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Abstract: Historically, wetlands have not been given much attention in terms of their value due to the
general public being unaware. Nevertheless, wetlands are still threatened by many anthropogenic
activities, in addition to ongoing climate change. With these recent developments, water level
prediction of wetlands has become an important task in order to identify potential environmental
damage and for the sustainable management of wetlands. Therefore, this study identified a reliable
neural network model by which to predict wetland water levels over the Colombo flood detention
area, Sri Lanka. This is the first study conducted using machine learning techniques in wetland water
level predictions in Sri Lanka. The model was developed with independent meteorological variables,
including rainfall, evaporation, temperature, relative humidity, and wind speed. The water levels
measurements of previous years were used as dependent variables, and the analysis was based on a
seasonal timescale. Two neural network training algorithms, the Levenberg Marquardt algorithm
(LM) and the Scaled Conjugate algorithm (SG), were used to model the nonlinear relationship, while
the Mean Squared Error (MSE) and Coefficient of Correlation (CC) were used as the performance
indices by which to understand the robustness of the model. In addition, uncertainty analysis was
carried out using d-factor simulations. The performance indicators showed that the LM algorithm
produced better results by which to model the wetland water level ahead of the SC algorithm, with a
mean squared error of 0.0002 and a coefficient of correlation of 0.99. In addition, the computational
efficiencies were excellent in the LM algorithm compared to the SC algorithm in terms of the prediction
of water levels. LM showcased 3–5 epochs, whereas SC showcased 34–50 epochs of computational
efficiencies for all four seasonal predictions. However, the d-factor showcased that the results were
not within the cluster of uncertainty. Therefore, the overall results suggest that the Artificial Neural
Network can be successfully used to predict the wetland water levels, which is immensely important
in the management and conservation of the wetlands.

Keywords: Artificial Neural Network (ANN); Colombo flood detention area; water level prediction;
wetlands

1. Introduction

Wetlands are among the most significant ecological systems in the world. The Ramsar
convention defines wetlands as ‘areas of marsh, fen, peat land or water, whether natural
or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish
or salt, including areas of marine water the depth of which at low tide does not exceed
six meters’ [1]. Wetlands play a major role in ecological systems [2]. They are among the
most productive ecosystems and have multiple functions. Wetlands provide habitats for
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flora and fauna by maintaining a remarkable level of biodiversity [3]. These ecosystems
significantly contribute to ecological rejuvenation and biodiversity conservation [4]. Wet-
lands accumulate flooding, by mitigating flood risk in downstream areas [5]. Wetlands are
effective at trapping sediment and heavy metals from surface runoff; hence, their role is
significant in terms of nutrient retention and the purification of water flowing through these
ecosystems [6]. Therefore, wetlands are considered to be the kidneys of the environment.
Wetlands are important in mitigating the impact of climate change [7]. Records show
that wetlands globally store 44 million tons of CO2 per year [8]. Wetlands can influence
precipitation patterns and atmospheric temperatures [9]. Additionally, wetlands are more
predominant in in terms of socio-economic features as well [10]. They directly or indirectly
support the living conditions of humans. Wetlands provide recreational opportunities [11].
Many tourists are attracted to wetlands, playing a key role in economic development [12].
Furthermore, coastal and inland wetlands are responsible for two-thirds of global fish
harvest [10]. Therefore, the role of wetlands in environmental, social, and economic terms
is even more prominent.

On the other hand, wetlands are one of the world’s most endangered ecosystems [13].
Most wetlands have been drained for agricultural and industrial purposes [14]. It is impossi-
ble to provide an accurate numerical figure of the global areal extent of wetlands. However,
different associations and researchers have estimated this. As per the UNEP—World
Conservation Monitoring Center, the world’s wetland spatial coverage was estimated to
be 570 million hectares (5.7 million km2). It is about 6% of the world’s land cover [15];
however, these sensitive areas cannot be easily neglected because of their importance.
Changes in wetlands take place because of natural circumstances, as well as anthropogenic
activities. Anthropogenic activities can be unintentional, but the majority are intentional.
Unintentional activities are due to a lack of knowledge of the importance of wetlands, and
intentional activities are due to negligence and less value given to wetlands [16]. Wetlands
are highly affected due to anthropogenic activities such as transforming the wetlands into
agricultural and aquacultural lands, vegetation clearance, construction activities such as
dams and other water management structures, human settlements, etc. [17]. Furthermore,
the rapid growth of human populations and urbanization are other major threats to wet-
lands [18]. On the other hand, insufficient inflows and a lower quality of water runoff due
to urbanization and excessive consumption of water for agricultural purposes have resulted
in poor water quality in the wetlands [19]. According to Xu et al. [20], wetland degra-
dation takes place due to pollution (54%), biological resources use (53%), natural system
modification (53%), and agriculture and aquaculture (42%). Research studies have shown
that, from 1985 to 2010, the loss rate of wetlands was estimated to be 16.57 mile2/year
(42.91 km2/year) [21]. Therefore, we should take the necessary actions to protect this
precious gift of nature.

