

Department of Computing

Techniques For Improving Clustering And Association
Rules Mining From Very Large Transactional Databases

Yanrong Li

This thesis is presented for the Degree of
Master of Philosophy

of
Curtin University of Technology

August 2009

Declaration

This thesis contains no material which has been accepted for the award of

any other degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material

previously published by another person except where due acknowledgement

has been made.

Signature: …………………………….

Date: ……………………

To my son

i

Abstract……………………………………………………….…………………v

Preface...…………………………………………………………….…………vii

Acknowledgement……………………………………………….……………viii

Chapter 1 ... 1

1.1 Background .. 1

1.2 Aims of This Thesis ... 4

1.3 Overview of the Thesis .. 4

Chapter 2 ... 6

2.1 Basic Concepts for Clustering and Association Rules Mining 6

2.1.1 Transactional Database ... 6

2.1.2 Data Streams and Models for Data Stream Mining............................ 7

2.1.3 Clustering ... 9

2.1.4 Association Rules Mining .. 14

2.2 Algorithms and Frameworks for Clustering Transactional Data 16

2.2.1 K-Mode, Extension of K-Means for Transactional Data 16

2.2.2 LargeItem ... 18

2.2.3 CLOPE ... 20

2.3 CluStream: A Framework for Clustering Evolving Data Streams 22

2.4 Sampling Techniques and Algorithms for Association Rules Mining 24

2.4.1 Two-Phase Sampling .. 24

2.4.2 Progressive Sampling ... 26

2.4.3 Sampling Based on Chernoff Bounds .. 29

2.5 Summary .. 30

Chapter 3 ... 31

3.1 Problem Definition .. 32

3.2 A New Similarity Measure .. 32

3.3 Cluster Representatives and Induction Principle 34

3.3.1 Cluster Representatives .. 34

3.3.2 Induction Principle ... 35

3.4 An Incremental Clustering Algorithm ... 36

3.5 Complexity of INCLUS ... 38

3.6 Evaluation of INCLUS .. 38

3.6.1 Effectiveness of INCLUS ... 39

Contents

ii

3.6.2 Order-dependence Property of INCLUS .. 44

3.6.3 Scalability of INCLUS ... 47

3.6.4 Advantage of Using the New similarity Measure 48

3.7 Summary .. 49

Chapter 4 ... 50

4.1 The Framework for Clustering Transactional Data Stream 51

4.2 Algorithms for Clustering Transactional Data Stream 55

4.3 Evaluation of the Algorithms ... 57

4.3.1 Test Datasets ... 57

4.3.2 Testing Results ... 58

4.4 Summary .. 61

Chapter 5 ... 62

5.1 Sampling Techniques for Association Rules Mining 62

5.1.1 Random Sampling of a Database with Replacement 63

5.1.2 Determining the Sufficient Sample Size .. 64

5.1.3 Accuracy of Sampling .. 66

5.2 Effectiveness of Sampling ... 67

5.2.1 Datasets Studied ... 67

5.2.2 Measurement of Errors ... 68

5.2.3 Experimental Results .. 69

5.3 Reducing Errors ... 74

5.4 Summary .. 76

Chapter 6 ... 77

6.1 Transaction Size Based Stratified Random Sampling 77

6.2 Effectiveness of Stratified Sampling ... 79

6.2.1 Measurement of Accuracy and Errors .. 79

6.2.2 Datasets Studied ... 80

6.2.3 Experimental Results .. 82

6.3 Summary .. 86

Chapter 7 ... 87

7.1 Contributions ... 87

7.2 Future Directions ... 88

References ... 90

iii

List of Figures

Figure 2.1 Models for Data Stream Processing ... 9

Figure 2.2 Maximum Number of Rules and Itemsets Given d Items 16

Figure 2.3 Histogram of Cluster {tuv, vw, vwx} .. 21

Figure 2.4 Learning Curves and Progressive Samples... 27

Figure 2.5 Generic Progressive Sampling Algorithm .. 27

Figure 3.1 High Level Description of INCLUS ... 37

Figure 3.2 Changes of Number of Clusters while the Order of Transactions Changes

 .. 46

Figure 3.3 Changes of Errors while the Order of Transactions Changes................... 46

Figure 3.4 Scalability Testing Result ... 48

Figure 4.1 New Models for Data Stream Processing ... 55

Figure 4.2 Online Component for CluTranStream_EQ ... 56

Figure 4.3 Online Component for CluTranStream_EL.. 56

Figure 4.4 Offline Macro-Clustering Component .. 57

Figure 4.5 Scalability Test Using Synthetic Datasets .. 60

Figure 4.6 Scalability Test on BMSPOS.. 60

Figure 5.1 Errors for Different Support Thresholds... 72

Figure 5.2 Errors in Each Partition of FIs .. 73

Figure 6.1 Algorithm for Association Rules Mining by Stratified Sampling 79

Figure 6.2 Histogram of Databases .. 81

Figure 6.3 Testing Results for BMSPOS ... 83

Figure 6.4 Testing Results for Accidents ... 84

Figure 6.5 Testing Results for Retail ... 85

iv

List of Tables

Table 2.1 A sample Transactional Database .. 7

Table 2.2 2x2 Contengency Table ... 10

Table 2.3 Similarity Between Transactions in Example 2.1 12

Table 2.4 Two High Dimensional Sparse Datasets .. 13

Table 2.5 Range of Similarity Values According to Different Measures 13

Table 2.6 Maximum Number of Rules and Itemsets Given d Items 15

Table 3.1 Testing Results for Vote .. 41

Table 3.2 Cluster Features for Vote by INCLUS ... 42

Table 3.3 Testing Results for Mushroom with One Set of Parameters 43

Table 3.4 Testing Results for Mushroom with other Set of Parameters 43

Table 3.5 Testing Results for Vote_Random ... 45

Table 3.6 Testing Results for Vote_Sorted .. 45

Table 3.7 Clustering Results for BMSPOS .. 47

Table 3.8 Comparison of Similarity Measures .. 49

Table 4.1 Testing Results for Mushroom ... 58

Table 5.1 Sufficient Sample Size ... 66

Table 5.2 Database Summaries .. 67

Table 5.3 Frequency Distribution of f in Each Dataset ... 70

Table 6.1 Summaries of Characteristics of Datasets .. 81

v

Abstract

Clustering and association rules mining are two core data mining tasks that

have been actively studied by data mining community for nearly two

decades. Though many clustering and association rules mining algorithms

have been developed, no algorithm is better than others on all aspects, such

as accuracy, efficiency, scalability, adaptability and memory usage. While

more efficient and effective algorithms need to be developed for handling the

large-scale and complex stored datasets, emerging applications where data

takes the form of streams pose new challenges for the data mining

community. The existing techniques and algorithms for static stored

databases cannot be applied to the data streams directly. They need to be

extended or modified, or new methods need to be developed to process the

data streams.

In this thesis, algorithms have been developed for improving efficiency and

accuracy of clustering and association rules mining on very large, high

dimensional, high cardinality, sparse transactional databases and data

streams.

A new similarity measure suitable for clustering transactional data is defined

and an incremental clustering algorithm, INCLUS, is proposed using this

similarity measure. The algorithm only scans the database once and

produces clusters based on the user’s expectations of similarities between

transactions in a cluster, which is controlled by the user input parameters, a

similarity threshold and a support threshold. Intensive testing has been

performed to evaluate the effectiveness, efficiency, scalability and order

insensitiveness of the algorithm.

To extend INCLUS for transactional data streams, an equal-width time

window model and an elastic time window model are proposed that allow

mining of clustering changes in evolving data streams. The minimal width of

the window is determined by the minimum clustering granularity for a

vi

particular application. Two algorithms, CluStream_EQ and CluStream_EL,

based on the equal-width window model and the elastic window model

respectively, are developed by incorporating these models into INCLUS.

Each algorithm consists of an online micro-clustering component and an

offline macro-clustering component. The online component writes summary

statistics of a data stream to the disk, and the offline components uses those

summaries and other user input to discover changes in a data stream. The

effectiveness and scalability of the algorithms are evaluated by experiments.

This thesis also looks into sampling techniques that can improve efficiency of

mining association rules in a very large transactional database. The sample

size is derived based on the binomial distribution and central limit theorem.

The sample size used is smaller than that based on Chernoff Bounds, but

still provides the same approximation guarantees. The accuracy of the

proposed sampling approach is theoretically analyzed and its effectiveness is

experimentally evaluated on both dense and sparse datasets.

Applications of stratified sampling for association rules mining is also

explored in this thesis. The database is first partitioned into strata based on

the length of transactions, and simple random sampling is then performed on

each stratum. The total sample size is determined by a formula derived in

this thesis and the sample size for each stratum is proportionate to the size

of the stratum. The accuracy of transaction size based stratified sampling is

experimentally compared with that of random sampling.

The thesis concludes with a summary of significant contributions and some

pointers for further work.

vii

Preface

This thesis contains seven chapters with references appended at the end of

it. The first chapter provides the background for the research while chapter 2

reviews related literature. Chapters 3 to 6 contain details of the research

conducted for this thesis and chapter 7 concludes the thesis with a summary

of contributions and some directions for future research.

Chapter 3 is based on the paper we published in the proceedings of the

IEEE International Conference on Granular Computing (Atlanta, USA, 2006).

Chapter 4 is the extension of work published in the proceedings of the 19th

Australian Joint Conference on Artificial Intelligence (Tasmania, Australia,

2006). Chapter 5 contains results of the research published in the

proceedings of the 17th Australian Joint Conference on Artificial Intelligence

(Cairns, Australia, 2004) and contents of chapter 6 was published in the

proceeding of the Second IFIP Conference on Artificial Intelligence

Applications and Innovations (Beijing, China, 2005)

My Supervisor, Dr. Raj P. Gopalan is the co-author of these papers.

This research was initially conducted towards a PhD degree. Due to the

changes in my personal circumstances, I had to take leave of absence from

the PhD program for most of the time since September 2006. As I am unable

to resume the PhD research soon, this thesis is being presented for the

degree of Masters of Philosophy.

viii

Acknowledgement

First, I would like to thank my supervisor, Dr. Raj P. Gopalan, for his

guidance, for his patience and understanding, for the time and effort he put in

to lead me through the whole journey of the research. For this, I will be

always grateful.

I am grateful to my associate supervisor Dr. Narasimaha Achuthan for all his

time and the valuable discussions.

I have received generous help from many people in the Department of

Computing and the graduate studies office at the Faculty of Science and

Engineering, to name a few, Dr. Michael Robey, Ms Mary Simpson, Ms Mary

Mulligan, Ms Tamara Leonard and Ms Reisha Thomas. I would like to thank

them for being supportive and helpful over the years.

I would like to thank my colleagues Amit Rudra and Yudho Sucahyo for

sharing many ideas and the office space with me. I would also like to thank

my peers Sharon Meng, Perry Peng, Monica Ou and Amal Ghanim for their

friendships.

This thesis could not have come into existence without the previous work

done by other researchers cited within the body of this thesis. I am grateful

for the inspiration I could draw from them.

1

Chapter 1

Introduction

1.1 Background

The capacity of digital data storage worldwide has been doubling every nine

months for at least a decade (Porter, 1998), and our ability to capture and

store data has far outpaced our ability to process and utilize them (Fayyad

and Uthurusamy, 2002). This growing challenge has produced a

phenomenon called the data tombs, where data are deposited and in all

likelihood will never be accessed again. Nevertheless, the deposited data are

a potentially valuable resource. With appropriate data analysis tools, new

knowledge can be discovered from the existing databases. Data mining is

one of the most general approaches for such a purpose (Fayyad and

Uthurusamy, 2002)

Data mining is the process of extracting valid, useful and previously unknown

information from large databases, such as patterns, statistical models of data

and relationships among parts of data, that can be used to make crucial

business decisions or to guide scientific activities (Fayyad et al., 1996). What

kind of knowledge is embedded in the collected data and how to discover

them effectively and efficiently are among the questions faced by

researchers in the data mining community. Cluster analysis and association

rules mining are two core data mining approaches to answer such questions

(Han and Kamber, 2000).

2

Clustering is used to partition a dataset into a set of clusters such that similar

objects are in the same cluster while dissimilar objects are in different

clusters. Clustering has many applications in marketing, land use, insurance,

city planning, etc. (Han and Kamber, 2000). For example, cluster analysis

can help marketers discover distinct groups in their customer bases, and

then use this knowledge to develop targeted marketing programs. An

insurance company can use clustering to indentify groups of insurance policy

holders with high claim costs.

Association rules mining, on the other hand, discovers relationships among

items in a transactional database. It is to find the probability that one set of

items will appear in a transaction whenever another set of items appear in

the same transaction. Association rules mining can be applied in the areas of

cross-marketing, catalog design, sale campaign analysis, web log (click

stream) analysis, webpage linkage design, etc.

Cluster analysis can be performed on any type of data, including numerical,

categorical or spatial data while association rule mining is defined only for

transactional databases. The algorithms for clustering and association rules

mining have been intensively studied for the stored databases during the last

two decades (Jain et al., 1999; Berkhin, 2002; Han and Kamber, 2006), but

none of the algorithms is better than the others on all aspects, such as

accuracy, efficiency, scalability, adaptability and memory usage. While more

efficient and effective algorithms need to be developed for handling the

large-scale and complex stored datasets, emerging applications where data

arrive in streams pose new challenges for the data mining community. The

existing techniques and algorithms for static stored databases cannot be

applied to the data streams directly. They need to be extended or new

methods need to be developed to process the data streams.

Clustering algorithms can be categorized as structure imposing algorithms

and structure seeking algorithms. Cluster imposing algorithms produce � clusters based on user’s input of a � value regardless of the underlying
structures in the data. K-Means (MacQueen, 1967) is a representative of

cluster imposing algorithms. Since in most cases the user does not know a

3

priori the cluster characteristics of the data, the value of � input by the user
for a structure imposing algorithm may result in distinct clusters being

merged when the real number of clusters is greater than the given value of �
or big clusters being split into small chunks when � is greater than the real
number of clusters. Moreover, for a given � , using different induction

principles can produce the same number of clusters with different cluster

features.

Structure seeking algorithms partition the database based on the user’s

expectations of the similarity of objects. LargeItem (Wang et al., 1999) and

CLOPE (Yang et al., 2002) are two examples of such algorithms. The

number of clusters output by a cluster seeking algorithm is determined by the

user input values for the parameters that implicitly or explicitly define the

degree of similarity among objects in a cluster, e.g. compulsion number � in
CLOPE. Definitions of similarity or distance measures are often data and

application dependant. Many similarity measures have been proposed in the

literature for different types of data, such as Jacard coefficient for

transactional data, and Euclidean distance for numerical data.

For a given dataset, different similarity or distance measures with different

induction principles can result in different number of clusters with different

cluster features. That is why we have a large number of clustering

algorithms and yet we are still searching for more efficient and effective

algorithms (Estivill-Castro, 2002). Unlike clustering, the set of association

rules is fixed in a given dataset for given support and confidence thresholds.

Therefore the focus in association rules mining is on improving efficiency.

The input/output overhead in scanning the database plays an important role

in the performance of association rule mining algorithms. Many data

structures and corresponding algorithms have been developed to reduce the

number of database scans from as many as the size of the longest frequent

itemsets in (Agrawal and Srikant, 1994; Mannila et al., 1994) to as small as

two in (Han et al., 2000) and one in (Cheung and Zaïane, 2003). When

dealing with very large transactional databases or data streams, sampling

techniques are applied as a tradeoff of accuracy for efficiency. While the

4

main purpose of sampling a static large disk resident database is to reduce

the amount of data to be processed, sampling seems to be the only choice

for processing a data stream where data flow faster than how quickly it can

be processed (Babcock et al., 2002).

Although many algorithms have been developed for clustering and

association rules mining, more research is needed to develop effective and

efficient algorithms for very large high dimensional sparse transactional

databases and data streams.

1.2 Aims of This Thesis

This thesis aims to develop efficient and effective algorithms that are suitable

for clustering very large high dimensional sparse transactional databases

and data streams. The algorithms will be structure seeking rather than

structure imposing. It will take into account users’ expectations of the

closeness among transactions when performing cluster analysis.

This thesis will also investigate sampling techniques that can improve the

efficiency of mining association rules in a very large database. The sampling

techniques will not only require small sample sizes but also provide

approximation guarantees.

1.3 Overview of the Thesis

The reminder of this thesis is organized as follows.

Chapter 2 reviews previous research in clustering and association rules

mining that are closely related to this research. These include the definitions

of relevant terms, existing similarity measures for transactional data

clustering, time window models proposed in the literature for data streams

mining, and algorithms for clustering and association rules mining.

Chapter 3 defines a new measure for the similarity between transactions

based on the items present in them. A new incremental structure seeking

clustering algorithm INCLUS is then proposed incorporating the newly

5

defined similarity measure for clustering very large transactional databases.

