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Will Earth’s next supercontinent assemble through
the closure of the Pacific Ocean?

Chuan Huang'-2* 1, Zheng-Xiang Li ©"-* and Nan Zhang'?

ABSTRACT

Earth’s known supercontinents are believed to have formed in vastly different ways, with two endmembers
being introversion and extroversion. The former involves the closure of the internal oceans formed during
the break-up of the previous supercontinent, whereas the latter involves the closure of the previous external
superocean. However, it is unclear what caused such diverging behavior of supercontinent cycles that
involved first-order interaction between subducting tectonic plates and the mantle. Here we address this
question through 4D geodynamic modeling using realistic tectonic set-ups. Our results show that the
strength of the oceanic lithosphere plays a critical role in determining the assembly path of a supercontinent.
We found that high oceanic lithospheric strength leads to introversion assembly, whereas lower strength
leads to extroversion assembly. A theoretically estimated reduction in oceanic crustal thickness, and thus its
strength, during Earth’s secular cooling indicates that introversion was only possible for the Precambrian
time when the oceanic lithosphere was stronger, thus predicting the assembling of the next supercontinent
Amasia through the closure of the Pacific Ocean instead of the Indian-Atlantic oceans. Our work provides a

new understanding of the secular evolution of plate tectonics and geodynamics as the Earth cooled.
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INTRODUCTION

A primary feature of Earth’s tectonic evolution since
around 2 billion years ago (Ga) is the superconti-
nent cycle [1-3], featuring a cyclical assembly and
dispersal of major continents with a periodicity of
around 600 million years (Myrs) [4]. Two endmem-
ber forms of supercontinent assembly have been
proposed [S]. Introversion assembly involves the
closure of internal oceans created during the break-
up of the previous supercontinent, whereas extro-
version assembly involves the closure of the external
superocean surrounding the previous superconti-
nent [6] (Fig. 1). Of the three known superconti-
nents, the oldest one, Nuna/Columbia (1.6-1.3 Ga)
[7], could be Earth’s first supercontinent [8], and
its assembly therefore does not involve the intro-
version/extroversion processes. However, how the
two younger supercontinents, Rodinia (0.9-0.7 Ga)
[9] and Pangea (0.32-0.17 Ga) [10], formed re-
mains controversial. Li et al. [11] speculated that Ro-
dinia formed through introversion whereas Pangea
formed through extroversion, but others argued oth-

erwise [6,12]. To complicate the matter further,
Mitchell et al. [13] proposed that a superconti-
nent could assemble through orthoversion by clos-
ing the minor oceans between the continents when
they gather along the girdle of subduction ~90°
away from the center of the previous superconti-
nent (Fig. 1d). Understanding how each supercon-
tinent assembled and the controlling forces behind
it is important not only for understanding how the
plate tectonics system interacts with mantle dynam-
ics in an evolving Earth, but also for predicting if the
next supercontinent, dubbed Amasia [ 14], will form
through the closure of the Pacific Ocean, the Atlantic
Ocean or neither [11,13,14].

The style of supercontinent assembly, and that of
plate tectonics in general, is likely linked to both the
properties of tectonic plates and their interactions
with the Earth’s mantle in the context of a secularly
cooling Earth. Here we use 4D geodynamic mod-
eling with realistic plate and mantle parameter set-
tings to examine if factors like lithospheric strength,
Earth’s secular cooling, and the volume and density
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of the lower-mantle thermo-chemical piles as pre-
sented by the two present-day large low shear veloc-
ity provinces (LLSVPs) [15,16], playa critical role in
determining whether a supercontinent is assembled
through introversion, extroversion or orthoversion
(Fig. 1). With our modeling results, we speculate if
the next supercontinent will likely assemble through
the closure of the Pacific Ocean or the Indo-Atlantic
oceans.

