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Abstract  

 

Clustering and association rules mining are two core data mining tasks that 

have been actively studied by data mining community for nearly two 

decades. Though many clustering and association rules mining algorithms 

have been developed, no algorithm is better than others on all aspects, such 

as accuracy, efficiency, scalability, adaptability and memory usage. While 

more efficient and effective algorithms need to be developed for handling the 

large-scale and complex stored datasets, emerging applications where data 

takes the form of streams pose new challenges for the data mining 

community. The existing techniques and algorithms for static stored 

databases cannot be applied to the data streams directly. They need to be 

extended or modified, or new methods need to be developed to process the 

data streams. 

In this thesis, algorithms have been developed for improving efficiency and 

accuracy of clustering and association rules mining on very large, high 

dimensional, high cardinality, sparse transactional databases and data 

streams.   

A new similarity measure suitable for clustering transactional data is defined 

and an incremental clustering algorithm, INCLUS, is proposed using this 

similarity measure. The algorithm only scans the database once and 

produces clusters based on the user’s expectations of similarities between 

transactions in a cluster, which is controlled by the user input parameters, a 

similarity threshold and a support threshold. Intensive testing has been 

performed to evaluate the effectiveness, efficiency, scalability and order 

insensitiveness of the algorithm. 

To extend INCLUS for transactional data streams, an equal-width time 

window model and an elastic time window model are proposed that allow 

mining of clustering changes in evolving data streams. The minimal width of 

the window is determined by the minimum clustering granularity for a 
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particular application. Two algorithms, CluStream_EQ and  CluStream_EL, 

based on the equal-width window model and the elastic window model 

respectively, are developed by incorporating these models into INCLUS. 

Each algorithm consists of an online micro-clustering component and an 

offline macro-clustering component. The online component writes summary 

statistics of a data stream to the disk, and the offline components uses those 

summaries and other user input to discover changes in a data stream. The 

effectiveness and scalability of the algorithms are evaluated by experiments. 

This thesis also looks into sampling techniques that can improve efficiency of 

mining association rules in a very large transactional database. The sample 

size is derived based on the binomial distribution and central limit theorem. 

The sample size used is smaller than that based on Chernoff Bounds, but 

still provides the same approximation guarantees. The accuracy of the 

proposed sampling approach is theoretically analyzed and its effectiveness is 

experimentally evaluated on both dense and sparse datasets.  

Applications of stratified sampling for association rules mining is also 

explored in this thesis. The database is first partitioned into strata based on 

the length of transactions, and simple random sampling is then performed on 

each stratum. The total sample size is determined by a formula derived in 

this thesis and the sample size for each stratum is proportionate to the size 

of the stratum. The accuracy of transaction size based stratified sampling is 

experimentally compared with that of random sampling.  

The thesis concludes with a summary of significant contributions and some 

pointers for further work. 
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Chapter 1             

Introduction 

 

1.1 Background 

The capacity of digital data storage worldwide has been doubling every nine 

months for at least a decade (Porter, 1998), and our ability to capture and 

store data has far outpaced our ability to process and utilize them (Fayyad 

and Uthurusamy, 2002). This growing challenge has produced a 

phenomenon called the data tombs, where data are deposited and in all 

likelihood will never be accessed again. Nevertheless, the deposited data are 

a potentially valuable resource. With appropriate data analysis tools, new 

knowledge can be discovered from the existing databases. Data mining is 

one of the most general approaches for such a purpose (Fayyad and 

Uthurusamy, 2002) 

Data mining is the process of extracting valid, useful and previously unknown 

information from large databases, such as patterns, statistical models of data 

and relationships among parts of data, that can be used to make crucial 

business decisions or to guide scientific activities (Fayyad et al., 1996). What 

kind of knowledge is embedded in the collected data and how to discover 

them effectively and efficiently are among the questions faced by 

researchers in the data mining community. Cluster analysis and association 

rules mining are two core data mining approaches to answer such questions 

(Han and Kamber, 2000). 
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Clustering is used to partition a dataset into a set of clusters such that similar 

objects are in the same cluster while dissimilar objects are in different 

clusters. Clustering has many applications in marketing, land use, insurance, 

city planning, etc. (Han and Kamber, 2000). For example, cluster analysis 

can help marketers discover distinct groups in their customer bases, and 

then use this knowledge to develop targeted marketing programs. An 

insurance company can use clustering to indentify groups of insurance policy 

holders with high claim costs.   

Association rules mining, on the other hand, discovers relationships among 

items in a transactional database. It is to find the probability that one set of 

items will appear in a transaction whenever another set of items appear in 

the same transaction. Association rules mining can be applied in the areas of 

cross-marketing, catalog design, sale campaign analysis, web log (click 

stream) analysis, webpage linkage design, etc.  

Cluster analysis can be performed on any type of data, including numerical, 

categorical or spatial data while association rule mining is defined only for 

transactional databases. The algorithms for clustering and association rules 

mining have been intensively studied for the stored databases during the last 

two decades (Jain et al., 1999; Berkhin, 2002; Han and Kamber, 2006), but 

none of the algorithms is better than the others on all aspects, such as 

accuracy, efficiency, scalability, adaptability and memory usage. While more 

efficient and effective algorithms need to be developed for handling the 

large-scale and complex stored datasets, emerging applications where data 

arrive in streams pose new challenges for the data mining community. The 

existing techniques and algorithms for static stored databases cannot be 

applied to the data streams directly. They need to be extended or new 

methods need to be developed to process the data streams. 

Clustering algorithms can be categorized as structure imposing algorithms 

and structure seeking algorithms. Cluster imposing algorithms produce � clusters based on user’s input of a � value regardless of the underlying 
structures in the data. K-Means (MacQueen, 1967) is a representative of 

cluster imposing algorithms. Since in most cases the user does not know a 
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priori the cluster characteristics of the data, the value of � input by the user 
for a structure imposing algorithm may result in distinct clusters being 

merged when the real number of clusters is greater than the given value of � 
or big clusters being split into small chunks when � is greater than the real 
number of clusters. Moreover, for a given � , using different induction 

principles can produce the same number of clusters with different cluster 

features. 

Structure seeking algorithms partition the database based on the user’s 

expectations of the similarity of objects. LargeItem (Wang et al., 1999) and 

CLOPE (Yang et al., 2002) are two examples of such algorithms. The 

number of clusters output by a cluster seeking algorithm is determined by the 

user input values for the parameters that implicitly or explicitly define the 

degree of similarity among objects in a cluster, e.g. compulsion number � in 
CLOPE. Definitions of similarity or distance measures are often data and 

application dependant. Many similarity measures have been proposed in the 

literature for different types of data, such as Jacard coefficient for 

transactional data, and Euclidean distance for numerical data. 

For a given dataset, different similarity or distance measures with different 

induction principles can result in different number of clusters with different 

cluster features.  That is why we have a large number of clustering 

algorithms and yet we  are still searching for more efficient and effective 

algorithms (Estivill-Castro, 2002). Unlike clustering, the set of association 

rules is fixed in a given dataset for given support and confidence thresholds. 

Therefore the focus in association rules mining is on improving efficiency.  

The input/output overhead in scanning the database plays an important role 

in the performance of association rule mining algorithms. Many data 

structures and corresponding algorithms have been developed to reduce the 

number of database scans from as many as the size of the longest frequent 

itemsets in (Agrawal and Srikant, 1994; Mannila et al., 1994) to as small as 

two in (Han et al., 2000) and one in (Cheung and Zaïane, 2003). When 

dealing with very large transactional databases or data streams, sampling 

techniques are applied as a tradeoff of accuracy for efficiency. While the 
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main purpose of sampling a static large disk resident database is to reduce 

the amount of data to be processed, sampling seems to be the only choice 

for processing a data stream where data flow faster than how quickly it can 

be processed (Babcock et al., 2002). 

Although many algorithms have been developed for clustering and 

association rules mining, more research is needed to develop effective and 

efficient algorithms for very large high dimensional sparse transactional 

databases and data streams. 

1.2 Aims of This Thesis 

This thesis aims to develop efficient and effective algorithms that are suitable 

for clustering very large high dimensional sparse transactional databases 

and data streams. The algorithms will be structure seeking rather than 

structure imposing. It will take into account users’ expectations of the 

closeness among transactions when performing cluster analysis.  

This thesis will also investigate sampling techniques that can improve the 

efficiency of mining association rules in a very large database. The sampling 

techniques will not only require small sample sizes but also provide 

approximation guarantees.  

1.3 Overview of the Thesis 

The reminder of this thesis is organized as follows. 

Chapter 2 reviews previous research in clustering and association rules 

mining that are closely related to this research. These include the definitions 

of relevant terms, existing similarity measures for transactional data 

clustering, time window models proposed in the literature for data streams 

mining, and algorithms for clustering and association rules mining. 

Chapter 3 defines a new measure for the similarity between transactions 

based on the items present in them. A new incremental structure seeking 

clustering algorithm INCLUS is then proposed incorporating the newly 
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defined similarity measure for clustering very large transactional databases. 

The algorithm is extensively tested and compared with two existing structure 

seeking clustering algorithms LargeItem and CLOPE.  

Chapter 4 defines two time window models: equal width time window model 

and elastic time window model for mining evolving data streams. Two new 

algorithms named CluTranStream_EQ and CluTranStream_EL are proposed 

for clustering transactional data streams by incorporating these window 

models into INCLUS. Each algorithm consists of an online micro-clustering 

component and an offline macro-clustering component. The effectiveness 

and scalability of the online components are evaluated by experiments. 

Chapter 5 presents a random sampling approach for association rules mining 

from very large databases. The sample size is determined based on binomial 

distribution and the central limit theorem. It has smaller sample size than that 

based on Chernoff Bounds, but still provides the same approximation 

guarantees. The accuracy of the proposed sampling approach is theoretically 

analyzed and its effectiveness is experimentally evaluated on both dense 

and sparse datasets. Methods for reducing false positives and false 

negatives in frequent itemsets are also discussed.  

Chapter 6 explores the application of stratified sampling to association rules 

mining. The database is first partitioned into strata based on the length of 

transactions, and simple random sampling is then performed on each 

stratum. The effectiveness of the proposed sampling technique is evaluated 

and compared with simple random sampling.  

Chapter 7 concludes the thesis with some directions for future research.  

 

Some of the results of this thesis were published in (Li and Gopalan, 2004; 

2005; 2006a; 2006b). 
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Chapter 2         

Literature Review 

 

Clustering and association rules mining have been active research areas in 

data mining, for which many algorithms have been developed (Jain et al., 

1999; Berkhin, 2002; Kantardzic, 2002; Gaber et al., 2005; Han and Kamber, 

2006; Hruschka et al., 2009). This chapter reviews related research in these 

two fields that are directly relevant to the work being reported in this thesis.   

2.1 Basic Concepts for Clustering and 
Association Rules Mining 

As mentioned in Chapter 1, the goal of this thesis is to develop effective and 

efficient algorithms for clustering and association rules mining from very 

large transactional databases and data streams. Before the relevant existing 

algorithms being reviewed, the basic concepts and definitions associated 

with these problems are described below.  

2.1.1 Transactional Database  

Let � � ���, �	, … , ���  be a set of 
 distinct items. A transaction � is a non-
empty subset of � (i.e. �⊆ � ). A transactional database ���  is a collection of � transactions ���, �	, … , ��� , where 
 is the dimension of the ���  and � is 

the cardinality of the ���. Each item is an attribute of the ���. Transactional 
data is a special case of categorical data, where each attribute takes a value 

from a binary domain indicating either the presence or absence of an item in 

the transaction.  
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A super market basket database is a typical real life transactional database.  

Table 2.1 shows an example transactional database. There are six distinct 

items {A, B, C, D, E, F} and five transactions {A, B, D}, {A, C,D}, {A,D, E}, { B, 

E, F} and { B, C, D, E, F} in the database. In other words, the dimension of 

the database is 6 and the cardinality of the database is 5. 

Table 2.1 A sample Transactional Database 

Transaction ID Items 

10 A, B, D 

20 A, C, D 

30 A, D, E 

40 B, E, F 

50 B, C, D, E, F 

2.1.2 Data Streams and Models for Data Stream 
Mining 

A data stream is an ordered sequence of data records that can be read only 

once or a small number of times (Guha et al., 2000a). Retail chain 

transactions, web logs and web page click streams, credit card transaction 

flows, and real time stock exchange data are some examples of real life data 

streams. The characteristics of data streams include the following (Han and 

Kamber, 2006): 

• Huge volumes of continuous data, possibly infinite;  

• Fast changing and requiring fast real time response; 

• Random access is expensive to perform; 

• Most data streams being at a low level and multi-dimensional, need 

multi-level, multidimensional processing. 
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There are four prominent models (Fig 2.1) for data stream mining which are 

described here in the context of clustering: 

• The landmark model (Guha et al., 2003) assumes that the clusters are 

to be computed over the entire data stream.  The set of data points to 

be clustered includes all the data points from beginning of a data 

stream to the current time. Data stream clustering problem is simply 

viewed as a variant of one-pass clustering algorithms. It is suitable for 

a data stream where the mechanism of the data generation does not 

change over time.  

• The sliding window model (O'Callaghan et al., 2002; Babcock et al., 

2003) assumes that only the most recent data in the stream are of 

interest.  The set of data points to be clustered is chosen by a sliding 

window of the most recent data. Clustering is performed from the 

beginning of the stream but only keeps clustering results for the set of 

data points within the sliding window.  

• In the tilted time window model (Giannella et al., 2003), at any 

moment, the stream is partitioned into windows of different 

granularities with respect to the time of their arrival. The most recent 

data has the finest granularity while the most remote has the coarsest. 

• In the pyramidal time window model (Aggarwal et al., 2003), the data 

stream is partitioned into windows based on various granularities, but 

only a certain number of windows is kept at any given time for each 

granularity. Both the tilted-window model and the pyramid window 

model can be employed for approximation of changes in the data 

stream. Sampling can also be incorporated into these models 

(O'Callaghan et al., 2002). Existing algorithms for static datasets such 

as K-Means (or K-Median) have been incorporated into these models 

with or without modifications for data stream clustering (Ong et al., 

2004; MacQueen, 1967; O'Callaghan et al., 2002; Aggarwal et al., 

2003; Guha et al., 2003). 
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Figure 2.1 Models for Data Stream Processing 

In this thesis, an equal-width window model and an elastic window model are 

proposed for clustering transactional data streams.  

2.1.3 Clustering 

A cluster is a collection of data objects. Clustering is to partition a dataset 

into clusters so that similar objects are in the same cluster while dissimilar 

objects are in different clusters based on predefined similarity/distance 

measures. 

Given a transactional database ���, �	, … , ���  over 
  items ���, �	, … , ���  , a 
clustering �  is a partition ���, �	, … , ���  of ���, �	, … , ���  such that similar 

transactions are in the same cluster and dissimilar transactions are in  

different clusters, � �  �� � �	 � …� ��, and  �� � �� � �, �� �  . For example, 

the sample database listed in Table 2.1 may be partitioned into two clusters ���={ {A, B, D}, {A, C, D}, {A, D, E} }, �	= { { B, E, F}, { B, C, D, E, F} } 
according to the number of common items in the transactions.  

