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Abstract: Small data samples are still a critical challenge for spatial predictions. Land use regression
(LUR) is a widely used model for spatial predictions with observations at a limited number of
locations. Studies have demonstrated that LUR models can overcome the limitation exhibited
by other spatial prediction models which usually require greater spatial densities of observations.
However, the prediction accuracy and robustness of LUR models still need to be improved due to
the linear regression within the LUR model. To improve LUR models, this study develops a land
use quantile regression (LUQR) model for more accurate spatial predictions for small data samples.
The LUQR is an integration of the LUR and quantile regression, which both have advantages in
predictions with a small data set of samples. In this study, the LUQR model is applied in predicting
spatial distributions of annual mean PM2.5concentrations across the Greater Sydney Region, New
South Wales, Australia, with observations at 19 valid monitoring stations in 2020. Cross validation
shows that the goodness-of-fit can be improved by 25.6–32.1% by LUQR models when compared with
LUR, and prediction root mean squared error (RMSE) and mean absolute error (MAE) can be reduced
by 10.6–13.4% and 19.4–24.7% by LUQR models, respectively. This study also indicates that LUQR is
a more robust model for the spatial prediction with small data samples than LUR. Thus, LUQR has
great potentials to be widely applied in spatial issues with a limited number of observations.

Keywords: land use quantile regression (LUQR); spatial prediction; spatial associations; air pollution;
PM2.5; traffic emissions

1. Introduction

Small data samples have been a critical challenge for the prediction of geographical
attributes [1]. The lack of spatial observations usually leads to biased predictions at locations
where there are only sparse or even no observations [2]. In the field of spatial prediction,
more observations can benefit accurate spatial prediction [3,4]. As such, a certain number
of samples or observations are required in models for spatial prediction. For instance,
studies demonstrated that sample sizes of 150 data, or at least 100 data, were recommended
for fitting reliable variograms of kriging-based spatial prediction [5]. However, in certain
cases, it is difficult to collect enough samples for spatial predictions. The cases of small data
samples are usually due to several factors. First, historical data usually contain a limited
number of samples, such as meteorological observations in the previous century [6]. In
addition, it is difficult to collect massive or enough samples for specific and uncommon
attributes or for some regions. For instance, the distribution of global in situ monitoring
stations of soil moisture is critically unbalanced [7,8]. In the Qinghai–Tibet Plateau, the
number of soil moisture monitoring stations is much fewer than the number of required
stations across the whole region [9,10]. The last, but not least, case is that there are only a few
samples in small areas. For instance, air pollution monitoring stations are usually limited
within a city, which leads to difficulty in regional spatial prediction of air pollution [11,12].
While these monitoring stations may be adequate to describe air quality within the city, they
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do not provide information necessary to assess air quality in the surrounding countryside.
To address the above issues of a limited number of observations, more reliable and robust
models are required for dealing with small data samples.

Land use regression (LUR) has proven to be an effective model for the spatial predic-
tion of geographical attributes, with observations at a small number of locations [12,13].
The key part of LUR is to create buffers, areas within specific distances to observation
locations, to calculate mean or percentage values of explanatory variables to characterize
local geographical, environmental, or social conditions instead of using data values at exact
locations of observations [12]. LUR models have been widely applied in spatial predictions
due to the advantages in effective prediction with a small number of spatial observations
and using categorical variables for predictions. The applications and advantages of LUR
models have been reviewed in the next section. In recent years, a series of new models
have been developed based on LUR to improve prediction capacity, such as dimensional-
ity reduction for explanatory variables [13], spatiotemporal LUR modelling [14] and the
integration of LUR and machine learning algorithms [15,16], as reviewed in the next section.

However, it is still a challenge to more accurately predict spatial distributions with
small data samples using the above improved LUR models, where most of them are hybrid
and complex models, and relatively large datasets are required for modelling. In addition,
the robustness of current LUR models fitted by linear regression still needs to be improved.
In linear regression, a few biased or outlier observations will have critical impacts on the
accuracy and reliability of LUR models. In previous studies, the commonly used approach
to deal with outliers in linear regression models is to remove the outlier observations based
on a threshold. For instance, if observations are higher than the mean plus 2.5 times of the
standard deviation or lower than the mean minus 2.5 times of the standard deviation, the
observations will be regarded as outliers and have to be removed [17]. Unfortunately, for
small data samples, if a few data are removed using this approach, the data containing
important information may be removed, and the spatial coverage of samples will be
critically reduced. In practical studies, spatial predictions with small data samples have
been increasingly required, especially in regional and local research and management.
Therefore, it is necessary to develop robust models for spatial prediction with very small
data samples.

