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Abstract
Aim: Forecasting the influence of climate change on coral biodiversity and reef func-
tioning is important for informing policy decisions. Dominance shifts, tropicalization 
and local extinctions are common responses of climate change, but uncertainty sur-
rounds the reliability of predicted coral community transformations. Here, we use 
species distribution models (SDMs) to assess changes in suitable coral habitat and 
associated patterns in biodiversity across Western Australia (WA) under present- day 
and future climate scenarios (RCP 2.6 and RCP 8.5).
Location: Coral reef systems and communities in WA.
Methods: We developed SDMs with model prediction uncertainty analyses, using 
specimen- based occurrence records of 188 hermatypic scleractinian coral species 
and seven variables to estimate present- day and future changes to coral species dis-
tribution and biodiversity patterns in WA under climate change conditions.
Results: We found that suitable habitat is predicted to increase across all regions in 
WA under RCP2050

2.6
, RCP2050

8.5
 and RCP2100

2.6
 scenarios with all tropical and subtropical re-

gions remaining coral biodiversity strongholds. Under the extreme RCP2100

8.5
 scenario, 

however, a clear tropicalization trend could be observed with coral species expanding 
their range to mid- high latitude regions, while a substantial drop in coral species rich-
ness was predicted at low latitude tropical coral reefs, such as the inshore Kimberley 
and offshore NW reefs. Despite the predicted expansion south, we identified a net 
decline in coral biodiversity across the WA coastline.
Main conclusions: Results from the models predicted higher net coral biodiversity 
loss at low latitude tropical regions compared with net gains at mid- high latitude re-
gions under RCP2100

8.5
. These results are likely to be representative of latitudinal trends 

across the Southern Hemisphere and highlight that increases in habitat suitability 
at higher latitudes may not lead to equivalent biodiversity benefits. Urgent action is 
needed to limit climate change to prevent spatial erosion of tropical coral communi-
ties, extinction events and loss of tropical ecosystem services.
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1  | INTRODUC TION

Global climate change poses a major threat to terrestrial and ma-
rine ecosystems (Burrows et al., 2011). Losses or major shifts in the 
distribution of habitat- forming taxa have led to cascading impacts 
on biodiversity, lowered productivity and impaired ecosystem func-
tioning (Chen et al., 2011; Hoffmann et al., 2019; Sorte et al., 2010). 
Even though variable responses to climate change have been 
reported across different taxa (Chen et al., 2011), it has been es-
timated that climate- induced range shifts occur faster in marine en-
vironments than in terrestrial environments (Sorte et al., 2010). This 
could be related to the capacity of marine organisms to disperse far 
distances (Kinlan & Gaines, 2003), and a lag in the response of ter-
restrial organisms to temperature isotherm shifts (Chen et al., 2011; 
Lenoir et al., 2019). Habitat transformations, range contractions 
and extensions of marine habitat- forming taxa such as macroalgae 
(Vergés et al., 2019), mangroves (Saintilan et al., 2014), seagrass 
meadows (Hyndes et al., 2016) and coral reefs (Tuckett et al., 2017; 
Yamano et al., 2011) have already been documented around the 
world, resulting in the emergence of novel ecosystem configurations 
(Graham, Cinner, et al., 2014; Pinsky et al., 2020; Vergés et al., 2014). 
Specifically for coral reefs, climate change- induced coral bleach-
ing leads to coral reef degradation and various other ecological 
changes including dominance shifts, local extinctions, tropicalization 
(Greenstein & Pandolfi, 2008; Hughes et al., 2018; Muir et al., 2015; 
Sorte et al., 2010; Thomson, 2010; Wernberg et al., 2016) and 
changes to species interactions (Vergés et al., 2014). Other studies 
have predicted that under climate change, habitat suitable for cor-
als will contract; and that brooding species may replace spawning 
species as the dominant taxa in depleted recruitment pools (Hughes 
et al., 2019) or that small or isolated populations may become locally 
extinct (Richards & Day, 2018; Thomas et al., 2017). Long- term coral 
cover monitoring data have shown that the majority of coral reef sys-
tems in Western Australia (WA) have been impacted by reoccurring 
mass bleaching events and cyclone activity over the last decade, re-
sulting in drastic reductions in coral cover and changes in coral com-
munity composition (Depczynski et al., 2013; Gilmour et al., 2019; 
Moore et al., 2012; Speed et al., 2013). Such declines in the health, 
extent or functionality of coral communities can have cascading ef-
fects for the wider reef ecosystem (Kubicek & Reuter, 2016), and 
an understanding of how ecological changes may manifest on coral 
reefs in the future is essential to maximize the ecological opportuni-
ties that exist for safeguarding diversity.

Species distribution modelling (SDM) enables changes in spe-
cies environmental and habitat area to be predicted over time and 
space (Elith & Leathwick, 2009; Freeman et al., 2013). These mod-
els have been used extensively to model the current distribution of 
terrestrial and marine organisms, however, only a limited number of 

marine species distribution studies have implemented SDMs to pre-
dict distributional changes of marine invertebrate species under cli-
mate change conditions (Cheung et al., 2009; Robinson et al., 2011, 
2017). Notwithstanding studies focussing on cold water coral spe-
cies (Bridge et al., 2012; Davies & Guinotte, 2011), soft corals (Bridge 
et al., 2012; Done, 1982; Veron, 2000; Yesson et al., 2012), Hawaiian 
(Franklin et al., 2013; Robinson et al., 2017) and the Atlantic com-
munities (Rodríguez et al., 2019), limited number of SDM studies 
have predicted changes in scleractinian coral biodiversity in the 
Indo- Pacific under future climate scenarios (Cacciapaglia & van 
Woesik, 2015, 2016, 2018; Descombes et al., 2015). Furthermore, 
few studies addressed the uncertainty of suitable habitat predic-
tions in SDMs based on the variability in environmental input data 
(Braunisch et al., 2013) and the use of environmental variables across 
different temporal scales (Pennino et al., 2019). Indeed, Braunisch 
et al. (2013) showed that SDMs with similar goodness of fit but 
with different sets of correlated variables could have varying, even 
generating opposite predictions within and between future climate 
scenarios.

