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Abstract. We propose two new double projection algorithms for solving the

split feasibility problem (SFP). Different from the extragradient projection

algorithms, the proposed algorithms do not require fixed stepsize and do not
employ the same projection region at different projection steps. We adopt

flexible rules for selecting the stepsize and the projection region. The proposed

algorithms are shown to be convergent under certain assumptions. Numerical
experiments show that the proposed methods appear to be more efficient than

the relaxed- CQ algorithm.

1. Introduction. The convex feasibility problem(CFP), as an optimization prob-
lem [4], is to find a point x∗ such that

x∗ ∈
m⋂
i=1

Ci,

where m ≥ 1 is an integer, and Ci, i = 1, 2, · · · ,m are nonempty closed convex sets
of <N . Split feasibility problem (SFP) is the special case of CFP, it is to find a
point x∗ satisfying

x∗ ∈ C, Ax∗ ∈ Q, (1)

where C andQ are nonempty convex sets of <N and <M , respectively, and A is anM
by N real matrix. SFP has broad applications in many fields such as approximation
theory [9], image reconstruction [5, 13], and so on, which was firstly introduced in
Censor and Elfving [6]. The general algorithm is the projection method. Let PC
denote the orthogonal projection onto C; that is, PC(x) = arg miny∈C ‖x− y‖, over
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all x ∈ C. Byrne [3] introduced the so-called CQ algorithm that takes an initial
point x0 arbitrarily, and defines the iterative step as

xk+1 = PC(I − γAT (I − PQ)A)xk, (2)

where 0 < γ < 2/ρ(ATA) and ρ(ATA) is the spectral radius of ATA. Many
projection methods have been developed for solving the SFP, see [1, 2, 3, 10, 19, 20].

Most of these algorithms use invariable stepsize restricted by a Lipschitz con-
stant, which is inflexible and leads to slow convergence. To this case, He et al [12]
developed a self-adaptive method for solving a variational problem. The numerical
results in [12] have shown that the self-adaptive strategy is valid and robust for
solving variational inequality problems. Subsequently, a number of self-adaptive
projection methods were presented to solve SFP [21, 22, 23, 24, 25], preliminary
numerical results show that they are generally promising. The implementation of
these algorithms, however, involves the computation of the projections PC and PQ
and therefore causes additional difficulty in the case where PC and PQ do not have
closed-form expressions.

Another class of algorithms for SFP that influenced our development for the new
algorithms is the extragradient method, which was first introduced by Kinderlehrar
[14] to find a solution of variational inequality problem. Later, Nadezhkina and
Takahashi introduced an extragradient method for finding a common element of the
set of fixed points of a nonexpansive mapping and the solution set of a variational
inequality problem [15]. Furthermore, Ceng et al in [8] introduced and analyzed an
extragradient method for solving SFP.

In this paper, motivated by self-adaptive method and the extragradient strategy,
we propose two double projection algorithms for SFP, which use different variable
stepsize at different projection steps, instead of the same stepsize as in [8, 14, 15]. In
the same time, the next iteration xk+1 generated by our algorithms is a projection
either on the current projection region or on the intersection of the set C with a
halfspace. The algorithms are shown to be globally convergent to a solution under
certain mild assumptions. Numerical experiments show that the proposed methods
are more efficient than the existing projection methods.

The main features of the proposed algorithms are
1. The new algorithms employ different variable stepsize at different projection

steps, instead of using the fixed stepsize;
2. The Armijo linear search rule at the first projection step is different from

the rules in [23, 24, 25]. The purpose of our Armijo linear search is to construct a
hyperplane which strictly separates the current point xk from the solution set;

3. The next iteration xk+1 generated by the new algorithms is the projection
either on the current projection region or on the intersection of the set C with a
halfspace instead of only on the current projection region as the previous algorithms.
This will improve the efficiency of convergence without paying essential additional
cost in computation.

2. Preliminaries. Let I denote the identity operator, Fix(T ) denote the set of
the fixed points of an operator T i.e., Fix(T ) := {x | x = Tx}. Select Γ denote the
solution set of SFP, that is,

Γ = {y ∈ C | Ay ∈ Q}. (3)

The following definitions and results will be used later on.
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Definition 2.1. Let f : <N → < be convex. The subdifferential of f at x is defined
as

∂f(x) = {ξ ∈ <N | f(y) ≥ f(x) + 〈ξ, y − x〉, ∀ y ∈ <N}.
An element of ∂f(x) is said to be a subgradient.

