.7: Interface position vs time for different applied voltages: theoretical
electrodeposition rate (4.2) (solid); simulation results (grand canonical formula-
tion; dotted). Phase-field interface thickness δPF = 0.5 [µm], and h = 0.125 [µm]
mesh size.

Figure 4.7 shows that the electrodeposition rate accelerates (curved) as the in-

terface approaches the opposite electrode (battery short-circuit condition) (Liang
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and Chen, 2014; Nishikawa et al., 2011; Monroe and Newman, 2003). This result

agrees with the mathematical model (solid lines), where the deposition rate has

a nonlinear relationship. We obtain larger electrodeposition rates under more

negative electric potential values (faster battery charge).

We calculate the current density relation to the electrodeposition velocity v

using (3.4). The current density increases as the electrode progresses to the

opposite side, producing a nonlinear relationship with the total overpotential (η),

as Figure 4.8 depicts; which satisfies the sharp-interface Butler-Volmer equation:

i = i0

(
e−

αnFη
RT − e

(1−α)nFη
RT

)
. Figure 4.8 shows that as the deposit approaches the

opposite electrode, the overpotential slightly increases with time (Subramanian

et al., 2009), which corresponds to the reaction rate increase due to the Li+

concentration increase at the electrode-electrolyte interface.
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Figure 4.8: Tafel plot: Comparison of the phase-field model (dotted lines) with
the sharp-interface Butler-Volmer equation (solid line) under different electric
potential values.

4.5 Convergence test

We perform a spatial convergence analysis to verify the convergence rates and

quantify the mesh-induced error. We compare flat interface simulation results for
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different spatial resolutions, nx = 400, 800, 1600, 3200, 12800; (with a domain size

of lx = 200 [µm]), using a small time-step size (∆t = 6.25 × 10−4 [s]) to neglect

the temporal error, such that ∆t/t0
hmin/h0

≪ 1, where hmin = 0.015625 [µm] is the

finest mesh size.

The position of the electrodeposit interface (ξ = 0.5) is the basis of our com-

parison, since it is the parameter that defines the reaction rate (time-scale) in

our simulation. Starting with a 20 [µm]-thick metal anode, separated from the

liquid electrolyte by a 1 [µm] interface; we compute the final phase-field interface

position (electrode position) after 20 [s] of simulation under an applied electric

potential value of ϕb = −0.45 [V ], a commonly used electric potential in the lit-

erature (Chen et al., 2015; Cogswell, 2015; Hong and Viswanathan, 2018), using

different mesh sizes. The spatial convergence analysis reveals that we obtain

grid-independent results after sufficient mesh refinement (see Figure 4.9). The

agreement between the h = 0.015625 [µm] and 0.03125 [µm] results (finest and

second finest meshes) is of 99.99% and 99.93%, for the free energy formulation

and the grand canonical approach, respectively.

Figure 4.9 plots the relative error evolution over the mesh size (h). We com-

pute the electrode position errors, relative to the finest mesh resolution (most

accurate), as follows: ε =
Xhmin

−Xhi

Xhmin
−XIC

× 100, where Xhmin
, Xhi and XIC, are the

electrode position of the finest spatial resolution, the current mesh result, and

the electrode’s initial thickness (initial position of the phase-field interface), re-

spectively.

Hence, the mesh-induced errors we compute are lower than 5% for the grand

canonical approach, and 1.5% for the free energy functional, when utilising the

coarsest spatial resolution (h = 0.5 [µm], and two linear elements spanning the

phase-field interface) to simulate electrodeposition process under ϕb = −0.45 [V ].

The mesh-induced errors do not significantly affect the electrodeposition rate,

compared to the previous ones when varying the phase-field interface thickness.
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Figure 4.9: Relative position error “ε” at t = 20 [s] vs mesh sizes h [µm], using
free energy (blue), and grand canonical (green) formulations. The inset shows the
interface position “Xhi” vs mesh sizes h [µm], using both formulations. Phase-
field interface thickness δPF = 1 [µm].

4.6 Conclusions on planar interface simulations

We perform phase-field simulations to describe the flat electrode evolution during

metal (lithium) electrodeposition. We demonstrate the validity of the current

model by comparing the simulation results with theoretical Faradic reactions and

the kinetics of the sharp-interface Butler-Volmer model.

The comparison analysis between simulations using a phase-field model de-

rived from either a free energy functional or a grand canonical approach allows

us to assess each model’s sensitivity to the simulation and physical parameters

and their robustness. In short, we obtain more consistent results (with com-

parable position differences under various charging conditions) for the conven-

tional free energy approach. This model shows less sensitivity to changes in the

phase-field interface thickness and under different applied voltages than the re-

sults obtained using the grand canonical formulation. In particular, we required

smaller phase-field interface thicknesses (δPF ), with higher mesh resolution, to
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capture faster reaction rates under more negative electric potential values using

the grand canonical formulation. Consequently, the computational cost signifi-

cantly increases, making this class of models intractable for applications in two- or

three-dimensions under large negative applied voltages involving dendrite growth

under fast battery charge.

The higher sensitivity observed under the grand canonical approach can be

explained by the effect of Li-metal diffusivity in the flux of Lithium species. The

derivation of the grand canonical diffusion equation by Hong and Viswanathan

(2018) does not consider the Li-metal diffusivity effect by assuming it to be much

smaller than the diffusivity of Li-ion (Cogswell and Carter, 2011). This flux as-

sumption creates an inconsistency in the diffusion equation via the grand canoni-

cal approach; where the chemical potential of all lithium species µ only considers

the contribution of the flux of lithium-ion species J⃗+ (please refer to Section 3.1.2

for further explanation).

Additionally, the spatial convergence analysis shows that the mesh-induced

errors of up-to 5% for the grand canonical approach, and 1.5% in case of the free

energy functional become grid independent (99.99% agreement) after sufficient

refinement. Interestingly, these mesh-induced errors have a significantly lower

impact in the electrodeposition rate, than those computed by varying the interface

thickness (up to 47.2% and 168% relative position differences for the free energy

and grand canonical approaches, respectively).

Finally, beyond lithium electrodeposition, this class of phase-field models can

appropriately describe other metal deposits in metal-anode batteries, such as zinc

anode batteries. The use of one-dimensional simulations as a tool to quantify the

resolution requirements of the model under study is an effective strategy, that

allows us to set ground rules for further 2D and 3D simulations.
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Chapter 5

Phase-field simulations of

dendrite formation in

rechargeable lithium-metal

batteries

This chapter 1 discuss numerical simulations of dendrite growth in rechargeable

lithium-metal batteries. Firstly, a two-dimensional model is verified in terms of

dendrite propagation rates and spatial distribution analysis of the system’s vari-

ables in comparison with phase-field simulation results reported in the literature.

Furthermore, three-dimensional spike-like lithium structures that grow under high

current density are simulated; these structure’s growth is dangerous for battery

operation. Single and multiple nuclei numerical experiments are carried out to

study the 3D distribution of the electric field and the lithium-ion concentration

1Parts of the content of this chapter are published in:

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling
using open-source finite element library. Journal of Energy Storage, 53, 104892.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Three-dimensional experimental-scale phase-field modelling of dendrite forma-
tion in rechargeable lithium-metal batteries. Publication under review.
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to understand the mechanism behind spike-growing lithium morphologies better.

Finally, a sensitivity analysis of 3D simulations under different mesh resolution

and phase-field interface thickness is carried out.

5.1 System layout

Following the simulation set-up presented in Section 4.1, here we model a battery

cell with a traditional sandwich architecture, undergoing a recharging process un-

der fixed applied electro potential. We represent this cell as an lx× ly rectangular

domain in 2D and as an lx× ly× lz hexagonal domain in 3D. The initial perturba-

tion (dendrite nuclei) significantly impacts the simulation outcome. These nuclei

are usually part of the problem’s initial conditions. In our experience, the shape

of the initial seed and the noise levels have a major influence on the resulting

dendrite morphology.

We study two different initial structures. The first structure consists of a

5µm-thick metal anode (l0 = 5 [µm]), made up of pure Lithium, separated from

the liquid electrolyte by a smooth interface, as Figure 5.1-a depicts. The initial

condition derives from the equilibrium solution for a one-dimensional transition

zone between solid (ξ = 1) and liquid (ξ = 0), where our variables
(
ξ, ζ̃+, ϕ

)
vary in the “x” spatial direction according to: 1

2

[
1− tanh

(
x
√

W
2κ0

)]
(Boettinger

et al., 2002).

In the second structure we assume that artificial nucleation regions, ellipsoidal

protrusions (seeds) with semi-axes rx, ry, rz, and center
(
0, l0y , l0z

)
, exist at the

surface of the anode undergoing electrodeposition (see Figure 5.1-b). This is a

widely-used strategy in phase-field simulations of electrodeposition (Zhang et al.,

2014; Chen et al., 2015; Yurkiv et al., 2018; Mu et al., 2019); since it reduces the

computational cost as the lithium metal is only able to electrodeposit on the nu-

clei, enhancing dendrite growth and allowing for detailed study of its morphology.

For the artificial nucleation case, we modify the initial condition formula, replac-
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ing “x” by h0

[(
x
rx

)2
+
(

y−l0y
ry

)2
+
(

z−l0z
rz

)2
− 1

]
within the hyperbolic tangent

argument, to account for a smooth transition between the solid seed (lithium

metal anode) and the surrounding liquid electrolyte region (Section 4.1).

We model the anode boundary as a Dirichlet boundary condition ξ = 1 at

x = 0 for the phase-field parameter (solid electrode phase). In contrast, we use a

no-flux Neumann boundary condition at x = lx (cathode) to allow the electrode-

position process to take place (ξ changing from 0 to 1) when the reaction front

approaches the short-circuit condition (Section 4.1). For the Li-ion concentration,

we apply Dirichlet boundary conditions setting ζ̃+ = 0 and ζ̃+ = 1 at the anode

(x = 0) and cathode (x = lx) boundaries, respectively. These boundary condi-

tions allow the Li-ion flux into the battery (electrolyte side), ensuring that the

Li deposited at the electrode-electrolyte interface equals the amount of Li+ sup-

plied to the electrolyte. Thus, these boundary conditions avoid the quick Li-ion

depletion and keep the electrodeposition process running for the full simulation

(Section 4.1). Finally, we apply periodic boundary conditions on the remaining

faces; these are (x, 0, z), (x, ly, z), (x, y, 0), and (x, y, lz). Figure 5.1 summarizes

the boundary conditions we apply.

Additionally, Table 5.1 presents the parameters used in the current phase-

field model. Note that Table 5.1 only includes those parameters that are missing

or differ from Table 4.2. As a default set-up for our 2D and 3D simulations,

we adopt δPF = 1.5 [µm] to achieve a balanced phase-field interface thickness to

mesh resolution ratio.

Table 5.1: 2D & 3D Simulation’s Parameters

Description Symbol Real Value Normalized Source

Phase-field interface thickness δPF 1.5× 10−6 [m] 1.5 Section 4.3.3

Barrier height W 4.45× 106
[
J/m3

]
1.78 computed

Gradient energy coefficient κ0 1.25× 10−6 [J/m] 0.5 computed

Anisotropy strength δaniso 0.044 0.044 (Tran et al., 2016, 2019)

Anisotropy mode ω 4 4 (Tran et al., 2019; Zheng et al., 2020)

Kinetic coefficient Lη 1.81× 10−3 [1/s] 1.81× 10−3 computed
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Figure 5.1: Boundary conditions for planar electrode (a) and artificial nucleation
(b) simulations.
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5.2 Two-dimensional simulations of lithium den-

drite formation

5.2.1 Lithium dendrite propagation rate: Consistency with

experimental data

Validation of phase-field models with experimental results is a well-known chal-

lenge of electrodeposition simulations (Cogswell, 2015); partly due to the compu-

tational cost of simulating the detailed lithium electrodeposition at the whole-cell

scale (Yurkiv et al., 2018). One limiting factor is the domain size, defined by the

inter-electrode separation distance in experimental cells, which ranges from 1 to

10[mm] (Nishikawa et al., 2011; Nishida et al., 2013; Yufit et al., 2019).

We perform 2D simulations to compare our simulations against experimen-

tal results obtained from thin-cell geometries. We use 2D simulation results to

validate the predicted lithium dendrite propagation rates, assuming that the elec-

trodeposition rates are not significantly affected by the problem’s dimensionality.

We achieve large domain sizes through several computational efficiency im-

provements. We use a sigmoid interpolating function (Chapter 3) instead of the

polynomial interpolating function (Zhang et al., 2014; Liang and Chen, 2014;

Chen et al., 2015). We use time-step size adaptivity and mesh mapping in the re-

gion of interest (close to the electrode-electrolyte interface). We also use parallel

solution strategies and carefully select the phase-field interface thickness (δPF ),

given the interface thickness effect on the electrodeposition rate, which ultimately

determines the evolution dynamics (motion) of the lithium electrodeposits (Chap-

ter 4).

We compare the simulated lithium dendrite propagation rate against the ex-

perimental measurements of Nishikawa et al. (2011). Nishikawa et al. (2011)

studied the dendritic electrodeposition of lithium as a function of total charge

(electric current over time) using microscope observations. They reported den-

77



drite growth rates of 0.01− 0.06 [µms−1] (Akolkar, 2014) using a 1M LiPF6 elec-

trolyte, establishing upper and lower bounds for comparison with our simulation

results. The wide range of values reported in many studies (Crowther and West,

2008; Nishikawa et al., 2011, 2010) may be caused by the uneven current distri-

bution on the electrode surface (Nishikawa et al., 2011).

We simulate a lithium electrodeposition process at an applied current density

of i = 10 [mA/cm2] (Nishikawa et al., 2011). We use a 2D rectangular domain

lx = 5000 [µm] long (distance between electrodes), and ly = 50 [µm] wide (suffi-

cient width to allow dendrite formation). We use a mesh 8, 000 × 140 elements,

with mesh distribution that guarantees an x-spatial resolution of approximately

0.35 [µm] (h < 4δPF ) in the region of interest of the domain with square ele-

ments. We apply a charging electro potential of ϕb = −0.45 [V ] to the cell (a

common value in the literature (Chen et al., 2015; Hong and Viswanathan, 2018;

Cogswell, 2015)), more negative than the threshold overpotential for dendrite

growth ϕb = −0.37 [V ] (Hong and Viswanathan, 2018). We perturb the initial

electrode surface by (±0.5 [µm]) in x-direction to promote dendrite formation at

the center of the domain ( ly
2
= 25 [µm]).

Figure 5.2 shows the initial conditions (t = 0 [s]) and the evolution of the

system’s variables
(
ξ, ζ̃+, ϕ

)
. We zoom on the phase-field variable ξ at each in-

stant to emphasize the growth of the lithium dendrite and show the instantaneous

dendrite length measurement.
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Figure 5.2: 2D phase-field simulation of lithium electrodeposition process at a
current density of i = 10 [mA/cm2] with a distance of lx = 5000 [µm] between
electrodes.

79



Figure 5.3 shows the evolution of the simulated lithium morphology length

over time, within the range of experimental data (Nishikawa et al., 2011). Further

well-controlled experimental studies, with detailed characterization of the system

parameters (transport and kinetic properties), may be necessary to improve the

correlation (Akolkar, 2014).
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Figure 5.3: Comparison between 2D phase-field simulations of lithium dendrite
growth at a current density of i = 10 [mA/cm2] (blue), experimental data taken
from Nishikawa et al. (2011) (green), and the Akolkar (2014) analytical model
predictions (red). 1D planar electrode phase field simulation for reference (black).

Additionally, Figure 5.3 includes analytical dendrite propagation results for

the tip current density developed by Akolkar (Akolkar, 2014) for comparison.

Akolkar’s model calculates the dendrite propagation rate by analyzing various

overpotentials that develop at the dendrite tip and the flat electrode surface,

assuming a current density of i = 10 [mA/cm2] applied and a constant radius of

r = 1 [µm] at the dendrite’s tip. This simplification constitutes departures from

our phase-field model, where the dendrite’s tip radius is variable throughout

the simulation. This difference explains the higher growth rate obtained in our

simulations. Furthermore, we also include 1D planar electrode phase-field results

using an identical set-up as to the 2D simulation (Chapter 4).
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5.2.2 Bush-like lithium dendrite: Verification of 2D sim-

ulation results

The following 2D numerical experiment compares our model’s features to other

phase-field simulations reported in the literature. In this case, we use a 2D

square domain set as 360 × 360 [µm2], within the range of typical distances be-

tween electrodes in metal anode batteries (Bai et al., 2018). We use a 500× 720

structured mesh with a mapping in the x-direction to obtain square elements of

size 0.5 × 0.5 [µm2] in the region of interest (see Section 5.3.1 for details). We

apply a charging electro potential of ϕb = −0.7 [V ] to the cell, with an artificial

nucleation region with 3 protrusions (ellipsoidal seeds), equally spaced, growing

from the left boundary, with semi-axes 4 [µm]×1 [µm]. Figure 5.4 shows the evo-

lution of our system’s variables
(
ξ, ζ̃+, ϕ

)
at different time steps, with the ξ field

showing the dendrite morphology. The 2D simulation presented here took about

15 hours to be completed, about 180 times longer than previous 1D simulations

using the same computer.