Spanning more than 20,000 km of coastline, 25° of latitude and a 
sea surface temperature range of more than 12°C (Saha et al., 2018; 
see Figure S1 and supplementary text for more information on the 
reef systems in the study area), WA provides the ideal model system 
to test hypotheses about the configuration of future reefs under cli-
mate change conditions. Here, we compile all available scleractin-
ian coral species occurrence records from the Western Australian 
Museum and Queensland Museum and apply SDMs to estimate the 
present- day and future extent of suitable coral habitat and changes 
to species richness under two future climate scenarios (RCP 2.6 
and RCP 8.5) in 2040– 2050 and 2090– 2100. We examine whether 
present- day biodiversity hotspots are likely to provide consistent 
levels of high coral biodiversity over time, that is future strongholds 
for coral biodiversity under climate change conditions. We also in-
vestigate whether certain reproductive or life history modes of 
corals are predicted to support greater survivability under future 
environmental conditions. Finally, to evaluate the confidence in 
model performance and its predictions, we apply a model projection 
uncertainty analysis that involves refitting the SDMs of all modelled 
species with variables that represent the temporal variance in envi-
ronmental predictor data.

2  | METHODS

2.1 | Coral species occurrence data

Specimen- based scleractinian coral occurrence records were ob-
tained from the WA Museum and Queensland Museum in September 

K E Y W O R D S

biodiversity, coral reef, global change ecology, refugia, Scleractinia, transformation, 
tropicalization, Western Australia
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2018. Quality control procedures were applied to all occurrence 
data, which included the removal of taxonomically undefined or 
higher- level taxonomic records, mesophotic and deep- sea coral re-
cords (>40 m), records outside Australia's Exclusive Economic Zone 
(EEZ) and duplicate records (see Figure S1). Furthermore, all species 
records were updated to align with the current classification in the 
World Register of Marine Species (as of January 2019) and all spe-
cies were grouped as either tropical (species within 10°S to 27.2°S), 
tropical– subtropical (27.2°S to 31.5°S) and tropical, subtropical and 
temperate (31.5°S to 36°S).

2.2 | Environmental and geomorphological variables

Environmental and geomorphological variables were used in SDMs 
as predictors of species’ suitable habitat under present- day and fu-
ture climate scenarios. Present- day suitable habitat patterns were 
estimated based on variables that directly influence coral growth, 
persistence and settlement success (Maina et al., 2011) that include 
sea surface temperature (SST), temperature anomalies, water col-
umn optical properties and geomorphological variables (see Table 1).

Future SSTmax and SSTrange were estimated from the av-
erage of the CCSM4, HadGEM2- ES and MIROC5 models (Assis 
et al., 2018). These three Atmosphere- Ocean General Circulation 
Models (AOGCMs) represent the variability in tropical SST projec-
tions of AOGCMs in the CMIP 5 multimodel ensemble database 
(see Table S1; Mizuta et al., 2014; Taylor et al., 2012). Data from two 
Representative Concentration Pathway (RCP) scenarios, RCP 2.6 
(“best case”) and RCP 8.5 (“high emissions”) were used. RCP 2.6 and 
RCP 8.5 SST data were resampled to 4 km spatial resolution with 
the NASA/OB.DAAC Data Analysis Software (NASA Ocean Biology 
Processing Group, 2019). Projected annual SST data from the three 
AOGCMs between 2040– 2050 and 2090– 2100 were averaged to 
obtain the future mean SSTmax and mean SSTrange under RCP 2.6 
and RCP 8.5 climate scenarios (see Figure S2; Assis et al., 2018). 
We refer to these climate scenarios at 2050 and 2100 as RCP2050

2.6
, 

RCP
2050

8.5
, RCP2100

2.6
 and RCP2100

8.5
, respectively.

Kriging interpolation (Assis et al., 2018; Zhou & Zhang, 2014) 
followed by nearest neighbour resampling (Gogina & Zettler, 2010; 
Golicher et al., 2012; Jones & Cheung, 2015) was applied to all 
raster data to match the 250 m bathymetry grid of Australia 
(Whiteway, 2009). All variables were then clipped to the 40 m depth 
isobath that represents the depth limit where most photic, reef 
building and hard scleractinian corals are found along the WA coast-
line and offshore reefs.

To minimize overfitting, variables that had an absolute Pearson 
correlation <.85 and also had future prediction data available 
for 2040– 2050 and 2090– 2100 were selected for SDMs (Elith 
et al., 2006). For instance, variable thermal stress anomalies (TSA) 
were excluded due to its high negative correlation with SSTrange 
(r = −.90, p- value < .001) and the fact that future TSA layers are not 
available. The resultant variables (see Table 1) have also been shown 
to be fundamental in coral growth (Maina et al., 2011).

2.3 | Model fitting, variable selection and 
parsimonious model evaluation

In order to estimate the present- day and future suitable coral habitat 
along the WA coastline, we used the maximum entropy (MaxEnt) al-
gorithm in the “dismo” R package (Hijmans et al., 2017). MaxEnt is one 
of the most common modelling approaches for SDMs and was cho-
sen due to its ability to handle presence- only data (Elith et al., 2006, 
2011; Phillips & Dudík, 2008). To avoid overprediction, only species 
with ≥10 spatially unique records were included (Wisz et al., 2008). 
Although the model predictions can be influenced by sampling bias 
and spatial autocorrelation of the occurrence records (Moran I cor-
relation test, p- value < .001; Kramer- Schadt et al., 2013), all records 
were integrated into the models due to the low number of unique 
occurrence records within each coral species. This resulted in a total 
of 6,440 records across 205 coral species to be retained for model 
integration (see Figure S1).