Wetland water level fluctuations are important for hydrological systems [22]. In addi-
tion, wetland water levels affect the chemical and biological characteristics of soil, ecological
functions of the wetlands, etc. [23]. Therefore, it is vital to understand and quantify the
processes which affect water level fluctuations in wetlands. Wetland water levels mainly
depend on the water holding capacity of the wetland, water inflows, and water outflows.
Water inflows include precipitation, upstream water flow to the wetland, and groundwater
flow, whereas the outflows include evaporation loss, downstream water flow from the
wetland, etc. In addition, the antecedent moisture content in soil is also responsible for
short-term water level variations [24]. Hydro-climatic data such as precipitation, tempera-
ture, evaporation, relative humidity, wind speed, etc., as well as geological data such as soil
permeability, moisture, etc., can be considered important factors in determining wetland
water level [25]. Moreover, wetland water levels are affected by several anthropogenic
activities, such as commercial developments, drainage schemes, the extraction of minerals
and peat, construction of dams and dikes, etc. [14]. However, measuring wetland water
levels is limited in many countries [26]. Therefore, water level prediction is more important
for the proper management and protection of wetlands and their surrounding areas.
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Colombo, Sri Lanka, is noted as a unique capital city with several wetlands. However,
due to severe urbanization, flash floods are common in Colombo city. The wetlands in the
Colombo area act as flood detention basins. Therefore, it is essential to predict wetland
water levels. However, other than some water quality analyses of the Colombo wetland
system, no research has been conducted on predicting water levels. This paper presents an
initial study to predict the water level of the Colombo flood detention basin concerning
surrounding meteorological parameters, including rainfall, evaporation, temperature,
relative humidity, and wind speed. This is the first-ever study to predict wetland water
levels as a function of meteoroidal parameters in Sri Lanka. Sri Lanka is rated as one of the
most influenced countries due to the changing climate by the Intergovernmental Panel on
Climate Change. Therefore, this research has greater potential to address the upcoming
climate-related issues in the capital of Sri Lanka, which is frequently flooded.

2. Artificial Neural Networks (ANN) to Predict Wetland Water Levels

Water level predictions can be conducted using both physical and data-driven ap-
proaches [27]. Physical-based approaches increase the levels of complexity while requiring
significant time to conduct and to develop [26]. Physical methods have the disadvantage
that they require a thorough knowledge of hydrological processes and a wide variety of
data, including inflows, outflows, bathymetry, meteorology, etc. [28]. Due to the limitations
of traditional methods, machine learning techniques have recently gained attention [29].
Machine learning techniques, such as Artificial Neural Networks (ANNs), have many
advantages, such as their simplicity in terms of implementation, their rapid running speed,
rapid convergence, and strong adaptability [30].

Interest in the use of ANNs for water level prediction models has increased in recent
years, as they can identify complex non-linear relationships within the raw data [31]. In
1943, McCulloch and Pitts introduced the concept of the Artificial Neural Network [32]. An
ANN is a computational method that mimics the human brain, which consists of several
interconnected neurons [33]. The neurons are organized into two or more layers with
weighted connections [34]. A simple application of an ANN in water level prediction
is shown in Figure 1. It consists of an input layer, a hidden layer, and an output layer,
which are initially used to train the neural network on known datasets and then to forecast
unknown outputs from the known inputs.
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As shown in Figure 1, each neuron receives a set of known variables (referred to
as ‘X’ values in Figure 1). In the case of water level predictions, X variables can be the
meteorological data for a selected time frame and water levels of the catchment in the same
time frame. The hidden layer consists of a set of neurons, which identify the weighted
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connections of each input parameter. Let X1 and X2 be the independent variables and
the W1 and W2 be the weightage of each parameter, respectively, the hidden layer will
identify the weighted connection as W1. X1 + W2. X2. In addition, to avoid overfitting
the model, a bias ‘b’ will be added. The activation function converts the input signal to
the output signals. Equation (1) represents a basic mathematical expression of an artificial
neural network.

Y = b +
n

∑
i=1

Xi Wi (1)

The availability of the data is a key element for constructing a learning algorithm
in neural networks [35]. In wetland water level predictions, meteorological data such as
precipitation, temperature, relative humidity, wind speed, etc., can be considered indepen-
dent variables, while hydrological data such as previous water levels can be considered
dependent variables [26].

Dadaser-Celik and Cengiz [22] predicted water levels in the Sultan Marshes wetland in
Turkey. Climatic variables including precipitation, air temperature, and evapotranspiration
were used in their study. Model training was conducted using the conjugate training
backpropagation method. The developed model was tested for its accuracy using the root
mean square error (RMSE) and the coefficient of determination (R2) values. Furthermore,
they conducted sensitivity analysis by considering the relative importance of each variable
in the ANN model. It was concluded that the ANN model was the most sensitive to the
previous months’ water levels.

Altunkaynak [36] used neural networks to forecast water levels in Lake Van, in Turkey,
which has an accompanying wetland area. The model was trained using a backpropagation
algorithm. The researchers suggested that the artificial neural networks gave accurate
results, even though the relationships between the parameters, such as rainfall and consecu-
tive water levels, were complex. In three different cases, they trained the neural network by
having various arrangements in the input nodes. All three models produced fairly similar
results. They have found that traditional methods were more complex and less reliable
than neural network models. Results for the neural network model showed that the relative
error for this model was below 10%, which was acceptable.

Choi et al. [26] showcased the importance of predicting wetland water levels; however,
they also pointed out the difficulty of that process due to data limitations. They predicted
the water level of the largest wetland in South Korea, the Upo wetland, using several
machine-learning techniques, including ANN, decision trees (DT), Random Forest (RaF),
and support vector machines (SVM). The dependent variables were the daily water level
data over seven years, from 2009 to 2015, while the independent variables were meteoro-
logical data and upstream water level data. The correlation coefficient (CC), root mean
square error (RMSE), and Nash Sutcliffe efficiency (NSE) were the three statistical indicators
used for the evaluation of the model’s performance. Prediction performance indicators
demonstrated excellent accuracy for their work.

Artificial neural networks were used to investigate water level variations in the Kerala
Vembanad Wetland [37]. The input parameters were rainfall and river discharge data, as
well as the previous day’s water levels. The output was one day ahead of the water levels
at the selected stations. The model results were expressed in terms of several numerical
indices, such as the correlation coefficient and the root mean square error. Furthermore,
they found that neural networks failed to accurately predict water levels when there was no
information on wetland storage conditions. Therefore, previous water level inputs needed
to be considered as the initial requirements of the model. Saha et al. [38] conducted wetland
water depth and area prediction using artificial neural networks and a non-linear regression
model. They used Landsat satellite images of wetlands in the Atreyee River basin during
the pre-and post-monsoon seasons to map wetlands in that river basin. In conclusion, they
stated that both models performed well in terms of accuracy. Nevertheless, researchers have
put their faith in Artificial Intelligence (AI) because it is a physical process-based model.
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3. Materials and Methodology
3.1. Mathematical Formulation

The nonlinear relationship of wetland water levels to meteorological parameters can
be built according to Equation (2).