Figure 5.4 shows the evolution of bush-like lithium dendrite formation, with

morphological agreement to dendritic patterns reported in previous phase-field

studies of dendrite growth (Yurkiv et al., 2018; Chen and Pao, 2021). The

lithium dendrites grow from each nucleation site and move towards the oppo-

site electrode, following the electric field (E⃗ = −∇ϕ). As the dendrite grows,

side branches appear, growing across the electrolyte, in qualitative agreement

with lithium dendrite experiments (Bai et al., 2016). The computed width range

of lithium branches is between 5 and 13 [µm]. These bush-like morphologies grow

fast across the electrolyte region and penetrate through porous separators, becom-

ing potentially dangerous as they can produce battery short circuits (Bai et al.,

2018). The lithium-ion concentration ζ̃+, and electric potential field ϕ, show simi-

lar spatial distribution as reported in other phase-field models of lithium dendrite

growth (Yurkiv et al., 2018; Liang and Chen, 2014). The lithium-ion concentra-

tion remains equal to the bulk concentration, ζ̃+ = 1, through the electrolyte
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(a) t = 5 [s]. (b) t = 20 [s]. (c) t = 50 [s]. (d) t = 70 [s].

Figure 5.4: 2D phase-field simulation of bush-like lithium dendrite formation
under ϕb = −0.7 [V ] charging potential. The upper row shows the lithium solid-

phase evolution ξ; the second row shows the lithium-ion distribution ζ̃+; and
the third row shows the electric potential field ϕ. Square domain set as 360 ×
360 [µm2].

phase and decreases near the dendrite front (solid phase) due to the electrode-

position process (Chen et al., 2015). The electric potential has a small gradient

that spreads over the electrolyte phase and remains constant and equal to ϕb at

the electrode phase. As the lithium dendrite moves across the electrolyte region,

the gradient of the electric potential (electric field) increases, in agreement with

simulation results reported by Hong et al. (Liang and Chen, 2014).

Figure 5.5 illustrates the interplay between the weighted truncation error es-

timate en+1 (3.49) (blue) and the time-step size evolution ∆tn+1 (3.50) (red),

throughout the 70 [s] of simulation. The figure shows that the simulation initially

requires a small time-step size of ∆t0 = 10−10 [s] to converge as the phase field

develops its interface thickness and the ion concentration and electro potential
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Figure 5.5: Performance of time-adaptive strategy in 2D lithium dendrite growth
simulation. Weighted local truncation error (blue) and time-step size (red) vs
time.

distributions achieve equilibrium. The time-step size increases sharply, achieving

a stationary size of ∆tn+1 = 10−2 [s], after 5 [s] of simulation. In addition, the

time-step size starts to decrease slightly after 40 [s], which corresponds with the

acceleration of lithium dendrite propagation rate as it approaches the opposite

electrode (Liang and Chen, 2014). The maximum and minimum tolerances for

the time-adaptive scheme are 10−7 and 10−9 in this case, allowing the time-step

size to decrease or increase accordingly when error tolerances bounds are reached.

In addition to previous 1D planar interface studies presented in Chapter 4, the

current 2D simulations complete the groundwork setting for 3D phase-field simu-

lations of lithium dendrite formation. This include successful 2D testing of the nu-

merical parameters previously defined through 1D electrodeposition studies, such

as phase field interface thickness and mesh resolution. The 2D numerical examples

have assessed the framework’s effectiveness to capture the two-dimensional devel-

opment of lithium electrodeposits, starting from a planar electrode configuration

as well as using artificial nucleation sites. The validation of the predicted lithium

dendrite propagation rates against experimental results obtained from thin-cell

geometries has confirmed the reliability of the proposed model. Furthermore, the
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agreement attained between the simulated lithium dendrite morphology, Li-ion

and electric potential distribution with simulation results reported in other phase-

field models of lithium dendrite growth, verifies our work as a preliminary step

to continue with a series of larger and more complex 3D simulations of lithium

dendrite growth in metal anode batteries next in this work.

5.3 Three-dimensional simulations of lithium den-

drite formation

5.3.1 3D single nucleus simulation

This section describes 3D phase-field simulations of lithium dendrite formation to

study highly branched ”spike-like” dendritic patterns, commonly observed exper-

imentally. These patterns form under high current density, which correspond to

fast battery charge (Jana et al., 2019; Ding, 2016; Tatsuma et al., 2001). We se-

lect a geometrical unit that characterizes a real cell structure (Yurkiv et al., 2018;

Trembacki et al., 2019). We choose a computational domain of 80×80×80 [µm3].

Consequently, given the domain size, we expect growth rates up-to two orders of

magnitude faster than experimental results by Nishikawa et al. (2011); Nishida

et al. (2013), due to the short separation between electrodes lx = 80 [µm] (close

to short-circuit condition).

We use a 3D structured mesh with eight-node hexahedral elements. We dis-

tribute the mesh to focus the node’s mapping on the area of interest (see Fig-

ure 5.6a). In particular, in the x-direction xr = (2/π) arcsin(xu); where xu is the

node’s x coordinate normalized by lx, before mapping (uniform distribution), and

xr is the node’s mapped coordinate. The arcsin function transitions smoothly,

inducing a relatively small variation in the mesh size within 50% of the physical

domain where the lithium electrodeposit process occurs (Yurkiv et al., 2018; Mu

et al., 2019; Zhang et al., 2021). The mapping produces a finer mesh to properly
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capture the phase-field interface thickness (4 elements in the interface, as defined

in Section 4.5) and the steepest gradients of ζ̃+ and ϕ. We use a 1203 tensor-

product mesh with a mesh size of 0.4 [µm] in the region of interest (bottom half

of the domain). The mesh is divided in eight partitions, one for each processor.

We verify that the computational efficiency achieved under the proposed number

of partitions is close to optimal for the current 3D problem, in agreement with

previous work performed by Mu et al. (2020).

(a) 3D mesh partition. (b) Simple nucleation.

Figure 5.6: The mesh is divided in eight partitions, one for each processor, rep-
resented by a different color (a), and geometry of the initial protrusion for the
simple nucleation experiment (b). Cube domain set as 80× 80× 80 [µm3].

Figure 5.6a identifies each core with a different color, showing that the tensor-

product mesh can efficiently allocate resources in the region of interest (more

resources/colors allocated to the bottom half of the domain). We apply a charg-

ing electro-potential value of ϕb = −0.7 [V ] to the cell, with an artificial nucle-

ation region formed by a single protrusion (ellipsoidal seed), with its center at

(0; ly/2; lz/2), and semi-axes 4 [µm] × 2 [µm] × 2 [µm] as Figure 5.6b shows. For

visualization purpose, here we rotate the 3D figures to depict a vertical x-axis,

showing an upright lithium dendrite growth, in agreement with the convention

used for lithium dendrite experiments (Nishikawa et al., 2011; Ding, 2016; Tat-

suma et al., 2001).
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Figure 5.7 shows the morphological evolution of the simulated lithium dendrite

(isosurface plot of the phase-field variable ξ). The 3D simulation presented here

took about 1 week to be completed, more than 10 times longer than previous 2D

simulations using the same computer.

The simulation forms a spike-like, symmetric, and highly branched pattern,

consisting of the main trunk and sets of four equal side branches growing in

each horizontal direction. A result consistent with the body-centered cubic (bcc)

crystallographic arrangement of lithium metal (Yurkiv et al., 2018). Our model

includes the four folded surface anisotropy (3.10). In-situ optical microscopic in-

vestigations (Ding, 2016; Tatsuma et al., 2001) report spike-like lithium dendrite

formation. These dendritic patterns grow when high (over-limiting) current den-

sities are applied to the cell (Bai et al., 2018). In such cases, the rate of lithium

deposition overcomes the rate of solid-electrolyte interface formation, allowing

the lithium deposit to grow almost free from the influence of the interface (Bai

et al., 2018).

The enrichment of lithium-ion concentration appears in the vicinity of dendrite

tips, reaching peak values of up to ζ̃+ = 2.1, and triggering tip-growing dendritic

lithium. Electrolyte regions with higher lithium-ion concentration (ζ̃+ > 1) are

represented by orange volumes in Figure 5.7. It is worth mentioning that this

phenomenon was previously reported by Hong et al. (Liang and Chen, 2014) in

2D simulations of lithium dendrite formation.

We calculate the electric field distribution by differentiation of the resolved

electric potential E⃗ = −∇ϕ. The magnified view in Figure 5.8 shows how the

electric field localizes in the vicinity of the dendrite tip, leading to an enriched

concentration of the lithium-ion it induces due to the strong migration from the

surrounding regions (see (3.22) and (Liang and Chen, 2014)).

Figure 5.9 shows the behaviour of the time-adaptive scheme, throughout the

0.6 [s] of simulation. Starting with a small time-step of ∆t0 = 10−7 [s] to achieve

convergence, followed by a rapid increase in size, until reaching a stationary value

86



(a) t = 0.1 [s]. (b) t = 0.2 [s]. (c) t = 0.3 [s].

(d) t = 0.4 [s]. (e) t = 0.5 [s]. (f) t = 0.6 [s].

Figure 5.7: Spike-like lithium dendrite formation under ϕb = −0.7 [V ] charging
potential. The electrodeposited lithium is represented with a yellow isosurface
plot of the phase-field variable ξ. Electrolyte regions with enriched concentration
of lithium-ion (ζ̃+ > 1) represented with orange volumes. Cube domain set as
80× 80× 80 [µm3].

0.1	 V/µm

5	𝜇𝑚

Figure 5.8: Overlay of electric field distribution (blue streamlines and vectors)
with dendrite morphology at time t = 0.5 [s]. Streamline plane set at y = 40 [µm].
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Figure 5.9: Time adaptivity for 3D spike-like dendrite growth simulation.

of about ∆tn+1 = 10−3 [s]. The evolution of the weighted truncation error en+1

(blue) stays close to the minimum tolerance limit (10−7) during 0.3 [s] of sim-

ulation; beyond this point, the error estimate increases due to the acceleration

of lithium dendrite propagation rate as the dendrites approach the positive elec-

trode. The time-step size remains unchanged since the error estimate remains

within the error bounds (tolmax = 10−6 and tolmin = 10−7, see Table 3.1).

The construction of phase-field models satisfies an a priori nonlinear stability

relationship, expressed as a time-decreasing free-energy functional; nevertheless,

standard discrete approximations do not inherit this stability property (see Sec-

tion 3.3). Figure 5.10 shows the evolution of the Gibbs free energy of the system

Ψ, see (3.6), using our adaptive time integration scheme. We plot the total en-

ergy curve, as well as three additional energy curves that correspond to each one

of its terms, namely, the Helmholtz (chemical) free energy
∫
V
fchdV , surface en-

ergy
∫
V
fgraddV , and electrostatic energy

∫
V
felecdV . Figure 5.10 shows that the

total systems’ discrete free energy does not increase with time. Therefore, we

obtain discrete energy stable results using our second-order backward-difference

(BDF2) time-adaptive marching scheme. Alternative, provably unconditionally

stable second-order time accurate methods may deliver larger time-step sizes for
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Figure 5.10: Energy time series for 3D spike-like dendrite growth simulation. The
inset plots the increasing surface energy in smaller scale for better appreciation.

phase-field models (Gomez and Hughes, 2011; Sarmiento et al., 2018; Wu et al.,

2014; Hawkins-Daarud et al., 2012; Vignal et al., 2017), but these are beyond

the scope of this work. Additionally, the system’s chemical and surface ener-

gies increase as the lithium surface area grows as time progresses. In parallel,

the electrostatic energy decreases in time. This interaction is consistent with

the electrodeposition process, where the system stores the applied electrostatic

energy as electrochemical energy as the battery charges.

5.3.2 3D multi-nuclei simulation

The lithium dendrite nucleation depends on local inhomogeneities that may arise

from different causes, such as defects and impurities in the metal anode, imper-

fect contact between the electrode and electrolyte caused by the development of

a solid-electrolyte interface, and variations in the local concentration or tempera-

ture in the electrolyte (Hong and Viswanathan, 2018). Given the random nature

of the nucleation phenomenon, we need to deal with some degree of randomness

and uncertainty when defining the artificial nuclei in the simulation. We study
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the simulations’ sensitivity to the artificial nuclei size, shape, and proximity as

an extension of 2D studies that show this dependence (Chen et al., 2015; Ely

et al., 2014; Yurkiv et al., 2018). Thus, the following 3D numerical experiment

tests the simulation’s sensitivity to the nuclei distribution and proximity by com-

paring four-nuclei morphological results with those previously obtained with a

single artificial protrusion. The simulation setup is similar to the previous 3D

experiment with a different nucleation arrangement. Therefore, we form the ar-

tificial nucleation region with four protrusions (ellipsoidal seeds), with semi-axes

4 [µm]× 2 [µm]× 2 [µm], and centres located at (y, x, z) = (0, 38, 38), (0, 42, 38),

(0, 38, 42) and (0, 42, 42) .

(a) t = 0.0 [s]. (b) t = 0.1 [s]. (c) t = 0.2 [s].

(d) t = 0.4 [s]. (e) t = 0.6 [s]. (f) t = 0.8 [s].

Figure 5.11: Spike-like lithium dendrite formation from multiple nucleation sites
under ϕb = −0.7 [V ] charging potential. The electrodeposited lithium is repre-
sented with a yellow isosurface plot of the phase-field variable ξ. Cube domain
set as 80× 80× 80 [µm3].

Figure 5.11 shows the morphological evolution of the simulated lithium den-
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drite (isosurface plot of the phase-field variable ξ = 0.5). In agreement with

previous numerical experiments, the simulation forms a spike-like, symmetric,

and highly branched pattern. The dendrite morphology consists of four main

trunks growing from each nucleus, with pairs of orthogonal branches developing

to the sides.

The dendrite growth does not occur perpendicular to the stack but at an angle

of about 20◦ between main trunks. The stacks seem to repel each other, showing

morphological similarity with dendritic patterns observed in lithium experiments

performed by Ding (2016) (see Figure 5.12a), and by Tatsuma et al. (2001) (see

Figure 5.12b), under charging densities of 10 [mA/cm2] and 3 [mA/cm2], respec-

tively. As a consequence of the reduced distance between electrodes (limited by

the computational cost), the time scales we simulate are significantly shorter (by

two orders of magnitude) than the experimental ones by Nishikawa et al. (2011);

Ding (2016); Tatsuma et al. (2001).

100	𝜇𝑚

(a) 10
[
mA/cm2

]
.

25	𝜇𝑚

(b) 3
[
mA/cm2

]
.

Figure 5.12: Photographs of lithium electrodes with electrochemical deposition
of lithium. The deposition condition for (a), as performed by Ding (2016), con-
sist of 10 [mA/cm2] current density applied for 1 hour in 1M LiTFS/DME/DOL
electrolyte, with working distance between electrodes set about 2 [mm]. The
deposition condition for (b), as performed by Tatsuma et al. (2001), consist of
3 [mA/cm2] current density applied for 1 hour in 1M LiClO4 electrolyte, with
working distance between electrodes set about 3 [mm] (reproduced with Jour-
nal’s and author’s permission).

Figure 5.13a details the simulated dendritic morphology at time t = 0.5 [s],

together with the spatial distribution of the lithium-ion concentration ζ̃+ in the
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electrolyte region. No side branches form facing the center of the nucleation ar-

rangement (between the dendrites), where the deposition process depletes the

lithium-ion concentration (shown in blue) (Liang and Chen, 2014). This creates

a shadow that inhibits branching growth in the spatial proximity of more de-

veloped adjacent dendrites. As a consequence, the side branches do not grow

dendrites facing the center of the nucleation arrangement (unfavorably oriented

dendrites) due to the 3D interactions with other dendrites (adjacent to the main

trunks) (Takaki et al., 2013). 2D phase-field models of dendrite electrodeposition

cannot capture this 3D phenomenon.

(a) ζ̃+ at t = 0.5 [s] . (b) ϕ at t = 0.5 [s].

Figure 5.13: Spatial distribution overlay of lithium-ion concentration (a), and
electric potential (b), with dendrite morphology at t = 0.5 [s]. Contour plane set
at y = 35 [µm].

Figure 5.13b shows the spatial distribution of the electric potential ϕ overlaid

with the lithium dendrite at the same instant t = 0.5 [s]. In agreement with

the 2D simulations of Section 5.2.2, the electric potential has a gradient over the

electrolyte phase and its steepness increases as the lithium dendrite grows.

Figure 5.14 shows the evolution of the electric field E⃗ = −∇ϕ and the enriched

lithium-ion concentration (ζ̃+ > 1) in the vicinity of the dendrite tips (red vol-

umes represent enriched concentration). As before, a larger electric field localizes

in the vicinity of the dendrite tips, leading to a higher lithium-ion concentration

with peak values of ζ̃+ = 1.8. The electric migration overcomes the diffusion due

to the Li-ion concentration gradient, and drive lithium cations from surrounding
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(a) t = 0.25 [s]. (b) t = 0.50 [s]. (c) t = 0.75 [s].