Lemma 2.2. [11, 18] Suppose that f : <N → < is convex. Then its subdifferential
are uniformly bounded on any bounded subsets of <N .

Definition 2.3. Given T : <N → <N ,
a) T is said to be monotone if

〈T (x)− T (y), x− y〉 ≥ 0,∀x, y ∈ <N ;

b) T is said to be nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖,∀x, y ∈ <N ;

c) T is said to be co-coercive on <N with modulus α > 0, if

〈T (x)− T (y), x− y〉 ≥ α‖T (x)− T (y)‖2,∀x, y ∈ <N ;

d) T is said to be Lipschitz continuous on <N with constant L > 0, if

‖T (x)− T (y)‖ ≤ L‖x− y‖,∀x, y ∈ <N .
Let PC(x) be the projection of x on C.

Lemma 2.4. [26] Let C be a nonempty closed convex subset in <N . Then for any
x, y ∈ <N and z ∈ C,
(1) 〈PC(x)− x, z − PC(x)〉 ≥ 0;
(2) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉;
(3) ‖PC(x)− z‖2 ≤ ‖x− z‖2 − ‖PC(x)− x‖2;
(4) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ − ‖PC(x)− x+ y − PC(y)‖.

Remark 1. From part (2) of Lemma 2.4, we know that PC is a monotone, co-
coercive with modulus 1 and nonexpansive operator. Moreover, the operator I−PC
is also co-coercive with modulus 1.

Lemma 2.5. [16]. Let F be a mapping from <N into <N . For any x ∈ <N and
α ≥ 0, define x(α) = PC(x− αF (x)) and e(x, α) = x− x(α). Then, we have

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖.

3. A double projection algorithm and its convergence. As in [21], the fol-
lowing conditions are supposed to be satisfied:

(H1) The set C is defined as

C = {x ∈ <N | c(x) ≤ 0},
where c : <N → < is convex and C is nonempty.

The set Q is defined as

Q = {y ∈ <M | q(y) ≤ 0},
where q : <M → < is convex and Q is nonempty.

(H2) For any x ∈ <N and y ∈ <M , a subgradient ξ ∈ ∂c(x) and a subgradient
η ∈ ∂q(y) can be calculated.

We define the following halfspaces at point xk, respectively,

Ck = {x ∈ <N | c(xk) + 〈ξk, x− xk〉 ≤ 0},
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where ξk ∈ ∂c(xk), and

Qk = {y ∈ <M | q(Axk) + 〈ηk, y −Axk〉 ≤ 0},
where ηk ∈ ∂q(Axk).

Obviously, by the definition of subgradient, we know that the orthogonal projec-
tions onto Ck and Qk may be computed directly by reason of the specific forms of
Ck and Qk, see [1].

In the following, for every k, we define the function Fk : <N → <N as

Fk(x) := AT (I − PQk)Ax

and respectively define

x(βk) := PCk(xk − βkFk(xk)) and e(xk, βk) := xk − x(βk).

By Lemma 8.1 in [2], the operator Fk is 1/ρ(ATA)-inverse strongly monotone or
co-coercive with modulus 1/ρ(ATA) and Lipschitz continuous with ρ(ATA), where
ρ(ATA) is the largest eigenvalue of the matrix ATA.

Now, we describe our first double projection algorithm.

Algorithm 3.1
Step 0. Select an point x0 ∈ C arbitrarily, parameter γ > 0, l ∈ (0, 1), λ > 1, tk ∈
Θ = [tmin, tmax] for some fixed 0 < tmin < tmax < 2. Set k = 0.
Step 1. Find yk = PCk(xk − βkFk(xk)), where βk = γlmk and mk is the smallest
nonnegative integer such that

〈Fk(xk), xk − yk〉 ≥ λ〈Fk(xk)− Fk(yk), xk − yk〉. (4)

Step 2. Compute

xk+1 = PCk [xk − tk
〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

Fk(yk)]. (5)

Set k = k + 1 and go to Step 1.

In fact, (4) is well defined, we can see that from following lemma.

Lemma 3.1. There exists a nonnegative number mk satisfying (4), for k ≥ 0.