Prior to constructing the present- day and future coral suitable 
habitat, models were fitted and evaluated for these 205 species 
using background spatial point customization (Merow et al., 2013), 
data splitting into train/test datasets (Araújo et al., 2005) and vari-
able selection to construct the most parsimonious model (Austin & 
Van Niel, 2011). For each species modelled, 1,000 background spa-
tial points were randomly selected across the study area, bounded 
by the Australian EEZ depth of ≤40 m. Before the background points 
were generated, a 9 km- radius mask around known locations was 
applied to exclude background points close to the occurrence loca-
tions and avoid variable replication. A radius of 9 km was used based 
on the coarsest resolution of raw environmental and geomorpholog-
ical variable data.

Model performance for each species was evaluated with 
an independent test dataset, where the occurrence and back-
ground data were partitioned 75/25 into training/testing datasets 
(Araújo et al., 2005; Hastie et al., 2009; Merow et al., 2014; Vignali 
et al., 2020). Five replicate models were constructed on the train-
ing dataset with default model features and regularization settings, 
configured to select the highest contributing variables for the most 
parsimonious model (Elith et al., 2011). Average variable permuta-
tion importance across the five model replicates was used to exclude 
variables with a permutation importance ≤1% in the most parsi-
monious model (Li et al., 2020; Sobek- Swant et al., 2012; Williams 
et al., 2012). The threshold independent and dependent metrics, 
area under the curve (AUC; Beaumont et al., 2019) and sensitivity 
were used to evaluate model performance on the withheld test data. 
Parsimonious SDMs with AUC test > 0.7 were retained to spatially 
estimate the present- day suitable habitat and to project it to future 
climate scenarios (Moraitis et al., 2019). A small number of species 
that had optimal models (AUC > 0.7) but with a sensitivity score 
of zero were removed from this study to improve the accuracy of 
downstream model projection analyses. Furthermore, model perfor-
mance metrics, specificity, maximum kappa and total skill statistic 
were calculated on the retained parsimonious models (see Table S2; 
Franco et al., 2018; Martínez et al., 2018).
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2.4 | Estimating uncertainty in present- day and 
future suitable habitat and species richness

In SDMs, the temporal variability within environmental variables 
is often overlooked when assessing the precision of model perfor-
mance and prediction outcomes. We incorporate both spatial and 
temporal variance allowing a more complete representation of the 
environmental variables in the SDMs, whereby the temporal vari-
ance acts to inform the precision of the suitable habitat and spe-
cies richness predictions. Here, a two- tailed 95% confidence interval 
around the means of SSTmax, SSTrange, TSM and SSTA (for present- 
day conditions), as well as for SSTmax and SSTrange (for future con-
ditions), was constructed to represent the temporal variability (see 
example plots of interannual variability in SSTmax and SSTrange 
in Figure S3). All 205 species were remodelled separately with the 
lower- bound and upper- bound confidence interval variable data. 
The most parsimonious SDMs used for suitable habitat and species 
richness predictions were chosen by applying the same model se-
lection parameters used in the models constructed with mean vari-
able data. SDMs constructed using the mean and 95% confidence 
interval variable values, hereafter referred to as the mean (M), lower- 
bound (LB) and upper- bound (UB) model types, were statistically 
evaluated on the model performance, variable importance ranking 
(as well as comparing the frequency of best explanatory variables 
across the model types; see Table S3), predicted suitable habitat and 
species richness between model types. The statistical evaluation 
of the models used in this uncertainty analysis followed Braunisch 
et al. (2013) and Bucklin et al. (2015) (see supplementary text for 
further details).

2.5 | Model predictions

Species with parsimonious models that passed AUC and sensitiv-
ity model performance thresholds across the LB, M and UB model 
types and that had SST variables selected as explanatory variables 
for all three model types were retained for model projections analy-
sis. In total, 188 species passed the selection criteria for all model 
types (~61% with AUC > 0.9; see Table S2) and were thus used to 
estimate the suitable coral habitat and biodiversity hotspots under 
the present- day and four future climate conditions (RCP2050

2.6
, RCP2100

2.6
, 

RCP
2050

8.5
 and RCP2100

8.5
) across the WA coastline and the following nine 

regional zones: Cocos (Keeling) Islands, Christmas Island, offshore 
reefs on the north- west (NW) shelf, inshore Kimberley, Dampier– 
Pilbara, Ningaloo– Exmouth Gulf, Shark Bay, Houtman Abrolhos 
Islands and the south coast area of WA. For every species, continu-
ous habitat suitability predictions were converted into binary val-
ues (occurrence [1] and absence [0]) using the maximum sensitivity 
and specificity threshold (Liu et al., 2013). Total area of occurrences 
was converted to km2 to determine the present- day and future suit-
able habitat. Shifts in suitable habitat were estimated by overlay-
ing the future binary habitat suitability predictions with present- day 
binary predictions using package “biomod2” (Thuiller et al., 2009). 

To evaluate spatial shifts in suitable habitat at community level, we 
characterized species richness as the number of species predicted 
to be present in the binary habitat suitability predictions across all 
modelled species (Distler et al., 2015; Schmitt et al., 2017; Zellmer 
et al., 2019). Areas with high predicted species richness could then be 
considered as biodiversity hotspots and strongholds under present- 
day and future climate conditions, respectively. To evaluate shifts in 
biodiversity strongholds across the M, LB and UB model types under 
present- day, RCP2100

2.6
 and RCP2100

8.5
 climate conditions, we visualized 

the standard deviation of the total species richness across the three 
model types (Senay & Worner, 2019). Predicted mean suitable habi-
tat and species richness were presented separately in regard to the 
mean model type followed by the percentage relative range across 
the three model types calculated as (highest − lowest)/(mean across 
all model types) × 100%.