(d) t = 0.25 [s]. (e) t = 0.50 [s]. (f) t = 0.75 [s].

Figure 5.14: Simulation of spike-like lithium dendrite formation from multiple
nucleation sites. The upper row shows the overlay of the electric field evolution
E⃗ = −∇ϕ (blue vectors) with dendrite morphology; the second row exhibit the

lithium ion enrichment effect ζ̃+ > 1 (red volume) surrounding the dendrite tips.

regions with lower concentrations (i.e., Li-ion depletion of valley regions) to accu-

mulate around dendrite tips, triggering tip-growth with highly branched dendritic

lithium.

We analyze the dendritic patterns’ morphology evolution using single and

multiple nuclei. Following Yufit et al. (2019), we characterize the morphology

by tracking the dendrites’ volume-specific area (µm2/µm3) and the branch num-

ber evolution in time. Figure 5.15a plots the growth of the volume versus the

surface area for the 3D lithium patterns we simulate. The volume-specific area

average of 0.83 and 0.91 [µm2/µm3] of the single and multiple nuclei simulations,

respectively; where a higher surface area/volume ratio is indicative of a more

branched shape. Given the lack of experimental data available in the literature
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Figure 5.15: Comparison between 3D simulations of lithium dendrite growth
(single and multiple-nuclei), in terms of the evolution of volume vs surface area
a, and number of side branches developed over time b.

for quantitative characterization of the spike-like lithium morphologies, we rely on

experimental results available for zinc dendrites. (Yufit et al., 2019) report values

between 0.86 and 1.04 [µm2/µm3] for experimental formation of dendrites in zinc

batteries. Figure 5.15b compares the number of branches developed over time

in each case. The simulations produce ratios of 48 and 72 branches per second

[1/s] for the single and multiple nuclei simulations, respectively. We compute the

number of branches by visual inspection of the morphologies, where we consider
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new protuberances (amplitudes larger than 2 [µm]) as incipient branches under

development. Direct comparison with dendrite experiments was impractical in

this case, due to the faster dynamics of the simulation (small distance between

electrodes).
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Figure 5.16: Time adaptivity plot for 3D spike-like four-nuclei dendrite growth
simulation.

Figure 5.16 shows the behaviour of the time-adaptive scheme, throughout the

> 0.8 [s] of the simulation. Starting with a small time-step of ∆t0 = 10−7 [s] to

initially achieve convergence, followed by a rapid increase in size, until reaching a

stationary value of about ∆tn+1 = 10−3 [s]. As we can observe, the timestepping

behaves similarly than the previous 3D simulation (compare with Figure 5.9).

Figure 5.17 shows the systems’ energy evolution. The total energy curve

(black) does not increase with time, showing energy stable results. As before,

we observe that the process transforms electrostatic energy and stores it as elec-

trochemical energy (battery charge). Figure 5.17 shows that the surface energy

for the four-nuclei simulation is almost four times larger than the single nucleus

surface energy of Figure 5.10. The proportionately larger surface area due to the

four seeds explains this scaling.
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Figure 5.17: Energy time series for 3D spike-like four-nuclei dendrite growth
simulation. The inset plots the increasing surface energy in smaller scale for
better appreciation.

5.3.3 Phase-field interface thickness to mesh resolution

ratio: A sensitivity analysis

In this section, we perform a sensitivity analysis to study possible mesh-induced

effects on the simulated 3D dendrite morphology, propagation rates (dendrite’s

height vs time), electrodeposition rates (dendrite’s volume vs time), and energy

levels. We compare 3D simulation results for different spatial resolutions and

phase-field interface thicknesses.

The symmetric nature of spike-like lithium morphology Tatsuma et al. (2001);

Jana et al. (2019) allows us to reduce the computational cost by using symmetry

boundary conditions to model only one-quarter of the domain. Thus, we split the

domain in four, and apply Neumann boundary conditions (∇ξ ·n = 0; ∇ζ̃+ ·n =

0; ∇ϕ ·n = 0) to those boundaries facing the center of the domain as depicted in

Figure 5.18. Therefore, we reduce the size of our computational domain to 25%

(lx, ly/2, lz/2).

We verify our strategy by comparing the previous 3D simulation result using
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Figure 5.18: Symmetric boundary conditions for 3D spike-like simulations.

the whole domain (see Figure 5.7), and those obtained using symmetric boundary

conditions (see Figure 5.19).

We simulate the evolution of the geometrical features that define the dendrite’s

morphology, such as the maximum semi-width (W/2), height (H), and volume-

specific area ratio. Figure 5.19b depicts the threshold of ξ ⩾ 0.5 to calculate

the volume of deposited lithium (
∫
V
ξ dV ), and a smoothed contour ξ = 0.5 to

estimate the dendrite’s surface area at each time set. Figure 5.19 shows the same

morphological structures shown in Figure 5.7 by modelling the whole domain.

Thus, the symmetric boundary conditions reduce the computational cost, which

allows us to use finer meshes in the sensitivity analysis.

As discussed in Section 4.3.3, the phase-field interface thickness significantly

affects the simulated reaction rates. Wider interfaces (larger δPF ) increase the

reactive area in the simulation, which induces faster electrodeposition rates. Nu-

merical evidence shows that 1D interface-thickness-independent growth (conver-

gent results) are possible well before reaching the physical nanometer interface

width (ichi Morigaki, 2002) (see Section 4.3.3).

Figure 5.20 presents a collection of 3D spike-like lithium dendrite morphologies

(isosurface plot of the phase-field variable ξ = 0.5), obtained by varying the phase-
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Figure 5.19: Morphological analysis of symmetric boundary conditions in terms
of dendrite’s width & height (a), volume / surface area ratio (b). We plot the
evolution of the dendrite’s maximum semi-width (W/2 - blue), height (H - red),
and volume-specific area ratio (green) (c).
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field interface thickness (δPF = 1, 1.5 and 2 [µm]), and mesh sizes (h = 0.5, 0.375

and 0.25 [µm]). Thus, we test different combinations of phase-field interface

thickness to mesh resolution ratios (R = δPF/h = 3 to 8). We compare dendrite

morphologies at the moment they reach a height of H = 45 [µm].

ℛ = 4

(a) δPF = 2 [µm]
t = 0.76 [s].

ℛ = 6

(b) δPF = 2 [µm]
t = 0.89 [s].

ℛ = 8

(c) δPF = 2 [µm]
t = 1.06 [s].

ℛ = 3

(d) δPF = 1.5 [µm]
t = 0.58 [s].

ℛ = 6

(e) δPF = 1.5 [µm]
t = 0.76 [s].

ℛ = 4

(f) δPF = 1.0 [µm]
t = 0.52 [s].

Figure 5.20: Sensitivity analysis of 3D spike-like lithium dendrite morphology, for
different phase-field interface thickness to mesh resolution ratios (R = δPF/h),
under ϕb = −0.7 [V ] charging potential. Simulated morphologies for δPF =
2, 1.5 and 1 [µm] phase-field interface thickness; mesh grid overlaid with den-
drite’s morphology. We use dendrite’s common height (H = 45 [µm]) as the basis
of our comparison.

Figure 5.20 shows spike-like patterns that exhibit morphological similarity.

Each consists of the main trunk and four side branches growing in each hori-

zontal direction (as a result of the body-centered cubic (bcc) crystallographic

arrangement of lithium metal (Yurkiv et al., 2018)). Smaller phase-field inter-

face thicknesses produce more slender dendritic morphologies (cf. Figures 5.20f

(δPF = 1 [µm]) and 5.20c (δPF = 2 [µm])). We use Paraview’s mean curvature
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measurement (Ayachit, 2015) to analyse the dendrite’s tip radius (isosurface plot

of the phase-field variable ξ = 0.5). Thus, the measured dendrite’s tip radius in

Figure 5.20f (δPF = 1 [µm]) is about rtip1 = 2.7 [µm], while the computed den-

drites’ tip radius in Figure 5.20c (δPF = 2 [µm]) is about rtip2 = 5.3 [µm] (49%

larger). The dendrite’s maximum cross sectional area, main trunk, in Figure 5.20f

(δPF = 1 [µm]) is approximately Amax1 = 154 [µm2], while the computed cross

sectional area in Figure 5.20f (δPF = 2 [µm]) is about Amax2 = 254 [µm2] (40%

larger). In addition, Figure 5.20 shows that increasing the resolution ratio deliv-

ers thicker dendritic morphologies (R = δPF/h), keeping the phase-field interface

thickness constant (more elements at the interface). We compare the morpholo-

gies in the first row of Figure 5.20 (δPF = 2 [µm]), against those on the second

row of Figure 5.20 (δPF = 1.5 [µm]); in both cases finer mesh resolutions (higher

R) lead to less slender and less branched dendritic morphologies.

Figure 5.21 shows the evolution of the Gibbs free energy of the system Ψ,

see (3.6). We plot the total energy curve for different simulation set-ups (phase-

field interface thickness δPF and mesh resolution ratio R), as the figure indicates.

Figure 5.21 shows that in all cases, the systems’ discrete free energy does not

increase with time (adaptivity delivers discrete energy stable results). We obtain

a maximum energy difference of about 9% (t = 0.6 [s]) between the simulations

with the maximum (δPF = 2 [µm] & R = 8) and minimum (δPF = 1 [µm] &

R = 4) total energy levels (see Figure 5.21). In addition, those dendrites sharing

a similar level of total energy (represented in green, orange, and purple) exhibit

closer morphological resemblance, as the figure shows.

Figure 5.22 shows the effect of the phase-field interface thickness and mesh

resolution ratio on the dendrite’s propagation rate (H vs t). Smaller phase-field

interface thickness produces significantly faster propagation rates. For exam-

ple, simulation using smaller interface thickness (δPF = 1 [µm]) exhibits up-to

100% faster growth rates than those obtained under larger interface thickness

(δPF = 2 [µm]). Figure 5.22 shows that slower dendrite propagation rates occur
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Figure 5.21: Comparison of energy time series for 3D spike-like dendrite growth
simulations, for different phase-field interface thickness to mesh resolution ratios
(R = δPF/h), under ϕb = −0.7 [V ] charging potential. Dendrite morphologies at
height H = 45 [µm] for reference (colours by phase-field interface thickness and
mesh size).

as we increase the mesh resolution ratio (R = δPF/h), keeping the phase-field

interface thickness constant. The inset in Figure 5.22 plots the maximum Li-ion

concentration surrounding the dendrite’s tips for δPF = 2 [µm] where the enriched

Li-ion concentration decreases as we increase the mesh resolution R = δPF/h

(more accurate solution), leading to slower propagation rates (H vs t).

Figure 5.23 shows the dendrite’s volume evolution as a proxy of the overall

electrodeposition rate (volume of lithium metal deposited over time). The effect

of the phase-field interface thickness and mesh resolution ratio on the overall

electrodeposition rate is less significant (percentage-wise) than it is for the den-

drite’s propagation rate (dendrite’s height over time). For example, Figure 5.23

shows a maximum electrodeposition rate difference of less than 20% (volume vs

time) between the fastest and slowest simulation results. Thus, higher dendrite’s

propagation rates occur for smaller phase-field interface thicknesses due to the

lithium metal being deposited / spread over a smaller surface area (more slender
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Figure 5.22: Comparison of 3D spike-like dendrite propagation rate, for different
phase-field interface thickness to mesh resolution ratios (R = δPF/h), under
ϕb = −0.7 [V ] charging potential. Dendrite morphologies at common height H =
45 [µm] for reference (colours by phase-field interface thickness and mesh size).
The inset shows maximum Li-ion concentration as a function of time for different
R = δPF/h ratios, using the same phase-field interface thickness (δPF = 2 [µm]).

dendritic morphologies), rather than differences in the overall electrodeposition

rate (minor effect).

This analysis shows (see Figure 5.23) that for phase field interface thickness

2 [µm] or smaller, the simulated electrodepostion rate (volume of lithium metal

deposited over time) is relatively insensitive to the numerical parameters (δPF

and R). On the other hand, the simulated dendrite propagation rate shows

stronger numerical dependencies (see Figure 5.22), affecting the level of realism

of our results. Thus, propagation predictions presented here should only be taken

as a comparison indicator between numerical tests, as we work towards smaller

phase-field interface thickness to increase the accuracy of our simulations.
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Chapter 6

Three-dimensional

experimental-scale phase-field

modelling of dendrite formation

in rechargeable lithium-metal

batteries

Lithium dendrite simulations presented in Chapter 5 enabled the development

of our phase-field framework and gave insights into the mechanism behind spike-

growing lithium morphologies. This chapter 1 resume the work by addressing

some of the shortcomings identified towards the goal of experimental scale sim-

ulations. Here, a modified surface anisotropy representation is introduced to the

model. Firstly, numerical test are performed to gain insight into the benefits of

this modification compared with the results previously obtained in Chapter 5.

Secondly, we enlarge the domain size to achieve experimental inter-electrode dis-

1The content of this chapter is published in: Arguello, M. E., Labanda, N. A., Calo, V. M.,
Gumulya, M., Utikar, R., & Derksen, J. (2022). Three-dimensional experimental-scale phase-
field modelling of dendrite formation in rechargeable lithium-metal batteries. Publication under
review.
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tances. We map the nodal distribution concentrating the nodes in the region of

interest, inspired by experimental and simulation results. The increased domain

size affects the lithium electrodeposition behavior by increasing the interelectrode

distance. We discuss the lithium dendrite propagation rates and morphologies

for different charging voltages, and give insight into strategies of dendrite sup-

pression.

6.1 3D simulations using modified surface anisotropy

We evaluate the performance of the surface anisotropy representation model for

metal anode battery simulations (see Section 6.1.1). These studies consist of

3D phase-field simulations of lithium dendrite formation during battery charge

state to explore three-dimensional highly branched ”spike-like” dendritic patterns,

commonly observed experimentally. These patterns form under high current den-

sity loads, which correspond to fast battery charge (Jana et al., 2019; Ding, 2016;

Tatsuma et al., 2001).

6.1.1 Surface anisotropy representation for phase-field elec-

trodeposition models

In this section, we present a modified representation of the 3D surface anisotropy

of lithium crystal. We start by considering the surface energy expression, follow-

ing (3.8) fgrad = 1
2
κ (ξ) (∇ξ)2, where its variational derivative (surface anisotropy

of lithium crystal) (3.11) is:
δfgrad
δξ

= κ (ξ)∇2ξ, consistent with most recent phase-

field models of dendritic electrodeposition (Zhang et al., 2014; Chen et al., 2015;

Cogswell, 2015; Hong and Viswanathan, 2018; Mu et al., 2019; Chen and Pao,

2021). However, a more accurate representation of
δfgrad
δξ

may include an addi-

tional term, as originally derived by Kobayashi (1993) for 2D crystal growth.

In 3D, we use the variational derivative version derived by George and Warren
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(2002) to simulate the surface anisotropy of crystal growth

δfgrad
δξ

=
δ

δξ

[
1

2
a2 (∇ξ)2

]
= ∇ ·

(
a2∇ξ

)
+

3∑
i=1

∂

∂xi

a ∂a

∂
(

∂ξ
∂xi

) (∇ξ)2
 , (6.1)

where a2 = κ (ξ) is the three-dimensional surface anisotropy or gradient coef-

ficient (3.10). The first term after the last equality remains the same as in the

previous surface anisotropy expression; however, we add a second term (derivation

due to κ as a function of ξ). We calculate the partial derivative ∂a

∂
(

∂ξ
∂xi

) in (6.1).

We express the 3D surface anisotropy coefficient (3.10) (four-fold anisotropy),

presented in Chapter 3 (George and Warren, 2002), as:

a (ξ) =
√
κ0 (1− 3δaniso)

1 + 4δaniso
1− 3δaniso


∑3

i=1

(
∂ξ
∂xi

)4
||∇ξ||4


 , (6.2)

where x1 = x, x2 = y, and x3 = z; κ0 relates to the Lithium surface tension γ; and

δaniso is the strength of anisotropy (Tran et al., 2019; Zheng et al., 2020). Thus,

we apply the quotient derivative rule to (6.2) and arrive at the partial derivative

expression we use in (6.1); subsequently:

∂a

∂
(

∂ξ
∂xi

) = 4
√
κ0δaniso

4
(

∂ξ
∂xi

)3
||∇ξ||4 −

(
∂ξ
∂xi

)4
4||∇ξ||3 ∂||∇ξ||

∂
(

∂ξ
∂xi

)
||∇ξ||8


= 4
√
κ0δaniso

4
(

∂ξ
∂xi

)3
||∇ξ||4 − 4

(
∂ξ
∂xi

)4
||∇ξ||3

∂ξ
∂xi

||∇ξ||

||∇ξ||8


= 4
√
κ0δaniso

4
(

∂ξ
∂xi

)3
||∇ξ||2 − 4

(
∂ξ
∂xi

)5
||∇ξ||6


= 4
√
κ0δaniso

[
4 (n3

i − n5
i )

||∇ξ||

]
for i = 1, 2, 3 ,

(6.3)

where ni =
∂ξ
∂xi

||∇ξ|| for i = 1, 2, 3.
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Although its extensive use in phase-field models of crystal growth (solidifica-

tion) (George and Warren, 2002; Takaki et al., 2013), only Wang et al. (2015)

apply these models to a 2D phase-field simulation of dendrite growth in the

recharging process of zinc–air batteries. This limited use of this known model is

because it induces only minor morphological changes in 2D electrodeposition pro-

cess; compare the similarity of the 2D dendritic morphologies reported by Wang

et al. (2015) including the additional surface anisotropy term, and Zhang et al.