The algorithm is extensively tested and compared with two existing structure

seeking clustering algorithms LargeItem and CLOPE.

Chapter 4 defines two time window models: equal width time window model

and elastic time window model for mining evolving data streams. Two new

algorithms named CluTranStream_EQ and CluTranStream_EL are proposed

for clustering transactional data streams by incorporating these window

models into INCLUS. Each algorithm consists of an online micro-clustering

component and an offline macro-clustering component. The effectiveness

and scalability of the online components are evaluated by experiments.

Chapter 5 presents a random sampling approach for association rules mining

from very large databases. The sample size is determined based on binomial

distribution and the central limit theorem. It has smaller sample size than that

based on Chernoff Bounds, but still provides the same approximation

guarantees. The accuracy of the proposed sampling approach is theoretically

analyzed and its effectiveness is experimentally evaluated on both dense

and sparse datasets. Methods for reducing false positives and false

negatives in frequent itemsets are also discussed.

Chapter 6 explores the application of stratified sampling to association rules

mining. The database is first partitioned into strata based on the length of

transactions, and simple random sampling is then performed on each

stratum. The effectiveness of the proposed sampling technique is evaluated

and compared with simple random sampling.

Chapter 7 concludes the thesis with some directions for future research.

Some of the results of this thesis were published in (Li and Gopalan, 2004;

2005; 2006a; 2006b).

6

Chapter 2

Literature Review

Clustering and association rules mining have been active research areas in

data mining, for which many algorithms have been developed (Jain et al.,

1999; Berkhin, 2002; Kantardzic, 2002; Gaber et al., 2005; Han and Kamber,

2006; Hruschka et al., 2009). This chapter reviews related research in these

two fields that are directly relevant to the work being reported in this thesis.

2.1 Basic Concepts for Clustering and
Association Rules Mining

As mentioned in Chapter 1, the goal of this thesis is to develop effective and

efficient algorithms for clustering and association rules mining from very

large transactional databases and data streams. Before the relevant existing

algorithms being reviewed, the basic concepts and definitions associated

with these problems are described below.

2.1.1 Transactional Database

Let � � ���, �	, … , ��� be a set of
 distinct items. A transaction � is a non-
empty subset of � (i.e. �⊆ �). A transactional database ��� is a collection of � transactions ���, �	, … , ��� , where
 is the dimension of the ��� and � is

the cardinality of the ���. Each item is an attribute of the ���. Transactional
data is a special case of categorical data, where each attribute takes a value

from a binary domain indicating either the presence or absence of an item in

the transaction.

7

A super market basket database is a typical real life transactional database.

Table 2.1 shows an example transactional database. There are six distinct

items {A, B, C, D, E, F} and five transactions {A, B, D}, {A, C,D}, {A,D, E}, { B,

E, F} and { B, C, D, E, F} in the database. In other words, the dimension of

the database is 6 and the cardinality of the database is 5.

Table 2.1 A sample Transactional Database

Transaction ID Items

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F

2.1.2 Data Streams and Models for Data Stream
Mining

A data stream is an ordered sequence of data records that can be read only

once or a small number of times (Guha et al., 2000a). Retail chain

transactions, web logs and web page click streams, credit card transaction

flows, and real time stock exchange data are some examples of real life data

streams. The characteristics of data streams include the following (Han and

Kamber, 2006):

• Huge volumes of continuous data, possibly infinite;

• Fast changing and requiring fast real time response;

• Random access is expensive to perform;

• Most data streams being at a low level and multi-dimensional, need

multi-level, multidimensional processing.

8

There are four prominent models (Fig 2.1) for data stream mining which are

described here in the context of clustering:

• The landmark model (Guha et al., 2003) assumes that the clusters are

to be computed over the entire data stream. The set of data points to

be clustered includes all the data points from beginning of a data

stream to the current time. Data stream clustering problem is simply

viewed as a variant of one-pass clustering algorithms. It is suitable for

a data stream where the mechanism of the data generation does not

change over time.

• The sliding window model (O'Callaghan et al., 2002; Babcock et al.,

2003) assumes that only the most recent data in the stream are of

interest. The set of data points to be clustered is chosen by a sliding

window of the most recent data. Clustering is performed from the

beginning of the stream but only keeps clustering results for the set of

data points within the sliding window.

• In the tilted time window model (Giannella et al., 2003), at any

moment, the stream is partitioned into windows of different

granularities with respect to the time of their arrival. The most recent

data has the finest granularity while the most remote has the coarsest.

• In the pyramidal time window model (Aggarwal et al., 2003), the data

stream is partitioned into windows based on various granularities, but

only a certain number of windows is kept at any given time for each

granularity. Both the tilted-window model and the pyramid window

model can be employed for approximation of changes in the data

stream. Sampling can also be incorporated into these models

(O'Callaghan et al., 2002). Existing algorithms for static datasets such

as K-Means (or K-Median) have been incorporated into these models

with or without modifications for data stream clustering (Ong et al.,

2004; MacQueen, 1967; O'Callaghan et al., 2002; Aggarwal et al.,

2003; Guha et al., 2003).

9

Figure 2.1 Models for Data Stream Processing

In this thesis, an equal-width window model and an elastic window model are

proposed for clustering transactional data streams.

2.1.3 Clustering

A cluster is a collection of data objects. Clustering is to partition a dataset

into clusters so that similar objects are in the same cluster while dissimilar

objects are in different clusters based on predefined similarity/distance

measures.

Given a transactional database ���, �	, … , ��� over
 items ���, �	, … , ��� , a
clustering � is a partition ���, �	, … , ��� of ���, �	, … , ��� such that similar

transactions are in the same cluster and dissimilar transactions are in

different clusters, � � �� � �	 � …� ��, and �� � �� � �, �� � . For example,

the sample database listed in Table 2.1 may be partitioned into two clusters ���={ {A, B, D}, {A, C, D}, {A, D, E} }, �	= { { B, E, F}, { B, C, D, E, F} }
according to the number of common items in the transactions.

In order to partition a database into clusters so that similar transactions are in

the same clusters and the dissimilar transactions are in different clusters, a

measure to determine the degree of similarity between a pair of transactions

is needed. Currently, there are several similarity measures being used in

clustering transactional databases as described in detail below.

 0 t 0 t

 (a) Landmark model (b) Sliding window model

 0 t 0 t

 (c) Tilted time window model (d) Pyramidal time window model

10

A transaction � in a ��� over a set of
 distinct items can be represented by

a
 !dimensional vector � " ��, �	, … , �� # . When an item ��|� � 1,2, … ,

appears in �, �� � 1; otherwise �� � 0.
Example 2.1 Suppose � ={A, B, C, D, E, F, G, H, J, K}, and ��� over �
consists of ��={A, B, C, D}, �	= {C, D}, �(={C, D, E, F, G, H}, �)={E, F}, then
the ��� can be represented by a set of vectors:

��<1, 1, 1, 1, 0, 0, 0, 0, 0, 0>
�	<0, 0, 1, 1, 0, 0, 0, 0, 0, 0>
�(<0, 0, 1, 1, 1, 1, 1, 1, 0, 0>
�)<0, 0, 0, 0, 1, 1, 0, 0, 0, 0>

A conventional method for obtaining a distance measure between two

transactions �� and �� is to use the 2x2 contingency table illustrated in Table
2.2. In the table, *�� represents the total number of attributes present in

both transactions (“positive” matches) and *++ represents the total number of

attributes absent from both transactions (“negative” matches). The total

number of attributes present in �� but not in �� is denoted by *�+ while the
total number of attributes not present in �� but in �� is denoted by *+� . *�� , *�+ , *+� , *++ �
 , where
 is the total number of distinct items in

the database, i.e. the dimension of the database.

Table 2.2 2x2 Contengency Table

 ��

 1 0

 1 *�� *�0 ��
 0 *0� *00

Following similarity measures have been proposed in the literature

employing the quantities of *++ , *+� , *�+ and *�� (Everitt, 1993; Huang,
1997a; Kantardzic, 2002).

11

• Simple Matching Coefficient (SMC)

SMC is the ratio of the total number of positive and negative

matches *�� , *++ to the total number of attributes
 . It can be

expressed as follows:

 -./01��, �� 2 � (*�� , *++) /

 � (| �� � ��| , 4�� � �� 4) /
 (2.1)

• Rao’s Coefficient

Rao’s Coefficient is the ratio of the total number of positive

matches *�� to the total number of attributes
 which can be

expressed as:

 -501��, �� 2 � *�� /

 � | �� � �� | /
 (2.2)
• Jaccard Coefficient

Jaccard coefficient is the ratio of the total number of positive matches

to the total number of distinct attributes present in both transactions:

 -�01�� , �� 2 � *�� / (*�� , *�+ , *+�)
 � *�� / (
 ! *++) � | �� � �� | / | �� � �� | (2.3)

It can be easily proved that

 -./01�� , ��2 7 -�01��, ��2 7 -501��, ��2 (2.4)
Table 2.3 shows the similarity between transactions in Example 2.1 based

on these similarity measures.

12

Table 2.3 Similarity Between Transactions in Example 2.1

Pair of transactions -./0 -50 -�0
��, �	 80% 20% 50%

��, �(40% 20% 25%

��, �) 40% 0% 0%

�	, �(60% 20% 33.3%

�	, �) 60% 0% 0%

�(, �) 60% 20% 33.3%

To consider the suitability of these similarity measures for clustering typical

real life high dimensional sparse transactional datasets, Table 2.4 lists the

characteristics of two transactional databases that are widely used in the

validation of data mining algorithms. BMSPOS (Zheng et al., 2001) contains

point-of-sale data from an electronics retailer and Retail (Brijs et al., 1999)

consists of the retail market basket data from an anonymous Belgian retail

store. 99% of transactions in BMSPOS have less than 33 items. The

minimum SMC similarity between a pair of those transactions is (1657 ! 2 <32)/1657 � 96.13% (when two transactions are of size 32 and are totally

different) and the maximum value for Rao’s similarity is 32/1657 � 1.93%

(when two transactions are of size 32 and are exactly the same). In the

Retail dataset, 99% has transaction size less than 45 items, the minimum

SMC similarity between a pair of transactions is (16470 ! 2 < 44)/16470 �99.47% (when two transactions are of size 44 and are totally different), and

the maximum Rao’s similarity is 44/16470 � 0.27% (when two transactions

are of size 44 and are exactly the same). Table 2.5 shows the maximum and

minimum similarity values for 99% of records in each dataset according to

different similarity measures.

13

Table 2.4 Two High Dimensional Sparse Datasets

Dataset N D Iavg Favg Lmax L99%

BMSPO 51559 1657 7.5 2032 164 <33

Retail 88162 16470 10.3 55 76 <45

Note: N - total number of transactions; d - dimensions of a dataset; Iavg - average

numbers of items in a transaction; Lmax - size of the longest transaction; Favg -

average occurrence of each item. L99% - length of 99% of records in the dataset

Table 2.5 Range of Similarity Values According to Different Measures

Dataset BMSPOS Retail

 Min Max Min Max

-?@A 96.13% 100% 99.47% 100% -50 0 1.93% 0 0.27% - A 0 100% 0 100%

It is obvious that the discrimination power of simple matching coefficient and

Rao’s coefficient is very poor in dealing with such high dimensional sparse

datasets. As a result, all the transactions will be in the same cluster

according to SMC while every transaction will form a singleton cluster

according to Rao’s coefficient. Moreover, Rao’s coefficient will assign the

same similarity values for two pairs of transactions with the same number of

common items but different number of non-common items. For example, for

transactions in Example 2.1, -50(��, �) � -50(�	, �() � 20% , although �	 is
more similar to �� than to �(with respect to the items present in the

transactions.

As pointed out in (Everitt, 1993), no hard and fast rule can be given

regarding the inclusion or otherwise of negative matches, since it is data and

application dependent. For applications where the presence of items is of

interest, such as customer segmentation, Jaccard coefficient is more suitable

as it only compares items appearing in the pair of transactions. However,

Jaccard coefficient still underestimates the similarity between two

14

transactions when one transaction is not a subset of the other. For example,

for the pair of transactions �� and �(in Example 2.1, -�0(�(, ��) � 2/8 � 1/4
although 1/2 of the items in �� also appear in �(and 1/3 of items in �(also
appear in �� . In a real life scenario, it is more meaningful to say that 1/2 of
the items in �� appear in �(and 1/3 of items in �(appear in �� when two
transactions are compared. Therefore, in this thesis, a new similarity

measure that is more suitable for transactional data will be defined.

2.1.4 Association Rules Mining

Association rules mining was first introduced by R. Agrawal et al. in 1993

(Agrawal et al., 1993). The relevant concepts and terms relating to it are

described below.

Let � � ���, �	, … , ��� be a set of
 distinct items and ��� be a transactional
database over �, ��� � ���, �	, … , ��� . A set of items is called an itemset,

and an itemset with � items is called a �-itemset. The support C of an itemset * in ��� , is the proportion of the database that contains * , and C � D/� where D is the number of occurrences of * in ���. An itemset is called a

frequent itemset if its support C 7 CE where CE is the support threshold
specified by the user. Otherwise, the itemset is not frequent.

An association rule is an expression of the form * F G, where non-empty

itemsets * H �, G H � and * � G � �. The support of the rule is the proportion
of transactions that contains both * and G, i.e the probability that both * and G occur in a transaction. The confidence of the rule is the proportion of
transactions that contain both * and G to those that contain * i.e., the

conditional probability that a transaction contains the itemset G given that it
contains the itemset *.
 -ICCJ�K(* F G) � L(* � G) (2.5)
 �J�M�
N�AN(* F G) � L(G|*) � L(* � G)L(*) (2.6)

15

An association rule with �J�M�
N�AN # AE, where AE is confidence threshold
specified by the user, is considered as a valid association rule.

It is noted that �J�M�
N�AN(* F G) 7 -ICCJ�K(* F G) holds. When support

threshold CE and confidence threshold AE are chosen for association rules
mining, AE should be greater than or equal to CE.
Association rules mining consists of two steps. All frequent itemsets, also

called the complete frequent itemsets (CFI) are discovered in the first step

and the rules based on the CFI are derived in the second step.

For the sample database listed in Table 2.1, let CE= 50% and AE = 50%, then

frequent itemsets are {A}, {B}, {D}, {E} and {A,D}, and the valid association

rules are

O F � with support = 60% and confidence = 100%;

� F O with support = 60% and confidence = 75% .

Frequent items are also called “large items” by some authors (Wang et al.,

1999).

For a
 dimensional transactional database, the maximum number of

frequent itemsets P� and the maximum number of association rules Q� are as
follows:

P� � 2� ! 1 (2.7)
 Q� � 3� ! 2�R� , 1 (2.8)

Table 2.6 and Fig.2.2 show the maximum number of itemsets and rules for a

database with
 dimensions.

Table 2.6 Maximum Number of Rules and Itemsets Given d Items
 3 5 7 9 10 20 100

Q� 12 180 1932 18660 57002 3.48 S 10T 5.15 S 10)U
P� 7 31 127 511 1023 1.05 S 10V 1.26 S 10(+

16

Figure 2.2 Maximum Number of Rules and Itemsets Given d Items

2.2 Algorithms and Frameworks for Clustering
Transactional Data

In this section, transactional data clustering algorithms K-Mode, LargeItem

and CLOPE are reviewed. CluStream, a framework for data stream

clustering, is also reviewed.

2.2.1 K-Mode, Extension of K-Means for
Transactional Data

K-Means (MacQueen, 1967) is a well known clustering algorithm which is

suitable for clustering numeric datasets. It partitions a dataset into clusters by

minimizing the within-cluster sum of squared distance between individual

data points and their mean

 ∑ ∑ (X� ! Y�)	Z[\]^��_� (2.9)
where � is the number of clusters, X� is a point in cluster -� and Y� is the mean

of all the points in cluster -�. The algorithm proceeds as follows:

0

10

20

30

40

50

60

2 6 10 14 18 22 26 30 34 38 42 46 50

number of items

LogRd

LogLd

17

1. Partition the data objects at random into � nonempty subsets.

2. Calculate the centroid (i.e.mean point) for each cluster of the current

partition.

3. Assign each object to the cluster with the nearest centroid.

4. Repeat the last two steps until no object has changed clusters during

a whole dataset scan.

The input for the K-Means clustering algorithm is a dataset, the desired

number of clusters �. It will produce � clusters regardless of the underlying
data structures. It is a structure imposing rather than a structure seeking

algorithm.

K-Mode (Huang, 1997b) extends the K-Means paradigm to categorical

domains. It replaces the mean of a cluster with mode, and uses a frequency

based method to update modes in the clustering process to minimize the

clustering cost function.