MODEL SETTINGS

We set our dynamic models on the coupling pro-
cesses between Earth-like plate tectonics and man-
tle convection over a complete supercontinent
cycle. Each model starts from the assembly of
the mother supercontinent (supercontinent-l) to
establish the initial condition (see Methods in
Supplementary Data) for the modeling,. It then pro-
ceeds to the break-up of the mother supercon-
tinent as the beginning of a new supercontinent
cycle, and finishes at the formation of the daugh-
ter supercontinent (supercontinent-2). Our model
set-up features the following characteristics. (i) Con-
tinents are defined as chemically distinct regions
that are buoyant and move self-consistently over the
sub-lithospheric mantle [17]. (ii) The oceanic litho-
sphere deforms in a pseudoplastic fashion when the
local stress is larger than its yield stress, such that
Earth-like ocean—ocean (two-sided subduction due
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_A A Subduction in external oceans
_A_A_ Subduction in internal oceans

Figure 1. Cartoon illustrating three possible ways of assembling the future supercontinent Amasia from the break-up of Pangaea (a and b): (c) extro-
version [4], (d) orthoversion [13] and (e) introversion [11].

to the limitation of pseudoplastic approximation of
the oceanic lithosphere) or ocean—continent sub-
duction (one-sided), driven by dynamic processes,
can initiate [17,18]. (iii) Self-generation of ocean-
continent subduction is made possible by adding
low viscosity (weak) zones [19,20] along the conti-
nental margins when the nearby oceanic lithosphere
is older than 200 Myrs, thus the oceanic plates’ neg-
ative buoyancy from cooling can initiate subduc-
tion. Such weak zones are removed when oceanic
crust younger than 10 Myrs reaches the subduc-
tion zone, which is expected to slow or even jam
the subduction [17] (see Methods in Supplemen-
tary Data). (iv) A dense chemical layer in the lower
mantle above the core-mantle boundary (CMB),
sourced from either the remanent of the primordial
magma ocean [21] and/or the subducted oceanic
slabs [22,23], is implanted at the beginning of the
modeling to simulate the formation and evolution
of the LLSVPs. (v) Weak orogens are automatically
generated when two adjacent continents are joined
together through the closure of the ocean between
them, which not only prevent the colliding conti-
nents from becoming a single large craton, but also
play a guiding role for the future break-up of the su-
percontinent [24] (see Methods in Supplementary
Data). Collectively, these settings (Table S1 in Sup-
plementary Data) enable our models to simulate the
Earth-like mantle—plate coupling process to the first
order [17,18,25].

€202 YoJe\ 2z uo1senb Aq 6992/ 9/S0Z0BMU/Z |./6/a10NJ./ISu/woo dno olwapese//:sdiy woll papeojumod



Natl Sci Rev, 2022, Vol. 9, nwac205

Case 1, 125 MPa
Extroversion

Case 2, 150 MPa
Transitional (Orthoversion?)

Case 3, 175 MPa——
Introversion

Surface weak belts
(non-dimensional viscosity < 1)

Continents
Il CMB

B | ower mantle thermo-chemical piles
m Cold slab

Figure 2. Modeling results of a full supercontinent cycle with different oceanic lithospheric yield stresses. (a—c) Evolutionary
snapshots for the extroversion supercontinent assembly (Case 1) at (a) 0 Myrs, (b) 220 Myrs and (c) 630 Myrs, with a lowest
yield stress of 125 MPa. (d—f) The transitional (orthoversion?) supercontinent assembly (Case 2) with intermediate yield
stress of 150 MPa. (g—i) The introversion supercontinent assembly (Case 3) with a highest yield stress of 175 MPa. All other
parameters are the same for the three models. The subducting cold slabs are shown as —0.1 isocontours of the mantle’s non-
dimensional residual temperature (—0.05 for the top 300 km). All the calculations are performed in 3D spherical geometry,
and the results are first unwrapped into cartesian coordinates and then converted into Hammer projections at each depth for

easier visualization.

