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Abstract: To scrutinize the current application of building information modelling (BIM) and compu-
tational fluid dynamics (CFD) integration in research as well as industrial fields, the present study
conducted a holistic review including a bibliometric exploration for existing articles, specific content
analysis in different sectors, and follow-up qualitative discussion for the potential of this integrated
technology. The bibliometric exploration is focused on analyzing main journals, keywords, and
chronological change in representative research content by selecting 115 relevant studies. In content
analysis, the representative integrated BIM and CFD application cases are divided into three different
sectors. The functionality, interoperability, and sustainability of such integration in architecture,
engineering, and construction (AEC) projects are described in detail. Furthermore, the future research
based on the applications of BIM and CFD integration is discussed. Specifically, the more advanced
hazard analysis is proposed reflecting the strength of such an integration. Comprehensive informa-
tion for the possible hazards in AEC projects is digitized and quantified to make a more sensitive
hazard recognition tool which can formalize reduction strategies and measures of potential hazards.
As a result, the present review study contributes to relevant research by identifying representative
application parts and practical requirements for BIM and CFD integration in whole design aspects,
reviewing the current research trends and future direction in detail, and analyzing the major issues,
such as an interoperability in BIM-compatible CFD for sustainable built environments.

Keywords: building information modeling; computational fluid dynamics; building energy
performance; HVAC system design; sustainable built environments

1. Introduction

The architecture, engineering, and construction (AEC) field has witnessed a wide
range of advances in recent years, ranging from innovations in construction materials [1,2];
methods of analyzing structural responses to various loads (e.g., seismic [3], thermal [4],
and fatigue [5,6]); to the use of computational technologies (e.g., computer vision [7,8]
and data-driven techniques [9]). In particular, such scientific advances and information
convergence of computational technologies have allowed more efficient design and control
of industrial facilities during the entire life cycle. Building information modeling (BIM) is
one of them, which offers the professional insight and tools to plan, design, and procure
more efficiently and plays an essential role to manage buildings and structures sustainably
during the project’s life cycle [10]. Hence, recent years have seen an increase in the use
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of BIM techniques, and practical integrated skills based on BIM are also growing in AEC
projects. The main function of BIM is to support the design activities relevant to the project
by providing geometry and material properties of the building as well as descriptive infor-
mation on the building and its components [11,12]. Therefore, BIM-enabled construction
design allows not only an improved construction process but also reduced time and costs
during the whole life cycle of construction, with systematic data modeling, an interactive vi-
sualization platform, and standardized data exchange interfaces [13]. Thanks to the efforts
worldwide, the standardization of BIM has been drastically improved since the publication
of ISO 19650, which is derived from the UK BIM framework. BIM implementations from
the delivery phase to the operation phase of assets are covered, facilitating its wide usage
in civil projects.

However, a BIM-supported analysis and decision making cannot fully satisfy the user
requirements of the AEC industry. There is a limitation in keeping the sustainability of the
building environment, since the construction design process is divided into a lot of stages
and a variety of interested parties, often working independently. For example, the data or
results acquired from each process require different expertise and background skills and are
not centrally managed among all project departments, so that the wrong application of data
or information loss issues may occur [14]. Furthermore, cooperation of the models created
in programs from one manufacturer is not a problem; however, when there is a need to
exchange data between software from different manufacturers, a smooth data exchange
may be impossible. To make up for such an issue, the integrated project delivery (IPD)
method is now being promoted as a new alternative, which pursues the involvement of
all stakeholders communicating and cooperating, pending issues, efficiently through all
phases of planning, design, and construction. By adopting the BIM model and a common
information model including life cycle data about an as-designed building, the IPD method
can be successfully achieved, and it can be used even in various simulations relating to the
objective designed building [15,16]. There are a few integrated technologies with BIM tools
usually applied in the AEC industry, such as the Internet of Things (IoT) and geographical
information systems (GIS). The computational fluid dynamics (CFD) simulation, as a widely
used technique for predicting fluid-flow phenomena, is able to describe such engineering
events as thermal distribution, ventilation performance, explosion/fire accidents, and its
impact on the construction design and building life cycle. Furthermore, the present study
focuses on the integrated BIM and CFD technology in the design perspective. Currently,
the integrated BIM and CFD-based technology is widely being used in industrial fields,
such as the simulation of energy performance, HVAC analysis, and green building design
assessment, but there remains an assignment for how integrated BIM and CFD can optimize
performance further when considering a demanding building to design. This is because
BIM models of architectural spaces are used on a limited basis as the object domain in a
CFD simulation, despite the advantages and insight that could be provided [17,18].