In order to partition a database into clusters so that similar transactions are in 

the same clusters and the dissimilar transactions are in different clusters, a 

measure to determine the degree of similarity between a pair of transactions 

is needed. Currently, there are several similarity measures being used in 

clustering transactional databases as described in detail below. 

 

 

 

   0                           t     0               t 

  (a) Landmark model     (b) Sliding window model 

 

 

 

 

   0               t     0                  t 

  (c)  Tilted time window model    (d) Pyramidal time window model 
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A transaction � in a ��� over a set of 
 distinct items can be represented by 

a 
 !dimensional vector � " ��, �	, … , �� # . When an item ��|� � 1,2, … , 
 
appears in �,  �� � 1; otherwise  �� � 0.  
Example 2.1   Suppose � ={A, B, C, D, E, F, G, H, J, K}, and ��� over �  
consists of ��={A, B, C, D}, �	= {C, D}, �(={C, D, E, F, G, H}, �)={E, F}, then 
the ���  can be represented by a set of vectors: 

��<1, 1, 1, 1, 0, 0, 0, 0, 0, 0> 
�	<0, 0, 1, 1, 0, 0, 0, 0, 0, 0> 
�(<0, 0, 1, 1, 1, 1, 1, 1, 0, 0> 
�)<0, 0, 0, 0, 1, 1, 0, 0, 0, 0> 

A conventional method for obtaining a distance measure between two 

transactions �� and ��   is to use the 2x2 contingency table illustrated in Table 
2.2. In the table,  *��  represents the total number of attributes present in 

both transactions (“positive” matches) and  *++ represents the total number of 

attributes absent from both transactions (“negative” matches). The total 

number of attributes present in �� but not in ��  is denoted by  *�+  while the 
total number of attributes not present in ��  but in ��  is denoted by  *+� .  *�� , *�+ ,  *+� , *++ � 
 , where 
 is the total number of distinct items in 

the database, i.e. the dimension of the database. 

Table 2.2 2x2 Contengency Table 

 
   ��  

   1  0 

 1   *��   *�0 ��      
 0   *0�   *00 

Following similarity measures have been proposed in the literature 

employing the quantities of  *++ ,  *+� ,  *�+  and  *�� (Everitt, 1993; Huang, 
1997a; Kantardzic, 2002). 
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• Simple Matching Coefficient (SMC)   

SMC is the ratio of the total number of positive and negative 

matches  *�� , *++   to the total number of attributes 
 . It can be 

expressed as follows: 

               -./01��,  �� 2 �  ( *�� , *++ ) / 
 
          �  ( | �� � ��| , 4�� � ��  4) / 
                      (2.1) 

• Rao’s Coefficient 

Rao’s Coefficient is the ratio of the total number of positive   

matches   *��  to the total number of attributes 
  which can be 

expressed as: 

  

       -501��,  �� 2 �  *�� / 
 
                         � | �� � ��  | / 
                                                (2.2) 
• Jaccard Coefficient  

Jaccard coefficient is the ratio of the total number of positive matches 

to the total number of distinct attributes present in both transactions: 

 

                           -�01�� ,  �� 2 �  *�� / ( *�� , *�+ , *+� ) 
           � *�� / (
 ! *++)               �  | �� � ��  | / | �� � ��  |                                        (2.3) 

It can be easily proved that 

                        -./01�� , ��2 7  -�01��, ��2 7 -501��, ��2                                  (2.4) 
Table 2.3 shows the similarity between transactions in Example 2.1 based 

on these similarity measures.  
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Table 2.3 Similarity Between Transactions in Example 2.1 

Pair of transactions -./0 -50 -�0 
��, �	 80% 20% 50% 

��, �(  40% 20% 25% 

��, �) 40% 0% 0% 

�	, �( 60% 20% 33.3% 

�	, �) 60% 0% 0% 

�(, �) 60% 20% 33.3% 

 

To consider the suitability of these similarity measures for clustering typical 

real life high dimensional sparse transactional datasets, Table 2.4 lists the 

characteristics of two transactional databases that are widely used in the 

validation of data mining algorithms. BMSPOS (Zheng et al., 2001) contains 

point-of-sale data from an electronics retailer and Retail (Brijs et al., 1999) 

consists of the retail market basket data from an anonymous Belgian retail 

store. 99% of transactions in BMSPOS have less than 33 items. The 

minimum SMC similarity between a pair of those transactions is (1657 ! 2 <32)/1657 � 96.13% (when two transactions are of size 32 and are totally 

different) and the maximum value for Rao’s similarity is 32/1657 � 1.93% 

(when two transactions are of size 32 and are exactly the same). In the 

Retail dataset, 99% has transaction size less than 45 items, the minimum 

SMC similarity between a pair of transactions is (16470 ! 2 < 44)/16470 �99.47% (when two transactions are of size 44 and are totally different), and 

the maximum Rao’s similarity  is 44/16470 � 0.27% (when two transactions 

are of size 44 and are exactly the same ). Table 2.5 shows the maximum and 

minimum similarity values for 99% of records in each dataset according to 

different similarity measures.  
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Table 2.4 Two High Dimensional Sparse Datasets 

Dataset  N D Iavg Favg Lmax L99%  

BMSPO 51559 1657 7.5 2032 164 <33 

Retail 88162 16470 10.3 55 76 <45 

Note: N - total number of transactions; d - dimensions of a dataset; Iavg - average 

numbers of items in a transaction; Lmax - size of the longest transaction; Favg - 

average occurrence of each item. L99%  - length of 99% of records in the dataset 

 

Table 2.5 Range of Similarity Values According to Different Measures 

Dataset BMSPOS Retail 

 Min Max Min Max 

-?@A 96.13% 100% 99.47% 100% -50 0 1.93% 0 0.27% - A 0 100% 0 100% 

 

It is obvious that the discrimination power of simple matching coefficient and 

Rao’s coefficient is very poor in dealing with such high dimensional sparse 

datasets. As a result, all the transactions will be in the same cluster 

according to SMC while every transaction will form a singleton cluster 

according to Rao’s coefficient.   Moreover, Rao’s coefficient will assign the 

same similarity values for two pairs of transactions with the same number of 

common items but different number of non-common items. For example, for 

transactions in Example 2.1, -50(��, �	) � -50(�	, �() � 20% , although �	  is 
more similar to ��  than to �(  with respect to the items present in the 

transactions.  

As pointed out in (Everitt, 1993), no hard and fast rule can be given 

regarding the inclusion or otherwise of negative matches, since it is data and 

application dependent. For applications where the presence of items is of 

interest, such as customer segmentation, Jaccard coefficient is more suitable 

as it only compares items appearing in the pair of transactions. However, 

Jaccard coefficient still underestimates the similarity between two 
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transactions when one transaction is not a subset of the other. For example, 

for the pair of transactions �� and �( in Example 2.1, -�0(�(, ��) � 2/8 � 1/4   
although 1/2 of the items in �� also appear in �(  and 1/3 of items in �( also 
appear in �� . In a real life scenario, it is more meaningful to say that 1/2 of 
the items in ��  appear in �( and 1/3 of items in �( appear in �� when two 
transactions are compared.  Therefore, in this thesis, a new similarity 

measure that is more suitable for transactional data will be defined.  

2.1.4 Association Rules Mining 

Association rules mining was first introduced by R. Agrawal et al. in 1993 

(Agrawal et al., 1993). The relevant concepts and terms relating to it are 

described below. 

Let � � ���, �	, … , ��� be a set of 
 distinct items and ��� be a transactional 
database over �,  ��� � ���, �	, … , ��� . A set of items is called an itemset, 

and an itemset with � items is called a �-itemset. The support C of an itemset *  in ��� , is the proportion of the database that contains * , and C � D/�  where D is the number of occurrences of * in ���. An itemset is called a 

frequent itemset if its support C 7 CE  where CE is the support threshold 
specified by the user. Otherwise, the itemset is not frequent.  

An association rule is an expression of the form * F G, where non-empty 

itemsets * H �, G H � and * � G � �. The support of the rule is the proportion 
of transactions that contains both * and G, i.e the probability that both * and G  occur in a transaction. The confidence of the rule is the proportion of 
transactions that contain both * and G  to those that contain *  i.e., the 

conditional probability that a transaction contains the itemset G given that it 
contains the itemset *. 
                          -ICCJ�K(* F G) � L(* � G)                                                       (2.5) 
                        �J�M�
N�AN(* F G) � L(G|*) � L(* � G)L(*)                                   (2.6) 
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An association rule with �J�M�
N�AN #  AE, where AE is confidence threshold  
specified by the user, is considered as a valid association rule.  

It is noted that  �J�M�
N�AN(* F G) 7 -ICCJ�K(* F G) holds. When support 

threshold CE and confidence threshold AE  are chosen for association rules 
mining, AE should be greater than or equal to CE. 
Association rules mining consists of two steps. All frequent itemsets, also 

called the complete frequent itemsets (CFI) are discovered in the first step 

and the rules based on the CFI are derived in the second step. 

For the sample database listed in Table 2.1, let CE= 50% and AE  = 50%, then 

frequent itemsets are {A}, {B}, {D}, {E} and {A,D}, and the valid association 

rules are  

O F �   with support = 60% and confidence = 100%; 

� F O    with support = 60% and confidence = 75% . 

Frequent items are also called “large items” by some authors (Wang et al., 

1999). 

For a 
  dimensional transactional database, the maximum number of 

frequent itemsets P�  and the maximum number of association rules Q� are as 
follows: 

P� � 2� ! 1                                                                                (2.7) 
             Q� � 3� ! 2�R� , 1                                                                  (2.8) 

Table 2.6 and Fig.2.2 show the maximum number of itemsets and rules for a 

database with 
 dimensions. 

Table 2.6 Maximum Number of Rules and Itemsets Given d Items 
 3 5 7 9 10 20 100 

Q� 12 180 1932 18660 57002 3.48 S 10T 5.15 S 10)U 
P� 7 31 127 511 1023 1.05 S 10V 1.26 S 10(+ 
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Figure 2.2 Maximum Number of Rules and Itemsets Given d Items 

 

2.2 Algorithms and Frameworks for Clustering 
Transactional Data 

In this section, transactional data clustering algorithms K-Mode, LargeItem 

and CLOPE are reviewed. CluStream, a framework for data stream 

clustering, is also reviewed.  

2.2.1 K-Mode, Extension of K-Means for 
Transactional Data 

K-Means (MacQueen, 1967) is a well known clustering algorithm which is 

suitable for clustering numeric datasets. It partitions a dataset into clusters by 

minimizing the within-cluster sum of squared distance between individual 

data points and their mean 

            ∑ ∑ (X� ! Y�)	Z[\]^��_�                                            (2.9) 
where � is the number of clusters, X�  is a point in cluster -� and Y� is the mean 

of all the points in cluster -�. The algorithm proceeds as follows: 
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1. Partition the data objects at random into � nonempty subsets. 

2. Calculate the centroid (i.e.mean point) for each cluster of the current 

partition. 

3. Assign each object to the cluster with the nearest centroid. 

4. Repeat the last two steps until no object has changed clusters during 

a whole dataset scan.  

The input for the K-Means clustering algorithm is a dataset, the desired 

number of clusters �. It will produce � clusters regardless of the underlying 
data structures. It is a structure imposing rather than a structure seeking 

algorithm.  

K-Mode (Huang, 1997b) extends the K-Means paradigm to categorical 

domains. It replaces the mean of a cluster with mode, and uses a frequency 

based method to update modes in the clustering process to minimize the 

clustering cost function.  

Let *, G be two categorical objects described by @ categorical attributes. The 

dissimilarity is defined as: 

 
                                            
(*, G) � ∑ `(X� , D�)/�_�                                   (2.10) 
 
where 

 `1X� , D�2 � a0 (X� � D�)1 (X� � D�)b                               (2.11) 
 


(*, G) gives equal importance to each category of an attribute. When the 

frequencies of categories is taken into account, the dissimilarity between * 
and G is defined as  
                                                        
Zc( *, G) �  ∑ (�d[R�e[)�d[�e[

/�_� `1X� , D�2                 (2.12) 
 

Where �Z[ , �f[are the numbers of objects in the dataset that have categories 

X� and D� for attribute  . 
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Let *  be a set of categorical objects described by categorical attributes O�,  O	, … ,  O/.  A mode of * is a vector g �" h�,  h	, … , h/ # that minimizes  

                                                      �(g, *) � ∑ 
(*�, g)��_�                                   (2.13) 
where * � �*�, *	, … , *�� and the distance function 
 can be either defined 
as Eq.(2.10) or Eq.(2.12). The mode g �" h�,  h	, … , h/ # of * is obtained 
by calculating the most frequent category in each attribute. In other words, h� 
is the most frequent category in attribute O�,  h	 is the most frequent category 

in attribute O	, and so on. 
Since K-Mode is an extension of K-Means, it inherits the weakness of K-

Means, i.e., it produces � clusters regardless the underlying cluster structure 
in the database. As for K-Means, the centroid (modes) of clusters are 
 
dimensional vectors, where 
 is the dimension of the database. For a high 

dimensional database, the description of the clusters in terms of centroid will 

be very hard for users to comprehend.  

2.2.2 LargeItem 

Wang et al. proposed a large item based algorithm for clustering 

transactional data  (Wang et al., 1999). For a user-specified minimum 

support CE , an item is large in cluster �� if its occurrences are at least CE <|��|; otherwise the item is small in ��. Let Pi�jN� denote the set of large items 

and -@ikk�  denote the set of small items in �� . Consider a clustering � ����, �	, … , ���  , the cost of �  has two components: the intra-cluster cost ��K�i(�) and inter-cluster cost ��KN�(�). 
The intra-cluster cost is charged for intra-cluster dissimilarity, measured by 

the total number of small items:  

                                ��K�i(�) � |l -@ikk�|��_�                                          (2.14) 
This component will restrain the creation of loosely bound clusters that have 

too many small items. 
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The inter-cluster cost is charged for inter-cluster similarity. Since large items 

contribute to similarity in a cluster, each cluster should have as little 

overlapping of large items as possible. The overlapping of large items is 

defined by 

                                        ��KN�(�) � ∑ |Pi�jN���_� | ! |l Pi�jN���_� |                (2.15) 
��KN�(�) measures the duplication of large items in different clusters. This 

component will restrain the creation of similar clusters. 

The criterion function of a clustering � is defined as 
                                         �J?K(�) � m < ��K�i(�) , ��KN�(�)                         (2.16) 
A weight m # 1 gives more emphasis to the intra-cluster similarity and a 

weight m " 1  gives more emphasis to the inter-cluster dissimilarity. By 

default m � 1. 
Given a collection of transactions and a minimum support, transaction 

clustering is to find a clustering � such that �J?K(�) is minimum. 