Finally, coral species were classified according to range extent 
(tropical, tropical/subtropical, tropical/subtropical/temperate), life 
history (competitive, competitive/generalist, generalist, stress- 
tolerant, weedy and others) and reproduction mode (broadcast, 
brooding; Darling et al., 2012; Graham, Chong-Seng, et al., 2014; 
Richmond & Hunter, 1990; Zinke et al., 2018) to compare predicted 
future suitable coral habitat between classification groups. All anal-
yses were conducted in ArcGIS version 10.3 (ESRI, 2011), Climate 
Data Operator (Schulzweida et al., 2006) and R version 3.6 (Rstudio 
& Team, 2015).

3  | RESULTS

3.1 | Present- day coral distribution range and future 
suitable habitat changes along the WA coastline

Significant differences in future suitable habitat patterns were ob-
served under RCP 2.6 and 8.5 climate scenarios (χ2 = 173.77, p- 
values < .001; see Table S4 for post hoc analysis) across WA and 
regional areas (Kruskal, p- values < .001), except for Cocos (Keeling) 
Islands (χ2 = 2.61, p- value = .62; see Table S4). Under present- day 
conditions, the predicted suitable habitat along the WA coastline 
overlapped with known high coral biodiversity regions such as the 
offshore reefs and the inshore Kimberley. Ningaloo– Exmouth Gulf, 
Shark Bay and the Houtman Abrolhos Islands were also identified as 
additional potential biodiversity hotspots, hosting between 50% and 
98% of the 188 modelled coral species (see Figures 1 and S4). Under 
RCP 2.6, suitable habitat across the WA coastline was predicted to 
expand in both southerly (between 20 and 35 °S) and northerly (be-
tween 13 and 18 °S) directions from 15,615 km2 ± 7.88% (present- 
day) to 36,119 km2 ± 11.03% (2050) and 36,598 km2 ± 17% (2100), 
respectively (see Figures 1 and 2; Table S4).

Increases in suitable habitat were predicted under RCP2100

2.6
 when 

compared to present- day conditions (see Figures 2 and S4, Table S4), 
particularly in the inshore Kimberley region (8,251 km2 ± 8.76% to 
15,966 km2 ± 22.48%), Dampier– Pilbara region (2,421 km2 ± 14.34% to 
11,526 km2 ± 1.86%), Ningaloo– Exmouth Gulf area (1,319 km2 ± 8.46% 
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2250  |     ADAM et Al.

to 2,733 km2 ± 13.95%) and Shark Bay (809 km2 ± 14.36% to 
2,121 km2 ± 22.53%). Under RCP2050

8.5
 and RCP2100

8.5
, an increase in tem-

perature was estimated to drive contractions in coral suitable habitat, 
especially at lower latitudes (see Figures 1 and 2, Table S4). For in-
stance, known coral biodiversity hotspots such as the offshore reefs 
on the NW shelf were predicted to decrease in suitable habitat from 
635 km2 ± 1.89% to 310 km2 ± 5.61% under RCP2100

8.5
. After account-

ing for zero inflation by a log(x + 1) transform, an average decline of 
34.01% in habitat suitability was predicted in the inshore Kimberley 
region under RCP2100

8.5
 (see Figure 2), whereas under the extreme 

RCP
2100

8.5
 scenario, the overall suitable habitat along the WA coastline 

increased from 15,615 km2 ± 7.87% to 31,688 km2 ± 11.40%. This 
increase was driven by habitat gains in mid- high latitude regions in-
cluding Shark Bay (809 km2 ± 14.36% to 3,264 km2 ± 19.84%), the 
Houtman Abrolhos Islands (396 km2 ± 5.79% to 748 km2 ± 7.25%) and 
the south coast of WA (587 km2 ± 11.64% to 2,120 km2 ± 0.75%; see 
Figure 2 and Table S4).

3.2 | Predicted species richness and potential future 
biodiversity hotspots along the WA coastline

Differences in predicted species richness were significant along the 
whole WA coastline and some regions for the mean- type SDMs be-
tween present- day and the four future climate conditions (Kruskal, 
p- values < .001; see Table S4 for post hoc analysis), except for the 
Cocos (Keeling) Islands, Christmas Island, offshore reefs on the NW 

shelf and Dampier– Pilbara region. Species richness along the WA 
coastline was estimated to increase under RCP2100

2.6
 from present- day 

conditions (19 ± 5.4% species to 44 ± 11.5% species; see Figures 1 
and 3, Table S4). Regionally, species richness was estimated to 
roughly double across all regions, especially at the Dampier– Pilbara 
(10 ± 20% species to 49 ± 2.1% species) and Ningaloo– Exmouth Gulf 
regions (51 ± 8.1% species to 107 ± 14.2% species; see Figure 3, Table 
S4). Changes in biodiversity followed the shift in suitable habitat de-
scribed above, where species richness was predicted to decrease 
under RCP2100

8.5
 from present- day conditions, especially at Christmas 

Island (85 ± 4.6% species to 66 ± 4.4% species) and offshore reefs 
on the NW shelf (149 ± 2.0% species to 72 ± 5.4% species; see 
Figure 3, Table S4). In contrast, mid- latitude regions were estimated 
to increase substantially in coral species richness under RCP2100

8.5
 from 

present- day conditions, for example Shark Bay (12 ± 8.6% species to 
48 ± 20.2% species) and the Houtman Abrolhos Islands (49 ± 6.2% 
species to 92 ± 7.5% species; see Figure 3 and Table S4).

