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Abstract In this paper, the three-dimensional (3D) interfacial fracture is analyzed in
a one-dimensional (1D) hexagonal quasicrystal (QC) coating structure under mechanical
loading. A planar interface crack with arbitrary shape is studied by a displacement
discontinuity method. Fundamental solutions of interfacial concentrated displacement
discontinuities are obtained by the Hankel transform technique, and the corresponding
boundary integral-differential equations are constructed with the superposition principle.
Green’s functions of constant interfacial displacement discontinuities within a rectangular
element are derived, and a boundary element method is proposed for numerical simulation.
The singularity of stresses near the crack front is investigated, and the stress intensity
factors (SIFs) as well as energy release rates (ERRs) are determined. Finally, relevant
influencing factors on the fracture behavior are discussed.
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1 Introduction

Quasicrystals (QCs), neither crystalline nor non-crystalline, are a relatively new kind of solid
materials with a special arrangement of atoms[1]. Due to their unique microstructure, QCs have
high hardness, high temperature resistance, corrosion resistance, and low surface energy[2–4].
However, brittleness of QCs at room temperature makes them difficult to use directly[5]. As a
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result, these distinct characteristics endow QCs with great potential as coating materials, such
as thermal barrier coatings[6], corrosion-resistant coatings[7], deicing coatings[8–9], and many
others[10–11]. It is found that more than 100 kinds of metal alloys have QC phases. Compared
with traditional ceramic coatings, QC coatings have a better alloy compatibility and a higher
temperature super-plasticity[12]. With these excellent properties, QCs are regarded as an ideal
coating candidate in automotive engines devices, aerospace, and solar energy industries[5].

Numerous studies have been done on production of QC coating, where a common process for
preparing QC coating is thermal spraying[13–16]. Compared with laser cladding[17] and physical
vapor deposition[20], thermal spraying can be applied to deposit a thicker coating on almost
any substrate with an extremely low porosity. In order to improve their microstructures and
properties, research is mainly focused on the preparation process of QC coatings[19–20], in which
defects such as micro-cracks and pores are inevitable at interface[22]. Therefore, it is of great
significance to elucidate the fracture behavior of interfacial cracks of QC coating[23]. As a
typical composite structure, QC coating structures exhibit complex mechanical characteristics,
and their interfacial fracture differs from traditional crystals and non-crystal coatings, which
increases the difficulty of analysis.

In recent years, many attempts have been made on the elastic solutions and mechanical
properties of QCs. For instance, Fan et al.[24] introduced the linear, nonlinear and dynamic
fracture theory of QCs. Sun et al.[25] established a mathematical model to study the nonlocal
vibration and buckling of embedded QC layered nanoplates with propagator matrix method.
Guo et al.[26] studied the interaction between screw dislocations and elliptical hole in a one-
dimensional (1D) hexagonal QC with piezoelectric effect. Based on the modified coupled stress
theory, Guo et al.[27] investigated the three-dimensional (3D) bending deformation and vibration
response of multilayer two-dimensional (2D) decagonal QC nanoplates by using a propagation
matrix method. Gao et al.[28] established a new propagation matrix relationship for the 3D exact
electric-elastic analysis of 2D decagonal QC multilayer plates subjected to patch loading. Later
on, Gao et al.[29] used a state-space method to analyze the dynamic behavior of a multilayer
2D QC cylindrical shell filled with compressible fluid. Hou et al.[30] derived Green’s function
solution of 1D hexagonal QC coating under tangential force. Li et al.[31] analyzed the sliding
frictional contact of a 1D hexagonal piezoelectric QC coating structure with imperfect interface.
Fan et al.[32] suggested a coexistence model for QC and crystal and discussed the interface
effect of a QC cubic crystal structure. Recently, Dang et al.[33] and Zhao et al.[34] developed a
displacement discontinuity method to study the interfacial fracture behavior of 1D hexagonal
and 2D decagonal QC coatings. However, all these relevant works are limited to the 2D cases,
which cannot reflect the fracture behavior in line with actual working conditions. Thus, it is
necessary to conduct the 3D fracture analysis of QC coating.

The displacement discontinuity method is an indirect boundary element method, which has
advantages in dealing with crack problems[35]. In contrast with the traditional finite element
method, a crack is discretized as one entity, and thus, it reduces the number of final linear
equations to be solved. However, the coefficient matrix is not symmetric, which requires a
solution of full rank. As the thickness of a QC coating is thin compared with the substrate,
there is a large stress gradient in coating, and the coupling of phonon and phase fields cannot
be accurately simulated by a finite element method. In this paper, an extended displacement
discontinuity method is proposed to investigate the 3D interfacial fracture of 1D hexagonal
QC coatings. Such a method is flexible, which is suitable for complex crack and multi-crack
problems.

The paper is organized as follows. The 3D basic equations and general solutions are first
listed for a 1D hexagonal QC coating on an isotropic elastic substrate in Section 2. Next, the
fundamental solutions of the concentrated interfacial displacement discontinuities are derived in
Section 3. Then, Section 4 constructs the boundary integral-differential equations, and Section
5 presents Green’s functions for the uniform displacement discontinuities within a rectangular
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element. After that, Section 6 analyzes the singularity of stresses, with the expressions for
stress intensity factors (SIFs) and energy release rate (ERR). Furthermore, a boundary element
method is proposed for numerical calculation in Section 7, and in Section 8, numerical simula-
tions are carried out, and influencing factors are discussed. Finally, main conclusions are drawn
in Section 9.