(2014) not using it. However, as we show later, its effect is crucial when modelling

3D dendritic growth.

We modify the phase-field Butler-Volmer equation (3.17) (reactive Allen-

Cahn) Chen et al. (2015) by including the additional surface anisotropy term:

∂ξ

∂t
= −Lσ

∂g (ξ)

∂ξ
−∇ ·

(
a2∇ξ

)
−

3∑
i=1

∂

∂xi

a ∂a

∂
(

∂ξ
∂xi

) (∇ξ)2


− Lη
∂h (ξ)

∂ξ

[
e(

(1−α)nFϕ
RT ) − ζ̃+ e(

−αnFϕ
RT )

]
.

(6.4)

6.1.2 Comparison of simulated patterns: Surface anisotropy

model

We study the performance of the modified surface anisotropy representation (6.4)

using a 3D numerical experiment and comparing the resulting morphologies with

those obtained for single nucleus simulations using the standard anisotropy rep-

resentation (see Figure 5.7). We use the same simulation set-up as described in

Section 5.3.1.

Figure 6.1 shows the morphological evolution of the simulated lithium den-

drite and the enriched lithium-ion concentration (ζ̃+ > 1) in the vicinity of the

dendrite tips, with peak values of ζ̃+ = 2.3. In agreement with previous nu-

merical experiments, the simulation forms a spike-like, symmetric, and branched

pattern. The dendrite morphology consists of the main trunk and sets of four

equal orthogonal branches developing to the sides. The side branches grow up to
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(a) t = 0.0 [s]. (b) t = 0.1 [s]. (c) t = 0.2 [s].

(d) t = 0.4 [s]. (e) t = 0.6 [s]. (f) t = 0.8 [s].

Figure 6.1: Spike-like lithium dendrite formation with modified surface anisotropy
representation, under ϕb = −0.7 [V ] charging potential. The electrodeposited
lithium is represented with a yellow isosurface plot of the phase-field variable
ξ = 0.5. Electrolyte regions with enriched concentration of lithium-ion (ζ̃+ > 1)
represented with orange volumes. Cube domain set as 80×80×80 [µm3]. Phase-
field interface thickness δPF = 1.5 [µm] & mesh size h = 0.5 [µm].

18[µm] long (60% longer than in previous simulations), and 5 to 10[µm] width.

Furthermore, the side branches growth is not perpendicular to the main truck but

at an angle of about 25◦ to 50◦, with a separation of about 4 to 8[µm] between

branches. These results show improved morphological similarity with dendritic

patterns observed in lithium experiments performed by Tatsuma et al. (2001)

(see Figure 5.12b).

Figure 6.2a plots the evolution of the surface energy for the 3D lithium pat-

terns we simulate, revealing equivalent energy levels (less than 4% difference)

when compared against the results previously obtained using the initial, non-

modified, anisotropy representation. Thus, the numerical experiment demon-
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Figure 6.2: Comparison between 3D simulations of lithium dendrite growth (sin-
gle nucleus initial vs modified surface anisotropy), in terms of the evolution of
the surface energy a, and volume vs surface area ratio over time b.

strates that the modified anisotropy representation did not significantly affect

the surface energy. Additionally, Figure 6.2b characterizes the morphology by

tracking the dendrites’ volume-specific area (µm2/µm3). We compute the volume-

specific area average ratios of 0.83 and 0.78 [µm2/µm3] for the single nucleus and

modified anisotropy simulations, respectively. The slightly lower surface area/volume

ratio of the modified anisotropy representation (-6%) indicates the dendrite growth

has fewer but larger branches.

6.1.3 Mesh orientation effect for different surface anisotropy

representations

We further compare the behavior of the standard and modified anisotropy rep-

resentation behavior by studying the mesh orientation’s effect on each simulated

pattern. So far, the simulations results use structured meshes aligned with the

Cartesian axes. Unlike previous 3D simulations, we now proceed to redistribute

the mesh (node’s mapping) by performing a 25◦ rotation around the x-axis, as

depicted in Figure 6.3. Thus, here we test the dendrite’s sensitivity to the mesh

orientation. Figure 6.4 compares the dendrite morphologies using the standard

anisotropy representation, using Cartesian, as well as 25◦ rotated mesh distri-
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(a) (b)

Figure 6.3: Bottom a & perspective b views of the 3D mesh with 25◦ rotation
around the x-axis (node’s mapping). Cube domain set as 80× 80× 80 [µm3].

bution (see Figure 6.3). We compare dendrite’s cross sections (horizontal slices)

at positions LO = 5, 10, 15 & 25[µm]. The analysis reveals an alignment of

dendrites’ side branches to the mesh orientation (angular offset), with no major

differences in terms of the simulated dendrite’s shapes.

Figure 6.4: Overlay of 3D simulated dendrite morphologies (non-modified
anisotropy representation), obtained under Cartesian mesh (red), and 25◦ ro-
tated mesh around the x-axis (blue). Horizontal slices of the dendrite’s contour
plots at positions LO = 5, 10, 15 & 25[µm] depict the angular offset between the
morphologies.

Figure 6.5 shows simulated dendrite morphologies under the rotated mesh
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Figure 6.5: 3D simulation results using a single artificial protrusion with the
initial a and the modified surface anisotropy representation b, under a 25◦ rotated
mesh around the x-axis (longitudinal). Horizontal slices of the dendrite’s contour
plot at positions LO = 5, 15, 25 & 30[µm] depict the orientation θ of the side
branches. We use dendrite’s common height (H = 45 [µm]) as the basis of our
comparison.

distribution, using the standard and modified surface anisotropy representations.

Now, we analyze the dendrite’s side branches orientation θ at fixed positions

LO = 5, 15, 25 & 30[µm] (horizontal slices of dendrite’s contour plot). We define

the orientation θ as the inclination of the line that crosses the geometry by passing

through its center and connecting the two farthest points of the contour (see Fig-

ure 6.5). We compare dendrite morphologies at the moment they reach a height
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of H = 45 [µm]. The analysis of the dendrite’s side branches (horizontal slices) in

Figure 6.5 reveals that the standard anisotropy representation is more sensitive

to the orientation of the mesh. For example, orientation analysis in Figure 6.5a

depicts dendrite’s rotation angles of around θ = 23◦, evidently aligned with the

25◦ of rotation imposed to the mesh. The side branches, due to the modified

surface anisotropy representation (6.4) exhibit significantly smaller rotations of

about θ = 4◦, using the same simulation conditions (see Figure 6.5b). Thus, the

modified anisotropy model shows reduced sensitivity with respect to the mesh.

6.1.4 3D Orientation of lithium crystal: A surface anisotropy-

based strategy

Given the random nature of the nucleation process, we need to deal with some

degree of randomness and uncertainty when determining the preferred growth

direction of the dendrite’s crystal in the battery. The orientation of the crystal,

determined by the orientation of the surface anisotropy, will direct the preferred

direction of growth of the lithium dendrite. Thus, we adapt this well-known

crystal growth model for solidification in (Takaki et al., 2013) to electrodeposition

dendrite growth. We define a material system of coordinates (x̃, ỹ, z̃), in which

each axis corresponds to the ⟨100⟩ direction of a cubic lattice. The following

coordinate transformation T is used between the coordinate systems of (x, y, z)

and (x̃, ỹ, z̃):


δξ
δx̃

δξ
δỹ

δξ
δz̃

︸ ︷︷ ︸
∂ξ
∂x̃i

=


1 0 0

0 cos θx sin θx

0 − sin θx cos θx




cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy




cos θz sin θz 0

− sin θz cos θz 0

0 0 1


︸ ︷︷ ︸

T


δξ
δx

δξ
δy

δξ
δz

︸ ︷︷ ︸
∂ξ
∂xi

.

(6.5)

where θx, θy, and θz are the rotation angles around the x, y, and z axes,
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respectively.

𝜃 = 31°

(a) (b)

Figure 6.6: Top a & perspective b views of the 3D spike-like lithium dendrite
simulation, with θx = 35◦ rotation of the surface anisotropy. Top view overlaid
with mesh shows that dendrite’s orientation is not aligned with the Cartesian
axes.

We use (6.5) to compute the gradient of the phase-field variable (∇ξ) and use

it in the surface anisotropy expression (6.1). Therefore, we can assign random

values to each of the rotation angles (θx, θy, θz) to control the preferred growth

direction of the lithium dendrite and side branches. We test the proposed strategy

by applying a θx = 35◦ rotation (θy = θz = 0◦) to the lithium surface anisotropy

when using a Cartesian mesh. Figure 6.6 shows the simulated spike-like lithium

dendrite morphology after t = 0.7 [s]. The top-view analysis 6.6a reveals that

this rotation resulted in a dendrite rotation of about θ = 31◦ under the applied

anisotropy angle, showing the effectiveness of the proposed strategy.

6.1.5 Mesh size effect for different surface anisotropy rep-

resentations

Following Section 5.3.3, we study the spatial sensitivity of the modified surface

representation under mesh refinement. Given spike-like lithium dendrite symme-

try (see Figure 6.1), we use symmetry condition of Section 5.3.3 to reduce the
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computation cost and improve the mesh resolution. Thus, we model only one-

quarter of the domain, using a 200× 100× 100 tensor-product mesh with a mesh

spacing of 0.25 [µm] in the region of interest (bottom half of the domain). The

node mapping produces a finer mesh to properly capture the smaller phase-field

interface thickness δPF = 1 [µm] (4 elements in the interface; see Sections 4.3.3

and 5.3.3) and the steepest gradients of ζ̃+ and ϕ.

Figure 6.7 shows the simulated lithium dendrite (isosurface plot of the phase-

field variable ξ = 0.5). The simulation forms a spike-like and highly branched

pattern. We calculate the electric field distribution by differentiating the resolved

electric potential E⃗ = −∇ϕ. Figure 6.7 shows how the electric field localizes in

the vicinity of the dendrite tip (see (3.22)). In agreement with previous numerical

experiments (cf. Figure 5.8), the electric field distribution leads to an enriched

concentration of the lithium-ion it induces due to the strong migration from the

surrounding regions (Liang and Chen, 2014). The dendrite growth does not occur

perpendicular to the stack but at an angle of about 22◦ between main trunks (cf.

Figure 6.6)). The stacks repel each other, similar to previous multiple-nuclei

results (cf. Figure 5.11).

Figure 6.7: Overlay of electric field distribution (blue streamlines) with dendrite
morphology under the modified surface anisotropy representation at time t =
0.7 [s]. We combine in this figure 4 symmetric copies. Streamline plane set at
y = 40 [µm].
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Figure 6.8 compares the effect of the mesh resolution and phase-field interface

thickness on the simulated morphologies, with and without the presence of the

modified surface anisotropy term. For the modified surface anisotropy represen-

tation, smaller phase-field interface thickness (δPF ) and finer mesh resolution (h)

lead to more branched and detailed dendritic patterns. However, in the stan-

dard case, higher mesh resolution leads to less branched micorstructures (see

Figure 6.8c).

Despite the morphological differences mentioned above, the computed lithium

electrodeposition average rate in this case (10,800 [µm3/s]) is within analogous

simulation results under coarser mesh resolution (9,150 [µm3/s], see Figure 6.2b),

as well as simulation result using the standard anisotropy representation, using

coarse and fine mesh options (10,100 to 12,400[µm3/s], see Figure 5.23). These

results show that using the modified surface anisotropy representation is robust in

relation to the rate of electrodeposition (volume of lithium metal deposited over

time), showing relatively low sensitivity to numerical parameters of our choice

(δPF and R). In practice, the amount of dendritic lithium directly reduces the

Coulombic efficiency of the battery (Adams et al., 2018). Therefore, we envisage

a future application of our model in evaluating Coulombic efficiency reduction

due dendite’s formation in rechargeable lithium batteries.

6.2 Experimental-scale three-dimensional simu-

lations of lithium dendrite formation

This section evaluates the performance of the modified surface anisotropy model

(see Section 6.1.1) in experimental-scale interelectrode distances.
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(a) t = 0.58 [s] (b) t = 0.80 [s]

(c) t = 0.52 [s] (d) t = 0.71 [s]

Figure 6.8: Comparison of fully developed lithium dendrite morphologies un-
der ϕb = −0.7 [V ] charging potential. The electrodeposited lithium is repre-
sented with a yellow isosurface plot of the phase-field variable ξ, overlaid with
the mesh grid. Top row (a & b) presents simulation results obtained under
coarser mesh resolution (h=0.5 [µm] & δPF = 1.5 [µm]). Bottom row (c & d) de-
picts results obtained under finer resolution (h=0.25 [µm] & δPF = 1 [µm]). Left
column (a & c) correspond to simulated morphologies using the non-modified
surface anisotropy representation, and the right column (b & d) allocates den-
dritic patterns under the modified anisotropy representation. We use dendrite’s
common height (H = 45 [µm]) as the basis of our comparison. Cube domain set
as 80× 80× 80 [µm3] in all cases.

6.2.1 Meshing strategy for experimental-scale 3D simula-

tions

The high computational cost of detailed 3D simulations of lithium electrodepo-

sition at the whole-cell scale is a well-known challenge of electrodeposition sim-

ulations (Cogswell, 2015; Yurkiv et al., 2018). A limiting factor is the domain
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𝑙!

𝑙!!

Figure 6.9: 3D mesh partition in 8 processors, each one represented by a different
color. Magnified view of the region of interest (lxu ≪ lx), showing a uniform to
exponential mapping transition while moving into the bulk region of the domain.

size, which imposes practical restrictions on the 3D simulations. Previously, we

chose a domain size of (80 × 80 × 80 [µm3]) that ensures the simulation volume

at an affordable computational cost. But this short domain (electrode separation

of lx = 80 [µm]) induces dendrite growth rates that are two orders of magnitude

higher than those observed experimentally.

A detailed analysis of lithium dendrite experiments reveals that, despite the

interelectrode separation distance in experimental cells, which ranges from 1 to

10[mm] (Nishikawa et al., 2011; Nishida et al., 2013; Yufit et al., 2019), the

lithium dendrites effectively occupy up to 20% of the interelectrode space. Thus,

we focus on this area of interest, the region/volume of the experimental cell

where lithium dendrites develop, near the anode surface. Furthermore, previous

simulation results show that the spatial distribution of the variables in the bulk

region (outside the area of interest) exhibit either constant values, such as ξ =

0 and ζ̃+ = 1, or small electric potential gradients ∇ϕ. This weak variation

indicates that only a few elements may adequately capture the bulk behavior. At
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the same time, we assign most computational resources to the area presenting

the steepest gradients of ξ, ζ̃+ and ϕ, representing a small portion of the whole

domain.

This section applies the modified anisotropy representation in 3D simulations

targeting experimental time and length scales. We describe a simple meshing

strategy that exploits the aforementioned distribution by combining uniform

node’s mapping in the portion of the physical domain where the lithium elec-

trodeposition process occurs (finer and regular mesh), with an exponential incre-

ment of the mesh size as we move away from the electrode into the electrolyte’s

bulk region. Thus, we use a 3D structured mesh with eight-node hexahedral el-

ements. Within the bulk region, in particular in the x-direction xr = 2j × xu

with j = 1, 2, ..., n; where xu is the node’s x coordinate normalized by lx, before

mapping (uniform distribution), and xr is the node’s mapped coordinate. The

exponential function transitions smoothly by doubling the element size when

moving away from the area of interest into the bulk region. This focussed-mesh

distribution in the area of interest and subsequent stretching allow us to achieve

experimental interelectrode distances with only a few additional elements. Con-

sequently, although the detailed portion of our domain (lxu) remains the same

(80×80×80 [µm3]), we are now able to avoid simulations with higher-than-normal

dendrite’s growth rates, by achieving experimental interelectrode distances (lx

up-to 5000 [µm]).

Thus, we select a geometrical unit that characterizes a real cell structure (Yurkiv

et al., 2018; Trembacki et al., 2019). We choose a computational domain of

5000× 80× 80 [µm3]. Figure 5.1b summarizes the boundary conditions we apply.

Lateral dimensions remain unchanged in this case (ly = lz = 80 [µm3]), which

along with periodic boundary conditions applied on the lateral faces, generates a

80 [µm]×80 [µm] nucleation arrangement surrounding the simulated morphology

(neighbouring dendrites). The implemented approach constitutes a more realis-

tic alternative than modelling a single isolated dendrite (Nishikawa et al., 2011;
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Nishida et al., 2013). Furthermore, neighboring dendrites act as a barrier (charge

repulsion effect) that limits the side development of the simulated electrodeposit

beyond the domain’s boundaries.