WL = φ
(

RF, Evap, Tmin, Tmax, RHday, RHnight, WS
)

(2)

where WL is the water level of the wetland. RF, Evap, Tmin, Tmax, RHday, RHnight, and WS
are daily rainfall to the catchment (in mm), daily evaporation (in mm), minimum daily
temperature (in ◦C), maximum daily temperature (in ◦C), daily relative humidity at day
time (in %), daily relative humidity at night time (in %), and daily average wind speed (in
km/hr), respectively. The above mathematical formulation could be developed under the
ANN environment using the relevant data of the independent and dependent variables.
The available data can be used to train the ANN model.

3.2. Training with Different Algorithms in ANN

There are a few optimization algorithms that differ according to memory requirements,
processing speed, and numerical precision. The gradient descent, Newton method conju-
gate gradient, and Levenberg Marquardt can be identified as a few examples. Gradient
descent is a first-order and straightforward training algorithm. It has the significant disad-
vantage of necessitating many iterations for functions with long, narrow valley structures.
The Newton method is a second-order algorithm with the problem that the exact evaluation
of the hessian and its inverse is more expensive in computer terms [39,40]. Therefore, the
following two methods have been considered for this study. These algorithms are usually
used to train the nonlinear functions among the independent and dependent variables.

3.2.1. Levenberg Marquardt (LM) Algorithm

The Levenberg Marquardt algorithm is a combination of the steepest descent algorithm
and the Gauss-Newton algorithm [41], and it is one of the fastest learning algorithms. It
minimizes the sum of square error functions. It requires more memory, but less time. The
Levenberg Marquardt algorithm can be expressed as follows (refer to Equation (3)).

xk+1 = xk −
[

JT J + µ I
]−1

JTe (3)

where x is the input variable, k is the iteration index, J is the Jacobian matrix of the
performance criteria to be minimized, µ is the combination coefficient, which is always
positive and controls the learning process, I is the identify matrix, and e is the residual
error vector. T stands for transposition.

3.2.2. Scaled Conjugate (SC) Algorithm

The scaled conjugate algorithm is a second-order conjugate algorithm [42]. The
weights in the conjugate gradient algorithm are in the direction where the performance
function is rapidly dropping [43]. This features a step-size scaling method that eliminates
time consumption per learning iteration [42]. This requires less memory. The scaled
conjugate algorithm can be expressed as follows (refer to Equation (4)).

XK = XK−1 + αKdK−1 (4)

where x is the input variable, k is the iteration index, αK is the step length at kth iterations,
and dK is the search direction.

3.3. Model Development

The nonlinear mathematical relationship was formulated in MATLAB (version
9.2.0.538062—R2017a), a mathematical platform to develop the network architecture to
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predict the water levels in the Colombo flood detention area. Input variables, the number of
neurons in the hidden layer, and the training algorithms are the most significant functions
in neural network modeling. As explained in Equation (1), the input variables to the
model were daily rainfall, maximum and minimum air temperatures, evaporation, relative
humidity, and average wind speed. The dependent variable was water level data for a
particular location. The two training techniques given in Section 3.2 were used to train the
neural network.

3.4. Evaluation Criteria

The developed model was tested for its accuracy and performance using two statistical
indicators; Coefficient of Correlation (R) and Mean Squared Error (MSE).

3.4.1. Coefficient of Correlation (R)

Coefficient of correlation measures the strength of linear dependence between two
variables. It can be expressed as the following Equation (5).

R =
∑N

i=1
(
Xi − X

)(
Yi − Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi − Y

)2
(5)

where Yi is the observed water level and Xi is the predicted water level. When the R-value
reaches 1, it indicates a close relationship among the variables.

3.4.2. Mean Squared Error (MSE)

Mean squared error measures the difference between the observed and predicted
values. It is always a positive value. A model performs better when the MSE values are
lower. Zero MSE indicates no errors in the model. MSE can be expressed as the following
Equation (6).

MSE =
1
N ∑N

i=1

(
Yi, observed − Yi,predicted

)2
(6)

3.5. Uncertainity Analysis

The d-factor was used to quantify the prediction uncertainty of the AI models, as
described in Aryal [44].

d − f actor =
d X
σx

(7)

where σx represents the standard deviation and dX represents the average distance between
the upper (XU) and lower (XL) bands.

d X =
1
n

n

∑
1

XU − XL (8)

4. Case Study

As stated, the study area in this research was selected as the Colombo flood detention
basin. Colombo has a tropical monsoon climate. The mean annual temperature in the
Colombo region varies between 26.5 ◦C to 28.5 ◦C, while it receives an average annual
rainfall of 2300 mm. Colombo city is highly vulnerable to flooding. Frequent floods due to
heavy rainfall have occurred during the last two decades. Due to various developments,
the flood detention basin capacity has been reduced by 30% [45]. The primary causes of
flooding can be identified as increased surface runoff due to accelerated development, the
shrinking of retention areas, and a lack of capacities in the canal networks and the wetlands.
Therefore, flood risk in the Colombo district can be addressed by implementing strategies
to manage and protect the Colombo flood detention area.