This study develops a land use quantile regression (LUQR) model for more accurate
and robust spatial prediction of air pollution with observations at a limited number of
locations. The LUQR is an integration of LUR model and quantile regression, which can
improve the prediction accuracy and robustness of LUR models that usually use linear
regression models for prediction. Quantile regression has proven to be a robust model for
small data samples and without assumptions of data distributions, due to the estimation
with the median and quantiles [18–20]. The primary reason for the robustness of quantile
regression is that quantiles are used to derive prediction and tolerance intervals without the
assumptions of error distributions and variance of data, and they can effectively deal with
outliers in response variables [21,22]. In this study, annual mean PM2.5 (particulate matters
with a diameter of 2.5 micrometres or less) concentrations have been collected at 19 valid
monitoring stations in the Greater Sydney region, New South Wales (NSW), Australia.
Correspondingly, potential explanatory variables of land use, population, road network,
elevation, and vegetation have been computed for both buffer regions of PM2.5 monitoring
stations and grid data across the Greater Sydney region. The explanatory variables used in
the study include most of the commonly used variables for PM2.5 predictions in previous
studies [23–27]. Cross validation is performed to assess the accuracy improvement in the
LUQR model when compared with traditional LUR models using accuracy indicators of
goodness-of-fit measured by R2 and prediction errors measured by root mean squared
error (RMSE) and mean absolute error (MAE).
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2. Literature Review

LUR has been applied in various fields, such as the spatial prediction of air pollu-
tion [28], climate change [29,30], urban heat islands [31], urban vegetation [32], and soil
heavy metals [33]. Among these fields, a primary category is to predict urban air pollution,
including PM2.5, PM10 (particulate matters with a diameter of 10 micrometres or less), NOx,
CO, SO2, O3, black carbon, etc. [28,34–36]. In LUR models, the relationship between an air
pollutant and potential explanatory variables is estimated using regression models and the
mean values or ratios of explanatory variables within a series of buffers of air pollutant
monitoring locations. The potential explanatory variables usually consist of land use and
land cover, road networks, traffic intensity, population, vegetation coverage, water areas,
elevation, etc. [28,34–36]. For instance, in the European Study of Cohorts for Air Pollution
Effects (ESCAPE, www.escapeproject.eu) project, spatial distributions of PM2.5, PM10, and
other particulate matters were predicted using LUR models for 20 European study areas us-
ing observations at 20 sites per area [37]. In the LUR models, a set of explanatory variables
were collected for modeling, including traffic conditions, population, and land use within
each study area [37]. The goodness-of-fit of LUR models measured by the cross-validation
R2 ranges from 35% to 94% in different areas, and the median goodness-of-fit is 71% [37].
In the United States, the satellite remote sensing data aerosol optical depth (AOD) was
used to improve the spatial prediction accuracy of PM2.5 [38]. The results show that with
the supports of AOD data and random slope in the LUR models, the cross validation R2 of
the spatial prediction can be improved from 0.50 to 0.66 [38].

LUR models have the following advantages in spatial predictions compared with
geostatistical models, such as kriging-based models. First, LUR models are effective in
spatial predictions with observations at 20–100 locations [28], depending on the required
size of observations, which are much lower than the required number of locations in kriging-
based spatial prediction models. In general, if the total number of observations is lower than
15 or 20, it is difficult to construct a reliable variogram function in kriging-based models. In
practical spatial prediction issues, more observations and hybrid approaches are required
in kriging-based models due to the common uneven distributions of samples [39,40]. The
uneven distributions of samples are also a critical issue for the air pollution data, including
particulate matter, where samples are generally clustered in central urban regions and
are sparse in rural and remote areas [38]. If kriging-based models are used for the spatial
prediction of particulate matters, the variogram function can only present the spatial
characteristics, i.e., patterns and heterogeneity, of particulate matters in central urban
areas. This phenomenon will further lead to biased and unreliable prediction in rural areas.
However, LUR models can address this issue to some extent through building relationships
between particulate matters with local land use, environmental, and social conditions
within buffers of certain distance [28].

In addition, LUR models can effectively use categorical variables, such as land use,
in models [35,36], which are difficult to be added in kriging-based models. The common
categorical variables of geospatial data include land cover and land use, soil types, geologi-
cal strata, river catchment zones, climate zones, ecological zones, etc. In LUR models, the
geographical information of categorical variables can be depicted by comparing response
variables with area ratios of different types of data in a categorical variable, e.g., land use,
within buffers of multiple distance ranges. In this way, the maximum impacts of a type of
categorical data can be estimated.