We use a 180×100×100 tensor-product mesh, with a mesh size of 0.4 [µm] in

the region of interest (lxu). We partition the mesh into eight processors. Figure 6.9

identifies each core with a different color, showing that the tensor-product mesh

can efficiently allocate resources in the region of interest (lxu).

6.2.2 Experimental-scale 3D simulations

This section presents 3D phase-field simulations of lithium dendrite formation to

study dendritic patterns formed under ϕb = −0.7 [V ] and ϕb = −1.4 [V ] charg-

ing potential, using experimental-scale interelectrode distance (lx = 5000 [µm]).

We use artificial nucleation regions, ellipsoidal protrusions (seeds) with semi-axes

4 [µm]× 2 [µm]× 2 [µm], and centres located at (y, x, z) = (0, 38, 38), (0, 42, 38),

(0, 38, 42) and (0, 42, 42). We modify the initial condition, by introducing a con-

stant electric potential gradient in the liquid electrolyte region, from ϕ = ϕb at the

electrode-electrolyte interface, to ϕ = 0 at x = lx (cathode), which corresponds

to the experimental observations by Nishida et al. (2013). They measured the

initiation periods (time transient) for dendrite precursors to start to grow (be-

come visible under an optical microscope) between 4 to 140 s (Nishida et al.,

2013); shorter initiation times occur under larger applied current density. There-

fore, sufficiently developed dendrite nuclei may take several seconds to appear,

depending on the electrodeposition conditions. This time is sufficient for devel-

oping the electric potential gradient in the electrolyte. In addition, the initial

conditions for ξ and ζ̃+ remain the same, with a smooth transition between the

solid seed (lithium metal anode) and the surrounding liquid electrolyte region

(see Section 5.1).

Figure 6.10 shows the morphological evolution of the simulated lithium den-

drite (isosurface plot of the phase-field variable ξ) under ϕb = −0.7 [V ] charging
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(a) t = 5 [s]. (b) t = 30 [s]. (c) t = 50 [s].

(d) t = 90 [s]. (e) t = 150 [s]. (f) t = 210 [s].

Figure 6.10: 3D lithium dendrite simulation with modified anisotropy represen-
tation, under ϕb = −0.7 [V ] charging potential. The electrodeposited lithium
is represented with a yellow isosurface plot of the phase-field variable ξ = 0.5.
Hexagonal domain set as 5000× 80× 80 [µm3].

potential. This setup yields realistic simulation time scales due to the larger

interelectrode distance we employ (Nishikawa et al., 2011). Stationary propaga-

tion rates (dendrite’s tip speed) of around 0.2 [µm/s] are reached after 70 s of

simulation (see Figure 6.13a). The simulated growth rates are larger than those

reported by Nishikawa et al. (2011) in experimental measurements of lithium

dendrite growth in 1M LiPF6 electrolyte (0.06 [µm/s]) due in part to the higher

(almost double) applied current density in our model. Our results are within

the range of lithium dendrite growth rates reported by Nishida et al. (2013)

(0.25− 0.55 [µms−1]) using a different electrolyte type (LiTFSI). Therefore, fur-

ther well-controlled experimental studies, with detailed characterization of the

system parameters, combined with modelling will be necessary to improve the
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correlation (Akolkar, 2014). Unlike previous 3D simulations, forming spike-like

patterns (cf. Figure 5.11), this case yields less branched, blunt tip, finger-like mor-

phologies. The dendrite morphology consists of four main trunks growing from

each nucleus, with pairs of orthogonal branches developing to the sides. The ob-

served morphological difference is a consequence of the spatial distribution of the

electrostatic potential in the electrolyte (ϕ). Although the applied electric poten-

tial remains the same (ϕb = −0.7 [V ]) the larger interelectrode distance results in

a significantly different electric field distribution (E⃗ = −∇ϕ). The electric field

surrounding the electrodeposit region can be 60 times smaller than in previous

simulations lowering the current density (consistent with the change ratio in the

interelectrode distance 5000 [µm] /80 [µm] = 62.5). This weaker current density

results in a weaker action of the electric migration forces over the distribution of

lithium ions in the electrolyte. Thus, lithium ions are less prone to accumulate

around dendrite tips due to the counteracting influence of diffusion due to the

concentration gradient (3.22), producing less branched and blunt morphologies.

80 𝜇𝑚

5000 𝜇𝑚

Figure 6.11: 3D mesh overlaid with simulated lithium dendrite morphology at
t = 210 [s] (ϕb = −0.7 [V ]). Magnified view of the region of interest (lxu ≪ lx),
showing a uniform to exponential mapping transition while moving into the bulk
region.

The lower electric field effect is in agreement with experimental observations
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by Chae et al. (2022), where a variation of the separation between the electrodes

revealed a considerable difference in the electrochemical deposition of lithium

(experiments under 1[mA/cm−2] applied current density). Chae et al. (2022)

observed that the lithium deposition behavior and morphology changed from

”hazardous” needle- and moss-like dendritic structures to ”safer” morphologies

(smooth and round shaped surface) as interelectrode spacing increases. The vari-

ation of lithium deposition behavior was ascribed to a difference in the Li-ion

concentration distribution. Thus, when under shorter interelectrode separation

(< 500 [µm]), lithium electrodeposition occurs closer to the high Li-ion concentra-

tion regions (formed by the release of Li-ions from the counter electrode), produc-

ing a non-uniform directional deposition of lithium. Sharp dendritic structures

can grow and penetrate porous separators, which are potentially dangerous as

they can create a short battery circuit (Bai et al., 2018). On the other hand,

larger electrode separations (2000 and 4000 [µm]) lead to a more uniform depo-

sition, without any angular edges or sharp tips, due to lower Li-ion concentra-

tion and electric potential gradients (Chae et al., 2022). Although the current

density applied in the present simulation is lower than in previous numerical ex-

amples, it remains well above the limiting current density of the system, about

ilim = 2 [mA/cm−2] (Bai et al., 2016). For over-limiting current densities applied

to the cell, the rate of lithium deposition overcomes the rate of solid-electrolyte

interface formation, allowing the lithium deposit to grow almost free from the

influence of the SEI (Bai et al., 2018).

Figure 6.11 shows that the fully developed lithium dendrite morphology (t =

210 [s]) resides within the region of interest (well-resolved portion of the domain:

≤ 80 [µm]), which makes-up only 1.6% of the whole domain. Although the system

size is similar to previous 3D simulations presented in this work (5,400,000 degrees

of freedom), the temporal evolution is slower, increasing the computational time

by four times.

Next, we present a 3D phase-field simulation of lithium dendrite formation
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(a) t = 5 [s]. (b) t = 30 [s]. (c) t = 50 [s].

(d) t = 80 [s]. (e) t = 110 [s]. (f) t = 150 [s].

Figure 6.12: 3D lithium dendrite simulation with modified anisotropy represen-
tation, under ϕb = −1.4 [V ] charging potential.The electrodeposited lithium is
represented with a yellow isosurface plot of the phase-field variable ξ. Hexagonal
domain set as 5000× 80× 80 [µm3].

under more negative applied voltage ϕb = −1.4 [V ]. We use the setup of the pre-

vious experiment, with the sole difference of the applied voltage ϕb. We adjust

the interfacial mobility parameter Lσ (3.19) to the newly applied electro poten-

tial to achieve the right balance between the phase-field interface energy term

and the electrochemical reaction contribution (see Section 3.1.1). Figure 6.12

depicts the evolution of the lithium dendrite (ξ isosurface). As in the previous

experimental-scale case, we obtain realistic simulated time scale, with stationary

dendrite propagation rates of about 0.4 [µm/s] (see Figure 6.13b). The higher

propagation rate in this case is due to the higher applied current density (from

ϕb = −0.7 to −1.4 [V ] charging potential), which agrees with experimental re-

sults, where higher current densities produce faster electrodeposition and dendrite

propagation rates (Monroe and Newman, 2003; Nishikawa et al., 2011; Akolkar,
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2013). Furthermore, we see that computed dendrite propagation rates are within

the range of lithium dendrite experiments reported by Nishida et al. (2013).
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Figure 6.13: Simulated 3D lithium dendrite propagation plot. Dendrite length
(blue) & propagation rate (red) vs time for applied voltages: (a) ϕb = −0.7 [V ],
and (b) ϕb = −1.4 [V ].

0[𝑠] 5[𝑠] 20[𝑠] 60[𝑠] 150[𝑠]110[𝑠]

Figure 6.14: Evolution of the spatial distribution of lithium-ion concentration,
overlaid with dendrite morphology. Contour plane set at y = 35 [µm], display
of first 400 [µm] portion of the domain. Experimental interelectrode distance
lx = 5000 [µm], and applied voltage ϕb = −1.4 [V ].

The simulation produces a spike-like, symmetric, and highly branched pattern,

with morphological resemblance to previous dendritic deposits obtained under

shorter interelectrode distance (cf. Figure 5.11). The microstructure consists of

four main trunks growing from each nucleus, with pairs of orthogonal branches
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developing to the sides. Figure 6.14 depicts the evolution of the simulated spike-

like dendritic morphology, together with the spatial distribution of the lithium-ion

concentration ζ̃+ in the electrolyte region.

Figure 6.14 shows the evolution of the Li-ion concentration profile extending

over 400 [µm] in the stack direction (x); where the deposition process depletes

the lithium-ion concentration close to the electrode (shown in blue). This behav-

ior contrasts with smaller-scale simulations presented earlier in this work, where

Li-ion concentration enriches the dendrite tips due to large electric migration

forces (see Figure 6.2). This dendrite-tip enrichment can happen in a close-to-

short-circuit condition (short interelectrode distance). Nevertheless, our simula-

tions indicate that lower electro-potential gradients, such as those obtained under

experimental-scale interelectrode distances, do not generate high Li-ion concen-

tration around the dendrite tips (competition between electric migration and

diffusion due to the Li-ion concentration gradient). This observation is in agree-

ment with experimental measurements of Li-ion surface concentration by Nishida

et al. (2013), where the concentration of Li-ion near the electrode surface was re-

duced from 1 M (initially) to less than 0.1 M, after a few tens of seconds of

electrodeposition, depending on the experiment’s conditions.

We obtain apparent morphological differences from the previous dendritic

lithium electrodeposition simulation under the experimental-scale domain (cf.

Figure 6.10). Although in this case, the electric field (E⃗ = −∇ϕ) surround-

ing the electrodeposit region remains low relative to previous simulations with

shorter interelectrode separation ∼ 30 times smaller; the larger charging voltage

(ϕb = −1.4 [V ]) induces a spike-like and highly branched dendrite (over-limiting

current density condition). This result agrees with previous two-dimensional

phase-field studies investigating the effect of the applied voltage on the electrode-

posit’s morphological structure. Increasing the applied voltage produces faster

dendrite formation with the tip splitting phenomenon (Chen et al., 2015), chang-

ing from a needle or finger-like structure to a tip splitting or spike-like pattern (Mu
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(a) ϕb = −0.7 [V ] ; t = 100 [s]. (b) ϕb = −1.4 [V ] ; t = 65 [s].

Figure 6.15: Comparison of lithium-ion concentration gradients for (a) ϕb =
−0.7 [V ], and (b) ϕb = −1.4 [V ], applied voltage. Electrolyte regions with higher

lithium-ion concentration gradient (∥∇ζ̃+∥ > 0.005) represented with red vol-
umes. Interelectrode distance lx = 5000 [µm]. We use dendrite’s common height
(H = 45 [µm]) as the basis of our comparison.

et al., 2019). The reactive term of the phase-field equation, see (6.4), is expo-

nentially affected by the electric potential through ηa = ϕ − EΘ. The applied

voltage increases the degree of polarization on the electrode, affecting the depo-

sition and accumulation of lithium on the anode surface, which leads to changes

in the morphology of lithium dendrites (Mu et al., 2019). One verifies this by

inspecting the Li-ion concentration gradient ∥∇ζ̃+∥ in the electrolyte region sur-

rounding the dendrites morphologies. Figure 6.15 shows a comparison between

the experimental-scale simulation results obtained under different charging volt-

ages: ϕb = −0.7 [V ] (Figure 6.15a), and ϕb = −1.4 [V ] (Figure 6.15b). Electrolyte

regions with higher lithium-ion concentration gradients (∥∇ζ̃+∥ > 0.005) are

represented with red volumes. Thus, higher lithium-ion concentration gradients

appear in the vicinity of the dendrites’ tips and side branches in Figure 6.15b lead-

ing to a spike-like, highly branched dendritic lithium (resembling the previously

observed electric-migration versus diffusion due to the Li-ion concentration gra-

dient competition happening here at a smaller scale). In contrast, Figure 6.15a,

under lower applied voltage, only presents higher lithium-ion concentration gra-

dients in the vicinity of upper tips of the dendrite triggering vertical and less
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branched growth. Therefore, the spike-like lithium morphologies forming under

over-limiting current density (fast battery charge) (Jana et al., 2019) can occur

either using a large electric field (E⃗ = −∇ϕ) surrounding the electrodeposit re-

gion (close-to-short-circuit condition) or under a large applied voltage ϕb (fast

battery charge). This forcing produces strong electric migration forces, causing

lithium cations to move from less concentrated surrounding regions (i.e., lithium-

ion depletion of valley regions) and accumulate around dendrite tips, triggering

spike-growing and highly branched dendritic lithium.

Figure 6.16: Morphological comparison between 3D simulations of spike-like
multi-nuclei dendrite growth, smaller-scale with non-modified anisotropy repre-
sentation (red - Section 5.3.2), and experimental-scale with modified anisotropy
representation (blue), in terms of the evolution of volume vs surface area ratio.

Following (Yufit et al., 2019), we characterize the morphology by tracking the

dendrites’ volume-specific area (µm2/µm3). Figure 6.16 compares the growth of

the deposited volume versus the surface area for the 3D spike-like lithium pattern

we simulate (short interelectrode separation vs experimental-scale results).

Despite differences in the time and length scales between these simulations,

we obtain similar volume-specific area average ratios; 0.91 and 0.97 [µm2/µm3],
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Figure 6.17: Morphological analysis of 3D spike-like dendrite growth simulation
in terms of number of side branches developed over time. Experimental interelec-
trode distance lx = 5000 [µm], and applied voltage ϕb = −1.4 [V ].

for smaller-scale and experimental-scale simulations, respectively. The higher

surface area/volume ratio indicates a more branched shape in the experimental-

scale simulation. Both cases are within the volume-specific results reported for ex-

perimental formation of dendrites in zinc batteries (0.86 and 1.04 [µm2/µm3]) (Yu-

fit et al., 2019) (the literature lacks experimental data for quantitative character-

ization of the spike-like lithium morphologies).

Remark 1 The similar area/volume average ratios between the dendritic mi-

crostructures formed using the experimental-scale simulation domain and the de-

position patterns obtained under the short interelectrode distance setup (close-to-

short-circuit condition) opens the possibility of using small-scale (lower-cost) 3D

simulations. For example, the earlier ones in this work may be a useful testing tool

to assess and adjust different 3D strategies before moving into more expensive,

well-resolved larger-scale 3D simulations.

Figure 6.17 tracks the number of side branches formed over time. The simula-
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tion produces stationary ratios of about 0.5 branch per second [1/s]. We compute

the number of branches by visual inspection of the simulated morphologies, where

we consider new protuberances as incipient branches. Given the lack of exper-

imental data in the literature for quantitative characterization of the spike-like

lithium morphologies, we rely on experimental results for zinc dendrites. Yu-

fit et al. (2019) report values between 0.19 and 0.92 branches per second [1/s]

for experimental formation of ”spruce tree”-like dendrites in zinc batteries under

ϕb = −1.6 [V ] applied voltage, and 3000 [µm] interelectrode separation. Thus, we

observe agreement between the simulated branching dynamic and experimental

data.
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Figure 6.18: Time adaptivity plot for 3D lithium dendrite growth simulation
under ϕb = −1.4 [V ] charging potential, and experimental-scale interelectrode
distance (5000 [µm]).

Figure 6.18 shows the behaviour of the time-adaptive scheme, throughout

the 150 [s] of the simulation. Starting with a small time-step of ∆t0 = 10−8 [s]

to initially achieve convergence, followed by an increase in size, until reaching a

stationary value of about ∆tn+1 = 0.05 [s] (almost two orders of magnitude larger

than previous simulations under smaller interelectrode distance). The weighted

truncation error en+1 (blue) stays close to the minimum tolerance limit (10−9)

during the whole simulation. The estimated error does not grow exponentially
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as in previous cases (cf. Figure 5.16) since the lithium dendrite remains far away

from the positive electrode (propagation rate does not accelerate).
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Figure 6.19: Energy time series for 3D spike-like dendrite growth simulation with
modified anisotropy representation, under ϕb = −1.4 [V ] applied voltage, and
interelectrode distance lx = 5000 [µm]. The insets plot the increasing chemical
and surface energy in smaller scale for better appreciation.