3.3 | Future environmental niche area prediction 
across range extent, reproductive mode, life 
history and genera categories

When grouping the 188 species according to their range extent, dif-
ferences in the predicted present- day and future suitable habitat for 
the mean- type SDMs were not significant between climate scenar-
ios (Kruskal, p- values > .14), except under the present- day conditions 

F I G U R E  1   Predicted coral species richness in WA based on habitat suitability using mean- type model data under present- day and 
future climate conditions— RCP 2.6 (best case) and RCP 8.5 (extreme case) scenario in 2090– 2100
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between tropical and tropical/subtropical/temperate range extent 
(χ2 = 9.75, p- value < .01; see Figure 4). Similarly, classifying the spe-
cies according to their reproductive mode and life history did not 
show significant differences in predicted suitable habitat between 
present- day and the future climate scenarios with the mean- type 
SDM (Kruskal, p- values > .05; see Figure 4). Nevertheless, differences 
in suitable habitat were significant between genera across the five 
climate conditions (F = 2.88, p- values < .001; see Figure S5). For ex-
ample, the predicted average suitable habitat for corals of the genus 
Coscinaraea increased extensively under RCP2100

8.5
 from present- day 

conditions (34,929 km2 ± 2.66% to 76,079 km2 ± 2.37%), while for 
Goniastrea spp., suitable habitat was also predicted to increase but to 
a lesser extent (10,058 km2 ± 17.04% to 10,579 km2 ± 30.31%; see 
Figure S5). The suitable habitat and species richness data for genera 
that are ecologically important with high representative number of 
species such as Acropora and Montipora (see Figure S6) indicated that 

these genera will struggle at low latitude regions such as the inshore 
Kimberley and offshore reefs on the NW shelf under RCP2100

8.5
.

3.4 | Regional range extenders and contractors in 
suitable habitat

Across all the modelled species, 40% and 45% of the species were 
predicted to experience extreme reductions in suitable habitat 
(>90%) under RCP2100

8.5
 at the offshore reefs and inshore Kimberley, 

respectively (see Tables S5 and S6). For example, on the offshore 
reefs on the NW shelf, species such as Acropora digitifera, Acropora 
hyacinthus, Montipora danae and Pocillopora grandis with a present- 
day suitable habitat extent of 739 km2 ± 0.27%, 762 km2 ± 3.47%, 
570 km2 ± 17.94% and 451 km2 ± 43.47%, respectively, were predicted 
to become locally extinct. In the inshore Kimberley, species such as 

F I G U R E  2   Predicted 
log(x + 1)- transformed suitable habitat 
predictions, modelled from 188 
coral species using mean- type model 
predictions across whole WA and nine 
detailed locations under present- day and 
four future climate scenarios. CKI— Cocos 
(Keeling) Islands, CI— Christmas Island, 
OR— offshore reef NW shelf, KIM— inshore 
Kimberley, DP— Dampier– Pilbara, NE— 
Ningaloo– Exmouth Gulf, SB— Shark Bay, 
HAI— Houtman Abrolhos Islands, WAS— 
south coast of WA, WA— total coastline of 
WA. The boxplots represent variability in 
suitable habitat, while the red circles and 
notches represent the mean values and 
95% confidence interval from the median, 
respectively
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Acropora florida and Goniopora columna with a present- day suitable 
habitat of 4,212 km2 ± 26.58% and 2,843 km2 ± 87.43%, respectively, 
were also predicted to disappear (see Table S5). At genera level, genera 
such as Astrea, Bernardpora and Pectinia were predicted to become re-
gionally locally extinct while 56%, 55%, 40% and 83% of corals of the 
genus Acropora, Montipora, Porites and Turbinaria, represented here by 
41, 22, 10 and 6 species, respectively, were predicted to experience 
at least 90% reduction in suitable habitat in the inshore Kimberley 
under RCP2100

8.5
 (see Table S6). Despite regional suitable habitat re-

ductions predicted at low latitude regions, the proportion of com-
petitive, competitive/generalist, stress- tolerant and weedy species, 
predicted to expand their range >90% at higher latitudes, increased 
under RCP2100

8.5
 (see Tables S7 and S8). Specifically, weedy species in-

creased by 78% and 55%, while competitive species increased by 41% 

and 20% at Shark Bay and the Houtman Abrolhos Islands, respectively 
(see Table S7). For example, species such as Seriatopora hystrix (weedy) 
and Acropora pulchra (competitive), with a present- day suitable habitat 
of 91 km2 ± 0.34% and 2,184 km2 ± 79.91% were predicted to ex-
perience an increase in suitable habitat to 6,875 km2 ± 33.50% and 
12,245 km2 ± 27.85%, respectively, at Shark Bay under RCP2100

8.5
.

4  | DISCUSSION

We found that suitable habitat was predicted to increase across all 
regions in WA under both RCP2050

2.6
 and RCP2100

2.6
 scenarios with all tropi-

cal and subtropical regions remaining coral biodiversity strongholds. 
Under the extreme RCP2100

8.5
 scenario, however, a clear tropicalization 

F I G U R E  3   Predicted species richness 
from 188 coral species using mean- 
type model predictions across WA and 
nine detailed locations under present- 
day and four future climate change 
scenarios. CKI— Cocos (Keeling) Islands, 
CI— Christmas Island, OR— offshore reef 
NW shelf, KIM— inshore Kimberley, 
DP— Dampier– Pilbara, NE— Ningaloo– 
Exmouth Gulf, SB— Shark Bay, HAI— 
Houtman Abrolhos Islands, WAS— south 
coast of WA, WA— Total coastline of WA. 
Boxplots represent variability in species 
richness, while red circles and notches 
represent the mean values and 95% 
confidence interval from the median, 
respectively
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trend could be observed with coral species expanding their range to 
mid- high latitude regions, while a substantial drop in coral species 
richness was predicted at low latitude tropical coral reefs, such as the 
offshore NW reefs and inshore Kimberley. In the former, present- day 
coral biodiversity hotspots were predicted to become spatially di-
luted under RCP2100

8.5
 scenario. In other words, extensive reductions in 

present- day coral biodiversity hotspots were predicted in conjunction 
with limited increased species richness at neighbouring areas in this 
region (see Figure S4). The spatial dilution and erosion of coral biodi-
versity at low latitude tropical regions can lead to climate- induced local 
extinction events that would likely alter the tropical reef composition 
and impair the functionality of these ecosystem (Vergés et al., 2019).