The algorithm LargeItem has two phases: the allocation phase and the 

refinement phase. In the allocation phase, each transaction is read in 

sequence and assigned to an existing cluster or a new cluster, whichever 

minimizes the �J?K(�). In the refinement phase, each transaction is read in  

sequence again, a transaction is moved to a new cluster or stays in the same 

cluster to minimize the cost. If no transaction is moved in one pass of 

transactions, the refinement phase terminates; otherwise, a new pass 

begins. 

LargeItem is a structure seeking clustering algorithm. It produces a number 

of clusters based on the user’s expectation of intra-cluster similarity. 

However, the input parameter m, which is used to control the weight of inter-

cluster similarity and intra-cluster similarity in the cost function,  does not 

have clear semantic meaning to the users and the range of this parameter is 

not defined. Therefore it is very difficult for users to choose a proper value for 
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it. The algorithm needs to scan the database at least twice, and therefore it is 

not so efficient for very large databases and is not suitable for data streams.  

2.2.3 CLOPE 

CLOPE (Yang et al., 2002) is another structure seeking algorithm specifically 

designed for transactional data. 

Given a cluster �, let �(�) be the set of distinct items in �, nAA(�, �) be the 
occurrence of item �  in cluster �. The histogram of a cluster � is drawn with 
items as the X-axis and their occurrences as Y-axis, in decreasing order of 

occurrences.  

The size -(�) and width o(�) of a cluster � are defined as  
                                                  -(�) � ∑ nAA(�, �) �  ∑ |K�|E^\p�\q(p)                   (2.17) 

where K�  is the �Er transaction in �. 
                                                 o(�) � |�(�)|                                                   (2.18) 

The height of a cluster is defined as 

                                                 s(�) � -(�)/o(�)                                            (2.19) 

A larger height means a greater overlap among the items in a cluster, and 

thus more similarity among the transactions in the cluster. 

Figure 2.3 shows the histogram for a cluster consisting of transactions �iA
�, �
N� and �
NM�. 
The criterion function for clustering is 

                            L�JM�K5(�) �  ∑ -(��)o(��)5 S |��|��_� ∑ |��|��_�                                               (2.20) 
 

In Eq. (2.20), � is a positive real number called repulsion, used to control the 
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level of intra-cluster similarity. When � is large, transactions within the same 

cluster must share a large portion of common items. 

 

 

 

 

 

 

Figure 2.3 Histogram of Cluster {tuv, vw, vwx} 
 

The object of clustering is to find a set of clusters that can maximize the 

profit.  

The algorithm for CLOPE is very similar to that for LargeItem, except that the 

criterion function is different. It contains two phases: the initialization phase 

and the iteration phase. During the initialization phase, the database is 

scanned in sequence. Each transaction is allocated to an existing cluster or a 

new cluster so that profit can be maximized. In the iteration phase, the 

database is scanned repeatedly. A transaction is either moved from one 

cluster to another cluster or stays in the same cluster to maximize the profit. 

When no transaction is moved during a database scan, the iteration stops.   

Like LargeItem, CLOPE is a structure seeking clustering algorithm. It 

produces clusters based on the user’s expectations of intra-cluster similarity 

which is controlled by repulsion number �. However, � is not bounded and 
has no clear semantic meaning to the user. Therefore it is very difficult for 

users to choose a proper value for it. 
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2.3 CluStream: A Framework for Clustering 
Evolving Data Streams 

The challenge of designing algorithms for data stream mining is three fold: 

(1) the algorithm is subject to sequential one-pass constraint over the data; 

(2) it must work under limited resources with respect to the unlimited data 

stream; (3) it should be able to reveal changes in the data stream over time. 

Aggarwal et al. propose a framework, CluStream, for clustering evolving data 

streams(Aggarwal et al., 2003). The clustering process is divided into an 

online micro-clustering component and an offline macro-clustering 

component. The online component periodically stores detailed summary 

statistics onto disk and the offline component uses the summary statistics in 

conjunction with other user input to answer time sensitive queries. 

The separation of the data stream clustering approach into online and offline 

components raises these important questions: 

What kind of summary information should be stored to provide sufficient 

temporal and spatial information for the offline clustering process w.r.t a 

particular application? 

At what moments in time should the summary information be stored away on 

disk so that time sensitive queries can be answered with a desired level of 

approximation?  

How can the periodic summary statistics be used to provide clustering and 

evolution insights over a user specified time horizon? 

In order to address these issues, CluStream utilizes two concepts: micro-

clusters and a pyramidal time frame. 

Assume that the data stream consists of a set of multi-dimensional records *�yyy …*�yyy…arriving at time stamps ��…��…. Each *z{  is a multi-dimensional 

record containing 
 dimensions which is denoted by *z{ � (X�� …X��).  
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A micro-cluster for a set of 
 dimensional points  *��… *�� with timestamps  ���…���  is defined as the (2. 
 , 3) tuple ( �|2Z yyyyyyyy, �|1Z yyyyyyyy, �|2E  yyyyyyy,  �|1E  yyyyyyy, �), 
wherein �|2Z yyyyyyyy  and �|1Z  yyyyyyyy  each correspond to a vector of 
 entries. The 
definition of each of these entries is as follows: 

For each dimension, the sum of the squares of the data values is maintained 

in �|2Z  yyyyyyyy. Thus �|2Z  yyyyyyyy contains 
 values. The C-th entry of �|2Z yyyyyyyy is equal to ∑ (X��}  )	��_� . 

For each dimension, the sum of the data values is maintained in �|1Z yyyyyyyy. Thus �|1Z yyyyyyyy contains 
 values. The C-th entry of �|1Z  yyyyyyyy is equal to ∑ X��}��_�  . 

The sum of the squares of the time stamps ���…��� is maintained in �|2E  yyyyyyy.  
The sum of the time stamps ���…��� is maintainded in �|1E  yyyyyyy.  
The number of data points is maintained in �. 
It is noted that the above definition of micro-clusters is a temporal extension 

of the cluster feature vector in (Zhang et al., 1996). 

The micro-clusters are also stored at particular moments in the stream which 

are referred to as snapshots. In the pyramidal time frame, the snapshots are 

stored at different levels of granularity depending on the recency. Snapshots 

are classified into different orders which can vary from 1 to log �, where � is 
the clock time elapsed since the beginning of the stream. The snapshots of 

different orders are maintained as follows: 

Snapshots of the i-th order occur at time intervals of �� , where �  is an 

integer,  � 7 1.  Specifically, each snapshot of the i-th order is taken at a  
moment in time when the clock value from the beginning of the stream is 

exactly divisible by �� 
At any given moment in time, only the last � , 1 snapshots of order � are 
stored. 
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For a data stream, the maximum order of any snapshot stored at � time units 

since the beginning of the stream mining process is log� �. 
For a data stream, the maximum number of snapshots maintained at � time 

units since the beginning of the stream mining process is (� , 1)log� �. For 
any user specified time window of �, at least one stored snapshot can be 
found within (2. �) units of the current time. 

It can be seen that CluStream suits numeric data as it stores the sum of the 

squares of the data values and the sum of data values in the snapshots. In 

this thesis, the ideas of CluStream frame work are borrowed, i.e, dividing the 

clustering process to an online micro-clustering component and an offline 

macro-clustering component, but using different summary statistics that are 

suitable for clustering transactional data streams.  

2.4 Sampling Techniques and Algorithms for 
Association Rules Mining 

While many sound algorithms have been developed to provide accurate 

association rules in a database, such as Apriori (Agrawal and Srikant, 1994), 

FP-Growth (Han et al., 2000), CT-Mine (Gopalan and Sucahyo, 2003) and 

CATS-Tree (Cheung and Zaïane, 2003), sampling techniques are actively 

studied as a tradeoff of accuracy with efficiency when dealing with very large 

databases or data streams. This section will review sampling techniques for 

association rules mining, including two-phase sampling, progressive 

sampling and random sampling based on the Chernoff Bounds.  

2.4.1 Two-Phase Sampling 

FAST (Chen et al., 2002) is a two-phase sampling algorithm for mining 

association rules in large databases.  In Phase I, a large initial sample of 

transactions -  is collected and used to quickly estimate the support of each 

individual item in the database. In Phase II, these estimated supports are 

used to either trim outliers or select representatives from the initial sample, 

resulting in a small final sample -+   that can more accurately reflect the 



25 

 

support of items in the entire database as explained below. Any standard 

association rules mining algorithm can then be used to discover association 

rules in the final sample. 

Since the supports of 1-itemsets in the original database are unknown, they 

are estimated by the corresponding supports in the original larger sample -. 
The discrepancy is measured by the distance function 

                         ��?K(-+, -) �  |�(])��(]�)|�|�(]�)��(])||�(]�)|R|�(])|                                             (2.21) 

where P(-) and P(-+) denote the set of of frequent 1-itemsets in - and -+ , 
respectively.   

Two different approaches are presented for obtaining the final sample in 

Phase II: “trimming” and “growing”. The trimming procedure starts with the 

initial sample - and continuously removes “outliers” until a specified stopping 

criterion is met. An outlier is a transaction whose removal from the sample 

maximally reduces the discrepancy between the supports of the 1-itemsets in 

the sample and the corresponding supports in the original database. In 

contrast, the growing procedure selects representative transactions from the 

initial sample and adds it to an initially empty dataset -+. In either approach, 
by forcing the supports of a 1-itemsets in the sample to approximate those in 

the original database, the Phase II procedure helps ensure that the support 

of every 1-itemset in the sample is close to that in the database.  

FAST-trim and FAST-grow are algorithms resulting from the trimming and 

growing approaches, respectively. 

Given the minimum support and confidence thresholds, the FAST-trim 

algorithm proceeds as follows: 

1. Obtain a simple random sample - from the database. 

2. Compute support for each 1-itemset in -. 
3. Using the support computed in step 2, obtain a reduced sample -+ 

from - by trimming away outlier transactions. 
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4. Run standard association rules mining algorithm against -+  for the 
given minimum support and confidence thresholds. 

FAST-grow algorithm has an input parameter � \ �1, 2, … , |-|) and �, where � is the final sample size. Like FAST-trim, it proceeds in stages. Initially, -+ is 
empty. At each stage representative transactions are added to -+.  In order 
to identify representative transactions, the transactions in - ! -+ are divided 
into disjoint groups, with each group has min (|- ! -+|, �) transactions. For 
each group, a transaction � that minimizes  Dist(-+ � ���, -)  over all 

transactions in the group is added to -+. The algorithm proceeds until |-+| � �. 
It can be seen that choosing the right sample size for the initial sample is 

critical for the success of the two-phase sampling. A wrong initial sample size 

will result in the failure of the sampling since the final sample is a subset of 

the original sample. Since there is no theory to back up the selection of the 

sample size, the process for choosing the initial sample size becomes 

arbitrary.   

2.4.2 Progressive Sampling  

Progressive sampling (Provost et al., 1999) starts with a small sample and 

uses progressively larger ones until the model accuracy no longer improves. 

The learning curve in Fig. 2.4 depicts the relationship between sample size 

and model accuracy. The horizontal axis represents �, the number of objects 

in a given training sets, that can vary from zero to �, the total number of 

available instances. Most learning curves typically have steeply sloping 

portion early in the curve, and a plateau late in the curve. When the curve 

reaches its final plateau, it is said to have converged. The training set size at 

which convergence occurs is denoted as �/��, where �/�� is the size of the 
smallest sufficient sample size for an induction algorithm.   
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Figure 2.4 Learning Curves and Progressive Samples 

 

A central component of progressive sampling is a sampling schedule - � ��+,  ��, �	, … , ��� where each �� is an integer that specifies the size of 
a sample to be provided to an induction algorithm. For � "  , �� " �� .  If the 
dataset contains � instances in total, �� � N for all �. 
Figure 2.5 is a generic algorithm that defines the family of progressive 

sampling methods. 

 

 

 

 

 

 

 

� � �+ 

/* generic progressive sampling algorithm */ 

compute schedule - � ��+,  ��, �	, … , ���  of sample sizes 

M � model induced from � instances 

while not converged do 

 recompute - if necessary 

 � � next element of - larger than � 
M � model induced from � instances 

endwhile 

return M 

Figure 2.5 Generic Progressive Sampling Algorithm 
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It is obvious that sampling schedule plays a very important role in 

progressive sampling as it will determine the number of samples processed 

before a final sample is selected.  

John and Langely (John and Langley, 1996) defines an arithmetic sampling 

using the schedule 

                       -� � �+ , (�. ��) � ��+, �+ , �� ,  �+ , 2�� , … ,  �+ , ����         (2.22) 

 For example, when �+ � 100 , and �� � 100,  the schedule will be �100, 200, 300, … �. 
Provost et al (Provost et al., 1999) propose Geometric sampling using the 

schedule: 

                  -� � i� . �+ � ��+, i. �+, i	. �+, … ,   i� . �+}                                 (2.23) 

for some constant �+ and i. An example schedule is �100, 200, 400, 800… � 
when �+ � 100 and i � 2. 
Parthasarathy (Parthasarathy, 2002) adopts the progressive sampling 

approach for association rules mining. In the context of association rules 

mining, the model accuracy is defined as 

-�@(
�, 
	) � ∑ max �0,1 ! �4?IC��(X) ! ?IC�c(X)4�Z\��� �O � ��                        (2.24) 
where 
� and 
	 are two database samples, O and � are respectively the set 
of frequent itemsets for 
� and 
	, X is an element in frequent itemsets O and � . values  for -�@ are bounded and lie in [0,1] . 

As mentioned above, how to choose a sampling schedule remains a 

question for progressive sampling for association rules. How big the initial 

sample should be, and how the next sample size is calculated are two 

questions for which there are no theoretically sound answers. The selection 

of the initial sample size and the incremental method are very much 

subjective and experimental in nature. Since the frequent itemsets 

calculations are expensive, progressive sampling that involves several 
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samples may defeat the purpose of sampling as frequent itemsets 

computations have to be performed on each sample.  

2.4.3 Sampling Based on Chernoff Bounds 

 Toivonen presents a sampling technique for association rules in (Toivonen, 

1996) based on Chernoff Bounds. The idea is to pick a random sample and 

use the sample to find all association rules that probably hold in the whole 

database, and then verify the results with the rest of the database.  

The sample size �  is determined based on Chernoff Bounds (Alan and 

Spencer, 1992) for a given error bound  N and the maximum probability ` for 
an error exceeding the error bound: 

                                                        � 7 12N	 ln 1̀                                                          (2.25) 
In order to uncover all frequent itemsets in the sample, the support threshold 

is lowed to  

                                               C� " CE ! � 12� ln 1̀                                                       (2.26) 
The main steps of the algorithm are as follows. 

1. Draw a random sample - of size � from the database; 

2. Calculate frequent itemsets in -  using the lowered support 

threshold; 

3. Scan the database. If an itemset is frequent in the sample 

according to lowered support threshold, and is also frequent in the 

database based on the support threshold, then output the itemset. 

The algorithm needs to scan the original database to verify frequent itemsets 

discovered in the sample. It is not an algorithm purely working on samples to 

get estimated results. The sample size based on the Chernoff Bounds is also 

very conservative (Zaki et al., 1997). In this thesis, sample sizes are derived 
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based on the binomial distribution and the central limit theorem, which is 

much smaller than that based on Chernoff Bounds, yet still provides the 

same approximation guarantees. 