Let *, G be two categorical objects described by @ categorical attributes. The

dissimilarity is defined as:

(*, G) � ∑ `(X� , D�)/�_� (2.10)

where

 `1X� , D�2 � a0 (X� � D�)1 (X� � D�)b (2.11)

(*, G) gives equal importance to each category of an attribute. When the

frequencies of categories is taken into account, the dissimilarity between *
and G is defined as

Zc(*, G) � ∑ (�d[R�e[)�d[�e[

/�_� `1X� , D�2 (2.12)

Where �Z[, �f[are the numbers of objects in the dataset that have categories

X� and D� for attribute .

18

Let * be a set of categorical objects described by categorical attributes O�, O	, … , O/. A mode of * is a vector g �" h�, h	, … , h/ # that minimizes

 �(g, *) � ∑
(*�, g)��_� (2.13)
where * � �*�, *	, … , *�� and the distance function
 can be either defined
as Eq.(2.10) or Eq.(2.12). The mode g �" h�, h	, … , h/ # of * is obtained
by calculating the most frequent category in each attribute. In other words, h�
is the most frequent category in attribute O�, h	 is the most frequent category

in attribute O	, and so on.
Since K-Mode is an extension of K-Means, it inherits the weakness of K-

Means, i.e., it produces � clusters regardless the underlying cluster structure
in the database. As for K-Means, the centroid (modes) of clusters are

dimensional vectors, where
 is the dimension of the database. For a high

dimensional database, the description of the clusters in terms of centroid will

be very hard for users to comprehend.

2.2.2 LargeItem

Wang et al. proposed a large item based algorithm for clustering

transactional data (Wang et al., 1999). For a user-specified minimum

support CE , an item is large in cluster �� if its occurrences are at least CE <|��|; otherwise the item is small in ��. Let Pi�jN� denote the set of large items

and -@ikk� denote the set of small items in �� . Consider a clustering � ����, �	, … , ��� , the cost of � has two components: the intra-cluster cost ��K�i(�) and inter-cluster cost ��KN�(�).
The intra-cluster cost is charged for intra-cluster dissimilarity, measured by

the total number of small items:

 ��K�i(�) � |l -@ikk�|��_� (2.14)
This component will restrain the creation of loosely bound clusters that have

too many small items.

19

The inter-cluster cost is charged for inter-cluster similarity. Since large items

contribute to similarity in a cluster, each cluster should have as little

overlapping of large items as possible. The overlapping of large items is

defined by

 ��KN�(�) � ∑ |Pi�jN���_� | ! |l Pi�jN���_� | (2.15)
��KN�(�) measures the duplication of large items in different clusters. This

component will restrain the creation of similar clusters.

The criterion function of a clustering � is defined as
 �J?K(�) � m < ��K�i(�) , ��KN�(�) (2.16)
A weight m # 1 gives more emphasis to the intra-cluster similarity and a

weight m " 1 gives more emphasis to the inter-cluster dissimilarity. By

default m � 1.
Given a collection of transactions and a minimum support, transaction

clustering is to find a clustering � such that �J?K(�) is minimum.

The algorithm LargeItem has two phases: the allocation phase and the

refinement phase. In the allocation phase, each transaction is read in

sequence and assigned to an existing cluster or a new cluster, whichever

minimizes the �J?K(�). In the refinement phase, each transaction is read in

sequence again, a transaction is moved to a new cluster or stays in the same

cluster to minimize the cost. If no transaction is moved in one pass of

transactions, the refinement phase terminates; otherwise, a new pass

begins.

LargeItem is a structure seeking clustering algorithm. It produces a number

of clusters based on the user’s expectation of intra-cluster similarity.

However, the input parameter m, which is used to control the weight of inter-

cluster similarity and intra-cluster similarity in the cost function, does not

have clear semantic meaning to the users and the range of this parameter is

not defined. Therefore it is very difficult for users to choose a proper value for

20

it. The algorithm needs to scan the database at least twice, and therefore it is

not so efficient for very large databases and is not suitable for data streams.

2.2.3 CLOPE

CLOPE (Yang et al., 2002) is another structure seeking algorithm specifically

designed for transactional data.

Given a cluster �, let �(�) be the set of distinct items in �, nAA(�, �) be the
occurrence of item � in cluster �. The histogram of a cluster � is drawn with
items as the X-axis and their occurrences as Y-axis, in decreasing order of

occurrences.

The size -(�) and width o(�) of a cluster � are defined as
 -(�) � ∑ nAA(�, �) � ∑ |K�|E^\p�\q(p) (2.17)

where K� is the �Er transaction in �.
 o(�) � |�(�)| (2.18)

The height of a cluster is defined as

 s(�) � -(�)/o(�) (2.19)

A larger height means a greater overlap among the items in a cluster, and

thus more similarity among the transactions in the cluster.

Figure 2.3 shows the histogram for a cluster consisting of transactions �iA
�, �
N� and �
NM�.
The criterion function for clustering is

 L�JM�K5(�) � ∑ -(��)o(��)5 S |��|��_� ∑ |��|��_� (2.20)

In Eq. (2.20), � is a positive real number called repulsion, used to control the

21

level of intra-cluster similarity. When � is large, transactions within the same

cluster must share a large portion of common items.

Figure 2.3 Histogram of Cluster {tuv, vw, vwx}

The object of clustering is to find a set of clusters that can maximize the

profit.

The algorithm for CLOPE is very similar to that for LargeItem, except that the

criterion function is different. It contains two phases: the initialization phase

and the iteration phase. During the initialization phase, the database is

scanned in sequence. Each transaction is allocated to an existing cluster or a

new cluster so that profit can be maximized. In the iteration phase, the

database is scanned repeatedly. A transaction is either moved from one

cluster to another cluster or stays in the same cluster to maximize the profit.

When no transaction is moved during a database scan, the iteration stops.

Like LargeItem, CLOPE is a structure seeking clustering algorithm. It

produces clusters based on the user’s expectations of intra-cluster similarity

which is controlled by repulsion number �. However, � is not bounded and
has no clear semantic meaning to the user. Therefore it is very difficult for

users to choose a proper value for it.

S=8

0
c

3

2

1

occurrence

e a d f

H=1.6

item

W=5

22

2.3 CluStream: A Framework for Clustering
Evolving Data Streams

The challenge of designing algorithms for data stream mining is three fold:

(1) the algorithm is subject to sequential one-pass constraint over the data;

(2) it must work under limited resources with respect to the unlimited data

stream; (3) it should be able to reveal changes in the data stream over time.

Aggarwal et al. propose a framework, CluStream, for clustering evolving data

streams(Aggarwal et al., 2003). The clustering process is divided into an

online micro-clustering component and an offline macro-clustering

component. The online component periodically stores detailed summary

statistics onto disk and the offline component uses the summary statistics in

conjunction with other user input to answer time sensitive queries.

The separation of the data stream clustering approach into online and offline

components raises these important questions:

What kind of summary information should be stored to provide sufficient

temporal and spatial information for the offline clustering process w.r.t a

particular application?

At what moments in time should the summary information be stored away on

disk so that time sensitive queries can be answered with a desired level of

approximation?

How can the periodic summary statistics be used to provide clustering and

evolution insights over a user specified time horizon?

In order to address these issues, CluStream utilizes two concepts: micro-

clusters and a pyramidal time frame.

Assume that the data stream consists of a set of multi-dimensional records *�yyy …*�yyy…arriving at time stamps ��…��…. Each *z{ is a multi-dimensional

record containing
 dimensions which is denoted by *z{ � (X�� …X��).

23

A micro-cluster for a set of
 dimensional points *��… *�� with timestamps ���…��� is defined as the (2.
 , 3) tuple (�|2Z yyyyyyyy, �|1Z yyyyyyyy, �|2E yyyyyyy, �|1E yyyyyyy, �),
wherein �|2Z yyyyyyyy and �|1Z yyyyyyyy each correspond to a vector of
 entries. The
definition of each of these entries is as follows:

For each dimension, the sum of the squares of the data values is maintained

in �|2Z yyyyyyyy. Thus �|2Z yyyyyyyy contains
 values. The C-th entry of �|2Z yyyyyyyy is equal to ∑ (X��})	��_� .

For each dimension, the sum of the data values is maintained in �|1Z yyyyyyyy. Thus �|1Z yyyyyyyy contains
 values. The C-th entry of �|1Z yyyyyyyy is equal to ∑ X��}��_� .

The sum of the squares of the time stamps ���…��� is maintained in �|2E yyyyyyy.
The sum of the time stamps ���…��� is maintainded in �|1E yyyyyyy.
The number of data points is maintained in �.
It is noted that the above definition of micro-clusters is a temporal extension

of the cluster feature vector in (Zhang et al., 1996).

The micro-clusters are also stored at particular moments in the stream which

are referred to as snapshots. In the pyramidal time frame, the snapshots are

stored at different levels of granularity depending on the recency. Snapshots

are classified into different orders which can vary from 1 to log �, where � is
the clock time elapsed since the beginning of the stream. The snapshots of

different orders are maintained as follows:

Snapshots of the i-th order occur at time intervals of �� , where � is an

integer, � 7 1. Specifically, each snapshot of the i-th order is taken at a
moment in time when the clock value from the beginning of the stream is

exactly divisible by ��
At any given moment in time, only the last � , 1 snapshots of order � are
stored.

24

For a data stream, the maximum order of any snapshot stored at � time units

since the beginning of the stream mining process is log� �.
For a data stream, the maximum number of snapshots maintained at � time

units since the beginning of the stream mining process is (� , 1)log� �. For
any user specified time window of �, at least one stored snapshot can be
found within (2. �) units of the current time.

It can be seen that CluStream suits numeric data as it stores the sum of the

squares of the data values and the sum of data values in the snapshots. In

this thesis, the ideas of CluStream frame work are borrowed, i.e, dividing the

clustering process to an online micro-clustering component and an offline

macro-clustering component, but using different summary statistics that are

suitable for clustering transactional data streams.

2.4 Sampling Techniques and Algorithms for
Association Rules Mining

While many sound algorithms have been developed to provide accurate

association rules in a database, such as Apriori (Agrawal and Srikant, 1994),

FP-Growth (Han et al., 2000), CT-Mine (Gopalan and Sucahyo, 2003) and

CATS-Tree (Cheung and Zaïane, 2003), sampling techniques are actively

studied as a tradeoff of accuracy with efficiency when dealing with very large

databases or data streams. This section will review sampling techniques for

association rules mining, including two-phase sampling, progressive

sampling and random sampling based on the Chernoff Bounds.

2.4.1 Two-Phase Sampling

FAST (Chen et al., 2002) is a two-phase sampling algorithm for mining

association rules in large databases. In Phase I, a large initial sample of

transactions - is collected and used to quickly estimate the support of each

individual item in the database. In Phase II, these estimated supports are

used to either trim outliers or select representatives from the initial sample,

resulting in a small final sample -+ that can more accurately reflect the

25

support of items in the entire database as explained below. Any standard

association rules mining algorithm can then be used to discover association

rules in the final sample.

Since the supports of 1-itemsets in the original database are unknown, they

are estimated by the corresponding supports in the original larger sample -.
The discrepancy is measured by the distance function

 ��?K(-+, -) � |�(])��(]�)|�|�(]�)��(])||�(]�)|R|�(])| (2.21)

where P(-) and P(-+) denote the set of of frequent 1-itemsets in - and -+ ,
respectively.

Two different approaches are presented for obtaining the final sample in

Phase II: “trimming” and “growing”. The trimming procedure starts with the

initial sample - and continuously removes “outliers” until a specified stopping

criterion is met. An outlier is a transaction whose removal from the sample

maximally reduces the discrepancy between the supports of the 1-itemsets in

the sample and the corresponding supports in the original database. In

contrast, the growing procedure selects representative transactions from the

initial sample and adds it to an initially empty dataset -+. In either approach,
by forcing the supports of a 1-itemsets in the sample to approximate those in

the original database, the Phase II procedure helps ensure that the support

of every 1-itemset in the sample is close to that in the database.

FAST-trim and FAST-grow are algorithms resulting from the trimming and

growing approaches, respectively.

Given the minimum support and confidence thresholds, the FAST-trim

algorithm proceeds as follows:

1. Obtain a simple random sample - from the database.

2. Compute support for each 1-itemset in -.
3. Using the support computed in step 2, obtain a reduced sample -+

from - by trimming away outlier transactions.

26

4. Run standard association rules mining algorithm against -+ for the
given minimum support and confidence thresholds.

FAST-grow algorithm has an input parameter � \ �1, 2, … , |-|) and �, where � is the final sample size. Like FAST-trim, it proceeds in stages. Initially, -+ is
empty. At each stage representative transactions are added to -+. In order
to identify representative transactions, the transactions in - ! -+ are divided
into disjoint groups, with each group has min (|- ! -+|, �) transactions. For
each group, a transaction � that minimizes Dist(-+ � ���, -) over all

transactions in the group is added to -+. The algorithm proceeds until |-+| � �.
It can be seen that choosing the right sample size for the initial sample is

critical for the success of the two-phase sampling. A wrong initial sample size

will result in the failure of the sampling since the final sample is a subset of

the original sample. Since there is no theory to back up the selection of the

sample size, the process for choosing the initial sample size becomes

arbitrary.

2.4.2 Progressive Sampling

Progressive sampling (Provost et al., 1999) starts with a small sample and

uses progressively larger ones until the model accuracy no longer improves.

The learning curve in Fig. 2.4 depicts the relationship between sample size

and model accuracy. The horizontal axis represents �, the number of objects

in a given training sets, that can vary from zero to �, the total number of

available instances. Most learning curves typically have steeply sloping

portion early in the curve, and a plateau late in the curve. When the curve

reaches its final plateau, it is said to have converged. The training set size at

which convergence occurs is denoted as �/��, where �/�� is the size of the
smallest sufficient sample size for an induction algorithm.

27

Figure 2.4 Learning Curves and Progressive Samples

A central component of progressive sampling is a sampling schedule - � ��+, ��, �	, … , ��� where each �� is an integer that specifies the size of
a sample to be provided to an induction algorithm. For � " , �� " �� . If the
dataset contains � instances in total, �� � N for all �.
Figure 2.5 is a generic algorithm that defines the family of progressive

sampling methods.

� � �+

/* generic progressive sampling algorithm */

compute schedule - � ��+, ��, �	, … , ��� of sample sizes

M � model induced from � instances

while not converged do

 recompute - if necessary

 � � next element of - larger than �
M � model induced from � instances

endwhile

return M

Figure 2.5 Generic Progressive Sampling Algorithm

n1 n2 n3 nmin n4 n5 N

 training set size

a
cc
u
ra
cy

28

It is obvious that sampling schedule plays a very important role in

progressive sampling as it will determine the number of samples processed

before a final sample is selected.

John and Langely (John and Langley, 1996) defines an arithmetic sampling

using the schedule

 -� � �+ , (�. ��) � ��+, �+ , �� , �+ , 2�� , … , �+ , ���� (2.22)

 For example, when �+ � 100 , and �� � 100, the schedule will be �100, 200, 300, … �.
Provost et al (Provost et al., 1999) propose Geometric sampling using the

schedule:

 -� � i� . �+ � ��+, i. �+, i	. �+, … , i� . �+} (2.23)

for some constant �+ and i. An example schedule is �100, 200, 400, 800… �
when �+ � 100 and i � 2.
Parthasarathy (Parthasarathy, 2002) adopts the progressive sampling

approach for association rules mining. In the context of association rules

mining, the model accuracy is defined as

-�@(
�,
) � ∑ max �0,1 ! �4?IC��(X) ! ?IC�c(X)4�Z\��� �O � �� (2.24)
where
� and
	 are two database samples, O and � are respectively the set
of frequent itemsets for
� and
	, X is an element in frequent itemsets O and � . values for -�@ are bounded and lie in [0,1] .

As mentioned above, how to choose a sampling schedule remains a

question for progressive sampling for association rules. How big the initial

sample should be, and how the next sample size is calculated are two

questions for which there are no theoretically sound answers. The selection

of the initial sample size and the incremental method are very much

subjective and experimental in nature. Since the frequent itemsets

calculations are expensive, progressive sampling that involves several

29

samples may defeat the purpose of sampling as frequent itemsets

computations have to be performed on each sample.

2.4.3 Sampling Based on Chernoff Bounds

 Toivonen presents a sampling technique for association rules in (Toivonen,

1996) based on Chernoff Bounds. The idea is to pick a random sample and

use the sample to find all association rules that probably hold in the whole

database, and then verify the results with the rest of the database.

The sample size � is determined based on Chernoff Bounds (Alan and

Spencer, 1992) for a given error bound N and the maximum probability ` for
an error exceeding the error bound:

 � 7 12N	 ln 1̀ (2.25)
In order to uncover all frequent itemsets in the sample, the support threshold

is lowed to

 C� " CE ! � 12� ln 1̀ (2.26)
The main steps of the algorithm are as follows.

1. Draw a random sample - of size � from the database;

2. Calculate frequent itemsets in - using the lowered support

threshold;

3. Scan the database. If an itemset is frequent in the sample

according to lowered support threshold, and is also frequent in the

database based on the support threshold, then output the itemset.