RESULTS

Strength of the oceanic lithosphere and
supercontinent assembly

With carefully chosen initial temperature field (see
Methods in Supplementary Data), we first run
three cases to examine the influence of yield stress
of the oceanic lithosphere on how a supercon-
tinent is assembled, with the yield stress set at
125 MPa (Case 1), 150 MPa (Case 2) and 175 MPa
(Case 3), respectively, all within the previously sug-
gested range [26] (see Methods in Supplementary
Data). The simplified yield stress profiles for the
oceanic lithosphere allow for the modeling of geo-
dynamic processes with reasonable proximations
of the lithospheric strength [18,27]. Continents in
Case 1 first disperse during the break-up of the ini-
tial supercontinent-1 and become scattered along a
great circle inside the retreating subduction girdle by
~220 Myrs (Fig. 2a and b; Fig. Sla and b in Sup-
plementary Data). The maximum root-mean-square
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(simplified as mean hereafter) velocity of the conti-
nents reaches its peak soon after the continents drift
pass the great circle to the other side of the globe
at ~280 Myrs (Fig. S2a). The continents then start
to converge at the opposite hemisphere with reduc-
ing mean velocity (Fig. 2b and c; Figs S1b and ¢
and S2a) as if they are pulled by the retreating, first
enlarging, and then shrinking subduction girdle un-
til the final assembly of the new supercontinent-2
(Fig. Sla—c). By that stage, the previous superocean-
1 surrounding supercontinent-1 (Fig. Sla) is en-
tirely consumed, whereas a new subduction girdle
forms along the shared margin between the newly
formed supercontinent-2 and superocean-2 that has
grown from the early internal ocean (Fig. S1band c)
in a clear case of extroversion supercontinent assem-
bly (Movie S1) [11].

Case 2 repeats the same procedure as Case 1
but a yield strength of 150 MPa is applied to the
oceanic lithosphere. We find that the breaking-away
continents still first spread following the expanding
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Figure 3. Evolutionary snapshots for Cases (a—c) 7, (d—f) 8 and (g—i) 12. Case 7 is the same as Case 1 but with a 50% reduction in density for the
lower-mantle thermo-chemical layer. Case 8 is the same as Case 3 but with a thicker (400 km) initial lower-mantle thermo-chemical layer. Case 12 is
the same as Case 1 except that the value for mantle internal radioactive heating is changed from that for Pangea to that for Nuna [39]. The modeling
results of both Cases 7 and 12 (i.e. extroversion assembly of the daughter supercontinent) remain the same as in Case 1, and those of Case 8 remain the
same as Case 3 (introversion supercontinent assembly). Note that in (d—f), only contours of the lower-mantle thermo-chemical layer at 400-km above

the CMB are shown.

(retreating) subduction girdle (Fig. 2d and e; Fig.
S1d and e), but then stop spreading further once
the maximum dimension of the internal ocean
reaches ~180° by ~420 Myrs (Fig. Sle). The
continents remain relatively stable in such a girdle
configuration for over 200 Myrs, with subduction
occurring around both the external and internal
oceans (Fig. 2e and f; Fig. Sle and f). The continents
are almost connected, mimicking an orthoversion
assembly of supercontinent-2 (Movie S2) [13].
Case 3 has the highest yield stress value of
175 MPa for the oceaniclithosphere. In this case, the
break-away continents first spread following the re-
treating subduction girdle (Fig. 2g and h; Fig. Slg
and h). However, the continental dispersion stops at
ca. 405 Myrs when the maximum dimension of the
growing internal ocean reaches ~180° (Fig. S1h).
After that, the internal ocean starts to shrink as the
continents start to move back toward the location of
the original supercontinent until the internal ocean
is closed and the new supercontinent-2 is assembled
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at about the same location as its predecessor, con-
stituting an introversion assembly (Fig. 2h and i;
Fig. S1h and i and Movie S3) [6,11].

These results indicate that the strength of the
oceanic lithosphere can determine how a super-
continent is assembled. Once the break-away
continents are dispersed along a girdle constrained
by two subduction systems around both the shrink-
ing external ocean and the growing internal ocean,
how the next supercontinent is assembled appears
to be strongly influenced by the competing pulling
power of subduction systems in the two oceans. A
low oceanic yield strength (Case 1) leads to lower
effective viscosity (see the definition in Methods
of Supplementary Data) in the oceanic lithosphere
and makes subduction of the oceanic lithosphere
easier, facilitating the formation of strong degree-1
mantle convection power (Fig. S3) with a super-
downwelling being formed under the initial external
superocean-1 (Fig. 2b and ¢; Movie S1), thus, an
extroversion assembly of supercontinent-2 over
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Figure 4. Evolutionary snapshots for Cases (a—c) 14 and (d—f) 15. Case 14 is the same as Case 1 except that the viscosity in the
weak zones nyeakone 1S 1/10 of the oceanic lithospheric value, 10 times higher than the default value (i.e. fweakone = 0.01in
Case 1). Similarly, Case 15 is the same as Case 3 but with 10 times increased viscosity in the weak zones, i.e. weakzone = 0.1.