2.5 Summary 

In this chapter, the definitions of terms relating to transactional database, 

data streams, association rules and clustering are provided. The previous 

research in clustering and association rules mining that are closely related to 

this research are reviewed, including the existing similarity measures for 

transactional data, the time window models for data stream mining, 

algorithms for transactional database clustering, and sampling techniques for 

association rules mining. 
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Chapter 3          

Clustering Transactional Data 

 

Transactional data are often characterized by high cardinality, high 

dimensionality and high sparsity. Traditional centroid-based iterative 

structure imposing clustering algorithms are not efficient in dealing with very 

large databases as they need to scan the databases more than once. High 

dimensionality of the transactional database also makes it hard or even 

impossible to comprehend the description of a cluster by a centroid-based 

algorithm because the centroid is expressed by a 
  dimensional vector, 

where 
 is the dimension of the database. 

This thesis aims to develop more effective, efficient and scalable algorithms 

for transactional data clustering, and to provide more meaningful descriptions 

of clusters. The algorithms will seek the natural cluster structures in the 

database rather than impose a cluster structure on the data.  

Fewer algorithms for transactional database clustering have been proposed 

in the literature compared with that for numeric data. In this chapter, an 

incremental structure seeking clustering algorithm is proposed for clustering 

very large high dimensional sparse transactional databases. The extensive 

testing results show that the algorithm is effective, efficient, scalable and 

order insensitive. The descriptions of clusters are expressed in terms of 

locally hot items which are easy to comprehend for end users. It seeks 

clusters based on the user’s expectations of cluster features. The number of 

clusters produced varies as the user’s expectations change. 

This chapter is organized as follows. Section 3.1 states the problem to be 

solved and Section 3.2 defines a new similarity measure for transactional 
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data. Section 3.3 presents the principles and models for the problem and 

Section 3.4 proposes an incremental clustering algorithm INCLUS based on 

the new similarity measure and induction principles defined in the previous 

sections. Section 3.5 analyzes the complexity of INCLUS while Section 3.6 

empirically evaluates INCLUS in terms of effectiveness, order dependency 

and scalability.  The advantages of newly defined similarity measure are also 

tested in Section 3.6. Section 3.7 summarizes the chapter. 

3.1 Problem Definition 

The problem in this study is as follows: Given a very large high dimensional 

sparse transactional database ���, find a partition L � ���, �	, … , ��� of ��� 
where (�� � �� � �, �� �  ) and l �� � ��� ��_� such that similar transactions 

are in the same cluster, dissimilar transactions are in  different clusters, as 

well as provide a meaningful description of the clusters. 

3.2 A New Similarity Measure 

As discussed in Chapter 2, Rao’s Coefficient and Simple Matching 

Coefficient take into account negative matches(i.e. items missing in both 

transactions) when comparing transactions. For a high dimensional sparse 

database, as pointed out in Chapter 2, these measures will lose their 

discrimination power. Jaccard Coefficient does not take into account 

negative matches, but it still underestimates the similarity between two 

transactions when one transaction is not a subset of the other. For example, 

for the pair of transactions ��  and �( in Example 2.1, -�0 (�� ,�() � 1/4 , 

although 1/2 of the items in ��  also appear in �(  and 1/3 of items appearing 

in �(  also appears in �� .  In a real life scenario, it is more meaningful to say 

that 1/2  of the items in �� appear in �(   and 1/3 of items in �(  appear in �� 
when the two transactions are compared. Based on this perception, a new 

similarity measure for transactional databases is defined as given below. 
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Definition 3.1 (Similarity ) Let �� and ��  be two transactions in a TDB. The 
similarity between �� and ��  is defined as 

                                       -1��,  ��2 � 4�� � ��4max1|��4,  |��|2                                                (3.1) 
It can also be expressed as :  

                                 -1�� ,  ��2 � max( |�� � ��||��| ,  |�� � ��|4��4  )                                  (3.2) 
S has the following properties: 

0 � -1��, ��2 " 1, ��� � �� 
-1��, ��2 � 1, ��� � �� 
-1��, ��2 �  -1��, ��2 

This definition ignores the negative matches and is more suitable for an 

application where only the items present in the dataset are of interest, such 

as finding customers with similar purchasing patterns in a supermarket 

basket data. S indicates that at least S proportion of items in one transaction 

is present in the other. For example, if one customer bought {bread, milk, 

pen, eraser} and the other bought {bread, milk, lettuce, carrot} from a super 

market, S will be 50%. This figure is the same as what we will infer in our 

daily life, i.e. 50% of the items bought by the two customers are the same. 

On the other hand, if one customer bought {bread, milk, pen, eraser} and the 

other bought {bread, milk, lettuce, carrot, apple}, S will be 40%, i.e. at least 

40% items in one basket are the same as in the other basket. 

The relationship between this newly defined similarity measure and Jacard 

Coefficient is as follows: if one transaction is a subset of the other, then - � -�0 , otherwise - # -�0 . 
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3.3 Cluster Representatives and Induction 
Principle 

3.3.1 Cluster Representatives 

As stated in Section 3.1, clustering a transactional dataset is to group similar 

transactions together. Since similar transactions must share some common 

items, those items are said to be hot in a cluster, i.e. they appear more 

frequently in the cluster than the other items. Hence it is meaningful to use 

hot items as cluster representative to describe clusters. 

Definition 3.2 (Hot items) Let � be a cluster, � be a set of distinct items in �, 
and �E \ �0, 1�. Then the hot items in cluster � are defined as  
                       �JK(�) � �� \ �|M�Nh(�, �)/|�|  7 �E�                           (3.3) 
where M�Nh(�, �)  is frequency of item �  in � , i.e., the total number of 

occurrences of item �  in �, and  �E is the support threshold above which an 
item is considered hot. 

Hot items are those items that appear in at least �E  percent of transactions in 
a cluster. 

For the sample database listed in Example 2.1, if  �E � 50% , then  C, D, E, F  

are hot items, if �E � 60%, then E, F are not hot anymore while C, D are still  

hot items.  

The hot items of a cluster will be used as its cluster representative, also 

denoted as �NC . It can be easily seen that �NC  may or may not be a 

transaction in a cluster. The cluster features will be described by (�NC, |�|) 
with frequencies for each item in �NC attached. 
 �� � �	 � � and �� � �( � �  does not mean �	 � �( � � . For example, in 

Example 2.1, �	 � �( � �C, D� � � , �( � �) � �E, F� � �
 
but �	 � �) � �. 

Therefore the pure pairwise similarity approach is no longer suitable for 

transactional data (Wang et al., 1999). The choice of cluster representatives 

in this thesis overcomes the shortcomings of the pure pairwise similarity 
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approach to some extent. It ensures that if a transaction is assigned to a 

cluster, it will have some items in common with at least  �E < |��| transactions 
in that cluster. In other words, when �� � �	 � �  and �� � �( � �  hold, �	 � �( � � is very likely to hold. 
3.3.2 Induction Principle 

As given in (Liu, 1968), for a dataset with �  transactions, the number of 

distinct ways of partitioning � transactions into � non-empty clusters is given 

by 

                                      �(�, �) � 1�!£(!1)��� ¤�� ¥ ��                                              (3.4)�
�_+  

Therefore the total number of different ways to partition a dataset is: 

                                 � � £ 1�!£(!1)��� ¤�� ¥ ��                                                        (3.5)�
�_+

�
�_�  

The goal of clustering is to choose the best partitioning with respect to a 

given clustering criterion. Even with today’s computers, the complete 

enumeration of every possible partitioning is simply not possible for a large 

value of  �  (Liu, 1968). Consequently, optimization approaches are adopted 

for clustering analysis with induction principles applied to resolve 

optimization problems. For example, the induction principle of K-Means 

algorithm is to “pick the model (set of � representatives) that minimizes the 

total squared error” (Estivill-Castro, 2002). The mathematical formulation for 

this clustering criterion is 

              @���@�¦N P	(�) �  £§IAk�
	 (Xz¨̈ ©̈, �NC��
�_� Xz¨̈ ©̈, ��)                                         (3.6) 

where §IAk�
(X©, D©) � ∑ �|X� ! D�|�/	��/	��_�  is the Euclidean metric; � �
�A�¨̈ ©̈, A	¨̈ ©̈, … , A�¨̈ ©̈� is the set of � centres; and for � � 1,2, … , �, the point �NC�Xz¨̈ ©̈, �� is 
the closest point in � to Xz¨̈ ©̈. Equation (3.6) expresses the search for a set � of 
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� representatives, where the partition into clusters is defined by assigning 
each Xz¨̈ ©̈  to its representative �NC�Xz¨̈ ©̈, ��. 
In this thesis, the model (set of k representatives) that maximizes the total 

intra-cluster similarity and minimizes the inter-cluster similarity will be picked 

based on the similarity measure proposed in Definition 3.1. The 

mathematical formulation for this criterion is 

                   @iX�@�¦N -(L) � £ £-(���, �NC(��) )                                             (3.7)�ª

�_�
«

�_�  

where -(L) is the total similarity of a partitioning, k is the number of clusters 

in the transactional database, ��  is the number of transactions in cluster �� and ���  is the �-th transaction in �� . �NC(��)  is the representative of �� , 
i.e, the set of hot items in �� , it may or may not be a transaction in the 

transactional database. 

3.4 An Incremental Clustering Algorithm 

The incremental clustering approach is popular in dealing with very large 

datasets where the cost of multiple scans of a disk resident dataset is too 

expensive and the entire dataset cannot be stored in the main memory 

because of its size (Kantardzic, 2002). In this Section, an incremental 

clustering algorithm (INCLUS) is proposed for very large transactional 

database based on the new similarity measure and induction principle  

described in the previous sections. The sketch of the algorithm is given in 

Figure 3.1. 

The algorithm has two input parameters, �E and -E . �E controls how frequent 
an item should appear in a cluster to be the cluster representative while -E is 
the similarity threshold which controls closeness of transactions in a cluster. -E reflects the users’ expectations on how close the transactions in a cluster 
should be. For example, -E � 50%  indicates that at least 50% of items in two 

transactions should be the same to be considered as similar.  
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Figure 3.1 High Level Description of INCLUS 

 

The algorithm creates a cluster for the first transaction (step 1). For the 

remaining transactions (step 2), each transaction � will be compared with 

representatives of existing clusters and assigned to an existing or new 

cluster to maximize -(L) (step 4). If  -1�, �NC(�)2 " -E for all existing clusters, 
then a new cluster is created for � . If �  is the only cluster where  -1�, �NC(�)2 7 -E and is maximum, then �  will be assigned to cluster � ; 

otherwise � will be added to the one with the least number of transactions in 

order to balance the sizes of clusters. Once a transaction is assigned to a 

new cluster or an existing cluster, the representative of the cluster will be 

updated( step 5). 

A histogram is kept for each cluster in the main memory. When a new 

transaction is added or deleted, the histogram is updated. The hot items are 

those items in the histogram whose frequency is greater than or equal to      �E < |�| and can be easily computed from the histogram. 

Algorithm 3.1: INCLUS 

    Input: dataset ���, �E , -E  
    Ouput: cluster features of each cluster 

1. create a cluster with the first transaction 

2. while not end of the file do 

3.     read the next transaction � 

4.     allocate � to an existing cluster or a new cluster to maximize -(L) 
5.     update �NC for the most recently modified cluster     

6. endwhile                                           

6. output cluster features 
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3.5 Complexity of INCLUS 

As a histogram is kept for each cluster in the main memory, and so the 

space usage is n(� < 
) in the worst case, where � is the number of clusters 

and 
 is the dimension of a ���. The space requirement is very small since 

only the histogram is kept for a cluster. Since the algorithm is non-iterative, 

the processing time is n(�), where � is the total number of transactions in a ���. 
3.6 Evaluation of INCLUS 

In this section, the effectiveness of INCLUS is evaluated and compared with 

LargeItem (Wang et al., 1999) and CLOPE (Yang et al., 2002). CLOPE is 

provided by its authors and LargeItem is implemented by the author of this 

thesis based on the algorithm described in (Wang et al., 1999). LargeItem 

and CLOPE are chosen for comparison because both of them are designed 

for transactional databases and based on the same philosophy as INCLUS, 

i.e. to seek clusters according to the user’s expectation on the closeness of 

transactions in a cluster rather than to force the algorithm to find a certain 

number of clusters as for K-Means and its variants. 

The experiments are performed on the labeled congressional Vote and 

Mushroom datasets (Blake and Merz, 1998) to evaluate the effectiveness 

and order-dependence properties of the proposed algorithm. These labeled 

datasets are widely used in the literature, such as (Wang et al., 1999; Guha 

et al., 2000b; Yang et al., 2002; Wang and Karypis, 2004), for evaluation 

purposes.  

Vote dataset is the record of 1984 United States Congressional Votes. It has 

435 records, 168 for Republicans and 267 for Democrats. Each record 

contains the voter’s affiliation (Republican or Democrat) and the answers of 

‘y’(yes) or ‘n’(no) to 16 issues. In other words, Vote is a labeled categorical 

dataset with 16 categories and each category has two values ‘y’ or ‘n’. The 

249th record is deleted before clustering since all its values are missing. 
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Mushroom is a categorical dataset with 22 categories and 116 values in total. 

It contains 8,124 records with class label ‘e’ (for edible) or ‘p’( for poisonous) 

for each record. 4,208 edible mushrooms and 3,916 poisonous mushrooms 

are recorded in the dataset. 

Vote and Mushroom are converted to transactional datasets using the 

method mentioned in (Han and Kamber, 2000): treating each value of a 

category as an attribute of a transaction. Therefore, Vote is converted to a 

transactional dataset with 32 attributes while Mushroom is converted to a 

transactional dataset with 116 attributes. All the missing values are ignored. 

The class labels of these datasets are not used in clustering but used for 

evaluating the effectiveness of clustering algorithms. 

The real life unlabelled transactional dataset BMSPOS is used to test the 

scalability of the proposed algorithm. 

 Meanings of symbols used in the tables and figures in this section are: 

|C|min, |C|max - the cardinalities of the smallest and the biggest clusters, 

respectively. 

�E - support threshold, 
-E - similarity threshold, 

k - number of clusters. 

3.6.1 Effectiveness of INCLUS 

Effectiveness of the proposed algorithm is evaluated in terms of impurity 

(defined below). 

Transactions in each cluster may belong to different classes if the cluster is 

not pure. The dominant class of a cluster is the class of the majority 

transactions. For instance, if a cluster contains 100 types of mushrooms, 

where 95% of them are edible while the rest are poison ones, then “edible” is 

the dominant class of the cluster. The number of transactions of a dominant 
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class in cluster �� is denoted as ¬�. Purity is defined as ∑ ¬���_�   in (Yang et 

al., 2002) to evaluate the quality of clustering. In this thesis, impurity N is 
defined as follows to measure the quality of clustering: 

                                          N � 1 ! £ ¬��                                                                 (3.8)�
�_�  

where n is the total number of transactions in a dataset, � # � 7 2 and N \ �0, 1).  In the context of supervised classification, N is the proportion of 
transactions being misclassified. 