Table 1 provides a brief introduction of both BIM and CFD technology, in terms of their
concept, elements, and methodology. Essentially, BIM is semantically based and object-
oriented, while CFD modelling is procedural-oriented. BIM is used as a communication
and collaboration tool for more efficient design and operation during a project’s life cycles,
but CFD is used as a numerical tool to explore what-if scenarios for specific events based
on specific numerical results [19]. On the other hand, a common feature of the BIM and
CFD models is precise 3D modeling considering stakeholder’s requirements, so that both
models can help engineers build and modify the practical design quickly in a parametric
way. Due to such a functional difference and commonality, BIM–CFD integration can
provide many opportunities to smooth the way for improvements to several applications
in the built environment and construction design sectors. Specifically, BIM can provide
an object-based model and all the relevant information within a dynamic and integrated
platform for CFD simulations. In turn, the CFD simulation and evaluation results can
support a wide range of decision making during the life cycle of a built asset, such as design
optimization. In this article, we comprehensively review the applications of both BIM
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and CFD as well as their integration in the AEC industry using relevant research articles
published in the last ten years. The status quo and practical applications of BIM–CFD
integration are summarized from four points of view: architectural design and building
management, energy assessment, Heating Ventilation and Air Conditioning (HVAC) system
design, and facility safety management. Furthermore, current limitations and proposals of
future research directions are described to provide the roadmap for researchers in studying
both BIM and CFD applications.

Table 1. Overview of BIM and CFD technology.

BIM CFD

Concept
Shared knowledge resources for

various information throughout the
life cycle of a facility

Digitalized and numerical analysis
of fluid-flow phenomena

Elements Standard data models
Life cycle information

Physical model based on
Navier–Stokes equations

Boundary conditions

Methodology

BIM is implemented and
interoperated according to

requirements for design planning,
construction management, and

operation management

A common procedure is followed:
preprocessing, solver adoption, and

postprocessing, involving
discretization methods,

pressure-velocity coupling, etc.

Interlink

2. Review Methodology

To ensure a systematic review of BIM and CFD integration for sustainability, the
present review study consisting of five stages was planned. Figure 1 shows the framework
for reviewing the technologies, standards, and related publications based on BIM, CFD,
and integrated BIM–CFD. In the first stage, the objective of this study was clarified by
proposing the scope to explore integrated BIM–CFD technical issues and rules or standards
in building designs. The eventual objective of this study was to explore the importance
of sustainable building design and to identify how integrated BIM–CFD can optimize
performance further in the AEC industry. The second stage was to investigate the evidence,
which included publication retrieval, publication filtration, and publication synthetization
with the following keyword combinations: “BIM”, “CFD”, “building energy performance”,
“HVAC design requirements”, and “certified buildings”. In the publication retrieval stage,
the Google search engine and Scopus website were used to acquire up-to-date and high-
quality research articles, technical reports, or conference papers related to the AEC industry
that were published by prominent journals or institutions. The publication year was limited
to the past 10 years for reflecting the recent trend. As a result, a total of 352 papers were
searched from 10 superior journals with an impact factor above 2.5 or strong recommen-
dation of experts. In the publication filtration stage, a detailed examination of searched
papers in a previous stage was performed to exclude partially duplicated and irrelevant
publication, so that the number of articles was reduced to 115. Turning to the publication
synthetization, the filtered publications were organized for analysis and further discussion.

In the third stage, the data were evaluated and analyzed in the findings with the
following aspects: common applications; limitation; BIM–CFD integration in complex and
challenging buildings; and certified building standards. The next stage was to discuss the
effective BIM–CFD integration in sustainable built environments and identify gaps in the
existing literature. Thereafter, conclusions were drawn from the analysis and potential
opportunities for BIM–CFD integration in the AEC industry were proposed.
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3. Bibliometric Analysis
3.1. Journal Analysis

To search for research articles including BIM–CFD integration, high-quality journals
with an impact factor above 2.5 were selected as shown in Table 2. The listed journals
spanned a variety of fields: construction engineering, energy section, environmental sci-
ence, computer science, and civil engineering. BIM–CFD integration technologies were
widely used in many fields, but the most frequent application occurred in the construction
automation, energy, and built environment sectors.

Table 2. Distribution of the selected papers from different article journals.

Journal Title Number of Selected Papers

Building and Environment 22
Energy and Buildings 20

Automation in Construction 20
Journal of Building Engineering 13
Sustainable Cities and Society 8

Energies 8
Energy 6
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Table 2. Cont.