In recent years, to improve the capacity of LUR models in spatial prediction, a set
of innovative models have been developed. For instance, principal component analysis
was used to optimize LUR models through the dimensionality reduction for explanatory
variables [13]. In addition, a spatiotemporal LUR model was developed to enhance the
spatiotemporal estimation of air pollutants even with missing data [14]. The spatiotemporal
LUR model was a hybrid two-stage model integrating a static LUR model and a multiple
linear-regression-based meteorological factor regression (MFR) model for more accurate
spatiotemporal predictions [41]. Finally, an LUR model was integrated with machine
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learning algorithms to improve the prediction accuracy, where the linear relationships
between air pollutants and explanatory variables are replaced by nonlinear relationships
explored by machine learning [15,16]. For instance, non-parametric LUR models were
developed with the support of a random forest model and a generalized additive model for
predicting spatial distributions of ambient total particulate concentrations [42], and additive
regression smoother-based LUR models were developed for investigating agglomeration
and infrastructure effects on air pollutants [43]. Previous studies also have demonstrated
that the accuracy of LUR and improved models-based spatial predictions, such as the
prediction of particulate matter, are much higher than kriging-based models, especially for
cases with relatively low numbers of observations [24].

3. Study Area and Data
3.1. Study Area and Air Pollution Data

Air pollution monitoring stations are usually unequally distributed in most nations.
In general, air pollution monitoring stations are densely distributed in populated urban
areas and sparsely distributed in rural and remote areas. The study area is the Greater
Sydney Region in New South Wales, Australia. The population in the Greater Sydney
Region is 5.31 million, which accounts for about 65.1% of the population of New South
Wales and 20.9% of the total Australian population [44]. Similar to most cities in the world,
the spatial data of air pollutants are much fewer than the temporal data in the Greater
Sydney Region. From the temporal perspective, air pollutant data are updated hourly,
and a daily air pollutant forecast is available in the Greater Sydney Region [45]. However,
spatial data of air pollutants are limited for predicting distribution maps.

In the Greater Sydney Region, there are 34 monitoring stations for different types of air
pollutants, such as PM2.5, PM10, SO2, NO2, and O3 [45]. The number of stations has been
continuously increased in recent years to cover more typical areas and improve the capacity
to monitor air pollution. The number of PM2.5 monitoring stations has been increased from
15 in 2018 to 19 in 2020. In this study, the annual mean PM2.5 concentrations at the 19 valid
stations in 2020 are used to predict the spatial distribution of annual mean concentrations
in Greater Sydney Region (Figure 1). PM2.5 is the fine particulates with the size smaller
than 2.5 µm in aerodynamic diameter [46,47]. PM2.5 is a mixture, and its components are
sophisticated and varied in different locations. The potential sources of PM2.5 primarily
consist of traffic [48–50], industrial activities [51,52], bushfire [53], residential energy use
and biomass burning [54,55], and agricultural products and straw burning [56]. The map
shows that the general spatial pattern of PM2.5 concentrations is that PM2.5 in urban regions
(southeastern regions) tend to be higher than that in rural regions. The distribution pattern
and rural–urban difference of PM2.5 indicate that, from the spatial perspective, PM2.5 is
closely associated with traffic and other human activities. Table 1 shows the statistical
summary of PM2.5 observations. The concentrations at the 19 stations range from 5.60 to
9.10 µg m−3, and the mean value is 7.83 µg m−3.

3.2. Explanatory Variables

To predict spatial distributions of PM2.5 concentrations, data of five categories of
explanatory variables in 2020 have been collected, including land use types, population,
road network distributions, elevation, and vegetation coverage. Figure 2 shows spatial
distributions of the five categories of explanatory variables and the relationships between
their distribution patterns and valid PM2.5 monitoring stations at the Greater Sydney region.
The brief descriptions and data sources of the five categories of explanatory variables are
presented as follows.
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Table 1. Particulate matter observations and selected explanatory variables.

Variable Code Optimal
Buffer (km)

Min Mean Median Max Std a

PM2.5 (µg/m3) / / 5.60 7.83 7.80 9.10 0.86

Land use: ratio (%)

Natural environments NE 3 0.38 12.22 6.51 63.19 15.38
Production from natural environments PNE 3.5 0.00 3.87 0.56 30.04 7.51
Dryland agriculture DA 0.5 0.00 7.86 0.00 45.00 13.18
Built-up region BUR 3 16.08 61.81 62.75 78.44 15.62
Industrial region IR 3 0.85 14.93 13.37 27.04 8.07

Population density (persons/km2) PPDS 5 110 3077 2328 9292 2767
Highway density (km/km2) HWDS 2.5 0.000 0.821 0.688 2.600 0.790

Major road density (km/km2) MRDS 4.5 0.169 1.710 1.828 3.925 1.093
Elevation (m) ELV 5 14.04 81.54 45.28 416.71 108.23

NDVI NDVI 0.5 0.368 0.534 0.533 0.732 0.107
a Std: Standard deviation.
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Figure 1. Spatial distributions of air quality monitoring stations and annual mean PM2.5 in Great
Sydney Region, New South Wales, Australia.