The impurity cannot be defined when � � 1  because when all the 

transactions are in the same cluster, it is impossible and inappropriate to 

determine if a given transaction is misclassified or not. In the best case, all 

the transactions in a cluster belong to the same class and N � 0.  
In this section, the effectiveness of INCLUS will be tested and compared with 

CLOPE and LargeItem.  

For a fair comparison, the same methodology is used as in (Yang et al., 

2002), i.e. different values for input parameters are tried for each algorithm 

so that the same or very similar number of clusters are obtained by all the 

algorithms. For the Vote dataset, when �E � 60% and  -E � 30% for INCLUS, �E � 60%  and m � 1  for LargeItem and � � 1.5 for CLOPE, all these 

algorithms obtain two big clusters which contain more than 99.8% of the total 

number of records. Table 3.1 illustrates the clustering results by these 

algorithms. The impurities are 12.9%, 20.3% and 16.8% for INCLUS, 

LargeItem and CLOPE, respectively. It shows that INCLUS produces better 

quality clusters for Vote than other algorithms. 

It is noticed that the 108th and the 184th voting records are very different from 

the others: they only vote one ‘y’ for all the 16 issues while about 90% of 

members vote ‘y’ for 6 to 10 issues. The two distinguished (abnormal) votes 

are picked up by INCLUS and are assigned to two separate singleton 

clusters. CLOPE and LargeItem did not pick them up (The singleton cluster 

produced by CLOPE consists the 341th record). 
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Table 3.1  Testing Results for Vote 

 Cluster ID Democrat Republican e(%) 

INCLUS 
 

1 
2 
3 
4 

49 
217 
0 
1 

159 
7 
1 
0 

12.9 

LargeItem 
 

1 
2 

87 
180 

166 
1 

20.3 

CLOPE 
 

1 
2 
3 

71 
195 
1 

165 
2 
0 

16.8 

 

The cluster features gives another view of the quality of clustering. Table 3.2 

illustrates the frequent items in two big clusters produced by INCLUS in 

Table 3.1. It shows the clustering qualities from another angle. The number 

following Y (or N) denotes the number of votes with ‘y’ (or ‘n’) for a particular 

issue. For example, the second line of the table tells that 216 out of 224 

members in cluster 1 vote ‘y’ to “aid-to-Nicaraguan-contras” while 172 out of 

208 members in cluster 2 vote ‘n’ for the issue. It can be seen that the 

majority of members in the two clusters have opposite points of view on 11 

issues, such as handicapped-infants, physician-fee-freeze, etc. Thus the two 

clusters are well separated. Frequent items in two big clusters obtained by 

CLOPE and LargeItem are the same as that by INCLUS, but the number of 

transactions in each cluster and the frequency of each item are different. 

As for Vote, different parameters were tried for the three algorithms to get as 

similar a number of clusters as possible for the Mushroom dataset for 

comparison purposes. Table 3.3 presents the results for a set of parameters 

using which a similar number of clusters are produced by the three 

algorithms. Table 3.4 is the results for another set of parameters. The 

number of clusters, the cardinality of the biggest and the smallest clusters, 

and the impurity using each of the three algorithms are shown in those 

tables. 
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It can be seen from the above results that INCLUS is effective in clustering 

transactional data though it takes only one pass over the dataset while 

CLOPE and LargeItem iteratively scan the dataset many times. 

Table 3.2 Cluster Features for Vote by INCLUS 

Cluster ID C1 C2 

Cardinality 224 208 

aid-to-nicaraguan-contras Y(216) N(172) 

physician-fee-freeze N(212) Y(169) 

adoption-of-the-budget-Resolution   Y(208) N(158) 

el-salvador-aid N(202) Y(197) 

anti-satellite-test-ban Y(200) N(163) 

education-spending N(190) Y(152) 

x-missile Y(184) N(181) 

superfund-right-to-sue N(177) Y(174) 

crime N(162) Y(194) 

export-administration-act-south-africa Y(157)  

duty-free-exports Y(154) N(176) 

handicapped-infants Y(143) N(161) 

religious-groups-in-schools N(139) Y(194) 

synfuels-corporation-cutback  N(156) 

 



43 

 

 

 

Table 3.3 Testing Results for Mushroom with One Set of Parameters 

Features INCLUS 

(�E � 60%, -E � 45%) 
LargeItem 

(�E � 60%,m � 4) 
CLOPE 

(� � 1.2) 
� 11 10 10 

|C|min 8 53 24 

|C|max 1828 3359 2563 

e(%) 4.0 12.2 9.0 

 

Table 3.4 Testing Results for Mushroom with other Set of Parameters 

Features INCLUS 

(�E � 60%, -E � 30%) 
LargeItem 

(�E � 60%,m � 1) 
CLOPE 

(� � 1.5) 
� 25 25 27 

|C|min 8 8 1 

|C|max 1558 1728 1726 

e(%) 0.7 4.8 0.4 

 

The test results listed in Tables 3.3 and 3.4 also show that INCLUS is 

structure seeking rather than structure imposing. It produces a certain 

number of clusters based on the users’ expectations of closeness of 

transactions in a cluster which is controlled by the corresponding input 

parameters. 
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3.6.2 Order-dependence Property of INCLUS 

Order-dependence is an important property of incremental clustering 

algorithms. An algorithm is order independent if it generates the same 

partitioning for any order of transactions in a dataset. Most of the incremental 

algorithms are order-dependent (Jain et al., 1999). Here, the order-

dependence property of INCLUS is to be tested and compared with that of 

LargeItem and CLOPE by rearranging the order of records in the tested 

datasets. Vote-Random is the data file obtained by randomly shuffling the 

records in Vote. Vote-Sorted is the sorted file using the Unix sort facility. In 

Vote-Sorted, the first 267 records are for Democrats while the rest are for 

Republicans. Vote_Sorted should be very powerful data order rearrangement 

for order-dependence testing. Tables 3.5 and 3.6 illustrate the test results on 

Vote_Random and Vote_Sorted, respectively. The input parameters for each 

algorithm are the same as those for Vote. By comparing Tables 3.1, 3.5 and 

3.6, it can be seen that INCLUS is not sensitive to the order of transactions. 

Tests on several other datasets obtained by shuffling Vote led to the same 

conclusions. 

Order-dependence test was also performed on the Mushroom dataset. The 

figures for the original Mushroom dataset are used as the base for 

comparison. Transactions in Mushroom are shuffled to get 4 datasets, 

named as Rd_1 to Rd_4. Another dataset Sorted is obtained using Unix sort 

facilities. Thus the first block of transactions in Sorted is for edible 

mushrooms while the rest is for poisonous ones. Using the same input 

parameters as that in Table 3.3, INCLUS got the results as shown in Figures 

3.2 and 3.3. 

While the order of transactions changes, the biggest changes of k for 

INCLUS, LargeItem and CLOPE, are 4, 10 and 40, respectively. Similarly, 

the biggest change in impurity is 4.48% for INCLUS while that for LargeItem 

and CLOPE are 15% and 33.6%, respectively. The biggest changes of |C|min 

are 41, 49 and 40 and the biggest changes of |C|max are 158, 2732 and 2256, 

respectively. 
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Table 3.5 Testing Results for Vote_Random 

 Cluster ID Democrat Republican e(%) 

INCLUS 

 

1 

2 

3 

4 

49 

217 

0 

1 

159 

7 

1 

0 

 

12.9 

 LargeItem 

 

1 

2 

60 

207 

157 

10 

16.1 

CLOPE 

 

1 

2 

3 

4 

264 

1 

1 

1 

167 

0 

0 

0 

 

38.5 

 

Table 3.6 Testing Results for Vote_Sorted 

 Cluster ID Democrat Republican e(%) 

INCLUS 

 

1 

2 

3 

4 

5 

206 

0 

60 

1 

0 

8 

150 

8 

0 

1 

 

 

3.7 

LargeItem 

 

1 

2 

57 

210 

160 

7 

14.8 

CLOPE 

 

1 

2 

3 

4 

5 

63 

48 

70 

85 

1 

77 

55 

1 

20 

10 

 

 

30.6 

 

To sum up, as the order of transactions are changed, the quality of clustering 

by INCLUS is better sustained than the other algorithms with respect to the 

number of clusters, the size of clusters and impurity.   
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Figure 3.2 Changes of Number of Clusters while the Order of   

Transactions Changes 

 

 

Figure 3.3 Changes of Errors while the Order of Transactions Changes 
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3.6.3 Scalability of INCLUS 

BMSPOS is a high dimensional sparse real life dataset. INCLUS obtained 

1906 clusters when �E � 30% and  -E � 20% . The biggest cluster has 2728 

transactions while the smallest one has only 1 transaction. Cluster features 

of the five largest clusters are shown in Table 3.7. It can be seen that 

common items are shared among clusters. It is consistent with the real life 

scenario: some items are very popular regardless of which group a customer 

belongs to. For example, in a grocery store, milk and bread are such items. 

The results also show that INCLUS can discover clusters with overlapping 

items.  

 

Table 3.7 Clustering Results for BMSPOS 

Cluster ID |Ci| Hot  items 

1 2728 2, 4 ,9, 10, 11, 24, 31, 34, 35, 36, 37, 38, 43, 54, 63, 

64, 66, 71, 82, 93 

2 2722 2, 4, 9, 10, 11, 31, 36, 37, 43, 54, 110,   128, 173, 174, 

230 

3 2378 2, 4, 9, 10, 11, 24, 31, 34, 35, 36, 37, 43, 54, 63, 64, 

66, 82, 93, 97, 99, 158 

4 2368 2, 4, 9, 10, 11, 12, 13, 24, 31, 34, 35, 36, 37, 43, 48, 

54, 62, 63, 64, 66, 82, 93, 97, 158 

5 2354 2, 4, 9, 10, 11, 12, 17, 24, 31, 34, 35, 37, 43, 62, 75, 82 

 

To test the scalability property of the proposed algorithm, 9 random samples 

of 10%, 20%, … 90% of transactions in the original BMSPOS dataset were 

used and the testing results are shown in Figure 3.4. It can be seen that the 

data processing time is linear to the size of the dataset as analyzed in 

Section 3.5, i.e. INCLUS is scalable. 
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Figure 3.4 Scalability Testing Result 

 

3.6.4 Advantage of Using the New similarity Measure 

Since the new similarity measure is designed particularly for high 

dimensional sparse transactional data, Mushroom is chosen as a test 

dataset because its dimensionality and sparsity are higher than Vote.  

The advantage of the newly defined similarity measure is tested on 

Mushroom using INCLUS equipped with different kinds of similarity 

measures. Testing results for �E � 60%  and -E � 45% are shown in Table 
3.8. It can be seen that all the transactions are assigned to a singleton 

cluster by using Rao’s Coefficient  -50 (i.e. all transactions are in the same 

cluster). On the other hand, each transaction is assigned to a different 

singleton cluster by using Simple Matching Coefficient SMC (i.e. every 

transaction is a cluster ). It confirms the previous analysis in Chapter 2. It 

produces 11 clusters with N � 4.0%  when - , the new defined similarity 

measure in this thesis, is applied. When Jacard Coefficient -�0  is used, it 
produces 16 clusters with N � 3.7%.  A good clustering should produce as 
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few clusters as possible and has as low an impurity as possible. Hence it can 

be concluded that - has superior discriminating power than -�0 . 
Table 3.8 Comparison of Similarity Measures 

 

Features - -�0 -50 -./0 
k 11 16 8124 1 

|C|max 1828 1729 1 8124 

e 4.0% 3.7% 0 not defined 

3.7 Summary 

In this chapter, a new similarity measure and a new notion of cluster 

representative were proposed for high dimensional sparse transactional 

datasets. An incremental algorithm was then presented based on these 

definitions for clustering very large transactional datasets. The algorithm is 

structure seeking rather than structure imposing. It produces a certain 

number of clusters based on the user’s expectations on the closeness of 

transactions in a cluster. To get good clustering results, the users do not 

need to know the structure of the data in terms of the number of clusters 

existing in the data. An intensive empirical study shows that the new 

algorithm INCLUS is not only effective, efficient and scalable, but also 

insensitive to the order of transactions, which is crucial for an incremental 

algorithm. Since it is a one-pass algorithm, it can be extended for clustering 

data streams.  
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Chapter 4  

Clustering Transactional Data 

Streams 

 

The challenge of designing algorithms for data stream mining is three fold: 

(1) the algorithm is subject to sequential one-pass constraint over the data; 

(2) it must work under limited resources with respect to the unlimited data 

stream; (3) it should be able to reveal changes in the data stream over time.  

For a finite statically stored dataset, the clustering problem is defined as 

follows: Given a set of data points, partition them into groups so that similar 

objects are in the same group according to a predefined similarity measure 

or objective function. In data stream settings, the set of data points to be 

studied is application dependent. It can be the whole data stream or a part of 

it depending on the purpose of clustering. As mentioned in Chapter 2, four 

prominent models have been proposed to filter the data points to be studied 

in data stream environments :  landmark model (Guha et al., 2003), sliding 

window model (O'Callaghan et al., 2002; Babcock et al., 2003) ; tilted time 

window model (Giannella et al., 2003) and pyramidal time window model 

(Aggarwal et al., 2003) .  

In this chapter, the problem of clustering evolving transactional data streams 

is studied. Firstly, an equal-width time window model is proposed where the 

width of the window is the minimum granularity of interest for a particular 

application. Clustering snapshots need to be stored only for the minimum 

granularity from which the clustering for coarser granularities can be 

computed. Clustering can be obtained for the same or a higher level and the 

changes in clustering at different granularities can be evaluated. Secondly, 



51 

 

an elastic window model is proposed where the size of windows is adaptively 

resized based on the changes in clustering. In doing so, large amount of 

computing resources (memory and disk space) is saved in most cases and 

yet sufficient summary information is maintained to answer time sensitive 

queries at different time granularities.  

Algorithms specific to transactional data stream clustering is designed. It 

incorporates INCLUS (Li and Gopalan, 2006a), an algorithm suitable for high 

dimensional sparse transactional data, into the equal-width time window 

model and elastic time window model so that changes over the data stream 

can be computed within the limited resources. The empirical results show 

that the algorithms are efficient and scalable.  

The rest of the chapter is organized as follows. The framework for clustering 

transactional data streams is described in Section 4.1 and the corresponding 

algorithms are presented in Section 4.2. Section 4.3 describes the 

experimental results and Section 4.4 provides a summary of the chapter. 

4.1 The Framework for Clustering 
Transactional Data Stream 

A transactional data stream � consists of transactions ��,  �	, �(,  …  over a 

set � of 
 distinct items (attributes) arriving at time K�,  K	, K(,  …. Clustering 

transactional data is to partition the transactions into groups so that similar 

transactions are in the same cluster and dissimilar transactions are in 

different clusters. 