While suitable habitat and species richness were predicted to ex-
pand slightly at mid- high latitude regions under the extreme climate 
scenario, the extent of increase in species richness at these regions 

is not likely to compensate the loss of coral biodiversity at low lat-
itudes. Consequently, the mean level of tropical diversity predicted 
to be hosted at mid- high latitude regions is substantially lower than 
present- day tropical diversity hotspots such as those in the inshore 
Kimberley and offshore reefs. From these results, low latitude tropical 
reefs are predicted to have diminishing potential to serve as future 
coral strongholds to preserve tropical coral biodiversity under extreme 
future climate change conditions.

4.1 | Regional patterns and drivers of 
biodiversity and suitable habitat change

Our results show that future temperature conditions under RCP2050

2.6
 

and RCP2100

2.6
 scenarios would not limit the expansion of coral 

F I G U R E  4   Predicted 
log(x + 1)- transformed suitable habitat 
modelled from 188 coral species using 
mean- type model predictions binned into 
distribution range extent (T— tropical, 
ST— subtropical, TEMP— temperate), 
reproductive mode (BC— broadcast 
spawners, B— brooding) and life history 
categories (W— weedy, S— stress- tolerant, 
O— others, G— generalist, C/G— 
competitive/generalist, C— competitive) 
under present- day and future climate 
conditions. Boxplots represent variability 
in suitable habitat across the categories 
for specific climate scenario, while red 
circles and notches represent the mean 
values and 95% confidence interval from 
the median, respectively
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biodiversity hotspots in WA. These results are consistent with other 
studies, which predicted limited reef degradation under slow warm-
ing RCP scenarios such as RCP 4.5 (Matz et al., 2020). However, 
under RCP2050

8.5
 but specifically RCP2100

8.5
, two distinct shifts in the 

range pattern of present- day coral biodiversity hotspots were pre-
dicted along the WA coastline. The first is a substantial decline in 
present- day coral biodiversity hotspots at low latitude tropical re-
gions, particularly in the offshore reefs and inshore Kimberley. In the 
former, present- day coral biodiversity hotspots were predicted to 
become spatially diluted under RCP2100

8.5
, by virtue of the underlying 

variability in temperature responses across species (see Figure S7), 
leading to both predicted gain and extensive reductions in suitable 
habitat in the inshore Kimberley (see Table S6). A potential expla-
nation for this variability could be that some species are expected 
to be more resilient to extreme temperature conditions than others 
with the potential to expand at low latitude tropical regions under 
RCP

2100

8.5
. The second pattern that could be observed under RCP2100

8.5
 

was a clear tropicalization trend whereby tropical species extended 
their range poleward. Mid-  and high latitude locations such as Shark 
Bay, the Houtman Abrolhos Islands and the south coast of WA were 
predicted to slightly increase both in biodiversity and in suitable 
habitat.

The ability for tropical corals to migrate south depends heavily 
on the ability for those populations to be healthy enough to repro-
duce, to undertake long- distance dispersal and to settle and survive 
over multiple generations (Gilmour et al., 2016). All these factors are 
anticipated to affect species distribution ranges (Matz et al., 2018, 
2020). For instance, under all future climate scenarios, Shark Bay 
was predicted to become a potential future coral biodiversity 
hotspot. However, most of the area is characterized by unconsoli-
dated sand patches, seagrass meadows and extreme environmental 
conditions, such as high salinity conditions, which limits the settle-
ment and survival of coral species in the area (Bauman et al., 2015; 
Lohr et al., 2017). Whether these locations can function as a viable 
future coral stronghold under continued climate change pressure 
remains to be seen. The ability of new immigrants to successfully 
colonize high latitude locations depends on the competitiveness of 
taxa already present. At the Houtman Abrolhos Islands, for instance, 
colonization by immigrant taxa will be limited due to a lack of avail-
able settlement space owing to fast- growing competitive taxa and 
the minor contractions in suitable habitat predicted for genera such 
as Acropora (Abdo et al., 2012).

4.2 | Future range extending/contracting 
coral species

Our predictions indicate that brooding and spawning corals are likely 
to respond similarly under future scenarios, especially under RCP2100

8.5

. Both broadcast spawning corals, which release gametes into the 
water column, and brooding corals, which produce larvae multiple 
times a year but have restricted dispersal (Gilmour et al., 2016), 
were predicted to experience a loss of suitable habitat, particularly 

at isolated locations such as the offshore atolls. The observation 
that reproductive traits are not a major driver of coral distribution 
changes under climate change complements recent findings that 
shows the genetic neighbourhood of spawning and brooding cor-
als in the Kimberley to be very similar (Underwood et al., 2020). 
However, shifts in the preponderance of spawner versus brooder 
recruits have already been reported (Hughes et al., 2019) and could 
intensify under climate change conditions.

Based on the predicted changes in habitat suitability, we ob-
served different responses to climate change temperature shifts 
between species. Comparing range predictions between different 
life history categories, we found that competitive genera such as 
Acropora, generalists such as Psammocora and weedy genera such 
as Leptastrea are candidate range extending species under RCP2050

2.6
 

and RCP2100

2.6
 conditions (see Table S2). Under RCP2100

8.5
, weedy and 

stress- tolerant species such as Porites lobata (Cacciapaglia & van 
Woesik, 2015) have been expected to become more prevalent 
under continued increasing temperature conditions (McClanahan 
et al., 2014). At mid- high latitude regions, all life history groups were 
predicted to expand their range to some extent. Weedy, stress- 
tolerant and competitive species can be considered “winners” under 
global climate change, while fast- growing, competitive genera such 
as Acropora have the potential to disperse over large distances and 
dominate new areas (Darling et al., 2012). In contrast, species such 
as encrusting Coscinaraea columna, Porites aranetai, Porites vaughani 
and Goniopora pendunculata could also be considered as successful 
range expanders (“winners”) under future climate conditions (see 
Table S8) because of their lower sensitivity to extreme temperature 
conditions and disturbances in comparison with competitive genera 
with branching morphology such as Acropora (Darling et al., 2012; 
Loya et al., 2001). At low latitude tropical regions, extensive dis-
tribution reductions and regional extinction events of certain taxa 
were predicted to become more common under RCP2100