2 Basic equations and general solutions

A 1D hexagonal QC can be assumed as a point group of 6 mm, referred to the Cartesian
coordinate with an isotropic periodic plane on the Oxy plane and the z-axis along the quasi-
periodic direction, and its constitutive equations are given by





σij =
1
2
Cijkl(uk,l + ul,k) + Rijklwk,l,

Hij =
1
2
Rijkl(uk,l + ul,k) + Kijklwk,l,

(1)

where ui and wi are the phonon and phason displacements, respectively, σij and Hij are the
phonon and phason stresses, respectively , and Cijkl, Rijkl, and Kijkl are the elastic constants
in phonon and phason fields, and phonon-phason coupling elastic constants, respectively. The
subscript comma denotes partial differentiation with respect to the coordinate, and the repeated
indices imply their summation from 1 to 3.

Without body forces, equilibrium equations are expressed as[36]

σij,j = 0, Hij,j = 0. (2)

The general solution equations for the 1D hexagonal QC can be expressed by four potential
functions[36], that is





ux =
∂Ψ0

∂y
−

3∑

j=1

∂Ψj

∂x
, uy = −∂Ψ0

∂x
−

3∑

j=1

∂Ψj

∂y
, uz =

3∑

j=1

α1j
∂Ψj

∂zj
,

wz =
3∑

j=1

α2j
∂Ψj

∂zj
, σzz =

3∑

j=1

γ1j
∂2Ψj

∂z2
j

, Hzz =
3∑

j=1

γ2j
∂2Ψj

∂z2
j

,

σzx = c44s0
∂2Ψ0

∂y∂z0
+

3∑

j=1

sjγ1j
∂2Ψj

∂x∂zj
, σyz = −c44s0

∂2Ψ0

∂x∂z0
+ +

3∑

j=1

sjγ1j
∂2Ψj

∂y∂zj
.

(3)

Here, all the material-related constants are given in Ref. [36]. The harmonic potential func-
tions Ψj satisfy

(
∆ +

∂2

∂z2
j

)
Ψj = 0, j = 0, 1, 2, 3, (4)

where ∆ is the Laplacian operator and defined as

∆ =
∂2

∂x2
+

∂2

∂y2
. (5)

For an isotropic elastic crystal, the constitutive and governing equations without body forces
are

σij = µ(ui,j + uj,i) + λδijui,i, (6a)
σij,j = 0, (6b)
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where µ and λ are, respectively, the shear modulus and Lame constant, and δij denotes the
Kronecker symbol.

For an isotropic elastic crystal, the general solutions to Eq. (6) are[37]





ux =
1
2µ

(
− ∂ψ0

∂y
+

∂ψ1

∂x
+ z

∂ψ2

∂x

)
, uy =

1
2µ

(∂ψ0

∂x
+

∂ψ1

∂y
+ z

∂ψ2

∂y

)
,

uz =
1
2µ

(∂ψ1

∂z
− (3− 4v)ψ2 + z

∂ψ2

∂z

)
, σzz =

∂2ψ1

∂z2
− 2(1− v)

∂ψ2

∂z
+ z

∂2ψ2

∂z2
,

σzx = −1
2

∂2ψ0

∂y∂z
+

∂2ψ1

∂x∂z
− (1− 2v)

∂ψ2

∂x
+ z

∂2ψ2

∂x∂z
,

σyx =
1
2

∂2ψ0

∂x∂z
+

∂2ψ1

∂y∂z
− (1− 2v)

∂ψ2

∂y
+ z

∂2ψ2

∂y∂z
,

(7)

and the potential functions ψj satisfy

(
∆ +

∂2

∂z2

)
ψj = 0, j = 0, 1, 2. (8)

3 Problem description and fundamental solutions

Let us consider a coating made of a 1D hexagonal QC tightly bonded with an isotropic
elastic substrate. Here, the substrate is considered as semi-infinite, with a coating thickness h
and an arbitrarily shaped planar crack S lying at the interface. A Cartesian coordinate system
(Oxyz) was chosen with the Oxy plane as the periodic plane on the interface and the z-axis
along the quasi-periodic direction normal to it, where the upper and lower faces of the crack
are respectively denoted as S+ and S−. Mechanical tractions, px, py, and pz, are applied at
infinity, as schematically illustrated in Fig. 1.
3.1 Boundary conditions

In the case of a penny-shaped crack S of radius a at the interface in a coating structure (see
Fig. 2), we have

z
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Fig. 1 3D schematic representation of 1D
hexagonal QC coating structure with
arbitrarily shaped interface crack un-
der mechanical loads (color online)
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y
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z
R
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Fig. 2 Illustration of penny-shaped crack
with radius of a at interface (color
online)
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x = r cos φ,

y = r sinφ,

R2 = r2 + z2 = x2 + y2 + z2.