Figure 2 presents the study area in Colombo, Sri Lanka. The Colombo flood detention
area consists of three wetlands/marshes: Kotte marsh, Kolonnawa marsh, and Heen marsh
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(refer to Figure 2). The altitude of the study area is approximately 3.0 m above the mean sea
level. Metro Colombo Basin has a basin cover of 105 km2, and total wetland coverage in
the Colombo metropolitan region is 20 km2. There are six water level monitoring stations
located within the basin: G1—Diyawanna Lake; G2—Kotte North Canal; G3—Kotte Canal;
G4—Kimbulawala bridge; G5—Heen Canal; G6—Dematagoda Canal (Figure 2).
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A prediction model was developed using meteorological data and the previous year’s
water levels. According to the literature, the majority of the related studies have utilized
the time series data of meteorological data as the input data to the model [26,27,46]. Meteo-
rological data were collected from the Department of Meteorology, Sri Lanka, while the
water levels were collected from the Land Development Corporation, Sri Lanka. Recent
meteorological data were available for the study; however, the water levels were unavail-
able and inconsistently recorded due to poor maintenance. In addition, some water level
measuring points were removed by illegal settlers. As independent variables to the model,
daily rainfall, daily evaporation, daily minimum temperature, daily maximum temperature,
daily relative humidity at day and night, and daily average wind speed were used. The
abovementioned meteorological factors affect water level fluctuations in wetlands through
several processes. Rainfall is considered the primary factor affecting the water balance
at the space scale and time scale. As the infiltration rate in wetlands is lower, they are
more sensitive to severe and sudden rainfall. Therefore, wetlands are highly vulnerable
to changes in the atmosphere. As temperature increases, rainfall patterns change, and
evaporation increases by alerting the wetlands. In fact, when temperature increases, rel-
ative humidity decreases, as it represents the moisture present in the atmosphere. On
the other hand, high wind speeds result in more evaporation in water bodies, reducing
their water levels.

Figure 3 presents the temporal variation of meteorological parameters for the selected
time span. Significant variations can be found from year to year. Figure 3a shows rainfall
variation from 2004 to 2012. Within the selected time frame, Colombo received the highest
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rainfall in 2010, which was 3370 mm per year, and, in 2011, it received the lowest rainfall,
which was 1775 mm per year. Evaporation in the Colombo area takes significantly higher
values as higher as 1250 mm/year. The recorded maximum temperature was 31 ◦C and
the minimum temperature was 24.4 ◦C. The relative humidity during the daytime was
lower than at nighttime. Relative humidity during the day varied from 74 to 77, whereas,
at night, it varied from 86 to 88. Maximum average wind speed was higher in 2011 and
lower in 2006.
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Figure 3. Climate data of Colombo Meteorological station: (a) Rainfall. (b) Evaporation. (c) Maxi-
mum Temperature. (d) Minimum Temperature. (e) Relative Humidity (at day). (f) Relative humid-
ity (at night). (g) Average Wind Speed. 

Figure 4 shows water level data for the six monitoring stations (G1: Diyawanna Lake, 
G2: Kotte North Canal, G3: Kotte Canal, G4: Kimbulawala bridge, G5: Heen Canal, and 
G6: Dematagoda Canal). For most of the time periods, the water level remains below 1 
meter. During the rainy season, sudden changes in the water levels can be seen. Water 
level data in the morning and evening at six stations (as per Figure 4) in the study area 
was obtained, and the daily average value was considered for the model’s development. 
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Figure 3. Climate data of Colombo Meteorological station: (a) Rainfall. (b) Evaporation. (c) Maximum
Temperature. (d) Minimum Temperature. (e) Relative Humidity (at day). (f) Relative humidity (at
night). (g) Average Wind Speed.

Figure 4 shows water level data for the six monitoring stations (G1: Diyawanna Lake,
G2: Kotte North Canal, G3: Kotte Canal, G4: Kimbulawala bridge, G5: Heen Canal, and G6:
Dematagoda Canal). For most of the time periods, the water level remains below 1 meter.
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During the rainy season, sudden changes in the water levels can be seen. Water level data
in the morning and evening at six stations (as per Figure 4) in the study area was obtained,
and the daily average value was considered for the model’s development.
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Figure 4. Water level variations: (a) G1—Diyawanna Lake; (b) G2 -Kotte North Canal; (c) G3—Kotte 
Canal; (d) G4—Kimbulawala bridge; (e) G5—Heen Canal; (f) G6—Dematagoda Canal. 

Data processing was conducted to make sure that neural network training was more 
efficient, which led to better model performance. Furthermore, it sped up the learning 
process. It was clearly observed that the data ranges were not highly deviated. Therefore, 
it did not require the normalization of data. It was assumed that the data had a Gaussian 
distribution as well. Outliers in the data sets were identified at the beginning, and correc-
tions were made. The available data were randomly split into three subsets to avoid over-
fitting the model. Model training was conducted using 70% of the data, while model test-
ing was conducted using 15% of the data. The remaining 15% of the data was used for 
model calibration. 
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experiences heavy rainfall, mostly from May to September. Nevertheless, Colombo is ex-
posed to rainfall throughout the year, as it has a tropical monsoon climate. In fact, global 
warming affects climate patterns worldwide. 
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analysis was conducted to obtain the best performance from the models. The best out-
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experience recurring changes that can be predictable every year. Therefore, conducting 
this analysis based on seasonal changes directed this research in a significant direction. 
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Figure 4. Water level variations: (a) G1—Diyawanna Lake; (b) G2 -Kotte North Canal; (c) G3—Kotte
Canal; (d) G4—Kimbulawala bridge; (e) G5—Heen Canal; (f) G6—Dematagoda Canal.

Data processing was conducted to make sure that neural network training was more
efficient, which led to better model performance. Furthermore, it sped up the learning
process. It was clearly observed that the data ranges were not highly deviated. Therefore, it
did not require the normalization of data. It was assumed that the data had a Gaussian
distribution as well. Outliers in the data sets were identified at the beginning, and cor-
rections were made. The available data were randomly split into three subsets to avoid
overfitting the model. Model training was conducted using 70% of the data, while model
testing was conducted using 15% of the data. The remaining 15% of the data was used for
model calibration.
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The seasonality of the time series improved the performance of the model. As four
seasons can be observed in Sri Lanka, analysis was performed on a seasonal timescale. The
first inter-monsoon is from March to April, and the southwest monsoon is from May to
September. The second inter-monsoon is from October to November, and the northeast
monsoon is from December to February. Colombo is on the west coast of Sri Lanka and
experiences heavy rainfall, mostly from May to September. Nevertheless, Colombo is
exposed to rainfall throughout the year, as it has a tropical monsoon climate. In fact, global
warming affects climate patterns worldwide.

