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Blind Separation for Multiple Moving Sources With
Labeled Random Finite Sets

Jonah Ong , Ba Tuong Vo , and Sven Nordholm

Abstract—This paper proposes a novel solution for separating
an unknown and time-varying number of moving acoustic sources
in a blind setting using multiple microphone arrays. A standard
steered-response power phase transform method is applied to
extract source position measurements, which inevitably contain
noise, false detections, missed detections, and are not labeled with
the source identities. The imperfect measurements lead to the
space-time permutation problem, as there is no information on
how the measurements are associated to the sources in space, nor
how the measurements are connected across time, if at all. To solve
this problem, a labeled random finite set tracking framework is
adopted to jointly estimate the source positions and their labels
or identities. Based on these trajectory estimates, a corresponding
set of time-varying generalized side-lobe cancellers is constructed
to perform source separation. The overall algorithm operates in a
block-wise or an online fashion and is scalable with the number
of microphone arrays. The quality of the measurements, tracking,
and separation, are evaluated respectively, with the OSPA metric,
OSPA(2) metric, and ITU-T P.835 based listening tests, on both
real-world and simulated data.

Index Terms—Blind source separation, multi-object tracking,
labeled random finite sets, acoustic localization, spatial filtering.

I. INTRODUCTION

IN MICROPHONE array processing, blind source separation
(BSS) is the estimation of source signals, using only the

received mixture signals with no information about the origi-
nal sources and the mixing process [1]. In a realistic auditory
scene, one of the main challenges for separating a mixture of
concurrent sources is not only that the sources are moving, but
also that the number of sources is unknown and time-varying,
i.e. new sources can appear and existing sources can disappear or
undergo silence periods. For static sources, established solutions
to BSS include independent component analysis (ICA) [2],
sparseness-based approaches [3], [4], and non-negative matrix
factorization (NMF) [5]. These methods can be extended for
moving sources by using a block-wise approach wherein moving
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sources are assumed to be static within a short time block
[6], [7].

An alternative and a more recent block-wise approach is
based on tracking of multiple moving sources, and followed
by spatial filtering for extracting the signal-of-interest (SOI)
from the estimated position/direction at each time [7]–[10].
One of the main difficulties in tracking an unknown number of
sources in a reverberant environment is that acoustic localization
measurements are subject to noise and false positives or negative,
i.e. spurious or missing measurements. Moreover, the more per-
tinent issue is the space-time permutation problem. As in space,
it is not known which measurements are connected to which
sources, and in time, it is not known how the measurements
are connected across time frames with respect to the sources.
Furthermore, the solution must cater for possible appearance
of new sources, movement of active or inactive sources, and
disappearance of existing sources.

Classical dynamic Bayesian estimation techniques such as
the particle filter have been applied to single source tracking
in [11]–[13]. For multiple sources, there is uncertainty not only
in the source position, but also in the number of sources, and the
latter is not accounted for within the classical Bayesian frame-
work [14]. Recent solutions for addressing multiple sources
have relied on adaptations of the Rao-Blackwellised Particle
Filter (RBPF) [7], [15], the Probabilistic Multiple Hypothesis
Tracker (PMHT) [9], and the Joint Probabilistic Data Associ-
ation (JPDA) filter [16]. The newer RFS framework based on
Finite Set Statistics (FISST) [17], offers a principled mechanism
to cater for an unknown and time-varying number of sources
in a Bayesian setting, and is directly applicable to acoustic
tracking [14]. The first RFS based solution for multi-source
acoustic tracking was proposed in [18]. Subsequent RFS-based
solutions have been proposed for multi-source acoustic tracking
with the Probability Hypothesis Density (PHD) filter [8], [19]–
[21], the Cardinalized PHD filter [22], the Cardinality-Balanced
Multi-Target Multi-Bernoulli filter [23], and the RFS Particle
Filter [24].

However, these above methods do not directly estimate source
tracks, which are source position estimates associated with a
common label. Consequently, they require a post-processing
step such as track management to resolve each track individually.
These methods are thus suboptimal in the sense that they solve
the space-time permutation problem separately. As the spatial
filtering module relies on accurate label or identity estimates, the
presence of labeling errors results in switching in the separated
signal estimates. Solving the space-time permutation problem
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jointly has the potential to significantly improve tracking per-
formance and hence separation performance. Furthermore, the
above mentioned approaches do not scale linearly in the number
of arrays used in the system, thereby making them imprac-
tical for online implementation when the number of arrays
is large.

In this paper, we propose a novel online solution for multi-
array BSS with an unknown time-varying number of moving
sources in a 3D auditory scene. Our solution follows the ap-
proach of first obtaining position measurements, then tracking
of multiple sources, and finally separation using spatial filter-
ing, all in an online or block-wise fashion. Source position
measurements obtained through Steered-Response Power Phase
Transform (SRP-PHAT) [25] exhibit the space-time permutation
issue, where it is not known which measurement (if any) is
connected to which source at the current time, nor which mea-
surements are connected to the same source across time. This
work is the first to formally address the space-time permutation
problem, using a labeled random finite set (RFS) approach [26]–
[28] to jointly estimate the number of sources, their positions and
their labels. The solution invokes the Multi-Sensor Generalized
Labeled Multi-Bernoulli (MS-GLMB) tracker [29], which is a
tractable linear complexity recursive filter for estimating the
source trajectories from raw measurements. The tracking es-
timates at each frame are used to construct a set of time-varying
beamformers, known as the Generalized Side-lobe Canceller
(GSC) [30], which are used for multi-source separation. The
proposed method is evaluated using real recordings and under
different reverberation times via simulation. We use the Optimal
Sub-Pattern Assignment (OSPA) which is a metric for two sets of
points [31], to evaluate the quality of the array measurements.
The tracking performance is evaluated using a variant of the
OSPA metric called the OSPA(2), which is a proper metric
for two sets of tracks [32]. Finally, we evaluate the separation
performance via subjective listening tests according to the ITU-T
P.835 methodology [33].

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

One of the main challenges in BSS for multiple moving
sources is the inherent space-time permutation problem, since
acoustic localization techniques are generally unable to identify
and produce exactly one measurement for each source. It is then
necessary to estimate the trajectory of each source from the
measurements, which entails knowing when a source appears
or enters the scene, disappears or exits the scene, and how its
position changes over each time instance. This is effectively
an online tracking problem where the objective is to estimate,
at each time instance, the number of sources, their positions
and unique labels. Knowledge of the correct source positions
and their labels is crucial, as it resolves the inherent space-time
permutation problem, thereby enabling the application of a set
of time-varying spatial filters to achieve source separation. The
underlying signal model and overview of the proposed solution
are given below.

A. Signal Model

We consider a scenario consisting of N(t) point sources
where each source is indexed by n∈{1, . . ., N(t)} with 3D
position denoted by αn(t)∈R3 at discrete time instance t. Each
source signal is denoted by sn, and all sources are assumed to
be mutually uncorrelated, i.e. the cross power spectral density
between two sources is zero. An array indexed by q∈{1, . . ., Q},
comprises Mq microphone elements. The source signals im-
pinge on each microphone element m∈{1, . . .,Mq} of array
q, and are corrupted with non-directional diffuse noise v(q,m).
The mixture signal at microphone (q,m) is represented by some
mapping function ρ of the source signals s1, . . ., sN(t), source
positions α1, . . ., αN(t), and noise v(q,m), evaluated at time t:

y(q,m)(t)=ρ
(
s1, . . ., sN(t), α1, . . ., αN(t), v

(q,m)
)
(t). (1)