The algorithm needs to scan the original database to verify frequent itemsets

discovered in the sample. It is not an algorithm purely working on samples to

get estimated results. The sample size based on the Chernoff Bounds is also

very conservative (Zaki et al., 1997). In this thesis, sample sizes are derived

30

based on the binomial distribution and the central limit theorem, which is

much smaller than that based on Chernoff Bounds, yet still provides the

same approximation guarantees.

2.5 Summary

In this chapter, the definitions of terms relating to transactional database,

data streams, association rules and clustering are provided. The previous

research in clustering and association rules mining that are closely related to

this research are reviewed, including the existing similarity measures for

transactional data, the time window models for data stream mining,

algorithms for transactional database clustering, and sampling techniques for

association rules mining.

31

Chapter 3

Clustering Transactional Data

Transactional data are often characterized by high cardinality, high

dimensionality and high sparsity. Traditional centroid-based iterative

structure imposing clustering algorithms are not efficient in dealing with very

large databases as they need to scan the databases more than once. High

dimensionality of the transactional database also makes it hard or even

impossible to comprehend the description of a cluster by a centroid-based

algorithm because the centroid is expressed by a
 dimensional vector,

where
 is the dimension of the database.

This thesis aims to develop more effective, efficient and scalable algorithms

for transactional data clustering, and to provide more meaningful descriptions

of clusters. The algorithms will seek the natural cluster structures in the

database rather than impose a cluster structure on the data.

Fewer algorithms for transactional database clustering have been proposed

in the literature compared with that for numeric data. In this chapter, an

incremental structure seeking clustering algorithm is proposed for clustering

very large high dimensional sparse transactional databases. The extensive

testing results show that the algorithm is effective, efficient, scalable and

order insensitive. The descriptions of clusters are expressed in terms of

locally hot items which are easy to comprehend for end users. It seeks

clusters based on the user’s expectations of cluster features. The number of

clusters produced varies as the user’s expectations change.

This chapter is organized as follows. Section 3.1 states the problem to be

solved and Section 3.2 defines a new similarity measure for transactional

32

data. Section 3.3 presents the principles and models for the problem and

Section 3.4 proposes an incremental clustering algorithm INCLUS based on

the new similarity measure and induction principles defined in the previous

sections. Section 3.5 analyzes the complexity of INCLUS while Section 3.6

empirically evaluates INCLUS in terms of effectiveness, order dependency

and scalability. The advantages of newly defined similarity measure are also

tested in Section 3.6. Section 3.7 summarizes the chapter.

3.1 Problem Definition

The problem in this study is as follows: Given a very large high dimensional

sparse transactional database ���, find a partition L � ���, �	, … , ��� of ���
where (�� � �� � �, �� �) and l �� � ��� ��_� such that similar transactions

are in the same cluster, dissimilar transactions are in different clusters, as

well as provide a meaningful description of the clusters.

3.2 A New Similarity Measure

As discussed in Chapter 2, Rao’s Coefficient and Simple Matching

Coefficient take into account negative matches(i.e. items missing in both

transactions) when comparing transactions. For a high dimensional sparse

database, as pointed out in Chapter 2, these measures will lose their

discrimination power. Jaccard Coefficient does not take into account

negative matches, but it still underestimates the similarity between two

transactions when one transaction is not a subset of the other. For example,

for the pair of transactions �� and �(in Example 2.1, -�0 (�� ,�() � 1/4 ,

although 1/2 of the items in �� also appear in �(and 1/3 of items appearing

in �(also appears in �� . In a real life scenario, it is more meaningful to say

that 1/2 of the items in �� appear in �(and 1/3 of items in �(appear in ��
when the two transactions are compared. Based on this perception, a new

similarity measure for transactional databases is defined as given below.

33

Definition 3.1 (Similarity) Let �� and �� be two transactions in a TDB. The
similarity between �� and �� is defined as

 -1��, ��2 � 4�� � ��4max1|��4, |��|2 (3.1)
It can also be expressed as :

 -1�� , ��2 � max(|�� � ��||��| , |�� � ��|4��4) (3.2)
S has the following properties:

0 � -1��, ��2 " 1, ��� � ��
-1��, ��2 � 1, ��� � ��
-1��, ��2 � -1��, ��2

This definition ignores the negative matches and is more suitable for an

application where only the items present in the dataset are of interest, such

as finding customers with similar purchasing patterns in a supermarket

basket data. S indicates that at least S proportion of items in one transaction

is present in the other. For example, if one customer bought {bread, milk,

pen, eraser} and the other bought {bread, milk, lettuce, carrot} from a super

market, S will be 50%. This figure is the same as what we will infer in our

daily life, i.e. 50% of the items bought by the two customers are the same.

On the other hand, if one customer bought {bread, milk, pen, eraser} and the

other bought {bread, milk, lettuce, carrot, apple}, S will be 40%, i.e. at least

40% items in one basket are the same as in the other basket.

The relationship between this newly defined similarity measure and Jacard

Coefficient is as follows: if one transaction is a subset of the other, then - � -�0 , otherwise - # -�0 .

34

3.3 Cluster Representatives and Induction
Principle

3.3.1 Cluster Representatives

As stated in Section 3.1, clustering a transactional dataset is to group similar

transactions together. Since similar transactions must share some common

items, those items are said to be hot in a cluster, i.e. they appear more

frequently in the cluster than the other items. Hence it is meaningful to use

hot items as cluster representative to describe clusters.

Definition 3.2 (Hot items) Let � be a cluster, � be a set of distinct items in �,
and �E \ �0, 1�. Then the hot items in cluster � are defined as
 �JK(�) � �� \ �|M�Nh(�, �)/|�| 7 �E� (3.3)
where M�Nh(�, �) is frequency of item � in � , i.e., the total number of

occurrences of item � in �, and �E is the support threshold above which an
item is considered hot.

Hot items are those items that appear in at least �E percent of transactions in
a cluster.

For the sample database listed in Example 2.1, if �E � 50% , then C, D, E, F

are hot items, if �E � 60%, then E, F are not hot anymore while C, D are still

hot items.

The hot items of a cluster will be used as its cluster representative, also

denoted as �NC . It can be easily seen that �NC may or may not be a

transaction in a cluster. The cluster features will be described by (�NC, |�|)
with frequencies for each item in �NC attached.
 �� � �	 � � and �� � �(� � does not mean �	 � �(� � . For example, in

Example 2.1, �	 � �(� �C, D� � � , �(� �) � �E, F� � �

but �	 � �) � �.

Therefore the pure pairwise similarity approach is no longer suitable for

transactional data (Wang et al., 1999). The choice of cluster representatives

in this thesis overcomes the shortcomings of the pure pairwise similarity

35

approach to some extent. It ensures that if a transaction is assigned to a

cluster, it will have some items in common with at least �E < |��| transactions
in that cluster. In other words, when �� � �	 � � and �� � �(� � hold, �	 � �(� � is very likely to hold.
3.3.2 Induction Principle

As given in (Liu, 1968), for a dataset with � transactions, the number of

distinct ways of partitioning � transactions into � non-empty clusters is given

by

 �(�, �) � 1�!£(!1)��� ¤�� ¥ �� (3.4)�
�_+

Therefore the total number of different ways to partition a dataset is:

 � � £ 1�!£(!1)��� ¤�� ¥ �� (3.5)�
�_+

�
�_�

The goal of clustering is to choose the best partitioning with respect to a

given clustering criterion. Even with today’s computers, the complete

enumeration of every possible partitioning is simply not possible for a large

value of � (Liu, 1968). Consequently, optimization approaches are adopted

for clustering analysis with induction principles applied to resolve

optimization problems. For example, the induction principle of K-Means

algorithm is to “pick the model (set of � representatives) that minimizes the

total squared error” (Estivill-Castro, 2002). The mathematical formulation for

this clustering criterion is

 @���@�¦N P	(�) � £§IAk�
	 (Xz¨̈ ©̈, �NC��
�_� Xz¨̈ ©̈, ��) (3.6)

where §IAk�
(X©, D©) � ∑ �|X� ! D�|�/	��/	��_� is the Euclidean metric; � �
�A�¨̈ ©̈, A	¨̈ ©̈, … , A�¨̈ ©̈� is the set of � centres; and for � � 1,2, … , �, the point �NC�Xz¨̈ ©̈, �� is
the closest point in � to Xz¨̈ ©̈. Equation (3.6) expresses the search for a set � of

36

� representatives, where the partition into clusters is defined by assigning
each Xz¨̈ ©̈ to its representative �NC�Xz¨̈ ©̈, ��.
In this thesis, the model (set of k representatives) that maximizes the total

intra-cluster similarity and minimizes the inter-cluster similarity will be picked

based on the similarity measure proposed in Definition 3.1. The

mathematical formulation for this criterion is

 @iX�@�¦N -(L) � £ £-(���, �NC(��)) (3.7)�ª

�_�
«

�_�

where -(L) is the total similarity of a partitioning, k is the number of clusters

in the transactional database, �� is the number of transactions in cluster �� and ��� is the �-th transaction in �� . �NC(��) is the representative of �� ,
i.e, the set of hot items in �� , it may or may not be a transaction in the

transactional database.

3.4 An Incremental Clustering Algorithm

The incremental clustering approach is popular in dealing with very large

datasets where the cost of multiple scans of a disk resident dataset is too

expensive and the entire dataset cannot be stored in the main memory

because of its size (Kantardzic, 2002). In this Section, an incremental

clustering algorithm (INCLUS) is proposed for very large transactional

database based on the new similarity measure and induction principle

described in the previous sections. The sketch of the algorithm is given in

Figure 3.1.

The algorithm has two input parameters, �E and -E . �E controls how frequent
an item should appear in a cluster to be the cluster representative while -E is
the similarity threshold which controls closeness of transactions in a cluster. -E reflects the users’ expectations on how close the transactions in a cluster
should be. For example, -E � 50% indicates that at least 50% of items in two

transactions should be the same to be considered as similar.

37

Figure 3.1 High Level Description of INCLUS

The algorithm creates a cluster for the first transaction (step 1). For the

remaining transactions (step 2), each transaction � will be compared with

representatives of existing clusters and assigned to an existing or new

cluster to maximize -(L) (step 4). If -1�, �NC(�)2 " -E for all existing clusters,
then a new cluster is created for � . If � is the only cluster where -1�, �NC(�)2 7 -E and is maximum, then � will be assigned to cluster � ;

otherwise � will be added to the one with the least number of transactions in

order to balance the sizes of clusters. Once a transaction is assigned to a

new cluster or an existing cluster, the representative of the cluster will be

updated(step 5).

A histogram is kept for each cluster in the main memory. When a new

transaction is added or deleted, the histogram is updated. The hot items are

those items in the histogram whose frequency is greater than or equal to �E < |�| and can be easily computed from the histogram.

Algorithm 3.1: INCLUS

 Input: dataset ���, �E , -E
 Ouput: cluster features of each cluster

1. create a cluster with the first transaction

2. while not end of the file do

3. read the next transaction �

4. allocate � to an existing cluster or a new cluster to maximize -(L)
5. update �NC for the most recently modified cluster

6. endwhile

6. output cluster features

38

3.5 Complexity of INCLUS

As a histogram is kept for each cluster in the main memory, and so the

space usage is n(� <
) in the worst case, where � is the number of clusters

and
 is the dimension of a ���. The space requirement is very small since

only the histogram is kept for a cluster. Since the algorithm is non-iterative,

the processing time is n(�), where � is the total number of transactions in a ���.
3.6 Evaluation of INCLUS

In this section, the effectiveness of INCLUS is evaluated and compared with

LargeItem (Wang et al., 1999) and CLOPE (Yang et al., 2002). CLOPE is

provided by its authors and LargeItem is implemented by the author of this

thesis based on the algorithm described in (Wang et al., 1999). LargeItem

and CLOPE are chosen for comparison because both of them are designed

for transactional databases and based on the same philosophy as INCLUS,

i.e. to seek clusters according to the user’s expectation on the closeness of

transactions in a cluster rather than to force the algorithm to find a certain

number of clusters as for K-Means and its variants.

The experiments are performed on the labeled congressional Vote and

Mushroom datasets (Blake and Merz, 1998) to evaluate the effectiveness

and order-dependence properties of the proposed algorithm. These labeled

datasets are widely used in the literature, such as (Wang et al., 1999; Guha

et al., 2000b; Yang et al., 2002; Wang and Karypis, 2004), for evaluation

purposes.

Vote dataset is the record of 1984 United States Congressional Votes. It has

435 records, 168 for Republicans and 267 for Democrats. Each record

contains the voter’s affiliation (Republican or Democrat) and the answers of

‘y’(yes) or ‘n’(no) to 16 issues. In other words, Vote is a labeled categorical

dataset with 16 categories and each category has two values ‘y’ or ‘n’. The

249th record is deleted before clustering since all its values are missing.

39

Mushroom is a categorical dataset with 22 categories and 116 values in total.

It contains 8,124 records with class label ‘e’ (for edible) or ‘p’(for poisonous)

for each record. 4,208 edible mushrooms and 3,916 poisonous mushrooms

are recorded in the dataset.

Vote and Mushroom are converted to transactional datasets using the

method mentioned in (Han and Kamber, 2000): treating each value of a

category as an attribute of a transaction. Therefore, Vote is converted to a

transactional dataset with 32 attributes while Mushroom is converted to a

transactional dataset with 116 attributes. All the missing values are ignored.

The class labels of these datasets are not used in clustering but used for

evaluating the effectiveness of clustering algorithms.

The real life unlabelled transactional dataset BMSPOS is used to test the

scalability of the proposed algorithm.

 Meanings of symbols used in the tables and figures in this section are:

|C|min, |C|max - the cardinalities of the smallest and the biggest clusters,

respectively.

�E - support threshold,
-E - similarity threshold,

k - number of clusters.

3.6.1 Effectiveness of INCLUS

Effectiveness of the proposed algorithm is evaluated in terms of impurity

(defined below).

Transactions in each cluster may belong to different classes if the cluster is

not pure. The dominant class of a cluster is the class of the majority

transactions. For instance, if a cluster contains 100 types of mushrooms,

where 95% of them are edible while the rest are poison ones, then “edible” is

the dominant class of the cluster. The number of transactions of a dominant

40

class in cluster �� is denoted as ¬�. Purity is defined as ∑ ¬���_� in (Yang et

al., 2002) to evaluate the quality of clustering. In this thesis, impurity N is
defined as follows to measure the quality of clustering:

 N � 1 ! £ ¬�� (3.8)�
�_�

where n is the total number of transactions in a dataset, � # � 7 2 and N \ �0, 1). In the context of supervised classification, N is the proportion of
transactions being misclassified.

The impurity cannot be defined when � � 1 because when all the

transactions are in the same cluster, it is impossible and inappropriate to

determine if a given transaction is misclassified or not. In the best case, all

the transactions in a cluster belong to the same class and N � 0.
In this section, the effectiveness of INCLUS will be tested and compared with

CLOPE and LargeItem.

For a fair comparison, the same methodology is used as in (Yang et al.,

2002), i.e. different values for input parameters are tried for each algorithm

so that the same or very similar number of clusters are obtained by all the

algorithms. For the Vote dataset, when �E � 60% and -E � 30% for INCLUS, �E � 60% and m � 1 for LargeItem and � � 1.5 for CLOPE, all these

algorithms obtain two big clusters which contain more than 99.8% of the total

number of records. Table 3.1 illustrates the clustering results by these

algorithms. The impurities are 12.9%, 20.3% and 16.8% for INCLUS,

LargeItem and CLOPE, respectively. It shows that INCLUS produces better

quality clusters for Vote than other algorithms.

It is noticed that the 108th and the 184th voting records are very different from

the others: they only vote one ‘y’ for all the 16 issues while about 90% of

members vote ‘y’ for 6 to 10 issues. The two distinguished (abnormal) votes

are picked up by INCLUS and are assigned to two separate singleton

clusters. CLOPE and LargeItem did not pick them up (The singleton cluster

produced by CLOPE consists the 341th record).

41

Table 3.1 Testing Results for Vote

 Cluster ID Democrat Republican e(%)

INCLUS

1
2
3
4

49
217
0
1

159
7
1
0

12.9

LargeItem

1
2

87
180

166
1

20.3

CLOPE

1
2
3

71
195
1

165
2
0

16.8

The cluster features gives another view of the quality of clustering. Table 3.2

illustrates the frequent items in two big clusters produced by INCLUS in

Table 3.1. It shows the clustering qualities from another angle. The number

following Y (or N) denotes the number of votes with ‘y’ (or ‘n’) for a particular

issue. For example, the second line of the table tells that 216 out of 224

members in cluster 1 vote ‘y’ to “aid-to-Nicaraguan-contras” while 172 out of

208 members in cluster 2 vote ‘n’ for the issue. It can be seen that the

majority of members in the two clusters have opposite points of view on 11

issues, such as handicapped-infants, physician-fee-freeze, etc. Thus the two

clusters are well separated. Frequent items in two big clusters obtained by

CLOPE and LargeItem are the same as that by INCLUS, but the number of

transactions in each cluster and the frequency of each item are different.