Journal Title Number of Selected Papers

Journal of Computing and Civil Engineering 4
Journal of Cleaner Production 3

Renewable and Sustainable Energy Reviews 3
Journal of Computational Design and Engineering 2

Advanced Engineering Informatic 2
Applied Energy 2

Computers, Environment and Urban Systems 1
Safety Science 1

Total 115

3.2. Publication Year Analysis

To reflect the latest research trends, the range of publication year has been limited
between 2012 and 2020. Figure 2 chronologically shows the number of total articles between
2012 and 2020 as well as the number of articles in each topic. The figure clearly indicates
the research using integrated BIM and CFD technologies started in 2012 and experienced a
fluctuated growth until 2017, but predominantly increased in the recent 3 years. A similar
pattern has been observed even in subject-based classification. This indicates the rising
interest of researchers in this field of study over the last decade. Nevertheless, the number
of papers on the application of integrated BIM and CFD research is still relatively small
compared with the conventional research usually drawing attention in the relevant fields,
such as computational techniques and applications, architectural design, and information
management. Therefore, there would be many opportunities and much potential in the
future study of this area.
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CFD integration.

3.3. Keyword Analysis

The bibliometric analysis in Scopus was conducted to find the co-occurrence key-
word and to set apart articles that were not included in the present scope. By using the
VOSViewer program [20], 115 selected papers were used and the keywords with a fre-
quency of greater than five were selected for the co-occurrence analysis, so that graphical
network visualization as shown in Figure 3 was obtained. In the figure, the node size
of corresponding keywords indicates the frequency of them in selected articles, and the
distance between each node indicates their closeness of collaboration. Based on the biblio-
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metric analysis results, a framework of the present study was modeled, including current
research trends; specific applications in ACE industries, especially in architectural design
and construction operation; and energy performance analysis. Table 3 shows the related
research fields widely using integrated BIM and CFD skills. For each sector, representative
research work and interest are delineated comprehensively in the next section.
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Table 3. Categorization of selected articles by topics.

Sectors Subsectors Related Research

Architectural design and
building- management

• Building operation and maintenance [21–28]
• Architectural design optimization for sustainability [29–41]
• Construction information management and process monitoring [42–50]

Energy assessment
• Energy consumption/performance evaluation [51–61]
• Energy model development to assess flow/efficiency [49,50,62–78]
• Certified green building process [79–92]

HVAC system design
• Thermal comfort/heat transfer [21,27,33,34,42,43,93–110]
• Air/wind (flow and quality) and ventilation-system [22,23,29–31,44–46,111–127]
• HVAC system [128–130]

Facility safety management • Disaster simulation and emergency response [106,131–135]

4. Analysis of BIM and CFD Integration in Different Sectors

The CFD model is normally used in the design of buildings to simulate the thermal
comfort of occupants and ventilation performance, the consequence of fire, air flow around
a site, and so on. Such simulations are performed considering the detailed geometry
condition, material properties, and loading/boundary/environmental condition with a few
different scenarios, and the results can be used to assess building performance under normal
operating conditions as well as unfavorable conditions. Therefore, integrated BIM-CFD
technology can make possible smarter construction and more energy efficient buildings.
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Hence, there is an increasing number of CFD applications which integrate with BIM
tools. Using a combination of BIM and CFD simulation is particularly required when
simulating complex and challenging buildings such as indoor facilities, grow rooms, and
LEED or BREEAM certified buildings. This is because it is quite demanding to understand
the flow inside or around such buildings. The application of BIM and CFD integration is
discussed from the following four sectors, as indicated in Figure 4.
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4.1. Sector 1: Architectural Design and Building Management

The ACE industries have experienced continuous development of computational
technologies. The BIM-compatible CFD brings design optimization, particularly in complex
and challenging buildings. For example, the high-rise building design requires a CFD
analysis considering local climate and wind loads because such loads can influence building
safety. CFD analysis results include climatic and topographic information and are exported
and outlined with the BIM model. The integrated BIM and CFD can also play an integral
role in building management sectors by assisting the operation analysis as well as the
performance evaluation. Moreover, such consolidated technology can provide extensive
information resulting in a more effective architectural design process and facilitating
smarter construction and facilities management, so that it can be used in various fields
as follows:

4.1.1. Building Operation and Maintenance

To effectively maintain building performance, it is required to monitor the indoor
environment such as air quality, and the building’s thermal, ventilation performance, and
energy consumption [21–23]. Those conditions are also causally linked to the wellbeing
of its occupants. By adopting the CFD model, a complicated building structure can be
digitally constructed reflecting the accurate geometry condition, material properties, and
other information associated with the on-site environment. Herein, the BIM technology is
used to provide an object-based model for CFD simulation, and then the integrated BIM and
CFD model can be used for building performance analyses, which calculate temperature
distribution, coupled outdoor wind flow and indoor air flow, and so on [27,28].
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4.1.2. Architectural Design Optimization for Sustainability