For stationary sources in an invariant and homogeneous
acoustic environment, the mixture signal can be modeled via the
sum of the convolutions of source signals and the room impulse
response (RIR), which encapsulates the direct path (time-delay)
and multipath terms (reflections) between the sources and mi-
crophone element (q,m) [34], [35]. However when sources are
moving, the effective RIR becomes time-varying. To circumvent
this issue, we consider the source signal in blocks of frames:

sn(t)=

K∑
k=1

sn(t)wT (t− (k − 1)T )=

K∑
k=1

sk,n(t), (2)

wherewT is a window function of length T , and k is the index of
a time block/frame with lengthT . Specifically, we assume source
stationarity at each frame k of length T , i.e. αn(t)=αk,n and
N(t)=Nk for t=(k − 1)T, . . ., kT . Thus, the signal is filtered
by a new RIR for each time frame:

y(q,m)(t)≈
K∑

k=1

Nk∑
n=1

(sk,n ∗ h(q,m)
k,αk,n

)(t) + v(q,m)(t), (3)

where ∗ denotes convolution, and h
(q,m)
k,αk,n

denotes the RIR
between source n with position αk,n and microphone element
(q,m), at frame k. From this representation, each source signal
is assumed to be a point source (in a fixed position) in frame k,
which is filtered by a linear time-invariant system, where the time
invariance is assumed over the block at length T . For tractability
reasons, we focus only on the direct path term and approximate
the mixture signal as:

y(q,m)(t)≈
K∑

k=1

Nk∑
n=1

sk,n
(
t− τ(αk,n, u

(q,m))
)

4π||αk,n − u(q,m)|| +v(q,m)(t),

(4)
where || · || is the Euclidean distance, τ(αk,n, u

(q,m))�
c−1||αk,n − u(q,m)|| is the time delay between source n at
position αk,n and microphone (q,m) at position u(q,m)∈R3

(c is the speed of sound). Based on this model, the objective is
to estimate the individual source signals for every framek (frame
by frame) using only the mixture signals y(1,1), . . ., y(Q,MQ) and
no prior knowledge on the sources.
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Fig. 1. Processing Chain for the Proposed Method.

B. Overview of the Proposed Method

The processing chain of the proposed method is depicted
in Fig. 1. Raw microphone signals are segmented into frames
and transformed into the frequency domain. Then, acoustic
localization techniques that rely on source features such as
direction-of-arrivals (DOAs), are used to acquire the source
position candidates at each frame. The position candidates from
each array are subjected to noise (disturbance), they may not
reflect a source that is present (false negative), and some may
not correspond to any source (false positive). Above all, there is
a space-time permutation problem because the acquired position
candidates from each array are unidentified (without labels)
across time. As a result, there is no trajectory information on
the sources, and spatial filtering cannot be applied for source
separation. To remedy this, spatial distributions of the position
candidates from all arrays are exploited to jointly estimate the
number of sources, their positions and labels for each frame. The
estimation of the source labels is important because it resolves
the permutation ambiguity. Based on this information, a series
of time-varying spatial filter can be constructed using the direct
path model for source separation. The proposed method can be
broken down into 3 stages: signal pre-processing, multi-source
tracking and source separation.

In the first stage, raw microphone signals y(1,1), . . ., y(Q,MQ)

from all arrays are pre-processed into frames of data in the fre-
quency domain using the short-time Fourier transform (STFT).
For each frame, we use the Steered-Response Power Phase
Transform (SRP-PHAT) [25], and apply a region search algo-
rithm known as Stochastic Region Contraction (SRC) proposed
in [25], to obtain 3D position candidates from each array.
Due to noise, false positives, false negatives, and the space-
time permutation problem, the obtained source position candi-
dates from all arrays are not fit for spatial filtering to achieve
source separation.

In the second stage, we employ a Bayesian state estimation
framework that processes the obtained position candidates from
all arrays, herein referred to as the multi-array measurements,
and produces estimates of the source positions and labels at each
frame. The tracking filter works by recursively propagating a
posterior density which characterizes the uncertainty of a set of
labeled states given all multi-array measurements up to the cur-
rent time. This framework accounts for noise, false positives and
false negatives in the multi-array measurements. Source labels,
motions, appearances and disappearances are also incorporated
into the formulation. The joint estimation of the source labels
and positions resolves the space-time permutation problem.

In the third stage, source separation is achieved via construct-
ing a type of spatial filter known as the Generalized Side-lobe
Canceller (GSC) for each frame. The GSC aims to emphasize
and separate the source of interest while actively cancelling
interfering sources. In order to do this, it is necessary to have
the estimated source positions and the labels at each frame,
which is provided by the proposed tracking solution. In addition,
we utilize the GSC signals to construct a time-frequency mask
for enhancing the separated signals. Finally, the time-domain
separated signals are recovered using the inverse STFT.

III. SIGNAL PRE-PROCESSING

This section describes the segmentation of raw signals into
frames of data using the short-time Fourier Transform (STFT),
followed by the use of Steered-Response Power Phase Trans-
form (SRP-PHAT) combined with Stochastic Region Contrac-
tion (SRC) to obtain the 3D source position candidates. The
shortcomings of the obtained position candidates are outlined
and discussed.

A. Short-Time Fourier Transform (STFT)

Each raw microphone signal y(q,m) is segmented into
y
(q,m)
1 , . . ., y

(q,m)
K via:

y
(q,m)
k (t) = y(q,m)(t+ (k − 1)T )wT(t), (5)

where wT is a selected window function of length T . The win-
dow function is chosen such that it captures enough information
while reducing signal discontinuities at the edges, e.g. a Hann
window wT (t)=0.5− 0.5cos(2πt/T ), t = 0, . . . , T−1. We
denote the discrete short-time Fourier transform of y(q,m)

k (t) by

Y
(q,m)
k (λ) where λ is the frequency bin index. To represent the

segmented frequency-domain raw signals from all microphones
at array q in a compact form, we stack them into a vector:

Y
(q)
k (λ) =

[
Y

(q,i)
k (λ)

]Mq

i=1
(6)

B. Steered-Response Power Phase Transform (SRP-PHAT)

Steered-Response Power Phase Transform (SRP-PHAT) is an
acoustic source localization solution well known for its robust
performance in adverse acoustic environments [36]. The SRP
is the output power of a delay-and-sum beamformer that is
steered to a set of source positions which are defined under
a specified spatial grid [25]. The Phase Transform (PHAT) is
a weighting technique to avoid peak spreading in the SRP by
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Fig. 2. SRP-PHAT Measurements.

emphasizing the phase information of the involved signals [25].
Given Y (q)

k received at array q, the spatial power that emanates
from the direction of the source locationαk∈R3 at each framek,
is computed using Steered-Response Power (SRP) with PHAT
by [25]:

P(q)
k (α) =

Mq−1∑
a=1

Mq∑
b=a+1

∑
λ

Y
(q,a)
k (λ)Y ∗(q,b)

k (λ)∣∣∣Y (q,a)
k (λ)Y ∗(q,b)

k (λ)
∣∣∣

× ejωλ(τ(α,u(q,b))−τ(α,u(q,a))), (7)

where ωλ = 2π(λ − 1)Fs/T (Fs is the sampling frequency),
the PHAT weighting is the inverse magnitude of the frequency
components of the involved signals, and the exponential term is
responsible for time-aligning the microphone signals based on
time-difference-of-arrival. Searching for multiple local maxima
of (9) at any frame k corresponds to source position candidates
that are present at that time frame. However, this process is
computationally expensive as it involves a large search space.

C. Stochastic Region Contraction (SRC)

Using the computationally efficient SRC algorithm [25], the
3D source position candidates are obtained via peak-picking
SRP-PHAT for every array with a certain threshold. For each
array q, we denote the collection of the position candidates as a
measurement set:

Z
(q)
k = {z(q)k,1, . . ., z

(q)

k,|Z(q)
k |}, (8)

where |Z(q)
k | denotes the number of measurements (see Fig. 2).

For multiple arrays, we define Zk�(Z
(1)
k , . . ., Z

(Q)
k ) as the

multi-array measurements. The multi-array measurements are
utilized to deduce the optimal positions of the sources. How-
ever, due to nonlinearity, noise and reverberation (in real-world
conditions), the multi-array measurements have the following
issues:
� A measurement z(q)k obtained from a single array (if it is

generated by a source) is noisy after undergoing a highly
nonlinear transformation.