As for Vote, different parameters were tried for the three algorithms to get as

similar a number of clusters as possible for the Mushroom dataset for

comparison purposes. Table 3.3 presents the results for a set of parameters

using which a similar number of clusters are produced by the three

algorithms. Table 3.4 is the results for another set of parameters. The

number of clusters, the cardinality of the biggest and the smallest clusters,

and the impurity using each of the three algorithms are shown in those

tables.

42

It can be seen from the above results that INCLUS is effective in clustering

transactional data though it takes only one pass over the dataset while

CLOPE and LargeItem iteratively scan the dataset many times.

Table 3.2 Cluster Features for Vote by INCLUS

Cluster ID C1 C2

Cardinality 224 208

aid-to-nicaraguan-contras Y(216) N(172)

physician-fee-freeze N(212) Y(169)

adoption-of-the-budget-Resolution Y(208) N(158)

el-salvador-aid N(202) Y(197)

anti-satellite-test-ban Y(200) N(163)

education-spending N(190) Y(152)

x-missile Y(184) N(181)

superfund-right-to-sue N(177) Y(174)

crime N(162) Y(194)

export-administration-act-south-africa Y(157)

duty-free-exports Y(154) N(176)

handicapped-infants Y(143) N(161)

religious-groups-in-schools N(139) Y(194)

synfuels-corporation-cutback N(156)

43

Table 3.3 Testing Results for Mushroom with One Set of Parameters

Features INCLUS

(�E � 60%, -E � 45%)
LargeItem

(�E � 60%,m � 4)
CLOPE

(� � 1.2)
� 11 10 10

|C|min 8 53 24

|C|max 1828 3359 2563

e(%) 4.0 12.2 9.0

Table 3.4 Testing Results for Mushroom with other Set of Parameters

Features INCLUS

(�E � 60%, -E � 30%)
LargeItem

(�E � 60%,m � 1)
CLOPE

(� � 1.5)
� 25 25 27

|C|min 8 8 1

|C|max 1558 1728 1726

e(%) 0.7 4.8 0.4

The test results listed in Tables 3.3 and 3.4 also show that INCLUS is

structure seeking rather than structure imposing. It produces a certain

number of clusters based on the users’ expectations of closeness of

transactions in a cluster which is controlled by the corresponding input

parameters.

44

3.6.2 Order-dependence Property of INCLUS

Order-dependence is an important property of incremental clustering

algorithms. An algorithm is order independent if it generates the same

partitioning for any order of transactions in a dataset. Most of the incremental

algorithms are order-dependent (Jain et al., 1999). Here, the order-

dependence property of INCLUS is to be tested and compared with that of

LargeItem and CLOPE by rearranging the order of records in the tested

datasets. Vote-Random is the data file obtained by randomly shuffling the

records in Vote. Vote-Sorted is the sorted file using the Unix sort facility. In

Vote-Sorted, the first 267 records are for Democrats while the rest are for

Republicans. Vote_Sorted should be very powerful data order rearrangement

for order-dependence testing. Tables 3.5 and 3.6 illustrate the test results on

Vote_Random and Vote_Sorted, respectively. The input parameters for each

algorithm are the same as those for Vote. By comparing Tables 3.1, 3.5 and

3.6, it can be seen that INCLUS is not sensitive to the order of transactions.

Tests on several other datasets obtained by shuffling Vote led to the same

conclusions.

Order-dependence test was also performed on the Mushroom dataset. The

figures for the original Mushroom dataset are used as the base for

comparison. Transactions in Mushroom are shuffled to get 4 datasets,

named as Rd_1 to Rd_4. Another dataset Sorted is obtained using Unix sort

facilities. Thus the first block of transactions in Sorted is for edible

mushrooms while the rest is for poisonous ones. Using the same input

parameters as that in Table 3.3, INCLUS got the results as shown in Figures

3.2 and 3.3.

While the order of transactions changes, the biggest changes of k for

INCLUS, LargeItem and CLOPE, are 4, 10 and 40, respectively. Similarly,

the biggest change in impurity is 4.48% for INCLUS while that for LargeItem

and CLOPE are 15% and 33.6%, respectively. The biggest changes of |C|min

are 41, 49 and 40 and the biggest changes of |C|max are 158, 2732 and 2256,

respectively.

45

Table 3.5 Testing Results for Vote_Random

 Cluster ID Democrat Republican e(%)

INCLUS

1

2

3

4

49

217

0

1

159

7

1

0

12.9

 LargeItem

1

2

60

207

157

10

16.1

CLOPE

1

2

3

4

264

1

1

1

167

0

0

0

38.5

Table 3.6 Testing Results for Vote_Sorted

 Cluster ID Democrat Republican e(%)

INCLUS

1

2

3

4

5

206

0

60

1

0

8

150

8

0

1

3.7

LargeItem

1

2

57

210

160

7

14.8

CLOPE

1

2

3

4

5

63

48

70

85

1

77

55

1

20

10

30.6

To sum up, as the order of transactions are changed, the quality of clustering

by INCLUS is better sustained than the other algorithms with respect to the

number of clusters, the size of clusters and impurity.

46

Figure 3.2 Changes of Number of Clusters while the Order of

Transactions Changes

Figure 3.3 Changes of Errors while the Order of Transactions Changes

0

10

20

30

40

50

Mush Rd_1 Rd_2 Rd_3 Rd_4 Sorted

Datasets

e
(%

)

INCLUS

largeItem

CLOPE

0

10

20

30

40

50

Mush Rd_1 Rd_2 Rd_3 Rd_4 Sorted

Datasets

k

INCLUS

largeItem

CLOPE

47

3.6.3 Scalability of INCLUS

BMSPOS is a high dimensional sparse real life dataset. INCLUS obtained

1906 clusters when �E � 30% and -E � 20% . The biggest cluster has 2728

transactions while the smallest one has only 1 transaction. Cluster features

of the five largest clusters are shown in Table 3.7. It can be seen that

common items are shared among clusters. It is consistent with the real life

scenario: some items are very popular regardless of which group a customer

belongs to. For example, in a grocery store, milk and bread are such items.

The results also show that INCLUS can discover clusters with overlapping

items.

Table 3.7 Clustering Results for BMSPOS

Cluster ID |Ci| Hot items

1 2728 2, 4 ,9, 10, 11, 24, 31, 34, 35, 36, 37, 38, 43, 54, 63,

64, 66, 71, 82, 93

2 2722 2, 4, 9, 10, 11, 31, 36, 37, 43, 54, 110, 128, 173, 174,

230

3 2378 2, 4, 9, 10, 11, 24, 31, 34, 35, 36, 37, 43, 54, 63, 64,

66, 82, 93, 97, 99, 158

4 2368 2, 4, 9, 10, 11, 12, 13, 24, 31, 34, 35, 36, 37, 43, 48,

54, 62, 63, 64, 66, 82, 93, 97, 158

5 2354 2, 4, 9, 10, 11, 12, 17, 24, 31, 34, 35, 37, 43, 62, 75, 82

To test the scalability property of the proposed algorithm, 9 random samples

of 10%, 20%, … 90% of transactions in the original BMSPOS dataset were

used and the testing results are shown in Figure 3.4. It can be seen that the

data processing time is linear to the size of the dataset as analyzed in

Section 3.5, i.e. INCLUS is scalable.

48

Figure 3.4 Scalability Testing Result

3.6.4 Advantage of Using the New similarity Measure

Since the new similarity measure is designed particularly for high

dimensional sparse transactional data, Mushroom is chosen as a test

dataset because its dimensionality and sparsity are higher than Vote.

The advantage of the newly defined similarity measure is tested on

Mushroom using INCLUS equipped with different kinds of similarity

measures. Testing results for �E � 60% and -E � 45% are shown in Table
3.8. It can be seen that all the transactions are assigned to a singleton

cluster by using Rao’s Coefficient -50 (i.e. all transactions are in the same

cluster). On the other hand, each transaction is assigned to a different

singleton cluster by using Simple Matching Coefficient SMC (i.e. every

transaction is a cluster). It confirms the previous analysis in Chapter 2. It

produces 11 clusters with N � 4.0% when - , the new defined similarity

measure in this thesis, is applied. When Jacard Coefficient -�0 is used, it
produces 16 clusters with N � 3.7%. A good clustering should produce as

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

ru
n
ti
m
e
(x
1
K
 s
e
c
.)

size of datasets(x51560)

49

few clusters as possible and has as low an impurity as possible. Hence it can

be concluded that - has superior discriminating power than -�0 .
Table 3.8 Comparison of Similarity Measures

Features - -�0 -50 -./0
k 11 16 8124 1

|C|max 1828 1729 1 8124

e 4.0% 3.7% 0 not defined

3.7 Summary

In this chapter, a new similarity measure and a new notion of cluster

representative were proposed for high dimensional sparse transactional

datasets. An incremental algorithm was then presented based on these

definitions for clustering very large transactional datasets. The algorithm is

structure seeking rather than structure imposing. It produces a certain

number of clusters based on the user’s expectations on the closeness of

transactions in a cluster. To get good clustering results, the users do not

need to know the structure of the data in terms of the number of clusters

existing in the data. An intensive empirical study shows that the new

algorithm INCLUS is not only effective, efficient and scalable, but also

insensitive to the order of transactions, which is crucial for an incremental

algorithm. Since it is a one-pass algorithm, it can be extended for clustering

data streams.

50

Chapter 4

Clustering Transactional Data

Streams

The challenge of designing algorithms for data stream mining is three fold:

(1) the algorithm is subject to sequential one-pass constraint over the data;

(2) it must work under limited resources with respect to the unlimited data

stream; (3) it should be able to reveal changes in the data stream over time.

For a finite statically stored dataset, the clustering problem is defined as

follows: Given a set of data points, partition them into groups so that similar

objects are in the same group according to a predefined similarity measure

or objective function. In data stream settings, the set of data points to be

studied is application dependent. It can be the whole data stream or a part of

it depending on the purpose of clustering. As mentioned in Chapter 2, four

prominent models have been proposed to filter the data points to be studied

in data stream environments : landmark model (Guha et al., 2003), sliding

window model (O'Callaghan et al., 2002; Babcock et al., 2003) ; tilted time

window model (Giannella et al., 2003) and pyramidal time window model

(Aggarwal et al., 2003) .

In this chapter, the problem of clustering evolving transactional data streams

is studied. Firstly, an equal-width time window model is proposed where the

width of the window is the minimum granularity of interest for a particular

application. Clustering snapshots need to be stored only for the minimum

granularity from which the clustering for coarser granularities can be

computed. Clustering can be obtained for the same or a higher level and the

changes in clustering at different granularities can be evaluated. Secondly,

51

an elastic window model is proposed where the size of windows is adaptively

resized based on the changes in clustering. In doing so, large amount of

computing resources (memory and disk space) is saved in most cases and

yet sufficient summary information is maintained to answer time sensitive

queries at different time granularities.

Algorithms specific to transactional data stream clustering is designed. It

incorporates INCLUS (Li and Gopalan, 2006a), an algorithm suitable for high

dimensional sparse transactional data, into the equal-width time window

model and elastic time window model so that changes over the data stream

can be computed within the limited resources. The empirical results show

that the algorithms are efficient and scalable.

The rest of the chapter is organized as follows. The framework for clustering

transactional data streams is described in Section 4.1 and the corresponding

algorithms are presented in Section 4.2. Section 4.3 describes the

experimental results and Section 4.4 provides a summary of the chapter.

4.1 The Framework for Clustering
Transactional Data Stream

A transactional data stream � consists of transactions ��, �	, �(, … over a

set � of
 distinct items (attributes) arriving at time K�, K	, K(, …. Clustering

transactional data is to partition the transactions into groups so that similar

transactions are in the same cluster and dissimilar transactions are in

different clusters.

In the data stream settings, people are more interested in the changes in the

data stream. Mining changes in data streams is one of the core issues in

data stream mining (Dong et al., 2003). Aggarwal et al. (Aggarwal et al.,

2003) propose a framework for clustering evolving data streams. It splits the

clustering process into an online micro-clustering component which is subject

to a one-pass constraint and an offline macro-clustering component which is

not constrained. In this chapter, a clustering algorithm for transactional data

streams is developed based on the same framework.

52

As pointed out in (Aggarwal et al., 2003), the separation of the clustering

process into online and offline components raises the following questions:

1. What kind of summary information is to be stored?

2. When should the summary information be stored away on disk?

3. How can the summary information be used to reveal the changes in

the data stream?

It is noted that the answer for the first question depends on the data and the

induction principles for clustering. For example, CluStream which deals with
-dimensional numeric data using K-Means, keeps the summary information

as the sum of squared data values and sum of data values for each

dimension, sum of squares of the time stamps and sum of time stamps for

data points in the cluster, and the number of transactions in a cluster. The

summary information kept by CluStream is the temporal extension of cluster

feature vectors (Zhang et al., 1996) which is appropriate for numeric data

streams. In this chapter, the summary information to be stored will be the

temporal extension of cluster features defined in INCLUS (Li and Gopalan,

2006a), where the cluster features are described by the histogram of the

cluster, start and finish time at which the cluster is computed, and the

number of transactions. Cluster representatives are implicitly recorded in the

histogram. The temporal extension of cluster features is called cluster

snapshot which is defined below.

Definition 4.1. (Cluster snapshot). A cluster snapshot for a set of

transactional data points in a time window m is �1s, K., K­ , �2, where s is

the histogram of the cluster �, K. and K­ are the start and finish times of the

window, and � is the total number of transactions in the cluster.

The cluster representative (i.e. hot items) is implicitly recorded in the

histogram of a cluster. In the histogram, items with M�Nhuency # �E < |�|
make up the cluster representative.

53

Definition 4.2. (Clustering snapshot). The clustering snapshot is the set of

cluster snapshots for a time window.

Based on these two definitions, it can be easily seen that the clustering

snapshot has following properties.

Additive property 4.1. Let ��1s�, K.�, K­�, �� 2 and �	(s	, K.	, K­	, �) be
two clusters in different clustering snapshots. If K­� � K.	 , then the cluster
features of � � �� � �	 is �1s� , s	, K.�, K­	, �� , �	2.

Additive property 4.2. Let ��1s�, K.�, K­�, �� 2 and �	(s	, K.	, K­	, �) be two
clusters in the same clustering snapshot, i.e. K.� � K.	 � K. and K­� � K­	 � K­ ,
then the cluster features of � � �� � �	 is �1s� , s	, K., K­ , �� , �	2.
Property 4.1 can be applied when merging clusters in two consecutive time

windows while property 4.2 can be used to merge two similar clusters in the

same time window.

The time interval at which summary information is to be stored onto the disk

is also application dependent. For the supermarket basket data, keeping

clustering snapshot at week level might be enough as promotions are often

run on a weekly bases. For air traffic control, finding cluster changes in the

air probably need to be based on seconds.

Definition 4.3. (Clustering granularity). Clustering granularity is the time

period upon which clustering is performed.

For example, if clustering is performed every hour on the data points that

arrived within the hour, the clustering granularity is an hour.

Definition 4.4. (Minimum clustering granularity). For a given application,

the minimum granularity is the time period upon which the summary

information is to be maintained to enable the time sensitive queries at the

same or coarser granularities.

54

The minimum clustering granularity should be determined based on the

nature of an application. For example, in order to analyze stock price

changes within a week, a month or a year, daily price should be recorded,

i.e. the minimum granularity should be a day.

To answer the second question, CluStream stores clustering snapshots

based on the pyramidal time frame (Aggarwal et al., 2003). In doing so, the

disk space requirement is reduced by trading off accuracy. Snapshots are

classified into different orders from 1 to PJj(�), where � is the time elapsed

since the beginning of the stream. Each snapshot of the i-th order is taken at

a moment in time when the time elapsed is i� and only the last i , 1
snapshots are stored for each order.

An equal-width time window model (Figure 4.1a) is proposed in this thesis

where the width of each window is equal to the minimum clustering

granularity. The additive properties of cluster snapshots ensure that

clustering for coarser time granularity can be obtained from the results of the

minimum granularity.

The additive properties of cluster snapshots also indicate that it is not

necessary to store snapshots for every window of the finest granularity;

consecutive windows with same clustering features can be merged to save

disk space, thus making the window size stretchable. So it is called the

elastic window model (Figure 4.1b). In the worst case, the elastic window

model will have the same number of clustering snapshots as for the equal-

widrh window model when clustering features for any pair of consecutive

windows are different. In the best case, only one clustering snapshot is

stored when clustering features do not change over time.

Since the clustering snapshots are recorded on disk, it is possible to analyze

the changes of clusters during the course of the data stream. For example,

two clustering snapshots can be compared to evaluate changes in the

number of clusters, the relative size of clusters and the cluster

representatives.