(9)

The displacement discontinuities across crack faces can be expressed as

‖ui‖ = ui(x, y, 0+)− ui(x, y, 0−), i = x, y, z, (x, y) ∈ S. (10)

In accordance with the analogy method[38], when the crack radius a approaches zero, one
can obtain the fundamental solutions corresponding to interfacial concentrated displacement
discontinuities. These fundamental solutions should satisfy equilibrium equations and the fol-
lowing conditions, namely,

lim
a→0

∫

S

{‖ux‖, ‖uy‖, ‖uz‖}dS = {1, 0, 0} (11a)

for the concentrated displacement discontinuity in the x-direction,

lim
a→0

∫

S

{‖ux‖, ‖uy‖, ‖uz‖}dS = {0, 1, 0} (11b)

in the y-direction, and

lim
a→0

∫

S

{‖ux‖, ‖uy‖, ‖uz‖}dS = {0, 0, 1} (11c)

in the z-direction.
3.2 Fundamental solutions for concentrated ‖uz‖ = δ

The boundary condition in Eq. (11c) can be rewritten as an arbitrary interfacial point (ζ, η, 0)
within crack faces, and δ(ζ, η) is the delta function. It is obvious that this is a non-torsional
axisymmetric problem about point (ζ, η, 0). According to Fan et al.[32], the phason stress equals
zero at the interface, and thus the boundary conditions are

u+
r = u−r , u+

z − u−z = δ, σ+
zz = σ−zz, σ+

zr = σ−zr, H+
zz = 0 for z = 0, (12a)

σ+
zz = 0, σ+

zr = 0, H+
zz = 0 for z = h, (12b)

where the superscripts “+” and “−”, respectively, denote coating and substrate.
Because of non-torsional axisymmetry, all the quantities are only dependent on (r, z), and

Ψ0 = ψ0 = 0. By using the zeroth-order Hankel transform technique, the potential functions
can be set as

Ψj(r, z) =
∫ ∞

0

(A2j−1eξzj + A2je−ξzj )J0(ξr)dξ, j = 1, 2, 3, (13a)

ψj(r, z) =
∫ ∞

0

Aj+6eξzJ0(ξr)dξ, j = 1, 2, (13b)

where ξ is the Hankel transform parameter, and Ai are the coefficients to be determined by
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boundary conditions. Inserting Eq. (13) into Eq. (3b) and then into Eq. (12), one gets

6∑

j=1

Aj +
A7

2µ
= 0,

3∑

j=1

α1j(A2j−1 −A2j)ξ − 1
2µ

(Ajξ − (3− 4v)A8) =
ξ

2π
, (14a)

3∑

j=1

γ1j(A2j−1 + A2j)ξ = A7ξ − 2(1− v)A8, (14b)

3∑

j=1

sjγ1j(A2j−1 −A2j)ξ = A7ξ − (1− 2v)A8, (14c)

3∑

j=1

γ2j(A2j−1 + A2j) = 0,
3∑

j=1

γ1j(A2j−1eξsjh + A2je−ξsjh) = 0, (14d)

3∑

j=1

sjγ1j(A2j−1eξsjh −A2je−ξsjh) = 0,
3∑

j=1

γ2j(A2j−1eξsjh + A2je−ξsjh) = 0. (14e)

Thus, all the coefficients can be determined by solving Eq. (14), namely,

Aj = A∗j (`), j = 1, 2, · · · , 7, (15a)

A8 = A∗8(`)ξ, (15b)

where A∗j (`) are functions of ` only, with ` = exp(−hξ).
Substituting these coefficients into Eqs. (3) and (7) yields the fundamental solutions of

stresses in the coating and substrate. Here, it is worth noting that the obtained phason stress
on the interface is zero, which implies that no phason stresses exist on the interface of a QC
coating structure. That is, there are no phason SIFs at the interfacial crack tips. However,
the coupling of phonon and phason fields is embedded in the material parameters ϑi, and these
parameters can influence the SIFs and ERRs. Such a phenomenon is obviously different from
that in ordinary crystal materials. As focus is on the interfacial fracture behavior, the field
point is chosen to approach the crack face from the substrate. Therefore, we only give the
expressions of stresses at an arbitrary field point (x, y, z) in the substrate.

When the Hankel transform parameter ξ approaches a sufficiently large value ξ0, the pa-
rameter ` is close to zero. We have

ϑ1 = lim
`→0

A7, ϑ2ξ = lim
`→0

A8, (16)

where ϑi are material properties.
Inserting Eq. (16) into (13b), one obtains the potential functions in the substrate. As inte-

grals cannot be analytically solved, the potential functions are rewritten as

ψ1(r, z) =
∫ ∞

0

ϑ1eξzJ0(ξr)dξ +
∫ ξ0

0

(A7 − ϑ1)eξzJ0(ξr)dξ + E(1/ξ2
0), (17a)

ψ2(r, z) =
∫ ∞

0

ϑ2eξzJ0(ξr)dξ +
∫ ξ0

0

(A8 − ϑ2ξ)eξzJ0(ξr)dξ + E(1/ξ2
0), (17b)

where E(∗) indicates the error of truncation. Integrals in Eq. (17) can be evaluated analytically
or numerically. When ξ0 is sufficiently large, the error is tiny. As shown in Fig. 3, when ξ0

reaches 6/h and the values of coefficients keep unchanged, ξ0 is selected as 10/h for a high
accuracy in numerical calculation.
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Fig. 3 Values of A7, A8, C0, C1, and C2 versus ξ (color online)