� The multi-array measurements contain false positives,
which are measurements not generated by any active
source; and false negatives, which are missing measure-
ments even when sources are active.

� Furthermore, we are faced with the inherent space-time
permutation problem as the multi-array measurements are
unordered and have no identities/labels. Specifically, in
space, it is not known which individual measurement in

the sets Z(1)
k , . . ., Z

(Q)
k is generated by which source. In

time, it is not known how an individual measurement
from the sets Z(1)

k , . . ., Z
(Q)
k at the current frame, to the

sets Z(1)
k+1, . . ., Z

(Q)
k+1 at the next frame, is connected with

respect to an existing source. Also, the appearance of a
new active source or the disappearance of an existing active
source is unknown.

IV. TRACKING OF MULTIPLE SOURCES

This section presents a labeled RFS solution for estimating
the source trajectories from the source measurements thereby
addressing the space-time permutation problem. The solution
entails the recursive multi-source Bayes filter, which requires
specification of the multi-source transition and multi-array like-
lihood models. A tractable implementation is given in the form
of the Multi-Sensor Generalized Labeled Multi-Bernoulli filter.
These are summarized as follows.

A. Multi-Source Bayesian Tracking Filter

Given the multi-array measurements Zk�(Z
(1)
k , . . .,Z

(Q)
k ),

the objective is to estimate the number of the sources, their
positions and labels at each frame k. In order to do so, it is
necessary to have a stochastic model to characterize the time-
varying nature of the number of sources and the individual source
positions, which arises due to source appearance, disappearance
and physical motion. Similarly, it is necessary to have a stochas-
tic model to characterize the multi-array measurements as the
number of measurements for each array is also time-varying,
partly because the number of sources is time-varying, but also
because the measurements are subjected to noise, false negatives
and false positives.

A random finite set (RFS) is a natural representation for
the collection of source positions (with labels), and for each
of the array measurements, because an RFS is essentially a
set-valued random variable, wherein the number of points as well
as the values of individual points are random [17], [18], [26]. In
order to develop an online solution for estimating the number
of sources, their positions and labels based on RFS modeling
for each frame, we cast the problem into a recursive Bayesian
estimation framework.

In the context of this framework, source appearances and
disappearances are referred to as source births and deaths re-
spectively, while false negatives and false positives are referred
to as missed detections and false detections respectively. Recall
that the time permutation problem arises due to source motions,
appearances and disappearances, while the space permutation
problem arises due to the absence of labels in the array mea-
surements, which are also subjected to noise, missed and false
detections. The space-time permutation problem is referred to
as the data association problem and can be addressed using the
RFS tracking framework. Fig. 3 gives an illustration of the array
measurements prior to tracking as well as the desired result after
tracking is applied.

Each source at frame k has a state denoted by xk�(xk, �),
where xk�(αk, α̇k) is a vector capturing the 3D position and
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Fig. 3. Two sources appear at frame k−1 and persist until frame k+1, while a
third source appears at k and persists until k+1. (a) Illustration of measurements
from two arrays, Z(1) and Z(2) (time subscript k is suppressed). (b) Illustration
of desired tracking result to resolve the space-time permutation problem.

velocity of the source, and � is a unique label from a discrete
space L. Note that the velocity component is an auxiliary
variable needed for the state transition model in the Bayesian
framework. The states of multiple sources at each frame k, are
represented as a finite set:

Xk = {xk,1, . . .,xk,Nk
}, (9)

herein referred to as a multi-source state. Note that the existence
of unique labels in the multi-source state means that consecutive
states with the same label across frames constitute the trajectory
of the source movement (see Fig. 3(b)).

The RFS representation of Xk naturally accounts for the
movements of active sources, births of new sources and deaths
of existing sources, while the RFS representation of the sets
Z

(1)
k , . . .,Z

(Q)
k naturally accounts for, noise, missed detections,

and false detections in the measurements across all arrays. In
Bayesian RFS tracking, the aim is to estimate frame-by-frame
(recursively) the multi-source state Xk, given the multi-array
measurements obtained from the beginning of time up to the
current time frame k, i.e. Z1:k �(Z1, . . ., Zk). The solution is
the multi-object Bayes filter, which is a recursive mechanism
that computes the probability density of Xk given Z1:k [26].
In the context of Bayesian filtering, this probability density is
referred as the filtering density denoted by πk|k(Xk|Z1:k). At
any given frame k, all uncertainty in the multi-source state Xk

given Z1:k, is captured in πk|k(Xk|Z1:k) [26].
The propagation of the filtering density is a recursive two-step

procedure. The first step is the time update of the current filtering

density πk|k(Xk|Z1:k) via [26]:

πk+1|k(Xk+1|Z1:k)=

∫
f(Xk+1|Xk)πk|k(Xk|Z1:k)δXk,(10)

where the integral is not the usual Euclidean notion of integra-
tion, rather it is a set integral defined under Finite Set Statistics
(FISST) for dealing with RFSs in a mathematically consistent
manner [37], and f(Xk+1|Xk) is known as the multi-source
transition density which gives the probability density that multi-
source stateXk at frame k transitions toXk+1 at the next frame
k + 1. The multi-source transition density is formulated based
on a stochastic model that encapsulates all possible source births,
deaths and motions, i.e. the time permutation aspect. The details
of this transition model are further discussed in Section IV-B.
Consequently, the time-updated density (13) characterizes the
transition of Xk to Xk+1, given all multi-array measurements
Z1:k up to the current time frame, and addresses the time per-
mutation part of the data association problem. The second step
is the data update of πk+1|k(Xk+1|Z1:k) with the multi-array
measurements Zk+1 obtained at frame k + 1 via [26]:

πk+1|k+1(Xk+1|Z1:k+1) =

g(Zk+1|Xk+1)πk+1|k(Xk+1|Z1:k)∫
g(Zk+1|Xk+1)πk+1|k(Xk+1|Z1:k)δXk+1

, (11)

where g(Zk+1|Xk+1) is known as the multi-array measurement
likelihood which gives the probability density of the multi-
array measurements Zk+1, given the multi-source state Xk+1.
Themulti-array measurement likelihood is formulated based on
a stochastic model that encapsulates noise, detections, missed
detections, false detections and association uncertainty, i.e. the
space permutation aspect, in the obtained multi-array measure-
ments. The details of this multi-array measurement model are
given in Section IV-C. The data-updated density (14) contains all
information about the number of sources and their states (with la-
bels) at the next time framek + 1, conditioned on the multi-array
measurements up to that frame. This step consequently addresses
the space permutation part of the data association problem.

In summary, the combination of both time-update and data-
update steps in the propagation of the filtering density solves the
space-time permutation problem. To obtain a multi-source state
estimate at each frame, which contains the estimated number
of sources, their positions and labels, a conventional Bayesian
multi-source estimator is applied to the filtering density at
each frame. The closed-form representation of the filtering
density and the implementation of the filter, i.e. the tractable
(recursive) propagation of the filtering density, are discussed in
Section IV-D.

B. The Multi-Source Transition Model

The function f(·|·) is a probability density function charac-
terizing all possible source births, deaths and motions that take
place in the transition of a multi-source state from one frame to
the next [26]. The functionf(·|·) is parameterized as per Table II,
and explanations of these parameters are given as follows.

Given the multi-source state Xk, each state xk�(xk, �) ∈
Xk either survives with probability PS and transition to a new
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TABLE I
PARAMETERS FOR THE MULTI-SOURCE TRANSITION DENSITY (15)

TABLE II
PARAMETERS FOR THE MULTI-ARRAY MEASUREMENT LIKELIHOOD (17)

state (xk+1, �) that inherits the same label whose uncertainty is
captured by the transition density fS(xk+1, �|xk, �), or dies with
probability 1−PS . At this next time, a set of new sources de-
noted by Bk+1 with labels {� : (xk+1, �) ∈ Bk+1} can be born
or appear individually with probability rB(�) and distributed
according to the birth density pB(·, �). Recall that labels of a
multi-source state are distinct/unique for all frames, hence a
label is defined as �=(ς, ι)∈Lk, where ς∈{k} denotes the time
frame of birth and ι∈N denotes the index of source born at the
same time [26] (see Fig. 3 (b) for illustration). Consequently,
the label space for sources at frame k is constructed recursively
by L0:k=L0:k−1∪Lk.