55

4.2 Algorithms for Clustering Transactional
Data Stream

In this section, algorithms for mining transactional data streams will be

presented. Each algorithm consists of an online micro-clustering module and

an offline macro-clustering module. The online micro-clustering module gets

clusters for each window and store them on the disk, the offline component

discover changes over the data stream based on the results of online

module. Two versions of the online clustering module are proposed by

incorporating INCLUS with the equal-width window model and the elastic

window model, respectively. The latter uses less memory and saves a lot of

disk space, and yet provides good approximations.

Algorithm CluTranStream_EQ is based on the equal-width window model.

Clustering snapshots will be written to disk at the end of each window.

Algorithm CluTranStream_EL is based on the elastic window model. Except

for the first window, the clustering snapshot will be stored to disk when

changes occur. The online components of these algorithms are shown in

Figure 4.2 and 4.3 respectively while the common offline component for both

algorithms is shown in Figure 4.4.

 0 t 0 t

(a) equal-width window model (b) elastic window model

Figure 4.1 New Models for Data Stream Processing

56

Figure 4.3 Online Component for CluTranStream_EL

Algorithm 2: Online Component of CluTranStream_EL

Input: minimum support, minimum similarity, width of window

Output: clustering snapshots

1. create a cluster with the first transaction;

2. while not the end of the first window do

3. read the next transaction T;

 4. allocate T to an existing cluster or a new cluster to maximize S(P);

 5. update the cluster representatives of the modified cluster;

 6. endwhile

7. write clustering snapshots to disk;

/* for the rest of the data stream */

8. read next transaction T;

9. if T cannot be assigned to an existing cluster then

10. write clustering snapshots to disk;

 create a new cluster for T;

11. else

 allocate T to an existing cluster;

12. repeat 8-12;

Algorithm 1: CluTranStream_EQ Online Component

Input: minimum support, minimum similarity, width of window

Output: clustering snapshots

1. create a cluster with the first transaction

2. while not the end of the first window do

3. read the next transaction T;

 4. allocate T to an existing cluster or a new cluster to maximize S(P);

 5. update the cluster representatives of the modified cluster;

 6. endwhile

7. write clustering snapshots to disk;

Figure 4.2 Online Component for CluTranStream_EQ

57

4.3 Evaluation of the Algorithms

In this section, the proposed algorithms are evaluated in terms of accuracy,

performance and scalability. The tests were performed on the online

component only.

4.3.1 Test Datasets

Mushroom (Blake and Merz, 1998) is a categorical dataset with 22

categories and 116 values in total. It contains 8,124 records with class label

‘e’ (for edible) or ‘p’(for poisonous) for each record. 4,208 edible mushrooms

and 3,916 poisonous mushrooms are recorded in the dataset. Mushroom is

converted to transactional data using the method mentioned in (Han and

Kamber, 2000). All the missing values were ignored. The class labels of

these datasets were not used in clustering but were used for evaluating the

effectiveness of the clustering algorithms.

BMSPOS (Zheng et al., 2001) is a real life high dimensional sparse

transactional dataset which contains point-of-sale data from an electronics

retailer. It has 515596 transactions, 1657 distinct items with an average 7.5

Algorithm 3: Offline Macro-Clustering Component

Input: micro-clusters, period1, period2.

Ouput: clustering features for period1 and period2.

1. for each query period i

2. get all the clustering snapshots for the period;

3. compute clustering for period i according to property 1 and user input

support and similarity thresholds;

4. endfor

Figure 4.4 Offline Macro-Clustering Component

58

items per transaction. This dataset is used to test the scalability of the

algorithms.

To test the scalability of the algorithm, some synthetic datasets are

generated using the IBM synthetic data generator. Some datasets have the

same number of transactions (10,000) but different number of attributes

ranging from 500 to 4000, and some datasets with same number of attributes

(1000) but different number of transactions in the range of 100K to 500K.

4.3.2 Testing Results

First the accuracy and performance of CluTranStream_EQ are tested using

the Mushroom dataset by treating it as a data stream, i.e. each record in the

dataset is read in the sequence as it appears and read only once. Assume K is the total time it takes for the 8120 records past the reader at a constant

rate and the minimum granularity is K/10, then the whole stream(8120

records) can be divided into 10 windows, each having 812 transactions. The

input parameters for INCLUS are (�E � 100% , -E � 60%), where �E and -E are support and similarity threshold, respectively. �E � 100% will ensure

that some items are shared by all the transactions in the cluster. Impurity (Li

and Gopalan, 2006a) is used as the measure of accuracy. The result is

shown in Table 4.1. It can be seen that the clustering features are changing

over time. In the first window, there are 22 clusters while in the fourth window

there are only 6 clusters. The speed of processing the dataset is about 2000

records per second.

Table 4.1 Testing Results for Mushroom

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 � 22 20 16 6 7 14 15 19 11 15

e(%) 7.9 0.7 0.7 0 0.1 0.9 2.6 0.7 0 0

t(s) 0.58 0.59 0.44 0 0.13 0.41 0.41 0.48 0.29 0.6

 Note: Wi - ith window , k-number of clusters, e-impurity, t-runtime

59

It can be seen from Table 4.1 that the average error is 1.36%, lower than that

for any combination of micro-clusters and window sizes reported for

SCLOPE(Ong et al., 2004).

In order to compare the disk space usage by equal-width window model and

elastic window model, a new database was obtained by appending

Mushroom dataset to itself 7 times to model a data stream where underlying

data generation mechanism does not change. The input parameters were �E � 60% , -E � 45% , and window size is 8124, the size of Mushroom

dataset. As expected, only two clustering snapshots were stored to disk for

the elastic window model. The disk space was largely reduced by using the

elastic window model.

To do the scalability test, the whole dataset was treated as the content of

one window. Figure 4.5 illustrates the scalability test with respect to the

number of transactions and the number of attributes using synthetic data.

Figure. 4.5a shows results of scalability testing with respect to the number of

transactions. Five synthetic datasets are used for the test. All the datasets

have 1000 attributes, but with 100K, 200K, 300K, 400K and 500K

transactions, respectively. It can be seen that the algorithm scales up as the

number of transactions increase. Figure 4.5b shows results of scalability

testing with respect to the number of attributes in the dataset. Eight datasets

with 10K transactions are used for the test. The number of attributes in those

datasets is 500, 1000, 1500, 2000, 2500, 3000, 3500 and 4000. It can be

seen that the algorithm scales up as the number of attributes increases.

Figure 4.6 shows the scalability test on the real dataset BMSPOS given (�E � 10%, -E � 10%) . Processing speed for this dataset is more than 1000

records per second. It shows again that the algorithm is scalable with respect

to the number of transactions in datasets.

60

 Figure 4.5 Scalability Test Using Synthetic Datasets

Figure 4.6 Scalability Test on BMSPOS

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

number of transactions(x51560)

ru
n
ti
m

e(
se

c.
)

0

50

100

150

200

250

0.5 1.5 2.5 3.5

number of attributes(x1k)

(b)

ru
n
ti
m

e(
se

c.
)

)

0

2

4

6

8

1 2 3 4 5

number of transactions(x100k)

(a)

ru
n
ti
m

e(
x
1
k
 s
ec

.)

se
c.

)

61

4.4 Summary

In this chapter, an equal-width time window model and an elastic time

window model are proposed for the cluster analysis of data streams. The

incremental transactional data clustering algorithm INCLUS are incorporated

into these models in order to detect clustering changes at different

granularities.

The width of a window in the equal-width time window model is set to the

minimum granularity of interest for a particular application. In doing so,

clustering can be obtained for the same or a coarser granularity, and hence

the changes in clustering at different granularities can be evaluated. The

original size of an elastic window is set to the minimum granularity, and then

resized, if applicable, based on the changes in clustering. A large amount of

computing resources (memory and disk space) is saved in most cases and

yet sufficient summary information is maintained to answer time sensitive

queries at different time granularities. The empirical results show that the

algorithms are efficient and scalable.

62

Chapter 5

Sampling Large Databases for

Association Rules

Although the main purpose of sampling a static large disk resident database

is to reduce the amount of data to be mined, sampling seems to be the only

choice for processing a data stream where data flows at a rate faster than it

can be processed (Babcock et al., 2002). Motivated by sampling data

streams for mining association rules, this thesis investigates effective

sampling methods that not only require small sample sizes but also provide

approximation guarantees.

In this thesis, the datasets are randomly sampled by replacement and the

sufficient sample size is derived using binomial distribution and the central

limit theorem (CLT). The accuracy of the new sampling approach is

theoretically analyzed and its effectiveness is evaluated on both dense and

sparse datasets. Methods for reducing false positives and false negatives of

frequent itemsets are also discussed.

The rest of this chapter is organized as follows: A theoretical analysis of

random sampling for association rules is presented in Section 5.1 and the

experimental evaluation shown in Section 5.2. Section 5.3 discusses the

methods for reducing errors and Section 5.4 provides a summary of this

chapter.

5.1 Sampling Techniques for Association
Rules Mining

In the context of sampling large databases for association rules, a

transaction database ��� of size � is the population to be studied, and a

63

sample is a subset of ��� that consists of � transactions selected from the

population of size �. A sampling method is proposed for mining association

rules in this section, along with the derivation of the sufficient sample size

using binomial distribution and central limit theorem. An analysis of the

accuracy of itemset supports computed from a random sample is also given.

5.1.1 Random Sampling of a Database with
Replacement

There are two kinds of random sampling methods, random sampling with

replacement and random sampling without replacement (Thomson, 1992).

Random sampling without replacement obtains a sample of size � by

selecting � units from the population and at each step every unit in the

population not already selected has an equal chance of being selected.

Sampling with replacement obtains � units independently and at each step
every unit in the population has an equal chance of inclusion in the sample.

A process is called a Bernoulli process if it meets the following criteria

(Walpole et al., 1998):

The experiment consists of � repeated trials;
Each trial results in an outcome that may be classified as a success or a

failure;

The probability of success, denoted by C , remains constant from trial to trial;

The repeated trials are independent.

In this thesis, a transactional database is sampled by sampling with

replacement so that the process of selecting � transactions out of �

transactions has all the properties of a Bernoulli process:

There are � trials;

64

There are only two complementary outcomes for each trial: an itemset

appears or does not appear in a trial. The probability C of an itemset

appearing remains the same from trial to trial;

Let h denote the probability that an itemset does not appear in a trial,

then h � 1 ! C ;
Each trial is independent. The probability of a transaction being

selected in a trial is independent of which transactions have been

selected in the previous trials.

The number of times * that an itemset appears in � Bernoulli trials (i.e. the
number of times * an itemset appears in a sample), is a binomial random

variable and the probability distribution of this discrete random variable

follows the binomial distribution (Mendenhall and Sincich, 1992).

If we denote outcomes of the �th trial as *�(� � 1, 2, … , �) where *� � 1 if an
itemset appears, and *� � 0 if an itemset does not appear, then the number

of appearances of an itemset in the sample is

 * � £*� (5.1)�
�_�

Therefore L. � */�, the support of an itemset in the sample, is the sample

mean. L. is an unbiased estimator of C (Mendenhall and Sincich, 1992).

5.1.2 Determining the Sufficient Sample Size

According to the central limit theorem (CLT), when the sample size is large, L. is approximately normally distributed with mean Y � C and variance ²	 � Ch/� (Mendenhall and Sincich, 1992). The normal distribution of L. can
be transformed to standard normal distribution of a standard random variable

 ³ � L. ! Y² � L. ! C´Ch/� (5.2)

65

Therefore we can assert that the probability that ³ lies in �!³�/	, ³�/	� is 1 ! �:
 Pr1!³�/	 " ³ " ³�/	2 � 1 ! � (5.3)
where ³�/	 is the ³ value above which the area under the standard normal

curve is �/2 . 1 ! � is called confidence coefficient in (Mendenhall and

Sincich, 1992) and we call it “confidence level” since it represents the

degree of confidence that ³ lies in �!³�/	, ³�/	� . We can derive the following

equation from Equations (5.2) and (5.3):

 Pr1L. ! ³�/	´Ch/� " C " L. , ³�/	´Ch/�2 � 1 ! � (5.4)
Because the normal curve is symmetric, Eq.(5.4) can be decomposed into

 Pr1C # L. , ³�/	´Ch/�2 � �/2 (5.5)
and

 Pr1C " L. ! ³�/	´Ch/�2 � �/2 (5.6)
Let’s denote the differences between the estimated support of an itemset in a

sample Q� and its support in the original database ��� as ∆C � |L. ! C| ,
then Eq. (5.4) can be rewritten as

 Pr1∆C " ³�/	´Ch/�2 � 1 ! � (5.7)
Given an error bound N and the confidence level 1 ! � , we must choose

sample size � such that
 ∆C " ³�/	´Ch/� � N (5.8)
Thus we have

 � 7 ³�/		 ChN	 (5.9)

66

For an itemset with support C, Eq. (5.9) will give the sufficient sample size

that can estimate C with 1 ! � confidence that an error will not exceed N.
Since Ch has the maximum value of 1/4 when C � h � 1/2, if we choose
 � 7 ³�/		

N	 , (5.10)
then we will be at least 1 ! � confident that ∆C will not exceed N.
For a given error bound and confidence level, the sample size calculated

using Eq. (5.10) which is based on central limit theorem(CLT), is much

smaller than that based on Chernoff Bounds (Mannila et al., 1994; Toivonen,

1996). Table 5.1 provides some comparisons.

Table 5.1 Sufficient Sample Size

e α Chernoff Bounds CLT

0.01 0.01 26492 16513

0.005 0.01 105966 66049

0.01 0.05 18445 9604

0.005 0.05 73778 38416

5.1.3 Accuracy of Sampling

Theorem 5.1. Given an itemset * whose support is C in database � , a

confidence level 1 ! �, and a random sample RD of size
 � 7 ³�/		

4N	 ,
the probability that the difference in support ∆C between the sample and the

database exceeds N is at most �.
Proof.

67

Pr(∆C # N) � Pr1∆C # ³�/	´1/4�2
 � Pr1∆C # ³�/	´Ch/�2
 � 1 ! Pr1∆C " ³�/	´Ch/�2
 � � (apply Eq. (5.7))
5.2 Effectiveness of Sampling

The effectiveness of the proposed sampling method is experimentally

studied on both dense and sparse datasets. The datasets used in the

experiments, the measurement of errors, and the experimental results are

described below.

5.2.1 Datasets Studied

The experiments are performed on both dense and sparse datasets. The

datasets used include: (1) a synthetic sparse dataset, T10I4D100K ,

generated by the synthetic data generator provided by the QUEST

project(Agrawal and Srikant, 1994) to simulate market basket data; (2) a

sparse real dataset BMSPOS; (3) a dense dataset Connect-4 which is

gathered from connect-4 game state information and are available from the

UCI Machine Learning Repository (Blake and Merz, 1998). These datasets

are benchmarked at FIMI (Frequent Itemsets Mining Implementations

Repository). Table 5.2 summarizes their characteristics, where � is the

number of transactions in the dataset, � is the average transaction length
and |Q| is the number of distinct items in the dataset.

Table 5.2 Database Summaries

Dataset Name N |R| T

T10I4D100K 100000 870 10

BMSPOS 515597 1657 7.5

Connect-4 67557 129 43

68

5.2.2 Measurement of Errors

Errors in the estimation of itemset support and the errors in the estimation of

the complete frequent itemsets (CFI) will be checked in this section.

The errors in itemset support estimation are evaluated as follows. ? samples

of size � are taken from database ���, and for each item in the ���, the
number of times X that ∆C # N in ? samples are counted, and the

experimental probability of M that ∆C # N is calculated as M � X/?.
The CFI in the original database and the sample are denoted as |�¼ and |�.,
respectively. If an itemset exists in |�¼ but not in |�., then this itemset is

called a false negative. If an itemset exists in |�. but not |�¼ , then the
itemset is called a false positive. The collection of all the false positives is

denoted by |} and the collection of all the false negatives is denoted by |�.
The errors are measured by

 M} � 4|}4||�.| (5.11)
which represents the proportion of the false frequent itemsets in a sample,

and

 M� � ||�|||�.| (5.12)
which represents the proportion of the frequent itemsets that are missing in a

sample.

A set of frequent itemsets |� can be partitioned into @k subsets according to
the size of each itemset.

 |� � ½|�� (5.13)/�
�_�

where |�� is a set of itemsets with size of k and @k is the size of the longest
itemset. The errors in CFI estimation and the errors in each partition of CFI as well will be checked in the next section.

69

5.2.3 Experimental Results

Given a transactional database ��� with � transactions, random sampling

with replacement for association rules proceeds as follows:

1. Calculate the sample size n for a given error bound and confidence

level using Eq. (5.10).

2. Generate a set of n random integers Qi�
 where
Qi�
 � ¾��, �	, … , �� , … ��¿, and �� \ �1, 2, … , �). Duplicates are allowed
in order to simulate random sampling with replacement.