In the data stream settings, people are more interested in the changes in the 

data stream. Mining changes in data streams is one of the core issues in 

data stream mining (Dong et al., 2003). Aggarwal et al. (Aggarwal et al., 

2003) propose a framework for clustering evolving data streams. It splits the 

clustering process into an online micro-clustering component which is subject 

to a one-pass constraint and an offline macro-clustering component which is 

not constrained. In this chapter, a clustering algorithm for transactional data 

streams is developed based on the same framework.  



52 

 

As pointed out in (Aggarwal et al., 2003), the separation of the clustering 

process into online and offline components raises the following questions: 

1. What kind of summary information is to be stored? 

2. When should the summary information be stored away on disk? 

3. How can the summary information be used to reveal the changes in 

the data stream? 

It is noted that the answer for the first question depends on the data and the 

induction principles for clustering. For example, CluStream which deals with 
-dimensional numeric data using K-Means, keeps the summary information 

as the sum of squared data values and sum of data values for each 

dimension, sum of squares of the time stamps and sum of time stamps for 

data points in the cluster, and the number of transactions in a cluster. The 

summary information kept by CluStream is the temporal extension of cluster 

feature vectors (Zhang et al., 1996) which is appropriate for numeric data 

streams. In this chapter, the summary information to be stored will be the 

temporal extension of cluster features defined in INCLUS (Li and Gopalan, 

2006a), where the cluster features are described by the histogram of the 

cluster, start and finish time at which the cluster is computed, and the  

number of transactions. Cluster representatives are implicitly recorded in the 

histogram. The temporal extension of cluster features is called cluster 

snapshot which is defined below. 

Definition 4.1. (Cluster snapshot). A cluster snapshot for a set of 

transactional data points in a time window m is �1s, K., K­ , �2, where s is 

the histogram of the cluster �, K. and K­ are the start and finish times of the 

window, and � is the total number of transactions in the cluster. 

The cluster representative (i.e. hot items) is implicitly recorded in the 

histogram of a cluster. In the histogram, items with M�Nhuency # �E < |�|  
make up the cluster representative. 
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Definition 4.2. (Clustering snapshot). The clustering snapshot is the set of 

cluster snapshots for a time window.  

Based on these two definitions, it can be easily seen that the clustering 

snapshot has following properties. 

Additive property 4.1. Let ��1s�,  K.�, K­�,  �� 2 and �	(s	, K.	,  K­	,  �	)  be 
two clusters in different clustering snapshots. If K­� � K.	 , then the cluster 
features of � � �� � �	  is �1s� , s	, K.�,  K­	,  �� , �	2. 
 

Additive property 4.2. Let ��1s�,  K.�, K­�,  �� 2 and �	(s	, K.	,  K­	,  �	) be two 
clusters in the same clustering snapshot, i.e. K.� � K.	 � K. and K­� � K­	 � K­ ,   
then the cluster features of � � �� � �	  is �1s� , s	, K.,  K­ ,  �� , �	2. 
Property 4.1 can be applied when merging clusters in two consecutive time 

windows while property 4.2 can be used to merge two similar clusters in the 

same time window. 

The time interval at which summary information is to be stored onto the disk 

is also application dependent. For the supermarket basket data, keeping 

clustering snapshot at week level might be enough as promotions are often 

run on a weekly bases.  For air traffic control, finding cluster changes in the 

air probably need to be based on seconds.  

 

Definition 4.3. (Clustering granularity). Clustering granularity is the time 

period upon which clustering is performed. 

For example, if clustering is performed every hour on the data points that 

arrived within the hour, the clustering granularity is an hour.  

 

Definition 4.4. (Minimum clustering granularity). For a given application, 

the minimum granularity is the time period upon which the summary 

information is to be maintained to enable the time sensitive queries at the 

same or coarser granularities.  
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The minimum clustering granularity should be determined based on the 

nature of an application. For example, in order to analyze stock price 

changes within a week, a month or a year, daily price should be recorded, 

i.e. the minimum granularity should be a day. 

To answer the second question, CluStream stores clustering snapshots 

based on the pyramidal time frame (Aggarwal et al., 2003). In doing so, the 

disk space requirement is reduced by trading off accuracy.  Snapshots are 

classified into different orders from 1 to PJj(�), where � is the time elapsed 

since the beginning of the stream. Each snapshot of the i-th order is taken at 

a moment in time when the time elapsed is i� and only the last i , 1 
snapshots are stored for each order. 

An equal-width time window model (Figure 4.1a) is proposed in this thesis 

where the width of each window is equal to the minimum clustering 

granularity. The additive properties of cluster snapshots ensure that 

clustering for coarser time granularity can be obtained from the results of the 

minimum granularity.  

The additive properties of cluster snapshots also indicate that it is not 

necessary to store snapshots for every window of the finest granularity; 

consecutive windows with same clustering features can be merged to save 

disk space, thus making the window size stretchable. So it is called the 

elastic window model (Figure 4.1b). In the worst case, the elastic window 

model will have the same number of clustering snapshots as for the equal-

widrh window model when clustering features for any pair of consecutive 

windows are different. In the best case, only one clustering snapshot is 

stored when clustering features do not change over time. 

Since the clustering snapshots are recorded on disk, it is possible to analyze 

the changes of clusters during the course of the data stream. For example,   

two clustering snapshots can be compared to evaluate changes in the 

number of clusters, the relative size of clusters and the cluster 

representatives.  
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4.2 Algorithms for Clustering Transactional 
Data Stream 

In this section, algorithms for mining transactional data streams will be 

presented. Each algorithm consists of an online micro-clustering module and 

an offline macro-clustering module. The online micro-clustering module gets 

clusters for each window and store them on the disk, the offline component 

discover changes over the data stream based on the results of online 

module. Two versions of the online clustering module are proposed by 

incorporating INCLUS with the equal-width window model and the elastic 

window model, respectively. The latter uses less memory and saves a lot of 

disk space, and yet provides good approximations. 

Algorithm CluTranStream_EQ is based on the equal-width window model. 

Clustering snapshots will be written to disk at the end of each window. 

Algorithm CluTranStream_EL is based on the elastic window model. Except 

for the first window, the clustering snapshot will be stored to disk when 

changes occur.  The online components of these algorithms are shown in 

Figure 4.2 and 4.3 respectively while the common offline component for both 

algorithms is shown in Figure 4.4. 

 

 

 

 

   0                         t            0                      t 

(a) equal-width window model    (b) elastic window model 
 

Figure 4.1 New Models for Data Stream Processing 
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Figure 4.3 Online Component for CluTranStream_EL  

Algorithm 2: Online Component of CluTranStream_EL  

Input: minimum support, minimum similarity, width of window  

Output: clustering snapshots 

1. create a cluster with the first transaction; 

2. while not the end of the first window do 

3. read the next transaction T; 

 4.  allocate T to an existing cluster or a new cluster to maximize S(P); 

 5.  update the cluster representatives of the modified cluster; 

 6. endwhile 

7.  write clustering snapshots to disk; 

/* for the rest of the data stream */ 

8. read next transaction T; 

9. if  T cannot be assigned to an existing cluster then   

10.   write clustering snapshots to disk; 

   create a new cluster for T; 

11. else 

   allocate T to an existing cluster; 

12. repeat 8-12; 

Algorithm 1: CluTranStream_EQ Online Component  

Input: minimum support, minimum similarity, width of window 

Output: clustering snapshots 

1. create a cluster with the first transaction 

2. while not the end of the first window do 

3. read the next transaction T; 

 4.  allocate T to an existing cluster or a new cluster to maximize S(P); 

 5.  update the cluster representatives of the modified cluster; 

 6. endwhile 

7.  write clustering snapshots to disk; 

Figure 4.2 Online Component for CluTranStream_EQ  
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4.3 Evaluation of the Algorithms 

In this section, the proposed algorithms are evaluated in terms of accuracy, 

performance and scalability. The tests were performed on the online 

component only. 

4.3.1  Test Datasets 

Mushroom (Blake and Merz, 1998) is a categorical dataset with 22 

categories and 116 values in total. It contains 8,124 records with class label 

‘e’ (for edible) or ‘p’( for poisonous) for each record. 4,208 edible mushrooms 

and 3,916 poisonous mushrooms are recorded in the dataset. Mushroom is 

converted to transactional data using the method mentioned in (Han and 

Kamber, 2000). All the missing values were ignored. The class labels of 

these datasets were not used in clustering but were used for evaluating the 

effectiveness of the clustering algorithms. 

BMSPOS (Zheng et al., 2001) is a real life high dimensional sparse 

transactional dataset which contains point-of-sale data from an electronics 

retailer. It has 515596 transactions, 1657 distinct items with an average 7.5 

Algorithm 3: Offline Macro-Clustering Component  

Input:    micro-clusters, period1, period2.  

Ouput:   clustering features for period1 and period2.  

1. for each query period i 

2.    get all the clustering snapshots for the period; 

3.     compute clustering for period i according to property 1 and user input     

support and similarity thresholds; 

4.  endfor 

Figure 4.4 Offline Macro-Clustering Component  
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items per transaction. This dataset is used to test the scalability of the 

algorithms. 

To test the scalability of the algorithm, some synthetic datasets are 

generated using the IBM synthetic data generator. Some datasets have the 

same number of transactions (10,000) but different number of attributes 

ranging from 500 to 4000, and some datasets with same number of attributes 

(1000) but different number of transactions in the range of 100K to 500K.   

4.3.2 Testing Results 

First the accuracy and performance of CluTranStream_EQ are tested using 

the Mushroom dataset by treating it as a data stream, i.e. each record in the 

dataset is read in the sequence as it appears and read only once. Assume K is the total time it takes for the 8120 records past the reader at a constant 

rate and the minimum granularity is K/10,  then the whole stream(8120 

records) can be divided into 10 windows, each having 812 transactions. The 

input parameters for INCLUS are (�E � 100% , -E � 60%  ), where �E and -E are support and similarity threshold, respectively. �E � 100% will ensure 

that some items are shared by all the transactions in the cluster. Impurity (Li 

and Gopalan, 2006a) is used as the measure of accuracy. The result is 

shown in Table 4.1. It can be seen that the clustering features are changing 

over time. In the first window, there are 22 clusters while in the fourth window 

there are only 6 clusters. The speed of processing the dataset is about 2000 

records per second. 

Table 4.1 Testing Results for Mushroom 

 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 � 22 20 16 6 7 14 15 19 11 15 

e(%) 7.9 0.7 0.7 0 0.1 0.9 2.6 0.7 0 0 

t(s) 0.58 0.59 0.44 0 0.13 0.41 0.41 0.48 0.29 0.6 

 Note: Wi - ith window , k-number of clusters, e-impurity, t-runtime 
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It can be seen from Table 4.1 that the average error is 1.36%, lower than that 

for any combination of micro-clusters and window sizes reported for 

SCLOPE(Ong et al., 2004). 

In order to compare the disk space usage by equal-width window model and 

elastic window model, a new database was obtained by appending 

Mushroom dataset to itself 7 times to model a data stream where underlying 

data generation mechanism does not change. The input parameters were �E � 60% , -E � 45% , and window size is 8124, the size of Mushroom 

dataset. As expected, only two clustering snapshots were stored to disk for 

the elastic window model. The disk space was largely reduced by using the 

elastic window model. 

To do the scalability test, the whole dataset was treated as the content of 

one window. Figure 4.5 illustrates the scalability test with respect to the 

number of transactions and the number of attributes using synthetic data. 

Figure. 4.5a shows results of scalability testing with respect to the number of 

transactions. Five synthetic datasets are used for the test. All the datasets 

have 1000 attributes, but with 100K, 200K, 300K, 400K and 500K 

transactions, respectively. It can be seen that the algorithm scales up as the 

number of transactions increase. Figure 4.5b shows results of scalability 

testing with respect to the number of attributes in the dataset. Eight datasets 

with 10K transactions are used for the test. The number of attributes in those 

datasets is 500, 1000, 1500, 2000, 2500, 3000, 3500 and 4000. It can be 

seen that the algorithm scales up as the number of attributes increases. 

Figure 4.6 shows the scalability test on the real dataset BMSPOS given (�E � 10%, -E � 10%) . Processing speed for this dataset is more than 1000 

records per second. It shows again that the algorithm is scalable with respect 

to the number of transactions in datasets. 
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     Figure 4.5 Scalability Test Using Synthetic Datasets 

 

 

Figure 4.6 Scalability Test on BMSPOS 
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4.4 Summary 

In this chapter, an equal-width time window model and an elastic time 

window model are proposed for the cluster analysis of data streams. The 

incremental transactional data clustering algorithm INCLUS are incorporated 

into these models in order to detect clustering changes at different 

granularities.  

The width of a window in the equal-width time window model is set to the 

minimum granularity of interest for a particular application. In doing so, 

clustering can be obtained for the same or a coarser granularity, and hence 

the changes in clustering at different granularities can be evaluated. The 

original size of an elastic window is set to the minimum granularity, and then 

resized, if applicable, based on the changes in clustering.  A large amount of 

computing resources (memory and disk space) is saved in most cases and 

yet sufficient summary information is maintained to answer time sensitive 

queries at different time granularities. The empirical results show that the 

algorithms are efficient and scalable. 
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Chapter 5  

Sampling Large Databases for 

Association Rules 

Although the main purpose of sampling a static large disk resident database 

is to reduce the amount of data to be mined, sampling seems to be the only 

choice for processing a data stream where data flows at a rate faster than it 

can be processed (Babcock et al., 2002). Motivated by sampling data 

streams for mining association rules, this thesis investigates effective 

sampling methods that not only require small sample sizes but also provide 

approximation guarantees.  

In this thesis, the datasets are randomly sampled by replacement and the 

sufficient sample size is derived using binomial distribution and the central 

limit theorem (CLT). The accuracy of the new sampling approach is 

theoretically analyzed and its effectiveness is evaluated on both dense and 

sparse datasets. Methods for reducing false positives and false negatives of 

frequent itemsets are also discussed.  

The rest of this chapter is organized as follows: A theoretical analysis of 

random sampling for association rules is presented in Section 5.1 and the 

experimental evaluation shown in Section 5.2. Section 5.3 discusses the 

methods for reducing errors and Section 5.4 provides a summary of this 

chapter.  

5.1 Sampling Techniques for Association 
Rules Mining 

In the context of sampling large databases for association rules, a 

transaction database ��� of size � is the population to be studied, and a 



63 

 

sample is a subset of ��� that consists of � transactions selected from the 

population of size �. A sampling method is proposed for mining association 

rules in this section, along with the derivation of the sufficient sample size 

using binomial distribution and central limit theorem. An analysis of the 

accuracy of itemset supports computed from a random sample is also given.  

5.1.1 Random Sampling of a Database with 
Replacement  

There are two kinds of random sampling methods, random sampling with 

replacement and random sampling without replacement (Thomson, 1992). 

Random sampling without replacement obtains a sample of size �  by 

selecting �  units from the population and at each step every unit in the 

population not already selected has an equal chance of being selected. 

Sampling with replacement obtains � units independently and at each step 
every unit in the population has an equal chance of inclusion in the sample.  