Proof. By (2) of Lemma 2.4, we have

〈Fk(xk), xk − yk〉 =
1

βk
〈βkFk(xk), PCk(xk)− PCk(xk − βkFk(xk))〉

≥ 1

βk
‖xk − yk‖2. (6)

By the inequality 〈a, b〉 ≤ ‖a‖
2

2 + ‖b‖2
2 and the nonexpansiveness of Fk, we get

〈Fk(xk)− Fk(yk), xk − yk〉 ≤ ‖Fk(xk)− Fk(yk)‖2

2
+
‖xk − yk‖2

2

≤ ρ(ATA)2 + 1

2
‖yk − xk‖2, (7)

where ρ(ATA) is the largest eigenvalue of the matrix ATA. Obviously, there must

exist a constant m such that 1
γlm ≥

λ(ρ(ATA)2+1)
2 . Hence
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〈Fk(xk), xk − yk〉 ≥ 1

γlm
‖xk − yk‖2 ≥ λ(ρ(ATA)2 + 1)

2
‖xk − yk‖2

≥ λ〈Fk(xk)− Fk(yk), xk − yk〉,
the proof is completed.

Lemma 3.2. l
λ(ρ(ATA)2+1)

< βk ≤ γ for all k = 0, 1, · · · .

Proof. Obviously, from (4) we know that βk ≤ γ for all k = 0, 1, · · · ,
we only need to show l

λ(ρ(ATA)2+1)
< βk.

Set y
βk
l = PCk(xk− βk

l Fk(xk). From the search rule (4), we know that βk/l must
violate inequality (4), i.e.,

〈Fk(xk), y
βk
l − xk〉 < λ〈Fk(y

βk
l )− Fk(xk), y

βk
l − xk〉.

Then, from(6) and (7), we get

l

βk
‖y

βk
l − xk‖2 ≤ 〈Fk(xk), y

βk
l − xk〉

< λ〈Fk(y
βk
l )− Fk(xk), y

βk
l − xk〉 ≤ λ(ρ(ATA)2 + 1)‖y

βk
l − xk‖2,

that is,
l

βk
< λ(ρ(ATA)2 + 1).

Hence
l

λ(ρ(ATA)2 + 1)
< βk.

This completes the proof.

Lemma 3.3. Suppose Γ 6= ∅ and the sequences {xk} and {yk} are generated by
Algorithm 3.1. Then, −Fk(yk) is a descent direction of the function 1

2‖x − z‖
2 at

the point xk, where z ∈ Γ.

Proof. From (4) and (6), one has

〈Fk(yk), xk − yk〉 = 〈Fk(yk)− Fk(xk), xk − yk〉+ 〈Fk(xk), xk − yk〉

≥ (1− 1

λ
)〈Fk(xk), xk − yk〉

≥ (1− 1

λ
)

1

βk
‖xk − yk‖2,

that is

〈Fk(yk), xk − yk〉 ≥ (1− 1

λ
)
1

γ
‖xk − yk‖2 ≥ 0. (8)

Obviously, for z ∈ Γ, Fk(z) = 0. Since Fk is monotonic and z ∈ Γ, we have

〈Fk(yk), xk − z〉 = 〈Fk(yk), xk − yk〉+ 〈Fk(yk), yk − z〉

≥ 〈Fk(yk), xk − yk〉+ 〈Fk(z), yk − z〉,
that is,

〈Fk(yk), xk − z〉 ≥ 〈Fk(yk), xk − yk〉. (9)

Combining (9) with (8), we obtain the result.
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Remark 2. From the monotonicity of Fk, we know that

〈Fk(yk), z − yk〉 ≤ 〈Fk(z), z − yk〉 = 0,

along with (9), we obtain that the hyperplane

Hk := {x ∈ <N |〈Fk(yk), x− yk〉 = 0}

separates the current point from the set Γ.

Remark 3. Lemma 3.3 gives us the reason why we use −Fk(yk) as the iterative
direction at Step 2 to obtain the next iteration. In fact, iterate along this direction
makes the iteration to become nearer to the solution point as seen from the proof
of the following theorem.

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 3.1. If Γ 6= ∅, then
{xk} converges to a solution of the SFP.

Proof. Let αk = 〈Fk(yk),xk−yk〉
‖Fk(yk)‖2 . Pick z ∈ Γ, we divide the rest of the proof into

three steps.