Keep the formula
∫∞
0

eξzJ0(ξr)dω = 1√
r2+z2 in mind. Then, Eq. (17) can be solved as

ψ1(r, z) ≈ ϑ1
1
R

+
∫ ξ0

0

(A7 − ϑ1)eξzJ0(ξr)dξ, (18a)

ψ2(r, z) ≈ −ϑ2
z

R3
+

∫ ξ0

0

(A8 − ϑ2ξ)eξzJ0(ξr)dξ, (18b)

where R =
√

r2 + z2 =
√

(x− ζ)2 + (y − η)2 + z2.
Substituting Eq. (18) into Eq. (7a) yields stresses as

Ξ1 = σzz = (2(1− v)ϑ2 − ϑ1)
1

R3
+ 3((1 + 2v)ϑ2 + ϑ1)

z2

R5
− 15ϑ2

z4

R7
+ T1 + zT2, (19a)

Ξ2 = σzx = 3(ϑ1 + 2vϑ2)
xz

R5
− 15ϑ2

xz3

R7
+ T3 + zT4, (19b)

Ξ3 = σyz = 3(ϑ1 + 2vϑ2)
xz

R5
− 15ϑ2

yz3

R7
+ T5 + zT6, (19c)

where the functions Ti are defined as




T1 =
∫ ξ0

0

((A7 − ϑ1)ξ − 2(1− v)(A8 − ϑ2ξ))ξeξzJ0(ξr)dξ,

T2 =
∫ ξ0

0

(A8 − ϑ2ξ)ξ2eξzJ0(ξr)dξ,

T3 = −
∫ ξ0

0

((A7 − ϑ1)ξ − (1− 2v)(A8 − ϑ2ξ))ξeξzJ1(ξr)dξ · cos φ,

T4 = −
∫ ξ0

0

(A8 − ϑ2ξ)ξ2eξzJ1(ξr)dξ · cos φ,

T5 = −
∫ ξ0

0

((A7 − ϑ1)ξ − (1− 2v)(A8 − ϑ2ξ))ξeξzJ1(ξr)dξ · sinφ,

T6 = −
∫ ξ0

0

(A8 − ϑ2ξ)ξ2eξzJ1(ξr)dξ · sinφ.

(20)

According to Eq. (19), the anterior terms represent the effect of an infinite space with the
same singularity, where the latter terms containing Ti reflect the effect of coating structure
with a regular integrand. When the coating thickness is large enough, the functions Ti are
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close to zero, and the solution is reduced to an infinite case. Similarly, one can get fundamental
solutions for unit displacement discontinuities in the y- and x-directions, respectively, and for
brevity, the detailed derivation is given in Appendices A and B.

4 Boundary integral-differential equations for interface cracks

Based on the fundamental solutions obtained above, one can construct the integral expres-
sions for stresses at an arbitrary internal field point (x, y, z) in the substrate in terms of the
displacement discontinuities across an interface crack S as

σzx =
∫

S

{Ξ8‖ux‖+ Ξ5‖uy‖+ Ξ2‖uz‖}dS, (21a)

σyz =
∫

S

{Ξ9‖ux‖+ Ξ6‖uy‖+ Ξ3‖uz‖}dS, (21b)

σzz =
∫

S

{Ξ7‖ux‖+ Ξ4‖uy‖+ Ξ1‖uz‖}dS. (21c)

As the filed point approaches the crack face, the integrals in Eq. (21) become hypersingular.
Adopting finite-part integrals, the boundary integral-differential equations for an arbitrarily
shaped crack S can be written as

σzx(x, y, 0) =
∫

S

((
(ϑ4 − ϑ3 − (1− 2v)ϑ5)

1
r3

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)cos2 φ

r3

)
‖ux‖

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sinφ cos φ

r3
‖uy‖

)
dS − 2π(ϑ1 + 2vϑ2)

∂‖uz‖
∂x

+
∫

S

(T15‖ux‖+ T9‖uy‖+ T3‖uz‖)dS, (22a)

σyz(x, y, 0) =
∫

S

(
3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sinφ cos φ

r3
‖ux‖

+
(
(ϑ4 − ϑ3 − (1− 2v)ϑ5)

1
r3

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sin2 φ

r3

)
‖uy‖

)
dS

− 2π(ϑ1 + 2vϑ2)
∂‖uz‖

∂y
+

∫

S

(T9‖ux‖+ T11‖uy‖+ T5‖uz‖)dS, (22b)

σzz(x, y, 0) = (2(1− v)ϑ2 − ϑ1)
∫

S

1
r3
‖uz‖dS + 2π(ϑ4 − 2(1− v)ϑ5)

(∂‖ux‖
∂x

+
∂‖uy‖

∂y

)

+
∫

S

(T13‖ux‖+ T7‖uy‖+ T1‖uz‖)dS, (22c)

where r =
√

(x− ζ)2 + (y − η)2, cos φ = (x− ζ)/r, and sinφ = (y − η)/r.

5 Green’s functions for displacement discontinuities

The integral-differential equations in Eq. (22) are difficult to be analytically solved, espe-
cially for complex crack geometries and applied loads. Therefore, it is natural to resort to a
displacement discontinuity boundary element method. Then, a rectangular element can be eas-
ily applied to discretize a crack of arbitrary shape, and its integral calculation is simple. Hence,
a rectangular element is chosen, and the fundamental solutions are derived for the element
subjected to uniform displacement discontinuities.