The multi-source state Xk+1 is the superposition of the
surviving sourcesW k+1 and the new born sourcesBk+1, which
are assumed to be statistically independent. Let fS(W k+1|Xk)
and fB(Bk+1) be the probability densities of the survivability
of Xk to W k+1, and the new born sources Bk+1 respectively,
then themulti-source transition density is given by [26]:

f(Xk+1|Xk)=fS(W k+1|Xk)fB(Bk+1) . (12)

The product in (15) presents a model for addressing the time per-
mutation problem. In particular, source appearance, disappear-
ance and motion are considered to be statistically independent.
However, labels are kept the same for sources that move and
continue to be active, and appearing active sources are assigned
a new distinct label, while deactivated sources are removed. The
derivation of (15) is beyond the scope of this paper, but interested
readers are referred to [26].

C. The Multi-Array Measurement Likelihood Model

The function g(·|·) is a probability density function character-
izing noise, missed detections, false detections and association
uncertainty in the multi-array measurements. The function g(·|·)
is parameterized as per Table III, and explanations of these
parameters are given as follows.

Given the multi-source state Xk, each xk=(xk, �k)∈Xk

is either detected at array q with probability P (q)
D and gener-

ates a detection z
(q)
k ∈Z(q)

k with likelihood g(q)(z
(q)
k |xk, �k),

or missed detected with probability 1−P (q)
D . The detection

process also generates false detections at array q, conventionally
characterized by an intensity function κ(q)(·)�λ

(q)
FDU(·) on the

measurement space [17], [26]. The number of false detections is

modeled by a Poisson distribution with mean λ
(q)
FD, and the false

detections themselves are uniformly distributed in the measure-
ment space according toU(·). In standard multi-source tracking,
it is standard to assume that the detections are statistically
independent from the false detections [26].

A single-array association θ(q)k ∈Θ
(q)
k is defined as a mapping

from the source labels to the measurement indexes, i.e. θ(q)k :{�k :
(xk, �k)∈Xk}→{0: |Z(q)

k |}. Note that Θ(q)
k is the space of all

mappings, such that no two distinct arguments are mapped to the
same positive value [26]. This property ensures each detection
comes from at most one source. For example, θ(q)k (�k)>0 cor-

responds to source �k generating detection z(q)
k,θ

(q)
k (�k)

at array

q, while θ(q)k (�k)=0 means source �k is misdetected at array
q. For multiple arrays, a multi-array association is the vec-
tor θk � (θ

(1)
k , . . ., θ

(Q)
k )∈Θk of all single-array associations

having the same aforementioned positive one-to-one property,
where Θk�Θ

(1)
k ×. . .×Θ

(Q)
k is the space of all possible multi-

array associations [29].
Under the assumption that the set Z(q)

k at array q is condi-
tionally independent from those at other arrays, the multi-array
measurement likelihood is given by [29]:

g(Zk|Xk)∝
∑

θ
(1)
k ∈Θ(1)

k

, . . .,
∑

θ
(Q)
k ∈Θ(Q)

k

∏
(xk,�k)
∈Xk

Q∏
q=1

ψ
(q,θ

(q)
k (�k))

Z
(q)
k

(xk, �k) ,

(13)
where

ψ
(q,j)

Z
(q)
k

(xk, �k)=

⎧⎪⎨
⎪⎩

P
(q)
D g(q)

(
z
(q)
k,j |xk,�k

)

κ(q)
(
z
(q)
k,j

) , j >0

1− P
(q)
D , j =0

. (14)

It is important to note that the nested sum in (17) indicates
the enumeration of all possible multi-array associations, thereby
taking into account all possible combinations of missed detec-
tions, false detections and the source detections. In other words,
the nested sum in (17) presents a model for addressing the space
permutation problem by considering all possible mappings of
position candidates to source labels. The derivation for (17) is
beyond the scope of this paper, but interested readers are referred
to [17], [26], [29].

D. The Multi-Sensor Generalized Labeled Multi-Bernoulli
(MS-GLMB)

Under the transition and measurement models as described
above, the time-updated and data-updated (filtering) densities
admit a closed-form solution via the Generalized Labeled Multi-
Bernoulli (GLMB) density [26], [27], [29]:

π(Xk)=Δ(Xk)
∑

θ1:k∈Θ1:k

ω(θ1:k)(L(Xk))
∏

xk∈Xk

p(θ1:k)(xk), (15)

where L(Xk)�{� : (xk, �)∈Xk}, Δ(·) is a distinct label
indicator, i.e. Δ(Xk)=1 if and only if the cardinality
|L(Xk)|= |Xk|, θ1:k∈Θ1:k is the history of multi-array as-
sociation mappings up to frame k, i.e. θ1:k�(θ1, . . ., θk). Each
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ω(θ1:k)(L(Xk)) is a non-negative weight such that∑
L⊆L0:k

∑
θ1:k∈Θ1:k

ω(θ1:k)(L) = 1, (16)

and can be interpreted as the probability of sources with label
set L(Xk) being active, as well as being associated with the
detections given by the association history θ1:k. Each p(θ1:k)(·, �)
is a probability density of the source state with label � and associ-
ation history θ1:k, where p(θ1:k)(xk, �) is the probability density
of the source with label � being located at state xk = (αk, α̇k).

In plain terms, the GLMB (20) can be interpreted as a mixture
model, i.e. a weighted sum of the products of single-source
probability densities, where each weight is a function of the
labels in the multi-source state. From an implementation stand-
point, the number of terms in the mixture grows exponentially
over time, partly due to the enumeration of all possible multi-
array associations at each time frame. To maintain tractability,
pruning of the terms with low weights is required, and has
been shown to minimize the L1 approximation error [29]. The
Multi-Sensor GLMB (MS-GLMB) filter offers a polynomial
time implementation mechanism that generates highly weighted
components without exhaustive enumeration of the sum in (20),
which has a linear complexity in the sum of the total number
of measurements across all arrays [29]. A multi-source state
estimate can be obtained from the GLMB posterior density via
a simple GLMB estimator [27], [29]. Since we only require
the position component of the single-source state, the estimated
multi-source state X̂k at frame k is:

X̂k = {(α̂k,1, �̂1), . . ., (α̂k,|X̂k |, �̂|X̂k |)}, (17)

where N̂k= |X̂k| is the estimated number of sources.

V. SOURCE SEPARATION

This section describes the use of the multi-source state esti-
mate from the MS-GLMB filter to construct a Generalized Side-
lobe Canceler (GSC) for source separation. For post-processing,
we adopt a time-frequency masking step to further suppress
interfering speech.

A. Spatial Filtering

At each frame k, the tracking filter provides the multi-source
state estimate X̂k, which contains the estimated source positions
and labels from the available data. The combination of source
positions and labels constitutes the estimated source tracks,
thereby solving the space-time permutation problem that arises
from the multi-array measurements as depicted in Fig. 3. With
this information, we design a set of spatial filters that is changing
at each frame depending on X̂k, based on a free space near-field
room model. We adopt a variant of the linearly constrained
minimum variance beamformer called the Generalized Side-
lobe Canceler (GSC). A GSC is a constrained beamformer that
has been converted to a non-constrained design by means of a
blocking matrix [30]. The GSC contains two parts: a beamformer
that determines the response of the source of interest (SOI), and

Fig. 4. Spatial Filtering via Generalized Side-lobe Canceler (GSC).

a mechanism that blocks the SOI from entering the canceler.
Fig. 4 shows a block diagram of the GSC.