Levenberg Marquardt (LM) and Scaled Conjugate (SC) algorithms were used as the
training algorithms of the neural network model. A trial-and-error procedure was followed
to obtain the optimal neural network structure. The network’s most complex computations
were carried out by the hidden layer. As neural network models are sensitive to the number
of neurons in the hidden layer, a rigorous analysis was carried out by changing the number
of neurons in the hidden layer. Neurons were changed from 1 to 40. The coefficients
of correlation (R) and mean squared error (MSE) were used as the performance indices
of the models.

5. Results and Discussion

As explained in the preceding section, the daily water levels at the Colombo flood
detention area were simulated with inputs of daily rainfall, evaporation, maximum and
minimum temperatures, relative humidity, and average wind speed. Seasonal time series
analysis was conducted to obtain the best performance from the models. The best outcomes
were obtained when there were 12 neurons in the hidden layer.

Seasonality could be recognized as characteristic of a time series in which the data
experience recurring changes that can be predictable every year. Therefore, conducting
this analysis based on seasonal changes directed this research in a significant direction.
Figure 5a–d shows the scatter plots which were derived from the analysis conducted based
on the Levenberg Marquardt algorithm for the first inter-monsoon time period (March to
April). The plots show comparatively stronger correlations for training, validation, testing,
and all (combination) modes, with coefficients of correlation greater than 95%. Training
results show the strongest correlation, with a 97% correlation.

Figure 6a–d shows the scatter plots for the southwest monsoon season (May to Septem-
ber) based on the LM algorithm. Stronger correlations can be observed in all forms, except
for the testing results. While other forms show more than a 95% level of correlation, test-
ing results show an 88% coefficient of correlation, which can be considered a stronger
correlation, but it is not the strongest compared to the others.

When the second inter-monsoon period (October to November) is considered based
on the LM algorithm, as shown in Figure 7a–d, a stronger coefficient of correlations can
be observed (more than 95%) in all forms. Validation results show the strongest level of
correlation, scoring a 98% coefficient of correlation out of all other forms.

As shown in Figure 8a–d, the northeast monsoon period (December to February)
analysis based on the LM algorithm shows comparatively stronger correlations, but it is not
as strong as before (about 90%). Out of all the forms, validation results show the strongest
bond, scoring a 93% level of correlation.

By collectively comparing all of the seasons, the second inter-monsoon period shows
the strongest correlation between observed and predicted wetland water levels, with a
level of correlation greater than 96%, as per the scatter plots shown in Figures 6–9. After
that, the first inter-monsoon period shows the next strongest correlation and, following
that, the southwest monsoon period, and finally, the northeast monsoon period. Overall,
all of the seasons show solid correlation patterns among observed and predicted wetland
water levels in the Colombo flood detention basin, with correlation levels exceeding 88%.
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Figure 9. ANN-predicted and observed water levels in First Inter Monsoon for SC algorithm. (a) For
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With respect to the LM algorithm, similar results were shown in the scaled conjugate
(SC) analysis as well. As presented in Figure 9a–d, SC analysis for the inter-monsoon period
(March to April) shows stronger correlations among observed and predicted wetland water
levels. More than 86% of levels are scored, while the training result plot shows the highest
correlation level (93%) out of the other forms in that season. However, the other forms
also show stronger correlations: 86%, 91%, and 92% for validation, testing, and all (the
combination of all forms), respectively.

Figure 10a–d depicts the SC analysis conducted for the southwest monsoon period
(May to September). Comparatively stronger correlations are obtained (more than 91%) for
all forms. Testing results show the highest level of correlation (96%), while training results
show a similar stronger relationship (95%) between predicted and observed wetland water
levels. Validation results show the lowest coefficient of correlation (91%) among the other
forms in the southwest monsoon period, but it cannot be considered a weaker correlation.

Similarly, high levels of correlation were obtained when analysis was conducted for
the second inter-monsoon period (October to November) on the basis of the SC algorithm
(Figure 11a–d). A 97% level of correlation was achieved by both training and validation
results, while the testing results showed the lowest coefficient of correlation among the
other forms, scoring an 89% level of correlation.

Comparatively moderate correlations were obtained for the analysis conducted for
the northeast monsoon period (December to February) data, based on the SC algorithm
(Figure 12a–d). Testing on the scatter plot showed the lowest correlation (74%), compared
to the other forms, which scored about 87–88% levels of correlation. However, the northeast
monsoon period analysis cannot be treated as weaker as it comparatively scored more than
74% level of correlation, which can be considered moderately stronger.
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When comparing all four seasons together, the strongest correlation (about 96%) could
be observed for the second inter-monsoon period, depending on the SC algorithm, and,
after that, the southwest monsoon (about 94%), the first inter-monsoon (about 92%), and
finally, the northeast monsoon (about 86%) showed correlations, respectively.

When considering both algorithms together, the same pattern was observed. The
strongest coefficients of correlation were obtained for the second inter-monsoon period.
Then, the levels of correlation were gradually reduced for the southwest monsoon, the first
inter-monsoon period, and finally, the northeast monsoon period, respectively. Therefore, a
stronger trend could be found among observed and predicted wetland water level data
during the southwest monsoon period in Sri Lanka for the Colombo flood detention basin.

Figure 13a–d depicts the model validation performances for the LM algorithm in all
four seasons. It can be clearly seen that the northeast monsoon achieved the lowest mean
square error of all four models, which was 0.0014. It took only five epochs to reach the best
validation performance. Among the four seasons, the second inter-monsoon showed the
highest mean square error, which was 0.01, while taking four epochs to reach it. It can be
stated that the mean square errors in all four seasons were close to zero, which showed
better validation performances.