A process is called a Bernoulli process if it meets the following criteria 

(Walpole et al., 1998): 

The experiment consists of � repeated trials; 
Each trial results in an outcome that may be classified as a success or a 

failure; 

The probability of success, denoted by C , remains constant from trial to trial; 

The repeated trials are independent. 

In this thesis, a transactional database is sampled by sampling with 

replacement so that the process of selecting �  transactions out of � 

transactions has all the properties of a Bernoulli process: 

There are � trials; 
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There are only two complementary outcomes for each trial: an itemset 

appears or does not appear in a trial. The probability C of an itemset 

appearing remains the same from trial to trial; 

Let h  denote the probability that an itemset does not appear in a trial, 

then h � 1 ! C ; 
Each trial is independent. The probability of a transaction being 

selected in a trial is independent of which transactions have been 

selected in the previous trials. 

The number of times * that an itemset appears in � Bernoulli trials (i.e. the 
number of times * an itemset appears in a sample), is a binomial random 

variable and the probability distribution of this discrete random variable 

follows the binomial distribution (Mendenhall and Sincich, 1992). 

If we denote outcomes of the �th trial as *�(� � 1, 2, … , �) where *� � 1  if an 
itemset appears, and *� � 0   if an itemset does not appear, then the number 

of appearances of an itemset in the sample is  

                                                      * � £*�                                                                       (5.1)�
�_�  

Therefore L. � */�, the support of an itemset in the sample, is the sample 

mean. L. is an unbiased estimator of C (Mendenhall and Sincich, 1992). 

5.1.2 Determining the Sufficient Sample Size  

According to the central limit theorem (CLT), when the sample size is large, L.  is approximately normally distributed with mean Y � C and variance ²	 � Ch/�  (Mendenhall and Sincich, 1992). The normal distribution of L. can 
be transformed to standard normal distribution of a standard random variable 

                                               ³ � L. ! Y² � L. ! C´Ch/�                                                         (5.2) 
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Therefore we can assert that the probability that ³  lies in  �!³�/	,  ³�/	� is 1 ! �: 
                                 Pr1!³�/	 " ³ " ³�/	2 �  1 ! �                                                   (5.3)                                           
where ³�/	 is the  ³ value above which the area under the standard normal 

curve is �/2 . 1 ! �  is called confidence coefficient in (Mendenhall and 

Sincich, 1992) and we call it “confidence level”  since it represents the 

degree of confidence that ³ lies in �!³�/	,  ³�/	� . We can derive the following 

equation from Equations (5.2) and (5.3): 

                              Pr1L. ! ³�/	´Ch/� " C " L. , ³�/	´Ch/�2 � 1 ! �             (5.4)              
Because the normal curve is symmetric, Eq.(5.4) can be decomposed into   

                                    Pr1C # L. , ³�/	´Ch/�2 � �/2                                               (5.5)                       
and 

                                     Pr1C " L. ! ³�/	´Ch/�2 � �/2                                              (5.6)                                        
Let’s denote the differences between the estimated support of an itemset in a 

sample Q�  and its support in the original database ���  as ∆C � |L. ! C| , 
then Eq. (5.4) can be rewritten as 

                                    Pr1∆C " ³�/	´Ch/�2 � 1 ! �                                                  (5.7)                                            
Given an error bound N and the confidence level 1 ! �  , we must choose 

sample size � such that   
                                                  ∆C " ³�/	´Ch/� � N                                                     (5.8)                                     
Thus we have  

                                                    � 7 ³�/		 ChN	                                                                      (5.9) 
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For an itemset with support C, Eq. (5.9) will give the sufficient sample size 

that can estimate C  with 1 ! �  confidence that an error will not exceed N. 
Since Ch has the maximum value of 1/4 when C �  h �  1/2, if we choose 
                                                      � 7 ³�/		

N	     ,                                                                (5.10) 
then we will be at least 1 ! � confident that ∆C will not exceed N. 
For a given error bound and confidence level, the sample size calculated 

using Eq. (5.10) which is based on central limit theorem(CLT), is much 

smaller than that based on Chernoff Bounds (Mannila et al., 1994; Toivonen, 

1996). Table 5.1 provides some comparisons.  

Table 5.1 Sufficient Sample Size 

e α  Chernoff Bounds CLT 

0.01 0.01 26492 16513 

0.005 0.01 105966 66049 

0.01 0.05 18445 9604 

0.005 0.05 73778 38416 

 

5.1.3 Accuracy of Sampling 

Theorem 5.1. Given an itemset *  whose support is C  in database  � , a 

confidence level 1 ! �, and a random sample RD of size   
                                                           � 7 ³�/		

4N	   ,                                                                   
the probability that the difference in support ∆C between the sample and the 

database exceeds N is at most �. 
Proof.  
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Pr(∆C # N) � Pr1∆C # ³�/	´1/4�2 
      � Pr1∆C # ³�/	´Ch/�2 
     � 1 ! Pr1∆C " ³�/	´Ch/�2 
     � �   (apply Eq. (5.7) )       
5.2 Effectiveness of Sampling  

The effectiveness of the proposed sampling method is experimentally 

studied on both dense and sparse datasets. The datasets used in the 

experiments, the measurement of errors, and the experimental results are 

described below.  

5.2.1 Datasets Studied  

The experiments are performed on both dense and sparse datasets. The 

datasets used include: (1) a synthetic sparse dataset, T10I4D100K , 

generated by the synthetic data generator provided by the QUEST 

project(Agrawal and Srikant, 1994) to simulate market basket data; (2) a 

sparse real dataset BMSPOS; (3) a dense dataset Connect-4 which is 

gathered from connect-4 game state information and are available from the 

UCI Machine Learning Repository (Blake and Merz, 1998). These datasets 

are benchmarked at FIMI (Frequent Itemsets Mining Implementations 

Repository). Table 5.2 summarizes their characteristics, where �  is the 

number of transactions in the dataset, � is the average transaction length 
and |Q| is the number of distinct items in the dataset.  

Table 5.2 Database Summaries 

Dataset Name N |R| T 

T10I4D100K 100000 870 10 

BMSPOS 515597 1657 7.5 

Connect-4 67557 129 43 
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5.2.2 Measurement of Errors 

Errors in the estimation of itemset support and the errors in the estimation of 

the complete frequent itemsets (CFI) will be checked in this section. 

The errors in itemset support estimation are evaluated as follows.  ? samples 

of size � are taken from database ���, and for each item in the  ���, the 
number of times X  that ∆C #  N  in ?  samples are counted, and the 

experimental probability of M that ∆C #  N   is calculated as M �  X/?. 
The CFI in the original database and the sample are denoted as |�¼ and |�., 
respectively.  If an itemset exists in |�¼  but not in |�., then this itemset is 

called a false negative. If an itemset exists in |�.  but not |�¼ ,  then the 
itemset is called a false positive. The collection of all the false positives is 

denoted by |} and the collection of all the false negatives is denoted by |�. 
The errors are measured by 

                                                             M} � 4|}4||�.|                                                         (5.11) 
which represents the proportion of the false frequent itemsets in a sample, 

and 

                                                           M� � ||�|||�.|                                                          (5.12) 
which represents the proportion of the frequent itemsets that are missing in a 

sample. 

A set of frequent itemsets |� can be partitioned into @k subsets according to 
the size of each itemset. 

                                                |� � ½|��                                                                     (5.13)/�
�_�  

where |��   is a set of itemsets with size of k and @k is the size of the longest 
itemset. The errors in CFI estimation and the errors in each partition of CFI  as well will be checked in the next section.  
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5.2.3 Experimental Results 

Given a transactional database ��� with � transactions, random sampling 

with replacement for association rules proceeds as follows: 

1. Calculate the sample size n for a given error bound and confidence 

level using  Eq. (5.10). 

2. Generate a set of n random integers Qi�
 where  
Qi�
 � ¾��, �	, … , �� , … ��¿,  and �� \ �1, 2, … , �). Duplicates are allowed 
in order to simulate random sampling with replacement. 

3. For each �� in Qi�
, retrieve ��th transaction in the  ��� and add it 
to the sample. 

4. Apply any standard association rules mining algorithm to the 

sample.  

According to Theorem 5.1, for a given confidence level  1 ! � � 0.95 and a 
random sample Q� of size 9604, the probability that ∆C exceed N �  1%  is 

at most 5%. Tests were performed on the datasets listed in Table 5.2 to 

check if the claim holds for the proposed sampling approach. 

100 samples of size 9604 from each database were obtained through 

random sampling with replacement. The support of each item in each sample 

was computed and compared with the support of the item in the original 

database. For each item, the number of times(samples) X that ∆C # 1% is 
counted in the 100 samples. The probability of M for ∆C # 1% obtained from 

the test is M � X/100. Table 5.3 lists the experimental probability of M that 
∆C # 1% for items in each database.  For T10I4D100K, none of the items in 

the dataset has  ∆C # 1% in any of the 100 samples. In other words, the 

probability for ∆C # 1%  for each item is 0.  

For BMSPOS, 1654 items in each sample has ∆C " 1% while 2 items have  

∆C # 1% in one sample and 1 item has ∆C # 1% in 2 samples. In other 
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words, the probability that ∆C #  N(1%) for an item in this database is no 

more than 2%. 

There is only one item in Connect-4 with 7% probability that ∆C # 1% while 

all other items have at most 5% . The results confirm the theorem and 

empirically prove that the proposed sampling approach can provide the 

expected approximation guarantees.  

 

Table 5.3 Frequency Distribution of f  in Each Dataset 

No of times ∆C # 1%   0 1 2 3 4 5 6 7 M(%) 0 1 2 3 4 5 6 7 

 

No of items 

Connect-4( 129 items) 106 8 9 1 0 4 0 1 

BMSPOS(1657 items) 1654 2 1      

T10I4D100K(870 items) 870        

 

Next, the errors in frequent itemsets estimation were checked. Since different 

samples may result in different error rates, the average outcomes of 50 

samples are taken to evaluate the errors. Error bound N �  0.01  and 

confidence level 1 ! � � 0.99 are chosen in the experiments to evaluate the 

effectiveness of the proposed sampling approach. The sufficient sample size 

is 16513 for N �  0.01 and 1 ! � � 0.99. The experiments for error bound N �  0.01 and confidence level 1 ! � � 0.95, which result in a sample size of 

9604 are also performed for comparison. Support thresholds were chosen in 

such a manner that at least frequent itemsets of size 4 can be produced. The 

following analyses of the experimental results were performed on the 

samples of size 16513 if the sample size is not explicitly stated. 

Figure 5.1 shows the errors (M} and M� )  for different support thresholds in 
each dataset. In the figure, the number following M}  or M�  is the sample size. 

It can be seen that the errors fluctuate as the support threshold changes. For 

Connect-4, the errors increase as the support threshold increases while for 

the other datasets the errors decrease as the support threshold increases. 

The errors for dense datasets are small for every support threshold 
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computed and the changes in the error are relatively small compared with 

the changes in support threshold. For example, for Connect-4, M}  and M�  are 
2.6% and 3.4%, respectively when support threshold is 80%; and they 

change to 4.6% and 4.7%, respectively when the support threshold 

increases to 95%. For the sparse datasets, the errors are relatively large and 

so are the changes in errors compared with the changes in support 

threshold. For instance, in BMSPOS, when the support threshold increases 

from 0.5% to 1%, the M}  value decreases from 9.3% to 5.4% and 

M� decreases from 8.4% to 6.5%. For all the datasets and all the computed 

support thresholds, at least 85% of  |�¼   is discovered by sampling. It 

confirms that the proposed sampling approach is effective. 

Let’s take a closer look at errors in |�. by inspecting each partition |�� (k = 1, 
2, …, @k ) and the results are shown in Figure. 5.2. The errors for frequent 1-
itemsets are always small for both dense and sparse datasets. It also reveals 

that within the overall errors in  |�., the errors for each partition may vary 

dramatically and are not predictable.  

The causes of errors M}   and M�  in frequent itemsets estimation not only 

depend on the errors in support estimations of itemsets, but also on two 

other factors given below.  

(1) The propagation error.  

If an itemset is missed in the sample, then its super sets will be missed; if an 

itemset is mistaken as a frequent itemset, then its super sets may be 

mistaken as frequent as well. This is because the association rules mining 

algorithms apply the apriori principle: if an itemset is frequent, then all its 

subsets must be frequent. For example, for a sample of Connect-4, when CE � 95%, itemset {109,121} is missed in the sample, and its super sets 

{109, 121, 124}, {109, 121, 127} and {109, 121, 124, 127} are consequently 

missed, too; Itemset {19 72, 88, 124} is mistaken as frequent itemset, its 

super sets {19 72, 75, 88, 124} and {19 72, 75, 88, 124, 127} are mistaken as 

frequent itemsets as well. 
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Figure 5.1 Errors for Different Support Thresholds 
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Figure 5.2 Errors in Each Partition of FIs 
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(2) The proportion of frequent itemsets whose support is close to CE .  
The larger the proportion of the itemsets whose support is close to the 

specified support threshold CE , the more likely bigger errors will occur. 

According to the previous analysis, those itemsets with support CE ! N " C "CE , N are likely to be missed or mistaken as frequent itemsets. In Connect-4, 

among those items with support greater than 89%, 13% of them have 

supports within (89%, 91%); and among those items with supports greater 

than 84% , only 4%  of them have supports within ( 84%, 86%) .   

Consequently, when N �  1%, 2.27% percentage of the frequent 1-itemsets 

in the sample are false positives for CE � 90% , while there are no false 

positives presented for
 
CE � 85%. In both cases, none of the frequent 1-

itemsets is missed.  

The experimental results also show that both M} and M�  for the samples of 

size 9604 are bigger than that for the samples of size 16513. This is a 

tradeoff between sample size (hence efficiency) and the confidence level.  

5.3 Reducing Errors 

In this section, the possibility of reducing errors in frequent itemset 

estimations is explored. 

Theorem 5.2. Given a frequent itemset * in a ��� with C # CE , a random 

sample Q�, and a confidence level 1 ! � , the probability that * is a false 
negative in Q� is at most �/2 when the support threshold is lowered to 
                                               CE� � CE ! ³�	� 14�                                                        (5.14) 
Proof.   When the support threshold is lowered to CE�,  the probability that an 
itemset * is a false negative in Q� equals the probability that the estimated 

support L. of * is smaller than CE�.  
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Pr(L. " CE�) � Pr1L. " CE ! ³�/	´1/(4�)2 
                       � Pr (L. " CE ! ³�/	´Ch/�) 

                   � α/2  (apply Eq. (5.5)) 
For C # CE 7 50%, CEhE 7 Ch  , lowering the support threshold to  
                                            CE� � CE ! ³�/	ÃCEhE4�                                                        (5.15) 
will give the same confidence level but smaller amount by which the 

threshold is to be lowered. As a result, less false positives maybe present in 

the frequent itemsets. 