3. For each �� in Qi�
, retrieve ��th transaction in the ��� and add it
to the sample.

4. Apply any standard association rules mining algorithm to the

sample.

According to Theorem 5.1, for a given confidence level 1 ! � � 0.95 and a
random sample Q� of size 9604, the probability that ∆C exceed N � 1% is

at most 5%. Tests were performed on the datasets listed in Table 5.2 to

check if the claim holds for the proposed sampling approach.

100 samples of size 9604 from each database were obtained through

random sampling with replacement. The support of each item in each sample

was computed and compared with the support of the item in the original

database. For each item, the number of times(samples) X that ∆C # 1% is
counted in the 100 samples. The probability of M for ∆C # 1% obtained from

the test is M � X/100. Table 5.3 lists the experimental probability of M that
∆C # 1% for items in each database. For T10I4D100K, none of the items in

the dataset has ∆C # 1% in any of the 100 samples. In other words, the

probability for ∆C # 1% for each item is 0.

For BMSPOS, 1654 items in each sample has ∆C " 1% while 2 items have

∆C # 1% in one sample and 1 item has ∆C # 1% in 2 samples. In other

70

words, the probability that ∆C # N(1%) for an item in this database is no

more than 2%.

There is only one item in Connect-4 with 7% probability that ∆C # 1% while

all other items have at most 5% . The results confirm the theorem and

empirically prove that the proposed sampling approach can provide the

expected approximation guarantees.

Table 5.3 Frequency Distribution of f in Each Dataset

No of times ∆C # 1% 0 1 2 3 4 5 6 7 M(%) 0 1 2 3 4 5 6 7

No of items

Connect-4(129 items) 106 8 9 1 0 4 0 1

BMSPOS(1657 items) 1654 2 1

T10I4D100K(870 items) 870

Next, the errors in frequent itemsets estimation were checked. Since different

samples may result in different error rates, the average outcomes of 50

samples are taken to evaluate the errors. Error bound N � 0.01 and

confidence level 1 ! � � 0.99 are chosen in the experiments to evaluate the

effectiveness of the proposed sampling approach. The sufficient sample size

is 16513 for N � 0.01 and 1 ! � � 0.99. The experiments for error bound N � 0.01 and confidence level 1 ! � � 0.95, which result in a sample size of

9604 are also performed for comparison. Support thresholds were chosen in

such a manner that at least frequent itemsets of size 4 can be produced. The

following analyses of the experimental results were performed on the

samples of size 16513 if the sample size is not explicitly stated.

Figure 5.1 shows the errors (M} and M�) for different support thresholds in
each dataset. In the figure, the number following M} or M� is the sample size.

It can be seen that the errors fluctuate as the support threshold changes. For

Connect-4, the errors increase as the support threshold increases while for

the other datasets the errors decrease as the support threshold increases.

The errors for dense datasets are small for every support threshold

71

computed and the changes in the error are relatively small compared with

the changes in support threshold. For example, for Connect-4, M} and M� are
2.6% and 3.4%, respectively when support threshold is 80%; and they

change to 4.6% and 4.7%, respectively when the support threshold

increases to 95%. For the sparse datasets, the errors are relatively large and

so are the changes in errors compared with the changes in support

threshold. For instance, in BMSPOS, when the support threshold increases

from 0.5% to 1%, the M} value decreases from 9.3% to 5.4% and

M� decreases from 8.4% to 6.5%. For all the datasets and all the computed

support thresholds, at least 85% of |�¼ is discovered by sampling. It

confirms that the proposed sampling approach is effective.

Let’s take a closer look at errors in |�. by inspecting each partition |�� (k = 1,
2, …, @k) and the results are shown in Figure. 5.2. The errors for frequent 1-
itemsets are always small for both dense and sparse datasets. It also reveals

that within the overall errors in |�., the errors for each partition may vary

dramatically and are not predictable.

The causes of errors M} and M� in frequent itemsets estimation not only

depend on the errors in support estimations of itemsets, but also on two

other factors given below.

(1) The propagation error.

If an itemset is missed in the sample, then its super sets will be missed; if an

itemset is mistaken as a frequent itemset, then its super sets may be

mistaken as frequent as well. This is because the association rules mining

algorithms apply the apriori principle: if an itemset is frequent, then all its

subsets must be frequent. For example, for a sample of Connect-4, when CE � 95%, itemset {109,121} is missed in the sample, and its super sets

{109, 121, 124}, {109, 121, 127} and {109, 121, 124, 127} are consequently

missed, too; Itemset {19 72, 88, 124} is mistaken as frequent itemset, its

super sets {19 72, 75, 88, 124} and {19 72, 75, 88, 124, 127} are mistaken as

frequent itemsets as well.

72

Figure 5.1 Errors for Different Support Thresholds

2

3

4

5

6

7

8

9

10

80 85 90 95

er
ro

rs
(%

)

Support Threshold(%)

Connect4

fp16513

fn16513

fp9604

fn9604

0

5

10

15

20

25

30

0.2 0.3 0.4 0.5 0.6 0.7

er
ro

rs
(%

)

Support Threshold(%)

T10I4D100K

fp16513

fn16513

fp9604

fn9604

0

4

8

12

16

20

0.25 0.5 0.75 1 2

er
ro

rs
(%

)

Support Threshold(%)

BMSPOS

fp16513

fn16513

fp9604

fn9604

73

Figure 5.2 Errors in Each Partition of FIs

0

4

8

12

16

20

1 2 3 4 5 6 7 8 9 10 11 12 13

er
ro

rs
(%

)

Size of Itemsets

Connect4, Pt = 85%

fp16513

fn16513

fp9604

fn9604

0

4

8

12

16

20

1 2 3 4 5 6 7 8 9 10 11 12 13

er
ro

rs
(%

)

Size of Itemsets

Connect4, Pt = 85%

0

10

20

30

40

50

60

1 2 3 4 5 6 7

er
ro

rs
(%

)

Size of Itemsets

BMSPOS, Pt = 0.25%

fp16513
fn16513
fp9604
fn9604

74

(2) The proportion of frequent itemsets whose support is close to CE .
The larger the proportion of the itemsets whose support is close to the

specified support threshold CE , the more likely bigger errors will occur.

According to the previous analysis, those itemsets with support CE ! N " C "CE , N are likely to be missed or mistaken as frequent itemsets. In Connect-4,

among those items with support greater than 89%, 13% of them have

supports within (89%, 91%); and among those items with supports greater

than 84% , only 4% of them have supports within (84%, 86%) .

Consequently, when N � 1%, 2.27% percentage of the frequent 1-itemsets

in the sample are false positives for CE � 90% , while there are no false

positives presented for

CE � 85%. In both cases, none of the frequent 1-

itemsets is missed.

The experimental results also show that both M} and M� for the samples of

size 9604 are bigger than that for the samples of size 16513. This is a

tradeoff between sample size (hence efficiency) and the confidence level.

5.3 Reducing Errors

In this section, the possibility of reducing errors in frequent itemset

estimations is explored.

Theorem 5.2. Given a frequent itemset * in a ��� with C # CE , a random

sample Q�, and a confidence level 1 ! � , the probability that * is a false
negative in Q� is at most �/2 when the support threshold is lowered to
 CE� � CE ! ³�	� 14� (5.14)
Proof. When the support threshold is lowered to CE�, the probability that an
itemset * is a false negative in Q� equals the probability that the estimated

support L. of * is smaller than CE�.

75

Pr(L. " CE�) � Pr1L. " CE ! ³�/	´1/(4�)2
 � Pr (L. " CE ! ³�/	´Ch/�)

 � α/2 (apply Eq. (5.5))
For C # CE 7 50%, CEhE 7 Ch , lowering the support threshold to
 CE� � CE ! ³�/	ÃCEhE4� (5.15)
will give the same confidence level but smaller amount by which the

threshold is to be lowered. As a result, less false positives maybe present in

the frequent itemsets.

Theorem 5.3. Given an itemset * with C # CE in a ���, a random sample Q�, and a confidence level 1 ! �, the probability that * is a false positive in Q� is at most �/2 when the support threshold is increased to
 CEÄ � CE , ³�	� 14� (5.16)
Proof. When the support threshold is increased to CEÄ, the probability that an
itemset * in Q� is a false positive equals the probability that the estimated

support L. of * is bigger than CEÄ.

Pr(L. # CEÄ) � PrÅL. # CE , ³�	� 14�Æ

 � Pr ÇL. # CE , ³�	ÃCh� È
 � α/2 (apply Eq. (5.6))

76

For C " CE � 50%, CEhE 7 Ch, increasing the support threshold to
 CEÄ � CE , ³�/	ÃCEhE4� (5.17)
will give the same confidence level but a smaller amount of increase in

threshold. In doing so, less frequent itemsets can be missed as the threshold

increases.

If we do not want to miss frequent itemsets present in the original database,

then we can lower the support threshold according to equations (5.14) or

(5.15). On the contrary, if we do not want false frequent itemsets to appear in

the mined frequent itemsets, we can increase the threshold according to

equations (5.16) or (5.17). For instance, given � � 16513, 1 ! � � 0.99 and
 CE � 2% , CE� and CEÄ will be 1.72% and 2.28%, respectively, according to

equation (5.14) and (5.16). Experimented on a sample of BMSPOS for CE � 2% has confirmed this. When the support threshold is lowered to 1.72%,

there were no missed itemsets; when it was increased to 2.28%, only 0.42%

were false frequent itemsets.

5.4 Summary

In this chapter, sampling with replacement method is proposed for the

association rules mining of very large datasets. The sufficient sample size is

derived based on binomial distribution and the central limit theorem. For a

given confidence level and error bound, the proposed sampling approach

requires smaller sample size than that based on the Chernoff Bounds but still

provides the desired approximation guarantees for supports of itemsets. For

applications where the false positives may be very costly, the support

threshold can be increased based on Theorem 5.2 to reduce false positives.

On the other hand, if all the frequent itemsets are to be fully discovered, the

support threshold can be lowered according to Theorem 5.3 to reduce the

number of false negatives.

77

Chapter 6

Stratified Sampling for Association
Rules Mining

If a dataset can be partitioned into groups with distinct features for a

particular data mining task, then proportionally sampling each group will give

the exact result as with the whole dataset. In this chapter, the feasibility of

using stratified random sampling for association rules mining is studied. A

dataset is first partitioned into strata according to the size of each

transaction, and then simple random sampling is applied to each stratum.

The accuracy of the proposed stratified sampling method is compared with

that using the simple random sampling method.

The rest of this chapter is organized as follows. Section 6.1 proposes a

stratified random sampling method for association rules, and the

effectiveness of the proposed stratified sampling method is experimentally

studied in Section 6.2. Section 6.3 presents the conclusions and some

discussions.

6.1 Transaction Size Based Stratified Random
Sampling

In stratified random sampling, the population of size � is partitioned into �
strata and a sample is selected by simple random sampling within each

stratum (Thomson, 1992). Given a total sample size �, if the strata differ in
size, proportional allocation can be used to maintain a steady sampling

fraction throughout the population (Thomson, 1992). If stratum � has ��
units, the sample size allocated to it will be

78

 �� � �� �� (6.1)
The principle of stratification is to partition the population in such a way that

the units within a stratum are as similar as possible. For example, in the

survey of a human population, stratification may be based on the geographic

region, sex or socio-economic factors.

To the best of our knowledge, stratified sampling has not been applied in

association rules mining. In this thesis, the feasibility of stratified sampling for

association rules mining is explored. A dataset is partitioned according to

transaction sizes. It is based on the fact that two identical transactions must

have the same transaction size.

The minimum sample size � is determined using a formula given in Chapter

5 (Li and Gopalan, 2004) for a given error bound N, and a confidence level 1 ! �
 � � ³�/		

4N	 (6.2)
where ³�/	 is the ³ value above which the area under the standard normal

curve is �/2.
According to Equations (6.1) and (6.2), the sample size for the k-th stratum

will be

 �� � ³�/		
4N	 ��� (6.3)

Definition 6.1 (Width of stratum). The difference between the size of the

longest transaction and the shortest transaction in a stratum is called the

width of the stratum, which is denoted as m.

Definition 6.2 (Equal width partition). The data is partitioned in such a way

that each stratum has the same width.

79

In an equal-width partition, there will be P/�Z/m strata for a dataset whose
longest transaction size is P/�Z. Transactions with size ? will be partitioned to �-th stratum, where � � ?/m . For example, when m � 2, transactions
with size ? � 1 and ? � 2 will go to 1st stratum, transactions with size ? � 3
and ? � 4 will go to 2nd stratum, and so on.

Given a minimum support, an error bound N, a confidence level 1 ! �, and
the desired width of a stratum m, a transaction size based stratified sampling

algorithm is proposed as described in Figure 6.1.

6.2 Effectiveness of Stratified Sampling

6.2.1 Measurement of Accuracy and Errors

The complete frequent itemsets discovered from the original database and

its sample are denoted as P(�) and P(-) , respectively. According to the

Algorithm for Association Rules Mining by Stratified Sampling

Input: dataset TDB, nunmber of transactions in the database �, width of a stratum m, error bound N, confidence level1 ! �, minimum support minsup

output: frequent itemsets

initialize a sample S = {};

calculate the sufficient sample size n using equation (6.2);

partition the dataset into Lmax/w strata based on the size of transactions;

calculate sample size for each stratum using equation (6.3);

sample each stratum by simple random sampling without replacement and add to

S;

run a standard association rules mining algorithm on S.

Figure 6.1 Algorithm for Association Rules Mining by Stratified Sampling

80

definitions of false positive and false negative in Chapter 5, the number of

false positives is | P(-) ! P(�) | and the number of false negatives is |P(�) ! P(-)|. The same measure as in (Chen et al., 2002) is used to obtain

the accuracy of sampling:

 accuracy � 1 ! |P(�) ! P(-)| , |P(-) ! P(�)||P(�)| , |P(-)| (6.4)
This measurement is sensitive to both false positives and false negatives.

The two measurements M} and M� defined in Chapter 5 are also used to
quantify the errors of sampling, which can be expressed as

 M} � |P(-) ! P(�)||P(-)| (6.5)
 M� � |P(-) ! P(�)||P(�)| (6.6)

M} represents the proportion of the false frequent itemsets in a sample while

M� represents the proportion of the frequent itemsets in the original dataset

that is missing in a sample.

6.2.2 Datasets Studied

Experiments are performed on three datasets that are available at FIMI’03

(Frequent Itemsets Mining Implementations Repository). They are: (1)

BMSPOS dataset, provided by Blue Martin Software, (2) Retail dataset,

donated by Tom Brijs, which contains the (anonymized) retail market basket

data from an anonymous Belgian retail store, and (3) Accidents dataset,

donated by Karolien Geurts and contains (anonymized) traffic accident data.

The density of the Accidents dataset is relatively higher than for the other

two. The characteristics of these datasets are summarized in Table 6.1,

where N is the number of transactions in a database, � is the average

transaction length, |Q| is the number of distinct items in the database and P/�Z is the size of the longest transaction. The histogram for each dataset is

shown in Figure 6.2. To save space, transactions with size greater than 20

81

in BMSPOS and transactions with size greater than 27 in Retail, which only

count for less than 5% of transactions, are not shown on the histogram.

Table 6.1 Summaries of Characteristics of Datasets

Dataset Name N |R| T Lmax Density(%)

BMSPOS 515596 1657 7.5 164 0.45
Retail 88162 16570 13 76 0.08
Accidents 340184 468 34 51 7.26

Figure 1. Histogram of transactions

Figure 6.2 Histogram of Databases

R e t a i l

0

2

4

6

8

1 0

1 5 9 1 3 1 7 2 1 2 5

S iz e o f t r a n s a c t io n s

fr
eq

u
en

cy
(%

)

A c c id e n t

0

5

1 0

1 5

1 8 2 2 2 6 3 0 3 4 3 8 4 2 4 6 5 0

S iz e o f t r a n s a c t io n s

fr
eq

u
en

cy
(%

)

B M S P O S

0

5

1 0

1 5

2 0

1 4 7 1 0 1 3 1 6 1 9

S iz e o f t r a n s a c t io n s

fr
eq

u
en

cy
(%

)

82

6.2.3 Experimental Results

In this subsection the experimental results of the proposed stratified

sampling method are described and compared with that of the simple

random sampling method in (Li and Gopalan, 2004). The sample size

chosen is 16513, which corresponds to an error bound of 0.01 and a

confidence level of 99%.

As mentioned before, the dataset is partitioned based on the transaction

sizes. Given a m value, the dataset is partitioned into k = Pmax / w strata. The

width of each stratum in the resulting strata is m except that the width of �th
stratum may be less than m. Each stratum is sampled according to Eq. (6.1).

The accuracy and errors of the proposed stratified sampling method were

compared with that of the simple random sampling method. Figures 6.3-6.5

show some of the test results on different datasets for different minimum

support levels and different widths of stratum. In each figure, SR represents

the result of simple random sampling.