Step 1. We show that {xk} is bounded.
Since C ⊂ Ck, Q ⊂ Qk, then z = PC(z) = PCk(z) and Az = PQ(Az) = PQk(Az),

hence, z ∈ Ck and Fk(z) = 0 for all k = 0, 1, 2, · · · . Using (3) of Lemma 2.4 and
(9), we have

‖xk+1 − z‖2 = ‖PCk [xk − tkαkFk(yk)]− z‖2

≤ ‖xk − z − tkαkFk(yk)‖2

= ‖xk − z‖2 − 2tkαk〈Fk(yk), xk − z〉+ t2kα
2
k‖Fk(yk)‖2

≤ ‖xk − z‖2 − 2tkαk〈Fk(yk), xk − yk〉+ t2kα
2
k‖Fk(yk)‖2.

Hence,

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − tk(2− tk)
〈Fk(yk), xk − yk〉2

‖Fk(yk)‖2
. (10)

From (8), we get

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − tk(2− tk)(1− 1

λ
)2

1

γ2
‖xk − yk‖4

‖Fk(yk)‖2
. (11)

By (11), we know that for all k,

‖xk+1 − z‖2 ≤ ‖xk − z‖2, (12)

which shows that the sequence {xk} is bounded.

Step 2. We claim that

lim
k→∞

‖xk+1 − xk‖ = 0. (13)

Clearly,

‖Fk(yk)‖ = ‖Fk(yk)− z‖+ ‖z‖ ≤ ρ(ATA)‖xk − βkFk(xk)− z‖+ ‖z‖

≤ ρ(ATA)‖xk − z‖+ γ‖Fk(xk)‖+ ‖z‖. (14)

In fact, by the boundedness of {xk} and the continuity of Fk, we know that {Fk(xk)}
is also bounded. Thus, from (14), there exists a constant M > 0 such that
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‖Fk(yk)‖ ≤ M for all k. Consequently, we obtain from (11) and the definition
of tk that

lim
k→∞

‖xk − yk‖ = 0. (15)

Moreover, by (3) of Lemma 2.4 and Cauchy-Schwartz inequality, we have

‖xk+1 − xk‖ = ‖PCk [xk − αktkFk(yk)]− xk‖
≤ ‖PCk [xk − αktkFk(yk)]− PCk(xk)‖
≤ ‖αktkFk(yk)‖
≤ tk‖xk − yk‖.

Thus, we get the result.

Step 3. We will show that xk → x̄ ∈ Γ.
Assume that x̄ is an accumulation point of {xk} and xki → x̄, where {xki}∞i=1 is

a subsequence of {xk}. We are ready to show that x̄ is a solution of the SFP.
First, we show that x̄ ∈ C. Since {xki+1} ∈ Cki , then by the definition of Cki ,

we have

c(xki) + 〈ξki , xki+1 − xki〉 ≤ 0,∀i = 1, 2, · · · .
Passing onto the limit in this inequality and taking into account (16) and Lemma
2.2, we obtain that

c(x̄) ≤ 0.

Hence, x̄ ∈ C.
Next, we need to show Ax̄ ∈ Q. Define

ek(x, µ) = x− PCk(x− µFk(x)), k = 0, 1, 2, · · ·
Then from Lemma 2.5, the definition of µk and equation (15), we have

lim
ki→∞

‖eki(xki , 1)‖ ≤ lim
ki→∞

‖xki − yki‖
min{1, µki}

≤ lim
ki→∞

‖xki − yki‖
min{1, β}

= 0, (16)

where β = l
λ(ρ(ATA)2+1

. Using part (1) of Lemma 2.4 and note that x∗ ∈ Cki , we

have for all i = 1, 2, · · · ,
〈xki − Fki(xki)− PCki (x

ki − Fki(xki)), x∗ − PCki (x
ki − Fki(xki))〉 ≤ 0,

that is,

〈eki(xki , 1)− Fki(xki), xki − x∗ − eki(xki , 1)〉 ≥ 0.