3.2.1. Land Use

Spatial distributions of PM2.5 are closely associated with land use, such as built-up
areas, forest, and rivers [57,58]. As such, land use has been an effective variable for the
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prediction distributions of PM2.5 [59,60]. Land use data are sourced from the catchment
scale land use of Australia (CLUM) [61], which is a 50-m resolution raster data of land use
updated on December 2020 and contains 18 major classes of land use. In the study, due
to the limited number of PM2.5 monitoring stations, the major classes of land use have
been summarized into seven categories in the study area according to the characteristics
explained by the CLUM [61]. The summarized land use types used for PM2.5 prediction
include natural environments, production from natural environments, dryland agriculture,
irrigated agriculture, built-up regions, industrial regions, and water, as shown in Figure 2a.
The land use map demonstrates that most of the PM2.5 monitoring stations are located in
the urban built-up regions, and a few other stations are distributed in natural environments,
production regions from natural environments, and dryland agriculture regions.

Land use

Dyland agriculture
Irrigated agriculture
Built-up region
Industrial region
Water

Natural environments
Production from
natural environments

Highway
Major roads

Population density
(Persons km−2)

0–10
11–2876
2877–3991
3992–7060
7061–441,944

NDVI
0.897

−0.081

Elevation (m)
1328.48

−20.04

0 50
km

N
(a) (b)

(c) (d) (e)

Figure 2. Spatial distributions of explanatory variables: land use (a), population density (b), road
network (c), elevation (d), and vegetation (NDVI) (e).

3.2.2. Population

The inequality of population distributions between rural and urban areas is also an
essential factor of the spatial patterns of PM2.5. The population variable is an effective
proxy indicator of human activities, such as motor vehicles, freight transportation, the
use of energy, etc., and human-related combustion that is the primary source of PM2.5. In
Australia, very high resolution block-level population data are available from the Aus-
tralian Bureau of Statistics [62], and it is used to calculate the block-level population
density in Greater Sydney Region (Figure 2b). The population density map shows signif-
icant spatial disparities of population in the study area. The most of the population are
densely distributed in central urban regions of Sydney, and sparsely distributed in rural
areas. For instance, in rural and remote areas, the population density is generally lower
than 10 persons/km2. However, in the central urban regions, the population densities in
most blocks are higher than 2800 persons/km2, and the highest block-level population
density reaches to 441,944 persons/km2, which is a commercial block area in the central
urban region.
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3.2.3. Road Network

Road network is a commonly used variable for prediction of air pollutants, since it is
closely associated with traffic emissions and other population activities that may release
air pollutants, such as household emissions and industry emissions. In this study, the
latest road network data in 2020 are sourced from OpenStreetMap (OSM) data. The road
network data are reclassified into highways and major roads, where major roads include
primary roads, secondary roads, tertiary roads, and their links in the road network of
OSM. In the study, the highway represent the primary inter-region passenger and freight
transportation. The major roads can support regional and local transportation. For instance,
the transport of mines, agricultural products, general manufactures, construction materials,
and household consumables between regions and ports in Sydney are essential components
of the freight transportation. The map of the road networks show that most of the PM2.5
monitoring stations are located close to highways.

3.2.4. Elevation

The elevation data are used to present the geographical conditions of the study area.
The elevation data are sourced from the Digital Elevation Model (DEM) of Australia [63]
at Google Earth Engine (GEE) [64]. In the study area, most of the eastern parts are plain
regions with relatively low elevation, and the western and northern parts are mountainous
areas with high elevation. The highest elevation is about 1328 m. The relationship of spatial
distribution patterns between elevation and the PM2.5 monitoring stations shows that most
of the monitoring stations are located in the plain regions, and only a few of them are
distributed in mountainous regions. This phenomenon also indicates the spatial inequality
of the PM2.5 observations.

3.2.5. Vegetation

The vegetation condition is an effective proxy indicator of ecological and environ-
mental conditions, which are liked with spatial distribution patterns of air pollutants. For
instance, a series of studies have demonstrated that the vegetation cover and green spaces
have impacts on the spatial and temporal variations of PM2.5 concentrations [65–67]. In this
study, the vegetation condition is presented using the annual mean normalized difference
vegetation index (NDVI) derived from the MOD13A1.006 Terra Vegetation Indices [68] at
GEE. The map shows that the vegetation coverage is high in most of the study area, and
the low vegetation coverage is only distributed in a small area of the central urban region.

To ensure the consistent data analysis from both spatial and temporal perspectives,
all the above explanatory data have been transformed to data with a spatial resolution of
100 m and calculated to annual mean values in 2020 for the following LUQR modeling.