For BMSPOS (Fig. 6.3), the accuracy of stratified sampling method

increases while m increases. When m � 5, the accuracy of stratified

sampling is slightly higher than that of simple random sampling. It can be

seen that M} increases as m increases and M� decreases when m increases.

The M} value of stratified sampling is lower than that of simple random

sampling and the M� value of stratified sampling is higher than that of simple

random sampling for all m values.

For the Accidents dataset (Fig. 6.4), the accuracy is very high since it is a

relatively dense dataset and many transactions have similar items. The

accuracy does not vary too much while w changes (less than 1% for all

minimum support levels). The trends of changes in M} and M� while m

changes are the same as that for BMSPOS. In contrast to the results for

BMSPOS, the M} values of stratified sampling for Accidents is higher than

that of simple random sampling while M� of stratified sampling is lower.

83

Figure 6.3 Testing Results for BMSPOS

85

88

91

94

97

0.25 0.5 0.75 1 2

ac
cu

ra
cy

(%
)

minimum support(%)

0
2
4
6
8

10
12
14
16

0.25 0.5 0.75 1 2

fp
(%

)

minimum support(%)

0

5

10

15

20

25

0.25 0.5 0.75 1 2

fn
(%

)

minimum support(%)

SR w=1
w=3 w=5

84

Figure 6.4 Testing Results for Accidents

9 7 .4

9 7 .6

9 7 .8

9 8 .0

9 8 .2

9 8 .4

4 5 5 0 5 5 6 0 6 5

m in im um sup p o r t (%)

ac
cu

ra
cy

(%
)

1 .0

2 .0

3 .0

4 .0

4 5 5 0 5 5 6 0 6 5

m in im um sup p o r t (%)

fp
(%

)

0 .5

1

1 .5

2

2 .5

4 5 5 0 5 5 6 0 6 5

m in im um sup p o r t (%)

fn
(%

)

SR w = 1

w = 3 w = 5

85

Figure 6.5 Testing Results for Retail

8 5

8 7

8 9

9 1

9 3

9 5

0 .0 8 0 .1 0 .3 0 .5

m in im um sup p o r t (%)

ac
cu

ra
cy

(%
)

6

1 1

1 6

2 1

0 .0 8 0 .1 0 .3 0 .5

m in im um sup p o r t (%)

fp
(%

)

4

6

8

1 0

1 2

1 4

0 .0 8 0 .1 0 .3 0 .5

m in im um sup p o r t (%)

fn
(%

)

SR w = 1

w = 3 w = 5

86

For Retail (Fig. 6.5), the accuracy and the errors (M� and M}) of stratified
sampling method at different m values are almost the same as for simple

random sampling. The values of M} and M� are not too different for most of the

minimum support levels except 0.2%. It is noticed that the sampling ratio of

Retail is about 6 times higher than that of BMSPOS.

Transaction size based stratified sampling method will not be any different

from the simple random sampling method for a dense datasets like Connect-

4 (Blake and Merz, 1998) that has all the transactions of the same size, and

so belong to a single stratum.

6.3 Summary

Just as with other sampling methods, the proposed transaction size based

stratified sampling may not suit all applications. The choice of a sampling

method should depend on the characteristics of the dataset to be mined and

the cost of errors in a given application. For a dataset like BMSPOS, if lower M} is desirable, the proposed stratified sampling will be a better choice than

simple random sampling. Similarly, for applications where the lower M� is
crucial, stratified sampling will perform better than the simple random

sampling for a dataset like Accidents. For some datasets such as Retail, both

simple random sampling and stratified sampling are suitable.

87

Chapter 7

Conclusion

7.1 Contributions

In this thesis, developing effective and efficient methods for clustering and

association rules mining of very large transactional databases are of focus.

A new similarity measure that is more suitable for clustering of transactional

data than Rao’s Coefficient, Simple Matching Coefficient and Jacard

Coefficient is defined. An incremental clustering algorithm INCLUS is

developed using the newly defined similarity measure. INCLUS is empirically

proved to be scalable and more accurate than CLOPE (Yang et al., 2002)

and LargeItem (Wang et al., 1999).

The equal-width time window model and the elastic time window model are

defined in order to evaluate changes in data streams. The width of a window

in the equal-width time window model is determined by the minimum

granularity with respect to an application. By doing so, it is possible to

perform cluster analysis on the minimum granularity or coarser granularities.

The width of an elastic time window model is initially set to the minimum

granularity and subsequently resized based on the clustering changes in the

data stream. Fewer clustering snapshots need to be stored on disk under the

elastic window model, thereby improving efficiency and reducing disk space

usage, and yet the changes at coarser granularities can still be estimated.

Data stream clustering algorithms CluStream_EQ and CluStream_EL are

developed by incorporating INCLUS and the new window models under the

same framework as CLuStream (Aggarwal et al., 2003). The online

88

components for these new algorithms are empirically shown to be scalable

and effective.

Sampling techniques that can improve the efficiency of mining association

rules in very large databases are studied. The sample size is derived based

on binomial distribution and the central limit theorem, which is smaller than

that based on Chernoff Bounds (Toivonen, 1996) but still provides the same

approximation guarantees. The accuracy of the proposed sampling approach

is theoretically analyzed and its effectiveness is experimentally evaluated on

both dense and sparse datasets. The experimental results proves that the

sampling method is effective.

Applications of stratified sampling for association rules mining is also

explored in this thesis. The database is first partitioned into strata based on

the length of transactions and simple random sampling is then performed on

each stratum. The total sample size is determined by a formula and each

stratum is proportionately sampled based on its size. Experimental results

show that the accuracy of transaction size based stratified sampling is very

close to that of random sampling. The errors of stratified sampling can be

slightly bigger or smaller than that for the random sampling for different

datasets and different support thresholds. Therefore stratified sampling can

be seen as an alternative option for particular datasets. In fact, when all

transactions have the same number of items, stratified sampling becomes

simple random sampling as all the transactions will be in the same strata.

7.2 Future Directions

The data stream clustering algorithms developed in this thesis, are based on

the assumption that the processing rate of the online component is fast

enough to handle the incoming data stream. A future direction of this

research would be to improve the online component for handling data

streams where the rate of flow is faster than the rate at which it can be

processed. Sampling can be one of the techniques to be used for this

purpose. Furthermore, the offline component can be tuned and implemented

for discovering changes in the data streams.

89

One focus of this thesis, like most of the research on association rules

mining, is on the critical step of frequent pattern generation. As mentioned in

Chapter 2, the number of rules generated is exponential to the number of

frequent items. For example, ten items can produce more than fifty thousand

rules. It can be overwhelming for users seeking valuable information among

such a large number of rules generated. Hence another focus for future

research could be improving the efficiency of rule generation, presentation

and filtering as well as the usability of the rules generated.

When sampling techniques were applied to association rules mining, it was

noticed that by changing the support threshold if false positives decrease

then false negatives increase, and vice versa. More investigation is needed

into the relationship between these errors and methods for controlling them.

The open question for stratified sampling is how to partition the dataset so

that each stratum has similar properties in relation to the association rules

mining problem. It is conjectured that the accuracy of stratified sampling can

be improved if the stratification scheme is based on the similarity of

transactions, i.e., the number of common items between transactions. This

needs further study. There is also scope for matching strata definitions with

dataset characteristics to improve the accuracy and efficiency of sampling

based association rules mining.

90

References

"Frequent Itemset Mining Dataset Repository," (http://fimi.cs.helsinki.fi/data/).

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). "A Framework for
Clustering Evolving Data Streams," in Proceedings of the 29th VLDB
Conference, pp. 81-92.

Agrawal, R., Imielinski, T., and Swami, A. (1993). "Mining association rules
between sets of items in large databases," in Proceedings of the ACM
SIGMOD Conference on Management of Data, pp. 207-216.

Agrawal, R., and Srikant, R. (1994). "Fast Algorithms for Mining Association
Rules," in Proceedings of the 20th VLDB Conference, pp. 487-499.

Alan, N., and Spencer, J. H. (1992). The Probabilistic Method (John Wiley
Inc., New York).

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002).
"Models and Issues in Data Stream Systems," in Proceedings of the
21st ACM Symposium on Principles of Database Systems (PODS
2002), pp. 1-16.

Babcock, B., Datar, M., Motwani, R., and O'Callaghan, L. (2003).
"Maintaining Variance and k-Medians over Data Stream Windows," in
Proceedings of the 2003 ACM Symp. on Principles of Database
Systems (PODS 2003).

Berkhin, P. (2002). "Survey Of Clustering Data Mining Techniques," (Accrue
Software).

Blake, C. L., and Merz, C. J. (1998). "UCI Repository of Machine Learning
Databases," (Irvine, CA: University of California, Department of
Information and Computer Science).

Brijs, T., Swinnen, G., Vanhoof, K., and Wets, G. (1999). "Using Association
Rules for Product Assortment Decisions: A Case Study," in
Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 254-260.

Chen, B., Haas, P., and Scheuermann, P. (2002). "A New Two Phase
Sampling Based Algorithm for Discovering Association Rules," in
Proceedings of the SIGKDD ’02, pp. 462-468.

Cheung, W., and Zaïane, O. R. (2003). " Incremental Mining of Frequent
Patterns Without Candidate Generation or Support Constraint," in

91

Proceedings of the Seventh International Database Engineering and
Applications Symposium (IDEAS 2003), pp. 111-116.

Dong, G., Han, J., Lakshmanan, L. V. S., Pei, J., Wang, H., and Yu., P. S.
(2003). "Online mining of changes from data streams: Research
problems and preliminary results," in In ACM SIGMOD MPDS.

Estivill-Castro, V. (2002). "Why So Many Clustering Algorithm: A Position
Paper," SIGKDD Explorations 4, 65-75.

Everitt, B. S. (1993). Cluster Analysis (Halsted Press, Now York).

Fayyad, U., and Uthurusamy, R. (2002). "Evolving Data Into Mining Solutions
For Insights," Communications Of The ACM 45, 28-31.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (1996).
Advances in Knowledge Discovery and Data Mining (AAAI Press).

Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005). "Mining Data
Streams: a Review," ACM SIGMOD Record 34, 18-26.

Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. (2003). "Mining
Frequent Patterns in Data Streams at Multiple Time Granularities," in
Next Generation Data Mining, pp. 191-212.

Gopalan, R. P., and Sucahyo, Y. G. (2003). "Fast Frequent Itemset Mining
using Compressed Data Representation," in Proceedings of the
IASTED International Conference on Databases and Applications
(DBA '2003), pp. 378-373.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., and O'Callaghan, L. (2003).
"Clustering Data Streams: Theory and Practice," TKDE special issue
on clustering 15, 515-528.

Guha, S., Mishra, N., Motwani, R., and O'Callaghan, L. (2000a). "Clustering
Data Streams," in Proceedings of the FOCS 2000, pp. 359-366.

Guha, S., Rastogi, R., and Shim, K. (2000b). "ROCK: A Robust Clustering
Algorithm for Categorical Attributes," Information Systems 25, 345-
366.

Han, J., and Kamber, M. (2000). Data Mining: Concepts and Techniques
(Morgan Kaufmann Publishers).

Han, J., and Kamber, M. (2006). Data Mining: Concepts and Techniques
(Morgan Kaufmann Publishers).

Han, J., Pei, J., and Yin, Y. (2000). "Mining Frequent Patterns without
Candidate Generation," in Proceedings of the International
Conference on Management of Data (SIGMOD'00), pp. 1-12.

92

Hruschka, E. R., Campello, R. J. G. B., Freitas, A. A., and de Carvalho, A. C.
P. L. F. (2009). "A Survey of Evolutionary Algorithms for Clustering,"
IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 39, 133-155.

Huang, Z. (1997a). "Clustering Large Datasets with Mixed Numeric and
Categorical Values," in Proceedings of the 1st Pacific-Asia
Conference on Knowledge Discovery & Data Mining, pp. 21-34.

Huang, Z. (1997b). "A Fast Clustering Algorithm to Cluster Very Large
Categorical Datasets in Data Mining," in Proceedings of the Workshop
on Research Issues on Data Mining and Knowledge Discovery, pp.
21-34.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). "Data Clustering: a
Review," ACM Computing Surveys 31, 264-323.

John, G. H., and Langley, P. (1996). "Static versus Dynamic Sampling for
Data Mining," in Proceedings of the the Second International
Conference on Knowledge Discovery and Data Mining (KDD'96), pp.
367-370.

Kantardzic, M. (2002). Data Mining : Concepts, Models, Methods and
Algorithms (Wiley, New York).

Li, Y., and Gopalan, R. P. (2004). "Effective Sampling for Mining Association
Rules," in Proceedings of the 17th Australian Joint Conference on
Artificial Intelligence, pp. 391-401.

Li, Y., and Gopalan, R. P. (2005). "Stratified Sampling for Association Rules
Mining," in Proceedings of the Second IFIP Conference on Artificial
Intelligence Applications and Innovations (IPIF AIAI2005), pp. 79-88.

Li, Y., and Gopalan, R. P. (2006a). "Clustering High Dimensional Sparse
Transactional Data with Constraints," in Proceedings of the IEEE
International Conference on Granular Computing(IEEE-GrC 2006),
pp. 692 - 695.

Li, Y., and Gopalan, R. P. (2006b). "Clustering Transactional Data Streams,"
in Proceedings of the 19th Australian Joint Conference on Artificial
Intelligence, pp. 1069-1073.

Liu, C. L. (1968). Introduction to Combinatorial Mathematics (McGraw-Hill,
New York).

MacQueen, J. B. (1967). "Some Methods for Classification and Analysis of
Multivariate Observations," in Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, pp. 281-297.

Mannila, H., Toivonen, H., and Verkamo, I. (1994). "Efficient Algorithms for
Discovering Association Rules," in Proceedings of the AAAI Workshop
on Knowledge Discovery in Databases (KDD-94), pp. 181-192.

93

Mendenhall, W., and Sincich, T. (1992). Statistics for Engineering and
Sciences (Dellen Publishing Company, San Francisco).

O'Callaghan, L., Mishra, N., Meyerson, A., Guha, S., and Motwani, R. (2002).
"Streaming-Data Algorithms For High-Quality Clustering," in
Proceedings of the IEEE International Conference on Data
Engineering (ICDE02), p. 685.

Ong, K.-L., Li, W., Ng, W.-K., and Lim, E.-P. (2004). "SCLOPE: An Algorithm
for Clustering Data Streams of Categorical Attributes," in Proceedings
of the 6th International Conference on Data Warehousing and
Knowledge Discovery(DaWaK 2004), pp. 209-218.

Parthasarathy, S. (2002). "Efficient Progressive Sampling for Association
Rules," in Proceedings of the IEEE International Conference on Data
Mining, pp. 354-361.

Porter, J. (1998). "Disk Drives' Evolution," in 100th Anniversary Conference:
Magnetic Recording and Information Storage (Santa Clara University).

Provost, F., Jensen, D., and Oates, T. (1999). "Efficient Progressive
Sampling," in Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 23-32.

Thomson, S. K. (1992). Sampling (John Wiley & Sons Inc.).

Toivonen, H. (1996). "Sampling Large Databases for Association Rules," in
Proceedings of the 22th International Conference on Very Large
Databases (VLDB'96), pp. 134-145.

Walpole, R. E., Myers, R. H., and Myers, S. L. (1998). Probability and
Statistics for Engineers and Scientist (Prentice hall interantional, INC,
New Jersey).

Wang, J., and Karypis, G. (2004). "SUMMARY: Efficiently Summarizing
Transactions for Clustering," in Proceedings of the Fourth IEEE
International Conference on Data Mining(ICDM 2004), pp. 241- 248.

Wang, K., Xu, C., and Liu, B. (1999). "Clustering Transactions Using Large
Items," in Proceedings of the ACM CIKM International Conference on
Information and Knowledge Management, pp. 483-490.

Yang, Y., Guan, X., and You, J. (2002). "CLOPE: A Fast and Effective
Clustering Algorithm for Transactional Data," in Proceedings of the
KDD'02, pp. 682-687.

Zaki, M. J., Parthasarathy, S., Li, W., and Ogihara, M. (1997). "Evaluation of
Sampling for Data Mining of Association Rules," in Proceedings of the
7th International Workshop on Research Issues in Data Engineering
(RIDE '97) High Performance Database Management for Large-Scale
Applications, pp. 42-50.

94

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). "BIRCH: An Efficient
Data Clustering Method for Very Large Databases," in Proceedings of
the International Conference on Management of Data(SIGMOD96),
pp. 103-114.

Zheng, Z., Kohavi, R., and Mason, L. (2001). "Real World Performance of
Association Rule Algorithms," in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 401-406.

Every reasonable effort has been made to acknowledge the owners of
copyright material. I would be pleased to hear from any copyright owner who
has been omitted or incorrectly acknowledged.