From the above inequality and (1) of Lemma 2.4, we know for all i = 1, 2, · · · ,

〈xki − x∗, eki(xki , 1)〉
≥ ‖eki(xki , 1)‖2 − 〈Fki(xki), eki(xki , 1)〉+ 〈Fki(xki), xki − x∗〉
= ‖eki(xki , 1)‖2 − 〈Fki(xki), eki(xki , 1)〉

+〈Fki(xki)− Fki(x∗), xki − x∗〉
= ‖eki(xki , 1)‖2 − 〈Fki(xki), eki(xki , 1)〉

+〈(I − PQki )(Ax
ki)−AT (I − PQki )(Ax

∗), Axki −Ax∗〉

≥ ‖eki(xki , 1)‖2 − 〈Fki(xki), eki(xki , 1)〉
+‖(I − PQki )(Ax

ki)−AT (I − PQki )(Ax
∗)‖2,
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hence,

〈xki−x∗, eki(xki , 1)〉 ≤ ‖eki(xki , 1)‖2−〈Fki(xki), eki(xki , 1)〉+‖(I−PQki )(Ax
ki)‖2.

(17)
Since

‖Fki(xki)‖ = ‖Fki(xki)− Fki(x∗)‖ ≤ ρ(ATA)‖xki − x∗‖,∀i = 1, 2, · · · ,
and {xki} is bounded, the sequence {Fki(xki)} is also bounded. Therefore, from
(16) and (17) we get

lim
ki→∞

‖(I − PQki )(Ax
ki)‖ = 0,

that is,
lim
ki→∞

PQki (Ax
ki)−Axki = 0. (18)

Since PQki (Ax
ki) ∈ Qki , we have

q(Axki) + 〈ηki , PQki (Ax
ki)−Axki〉 ≤ 0.

Letting ki →∞, taking into account Lemma 2.2 and (18), we deduce that

q(Ax̄) ≤ 0,

that is, Ax̄ ∈ Q. Therefore, x̄ is a solution of the SFP.
Thus, we may use x̄ in place of z in (11) and obtain that {‖xk−x̄‖} is convergent.

Since there is a subsequence {‖xki−x̄‖} converging to 0, we have xk → x̄ as k →∞.
This completes the proof.

4. A modified double projection algorithm and its convergence. In this
section, we present a modification of Algorithm 3.1 that is more efficient by com-
putational experience.

Algorithm 4.1

Step 0. Choose an arbitrary point x0 ∈ C, parameter γ > 0, l ∈ (0, 1), λ > 1, tk ∈
Θ = [tmin, tmax] for some fixed 0 < tmin < tmax < 2. Set k = 0.

Step 1. Find yk = PCk(xk − βkFk(xk)), where βk = γlmk and mk is the smallest
nonnegative integer such that

〈Fk(xk), xk − yk〉 ≥ λ〈Fk(xk)− Fk(yk), xk − yk〉.
Construct

Hk := {x ∈ <N |〈Fk(yk), x− yk〉 ≤ 0}.
Step 2. Compute

xk+1 = PCk
⋂
Hk [xk − tk

〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

Fk(yk)].

Set k = k + 1 and go to Step 1.

Theorem 4.1. Suppose that the solution set Γ of the SFP is nonempty. Then any
sequence {xk} generated by Algorithm 4.1 converges to a solution of the SFP.

Proof. The proof of Theorem 4.1 is similar to the proof for Theorem 3.4, so we

provide only a sketch. Select z ∈ Γ, zk = xk − tk 〈Fk(y
k),xk−yk〉

‖Fk(yk)‖2 Fk(yk). By Lemma

2.4, we obtain

0 ≥ 〈zk − xk+1, z − xk+1〉
= ‖xk+1 − zk‖2 + 〈zk − xk+1, z − zk〉,
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which means

〈z − zk, xk+1 − zk〉 ≥ ‖xk+1 − zk‖2.
Therefore,

‖xk+1 − z‖2 ≤ ‖zk − z‖2 + ‖xk+1 − zk‖2 + 2〈zk − z, xk+1 − zk〉
≤ ‖zk − z‖2 − ‖xk+1 − zk‖2

= ‖xk − z‖2 − ‖xk+1 − zk‖2

+(
〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

)2t2k‖Fk(yk)‖2

−2tk
〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

〈Fk(yk), xk − z〉

= ‖xk − z‖2 − ‖xk+1 − zk‖2 − tk(2− tk)(
〈Fk(yk), xk − yk〉
‖Fk(yk)‖

)2

−2tk〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

〈Fk(yk), yk − z〉.

From (8) and the monotonicity of Fk, we know that

2tk〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

〈Fk(yk), yk − z〉 > 0.