4. Land Use Quantile Regression (LUQR) for Air Pollution Prediction

This study proposed an LUQR model, which is an integration of LUR and quantile
regression, for the spatial prediction of air pollution. In this study, the LUQR-based model
for air pollution prediction includes following six steps.

The first step is to calculate circle buffer values of explanatory variables. Spatial-buffer-
based variables are generated for each type of explanatory variable using a series of buffers
with radius from 0.5 km to 5 km with an interval of 0.5 km. Ratios of land use types within
buffers are calculated for land use variables, which consist of natural environmental land,
production land from natural environments, dryland agricultural regions, built-up regions,
and industrial regions. Among seven classes of land use, most ratio values of irrigated
agricultural lands and water within buffers are zero, which may lead to biased and invalid
estimation. Thus, these two classes of land use data are removed. For the continuous
explanatory variables, including population density, highway density, major road density,
geographical elevation, and NDVI, mean values within buffers are calculated for both
locations of air pollution monitoring stations (i.e., observations) and prediction locations.
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The next two steps are used for buffer-based variable selection. In general, in LUR
models, buffer-based variable selection can be performed in three approaches. The first
approach is selecting an optimal buffer for each individual variable and then determining
buffer-based variables from these optimal buffer-based variables. The second approach is
directly selecting variables from all buffer-based variables. The last approach is ranking all
buffer-based variables in terms of their correlation with the dependent variable, identifying
the buffer-based variable with the highest correlation with the dependent variable, adding
variables based on ranks, and finally determining the optimal combinations of variables. In
this study, the first approach is used for buffer-based variable selection, as it is the most
used approach in LUR models. The details are introduced in the following two paragraphs.

In the second step, optimal buffers are determined for each explanatory variable
using correlation analysis. For a specific explanatory variable, the optimal buffer is the
buffer that enables the highest correlation between PM2.5 concentrations and this variable.
For the selected five classes of land use and other five explanatory variables, buffers
with the highest Pearson correlation coefficients with PM2.5 concentrations are selected
as the optimal buffers. As a result, an optimal buffer-based variable is selected for each
explanatory variable.

The third step is to select variables for the LUQR model from the above 10 optimal
buffer-based variables. Pearson correlation is used to select variables with significant
correlation coefficients with PM2.5 concentrations. Then, multicollinearity analysis is
performed to remove variables with high collinearity with others according to variance
inflation factor (VIF). Variables with all VIF values lower than 4 are selected for following
modelling [69–71].

The fourth step is to construct an LUQR model using the above selected variables. The
LUQR model for predicting spatial distributions of PM2.5 concentrations is calculated as a
conditional quantile function:

QY(τ|X) =
N

∑
j=1

β j(τ)Xj,bj
(1)

where QY(τ|X) is the τth conditional quantile of the response variable Y [21,22], Xj,bj
is the

jth (j = 1, . . . , N) explanatory variable with the optimal buffer bj, and β j(τ) are coefficients
of the τth quantile of explanatory variables. The process of quantile-regression-based
parameter estimation includes the following steps. In each quantile, the model is fitted
using a linear programming method [72]. When the quantile τ is set to different values,
corresponding estimates of β j(τ) for different quantiles can be computed. In this study, to
effectively present the comprehensive association between dependent and independent
variables, all percentiles, i.e., 100 quantiles, are used as quantile points for modelling. This
processing is consistent with most studies about quantile regressions and can reflect details
of small data sample distributions.

The fifth step is to validate the LUQR model using a leave-one-out cross validation
(LOOCV) approach, which is a reasonable model validation method for this case, since there
are only 19 locations in the study area. In the LOOCV, the observation at each site location is
used as a validation data set, and observations at the remaining 18 locations are considered
as the training data set. The LUQR model is constructed using the training data set and
used to predict at the validation data site location. The modelling and prediction process
is performed 19 times, and prediction accuracy is assessed using the cross-validation
indicators explained below. In this study, to ensure consistent comparison, the LUQR
model that uses quantile regression for prediction is compared with an LUR model that
uses linear regression for prediction, where identical selected explanatory variables are
used for modeling. The cross-validation indicators include R2, RMSE and MAE. The
cross-validation indicators are calculated as:

R2 = 1−∑(Yi − Ŷ)2/ ∑(Yi − Ȳ)2 (2)
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RMSE =

√
1/n

n

∑
i=1

(Yi − Ŷ)2 (3)

MAE = 1/n
n

∑
i=1

∣∣Yi − Ŷ
∣∣ (4)

where Yi is the ith (i = 1, . . . , n) observation, Ŷ is predictions, and Ȳ is the mean value of
observations. Note that the above cross-validation indicators measure the global goodness-
of-fit over the entire condition distribution, and they are used to compare modelling
accuracy and errors between LUQR and LUR models. If the aim of model evaluation
is to assess the goodness-of-fit at a specific quantile of LUQR, it is recommended to use
quantile-specified goodness-of-fit mentioned in the page 1297 in [73].