Let us assume that a rectangular element with length of 2a and width of 2b is centered at
point (x0, y0). Over the element, uniform displacement discontinuities ‖ue

x‖, ‖ue
y‖, and ‖ue

z‖
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are distributed. Thus, displacement discontinuities can be expressed by

‖ui(x, y)‖ = ‖ue
i‖Sr, i = x, y, z, (23)

where Sr is the domain function defined by the Heaviside function H(x) as

Sr = (H(x + a)−H(x− a))(H(y + b)−H(y − b)). (24)

Inserting Eq. (23) into Eq. (22), the stresses at the field point (x, y, 0) caused by the e-th
element can be obtained as

σzx = G11‖ue
x‖+ G12‖ue

y‖+ G13‖ue
z‖, (25a)

σyz = G21‖ue
x‖+ G22‖ue

y‖+ G23‖ue
z‖, (25b)

σzz = G31‖ue
x‖+ G32‖ue

y‖+ G33‖ue
z‖, (25c)

where Gij(x, y) are Green’s functions defined as




G11 = (ϑ4 − ϑ3 − (1− 2v)ϑ5)(I1 + I2) + 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)
I1 +

∫

Sr

T15dS,

G12 = 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)
I3 +

∫

Sr

T9dS,

G13 =
∫

Sr

T3dS − 2π(ϑ1 + 2vϑ2)
∂Sr

∂x
,

G21 = 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)
I3 +

∫

Sr

T9dS,

G22 = (ϑ4 − ϑ3 − (1− 2v)ϑ5)(I1 + I2) + 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)
I2 +

∫

Sr

T11dS,

G23 =
∫

Sr

T5dS − 2π(ϑ1 + 2vϑ2)
∂Sr

∂y
,

G31 =
∫

Sr

T13dS + 2π(ϑ4 − 2(1− v)ϑ5)
∂Sr

∂x
,

G32 =
∫

Sr

T7dS + 2π(ϑ4 − 2(1− v)ϑ5)
∂Sr

∂y
,

G33 = (2(1− v)ϑ2 − ϑ1)(I1 + I2) +
∫

Sr

T1dS,

(26)

where kernel integrals Ii are defined in Eq. (15) in Ref. [39], where x1 and x2 respectively refer
to x and y, and the partial differential formulas are defined as[39]





∂Sr

∂x
= (δ(x + a)− δ(x− a))(H(y + b)−H(y − b)),

∂Sr

∂y
= (H(x + a)−H(x− a))(δ(y + b)− δ(y − b)),

(27)

in which δ is the delta function, and δ(x) = dH(x)/dx.

6 SIFs and ERR

It is known that the terms containing the delta function cause the oscillatory singularity of
stresses near the crack front[39]. According to Zhang and Wang[40], the delta function can be



1910 Xin ZHANG, Minghao ZHAO, Cuiying FAN, C. S. LU, and Huayang DANG

approximated by the Gaussian distribution function, that is

δ(x) =
1√
2πε

exp
(
− x2

2ε2

)
, (28)

where ε is the Gaussian parameter dependent on the geometry of a crack. In practical
calculation[40], a relative value of ε = 0.007 5 ra is suitable, with the crack size ra. After
replacement, the point force induced by the delta function can be treated as a locally dis-
tributed load, and thus Eq. (22) can be converted into standard integral equations, where the
terms converted from those containing the delta function no longer influence the singularity
of stresses in the neighborhood of the crack front. In addition, the finite integral terms Ti

reflecting coating effect do not influence the singularity of stresses near the crack front. Hence,
the singularity index of stresses is −1/2, which is the same as that in a homogeneous medium.

An arbitrary point Q is chosen on the front of crack S. The Cartesian coordinate system
Oxyz is oriented so that the x- and y-directions are normal and tangent to the front, respectively.
A local orthogonal, intrinsic coordinate system (n, τ,m) at point Q along the periphery of a
planar crack is set up. The n-axis is perpendicular to the crack front line and is directed towards
the inner side of a crack, while the τ -axis is tangential to the crack front line, and the m-axis
is parallel to the global z-axis. Now let us introduce a local coordinate (−ρ, 0, 0), where ρ > 0
outside the crack but close to point Q. By introducing the transformation

ζ + ρ = r cos ϕ, η = r sinϕ, (29)

the singular stresses at point (−ρ, 0, 0) become

σzx(−ρ, 0, 0) =
∫

S

((
(ϑ4 − ϑ3 − (1− 2v)ϑ5)

1
r3

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

)cos2 φ

r3

)
‖ux‖

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sinφ cos φ

r3
‖uy‖

)
dS, (30a)

σyz(−ρ, 0, 0) =
∫

S

(
3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sinφ cos φ

r3
‖ux‖

+
(
(ϑ4 − ϑ3 − (1− 2v)ϑ5)

1
r3

+ 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) sin2 φ

r3

)
‖uy‖

)
dS, (30b)

σzz(−ρ, 0, 0) = (2(1− v)ϑ2 − ϑ1)
∫

S

1
r3
‖uz‖dS. (30c)

Thus, the SIFs at the interface crack front are defined as




KI = lim
ρ→0

√
2πρσzz(−ρ, 0, 0),

KII = lim
ρ→0

√
2πρσzx(−ρ, 0, 0),

KIII = lim
ρ→0

√
2πρσyz(−ρ, 0, 0).