Since the potential environmental impacts significantly influence the entire construc-
tion project, sustainability is a major issue in terms of both design optimization and a
building development in AEC industry. The purpose of each design is different, but the
common objective is to achieve a sustainable design environment within time and cost.
While the best opportunities for assessing building environmental performance or relevant
design issues occur in the early design stage, the simulation for performance evaluation is
usually conducted at the end of the process, so that the finding or results acquired from
simulation are often not integrated into the design decision-making process [36]. Hence,
incorporating a BIM-based design support has been increasingly used in the early stages to
prevent late design changes that may cause additional costs and project delays. The use of
CFD in the early stages could be one of the best options for design optimization in a sus-
tainability built environment. The early CFD evaluation of building energy consumption
can provide decision-making options based on accurate information regarding the selec-
tion of window configuration or material composition to effective thermal distribution in
buildings, and it ends up preventing excessive energy consumption in the building [23–25].
Incorporating a BIM-based performance design support has been increasingly used in
the design stages, allowing designers to efficiently select optimal design options for their
projects [72]. Early integration of building a thermal performance analysis can support
more informed decisions regarding the selection of building enclosure materials to prevent
overall excessive heat flow into buildings.

4.2. Sector 2: Energy Assessment

A lot of researchers have tried to use the BIM and CFD integrated method in technical
analyses required for more energy efficient buildings. CFD is normally used as a reliable
validation tool to obtain detailed insight into the air flow pattern, energy consumption
and efficiency, and more. It can be highly beneficial for the planning of energy efficient
building designs and obtaining a green building certification, where optimized energy
performance and air comfort play a crucial role since a set of data associated with flows
like pressure, velocity, and temperature in a specific space can be obtained through the
CFD simulation. The major issues in this sector are divided into three categories: energy
performance evaluation, model development, and green building design, respectively.

4.2.1. Energy Consumption/Performance Evaluation

According to Reference [54], 48% of the total global energy is consumed by buildings
every year, among which operation energy accounts for over 80%. Accordingly, many
experts put efforts into developing technologies that measure energy consumption and
end up being possible to reduce energy costs of buildings. Since a CFD analysis can
provide detailed information on the amount of energy, pressure, air composition, and heat
transferred in the building, many researchers tried to propose energy management solutions
through the reliable analysis and validation. These studies were related to: evaluating
building energy performance with CFD results as specified by temperature, humidity,
and air condition [53,58,59]; proposing the better design option of insulation systems
by comparing several design features from the geometrical shape to configuration [51];
verifying the effectiveness of experiments to observe the optimal design in energy efficiency
aspects [61]; integrated monitoring, analysis, and control methodologies for reducing waste
and saving energy [73,74]; and the development of building energy simulation models
based on design information [66,72,78].

In conclusion, the integrated BIM and CFD model enabled the benefits of time, cost,
and energy savings in a comparative analysis of building performance. However, a modifi-
cation tool between the BIM authoring tool and CFD analysis program is required for more
reliable energy simulation since data loss might occur by an interoperability deficiency. It
would be possible to propose a more accurate energy performance evaluation model and
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relevant simulation results with a single integrated building performance tool if the data
exchange is smoothly conducted and the interoperability issues are resolved.

4.2.2. Green Building Design

Globally, buildings consume a lot of energy, so the AEC industry is pursuing energy
efficiency strategies. Hence, green building design and environmental-friendly design are
becoming increasingly popular and even being taken for granted in a construction site.
Green building certifications such as Leadership in Energy and Environmental Design
(LEED) certification of U.S. Green Building Council (USGBC), Building Research Establish-
ment Environmental Assessment Method (BREEAM), as well as the Standard 189.1, are
intended to outline and confirm that a building meets a particular standard and offers an
environmental benefit [86,87,90]. Thus, several assessments and a certification procedure
are required to achieve a goal of green building. Several categories for green building
certification include design aspects relevant to operations and maintenance optimization,
making it imperative for mechanical, HVAC system, building, and sustainability design-
ers to find the right combination of design strategies. In that regard, having an optimal
HVAC system is necessary since it determines the building’s energy efficiency, life cycle
performance, as well as healthy environments for occupants to live and work in [88,89].