The last step is to predict spatial distributions using the LUQR model estimated in
above steps. In this study, to ensure a high-resolution mapping of PM2.5 concentrations,
500 m resolution grid data are generated for all spatial buffer-based explanatory variables
in the whole study area. Thus, spatial distributions of PM2.5 concentrations with a 500 m
resolution can be predicted using the LUQR model in the Greater Sydney Region.

5. Results
5.1. Optimal Spatial Buffers and Variable Selection

The determined optimal buffers which enable the highest correlation between the
response variable and buffer-based explanatory variables are listed in Table 1. A brief
statistical summary of 10 potential buffer-based explanatory variables, including 5 types of
land use, population density, highway density, major road density, elevation, and NDVI, at
the locations of PM2.5 monitoring stations is shown in Table 1.

Furthermore, out of the 10 potential buffer-based variables, 3 are selected through the
Pearson correlation analysis and multicollinearity analysis for the LUQR model. The three
variables are built-up regions with a 3 km buffer, major road density with a 4.5 km buffer,
and NDVI with a 0.5 km buffer.

5.2. LUQR Model

The constructed LUQR model for predicting PM2.5 concentrations using the selected
variables is as follows:

QY(τ|X) = β0(τ) + β1(τ)XBUR,b=3 + β2(τ)XMRDS,b=4.5 + β3(τ)XNDVI,b=0.5 (5)

where XBUR,b=3, XMRDS,b=4.5, and XNDVI,b=0.5 are the built-up regions with a 3 km buffer,
major road density with a 4.5 km buffer, and NDVI with a 0.5 km buffer, respectively.

Figure 3 shows the coefficients of the quantiles of the explanatory variables in the
LUQR model for PM2.5 prediction. In the LUQR model, the coefficients are varied with
τ values. For instance, coefficients of XBUR,b=3 are generally increased with τ values,
but coefficients of XMRDS,b=4.5 and XNDVI,b=0.5 are generally decreased with τ values,
although such decreases are fluctuating. In addition, in most ranges of τ values, the CIs
of LUQR coefficients (orange areas) are thinner than that of linear regression coefficients
(areas between blue dashed lines). This means that in most quantiles of variables, LUQR
coefficients are more reliable than linear regression models.
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Figure 3. Coefficients of explanatory variables in the land use quantile regression (LUQR) model
for PM2.5 prediction. The orange lines are coefficients by quantiles in LUQR model, and orange
areas show the 95% CIs of LUQR coefficients. The blue horizontal lines are coefficients of the linear
regression model, and the blue dashed lines are the 95% confidence intervals (CIs) of the coefficients
in the linear regression model.

5.3. Model Validation

LOOCV is first performed for each spatial buffer-based explanatory variable as
shown in Table 2. Among the 10 buffer-based variables, the built-up region with a 3 km
buffer variable has the highest cross-validation R2 (0.234) and the lowest prediction errors
(RMSE = 0.754). The cross-validation R2 and RMSE values of major road density are 0.189
and 0.765, respectively.

Table 2. Goodness-of-fit and errors of land use regression (LUR) models for selected individual
explanatory variables. The unit of RMSE and MAE is µg/m3.

Variable Code Optimal
Buffer (km)

R2 RMSE MAE

Land use: ratio (%)

Natural environments NE 3 0.187 0.835 0.706
Production from natural environments PNE 3.5 0.001 1.129 0.813
Dryland agriculture DA 0.5 0.057 0.894 0.684
Built-up regions BUR 3 0.234 0.754 0.638
Industrial regions IR 3 0.033 0.902 0.741

Population density (persons/km2) PPDS 5 0.002 0.898 0.735
Highway density (km/km2) HWDS 2.5 0.053 0.847 0.693

Major road density (km/km2) MRDS 4.5 0.037 0.910 0.746
Elevation (m) ELV 5 0.189 0.765 0.620

NDVI NDVI 0.5 0.034 0.905 0.708
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The constructed LUR model for PM2.5 prediction is as follows:

Y = 9.733 + 3.052XBUR,b=3 − 0.527XMRDS,b=4.5 − 5.419XNDVI,b=0.5 (6)

where the explanatory variables were identical with those selected in the LUQR model for
consistent comparison.