(31)

Inserting Eq. (30) into Eq. (31) yields




KI =
√

2ππ(2(1− v)ϑ2 − ϑ1) lim
ρ→0

‖uz‖/√ρ,

KII =
√

2ππ((1− 2v)ϑ5 − ϑ4) lim
ρ→0

‖ux‖/√ρ,

KIII = −
√

2ππϑ3 lim
ρ→0

‖uy‖/√ρ,

(32)
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where ρ denotes the distance to the crack front.
Based on the virtual crack closure method, one can derive the local ERR using the tractions

and displacements ahead of the crack front[41]

G = lim
∆S→0

1
2∆S

∫

∆S

(σzx‖ux‖+ σyz‖uy‖+ σzz‖uz‖)dS, (33)

and one obtains the final expressions of G in terms of SIFs as

G =
1
8π

( K2
I

2(1− v)ϑ2 − ϑ1
+

K2
II

(1− 2v)ϑ5 − ϑ4
− K2

III

ϑ3

)
. (34)

Here, the ERR G is related to three modes of SIFs, which can comprehensively reflect the
fracture behavior.

7 Displacement discontinuity boundary element method

Let us consider an interface crack discretized into N rectangular elements. The displacement
discontinuities are uniformly distributed within each element. Using the fundamental solutions
from Eq. (25), we have

− px(xi, yi) =
N∑

e=1

(G11‖ue
x‖+ G12‖ue

y‖+ G13‖ue
z‖), (35a)

− py(xi, yi) =
N∑

e=1

(G12‖ue
x‖+ G22‖ue

y‖+ G23‖ue
z‖), (35b)

− pz(xi, yi) =
N∑

e=1

(G31‖ue
x‖+ G32‖ue

y‖+ G33‖ue
z‖), (35c)

where i = 1, 2, 3, · · · , N , and px, py, and pz are the prescribed phonon tractions on crack faces.
There are totally 3N equations and 3N corresponding discontinuities for a crack. After solving
these linear algebraic equations, displacement discontinuities for each element can be obtained,
and then stresses of a given point. Thus, the proposed displacement discontinuity boundary
element method is flexible and suitable for complicated multi-crack problems with complex
boundary conditions and geometries.

The displacement discontinuities close to the crack tip can be extrapolated by fitting the
calculated results of elements near the crack front as

‖ui‖ = βi
1ρ

1/2 + βi
2ρ

3/2, i = x, y, z, (36)

where βi
1 and βi

2 are fitting coefficients, and ρ denotes the distance of a field point from the
crack tip. Then, by substituting Eq. (36) into Eq. (32), the SIFs become





KI =
√

2ππ(2(1− v)ϑ2 − ϑ1)βz
1 ,

KII =
√

2ππ(2(1− v)ϑ5 − ϑ4)βx
1 ,

KIII = −
√

2ππϑ3β
y
1 .

(37)

Based on Eq. (34), the ERR can be calculated by fitting coefficients as

G =
π2

4
((2(1− v)ϑ2 − ϑ1)(βz

1)2 + ((1− 2v)ϑ5 − ϑ4)(βx
1 )2 − ϑ3(β

y
1 )2). (38)
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8 Results and discussion

In simulations, two kinds of 1D hexagonal QCs (QC1 and QC2) are selected, with relevant
material constants[42]. The substrate material is aluminum (Al), and its shear modulus and
Poisson’s ratio are 30.5 GPa and 0.33, respectively. The displacement discontinuities, SIFs, and
ERR are normalized by h, pz

√
πh, and pzh, respectively.

First, a rectangular interface crack with length L1 and width L2 under uniform tractions is
studied. As shown in the calculation, the maximum values of SIFs and ERR all occur at the
middle of the crack edge. Therefore, the middle points of four sides A, B, C, and D are selected
to represent SIFs and ERR of the crack, and their positions are seen in Fig. 4. A rectangular
crack is discretized by n1 × n2 elements, where n1 and n2 are the numbers of discrete elements
along the crack length and width, respectively.
8.1 Convergence analysis and validation of numerical simulation

First, the convergence is analyzed. The elements with 19 × 19, 39 × 39, and 49 × 49 are
respectively used to discretize a rectangular interface crack. As shown in Fig. 5, high precision
can already be reached with 39 × 39 elements. Meanwhile, to verify the proposed boundary
element method (BEM), the results are compared with simulations by COMSOL software.
Based on the comparison of crack opening displacement distribution, it is shown that the
relevant results are consistent with each other, which to some extent confirms the proposed
method.
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Fig. 4 Schematic representation of rectan-
gular crack at interface (color online)
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Fig. 5 Normalized displacement discontinu-
ity ‖uz‖ along y = L2/2 of crack
with fixed ratios of L1/h = 2 and
L1/L2 = 1 for different element num-
bers (color online)

8.2 Normalized displacement discontinuity distribution under different loads
As observed in Fig. 6, the displacement discontinuity ‖ux‖ is symmetric along y = L2/2

and anti-symmetric along x = L1/2, while the symmetry of ‖uy‖ is in contrast, and ‖uz‖ is
symmetric along both. It is obvious that the induced ‖uz‖ is one order of magnitude higher
than ‖uz‖ and ‖uy‖. For mixed loads, the distribution of discontinuities will be more complex.
8.3 Influence of ratio, material mismatch, and crack length-width ratio

As shown in Fig. 7, the absolute values of SIFs and ERR increase with increasing L1/h. The
variation tendencies of SIFs are different, especially for KII with negative values, meaning that
the direction is opposite to the definition direction. As a comprehensive fracture parameter, G
is an embodiment of KI, KII, and KIII, which can better reflect the fracture behavior of cracks
than a single SIF. In addition, the material mismatch also has an important influence on the
fracture behavior. Although there are no phason tractions applied, the influence by a phason
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coating under pz = 10MPa (color online)

field cannot be ignored, because different QC materials possess obvious discrepant SIFs and
ERRs.