To ensure an optimal HVAC design with relevant green building standards, a reliable
validation tool needs to be used during early design stages. The CFD analysis is one of them
and predicts air pattern, thermal distribution, humidity, and contaminant concentration
accurately, so that it can assess the air quality both indoor and outdoor considering the
building design information [91,92]. Therefore, the studies in this sector mainly focused
on the numerical study to investigate the effect of ventilation systems on the indoor
thermal comfort of a residential building [79,80,85]; the estimation of potential wind state
and evaluation of the ventilation rate based on CFD analysis results [81,82]; and the
investigation of buoyancy-driven air flow in different ventilation strategies with thermal
simulation along with air flows in a building [83].

4.3. Sector 3: HVAC Design Requirements

As the importance of HVAC optimal design in buildings increases, the high-tech
application for better HVAC performance is becoming more prevalent. The goal of the
HVAC system design is to create optimal indoor environments inside the building while
minimizing energy consumption, so that these systems help to create an energy efficient
building as well as a resident-friendly building. As it relates to HVAC design, CFD is
best suited to design complicated spaces within a building since a 3D numerical model
reflecting detailed geometry conditions can be used to simulate the thermal or ventilation
performance of such buildings. CFD analysis results provide engineers or designers with a
cost-effective and insightful tool to better understand key issues associated with HVAC
design, while also providing authorities with suitable data to evaluate whether the design
parameters meet regulatory guidelines or construction objectives.

BIM is used as a platform to integrate all information and apply a spatial analysis.
In each of the key applications across the HVAC design sectors, the use of the BIM and
CFD integrated approach provides engineers and designers with the right tool in the
following areas.

4.3.1. Thermal Comfort/Heat Transfer Assessment

The thermal comfort analysis is now an integral part of the design process of residential
buildings, especially to demonstrate compliance with the building standards or regulations.
CFD models for the thermal analysis can provide accurate thermal distribution data for a
set of defined input parameters. Hence, a lot of studies have included a CFD analysis in
the building design process to investigate the thermal performance, construction defects,
as well as thermal comfort inside of buildings [21,33,43,96–98,101,102]. In Ref. [96], the
predicted percentage of dissatisfied (PPD) and predicted mean vote (PMV) have been
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visualized with CFD software to identify flaws with the heating system considering several
temperature conditions. Resident area and the amount of time people stay in this area
were considered for a more correct assessment of thermal comfort with specific building
interior conditions. The authors of ref. [21] used CFD simulation on an office floor for
improving simulation accuracy by coupling a solar analysis with the BIM technology. The
BIM technology provided relevant information for the solar analysis, such as semantic
location, geometric condition, and weather information, and then solar heat acquisition and
distribution on curtain walls were estimated through the CFD analysis considering that
information. The authors of ref. [102] carried out CFD-based thermal simulation to analyze
the behavior of the active transparent facade (ATF) when combined with a mechanical
ventilation system and the thermal effects this system produces inside of buildings. In
addition to the above applications, CFD simulations are used to visualize the melting
process of the phase change materials (PCM)-filled structure and investigate strategies to
improve thermal energy storage efficiency [97].

4.3.2. Air/Wind (Flow and Quality) and Ventilation Analysis

Ventilation systems play a key role in the air quality improvement of buildings, so
a well-calculated ventilation system design is required for a successful building design.
Optimizing the ventilation system design is an increasingly challenging process as both the
complexity of the building layout and the range of functionalities included in the system
expand, and design flaws of this part can result in an inefficient energy consumption, as well
as lower engine performance due to excessive pressure losses or distortion [128–130]. In this
sector, CFD simulations can be used in understanding and optimizing the air flow through
the complete ventilation system, including its air filter and ducting. Since a CFD analysis
of the BIM-based model can help by suggesting various geometrical changes, a series of
analyses can be performed considering such design options [23,111–113,117,120,122]. The
CFD models described in ref. [114,118] analyzed the ventilation rate, air flow patterns,
and mean surface pressure coefficients for a building considering several wind directions
based on the Reynolds-averaged Navier–Stokes approach. The authors of ref. [30] carried
out a parametric study using a CFD analysis for investigating the influence of different
building geometry modifications on pedestrian-level wind patterns, and even the coupled
modeling method to calculate air flow around the outdoor and indoor simultaneously can
be implemented by CFD simulation as described in ref. [119,126]. In addition, the air quality
can be estimated based on CFD simulations which visualize contaminant concentration in
the air or pollutant dispersion in the built environment [45,121].

In conclusion, the HVAC optimal design is directly connected to energy efficiency and
green building, so accurate numerical calculation considering specific building information
should be required in each design process.