When considering the validation performances based on the SC algorithm, as shown
in Figure 14a–d, the northeast monsoon showed the lowest mean square error of 0.002,
while taking 39 epochs to reach the best validation performance. The second inter-monsoon
results showed the highest mean square error value of 0.01, while taking 34 epochs to
achieve the best validation performance. When collectively comparing all of the seasons,
all the plots showed lower mean square error values, which highlighted comparatively
better validation performances.

With respect to the above plots, it can be clearly observed that the number of epochs taken
by each of the seasonal results is lower in the LM algorithm compared to the SC algorithm.
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However, in both analyses, it is clearly proven that both algorithms are showing lesser
mean square error values closer to zero, which is a sign of better validation performance.
As shown in the performance plots with epochs and having lower mean square values at
the end of the training phases, it is clearly proven that desired outputs and the artificial
neural network’s outputs for the training sets are very close to each other. The following
table (Table 1) shows a summary of all the results obtained for each of the seasons using
both algorithms.

Table 2 displays the results of the uncertainty analysis. The d-factor of all first in-
ter monsoon, southwest monsoon, second inter monsoon, and northeast monsoon wa-
ter levels is low, indicating that the model is reasonably accurate in predicting wetland
water level data.

The results showcased the importance of predicting wetland water levels in the
Colombo flood detention wetland. The computational accuracy and robustness are signifi-
cant in the prediction model. Therefore, planners can use this model as an initial model by
which to understand the behavior of the wetland water levels. Sri Lanka is noted as one of
the counties most influenced by climate change. This is very important as Sri Lanka is a
densely populated island in the Indian Ocean. In addition, the case study was carried out in
the main strategic area of the country which is Sri Lanka’s administrative and commercial
capital. Therefore, prediction of wetland water levels in the surrounding areas is essential.
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However, the accuracy of the prediction model is entirely based on the quality of
the data provided in training the ANN model. Sri Lanka has a dense rain gaging system;
however, it lacks all other meteorological data. Therefore, the spatial distribution of
meteorological data can influence the prediction model as the Colombo flood detention
wetland has a wider area. Furthermore, the temporal variations of the meteorological data
were mostly recorded on a daily basis. However, the finer resolution of extreme weather
events was not considered in daily data. Sometimes, these extreme events can happen on
an hourly basis, and those were not recorded. Therefore, this could also impact the results
of the study.

Furthermore, one of the major difficulties faced in conducting this research was the
unavailability of continuous water levels in the Colombo wetlands. This is due to several
reasons. Poor maintenance of the water gages is one of the major issues identified during
the research. Furthermore, there have been several developments and reclamations (legal
as well as illegal) associated with the wetland in the Colombo region. Due to the ignorance
and negligence of the relevant authorities and the community, the wetlands are still not
properly treated.
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However, as already stated, this is the first study on wetland water level prediction in
Sri Lanka. Therefore, there are no studies with which to compare the results obtained from
this analysis. However, the literature demonstrates some similar studies and presented
similar performances based on the analysis. Choi et al. [26] used similar independent
variables to predict the wetland water levels of the Upo wetland and found acceptable
results. However, these studies should not be used for a comparative analysis within the
Sri Lankan context. The climate patterns, including monsoons and other extreme events,
are different in Sri Lanka to other countries. In addition, the Colombo flood detention
wetland is unique in its topography and soil conditions.

Table 1. Summary of the results obtained for LM and SC algorithms.

Location Season Algorithm
MSE R

Training Validation Testing Training Validation Testing

G1 First Inter Monsoon LM 0.0022 0.0033 0.0043 0.97 0.97 0.95
SC 0.0024 0.0022 0.0044 0.97 0.97 0.93

Southwest Monsoon LM 0.0016 0.0010 0.0014 0.98 0.99 0.98
SC 0.0029 0.0018 0.0040 0.97 0.98 0.96

Second Inter Monsoon LM 0.0120 0.0084 0.0071 0.94 0.95 0.97
SC 0.0100 0.0130 0.0240 0.95 0.95 0.9

Northeast Monsoon LM 0.0017 0.0011 0.0012 0.97 0.98 0.98
SC 0.0022 0.0026 0.0029 0.97 0.97 0.95

G2 First Inter Monsoon LM 0.0008 0.0007 0.0006 0.98 0.99 0.99
SC 0.0008 0.0006 0.0032 0.98 0.99 0.92

Southwest Monsoon LM 0.0012 0.0007 0.0021 0.98 0.99 0.98
SC 0.0043 0.0010 0.0092 0.95 0.98 0.91

Second Inter Monsoon LM 0.0001 0.0019 0.0013 0.99 0.99 0.98
SC 0.0021 0.0023 0.0160 0.98 0.97 0.92

Northeast Monsoon LM 0.0002 0.0004 0.0008 0.99 0.99 0.98
SC 0.0013 0.0018 0.0025 0.96 0.97 0.95

G3 First Inter Monsoon LM 0.0006 0.0021 0.0020 0.99 0.98 0.98
SC 0.0034 0.0033 0.0054 0.96 0.97 0.95

Southwest Monsoon LM 0.0028 0.0055 0.0075 0.97 0.93 0.89
SC 0.0064 0.0100 0.0019 0.93 0.9 0.96

Second Inter Monsoon LM 0.0180 0.0100 0.0140 0.94 0.96 0.96
SC 0.0280 0.0220 0.0130 0.88 0.92 0.95

Northeast Monsoon LM 0.0010 0.0025 0.0019 0.98 0.97 0.97
SC 0.0021 0.0010 0.0015 0.97 0.98 0.98

G4 First Inter Monsoon LM 0.0015 0.0040 0.0044 0.97 0.95 0.95
SC 0.0043 0.0056 0.0082 0.93 0.86 0.91

Southwest Monsoon LM 0.0033 0.0059 0.0100 0.96 0.96 0.88
SC 0.0049 0.0095 0.0021 0.95 0.91 0.96