The effect of length-width ratio of rectangular crack L2/L1 on the fracture is also studied.
As shown in Fig. 8, when L2/L1 is less than 1, the values of KI at points A, B, C, and D
all increase with the increasing of L2/L1. When L2/L1 = 1, KI at points A and C is equal,
while that at points B and D is equal. As L2/L1 continues to increase, KI at points C and D
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increases slightly and is basically stable after 2.5, while KI decreases at point A and increases
at point B, and they gradually tend to be stable. In addition, KII, KIII, and G at points A, B,
C, and D all increase and tend to be stable with the increase of L2/L1. When L2/L1 < 1, their
values at points C and D are larger than those at points A and B, while when L2/L1 > 1, their
values at points A and B are larger than those at points C and D. When L2/L1 > 1, point B
is the most dangerous among four points, followed by point A, and points C and D are close
and safest. Here, the effect of length-width ratio shows that, a planar crack in a 3D problem
cannot be simply reduced as a line crack in a 2D case. In general cases, a 3D mathematical
model can better reflect the actual working condition, and a reduced 2D problem cannot mirror
an overall fracture performance precisely.
8.4 Influence of applied loads

As shown in Fig. 9, KI and KII at points A and B and KIII at points C and D are not
related to py. Only KI and KII at points C and D and KIII at points A and B change linearly
with py, and they are not only related to the applied value of py, but also to its direction.
Meanwhile, the ERR increases nonlinearly with the increase of py, and the relative value of
loads may change the most dangerous points. When py is large enough compared to px and pz,
points A and B are more dangerous than points C and D.
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pz = 50MPa (color online)

9 Conclusions

In this paper, the displacement discontinuity method has been extended to study the 3D
interfacial cracks in a 1D hexagonal QC coating structure. The fundamental solutions of concen-
trated displacement discontinuities are derived, and the boundary integral-differential equations
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are constructed for an arbitrarily shaped crack. A corresponding boundary element method is
proposed, and Green’s functions of rectangular element with uniform displacement discontinu-
ities are derived. Several main conclusions are drawn.

(i) Different from a 2D problem, the 3D interface crack problem of QC coating is more
complex, which can reflect the actual working situation.

(ii) When the ratio of crack size to coating thickness grows, SIFs and ERR increase, and
the rectangular crack expands to be circular.

(iii) The material mismatch, applied loads, and crack shape exhibit a significant influence
on the interfacial fracture of QC coating.

The present work lays a foundation for the further 3D fracture analysis of QC and other
intelligent materials with coating structures.
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Appendix A Fundamental solution for concentrated ‖uy‖ = δ

When ‖uy‖ = δ is applied at the interfacial point (ζ, η, 0), the boundary conditions are

{
u+

r − u−r = δ sin φ, u+
φ − u−φ = δ cos φ,

u+
z = u−z , σ+

zz = σ−zz, σ+
zr = σ−zr, σ+

zφ = σ−zφ, H+
zz = 0 for z = 0,

(A1a)

σ+
zz = 0, σ+

zr = 0, σ+
zφ = 0, H+

zz = 0 for z = h. (A1b)
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Based on the first-order Hankel transform technique, the potential functions are assumed as

Ψ0 =

∫ ∞

0

(B1e
ξz0 + B2e

−ξz0)J1(ξr)dξ · cos φ, (A2a)

Ψj =

∫ ∞

0

(B2j+1e
ξzj + B2j+2e

−ξzj )J1(ξr)dξ · sin φ for j = 1, 2, 3 (A2b)

ψ0 =

∫ ∞

0

C0e
ξzJ1(ξr)dξ · cos φ, (A2c)

ψj =

∫ ∞

0

Cje
ξzJ1(ξr)dξ · sin φ for j = 1, 2, (A2d)

where cos φ = (x − ζ)/r, and sin φ = (y − η)/r. Inserting Eq. (A2) into Eqs. (3b) and (7b), and then
substituting them into Eq. (A1), all the coefficients can be obtained, namely,

Bj = B∗
j (`), j = 1 ∼ 8, (A3a)

C0 = C∗0 (`), C1 = C∗1 (`), C2 = C∗2 (`)ξ. (A3b)

Similarly, when the Hankel transform parameter ξ approaches a sufficiently large value ξ0, we have
the following limit values:

ϑ3 = lim
`→0

C0, ϑ4 = lim
`→0

C1, ϑ5ξ = lim
`→0

C2. (A4)

Then, one obtains the potential functions in substrate as




ψ0 = ϑ3
1

r

(
1 +

z

R

)
· cos φ +

∫ ξ0

0

(C0 − ϑ3)e
ξzJ1(ξr)dξ · cos φ,

ψ1 = ϑ4
1

r

(
1 +

z

R

)
· sin φ +

∫ ξ0

0

(C1 − ϑ4)e
ξzJ1(ξr)dξ · sin φ,

ψ2 = ϑ5
r

R3
· sin φ +

∫ ξ0

0

(C2 − ϑ5ξ)e
ξzJ1(ξr)dξ · sin φ.