4.4. Facility Safety Management

To achieve safe building environments, design teams should investigate the alarming
situations or undesirable cases and prepare the mitigation actions against such events
through the whole design process. The BIM and CFD simulation can be a more effective
tool in analyzing a disaster and a hazard scenario compared to the experimental studies,
since it is cost effective and not related to safety issues, which could occur in real field
tests. Fire hazards are regarded as the most frequent and dangerous situation to human life
and property safety, and the scale of fire damage varies depending on the environments
such as the level of density, constructed material, and the types of buildings. Although
a thorough analysis for fire hazards is required in a design process, the experimental
method to investigate the fatalities and the level of property loss during a fire is not realistic
and unethical.

CFD simulation is an insightful tool which can provide useful and effective information
in such analyses. It can not only investigate many different scenarios but can also repeat the
same analysis with little extra effort. The consequence of a fire depends on many variables,
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but fire simulation using a BIM-based CFD model can reflect this complexity with more
realistic and accurate input data. In addition, the densely occupied area can be precisely
modeled by importing the 3D aimed model. The specific method and practical application
of BIM–CFD integration for building safety management is described below.

Fire Simulation and Emergency Response

BIM–CFD integration can be applied to the fire-resistant design of buildings. For
example, it provides safe and reliable methods of fire modeling in the design phase. In
this sector, BIM has been usually applied for effective evacuation planning in the buildings
during emergency situations, while CFD has been used for describing the specific fire
scenarios and calculating the fire loads acting on the structures, so that building integrity
can be predicted under the assumed fire case [133–135]. Therefore, the integrated BIM
and CFD model can offer a reasonable dataset for more effective configuration design
and material design in such disasters. The authors of reference [132] used the CFD model
to simulate the potential fire incidents and smoke scenarios, and the integrated BIM–
CFD model allowed the prediction of a rescue scenario from the exterior of the building
during a fire and the proposal of an optimal path in that situation. A post-earthquake
fire simulation conducted in ref. [131] analyzed the spread of fire assuming the damaged
sprinkler systems by seismic loads. By converting the BIM into the CFD model, a high-
fidelity numerical model of a building and its sprinkler system was created in the fire
dynamics simulator program.

In conclusion, the existing research for emergency response using the BIM–CFD
integrated model is usually focused on the qualitative evaluation, but the quantitative
analysis for potential hazards is also required to assess the corresponding risks extensively.

5. Discussion and Insights for Effective Adoption of BIM and CFD
Integration Technology
5.1. Integrating Quantitative and Qualitative Hazard Analysis Based on BIM and CFD Integration
5.1.1. The Fundamentals of Hazard Analysis

Hazard is usually defined as a source of potential damage, which means all situations
leading to undesired events. Hazards of facilities in AEC industries include abnormal high
pressure or temperature in any operation system, the occurrence of smoking in a dangerous
area, flammable materials, and storage tanks with toxic substances. It is important to note
that ‘hazard’ indicates potential damage or harm, not a realized one. The purpose of a
hazard analysis is to ensure this very potential damage does not appear, and if the damage
does appear, then mitigation methods are required. Several activities are included in the
hazard analysis procedure, but hazard assessment is a key issue in the construction design
process, since it means identifying the extent of potentially dangerous events which must
be managed adequately. Figure 5 shows the typical hazard management process. The
methodology for the hazard assessment can be categorized into two types: quantitative
and qualitative approaches. At first, the quantitative hazard assessment is a systematic
approach of identifying a major accident hazard with its likelihood and consequences. This
methodology is usually required for production or process facilities including extreme
operational environments such as oil and gas, mining, automotive, and flight structures.
The results are expressed quantitatively for how a certain hazard is dangerous to people,
the environment, and other properties. The validity of quantitative results is assessed by
identifying key assumptions and hazard driving factors. Acceptable hazard criteria could
be required if there are significant changes to system operations or major hazard plant
construction plans.