such a super-downwelling [28]. In such a case, the
continents disperse the fastest during the assembly
(Fig. S4a) and reach the farthest distance away from
that of supercontinent-1 when new subduction
starts to form in the internal ocean. Also, the
subduction rate in the external ocean is significantly
higher in this case compared to the other cases at
~220-350 Myrs (Fig. S4b). In such a case, it is most
difficult for subduction in the internal ocean to drag
the continents back. With a higher strength for the
oceanic lithosphere (Case 3, Fig. 2g-i), the effective
viscosity of the oceanic lithosphere becomes higher
and no prominent super-downwelling is formed
under the external ocean as in Case 1. Instead,
the continents are pulled back by the stronger
subduction system in the internal ocean toward
the final stage of the daughter supercontinent-2
assembly (Fig. 2h and i; Fig. S1h and i and S4b).
With an intermediate oceanic lithospheric strength
(Case 2; Fig. 2d-f), the power of subduction in the
internal and external oceans becomes comparable
by ~550 Myrs (Fig. S4b), leading to the formation
of a persistent and stable degree-2 mantle convec-
tion power (Fig. 2e and f; Fig. S3) and a potential
supercontinent formed above the subduction girdle
defined by the two subduction systems (Fig. S1f).
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Possible effects of the lower-mantle
thermo-chemical layer, mantle internal
heating and lithospheric weak zones

We also examine the possible effects of changing
the density and volume of the thermo-chemical
piles/layer in the lower mantle on the superconti-
nent cycle. As shown in Fig. 3 and Cases 4-11 in Ta-
ble S2 of Supplementary Data, whether a superconti-
nent is assembled through introversion or extrover-
sion is still controlled by the strength of the oceanic
lithosphere, with variations in either the density or
thickness of the thermo-chemical layer at the bottom
of the mantle making no difference in the model out-
comes. Similarly, changing the radioactive heating
rate of the mantle does not alter the model outcomes
either (Fig. 3; Cases 12 and 13 in Table S2). In
addition, by reducing the viscosity drop for the au-
tomatically generated weak zones along continental
margins (Fig. 4; Cases 14 and 15 in Table S2), the
supercontinent evolution paths remain the same as
models (Cases 1 and 3) with a larger viscosity drop.
It shows that the property of the weak zones used in
our modeling for the generation of ocean—continent
subduction does not affect the supercontinent
assembly.
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DISCUSSION

Thinning of oceanic crust with time due
to Earth’s secular cooling: a cause for
secular changes in oceanic lithospheric
strength?

The strength of the oceanic lithosphere could po-
tentially have been affected by two secular changes
in Earth structure as the Earth cooled with time:
a decreasing thickness of the oceanic lithosphere
(Fig. Sa) [29] and/or a decreasing thickness of the
oceanic crust (Fig. Sb) [30], both due to the reduced
degree of partial melting as the mantle cooled (see
Methods in Supplementary Data) [29-31]. We use
Cases 16 and 17 to examine the effect of changing
oceanic lithospheric thickness (D, ) from 100 km
to 60 km (Fig. Sa) while the rest of the model set-ups
remain the same as for Cases 1 and 3, respectively.
As shown in Fig. S5, both cases produced supercon-
tinent assembly in the same way as simply varying
the yield strength of the oceanic lithosphere (i.e. ex-
troversion for Cases 1 and 16, and introversion for
Cases 3 and 17), rendering this factor unimportant
for determining how a supercontinent is assembled.
This is probably because the effective viscosity of the
oceanic lithosphere beneath ~50-60 km is domi-
nated by the temperature- and pressure-dependent
viscous branch (creep flow; see Methods in Supple-
mentary Data), other than the brittle deformation.
The former is independent of yield stress. It also im-
plies that dehydration stiffening [32,33] due to par-
tial melting at the lower part of the oceanic litho-
sphere, which potentially leads to a stronger litho-
spheric bottom when the mantle is hotter than the
present, may not be crucial in determining the con-
tinental assembly paths.