In the first part, we use a beamformer that emphasizes the
direction of the SOI specified by label �̂i with position α̂k,i,
while nulling other interfering sources specified by {(α̂k,j , �̂j)∈
X̂k}N̂k

j=1 for i 	=j. For each TF point (λ, k), the weight of the

beamformer Ŵ (q)

k,�̂i
(λ) is given by:

(
D

(q)

k,X̂k
(λ)

)H

Ŵ
(q)

k,�̂i
(λ) = rN̂k

(�̂i)

Ŵ
(q)

k,�̂i
(λ) =

((
D

(q)

k,X̂k
(λ)

)H
)†
rN̂k

(�̂i), (18)

where the operator H is the Hermitian transpose, the dagger †
denotes the Moore-Penrose pseudo-inverse, rN̂k

is a selection
vector whose dimension varies depending on the estimated
number of sources N̂k, i.e. rN̂k

(�̂i)=[δ�̂1(�̂i), . . . , δ�̂N̂k

(�̂i)]
T

such that δi(j)=1 if i=j and zero otherwise, and

D
(q)

k,X̂k
(λ)=

⎡
⎢⎢⎢⎣
ejωλ(τ(α̂k,1,u

(q,1)))· · · ejωλ

(
τ(α̂k,N̂k

,u(q,1))
)

...
. . .

...

ejωλ(τ(α̂k,1,u
(q,Mq)))· · ·ejωλ

(
τ(α̂k,N̂k

,u(q,Mq))
)

⎤
⎥⎥⎥⎦, (19)

is a matrix with columns representing the steering vectors for
each estimated source. The number of columns depends on
the estimated number of sources N̂k. Note that if N̂k=1, (23)
reduces to the classical delay-and-sum beamformer.

The second part involves a blocking matrix that is defined to
be the orthogonal complement to (Ŵ

(q)

k,�̂i
(λ))H [30]:

B
(q)

k,�̂i
(λ)=I−Ŵ (q)

k,�̂i
(λ)

[(
Ŵ

(q)

k,�̂i
(λ)

)H

Ŵ
(q)

k,�̂i
(λ)

]−1(
Ŵ

(q)

k,�̂i
(λ)

)H

,

(20)
where I is an identity matrix. Subsequently, the weight vector of
the GSC is defined by:

G
(q)

k,�̂i
(λ) = Ŵ

(q)

k,�̂i
(λ)− B

(q)

k,�̂i
(λ)Vk(λ), (21)

where

Vk,opt(λ) =

argmin
V

k∑
η=1

γk−η

∣∣∣∣(Ŵ (q)

η,�̂i
(λ)− B

(q)

η,�̂i
(λ)V

)H

Y (q)
η (λ)

∣∣∣∣
2

, (22)

γ ∈ [0, 1] is a positive constant. Eq. (27) can be solved recur-
sively using recursive least squares [38].
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The output of the GSC for estimated source label �̂i at each
TF point (λ, k) and array q is given by:

S
(GSC,q)

k,�̂i
(λ) =

(
G

(q)

k,�̂i
(λ)

)H

Y
(q)
k (λ). (23)

B. Post-Processing: Time-Frequency Masking

To improve the quality of the separated source signals, we ex-
ploit the spatial-spectral content of the GSC signals to construct
a time-frequency (TF) mask following the approach in [39].
The construction of the TF mask relies on the assumption
that the power spectrum of S(GSC,q)

k,�̂i
(λ) is dominated by its

corresponding source �̂i. For each source �̂i, a TF binary mask
M(q)

k,�̂i
is constructed by comparing the relative power of the

SOI to each of the interfering sources, with the intention of
suppressing the interference. The estimated source is given by
Ŝ
(q)

k,�̂i
(λ) = Mk,�̂i

(λ) · S(GSC,q)

k,�̂i
(λ), and the time-domain signal

ŝ
(q)

�̂i
is given by the inverse STFT. In separating the source, we

simply select the closest array to the estimated source position
at each frame.

VI. EXPERIMENTS

In this section, we present the evaluations of the obtained
multi-array measurements, the tracking filter performance, and
the source separation performance on real data recorded in a
physical room. Based on the same setting, we go further in
evaluating the tracking and separation performance on simulated
data with different reverberation times. The experimental setup
is summarized in Section VI-A. The parameters used for the pro-
posed method are explained in Section VI-B. Subsequently, we
evaluate the quality of the SRP-PHAT multi-array measurements
in Section VI-C, followed by the tracking performance of the
multi-source Bayesian filter in Section VI-D, and the separation
performance in Section VI-E.

A. Experimental Setup

The experiment is conducted in a 7.67m× 3.41m× 2.7m en-
closed room with reverberation measured at T60 ≈ 0.25s using
4 linear arrays of 6 microphones (total of 24 mics), where all
microphones are calibrated to the same gain/sensitivity. These
microphones are connected into 3 RME-OctaMic 8-channel
pre-amps. Each pre-amp is daisy-chained via MADI cables into
the computer. All 4 microphone arrays are placed at the sides of
the room as shown in Fig. 5.

As our proposed method is capable of handling an unknown
number of moving sources, we design the experiment such that
an active source (female speech) first appears in the scene and
starts moving, followed later by another 2 active sources (male
and female speech). It is also important to point out that the times
at which these sources appear and disappear from the scene are
unknown. The movement of each individual source is annotated
by hand and the trajectories of the sources are illustrated in
Fig. 5. In recording the source signals, we traverse each source
according on the indicated path so that we can evaluate the

Fig. 5. Experimental Room Setup.

tracking results. Note that the sources are continuously active
with typical short pauses in speech.

To evaluate the performance of the proposed method with
different reverberation times, i.e. T60=0.05s, 0.25s, 0.55s, we
use the Image Source Model (ISM) [34], [35] to simulate the
acoustic room response for these reverberation times. The move-
ments of the sources are the same as the annotated (ground-truth)
trajectories in Fig. 5, and the source signals are convolved
with simulated room impulse responses using a 512-sample
block length.

B. Parameters Breakdown

1) Multi-Array Measurements: The microphone signals are
sampled at Fs=16 kHz and subjected to high-pass filtering
with 1 kHz cutoff to minimize the impact of reverberation on
the multi-array measurements. The STFT of the raw signals
is performed with a Hann window of frame length T=512,
where each frame increment corresponds to a 32 ms time block.
The multi-array position measurements are obtained via peak-
picking with an empirically selected threshold.

2) Multi-Source Bayesian Tracking Filter: Recall that the
parameters of the multi-source transition density are shown
in Table II of Section IV-B. In audio speaker tracking where
speech typically has short pauses, the Langevin model [11],
[18], [40] is an appropriate choice for acoustic speaker
tracking [12]. The motion model has the following state
space equations [40]: αk+1 = αk + φα̇k, α̇k+1 = e−βφα̇k +
ν
√
1− e−2βφΞk, where αk and α̇k are the 3D position and

velocity vectors respectively, β is the rate constant that controls
the rate at which the velocity decays, ν is the steady-state
root-mean-square velocity constant, φ is the discretization time
step interval and Ξk is the process noise. The process noise
Ξk models random disturbances in the state transition, and Ξk

is a 3-dimensional Gaussian random vector with zero mean
and covariance σΞσ

T
Ξ , where σΞ is a column vector of the

component standard deviations. Note that each component ofΞk

is a Gaussian random variable that is statistically independent
of one another and across time.

Based on this motion model, we specify the single-source state
transition density as fS(xk+1|xk) = N (xk+1; Fxk,RR

T ),
where xk�(αk, α̇k), N ( · ; Fxk,RRT ) is a Gaussian pdf
with mean Fxk and covariance RRT , F = Fpseudo ⊗ I3, R =
Rpseudo ⊗ I3, I3 an identity matrix of 3 dimensions, ⊗ is the
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Kronecker product, and

Fpseudo =

[
1 φ

0 e−βφ

]
Rpseudo = σΞ

[
0

ν
√
1− e−2βφ

]
.