On the other hand, a qualitative hazard analysis is used to qualify the hazards relating
to a particular event. It also uses the frequency and consequence concepts even though
they are not numerically estimated. Instead, each indicator is assessed by verbal expression,
such as high frequency and low frequency. It may often be difficult to provide the exact
numerical outputs for probability distribution or consequence estimation for a certain
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hazard with the quantitative approach. However, the qualitative assessment can be a good
substitute for hazard screening and comparing several alternatives in this situation. In
this chapter, the new approach for a hazard analysis using the integrated BIM and CFD
principles is proposed.
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5.1.2. Application of Integrated BIM and CFD for a Comprehensive Hazard Analysis

Most construction projects are large scale, and each process is divided into multiple
stages, so that a lot of departments and parties work independently. The data or results
acquired from each task are not centrally managed among all relevant departments, and
the ability to execute any design changes can be time consuming or even impractical due to
a communication problem or work proficiency gaps. A lot of computational technologies
have been developed to link the different departments and to manage a huge amount
of data efficiently for different purposes, but herein the BIM and CFD applications for
the hazard analysis are the only ones focused on. BIM is used as a communication and
collaboration tool for more efficient design and operation during a project’s life cycles,
and CFD is used as a computational tool to explore what-if scenarios based on specific
numerical results. Therefore, quantifying certain events in a hazard scenario is more
compatible with a CFD approach, while qualitative hazard analyses can flourish with the
BIM tool. A common feature of BIM and CFD technology is that precise 3D modeling can
be constructed considering the stakeholder’s requirements, so that both models can help
engineers build and modify the practical design quickly in a parametric way. Therefore,
a more exhaustive hazard analysis could be conducted when applying such attributes of
BIM and CFD.

In the conceptual design stage, a hazard is associated with how the design strategy
has feasibility considering the secured budget, construction purpose, and established
governance regime, and that is an area where BIM has the strength in managing the
hazards. The other hazard is related to undesirable events which can occur during the
project’s life cycle and directly influence the health and safety of industrial property such
as fire, explosion, and collision. The CFD tool is not a general interface tool; however, it can
simulate and visualize such engineering phenomena with a different level of detail, and
it allows cost-effective and time-saving designs by utilizing the results obtained through
CFD analyses.

Therefore, herein we propose integrating the BIM data platform and CFD design
packages for a more comprehensive hazard analysis as shown in Figure 6, which describes
the schematic diagram consisting of three sections: hazard conceptual design, hazard
analysis, and mitigation and application.
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In the proposed process, each stage of the integrative perspective becomes an essential
part to offer the parameterized BIM database for the use of architectural, structural, and
other functionality concerns. The relevant hazard design factors and requirements should
be considered, and complementary cooperation is made at the early stages, such as at
the conceptual and preliminary evaluation stages. In the conceptual design of industrial
facilities having potential hazard issues, it is required that the experts in different fields
should conduct tasks for preliminary hazard evaluation at several perspectives such as in-
ternational rule checking, and environmental factors’ identification associated with possible
undesired events. For the hazard analysis part, a series of parametric modeling processes
are required to express computationally hazard situations considering geometrical charac-
teristics, material properties, and structural components. A BIM database is supposed to
offer general interfaces for a different level of detail, and different analysis purposes, to
easily extract necessary data, and thus efficiently gains feedback, and the CFD tool provides
the insights and reasonable engineering basis to help engineers optimize their designs
against a hazard situation. With such database and design technologies, particular hazard
events could be modeled parametrically with specific information of the target facility,
and hazard frequency and corresponding consequences’ data are used to calculate the
explosion risk rating. Lastly, hazard acceptance criteria are established based on hazard
quantification results, and then preventive measures would be carried out if necessary. The
system must be redesigned, or a hazard control option must be adopted, to mitigate the
damage against corresponding issues. Every consequential change would be recorded
by the well-dependency relationships between geometrical components and functionality
subjects of the BIM database to prevent future hazard events.
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5.2. Framework of a Proposed Comprehensive Hazard Analysis Using BIM and CFD

The proposed semi-quantitative hazard analysis using BIM and CFD tools follows the
framework for information modeling dividing into three stages as described in Figure 7.
The detailed tasks for each phase are as follows.
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5.2.1. Phase I: Hazard Information Model

As the input data preparation stage, Phase I, the hazard information model, consists
of two steps: hazard identification and scenario selection. At first, hazard identification
provides important data associated with undesirable events, which help to define the rele-
vant parameters to assume hazard scenarios. A variety of hazards and uncertainties existed
in the project are identified in this stage. A BIM database technology that could be used
to extract intelligently valuable expertise and information based on specific requirements
naturally facilitate the early hazard identification and mitigation since the information
and experience obtained from previous accidents offer a better perception not to repeat
similar mistakes. For the hazard scenario selection, a range of cases should be considered
to represent most features of reality. Therefore, it is required to select hazard scenarios
reasonably. For example, the severity of explosion accidents is dependent on the envi-
ronmental condition, operational condition, material composition, structure type, layout,
etc. Most input data can be acquired by collating and referring information preserved in
previous projects, while reasonable assumption and the idealization process are required to
determine environmental parameters having strong inherent randomness, such as wind or
leak profiles. That means a combination of several mathematical equations are required to
process them, and the CFD tool can offer the solution for that. For example, Ref. [136] used
the stochastic sampling method in explosion scenario identification to consider different
affecting parameters such as wind direction, wind speed, leak rate, leak duration, leak
direction, and leak position, and then analyzed the hazard distribution and summarized
the main hazard factors that led to greater damage to the facility. It allows a better un-
derstanding of the mechanism of an accident and a better insight of how to assume such
random variables in a future hazard analysis.
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5.2.2. Phase II: Hazard Information Platform