On the other hand, theoretical calculations pre-
dict a thicker oceanic crust in Archaean—Proterozoic
time due to a higher mantle temperature [31] that
led to a higher volume of basaltic melts being ex-
tracted from the mantle [30]. In Fig. 6a, we convert
the estimated time evolution of the mantle potential
temperature into corresponding oceanic crustal
thickness [30,31], which shows a gradual thinning
of the oceanic crust from ~30-47 km at ca. 2.5 Ga
to 6-7 km in the present day. We further examine
the effect of changing oceanic crustal thickness on
supercontinent cycle by conducting a series of cases
with the thickness of oceanic crust set at 15, 20 and
25 km, respectively (Fig. Sb; Cases 18-20). In such
cases, the yield strength curves in the crust (Fig. Sb)
are depicted by the linear Byerlee’s law [34]. The
results (Fig. S6) show that supercontinent cycles
are quite sensitive to the oceanic crustal thickness
(Dust): when D is 15 km, the supercontinent
assembles through extroversion; when Dy is
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Figure 5. Oceanic lithospheric thickness and yield stress
settings for the modeling. (a) Settings for Cases 1, 3 and
16-17, where Cases 1 and 16 both have a yield stress
of 125 MPa but the thickness of oceanic lithosphere Dy
changes from 100 km (Case 1) to 60 km (Case 16). Simi-
larly, Cases 3 and 17 have the same 175 MPa yield stress,
but their Dy, are different. (b) Settings for Cases 18-20. In
contrast to Case 1, yield stress in the oceanic crustal layer
of these cases (with thicknesses set at 15, 20 and 25 km,
respectively) is constrained by the linear Byerlee's law [34]
(see Methods in Supplementary Data).

25 km, the supercontinent assembles through in-
troversion; for oceanic crustal thickness between 15
and 25 km (i.e. when D, is 20 km), the supercon-
tinent assembles in an orthoversion fashion. These
results demonstrate that how a supercontinent is
assembled is primarily determined by the secular
change of the global oceanic crustal thickness,
with thicker crust (stronger lithosphere) leading to
introversion assembly, and thinner crust (weaker
lithosphere) leading to extroversion assembly. This
result assumes most of the oceanic lithospheric
strength resides in the crustal layer.

Another theoretical model by Korenaga [35,36]
suggests that the strength of the oceanic lithosphere
rests in both the crust and the lithospheric man-
tle until the hypothesized ‘thermal cracking’ weak-
ens the mantle lithosphere. Exactly how the oceanic
mantle lithosphere and its strength behaved through
Earth’s history remains to be resolved by future stud-
ies. Given the overall dominant influence of the crust
over the mantle lithosphere in the strength of the
oceanic lithosphere, as discussed above, such de-
tailed knowledge is not expected to affect the first-
order conclusions of our modeling results.

A one-off occurrence of introversion
supercontinent assembly in the
Precambrian?

Our modeling results, in combination with Earth’s
cooling history (Fig. 6a), indicate that a step change
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Figure 6. Estimated range of oceanic crustal thickness dur-
ing Earth’s secular cooling that determines the age ranges
for the varying manners of supercontinent assembly for both
geological time and the future. (a) The graph shows the re-
lationship between Earth’s age (millions of years ago) and
the oceanic crustal thickness [30] based on the changing
mantle potential temperature [31], and the corresponding
manners of supercontinent assembly. We explored the cal-
culated curves into the future. (b) The sketch shows the
assembly of the three known supercontinents in Earth's
history and the future supercontinent Amasia [4], with
model-predicted varying manner of supercontinent assem-
bly. According to our modeling results, Amasia will assemble
via the closing of the Pacific Ocean (legacy of the previous
superocean) (Fig. 1c).