Hence

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − ‖xk+1 − zk‖2 − tk(2− tk)(
〈Fk(yk), xk − yk〉
‖Fk(yk)‖

)2. (19)

The rest of the convergence proof is identical to that of Theorem 3.4.

Remark 4. The main difference between Algorithm 3.1 and Algorithm 4.1 is the
projection region in the second projection step. Algorithm 3.1 selects projection
on the current projection region Ck, while Algorithm 4.1 selects projection on the
section Ck

⋂
Hk(regress projection region) which guarantees that the next iterate

is more closer to the solution set. On the other hand, in theory, comparing (19) and
(11), we can see that the iterative sequence generated by Algorithm 4.1 is closer to
the solution set Γ than the iterative sequence generated by Algorithm 3.1 for the
term ‖xk+1 − zk‖2 in (19) at each iterate. These are just the aim of our selection
projection on the section Ck

⋂
Hk in Algorithm 4.1.

5. Numerical results. In this section, we will test two numerical examples (Ex-
ample 5.1 is selected from [17]) to show our algorithms converge faster than the
algorithm in [16] (we denote it by CQ-Algorithm). Throughout the computational
experiments, we set ε = 10−4 as the stop criterion. In the algorithms, we take
λ = 20, γ = 10, l = 0.01 in Algorithm 3.1 and Algorithm 4.1. All codes are written
in MATLAB7.0.
Example 5.1. Let

A =

 2 −1 3
4 2 5
2 0 2


C = {x ∈ <3| x1 + x22 + 2x3 ≤ 0}; Q = {x ∈ <3| x21 + x2 − x3 ≤ 0}. Find x ∈ C
with Ax ∈ Q.
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Table 1. The numerical results of Example 5.1

Initiative point CQ Algorithm with stepsize 1
ρ(ATA

) Algorithm 3.1 Algorithm 4.1

x0 = k = 269; s = 0.063 k = 54; s = 0.101 k = 28; s = 0.077

(−5,−2,−10)T x∗ = (0.5071,−1.8186, 01.9072)T x∗ = (0.8718;−1.6577;−1.4080)T x∗ = (1.1595;−1.0082; 0− 1.0814)T

x0 = k = 261; s = 0.063 k = 16; s = 0.061 k = 1; s = 0.045

(−2,−1,−5)T x∗ = (0.1098;−1.7655;−1.6134)T x∗ = (0.6814;−1.4212;−1.0762)T x∗ = (0.4734;−1.7714;−1.3758)T

x0 = k = 6450; s = 0.525 k = 59; s = 0.096 k = 1; s = 0.048

(−6, 0,−1)T x∗ = (−3.9899;−0.6144; 1.8062)T x∗ = ((−3.8898;−0.5850; 1.9604)T x∗ = (−3.9302,−1.0861, 1.9786)T

Table 2. The numerical results of Example 5.2

M,N CQ Algorithm with stepsize 1
ρ(ATA

tk Algorithm3.1 Algorithm 4.1

M = 20, N = 10 k = 485, s = 1.040 0.8 k = 274, s = 0.312 k = 210, s = 0.270

1.0 k = 193, s = 0.100 k = 108, s = 0.070

1.8 k = 103, s = 0.067 k = 64, s = 0.021

M = 100, N = 90 k = 3987, s = 3.100 0.4 k = 1534, s = 0.690 k = 1244, s = 0.530

1 k = 1074, s = 0.500 k = 630, s = 0.261

1.6 k = 674, s = 0.201 k = 412, s = 0.132

Example 5.2. Let A = (aij)M×N , aij ∈ (0, 1) be a random matrix, M,N be two

positive integers. C = {x ∈ <N |
∑N
l=1 x

2
l ≤ r2}; Q = {x ∈ <M | x ≤ b}. To ensure

the existence of the solution of the problem, the vector b is generated by using the
following way: Given a random N−dimensional negative vector (each component
is negative) z ∈ C, r = ‖z‖, taking b = Az. Find x ∈ C with Ax ∈ Q. We take
e0 = (0, 0, · · · , 0) as the initial point in this example.

The numerical results of Examples 5.1-5.2 can be seen from Tables 1 and 2. In
these tables , “k” ,“ s” and “x∗” denote the number of iterations, cpu time in
seconds and the solution, respectively.