Figure 4 shows the LOOCV of the LUQR model for PM2.5 prediction with different
values of quantile parameter τ. In this study, three τ values are used to present the accuracy
of the LUQR model, including 0.37, 0.50, and 0.53. In most studies of quantile regression,
the quantile model of τ = 0.50 is usually used to indicate the overall accuracy of LUQR,
since τ = 0.50 means that the median values of the variables are used for prediction. In this
study, another two τ values, 0.37 and 0.53, which enable the highest LOOCV goodness-of-fit
and the lowest errors on the left and right sides of the median value are identified. The
analysis also finds that the LOOCV goodness-of-fit of the quantiles when τ = 0.37 and
τ = 0.53 are both higher than the quantile when τ = 0.50. This phenomenon may be closely
related to the biased sampling and distributions of PM2.5 monitoring stations. Since no
assumptions are required for the data distributions in LUQR models, LUQR models can
effectively deal with the biased samples for robust modelling. Thus, it also proved that the
LUQR model is an effective model to identify different relationships between response and
explanatory variables at different quantiles.
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Figure 4. The leave-one-out cross-validation (LOOCV) of land use quantile regression (LUQR) models
of PM2.5 with different values of quantile parameter τ. (a) Comparison of R2 of LUR (dashed orange
line) and LUQR (orange line); (b) Comparison of RMSE (blue) and MAE (green) of LUR (dash lines)
and LUQR (lines).

Table 3 shows a comparison between the LUQR and LUR models using an LOOCV
approach. In general, the LUQR model has a higher LOOCV goodness-of-fit than the LUR
model and has lower prediction errors than the LUR model. Compared with the LUR
model, the goodness-of-fit is improved by 25.6%, and the RMSE and MAE are reduced by
10.6% and 22.7%, respectively, by the LUQR model with τ = 0.50. In addition, the LUQR
model with τ = 0.37 and τ = 0.53 can improve the goodness-of-fit of the LUR models by
32.1% and 31.2%, respectively, reduce RMSE by 13.4% and 12.6%, respectively, and reduce
MAE by 19.4% and 24.7%, respectively. As R2 may not have a sensible interpretation in
quantile regression [73], prediction error indicators RMSE and MAE can more effectively
indicate the accuracy improvement of the LUQR models than R2. In summary, predictor
error indicators RMSE and MAE can be reduced by 10.6–13.4% and 19.4–24.7% by the
LUQR models, respectively, compared with the LUR model. Thus, the LUQR model with
τ = 0.37 is the optimal model among LUQR model with all three quantile parameters.
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Table 3. Model evaluation using a leave-one-out cross validation. The unit of RMSE and MAE is µg/m3.

Model R2 RMSE MAE

LUQR (τ = 0.37) 0.568 0.569 0.412
LUQR (τ = 0.50) 0.540 0.587 0.395
LUQR (τ = 0.53) 0.564 0.574 0.385
LUR 0.430 0.657 0.511

Figure 5 evaluates LUR and LUQR models through the comparison between obser-
vations and predictions of PM2.5 concentrations (Figure 5a) and the relationship between
residuals and predictions (Figure 5b). Figure 5a shows that the observation-prediction
points of the LUQR model are closer to the 45◦ line, especially the LUQR model with
τ = 0.37, indicating the higher goodness-of-fit of the model. In addition, a few points with
the lowest observed concentrations, which are primarily distributed in outer and rural
areas, tend to be poorly predicted by both LUQR and LUR models, but the LUQR models
still have a higher prediction accuracy than the LUR model. Figure 5b demonstrates that
compared with the LUQR model, the LUR model produced higher residuals for low and
high values of PM2.5 concentrations, which are highlighted in circles A and B, respectively.
Therefore, the cross-validation indicates that the accuracy of the spatial prediction of PM2.5
concentrations can be significantly improved by the LUQR model.
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Figure 5. Comparison of LOOCV results between LUR and LUQR models: relationship between
observations and predictions of PM2.5 concentrations in LOOCV (a) and relationship between predic-
tions and residuals of PM2.5 concentrations in LOOCV (b).

5.4. Spatial Prediction

Figure 6 shows spatial distributions of PM2.5 concentrations with 500 m resolution
across the Greater Sydney Region using LUQR and LUR models. In general, they have
similar distribution patterns of PM2.5 concentration, where the concentration is high in the
central urban areas and near road networks, and low in outer vegetation areas. However,
compared with LUQR models, the concentration tends to be overestimated in central urban
areas and underestimated in outer vegetation areas by the LUR model.
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Figure 6. Spatial predictions of PM2.5 concentrations using LUQR (τ = 0.37), LUQR (τ = 0.50), LUQR
(τ = 0.53) and LUR models.

Figure 7 shows the statistical density curves of grid-based predictions of PM2.5 concen-
trations derived from LUQR and LUR models. Predictions of the LUR model are generally
lower than that of LUQR models. The mean value of LUR-based predictions is 6.475, and
the mean values of LUQR-based predictions range from 6.732 to 6.737. The results also
demonstrate that PM2.5 concentrations are skewed distributed across space in the study
area. Compared with the LUQR models, the LUR model may overestimate the skewness of
PM2.5 concentrations.