Second Inter Monsoon LM 0.0090 0.0100 0.0150 0.97 0.97 0.96
SC 0.0100 0.0100 0.0240 0.97 0.97 0.89

Northeast Monsoon LM 0.0026 0.0013 0.0017 0.88 0.93 0.92
SC 0.0025 0.0022 0.0059 0.88 0.87 0.75

G5 First Inter Monsoon LM 0.0037 0.0170 0.0170 0.93 0.71 0.71
SC 0.0100 0.0093 0.0100 0.8 0.75 0.82

Southwest Monsoon LM 0.0045 0.0150 0.0230 0.95 0.89 0.78
SC 0.0100 0.0160 0.0140 0.9 0.88 0.81

Second Inter Monsoon LM 0.0140 0.0280 0.0100 0.9 0.85 0.83
SC 0.0200 0.0170 0.0180 0.83 0.88 0.87

Northeast Monsoon LM 0.0037 0.0052 0.0033 0.88 0.88 0.93
SC 0.0049 0.0045 0.0046 0.84 0.84 0.92

G6 First Inter Monsoon LM 0.0005 0.0005 0.0016 0.96 0.99 0.83
SC 0.0007 0.0022 0.0006 0.83 0.95 0.67

Southwest Monsoon LM 0.0024 0.0049 0.0057 0.95 0.84 0.97
SC 0.0027 0.0021 0.0058 0.92 0.95 0.9

Second Inter Monsoon LM 0.0006 0.0095 0.0260 0.99 0.74 0.72
SC 0.0054 0.0200 0.0140 0.88 0.8 0.78

Northeast Monsoon LM 0.0001 0.0012 0.0031 0.99 0.98 0.9
SC 0.0006 0.0027 0.0028 0.98 0.9 0.9
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Table 2. Results of uncertainty analysis.

Location Season d-Factor

G1 First Inter Monsoon 0.027
Southwest Monsoon 0.010

Second Inter Monsoon 0.013
Northeast Monsoon 0.019

G2 First Inter Monsoon 0.078
Southwest Monsoon 0.044

Second Inter Monsoon 0.112
Northeast Monsoon 0.053

G3 First Inter Monsoon 0.019
Southwest Monsoon 0.015

Second Inter Monsoon 0.026
Northeast Monsoon 0.015

G4 First Inter Monsoon 0.019
Southwest Monsoon 0.008

Second Inter Monsoon 0.013
Northeast Monsoon 0.002

G5 First Inter Monsoon 0.017
Southwest Monsoon 0.009

Second Inter Monsoon 0.016
Northeast Monsoon 0.013

G6 First Inter Monsoon 0.140
Southwest Monsoon 0.030

Second Inter Monsoon 0.084
Northeast Monsoon 0.038

6. Conclusions

This study indicates the applicability of artificial neural networks for modeling daily
water levels in wetlands. The Colombo flood detention area, which consists of three
marshes/wetlands, was selected as the study area. It is an area highly vulnerable to
flooding due to the rapid shrinkage of the wetlands in that area. As the inputs to the neural
network model, daily meteorological data were selected, including rainfall, evaporation,
minimum and maximum temperatures, relative humidity, and average wind speed. Two
types of neural network training algorithms, namely the Levenberg Marquardt algorithm
and the Scaled Conjugate algorithm, were used to train the models. Model training was
conducted using 70% of the input data. Model testing and validation were conducted using
15% of the data for each. Analysis was performed on a seasonal timescale by considering
the four seasons in Sri Lanka. It was found that when there were 12 neurons in the hidden
layer, the model gave better results.

Model results revealed that both the Levenberg Marquardt algorithm and the Scaled
Conjugate algorithm outperformed each other in simulating wetland water levels. However,
the performance indicators gave a better approach under the LM algorithm. Similarly, the
coefficient of correlation values also suggested better usage of the LM algorithm. Therefore,
it can be concluded that the LM algorithm produces better results by which to model the
wetland water level than the SC algorithm.

Nevertheless, we selected the Colombo flood detention area as the case study area as it
can be considered a critical wetland in Sri Lanka. As the capital city of Sri Lanka, Colombo
city is being drastically developed. On the other hand, wetland coverage in the Colombo
region is being rapidly reduced. Therefore, we tried to emphasize the value of the Colombo
flood detention area and the importance of developing a model to predict the water levels
in the Colombo flood detention area. This study can be considered fundamental, and we
would recommend further developing this model to avoid the above-mentioned issue.

Therefore, the prediction model can be used to perform any future forecasting analysis
within a local context. The availability of metrological data is highly essential for such
analysis. The model, therefore, can be used to predict short-term water levels in the
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Colombo flood water basin. Given the availability of future climate data, the model can be
used to predict long-term water levels. With the modeled Representative Concentration
Pathway and Shared Socioeconomic Pathways climatic data, the model could be used to
predict future wetland water levels in long-term analysis. However, these modeled data
have to be bias-corrected before they are fed into the prediction model. These results can be
effectively used to develop various policy decisions in the management and conservation
of wetlands.
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
CC Coefficient of Correlation
DT Decision Trees
Evap Daily Evaporation
LM Levenberg Marquardt algorithm
MSE Mean Squared Error
NSE Nash Sutcliffe efficiency
R2 Coefficient of Determination
RaF Random Forest
RF Daily Rainfall to the catchment
RHday Daily Relative Humidity at day time
RHnight Daily Relative Humidity at night time
RMSE Root Mean Square Error
SG Scaled Conjugate algorithm
SVM Support Vector Machines
Tmin Minimum Daily Temperature
Tmax Maximum Daily Temperature
WL Water Level
WS Daily Average Wind Speed
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28. Zhu, S.; Hrnjica, B.; Ptak, M.; Choiński, A.; Sivakumar, B. Forecasting of water level in multiple temperate lakes using machine

learning models. J. Hydrol. 2020, 585, 124819. [CrossRef]
29. Truong, V.-H.; Ly, Q.V.; Le, V.-C.; Vu, T.-B.; Le, T.-T.; Tran, T.-T.; Goethals, P. Machine learning-based method for forecasting water

levels in irrigation and drainage systems. Environ. Technol. Innov. 2021, 23, 101762. [CrossRef]
30. Wang, H.; Song, L. Water Level Prediction of Rainwater Pipe Network Using an SVM-Based Machine Learning Method. Int. J.