Phase II, the risk information platform part, comprises three steps, and mainly focuses
on the establishment of the hazard information platform by combining the hazard visu-
alization through the detailed geometric model and consequences of hazard events. The
application of virtual reality (VR) to hazard visualization is one of the major interests in this
stage. It can provide a virtual and interactive computer environment for users to become
conscious of defined hazard factors, so that they can formalize reduction strategies and
measures of potential hazards.

A CFD analysis can model hazard phenomena in complicated flow geometries by
computing the numerical solutions using relevant governing equations for the phenomenon.
To solve the problem involving fluid flows, the discretization process of several coupled
algebraic equations is required, and then such calculations are applied to each subdomain,
and then the outputs obtained by the CFD model numerically indicate a great deal of
information about the phenomenon. Therefore, the level of hazard is perceptibly defined,
and VR simulation provided with CFD numerical results can increase the sensory level
with exactly quantified hazard factors.

The consequence of a hazardous event is dependent on a lot of variables, but the CFD
simulation consolidating BIM models as the object domain can reflect such a complexity
with more realistic and accurate input data. In practice, CFD have been encapsulated
as packages or compatible applications to integrate with current BIM visualization tools.
They can analyze and provide rapid analysis results through certain model simplification
processes with a standardized data format, such as gbXML, and so forth.

5.2.3. Phase III: Application

As an application of hazard information platform, Phase III mainly considers the
method for mitigation of facility damage by the hazard elements. The hazard acceptance
criteria can be used for taking preventive action against potential accidents. If the predicted
hazard level exceeds an acceptable range, the modification of structural design or layout
facility is required.

6. Conclusions

BIM–CFD integration and its applications represent an active research topic for the
future development of AEC industries, especially in the field of the efficient energy en-
vironment. A growing number of studies have shown that BIM–CFD consolidation has
promising prospects in numerous applications. This paper has reviewed the recent litera-
ture on such integrated technologies and its applications in several sectors. Through the
literature study, this work has statistically summarized the existing state of affairs and
practical applications of BIM–CFD integration. The applications of BIM–CFD integration
have been discussed from four sectors: architectural design and building management,
energy, HVAC system design, and facility safety management. The impacts and potential
trends of the BIM–CFD integrated application in each field have been identified through a
comprehensive investigation regarding architectural design practice and the current status
of such a consolidation, and the general flow of current building design processes has
been established. In addition, it was revealed that the conventional architectural design
of the mentioned domains lacks the flexibility in requesting the new concept or re-design
parameters without the integrated BIM–CFD design concept, and also interactive and
cooperative abilities at early conceptual design stages.

The advantages of the use of the integrated BIM–CFD analysis are two-fold. For
one, it is especially beneficial when simulating complex and challenging buildings, since
realistic and accurate input data are readily available for CFD simulations. In turn, the
CFD analysis results, in terms of air quality, energy consumption, thermal and ventilation
performance, etc., can further enrich the BIM, providing informative support to a wide
range of decision making. Yet, current efforts of integrating BIM and CFD mainly focus on
the design stage, aiming to achieve a more sustainable and comfortable built environment.
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For this reason, a future study is proposed to expand the application of integrated BIM
and CFD. The proposed research is a quantitative risk assessment using BIM and CFD
integrated technologies, which allows a more effective collaboration between engineers
and designers at different stages of a construction project, and a more precise analysis for
quantifying risks in the AEC industry. Herein, one of the critical challenges in implementing
BIM–CFD integrated risk assessment is to ensure well-defined process models and practical
strategies for the integration of risk information, and engineers and designers should work
closely throughout the entire design process, and fully understand input parameters and
corresponding simulation results to reach a more effective risk control design environment.
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Abbreviation Definition
BIM Building Information Modeling
CFD Computational Fluid Dynamics
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IPD Integrated Project Delivery
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GIS Geographical Information Systems
HVAC Heating Ventilation and Air Conditioning
PPD Predicted Percentage of Dissatisfied
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