In the experiment, the values of the Langevin model pa-
rameters are set to β=10s−1, ν=1ms−1, and φ=32ms. The
noise standard deviation is σΞ=[4.7, 4.7, 0.7]Tms−1, where the
z-component standard deviation is lower than that of the other
components because movements in the z-axis are small. A high
probability of survivalPS=0.999 is selected as existing sources
are likely to be persist.

The birth parameters are given by {rB(�i), pB(·, �i) �
N (·;μ(i)

B , P
(i)
B )}3i=1, where rB(�i) is the birth probabil-

ity of a source with label �i and pB(·, �i) is the birth
probability density which is a Gaussian with mean μ

(i)
B

and covariance P
(i)
B . The Gaussian mean is a vector

containing the expected location of source birth while
the associated covariance specifies its spatial uncertainty.
In the experiment, the values of these parameters are:
rB(�1)= rB(�2)=rB(�3)=0.005,μ(1)

B = [5.0 1.0 1.8 0 0 0]T ,

μ
(2)
B = [4.0 3.0 1.5 0 0 0]T , μ(3)

B = [2.5 0.5 1.5 0 0 0]T , P (1)
B =

P
(2)
B =P

(3)
B = diag([0.15; 0.15; 0.15; 0.15; 0.15; 0.15]T)2. Note

that the Gaussian means have units of m for the 3D position
components and ms−1 for the 3D velocity components.

Subsequently, recall that the parameters of the multi-array
measurement likelihood are shown in Table III of Section IV-C.
The obtained array measurements are noisy in nature. Hence,
each measurement from each array z(q)k is related to the source

state xk via the measurement equation: z(q)k = Hxk + ζ
(q)
k

where q=1, . . ., Q, H=[I3, 0], and ζ(q)k is an additive Gaussian
random vector that is used to model noise in the measurement.
Similar to the process noise, ζ(q)k is a 3-dimensional Gaus-
sian random vector with zero mean and covariance σζ(q)σT

ζ(q) ,
where σζ(q) is a column vector of the component standard
deviations. Note that each component is a Gaussian random
variable that is statistically independent of one another and
across time. Based on this measurement model, the single-
source likelihood for each array q is given as: g(q)(z(q)k |xk) =
N (zk

(q); Hxk, σζ(q)σT
ζ(q)). In the experiment, the noise stan-

dard deviation vector is set to σζ(q) = [0.1, 0.1, 0.1]Tm for

q=1, . . ., Q. The probability of detection P
(q)
D = 0.6 for q=

1, . . ., Q is chosen to reflect the quality to the obtained mea-
surements. The intensity functionκ(q)(·)= U(·) for q=1, . . ., Q
denotes an average of 10 false detections per frame where each
individual false detection is uniformly distributed in its space.

3) Source Separation: In the separation module, the STFT
of the raw microphone signals is performed with a 1024-sample
Hann window with 50% overlap to reduce the effect of window-
ing [41]. Since STFT from a 1024-sample with 50% overlapping
window corresponds to the same number of frames as STFT
from a 512-sample window with no overlapping, the frames
are synchronized from the tracking module to the separation
module, so that tracking estimates obtained at each frame are
used for the separation accordingly.

Fig. 6. Observed measurements projected onto 2D ground plane as represented
by black crosses at frames k=120, 121 and 122 for Array 2. The true positions
for the active sources at the relevant times are denoted by colored asterisks.

C. Evaluation of SRP-PHAT Multi-Array Measurements

Due to space constraints, we only present the evaluation on
real data. Fig. 6 (a) shows the real measurements obtained
from an array compared with the ground-truth source positions.
Notice that there is noise, missed detections (false negatives)
and false detections (false positives) as expected across time
frames. To evaluate the quality of the obtained multi-array
measurements, we need a distance function between two sets
of points, i.e. the set which contains the array measurements
and the set which contains the ground-truth source positions.
This distance function must be able to capture the accuracy of
the individual points and the mismatch in number of points.
Conceptually, the distance function must satisfy the three axioms
of a metric: identity, symmetry and triangle inequality. While
the first two axioms are often easily met, the triangle inequality
is equally important. Conformity with the triangle inequality
ensures the metric to be consistent with geometric interpretation,
i.e. the shortest distance between two points is a straight line.

To this end we employ the Optimal Sub-Pattern Assignment
(OSPA) distance which is an established mathematically con-
sistent and physically meaningful metric between two finite sets
of points [31]. The OSPA distance captures both localization
and cardinality errors between two finite sets with a suitable
base-distance between the points. The Euclidean distance (2-
norm) is often used as the base-distance, and the resulting OSPA
distance captures the perturbation error (localization) in the
measurements caused by noise, and the error in the number of
measurements (cardinality) caused by potential missed detec-
tions and false detections. Base-distances between two points
that exceed the cutoff are capped at the cutoff value. The cutoff
value is effectively the threshold at which a localization error is
deemed as a cardinality error. A higher cutoff value brings more
emphasis on the cardinality errors, and vice versa. The OSPA
distance between the set containing the array measurements
and the set containing true source positions is interpreted as
a per-point error that ranges from zero to the cutoff value with
units in meters. Interested readers can refer to [31] for full details.

For this evaluation, we compute the OSPA distance between
the set of measurements obtained from each array and the set of
source ground-truth trajectories with cutoff of 1 m as shown in
Fig. 7. It is observed that the OSPA distance for each array has a
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Fig. 7. OSPA distance between the obtained source measurements and true
source positions (lower is better) for each microphone array (q=1,2,3,4).

TABLE III
AVERAGE OSPA DISTANCE ON THE OBTAINED SOURCE MEASUREMENTS

time average of about 0.8 m. This is supported by Table V, which
shows the time average OSPA distance for each array along with
its localization and cardinality components. The table indicates
that the average localization error for each array is about 0.3 m,
while the average cardinality error for each array is about 0.5 m.
From these values, we observe that the OSPA distances have
noticeable localization errors but are still dominated by cardi-
nality errors. Consequently, when measurements corresponding
to the direct path are obtained, they are somewhat noisy, while it
it also clear that there is a high number of missed detections and
false detections. Combined with the fact that the measurements
have no identities or labels, and that the number of sources are
unknown and time-varying, it is clear that source separation via
spatial filtering using the multi-array measurements is not viable.

D. Evaluation of Multi-Source Tracking Filter

The multi-array measurements are fed into the multi-source
Bayesian tracking filter (MS-GLMB filter) at each frame, which
outputs the filtering density. This output is fed back into the filter
to process multi-array measurements at the next frame, and into
the estimator to generate the multi-source state estimate which
contains the estimated source tracks (positions and labels).

A track is defined when the source position estimates across
frames are associated with a common label. Specifically, the
mathematical definition of a track is a function whose domain is
the set of time instants at which the source exists. In online track-
ing, a track can be fragmented or “broken” when the estimated
source labels are not matching across time frames. Another
common error is track switching which occurs when the label of
a track switches to another. While the OSPA distance provides
an indication of the acoustic measurement performance, it does
not account for labeling errors between the estimated and true
sets of tracks. As a result, it does not penalize track switching
and fragmentation. In order to evaluate the estimated source
tracks against the ground-truth source trajectories, we need a
distance function to characterize the error between tracks over a
time window.

To achieve this, we use the OSPA(2) metric which is defined
for two sets of tracks, i.e. the set of estimated source tracks and

Fig. 8. 3D estimated source tracks (colored dots) vs the true source trajectories
(colored lines) plotted against time.

the set of true source tracks. The construction of the OSPA(2)

metric is based on the OSPA metric. In particular, OSPA(2)

uses a time-averaged OSPA distance (over the common track
times, with an appropriate cutoff) between a pair of tracks as the
base-distance. TheOSPA(2) distance treats the individual tracks
as individual points in a larger space of tracks. TheOSPA(2) dis-
tance is constructed as the OSPA distance between the two sets
of tracks where the base distance is defined directly above [32].
Hence, the name OSPA(2) reflects the OSPA-on-OSPA nature
in its construction. The OSPA(2) distance is capable of penal-
izing track switches (label changes) and fragmentations (“bro-
ken” tracks). The OSPA(2) is also parameterized by the cutoff
value, which provides a sensitivity tradeoff between localization
and cardinality errors between the tracks. The interpretation
of the OSPA(2) distance evaluated over a fixed time window
is consequently a time-averaged per-track error. The complete
breakdown of the OSPA(2) metric can be found in [32].