Pattern Recognit. Artif. Intell. 2019, 34, 2051002. [CrossRef]
31. Nourani, V.; Mogaddam, A.; Nadiri, A. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process.

2008, 22, 5054–5066. [CrossRef]
32. Govindaraju, R.S.; Rao, A.R. (Eds.) Artificial Neural Networks in Hydrology; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013; Volume 36.
33. Sarker, I.H.; Kayes, A.S.M.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized

context-aware smartphone usage. J. Big Data 2019, 6, 57. [CrossRef]
34. Yin, C.; Rosendahl, L.; Luo, Z. Methods to improve prediction performance of ANN models. Simul. Model. Pract. Theory 2003, 11,

211–222. [CrossRef]

http://doi.org/10.1098/rsfs.2019.0129
http://doi.org/10.1672/07-239.1
http://doi.org/10.1002/ecs2.1956
http://doi.org/10.1061/(ASCE)0733-9496(2006)132:6(480)
http://doi.org/10.1108/IHR-03-2021-0018
http://doi.org/10.1016/j.scitotenv.2019.07.263
http://doi.org/10.3390/rs10030356
http://doi.org/10.3389/fenvs.2019.00199
http://doi.org/10.1016/j.ejrh.2014.07.001
http://doi.org/10.17352/gje.000004
http://doi.org/10.3390/ijerph16101818
http://doi.org/10.3133/sim3164
http://doi.org/10.1007/s11273-013-9301-y
http://doi.org/10.3133/cir1217
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001276
http://doi.org/10.3390/w11122516
http://doi.org/10.3390/w14010055
http://doi.org/10.1016/j.jhydrol.2020.124819
http://doi.org/10.1016/j.eti.2021.101762
http://doi.org/10.1142/S0218001420510027
http://doi.org/10.1002/hyp.7129
http://doi.org/10.1186/s40537-019-0219-y
http://doi.org/10.1016/S1569-190X(03)00044-3


Climate 2023, 11, 1 22 of 22

35. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and
challenges in big data analytics. J. Big Data 2015, 2, 1. [CrossRef]

36. Altunkaynak, A. Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resour. Manag.
2006, 21, 399–408. [CrossRef]

37. Gopakumar, R.; Takara, K. Water level forecasting in the Vembanad water system using artificial neural networks. In Proceedings
of the 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Kerala, India,
27–28 October 2009; pp. 948–953.

38. Saha, T.K.; Pal, S.; Sarkar, R. Prediction of wetland area and depth using linear regression model and artificial neural network
based cellular automata. Ecol. Inform. 2021, 62, 101272. [CrossRef]

39. Mukherjee, I.; Routroy, S. Comparing the performance of neural networks developed by using Levenberg–Marquardt and
Quasi-Newton with the gradient descent algorithm for modelingmodeling a multiple response grinding process. Expert Syst.
Appl. 2012, 39, 2397–2407. [CrossRef]

40. Bafitlhile, T.M.; Li, Z.; Li, Q. Comparison of levenberg marquardt and conjugate gradient descent optimization methods for
simulation of streamflow using artificial neural network. Adv. Ecol. Environ. Res. 2018, 3, 217–237.

41. Kouziokas, G.N.; Chatzigeorgiou, A.; Perakis, K. Artificial intelligence and regression analysis in predicting groundwater levels
in public administration. Eur. Water 2017, 57, 361–366.

42. Khaki, M.; Yusoff, I.; Islami, N.; Hussin, N.H. Artificial neural network technique for modeling of groundwater level in Langat
Basin, Malaysia. Sains Malays. 2016, 45, 19–28.

43. Dhaigude, R.; Ajmera, S. Modeling of Groundwater Level Using Artificial Neural Network. J. Xian Univ. Archit. Technol. 2020, 53,
482–490.

44. Aryal, Y. Application of Artificial Intelligence Models for Aeolian Dust Prediction at Different Temporal Scales: A Case with
Limited Climatic Data. AI 2022, 3, 707–718. [CrossRef]

45. Landscape and Urban Design Office-France, Report on Metro Colombo Wetland Management Strategy, Wetland Management
Division, Sri Lanka Land Reclamation and Development Cooperation, Rajagiriya, Colombo Sri Lanka. 2016. Available online:
documents/library/4th_strategic_plan_2016_2024_e.pdf (accessed on 17 December 2022).

46. Maspo, N.-A.; Bin Harun, A.N.; Goto, M.; Cheros, F.; Haron, N.A.; Nawi, M.N.M. Evaluation of Machine Learning approach in
flood prediction scenarios and its input parameters: A systematic review. IOP Conf. Ser. Earth Environ. Sci. 2020, 479, 012038.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1186/s40537-014-0007-7
http://doi.org/10.1007/s11269-006-9022-6
http://doi.org/10.1016/j.ecoinf.2021.101272
http://doi.org/10.1016/j.eswa.2011.08.087
http://doi.org/10.3390/ai3030041
documents/library/4th_strategic_plan_2016_2024_e.pdf
http://doi.org/10.1088/1755-1315/479/1/012038

	Introduction 
	Artificial Neural Networks (ANN) to Predict Wetland Water Levels 
	Materials and Methodology 
	Mathematical Formulation 
	Training with Different Algorithms in ANN 
	Levenberg Marquardt (LM) Algorithm 
	Scaled Conjugate (SC) Algorithm 

	Model Development 
	Evaluation Criteria 
	Coefficient of Correlation (R) 
	Mean Squared Error (MSE) 

	Uncertainity Analysis 

	Case Study 
	Results and Discussion 
	Conclusions 
	References