8.5
. No specific 

taxa, genera or life history groups were the main drivers in changing 
distribution patterns under RCP2100

8.5
 in the inshore Kimberley region 

as losses were ubiquitous. Noticeable reductions in suitable habitat 
were predicted for competitive and competitive/generalist life his-
tory genera such as Acropora and Montipora at low latitude tropical 
reefs, with Astrea and Bernardpora predicted to be locally extinct in 
the inshore Kimberley. Our results also indicate that broadcast coral 
species such as Acropora digitifera and Acropora tenuis with distinct 
population structure at the offshore reefs on the NW shelf (Rosser 
et al., 2020; Thomas et al., 2020; Underwood, 2009) will almost dis-
appear in the inshore Kimberley and offshore reefs under RCP2100

8.5
 

conditions (98– 100% decrease in predicted suitable habitat; see 
Table S5). Lower predicted regional species richness combined with 
highly fragmented available suitable habitat under future climate 
conditions could affect the resilience of coral communities and in-
crease the likelihood of local extinction events. At present, no coral 
species are currently listed as threatened under national or state 
threatened species legislation, and these results show that further 
consideration of the threatened status of corals at regional scales is 
warranted.
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4.3 | Uncertainty in model predictions and 
limitations

Our study supports Braunisch et al. (2013) by showing that model 
performance and suitable habitat predictions are not influenced by 
the variance in predictor data— implying that most suitable habi-
tat predictions are consistent across the predictor input data. For 
some regions such as Cocos (Keeling) Islands, inshore Kimberley and 
Ningaloo– Exmouth Gulf, suitable habitat predictions were signifi-
cantly different across the three model types under certain future 
climate conditions (see Figure S8). This may be explained by the high 
temporal variability of the environmental predictors at those regions. 
At a species level, the model uncertainty analysis proved invaluable 
to assess the consistency of predicted local extinction events. For 
example, coral species Porites rus was predicted to undergo sub-
stantial reduction in its suitable habitat under RCP2100

8.5
 across the 

offshore reefs, where the mean model estimated an 84.1% reduc-
tion. However, the LB model predicted a 100% reduction (i.e., local 
extinction), indicating that future environmental conditions could 
cause potential extinction events that are not captured by models 
that solely rely on mean predictor data.

Finally, our study showed that variable importance and regional 
species richness predictions were highly dependent on the selected 
predictors. For example, the spatial distribution of biodiversity 
strongholds (future species- rich areas) was different between model 
types, especially in the Northern Kimberley area under RCP2100

2.6
 and 

Ningaloo– Exmouth Gulf region under RCP2100

8.5
 (see Figure S8). By in-

tegrating a novel model prediction uncertainty analysis based on the 
temporal variability in environmental variables, we incorporated ad-
ditional information of the environmental/habitat envelope and lim-
itations in the suitable niche area of the coral species in WA, which 
increased the accuracy of SDM predictions.

When evaluating the accuracy of model predictions over time 
and space, it is important to be aware of the assumptions and lim-
itations to interpretation that are associated with SDMs (limitations 
specific for this study are discussed in the supplementary section). 
Despite the simplicity of MaxEnt models, these models still provide 
crucial information of changes in large- scale multispecies distribu-
tions under climate change conditions (Barbet- Massin & Jetz, 2014; 
Huntley et al., 2008; Jones & Cheung, 2015) that are essential to 
integrate into conservation management (Araújo & Peterson, 2012; 
Distler et al., 2015; Pearson & Dawson, 2003; Wiens et al., 2009).

4.4 | Broader implications

The degradation and loss of coral reef biodiversity has been pre-
dicted and subsequently documented on regional and global scales 
(Descombes et al., 2015; Freeman et al., 2013; van Hooidonk 
et al., 2014; Richards et al., 2021). In this study, we predicted an 
average of 34% reduction in suitable coral habitat in the inshore 
Kimberley under RCP2100

8.5
, and similar reductions in suitable reef 

habitat have been predicted at low latitude regions globally (>32% 

reduction for areas where SST > 25 °C; Descombes et al., 2015). 
Dramatic habitat declines have also been recorded in other marine 
habitats, such as seagrass meadows (>40% reduction in dense sea-
grasses in Shark Bay; Strydom et al., 2020) and salt marshes (Saintilan 
& Williams, 1999; Saintilan et al., 2014). Loss of habitat- forming spe-
cies in marine hotspots can have significant impacts on other as-
sociated species such as fish assemblages (Stuart- Smith et al., 2021). 
In comparison, range reductions in terrestrial biodiversity hotspots 
have often been reported to be more extensive due to anthropo-
genic impacts such as land use and environmental changes, leading 
to high extinction rates (Brooks et al., 2002; Hu et al., 2021; Kong 
et al., 2021; Lucas & Harris, 2021).

Our study showed a higher predicted average increase of 51% 
habitat suitability at mid- latitude regions than a global prediction 
published for high latitude reefs under RCP2100