For online tracking, it is desirable to have the tracking perfor-
mance as a function of time. This can be achieved by computing
the OSPA(2) distance over a sliding window instead of a fixed
time window. This means that the OSPA(2) distance is plotted
against time as the sliding window moves forward. Tracks whose
domains lie outside the window are disregarded. This is useful
for “forgetting” errors that were made further in the past. For this
evaluation, a cutoff of 1 m and a window length of 30 frames
are used.

1) Real Data: The 3D estimated tracks (colored dots) from
the MS-GLMB tracking filter are compared with the source
ground-truth trajectories (colored lines) in Fig. 8, where the
color of a dot represents the label of a particular track. While
the estimated tracks for Source 1 (red), 2 (green) and 3 (blue)
at frame 1, 11 and 61 respectively have slight delays in the
initiations, we observe that the tracking filter manages to initiate
and maintain all 3 estimated tracks consistently across frames
with respect to the ground-truth trajectories.
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Fig. 9. OSPA(2) distance between estimated and true source trajectories
(lower is better).

Fig. 10. OSPA(2) distance between estimated and true source trajectories
(lower is better).

Fig. 9 shows the OSPA(2) distance between the estimated
tracks and the ground-truth trajectories plotted against time.
Notice that the spikes of the curve correspond to the errors
caused by the late track initiations and terminations of Source 1,
2 and 3 as depicted Fig. 8. Despite noise, false detections (false
positives) and missed detections (false negatives) in the obtained
multi-array measurements, the result validates the proposed
tracking filter for solving the space-time permutation problem,
and producing tracks for each source with reasonable accuracy
as corroborated by both Fig. 8 and Fig. 9.

2) Simulated Data: Due to space constraints, we omit the
3D-track plots for simulated data and only present the OSPA(2)

distances for the tracking estimates generated at reverberation
times T60=0.05s, 0.25s, and 0.55s in Fig. 10.

At T60=0.05s (in black), the MS-GLMB tracking filter
achieves the lowest OSPA(2) distance compared to the other
2 curves, indicating that the tracking result is the best out
of the other 2 examples. This is expected as the multi-array
measurements capture the direct path.

At T60=0.25s (in blue), we see that the error curve is similar
to the OSPA(2) error curve on real data, where the spikes
are caused by the delays in track initiations and terminations.
This indicates an agreement between the simulation and the
real measurements.

At T60=0.55s (in red), we observe that the error curve is
higher than that of the previous two curves, indicating a poorer
tracking result. This increase in error is caused by late track
initiations and terminations, and larger localization error due to
higher reverberation.

E. Evaluation of Source Separation

For moving sources, the delay of the source signal with respect
to any microphone array is changing over time. In our proposed
method, the selection of the array for source separation depends
on the source position at each frame. Therefore, perceptual
measures such as PESQ [42], STOI [43] and PEASS [44] that
rely on delay-compensation, are not directly applicable. One

TABLE IV
SCALES OF SIG, BAK AND OVRL IN THE SUBJECTIVE LISTENING TEST

possibility for using these measures is to consider time blocks
where the sources are almost stationary. However, this is outside
the scope of this paper as there may not be enough signal
information in those frames, and a very complex study is needed
with the development of suitable measures. Conventional BSS
performance measures that are based on signal (energy) ratios,
i.e. the BSSEval [45], require an exact time-alignment between
the estimated and true signals to work [45]. As our experiment
involves sources that are moving, and the exact times at which
the sources appear in the scene are unknown, BSSEval is also
not suitable for evaluating the source separation performance.

To evaluate the separation performance, we administered a
subjective listening test on all scenarios based on the ITU-T
P.835 methodology specifically designed to evaluate the distor-
tions and overall quality of noise suppression algorithms [33]. In
the test, each participant is instructed to listen to the clean speech
signal (upper anchor reference), the separated speech signal (to
be evaluated) and the mixture signal (lower anchor reference),
then rate them on:
� The speech signal alone using a five-point scale of signal

distortion (SIG);
� The background interfering noise alone using a five-point

scale of background intrusiveness (BAK);
� The overall quality using the scale of mean opinion score

(OVRL).
The scales of SIG, BAK and OVRL are described in Table VI.

The listening tests are carried out on the separated signals both
before and after the post-processing step. This form of ablation
study is undertaken with the intention of understanding the trade-
off between additional speech suppression and signal distortion
due to the optional post-processing.

In this evaluation, 17 people (11 males, 6 females) of ages
from 20 to 40 are recruited to partake in the listening test. To
assess the overarching discrepancies between the test ratings on
the separated speech signal and the unprocessed mixture signal,
a statistical analysis of variance (ANOVA) is adopted to present
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Fig. 11. Mean scores for SIG, BAK, and OVRL for the estimated source sig-
nals, ablation study (estimation without post-processing), and original mixture
signals evaluated on real data.

TABLE V
ONE-WAY ANOVA TEST BETWEEN THE ESTIMATED SOURCE SIGNALS AND

ORIGINAL MIXTURE SIGNALS ON REAL DATA, AND CORRESPONDING ANOVA
TEST FOR THE ABLATION STUDY (ESTIMATION WITHOUT POST-PROCESSING)

The asterisk (*) denotes values that are above the selected significance
level, i.e. 0.05. (↑means higher is better while ↓means lower is better.)

the significant statistical difference between the quality of the
separated speech signal and the unprocessed mixture based on
a 0.05 significance level.

1) Real Data: For the subjective listening test, the mean
scores over all 3 aspects, i.e. SIG, BAK and OVRL, of the
separated/estimated source signals and the unprocessed mixture
signals are presented in Fig. 12. We observe that the BAK and
OVRL mean scores of all three estimated source signals from the
proposed method (the blue bars) are relatively high as compared
to the mean scores of the mixture signals, while the SIG mean
scores of all estimated and mixture signals are relatively close.
This indicates that the source signals are well separated with
minimal signal distortions.

Thep-values of the one-way ANOVA test between the esti-
mated source signals and the unprocessed mixture signals are
tabulated in Table VIII. In terms of SIG, the table shows that
all values of the proposed method are higher than 0.05, which
means that there is no statistically significant difference in signal
distortion between the estimated source signals and the mixture
signals. In terms of BAK and OVRL, the table shows that all
values of the proposed method are less than 0.05, indicating a
statistically significant difference in speech intrusiveness and
overall quality respectively.

From the results of the ablation study in Fig. 12 (the green
bars) and Table VIII, it can be seen that the BAK and OVRL
means scores are slightly poorer than that of the proposed
method, but the SIG mean scores are better than that of the
proposed method across the board. Subsequently, the BAK and
OVRL p-values indicate that there is a statistically significant
difference in speech intrusiveness and overall quality, whereas

TABLE VI
ONE-WAY ANOVA TEST BETWEEN THE ESTIMATED SOURCE SIGNALS AND

ORIGINAL MIXTURE SIGNALS ON SIMULATED DATA, AND CORRESPONDING

ANOVA TEST FOR THE ABLATION STUDY (ESTIMATION WITHOUT

POST-PROCESSING)

The asterisk (*) denotes values that are above the selected significance level, i.e.
0.05. (↑ means higher is better while ↓ means lower is better.)

the SIG p-values indicate that there is no statistically significant
difference in signal distortion. These observations indicate that
the proposed method minus post-processing achieves notice-
able speech suppression with negligible signal distortion. The
addition of the post-processing does indeed further enhance
interference suppression, but at the cost of some signal distortion
which manifests as musical noise in the estimated signals.