Standard discrete approximations do not inherit the a priori nonlinear stability

relationship satisfied by phase-field models, expressed as a time-decreasing free-

energy functional (see, e.g., Gomez and Hughes (2011); Sarmiento et al. (2018);

Vignal et al. (2017) for discussions on energy stable time-marching methods).

Therefore, we study the energetic evolution of our system. Figure 6.19 shows

the evolution of the Gibbs free energy of the system Ψ, using our adaptive time

integration scheme for the experimental-scale phase-field simulation. We plot

the total energy curve (black), as well as three additional energy curves that

correspond to each one of its terms, namely, the Helmholtz (chemical) free en-

ergy
∫
V
fchdV (blue), surface energy

∫
V
fgraddV (green), and electrostatic energy∫

V
felecdV (red), as the figure indicates. Figure 6.19 shows that the total systems’

discrete free energy does not increase with time. Thus, we obtain discrete energy
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stable results in experimental-scale simulations using our second-order backward-

difference (BDF2) time-adaptive marching scheme, although the method is not

provably stable energetically. Moreover, while the system’s surface and chemical

energies grow as the area of the lithium deposit increase, the electrostatic energy

decreases in time. This behaviour, previously observed in smaller scale 3D simu-

lations, is consistent with the electrodeposition process, where the system stores

the applied electrostatic energy as electrochemical energy as the battery charges.

The inset in Figure 6.19 shows that the surface energy of the fully developed pat-

tern is almost four times larger than the surface energy computed in Figure 5.17

for the smaller-scale simulation. The proportionately four-times larger surface

area in the experimental-scale case (see Figure 6.16) explains this scaling.

In conclusion, well-resolved experimental-scale simulations using a modified

3D surface anisotropy representation of lithium crystal have been performed.

The modified model improves the simulation results being less sensitive to the

mesh orientation. We simulate two charging voltages (ϕb = −0.7 [V ] and ϕb =

−1.4 [V ]), revealing details about the mechanism behind spike-like dendrite growth

at experimental scale. Furthermore, we verify measured morphological parame-

ters, such as simulated dendrite propagation rates, volume-specific area, and side

branching rates, within the reported ranges for experimental electrodeposition

of spike- or tree-like metal dendrites. Our experimental-scale analysis confirms

the connection between lithium dendrite formation and the competition effect

between lithium cations diffusion and electrical migration, generating an uneven

distribution of Li+ on the electrode surface that increases under more negative

applied voltages (fast battery charge). This fact reaffirms our insight into strate-

gies of dendrite suppression, focusing on achieving a more uniform distribution

of Li-ion concentration on the anode surface as an effective approach to reduce

the dendrite formation propensity.
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Chapter 7

Conclusions and research

perspectives

7.1 Conclusions

A computational investigation of lithium electrodeposition in rechargeable metal-

anode batteries has been performed, having major technological significance for

modern battery systems. 1 Enhancing the energy density and life cycle of energy

storage systems is a major driving force for research into new battery technologies.

Novel rechargeable lithium-metal batteries (LMBs) can achieve ultra-high energy

densities (Figure 1.2) by avoiding the use of a graphite anode structure (compare

conventional Li-ion and LMB structures and charging mechanisms in Figure 1.3).

The greatest challenge to achieve the commercial realisation of LMBs is related to

1Parts of the content of this chapter are published in:

- Arguello, M. E., Gumulya, M., Derksen, J., Utikar, R., & Calo, V. M. (2022). Phase-
field modeling of planar interface electrodeposition in lithium-metal batteries. Journal
of Energy Storage, 50, 104627.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling
using open-source finite element library. Journal of Energy Storage, 53, 104892.

- Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J.
(2022). Three-dimensional experimental-scale phase-field modelling of dendrite forma-
tion in rechargeable lithium-metal batteries. Publication under review.
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the unstable, nonuniform deposition of lithium during battery charge (Figure 1.4).

Thus, controlling the morphology of the electrodeposited material is a serious

challenge, which drastically affects the capacity, stability and safety of LMBs.

Within computational research, based on classical chemical reaction kinetics,

our literature review work reveals that the phase-field method is a suitable mod-

eling technique for studying mesoscale (µm) electro-kinetic phenomena, such as

dendritic electrodeposition of lithium, with a reasonable computational cost (see

Figure 2.4). Phase-field (diffuse-interface) models can simulate the morphology

evolution of lithium electrodeposit due to reaction-driven phase transformation

within metal anode batteries (Figure 2.6) and rationalize morphology patterns of

dendrites observed experimentally (Figure 2.2).

Thus, we develop a computational model based on the framework of phase-

field models, to investigate the electrodeposition process that forms dendrites

within metal-anode batteries. We derive the free energy functional model, ar-

riving at a system of partial differential equations that elucidates the evolution

of a phase field (ξ), the lithium-ion concentration (ζ̃+), and an electric potential

(ϕ); a summary of the dendrite growth model is presented in Section 3.1.4. We

formulate, discretize (Section 3.2), and solve the set of partial differential equa-

tions describing the coupled electrochemical interactions during a battery charge

cycle using an open-source finite element library that allows us to use paral-

lel solvers. We apply a time-adaptive strategy and detail its implementation and

parametrization (Section 3.3). The implemented time-adaptive strategy produces

energy stable results, expressed as a time-decreasing free-energy functional.

We use one-dimensional (planar interface) simulations (Figure 4.1) as an ef-

fective strategy to quantify the resolution requirements of the model under study,

that allows us to set ground rules for further 2D and 3D simulations. We per-

form phase-field simulations to describe the flat electrode evolution during metal

(lithium) electrodeposition. We demonstrate the validity of the current model by

comparing the simulation results with theoretical Faradic reactions (4.2) and the
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kinetics of the sharp-interface Butler-Volmer model (3.3).

The planar interface simulations also allowed us to compare 2 alternate formu-

lations of the phase field model, derived from either a free energy functional (3.22)

or a grand canonical approach (3.26). We assess each model’s sensitivity to the

numerical and physical parameters and their robustness. Our results showed that

while both formulations demonstrated a dependency of electrodeposition rate on

the phase-field interface thickness (and the applied voltage), a lower degree of

sensitivity was obtained with the case of the conventional free energy approach

(see Figure 4.5).

We show that 1D interface-thickness-independent growth (convergent results)

are possible well before reaching the physical nanometer interfaces width (ichi

Morigaki, 2002). In general, wider interfaces (δPF > 1 [µm]) increase the re-

active area in the simulation, which induces faster electrodeposition rates (see

Figure 4.6). We required smaller phase-field interface thickness (δPF = 0.5 [µm]),

with higher mesh resolution (h = 0.125 [µm]), to capture reaction rates under

more negative electric potential values (ϕb = −0.5 [V ]) using the grand canon-

ical formulation (Figures 4.7 and 4.8). Consequently, the computational cost

significantly increases, making this class of models intractable for applications in

three-dimensions under large negative applied voltages involving dendrite growth

under fast battery charge. Thus, we select the free energy formulation (3.8) as

the approach to proceed with 2D and 3D simulations.

In addition to planar interface studies, further 2D simulations complete the

groundwork setting for 3D phase-field simulations of lithium dendrite forma-

tion. This include 2D testing of the numerical parameters previously defined

through 1D electrodeposition studies, such as phase field interface thickness

(δPF = 1.5 [µm]) and mesh resolution (h = 0.5 [µm] - Figure 4.9). These numeri-

cal examples assessed the framework’s effectiveness to capture the two-dimensional

development of lithium electrodeposits, starting from a planar electrode config-

uration (Figure 5.1a) as well as using artificial nucleation sites (Figure 5.1b).
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The validation of the predicted lithium dendrite propagation rates against exper-

imental results obtained from thin-cell geometries confirmed the reliability of the

proposed model (Figure 5.3) depicts the propagation comparison plot). Further-

more, the agreement attained between the simulated lithium dendrite morphol-

ogy, Li-ion and electric potential distribution (Figure 5.4) with simulation results

reported in other phase-field models of lithium dendrite growth, verifies our work

as a preliminary step to move into more complex 3D simulations.

The realisation of 3D simulations, such as those presented in this work, is an

important milestone for the study and understanding of the three-dimensional

effects triggering spike-like lithium dendrite formation (inherently three dimen-

sional patterns (Jana et al., 2019; Ding, 2016; Tatsuma et al., 2001)). These

dendritic patterns are known to grow rapidly across the electrolyte region and

penetrate through porous separators, becoming hazardous for battery opera-

tion (Bai et al., 2018). A central challenge towards the goal of 3D simulations

is the large computational cost involved in solving the highly non-linear set of

equations (PDE’s) describing coupled electrochemical interactions during a bat-

tery charge cycle. This was also evident from the scarcity of three-dimensional

phase field results identified in our literature review (Mu et al., 2020; Liu et al.,

2021).

We use several computational efficiency improvements to deliver the 3D sim-

ulations at a reasonable cost, such as time step adaptivity strategy (Section 3.3),

parallel computation (up-to 8 partitions) (Figure 5.6a), nodes’ mapping to con-

centrate the mesh in the region of interest (arcsin and exponential distributions),

and a balanced selection of the phase-field interface thickness (δPF between 1 and

2[µm]). The flexibility provided by the open source finite element library (Al-

næs et al., 2015; Kirby, 2004; Balay et al., 2021) was essential to achieve these

improvements (Hong and Viswanathan, 2020). Additional cost reduction was at-

tained by assuming artificial nucleation regions at the anode surface (Figure 5.6b).

This strategy is widely-used in phase-field simulations of electrodeposition (Zhang
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et al., 2014; Chen et al., 2015; Yurkiv et al., 2018; Mu et al., 2019); it reduces

the cost of the simulation since lithium metal can only be electroplated onto the

artificial nuclei, which enhances the growth of dendrites and allows a detailed

study of their morphology. We verify that the computational efficiency achieved

under 8 partitions is close to optimal for the current problem, in agreement with

previous work performed by Mu et al. (2020)

Three-dimensional simulations were performed in two stages according to the

size of the domain under study. In first place, electrodeposition under short

inter-electrode distance was investigated in Sections 5.3 and 6.1. These simula-

tions represent a close-to-short-circuit condition, where the dendrite propagation

rates obtained are up to two orders of magnitude faster than those that occur in

physical scale cells under the same applied voltage, due to the short separation

between electrodes lx = 80 [µm]. These small-scale (lower-cost) 3D simulations

are a useful testing ground to assess and adjust different 3D strategies before mov-

ing into more expensive, well-resolved larger-scale 3D simulations. We mimic the

cubic crystal structure and surface anisotropy of lithium by using a 3D four-fold

anisotropy model (3.10) to simulate crystal growth. We implement a modified

3D representation of the surface anisotropy (6.4), delivering improved simulation

results with less sensitivity to the mesh orientation (Figure 6.5). Furthermore,

a surface anisotropy-based strategy has been introduced in Section 6.1.4 to deal

with randomness and uncertainty when determining the preferred growth direc-

tion of the dendrite crystal in the battery.

Through a resolution sensitivity analysis, we asses the mesh-induced effect

on the simulated 3D dendrite morphology (Figures 5.20 and 6.8), energy levels

(Figure 5.21), propagation rates (dendrite’s height vs time - Figure 5.22), and

electrodeposition rates (dendrite’s volume vs time - Figure 5.23). The use of

symmetry boundary conditions (Figure 5.18) is adequate to exploit the symmetric

nature of the spike-like lithium morphologies (Tatsuma et al., 2001), reducing

the computational cost down to 25% of the original requirement, which allows us
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to use finer meshes in the sensitivity analysis. The simulated electrodeposition

rate (volume of lithium metal deposited over time) is the least sensitive to the

numerical parameters of our choice (δPF and R), while dendrite’s propagation

rate shows the strongest sensitivity. Thus, lithium average electrodeposition rates

between 10,100 and 12,400[µm3/s] (less than 20% difference) were computed for

the coarsest (h = 2 [µm]) and finest (h = 1 [µm]) mesh sizes, respectively. These

results have practical significance since the amount of dendritic lithium produced

during charge is directly linked to the reduction in Coulombic efficiency of the

battery (Adams et al., 2018), and the growth rate is related to battery short-

circuit predictions (Rosso et al., 2006). Therefore, future work may evaluate the

Coulombic efficiency reduction due to dendrite formation in rechargeable lithium

batteries.

The second stage of three-dimensional simulations evaluates the performance

of the model in experimental-scale interelectrode distances (lx = 5000 [µm] - Sec-

tion 6.2). We map the nodal distribution concentrating the nodes in the region

of interest (Figure 6.9), inspired by experimental and simulation results. Al-

though the size of the system used to perform 3D experimental-scale simulations

is similar to that of short inter-electrode distance simulations (about 5,400,000

degrees of freedom), the computational time increases significantly (up-to 4 times

longer) due to the larger simulated time scale, which is only partly compensated

by increasing time steps (compare Figures 5.16 and 6.18). For example, 3D

experimental-scale simulations presented in this work took up-to 4 weeks to be

completed using a regular computer (laptop with a 2.4 GHz processor with 8-

core Intel Core i9 and 16 GB 2667 MHz DDR4 RAM). The computational time

is almost 45 times longer than previous 2D simulations presented in this work.

We simulate two charging voltages (ϕb = −0.7 [V ] and ϕb = −1.4 [V ]), re-

vealing details about the mechanism behind spike-like dendrite growth at exper-

imental scale (non-uniform Li-ion concentration distribution on the anode sur-

face leading to an uneven deposition of lithium). Furthermore, we verify mea-
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sured morphological parameters, such as simulated dendrite propagation rates

(0.4 [µm/s] - Figure 6.13b), volume-specific area (0.97 [µm2/µm3] - Figure 6.16),

and side branching rates (0.5 [1/s] - Figure 6.17), within the reported ranges

for experimental electrodeposition of spike- or tree-like metal dendrites (Nishida

et al., 2013; Yufit et al., 2019).

The 3D distribution of the electric field (E⃗ = −∇ϕ) and lithium-ion con-

centration (ζ̃+), has been studied in detail to better understand the mechanism

behind spike-like dendrite growth. In the case of short inter-electrode separation

(80 [µm]), we observe that the electric field increases in the vicinity of the dendrite

tips (Figure 5.8), increasing the lithium-ion concentration that peaks at ζ̃+ = 2.1

(Figure 5.7). Thus, electric migration overcomes the concentration diffusion gra-

dient, causing lithium cations to move from less concentrated surrounding regions

(i.e., lithium-ion depletion of valley regions) and accumulate around dendrite tips,

triggering spike-growing and highly branched dendritic lithium (Figure 5.13a).

Unlike simulations using shorter interelectrode separation, we observe in Figure

6.14 no enrichment of Li-ion concentration surrounding the dendrite morphology

at experimental scale (ζ̃+ < 1). However, electric migration forces continue to

cause lithium cations to move from less concentrated surrounding regions and

accumulate around dendrite tips (identified as higher lithium-ion concentration

gradients ∥∇ζ̃+∥ > 0.005), triggering spike-growing and highly branched den-

dritic lithium in the case of ϕb = −1.4 [V ] charging potential (Figure 6.15b).

In contrast, under 50% lower applied voltage (ϕb = −0.7 [V ]), high lithium-ion

concentration gradients are only present in the vicinity of the upper tips of the

dendrite, triggering vertical and less branched growth, with smoother and rounder

surface shapes (Figure 6.15a), in agreement with Chae et al. (2022) experimental

work.

Thus, our analysis at the experimental scale confirms what was previously

observed under smaller-scale simulations: dendrite formation is connected to the

competition between the lithium cation diffusion and electric migration, gener-
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ating an uneven distribution of Li+ on the electrode surface (3.22). This fact

gives insight into inhibition strategies that focus on achieving a more uniform

concentration field on the anode surface, leading to lower dendrite formation

propensity. For example, the use of pulse charging in lithium batteries can shift

the competition in favour of cation diffusion (concentration gradient), by allow-

ing resting times (milliseconds) for lithium cations to diffuse from dendrites’ tips

to less concentrated surrounding regions (valleys), leading to dendrite inhibition

(Mayers et al., 2012; Yang et al., 2014; Qiao et al., 2022). Furthermore, other

strategies such as the application of electrolyte flow, increment of the internal

temperature, or improvements in the electrolyte composition, can enhance the

diffusion of lithium ions to achieve a more uniform concentration field on the

anode surface, leading to lower dendrite formation propensity (Sundström and

Bark, 1995; Li et al., 2017; Zheng et al., 2017; Qian et al., 2015; Suo et al., 2013;

Kim et al., 2018; Cheng et al., 2016; Yang et al., 2005; Wang et al., 2019; Tan

and Ryan, 2016; Crowther and West, 2008; Wlasenko et al., 2010; Li et al., 2018;

Iverson and Garimella, 2008).