(A5)

Inserting Eq. (A5) into general solutions, the induced stresses in substrate are




Ξ4 = σzz = −3(ϑ4 − 2(1− v)ϑ5)
yz

R5
+ 15ϑ5

yz3

R7
+ T7 + zT8,

Ξ5 = σzx = 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) xy

R5
+ 15ϑ5

xyz2

R7
+ T9 + zT10,

Ξ6 = σyz = (ϑ4 − ϑ3 − (1− 2v)ϑ5)
1

R3
+ 3

(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) y2

R5

+ 3
(1

2
ϑ3 − ϑ5

) z2

R5
+ 15ϑ5

y2z2

R7
+ T11 + zT12,

(A6)

where



T7 =

∫ ξ0

0

((C1 − ϑ4)ξ − 2(1− v)(C2 − ϑ5ξ))ξe
ξzJ1(ξr)dξ · sin φ,

T8 =

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ1(ξr)dξ · sin φ,

T9 =

∫ ξ0

0

(1

2
(C0 − ϑ3)ξ − (C1 − ϑ4)ξ + (1− 2v)(C2 − ϑ5ξ)

)
ξeξzJ2(ξr)dξ · sin φ cos φ,

T10 = −
∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ2(ξr)dξ · sin φ cos φ,

T11 =
1

2

∫ ξ0

0

(1

2
(C0 − ϑ3)ξ + (C1 − ϑ4)ξ − (1− 2v)(C2 − ϑ5ξ)

)
ξeξzJ0(ξr)dξ

− 1

2

∫ ξ0

0

(1

2
(C0 − ϑ3)ξ − (C1 − ϑ4)ξ + (1− 2v)(C2 − ϑ5ξ)

)
ξeξzJ2(ξr)dξ · cos(2φ),

T12 =
1

2

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ0(ξr)dξ +

1

2

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ2(ξr)dξ · cos(2φ).

(A7)
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Appendix B Fundamental solution for concentrated ‖ux‖ = δ

When ‖ux‖ = δ is applied, the corresponding boundary conditions are





u+
r − u−r = δ(r) cos φ, u+

φ − u−φ = δ(r) sin φ,

u+
z − u−z = 0, σ+

zz − σ−zz = 0, σ+
zr − σ−zr = 0,

σ+
zφ − σ−zφ = 0, H+

zz = 0 for z = 0,

(B1a)

σ+
zz = 0, σ+

zr = 0, σ+
zφ = 0, H+

zz = 0 for z = h. (B1b)

By simply converting trigonometric functions, potential functions can be assumed as





ψ0 = −ϑ3
1

r

(
1 +

z

R

)
· sin φ−

∫ ξ0

0

(C0 − ϑ3)e
ξzJ1(ξr)dξ · sin φ,

ψ1 = ϑ4
1

r

(
1 +

z

R

)
· sin φ +

∫ ξ0

0

(C1 − ϑ4)e
ξzJ1(ξr)dξ · cos φ,

ψ2 = ϑ5
r

R3
· cos φ +

∫ ξ0

0

(C2 − ϑ5ξ)e
ξzJ1(ξr)dξ · cos φ.

(B2)

Then, the stresses of an arbitrary point (x, y, z) in substrate are obtained as





Ξ7 = σzz = −3(ϑ4 − (1− 2v)ϑ5)
xz

R5
+ 15ϑ5

xz3

R7
+ T13 + zT14,

Ξ8 = σzx = (ϑ4 − ϑ3 − (1− 2v)ϑ5)
1

R3
+ 3

(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) x2

R5

+ 3
(1

2
ϑ3 − ϑ5

) z2

R5
+ 15ϑ5

x2z2

R7
+ T15 + zT16,

Ξ9 = σyz = 3
(1

2
ϑ3 − ϑ4 + (1− 2v)ϑ5

) xy

R5
+ 15ϑ5

xyz2

R7
+ T9 + zT10,

(B3)

where the arisen functions are defined as




T13 =

∫ ξ0

0

((C1 − ϑ4)ξ − 2(1− v)(C2 − ϑ5ξ))ξe
ξzJ1(ξr)dξ · cos φ,

T14(r, φ, z) =

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ1(ξr)dξ · cos φ,

T15 =
1

2

∫ ξ0

0

(1

2
(C0 − ϑ3)ξ + (C1 − ϑ4)ξ − (1− 2v)(C2 − ϑ5ξ)

)
ξeξzJ0(ξr)dξ

+
1

2

∫ ξ0

0

(1

2
(C0 − ϑ3)ξ − (C1 − ϑ4)ξ + (1− 2v)(C2 − ϑ5ξ)

)
ξeξzJ2(ξr)dξ · cos(2φ),

T16 =
1

2

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ0(ξr)dξ − 1

2

∫ ξ0

0

(C2 − ϑ5ξ)ξ
2eξzJ2(ξr)dξ · cos(2φ).

(B4)