In summary, the proposed method achieves source separation
with good noise (interfering speech) suppression, which is cor-
roborated by both the mean scores and the ANOVA test in Fig. 12
and Table VIII respectively. The audio files for this experiment
are available in Supplementary Materials.

2) Simulated Data: The mean scores for the subjective lis-
tening test on the estimated source signals and the unpro-
cessed mixture signals, obtained under reverberation times
T60=0.05s, 0.25s and 0.55s, are shown in Fig. 13. Based on the
relative differences for SIG, BAK and OVRL between all esti-
mated and mixture signals atT60=0.05s and 0.25s, we observe a
similar pattern as for the real data, which shows that the proposed
algorithm is capable of separating the sources reasonably well.
However, at T60=0.55s, the separation performance degrades
as the mean scores between all estimated and mixture signals are
relatively close. Overall, we observe a downward trend in mean
scores of the estimated source signals from low T60 to high
T60. This degradation is expected because both tracking and
separation performance degrades with increasing reverberation.

The p-values of the one-way ANOVA test between the esti-
mated source signals and the unprocessed mixture signals are
tabulated in Table IX. In terms of SIG, the p-values for all three
sources at all reverberation times are above 0.05. This indicates
that signal distortions between the estimated source signals and
mixture signals are very similar. In terms of BAK and OVRL,
the computed p-values for all three sources at T60 = 0.05s and
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Fig. 12. Mean scores for SIG, BAK, and OVRL for the estimated source signals, ablation study (estimation without post-processing), and original mixture signals
evaluated on simulated data.

0.25s are below 0.05. This suggests that speech intrusiveness
and the overall quality of the estimated source signals are
statistically different from the mixture signals, thus indicating
good separation.

At T60=0.55s however, we see that the p-values on OVRL
for all three sources are higher than 0.05, suggesting that there is
no statistically significant difference between the overall quality
of the estimated source signals and the mixture signals. This,
combined with the fact that the BAK values are fairly close
to 0.05, suggests an overall poorer separation performance as
interfering speech is not well suppressed. This decrease in
performance is most likely due to two main reasons. The first
being as reverberation time increases, the quality of tracking
deteriorates, resulting in more localization errors. The second
being the failure in the signal sparsity assumption, which results
in leakage in the TF masking.

Examination of the ablation results in Fig. 13 and Table IX
reveals similar trends to those observed in the real-data ex-
periments. For each of the three reverberation levels, the pro-
posed method minus post-processing achieves noticeable sup-
pression with negligible distortion, but the addition of the post-
processing involves a trade-off between further suppression and
audible distortion.

It can be seen that the separation performance on simulated
data at T60=0.25s matches the results on real data, and that the
separation performance generally degrades as reverberation time
increases. This is corroborated by both the mean scores and the
ANOVA test in Fig. 13 and Table IX. We also note the presence
of more perceptible signal distortion in real data compared to
simulated data. This is likely due to the mismatch between the
real room environment and the simulated room model, which
leads to additional spectral leakage in the time-frequency mask-
ing of the post-processing. The audio files for the experiments
on simulated data are also provided in Supplementary Material.

VII. CONCLUSION

This paper proposes a block-wise or online solution for blind
source separation with multiple microphone arrays, which can
accommodate an unknown time-varying number of acoustic
moving sources in mild reverberation. The proposed solution
is based on first obtaining source position measurements, then
estimating the trajectories of the sources, and finally separating
the mixed signal with corresponding spatial filtering. In real
acoustic recordings measured at T60≈ 0.25s, it is observed that

the SRP-PHAT source measurements are relatively noisy, and
contain significant false and missed detections. In addition, the
measurements are unlabeled, and coupled with the unknown
appearance, disappearance and movement of sources, it is not
known which source generated which measurement at the cur-
rent time, nor which measurements are connected to the same
source across time. These observations verify the extent of the in-
herent space-time permutation problem, which is then addressed
with the application of a labeled RFS based MS-GLMB tracking
filter. Results indicate that the tracking filter is able to recover
the source trajectories (i.e. the positions and identities) from the
imperfect source measurements with some delay in initiation
and termination. Separation is carried out via a corresponding
set of time-varying generalized side-lobe cancellers. Evaluations
with subjective listening tests confirm acceptable performance
in mild reverberation. Additional experiments via acoustic room
simulations with the ISM method indicate clear separation per-
formance at lower reverberation T60=0.05s, matching perfor-
mance in mild reverberation T60= 0.25s, and noticeable dete-
rioration at higher reverberation T60=0.55s. Future works will
investigate the impacts of array configuration and placement
which are beyond the scope of the current paper.
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squares algorithms,” in Perspective Stereophonic Acoustic Echo Cancel-
lation. Springer, 2011, pp. 63–69.

[39] J. P. Morgan, “Time-frequency masking performance for improved intelli-
gibility with microphone arrays,” Ph.D. dissertation, Master Thesis in the
College of Engineering at the University of Kentucky, 2017.

[40] J. Vermaak and A. Blake, “Nonlinear filtering for speaker tracking in noisy
and reverberant environments,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 5, 2001, pp. 3021–3024.

[41] I. Cohen, J. Benesty, and S. Gannot, Speech Processing in Modern Com-
munication: Challenges and Perspectives, vol. 3, Springer, 2009.

[42] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-A new method for speech quality
assessment of telephone networks and codecs,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (Cat. No. 01CH37221), vol. 2, 2001,
pp. 749–752.

[43] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for
intelligibility prediction of time-frequency weighted noisy speech,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2125–2136, Sep.
2011.

[44] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective and
objective quality assessment of audio source separation,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2046–2057, Sep. 2011.

[45] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

Jonah Ong received the B.E. degree in 2018 in elec-
trical and power engineering (with first-class honors)
from Curtin University, Perth, WA, Australia, where
he is currently working toward the Ph.D. degree in
electrical engineering. His research interests include
statistical signal processing, Bayesian filtering and
estimation, random sets, and multitarget tracking.



ONG et al.: BLIND SEPARATION FOR MULTIPLE MOVING SOURCES WITH LABELED RANDOM FINITE SETS 2151

Ba Tuong Vo received the B.Sc. degree in applied
mathematics and the B.E. degree in electrical and
electronic engineering (with first-class honors) in
2004 and the Ph.D. degree in 2008 in engineering
(with Distinction) from The University of Western
Australia, Perth, WA, Australia. He is currently a
Professor of signal processing with Curtin University,
Perth, WA, Australia. His primary research interests
include random sets, filtering and estimation, multiple
object systems.

Sven Nordholm received the M.Sc.-EE (Civilingen-
jör) degree, the Licentiate degree in engineering, and
the Ph.D. degree in signal processing from Lund
University, Lund, Sweden, in 1983, 1989, and 1992,
respectively. Since 1999, he has been a Professor of
signal processing with the School of Electrical and
Computer Engineering, Curtin University, Perth, WA,
Australia. He is the Co-Founder of two start-up com-
panies, which include Sensear, providing voice com-
munication in extreme noise conditions and Nuheara
a hearables company. He has authored or coauthored

more than 200 papers in refereed journals and conference proceedings. He
frequently contributes to book chapters and encyclopedia articles. He is holding
seven patents in the area of speech enhancement and microphone arrays. His
primary research interests include speech enhancement, adaptive and optimum
microphone arrays, audio signal processing, and wireless communication. He
was a Lead Editor for a SPECIAL ISSUE ON ASSISTIVE LISTING TECHNIQUES

IN IEEE SIGNAL PROCESSING MAGAZINE and several other EURASIP special
issues. He is a former Associate editor for the Eurasip Advances in Signal
Processing and Journal of Franklin Institute, and is currently an Associate
Editor for the IEEE/ACM TRANSACTION ON AUDIO, SPEECH AND LANGUAGE

PROCESSING.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