In conclusion, the developed phase-field modelling framework provides a way

for dendrite growth evaluation within metal anode batteries. The present model

has been carefully validated using theoretical as well as publicly available ex-

perimental data. Simulation results presented in this work provide valuable in-

sight into the mechanisms dominating spike-like dendrite growth in rechargeable

lithium-metal batteries. Thus, it can be applied to interpret experimental ob-

servation and guide strategies to extend lithium metal batteries lifespan. This

work constitute a significant contribution towards the physics-based, quantitative

models to achieve the commercial realisation of Li-metal batteries. In order to en-

courage expansion of this field, we make our open-source finite element framework

available to enable future studies and developments (see Appendix A).
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7.2 Research outlook

In this section we discuss the research perspectives deriving from this project.

Firstly, the dendritic lithium simulated in this work correspond to hazardous

patterns growing under high (over-limiting) current densities; for example during

fast battery charge. In such conditions, the rate of lithium deposition overcomes

the rate of solid-electrolyte interface (SEI) formation, allowing the lithium deposit

to grow almost free from the influence of the interface (Bai et al., 2018). Therefore

in this work the electrode phase was assumed as pure solid and, thus, neglecting

the presence of a SEI. Future work may consider incorporating SEI presence into

the 3D model to study dendrite formation under lower current density conditions,

and evaluating the coulombic efficiency reduction due to dendrite and SEI for-

mation in rechargeable lithium batteries. Modelling the SEI presence may imply

higher computational cost by incorporating an electrochemical-mechanical model

to explore the role of stress development in lithium dendrites, such as the hydro-

static stress of lithium metal and residual stress in the SEI (Yurkiv et al., 2018;

Liu and Guan, 2019; Jana et al., 2019; Zhang et al., 2021). Furthermore, the

SEI film can create anisotropic diffusion pathways, defects and change of elastic

modulus (Fang, 2022).

Although significant progress was attained in terms of understanding of the

mechanism behind spike-like dendrite formation, the current model only con-

sidered three main variables, namely, the phase-field order parameter (ξ), the

lithium-ion concentration (ζ̃+), and an electric potential (ϕ). In future work, our

3D phase-field model can be coupled with additional fields to gain insight into a

particular aspect of dendrite formation as well as assessing some of the proposed

strategies for dendrite suppression. To this end, some of the strategies already

implemented in other 2D phase-field models available in the literature could be

followed. For example, the current model does not consider temperature field to

simulate the thermal effect during the lithium dendrite growth process. Thermal

induced ion-diffusion may be included to asses dendrite suppression under high

141



operating temperatures (Yan et al., 2018; Qiao et al., 2022). Flow field (forced

advection) can be induced to study the effect of electrolyte hydrodynamics on the

dendrite morphology in flow batteries (Wang et al., 2019; Parekh et al., 2020),

and electrochemical-mechanical phase-field models can be explored to study the

role of stress in lithium dendrites (Jana et al., 2019; Yurkiv et al., 2018).

The large computational cost involved in solving the highly non-linear set of

equations, has imposed a practical limitation on the size and number of lithium

dendrites that we could model, as well as on the mesh resolution we utilised.

Furthermore, additional computational resources may be required to accomplish

future work as described above, such as coupling of additional fields, or simulation

of dendrite formation during several charge-discharge cycles. Thus, acceleration

of the solution is an urgent matter. Different strategies can be explored, such as

the development of provably unconditionally stable second-order time accurate

methods that may deliver larger time-step sizes for phase-field models (Gomez

and Hughes, 2011; Sarmiento et al., 2018; Wu et al., 2014; Hawkins-Daarud et al.,

2012; Vignal et al., 2017), adaptive mesh refinement strategies (Sakane et al.,

2022), and improvement of the parallel computation efficiency (Sakane et al.,

2022; Mu et al., 2020).

Given the lack of experimental data available in the literature for quanti-

tative characterization of the spike-like lithium morphologies, in some cases we

rely on experimental results available for zinc dendrites, such as (Yufit et al.,

2019). Thus, there is an urgent need for the development of effective in-situ de-

tection methods to deal with the high reactivity of lithium, and allow further

well-controlled experimental studies, with detailed characterization of the system

parameters (transport and kinetic properties) and lithium morphologies.

We can also mention a wider range of opportunities and challenges in computa-

tional modelling of rechargeable batteries, in general, and phase-field simulations,

in particular. Currently, phase-field simulations in rechargeable batteries, includ-

ing those presented in this work, focus on the description of the microstructure
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evolution of materials (i.e. dendritic electrodeposition of lithium, formation of

unstable solid electrolyte interphase, volume expansion of metal anode), and its

comparison against experimental results, which involves a combination of quali-

tative, semi-quantitative and quantitative research. Progress of phase-field simu-

lations for rechargeable batteries toward quantification is needed to forecast the

performance properties of battery cells, such as evaluation of system’s energy

density, Coulombic efficiency, and life cycle. Thus, taking the analysis to the

next level will require evaluating the connection between microstructure devel-

opment and its effect on battery performance, predicting and improving battery

system performance according to simulation results, which can be anticipated as

a combination of semi-quantitative and quantitative analysis (Wang et al., 2020).

To achieve this goal, phase-field models like the one presented here can be

developed into a multiscale model (MSM), where physical parameters in the sim-

ulations, such as changes in local diffusivity and conductivity of the electrolyte

due to temperature and concentration fluctuations, can be obtained using molec-

ular level simulations (molecular dynamics (MD) and density functional theory

(DFT)) (Franco et al., 2019). Additionally, the outputs obtained using larger

scale simulations can be used as an input for smaller scales to foster the develop-

ment of improved materials (i.e. anode stability effect expanded across different

scales, from molecular to battery cells) (Pannala et al., 2015). This will require

further development of the physics linking these scales in order to study complex

microstructures which undergo electrochemical reactions, charge, mass, and heat

transport, and mechanical stresses at various time and length scales (Figure 2.3

shows length-scale dependent physics affecting lithium battery simulation). This

approach will allow a better understanding of the influence of material properties

and structure on the behaviour of the battery system as a whole (Hyeonggeon

et al., 2021).

Furthermore, it would be useful to train neural networks (machine learning

algorithms) by means of MSM, so that they can be applied to predict the effect of
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different parameters on battery materials, components and properties (Diddens

et al., 2022). Additionally, relevant cases identified by neural networks can be

verified by MSM (machine learning assisted multiscale modelling) (Kolodziejczyk

et al., 2021). MSM can also be combined with a web-based real-time data ac-

quisition system (voltage, internal resistance, temperature) of a wide range of

operating battery systems (real-time database), so as to implement interactive

corrections of the MSM parametrization to improve accuracy of simulations (sim-

ilar approach used today with weather forecast models) (Franco et al., 2019; Talib

et al., 2022).

In conclusion, we note many attractive opportunities for future research ac-

tions to overcome current battery modelling challenges. Thus, in accordance

with the rapid development of computational capacities and lower research cost,

computational investigation is on its way to becoming a critical driving force in

improving the design, energy density, life cycle and safety levels of new battery

systems.
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Appendix A

Computational Framework

This section presents our open-source finite element framework, together with

recommended system requirements and instructions for user:

- Minimum hardware requirements (recommended): 2.4 GHz 8-core Intel

Core i9 & 16 GB 2667 MHz DDR4 RAM

- Install C++ core and Python interface, along with their respective de-

pendencies: https://docs.fenicsproject.org/dolfinx/main/python/

installation.html#source

- Download the latest release of legacy FEniCS (2019.1.0) from https://

fenicsproject.org/download/archive/. Follow the installation instruc-

tions in the website according to different operating systems.

- For FEniCS project (Alnæs et al., 2015) first-time users we suggest explor-

ing ”The FEniCS Tutorial Volume I” https://fenicsproject.org/pub/

tutorial/sphinx1/.

- Execute following commands in terminal to run the code provided (frame-

work.py):

source activate fenicsproject

mpirun -n 8 python3 framework.py
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from __future__ import division, print_function

import sys

from fenics import *

from dolfin import MPI

import pylab as plt

from datetime import datetime

import numpy as np

import math

import mpi4py

import os

"""

PARAMETERS

"""

# Domain size

lox= 5000 #Interelectrode distance

loy= 80

loz= 80

# Mesh size

nx, ny, nz = 180, 100, 100

# Applied voltage

phie = -1.4

# Normalized Parameters

L = Constant(625e6)

kappa_0 = Constant(0.707)
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delta = Constant(0.05)

Ls = Constant(0.0018)

alpha = Constant(0.5)

AA = Constant(38.69) # nF/RT

W = Constant(1.78)

A = Constant(1.0) # R*T/R*T

M1 = Constant (0.3179)

M2 = Constant(317.9)

S1 = Constant(10000000)

S2 = Constant(1.19)

ft2 = Constant(0.0074)

# Numerical Parameters

t=0.0

Tf= 200

dt= 1e-7

tol_DT = 1.0e-6

tol_DT_min = 1.0e-9

rho_0 = 0.9

save_every = 5 # Save every 5 seconds

deg_L2 = 4

deg_grad = 2

num_steps=int(Tf/dt)

k , k_n , k_n_1 , eta_n = Constant(dt), Constant(0.0), Constant(0.0),

Constant(0.0)

Type_int = ’BDF2’

Type_switch = ’SIGMOID’

#Type_switch = ’POLY’

# Type_Truc = ’BDF122’

Type_Truc = ’BDF223’

Type_kappa = ’Vble’
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#Type_kappa = ’Cte’

TrialTypeDir = os.path.join(f’data/sim{n_sim+1}’)

if not os.path.isdir(TrialTypeDir): os.makedirs(TrialTypeDir)

parameters["form_compiler"]["optimize"] = True

parameters["form_compiler"]["cpp_optimize"] = True

parameters["form_compiler"]["representation"] = "uflacs"

"""

MESH AND FUNCTIONS

"""

# Create mesh and define function space

elem = CellType.Type.hexahedron

mesh = UnitCubeMesh.create(nx,ny,nz,CellType.Type.hexahedron)

xmesh = mesh.coordinates()

##############

#Uniform to Exponential Node Mapping in "x" Direction (80um)

for xx in range(0, len(xmesh[:,0])):

if xmesh[xx,0] < 1:

xmesh[xx,0] = xmesh[xx,0]/62.5

for xx in range(0, len(xmesh[:,0])):

if xmesh[xx,0] == (1-1/nx)/62.5:

xmesh[xx,0] = 0.378844444
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elif xmesh[xx,0] == (1-2/nx)/62.5:

xmesh[xx,0] = 0.1968

elif xmesh[xx,0] == (1-3/nx)/62.5:

xmesh[xx,0] = 0.105777778

elif xmesh[xx,0] == (1-4/nx)/62.5:

xmesh[xx,0] = 0.060266667

elif xmesh[xx,0] == (1-5/nx)/62.5:

xmesh[xx,0] = 0.037511111

elif xmesh[xx,0] == (1-6/nx)/62.5:

xmesh[xx,0] = 0.026133333

elif xmesh[xx,0] == (1-7/nx)/62.5:

xmesh[xx,0] = 0.020444444

elif xmesh[xx,0] == (1-8/nx)/62.5:

xmesh[xx,0] = 0.0176

elif xmesh[xx,0] == (1-9/nx)/62.5:

xmesh[xx,0] = 0.016177778

elif xmesh[xx,0] == (1-10/nx)/62.5:

xmesh[xx,0] = 0.015466667

elif xmesh[xx,0] == (1-11/nx)/62.5:

xmesh[xx,0] = 0.015111111

##############

#Arcsin Node Mapping in "y" and "z" Directions

xmesh[:,1] = 2*xmesh[:,1]-1

xmesh[:,1] = (np.arcsin((xmesh[:,1]))/(pi)+0.5)

xmesh[:,2] = 2*xmesh[:,2]-1

xmesh[:,2] = (np.arcsin((xmesh[:,2]))/(pi)+0.5)
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##############

mesh.coordinates()[:,0] = mesh.coordinates()[:,0]*lox

mesh.coordinates()[:,1] = mesh.coordinates()[:,1]*loy

mesh.coordinates()[:,2] = mesh.coordinates()[:,2]*loz

##############

#Define Periodic Boundary Conditions (Lateral faces)

class PeriodicBoundary(SubDomain):

# Left boundary is "target domain" G

def inside(self, x, on_boundary):

# return True if on left or bottom boundary AND NOT on one of

the two slave edges

return bool ((near(x[0], 0) or near(x[1], 0) or near(x[2], 0))

and

(not ((near(x[0], lox) and near(x[2], loz)) or

(near(x[0], lox) and near(x[1], loy)) or

(near(x[1], loy) and near(x[2], loz)))) and

on_boundary)

# Map right boundary (H) to left boundary (G)

def map(self, x, y):

#### define mapping for a single point in the box, such that 3

mappings are required

if near(x[0], lox) and near(x[1], loy) and near(x[2], loz):

y[0] = x[0]

y[1] = x[1] - loy

y[2] = x[2] - loz
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##### define mapping for edges in the box, such that mapping in

2 Cartesian coordinates are required

if near(x[0], lox) and near(x[2], loz):

y[0] = x[0]

y[1] = x[1]

y[2] = x[2] - loz

elif near(x[1], loy) and near(x[2], loz):

y[0] = x[0]

y[1] = x[1] - loy

y[2] = x[2] - loz

elif near(x[0], lox) and near(x[1], loy):

y[0] = x[0]

y[1] = x[1] - loy

y[2] = x[2]

#### right maps to left: left/right is defined as the

x-direction

elif near(x[0], lox):

y[0] = x[0]

y[1] = x[1]

y[2] = x[2]

### back maps to front: front/back is defined as the y-direction

elif near(x[1], loy):

y[0] = x[0]

y[1] = x[1] - loy

y[2] = x[2]

#### top maps to bottom: top/bottom is defined as the

z-direction

elif near(x[2], loz):

y[0] = x[0]

y[1] = x[1]

y[2] = x[2] - loz
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pbc = PeriodicBoundary()

# Space Functions

P1 = FiniteElement(’P’, mesh.ufl_cell(), 1)

PDG = FunctionSpace(mesh,’DG’, 0)

V = FunctionSpace(mesh, MixedElement([P1,P1,P1]),

constrained_domain=pbc)

# Define trial and test functions

v_1, v_2, v_3 = TestFunctions(V)

# Define functions for solutions at previous and at current time

u = Function(V) # At current time

u_n = Function(V)

u_n_1 = Function(V)

u_n_2 = Function(V)

LTE = Function(V)

# Split system function to access the components

xi, w, phi = split(u)

xi_n, w_n, phi_n = split(u_n)

xi_n_1, w_n_1, phi_n_1 = split(u_n_1)

xi_n_2, w_n_2, phi_n_2 = split(u_n_2)

metadata = {"quadrature_scheme": "default", ’quadrature_degree’:

deg_grad}

dx = dx(metadata=metadata)

metadata = {"quadrature_scheme": "default", ’quadrature_degree’:

deg_L2}
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dxm = dx(metadata=metadata)

"""

INITIAL CONDITIONS

"""

# Create initial conditions (muliple nuclei)

ruido1 = Expression(’-1.0 + pow((x[2]-42.)/2.,2.0) +

pow((x[1]-42.)/2.,2.0) + pow(x[0]/4.,2.0)’, degree=deg_L2)

ruido2 = Expression(’-1.0 + pow((x[2]-38.)/2.,2.0) +

pow((x[1]-38.)/2.,2.0) + pow(x[0]/4.,2.0)’, degree=deg_L2)

ruido3 = Expression(’-1.0 + pow((x[2]-42.)/2.,2.0) +

pow((x[1]-38.)/2.,2.0) + pow(x[0]/4.,2.0)’, degree=deg_L2)

ruido4 = Expression(’-1.0 + pow((x[2]-38.)/2.,2.0) +

pow((x[1]-42.)/2.,2.0) + pow(x[0]/4.,2.0)’, degree=deg_L2)

u_init =

Expression((’0.5*(1.0-1.0*tanh(4*(ruido1)))+0.5*(1.0-1.0*tanh(4*(ruido2)))

+0.5*(1.0-1.0*tanh(4*(ruido3)))+0.5*(1.0-1.0*tanh(4*(ruido4)))’,

’0.5*(1.0+tanh(4*(ruido1)))+0.5*(1.0+tanh(4*(ruido2)))

+0.5*(1.0+tanh(4*(ruido3)))+0.5*(1.0+tanh(4*(ruido4)))-3.0’,

’x[0] >= 5.0 ? (- phie / (lox-5.0) * x[0] + (phie * lox) / (lox-5.0))

: phie’),

degree=deg_L2, ruido1=ruido1, ruido2=ruido2, ruido3=ruido3,

ruido4=ruido4, phie=phie, lox=lox)

u_init_xi =

Expression((’0.5*(1.0-1.0*tanh(4*(ruido1)))+0.5*(1.0-1.0*tanh(4*(ruido2)))

+0.5*(1.0-1.0*tanh(4*(ruido3)))+0.5*(1.0-1.0*tanh(4*(ruido4)))’),

degree=deg_L2, ruido1=ruido1, ruido2=ruido2, ruido3=ruido3,

ruido4=ruido4)

u_init_w =

Expression((’0.5*(1.0+tanh(4*(ruido1)))+0.5*(1.0+tanh(4*(ruido2)))
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+0.5*(1.0+tanh(4*(ruido3)))+0.5*(1.0+tanh(4*(ruido4)))-3.0’),

degree=deg_L2, ruido1=ruido1, ruido2=ruido2, ruido3=ruido3,

ruido4=ruido4)

u_init_phi =

Expression((’phi_*(1.0-tanh(4*(ruido1)))+phi_*(1.0-tanh(4*(ruido2)))