Table 1 gives the numerical results of Example 5.1 with the CQ-Algorithm, Al-
gorithm 3.1, and Algorithm 4.2, respectively , for the case tk = 1. Table 2 shows
the numerical results of Example 5.2 with the same algorithms , respectively, for
different tk.

From Tables 1 and 2, we can see that our algorithms are effective and they
converge more quickly than the CQ Algorithm and Algorithm 4.1 converges more
quickly than Algorithm 3.1.

6. Some concluding remarks. This paper presents two double projection meth-
ods with different rules of stepsize selection for solving SFP. The first projection
step, different from the self-adaptive projection methods proposed by Zhang et al
[23] using the co-coercivity and presented by Qu et al [16] using the Lipschitz con-
tinuity property of the gradient mappings F and Fk, employs a new liner-search
rule, which assures the hyperplane Hk separate the current xk and the solution
set Γ. The second projection step of Algorithm 3.1 uses the parameters tk and αk
to decide the stepsize under current projection region; the second projection step
of Algorithm 4.1 modifies the projection region which results in good convergence.
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Preliminary numerical results show that our methods are practical and promising
for solving SFP.

REFERENCES

[1] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility
problems, SIAM Review, 38 (1996), 367–426.

[2] C. Byrne, An unified treatment of some iterative algorithm algorithms in signal processing
and image reconstruction, Inverse Problems, 20 (2004), 103–120.

[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem,

Inverse Problems, 18 (2002), 441–453.

[4] J. W. Chinneck, The constraint consensus method for finding approximately feasible points

in nonlinear programs, INFORMS Journal on Computing, 16 (2004), 255–265.

[5] Y. Censor, Parallel application of block iterative methods in medical imaging and radiation

therapy, Mathematical Programming, 42 (1998), 307–325.

[6] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product

space, Numerical Algorithms, 8 (1994), 221–239.

[7] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem
and its applications for inverse problems, Inverse Problems, 21 (2005), 2071–2084.

[8] L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility
and fixed point problems, Computers and Mathematics with Applications, 64 (2012), 633–

642.

[9] F. Deutsch, The method of alternating orthogonal projections, in Approximation Theory,

Spline Functions and Applications, Kluwer Academic Publishers, Dordrecht, 1992, 105–121.

[10] Y. Dang and Y. Gao, The strong convergence of a KM-CQ-Like algorithm for split feasibility
problem, Inverse Problems, 27 (2011), 9pp.

[11] Y. Gao, Nonsmooth Optimization (in Chinese), Science Press, Beijing, 2008.

[12] B. He, Inexact implicit methods for monotone general variational inequalities, Mathematical
Programming, 35 (1999), 199–217.

[13] G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized
Tomography, Academic Press, New York, 1980.

[14] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, Academic Press, New York, 1980.

[15] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method

for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and

Applications, 128 (2006), 191–201.

[16] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse
Problem, 21 (2005), 1655–1665.

[17] B. Qu and N. Xiu, A new halfspace-relaxation projection method for the split feasibility
problem, Linear Algebra and Its Application, 428 (2008), 1218–1229.

[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1971.

[19] H. Xu, A variate Krasnosel′ ski-Mann algorithm and the multiple-set split feasibility problem,
Inverse Problems, 22 (2006), 2021–2034.

[20] A. L. Yan, G. Y. Wang and N. Xiu, Robust solutions of split feasibility problem with uncertain
linear operator, Journal of Industrial and Management Optimization, 3 (2007), 749–761.

[21] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems,

20 (2004), 1261–1266.

[22] Y. N. Yang, Q. Yang and S. Zhang, Modified alternating direction methods for the modified

multiple-sets split feasibility problems, Journal of Optimization Theory and Applications,
163 (2014), 130–147.

[23] W. X. Zhang, D. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-

sets split feasibility problem, Inverse Problem, 25 (2009), 115001, 16pp.