Theorem 5.3. Given an itemset * with C # CE in a  ���, a random sample Q�, and a confidence level 1 ! �, the probability that * is a false positive in Q� is at most �/2 when the support threshold is increased to 
                                                CEÄ � CE , ³�	� 14�                                                      (5.16) 
Proof. When the support threshold is increased to CEÄ, the probability that an 
itemset * in Q� is a false positive equals the probability that the estimated 

support L.  of * is bigger than CEÄ.  

Pr(L. # CEÄ) � PrÅL. # CE , ³�	� 14�Æ 

                       � Pr ÇL. # CE , ³�	ÃCh� È 
                   � α/2  (apply Eq. ( 5.6)) 
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For  C " CE � 50%,  CEhE 7 Ch, increasing the support threshold to  
                                               CEÄ � CE , ³�/	ÃCEhE4�                                                      (5.17) 
will give the same confidence level but a smaller amount of increase in 

threshold. In doing so, less frequent itemsets can be missed as the threshold 

increases. 

If we do not want to miss frequent itemsets present in the original database, 

then we can lower the support threshold according to equations (5.14) or 

(5.15). On the contrary, if we do not want false frequent itemsets to appear in 

the mined frequent itemsets, we can increase the threshold according to 

equations (5.16) or (5.17). For instance, given � � 16513, 1 ! � � 0.99 and
 CE � 2% , CE� and CEÄ will be 1.72% and 2.28%, respectively, according to 

equation (5.14) and (5.16). Experimented on a sample of BMSPOS for CE � 2% has confirmed this. When the support threshold is lowered to 1.72%, 

there were no missed itemsets; when it was increased to 2.28%, only 0.42% 

were false frequent itemsets. 

5.4 Summary  

In this chapter, sampling with replacement method is proposed for the 

association rules mining of very large datasets. The sufficient sample size is 

derived based on binomial distribution and the central limit theorem. For a 

given confidence level and error bound, the proposed sampling approach 

requires smaller sample size than that based on the Chernoff Bounds but still 

provides the desired approximation guarantees for supports of itemsets. For 

applications where the false positives may be very costly, the support 

threshold can be increased based on Theorem 5.2 to reduce false positives. 

On the other hand, if all the frequent itemsets are to be fully discovered, the 

support threshold can be lowered according to Theorem 5.3 to reduce the 

number of false negatives.   
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Chapter 6  

Stratified Sampling for Association 
Rules Mining 
 
 
If a dataset can be partitioned into groups with distinct features for a 

particular data mining task, then proportionally sampling each group will give 

the exact result as with the whole dataset. In this chapter, the feasibility of 

using stratified random sampling for association rules mining is studied. A 

dataset is first partitioned into strata according to the size of each 

transaction, and then simple random sampling is applied to each stratum. 

The accuracy of the proposed stratified sampling method is compared with 

that using the simple random sampling method.  

 

The rest of this chapter is organized as follows. Section 6.1 proposes a 

stratified random sampling method for association rules, and the 

effectiveness of the proposed stratified sampling method is experimentally 

studied in Section 6.2.  Section 6.3 presents the conclusions and some 

discussions.  

6.1 Transaction Size Based Stratified Random 
Sampling 

In stratified random sampling, the population of size � is partitioned into � 
strata and a sample is selected by simple random sampling within each 

stratum (Thomson, 1992). Given a total sample size �, if the strata differ in 
size, proportional allocation can be used to maintain a steady sampling 

fraction throughout the population (Thomson, 1992). If stratum �  has �� 
units, the sample size allocated to it will be 
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                                                  �� � �� ��                                                                         (6.1) 
The principle of stratification is to partition the population in such a way that 

the units within a stratum are as similar as possible. For example, in the 

survey of a human population, stratification may be based on the geographic 

region, sex or socio-economic factors.  

 

To the best of our knowledge, stratified sampling has not been applied in 

association rules mining. In this thesis, the feasibility of stratified sampling for 

association rules mining is explored. A dataset is partitioned according to 

transaction sizes.  It is based on the fact that two identical transactions must 

have the same transaction size.   

 

The minimum sample size � is determined using a formula given in Chapter 

5 (Li and Gopalan, 2004) for a given error bound N, and a confidence level 1 ! � 
                                                      � � ³�/		

4N	                                                                          (6.2) 
where ³�/	 is the  ³ value above which the area under the standard normal 

curve is �/2. 
According to Equations (6.1) and (6.2), the sample size for the k-th stratum 

will be  

                                                   �� � ³�/		
4N	    ���                                                                 (6.3) 

Definition 6.1 (Width of stratum). The difference between the size of the 

longest transaction and the shortest transaction in a stratum is called the 

width of the stratum, which is denoted as m. 

Definition 6.2 (Equal width partition). The data is partitioned in such a way 

that each stratum has the same width. 
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In an equal-width partition, there will be P/�Z/m strata for a dataset whose 
longest transaction size is P/�Z. Transactions with size ? will be partitioned to �-th stratum, where � �  ?/m . For example, when m �  2, transactions 
with size ? �  1 and ? �  2 will go to 1st stratum, transactions with size ? �  3 
and ? �  4 will go to 2nd stratum, and so on.  

Given a minimum support, an error bound N, a confidence level 1 ! �, and 
the desired width of a stratum m, a transaction size based stratified sampling 

algorithm is proposed as described in Figure 6.1. 

 

 

 

 

6.2 Effectiveness of Stratified Sampling 

6.2.1 Measurement of Accuracy and Errors 

The complete frequent itemsets discovered from the original database and 

its sample are denoted as P(�)  and P(-) , respectively. According to the 

Algorithm for Association Rules Mining by Stratified Sampling  

Input:  dataset TDB, nunmber of transactions in the database �, width of a stratum m, error bound N, confidence level1 ! �, minimum support minsup 

output:  frequent itemsets 

initialize a sample S = {}; 

calculate the sufficient sample size n using equation (6.2); 

partition the dataset into Lmax/w strata based on the size of transactions; 

calculate sample size for each stratum using equation (6.3); 

sample each stratum by simple random sampling without replacement and add to 

S; 

run a standard association rules mining algorithm on S. 

Figure 6.1 Algorithm for Association Rules Mining by Stratified Sampling 
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definitions of false positive and false negative in Chapter 5, the number of 

false positives is | P(-)  !  P(�) | and the number of false negatives is  |P(�) ! P(-)|. The same measure as in (Chen et al., 2002) is used to obtain 

the accuracy of sampling: 

            accuracy � 1 ! |P(�) ! P(-)| , |P(-) ! P(�)||P(�)| , |P(-)|                                        (6.4) 
This measurement is sensitive to both false positives and false negatives.  

The two measurements M}  and M�  defined in Chapter 5 are also used to 
quantify the errors of sampling, which can be expressed as 

                                M} � |P(-) ! P(�)||P(-)|                                                                         (6.5) 
                                M� � |P(-) ! P(�)||P(�)|                                                                         (6.6) 

M} represents the proportion of the false frequent itemsets in a sample while 

M� represents the proportion of the frequent itemsets in the original dataset 

that is missing in a sample. 

6.2.2 Datasets Studied 

Experiments are performed on three datasets that are available at FIMI’03 

(Frequent Itemsets Mining Implementations Repository). They are: (1) 

BMSPOS dataset, provided by Blue Martin Software, (2) Retail dataset, 

donated by Tom Brijs, which contains the (anonymized) retail market basket 

data from an anonymous Belgian retail store, and (3) Accidents dataset, 

donated by Karolien Geurts and contains (anonymized) traffic accident data. 

The density of the Accidents dataset is relatively higher than for the other 

two. The characteristics of these datasets are summarized in Table 6.1, 

where N is the number of transactions in a database, �  is the average 

transaction length, |Q| is the number of distinct items in the database and P/�Z is the size of the longest transaction. The histogram for each dataset is 

shown in Figure 6.2.  To save space, transactions with size greater than 20 
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in BMSPOS and transactions with size greater than 27 in Retail, which only 

count for less than 5% of transactions, are not shown on the histogram.  

Table 6.1 Summaries of Characteristics of Datasets 

Dataset Name N |R| T Lmax Density(%) 

BMSPOS 515596 1657 7.5 164 0.45 
Retail 88162 16570 13 76 0.08 
Accidents 340184 468 34 51 7.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Histogram of transactions 

 
 
 
 
 
 

Figure 6.2 Histogram of Databases 
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6.2.3 Experimental Results 

In this subsection the experimental results of the proposed stratified 

sampling method are described and compared with that of the simple 

random sampling method in (Li and Gopalan, 2004). The sample size 

chosen is 16513, which corresponds to an error bound of 0.01 and a 

confidence level of 99%. 

As mentioned before, the dataset is partitioned based on the transaction 

sizes. Given a m value, the dataset is partitioned into k = Pmax / w strata. The 

width of each stratum in the resulting strata is m except that the width of �th 
stratum may be less than m.  Each stratum is sampled according to Eq. (6.1). 

The accuracy and errors of the proposed stratified sampling method were 

compared with that of the simple random sampling method. Figures 6.3-6.5 

show some of the test results on different datasets for different minimum 

support levels and different widths of stratum. In each figure, SR represents 

the result of simple random sampling. 

For BMSPOS (Fig. 6.3), the accuracy of stratified sampling method 

increases while m  increases. When m �  5, the accuracy of stratified 

sampling is slightly higher than that of simple random sampling. It can be 

seen that M} increases as m increases and M� decreases when m increases. 

The M} value of stratified sampling is lower than that of simple random 

sampling and the M� value of stratified sampling is higher than that of simple 

random sampling for all m values.  

For the Accidents dataset (Fig. 6.4), the accuracy is very high since it is a 

relatively dense dataset and many transactions have similar items. The 

accuracy does not vary too much while w changes (less than 1% for all 

minimum support levels). The trends of changes in M} and M�  while m 

changes are the same as that for BMSPOS. In contrast to the results for 

BMSPOS, the M} values of stratified sampling for Accidents is higher than 

that of simple random sampling while M� of stratified sampling is lower.  
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Figure 6.3 Testing Results for BMSPOS 
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Figure 6.4 Testing Results for Accidents 
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Figure 6.5 Testing Results for Retail 
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For Retail (Fig. 6.5), the accuracy and the errors (M�  and M} ) of stratified 
sampling method at different m values are almost the same as for simple 

random sampling. The values of M} and M� are not too different for most of the 

minimum support levels except 0.2%. It is noticed that the sampling ratio of 

Retail is about 6 times higher than that of BMSPOS.  

Transaction size based stratified sampling method will not be any different 

from the simple random sampling method for a dense datasets like Connect-

4 (Blake and Merz, 1998) that has all the transactions of the same size, and 

so belong to a single stratum. 

6.3 Summary  

Just as with other sampling methods, the proposed transaction size based 

stratified sampling may not suit all applications. The choice of a sampling 

method should depend on the characteristics of the dataset to be mined and 

the cost of errors in a given application. For a dataset like BMSPOS, if lower M} is desirable, the proposed stratified sampling will be a better choice than 

simple random sampling. Similarly, for applications where the lower M�  is 
crucial, stratified sampling will perform better than the simple random 

sampling for a dataset like Accidents. For some datasets such as Retail, both 

simple random sampling and stratified sampling are suitable.  
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Chapter 7  

Conclusion 

 

7.1 Contributions 

In this thesis, developing effective and efficient methods for clustering and 

association rules mining of very large transactional databases are of focus. 

A new similarity measure that is more suitable for clustering of transactional 

data than Rao’s Coefficient, Simple Matching Coefficient and Jacard 

Coefficient is defined. An incremental clustering algorithm INCLUS is 

developed using the newly defined similarity measure. INCLUS is empirically 

proved to be scalable and more accurate than CLOPE (Yang et al., 2002) 

and LargeItem (Wang et al., 1999). 

The equal-width time window model and the elastic time window model are 

defined in order to evaluate changes in data streams. The width of a window 

in the equal-width time window model is determined by the minimum 

granularity with respect to an application. By doing so, it is possible to 

perform cluster analysis on the minimum granularity or coarser granularities. 

The width of an elastic time window model is initially set to the minimum 

granularity and subsequently resized based on the clustering changes in the 

data stream. Fewer clustering snapshots need to be stored on disk under the 

elastic window model, thereby improving efficiency and reducing disk space 

usage, and yet the changes at coarser granularities can still be estimated. 

Data stream clustering algorithms CluStream_EQ and CluStream_EL are 

developed by incorporating INCLUS and the new window models under the 

same framework as CLuStream (Aggarwal et al., 2003). The online 



88 

 

components for these new algorithms are empirically shown to be scalable 

and effective. 

Sampling techniques that can improve the efficiency of mining association 

rules in very large databases are studied. The sample size is derived based 

on binomial distribution and the central limit theorem, which is smaller than 

that based on Chernoff Bounds (Toivonen, 1996) but still provides the same 

approximation guarantees. The accuracy of the proposed sampling approach 

is theoretically analyzed and its effectiveness is experimentally evaluated on 

both dense and sparse datasets. The experimental results proves that the 

sampling method is effective.  

Applications of stratified sampling for association rules mining is also 

explored in this thesis. The database is first partitioned into strata based on 

the length of transactions and simple random sampling is then performed on 

each stratum. The total sample size is determined by a formula and each 

stratum is proportionately sampled based on its size. Experimental results 

show that the accuracy of transaction size based stratified sampling is very 

close to that of random sampling. The errors of stratified sampling can be 

slightly bigger or smaller than that for the random sampling for different 

datasets and different support thresholds. Therefore stratified sampling can 

be seen as an alternative option for particular datasets. In fact, when all 

transactions have the same number of items, stratified sampling becomes 

simple random sampling as all the transactions will be in the same strata. 

7.2 Future Directions 

The data stream clustering algorithms developed in this thesis, are based on 

the assumption that the processing rate of the online component is fast 

enough to handle the incoming data stream. A future direction of this 

research would be to improve the online component for handling data 

streams where the rate of flow is faster than the rate at which it can be 

processed. Sampling can be one of the techniques to be used for this 

purpose. Furthermore, the offline component can be tuned and implemented 

for discovering changes in the data streams. 
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One focus of this thesis, like most of the research on association rules 

mining, is on the critical step of frequent pattern generation. As mentioned in 

Chapter 2, the number of rules generated is exponential to the number of 

frequent items.  For example, ten items can produce more than fifty thousand 

rules. It can be overwhelming for users seeking valuable information among 

such a large number of rules generated. Hence another focus for future 

research could be improving the efficiency of rule generation, presentation 

and filtering as well as the usability of the rules generated.  

When sampling techniques were applied to association rules mining, it was 

noticed that by changing the support threshold if false positives decrease 

then false negatives increase, and vice versa. More investigation is needed 

into the relationship between these errors and methods for controlling them.  

The open question for stratified sampling is how to partition the dataset so 

that each stratum has similar properties in relation to the association rules 

mining problem. It is conjectured that the accuracy of stratified sampling can 

be improved if the stratification scheme is based on the similarity of 

transactions, i.e., the number of common items between transactions. This 

needs further study. There is also scope for matching strata definitions with 

dataset characteristics to improve the accuracy and efficiency of sampling 

based association rules mining. 
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