+phi_*(1.0-tanh(4*(ruido3)))+phi_*(1.0-tanh(4*(ruido4)))’)

, degree=deg_L2, ruido1=ruido1, ruido2=ruido2, ruido3=ruido3,

ruido4=ruido4, phi_=phie*0.5)

u.interpolate(u_init)

u_n.interpolate(u_init)

"""

BOUNDARY CONDITIONS

"""

# Define boundary conditions

# Boundaries y=0, y=Ly

def boundary0(x, on_boundary):

return on_boundary and near(x[0], 0)

def boundaryL(x, on_boundary):

return on_boundary and near(x[0], lox)

def boundary1phi(x, on_boundary):

return on_boundary and near(x[0], 0) and abs(x[1]-42)<1.0 and

abs(x[2]-42)<1.0

def boundary2phi(x, on_boundary):

return on_boundary and near(x[0], 0) and abs(x[1]-38)<1.0 and

abs(x[2]-38)<1.0

def boundary3phi(x, on_boundary):

return on_boundary and near(x[0], 0) and abs(x[1]-38)<1.0 and

abs(x[2]-42)<1.0
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def boundary4phi(x, on_boundary):

return on_boundary and near(x[0], 0) and abs(x[1]-42)<1.0 and

abs(x[2]-38)<1.0

# Boundary conditions for xi

bc_xi1 = DirichletBC(V.sub(0), u_init_xi, boundary0)

bc_xi5 = DirichletBC(V.sub(0), Constant(0.0), boundaryL)

# Boundary conditions for Cli

bc_c1 = DirichletBC(V.sub(1), u_init_w, boundary1phi)

bc_c2 = DirichletBC(V.sub(1), u_init_w, boundary2phi)

bc_c3 = DirichletBC(V.sub(1), u_init_w, boundary3phi)

bc_c4 = DirichletBC(V.sub(1), u_init_w, boundary4phi)

bc_c5 = DirichletBC(V.sub(1), Constant(1), boundaryL)

# Boundary conditions for phi

bc_phi1 = DirichletBC(V.sub(2), u_init_phi, boundary1phi)

bc_phi2 = DirichletBC(V.sub(2), u_init_phi, boundary2phi)

bc_phi3 = DirichletBC(V.sub(2), u_init_phi, boundary3phi)

bc_phi4 = DirichletBC(V.sub(2), u_init_phi, boundary4phi)

bc_phi5 = DirichletBC(V.sub(2), Constant(0.0), boundaryL)

# Gather all boundary conditions in a variable

bcs = [bc_xi1, bc_xi5, bc_c1, bc_c2, bc_c3, bc_c4, bc_c5, bc_phi1,

bc_phi2, bc_phi3, bc_phi4, bc_phi5 ] # Dirichlet

"""

FUNCITONS DEFINITION

"""
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# Surface Normal

def n_call(x):

num = grad(x)

den = sqrt(inner(num, num))

n = conditional(gt((den),1e-16), num/den, as_vector([0,0,0]))

return n

# Surface Anisotropy Gradient Coefficient

def kappa(x):

if Type_kappa == ’Cte’:

kappa = kappa_0

if Type_kappa == ’Vble’:

n = n_call(x)

kappa = kappa_0 * ( 1.0 - 3.0 * delta ) * ( 1 + 4.0 * delta * (

n[0]**(4) + n[1]**(4) + n[2]**(4) ) / (1 - 3.0 * delta) )

return kappa

def kappa_dev(x):

if Type_kappa == ’Cte’:

kappa_x = 0

kappa_y = 0

kappa_z = 0

if Type_kappa == ’Vble’:

n = n_call(x)

den = sqrt(inner(grad(x),grad(x)))

kappa_x = conditional(gt((den),1e-16), kappa_0 * ( 1.0 - 3.0 *

delta ) * ( 4.0 * delta * ( 4 * ( n[0]**(3) - n[0]**(5)) /

den ) / (1 - 3.0 * delta)), 0.0)

kappa_y = conditional(gt((den),1e-16), kappa_0 * ( 1.0 - 3.0 *

delta ) * ( 4.0 * delta * ( 4 * ( n[1]**(3) - n[1]**(5)) /

den ) / (1 - 3.0 * delta)), 0.0)
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kappa_z = conditional(gt((den),1e-16), kappa_0 * ( 1.0 - 3.0 *

delta ) * ( 4.0 * delta * ( 4 * ( n[2]**(3) - n[2]**(5)) /

den ) / (1 - 3.0 * delta)), 0.0)

return as_vector([kappa_x,kappa_y,kappa_z])

# Switching Function Material

def h(_x):

if Type_switch == ’POLY’:

h = _x**3*(Constant(6.0)*_x**2 - Constant(15.0)*_x +

Constant(10.0))

if Type_switch == ’SIGMOID’:

h = exp(Constant(20.0)*(Constant(1.0)*_x-Constant(0.5)))

/(1+exp(Constant(20.0)*(Constant(1.0)*_x-Constant(0.5))))

return h

def dh(_x):

if Type_switch == ’POLY’:

dh = Constant(30.0)*_x*_x*(_x-Constant(1.0))*(_x-Constant(1.0))

if Type_switch == ’SIGMOID’:

dh =

Constant(20.0)*exp(Constant(20.0)*(Constant(1.0)*_x-Constant(0.5)))

/(1+exp(Constant(20.0)*(Constant(1.0)*_x-Constant(0.5))))**2

return dh

# Barrier Function Material

def g(_x):

return W*_x**2.0*(Constant(1.0) - _x)**2

def dg(_x):

return W*Constant(2.0)*(_x * (Constant(1.0) - _x) ** 2 -

(Constant(1.0) - _x) * _x ** 2)

159



# Effective Diffusivity

def D(_xi):

return M1*h(_xi)+M2*(Constant(1.0)-h(_xi))

# Effective Conductivity

def Le1(_xi):

return S1*h(_xi)+S2*(Constant(1.0)-h(_xi))

# Select Time Integrator

def Time_integrator(var,var_n,var_n_1,eta_n,DT,type):

if type == ’BDF1’:

dot_var = (var-var_n)/DT

if type == ’BDF2’:

c1 = (1+eta_n)**2/(1+2*eta_n)

c2 = eta_n**2/(1+2*eta_n)

dot_var = (1+2*eta_n)/(1+eta_n)*(var-c1*var_n+c2*var_n_1)/DT

return dot_var

"""

VARIATIONAL PROBLEM

"""

# Time Adaptiviy

def

Update_next_step(u,u_n,u_n_1,u_n_2,k_n_1,k_n,k,eta_n,t,count,Error,Time,DeltaT,Type_int):

xi_ =

MPI.comm_world.gather(u.split()[0].vector().get_local(),root=0)

xi_n_ =

MPI.comm_world.gather(u_n.split()[0].vector().get_local(),root=0)
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xi_n_1_ =

MPI.comm_world.gather(u_n_1.split()[0].vector().get_local(),root=0)

xi_n_2_ =

MPI.comm_world.gather(u_n_2.split()[0].vector().get_local(),root=0)

w_ = MPI.comm_world.gather(u.split()[1].vector().get_local(),root=0)

w_n_ =

MPI.comm_world.gather(u_n.split()[1].vector().get_local(),root=0)

w_n_1_ =

MPI.comm_world.gather(u_n_1.split()[1].vector().get_local(),root=0)

w_n_2_ =

MPI.comm_world.gather(u_n_2.split()[1].vector().get_local(),root=0)

WLT = tol_DT

if mpi_rank == 0:

WLT1 = truncation(xi_,xi_n_,xi_n_1_,xi_n_2_,k,k_n,k_n_1)

WLT2 = truncation(w_,w_n_,w_n_1_,w_n_2_,k,k_n,k_n_1)

WLT = max(WLT1,WLT2)

WLT = cpp.MPI.comm_world.bcast(WLT, root=0)

if (WLT >= tol_DT or math.isnan(WLT) or aux2 == False):

Mult = (tol_DT/WLT)**(0.5)

if (Mult >= 1.):

Mult = 1.

if aux2 == False:

Mult = 0.8

if math.isnan(Mult):
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Mult = 0.1

k.assign(rho_0*Mult*k.values()[0])

dt = k.values()[0]

u.assign(u_n)

if (k_n.values()[0] > 0):

eta_n.assign(k/k_n)

if mpi_rank == 0:

print("--- Reducing Time Step ---", k.values()[0],’Error’,

WLT)

sys.stdout.flush()

else:

# Update previous solution

u_n_2, u_n_1, u_n, k_n_1, k_n, eta_n =

Update_var(u,u_n,u_n_1,u_n_2,k_n_1,k_n,k,eta_n,Type_int)

# Update time

t+= k.values()[0]

count += k.values()[0]

Error.append(WLT)

Time.append(t)

DeltaT.append(k.values()[0])

if mpi_rank == 0:

print("**************************************************")

print("*** Finishing Time Step ***", t, "** Error **", WLT)

print("**************************************************")
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sys.stdout.flush()

if (WLT < tol_DT_min):

Mult = (tol_DT_min/WLT)**(0.5)

k.assign(Mult*k.values()[0])

dt = k.values()[0]

eta_n.assign(k/k_n)

if mpi_rank == 0:

print("--- Incresing Time Step ---",

k.values()[0],’Error’, WLT)

sys.stdout.flush()

return u_n_2, u_n_1, u_n, k_n_1, k_n, eta_n, t , count, Error,

Time, DeltaT

def Update_var(u,u_n,u_n_1,u_n_2,k_n_1,k_n,k,eta_n,type):

k_n_1.assign(k_n)

k_n.assign(k)

u_n_2.assign(u_n_1)

u_n_1.assign(u_n)

u_n.assign(u)

eta_n.assign(k/k_n)

return u_n_2, u_n_1, u_n, k_n_1, k_n, eta_n

# Time Adaptiviy Truncation Error Estimator

def truncation(u,u_n,u_n_1,u_n_2,k,k_n,k_n_1):

Tau_abs = 1e2

Tau_rel = 1e2

if Type_Truc == ’BDF122’:
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eta = (k.values()[:]+k_n.values()[:])/k.values()[:]

if (eta-1.)==0:

WLTE = (tol_DT+tol_DT_min)/2

else:

LTE =

np.concatenate((-1/eta)*u+(1/(eta-1))*u_n-(1/(eta*(eta-1)))*u_n_1)

u = np.concatenate(u)

WLTE = np.sqrt(np.sum((LTE / (Tau_abs + Tau_rel *

np.max(np.abs(u)+np.abs(LTE))))**2)/LTE.size)

if Type_Truc == ’BDF223’:

if (k_n.values()[:])==0:

WLTE = (tol_DT+tol_DT_min)/2

elif (k_n_1.values()[:]==0):

eta = (k.values()[:]+k_n.values()[:])/k.values()[:]

LTE =

np.concatenate((-1/eta)*u+(1/(eta-1))*u_n-(1/(eta*(eta-1)))*u_n_1)

u = np.concatenate(u)

WLTE = np.sqrt(np.sum((LTE / (Tau_abs + Tau_rel *

np.max(np.abs(u)+np.abs(LTE))))**2)/LTE.size)

else:

c1 = (k.values()[:]+k_n.values()[:])/6

c2 = 1/k.values()[:]

c3 = (1+k.values()[:]/k_n.values()[:])/k_n.values()[:]

c4 = k.values()[:]/(k_n.values()[:]*k_n_1.values()[:])

LTE =

np.concatenate(c1*(c2*u-c2*u_n-c3*u_n+c3*u_n_1+c4*u_n_1-c4*u_n_2))

u = np.concatenate(u)

WLTE = np.sqrt(np.sum((LTE / (Tau_abs + Tau_rel *

np.max(np.abs(u)+np.abs(LTE))))**2)/LTE.size)

return WLTE
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# Solver Parameters

def Solver_NR(F,u,bcs,J):

problem =NonlinearVariationalProblem(F,u,bcs,J=J)

solver=NonlinearVariationalSolver(problem)

solver.parameters[’nonlinear_solver’] = ’snes’

solver.parameters["snes_solver"]["maximum_iterations"] = 8

solver.parameters["snes_solver"]["absolute_tolerance"] = 1.0e-5

solver.parameters["snes_solver"]["relative_tolerance"] = 1.0e-7

solver.parameters["snes_solver"]["report"] = True

solver.parameters["snes_solver"]["error_on_nonconvergence"] = False

solver.parameters["snes_solver"]["linear_solver"]= "bicgstab"

solver.parameters["snes_solver"]["krylov_solver"]["maximum_iterations"]

= 1000

solver.parameters["snes_solver"]["krylov_solver"]["error_on_nonconvergence"]

= False

return solver

# Weak Variational Fromulation

def

Functional(u,xi,xi_n,xi_n_1,w,w_n,w_n_1,phi,v_1,v_2,v_3,k,Type_int):

F1 = Time_integrator(xi,xi_n,xi_n_1,eta_n,k,Type_int)*v_1*dx +

L*kappa(xi)*kappa(xi)*dot(grad(xi),grad(v_1))*dx +

L*dg(xi)*v_1*dx +

Ls*(exp(phi*AA/Constant(2.0))-w*exp(-phi*AA/Constant(2.0)))*dh(xi)*v_1*dxm

F1 +=

inner(L*kappa(xi)*kappa_dev(xi)*dot(grad(xi),grad(xi)),grad(v_1))*dx

F2 = Time_integrator(w,w_n,w_n_1,eta_n,k,Type_int)*v_2*dx +

D(xi)*dot(grad(w),grad(v_2))*dx +

D(xi)*w*AA*dot(grad(phi),grad(v_2))*dx +

76.4*Time_integrator(xi,xi_n,xi_n_1,eta_n,k,Type_int)*v_2*dx

F3 = Le1(xi)*dot(grad(phi),grad(v_3))*dx +
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ft2*Time_integrator(xi,xi_n,xi_n_1,eta_n,k,Type_int)*v_3*dx

F=F1+F2+F3

J = derivative(F,u)

return F, J

"""

SOLVE AND SAVE SOLUTIONS

"""

# Timestamp before solving

mpi_rank = MPI.comm_world.Get_rank()

mpi_size = MPI.comm_world.Get_size()

if mpi_rank == 0:

t1 = datetime.fromtimestamp(datetime.timestamp(datetime.now()))

print("timestamp =", t1)

# Solve

F,J =

Functional(u,xi,xi_n,xi_n_1,w,w_n,w_n_1,phi,v_1,v_2,v_3,k,Type_int)

solver = Solver_NR(F,u,bcs,J)

# Time Integrator Output Variables

Error = []

Time = []

DeltaT = []

n_count = 0

count = 0

# Time step

while t<=Tf:
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# Solve problem

aux1, aux2 = solver.solve()

u_n_2, u_n_1, u_n, k_n_1, k_n, eta_n, t, count , Error, Time,

DeltaT = Update_next_step(u,u_n,u_n_1,u_n_2,k_n_1,k_n,k,eta_n,

t, count,Error, Time, DeltaT, Type_int)

# Save solution every 5 seconds of simulation

if (count>=save_every):

count = 0

n_count += 1

fileResults = XDMFFile(f"saved2D/sim{n_sim+1}/u_t_" +

str(n_count) + ".xdmf")

fileResults.parameters["flush_output"] = True

fileResults.parameters[’rewrite_function_mesh’] = False

fileResults.parameters["functions_share_mesh"] = True

var1 = u.split()[0]

var2 = u.split()[1]

var3 = u.split()[2]

var1.rename("xi", "tmp")

var2.rename("w", "tmp")

var3.rename("phi", "tmp")

fileResults.write(var1,t)

fileResults.write(var2,t)

fileResults.write(var3,t)

all_data = np.array(4,dtype=np.object)

all_data = Error, Time, DeltaT

data_filename = os.path.join(TrialTypeDir, ’data’)

np.save(data_filename, all_data)

np.savetxt("Data.csv", np.transpose(all_data), delimiter=",")
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# Save last solution

n_count += 1

fileResults = XDMFFile(f"saved2D/sim{n_sim+1}/u_t_" + str(n_count) +

".xdmf")

fileResults.parameters["flush_output"] = True

fileResults.parameters[’rewrite_function_mesh’] = False

fileResults.parameters["functions_share_mesh"] = True

var1 = u.split()[0]

var2 = u.split()[1]

var3 = u.split()[2]

var1.rename("xi", "tmp")

var2.rename("w", "tmp")

var3.rename("phi", "tmp")

fileResults.write(var1,t)

fileResults.write(var2,t)

fileResults.write(var3,t)

# Timestamp

if mpi_rank == 0:

print("timestamp =", t1, " ... ",

datetime.fromtimestamp(datetime.timestamp(datetime.now())))
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