To more accurately present the difference between LUQR- and LUR-based predictions,
Figure 8a visualizes the spatial distributions of the difference between LUQR- and LUR-
based predictions. The LURQ (τ = 0.37) model and the LUR model show the highest
difference in both central urban areas and outer vegetation areas among the three maps.
Figure 8b,c show the difference values between LUR and LUQR models along two transects
along red and orange lines shown on maps of Figure 8a. From the data of transects, we
can find that in central urban areas, the concentrations predicted by the LUR model are
approximately the same as or higher than the concentrations predicted by the LUQR
model, but they are generally much lower than the concentrations in outer vegetation areas
predicted by the LUQR model. This result is consistent with the comparison analyzed in
the above model validation.
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of models).

6. Discussion
6.1. Methodological Contributions

This study develops an LUQR model for the spatial prediction of PM2.5 concentrations
with observations in a limited number of locations. The LUQR model has the following
advantages in spatial predictions. First, the systematic model evaluation in this study
demonstrates that the LUQR model can more accurately predict spatial distributions for
small data samples than LUR models. The quantile regression model is a robust model for
dealing with small data samples [18–20] and can more accurately predict air pollution than
ordinary kriging using small data of in situ observations [24]. The integration of quantile
regression in the LUQR models can effectively address the potential biased estimation in the
linear model of LUR. In addition, there is no strict statistical assumptions and requirements
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of the sampling observation data. For instance, a linear regression model is used in the
traditional LUR models, so assumptions of multivariate linear regression need to be tested
and satisfied for sample data, such as normal distributions of variables and removed
outliers [74,75]. On the contrary, such statistical assumptions are not required in the LUQR
models because the quantile regression approach, a robust regression model, is used to
fit the relationships between dependent and independent variables [76,77]. Therefore, the
developed LUQR model is a reliable, accurate, and robust model for the spatial prediction
of spatial issues with small data samples. It has great potential in wider fields in addition
to air pollution predictions, such as the spatial predictions of soil properties, water quality
attributes, and diseases.

6.2. Findings from the LUQR-Based Predictions

The LUQR-based spatial prediction maps of PM2.5 concentrations using a small sam-
pling observation can present the following findings about distributions of PM2.5 concen-
trations. First, the maps show more details of air pollution than the maps predicted only
using observations from the monitoring stations. The buffer-based explanatory variable
selection is an essential stage to explore the impacts of multi-scale explanatory variables on
air pollution. Second, more potential high-concentration areas can be identified in the maps
because of using a series of explanatory variables. For instance, in this study, in addition to
the central urban regions close to most of the monitoring stations, the coastal regions in
the eastern part of the Greater Sydney Region also have high probabilities of high PM2.5
concentrations. In these regions, the PM2.5 monitoring stations are very sparse. Therefore,
more ground monitoring works may be required in these regions to understand the PM2.5
concentrations and spatial characteristics. Finally, the prediction maps provide spatial and
quantitative information for future optimization of the design of air pollution monitoring
stations. In general, air pollution monitoring stations are set to represent regional air
conditions. Thus, future monitoring stations may be added in the eastern coastal regions,
and the northern and western forest, mountainous, rural, and remote areas.

6.3. Limitations and Future Recommendations

There are still limitations in this study, and more efforts are still required to deal with
issues of small data samples. First, the cross-validation approach can be improved in
future studies. For instance, in addition to LOOCV, a “leave-three-out” or “leave-five-out”
cross-validation can be added to investigate the robustness of the LUQR and LUR models in
addressing small data issues. Second, application cases with different temporal and spatial
coverages can be designed and performed in future studies. In this study, we performed
models for predicting annual average PM2.5 concentrations. Future experiment designs
may include annual air pollutant predictions using data from multiple years, monthly,
weekly, or daily spatial predictions; predictions for other air pollutants, such as NOx and
SO2; and spatial predictions in other study areas.

7. Conclusions

In current geographical and spatial analysis fields, it is still a challenge to accurately
predict spatial distributions for mapping using samples at a small number of locations. This
study developed a land use quantile regression (LUQR) model for more accurate spatial
predictions of air pollution. The LUQR model is an integration of the land use regression
(LUR) and the quantile regression models, which both have advantages in robust modeling
with a small number of observations. The case study of the LUQR-based spatial prediction
of PM2.5 concentrations in the Greater Sydney Region indicates that the prediction accuracy
can be improved by the LUQR models compared with traditional LUR models. The model
validation and result assessments demonstrate that the LUQR model is a reliable and
robust model for the spatial prediction with a small sampling data set. Therefore, the
developed LUQR model has great potential to be implemented in accurately predicting the
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distribution maps of both air pollutants at city-wide, regional, and local scales and other
geospatial attributes.
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