[24] J. L. Zhao and Q. Yang, Self-adaptive projection methods for the multiple-sets split feasibility

problem, Inverse Problem, 27 (2011), 035009, 13pp.

http://www.ams.org/mathscinet-getitem?mr=MR1409591&return=pdf
http://dx.doi.org/10.1137/S0036144593251710
http://dx.doi.org/10.1137/S0036144593251710
http://www.ams.org/mathscinet-getitem?mr=MR2044608&return=pdf
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://www.ams.org/mathscinet-getitem?mr=MR1910248&return=pdf
http://dx.doi.org/10.1088/0266-5611/18/2/310
http://www.ams.org/mathscinet-getitem?mr=MR2075807&return=pdf
http://dx.doi.org/10.1287/ijoc.1030.0046
http://dx.doi.org/10.1287/ijoc.1030.0046
http://www.ams.org/mathscinet-getitem?mr=MR976123&return=pdf
http://dx.doi.org/10.1007/BF01589408
http://dx.doi.org/10.1007/BF01589408
http://www.ams.org/mathscinet-getitem?mr=MR1309222&return=pdf
http://dx.doi.org/10.1007/BF02142692
http://dx.doi.org/10.1007/BF02142692
http://www.ams.org/mathscinet-getitem?mr=MR2183668&return=pdf
http://dx.doi.org/10.1088/0266-5611/21/6/017
http://dx.doi.org/10.1088/0266-5611/21/6/017
http://www.ams.org/mathscinet-getitem?mr=MR2948609&return=pdf
http://dx.doi.org/10.1016/j.camwa.2011.12.074
http://dx.doi.org/10.1016/j.camwa.2011.12.074
http://www.ams.org/mathscinet-getitem?mr=MR1165964&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2746410&return=pdf
http://dx.doi.org/10.1088/0266-5611/27/1/015007
http://dx.doi.org/10.1088/0266-5611/27/1/015007
http://www.ams.org/mathscinet-getitem?mr=MR1712480&return=pdf
http://dx.doi.org/10.1007/s101070050086
http://www.ams.org/mathscinet-getitem?mr=MR630896&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR567696&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2201895&return=pdf
http://dx.doi.org/10.1007/s10957-005-7564-z
http://dx.doi.org/10.1007/s10957-005-7564-z
http://www.ams.org/mathscinet-getitem?mr=MR2173415&return=pdf
http://dx.doi.org/10.1088/0266-5611/21/5/009
http://www.ams.org/mathscinet-getitem?mr=MR2384443&return=pdf
http://dx.doi.org/10.1016/j.laa.2007.03.002
http://dx.doi.org/10.1016/j.laa.2007.03.002
http://www.ams.org/mathscinet-getitem?mr=MR0274683&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2277527&return=pdf
http://dx.doi.org/10.1088/0266-5611/22/6/007
http://www.ams.org/mathscinet-getitem?mr=MR2379882&return=pdf
http://dx.doi.org/10.3934/jimo.2007.3.749
http://dx.doi.org/10.3934/jimo.2007.3.749
http://www.ams.org/mathscinet-getitem?mr=MR2087989&return=pdf
http://dx.doi.org/10.1088/0266-5611/20/4/014
http://www.ams.org/mathscinet-getitem?mr=MR3260978&return=pdf
http://dx.doi.org/10.1007/s10957-013-0502-6
http://dx.doi.org/10.1007/s10957-013-0502-6
http://www.ams.org/mathscinet-getitem?mr=MR2545996&return=pdf
http://dx.doi.org/10.1088/0266-5611/25/11/115001
http://dx.doi.org/10.1088/0266-5611/25/11/115001
http://www.ams.org/mathscinet-getitem?mr=MR2772528&return=pdf
http://dx.doi.org/10.1088/0266-5611/27/3/035009
http://dx.doi.org/10.1088/0266-5611/27/3/035009


2034 YA-ZHENG DANG, JIE SUN AND SU ZHANG

[25] J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse
Problems, 21 (2005), 1791–1799.

[26] E. H. Zarantonello, Projections on convex set in Hilbert space and spectral theory, in Con-

tributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic, New York,

1971.

Received October 2016; revised November 2017.

E-mail address: jgdyz@163.com

E-mail address: jie.sun@curtin.edu.au

E-mail address: zhangsu@nankai.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR2173423&return=pdf
http://dx.doi.org/10.1088/0266-5611/21/5/017
http://www.ams.org/mathscinet-getitem?mr=MR0388177&return=pdf
mailto:jgdyz@163.com
mailto:jie.sun@curtin.edu.au
mailto:zhangsu@nankai.edu.cn

	1. Introduction
	2. Preliminaries
	3. A double projection algorithm and its convergence 
	4. A modified double projection algorithm and its convergence 
	5. Numerical results
	6. Some concluding remarks 
	REFERENCES