from introversion to extroversion supercontinent
assembly occurred between ~1.85-1.15 Ga and
~0.90-0.55 Ga, a period corresponding to oceanic
crustal thickness of 25-15 km [30,31]. Taken
together, the results suggest that if introversion
supercontinent assembly ever occurred, it could
only have occurred in the Precambrian time
(>540 Ma). On the other hand, Phanerozoic
(<540 Ma) supercontinent assembly could only
occur through extroversion. Orthoversion super-
continent assembly would only be possible between
these two endmember states.

The supercontinent Nuna/Columbia has widely
been recognized to be Earth’s first supercontinent
[7,8]. Its formation may thus have involved the
gradual centralization of small-scale mantle down-
wellings into a single super-downwelling [28] in-
stead of introversion, extroversion or orthoversion
(Fig. 1). The next supercontinent, Rodinia, is the
only supercontinent that could have assembled
through introversion according to our modeling re-
sults (Fig. 6b), and the Phanerozoic supercontinent
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Pangaea could only have been assembled through
extroversion. Such results are consistent with the
model of Hoffman [37] and Li and Zhong [4] based
on paleogeographic reconstructions.

The assembly of the future
supercontinent Amasia through
extroversion?

Our results preclude the possibility of the future su-
percontinent Amasia [ 14] being assembled through
either introversion, by closing the Atlantic and
Indian oceans (Fig. le) [11], or orthoversion, by
closing Arctic and Caribbean seas (Fig. 1d) [13].
Instead, Amasia could only have an extroversion as-
sembly through the closure of the Pacific Ocean
(Fig. 1c) [4,37] due to the weakening of the oceanic
lithosphere with time.

Lifespan of LLSVPs

Our modeling results also have predictions on the
dynamic evolution of LLSVPs (or mantle super-
plumes) during the supercontinent cycle. Accord-
ing to our models, the shapes and distribution of
the thermo-chemical piles in the lower mantle are
primarily driven by subduction geometry [38]. The
LLSVP that formed beneath the mother supercon-
tinent can survive over two supercontinent cycles if
the daughter supercontinent is assembled through
extroversion (Movie S1) [11], but in such a case
the LLSVP under the original superocean-1 gets
destroyed by the assembly of the daughter super-
continent. The LLSVP under the original external
superocean-1 can only survive beyond one super-
continent cycle if the daughter supercontinent is as-
sembled through introversion (Movie S3) [11,38].
Our model therefore predicts the destruction of the
present Pacific LLSVP by the future extroversion as-
sembly of Amasia.

Possible effect of diffusive mid-ocean
ridges in the modeling

Spreading ridges feature in our models as being
diffusive (e.g. viscosity field in Movie S1 of Sup-
plementary Data) instead of being divergent lin-
ear features. Linear spreading ridges were used in
models with strongly temperature-sensitive man-
tle viscosity (changing by >1e6 times when the
non-dimensional temperature changes from 0 to
1), where chemically distinct continents are ab-
sent [27]. In comparison, we used temperature-
induced viscosity changes of ~1e4 times in this
work. The resulting diffusive ridges in our models
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produce smooth velocity fields, but have little effect
on the age of the oceanic lithosphere, especially near
the edges of the oceans, thus also negligible influ-
ence on the ocean—continent subduction induced by
weak zones and ultimately the modeling results.

CONCLUSIONS

To summarize, our modeling work suggests that
the strength of the oceanic lithosphere, primarily
controlled by the thickness of the global oceanic
crust, determines how a supercontinent is assem-
bled. Earth’s secular cooling since the Archean time
has led to a gradual thinning of the oceanic crust
with time, meaning that introversion superconti-
nent assembly could only have occurred in the Pre-
cambrian, whereas for the Phanerozoic and into
the future, supercontinents could only be assembled
through extroversion, i.e. the closure of the external
superoceans. This predicts that the next superconti-
nent, Amasia, could only be assembled through the
closure of the Pacific Ocean.
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