8.5
 (0– 16%; Descombes 

et al., 2015). Poleward migration of tropical species has also been 
predicted and reported for coral species and other marine organ-
isms regionally (Cheung et al., 2012; Hyndes et al., 2016; Stuart- 
Smith et al., 2021; Tanaka et al., 2012; Tuckett et al., 2017; Vergés 
et al., 2019; Wernberg et al., 2016; Yamano et al., 2011) and globally 
(Jones & Cheung, 2015; Lenoir & Svenning, 2015; Pinsky et al., 2020; 
Poloczanska et al., 2013; Vergés et al., 2014), where areas along pole-
ward western boundary currents are expected to become particu-
larly susceptible to accelerated future warming (Tanaka et al., 2012; 
Vergés et al., 2014; Wu et al., 2012). Tropicalization not only refers 
to tropical range expansions but also range contraction of temperate 
communities (Wernberg et al., 2016), the formation of novel commu-
nity compositions (Vergés et al., 2014) and in some cases a complete 
phase shift of community composition (e.g., the replacement of salt-
marshes by mangroves; Osland et al., 2013; Saintilan et al., 2014). 
The poleward range shift of tropical species could threaten endemic 
temperate ecosystems such as macroalgal communities that cur-
rently dominate the south coast of WA. Evidence of high latitude 
range shifts, contractions of macroalgae, such as kelp- dominated 
temperate habitats, and ecosystem shifts have been predicted and 
observed in Australia and around the world. Hence, these results 
reinforce the findings of others that show tropicalization increases 
the risk that endemic temperate species may be displaced (Cheung 
et al., 2012; Tuckett et al., 2017; Vergés et al., 2019; Wernberg 
et al., 2016). The pattern of tropicalization has more commonly been 
used to describe latitudinal range shifts in marine systems. This 
might be related to a higher and diverse dispersal potential of ma-
rine organisms (Kinlan & Gaines, 2003), amplifying the movement 
capacity of the realized niche (Soberón & Nakamura, 2009), which 
could result in a faster predicted velocity of range shifts as oppose 
to terrestrial organisms (Burrows et al., 2011).

Our results also showed that competitive, stress- tolerant and 
weedy species are expected to be particularly successful range 
extenders due to the impacts of tropicalization. This is consistent 
with other systems where opportunistic, fast- growing and highly 
adaptive organisms such as invasive species (Lehmann et al., 2015) 
or temperature- tolerant species have the potential to expand and 
colonize new areas (Cook- Patton et al., 2015). In addition, our study 
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and others showed that species responses to climate conditions can 
be variable (Chen et al., 2011; Hanberry & Hansen, 2015; Tanaka 
et al., 2012), where the magnitude of range shifts depends on the 
combination of multiple factors such as individual physiological 
responses to selective environmental triggers and biological in-
teractions (Chen et al., 2011). Hence, the rate of tropicalization is 
expected to be variable across areas and within taxa, resulting in 
dynamic novel communities at high latitudes (Vergés et al., 2019).

This study predicted greater loss of tropical diversity at low lati-
tudes than gains in species richness at high latitudes regions, which 
has also been predicted for other coral reef systems (Descombes 
et al., 2015) and could affect the functionality of future coral re-
fugia at high latitude regions. Climate change refugia are consid-
ered to function as buffer zones to counter rapid environmental 
changes while maintaining diversity and ecosystem services (Morelli 
et al., 2020). Assessing their capacity and functionality is therefore 
considered essential when prioritizing refugia for conservation 
(Keppel et al., 2015). The inshore Kimberley has been suggested to 
be a tropical refuge for photosymbiotic fauna, but the results of this 
study cast doubt upon how long this region can function as a bio-
diversity stronghold. Additionally, estimating the success of climate 
change refugia is very complex and not only depends on the abil-
ity to maintain future biodiversity. Factors such as the potential to 
sustain ecosystem services while buffering the long- term impacts 
of climate change such as increasing temperature conditions and 
ocean acidification (Kavousi & Keppel, 2018) and the potential to 
cope with indirect impacts such as changes in biotic interactions 
(Kavousi, 2019) are therefore important to consider. Hence, more 
research is needed to assess the extent, capacity and persistence of 
climate change refugia under increasing climate change conditions, 
particularly at high latitude regions.

5  | CONCLUSIONS

The model predictions described in this study provide a preliminary 
estimate of the scale of biodiversity changes and extent of suitable 
habitat shifts that could be expected along the WA coastline under 
various climate change scenarios. Using SDMs based on museum 
curated coral records and a selection of environmental and habi-
tat variables, we have predicted a general tropicalization trend and 
an intensified migration of tropical species to higher latitudes. In 
2050 and 2100, temperatures under the most benign climate sce-
nario (RCP 2.6) are not predicted to be the limiting factor for coral 
growth or survival in WA. Under, RCP2100

8.5
 however, offshore atolls 

and inshore Kimberley are predicted to decrease in overall species 
richness with 19% and 20% of the species, respectively, disappear-
ing and 26% and 32% gaining suitable habitat at these regions, re-
sulting in a spatial dilution of present- day biodiversity hotspots 
and a homogenization of diversity levels across the NW shelf. The 
pronounced loss of both suitable habitat and diversity at low lati-
tude tropical regions is of great concern as these regions are of re-
gional and national significance (Richards et al., 2014, 2015, 2019). 

Furthermore, mid- latitude areas such as Ningaloo– Exmouth, Shark 
Bay and the Houtman Abrolhos Islands were predicted to become 
future high- diversity refugia where stress- tolerant, weedy but also 
competitive species are likely to expand their distributional ranges. 
Drastic biodiversity hotspots losses, the pattern of tropicalization 
and associated net biodiversity loss at high latitude regions have 
been reported across different taxa at different spatial scales and 
have been predicted to intensify under climate change conditions. 
Therefore, marine organisms are estimated to be more responsive 
to climate change than terrestrial organisms due to a rapid response 
to changing climate conditions and the capacity to disperse large 
distances. As Eastern Indian Ocean reefs reconfigure under climate 
change, it is likely that novel assemblages will emerge and rare, sen-
sitive or poorly dispersing species may be driven to local extinction. 
The capacity for these novel climate mid- high latitude assemblages 
to offset the loss of biodiversity in low latitude regions and their 
capacity to function as climate change refugia by sustaining impor-
tant ecological services such as reef building are understudied, and 
further research using more comprehensive models is warranted.
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occurrence museum records can be found in the Atlas of Living 
Australia (https://www.ala.org.au/) and upon request at the 
Western Australian Museum. Coral modelling R script is available for 
download on the Dryad Digital Repository (https://doi.org/10.5061/
dryad.d51c5 b03r).
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